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Preface

The idea of Industry 4.0 was first introduced at the Hanover Fair in 2011 and has since become

a reality thanks to advancements in numerous fields, including digital technology, robotics, artificial

intelligence, nanotechnology, biotechnology, the Internet of Things, 3D printing, and autonomous

vehicles. The primary goal of Industry 4.0 is to improve industry asset management by combining

all of these technologies. The design principles of Industry 4.0 were established in 2016 by Herman,

Penntek, and Otto and include interoperability, information transparency, technical assistance, and

decentralized decision-making.

This Special Issue of Energies focuses on the importance of detecting faults in induction motors,

which are crucial industrial components and are also present in many different areas, such as

transportation, service, and utilities. Although these machines are typically robust, they can fail

and cause significant damage if not detected early. This can result in unplanned production stops,

destroyed facilities, and service interruptions, which can be costly for companies. Therefore, there

is a growing interest in developing early detection systems to prevent these failures from becoming

catastrophic. Early fault detection techniques are essential for implementing predictive maintenance

systems, which are a critical element of Industry 4.0.

Information transparency and decentralized decision-making are two principles of Industry

4.0 that will shape the future of maintenance systems for these machines. This means that

maintenance systems for electric motors must include more valuable context information beyond

the raw data provided by sensors. In other words, maintenance systems must have instrumentation

and monitoring systems and provide automatic device diagnosis and prognosis.

Traditionally, electrical machine condition monitoring has relied on analyzing stator current

or motor vibrations. However, this Issue presents papers that propose using other signals, such

as stray flux, sound, speed, and thermographs. The authors also present different techniques to

process the signals of these physical variables (apFFT Time-shift phase difference spectrum, Prony

methods, Min-Norm techniques, etc.) and obtain valuable information for automatic diagnosis based

on models or machine-learning techniques.

Daniel Morinigo-Sotelo, Rene Romero-Troncoso, and Joan Pons-Llinares

Editors
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Abstract: There is an increasing interest in improving energy efficiency and reducing operational
costs of induction motors in the industry. These costs can be significantly reduced, and the efficiency
of the motor can be improved if the condition of the machine is monitored regularly and if monitoring
techniques are able to detect failures at an incipient stage. An early fault detection makes the
elimination of costly standstills, unscheduled downtime, unplanned breakdowns, and industrial
injuries possible. Furthermore, maintaining a proper motor operation by reducing incipient failures
can reduce motor losses and extend its operating life. There are many review papers in which
analyses of fault detection techniques in induction motors can be found. However, all these reviewed
techniques can detect failures only at developed or advanced stages. To our knowledge, no review
exists that assesses works able to detect failures at incipient stages. This paper presents a review of
techniques and methodologies that can detect faults at early stages. The review presents an analysis
of the existing techniques focusing on the following principal motor components: stator, rotor, and
rolling bearings. For steady-state and transient operating modes of the motor, the methodologies are
discussed and recommendations for future research in this area are also presented.

Keywords: artificial intelligence; condition monitoring; early detection; fault diagnosis; fault severity;
frequency analysis; incipient fault; induction motor; machine learning; signal processing

1. Introduction

Electric motor failures in industrial systems often result in unplanned downtime,
loss of production, higher operating costs, and loss of profits [1]. The most common
family of electric motors used in homes, businesses, and industry is the induction motor
(IM) [2], for which there is a variety to choose from, depending on the power source, load
requirements, mechanical interface, operating cost, energy efficiency, and reliability. IMs are
often preferred over other kinds of motors since they are significantly less expensive, more
robust, and capable of reliable operation in harsh ambient conditions, even in an explosive
atmosphere. Induction motors, particularly those of the squirrel cage type, have been for
almost a century the principal workhorse in industry [3]. Although IMs are more reliable
than other types of motors, these machines are not exempt from developing faults in their
structure or components, and these failures could lead to motor malfunction. Therefore,
reliable condition monitoring for induction motors is of great value to avoid catastrophic
unscheduled downtime [4]. An unexpected failure might lead to the loss of valuable human
life or a costly standstill in industry, which needs to be prevented by precisely detecting
the fault. The induction motor consists of many mechanical and electrical parts, such as a
motor frame, stator windings, rotor cage, rolling bearings, fan, rotor shaft, among others.
Despite induction motors are designed to be robust machines, they are exposed to external
situations such as unstable supply voltage, unstable supply current sources, overloads,
unbalanced loads, and electrical stresses. Due to the above-mentioned situations, damages

Energies 2022, 15, 7855. https://doi.org/10.3390/en15217855 https://www.mdpi.com/journal/energies
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in operation and natural deterioration of the material parts (or manufacturing defects), the
motor will eventually develop a faulty condition.

Different condition states of an IM component can be characterized as healthy or faulty
condition. In the healthy condition, the internal components have no degradation, and
the induction motor operates with maximum energy efficiency. There are three states that
characterize a faulty condition in IM. The first one consists in an incipient fault, known as
the early stage, where the degradation begins to develop in one or several of the internal
components. Although the motor component has damage (i.e., partially broken rotor
bars), the induction motor can continue to operate with no apparent symptoms. In the
second faulty state, known as the developed fault, the damage on the motor component
is advanced (i.e., one or more broken rotor bars). In this condition, the IM still operates;
however, the damaged component severely affects the motor performance. Finally, the
third faulty condition, known as catastrophic fault, occurs when the developed failure has
propagated to other components, and the IM is no longer operating. Three stages of fault
growth can be considered for an IM: the incipient fault with a steady propagation, the
advanced fault with an accelerated propagation, and the catastrophic stage with a very
accelerated propagation. The first stage is from the healthy state of the component until
the very incipient fault state. This stage covers most of the portion of the IM component’s
useful life. After the incipient fault is present, the degradation propagates slowly until
the developed fault state is reached. Once the IM component presents developed fault
symptoms, the last stage is the accelerated propagation, where the fault grows rapidly until
a breakdown. The early detection of IM faults is carried out before an internal component
exhibits a developed fault stage. According to the literature, the tendency in industry and
academia is to consider incipient fault of the rotor or bearing when there exists only a
partial fracture of an internal component. Whereas for the stator, it considers incipient fault
when there exists a short circuit among less than 3% of the total turns winding.

Some surveys [5–7] revealed that the occurrence rate of bearing faults can reach around
40% of the total failures in induction motors, while other studies indicated that this rate
can be even higher for small motors. On the other hand, as per the study by the Institute of
Electrical and Electronics Engineers (IEEE) and the Electric Power Research Institute (EPRI),
faults that occur in the stator of an IM are 36% and 28%, respectively. Finally, it is reported
in the literature that rotor faults are responsible for 8–10% of failures in induction motors [8].
Bearing defects usually lead to an increment in the sound and vibration levels as well as
high temperatures. A severe damage can even provoke catastrophic failures (i.e., rotor-
stator rubbing, insulation damage). Moreover, stator failures during motor operation lead
to reduced efficiency of the machines. Once begun, the stator fault provokes progressive
degradation of insulating materials, ultimately leading to electrical breakdown. Despite
rotor failures have a lower rate of occurrence compared to the above-mentioned ones,
these faults are just as important because they can lead to shaft vibrations and winding
damages, and thus bearing or stator failures. The existence of damages or anomalies at
incipient stage implies additional losses in that part of the machine due to their improper
operation. IM faults usually progress from incipient to a very advanced stage in a lapse
of time, depending on the type of failure. Unless detected early enough, a motor failure
may lead to costly standstill in industry or fatal consequences such as fire, explosion, and
even loss of human lives. The constant need for reducing industrial injuries, unscheduled
shutdowns, and operational costs has led to developing new techniques for early fault
detection before they become prominent to cause machine failures. Some of the advantages
of early fault detection in induction motors are as follows:

• Cost savings which are realized by estimating potential failures before they occur [9].
• Facilitate pre-planned preventive machine schedules.
• Better maintenance activities instead of replacing components [10].
• Prevent unexpected stop in the production lines.
• Prevent an extended period of down-time caused by extensive machine failure.
• Improve the induction motor efficiency [11].
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In the recent literature, there are some excellent reviews on fault detection techniques
and their implementation in induction motors [12–16]; however, these reviews are limited
to detecting developed or advanced faults. This paper presents a review of diagnosis
techniques and methods for the detection of faults at incipient severity stages, due to
its important role in the condition monitoring field, and decision-making in industrial
maintenance activities. The existing literature on the subject is categorized into two ap-
proaches based on the operational mode of the IM: steady-state and transient regime. In
the steady-state regime, the reported techniques apply analysis in the time-domain or
frequency-domain to extract fault indicators and evaluate the motor condition. In the
transient-state regime, the reported methods obtain fault indicators from time-frequency
maps that allow evaluating the present state of fault indicators as well as their evolution
over time. The organization of this paper is as follows. Section 2 presents the type of
faults that induction motors develop in their main components and briefly describes the
causes and consequences for each failure with special focus on early detection. A brief
description of different signals used in the monitoring condition field for fault detection
is presented in Section 3 including practical considerations for proper signal analysis and
remarking advantages and limitations of each monitoring signal. In Section 4, a review of
various techniques that are used for early fault detection in induction motors is presented;
including those that are based on signal processing and knowledge-based. Section 5 is
dedicated to the analysis of the different methodologies, whose strengths and weaknesses
are described and discussed. According to the reviewed techniques, the conclusions are
shown in Section 6. Lastly, in Section 7, directions and a future perspective are presented.

2. Faults in Induction Motors

Induction motor faults are commonly categorized as mechanical faults and electrical
faults. Despite the existence of many fault classifications, this work categorizes motor
failures according to the component that develops the fault for the sake of simplicity. The
most common failures occur in three principal components of the rotatory machine. Figure 1
shows these main parts: the stator, the rotor, and rolling bearings.

Stator

Rotor

Rolling Bearings

Figure 1. Three fundamental components of an induction motor: stator, rotor, and rolling bearings.

2.1. Stator Faults

The stator consists of a laminated core, an outer frame, and insulated electrical wind-
ings. Its components are subjected to electrical and environmental stresses, which severely
affect the stator condition leading to faults [17]. Stator faults (SF) can be categorized based
on their localization as failure in the stator frame, fault in the stator winding, and failure in
the laminations of the stator core. Among these, stator winding failures are the most severe
faults and are often caused by failure of insulation of winding, which leads to local heating.
If unnoticed, this local heating further damages the insulation of the stator winding until
a catastrophic failure may occur. This fault is also known as the short circuit inter-turn
fault. The appearance of stator faults depends on the size of the electrical machine [18].
According to [19], low-voltage IM stator faults account for only 9% of total failures. In
medium-voltage IM, the percentage increases to 35–40%, whereas for high-voltage IM, it is
more than 65%.

3
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2.2. Rotor Faults

The rotor is the main driving shaft in induction motors through which the mechanical
energy is transferred to the load. This component is placed inside the stator, and for a
squirrel-cage type, it consists of the shaft, the aluminum or copper bars, and the end rings.
Approximately 8 to 10% of all failures in IM are at the rotor. These faults can be classified as:
broken rotor bars (BRB), cracked end-ring, and rotor eccentricities. Broken bars are caused
by a combination of different stresses (mechanical, electrical, and thermal), manufacturing
problems, dynamic stress from shaft torque, and fatigued mechanical parts [12]. This type
of fault may not show any incipient symptoms, propagating to the next bars and leading to
a sudden collapse of the rotor, producing damage in the stator and an abrupt interruption
of the motor operation [20]. On the other hand, air-gap irregularities are produced by rotor
eccentricities when the rotor axis of rotation does not coincide with stator geometrical axis.
Manufacturing and constructive errors that generate a non-uniform air-gap or an incorrect
positioning of the stator and rotor at the commissioning stage produce static eccentricity.
When the center of the rotor is not at the center of rotation, then dynamic eccentricity
is produced. The common causes of dynamic eccentricity are rotor shaft bending and
bearing faults.

2.3. Rolling Bearing Faults

Rolling element bearings are the support of the shaft rotor in the induction motor
in order to facilitate its rotation by reducing friction. In a rough manner, a bearing has
four components: an inner raceway, an outer raceway, balls, and a cage that provides an
equidistant arrangement between the balls. Bearing faults (BF) are classified as localized
failures and distributed faults (roughness or non-cyclic) [7]. Distributed defects affect
a whole region and their mathematical modeling is very difficult. In contrast, localized
failures are single-point defects and can be classified according to the affected element:
inner raceway defect, outer raceway defect, ball defect, and cage failure. Bearing wear can
be caused by a wide variety of reasons, such as excessive or deficient lubrication (due to
inadequate viscosity, excess or lack of grease, lubricant contamination, etc.), circulation of
bearing currents (in power converter-fed motors), brinelling (due to punctual overloads,
severe impacts), etc.

2.4. Early Detection of Faults

Induction motors are symmetric machines and the occurrence of any type of fault is
linked to the harmonic content of its monitored signals. The existence of a fault in IM results
in the appearance of specific frequency signatures. In general, fault detection techniques
are based on the magnitude evaluation of these signatures. When there is an anomaly in
the mechanical structure of the rolling bearing, characteristic frequencies emerge in the
vibration spectrum as a consequence of the asymmetry. There are two bearing defects that
are analyzed in the literature from the severity level point of view, the outer race defect and
the inner race defect. The related frequencies are shown below [21].

Inner raceway : fi =
Nb
2

fr

(
1 +

Db
Dc

cos β

)
, (1)

Outer raceway : fo =
Nb
2

fr

(
1 − Db

Dc
cos β

)
, (2)

where fr is the rotational frequency, Nb is the number of balls in the bearing, Dc is the pitch
or cage diameter, Db the diameter of the balls, and β is the contact angle between a ball and
the raceway. When a stator fault occurs, the current through the shorted winding affects
the magnetic field and is reflected in the axial flux as follows [22].

Stator fault : fss = fs

[(
k ± n

1 − s
p

)]
(3)
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where k is the order of the time harmonic, n the order of the shorted coil space harmonic, s
the machine slip, p the number of pole pairs, and fs the supply frequency. The damage of
broken bars in the rotor produces additional frequencies in the current spectrum. These
signatures are characterized by [23]:

Broken rotor bars : fbrb = fs(1 ± 2s) (4)

Additionally, any fluctuation in the load torque will produce oscillations in the stator
currents at frequencies of

Load oscillation : fload = fs ± m fr = fs

[
1 ± m

(
1 − s

p

)]
(5)

where m is the order of the harmonic. Since the same fault harmonic is given by BRB, a
low-frequency load-oscillation results in stator currents that can overlap those produced by
the BRB fault [24].

The magnitude of each of these fault frequencies is directly related to the severity
level of the fault. The higher the severity level, the higher the magnitude of the spectral
component. Each failure type has a different evolution over time since the degradation of
the component depends on its construction and the material from which it is made. Figure 2
illustrates the degradation of the motor components and its severity levels: bearing failure
(Figure 2a), stator failure (Figure 2b), and rotor fault (Figure 2c). The tendency in industry
and academia is to be able to make an early detection of the motor component degradation.
For bearing failure, the early detection is considered when the diameter of the crack (λ) is
less than 1/8 the diameter of the bearing ball (Θ). For broken rotor bars, early detection
is considered when one bar is partially broken and the depth of the breakage (ρ) is less
than the total length of the bar (l). Whereas for stator faults, it is considered that an early
fault occurs when there is a short circuit between less than 1/30 times the total turns of
the winding (Φ). Figure 2d–f illustrates the relationships of the fault with the construction
of the motor components. As component degradation is very low at an early stage, the
magnitude of fault signatures is also very low. Therefore, a condition diagnosis of the
motor component when the degradation is incipient presents a challenge in the detection,
identification, and evaluation of failure indicators.

The most important characteristic of any condition monitoring scheme is its quickness
of detection. Different types of faults usually progress from incipient to a very advanced
stage in a different manner, as is shown in Figure 2. This work only considers fault detection
at an early stage. For the detection of early rotor failure, only partially broken rotor bars
are taken into account, whereas fully broken rotor bars are considered a developed fault.
This is because once a bar is completely fractured, the failure spreads rapidly to adjacent
bars and subsequently damages the stator winding causing irreparable damage. In the
case of bearing faults, the early fault condition is considered when the diameter of the
fracture in the inner or the outer race is less than 12.5% of the diameter of the bearing
ball, since from then on, the bearing stroke undergoes great alterations and alters the
rotor symmetry, making the failure to be considered as developed or advanced. Finally,
the stator failure is considered in an early condition before exceeding 3.33% of the turns
in the stator phase. Once the short circuit begins, it propagates rapidly in a very short
time. Unless detected early enough, it might lead to catastrophic consequences. Faults
detected at advanced stages are far more likely to cause unplanned breakdowns in the line
production than those detected while the failure is still at an early stage. Techniques that
can detect faults at an early stage are very desirable for the possibility of correcting the
faulty condition entirely with low impact to the production line. For early detection to be
an effective and practical approach, techniques must satisfy three basic requirements. First,
the detection analysis should be able to distinguish faulty IM from healthy IM cases with
a high degree of accuracy, showing both low rates of false-positives and false negatives.
Second, the detection should be possible before the fault progresses to a developed stage,
when the propagation is accelerated, and preventive actions are less effective. Lastly, the
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diagnosis methodology should allow the assessment of the IM condition when the motor is
fed by inverters. It must be noticed that inverters induce several spectral components to
the voltage, current, and vibration signals, which overlap with the fault-related spectral
signatures; moreover, the magnitude of the fault-related components are very close to the
noise floor, making the evaluation of the fault severity difficult.

Early
Detection
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Figure 2. Degradation stages of induction motor components: (a) rolling bearing degradation,
(b) stator winding degradation, (c) rotor bar degradation, (d) rolling bearing schematic, (e) stator
winding schematic, and (f) rotor bars schematic.

3. Monitoring Signals for Fault Detection

When IMs are running, each type of fault generates characteristic features in the
machine’s behavior. Fault detection techniques can be based on the analysis of vibrations,
stator current, shaft speed, acoustic emissions, voltage, internal air-gap flux, external stray
flux, electric power, and temperature (usually trough infrared thermography).

3.1. Vibration Monitoring

Among the many condition monitoring techniques, vibration-based methods are the
most widely preferred owing to their reliability, non-intrusiveness, and easy measurability.
Vibration monitoring has been used for decades and utilized to detect mechanical faults in
IM. In working mode, radial magnetic forces are produced between the rotor and stator
surfaces and are proportional to the square of the flux density. These forces result in
stator core, winding, and motor frame vibrations. As faults associated with the rotor,
stator, and rolling bearings alter the machine symmetry, vibration signals which are a
function of the symmetrical air-gap and symmetrical components will also change [25].
Most vibration measurements usually use sensors of vibration-acceleration that work based
on the piezoelectric effect, whose output voltage is proportional to the force applied to the
sensor [26]. The vibration signals need to be processed in order to extract the fundamental
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components and to filter out nonlinear effects due to the cover frame and noise from
the environment.

3.2. Stator Current Monitoring

Even though vibration signals have been widely utilized, most of the work in the last
decade has been directed toward stator current monitoring also known as motor current
signature analysis (MCSA) [27]. The stator current monitoring can provide unique fault
patterns for the effective detection of mainly electrical faults, i.e., the stator winding fault,
broken rotor bars fault, phase unbalance, and single phasing [28]. Motor current monitoring
provides a non-intrusive way to continuously monitor the health condition with the aim of
using non-invasive sensors and possibly already existing in the drive for motor control.

3.3. Magnetic Flux Monitoring

An alternate approach based on magnetic flux monitoring has received the attention of
many researchers and motor manufacturers during the last years. The great improvements
and reduction in the costs and dimensions of the required transducers, the development
of advanced signal-processing tools that are suitable for magnetic flux analysis, along
with other inherent advantages provided by this technology, are important aspects that
have permitted the proliferation of flux-based methods [29]. The magnetic flux in IM is
broadly classified as internal magnetic flux and external stray magnetic flux. However,
using magnetic flux as monitoring signal for fault detection is not new and there are works
carried out decades earlier [30].

3.4. Others

Apart from locating specific features in the above-mentioned signals, other physical
magnitudes, such as rotor position, rotor speed, torque, acoustic emissions, electric power,
and temperature have been investigated in the recent years by researchers in the field. Some-
times, the combination of several monitoring signals is used by fault detection techniques
to improve the detection rate. There are also other detection methods being developed on
modeling and control techniques, such as state observers [31], state estimators [32], signal
injection, and parameter estimators.

Despite the relevant advances obtained with the vast diversity of proposed approaches
in the fault detection field, the effectiveness of the techniques usually depends on the induc-
tion motor size, loading, state operation (steady or transient), supply type, control mode,
type of the fault, and to a great extent, on the type of the monitoring signal. Table 1 summa-
rizes some of the main advantages and drawbacks of the most common monitoring signals.

Table 1. Main advantages and drawbacks of common monitoring physical magnitudes.

Signal Advantages Drawbacks Sensor Cost

Vibration high sensitivity to
mechanical faults

environment noise,
reverb effects low

Stator Current
(MCSA)

remote monitoring,
clear fault patterns

high amplitude of the
supply frequency very low

Magnetic Flux easy sensor
installation

interference among
patterns very low

Shaft Speed low noise level high dependence on
load inertia high

Sound very easy sensor
installation

environment noise,
echo effects low
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4. Review of Techniques and Methodologies

In general, early fault detection techniques based on signal analysis relies on: (1) acquir-
ing one or various physical magnitudes of the induction motor, (2) processing the measured
magnitudes (signals) with suitable tools to extract fault patterns, and (3) analyzing the
patterns to determine the fault severity. According to the reviewed technical literature, two
main approaches for early fault detection can be determined based on the IM operation
mode: the steady-state analysis and transient-state analysis. The techniques employed in
these approaches depend on the stationarity or non-stationarity of the monitored signals.

4.1. Early Fault Detection via Steady-State Analysis

When an induction motor operates at a constant speed, measured magnitudes from
the machine can be described by periodic signals. Thus, in the literature, the best-known
techniques for processing these signals belong to the frequency-domain analysis.

Although most IMs in the industry are fed directly from the grid, in the recent years,
the use of inverters has become more widespread due to their capabilities in speed control
and energy efficiency advantages. Nevertheless, their use also affects fault detection in IMs
due to the higher noise and rich harmonic content they cause in the measured signals for
condition monitoring. For these reasons, it is important to separate the analysis of early
fault detection methods according to the motor power supply.

4.1.1. Direct Line-Fed Induction Motors

Condition monitoring methods for the early detection of induction motor faults based
on signal spectral analysis are found in the literature. In [33], the authors presented a
methodology for incipient broken rotor bar detection based on the spectral analysis of
vibration signals with the FFT. The proposed approach is based on sparse signal repre-
sentations [34] and the use of dictionaries trained with sets of signals with the fault to be
detected. The incipient fault is simulated by drilling only 5% of the length of a rotor bar,
and high detection accuracy is achieved even in unloaded motor operation but only for a
line-fed induction motor.

As the authors of [35] pointed out, online detection of low-severity stator interturn
faults is one of the most challenging electrical machine defects to detect. If this fault
develops undetected, it can lead to a ground fault and complete motor burning. The
authors used a modified induction motor that allows them to simulate very low severity
interturn faults: 0.25%, 0.5%, and 0.75%. They proved that conventional monitoring
methods, such as MCSA, Park’s vector approach and negative sequence current analysis,
are unreliable and insensitive to these very low-severity interturn faults. However, they
were able to detect these faults by using three different coils placed in different motor
locations to collect the motor stray flux. The Park vector of these three signals is calculated,
and its modulus is analyzed with the FFT.

Recent condition monitoring approaches have benefited from advances in compu-
tational technologies that allow the combination of signal processing methods (time and
frequency domain) with knowledge-based techniques (KB) such as machine learning (ML),
genetic algorithms (GA), artificial intelligence (AI), surface learning and deep learning
(DL). For instance, reference [36] dealt with the detection of partially broken rotor bars. It
proposed a hybrid approach combining electrical-synchronous averaging (ETSA), Discrete
Wavelet transform (DWT), and fuzzy logic algorithms. The first two techniques are used to
identify a frequency band with fault-related components in the stator current, and the third
is a classifier to assess the severity of the fault. It is worth noting that this methodology can
detect a hole of only 2 mm in a 36 mm bar, even under no-load conditions.

In the paper [37], hybrid DL architectures were explored to solve the problem of
classifying interturn faults at an incipient stage. This detection method uses a hybrid
architecture based on a one-dimensional Convolutional Neural Network (1DCNN), long
short-term memory, and gated recurrent unit. This approach can distinguish this fault from
other conditions, such as voltage imbalance and load variations.
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Reference [38] also showed very good results in detecting interturn faults at an early
stage. The authors compared two different ANN-based approaches: (1) the first one is
based on a multi-agent system with a classification behavior; (2) the second one uses a
neural estimator. The input data of both methods are the analysis of the stator current in the
time domain, which differentiates them from other approaches based on frequency-based
signal processing. Their approach has been tested by simulating short circuits covering 1 to
10 percent of the stator winding and with a wide range of motor power ratings and voltage
supplies. Reference [39] made another contribution to the same topic as the previous one.
Their proposal is based on analyzing the negative sequence of the stator current to detect
motor asymmetries produced by this type of fault. The results are based on simulation and
corroborated by experimental measurements under varying motor load conditions. Most of
these knowledge-based (KB) works achieve good detection accuracy of over 95%. However,
it is important to note that these KB approaches require a large amount of data (from both
the healthy and faulty induction motors), so they have limitations for generalization and
are techniques with low scalability.

The detection of bearing failures has also attracted many researchers, and numerous
papers have been published. However, few of them deal with their early detection or the
diagnosis of these faults at an early stage before they develop into catastrophic breakdowns.
The vast majority of these works is based on signal processing, knowledge-based techniques
or a combination of both.

In [40], the processed signal is the stator current, which allows the detection of incipi-
ent cage and outer race-bearing faults in a 2.2 kW line-fed induction motor. The authors
proposed a spectral frequency subtraction using several wavelet transforms (DWT, station-
arity wavelet transform (SWT), and wavelet packet decomposition (WDP)) to suppress the
dominant components in the stator current spectrum. This suppression makes it possible
to observe fault-related frequency components whose amplitude is very small, especially
at an early fault stage. Due to the impossibility of installing vibration sensors in many
industrial applications, the authors in [41] also proposed using two stator current signals
for early bearing damage detection. Their interesting contribution pre-processes these
two signals with fractional B-spline wavelet transforms for denoising them. Next, the
overlapping group shrinkage (OGS) algorithm reconstructs two signals that will be used as
the input to a convolutional neural network (CNN) and a long short-term memory (LSTM)
algorithm for feature extraction. Next, information fusion and fuzzy c-means algorithms
perform the fault diagnosis. Remarkably, this methodology is based on unlabeled learn-
ing, and it is tested in an actual industrial application with an induction motor driving a
centrifugal pump.

4.1.2. Inverter-Fed Induction Motors

Even though much research has been done on incipient fault diagnosis in induction
motors, all previous works still deal with line-fed motors under stationary conditions.
Recently, in industry, it is more common to see IM fed by power electronic converters
(also known as voltage source inverters) [42]. Furthermore, the stationary operation is
quite unusual in the industrial environment due to voltage variations, speed oscillations,
and load changes [43]. In this context, some techniques have been proposed and showed
very good results for early fault detection in inverter-fed IM and some of them under non-
stationary conditions. In [44], a combination of two-level hybrid hierarchical CNN with
SVM was proposed for incipient interturn fault diagnosis. The authors showed that their
proposal is fast and has significant performance improvement in accuracy in comparison
with other proposals. The authors of [45] concentrated on the incipient inter-turn short
circuit detection and estimation of its severity. Moreover, they studied the effect of load
oscillations on the recognition of fault patterns in the stator current. Another combination of
SP and KB techniques can be found in [46], the authors described a methodology combining
the DWT for multi-resolution analysis, statistical features, and ML to detect incipient short
circuits using axial leakage flux signals.
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Several authors targeted the detection of one or more BRB in IMs controlled by
electronic converters. Besides the fact that many of those works established a successful
detection, other works improved the techniques to extract more incipient BRB fault features
from the measurements. Interestingly, in [47], the authors presented a novel supervised
classification approach for BRB fault diagnosis based on adaptive boosting algorithm
with an optimized sampling method that deals with an imbalanced experimental dataset.
Experimental results of the proposal provide accurate diagnosis of different intermediate
severities before a full BRB. Another work that investigates various severity levels was
presented in [48], where a combined approach with the fast Fourier transform (FFT) and
the multiple signal classification (MUSIC) algorithm is proposed. This study exposes that
incipient rotor faults in a squirrel-cage rotor, prior to the complete breaking of a rotor bar,
are better identified when IMs are feed by some inverters than others. In addition, to detect
incipient BRB, the authors of [49] proposed to use robust statistical techniques that are
commonly applied in quality control applications. In this study, the proposal can detect
partial bar breaks of 6.4 mm, 11.7 mm, and 17 mm (a full-broken bar).

Otherwise, different types of diagnosis methodologies have also developed for bearing
failures in inverter-fed induction motors. The investigation in [50] presented a technique to
attenuate multiple dominant harmonics with the aim to reduce spectral leakage, expose
minute fault components, and improve the amplitude estimation of fault-related harmonics.
Experimental outcomes of the methodology prove that the algorithm used for the spectral
estimation of the vibration signal is adequate for an early determination of inverter-fed
IM faults (inner raceway, outer raceway, cage train, rolling element, and in a single bar
of the rotor). Another interesting technique for bearing failure recognition was presented
in [51]. Its main contribution lies in the proposal of a condition monitoring strategy that is
focused on the analysis and identification of five different fault severities of the outer race
bearing (drill bits with diameters of 1 to 5 mm). The proposed approach is supported by
fusing information from different sensors and the application of ML and AI. Apart from
KB methods, reference [52] proposed a new approach based on a dynamic model in d − q
coordinate systems and analyzed BRB and turn-to-turn short fault. This approach uses a
residual technique between model and measured signals. Experimental analyses show that
the designed detection and isolation scheme provides high sensitivity and accurate isolation
to incipient winding faults. To suppress the impact of the motor fault, an interesting control
method was proposed in [53]. This control method includes a monitoring technique that
can detect faults occurring due to stator winding short circuit at an incipient stage by means
of a harmonic analysis of the magnetic air-gap flux. Methods based on steady-state analysis
such as the above-mentioned are noteworthy in motor fault detection. However, these
methods have severe limitations and may lead to false positives or false negatives. Table 2
shows a performance comparison of the above-mentioned applied methodologies.

Table 2. Comparison of early fault detection methodologies applied on IM under steady regime.

Ref. Monitoring Signal Power Source Detected Fault
Applied

Algorithm
Fault Severity

[33] vibrations line broken bar FFT + OMP + SVM 10%
[35] magnetic flux line interturn FFT + PV + EPV 0.25%
[36] 1-φ current line broken bar WT + ETSA + FL 15.5%

[37] 3-φ currents + 3-φ voltages line interturn 1DCNN + LSTM +
GRU 0.358%

[38] 3-φ currents line interturn ANN 1%

[39] 3-φ currents + 3 voltages line shorted turn Phasor
Compensation 1.7%

[41] 3-φ currents inverter bearing Fuzzy + C-means 10%
[44] 3-φ currents inverter interturn HCNN + SVM 0.3%
[45] 1-φ current inverter interturn DWT 1%
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Table 2. Cont.

Ref. Monitoring Signal Power Source Detected Fault
Applied

Algorithm
Fault Severity

[46] axial flux inverter interturn DWT + SF + ML 1.41%
[47] 1-φ current inverter broken bar AB + OS 25%
[48] 1-φ current inverter broken bar MUSIC + FFT 50%
[49] 1-φ current inverter broken bar QCC 33.33%
[50] 1-φ current inverter bearing RQS 10%
[51] 1-φ current + 2 vibration inverter bearing SF + ANN 11.1%
[52] 3-φ voltages + speed inverter interturn Robust Observer 3.83%
[53] 1-φ current + 1-φ voltage + 1 flux inverter interturn DNN 2.8%

4.2. Early Fault Detection via Transient-State Analysis

On the other hand, the analysis of IM data with non-stationary behavior mostly relies
on time-frequency transforms computed from signals that are measured when motors
are running under transient regimes. The most common time-frequency decompositions
are the short-time Fourier transform (STFT) and the wavelet transforms (WT). The use
of a combination of one variant of wavelet transform, the recursive wavelet transform,
and a widely used tool in quality control, the statistical process control was presented
in [54] to detect incipient stages of rotor fault. The methodology offers high accuracy
in broken bar detection, starting from a deep hole of 3 mm in one bar to 2 fully broken
bars. The detection was implemented during a steady-state operation mode and for short
transient events of the motor. Another methodology using the wavelet transform has
been reported in [55]. The fault diagnosis system is based on an empirical neuro-predictor
and the application of wavelet analysis to residual signals between the model and the
measured physical magnitudes. The method reports effective accuracy in detecting the
most widely encountered electrical and mechanical faults. The motor anomalies consist
of variations in the balance of the electric power supply and the driven mechanical load
level when the IM experiences short transients as the load is varied from 0% up to 120%
of the rated load. The investigation carried out in [56] examined the impact of incipient
rotor faults on the shaft speed of an inverter-fed induction motor. This work used a
tachogenerator to measure the rotor speed and applying a high-resolution spectral analysis
(MUSIC algorithm) which detects and quantifies the fault severity in the time-frequency
domain. This methodology can identify 5 health condition levels (healthy, 1

4 BRB, 1
2 BRB,

3
4 BRB, and 1 BRB deep hole of 13 mm) during startup transients of 10 s. In [57], the
stator current of a DOL-fed motor starting was used to extract statistical features, and
using homogeneity as a classification index. This methodology can identify and classify
differences between distinct fault severity conditions of the rotor bars (e.g., healthy, 1

2
BRB, 1 BRB, and 2 BRB). The low computational complexity of the homogeneity index
makes the method suitable for hardware implementation. The authors of [58] provided
interesting time-frequency results for detecting various motor conditions such as stator
winding interturn shorts, and phase to ground faults. In this work, the Stockwell transform
(STW) was used to analyze the starting current of a DOL startup transient, the resulting
time-frequency matrix was used to extract fault features and fed two different support
vector machine (SVM) models. An average classification accuracy of 96% was achieved for
both types o faults. Other researchers proposed in [59] a fault diagnosis technique based on
the acquisition of signals from multiple sensors in order to assess the occurrence of single,
combined, and simultaneous fault conditions in an induction motor. The proposal performs
principal component analysis (PCA) to each signal, then joined as input to a decision tree
method. The considered early fault stage was a rough hole of 2 mm diameter, at a depth
of 14 mm, into the rotor bars of a DOL-fed motor. As another example of the transient
analysis, in [60], the tooth-FFT algorithm was introduced to track time-varying frequency
components. Half and full broken bars were considered; experimental results obtained a
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percentage of detection of 97.35% for all motor conditions. In Table 3, a comparison of the
applied methodologies is presented.

Table 3. Comparison of early fault detection methodologies applied on IM under transient regime.

Ref. Monitoring Signal Power Source Detected Fault
Applied

Algorithm
Fault Severity

[54] 1-φ current line broken bar WPD + SPC 75%
[55] 3-φ currents 3-φ voltages + speed line interturn WPD 0.92%

[56] speed inverter broken bar short-time
Minimum-Norm 25%

[57] 1-φ current line broken bar Homogeneity 25%

[58] 3-φ currents line interturn Stockwell
transform 1.6%

[59] 3-φ currents + 3-φ voltages + 3-
axis vibrations inverter bearing PCA + decision

trees 12.5%

[60] 1-φ current line broken bar Tooth-FFT 50%

5. Discussion

According to the literature, three monitored signals are principally used for early fault
detection in IM: mechanical vibrations, stator current, and magnetic flux. The vibration
signal is widely used because it is sensitive to internal asymmetries in the machine during
its operation. Despite this advantage, it is difficult to determine specifically the internal
fault that produces the asymmetry. Furthermore, used sensors are sensitive to external
vibrations also; thus, it is common that vibration analysis suffers from external interference.
Important to note that monitoring vibration signals requires a short sampling period at
the acquisition stage due to fault patterns appearing in the high-frequency band. On the
other hand, the stator current contains specific fault patterns for each type of fault and
the measurement is not very sensitive to external interference. Furthermore, most of the
spectral patterns related to a fault type are generated in the low-frequency band of the
spectral content. Therefore, a short sampling period in the acquisition stage is not necessary.
Despite the benefits of current monitoring, when the induction motor is powered by an
electronic converter, additional frequency components are induced in the current spectrum,
thereby adding many spectral components foreign to the MI behavior that can alter the
magnitude of the fault indicators.

Some works use magnetic flux signals. This type of magnitude is spectrally dense, so
it has many frequency components interacting with each other, which makes it difficult
to evaluate the magnitude of one spectral component without interference from another.
One of the advantages presented by the authors when monitoring this signal is that the
magnetic flux is not sensitive to external mechanical vibrations and depending on the
location of the sensor; the flux signal makes it possible to locate faults in specific places of
the motor.

Most of the reviewed works focus on analyzing signals from IM operating at steady
state. This analysis has many advantages compared to the transient-state analysis because
in the steady-state analysis, several fault indicators can be extracted by classic signal
processing techniques. On the contrary, the analysis of non-stationary signals requires more
complex tools and advanced signal processing techniques. Despite the complexity of the
analysis, the study of IM operating in transients permits locating and tracking the behavior
of specific fault indicators for each internal motor component. This allows more accurate
fault identification and severity diagnosis compared to the analysis of an IM operating at
steady-state.

In the literature, it is possible to find three groups of techniques that are mainly used
for early fault detection: classical, modern, and heuristic. In Table 4, a list of the applied
methodologies is presented. First, in the classical techniques, statistical tools have been used
mainly to extract fault features from the behavior of signals in the time-domain. Meanwhile,
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frequency-domain tools have also been used to extract fault components from the spectral
content of the analyzed signal, the best known is the Fourier transform. Although these
classical techniques have worked to detect incipient faults in IM operating at steady-state,
this group of techniques is not appropriate for monitoring time-varying systems. Some
authors used modern techniques, which allow the analysis of physical magnitudes in a
simultaneous time-frequency domain. The tools used for a time-frequency analysis are the
STFT, the wavelet transform, the Winner–Ville transform, the Hilbert–Huang transform,
and high-resolution decompositions (short-time MUSIC), among others. These modern
techniques have positioned as great alternatives in the field to reduce diagnostic errors that
classic techniques have. Despite the advantages of this type of techniques, they require a
greater computational burden and a higher level of interpretation of results than classical
techniques. In most recent works, the application of heuristic methodologies such as GA,
pattern recognition, ML and AI techniques can be found. These works report high levels
of accuracy in the detection of some faults at incipient stage. Despite the good results
reported, these methodologies require a very large and diverse database.

Table 4. List of the different applied techniques.

Technique Year
Detected
Fault

References Advantages

Adaptive Boosting 2017 BRB [47] improves the predictive accuracy of classifiers
Artificial Neural Network 2017 SF [38] improves efficiency in process decision

C-means 2021 BF [41]
improves the performance by suitable

changes in regularization, cluster shape, and
cost function

Convolutional Neural Network (1D) 2021 SF [37] extracts deep features maps

Decision trees 2020 BF [59] reduces specific parameters information for
diagnosis

Deep neural network 2017 SF [53] high accuracy in classification and estimation
Discrete wavelet transform 2021, 2021 SF [45,46] multi-scale analysis
Down-sampling 2017 BRB [47] reduces data length
Electrical time synchronous averag-
ing (ETSA) 2022 BRB [36] improves classification

Extended Park 2021 SF [35] improves the relation of harmonics with the
severity of the fault

Fourier transform 2001, 2018,
2021

BRB, BRB,
SF [33,35,47] reduces sensitivity to noise

Fuzzy logic 2022 BRB [36] improves classification features
Gated recurrent Unit 2021 SF [37] processes extra features

Hierarchical CNN 2021 SF [44]
improves the severity simultaneously level
features/higher classification accuracy with

lesser testing time

Homogeneity 2017 BRB [57] improves classify differences on distinct
operational conditions

Linear discriminant analysis 2021 BF [51] reduces the dimensionality of features

Long short-term memory 2021 SF [37] improves the classification of long term and
nonlinear time data

Multiple signal classification 2017 BRB [48] high-resolution frequency analysis

Orthogonal matching pursuit 2018 BRB [33] improves the classifier criterion /majority
decision classifier

Optimized sampling 2017 BRB [47] improves the original imbalanced dataset
Principal component analysis 2020 BF [59] reduces the dimension of attributes
Phasor compensation 2022 SF [39] improves the calibration of disturbances effect

Quality control charts 2017 BRB [49] reduces the problem of
classification/improves the robustness

Rayleigh quotient spectrum 2021 BF [50] reduces complexity, accuracy in frequency
estimation
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Table 4. Cont.

Technique Year
Detected
Fault

References Advantages

short-time minimum norm 2021 BRB [56] improves the frequency resolution analysis
avoiding spurious components

Statistical features 2021 SF [46] improves the general accuracy of the
prediction system

Statistical process control 2018 BRB [54] improves the learning process

SVM 2018, 2020,
2022

SF, BRB,
SF [33,44,58] better generalization of nonlinear

classification
Tooth-FFT 2018 BRB [60] higher sensitive of non-stationary signals
Wavelet packet decomposition 2018 BRB [54] multi-resolution analysis

6. Conclusions

This paper has reviewed the most recent contributions related to the early fault
detection in induction motors. These contributions are classified into two main groups
according to the operational mode of the motor: steady-state and transient-state. In
this paper, it is shown that most of the research work is focused on the steady-state
analysis. Despite the high-level of accuracy reported in the fault severity techniques
based on steady-state analysis, these proposals still suffer for diagnostic errors. This work
also presents reported algorithms based on different type of monitoring signals used for
fault detection, and some characteristics of each measured magnitude. According to the
developed review, it can be concluded that the techniques most used for fault detection at
incipient stages are heuristic methods (knowledge-based), and sometimes a combination
of signal processing methods and KB. The major problems with heuristic methods are the
required computational resources and the diverse and large amount of data. Despite the
amount of work carried out in detection of incipient faults of IM, just few works analyze
transients and just some of them analyze inverter-fed IM transients. Regarding the fault
type, most of the research work is focus on the detection of partially broken rotor bars.

7. Future Perspective

Despite constant research activity in the fault detection field, it can be observed that
incipient fault detection and severity fault evaluation in IM is still an open challenge. As
most of the existing research has been focused on the detection of incipient faults in IM
operating under the steady regime, the study of IM operating under non-stationary regime
is a natural trend. More importantly, as the use of inverters is increasing in the industry,
an approach for future research is the development of new techniques that can diagnose
incipient faults in the inverter-fed IM under transient operation. In addition, although some
methods to separate load-oscillations from BRB signatures have been proposed [61–66], the
effectiveness of early fault detection methods against this kind of external oscillation still
needs to be validated. Several techniques have been applied to current and vibration signals;
therefore, the reliability of other monitoring signals it could be explored. In order to obtain
robust and practical solutions, various corner cases and environmental conditions should
also be analyzed, such as the effects of combined multiple faults, realistic degradation,
and industrial measurement inference. In in this paper, it is shown how KB techniques
have been an increasing activity over recent years, opening new opportunities in which
the application of these new techniques and the combination with modern SP can bring
interesting advantages. Finally, new indicators are required to know the severity stage
of a fault and to extract its features for improving the classification and the remaining
useful life of the internal element. This necessity will encourage the development of new
techniques able to filter out external interferences and, at the same time, quantify the fault
indicator features. In addition, new techniques to be proposed should include the benefits
of the existing works in the developed fault detection field, such as reliability, feasibility
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for implementation (low computational burden), portability, online detection, detection of
multiple and combined faults, and so on.
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Nomenclature

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural networks
BRB Broken Rotor Bar
BF Bearing Fault
CNN Convolutional Neural Network
DL Deep Learning
DOL Direct on Line
DWT Discrete Wavelet Transform
EMD Empirical Mode Decomposition
ETSA Electrical-time-Synchronous Averaging
FFT Fast Fourier Transform
FFNN Feed-forward Neural Network
FPGA Field Programmable Array
GA Genetic Algorithms
IM Induction Motors
KB Knowledge-based
LDA Linear Discrimination Analysis
LSTM Long Short-Term Memory
MCSA Motor Current Signature Analysis
MUSIC Multiple Signal Classification
ML Machine Learning
PCA Principal Component Analysis
SF Stator Faults
SP Signal Processing
SPC Statistical Process Control
STFT Short-time Fourier Transform
SVM Support Vector Machine
STW Stationary Wavelet Transform
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Abstract: EMU (electric multiple unit) traction motors are powered by converters whose output
voltage increases the voltage stress borne by the insulation system, making the ITSC (inter-turn
short-circuit) fault more prominent. An index based on short-circuit thermal power is proposed in
the article to evaluate the non-metallic ITSC faults extent. The apFFT (all-phase FFT) time-shift phase
difference correction with double Hanning windows is used to calculate fault features to train the
SVM (support vector machine) fault diagnosis model whose hyper-parameters C and g are optimized
using grid search methods. The experimental verification was carried out on the EMU electric traction
simulation experimental platform. According to the fault extent index proposed in this article, the
experimental samples were divided into three categories, normal, incipient and serious fault samples.
The ITSC fault diagnosis accuracy was 100% on the training dataset and 93.33% on the test dataset.
There was no misclassification between normal and serious ITSC fault samples.

Keywords: ITSC fault; traction motor; fault diagnosis; apFFT; SVM

1. Introduction

The AC–DC–AC transmission mode is used in modern EMU traction systems, and
three-phase AC squirrel-cage asynchronous motors are used as traction motors [1]. Affected
by mechanical stress, thermal stress, and electrical stress, EMU traction motors are prone
to failure [2,3]. The fault types of three-phase AC asynchronous squirrel-cage motors in
industrial applications mainly include stator insulation faults (37%), rotor broken bar faults
(12%), bearing faults (41%), and other faults (10%) [4]. The high voltage stress generated
by the inverter PWM (pulse width modulation) voltage accelerates the degradation of the
traction motor insulation system [5–8]. The inter-turn insulation is the weakest part of the
asynchronous traction motor insulation system [9]. When an ITSC fault occurs, an inter-
turn current circulates between the short-circuit turns, quickly producing a large amount of
heat [10], which weakens the insulation of the motor and results in inter-phase or ground
short-circuit faults [11]. Timely maintenance can prevent the ITSC fault’s further expansion
and significantly reduce the maintenance cost. Since the ITSC fault of the asynchronous
traction motor is more hidden than the main insulation system fault, it is more difficult to
detect the incipient ITSC fault [12,13].

The ITSC fault diagnosis of three-phase asynchronous motors mainly includes model-
based, signal process–based, and artificial intelligence–based diagnosis methods [14–16].
An accurate motor ITSC fault model is needed for model-based ITSC fault diagnosis. Model-
based methods mainly include the parameter estimation method and residual estimation
method. With the parameter estimation method, the model parameters related to the ITSC
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fault are estimated [17–19]. Based on the three-phase asynchronous motor ITSC fault model
under the dq axis, the particle filter algorithm is used to estimate multiple parameters to
detect the stator ITSC fault and assess the motor insulation residual life [20]. With this
method, real-time and non-intrusive diagnosis can be easily achieved by just measuring
motor phase voltage and phase current. A healthy motor model is necessary for the residual
estimation method, which takes the detectable variables related to the ITSC fault as state
variables. It uses the difference between the state variables of the healthy motor estimated
by the model and the measured variables as the residual to detect the ITSC fault [21,22].
The three-phase current is taken as the state variable, and the high-order sliding mode
observer is used to observe the three-phase current of the healthy motor [23]. The residual
of the observed and measured values is taken as the index for the ITSC fault. The model-
based ITSC fault diagnosis method can be easily affected by working conditions. For
example, when the method of estimating stator resistance is used to diagnose ITSC faults,
the diagnostic results are highly influenced by temperature and frequency (skin effect).

The diagnosis method for the ITSC fault based on signal processing is mainly based
on the electrical, magnetic, thermal, vibration, and acoustic signals. The stator ITSC fault
is diagnosed by analyzing and processing the above signals in the time, frequency, or
time–frequency domains [24–26]. The voltage or current signals can be used to realize
non-intrusive diagnosis [27], saving costs without the need for installing extra sensors.
For the steady operation state, the FFT algorithm is generally used to calculate specific
frequency components of the current or other signals to detect the ITSC fault [28]. With
the continuous development of new signal processing methods, time–frequency analysis
methods, such as wavelet transform, WVD (Wigner–Ville distribution), and HHT (Hilbert–
Huang transform), are also applied to the motors’ fault diagnosis [29,30]. The discrete
wavelet is used to decompose the stator current, and the maximum norm of the detail
coefficient is used to detect the incipient ITSC fault [31].

Shallow machine learning and deep learning methods are also applied to motor stator
ITSC fault diagnosis [32–35]. The ITSC fault diagnosis method based on shallow machine
learning is generally divided into three stages: data preparation, feature extraction, and
model training. Particle swarm optimization and principal component analysis can be used
for feature extraction. The BP neural network and SVM models can be used as diagnosis
models. The BP neural network is trained based on the phase difference of the three-
phase stator current, which can detect and locate the stator ITSC fault [36]. When a deep
learning network is adopted, such as a convolution neural network, it is unnecessary to
extract features artificially because the deep learning network automatically extracts them.
The instantaneous value of the three-phase current is taken as the feature, the convolution
neural network is taken as the diagnosis model, and the trained convolution neural network
can accurately detect the ITSC fault of a three-phase asynchronous motor [37].

Research on the diagnosis method for ITSC fault of asynchronous motors stator has
achieved many positive results, but the diagnosis of EMU traction motor stator ITSC
fault has special needs. Firstly, in previous studies, the extent of an AC motor ITSC fault
is generally evaluated based on the number of short-circuit turns when the inter-turn
resistance is fixed. In the non-metallic short circuit, the resistance between short-circuit
turns is directly related to the extent of the motor damage caused by the fault. Secondly,
most of the previous studies are carried out in the condition of non-variable frequency
speed regulation, and the steady speed of the motor is fixed. The traction motor operates
stably at different speeds according to operating conditions. Finally, the traction motor of
the EMU adopts vector control or direct torque control based on the current closed loop.
The fundamental frequency of voltage and current signals cannot be directly obtained, and
a spectral correction method is needed to achieve a more accurate fundamental frequency.

The article is mainly divided into five parts. After the introduction, it introduces the
measurement method for the traction motor’s ZSVC (zero-sequence voltage component)
and the apFFT time-shift phase difference correction method. This method is used to
calculate the traction motor’s ZSVC fundamental frequency, the fundamental component

20



Energies 2023, 16, 5612

amplitudes of the ZSVC and the three-phase current in a steady state. In the third part,
an ITSC fault extent index related to the number of short-circuit turns and the inter-turn
resistance is proposed. The index is based on the thermal power of the circulating current
between short-circuit turns. In addition, the SVM and the hyper-parameter optimization
method are introduced in this part. In the following section, SVM is used to diagnose the
ITSC fault. The fourth part is the experimental part. The EMU electric traction simulation
experimental platform is used to simulate the steady-state operation of the EMU. According
to the fault extent index proposed in this article, the experimental samples are divided
into normal, incipient, and serious fault samples, and the ITSC fault diagnosis model is
trained and tested. The last part summarizes all the research contents and puts forward the
follow-up work.

2. Calculation of Signals’ Fundamental Components

2.1. ZSVC Measurement Method

The traction motor’s current is measured for speed and torque control during the
operation, and only the ZSVC needs to be measured additionally. The ZSVC of the three-
phase asynchronous motor can effectively monitor the stator ITSC fault [38,39]. The
measurement circuit is relatively simple, and installing sensors on the motor body is
unnecessary. According to the ZSVC definition of a three-phase asynchronous motor [40,41],
as shown in Formula (1), three voltage sensors are needed when measuring the three-
phase voltage.

v0 =
1
3
(van + vbn + vcn) (1)

Directly measuring three-phase voltage and calculating ZSVC according to Formula (1)
can be applied to a sinusoidal power supply. The EMU traction inverter generates the
ZSVC inherent in the PWM voltage and related to the PWM modulation mode. Although
the frequency produced by the inverter is far from the fundamental frequency, if reasonable
compensation and filtering are not carried out, frequency aliasing occurs, and the mea-
surement is affected. The ZSVC measurement of the traction motor in Figure 1 is adopted,
wherein both vn and vnR contain the ZVSC produced by the inverter. v0 is the difference
between them and only contains the ZVSC caused by the stator ITSC fault and asymmetry,
so the three balanced resistors can eliminate the influence of the inverter [42].

Figure 1. ZSVC measurement circuit.

2.2. ApFFT Time-Shift Phase Difference Correction Algorithm

The apFFT time-shift phase difference correction mainly includes two parts, i.e., apFFT
and time-shift phase difference correction. The apFFT algorithm can effectively suppress
spectrum leakage caused by data truncation [43–45]. As shown in Figure 2, the required
data points for the N-order spectrum analysis are x(−N + 1), x(−N + 2), . . ., x(−1), x(1), . . .,
x(N − 2), x(N − 1) with a total of 2N − 1 data points. W is a convolution window formed by
a convolution operation with the front window W1 and the flipped rear window W2. When
both W1 and W2 are rectangular windows, the spectrum analysis approach is referred to as
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windowless apFFT. When either W1 or W2 is a rectangular window, the spectrum analysis
approach is referred to as single-window apFFT. When neither W1 nor W2 is a rectangular
window, the spectrum analysis approach is referred to as double-window apFFT.

Figure 2. N-order apFFT calculation method.

The N-order apFFT spectrum analysis mainly includes the preprocessing of 2N − 1
point data and the FFT calculation. If the data are processed by windowless apFFT, the
following operations can be performed on the data. First, divide 2N − 1 data points into N
segments with length N according to Formula (2):

x0 = [x(0), x(1), x(2), . . . , x(N − 1)]T ,
x1 = [x(−1), x(0), x(1), . . . , x(N − 2)]T ,

x2 = [x(−2), x(−1), x(0), . . . , x(N − 3)]T ,
. . . . . .

xN−1 = [x(−N + 1), x(−N + 2), . . . , x(0)]T .

(2)

Then, rotate the N segment data of Formula (2), taking the Nth data point, i.e., x(0), as
the first data point of the data segment. Formula (2) is transformed into Formula (3):

x0 = [x(0), x(1), x(2), . . . , x(N − 1)]T ,
x1 = [x(0), x(1), . . . , x(N − 2), x(−1)]T ,

x2 = [x(0), . . . , x(N − 3), x(−2), x(−1)]T ,
. . . . . .

xN−1 = [x(0), x(−N + 1), . . . , x(−2), x(−1)]T .

(3)

Finally, add the shifted N segments of the data separately and normalize them to
obtain xap in Formula (4), which comprises the N data points obtained after the windowless
apFFT preprocessing.

xap =
1
N
[Nx(0), (N − 1)x(1) + x(−N + 1), . . . , x(N − 1) + (N − 1)x(−1)]T . (4)

Perform N-point FFT on xap; that is, obtain the calculation result Xap(k) of windowless
apFFT, and k is the spectrum index.

The second part of the apFFT time-shift phase difference correction algorithm is the
time-shift phase difference correction [46]. The single-frequency complex exponential
signal with frequency ω*, initial phase θ0, and amplitude A is x(n), where n is the discrete
time point.

x(n) = Aej(w∗n+θ0), (5)
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The data points are divided into two segments of the same length, as shown in Figure 3.
The data interval of the first segment is [−N + 1, N − 1]. Assuming the spectrum serial
number is k*, the phase value of apFFT main spectrum line is:

ϕX(k∗) = θ0, (6)

Figure 3. Data truncation for time-shift phase difference correction.

The second data segment starts after L data points of the first data segment. The data
range is [−N + 1 + L, N − 1 + L]. The central data point of this data segment is x(−L), as
shown in Figure 3. If apFFT is performed on the second segment of data, the phase of
apFFT main spectral line is ϕXL(k∗), which is the approximate estimation of the phase of
data point x(−L); that is,

ϕXL(k∗) = θ0 − ω∗L, (7)

The estimation of signal frequency can be obtained from Formulas (6) and (7):

ω̂∗ = [ϕX(k∗)− ϕXL(k∗)]/L = Δϕ/L, (8)

To eliminate the “phase ambiguity” phenomenon [47], the frequency estimation after
phase compensation is [48]

ω̂∗ = [ϕX(k∗)− ϕXL(k∗)]/L + 2k∗π/N, (9)

For the double-window apFFT, the signal amplitude estimation can be obtained:

Â =
|Y(k∗)|∣∣Fg(k∗Δω − ω̂∗)

∣∣2 . (10)

In Equation (10), Y(k*) is the value of the double-window apFFT at point k*;
Fg(k∗Δω − ω̂∗) is obtained from bringing (k∗Δω − ω̂∗) into the Fourier transform of the
window function. Generally, the window function is a cosine window, and its Fourier
transform expression is determined.

3. Fault Diagnosis Method for Stator ITSC Fault of Traction Motor

3.1. Stator ITSC Fault Extent Index

In previous studies, only the metallic short circuit of windings is generally considered.
The two windings are directly short-circuited without any resistance, and the motor’s
ITSC fault extent is evaluated based on the number of short-circuit turns. In most cases,
the metallic ITSC fault is caused by the expansion of the non-metallic ITSC fault. The
non-metallic ITSC fault means that there is some resistance left between short-circuit turns.
In this case, the number of short-circuit turns alone is insufficient for evaluating the ITSC
fault. The heat caused by the ITSC fault mainly results in damage to the traction motor.
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If the heat generated by the inductance is ignored, the thermal power of the inter-turn
resistance is

Pf =
Uf
Rf

2
=

(Nf ∗ U
Ns
)

2

Rf
= U2 ∗ Nf

2

Ns2 ∗ Rf
, (11)

where Pf is the thermal power of the inter-turns resistance, Uf is the short-circuit turns
voltage, Rf is the inter-turn resistance, U is the motor phase voltage, and Ns is the total
number of turns of each phase winding. From Formula (11), it can be concluded that
the heat generated by the short-circuit current after the ITSC fault is in direct proportion

to Nf
2

Ns2∗Rf
.

Define the fault extent index of ITSC fault:

λf =

√
Nf

2

Ns2 ∗ Rf
=

Nf
Ns

∗ 1√
Rf

. (12)

According to Formula (12), the ITSC fault extent index λf is related to the number of
short-circuit turns and the inter-turn resistance.

3.2. SVM Model for Diagnosis of ITSC Fault

The apFFT time-shift phase difference spectrum correction algorithm is used to calcu-
late the fundamental frequency of the ZSVC, the fundamental component amplitudes of the
traction motor’s ZSVC, and the three-phase current. The SVM-based fault diagnosis model
of ITSC fault is established with the five parameters as input. The traction motor ITSC
condition is classified as a normal condition, incipient fault condition, and serious fault
condition using the proposed index. SVM is a machine learning method based on statistical
theory, mainly used to solve classification and regression problems [49–52]. Its core idea is
to complete the model training based on the structural risk minimization principle. It has
nonlinear solid approximation ability, good generalization performance, and good results
in dealing with small samples and nonlinear problems. SVM uses nonlinear mapping φ(x)
to map the original data to the high-dimensional space to deal with nonlinear regression
problems of multidimensional data.

The C-SVC model is a relatively standard two-class SVM model. The train set is

T = {(x1, y1), · · · , (xl , yl)} ∈ (X × Y)l , (13)

where xi ∈ X = Rn, yi ∈ Y = {1,−1}(i = 1, 2, · · · , l), and xi is the features vector.
Select kernel function K(x, x′) and appropriate parameter C. The standard kernel

functions K(x, x′) mainly include linear, polynomial, and radial basis kernel functions. The
Lagrange dual problem of the original problem is

min
α

1
2

j

∑
i=1

l

∑
j=1

yiyjαiαjK
(

xi, xj
)− l

∑
j=1

αj, (14)

s.t.
l

∑
i=1

yiαi = 0, 0 � αi � C, i = 1, · · · , l

Obtain the optimal solution: α∗ =
(
α∗1, · · · , α∗l

)T.
Select a positive component of 0 < α∗j < C from α∗, and calculate the

threshold accordingly:

b∗ = yj −
l

∑
i=1

yiα
∗
i K

(
xi − xj

)
, (15)
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The constructed decision function is

f (x) = sgn

(
l

∑
i=1

α∗i yiK(x, xi) + b∗
)

, (16)

If the Gaussian radial basis function is used as the kernel function, g is the parameter
of the Gaussian radial basis function:

K(xi, x) = exp

(
−
∥∥xi − xj

∥∥2

2σ

)
= exp

(
−g

∥∥xi − xj
∥∥2

)
. (17)

In the SVM classification model, the selection of the model penalty parameter C and
Gaussian kernel function parameter g is directly related to the model performance. The K-
CV (K-fold cross-validation) is a standard cross-validation algorithm that divides datasets
into K sub-datasets evenly in model training. Each sub-dataset is used as the validation
set in turn, and the remaining K − 1 sub-datasets are used as the training set to train K
models. The average mean square error (MSE) of K models on the validation set is used as
the performance index. The mean square error is

δMSE =
1
n

n

∑
i=1

(yi − yi)
2. (18)

In Formula (18), n is the number of samples, yi is the predicted value, and yi is the
target value.

Grid search is used to select several discrete points on each dimension of the parameter
space according to certain rules. The discrete points of different dimensions intersect in
the parameter space to obtain the discrete solution. Calculate each discrete solution to
obtain the optimal solution. Figure 4 is the flow chart of the hyper-parameter optimization
using K-CV and the grid search method. Take the grid point as C = 2a, g = 2b, and initialize
the range of a and b, which are positive and negative integers. Parameters a and b are
selected from the minimum to the maximum using 1 step of their range. K-CV is used to
calculate the average MSE of the K models on the K validation sets. After calculating all
the combinations of C and g at all grid intersections, C and g at the minimum average MSE
are the optimal solutions.

Figure 4. Flow chart of the hyper-parameters optimization.
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3.3. ITSC Fault Diagnosis Procedure Based on SVM Model

As shown in Figure 5, the EMU traction motor ITSC fault diagnosis based on SVM
includes two stages: model training and online diagnosis. In the model training stage, the
ZSVC and three-phase current are first measured with the circuit proposed in the article.
Second, the apFFT time-shift phase difference correction algorithm is used to calculate
the ZSVC fundamental frequency, the fundamental amplitudes of ZSVC, and the three-
phase current. Third, the ZSVC fundamental frequency, the amplitude of ZSVC, and the
three-phase current are used as features. Based on the ITSC fault index λf, the samples
are divided into three categories: normal, incipient, and serious faults. Fourth, the K-CV
method divides all the samples into training and validation samples. K-CV and the grid
search method are used to optimize the hyper-parameters. Last, the optimal ITSC fault
diagnosis model is saved. In the online diagnosis stage, the ITSC fault features are acquired
similarly to the training stage. The optimal ITSC fault diagnosis model is loaded, and the
fault features are input into the SVM model to predict the ITSC category.

Figure 5. Procedure of the ITSC fault diagnosis based on SVM model.

4. EMU Electric Traction Simulation Experimental Platform

4.1. Overall Design of the Experimental Platform

The experimental data are acquired from the mutual-feed electric traction simulation
experimental platform shown in Figure 6. The platform mainly includes the tested system
and the load system. The tested system mainly includes an S120 variable frequency speed
control system and the tested motor. The S120 controls the tested motor to operate according
to the experimental conditions. The S120 system mainly includes the CU320-2PN control
unit, ALM rectifier, and MM inverter modules. The load system mainly includes the
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braking motor and the H1000 converter. The PCI-6229 NI-DAQ gives the H1000 converter
work instructions. The DC power supply of the tested system is obtained from the DC link
of the load system. When the tested motor works in the motor state, the braking motor
works in the generator state. The load system feeds electric energy back to the DC link to
realize DC energy mutual feedback.

Figure 6. Energy mutual-feed electric traction simulation experimental platform.

Figure 7 shows the main parts of the experimental platform. The tested motor is a
three-phase AC asynchronous squirrel-cage motor with three-phase winding taps pulled
out, whose parameters are shown in Table 1. The braking motor is a normal motor with the
same type and power.

Figure 7. Main parts of the EMU electric traction simulation experimental platform.
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Table 1. Rated parameters of the tested motor.

Parameter Value Parameter Value

Power 5.5 kW Frequency 50 Hz
Voltage 380 V Speed 1445 rpm
Current 11.7 A Turns per phase 162

Poles 4 Connection mode Y
Magnetizing inductance 205.2 mH Stator resistance 1.061 Ω

Rotor resistance 0.6269 Ω Stator leakage inductance 3.217 mH
Rotor leakage inductance 7.349 mH Inertia 0.1367 kg·m2

4.2. Setting ITSC Faults on Tested Motor

Figure 8 shows that the winding taps are pulled out at different stator winding turns
during manufacturing to simulate the ITSC fault. The taps can be connected externally to
simulate the short-circuit fault between different turns. The power resistor simulates
the inter-turn resistor between non-metallic short-circuit turns. The vacuum breaker
conveniently controls the short circuit of different turns loop.

Figure 8. Stator winding taps pulled out of the tested motor.

4.3. Signal Measurement of the Experimental Platform

The signal measurement is shown in Figure 9. The DL850E ScopeCorder produced
by Yokogawa corporation in Japan is used for signal measurement whose LPF (low pass
filter) is set to 400 Hz, and the sampling frequency is 2000 Hz. The A621 passive current
probe is used to collect the inter-turn current, which cannot be measured in the actual
application. If the inter-turn current is too large, it generates heat quickly to burn the motor.
E3N active current probe is used to measure the three-phase current of the tested motor.
The DP-50 voltage probe is used to measure the ZSVC using the measurement circuit
shown in Figure 2. The ZSVC measurement balanced resistors are three 15 kΩ (1 kW)
power resistors.

Figure 9. Signal measurements of the tested motor.
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5. Analysis of ITSC Fault Diagnosis Model Based on Experimental Samples

During the experiment, the S120 converter system controlled the tested motor to
operate in the torque control mode outputting a fixed electromagnetic torque. The H1000
converter controlled the braking motor according to the speed control mode running at
a fixed speed. This experimental operation mode could simulate the steady operation
conditions of EMU traction or electric braking at different speeds and torques.

5.1. Analysis of Motor Signals with ITSC Fault

The tested fault motor ran at 900 rpm rotating speed with 10 Nm electromagnetic
torque, 12 short-circuit turns ITSC fault in the a-phase stator winding, and a 1 Ω inter-turn
resistor, as shown in Figure 10.

Figure 10. The stator ITSC fault set on the a-phase.

The insulation fault occurred at around 20 s. It can be seen from Figure 11a that
when the stator winding ITSC fault occurs, a sinusoidal inter-turn current with the same
fundamental frequency as the power supply is generated between the short-circuit turns.
Figure 11b shows the three-phase current before and after the ITSC fault. Although the
amplitude of the short-circuit current reached about 10 A, it had little impact on the three-
phase current. Figure 11c shows the S120 system outputting three-phase voltage filtered by
the 400 Hz LPF filter, and the outputting waveform conforms to the saddle waveform of
SVPWM. Figure 11d shows the ZSVC before and after the ITSC fault, and the ZSVC will be
studied and analyzed later.

Figure 11. Signals of the tested system before and after ITSC fault: (a) inter-turn current of the tested
motor; (b) three-phase current of the tested motor; (c) three-phase voltage of S120 inverter module;
(d) ZSVC of the tested motor.
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5.2. Analysis of ITSC Fault Features

The tested motor setting speed was 900 rpm, and the electromagnetic torque was
set to 10 Nm. There was an ITSC fault in the a-phase winding. The frequency of the
ZSVC fundamental component, the fundamental amplitudes of ZSVC, and the three-phase
current were calculated using the apFFT time-shift spectrum correction algorithm with
double Hanning windows. Based on Formula (12), 20 different indexes λf were calculated
according to 5 different numbers of short-circuit turns and 4 different inter-turn resistances,
as shown in Table 2.

Table 2. The ITSC fault set and the extent index λf.

Resistance (Ω)

Turns
5 7 12 20 25

1 0.03049 0.04268 0.07317 0.12195 0.15244
2 0.02156 0.03018 0.05174 0.08623 0.10779
4 0.01524 0.02134 0.03659 0.06098 0.07622
8 0.01078 0.01509 0.02587 0.04312 0.05390

It can be seen from Figure 12a that the ZSVC fundamental amplitude of the tested
motor increased with the fault extent index λf. The fundamental amplitude of the ZSVC was
about 0.2 V under normal conditions, mainly caused by the asymmetry of the three-phase
winding. It can be seen from Figure 12b that the fundamental amplitude of the a-phase
current increased with the ITSC fault extent. The b-phase and c-phase currents changed
little. Similarly, because of the unbalance of the three-phase winding, the three-phase
current was unbalanced under normal conditions.

Figure 12. Influence of ITSC fault on the tested motor signal fundamental amplitude: (a) influence
of ITSC fault on ZSVC fundamental amplitude; (b) influence of ITSC fault on three-phase current
fundamental amplitude.

The electromagnetic torque was set to 10 Nm, and the ITSC fault extent index λf was
0.07317. It can be seen from Figure 13a that in the process speed regulation, the fundamental
frequency changed with the experimental system setting speed. According to the control
characteristics of variable frequency speed regulation, the three-phase voltage increased
linearly with the increase in speed. The ZSVC also increased with the tested motor’s
fundamental frequency under the same λf. Figure 13b shows that the a-phase current did
not change much, but the b-phase and c-phase currents decreased significantly with the
increase of the fundamental frequency. The asymmetry of the three-phase current became
more and more prominent.
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Figure 13. Influence of frequency on the tested motor signal fundamental amplitude: (a) influence
of frequency on ZSVC fundamental amplitude; (b) influence of frequency on three-phase current
fundamental amplitude.

According to the analysis above, the ZSVC fundamental component amplitude and the
three-phase current asymmetry increases with the ITSC fault extent under fixed electromag-
netic torque and speed. The three-phase current amplitude can reflect the electromagnetic
torque value, and the speed is approximately linear with the fundamental frequency. There-
fore, the ZSVC fundamental frequency, the fundamental amplitudes of ZSVC, and the
three-phase current are selected as the features to establish the ITSC fault diagnosis model.

5.3. Analysis of SVM ITSC Fault Diagnosis Model Performance

The tested motor’s data acquisition conditions are shown in Table 3. The tested motor
with each fault extent index operated under four different speeds and electromagnetic
torques. There were 16 working conditions in which the speeds or electromagnetic torques
were different, and 7 normal samples needed to be acquired at each working condition
to first obtain a total of 112 normal samples. There were 20 different ITSC fault extent λf
samples under each speed and electromagnetic torque, as shown in Table 2. The classifi-
cation of fault severity categories is determined by the application situation defined by
users. In the experiment, the samples with 0.03018 ≤ λf < 0.06098 were defined as incipient
ITSC fault samples because the thermal power caused by inter-turn short-circuit fault was
small. Samples with 0.06098 ≤ λf were considered serious ITSC fault samples because the
thermal power was large. Thus the ITSC fault samples were divided into 112 incipient and
112 serious ITSC fault samples. The SVM-based ITSC fault diagnosis model was established
by selecting 92 samples from each category as train samples and 20 samples from each
category as the test samples. The grid search range was a = [−5, 5], b = [−5, 5]. The
parameter K was 3 in the K-CV method.

Table 3. The working condition and the ITSC fault setting.

Speed (rpm) Torque (Nm) Turns Resistance (Ω)

450, 600, 750, 900 2, 10, 18, 26 5, 7, 12, 20, 25 1, 2, 4, 8

Figure 14 shows the prediction results of the SVM-based ITSC fault diagnosis model
on the experimental samples. Figure 14a shows that there is no misclassification on the
training dataset. Figure 14a shows that there is a sample misclassified among the normal
and incipient samples and a sample misclassified among incipient and serious samples.
There is no misclassification between the normal and the serious fault samples. The model’s
prediction accuracy is 100% on the training dataset and 93.33% on the test dataset, which
indicates that the model can detect and evaluate the ITSC fault accurately.
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Figure 14. Confusion matrix of ITSC fault diagnosis SVM model: (a) confusion matrix of SVM model
on the training dataset; (b) confusion matrix of SVM model on the test dataset.

6. Conclusions

The ITSC fault diagnosis of the asynchronous traction motor significantly ensures the
EMU’s safe operation and saves maintenance costs. The non-metallic ITSC fault extent
evaluating index λf was proposed based on the short-circuit thermal power. The index
λf is related to the number of short-circuit turns and inter-turn resistance. The apFFT
time-shift phase difference spectrum correction with double Hanning windows was used
to calculate five parameters used as fault features to train SVM model to diagnose the ITSC
fault, and the SVM model hyper-parameters C and g were optimized using K-CV and the
grid search method. The method proposed in the article can detect and evaluate the ITSC
fault of traction motors in a speed control system under vector control or direct torque
control conditions in which the fundamental frequency of supply voltage is unknown.
EMU traction motors work at different speeds and torque points during operation. The
prediction results of different steady-state operating points can be integrated to improve
the accuracy of the fault diagnosis model. The method can be used when the traction motor
is in a steady state, and it cannot be used if the traction motor accelerates or decelerates.
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Abstract: Induction motors are widely used worldwide for domestic and industrial applications.
Fault detection and classification techniques based on signal analysis have increased in popularity due
to the growing use of induction motors in new technologies such as electric vehicles, automatic control,
maintenance systems, and the inclusion of renewable energy sources in electrical systems, among
others. Hence, monitoring, fault detection, and classification are topics of interest for researchers,
given that the presence of a fault can lead to catastrophic consequences concerning technical and
financial aspects. To detect a fault in an induction motor, several techniques based on different
physical variables, such as vibrations, current signals, stray flux, and thermographic images, have
been studied. This paper reviews recent investigations into physical variables, instruments, and
techniques used in the analysis of faults in induction motors, aiming to provide an overview on the
pros and cons of using a certain type of physical variable for fault detection. A discussion about
the detection accuracy and complexity of the signals analysis is presented, comparing the results
reported in recent years. This work finds that current and vibration are the most popular signals
employed to detect faults in induction motors. However, stray flux signal analysis is presented as a
promising alternative to detect faults under certain operating conditions where other methods, such
as current analysis, may fail.

Keywords: fault detection; fault classification; induction motors; measurement techniques; physical
variables; signal analysis

1. Introduction

Induction motors (IMs) are the principal source of power in the manufacturing indus-
try due to their sturdiness, energetic efficiency, and repair and maintenance costs.

IMs are prone to present faults associated with thermal, mechanical, and magnetic
stresses or to expected causes, such as natural wear of bearings [1]. Bearing damage is
the type of fault that appears more frequently. However, other faults may appear due to
unbalanced loads, unbalanced power supply, and high operational frequencies, among
others. Typically, the faults with a higher frequency of appearance are: bearing faults, stator
winding faults, and rotor broken bar faults [2,3].

Researchers have documented advances in IMs’ condition monitoring and fault de-
tection in this context. Atta et al. [4] summarized recent techniques for broken bar faults
under starting and steady-state conditions using current, voltage, flux, vibration, and
acoustic signatures. In that work, the authors subgroup the methods based on resistance
estimation, parameter estimation, digital estimation, time-domain, frequency domain,
time–frequency domain, and data-driven approaches. The main drawback of this work
is that it is highly specialized, given that it focused only on one type of fault, in this case,
broken bar fault detection. However, it provides a good panorama of the evolution of
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broken bar fault detection techniques in the last 8 years. The authors pointed out that some
issues still require attention, such as methods for multiple-fault detection, model-based
methods, transfer learning in driven-based methods, and assessing the performance of
time–frequency methods under short-start duration, among others. Gundewar et al. [5]
reviewed recent techniques used for fault diagnosis in IM according to the type of fault:
bearing fault (BF), rotor bar faults, air gap eccentricity, and stator faults. Moreover, they
highlighted the use of artificial intelligence (AI) techniques for condition monitoring, such
as support vector machines (SVMs), fuzzy logic, adaptive neuro-fuzzy inference system
(ANFIS), and genetic algorithm (GA). They provided an extensive overview of different
types of IM faults. Nevertheless, the techniques for fault detection are limited to AI-based,
which have been proven to have high detection accuracies but at the cost of high com-
putational resources required for its implementation. A review on IMs fault detection
based on current analysis was presented by Yakhni et al. [6], focusing on applications
with variable speeds. The authors summarized the methods based on current analysis for
detecting particular faults: broken rotor bar, bearing, eccentricity, stator fault, inter-turn
short circuit, and unbalanced supply. This paper contributes to reviews of current-based
analysis. However, it only focuses on two approaches: the adaptive observer and the
adaptive notch filtering method.

This paper presents a revision of the recent works and tendencies in the types of
physical variables employed for fault detection. Although previous works have discussed
advances in fault detection and condition monitoring, these are mainly centered on the type
of fault or the methods themselves, not so in detail regarding the type of physical variable.

2. Common Types of Faults in Induction Motors

Different types of physical variables are measured and analyzed to detect the presence
of a fault in IM. Induction motors are prone to present faults associated with electrical,
mechanical, or environmental aspects. Electrical faults can be induced, among others, by
supply current unbalance and overload, and faults such as short circuits are produced.
Mechanical faults, however, are related to broken bars and bearing damage. Certain
environmental conditions, such as humidity and very high or low temperatures, may affect
the IM and progress into electrical or mechanical faults. Some of the faults that appear in
IMs more commonly are presented next.

Broken Rotor Bars

Damage in the rotor bars is difficult to detect since the induced spectral components
lie near the supply frequency. Moreover, as the severity of the fault increases, the spectral
components are greater in amplitude. As the load of the motor increases, the fault compo-
nents are further from the fundamental frequency. Hence, incipient faults, commonly less
than half broken bars, are more difficult to detect; the load condition also affects the fault
detection accuracy.

The fault is created synthetically by drilling the bar to study broken rotor bars, as
illustrated in Figure 1. Most works that study the presence of broken bars in IMs analyze
1 and 2 BRB; few works are able to detect less than 1 BRB, given that it usually requires
complex algorithms for signal processing.

Broken rotor bars are commonly detected by means of motor current signature anal-
ysis, where the current spectrum is processed and analyzed, searching for changes in
the amplitude of certain frequency spikes. These components usually appear near the
fundamental frequency, as the following equations indicate this:

fbb = [
h
p
(1 − s)± s] fs (1)

where fbb are the spurious frequencies, p represents the number of pairs of poles, s is the
slip, fs represents the frequency of the grid, and h is an index that represents the number
of harmonics.
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In a similar way, the localization of spurious frequencies can be performed by using
vibration analysis, following the next equation:

fbk± = fs[1 ± 2ks] (2)

where fbk± represents the spurious frequency, k represents an integer index, fs is the
frequency of the grid, and s represents the slip.

Figure 1. Rotor bar drilled to emulate a one broken bar fault.

Bearing Damage

It is well known that bearings in an IM are fundamental elements since this allows the
rotor to rotate on its own axis. Due to its mechanical nature, bearings are under mechanical
and electrical stresses. A common IM bearing is conformed by static and mobile elements,
as shown in Figure 2.

The seals maintain the lubricant inside the bearing and keep the contaminants out; the
mechanic load is transferred from a foothold to a rolling point, i.e., from the inner raceway
to the outer raceway through the rolling elements (balls or rollers), and the cage maintains
the rolling elements in its position.

Figure 2. Bearing parts.

Bearing faults are mostly identified using vibration signals [7,8]. Spurious frequencies
based on vibration analysis can be localized according to the next equations [9]:

fo =
Nb
2

fr[1 − Db
Dc

cos(β)] (3)
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fi =
Nb
2

fr[1 +
Db
Dc

cos(β)] (4)

fb =
Db
Dc

fr[1 − Db2

Dc2 cos(β)2] (5)

where fo, fi, and fb represent the spurious frequencies for outer race damage, inner race
damage, and bearing ball damage, respectively; Nb represents the number of balls; β
represents the angle between the ball and the defect; Db is the diameter of the ball; and Dc
is the pass diameter.

In this way, previous works have studied bearing faults through vibration analysis,
expecting the appearance of the fault’s frequencies, as stated by the aforementioned equations.

Short Circuit

The most recurrent faults related to a shortcut are the stator winding and rotor short-
cuts. A short circuit is one of the most difficult faults to detect; protection systems commonly
detect the shortcut when damage is critical. A grounded shortcut results in severe damage
to the machine’s integrity.

There are several approaches used for shortcut detection. The most used are as follows:

• Analysis of the magnetomotive forces;
• Winding function approach;
• Dynamic mesh reluctance approach;
• Finite element.

If a stator fault exists, the current through the shorted winding will cause variations in
the normal magnetic field and variations in the axial flux according to the next equation [10]:

fss = fs[(k ± n
1 − s

ρ
)] (6)

where fs is the grid frequency, n is the order of the shorted coil space harmonic, k is the
harmonic order, s represents the slip of the machine, and ρ is the number of pole pairs.

2.1. Effects of Vibrations in Induction Machines

Faults in induction machines may cause negative effects in the normal operation of the
motor regardless of the cause; some of the principal vibration sources are voltage/current
imbalances, rotor bar defects, bearing defects, voltage distortion of the power grid, and
speed driver issues, among others. There are two main sources of vibrations: mechanical
and electromagnetic origin.

Vibrations of mechanical origin are mainly caused by rotor imbalance, shaft bow, and
misalignment or wear in mechanical elements.

Electromagnetic vibrations provoke for radial electromagnetic forces and tangential
electromagnetic forces. Under normal operation conditions, these forces do not represent
significant vibrations. Excessive electromagnetic motor vibrations are often a result of a
resonance condition on the structure of the motor as a unit or even on the motor com-
ponents [11]. Vibrations may cause or accentuate problems, such as misalignment and
eccentricity, among others. These problems are discussed next.

2.2. Misalignment

Misalignment can be caused by the deviation of the coupling axis between the load
and motor shafts. Excessive vibrations will provoke asymmetries in the motor frame, shaft,
and bearings in the IM. If the misalignment fault is not detected early, the consequences
could be bearing damages, eccentricity, and gearbox failures.

The two types of misalignment issues in IMs are parallel and angular faults. A parallel
fault occurs when there is a height difference between the shaft centers of the load and the
IM, and an angular fault occurs when an inclination exists between the load and the IM.
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The combination of parallel and angular misalignment is called mixed misalignment. The
coupling differences between the shafts emerge in the frequency spectrum of current as
follows [12]:

fmc = [1 ± k(1 − s)/p] fs (7)

where fmc represents the spurious frequency of the misalignment signal frequency, k is an
integer operator, p represents the number of pole pairs, fs is the supply frequency, and s is
the slip of the motor. Similarly, the spurious frequency can be obtained for the vibration
spectrum as follows,

fmv = k fr (8)

where fr is the rotational frequency.

2.3. Eccentricity Air Gap

Eccentricity can be classified as dynamic and static. Dynamic eccentricity occurs when
the center of the rotor is not at the center of rotation, and the position of the minimum
radial air gap rotates with the rotor. Static eccentricity occurs when the position of the
minimum radial air gap is fixed. Both static and dynamic eccentricity produce a polar pair,
p ± 1, in the spatial distribution of the magnetic field in the air gap, where p represents the
number of the fundamental polar pair [13,14].

An eccentricity fault provokes spurious components in the current spectrum according
to the following equation:

fh = (2(kR ± nd)(
1 − s

p
)± v) f (9)

where nd represents the eccentricity order equal to 0 for statistic eccentricity and integer
coefficient 1, 2, 3 . . . for dynamic eccentricity; f is the frequency of the power supply; s
represents the slip; p is the number of poles; R represents the number of rotor bars; k is a
positive integer coefficient; and, finally, v represents the harmonic order of the stator supply
voltage [15].

In the next section, fault detection techniques are discussed.

3. Analysis of Faults Based on Physical Variables

According to the features of the fault detection techniques, these can be classified
into model-based, signal-based, and data-based techniques, as illustrated in Figure 3.
Depending on the type of physical variable, some of these methods are more adequate than
others for fault detection.

Figure 3. A classification of fault detection methods.

For instance, a method based on models is proposed using flux signals, where a
finite element method (FEM) simulation is implemented, as illustrated in Figure 4. These
methods usually imply converting the flux signals into the DQ frame.
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Figure 4. FEM simulation for a fault detection method based on flux signals: (a) mesh model,
(b) stator circuit model. Source: [16].

On the other hand, an example of a technique based on signals may comprehend
selective filtering of current or vibration signals and statistical analysis, such as the works
in [17,18]. The filtering of the signal that is illustrated in Figure 5 depicts a narrow band-
width Taylor–Fourier filter over a current signal, and Figure 6 illustrates the decision
making according to the three standard deviation criteria for fault detection based on
statistical distributions of the amplitude of the filtered signals.

Figure 5. Filtering of the current signal. Source: [18].

Figure 6. Fault detection criteria based on statistical distributions.

An example of a method based on data is presented in Figure 7, where an architecture
based on a convolutional neural network is applied to detect electrical faults by using
thermal images. Thermal images are commonly processed, as presented in [19], with
AI methods.
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Figure 7. Scheme of a fault detection method based on data. Source: [19].

Next, details regarding detecting faults based on certain types of signals are given.

4. Methodologies for IMs Diagnostic

Fault detection and classification methodologies depend mainly on the implemented
algorithm. The elements to traduce the physical variables to processable information are
known as sensors. Sensors are indispensable for measuring physical variables and looking
for valuable information for detection and classification. The most used sensors are current
and voltage sensors, accelerometers, encoders, thermographic cameras, acoustic sensors,
and antennae, among others [20].

Inherent to the sensor’s use, data acquisition systems must store the physical variables
to be processed. Those systems can be digital or analog; commonly, aiming to avoid
complications, data acquisition boards are used. Other possibilities include embedded
systems such as microcontrollers or field programmable gate arrays (FPGAs). Commonly,
the sampling frequencies can be fixed from a range going from 1 (Khz) to 100 (Mhz), and
the data acquisition systems can include filters to avoid aliasing or noise.

A variable analysis is commonly performed in the frequency domain. One of the
most used techniques for signal processing is Fourier transform, and recently, techniques
based on AI for characterization and classification have been developed. Regardless of the
physical variable that is analyzed, machine learning methods have stood out as one of the
best options for fault classification and pattern recognition, at the cost of being the most
complex algorithms and requiring high computational resources for its implementation.
Some of these methods are mentioned next:

• Convolutional neural network (CNN): This is a neural network conformed by multiple
filtering and classification stages, where the filtering layer extracts the features from
the inputs (current, vibration, or another signal), and the classification stage is a multi-
layer perceptron that deals with the classification of the faults [21]. The advantage of
using CNN is that it can provide good results with raw data; in other words, usually,
no pre-processing is required, and previous feature extraction is unnecessary.

• Support vector machine (SVM) and k-nearest neighbor (KNN): SVM establishes a
decision boundary in a way that the location between classes is as far as possible; it is
fundamentally a binary classification where a hyperplane separates the classes. On
the other hand, KNN requires calculating a Euclidean distance between samples to
determine similarities between these samples. Then, according to the similarities, a
sample is classified into a certain class. KNN is one of the simplest machine learning
methods for classification problems. These methods have been implemented using
both current and vibration signals [22–24].

• Deep learning: This is a type of machine learning based on artificial neural networks
with multiple layers. These neural networks attempt to simulate how the human
brain works. Recently, several techniques based on deep learning have been proposed.
Among the most interesting methodologies are those that are based on the recognition
of thermal images because those methods do not disturb the normal operation of the
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system; these kinds of techniques are based on the analysis of the thermal behavior of
the faulty region in an induction machine [25].

In the next sections, physical variables and their analysis techniques are listed.

4.1. Current

Motor current signal analysis (MCSA) refers to the process used to obtain information
about the dynamic of the electric machine by signal processing from the stator currents.
The current signals in the time domain are usually obtained through current sensors with
resistive shunts at their outputs [26]. Frequently, researchers obtain the current samples
from different speeds, frequencies, and load conditions to acquire behavioral information on
the dynamics under different conditions to apply the detection and classification techniques
in practical scenarios, such as industrial applications.

Motor faults affect the spectrum of the stator current signals; several techniques for
fault detection in induction motors based on MCSA have been proposed for detecting both
electrical and mechanical issues, and commonly, these techniques are based on algorithms
for spectrum analysis to find fault signatures, aiming to detect and classify the location and
severity of the fault [27–37].

Current-based analysis for fault detection usually involves using a Hall-effect sensor
concerning the signal acquisition; these are commonly included in the instrumentation
installed in the IMs for control and protection purposes. Therefore, no additional expenses
are required, nor is invasive sensing needed. Current signals are studied for fault detection,
mostly in the frequency domain, to identify components introduced by the fault, such as
broken rotor bars (BRBs) and inter-turn short circuits (ITSCs).

In 2016, Romero et al. [38] proposed a method to detect 1 BRB and eccentricity pro-
duced by a motor-load misalignment relying on complete ensemble empirical mode de-
composition (CEEMD) and multiple signal classification (MUSIC). In that work, a time–
frequency analysis is conducted to identify the faults under the start-up and steady-state
regimes of the motor. The authors presented an experimental setup where the current
signals were acquired with a Honeywell CSNE151 Hall-effect current sensor. Then, the
proposed methodology was compared with others such as STFT, Wavelet and STFT, EMD
and STFT, MUSIC, and Wigner–Ville. The results highlighted that CEEMD and MUSIC
exhibited better detectability than the other methods under both start-up and steady-state
conditions.

In 2021, Yang et al. [37] explored the combination of modified ensemble empirical
mode decomposition (MEEMD) energy entropy and ANN to analyze stator current signals.
In that work, current signals were decomposed with MEEMD, and a cross-correlation
criterion selected the components with more information. Then, the energy entropy of
these signals was calculated and stored in a vector. Finally, the vectors fed the ANN to
identify BRB and air-gap eccentricity. The work reported a detection accuracy of 99%
and an improvement respecting EEMD with ANN and MEEMD with SVM. The authors
used simulated data, which can be considered a drawback given that data collected from
an experiment usually includes some of the effects that are more likely to be present in
the industry.

Various processing methods combined with AI classifiers have been reported in the
last few years for fault detection of different types. For instance, in [39], faulty bearings,
different levels of short circuits in the stator coils, and different levels of BRB are detected
using a multi-agent system based on AI. In other work, for detecting winding insulation
burn, bearing damage, and BRB, the authors in [40] proposed using spiking neural networks
to analyze the current signals of the IM.

Hence, it is noticeable that the current analysis is very popular for condition monitoring
and fault detection in IMs. Table 1 summarizes different works based on current analysis.
Each work is divided by year, the type of sensor employed for the signal acquisition, the
type of fault that is detected, and the method for the analysis.
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Table 1. Works based on current analysis.

Year Type of Sensor Type of Fault Method

2017 [41] Current clamp model i200s from Fluke Half BRB, 1 BRB, and 2 BRBs Homogeneity

2017 [42] Digital signal processor board
dSpace 1104 1 BRB for different loads Sliding window discrete Fourier

transform

2017 [43] LA-55P current sensor
6 types of stator faults, 3 types of rotor

faults, 3 types of unbalance voltages, and
outer raceways bearing fault

Fast Fourier transform (FFT) and
multiple Park’s vector (MPV) approaches

2018 [44] Software 1 BRB for full load and half load

MUSIC, least-squares magnitude
estimation, niche bare-bones particle

swarm optimization, and singular value
decomposition (SVD)

2019 [45] Data acquisition system
Bearing axis deviation, stator, and rotor
friction; rotor end ring break; and poor

insulation

Recurrence plots and convolutional
neural networks (CNNs)

2021 [46] Current sensor 1 BRB, 2 BRBs, and 4 levels of ITSC Discrete wavelet transform (DWT),
ANFIS, and Clark’s transformation

2021 [47] Software Stator winding faults: phase to phase and
phase to ground

FFT, Short-Time Fourier Transform
(STFT), Continuous Wavelet Transform
(CWT) and Long Short-Term Memory

(LSTM)

2021 [48] Software 1-1 broken diametrically opposite rotor
bars

Finite element method and multilayer
perceptron

2021 [49] Current sensor 1 BRB, 2 BRBs, and bearing damage
Principal component analysis (PCA),
radial basis function neural networks,

and probabilistic neural networks

2021 [50] Current sensor 2 BRBs MUSIC

2022 [51] NI 9246 module and cDAQ-9178 Rotor misalignment, BRB, and ITSC FFT, power spectral density (PSD), and
autocorrelation function

2022 [52] Hall-effect current sensor BRB and ITSC FFT and motor current normalized
residual harmonic analysis

2022 [53] Signal extractor NI PX1-1033 Broken bearings, BRB and ITSC
Symmetrical uncertainty, genetic

algorithm, Hilbert–Huang transform,
and SVM

In Figure 8, aspects related to the analysis of current signals are summarized: the
preferred instrument for acquisition, method for analysis, and pros and cons of using this
physical variable.

Figure 8. Highlights of the current-based analysis.
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4.2. Vibrations

IMs inevitably produce vibrations during operation because of their rotatory nature.
Vibrations may cause imbalance and misalignment in the electromechanical system, and
those issues are accentuated when a defect exists in the motor. Vibrations directly affect the
air-gap eccentricity, which influences the uniformity of the distance between the rotor and
the stator, indirectly affecting the stator currents.

Fault signature depends mainly on the geometry of the damaged element. The princi-
pal disadvantage of vibration analysis on an IM is system isolation since vibrations of the
surrounding elements introduce noise to the measurements. Devices such as accelerometers
are commonly used to sense the induction machine’s three-axis movements with respect to
time [54].

Vibration analysis has been widely studied for fault detection, mainly because most of
the faults that can appear in an IM will have an effect on the vibration measurements [55,56].
In 2016, Sun et al. [57] employed a deep neural network (DNN) to classify BRB, bowed rotor,
inner race bearing fault, ITSC, and unbalance rotor. This approach utilized a sparse auto-
encoder based on the measured vibration data for feature learning. Moreover, the authors
compared the DNN performance with a neural network, SVM, and linear regression; for
the five types of faults, DNN presented the best accuracy results.

In 2019, Lee et al. [58] measured vibration data from an IM with rotor fault and bearing
fault and used a CNN for fault classification. Vibration data were measured by means
of a vibration sensor and NI-9231. Classification accuracies of 98–100% were reported in
this work, highlighting that the vibrations signals did not require a frequency domain
transformation, as is commonly required for a current-based analysis.

Other recent works have frequently proposed methods, including neural networks
such as CNN and deep convolutional neural networks (DCNNs), for bearing fault classifi-
cation [59–61]. Some of the pros and cons of vibration-based analysis are summarized in
Figure 9.

Recent works on fault detection based on vibration analysis are listed in Table 2.

Table 2. Works based on vibrations analysis.

Year Type of Sensor Type of Fault Method

2016 [62] Software Unbalance and misalignment motor faults Orbital analysis, Steinbuch Lernmatrix for
classification and binarization process

2017 [63] Accelerometer of an Android mobile phone 2 BRBs and inner raceway bearing fault FFT and motor speed estimation

2017 [23] Accelerometer 604B31
3 turns shorted stator winding, unbalance

rotor, inner race bearing fault defect, 3 BRBs
and bowed rotor

Back-propagation neural network and SVM

2019 [58] Vibration sensor and NI-9234 1 BRB and bearing fault CNN

2019 [64] Spectrum analyzer Rotor bending, inner ring bearing fault and
BRB

FFT and cerebellar model articulation
controller

2021 [61] Single antenna’s nearfield effect Inner and outer race bearing damage,
unbalance DCNN and FFT

2021 [65] Accelerometer BRB, rotor deflection, bearing fault, stator
winding fault and rotor unbalance Transfer PCA

2021 [60] Accelerometer

Short circuit of 2, 4, and 8 turns; air-gap
eccentricity; BRB, broken bearing cage;

bearing abrasion fault; bearing ball fault; and
inner and outer race bearing damage

Nearest centroid classifier and CNN

2022 [66] IMI 608A11 accelerometer Outer and inner race bearing damage Electromagnetic dynamic coupled modeling
method

2022 [67] Piezoelectric accelerometer sensor and
PCI-1711 BRB and cavitation fault Ensemble framework, fuzzy rough active

learning, and drift detection

2022 [24] Software 1 BRB, 2 BRBs, 3 BRBs, and 4 BRBs Random forest, decision tree, k-nearest
neighbor (KNN), STFT, and CNN

2022 [68] Accelerometer 1 BRB, 2 BRBs, and outer race of rolling
bearing fault

Cyclic modulation spectrum, fast spectral
correlation, Teager–Kaiser energy operator,

and STFT
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Figure 9. Highlights of the vibration-based analysis. Vibration signal taken from [65].

4.3. Temperature

Thermal analysis is a process based on a nonintrusive and noncontact technique for
monitoring systems. In recent years, this kind of analysis has grown in popularity due to
the large amount of information provided by thermal images. For instance, when a bearing
fault occurs, the friction operation coefficient upon operation increases, which leads to an
increase in the temperature of the IM [69].

This kind of analysis is commonly implemented based on complicated computational
processes due to image processing. Fault detection based on thermal images requires
the use of special cameras; this type of instrument is more unusual than, for example, a
current clamp.

Despite the complications of thermal analysis, some works have been committed to
proposing new methods for fault detection, such as the one presented by Mahami et al. [70]
in 2021, where an infrared thermography technique was applied to detect eight different
short circuit faults in the stator winding; a bag-of-visual-words model was used for feature
extraction, and the fault patterns were identified using an extremely randomized tree. In
that work, the classifier is compared with KNN, SVM, least-squares SVM, random forest,
deep-rule-based, and self-organizing fuzzy logic classifier approaches, and the results
prove that the extremely randomized tree shows the best accuracy. Thermal analysis based
on AI methods is an effective option for fault detection in IMs. Other works also rely on
the use of advanced techniques for pattern classification.

In Figure 10, highlights of thermal analysis are given, and in Table 3, recent works
are listed. Considerably fewer works are committed to thermal analysis than current or
vibration analysis.

4.4. Flux

Recent methodologies for monitoring systems based on magnetic flux have been
gaining attention mainly because some manufacturers include magnetic sensors embedded
in their electric motors.

The magnetic-flux-based methodologies can be grouped into stray flux analysis, where
the magnetic flux outside the machine is studied, and the air-gap flux is analyzed. In general,
flux analysis is noninvasive, sensors are low cost, and their installation is simple.
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Figure 10. Highlights of the thermal-based analysis. Thermal image taken from [70].

Table 3. Works based on temperature analysis.

Year Type of Sensor Type of Fault Method

2021 [70] Dali-tech T4/T8 Infrared camera 8 types of stator short-circuit faults Bag-of-visual-words, speed-up robust
features, and extremely randomized tree

2022 [71] Infrared thermal image camera Dali-tech
T4/T8

8 forms of short-circuit failures in the stator
windings, stuck rotor fault, and cooling fan

failure

Coordinate attention feature extraction and
CAPNet training

2022 [72] Thermal camera

Inner and outer race bearing damage, ball
bearing fault, 1 BRB, 5 BRBs, 8 BRBs, inner

bearing plus 1 BRB, and outer bearing plus 5
BRBs

Transfer learning model based on a VGG-19
CNN

2022 [73] Infrared micro-camera model FLIR LEPTON 3
Misalignment, unbalance, 1 BRB, 2 BRBs,

outer race bearing faults, and gearbox
wearing

Otsu algorithm, scale-invariant feature
transform, PCA, and artificial neural

network

In 2016, Mirzaeva et al. [74] proposed an online fault diagnostic system based on
internal main air-gap flux density measurements using Hall-effect sensors; stator turn-
to-turn shorts, rotor bar damage, and dynamic and static eccentricity were detected with
this system. Using this method, faults were detected, and their location and severity were
obtained. Moreover, the flux density measurements provided time and space dimensions,
offering more possibilities for condition monitoring.

In 2019, spectrum analysis of the radial stray flux was proposed by Park et al. [75] to
detect one BRB and two BRBs. This paper demonstrates the reliability of this proposal over the
current analysis under the influence of rotor axial air ducts, a condition that produces magnetic
asymmetries and may lead current-based detection to fail. Another advantage of this method is
the low-cost flux coil and the sensitivity and reliability of this flux-based fault detection.

Minervini et al. [76] used current and flux signals to classify bearing faults by using a
pre-trained DCNN. In that work, two severity levels of generalized roughness and localized
defects in the outer ring of the bearing were analyzed. It is important to highlight that,
in this case, the flux signal provided 100% accuracy, contrasting with an accuracy of 80%
when using current signals. The authors suggested that this difference may be attributed to
the fact that the flux sensor could be installed very close to the faulted bearing, given the
size of the motor.

Overall, the flux analysis provides good results for IM fault detection, whereas another
kind of methodology based on another physical phenomenon exhibits false positives. The
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drawback of flux-based methods is the restriction for remote monitoring, unlike the current
signals that are usually the base of condition monitoring of IMs.

In Figure 11, some highlights of the flux analysis are given, and recent works based on
this physical variable are presented in Table 4.

Table 4. Works based on flux analysis.

Year Type of Sensor Type of Fault Method

2017 [74] 36 Hall-effect flux sensor ITSC, rotor bar damage, and static and
dynamic eccentricity Magnitude analysis of air-gap flux density

2019 [75] 320 turns Helmholtz coil with 121 cm inner
diameter and 155 cm outer diameter 1 BRB and 2 BRBs Spectral analysis

2022 [16] Software and current sensor ITSC Clarke transformation

2022 [77] Five-turn search coil 1 and 2 BRBs adjacent and non-adjacent, and
3 BRBs STFT time–frequency analysis

2023 [78] Coil-based sensor 1 BRB and 2 BRBs Persistence spectrum, data augmentation
techniques, and CNN

Figure 11. Highlights of the flux-based analysis. Flux signal taken from [79].

4.5. Combined Analysis

Aiming to obtain better results, researchers have explored two or even three modal
signal analyses to take advantage of the properties of the different variables from the IM.

It is noticeable from Table 5 that most works combine current and vibration signals,
taking advantage of the wide knowledge built around analyzing these variables. For
instance, in 2017, Cruz et al. [80] processed current and vibration signals in the time–
frequency domain by using short-time Fourier transform and wavelet multiresolution
analysis. With this method, authors detected failures in the motor helix and unbalanced
loads in the motor shaft and classified them using fuzzy logic.

AI methods were employed by Zawad et al. in 2019 [81] for detecting unbalanced shaft
rotation; bearing fault; unbalanced voltage; one, two, and three BRBs; and four combinations
of these faults. The authors proposed using matching pursuit and DWT for feature extrac-
tion from current and vibration signals. The signals were acquired from an experimental
array, where an eight-channel power quality analyzer was employed to measure three-phase
currents, and an accelerometer 356A32 was utilized for the vibration measurements. For
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comparative purposes, SVM, KNN, and ensemble were used, along with 17 different classi-
fiers available in the Classification Learner toolbox of MATLAB. Within these options, fine
KNN, bagged trees, subspace KNN, fine Gaussian SVM, and weighted KNN performed better,
exhibiting accuracies near 100%. The authors observed that the number of features for the
classification affects detection accuracy; in this work, a higher number of features provided
the best results. This method is useful for comparative purposes.

In [82], a current and vibration analysis is performed based on different algorithms,
such as Matching pursuit, DWT, invasive weed optimization algorithm, K-Nearest neigh-
bor, SVM, random forest, genetic algorithm, receiver operation characteristic curve, and
statistical analysis; these works compare these algorithms to detect 1 BRB, 5-BRB, 8-BRB,
ball bearing fault, inner and outer bearing fault, and stator fault. Other works combine
analysis of current, speed, and flux, such as the one presented in [83], or speed, current,
and torque, such as the one in [84]. Another combination of physical variables is explored
in [85], where authors analyze temperature and flux signals, and in [79], where current and
flux signals are employed. Some of the latest works reported for fault detection based on
analyzing more than one physical variable are presented in Table 5.

Table 5. Works based on combined analysis.

Year Physicial Variables Type of Sensor Type of Fault Method

2016 [86] Voltage and current PCI data acquisition board 2 BRBs Clark transformation and FFT

2017 [80] Vibration and current Data acquisition system NI
USB-6211

Unbalanced load in the motor
shaft and in the motor helix,
1 BRB, 3 BRBs, 5 BRBs, and 7

BRBs

Short-time Fourier transform,
wavelet multiresolution analysis,

and fuzzy logic classifier

2018 [87] Current, voltage, and
temperature

Nicolet Odyssey data
acquisition system

1 BRB, 2 BRBs, 4 BRBs, damaged
capacitor bank, and damaged

bearings

SVM, fuzzy membership
functions, fuzzy information
fusion, and cross-validation

2019 [88] Current and vibration Accelerometer LIS3L02AS4 and
Fluke current clamp i200s

Bearing fault and mechanical
unbalance

Statistical analysis and
classification tree

2019 [81] Current and vibration
8-channel power quality

analyzer PQPro by CANDURA
and accelerometer 356A32

1 BRB; 2 BRBs; 3 BRBs;
unbalanced shaft rotation (USR);
bearing fault; combined bearing

fault and USR; combined
bearing fault and 1 BRB;

combined bearing fault, USR,
and unbalanced voltage (UV);
and combined UV and 3 BRBs

Matching pursuit, DWT, SVM,
KNN, and ensemble

2019 [89] Current and vibration Current probe Fluke i200s and
accelerometer PCB 352460

BRB, built-in bowed rotor, and
faulted bearing

Hilbert transform, CNN, and
LSTM

2021 [76] Current and flux Stray flux sensor and Hall-effect
sensor

2 types of bearing faults:
generalized roughness and
single-point defect, and the

simultaneous presence of torque
oscillation and bearing fault

CWT and STFT

2022 [90] Vibration and current Accelerometer and data
acquisition board

3 BRBs, rotor bent in the center,
and inner race bearing defect in

the shaft end

Hilbert transform, recurrent
neural network, and lightweight

multisensory fusion model

2022 [16] Flux and current Software ITSC Fourier transform and
Runge–Kutta 4th method

2022 [91]
Giant magnetoresistance (GMR),

temperature, current, voltage,
and vibration

Current sensor, SCR013; voltage
sensor, ZMPT101B; vibration

sensor, ADXL335; GMR sensor,
AA002-02; and temperature

sensor, LM335

Shaft bend, rotor burn, BRB, 2
mm holes on the lamination

sheet of the rotor

Polynomial regression, multiple
linear regression, logistic

regression, and polynomial
chirplet transform

5. Future Trends

The evolution of fault detection techniques has brought interest to study methods
based on less conventional types of physical variables. Even though current and vibration
analyses remain the preferred types of signals for fault detection, other signals, such as flux
and thermal images, have gained attention in recent years [76,84,85].

Works that propose the use of combined analysis, such as current and vibrations, are
also very popular; usually, these take advantage of each physical variable and extract more
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information than using only one variable but with a more complex experimental array.
These works commonly compare the results for various faults and detection methods.

Most of the works studied in this paper use AI-based methods, which reveal that no
matter the physical variable employed for the analysis, these methods provide good results
with accuracies superior than 90%.

In summary, current and vibration signals are commonly analyzed by their frequency
spectrum using techniques, such as Fourier and wavelet transform, but their disadvantage
is that both of them are prone to distortion, given the sensitivity of the sensor, for example,
current signals by means of electrical noise and vibration signals by the vibrations or
surrounding motors.

Some of the trends that have been observed during the elaboration of this work are
listed below:

• Current and vibration signals remain the leading variable for fault detection and clas-
sification, mainly because these signals provide great information and can be analyzed
alone or combined using straightforward methods. However, without preprocessing
method, these signals rarely achieve the detection of incipient faults. Thus, developing
processing techniques (or improving the existing ones) of low complexity and fast
response are desirable, aiming to implement online fault detection systems.

• AI methods are extensively used for fault detection and can be used for any sig-
nal. Nevertheless, some types of variables rely on these methods, such as pattern
classification for thermal images. In this regard, an interesting contribution may be
the development of less complex algorithms, such as a pattern classifier based on
memristive networks.

• Flux signals are presented in different works as a reliable physical variable for detect-
ing faults. However, some authors have highlighted the lack of online monitoring.
Concerning this matter, future works may be oriented to surpass this disadvantage.

It is expected that this work could provide useful information for researchers to prefer
a certain type of physical variable in the study of new methods for fault detection.

Finally, Table 6 summarizes a comparison of the characteristics of the different physical
variables treated in this work.

Table 6. Comparison of methods for fault detection based on different physical variables.

Current Vibrations Thermal Flux

Type of sensor Hall-effect Accelerometer Infrared camera Coil sensor

Straightforward sensing Yes No Yes No

Low-cost sensing Yes Yes No Yes

Popular methods for signal
processing FFT and wavelet transform FFT, wavelet transform,

and neural networks AI-based method Spectral analysis and
Clarke transformation

Types of faults detected

BRB (1/2, 1, and 2), bearing
faults (axis deviation,

misalignment, and inner
and outer race), unbalanced

voltage, ITSC (4 levels),
rotor faults (misalignment,

friction, and end ring
break), poor insulation, and

stator faults (6 types)

BRB (1, 2, 3, and 4), bearing
faults (inner and outer race,
abrasion and balls), air-gap

eccentricity, ITSC (2, 3, 4,
and 8 turns) and rotor

faults (unbalanced, bowed
rotor, and bending)

ITSC (8 types), bearing
faults (inner and outer race
and ball), gearbox wearing,

cooling fan failure, and
stuck rotor fault

ITSC, BRB (1, 2, and 3),
rotor bar damage, and static

and dynamic eccentricity

6. Conclusions

Fault detection in IMs is a topic that has been studied using different physical vari-
ables of the motor, such as current, vibrations, flux, and temperature. Among them,
current analysis remains the most popular one, mainly because of the non-invasive sensing
and considering that the IMs have the current sensor already installed for control pur-
poses [18,92–117]. A promising physical variable that has been employed for fault detection
is flux analysis, which exhibits good results, even in cases where the MCSA fails; thus, it is
expected that works based on flux analysis will grow in the next years.
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Tendencies in processing techniques for analysis of the different types of physical
variables treated in this work are inclined to use artificial-intelligence-based methods. Al-
though these methods have been proposed in different works during the last ten years,
advances in hardware resources for computers and software tools have made its imple-
mentation an easier task, making it more accessible to use in laptops and to implement in
microcontrollers and FPGAs.

On the other hand, lower levels of damage are expected to be detected in the future.
For instance, in current analysis for broken bar detection, most works report no less than a
half broken bar. Therefore, improving these results by combining the information given
by other variables, such as flux and current or temperature and vibrations, is a matter
of interest.

Another interesting possibility is to automatize the sensing of flux signals, aiming to
implement remote monitoring. New works on flux signal acquisition may represent an
important improvement in the IM condition-monitoring field.

As a future work, the authors are interested in studying the effect of the size of the
motor on the fault detection accuracy reported for various physical variables and under
different operational conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
BRB Broken rotor bar
BF Bearing fault
CNN Convolutional neural network
CWT Continuous wavelet transform
DCNN Deep convolutional neural network
DWT Discrete wavelet transform
FEM Finite element method
FFT Fast Fourier transform
FPGA Field-programmable gate array
GA Genetic algorithm
IM Induction motor
ITSC Inter-turn short circuit
KNN K-nearest neighbor
LSTM Long short-term memory
MCSA Motor current signal analysis
MPV Multiple Park’s vector
MUSIC Multiple signal classification
PCA Principal component analysis
PSD Power spectral density
STFT Short-time Fourier transform
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SVD Singular value decomposition
SVM Support vector machine
USR Unbalance shaft rotation
UV Unbalance voltage
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Abstract: This paper deals with the early detection of fault conditions in induction motors using
a combined model- and machine-learning-based approach with flexible adaptation to individual
motors. The method is based on analytical modeling in the form of a multiple coupled circuit model
and a feedforward neural network. In addition, the differential evolution algorithm independently
identifies the parameters of the motor for the multiple coupled circuit model based on easily obtained
measurement data from a healthy state. With the identified parameters, the multiple coupled
circuit model is used to perform dynamic simulations of the various fault cases of the specific
induction motor. The simulation data set of the stator currents is used to train the neural network for
classification of different stator, rotor, mechanical, and voltage supply faults. Finally, the combined
method is successfully validated with measured data of faults in an induction motor, proving the
transferability of the simulation-trained neural network to a real environment. Neglecting bearing
faults, the fault cases from the validation data are classified with an accuracy of 94.81%.

Keywords: induction motors; fault detection; machine learning; supervised learning; multiple
coupled circuit model; parameter identification

1. Introduction

Squirrel cage induction motors are often an essential part of industrial processes
and are widely used in various industries due to their robust characteristics. Failures
and repairs of individual machines or complete systems can quickly lead to high costs
in the industrial environment, as well as a large demand for additional manpower and
time. Continuous monitoring and early detection of electrical drive fault conditions offer a
potential solution to such problems. These tools can help ensure reliable and predictable
machine operation. For the above reasons, the early detection and diagnosis of fault
conditions in induction motors and other types of electric drives have been a highly
regarded research topic, as evidenced by various review publications [1–3]. According to
Gao et al., fault diagnosis methods are generally classified into model-based, signal-based,
and data-based approaches [4]: Model-based methods use models for fault diagnosis by
monitoring the correlation between the real systems and the models. Signal-based methods
utilize measured signals that reflect the fault cases. A diagnostic decision is made based
on the extracted features and previous experience about the features in the healthy and
faulty states. Data-based approaches use only existing data sets for fault detection. No
prior knowledge is required.

Traditionally, signal-based approaches have played a major role in induction machine
fault detection [5]. A classic method is the motor current signature analysis (MCSA), whose
main objective is a high-resolution Fourier analysis of the stator currents in order to identify
specific frequency components [6,7]. The stator currents are also considered in approaches
using the Park vector, which transforms the three-phase current into a two-dimensional
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representation. When a fault condition occurs, the shape of the representation changes com-
pared to the healthy state, allowing the fault condition to be detected [8,9]. In addition, more
sophisticated signal-based methods exist, such as the discrete wavelet transform (DWT),
which has the advantage of providing powerful frequency analysis of non-stationary
signals [10–12]. Similar methods are the Wigner–Ville distribution (WVD) [13] or the
Hilbert–Huang transform (HHT) [14]. These methods allow analysis in the combined time
and frequency domain and the detection of specific fault characteristics in this domain. As
in most of the approaches described so far, stator currents are primarily used as the signals
to be evaluated [15]. Alternatively, vibration measurements are also used [16,17], with
each quantity having its own advantages and disadvantages [18]. Other approaches use an
additional sensor to measure the magnetic flux [19–21] or a thermography camera [22,23]
for fault detection, but like the vibration sensor, this involves additional effort and cost.
Current sensors, on the other hand, are usually present in all motors. In general, the signal-
based approaches can be applied to all fault cases, such as short circuits in the stator [24,25],
broken cage bars or end rings [26,27], eccentricities [17,28], or bearing faults [29,30]. The
disadvantages of these signal-based methods are that they require precise prior knowledge
of the specific fault characteristics, and the detection must often be manually adapted to
the particular motor.

Due to major advances in the field of artificial intelligence (AI) and machine learn-
ing (ML), data-based approaches for induction machine fault diagnosis have been increas-
ingly developed [31,32]. The advantage over signal-based methods is that now no specific
prior knowledge of the fault characteristics and no manual analysis of the signals is re-
quired [33]. All that is required is the acquisition of a sufficient amount of data, and the
corresponding algorithms learn the necessary fault characteristics independently. In the
field of machine learning, there are different methods available, such as the support vector
machine (SVM) [34–36], the k-nearest neighbors (kNN) algorithm [35,36], and different
types of neural networks, such as regular feedforward neural networks (FFNN) [37–39],
convolutional neural networks (CNN) [40,41], recurrent neural networks (RNN) [42,43],
autoencoders (AE) [44,45], or deep belief networks (DBN) [45]. The publications listed so
far deal with several fault cases, but individual approaches also focus on specific fault types,
such as stator short circuits [46,47], broken rotor bars [48–50], or bearing faults [45,51,52].
A combination of signal-based and data-based methods is also common, with the signal-
based approaches preprocessing the data to extract known fault features that the algorithms
use for diagnosis [14,22,38,48]. However, the disadvantage of data-based methods is that
enough data about the different healthy and faulty states must be available. In an industrial
environment, detailed data acquisition for motors, especially for fault conditions, is prob-
lematic, making practical use impossible without a great deal of effort. Another possibility
is to combine a model-based method with data-based methods. Such an approach is used
by Murphey [53] and Masrur [54] to first generate data through modeling, which is then
used to train an AI and classify faults in the voltage supply. The basic idea of such a method
is advantageous because there is no need for expensive measurements of the motor in the
different fault cases. Instead, appropriate modeling is used to generate data on the behavior
of the motor in the healthy and fault states. However, a crucial step is missing to ensure
practicability. This is because the parameters of the motor are also required to reproduce its
behavior. Determining these parameters, whether by different test methods [55,56] or finite
element analysis [57], is very time-consuming and thus hinders practical implementation.

In the approach presented here, a method for fault detection of squirrel cage induction
motors is demonstrated, which identifies the parameters for modeling in advance from
easily measurable quantities. The modeling is based on a multiple coupled circuit model
whose parameters are identified using the differential evolution (DE) algorithm by compar-
ing the simulation results with real measured data. Finally, the data set generated by the
model is used to train a feedforward neural network for fault detection. The contribution
of this paper aims at the practicable application of fault detection in the industry. By
combining modeling and machine learning, the monitoring of an induction motor can
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be conducted with little prior knowledge, low effort, and already existing measurement
technology. The structure of this paper leads through the different aspects of the method. In
Section 2, the theoretical background of the modeling, the differential evolution algorithm,
and neural networks are presented. Then, in Section 3, the interaction of the individual
components within the overall framework is described. Section 4 shows the experimental
setup in detail, leading to the validation and results in Section 5 and the conclusions in
Section 6.

2. Theoretical Background

First, the technical background of the main aspects used in the approach is presented.
This includes the modeling of the induction motor with squirrel cage rotor based on the
multiple coupled circuit model together with the modified winding function method,
which is used to calculate the self and mutual inductances. In addition to the healthy state
modeling, the effects of the fault cases on the modeling are described. In addition, the
mathematical background of the differential evolution algorithm and neural networks is
briefly explained.

2.1. Induction Machine Modeling

A variety of model approaches exist for calculating the behavior of squirrel cage
induction motors. Models based on a transformation into an arbitrary reference frame [58]
do not allow the precise calculation of faults such as winding short circuits and are therefore
not suited for fault detection. The finite element method (FEM), on the other hand, can
be used to perform very complex simulations [59,60]. However, this approach is also
not optimal for practical fault detection because of the high computational and time
requirements. For comprehensive and flexible fault detection, the multiple coupled circuit
model [61] is well-suited. This analytical modeling approach is based on the electrical
network of the machine. With this type of modeling, the static and dynamic behavior as
well as several fault types can be calculated [62]. The inductances for the modeling are
usually estimated with the winding function method (WFM). This approach utilizes the
distribution of the respective windings and geometrical quantities of the machine [63].
The modified winding function method (MWFM) is an extension of the original approach.
Unlike the basic version, it is possible to calculate the inductances with variable air gap
thicknesses [64].

2.1.1. Modeling Basic Machine

The theory of the modeling in this chapter originates from Toliyat et al. [61]. The
central component of the model is the voltage equation with the corresponding resis-
tances R, leakage inductances L, and inductances M. The voltages and currents of the
three stator phases US and iS and the rotor loops UR and iR are considered individually.
Due to NR cage bars in the rotor, NR loop currents and an end ring current iE exist for the
rotor currents iR (see Figure 1). The squirrel cage rotor causes zero values for the rotor
voltages UR [61]: [

[US]
[UR]

]
=

[
[RS] 0

0 [RR]

][
[iS]
[iR]

]
+

[
[LS] 0

0 [LR]

]
d
dt

[
[iS]
[iR]

]
+

d
dt

([
[MSS] [MSR]
[MRS] [MRR]

][
[iS]
[iR]

]) (1)

[
US

]
=

⎡⎣US,a
US,b
US,c

⎤⎦ [
iS
]
=

⎡⎣iS,a
iS,b
iS,c

⎤⎦ [
UR

]
= 0

[
iR
]
=

⎡⎢⎢⎢⎢⎢⎢⎣

iR,1
iR,2
iR,3
. . .

iR,NR
iE

⎤⎥⎥⎥⎥⎥⎥⎦ (2)
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Figure 1. Electrical network of a rotor of a squirrel cage induction motor with the individual loop
currents iR, end ring current iE, and associated resistances Re and Rb, as well as leakage inductances Le

and Lb of cage bars and end ring segments.

The individual windings of the stator phases are summarized for the stator resis-
tance RS and leakage inductance LS. The resistances Rb and leakage inductances Lb of the
cage bars and the resistances Re and leakage inductances Le of the end ring segments build
the matrices for the resistance RR and leakage inductance LR of the rotor (see Figure 1). The
leakage inductance matrices L behave analogously to the resistance R and are therefore not
shown separately below [61]:

[
RS

]
=

⎡⎣RS 0 0
0 RS 0
0 0 RS

⎤⎦ (3)

[
RR

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

2(Rb + Re) −Rb 0 . . . −Rb −Re
−Rb 2(Rb + Re) −Rb . . . 0 −Re

0 −Rb 2(Rb + Re) . . . 0 −Re
. . . . . . . . . . . . . . . . . .
−Rb 0 0 . . . 2(Rb + Re) −Re
−Re −Re −Re . . . −Re NR · Re

⎤⎥⎥⎥⎥⎥⎥⎦ (4)

For the self inductance of stator and rotor, the square matrices MSS and MRR are
present. In these matrices the couplings of the stator phases to each other and rotor loops
to each other are described. The only difference in the self inductance of the rotor MRR is
that no magnetic coupling with the end ring exists. The coupling between stator and rotor
results in the mutual inductances MSR and MRS, which specify the relationship between
the stator phases and rotor loops. These two matrices are mirror symmetric [61]:

[
MSS

]
=

⎡⎣MSa,Sa MSa,Sb MSa,Sc
MSb,Sa MSb,Sb MSb,Sc
MSc,Sa MSc,Sb MSc,Sc

⎤⎦ (5)

[
MRR

]
=

⎡⎢⎢⎢⎢⎣
MR1,R1 MR1,R2 . . . MR1,RNR 0
MR2,R1 MR2,R2 . . . MR2,RNR 0

. . . . . . . . . . . . . . .
MRNR,R1 MRNR,R2 . . . MRNR,RNR 0

0 0 . . . 0 0

⎤⎥⎥⎥⎥⎦ (6)
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[
MSR

]
=

⎡⎣MSa,R1 MSa,R2 . . . MSa,RNR 0
MSb,R1 MSb,R2 . . . MSb,RNR 0
MSc,R1 MSc,R2 . . . MSc,RNR 0

⎤⎦ (7)

[
MRS

]
=

[
MSR

]T (8)

In addition to the electrical description, the mechanical equation of motion is also
important. Only in combination with the mechanical equation is it possible to calculate
the rotor speed ω and the dynamic properties of the electrical machine. For this purpose,
the moment of inertia J as well as the torque of the load machine TL and the electrical
machine Tel are required. The generated torque Tel results from the local derivation of the
currents i and the inductances M [61]:

d
dt

ω =
1
J
(Tel + TL) (9)

Tel =
1
2
[
[iS]T [iR]T

] ∂

∂ϕ

[
[MSS] [MSR]
[MRS] [MRR]

][
[iS]
[iR]

]
(10)

2.1.2. Inductance Calculation

The winding function method is used to calculate the self and mutual inductances M.
This analytical method assumes an infinite permeability of iron and does not need any
symmetry for the winding slots. Consequently, the coupling inductance MA,B between any
two windings A and B in an electrical machine can be calculated according to the following
equation [63]:

MA,B(ϕ) = μ0rl
∫ 2π

0
nA(ϕ, θ) · NB(ϕ, θ) · g−1(ϕ, θ)dθ (11)

This equation contains the turn function nA(ϕ, θ), which describes the local distri-
bution of the windings of A over the circumference θ. In addition, the winding func-
tion NB(ϕ, θ) appears, which reflects the magnetomotive force of the windings of B. Other
parameters used in the calculation are the machine length l, the stator core radius r, the air
gap thickness g, and the vacuum permeability μ0. Thus, the equation allows determining
the inductances M(ϕ) for the magnetic coupling between the individual stator phases and
rotor loops as a function of the rotation angle ϕ.

In the presence of a variable air gap, as in the case of an eccentric rotor, the equation
must be extended to the modified winding function method because the average of the
winding function is no longer zero. Al-Nuaim and Toliyat [64] describe the necessary steps
to account for a variable air gap in detail. Finally, only the calculation of the winding
function changes, where NB(ϕ, θ) describes the average value of the winding function [64]:

NB(ϕ, θ)) = nB(ϕ, θ)− NB(ϕ, θ) (12)

NB(ϕ, θ) =
1

2π · g−1(ϕ, θ)

∫ 2π

0
nB(ϕ, θ) · g−1(ϕ, θ)dθ (13)

2.1.3. Fault Implementation

Stator faults

Winding and phase short circuits create a new path in the electrical network. Therefore,
the multiple coupled circuit modeling is extended to model these fault cases [62,65]. Figure 2
shows an example of a winding short circuit in the upper phase. In the path shown in
red, the short-circuit current iK flows across the resistor RK, while the total voltage in the
short-circuit path remains at zero.
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Figure 2. Electrical network of a stator of a squirrel cage induction motor with the phase currents iS
and the winding short-circuit path (red) with short-circuit current iK and the resistor RK.

The system of electrical equations must be extended by one line with newly introduced
matrices, which describe the short-circuit path accordingly. The matrices of the resistance R
and leakage inductance L from Equation (1) no longer resemble a unit matrix since different
currents flow in the stator phases and in the short circuit. The short-circuit matrices with the
resistances RK, RSK, and RKS and the leakage inductances LK, LSK, and LKS can be derived
from the newly created network of the stator. The corresponding magnetic couplings of the
short-circuit loop with the stator phases and rotor loops extend the inductance matrix M.
In the case of the healthy machine or other fault cases without a short circuit, the newly
introduced short-circuit matrices become zero so that the expression finally returns to the
form of the initial Equation (1):⎡⎣[US]

[UR]
0

⎤⎦ =

⎡⎣ [RS] 0 [RSK]
0 [RR] 0

[RKS] 0 [RK]

⎤⎦⎡⎣ [iS][iR]
[iK]

⎤⎦+

⎡⎣ [LS] 0 [LSK]
0 [LR] 0

[LKS] 0 [LK]

⎤⎦ d
dt

⎡⎣ [iS][iR]
[iK]

⎤⎦
+

d
dt

⎛⎝⎡⎣ [MSS] [MSR] [MSK]
[MRS] [MRR] [MRK]
[MKS] [MKR] [MKK]

⎤⎦⎡⎣ [iS][iR]
[iK]

⎤⎦⎞⎠
(14)

To model open phases in the stator, the matrices of the inductance M, leakage induc-
tance LS, and resistance RS are adjusted according to the changed winding distribution.
Since no current can flow in the affected phase due to the disconnection of the voltage, no
windings of the open phase actively contribute to the electrical behavior.

Rotor faults

Broken bars or end rings in the squirrel cage rotor create a new structure of the
electrical network in the rotor. For the rotor with a broken bar shown in Figure 3, the first
and second rotor loops combine to form a single loop because current flow is no longer
possible through the broken bar [62,65].
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Figure 3. Electrical network of a rotor of a squirrel cage induction motor with the individual loop
currents iR in case of one broken cage bar.

For the multiple coupled circuit model, the elements of the first rotor loop now describe
the newly created loop, while the elements of the second rotor loop become zero. This
changes the matrix for the resistance RR, while the adjustment of the matrix for the leakage
inductance LR behaves identically to the resistance matrix. Furthermore, the changed
composition of the loops results in modified winding distributions for the calculation of
the self and mutual inductances M. The first rotor loop combines a larger rotor section
than before, while the second loop no longer has a winding available. The procedure is
analogous for multiple broken cage bars or broken end rings:

[
RR

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

2(Rb + 2Re) 0 −Rb . . . −Rb −2Re
0 0 0 . . . 0 0

−Rb 0 2(Rb + Re) . . . 0 −Re
. . . . . . . . . . . . . . . . . .
−Rb 0 0 . . . 2(Rb + Re) −Re
−2Re 0 −Re . . . −Re NR · Re

⎤⎥⎥⎥⎥⎥⎥⎦ (15)

Mechanical faults

For the implementation of static, dynamic, and mixed eccentricity in the modeling, it
is necessary to consider the air gap changes over the circumference of the machine. The
variable air gap g(ϕ, θ) has a direct influence on the calculation of the inductances M via the
modified winding function method. As an approximate description of the air gap g(ϕ, θ),
the relationship from the following Equation (16) is used, which combines all three forms
of eccentricity in one equation. For this purpose, the parameters δs and δd are introduced,
which define the severity of the static and dynamic eccentricity [17]:

g(ϕ, θ) = g · [1 − δs · cos(θ)− δd · cos(ωt − θ)] (16)

Eccentricity is also used to model localized bearing faults. The difference is that the
eccentricity occurs only when the air gap changes due to the passage of a defect in the
bearing. To account for this moment, the model uses the typical frequencies of bearing
faults (see Equation (17) as an example for outer ring fault), which is determined as a
function of the bearing geometry (Nbear, bd, dp, β) and the rotor frequency fR [29,30]:

fo =

(
Nbear

2

)
· fR ·

[
1 − bd

dp
cos(β)

]
(17)
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The modeling of global bearing faults with general roughness must be implemented
differently due to its lack of predictability. The distributed roughness results in a slight
increase of the load torque, which is modeled by additional added noise.

Voltage supply faults

Failures due to a faulty voltage supply directly affect the input to the model. Depend-
ing on the type of fault, the voltages are increased or decreased individually or collectively.

2.2. Differential Evolution Algorithm

The differential evolution algorithm offers an approach for coping with optimization
problems. The algorithm uses a population of possible solutions (individuals) that are
varied over several iterations with the goal of minimizing a defined fitness function [66].
The hyperparameters are the differential weight F, the crossover probability CR, and the
population size NP. An important property of the algorithm is its capability to work with
nonlinear and non-derivative problems. The advantage of a population-based approach
over methods based on a single individual, such as cyclic coordinate search, lies in the low
risk of getting stuck in local minima [67].

The individual steps and operations of the differential evolution algorithm can be
seen in Algorithm 1. The mutation for designing new individuals is performed in step two,
and the binary crossover between existing individuals and new designed individuals is
performed in step four. The steps of the algorithm are executed for every individual in
the population NP in every iteration of the optimization process. It is common to select
a special mutation scheme such as DE/rand-to-best/1 [68], which has an effect on the
design of the new individual z. In this case, the calculation utilizes the currently considered
individual x, the best individual best, and two randomly chosen individuals a and b by the
following equation [68]:

z = x + F · (best − x) + F · (a − b) (18)

Algorithm 1 Procedure of the individual steps for one iteration of the differential evolution
algorithm.
Find the best individual best of the population.
For each individual x:
1. Choose the two random distinct individuals

a and b.
2. Construct an interim design:

z = x + F · (best − x) + F · (a − b)
3. Choose a random dimension j ∈ [1, . . . , n]

for optimization in n dimensions.
4. Construct the candidate individual x′ using

binary crossover.

x′i =
{

zi, if i = j or with probability CR
xi, otherwise

5. Evaluate x′ with fitness function.
6. Insert the better design between x and x′

into the next generation.

2.3. Artificial Neural Network

An artificial neural network (ANN) is a computational model inspired by the structure
and function of biological neural networks in the brain [69]. It consists of interconnected
neurons that process and transmit information in the form of numerical values. The
connections between neurons are modeled by weights learned during training that adjust
the strength of the signal transmitted from one neuron to another [70]. In general, a
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feedforward neural network consists of three types of layers: an input layer, one or more
hidden layers, and an output layer. The input layer receives the raw input data and passes
it to the first hidden layer. The output y of a single neuron in the hidden layers of an ANN is
calculated as the sum of its inputs x multiplied with a weight w plus a bias term b, which is
then passed through an activation function f () (e.g., sigmoid or ReLU function) to produce
the neuron’s output value [71]:

y = f
(
∑ wi · xi + b

)
(19)

The number of neurons in the input and output layers depends on the task at hand,
while the number of hidden layers and the number of neurons in each hidden layer can vary
greatly depending on the complexity of the problem and the amount of data available [71].

Artificial neural networks are often trained using a supervised learning process in
which the network is presented with a set of input data with corresponding output values.
The network adjusts its weights to minimize the difference between the predicted output
and the actual output. In this backpropagation process, the gradient of the error function
with respect to the weights is calculated and updated using gradient descent [69].

During training, an ANN can be prone to overfitting. This means that the network
adapts too much to the training data instead of learning generalizable patterns [72]. To
prevent such overfitting and to improve the generalization of the network, regularization
techniques, such as L1 and L2 regularization, are used. L1 regularization adds a penalty
value to the loss function that is proportional to the absolute value of the weights, while
L2 regularization adds a penalty value that is proportional to the square of the weights.
These penalty terms encourage the network to use smaller weights and reduce the complex-
ity of the model, thus preventing overfitting [73]. Another commonly used regularization
technique is the dropout procedure, which randomly drops a portion of the neurons in the
network during each training epoch. This forces the network to learn robust features and
prevents overfitting by reducing the co-adaptation of neurons [74].

3. Fault Detection Framework

The key component of the fault detection framework is the multiple coupled circuit
model in combination with the modified winding function method, which is used to
calculate the inductances. The modeling is primarily used to simulate the stator currents
that are later used by the neural network as the basis for fault detection. The inputs to the
model are the voltages US applied to the motor and the torque of the load machine TL. The
outputs are the rotor speed ω and the aforementioned stator currents iS. An overview of
the modeling inputs and outputs is shown in Figure 4.

Voltages        

Rotor speed

Currents
Multiple coupled 

circuit model 

Inputs

Load torque

Outputs

US

Figure 4. Structure of multiple coupled circuit modeling with inputs (voltages US and load torque TL)
and outputs (stator currents iS and rotor speed ω).

The fault detection framework consists of several steps (see Figure 5), which are
presented in the following. First, the model parameters for the multiple coupled circuit
model are identified by the differential evolution algorithm. The model with the identified
parameters is then used to create a data set of healthy and faulty states. This data set, in
turn, allows the learning of fault characteristics by a neural network, which ultimately
enables fault detection based on real stator currents.
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Figure 5. Sequence of the individual steps of the fault detection framework up to the application
with real measurement data.

3.1. Parameter Identification

An important condition for the identification of model parameters for use in fault
detection is high practicability. Therefore, the basic idea of parameter identification is to
use only easily obtainable measurement data and information from the nameplate of the
motor (see Figure 6).

Definition of parameters 
and search space by 
design guidelines

• Stator voltages
• Stator currents 
• Load Torque
• Rotor speed Parameter identification 

with differential evolution 
algorithm

Fingerprint measurement 
of currents and voltages 

(startup process)

Nameplate data

US

+

Figure 6. Sequence of the individual steps of the parameter identification from the fingerprint measure-
ment (startup process from standstill to rated operation) and nameplate data to the identification process.

The parameters of the modeling are adjusted over a large number of iterations until
the simulated results of the modeling match the real measured data as closely as possible.
Consequently, measured data for the inputs and outputs of the modeling are needed to
compare the model to reality. For this purpose, a time-based measurement of the stator
currents iS and the applied voltages US for the startup process of the motor from standstill
to rated load in the healthy state is performed, which serves as a fingerprint for the motor
under investigation. From the stator currents iS, the rotor speed ω is determined by
frequency analysis. This is performed indirectly by calculating the slip s from the frequency
of the principal slot harmonics (PSH) with the number of rotor bars NR, the number of pole
pairs p, and the supply frequency fS [28]:

fPSH =

(
1 ± k · NR · 1 − s

p

)
· fs

with k = 0, 1, 2, . . .
(20)

Using the rotor speed ω, the currents iS, and voltages US, the load torque TL is
estimated via the efficiency η from the nameplate using the following equation (valid for
rated load):

TL =
3 · US · iS

η · ω
(21)

Thus, all modeling inputs and outputs are known. The parameters required for the
modeling are the resistances RS, Rb, and Re and the leakage inductances LS, Lb, and Le of the
stator phases, cage bars, and end ring segments. In addition, the length of the motor l, the
radius of the stator core r, the air gap thickness g, the number of bars in the rotor NR, and the
number of windings in the stator wS with the corresponding winding distribution are required
for the calculation of the self and mutual inductances. Upper and lower limits for the search
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space are defined for these parameters. For this purpose, a rough estimation of the parameters
is made based on design guidelines for the respective power class of the motor.

The differential evolution algorithm with the mutation scheme DE/rand-to-best/1
from Algorithm 1 is used to iteratively determine the parameters. The algorithm is not
based on the derivative of a function, but instead uses a fitness function. This is an
important aspect because the modeling is not differentiable due to the discrete calculation
of the inductances. A two-part approach is used for the fitness function, which utilizes
the data after the machine achieved continuous operation. First, whether the deviation
between the simulated rotor speed ωsim and measured rotor speed ωmeas is less than 1%
is checked. If this condition is met, only the mean squared error (MSE) between the fast
Fourier transforms (FFTs) of the simulated stator currents isimFFT and measured stator
currents imeasFFT is used for the fitness function; otherwise the mean squared error is
multiplied by a penalty term:

fitness =

{
MSE(imeasFFT, isimFFT) if |ωmeas−ωsim

ωmeas
| ≤ 0.01

MSE(imeasFFT, isimFFT) · 1010 if |ωmeas−ωsim
ωmeas

| > 0.01
(22)

Comparing the currents at the level of the frequency spectra has the advantage of
reflecting specific characteristics of the motor that can be used later for fault detection.
Although the rotor speed information is also included in the frequency spectrum, an
additional check is made because this component has a comparatively small value.

3.2. Creation of the Data Set

The identified parameters allow the simulation of the motor behavior in a healthy
state. To generate data for fault conditions, the modeling is adapted according to the
explanations in Section 2.1.3. Depending on the fault case, it is possible to simulate different
fault severities. For example, the number of short-circuited windings or the number of
broken bars can be varied, and the magnitude of the deviations from the normal value
can be varied for the eccentricity and the faulty voltage supplies. With the voltages and
the load torque, changing the input variables to the model is also a way to generate more
various states and a larger data set.

3.3. Training of the Neural Network

A data set of healthy and faulty states enables the training of a neural network for fault
classification. The fault detection is based on the fast Fourier transform of all three stator
currents. This has the advantage that the characteristics of the faults are clearly visible in
the frequency domain and that a time offset between individual samples is not significant.
The frequency spectra are limited to a range of 0 to 1000 Hz, which contain the critical
information. In addition, a subtraction with the average of the simulated healthy stator
currents is formed for the entire data set (see Figure 7). With this type of normalization, the
deviations from the healthy state are learned more sensitively.

Stator currents with  
sample time t

Frequency spectrum of  
stator currents (0-1kHz)

Normalized frequency 
spectrum of stator 
currents (0-1kHz)

FFT  
+  

Clipping

Normalizing  
with  

healthy state

Figure 7. Sequence of the individual steps of the preprocessing with fast Fourier transformation,
clipping, and normalization via the subtraction with the healthy state.

An important aspect of the training process is to ensure the best possible generaliza-
tion. Despite the individually identified parameters, an ideal representation of the motor,
especially in the fault cases, cannot be guaranteed. The neural network is considered to be
well generalized if the loss for the test data is lower than for the training data. Thus, the goal
in training the neural network is to minimize the loss function while maintaining a lower
loss for the test data than for the training data. As an additional aspect of generalization,
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the data set is split into 50% training data and 50% test data, which allows the accuracy
and loss results to be compared using the same sample size.

The structure of the feedforward neural network for fault detection consists of an
input layer, several hidden layers, and an output layer. The number of neurons of the
input layer corresponds to the number of data points of the frequency spectra of the three
stator currents (depending on the sampling rate), and the number of neurons of the output
layer corresponds to the number of healthy and faulty states. The ReLU activation function
is used for the hidden layers, while the softmax function is used for the output layer to
generate probabilities. The Adam algorithm is used as an optimizer. In addition, for the
purpose of generalization, different regularization techniques are implemented with the
L1 and L2 regularization and the dropout technique.

4. Experimental Setup

To prove the functionality, the method is run once completely for an exemplary motor.
The motor under investigation is a squirrel cage induction motor with two pole pairs and
1.1 kW of power. The motor is coupled to a controllable load machine and is directly
connected to the mains (230 V) in a delta connection. The nameplate data are given in
Table 1. Current transformers are used to measure the stator currents. The outputs of
the current transformers and the voltages are connected to an analog-to-digital converter,
which acquires the analog signals at a sampling rate of 10 kHz.

Table 1. Nameplate data of the examined 1.1 kW squirrel cage induction motor for a delta connection.

Parameter Value

Rated power PN 1.1 kW
Rated voltage UN 400 V
Rated current IN 2.5 A

Rated rotor speed nN 1445 1/min
Frequency f 50 Hz

Power factor cosϕ 0.75
Efficiency η 84.4%

To identify the model parameters, the stator currents and applied voltages are mea-
sured for 10 s for the startup process from standstill to rated operation in the healthy state.
This measurement serves as fingerprint and is used to compare the model with the real
motor.

To verify the accuracy of the neural network, additional measurements of the motor in
different fault conditions are required. These measurements are for validation purposes
only and are used to verify the detection capability of the neural network. The nine different
fault conditions from Table 2 are applied to the motor. A total of 3 measurements of the
stator currents, each lasting 10 s, are taken in rated operation for the healthy state and each
fault state. Splitting the measurements into 0.2 s intervals results in 150 samples per fault
case for validation. The measured data in this step are not used for training.

The insertion of each fault into the motor is very different: For the undervoltage and
unbalance faults, a variable transformer is used to regulate the input voltages to the motor.
For the open phase, the motor is disconnected from one of the three phases during operation.
The stator winding is short-circuited by stripping the insulation from two adjacent windings
and pressing the resulting contacts directly against each other. For the broken rotor bar, a
hole is drilled in the cage bar. Bearing faults in the outer and inner ring are caused by laser
cutting. In the case of a global bearing fault, grit is inserted into the bearing (grit size: 0.05 mm,
amount: 0.25 g) , which is equivalent to heavy contamination or poor lubrication.
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Table 2. List of inserted fault cases on the examined induction motor with 150 samples each with a
length of 0.2 s for the validation of the neural network for fault detection.

Motor State Number of Samples

Healthy state 150
Undervoltage 150

Unsymmetrical Voltage 150
Open phase 150
Broken bar 150

Winding short circuit 150
Mixed eccentricity 150

Bearing—Outer ring fault 150
Bearing—Innen ring fault 150

Bearing—Global fault 150

5. Experimental Results

5.1. Parameter Identification

The fingerprint measurement of the voltages and stator currents is used as the basis for
the parameter identification. The speed of the rotor (ω = 153.12 rad/s) is determined from the
frequency spectrum of the stator current, and the load torque (TL = 7.13 Nm) is estimated using
the stator currents iS and the voltages US together with the efficiency η from the nameplate. The
measured values for the inputs and outputs of the model are thus fully available. Of the required
parameters, the length of the motor (l = 0.11 m) and the radius of the stator core (r = 0.04 m)
are already known. The number of cage bars (NR = 28) is also determined from the frequency
spectrum of the stator currents. For the winding distribution in the stator, a single-layer winding
with a total of 36 slots (3 slots per phase and pole pair) is assumed. If this assumption is wrong,
it is compensated by adjusting the remaining parameters accordingly. The required parameters
are shown in Table 3 together with the estimated search space.

Table 3. Required parameters for the modeling of the examined induction motor with lower and
upper limit of the search space (source of limits: power of considered machine) as well as the value
identified via the differential evolution algorithm.

Parameter Lower Limit Value Upper Limit Unit

Air gap thickness g 10−4 1.68 × 10−4 10−2 m
Number of stator windings per slot wS 101 48 103 -
Moment of inertia J 10−3 6.27 × 10−3 10−1 kg m2

Stator Resistance RS 100 5.25 102 Ω
Stator leakage inductance LS 10−2 1.29 × 10−1 100 H
Cage bar resistance Rb 10−5 3.27 × 10−5 10−3 Ω
Cage bar leakage inductance Lb 10−8 9.44 × 10−7 10−6 H
End ring segment resistance Re 10−5 2.90 × 10−5 10−3 Ω
End ring segment leakage inductance Le 10−9 3.45 × 10−9 10−7 H

For the hyperparameters of the differential evolution algorithm, default values are
chosen so that the difference weight is F = 0.95, and the crossover probability is CR = 0.7.
The population size NP and the number of iterations are both set to 50. The parameter
values identified with the algorithm are listed in Table 3. The simulated stator currents
with the parameterized model are compared to the real stator currents at the frequency
level in Figure 8. The agreement in the basic appearance is very high; yet certain deviations
can be seen. These primarily affect the harmonics of the fundamental frequency. Especially
the third harmonic, which is influenced by the saturation behavior of the motor, cannot be
reproduced with the linear multiple coupled circuit modeling.
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Figure 8. Comparison of the frequency spectra for one of the three stator currents from the fingerprint
measurement and the simulation with the parameterized model: (a) complete frequency spectrum;
(b) zoom of the frequency spectrum into the significant range (0 to 1000 Hz).

5.2. Fault Detection

Using the parameterized modeling, 300 samples with a length of 0.2 s are generated
for each of the 10 motor states shown in Table 2. Different fault severities are simulated
depending on the fault case. In addition, the input voltage to the modeling is varied
randomly in the range of ±4 V of the measured voltage. In the next step, data preprocessing
is performed. The stator currents are transformed into the frequency domain by a fast
Fourier transform and then clipped to the range between 0 and 1000 Hz. In the final step,
normalization is performed by subtracting the average of the simulated healthy states from
the entire data set.

The preprocessed, simulated data set with 300 samples per state is then used to train a
neural network with the highest possible generalization. The inputs to the neural network are
the preprocessed frequency spectra of the three stator currents (see Figure 7), and the outputs
are the probabilities for each of the ten fault types. The goal of the training process is to keep the
loss of the test data lower than the loss of the training data. This is accomplished by manually
tuning the hyperparameters of the neural network. The final hyperparameters are summarized
in Table 4. For the training data (loss = 1.1458, accuracy = 92.7%) and the test data (loss = 1.1455,
accuracy = 93.3%), the confusion matrices are obtained from Figure 9.
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Table 4. Tuned hyperparameters of the neural network with high generalization.

Hyperparameter Values

Hidden layers 3
Number of neurons [100, 50, 25]

Learning rate 0.001
Dropout 0.25

L1 regularization 0
L2 regularization 0.2

Batch size 32
Epochs 150

Figure 9. Confusion matrix with results of accuracy for each fault case for the training data (a) and
test data (b). 0: healthy state; 1: undervoltage; 2: unsymmetrical voltage; 3: open phase; 4: broken bar;
5: winding short circuit; 6: mixed eccentricity; 7: bearing—outer ring fault; 8: bearing—inner ring
fault; 9: bearing—global fault.

It can be seen that most faults can be classified with an accuracy of almost 100%. How-
ever, the neural network has difficulty in distinguishing between the cases of healthy state,
broken bar, mixed eccentricity, and global bearing fault. This is due to their high similarity
and the small deviation of these faults from the healthy state. In addition, the characteristics
of these fault cases are highly dependent on the values of the identified parameters, such
as the air gap thickness, the moment of inertia and the electrical and magnetic quantities.
To overcome this problem, the parameter identification and data set creation are performed
several times. This has the advantage that different sets of parameters are identified, pre-
venting the neural network from focusing on the characteristics of a single set of parameter
values. In addition, the repeated parameter identification multiplies the overall size of
the data set. The neural network is trained again with a data set simulated on the basis
of 10 different parameter sets (3000 samples per state in total), overcoming the previous
problems. The corresponding confusion matrices in Figure 10 show that all fault cases can
now be classified with an accuracy of over 90% (overall accuracy for training data: 96.9%,
for test data: 96.6%).

To verify the trained neural network, the same preprocessing is applied to the mea-
sured validation data. The only difference is that the normalization of the data set is now
accomplished by a subtraction based on the fingerprint measurement. When the neural
network is applied to the validation data, the results turn out differently depending on
the fault case as can be seen on the left confusion matrix in Figure 11. It is not possible
to detect the three types of bearing faults. They are classified as healthy state. This is
due to the fact that the measured deviations of the bearing faults from the healthy state
are marginal, and furthermore, the fault features cannot be suitably represented by the
modeling. The classification of the remaining fault cases works very well with an overall
detection rate of 97.14%. Training the neural network without the bearing faults in the
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data set also produces a very high accuracy with 94.81% on the validation data (see right
confusion matrix in Figure 11).

Figure 10. Confusion matrix with results of accuracy for each fault case for the training data (a) and
test data (b) with 10 different parameter sets. 0: healthy state; 1: undervoltage; 2: unsymmetrical
voltage; 3: open phase; 4: broken bar; 5: winding short circuit; 6: mixed eccentricity; 7: bearing—outer
ring fault; 8: bearing—inner ring fault; 9: bearing—global fault.

Figure 11. Confusion matrix with results of accuracy for each fault case for the validation data (a) and
validation data without bearing faults (training data also without bearing faults) (b). 0: Healthy state;
1: undervoltage; 2: unsymmetrical voltage; 3: open phase; 4: broken bar; 5: winding short circuit; 6: mixed
eccentricity; 7: bearing—outer ring fault; 8: bearing—inner ring fault; 9: bearing—global fault.

6. Conclusions

The presented framework enables early detection of fault conditions in squirrel cage
induction motors while providing a high degree of practicability. The contribution of this
paper is a fault detection method for industrial applications with little prior knowledge of
the motor and low measurement effort. By combining analytical modeling with parameter
identification based on easily obtained data, the behavior of the monitored motor can be
well reproduced. The data set simulated by the modeling enables a neural network to
learn the characteristics of stator, rotor, mechanical, and voltage supply faults and to detect
them in real measured data. This demonstrates that the transfer of the simulated fault
characteristics to real fault cases is possible with the help of machine learning. A drawback
is that bearing faults are not detected. Furthermore, the severity of the faults cannot be
determined since only the major qualitative deviations have been examined so far.

The presented method combines the strengths of different approaches and mitigates
their disadvantages. The prior knowledge about the effects of the fault cases is already
included in the modeling and can be applied to the respective motor by means of the
parameter identification. Thus, no costly measurements are required to train a neural
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network, but only the simulation of different fault cases to generate a sufficiently large
data set. Possible inaccuracies of the modeling are concealed by the neural network by
learning the qualitative characteristics of the fault cases. Therefore, an exact quantitative
accuracy of the model is not necessary. These aspects clearly distinguish the presented
method from pure model-, signal- or data-based approaches. Another unique point is the
high practicability of the framework since the parameter identification with the differential
evolution algorithm can be performed based on easily obtained measurement data and
information from the nameplate.

Furthermore, the method offers a high degree of flexibility. On the one hand, this
applies to parameter identification, where the desired parameters can be selected depending
on the application. On the other hand, the modeling itself is also flexible so that for other
machine types, such as doubly-fed induction generators or synchronous motors with
permanent magnets, the model can be adapted accordingly, and the method can still be
carried out. Thus, the presented approach offers high transferability to different motor
types and applications.

Further work will apply more sophisticated machine learning methods to improve the
detection accuracy. This should also strengthen the robustness and generalization for the
transferability of the fault characteristics from the simulated data to real data. Additionally,
a method for the independent detection of bearing faults based on acoustic or vibration
data will be developed. In combination with the presented framework, this should cover
the detection of several possible fault cases for squirrel cage induction motors.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Autoencoder
AI Artificial Intelligence
ANN Artificial neural network
CNN Convolutional neural network
DBN Deep belief network
DE Differential evolution algorithm
DWT Discrete wavelet transform
FEM Finite element method
FFNN Feedforward neural network
FFT Fast Fourier transform
HHT Hilbert–Huang transform
kNN k-Nearest Neighbors
MCSA Motor current signature analysis
ML Machine learning
MSE Mean squared error
MWFM Modified winding function method
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PSH Principal slot harmonics
RNN Recurrent Neural Network
SVM Support vector machine
WFM Winding function method
WVD Wigner-Ville distribution
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Abstract: In this paper, a fault-tolerant three-phase induction drive based on field-oriented control is
studied, and an analytical approach is proposed to elucidate the limitations of FOC in flux-torque
regulation from the controller perspective. With an open-phase fault, the disturbance terms appear
in the controller reference frame and degrade the controller performance when operating in a d-q
plane with DC quantities. In addition, the hardware reconfiguration, which is essential to operate
faulted three-phase drives, causes substantial change in the way the control parameters vd, vq are
reflected onto the machine terminals. An accurate understanding of the feedforward term, by
considering the open-phase fault and the hardware modifications, is provided to re-enable the FOC
in presence of an open-phase fault. Furthermore, the concept of feedforward term derivation is
generically extended to cover multiphase induction drives encountering an open-phase fault whereby
no hardware reconfiguration is intended. The proposed method is explained based on a symmetrical
six-phase induction and can be extended to drives with a higher number of phases. The effectiveness
of the proposed derivation method, which is required to form a feedforward fault-tolerant controller,
is verified and compared through the simulation and experiment, ensuring smooth operation in
postfault mode.

Keywords: induction motors; fault-tolerant control; AC machines; back EMF; feedforward compen-
sation

1. Introduction

Adjustable speed AC motor drives are, in general, susceptible to failure, especially in
the power section where the stress is on the power switches and/or motor windings [1,2].
Since the failure might cause the whole drive to shut down, reliability is a key feature in
applications in which a failure can cause safety issues. For example, fault-tolerant control
of three-phase adjustable speed drives in automotive applications has recently attracted
significant attention [3–6]. Thus, the need for an effective fault-tolerant method that can be
embedded into the existing motor drives is practically favorable.

Since a three-phase machine with wye-connected stator winding will be effectively
reduced to a “single-phase machine” under an OPF, topological reconfiguration is necessary
for three-phase fault-tolerant drives to retain two degrees of freedom. In the literature, there
are several feasible topologies used to reconfigure the three-phase AC drives [7–10]. Among
these topologies, the majority of fault-tolerant three-phase drives utilize an additional
inverter leg connected to the neutral point of the three-phase machine [11–14] as shown in
Figure 1. Unless otherwise stated, this is considered the standard topology for fault-tolerant
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77



Energies 2023, 16, 51

three-phase drive hereafter [1,11,15]. This is to allow neutral current to return back to
dc-link.

Figure 1. Fault-tolerant AC drive with (3 + 1) leg inverter and switches to emulate the open phase
fault and reconfiguration. The signals fa, fb, and fc are designed to emulate OPF on phase a, b, or c.

For multiphase (more than three phases) machines, however, the higher DOF allows
the drive system to be inherently fault-tolerant towards OPF without the need for any
hardware reconfiguration, as long as there are still three or more phases intact. Due to
this higher fault tolerance, multiphase machines are often favored over their three-phase
counterparts as fault-tolerant drives [16–19]. Regardless of the number of phases, OPFs
always result in the loss of DOF in a drive and degrade the control performance if no
mitigation measures are taken. In light of this, various fault-tolerant control techniques
have been proposed in the past.

The mathematical model of the machine under OPF with a reduced order transfor-
mation matrix is attempted in [14,20–23]. It takes into account the reduced DOF and the
unbalanced condition of the machine. While these methods were shown to be robust to
machine parameter detuning, the re-derivation of machine models and reduced order
transformation matrices are mathematically complex and unique for specific faults.

Alternatively, the original machine model and transformation can be maintained, and
therefore, the effect of fault on the machine must be compensated by modifying the con-
troller to handle double frequency in a d-q plane. For fault-tolerant three-phase drive, [13,24]
demonstrated that the OPF gives rise to a negative sequence component and a negative se-
quence controller is needed to retain the current control performance in a positive sequence.
For multiphase machines, analysis using the vector space decomposition method shows
that OPFs create coupling between the torque-producing current components that are
otherwise decoupled under healthy conditions [25,26]. The non-flux-and-torque-producing
current components, also known as the x-y currents, are proportionally regulated to achieve
fault tolerance [25,27]. These studies, for both three-phase and multiphase machines, uti-
lize closed-loop feedback control methods where the unwanted current components are
controlled using designated feedback current loop. However, as with any feedback control
method, the dynamic performance during the transient will depend on the tuning of the
controllers’ parameters.

More recently, several research studies have highlighted the superiority of the feed-
forward compensation method being combined with a resonant controller for three-phase
and six-phase drives [24,28]. The sensitivity of stator resistance to temperate, hence the
inaccuracy of the feedforward term, is stated to be the main motivation for introducing an
additional current controller to control the neutral current. However, this is not the only
solution as the feedforward terms derived in the [11,12,29] are irrespective of stator resis-
tance, which makes it robust against temperature variations. An accurate compensation
term injected in a feedforward manner is shown to be effective for PMSM drives [11,12].
Similarly, for three-phase induction motors, feedforward compensation methods were
introduced in [30,31] using the zero-sequence component.

Despite the documented research in the area of feedforward compensation methods
for fault-tolerant induction motor drives, the following research questions still remain
unaddressed:
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1. How the concept of feedforward compensation can be realized from a control per-
spective in the context of FOC-driven AC drives?

2. How the feedforward compensation technique developed for three-phase machines
can be extended for multiphase machines?

This paper is an extended version of the primary work presented in [29] to address the
highlighted research questions. It expands the preliminary investigation on feedforward
derivation and compensation techniques and the main contributions of this study are
as follows:

1. An accurate feedforward compensation method based on FOC control and the open-
phase fault is systematically derived that can be readily integrated into any three-
phase AC drive with minimal modifications to the FOC controller. Furthermore,
the stationary reference frame is used to apply the feedforward compensation as it
simplifies the derivation complexities without any compromise in effectiveness.

2. The concept of feedforward term derivation is generically extended to a six-phase
drive where the back EMF term is still the dominant part of the feedforward term but
injected into a different plane to retain the control of the machine.

The organization of this paper is as follows. Section 2 discusses the fault tolerant
control of a three-phase induction machine in both stationary and rotation reference frames,
where the impacts of OPF on the mapping of the controlled variables to the machine
variables are elucidated. In Section 3, the discussion is extended to a multiphase machine
using a symmetrical six-phase machine as an example. Section 4 shows the experimental
results, where the performances of the proposed feedforward compensation methods are
verified using lab-scale three-phase and symmetrical six-phase induction machines. Finally,
conclusions are given in Section 5.

2. Fault-Tolerant Control of Three-Phase Induction Machines

2.1. Mathematical Model of Three-Phase IM under RFOC

The dynamic model of the induction machine is usually given in the SRF d-q vari-
ables (and zero-sequence variable), which can be obtained from the phase variables using
magnitude-invariant Clarke–Park transformation [32] as shown in (1):

T3 =
2
3

⎡⎣ cos(ωt) cos(ωt − δ) cos(ωt + δ)
− sin(ωt) − sin(ωt − δ) − sin(ωt + δ)

0.5 0.5 0.5

⎤⎦ (1)

where ω is the synchronous frequency of the machine and δ is the displacement factor of
2π/3 a three-phase machine.

Based on the RFOC approach, the dynamic behavior of the induction machine can be
expressed in terms of the stator voltage equations as follows:⎡⎣vds

vqs
v0s

⎤⎦ =

⎡⎣Rs + σLsρ −ωσLs 0
ωσLs Rs + σLsρ 0

0 0 Rs0 + L0ρ

⎤⎦ ·
⎡⎣ids

iqs
i0s

⎤⎦+

⎡⎢⎣ω Lm
Lr

ρ

ω Lm
Lr

0

⎤⎥⎦ · ψdr (2)

where Rs, Rs0, Lm, Lr, L0, and σ are the stator resistance in the SRF plane, zero sequence
resistance, magnetizing inductance, rotor self-inductance, zero sequence inductance and
leakage factor of the induction machine, respectively. The leakage factor is defined to be σ
= 1 − (Lm

2/Ls Lr). The synchronous angular speed of the machine in the electrical domain
and rotor flux is denoted by ω and ψdr, respectively, where the symbol ρ represents the
time-derivative of the variable. The rotor flux under RFOC is controlled directly by ids,
known as flux current, to form a first-order system as

ψdr =
Lmids

1 + τrρ
(3)
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with the rotor time constant τr being the ration of rotor self-inductance over the rotor
resistance Rr.

2.2. Relation between Control Variables and Machine Variables
2.2.1. Healthy Operation

A typical three-phase induction motor drive system connected in a wye configuration
and controlled under RFOC is depicted in Figure 2a. The main components of the drive
are given in separate modules to elucidate how the control variables would be eventually
mapped onto the machine under the healthy and postfault configuration.

 
(a) 

 
(b) 

Figure 2. Three-phase induction motor drive with RFOC controller: (a) Typical topology for healthy
operation, (b) Reconfigurable fault-tolerant topology with fault emulation signals fn (n: a, b, c).

Starting with the machine on the rightmost part of Figure 2a, the phase windings
are supplied through the leg voltage of the inverter VA, VB, and VC. This configuration
explicitly implies that the motor phase voltages van, vbn, and vcn are indirectly defined by
the leg voltages of the inverter, as detailed in (4).⎡⎣van

vbn
vcn

⎤⎦ =
2
3

⎡⎣ 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

⎤⎦⎡⎣VA
VB
VC

⎤⎦ (4)

The relation in (4) is valid for a balanced motor with all phases having equal impedance,
which is the case for a healthy drive.

On the inverter block, the carrier-based PWM helps to form a voltage amplifier with a
fixed gain of K = Vdc/2 that converts the modulating signals va*, vb*, and vc* to leg voltages.
The lumped transfer function of the inverter together with Sine PWM is given in a matrix
in (5), assuming that inverter non-idealities are negligible, and no homopolar voltage is
being injected. ⎡⎣VA

VB
VC

⎤⎦ =

⎡⎣K 0 0
0 K 0
0 0 K

⎤⎦⎡⎣v∗a
v∗b
v∗c

⎤⎦ (5)

One step before PWM, the control variables vd*, vq*, and v0* are basically transformed
into modulating signals by applying the inverse Clarke–Park transformation given in (1).⎡⎣v∗a

v∗b
v∗c

⎤⎦ = T−1
3

⎡⎣v∗d
v∗q
v∗0

⎤⎦ (6)
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By substituting (6) into (5) and (5) into (4), the relation between the control variable
vd* and vq* and phase voltages received by the machine in matrix form is obtained to be as
follow. ⎡⎣van

vbn
vcn

⎤⎦ = K

⎡⎣ cos(ωt) − sin(ωt) 0
cos(ωt − δ) − sin(ωt − δ) 0
cos(ωt + δ) − sin(ωt + δ) 0

⎤⎦⎡⎣v∗d
v∗q
v∗0

⎤⎦ (7)

By applying (1) to both side of (7), the machine phase voltages would also be trans-
formed into d-q-0 space, bringing everything to the same page (d-q-0), as stated in (8).⎡⎣vds

vqs
v0s

⎤⎦ = K

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦⎡⎣v∗d
v∗q
v∗0

⎤⎦ (8)

The terms vds, vqs, and v0s in (8) are in fact the transformed version of the stator phase
voltages that correspond to the machine model in (2).

Accordingly, a couple of notable conclusions can be made from (8) which are valid for
any wye connected three-phase AC drive, under healthy operation as:

C1: The voltage received by the motor in the synchronous frame (vds and vqs) are directly
proportional to the control variables (vd* and vq*) by a fixed gain of K. This unique property
of healthy drive allows current controllers (such as PI controllers) in the SRF to control the
flux and torque currents effectively;
C2: The zero-sequence voltage v0s reached to the machine winding is not linked to v0* of
the controller, making it decoupled from control variables (vd* and vq*).

2.2.2. Postfault Operation for Three-Phase Induction Motor Drive

Upon generation of fault flag fn (n: a, b, c) in Figure 2b for the postfault topology, the
following modifications are applied [11,13] to provide a path for neutral current to flow
back to the dc-link:

m1: the fourth leg is clamped to the motor neutral point (according to hardware reconfigu-
ration block in Figure 2b);
m2: the modulating signal of the faulted leg is switched over to the fourth leg (according to
software reconfiguration block in Figure 2b).

To facilitate a quick transition to postfault operation for three-phase wye-connected
drives, the fault must be detected in the first place, followed by hardware and software
reconfigurations. However, fault detection is beyond the scope of this study, and the fault
flag is created manually.

For the sake of simplicity, the fault and reconfigurations are simultaneously emulated
by activating the corresponding fault signal, based on what has been shown in Figure 2b
with red lines. Therefore, the relation stated in (8) needs to be re-examined, as the topology
of the drive has been modified.

Assuming an OPF in phase a, i.e., by activation of fa, the motor phase voltages in terms
of leg voltage in postfault mode should be redefined as follow.⎡⎣van

vbn
vcn

⎤⎦ =

⎡⎣ 0 0 0
−1 1 0
−1 0 1

⎤⎦⎡⎣VN
VB
VC

⎤⎦+

⎡⎣Ea
0
0

⎤⎦ (9)

where Ea is the back EMF voltage on the faulted phase and VN is the leg voltage of the
fourth leg. This induced voltage is basically due to the existence of rotating MMF in the
machine. Since the motor phase a is disconnected from an inverter, the back EMF voltage Ea
is no longer directly controllable by any inverter leg voltage, and therefore, is represented
in a separate matrix in (9).
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Once the modification m2 is executed, the active inverter leg voltages as a function of
modulating signals would be the same as (5), with VA being substituted with VN.⎡⎣VN

VB
VC

⎤⎦ =

⎡⎣K 0 0
0 K 0
0 0 K

⎤⎦⎡⎣v∗a
v∗b
v∗c

⎤⎦ (10)

Taking the same step as in (6) the relation between the control variables and phase
voltage on the motor is obtained and stated in (11).⎡⎣van

vbn
vcn

⎤⎦ =
√

3K

⎡⎣ 0 0 0
cos(θ1) − sin(θ1) 0
cos(θ2) − sin(θ2) 0

⎤⎦⎡⎣v∗d
v∗q
v∗0

⎤⎦+

⎡⎣Ea
0
0

⎤⎦
θ1 = ωt − δ − π

6 , θ2 = ωt + δ + π
6

(11)

One step further, by applying the Clarke–Park transformation in (1) onto both sides
of (11), the voltage relation in d-q-0 space after reconfiguration is found to be as follows:⎡⎣vds

vqs
v0s

⎤⎦ = K

⎡⎣ 1 0 0
0 1 0

− cos(ωt) sin(ωt) 0

⎤⎦⎡⎣v∗d
v∗q
v∗0

⎤⎦+
1
3

⎡⎣ 2Ea cos(ωt)
−2Ea sin(ωt)

Ea

⎤⎦ (12)

which is no longer the same as the healthy case stated in (8).
Equation (12) reveals that there exists a substantial double frequency AC disturbance

on the machine winding in the d-q plane, whereas it is supposed to have all quantities in
DC. The reconfigured drive, along with modifications m1 and m2, leads to the following
observations:

Observation 1. The OPF together with reconfiguration introduces double-frequency AC distur-
bance terms appearing on the d-q plane with the magnitude being proportional to the back EMF of
the faulted phase.

Observation 2. The zero-sequence circuit of the motor is excited through the d-q voltages of the
controller (vd* and vq*), and therefore, the machine voltages on the d-q-0 plane are now coupled
under OPF.

Observation 3. The zero-sequence reference voltage on the controller side, v0*, still has no impact
on either the zero sequence or the d-q components of the machine. Therefore, it can be ignored.

As with the case of faulted PMSM discussed in [11], issue X1 is the main cause of
control performance degradation in faulted three-phase induction drive even after converter
reconfiguration. When PI controllers are used, the AC disturbance voltages disrupt the
regulation of the d-q currents, due to the inability of PI controllers to completely suppress
AC signals.

2.3. Feedforward Compensation for Fault-Tolerant Three-Phase Induction Motor Drive

From (12), it can be observed that by compensating the disturbance terms appearing
on the right-hand side of the equation, one-to-one mapping of d-q voltages between the
controller and the machine voltages will be restored. This can be done by calculating the
terms and subtracting them from the control variables in the d-q plane in a feedforward
manner, in a similar way as in [11].

vd_ f f =
−2
3K

Ea cos(ωt) , vq_ f f =
2

3K
Ea sin(ωt) (13)
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Alternatively, if the inverse Park transformation is applied to (12), the relation between
controller and machine variables in the stationary reference frame (α-β-0) can be simplified
as follows. ⎡⎣vαs

vβs
v0s

⎤⎦ = K

⎡⎣ 1 0 0
0 1 0
−1 0 0

⎤⎦⎡⎣v∗α
v∗β
v∗0

⎤⎦+
1
3

⎡⎣2Ea
0
Ea

⎤⎦ (14)

In this form, the disturbance terms need to be compensated in the α-β plane, as stated
in (15).

vα_ f f =
−2
3K

Ea , vβ_ f f = 0 (15)

Once the feedforward terms are added according to Figure 3, the AC disturbance
terms in (12) or (14) would disappear such that;

i. The C1 would hold true, and therefore, the RFOC would take over the control of the
machine, just like the healthy drive, and

ii. Unlike the healthy drive, there would be a non-zero voltage v0s appearing on the
zero-sequence circuit of the machine that is a function of control variables.

 
Figure 3. The two alternative planes for the injection of feedforward term(s) for three-phase IM drive.

After adding the feedforward term stated in (13) or (15), the zero-sequence voltage in
postfault mode according to (12) or (14) would become

v0s = −Kv∗d cos(ωt) + Kv∗q sin(ωt) + Ea = −Kv∗α + Ea (16)

This should be in agreement with the machine equations given in (2) at steady state.
Since C1 is valid after feedforward injection (i.e., Kvd* = vds, and Kvq* = vqs), the back

EMF voltage Ea can be calculated by revisiting machine equations so that (16) would
become

Rs0i0s + L0ρi0s = −(
Rsids − ωσLsiqs

)
cos(ωt)+(

Rsiqs + ωσLsids + ωLmψdr/Lr
)

sin(ωt) + Ea
(17)

where the current relation in postfault mode is

i0s = −id cos(ωt) + iq sin(ωt) = −iα (18)

Finally, by substituting (18) into (17) and neglecting the resistive terms, the steady
state representation of back EMF voltage Ea is found to be as follows.

Ea = −ω
[
((σLs − L0)ids + ψdrLm/Lr) sin(ωt) + (σLs − L0)iqs cos(ωt)

]
(19)

Considering the feedforward terms obtained from (13) and (19), it is made clear that the
back EMF voltage in (19), hence the feedforward term (13), is irrespective of stator resistance
value. This important relation explicitly rules out the dependency of this feedforward
compensation method on the machine temperature. Furthermore, a general analogy
between the two types of machines, i.e., induction machine and PMSM, can be established.
Due to the absence of saliency in the rotor structure of the IM, the σLs in IM are found to be
equivalent to Ld and Lq of the PMSM. Likewise, the equivalent term corresponding to the
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permanent magnet flux (λpm) of PMSM is found to be ψdr*Lm/Lr. This agreement suggests
a further extension of the discussion to be detailed on the multiphase drives.

3. Fault-Tolerant Control of Six-Phase Induction Machines

3.1. Six-Phase Induction Machine Model under Rotor Field Oriented Control (RFOC)

For multiphase machines, analysis is usually performed based on the Vector Space
Decomposition (VSD) model [33], where the machine variables can be decoupled into flux-
and-torque producing α-β components, non-flux-and-torque producing x-y components
and zero sequence 01-02 components. The concept of VSD transformation for multiphase
machines with different phase numbers has been well-addressed in the literature on mul-
tiphase machines [26,34,35] and hence not dealt with further in this paper for brevity. To
facilitate the subsequent discussion, a symmetrical six-phase induction machine with is
used as a case study to represent a multiphase induction machine. The VSD model for a
symmetrical six-phase induction machine controlled using RFOC is given in (20).

⎡⎢⎢⎢⎢⎢⎢⎣

vds
vqs
vxs
vys
v01
v02

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

Rs + σLsρ −ωσLs 0 0 0 0
ωσLs Rs + σLsρ 0 0 0 0

0 0 Rsxy + Lxyρ 0 0 0
0 0 0 Rsxy + Lxyρ 0 0
0 0 0 0 Rs0 + L0ρ 0

0 0 0 0 Rs0 + L0ρ

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣

ids
iqs
ixs
iys
i01
i02

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω Lm
Lr

ρ

ω Lm
Lr

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
· ψdr (20)

By using rotational transformation, the α-β subspace can be rotated to form the syn-
chronous d-q subspace, where the control of the machine in RFOC will be identical to that
of a three-phase machine. Therefore, the rotor flux of a six-phase machine under RFOC is
obtained in the same way as (3).

However, the x-y and 01-02 planes remain in a stationary reference frame as they are
represented by a simple R-L circuit with no coupling to the rotor flux and do not contribute
to flux-and-torque production.

3.2. Relation between Controller and Machine Variables
3.2.1. Healthy Operation

For a six-leg inverter driving a six-phase machine with star-connected stator winding
and two isolated neutral, as shown in Figure 4, the motor phase voltages are a function of
the inverter leg voltages as follows:⎡⎢⎢⎢⎢⎢⎢⎣

va1n1
vb1n1
vc1n1
va2n2
vb2n2
vc2n2

⎤⎥⎥⎥⎥⎥⎥⎦ =
1
3

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

VA1
VB1
VC1
VA2
VB2
VC2

⎤⎥⎥⎥⎥⎥⎥⎦ (21)

where the leg voltages of (21) are determined through six modulating signals, as per
Figure 4, in a similar condition as the three-phase case explained in (5).

[VA1 VB1 VC1 VA2 VB2 VC2]
T = K[v∗a1 v∗b1 v∗c1 v∗a2 v∗b2 v∗c2]

T (22)

The modulating signals for the six-phase machine can be obtained by transforming
the control variables using the extended inverse Clarke transformation (for symmetrical
six-phase) as follow.
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⎡⎢⎢⎢⎢⎢⎢⎣

v∗a1
v∗b1
v∗c1
v∗a2
v∗b2
v∗c2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1.4142 0
−0.5 0.866 −0.5 −0.866 1.4142 0
−0.5 −0.866 −0.5 0.866 1.4142 0
0.5 0.866 −0.5 0.866 0 1.4142
−1 0 1 0 0 1.4142
0.5 −0.866 −0.5 −0.866 0 1.4142

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v∗α
v∗β
v∗x
v∗y
v∗01
v∗02

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(23)

Finally, by substituting (23) into (21)–(22) and applying extended Clarke transforma-
tion, the voltage relation in healthy operation arrives at (24) as follows.⎡⎢⎢⎢⎢⎢⎢⎣

vαs
vβs
vxs
vys
v01s
v02s

⎤⎥⎥⎥⎥⎥⎥⎦ = K

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v∗α
v∗β
v∗x
v∗y
v∗01
v∗02

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(24)

The relation between control variables and machine voltages for a symmetrical six-
phase machine in (24) is harmonious to (8) whereby the α-β components, corresponding
to a d-q plane, are directly controllable, as well as x-y components. Moreover, the v01s and
v02s are still uncontrollable and isolated from one another since the machine is configured
with two isolated neutrals. Till this point, the conclusions C1 and C2 are also valid for (24),
however, the postfault relation is yet to be derived.

 

Figure 4. Six-phase induction motor drive (two isolated neutral) with RFOC and one reconfigurable
OPF on phase a1. The signal fa1 is to emulate the OPF.

3.2.2. Postfault Operation

By introducing an OPF, emulated by a switch being triggered via fa1 in Figure 4, phase
a1 gets disconnected. As stated earlier, the six-phase drives do not require any hardware
reconfiguration, as there exists a minimum DOF to control the machine in presence of an
OPF. Nevertheless, the OPF alters the relation between the leg voltage and phase voltage of
the machine, represented by the following matrix.⎡⎢⎢⎢⎢⎢⎢⎣

va1n1
vb1n1
vc1n1
va2n2
vb2n2
vc2n2

⎤⎥⎥⎥⎥⎥⎥⎦ =
1
3

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1.5 −1.5 0 0 0
0 −1.5 1.5 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

VA1
VB1
VC1
VA2
VB2
VC2

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣

Ea1
−0.5Ea1
−0.5Ea1

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ (25)

With the connection between phase a1 and leg VA1 being open-circuited in postfault,
the remaining phases in the a1b1c1 winding set will receive an AC term proportional to the
back EMF of this faulted phase, Ea1, as given in Equation (25). By replacing (25) with (21)
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and repeating the steps in section III-B-1, the voltage relation in postfault for a symmetrical
six-phase machine would be given as (26).⎡⎢⎢⎢⎢⎢⎢⎣

vαs
vβs
vxs
vys
v01s
v02s

⎤⎥⎥⎥⎥⎥⎥⎦ = K

⎡⎢⎢⎢⎢⎢⎢⎣

0.5 0 −0.5 0 0 0
0 1 0 0 0 0

−0.5 0 0.5 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v∗α
v∗β
v∗x
v∗y
v∗01
v∗02

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

0.5Ea1
0

0.5Ea1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ (26)

Similar to (14), OPF in a six-phase machine introduces AC disturbance in the α-axis
with the fundamental frequency. It is not hard to derive that this disturbance will appear as
double frequency AC disturbances in the d-q frame (0.5 Ea1 cos(ωt) on the d-axis, −0.5 Ea1
sin(ωt) on the q-axis), analogous to what appeared in (12), which will cause the degradation
of RFOC performance. Furthermore, (26) shows that there is a coupling between α- and
x-axes, which is similar to the coupling between α- and 0-axes for the case of the three-phase
machine in (14).

3.3. Feedforward Compensation for Fault Tolerant Six-Phase Induction Motor Drive

To cancel the disturbance due to OPF in the α-β frame, the following steps are taken:
Firstly, since the reference voltages in the α- and x-axes have opposite and equal coefficients
in (26), the reference for the x-axis is derived directly from the α-axis and set to be exactly
opposite as:

v∗x = −v∗α , v∗y = v∗β (27)

By substituting (27) into (26), the disturbance in the α-axis can be eliminated by adding
a feedforward voltage to the vα* as follows.

vα_ f f =
−Ea1

K
, vβ_ f f = 0 (28)

The implementation of (27) and (28) is illustrated in Figure 5.

va1*
vb1*
vc1*
va2*
vb2*
vc2*

6 Leg
Inverter 
    + 
PWM

VA1
VB1
VC1

vd*
vq*

xy
0102

a1b1c1
a2b2c2

Rotor
Field 

Oriented 
Control

vx*

dq
v *
v *

v01*

VA2
VB2
VC2

vy*

v02*

Figure 5. The injection of feedforward term(s) in symmetrical six-phase IM drive. The signal fa1 is to
emulate the OPF.

As with a three-phase machine, the feedforward term requires the knowledge of the
back EMF of the faulted phase. Through the application of (27) and (28), the voltage in
the x-axis applied to the machine after injection of the feedforward term in (26) would be
obtained as (29).

vxs = −Kv∗d cos(ωt) + Kv∗q sin(ωt) + Ea1 = −Kv∗α + Ea1 (29)

Using a similar approach as in the three-phase case, the back EMF voltage Ea1 needs
to be derived. The voltage in the x-axis from the machine equation in (20) needs to be
substituted into (29) to get Ea1 as follows.

Ea1 = −ω
[((

σLs − Lxy
)
ids + ψdrLm/Lr

)
sin(ωt) +

(
σLs − Lxy

)
iqs cos(ωt)

]
(30)
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Equation (30) formulates the back EMF voltage of the lost phase on S6 in terms
of the α-β parameters and operating. However, compared to three-phase IM, the zero
sequence parameters are replaced with x-y, yet independent of stator resistance value.
The effectiveness of the derived feedforward terms for symmetrical three- and six-phase
machines is verified in the following section.

4. Results and Discussion

This section demonstrates the results of an experimental test conducted for the ef-
fectiveness and robustness validation of the proposed feedforward fault-tolerant control
methodology. The experiment is performed using symmetrical three- and six-phase IM
drives with the details given in Table 1. As shown in Figure 6, the motors are mechanically
coupled with a passive load (1.8 kW PMSM feeding an adjustable resistor bank) and an
incremental encoder (resolution 5000 pulse/rev) that is used to feedback on the speed.
The phase current of the motor is measured through a six-channel current sensor (based
on LEM current transducer). The motors are powered by a six-leg custom-made 12 kW
inverter being supplied from a DC power supply (TDK Lambda GEN600-8.5). The RFOC
control is implemented on the dSPACE DS1103 digital controller with a 5 kHz switching
frequency.

Table 1. kW three-phase and 0.55 kW symmetrical six-phase induction motors.

3-Phase IM 6-Phase IM

Power 1000 W 550 W
Phase Voltage 220 V 240 V
Phase Current 2.7 A 1.45 A

Speed 2800 RPM 1390 RPM
Frequency 50 Hz 50 Hz

Magnetizing Inductance Lm 490 mH 420 mH
Stator Leakage Inductance Lls 13 mH 6 mH
Stator Leakage Inductance Lxy - 3.6 mH
Rotor Leakage Inductance Llr 13 mH 78 mH

Rotor Resistance 5.9 Ω 5.77 Ω
Flux Current, id 1.4 A 0.75 A

 

Figure 6. The experimental test rig for three-phase and six-phase induction motor drives under OPF.
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The experiment is started by running the motors in healthy operation and after a while,
a trigger signal is manually generated by the user to emulate the OPF using relay contacts.
For the case of three-phase the modifications m1 and m2, as described in Figure 2b, are
executed instantaneously together with OPF.

Figure 7 illustrates the transient section before and after OPF happening to the three-
phase IM drive described in Figure 2b whereby both m1 and m2 are executed. Being in
the postfault mode, the feedforward term shown in Figure 7b is calculated according to
(15) and injected at t = 0.2 s. The irregularity of the phase currents before injection of the
feedforward term, shown in Figure 7c, is highlighting the inability of the conventional
PI current controller even if the DOF is more than 2. This is because the PI controller in
the context of FOC is designed to handle DC quantities only. However, after t = 0.2 s the
disturbances originating from OPF are canceled out by injecting the feedforward voltage.
It eventually allows disturbance-free operation of the RFOC re-enabling the two PI current
controllers to track the set point. From 0.2 s onward in Figure 7c, the waveform of phases b
and c start to become equal in magnitude and 60 degrees apart to generate circular rotating
MMF with two windings only.

Figure 7. Postfault experimental result for the three-phase IM drive with feedforward injected at
0.2 s: (a) α-β voltage, (b) feedforward voltage, (c) phase and neutral current.

The experimental results show that feedforward injection successfully cancels out the
disturbance, and hence, enables the current controller to regulate the circular trajectory
of the α-β current, as illustrated in Figure 8a (highlighted by a circle). Unlike the healthy
operation, the Figure 8b shows the elliptical shape of reference α-β voltage that has been
supplied to the motor to have a circular trajectory of the α-β current in postfault mode.
From the perspective of a rotating reference frame, the feedforward injection eventually
blocks the severe double frequency oscillations in d-q current as well as mechanical speed,
as depicted in Figure 9. Using the same approach as the three-phase IM, the symmetrical
six-phase IM is driven in healthy mode first and one OPF is created on phase a1 by means of
relay contact. The waveform in Figure 10b shows the feedforward voltage that is obtained
using (30) and has been injected according to (28) at t = 0.2 s. Due to OPF being phase a1
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and the neutral configuration of the drive, the phase current of b1 and c1 are forced to have
equal and opposite magnitude, however, by implementing (27) together with feedforward
injection from (28) at t = 0.2 s, the phase current of the set 2 is regulated to be unequal to
restore circular current trajectory in the α-β plane, as illustrated in Figure 11a.
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Figure 8. Trajectory of the current and voltage in α-β frame. A: before injection of feedforward, B:
after injection of feedforward for three-phase IM.
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Figure 9. Postfault waveform of (a) the d-q current and (b) mechanical speed from the three-phase
IM drive before and after feedforward injection at 0.2 s.

The suppression of double frequency AC oscillations in d-q current as well as me-
chanical speed in Figure 12 confirms the effectiveness of feedforward compensation on
the S6 machine. It should be highlighted that feedforward compensation in the case of
multiphase machines helps to remove AC disturbance terms caused by OPF. However, the
speed oscillations of the symmetrical six-phase machine in Figure 12b due to one OPF are
comparably lower than the three-phase counterpart in Figure 9b. This is one of the claimed
advantages of multiphase drives in terms of fault tolerance which has been well-addressed
in the literature. On top of tolerating the OPF fault in a feedforward manner, additional
current control methods might be applied for multiphase drives to run the motor in max-
imum torque or minimum loss mode. However, this is not the case for the three-phase
drives with an OPF.
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Figure 10. Postfault experimental result for the symmetrical six-phase IM drive with feedforward
injected at 0.2 s: (a) α-β and x voltage, (b) feedforward voltage, (c) phase current of set1, (d) phase
current of set 2.
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Figure 11. Trajectory of the current and voltage in α-β frame. A: before injection of feedforward, B:
after injection of feedforward for symmetrical six-phase IM.
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Figure 12. Postfault waveform of (a) the d-q current and (b) mechanical speed from the symmetrical
six-phase IM drive before and after feedforward injection at 0.2 s.

5. Conclusions

In this paper, a generic analytical method is proposed to formulate the governing
variables of FOC-driven AC drives under healthy and faulted conditions. This method
considers the imposed and mandatory changes to the drive after OPF, if any, to specify how
the control variables would be reflected in the machine terminals. The feedforward terms
are subsequently derived based on a comparison of postfault relation to the healthy mode.
The proposed method explicitly and generically formulates the feedforward terms to cancel
out the undesired AC oscillatory terms expressed in both rotating and stationary reference
frames. The experimental results of the symmetrical three- and six-phase machines verify
the effectiveness of the proposed analytical method. Besides, the following salient findings
can be noted:

• The feedforward compensation method, previously introduced for three-phase PMSM,
has been re-derived in a generic way and applied to three-phase induction machines.

• The feedforward compensation on the stationary α-β reference frame is introduced
instead of the d-q frame to make it immune to any error due to rotational transforma-
tions.

• The concept of feedforward compensation is further extended to multiphase induction
machines, using a symmetrical six-induction machine as an example.

• It was shown that the feedforward term for a multiphase machine, like its three-
phase counterpart, is a function of the back EMF voltage of the faulted phase, and
independent of stator resistance value.

The future line of this study includes an investigation of the rapid fault detection
schemes [36] incorporating the impact of small transient oscillation and DC offset [34] to be
embedded into industrial drives, as well as commercial EVs [35,37].
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Nomenclature

AC Alternating current
DC Direct current
DOF Degrees of freedom
DSRF Double synchronous reference frame
FOC Field-oriented control
FTC Fault-tolerant control
MMF Magnetomotive Force
OPF Open-phase fault
PMSM Permanent magnet synchronous machine
RFOC Rotor field-oriented control
S6 Symmetrical six-phase
SRF Synchronous reference frame
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Abstract: This article presents an evaluation of Prony method and its implementation considerations
for motor current signal analysis diagnostics in rotor cage induction motors. The broken rotor
bar fault signature in current signals is evaluated using Prony method, where its advantages in
comparison with fast Fourier transform are presented. The broken rotor bar fault signature could
occur during the life cycle operation of induction motors, so that is why an effective early detection
estimation technique of this fault could prevent an insulation failure or heavy damage, leaving the
motor out of service. First, an overview of cage winding defects in rotor cage induction motors is
presented. Next, Prony method and its considerations for the implementation in current signature
analysis are described. Then, the performance of Prony method using numerical simulations is
evaluated. Lastly, an assessment of Prony method as a tool for current signal analysis diagnostics
is performed using a laboratory test system where real signals of an induction motor with broken
rotor bar operated with/without a variable frequency drive are analyzed. The summary results of
the estimation (amplitudes and frequencies) are presented in the results and discussion section.
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1. Introduction

Electric motors, particularly rotor cage induction motors (RCIM) are considered for
most of industry applications, because of its operation performance and low maintenance
cost. According to statistical studies performed by IEEE and Electric Power Research
Institute, a percentage of 8–9% of the total RCIM faults occur in the rotor [1], where broken
rotor bars (BRB) or cracked/broken end rings (CBER) are the most common issues in
RCIM operation. It is well-known that the cage of RCIM is made typically of aluminum
and in some cases of copper [2]. BRB or CBER will have a high probability of appearing
when, for example a RCIM is operated considering several direct-on-line (DOL) starts
in a short period of time or RCIM with high inertial loads, these conditions will put the
RCIM through an excessive centrifugal, thermal, and mechanical stress. It is important
to mention that a BRB or CBER cause a reduction in RCIM operation performance, for
example, having problems to move its load mainly due to an unbalanced flux in the rotor
causing a reduction in the output torque [3] and heavy damage to the RCIM. So, to prevent
a heavy damage situation, BRB or CBER must be detected early in a noninvasive way,
where as a part of condition monitoring of RCIM, motor current signature analysis (MCSA)
is used to determine problems such as BRB, CBER, or abnormal air gap eccentricity (AAGE)
at the rotor cage when the motor is under normal operation.

It is important that BRB or CBER are accurately detected using MCSA. However,
in some cases there exist “false positives”, which means an unnecessary shut down and
transportation to a qualified repair facility, and if the RCIM is a large machine there will
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be higher costs from loss in production and maintenance expenses than the cost of a new
motor [4]. On the other hand, if there is a “false negative” the motor will be kept in operation
and a catastrophic failure will occur if the broken rotor bar reaches the stator winding.

Recently, in the last three years, research has been going on to detect RCIM and BRB
faults in a noninvasive way and several methods and techniques have been presented in
the literature. For example in [5], an analysis using a new algorithm based on the Park’s
transformation, where the direct and quadrature current components were analyzed for
BRB fault detection and identification; in [6], finite element software is proposed to be used
to detect motor broken bar mechanical fault by detecting magnetic flux density fluctuations;
in [7], a novel methodology based on motor current signal analysis and contrast estimation
is introduced for BRB detection, where a textural feature “Contrast” commonly used for
image classification in combination with fuzzy logic classifier is proposed for BRB detection;
in [8], an intelligent multi-agentsystem (MAS) is proposed to make decisions on the fault
conditioning of a three-phase squirrel cage induction motor where also artificial intelligent
methods are used; in [9], a two-stage approach for three-phase induction motors diagnosis
based on mutual information measures of the current signals, principal component analysis,
and intelligent systems is proposed; in [10], an approach based on the analysis of the startup
transient current signal through the current signal homogeneity and the fourth central
moment (kurtosis) analysis is presented, where these features are used for training a feed-
forward, backpropagation artificial neural network used as a classifier; in [11] a scheme to
detect broken bar faults and discriminate the severity of faults under starting conditions is
presented, where a successive variable mode decomposition (SVMD) is applied to analyze
the stator starting current to extract the fault component, and the signal reconstruction is
proposed to maximize the energy of the fault component, and so the signature frequency
could be detected; in [12], an end-ring wear detection through a multicomponent approach
is researched; in [13], an estimate of the fundamental frequency component from an
optimization point of view is proposed; in [14], magnetic flux condition monitoring is
reviewed in detail, and it is focused on the diagnosis of different types of faults in the
most common rotating electric machines used in industry; in [15–19], several methods
focus on RCIM using variable frequency drives where the proposed methods have in
common start up transient analysis, and others considers bar breakage harmonics evolution
for BRB diagnostics; finally, in [20], a zero-setting protection element, which uses the
current signature method is proposed to detect broken rotor bars, where the research
has been applied in commercial protection relay equipment, and considers the use of
an alpha current signal to obtain the frequency spectrum of the signal to detect the BRB
fault signature. Nevertheless, MCSA as condition monitoring has been popular to help
diagnose RCIM problems since the 1970s and it is commonly used in online test equipment
because it only needs voltage and current probes. In online test equipment for RCIM,
the tester records voltage and current signals with a defined resolution and observation
window which is selected prior to perform a test. Data acquisition is enabled so that the
tester software can record the signals and spectral analysis using fast Fourier transform
(FFT) [21] can be performed. It should be mentioned that FFT is the widely used digital
signal processing technique for this application, where fault signature frequencies can be
detected, and a diagnostic can be issued [22]. However, FFT has some limitations that
could lead to misdiagnosis of BRB: If the tester user performs the measurement without
knowing in detail the different conditions or situations in which a misdiagnosis of BRB
can occur, for these scenarios if a load variation during the acquisition of signals occur,
if the machine is under low load conditions, or if a short sampling time or length of the
recorded signal is not adequate (too short) the spectral analysis of the measured signal will
estimate frequencies that are not really there, or simply the BRB fault signature frequencies
will not be detected [23]. This is why it is important to mention that knowing how the
data acquisition and recording is performed in order to find the limitations is highly
recommended, for the main purpose of being able to have an accurate diagnosis, whether
there is a BRB fault or not. The reader should know that rotor cage faults such as BRB or
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CBER produce a magnetic asymmetry in the air gap, and the asymmetry will be adding
specific frequencies which are close to the fundamental frequency that will be appearing at
motor line current measurement.

Different techniques for BRB detection have been studied in the last 10 years, for
example [5–19,23–28], where some of these techniques require fixed observation windows
and others considers recursive algorithms, artificially intelligent methods, startup transient
analysis, and new developed transforms such as the dragon transform, these techniques that
were studied and proposed for BRB fault signature detection have one point in common,
which is the complexity of the practical implementation due to its considerations and
calculations, nevertheless, none of these techniques are used nowadays in commercial
online test diagnostics (OTD) equipment, the estimation technique used is a FFT-based tool
which has its estimation limitations. To overcome the limitations of the FFT-based tool, in
this work, the parametric estimation technique Prony method has been proposed as a BRB
detection technique to increase the accuracy of the detection of rotor cage fault signature
frequencies, particularly BRB sideband frequencies. In the recent years, only five articles
have considered the Prony method for BRB fault detection [29–33]. For example, [29]
considered using the Prony method to estimate frequency and amplitudes of a signal under
analysis using different windows length of recorded data samples. [30] proposed the use
of Prony method with other technique, such as Hilbert transform and discrete wavelet
transform. In [31], the Prony method was used to evaluate different load conditions at a
defined sampling frequency. [32] proposed the use of Prony method in combination with
singular value decomposition (SVD) filtering technique and Multiple Signal Classification
(MUSIC). [33] proposed the use of a modified Prony method in combination with MUSIC
algorithm. In [29,31], the Prony method is used for BRB diagnosis and an analysis of
different lengths of data at different load conditions is presented, however, no analysis
and validation considering VFD is reported which is a common industry application.
In this work, in order to fulfill the application considerations and validation that where
not considered in the mentioned references, relevant and application details described in
Sections 3 and 4 are presented, where also VFD operation at different speeds for full load
condition is evaluated to guarantee an accurate detection of BRB and a diagnosis of the
cage of the rotor can be accurately determined.

In this investigation, numerical simulated signal and a laboratory test system with a
faulted RCIM being operated and controlled by a VFD under different speed conditions is
considered for the validation of the method for its practical application for detection of cage
rotor faults, and a comparison with FFT analysis is also considered to show the limitations
of using FFT for this particular application. In this approach, the considerations required
for the application of Prony method for an accurate detection of cage rotor fault signature
frequencies and its magnitudes are described. First, a fixed window of data samples
is defined. Then, the signal under analysis is digitally processed and downsampled.
Moreover, a low pass and DC filter is applied to the downsampled signal, where the
processed output signal is the input signal for Prony method estimation algorithm. The
purpose of subsampling is to reduce the computational calculation of the algorithm, because
commercial equipment for OTD considers a defined high sampling frequency, which is not
needed to estimate the low frequencies related with the rotor fault; also a low pass and
DC filter stage is needed to eliminate undesired frequencies in the signal, and to reduce
the noise of the signal to the minimum, so an accurate estimate of the amplitudes and
frequencies of the BRB signature components can be achieved.

The paper is organized as follows. First, an overview of diagnostics on cage winding
defects is described in Section 2. The Prony method and its application considerations are
discussed in Section 3. Then, a study case considering numerical simulated signals and a
laboratory test system for MCSA where numerical and experimental results comparison
between FFT analysis and Prony method estimation are presented in Section 4. Finally, a
summary of the results achieved is presented in Section 5, where the performance of Prony
method for this application is also discussed.
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The main contribution of this article is that Prony method can be considered as
a diagnostic tool in BRB OTD, where its application could be feasible, and with lesser
recorded data signal values, in comparison with FFT analysis, a good estimate of sideband
frequencies and its amplitudes can be obtained, the method can be used as a new tool to
improve the accuracy and sensitivity of OTD in RCIM, and it could be implemented in
the existing or new software in online test equipment’s for electric motors with no need of
hardware updates. The methodology was validated by using simulation signals and real
data signals, and its effectiveness is presented.

2. Overview of Diagnostics on Cage Winding Defects

In this section, fundamental aspects of broken rotor bar side band frequencies (BRBsbf)
required for the detection of these components during the estimation of a current signal
under analysis are presented. When a RCIM has a fracture or break in its cage (BRB or
CBER), see Figure 1, the effects within the motor result in voltages at specific frequencies as
presented in Equation (1), mainly due to the alteration of the magnetic field at the cage of
the rotor.

Figure 1. Illustration of a caged rotor of a RCIM.

BRB and CBER in a RCIM are mainly caused due to a maloperation, such as, too many
sequential direct on-line starts where time delay between starts is not adequate according
to manufacturer specification, which causes high starting currents, also, an incorrect match
of torque-speed curve of RCIM and torque-speed curve of the load. These operation
conditions add excessive centrifugal, mechanical, and thermal stress at the slip ring which
can result in a BRB or CBER fault. Due to a BRB or CBER, an unbalanced rotor flux occurs
and an effect in motor operation performance appears, for example, line currents oscillation,
torque pulsation, decreased average torque, and excessive vibration [3,4]. If the BRB or
CBER fault are not detected, an insulation failure or heavy damage could occur, and a
replacement of the RCIM will be required.

The BRBsbf in a RCIM considers the supply fundamental frequency ( f0), the slip of
the motor (s), and its harmonic value (h), which represent the number of broken rotor
bars that could appear in the RCIM [3,4]. The equation for BRBsbf in a RCIM is presented
in Equation (1):

BRBsb f = f0(1 ± 2 ∗ h ∗ s) (1)

The BRBsbf affects the RCIM operation if the energy of the frequencies is within the
fault indication value of a break in the cage rotor circuit; typical failure signature values
considered are presented in Table 1.

Some physical conditions affect the magnitude of BRBsbf, which can affect the resulting
diagnostic during a MCSA. Some of these conditions are, change in load and slip with a
fixed rotor cage defect, faulty bar to end ring joints creating an asymmetrical cage, porosity
and consequential arcing in aluminum die-cast cage rotors, partially broken rotor bars,
actual broken bars still making contact with an end ring and bars which are cracked from
the top of the bar, but just a percentage of the total depth of the bar [4]. It is important to
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mention that it is not possible to predict exact severity of cage defects/number of BRB or
CBER from the magnitudes in dB of the BRBsbf with respect to f0, only an estimate of the
condition of the cage winding can be defined as presented in Table 1.

Table 1. Rotor condition sideband frequency failure signature.

Energy, dB Rotor Condition

>60 Excellent

54–60 Good

48–54 Moderate

42–48 High resistance connection or cracked bars

36–42 Broken rotor bars will show in vibration analysis

30–36 Multiple cracked
broken bars, possible ring problems

<30 Severe rotor faults

The accuracy of the estimation of magnitudes in dB of BRBsbf of a motor current signal
under analysis depends on the digital signal processing (DSP) technique, see Figure 2.
Nowadays, modern on-line test equipment use the fast Fourier transform (FFT) spectral
analysis to detect harmonics and other frequencies such as BRBsbf; this is a commonly used
technique but it has its limitations, for example, (a) the motor current signals measurements
should be performed during steady state operation of the motor, so the estimation of
frequencies and its magnitudes detected could be accurate, (b) the recorded current signal
should have between 10 and 120 s of acquire data without any load variations during
acquisition, in terms of signals cycles for a 60 Hz or 50 Hz, a minimum of 600 or 500 cycles
of recorded signal should be required at least to be able to detect BRBsbf, because these
frequencies are too close to the fundamental frequency. In the case of motor operation
with VFD, the number of signal cycles will be proportional to the operation frequency
considering the same length between 10 and 120 s of acquired data. It should be mentioned
that in case of a motor under low load or no-load operation, the cage winding circulating
currents will be minimum or null, so at this condition the BRBsbf cannot be detected with
the estimation technique being used.

Figure 2. General scheme of MCSA for RCIM.

3. Prony Method Estimation for Motor Current Signal Analysis

Prony method is a signal processing technique based on signal estimation, which
extracts desired information from an equally spaced sampled signal and builds a series
of damped complex exponentials to approximate the sampled signal by solving a set of
linear equations. The Prony algorithm and its practical implementation are presented
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in [34,35], and have been used for power quality analysis [36–38], stability studies applied
to power system and nuclear power plants [39,40], and also have been evaluated and
patented for real time application in power system protection mainly in distance relay
algorithms [41,42]. It should be mentioned that the Prony method is also evaluated for
the detection of BRB in other works as itself or used with other technique [29–33], but
not enough details are presented for its implementation, and validation analysis of the
method for this application is not fulfilled. To overcome this, Prony method is proposed as
an additional diagnostic algorithm to estimate the parameters of the current waveforms
recorded during an OTD for RCIM, where a reduced window of data being recorded
(instead of typical values of 10 to 120 s of data) can be used to detect BRBsbf, and an
estimation of current signal parameters could be obtained, hence with the estimated
parameters of the current waveform, the detection of BRBsbf could be more accurate. Prony
method literature defines the parameters of a signal model y(t) in (2), and they can be
obtained by sampling the signal and obtaining the data samples [y(1) y(2) . . . y(n)] using a
sampling frequency fs.

y(t) =
N

∑
n=1

Aneσnt cos(2π fnt + θn) (2)

The Prony model signal approximates the sampled data in (2) using the following
linear combination of p complex exponentials:

yM =
p

∑
n=1

BnλM
n (3)

Bn =
An

2
ejθn

λn = e(σn+j2π fn)T

The signal y(t) in (2) has four elements: magnitude An, damping factor σn, frequency fn,
and the phase angle θn. Each exponential term in (3) is a unique signal mode of the original
signal y(t). So, using the Euler theorem and total time t = MT, where M is the length of the
signal and T is the time between samples, Equation (2) can be rewritten as (3).

So, for the Prony method to be implemented in OTD for RCIM, the following steps
should be considered:

(1) Know the sampling frequency (fs), sampling time (Ts), length of the current signal
under analysis (L) with a minimum of 25 cycles of data and the order (p) of the linear
prediction model (LPM), where an initial value of p for a data window of current
signal measurement for analysis must be selected.

(2) A Toeplitz matrix “Y” with the data of the current signal “y(t)” must be defined as (4).

Y =

⎡⎢⎢⎢⎣
y[p] y[p − 1] · · · y[1]

y[p + 1] y[p] · · · y[2]
...

...
. . .

...
y[2p − 1] y[2p − 2] · · · y[p]

⎤⎥⎥⎥⎦ (4)

(3) A vector “a” (coefficients of characteristic Equation (3)) using (4) is calculated in (5).⎡⎢⎢⎢⎣
a[1]
a[2]

...
a[p]

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
y[p] y[p − 1] · · · y[1]

y[p + 1] y[p] · · · y[2]
...

...
. . .

...
y[2p − 1] y[2p − 2] · · · y[p]

⎤⎥⎥⎥⎦
−1

·

⎛⎜⎜⎜⎝−

⎡⎢⎢⎢⎣
y[p + 1]
y[p + 2]

...
y[2p]

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ (5)
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(4) Calculate the roots from vector “a” and the resulting roots vector “z” will be used in
(6) and (7) to calculate damping

σ =
ln|z|

Ts
(6)

and frequency

f =
1

2πTs
tan−1

(
Im(z)
Re(z)

)
(7)

(5) Obtain Vandermonde matrix “Z” of vector “z” using (8).

Z =

⎡⎢⎢⎢⎢⎣
z0

1 z0
2 · · · z0

p
z1

1 z1
2 · · · z1

p
...

...
. . .

...
zp−1

1 zp−1
2 · · · zp−1

p

⎤⎥⎥⎥⎥⎦ (8)

(6) Obtain vector “h” in (9) using vandermonde matrix “Z” and vector “y” from (8).⎡⎢⎢⎢⎣
h1
h2
...

hp

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
z0

1 z0
2 · · · z0

p
z1

1 z1
2 · · · z1

p
...

...
. . .

...
zp−1

1 zp−1
2 · · · zp−1

p

⎤⎥⎥⎥⎥⎦
−1

·

⎡⎢⎢⎢⎣
y[1]
y[2]

...
y[p]

⎤⎥⎥⎥⎦ (9)

(7) The resulting vector “h” obtained in (9) will be used in (10) and (11) to calculate
amplitude and phase angle.

A = |h| (10)

θ = tan−1
(

Im(h)
Re(h)

)
(11)

(8) The order for good estimation results is obtained evaluating the mean square error
(MSE) of the full signal data p = 1, 2, . . . , Ns, where Ns is the total data samples of
the selected data signal for analysis. The MSE for each value of p in (12) needs to be
calculated, where MSE is obtained by using the reconstructed signal with the estimated
parameters “ŷj” and the real signal “yj”, so the MSE of lesser magnitude is selected for
the corresponding p value is the optimum estimate of the model signal parameters.

MSEp = xp =
1

Ns

Ns

∑
j=1

(
ŷj − yj

)2 (12)

Some important considerations in Prony estimation has to be taken to implement
this parametric estimation method in OTD for BRBsbf detection: (1) The sampled current
signal must be analyzed, (2) the sampling rate must be known; (3) if noise in the signal
or other harmonics of no interest exist, the signal must be filtered; (4) an increase in
computational burden will occur if a higher number of samples of digitized current signals
are considered. It should be mentioned that the accuracy of Prony estimation depends on
the level of signal distortion, the observation data window, and the number of samples used
in the estimation process, as well as the order of the model [11]. Prony method is a good
alternative for increasing the sensitivity and accuracy of the OTD for RCIM diagnostics for
BRBsbf detection.

4. Study Case for Motor Current Signal Analysis Using Prony Method Estimation

In this section, an assessment of Prony method estimation using a simulated and real
current signal with BRB harmonic components is presented. The simulated current signal
for analysis includes two BRBsbf, and for the real current signal analysis, a laboratory test
system with a data acquisition system, a RCIM with broken rotor bars and VFD are used,
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where the motor current signals are recorded at full load condition at nominal speed (60 Hz)
and at different operating speeds. This will allow to perform a complete evaluation and
validation of the method for OTD of RCIM diagnostics application.

4.1. Assessment of Numerical Simulation of Broken Rotor Bar Current Signal

For this analysis, the simulated current signal considering two side band frequencies
is used to estimate its signal parameters using Prony method, as presented in (6), (7), (10),
and (11). In Figure 3, 2 s simulated signal is used for the analysis, where the full signal
considers two sideband frequencies and its individual frequency components are shown
for a fundamental frequency of 60 Hz and a slip value of 0.0089 describing the behavior of
a loaded motor, where (1) is used to obtain the two sideband frequencies in the signal, so
the signal in Figure 3a can be used for the Prony analysis. In Table 2, the harmonic order,
frequency, amplitude of fundamental frequency, and the calculated BRBsbf of the signal in
Figure 3 that will be used for the analysis are presented.

(a) 

(b) 

Figure 3. Simulated signal example. (a) Distorted signal. (b) Broken rotor bar harmonic components.

Table 2. Simulated example signal with broken rotor bar harmonic components.

Harmonic Order Frequency, (Hz) Amplitude

1 60 516

1.0178 61.06 (+sb1) 15

0.9822 58.93 (−sb1) 14

1.0356 62.13 (+sb2) 12

0.9644 57.86 (−sb2) 11

Prony Estimation Results

The signal in Figure 3a is used for analysis with a sampling frequency of 64 samples
per cycle and a window of data of 8 cycles. The sampling frequency of 64 samples/cycle
and 8 cycles of window data length are considered because with a fixed data window with
lesser data a good and accurate estimation could be achieved. It is important to mention
that with more data considered for the estimation process (more than 8 cycles for simulated
signal in Figure 3a), an increase in computational burden will occur and more time will
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be required to obtain accurate estimated frequencies and amplitudes. In Figure 4a, the
Prony estimated and original signal are compared, and it can be observed that there is no
considerable error between them, and the estimated spectrum in Figure 4b of signal in
Figure 4a is obtained from the Prony estimation results calculated from (7) and (10), the
estimation results are presented in Table 3.

(a) (b) 
Time (Sec)

Example signal estimated with Prony

Figure 4. Simulated example signal validation. (a) Estimated and original signal comparison.
(b) Estimated Prony spectrum.

Table 3. Simulated example, Prony estimated signal parameters.

Estimated Signal Parameters Frequency, (Hz) Amplitude

Example signal

60 516.00

61.06 15.00

58.93 14.00

62.13 11.99

57.86 10.99

The Prony estimation results in Table 3 are obtained using a defined window of data of
the simulated example signal in Figure 3a; 8 cycles and a sampling frequency of 64 samples
per cycle are considered. Only the estimated signal amplitude and frequency are presented
in Table 3, because these parameters are the ones that can be used to detect BRBsbf of the
signal under analysis. It should be mentioned that the damping results and phase angle of
the signal parameter estimation correspond to the model of the Prony signal presented in
Equation (2) and are required only to form the estimated Prony signal and then the MSE is
calculated so the optimum parameter estimates could be obtained. Good estimation results
can be achieved considering a window data length of 8 cycles and a sampling frequency of
64 samples per cycle for the detection of two sideband frequencies for broken rotor bars.

4.2. Assessment of Real Broken Rotor Bar Current Signal from a Laboratory Test System

For this analysis, a laboratory test system considering a 1
2 HP RCIM with a crack

in one ring of the rotor, a data acquisition system, and a VFD are used for the current
signal analysis using the Prony method; it should be mentioned that different operation
conditions are considered for the analysis. Moreover, a comparison of FFT results and
Prony estimation results are presented so that the advantages of using Prony method can
be highlighted for OTD application.

4.2.1. Laboratory Test System

In Figure 5, the laboratory test system used for the data acquisition of current signals
of the RCIM under analysis is presented. For the analysis, the current signals are required,
so the signals are measured at the motor terminals; in Figure 5a, a VFD is used to control
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the speed of the RCIM which will be operating at full load condition. The nameplate data
of the RCIM are as follows 208 V, 1.98 A, 60 Hz, 1730 rpm and are presented in Appendix A
in Table A1. In Figure 5b, the load is set at 2.05 N-m, which is the condition for full
load operation for the RCIM. In Figure 5c, the data acquisition system used is a National
Instruments cRIO-9045 with LabVIEW software and Tektronix current sensors A622 with
the setting of 100 mv/A. Figure 6 shows the RCIM rotor of RCIM in Figure 5b which has a
cracked ring and a broken rotor bar.

. 

(a) 

(b) 

(c) 

VFD 

Current sensors 

RCIM Load 

Figure 5. Laboratory test system. (a) Full system. (b) RCIM under analysis and its load. (c) National
Instruments data acquisition system compact RIO.

 
Figure 6. RCIM cracked ring rotor and broken rotor bar for analysis.

Figure 7 presents the current signal measurement of motor line current of phase A,
only 1 s of the recorded signal of the 5 s total length is presented for visualization purposes,
current signal in Figure 7 was obtained at 60 Hz operation of the motor (full speed), and full
load condition without the operation of the VFD. It should be mentioned that the sideband
frequencies considered for the detection of the cracked ring or broken rotor bar were
calculated with (1) considering a full load slip of 0.0388, 2 sideband frequency components
were calculated for 60 Hz as fundamental component: 64.66 Hz, 55.33 Hz, 69.33 Hz, and
50.66 Hz. Hence, the signal in Figure 7 will be used for the Prony analysis and FFT analysis
for 60 Hz. In the following sections, current signal measurements at different VFD speed
operation conditions (50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz) are analyzed to validate the
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proposed Prony method for OTD application in RCIM, and FFT will also be analyzed to
compare and highlight the advantages of using Prony method for OTD in RCIM.

Figure 7. Current signal measurement of motor line current of phase A with a sampling frequency of
64 samples per cycle at 60 Hz with no VFD operation.

4.2.2. Fast Fourier Transform Estimation Results

In this section a FFT analysis of the measured current signals from the test system in
Figure 5 is performed using the VFD. For the purpose of analysis, only motor line current of
Phase A is considered and the length of the recorded signal is 5 s. The sampling frequency
of the signal is 64 samples per cycle, and the FFT estimation results are presented for
different speed operations at full load of the RCIM; the output frequencies for the VFD,
which are related to rotor speeds, are 60 Hz, 50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz.

It could be observed that for a signal record of 5 s, for every speed variation 60 Hz,
50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz in Figures 8–13, the sideband frequencies considered
for each speed operation condition are not detected. It should be mentioned that at least
10 s of the signal must be recorded to determine if a problem with the rotor is present, as
described in Section 2. Table 4 presents two sideband frequencies of the RCIM calculated
from (1) for each speed operation condition frequency. BRBsbf will be used to compare the
results obtained from the FFT estimations and also the information defined in Table 1.

Figure 8. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 60 Hz speed operation.
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Figure 9. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 50 Hz speed operation.

Figure 10. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 40 Hz speed operation.

As shown in FFT spectrum and periodogram from Figures 8–13 and Table 5, frequen-
cies presented in Table 4 are not detected for each VFD speed operation condition, only
the fundamental frequency is detected. This occurs mainly due to the closeness of the
frequencies to the fundamental frequency, where more signal data are required (at least 10 s)
so the FFT could detect the sideband frequencies. The periodogram is included because
it is used to highlight the sideband frequencies in dB, which is the unit where a severity
of a faulted rotor of RCIM can be measured, as it is presented in Table 1. Hence, one of
the disadvantages of the FFT analysis for OTD for RCIM, is that it is not possible for the
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detection of the BRBsbf with less than 10 s of recorded current signal, where it is evident in
the results from Figures 8–13 and Table 5 that the sideband frequencies are not detected, so
larger data windows and no variations in load of the motor under analysis are required for
FFT analysis to detect BRBsbf.

Figure 11. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 30 Hz speed operation.

Figure 12. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 20 Hz speed operation.
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Figure 13. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 10 Hz speed operation.

Table 4. BRBsbf for each speed operation condition at VFD.

Full Load Slip, (s)
Sideband

Frequencies
Frequency, (Hz)

0.0388

Speed operation
Condition,

Fundamental frequency
60 50 40 30 20 10

Sb1+ 64.66 53.88 43.11 32.33 21.55 10.77

Sb1− 55.33 46.11 36.88 27.66 18.44 9.22

Sb2+ 69.33 57.77 46.22 34.66 23.11 11.55

Sb2− 50.66 42.22 33.77 25.33 16.88 8.44

4.2.3. Prony Estimation Results

In this section, the proposed Prony method estimation for OTD application for RCIM
diagnostics is evaluated for different speed operation conditions of a RCIM at full load
using the test system in Figure 5. The recorded signals used for the analysis are the current
signals from Figures 8–13 for each speed operation condition, where the difference between
the analysis from FFT and Prony, is that the estimation of signal frequency and amplitude
parameters will be obtained only by considering 25 cycles of each signal instead of 5 s.
The sampling frequency of the signals is the same for each one of the 64 samples per
cycle. The following steps should be followed to obtain the optimum signal parameters of
frequency and amplitude, so we can search the BRBsbf presented in Table 4 in the Prony
estimation results. First, a downsampling of the signal under analysis is required. Then, the
downsampled signal needs to be filtered (low pass filter and a DC filter), so that Prony can
estimate the frequencies with a minimum error, because the method is sensitive to noise.
Next, the downsampled and filtered signal is used for the Prony estimation calculation as
presented in Section 3.
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Table 5. FFT results for each speed operation condition at VFD.

Estimated Signal Parameters True Frequency Values
(Hz)

FFT Estimation Results

Frequency
(Hz)

Amplitude
(A)

Power
(dB)

Full Load
Slip s = 0.0388

(1 + 2 s) f [Sb1−] 55.33 59.77 0.285 −12.20

Fundamental (f) 60.00 60.00 1.161 0

(1 − 2 s) f [Sb1+] 64.66 60.35 0.277 −12.42

(1 + 2 s) f [Sb1−] 46.11 49.8 0.232 −13.16

Fundamental (f) 50.00 50.1 1.055 0

(1 − 2 s) f [Sb1+] 53.88 50.39 0.192 −14.76

(1 + 2 s) f [Sb1−] 36.88 39.06 0.104 −23.9

Fundamental (f) 40.00 40.00 1.641 0

(1 − 2 s) f [Sb1+] 43.11 40.47 0.196 −18.44

(1 + 2 s) f [Sb1−] 27.66 29.65 0.285 −12.58

Fundamental (f) 30.00 29.88 1.216 0

(1 − 2 s) f [Sb1+] 32.33 30.23 0.241 −14.03

(1 + 2 s) f [Sb1−] 18.44 18.91 0.096 −24.41

Fundamental (f) 20.00 20.00 1.61 0

(1 − 2 s) f [Sb1+] 21.55 20.63 0.151 −20.52

(1 + 2 s) f [Sb1−] 9.22 9.21 0.108 −23.1

Fundamental (f) 10.00 10.00 1.543 0

(1 − 2 s) f [Sb1+] 10.77 11.41 0.071 −26.68

Downsampling

The recorded current signal is considered at 64 samples per cycle; nevertheless, a
downsampling to 16 samples per cycle, as shown in Figure 14, is recommended to reduce
the computational effort during the estimation process with Prony method (if a real time
application is considered), and it is justified that due to the low frequencies (BRBsbf) that are
required to estimate there is no need for a high resolution recorded signal. This condition
could be modified according to the needs of specific frequency detection for diagnostics
application in MCSA.

Figure 14. Downsampled current signal of measurement of motor line current of phase A at
60 Hz operation.

Low Pass and DC Filter

As mentioned in Section 3, if the recorded signal under analysis includes noise or other
harmonics of no interest, the signal must be filtered to eliminate unwanted frequencies, so
that the Prony estimation could be accurate. This step is carried out prior to using the signal

109



Energies 2022, 15, 3513

as input signal for the estimation of signal parameters. For this particular application, a
low pass filter of order 4 with a cut off frequency of harmonic order of 5 (300 Hz for 60 Hz)
is used, see Figure 15; it is important to consider that the cutoff frequency will change if
a VFD with a specific speed frequency operation (change in fundamental frequency) is
considered. Moreover, a DC filter should be considered after the low pass filter, mainly
because in a recorded signal, a DC offset will appear due to the measurement equipment
(current sensors), see Figure 16, some equipment have zero adjustment to prevent a DC
offset to appear in a recorded signal. If low pass filter and DC filter are not considered in
signal processing prior to using the signal for Prony estimation it can cause a significant
error in the estimated signal parameters, or other non-real frequencies will appear in the
estimation results which can lead to a misinterpretation or a misdiagnosis.

 

Figure 15. Downsampled low pass filtered current signal of measurement of motor line current of
phase A at 60 Hz operation.

 

Figure 16. Downsampled low pass filtered and DC filtered current signal of measurement of motor
line current of phase A at 60 Hz operation.

Signal Parameter Estimation

In order to obtain a good estimate of signal parameters using Prony method for OTD
in RCIM, the considerations mentioned in Section 3 and Sections Downsampling and Low
Pass and DC Filter must be applied, then the current signal under analysis, see Figure 17,
will be used as the input signal to obtain the parameter estimation. It should be mentioned
that a sliding window of data is used in this section to obtain the estimates, in the first
analysis are considered only 5 sliding data windows for 60 Hz operation speed, where at
each window of data a set of estimated parameters will be obtained with the main purpose
to validate Prony method estimation application to detect BRBsbf. Then, an analysis of one
data window for each speed frequency operation with VFD (50 Hz, 40 Hz, 30 Hz, 20 Hz,
and 10 Hz) is considered, and the BRBsbf to be detected will be the ones indicated in Table 4.
Hence, it is important to mention that the window length of data to be analyzed will be of
25 cycles for each speed operation condition.

Once the input signal to the Prony method has been digitally processed under the
considerations mentioned in Sections Down Sampling and Low Pass and DC Filter, it
now can be used in Prony method to determine an accurate estimate of signal parameters
and BRBsbf. Table 6 shows the estimation results using the methodology described in
Section 3, where in order to validate the Prony estimation results five sliding data window
are considered, so five calculations of Prony method are made, so the reader can observe
that the estimated frequencies and its amplitudes correspond to the BRBsbf defined in
Table 4; also, it could be observed that a third pair of sideband frequencies also is detected.
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Figure 17. Sliding data window (Prony estimated and original signal) of 25 cycles of current signal
measurement of motor line current of phase A at 60 Hz operation.

Table 6. Measured current signal estimated parameters.

Estimated
Signal

Parameters

Data Window 1 Data Window 2 Data Window 3 Data Window 4 Data Window 5

Frequency
(Hz)

Amplitude
Frequency

(Hz)
Amplitude

Frequency
(Hz)

Amplitude
Frequency

(Hz)
Amplitude

Frequency
(Hz)

Amplitude

Sb3− 44.03 0.0536 44.03 0.0540 43.97 0.0551 43.90 0.0566 43.91 0.0552

Sb2− 51.28 0.0207 51.28 0.0208 51.30 0.0206 51.26 0.0149 51.25 0.0162

Sb1− 55.44 0.0426 55.44 0.0427 55.46 0.0423 55.42 0.0385 55.44 0.0391

Fundamental 60.02 2.1440 60.02 2.1441 60.02 2.1444 60.02 2.1418 60.02 2.1425

Sb1+ 64.71 0.0279 64.71 0.0278 64.69 0.0273 64.68 0.0291 64.66 0.0284

Sb2+ 69.66 0.0197 69.68 0.0195 69.72 0.0182 69.55 0.0204 69.58 0.0182

Sb3+ 75.96 0.0248 75.97 0.0248 75.97 0.0248 75.97 0.0251 75.98 0.0250

To determine the severity condition of the rotor, the energy in dB needs to be obtained
from a periodogram spectrum and to be compared with rotor fault signature in Table 1.
First, the frequency spectrum of the results obtained for each sliding data window in Table 6
is presented in Figure 18, then, with the information obtained in Table 6, energy is plotted
in a periodogram as shown in Figure 19. It could be observed that with frequency spectrum
low magnitudes are observed, this is the main reason of the periodogram importance to
plot these magnitudes in energy values in dB, so the BRBsbf of the RCIM under analysis
could be more evident.

As observed in Figure 19, the energy levels are between 31.56 and 41.42 dB of the
BRBsbf for the sliding data windows evaluated, the energy estimated values correspond
to multiple cracked or broken bars or in its case a ring problem as described in Table 1. In
Figure 6, a cracked ring rotor and broken rotor bar is used in the test system to perform the
current signal analysis, so it is evident that an accurate diagnostic could be achieved with
Prony method parameter estimation.

To complete the most common operative scenarios of RCIM for the experimental
validation of Prony method, as described in Section 4.2, current signals are measured at
motor line terminal phase A in the laboratory test system from Figure 5 using a VFD at
different speed operation conditions defined in Table 4, at full load condition, where also
its BRBsbf are determined so a diagnostic of the RCIM can be obtained from the Prony
estimation results.

In Figure 20, the digitally processed current signals (original) for each frequency
speed operation are compared with the Prony estimated signal obtained from (2) using
the estimated parameter results in Table 7, it can be observed in Figure 20 that for each
VFD operation frequency the difference between the signals is null, this can be quantified
by calculating MSE curve fitting in (12), the MSE curve fitting results has a value of
1.7889 × 10−4 for 50 Hz, 5.2202 × 10−4 for 40 Hz, 6.4835 × 10−4 for 30 Hz, 4.6944 × 10−4

for 20 Hz, and 2.4833 × 10−4 for 10 Hz; these results confirm that an accurate estimate of
the BRBsbf and diagnostic is achieved.
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Figure 18. Prony estimated frequency spectrum at 60 Hz frequency speed operation scenario.

Figure 19. Prony estimated periodogram at 60 Hz frequency speed operation scenario.

In Table 7, the Prony estimation results of signal parameters are presented, where it can
be observed that for each VFD speed operation, its sideband frequencies (True frequency
values), amplitudes, and energy in dB are accurately estimated, where the obtained energy
in dB corresponds to the real damage severity condition presented in Table 1 of the rotor of
the RCIM under analysis. First, the frequency spectrum of the results obtained for each
VFD speed operation frequency in Table 7 is presented in Figure 21, then, for visualization
purpose of the results 7, the Periodogram for each Prony estimated signal parameters from
Figure 20 is presented in Figure 22, where its fundamental frequency is normalized to 0 dB.
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Figure 20. Data window selected for analysis of 25 cycles of current signal measurement of motor
line current of phase A at VFD operation frequencies of 50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz (Prony
estimated and original signal).

Table 7. Measured current signal estimated parameters (VFD, motor at full load).

Estimated
Signal

Parameters

Measured Signal
(Current Phase A)

True Frequency Values
(Hz)

Prony Method Estimation Results

Frequency
(Hz)

Amplitude
(A)

Power (dB)
MSE Curve

Fitting

Full Load Slip
s = 0.0388

(1 + 2 s) f [Sb1−] 46.11 46.89 0.0222 −39.76

1.7889 × 10−4Fundamental (f) 50.00 50.07 2.1599 0

(1 − 2 s) f [Sb1+] 53.88 54.16 0.0192 −41.02

(1 + 2 s) f [Sb1−] 36.88 36.50 0.0327 −36.41

5.2202 × 10−4Fundamental (f) 40.00 39.96 2.1628 0

(1 − 2 s) f [Sb1+] 43.11 43.64 0.0140 −43.78

(1 + 2 s) f [Sb1−] 27.66 26.78 0.0231 −39.37

6.4835 × 10−4Fundamental (f) 30.00 29.92 2.1475 0

(1 − 2 s) f [Sb1+] 32.33 33.23 0.0424 −34.09

(1 + 2 s) f [Sb1−] 18.44 18.01 0.0400 −34.41

4.6944 × 10−4Fundamental (f) 20.00 19.95 2.1011 0

(1 − 2 s) f [Sb1+] 21.55 21.59 0.0277 −37.60

(1 + 2 s) f [Sb1−] 9.22 9.68 0.0305 −36.39

2.4833 × 10−4Fundamental (f) 10.00 10.05 2.0117 0

(1 − 2 s) f [Sb1+] 10.77 10.60 0.0420 −33.61
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Figure 21. Prony estimated spectrum of VFD frequency speed operation scenarios.

 
Figure 22. Prony estimated periodogram of VFD frequency speed operation scenarios.

5. Results and Discussion

A results comparison is performed between FFT analysis (using a 5 s recorded current
signal) and Prony method (using a 25 cycles of recorded current signal) in this work. It
is important to mention that 25 cycles have been selected because that is the minimum
data window length with good and accurate results, other tests from 1–24 cycles were
performed but no good estimation is achieved, so the best possible application option for
online test diagnostics equipment with the minimum possible estimation time is 25 cycles.
Moreover, a very important detail to mention is that the computational estimation time
increase exponentially for each increase in the sampling frequency, so this is the main reason
why a subsampling to 16 samples per cycle is considered. In Sections 4.2.2 and 4.2.3, the
estimation results at different VFD speed operation conditions are presented, and Table 8
shows a summary of the results for both methods. Note from Table 8 that for each VFD
speed operation condition, the FFT results are not accurate and BRBsbf cannot be detected
having a 5 s recorded signal, but if Prony estimation results are observed and compared
with the True frequency values, then use Table 1 to determine the severity condition of
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the cage of the rotor, it can be validated that the estimated energy in dB corresponds to a
cracked ring and/or BRB, which is the real condition of the rotor shown in Figure 6.

Table 8. Summary of current signal estimated parameters using FFT and Prony method (VFD, motor
at full load).

Estimated
Signal

Parameters

Measured Signal
(Current Phase A)

True Frequency Values
(Hz)

FFT Estimation Results Prony Method Estimation Results

Frequency
(Hz)

Amplitude
(A)

Power
(dB)

Frequency
(Hz)

Amplitude
(A)

Power
(dB)

MSE Curve
Fitting

Full Load
Slip

s = 0.0388

(1 + 2 s) f [Sb1−] 55.33 59.77 0.285 −12.20 55.44 0.0426 −34.04

6.4593 × 10−4Fundamental (f) 60.00 60.00 1.161 0 60.02 2.1440 0

(1 − 2 s) f [Sb1+] 64.66 60.35 0.277 −12.42 64.71 0.0279 −37.71

(1 + 2 s) f [Sb1−] 46.11 49.8 0.232 −13.16 46.89 0.0222 −39.76

1.7889 × 10−4Fundamental (f) 50.00 50.1 1.055 0 50.07 2.1599 0

(1 − 2 s) f [Sb1+] 53.88 50.39 0.192 −14.76 54.16 0.0192 −41.02

(1 + 2 s) f [Sb1−] 36.88 39.06 0.104 −23.9 36.50 0.0327 −36.41

5.2202 × 10−4Fundamental (f) 40.00 40.00 1.641 0 39.96 2.1628 0

(1 − s) f [Sb1+] 43.11 40.47 0.196 −18.44 43.64 0.0140 −43.78

(1 + 2 s) f [Sb1−] 27.66 29.65 0.285 −12.58 26.78 0.0231 −39.37

6.4835 × 10−4Fundamental (f) 30.00 29.88 1.216 0 29.92 2.1475 0

(1 − 2 s) f [Sb1+] 32.33 30.23 0.241 −14.03 33.23 0.0424 −34.09

(1 + 2 s) f [Sb1−] 18.44 18.91 0.096 −24.41 18.01 0.0400 −34.41

4.6944 × 10−4Fundamental (f) 20.00 20.00 1.61 0 19.95 2.1011 0

(1 − 2 s) f [Sb1+] 21.55 20.63 0.151 −20.52 21.59 0.0277 −37.60

(1 + 2 s) f [Sb1−] 9.22 9.21 0.108 −23.1 9.68 0.0305 −36.39

2.4833 × 10−4Fundamental (f) 10.00 10.00 1.543 0 10.05 2.0117 0

(1 − 2 s) f [Sb1+] 10.77 11.41 0.071 −26.68 10.60 0.0420 −33.61

6. Conclusions

It is important to mention that a RCIM should be operating at full load in order to
detect BRBsbf, because at full load condition, induced currents circulate at the cage of the
rotor and when a measurement of the motor line current is performed, these frequencies
will appear; the main difficulty is to extract or detect these BRBsbf because they are frequency
components that are too close to the fundamental frequency and some considerations have
to be made so that a digital signal processing technique can be used to estimate these
frequencies accurately and a diagnostic of the cage of the rotor can be defined. As it
is commonly known, FFT analysis is used for RCIM OTD, where this signal processing
technique has been used widely in most of online test equipment for RCIM OTD but one
of the main disadvantages of the technique for this application is that it requires at least
10 s of recorded signal to give a good estimate of the BRBsbf. Hence, Prony method is
proposed to be used as a BRBsbf detection technique to be applied in OTD equipment
for RCIM, where at least 25 cycles of a current signal are needed to obtain an accurate
estimate of the BRBsbf; with the reduction of a recorded signal with a typical length (10 s),
the memory requirement is less in the OTD equipment and the condition of the cage rotor
is more accurate. It is important to apply the considerations for Prony method application
for RCIM OTD presented in Sections 3 and 4, so an accurate estimate and diagnostic can
be achieved.

For future work and recommendations, it is suggested to consider its application and
analysis for DC motor current signature. The scope of this work was to present and validate
the application details and advantages to use Prony method to determine the condition of
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the cage of a RCIM using MCSA. Moreover, it should be mentioned that in comparison
with conventional OTD equipment FFT analysis of current signal, Prony method requires
at least 25 cycles of recorded data, which means that it leads to a great reduction in memory
hardware requirement for the recorded current signal, so an integration of the Prony
method in OTD equipment is recommended to increase the accuracy in the condition
diagnostic of a cage rotor of a RCIM.
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Abbreviations

RCIM Rotor Cage Induction Motor
BRB Broken Rotor Bar
BRBsbf Broken Rotor Bar sideband frequencies
Sbf+ Upper sideband frequency
Sbf− Lower sideband frequency
CBER Cracked/Broken End Ring
DOL Direct-On-Line
MCSA Motor Current Signature Analysis
AAGE Abnormal Air Gap Eccentricity
OTD Online Test Diagnostics
MSE Mean Square Error
VFD Variable Frequency Drive
FFT Fast Fourier Transform
DSP Digital Signal Processing

Appendix A

Table A1. RCIM nameplate data.

Motor Data

Rated Current 1.98 A
Rated Voltage 208 V
Rated Power 0.5 HP

Temperature insulation class F 155 ◦C
Rated Frequency 60 Hz

Service factor 1.15
Efficiency 72 %

Connection YY
Rotor cage material Aluminum

Rated Speed 1730 RPM
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Abstract: Stator faults are the most critical faults in induction motors as they develop quickly hence
requiring fast online diagnostic methods. A number of online condition monitoring techniques are
proposed in the literature to respond to such faults, including the signature analysis of the stator
current, vibration monitoring, flux leakage monitoring, negative sequence components of voltage and
current and sequence components monitoring based on the identification of asymmetrical behavior
in a machine. Negative sequence components of voltage and current and sequence components
monitoring are commonly considered for the identification of asymmetrical behavior of induction
motors. Negative sequence current analysis is a sensitive technique for the detection of shorted
turns as it directly measures the asymmetry produced by the fault. However, the technique is
sensitive to other asymmetrical faults and disturbances, which can also produce negative sequence
currents. These disturbances include sensor errors, inherent asymmetry and voltage unbalance.
This paper provides a comprehensive investigation of the disturbances using a motor model along
with experimental measurements under varying load conditions. Then, a new phasor compensation
technique is explained to eliminate such disturbances effectively. This technique enables the accurate
detection of even relatively small shorted turn faults, even at an early stage. The technique is tested
experimentally, and a set of practical results are given to validate the methods developed.

Keywords: condition monitoring; induction machines; negative sequence currents; shorted turn faults;
phasor compensation

1. Introduction

Electric motors consume about 45% of the world’s electric energy. In total, 10.3% of
these are medium size (0.75–375 kW), and 0.3% of them are large size (>375 kW) motors that
consume a significant level of energy and usually operate in critical applications. Among
the motor types, induction motors cover a greater portion of the applications, from direct-
online (DOL) grid-connected motors to electric vehicles, primarily due to their robustness,
reliability and low cost. However, the failure of induction motors has a significant impact
on both their running cost and the efficiency of production.

Catastrophic failure of the motors usually develops over a period of time (from seconds
to days), first as a low degree of fault, which is investigated intensively under “condition
monitoring” involving various electrical quantities. The faults in induction motors can be
classified into five groups (Figure 1b): bearing related faults (41%), stator related faults
(37%), rotor faults (10%) and eccentricity related and mechanical faults (12% in total).

Online condition monitoring and diagnostic methods are preferred to predict any
incipient failures in induction motors. As the most critical faults, stator faults are commonly
detected using steady-state condition monitoring.
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(a) (b) 

Figure 1. The breakdown of global motor usage by size (a) [1], and distribution of common faults of
electric motors (b) according to EPRI survey results [2].

Various online diagnostic methods are proposed in the literature, including the signa-
ture analysis of the stator current, vibration monitoring, flux leakage monitoring, negative
sequence components of voltage and current and sequence components monitoring that is
based on the identification of asymmetrical behavior in a machine.

Among these, the sequence components method offers a fast and reliable solution in
which any unidentified unbalanced three-phase voltage or current phasors are transformed
into a set of three simple independent balanced component phasors: positive sequence,
negative sequence and zero sequence phasors. Moreover, sequence component monitoring
provides opportunities to increase the accuracy of the results through non-idealities and
non-linearity compensation techniques.

Note that the positive sequence component always exists due to the supply voltage,
but the negative sequence component exists only under asymmetrical voltage supply
or under motor faults. Hence, the negative sequence component is utilized to monitor
the health of the machine as well as can identify the supply voltage unbalances. For
example, negative sequence current monitoring can detect one of the most critical faults,
stator shorted turn faults in induction motors, as an alternative to other signature analysis
techniques such as stator current, vibration and flux leakage [1,2], and this non-invasive
method has low computational requirements [3,4].

However, the measured negative sequence may contain inherent non-idealities (such
as asymmetries in real machines, saturations, inherent winding asymmetry) and is sensitive
to external effects (such as load changes, supply and temperature variations). In order to
eliminate such secondary fault effects, various compensation methods for voltage unbalance
and other inherent non-idealities using look-up table databases, empirical formulas or
neural networks are proposed in the literature. These studies are summarized below in
Figure 2.

The negative sequence current monitoring method is based on understanding the
sources of asymmetry in the three-phase machine using measurements on the line currents.
As illustrated in Figure 3, the sources of negative sequence currents in induction machines
can be classified into four main groups: inherent asymmetry, supply voltage unbalances,
instrumentation asymmetry in measuring devices and actual motor faults. The figure also
shows the complex interactions among the sources of negative sequence currents, specifi-
cally when thermal effects, supply voltage variations and load variations are considered in
real machines, which have a significant effect on the sequence currents.

Although a significant amount of research is reported in the literature which utilizes
the negative sequence currents for condition monitoring [5–10], the causes of these currents
are not investigated comprehensively. These include the contribution of measurement
related asymmetry, the complex interaction among the causes of the negative sequence
currents, the angle of the negative sequence current in the analysis for inherent asymmetry,
voltage unbalance and finally, shorted turn faults under load using phasor plots. It should
be emphasized here that to identify the real faults of induction motors, the disturbances
need to be eliminated from the measured negative sequence current. This can be conducted
by compensation methods such as using simple look-up tables [6], a specific proportional
integral (PI) negative sequence regulator [11] or using advanced neural networks [8,12].
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Table 1 show the various compensation techniques reported in the literature that are
proposed to detect stator shorted turn faults using the negative sequence component,
which includes negative sequence currents [5–10,12,13], negative sequence impedance [14]
and a matrix of impedances [15] modeling cross-coupling between the positive and negative
sequence components. Three major disturbances, inherent asymmetry, voltage unbalances
and load variations, are also assessed in the table for each given reference.

Figure 2. The summary of previous studies and the research opportunities for negative
sequence components.

Figure 3. Main sources of negative sequence currents in induction motors.
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Table 1. Features of Negative Sequence Current Compensation Techniques Reported in the Literature.

References Inherent Asymmetry Voltage Unbalance Load Variation Shorted Turn Fault

[6]

Compensation of
non-linearity (including
inherent asymmetry)
using look-up table

Negative sequence impedance Zn of
motor (assumed independent load
variation and turn faults)

Unaffected by load
variation

Negative sequence current
In-sf

[5]

Minimization of thermal
effect by eliminating the
current phase
Isn = (Vn sin θn)/Xhn

Semi-empirical quadratic function of
healthy reactance (Xhn)

X−1
hn = γ0 + γ1Vn + γ2 sin 2φn + . . .

γ3 cos 2φn + γ4 Ipx + γ5 I2
py

Semi-empirical quadratic
function of stator current
under load variations
Imnlv = α0 + α1 Ipx +

α2 I2
px + α3 Ipy + α4 I2

py

Negative sequence current
In−s f = In − Isn − Imnlv

[7] Complex constants (k)
In = k1Vp + k2Vn

Complex constants (k)
In = k1Vp + k2Vn

k1 and k2 are load
dependent Negative sequence current In-sf

[10,13]

Calculated from two
current sensors
based-method Ia and Ib;
Negative sequence due to
uncalibrated sensor is also
considered
In−ia =

1
3 (1 − a)(Ia − aIb)

Voltage unbalance supply is not
considered

Tested under no-load, half
load and full load Negative sequence current In-sf

[8,12] Neural network Neural network Neural network Negative sequence current In-sf

[14] Need to be perfectly
balanced Need a balanced voltage supply Load is not affected Effective negative sequence

impedance: Zn-eff = Vn/In

[15] Independent of inherent
asymmetry Independent of voltage unbalance Calculation under speed

variation
Negative sequence impedance
matrix Znp

[11]

Proportional integral (PI)
controller. The PI negative
sequence regulator is not
intended for monitoring

PI controller PI controller Not available

Notes: X: Magnitude of reactance; φ: Phase angle; I: Magnitude of current; h: Operator for symmetrical compo-
nents; V: Magnitude of voltage; x, y: Real and imaginary parts of a phasor; s, r: Subscripts for the quantities of
stator and rotor; 0, p, n: Subscripts for zero, positive and negative sequence components; f : Supply frequency; m, s,
l, v: Subscripts denoting motor, supply, load and voltage.

As it is highlighted in the table, no literature is found to address and demonstrate the
interaction between shorted turn faults and disturbances, which is critical for the accurate
detection of faults. This paper aims to address this using a compensation technique based
on phasor analysis for sensor calibration, supply voltage unbalances and inherent machine
asymmetry, with a target aim of detecting small degrees of stator shorted turn faults.

The layout of the paper is as follows. In Section 2, the negative sequence current
analysis is discussed in detail by expanding the research studies reported in [7,16]. The
principles of the phasor compensation technique are also provided in the same section.
Section 3 discusses the simulation model and the test machine. Section 4 describes the
effects of sensor calibration, motor temperature and supply voltage unbalance. Section 5
presents test results demonstrating the effectiveness of the proposed negative sequence
phasor compensation for supply voltage unbalances and inherent asymmetry. The effects
of motor loadings are also considered. Finally, conclusions are drawn in Section 6.

2. Negative Sequence Current Analysis

2.1. The Sources of Negative Sequence Current

An unbalanced three-phase set of current phasors, Ia, Ib and Ic can be represented
as the superposition of three sets of balanced symmetrical component phasors: positive
sequence Ip, negative sequence In and zero sequence I0.

Although balanced three-phase voltages applied to an ideal induction machine pro-
duces balanced currents with no negative sequence components, practical induction ma-
chines have some negative sequence current due to inherent asymmetries between the
windings. In addition, even a perfectly balanced induction machine, when operating from
an unbalanced supply, will have a negative sequence current which is equal to the negative
sequence supply voltage divided by the negative sequence impedance, Zn, of the machine.
In light of these practical limitations and using the summary of disturbances given in
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Figure 3, the sources of the negative sequence currents are discussed in detail below, which
is critical for the phasor based compensation technique developed in the paper.

2.1.1. Measurement Asymmetry (In-in)

Given the negative sequence, components are associated with imbalances between
the supply voltages/currents; even small differences in gain and phase between the volt-
age/current transducers in different phases can produce substantial errors in the results.
Thus careful calibration of the transducers is crucial when seeking to accurately measure
negative sequence currents.

2.1.2. Inherent Asymmetry (In-ia)

As indicated previously, due to the manufacturing limitations in machine production,
negative sequence currents even occur in healthy motors as they contain inherent asymme-
try. As summarized in Figure 3, inherent asymmetry may be due to iron asymmetry, stator
winding unbalances and rotor static eccentricity.

2.1.3. Voltage Unbalances (In-v)

All practical ac supplies have some degree of voltage imbalance. Compensation of
the effect of supply voltage imbalance is important to separate this effect from the stator
winding faults.

2.1.4. Induction Motor Faults (In-sf)

Negative sequence currents are produced by faults that cause asymmetries in the
induction machine. Three major contributing faults are listed in Figure 3. However, the
shorted turn fault is considered to be the most critical one since it generally develops faster
than the eccentricity and/or broken rotor bar faults, and these other faults can also be
effectively detected by alternative methods.

2.2. Principle of Phasor Compensation Technique

The negative sequence input current In of an induction machine can be expressed as
the phasor sum of four separate negative sequence currents: motor faults In-sf, inherent
asymmetry In-ia, measurement errors In-in and supply voltage unbalance In-v.

In = In-sf + In-ia + In-in + In-v (1)

The above equation implies that negative sequence current components can exist even
in healthy machines, and Figure 4 illustrate the implementation of the shorted turn fault
extraction based on the same equation.

The negative sequence current component due to motor faults In-sf can be obtained
from the measured negative sequence phasor In by subtracting the negative sequence
current components due to voltage unbalance In-v, the motor inherent asymmetry In-ia and
instrumentation asymmetry In-in. In addition, it can be assumed that the negative sequence
current component due to shorted turn faults In-sf is proportional to the fault severity. It
is also important to emphasize that the negative sequence current components can be
sensitive to motor load variations and changes in motor temperature during operation.

As it is listed in Table 1, the negative sequence current can be used for shorted turn
fault detection by utilizing the key fault indicators (given in the rightmost column) after
compensating for the inherent asymmetry, voltage unbalance and load variations. In [6], the
negative sequence impedance Zn due to voltage unbalance was assumed unaffected by load
variations and hence was assumed independent of stator shorted-turn faults. Therefore,
the negative sequence current for the voltage unbalance compensation can be obtained
from the measured negative sequence voltage and a look-up table for Zn. The complex
admittances method reported in [7] assumed that the healthy negative sequence current
was a function of the positive and negative sequence supply voltages.
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Figure 4. The compensation techniques using phasor calculations, where both the magnitude and
the phase of the negative sequence current are illustrated to separate the stator faults.

In [5], the healthy negative sequence impedance was estimated based on empirical
formulas taking into account the effect of the voltage unbalance, load variation and inherent
asymmetry. In [10,13], the negative sequence of the online sensor and inherent asymmetry
model and measurement was demonstrated. These two papers show the negative sequence
current due to stator faults which were free from the inherent asymmetry and uncalibrated
sensor effects. Furthermore, in [8,12], a neural network was applied to estimate the healthy
negative sequence current.

However, as observed from these earlier studies, the previous techniques consider
only a limited number of cases without separating the negative sequence of current phasor
components related to each type of disturbance. Therefore, in the following section, the prin-
ciple of the phasor compensation technique will be explained graphically to demonstrate
its effectiveness as a winding short-circuit fault detection method.

3. Simulation Study and Test Setup

To be able to understand the behavior of the induction machine under various fault
levels, a Simulink model was developed. The parameters of the commercial test machine
are given in Table 2. The simulation was based on a dynamic machine coupled circuit
model [6], which allowed the simulation of unequal numbers of winding turns in each
phase as well as inter-turn short circuits. This provided a comprehensive understanding of
disturbances at different fault levels for the phasor-based compensation technique.

Table 2. Equivalent Circuit Parameters of the Motor under Test.

Rated output power 2.2 kW Referred rotor resistance 4.65 ohm

Rated frequency 50 Hz Stator leakage inductance 14.8 mH

Line voltage 415 V Referred rotor leakage inductance 14.8 mH

Rated stator current 4.9 A Rotor inertia 0.05 kg m2

Number of series turns/phase 282 turns Magnetizing inductance 312 mH

No. of poles 4 Rated power factor 0.8 lag

Stator phase winding resistance 5.22 ohm Rated speed 1415 rpm

The stator winding of the test machine was specially re-wound to allow the introduction
of various levels of shorted turn faults via external connections. In the test motor, 5, 10, 15 or
20 shorted turns can be applied in either one or two phases of the motor (see Figure 5). This
corresponds to shorted turn faults of 1.7%, 3.5%, 5.3% and 7.1% per phase, respectively.
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Figure 5. The modified stator winding configuration of the test motor and the external connection
circuit used to introduce shorted turn faults (the motor windings have 282 series turns per phase).

Note that the stator winding resistance for 5 turns was about 93 mΩ while for 20 turns,
it was about 370 mΩ, which was estimated using the total measured resistance of the stator
winding. As illustrated in Figure 5, the short-circuit current path had an additional stray
resistance of Rwire1 + 2Rwire2, which was measured at about 125 mΩ. The machine model
used in the simulation study included this stray resistance effect.

The measurement and the calibration system consisted of three voltage and three
current transducers signal conditioning circuits, an eight-channel 8th order low-pass But-
terworth analog filter and an eight-channel, 12-bit simultaneous sampling data acquisition
card (see Figure 6). The current measurement resolution was 0.2 mA.

Figure 6. The measurement system used for the voltage and current sensor calibration.

The analysis of instrumentation asymmetry will be discussed in the following section.

4. System Calibration and Disturbances

4.1. Sensor Calibration

During the calibration process, three current and three voltage sensors are configured
to measure the same line current and the same phase voltage, as it is shown in Figure 6.
A single-phase AC supply is also connected to a load via a precision power analyzer to
provide the reference measurement. Table 3 indicate the calibration constants for each
voltage and current sensor, and Figure 7 summarize the results of the calibration tests.

Table 3. The Calibration of Voltage and Current Channels.

Channel Voltage Current

A y = 2.4 × 10−5 + 8.84 × 10−3x y = −4.93 × 10−5 + 0.489x

B y = 1.1 × 10−3 + 8.88 × 10−3x y = −8.19 × 10−5 + 0.490x

C y = 4.6 × 10−4 + 8.93 × 10−3x y = −1.07 × 10−4 + 0.488x
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. The measured and processed calibration characteristics: the calibrated values of voltage (a)
and current (b), the residual magnitude errors in three voltage (c) and current sensors (d) and the
relative angle errors for the three voltage (e) and current sensors (f).

Note that before the calibration process, the maximum gain error of the voltage
channels was about 1% and for the current channels was about 0.4%. After the calibration
process, all the sensor measurements are compared with the values measured by the power
analyzer to obtain residual magnitude errors, as given in Figure 7. The percentage error is
expressed as the ratio of the error value and the full-scale reading output. The results show
that the percentage error is less than 0.05% for the voltage magnitude measurement, and it
is less than 0.1% for the current magnitude measurement. Such errors can be considered
acceptable for the negative sequence component analysis.

The angle error analysis of the voltage and the current measurement is also given
in Figure 7, which is defined as the relative angle difference between two channels, i.e.,
between the Va and Vb also the Va and Vc voltage channels. Note that the average angle
error of the worst pair of currents (about 0.2◦) is much lower than for the worst pair of
voltages (about 0.05◦). To understand the impact of such discrepancies, the measurement
asymmetry needs to be analyzed. Since, in this test, the three current and voltage channels
are supplied from the same source, the three phasors should ideally create a zero sequence
component. Figure 8 show the three measured current phasors showing small residual
magnitude errors and uncompensated phase errors. In order to find the negative sequence
component phasors due to the measurement asymmetry, the two phasors (Ib and Ic) are
each rotated 120◦, as shown in the rightmost figure.
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Figure 8. Illustration of the angle displacement for the sequence component analysis.

The magnitude of the negative sequence component due to measurement errors is
given in Figure 9. This shows a 0.3% current component and 0.03% voltage component at
rated current and voltage, respectively. This error can be reduced by subtracting a fixed
value of angle offset between the channels of 0.2◦ for the current and 0.05◦ for the voltages.
This angle offset correction reduces the negative sequence current error to lower than 0.1%
of rated current and the negative sequence voltage error to 0.015% of rated voltage.

 

Figure 9. The magnitude of negative sequence components before and after offset angle correction,
(left) for current and (right) for voltage.

4.2. Motor Temperature

The effect of temperature is investigated and presented in Figure 10 using the measure-
ment system and the induction motor under test. The no-load cold data test is performed
within the first 15 min after the motor is started. The no-load hot data is obtained after
running the motor in a generator mode at the full load condition for half an hour. Then, the
generator is decoupled from the electrical load and tested and measured under no-load
conditions. In both cases, the measurements are performed over a range of supply voltages.

Figure 10 show that there is little difference between the hot and cold positive sequence
currents, but there are significant differences between the hot and cold negative sequence
currents and voltages. At the rated voltage, the negative sequence current is about 1%,
and the negative sequence voltage is about 0.2% which is much larger than the residual
measurement errors discussed previously.

Figure 10b show that the negative sequence current increases rapidly for voltages
above about 0.7 pu. This may be due to asymmetries in the saturation of the three phases.

4.3. Voltage Unbalances

A supply voltage unbalance produces a negative sequence supply voltage which in
turn produces a negative sequence current that is inversely proportional to the motor’s
negative sequence impedance. The supply voltage unbalance is measured using the voltage
unbalance factor (VUF), which is defined as the ratio between the negative sequence Vn
and positive sequence Vp voltage magnitudes:

VUF = Vn/Vp (2)
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(a) (b) 

  

(c) (d) 

 
(e)  

Figure 10. Hot and cold motor measurements: (a) magnitude of the stator positive sequence current
Ip, (b) magnitude of the stator negative sequence current In, (c) magnitude of the negative sequence
voltage Vn, (d) the angle of In and Ip, (e) the angle of Vn and Vp where the reference angle Vp is 90◦.

A variable voltage unbalance is introduced experimentally in the computer simulations
by adding a variable external resistor in series with one of the supply phases of the motor
while operating under no-load conditions.

Figure 11 highlights the variations of the negative sequence current magnitudes as
a function of voltage unbalance (left column) and current phasor plots of the negative
sequence current (right column).

Figure 11a,b show the measured negative sequence current using uncalibrated (squares)
and calibrated (circles) voltage and current sensors, as discussed at the beginning of this
section, which all demonstrate the significance of calibration.

Figure 11a show an approximately linear relationship between the negative sequence
current component and the voltage unbalance while the positive sequence current compo-
nent (crosses) remains almost constant. Note that the percentage change in the negative
sequence current is approximately four times the percentage change in the negative se-
quence current. The results are consistent with up to 5% voltage unbalance, which is
an acceptable level in practice [17]. The effect of inherent asymmetry in the machine is
also observed in the same figures, where extrapolating the measured voltage unbalance
results in zero unbalance (see squares in Figure 11c) and does not result in zero negative
sequence current.
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(a) (b) (c) 

Figure 11. Three-phase phasor representation of the negative sequence current under a supply
voltage unbalance: before (a) and after (b) inherent asymmetry compensation, and after 120◦ shift
of two phases (c). The simulation results are shown by solid lines. The experimental results are
indicated by symbols.

The simulation results are shown as solid lines in Figure 11a,b. Although the simula-
tion results in Figure 11a show significant discrepancies as a function of voltage unbalance,
the simulation model predicts the current phasor trajectory accurately, as illustrated in
Figure 11b (except for the un-modelled inherent asymmetry). The corrected experimental
results (triangles) are also given after the experimentally determined inherent asymme-
try currents (squares) are subtracted. The results are now consistent with zero negative
sequence current at zero voltage unbalance.

Note that the above-described procedure was repeated in each of the three phases
of the machine. Figure 12 show the simulation and the experimental results of this study
before (Figure 12a) and after (Figure 12b) inherent asymmetry compensation, at which
point the results become centered on the origin. Figure 12c illustrate the effect of 120◦ phase
shifting in two of the phases, which demonstrates that the effect of voltage unbalance is
similar in each phase. This is the basis for compensating the negative sequence current that
is due to the supply voltage unbalance.

 

 

 

  

 

(a) (b)  (c) 

Figure 12. The experimental (symbols) and the simulated (solid lines) results of the current and
voltage unbalance as a function of the load with a series resistor in one of the phases. The magnitude
(top) and phasor trajectories (bottom) are also given before (a) and after (b) inherent asymmetry
elimination, and the voltage unbalance factor (top) and negative sequence impedance (bottom) (c).
The values of the external resistors were 0.25 Ω (triangle), 0.5 Ω (diamond), 1 Ω (square), 2 Ω (circle)
and 4 Ω (star).
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Figure 12 show the effect of voltage unbalance (using a resistor in series with one of
the phase lines) on the negative sequence current under varying motor loads. The results
are given before (Figure 12a) and after (Figure 12b) inherent asymmetry elimination, which
shows that this substantially improves the correspondence between the simulated and
test results.

The corresponding voltage unbalance factor and the negative sequence impedance are
provided in Figure 12c. For a fixed supply unbalance resistor, increasing the load increases
the voltage unbalance, which increases the negative sequence current and produces a phase
angle change. The negative sequence impedances stay relatively constant.

5. Shorted Turn Motor Fault and Novel Phasor Compensation Technique

The effect of shorted turns was experimentally verified on the test machine using the
tapped stator windings given in Figure 5 previously. This section explores the ability to
detect such fault types and aims to estimate the severity of the fault.

5.1. Effect of Shorted Turn Fault

Figure 13 show the variation of the fault current as a function of the shorted turn
(inter-turn) percentage and the voltage supply level. If the resistance of the external wires
used to tap the stator winding (Rwire in Figure 5) is zero, then the fault current should be
ideally constant. However, with a finite external resistance, the fault current increases with
a number of shorted turns and asymptotes towards the true short-circuit current value.
This current is also proportional to supply voltage.

Figure 13. The fault current in the shorted-turns vs. the fraction of shorted-turns with different
supply voltages. Simulation results (lines) and experimental results (circles).

Since the fault currents produced by shorted turns are large, they can cause the rapid
heating of the shorted windings and consecutive catastrophic failure. For example, at the
rated voltage, a fault current of five times the rated current is produced with only 7% of the
shorted turns. Therefore, fast fault detection is crucial for early inference.

Figure 14a show the negative and positive sequence current magnitudes as a function
of the short-turn fault percentage. The figure indicates that the negative sequence current
is almost proportional to the fault level with a 2% negative sequence current, which
corresponds to the 7% shorted turns. It can be observed in the same results that the
short-turn fault does not affect the positive sequence current significantly.

Figure 14b show the negative sequence current phasor trajectory corresponding to the
shorted-turn faults on two phases only, which are tested one phase at a time. The results
show a good correspondence between the simulation and the experimental results.

To be able to investigate the practical operating scenarios, the shorted turn faults are
also studied under the combination of voltage unbalance and motor loading. The results
before and after inherent asymmetry elimination are given in Figure 15. The figure shows
that shorted turn faults increase the magnitude of the negative sequence current as well as
varying its phasor trajectory under voltage unbalances.
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(a) (b) 

Figure 14. The experimental (symbols) and simulated (solid lines) results at varying shorted turn
fault levels of 1.7%, 3.1%, 5.3% and 7.1%: the magnitudes of the positive and the negative sequence
currents (a) and the negative sequence phasor trajectory for faults in two phases (b).

(a) (b) (c) 

  
 

(d) (e) (f) 

Figure 15. The test results at various shorted turn fault levels of 0% (triangle), 1.7% (diamond),
3.5% (square), 5.3% (circle) and 7.1% (star), before inherent asymmetry elimination of the magnitude
of In (a), phasor diagram of In (d), after inherent asymmetry elimination of the magnitude of In (b),
phasor diagram of In (e), and the corresponding voltage unbalance factors and (c) the negative
sequence impedances (f).

Figure 15c,f show the percentage of voltage unbalance and the negative sequence
impedance as a function of the motor load. As can be observed in the figures, the effect of the
negative sequence current magnitude decreases slightly with increasing load (Figure 15a).
This is caused by the negative sequence impedance (Figure 15f) that increases slightly with
the load. However, the negative sequence voltage remains relatively constant, as illustrated
in Figure 15c.

5.2. Shorted Turn Faults and Phasor Compensation

Figure 16 show the variation of the measured negative sequence current magnitude
vs. the shorted-turn ratio (up to 7%) for different supply voltage unbalances (from 0.1%
to 1.7%) under no-load conditions. Current trajectory plots are also given in the second
row of the figure. The left column in the figure shows the measured results using the
calibrated sensors; the middle column shows the results with compensation for supply
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voltage unbalance and the right column illustrates the results after both supply voltage
imbalance and inherent asymmetry compensation.

  

   

Figure 16. The test results (magnitude and phasor plots) of the negative sequence current magnitude
as a function of shorted turn fault severity (up to 7.1%) with voltage unbalance factors between 0.1%
to 1.7%: measured results (left column) after voltage unbalance compensation (middle column) and
after both voltage unbalance and inherent asymmetry compensation (right column).

As can be seen in the figure, with near-zero supply voltage unbalance (0.1%), the
negative sequence current is almost proportional to the number of shorted turns. For
example, a 7% shorted turn fault produces slightly more than 0.02 pu negative sequence
current. However, in a healthy motor (zero shorted turns), 1% supply voltage unbalance
can produce a comparable magnitude of negative sequence current, which indicates the
necessity of compensation for the supply voltage unbalance.

In addition, the phasor plot in the left column of Figure 16 show that the phase angle
of the negative sequence current component due to supply voltage unbalance (about +15◦)
is substantially different than that due to the shorted turn fault (about −45◦). These phase
angles are dependent on the negative sequence voltage phasor and the phase of the supply
in which the shorted-turn fault is present.

The negative sequence current magnitude depends on the phasor summation of the
negative sequence current components of the fault level and the supply voltage unbalance.
Therefore, any compensation technique must be based on a phasor calculation rather than
just considering the magnitudes.

The results of the negative sequence supply voltage compensation are given in the
middle column of Figure 16, which utilized the calibration curve given previously. Note
that when the sensitivity of the negative sequence current to the supply voltage unbalance
is eliminated, this can magnify the influence of the shorted turn fault. In the phasor plot of
Figure 16, the close correspondence between the results at 0.1% and 1.8% VUF is given.

The presence of inherent asymmetry, hence non-zero negative sequence current, in
a healthy machine makes it difficult to identify the small level of shorted turn faults (less
than 2% or five shorted turns in the test machine as it is given in the middle column of
Figure 16).

The results given in the right column of Figure 17 show the compensation of both
voltages unbalance and inherent asymmetry. Note that the compensation reduces the
negative sequence current to near zero for healthy machines, which allows even small
faults of greater than, say, 1% (3 shorted turns) to be distinguished. Moreover, an almost
ideal linear relationship between the fault severity and the negative sequence current is
obtained, which reduced the sensitivity to supply voltage unbalance further. The phasor
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plot shows the result for the healthy motor now lies at the origin. This means that the
negative sequence current for the stator shorted turn faults is now fully compensated.

  

 

 

  

 

 

Figure 17. The test results (magnitude and phasor plots) of the negative sequence current at 1.7%
shorted turn fault severity vs. motor load with various voltage unbalance factors: measured results
(left column) after voltage unbalance compensation (middle column) and after voltage unbalance
and inherent asymmetry compensation (right column).

The left column in Figure 17 show the negative sequence current test results with a
1.7% shorted turn fault combined with a varying supply voltage unbalance (produced by
external resistors of 0 Ω, 1 Ω, 2 Ω and 4 Ω) under various motor loads. The significant
effects of loading and voltage unbalance are also visible from the change in angle of the
negative sequence current components, i.e., from −43◦ to 95◦. At the light motor loading,
the negative sequence phase angle is shifted from −43◦ to +12◦, primarily due to the
shorted turn fault.

The measured negative sequence current variation under the load given in the middle
of Figure 17 shows a significant reduction after compensation for the voltage unbalance.
Note the order of magnitude changes in the scales of the vertical axis in Figure 17.

The right column in Figure 17 show the processed result after the inherent asymmetry
elimination. Note also that the supply unbalance and the load variation are reduced even
further. This demonstrates that the compensation technique can successfully eliminate
the voltage unbalance and the inherent asymmetry under a wide range of motor load
variations, which is performed to gain the true magnitude of the negative sequence current
due to the early and accurate detection of the shorted turn fault.

6. Conclusions

The stator faults in three-phase induction motors are primarily associated with the
windings and are found to be the most critical faults as they develop quickly, requiring
fast online diagnostic methods. This paper utilized the negative sequence components of
voltage and current for the identification of the asymmetrical behavior of motor windings
under stator faults.

In order to understand the causes of negative sequence currents for the detection
of shorted-turn faults in the line-operated induction machines, this paper provided a
comprehensive study of the effects of the major asymmetrical disturbances on the negative
sequence currents. These included the effects of measurement errors, motor temperature,
inherent machine asymmetry and supply voltage unbalance, all under varying motor
load conditions.
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A novel phasor compensation technique was described for inherent asymmetry and
supply voltage unbalance. This relies on performing tests to determine the inherent
asymmetry and identify the effective negative sequence impedance at the operating voltage.

The simulation and experimental results demonstrated that the proposed approach
allows the use of the negative sequence current to detect even at small shorted turn faults
(2% for the test motor). In addition, the fault severity was estimated accurately using the
compensating method for sensor errors, inherent asymmetry and voltage unbalance, which
are all present in practical machines. The compensation of supply voltage unbalance under
varying motor loads was also investigated in detail.

It can be concluded that further works can be conducted while the motor is operating
under multiple faults, which may be based on an online model of the machine.
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Abstract: Induction machines have been key components in the industrial sector for decades, owing
to different characteristics such as their simplicity, robustness, high energy efficiency and reliability.
However, due to the stress and harsh working conditions they are subjected to in many applications,
they are prone to suffering different breakdowns. Among the most common failure modes, bearing
failures and stator winding failures can be found. To a lesser extent, High Resistance Connections
(HRC) have also been investigated. Motor power connection failure mechanisms may be due to
human errors while assembling the different parts of the system. Moreover, they are not only limited
to HRC, there may also be cases of opposite wiring connections or open-phase faults in motor
power terminals. Because of that, companies in industry are interested in diagnosing these failure
modes in order to overcome human errors. This article presents a machine learning (ML) based fault
diagnosis strategy to help maintenance assistants on identifying faults in the power connections of
induction machines. Specifically, a strategy for failure modes such as high resistance connections,
single phasing faults and opposite wiring connections has been designed. In this case, as field data
under the aforementioned faulty events are scarce in industry, a simulation-driven ML-based fault
diagnosis strategy has been implemented. Hence, training data for the ML algorithm has been
generated via Software-in-the-Loop simulations, to train the machine learning models.

Keywords: fault diagnosis; fault detection; induction motor; electric machine; machine learning;
supervised learning; data-driven; power connection failures

1. Introduction

Induction motors (IM), especially squirrel cage motors, constitute the core of many
electric drives. They are widely used in industrial applications such as machining tools,
electric vehicles and railway traction systems. Their simplicity, robustness and ease of
maintenance have made them popular in industry. However, like any component, they are
not totally free from failures. Therefore, in the last decades, numerous studies have been
carried out analysing their failure modes, their probabilities of happening and proposing
fault detection and diagnosis (FDD) strategies.

From the point of view of a generic electric drive, the electric machine can be defined
as one of the main subsystems together with the invert block, the power source and the
sensors. Bearing in mind this schema, it is worth summarizing the different failure modes
that may appear in these subsystems due to the influence they can have on the behaviour
of the induction machine. Regarding the inverter, the main failure modes can be summa-
rized regarding power semiconductors (MOSFET, IGBT, Diode) and electrolytic filtering
capacitors faults. When referring to semiconductors, the most typical faults are short-
and open-circuit faults. The former is normally considered a destructive fault because
of its high overcurrent effects, therefore, it typically requires the adoption of actions to
shut down the drive immediately. The latter, which usually leads to complete or partial
losses of the current at the exit of the inverter, is not usually classified as catastrophic. This
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means that these faults can remain undetected for a long time since the entire system can
continue to operate in a degraded mode, so, it is interesting to develop health manage-
ment strategies to detect the anomalies in advance [1–5]. In the case of the electrolytic
capacitors that usually make up the DC link, the most frequent failure mode tends to
be the ageing of the component because of operating in hard working conditions. This
mainly leads to the variation of the capacitance (C) and the equivalent series resistance
(ESR) which may cause not fulfilling the tasks of maintaining a constant DC voltage value,
neither protecting power converters from over-voltages and sudden drops in the energy
voltage source, nor presenting a high impedance against the harmonics generated by the
inverter [6–8]. Concerning the sensors, they are usually used for control and protection
tasks of the electric drive. However, when they operate in harsh working environments,
they sometimes become prone to failure, causing abnormal operation of the electrical
machine, reducing the efficiency of the traction force, or even causing an emergency stop.
The most common failure modes can be summarized in gain or offset in the measurement
or direct disconnection of the device, as they can be understood in [3,9–12].

Focussing on the electric machine subsystem, as summarised in [13–16], the failure
modes of induction motors can be grouped into stator failures and rotor failures. Among the
most common stator failures, stator winding short-circuits (in their different modes),
vibration problems and phase connection failures can be found. The most common rotor
failures are bar breakages, rotor misalignments or bearing problems, either due to bearing
failures, lack of lubrication or misalignment. As a result, several FDD strategies have been
proposed for these types of problems in different applications [17], such as electric vehicles,
railway traction drives or renewable energy systems.

On the one hand, model-based techniques are usually used for the identification of
motor parameters in order to monitor their deviation from the nominal values [18–21].
On the other hand, in the field of signal-based methods, there are alternatives such as the
Park’s Vector monitoring for stator short-circuit [22,23], stator imbalance [24] and rotor
bar breakage [25] detection. However, the most widely used technique in induction motor
FDD has been the frequency analysis of phase currents. This frequency analysis known as
Motor Current Signature Analysis (MCSA) is the most popular one [26–29].

In recent years, the emergence of Industry 4.0 and the use of artificial intelligence
methods, such as machine learning (ML) or deep learning (DL) have led to the develop-
ment of data-driven FDD techniques. ML or DL have been used as a complement to the
aforementioned techniques to help in the classification and prediction of failure modes.
For example, there are many examples that use vibration or current measurements to
diagnose stator and rotor failures [30–35]. Article [36] presents an extensive review of the
application of data-driven methods for electric drives.

However, among all the IM failure modes, the one that has perhaps been studied the
least is motor wiring or connection failures. It is worth mentioning that failure modes such
as open-phase, High Resistance Connections or opposite-phase wiring in IM connections
are usually catastrophic. In other words, although these failure modes are not frequent,
when they occur, the maintenance tasks become very costly because most of the time the
rolling stock must be stopped and the electric machine must be repaired. Furthermore,
in the majority of cases, they is often a link to human errors during manufacture, resulting
in incorrectly tightened terminals or poor wirings. In an industrial context, there are
situations where due to manufacturing or maintenance mistakes, current imbalance and
opposite-phase wiring problems can occur. For example, when a faulty inverter is replaced
in a depot, the wiring can be deficiently installed and faulty equipment is put in service.
As a result, they are considered high-cost, low-probability cases.

For example, the detection of HRC has been approached using different techniques.
Thermal imaging can be a useful and effective technique for manual inspections [37].
However, it can be costly and difficult to automatise. During the last decades, online
detection methods have been developed mainly based on resistance estimation or current
sequence analysis. The first method consists of estimating the resistance by injecting voltage
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pulses with the inverter already installed in the drive, as proposed in [38]. The authors of
this paper propose to measure the voltage between the neutral point of the motor and the
negative of the DC-link. The main disadvantage of this method is the need for an additional
sensor, as well as the fact that the neutral point is usually not accessible. In [39], the authors
use the same method but without additional sensors. They inject two voltage vectors and
with the measurements of their respective currents calculate the phase resistance. It is
mentioned that with this method the effect of inverter nonlinearities on the estimation can
be eliminated. Furthermore, ref. [40] proposes a similar method but while compensating
for the effect of the inverter by pre-calculating the voltage drop across the semiconductors.
The second method proposes to detect the negative sequence of currents due to system
unbalance. In [41,42], the authors develop an induction motor model taking into account
the effect of HRC and stator short circuits. From these models, a negative sequence of
current and voltage due to unbalance can be estimated and used as a fault indicator. They
also make an effort to be able to identify the specific failure mode (HRC or short-circuit).
Furthermore, in [43] a similar technique is presented, but this time the drive control strategy
is used to calculate the negative sequence and to implement a fault-tolerant control.

As far as open-circuit faults are concerned, few papers refer to the detection of this
failure mode when it occurs at the motor connection. However, the effect of this failure
mode is similar regardless of whether it occurs in the wiring, the inverter or the motor.
Therefore, the techniques proposed in the literature could be used for all of them. Park’s
Vector Approach is one of the most widely used methods [44]. In [45–47], condition
monitoring using this technique is proposed to detect open-circuit faults in inverters.
The same fault is detected in [48] by calculating indicators from the mean value of the
currents. Moreover, there are also model-based techniques, such as the one presented
in [49], where a model is proposed and validated, which takes into account open-circuit
faults in the phases and in the wiring.

All these strategies need to be executed at high frequency and usually embedded in
the controller of the drive. This can be challenging in some applications such as electric
transportation or renewable energy systems, where controller memory and computational
capacity is limited. Furthermore, increasing the cost of a drive by adding FDD func-
tionalities is not justified nowadays, especially in view of the rise of communication and
cloud-based technologies. As mentioned in [36], FDD strategy trends show that data-driven
methodologies based on ML or DL have emerged as a valid solution for electric drives.
As an example, several publications show the application of ML or DL for the detection
of faults in stator, rotor and bearings [32,50–52]. In the case of HRCs in electric motors,
ref. [53] shows the training, validation and testing of an artificial neural network. It can be
said that this is an evolution of the classical negative/zero sequence technique, where the
neural network models the healthy state and classifies faulty states.

In applications such as a railway traction, fault detection and isolation is more difficult
due to the composition of the system. Usually, a rolling stock is composed by several
inverter boxes that can feed more than one induction motor in parallel (see Figure 1).
As an example, a train can have six motors, each of them controlled in pairs by three
controllers/inverters. Thus, when the driver sets a general torque command for the whole
traction chain, the motors are controlled independently dividing the total command by the
number of inverters. As a result, in some failure modes, this structure can be defined as
catastrophic, because even if there is a faulty motor in the total 6, the rest ones will keep
working. As the rotor of the motor and the axle of the boogie are coupled mechanically,
even if the motor is faulty, the rotor will continue turning due to the train inertia. While
the control unit tries to control the torque of the motor, high overcurrent and overvoltages
can generate irreversible failures.
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Figure 1. Schematic of the two induction motors in parallel structure from a railway application.

Seeing the potential that ML and DL techniques have had on other failure modes, this
paper proposes a data-driven strategy for the detection and classification of HRC, open-
phase and opposite-phase wiring faults in induction machines implemented in railway
applications. For this, a Software-in-the-Loop (SiL) simulation platform is used in order
to generate the data to train the ML models. Concretely, the SiL simulation replicates
the behaviour of an electric drive from a tram traction application. The rest of the paper
is organized as follows: Section 2 introduces the SiL platform used for data generation.
Afterwards, Section 3 presents the development of the ML-based fault diagnosis strategy.
Step-by-step data preprocessing, feature engineering and ML model training and testing
are explained. Finally, Section 4 presents the main conclusions of the work.

2. SiL Simulation-Based Data Generation

As it has been mentioned before, one of the challenges in developing data-driven
strategies for FDD is data availability. Electric machines are designed not to fail, so it is
difficult to find a sufficient volume of information to allow reliable training, validation
and testing of ML algorithms. Hence, data from healthy machine operation is available
in abundance, while data from representative faulty operating conditions is limited. That
is why, in many applications it is very common to deal with unbalanced datasets [54].
Furthermore, still nowadays, little field datasets from real industrial applications are avail-
able. Normally, implementing an effective data acquisition approach can be interpreted as
expensive, as well as time-consuming. As a result, this data scarcity and imbalance has
become an important drawback when trying to design data-driven condition monitoring
strategies, specially those based on Machine Learning and Deep Learning.

In order to overcome these limitations, one of the used techniques is to generate the
training dataset via simulations. In a digital environment, simulation-driven synthetic
data generation is used to emulate conditions that are not easily available in existing field
data, such as different working conditions, specific failure modes, etc. Therefore, in the
present work, a SIL simulation platform developed in Matlab/Simulink platform, has
been used to obtain synthetic data on the effects of deficient connections in induction
motors. Specifically, it emulates the operation of a 160 kW electric traction drive from a
railway traction application with two induction motors connected in parallel. It is worth
mentioning that this platform has been validated by our industrial partner, using it in
the development of railway traction systems. Furthermore, the results of the platform in
healthy cases were previously compared with laboratory results. At the same time, both its
nominal behaviour and the fault insertion block have been discussed in other publications
of our research group [55–57].

The Matlab/Simulink platform consists of several blocks that simulate the operation
of an electric drive (see Figure 2). The plant of this electric drive is composed of an input
stage (contactors, filter and braking crowbar), a three-phase inverter and two induction
motors fed in parallel. Moreover, the mechanical system is simplified to an inertia and
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a static load. It is worth mentioning that power electronics and traction motors can be
simulated either using basic blocks from Simulink or Simscape blocks, depending on the
required accuracy and simulation speed.

Figure 2. Schematic of the Matlab/Simulink based SiL simulation platform of a tram application for synthetic data generation.

The control functionalities are integrated following the Software-in-the-Loop strategy.
Here, the control software used in the real device is embedded into the simulation so
that its operation is as close as possible to the real application. Concretely, the TCU is
built with three different control levels. In control level 3, the references for the control
strategy of level 2 are calculated. Typically, level 2 implements some variant of vector
control, so torque and flux references are obtained first in level 3. In this level, other control
functionalities, such as bus voltage control or torque reference limitations, can be activated.
Once level 2 obtains the voltage references for the inverter, in level 1, modulation strategies
calculate the switching states for the inverter and the crowbar. It is worth mentioning that
the vector control of the IM is an average control, because two motors are fed in parallel
with only one inverter and one current sensor per inverter phase. Therefore, the measured
current is the total current flowing from the inverter.

This platform allows the control strategy to be validated in different scenarios. As a
result, and with the aim of analysing the effects of power connection faults, first a set of
baseline healthy simulations has been defined. Torque is controlled following a predefined
profile in order to obtain the desired acceleration and deceleration rates, as well as target
speed. In this case, 3 target speed profiles have been simulated in the conditions shown in
Table 1.
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Table 1. Simulation scenarios for faulty data generation.

Speed Ref. [rpm] Load Torque [Nm]

900 50
100

2400 50
100

4500 50
100

Figure 3 shows the torque, phase currents, speed and DC-link voltage for a 2400 rpm
target speed and 50 Nm load torque simulation environment. Furthermore, Figure 4 shows
the detail of the phase currents.

Figure 3. Torque, speed, phase currents and DC-link voltage signals at 2400 rpm and 50 Nm load
(healthy state).

Figure 4. IM phase currents detail at 2400 rpm and 50 Nm load (healthy state).
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Using the baseline simulations shown previously, power connection failures have
been injected in the plant model. In particular, HRC faults, open-phase faults and opposite-
phase wiring connection faults were simulated. Thanks to the use of Simulink’s Simscape
toolbox, these faults can be easily injected in the simulation. As it is shown in Figure 5,
the HRC was emulated connecting a series resistor in a phase of the motor, while the other
two faults were provoked by changing directly the motor connections.

Figure 5. IM power connection faults modelled in the SiL platform.

Using this modified model and the operation conditions described in Table 1, faulty
operation scenarios were simulated. In total, 72 simulations were launched for the genera-
tion of faulty data (6 scenarios, with 3 fault modes injected at 4 different instants). In this
way, a database of 355 million samples at 50 μs was created.

In the following lines, some of the simulation results are presented. Figure 6 shows
the different signals obtained from the simulation while causing an open-phase fault in the
induction motor number 1. Looking at the IM-1 phase currents, phase A is disconnected
and, as a consequence, the rest of the phase currents increase. As it was mentioned before,
the vector control of the motors is an average control as two motors are fed in parallel with
only one inverter. Hence, any failure in one of the motors causes the abnormal operation of
the other one. At the same time, current imbalance causes torque oscillations due to the
current measurement feedback and the vector control structure. It is important to remark
that the high value of the load inertia filters torque oscillations mitigating them in the speed
(bottom right graph). Therefore, as the simulation does not implement any speed control
loop, when the fault occurs, the average value of the real torque and the speed decrease.
In the real application, this speed loss would be compensated by the user increasing the
torque command.
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Figure 6. Phase currents of motor 1 and motor 2 at 2400 rpm and 50 Nm load (open-phase fault at
t = 10 s).

In the case of HRC, it can be said that it is a less severe version of the open-phase
failure. Current imbalance is translated to the torque as low frequency oscillations, as it is
presented in Figure 7.
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Figure 7. Phase currents of motor 1 and motor 2 at 2400 rpm and 100 Nm load (HRC/unbalanced
fault at t = 10 s).

Finally, in the opposite-phase wiring mode (see Figure 8), since there is a closed torque
control loop, it sets the current necessary for the estimated torque to follow the reference.
However, as one of the motors is wired incorrectly, the actual torques of the motors do not
follow the reference and the target speed is not achieved.
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Figure 8. Phase currents of motor 1 and motor 2 at 2400 rpm and 100 Nm load (opposite-phase
wiring fault at t = 0 s).

In the following sections, the development of the data-driven FDD strategy for the
detection and classification of these fault modes will be presented. However, as it was
shown previously, the HRC and the open-phase faults have similar effects in terms of
torque oscillations, speed deviations and current in the healthy motor, therefore, they will
be grouped in the same cluster, labelled as current imbalance. Therefore, the main task of
the FDD strategy is to distinguish current imbalance and opposite-phase wiring anomalies
from the healthy behaviour.

3. ML-Based Fault Diagnosis Strategy

Once the synthetic data have been generated, it is time to develop the machine
learning-based fault diagnosis strategy for induction machines power connection failures.
As mentioned in Section 1, these approaches developed via data-driven strategies seek
to generate computer systems capable of performing tasks that normally require human
intelligence, through artificial intelligence. In this research, the analysis of the health status
of induction machine power connexions is proposed by differentiating the aforementioned
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failure modes from the healthy behaviour. For this, the synthetic data acquired from the
simulation platform were used to train and validate ML classification algorithms, in order
to categorise the different health status in groups.

In this way, it is important to mention that in order to implement these data-driven
solutions efficiently, a specific and standardized ML workflow is generally put into practice.
As it can be seen in Figure 9, it is not only based on selecting and optimizing the ML
algorithm, but it also consists of carrying out different tasks, such as the acquisition
and organization of raw data, the raw data preprocessing and the implementation and
integration of the algorithm in the application [58–60].

Figure 9. Standardized workflow to apply effectively machine learning approaches.

Thus, in this section, the main steps of this workflow have been developed and
optimized taking into account the application requirements. The solution should be able to
distinguish the healthy behaviour from the opposite-phase wiring faults and the current
imbalance faults. Furthermore, false positives should be avoided. It has to be taken into
account that a false positive could cause an unnecessary maintenance shutdown of the
equipment, which in applications such as railway could cause important availability and
economic losses.

In addition, it is important to mention that one of the main advantages of simulations
is their flexibility to create faulty environments, since different failure modes can be
injected. Therefore, the supervised ML method becomes an effective alternative to face this
classification problem. In these cases, the task of labelling data samples becomes much
easier, owing to the fact that the exact failure injection time and even its characteristics
are known. In a real application environment, the labelling task is much more time-
consuming, as it demands considerable expert knowledge. Figure 10 shows schematically
the Supervised ML approach.

Figure 10. Schematic of the supervised ML methodology.
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In supervised ML methods, a certain label (Yin) is attached to each training dataset
sample (Xin) with information about their momentary state of health. Therefore, it is
easier to interpret the output predictions (Yout) of the ML model from the new unseen
dataset (X′

in). Specifically, in this article, a three-class classification ML algorithm was
trained. Although in Section 1 more than three health statuses are explained, in a first
approximation the open-phase fault and the HRC fault are unified due to their similar
effects in phase current imbalance. Therefore, these are the different health status labels
that the supervised ML algorithm should differentiate: healthy (H), current imbalance (CI)
and opposite-phase wiring fault (OPW).

Moreover, before starting with each of the stages from the ML workflow, it is worth
mentioning that Amazon Web Services (AWS) is the cloud service platform where the fault
diagnosis approach was developed. Apart from the development of the FDD strategy,
a secondary objective of the work has been to use commercial cloud-based tools. The use
of these tools has several advantages: the management of big datasets is easier (than with
software such as Matlab) and the proposed solution will be closer to a future industrial
implementation. Figure 11 shows the architecture of the platform for development of the
data-driven FDD strategy.

Figure 11. Data pipeline for the ML-based FDD strategy developed in Amazon Web Services.

3.1. Data Acquisition and Organization

As mentioned before, simulated data should be generated in the a way that is as similar
as possible to how it is acquired in the real application, in terms of recorded variables,
sampling frequency and acquisition mode (average, RMS, etc.) Therefore, output data from
simulation must be modified to replicate a real application environment.

As an example, the simulation explained previously runs at 50 μs. Therefore, it pro-
vides many different variables with a 20 kHz sampling rate. However, in a real application,
not all the variables are accessible, nor is the acquisition frequency that high. In this re-
search, 11 variables that can be recorded in real applications were downsampled at a 64 ms
rate, replicating the limitation of sensors installed in real applications. Table 2 shows a
summary of the recorded variables from the simulation. Consequently, the complete raw
dataset contains approximately 27,700 samples per each variable.

Finally, all the signals were saved in .csv files. In each of these files, an accelera-
tion/deceleration profile with different health status and fault injection times was recorded.
These .csv files were uploaded to AWS platform, specifically to the AWS S3 service which
is an object storage service that offers industry-leading scalability, data availability, security
and performance.
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Table 2. Recorded variables from the SiL simulation platform.

Variable Name Acq. Freq [ms] Acq. Mode Explanation

Torque_Motores 64 Inst. Sum of the two parallel IM torques [Nm]
Tem_ref 64 Inst. Torque reference for each of the IMs [Nm]

Tem_ref_TL 64 Inst. Torque reference after control limitations [Nm]
wm1 64 Inst. Speed of IM1 [Hz]
wm2 64 Inst. Speed of IM2 [Hz]

Ia_medida 64 RMS Total output current of the inverter in phase A [A]
Ib_medida 64 RMS Total output current of the inverter in phase B [A]
Ic_medida 64 RMS Total output current of the inverter in phase C [A]

Icat 64 Inst. Input measured current to the system [A]
Icrw 64 Inst. Crowbar current [A]
Vbus 64 Inst. BUS voltage [V]

3.2. Raw Data Preprocessing

After acquiring and organizing the raw data in AWS S3 service, the next step is prepro-
cessing it. That means cleaning and manipulating the raw data to train different machine
learning algorithms. This stage is normally divided into two levels of preprocessing—
on the one hand, the general preprocessing and, on the other hand, the feature engineering.
To do this, the raw dataset was exploited with the AWS SageMaker service.

As for general preprocessing, it involves data cleaning, which consists of filtering
messy data, detecting outliers and missing values, applying standardization [61,62] and
even segmentation [63,64]. However, since the raw data source for this research is a
simulation platform, it can be said that cleaning tasks are not as necessary as they are for
the data from a real application environment.

As an example of the general preprocessing, a search for outliers was performed.
Therefore, different samples that can distort the training dataset were removed, as can be
seen in Figure 12.

Figure 12. Example of outlier detection tasks. The outliers circled in purple were removed. (a) IM phase currents plot with
outliers. (b) Scatterplot of the raw dataset with outliers. (c) IM phase currents plot without outliers. (d) Scatterplot of the
raw dataset without outliers.
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Furthermore, the entire independent set of variables was normalized, using Z-score
normalization [61,62], which rescales independent variables with a zero mean and unit-
variance range, as shown in Equation (1):

Z-score =
x(t)i − μi

σi
(1)

where Z-score is the normalized instance, μi and σi are the mean value and standard
deviation of the ith acquired variable, respectively.

After cleaning the raw data, feature engineering is applied to extract important in-
formation from the dataset, in order to efficiently feed the ML algorithms. In particular,
feature engineering can be divided into two main tasks, feature extraction (FE) and feature
selection (FS).

The main goal of feature extraction is to transform raw data into numerical features,
while preserving important information from the original data set. This can be done
manually by calculating features in domains such as time, frequency or time-frequency,
or automatically by applying modifications such as principal component analysis (PCA),
linear discriminant analysis (LDA), etc. In this research, 5 time-domain features were
extracted per each of the 11 initially recorded variables with a dynamic window, jumping
each 10 samples. These new statistical features are maximum, minimum, mean, variance
and standard deviation. As a result, from having a raw dataset matrix of 11 variables with
27,700 samples each, now we have 55 time-domain features with 2770 samples. This FE
operation is explained in Figure 13.

Figure 13. Schematic of the time-domain feature extraction method.

Then, feature selection is implemented, which means ranking the importance of
the extracted features by applying certain evaluation criteria, while discarding the less
important ones. In this article, the SelectKBest function with the F-test filter method from
sklearn library in Python was implemented. Therefore, the best 14 statistical features were
selected to train the ML algorithms. Figure 14 shows a list of the selected feature names,
as well as a barplot with the different scores of the features.
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Figure 14. Scores of the feature selection step and list of t-domain features.

At the end of this ML workflow step, the definitive dataset which will be used to train
and test the ML algorithms is obtained. Figure 15 shows a 3D scatterplot of the distribution
of three important features from the definitive dataset. In blue the healthy samples are
shown, in red the instances with unbalanced phase fault, and finally, in yellow the samples
with opposite-phase faults. If a physical interpretation of the different clusters is created, it
can be seen that while the samples with nominal health status (blue) have positive speed
values and stable ranges of torque and phase current, for both the samples with failure
due to imbalance and opposite connection phasing this is not the case. Regarding the
first fault mode (red), it can be seen that the variance of both the torque and the current is
considerable. This is due to the effect of the appearance of the phase current ripple that
translates into torque vibrations due to the control strategy. In the case of the opposite
connection phasing fault (yellow), the clearest effect can be seen in the speed, which in the
majority of the samples contains negative values without normalizing, as well as in the
mechanical torque, which never reaches the reference.
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Figure 15. 3D scatterplot after applying raw dataset preprocessing step from the ML workflow.

Although the different classes can be differentiated visually by colours, the classi-
fication task of new unseen instances should be performed by a previously trained ML
algorithm. Therefore, the main objective of this preprocessing step is to improve the
separability of classes as much as possible to facilitate the training process.

3.3. ML Model Selection and Training

The third step of this workflow consists of choosing the Machine Learning topology,
as well as training and validating the algorithm to leave it ready to be integrated into
the required application. For that, it is helpful to rely on the specific procedure shown in
Figure 16.

Figure 16. Training/testing process for a machine learning algorithm.

In the Model Selection phase, an empirical comparison of different algorithms from
the same topology is carried out and the one with the best results is selected. This phase is
divided into two basic tasks. On the one hand, in the former (Model Learning), algorithms
with similar characteristics (supervised, unsupervised, semi-supervised) are trained with
the training sub-dataset. That is to say, adjusting the internal parameters of each algorithm
to efficiently estimate the outputs. In this way, four different algorithms have been trained
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in these research: logistic regression (LR), support vector machine (SVM), random forest
(RF), and k-nearest neighbors (k-NN). On the other hand, the second task (Model Validation)
requires optimizing the hyperparameters, as well as validating the different algorithms
with the validation sub-dataset. When we refer to validation, we think of evaluating the
performance of the algorithms by different criteria. In this research, as we have been
working with supervised classification algorithms, the evaluation criterion applied is the
confusion matrix. From here, accuracies and precision values were analysed to select the
best algorithm. When speaking about accuracy, we refer to the percentage of the correct
classified values over the total classified samples. Regarding precision, it quantifies the
ability to classify the real positive samples correctly. It is worth mentioning that, given that
the analysed failure modes are considered catastrophic (when one of these failures occurs,
the entire system must be stopped to guarantee safety), within the misclassified samples
those classified as false negative are more important than the false positives.

Finally, in the Model Assessment phase, the trained and selected algorithm is tested
with new unseen data. If this last evaluation is positive, the ML model is supposed to be
ready to implement in the respective application.

In addition, it is important to have in mind that the most efficient way to perform this
training and testing process is to use independent sub-datasets at each stage. Therefore,
in this research, the dataset obtained from the preprocessing step of the workflow has been
split into three sub-datasets, namely, training, validation and testing sub-datasets. As a
result, 70% of the initial dataset was used for the Model Selection step and the remaining
30%—for the Model Assessment step.

The results obtained during the whole process of the ML workflow are collected in
Table 3.

Table 3. Accuracy and Precision results of the different algorithms during different steps of the ML workflow.

Steps
Accuracy [(TP + TN)/(Total Samples)] Precision [TP/(TP + FP)]

LR SVM RF k-NN LR SVM RF k-NN

Training with raw dataset 0.719 0.806 0.967 0.938 0.753 0.831 0.978 0.932

Training with t-domain features 0.848 0.921 0.975 0.933 0.872 0.923 0.982 0.933

Optimized algorithms testing 0.923 0.967 0.985 0.942 0.911 0.953 0.976 0.934

Regarding the accuracy of the algorithms, it is clear that this increases, on the one
hand, when preprocessing the raw data and, on the other hand, when optimizing the
hyperparameters of the algorithms. As a result, best values while classifying healthy,
current unbalanced and opposite-phase wiring health status have been obtained with the
random forest algorithm, with 98.5% accuracy. In terms of precision, something similar
happens. The algorithm which classified fewer samples as false positive is also random
forest, with 97.6% accuracy. Therefore, the trained, validated and tested RF model was
selected at the end of the training/testing process.

4. Conclusions

This article presents a ML-based FDD strategy for induction motor High Resistance
Connection faults, open-phase faults and opposite-phase wiring faults. In order to develop
this strategy, and due to the lack of faulty samples from field working conditions, these
data were generated using a Matlab/Simulink-based Software-in-the-Loop simulation. To
this end, these synthetic samples were used for training, validating and testing different
algorithms, such as logistic regression, support vector machine, random forest and k-
nearest neighbours. Previously, raw data preprocessing tasks, as well as feature extraction
and selection methods have been performed to improve the efficiency of the ML workflow.
The best results were obtained by optimizing the random forest ML algorithm, reaching
values of 98.5% for accuracy, and 97.6% for precision. Among all the available metrics for
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the evaluation of the ML algorithms, the false positive rate was prioritized, taking into
account the cost of maintenance shutdowns which can occur in industry.

As it was shown, the proposed method is capable of distinguishing the unbalanced op-
eration of the motor from opposite wiring problems. This will improve future maintenance
tasks, since the algorithm could guide the process of failure detection and isolation, even
preventing further damages. A data-driven approach has been applied in failure modes
that were previously approached using model-based or signal-based methods. Moreover,
the proposed solution was designed and implemented using the Amazon Web Services
cloud service, reducing the adaptation time for future industrial applications. With regard
to future lines of research, firstly, work must be done to improve the separability of classes
by means of advanced feature engineering techniques. In addition, the validation of this
method with Hardware-in-the-Loop, laboratory and field data will be performed.
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Abbreviations
The following abbreviations are used in this manuscript:

IM Induction Machine
FDD Fault Detection and Diagnosis
ML Machine Learning
DL Deep Learning
HRC High Resistive Connection
SiL Software-in-the-Loop
TCU Traction Control Unit
AWS Amazon Web Services
RMS Root Mean Square
LR Logistic Regression
SVM Support Vector Machine
kNN k-Nearest Neighbours
RF Random Forest
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Abstract: Artificial intelligence algorithms and vibration signature monitoring are recurrent ap-
proaches to perform early bearing damage identification in induction motors. This approach is
unfeasible in most industrial applications because these machines are unable to perform their nomi-
nal functions under damaged conditions. In addition, many machines are installed at inaccessible
sites or their housing prevents the setting of new sensors. Otherwise, current signature monitoring
is available in most industrial machines because the devices that control, supply and protect these
systems use the stator current. Another significant advantage is that the stator phases lose symmetry
in bearing damaged conditions and, therefore, are multiple independent sources. Thus, this paper
introduces a new approach based on fractional wavelet denoising and a deep learning algorithm to
perform a bearing damage diagnosis from stator currents. Several convolutional neural networks
extract features from multiple sources to perform supervised learning. An information fusion (IF)
algorithm then creates a new feature set and performs the classification. Furthermore, this paper
introduces a new method to achieve positive unlabeled learning. The flattened layer of several feature
maps inputs the fuzzy c-means algorithm to perform a novelty detection instead of clusterization in
a dynamic IF context. Experimental and on-site tests are reported with promising results.

Keywords: bearing diagnosis; early damage detection; unlabeled learning; deep learning; dynamic
information fusion

1. Introduction

Induction motors are present in most industrial processes because of their versatility
for many applications, efficiency and robustness to operate in severe conditions. Recent
studies have reported that 40% of operational failures caused in these machines are related
to damage from bearings, which can be separated into two categories. The first category
is the punctual damages that appear on a delimited bearing surface producing an impul-
sive mechanical vibration. The second category is the distributed damages that produce
continuous mechanical vibrations with low magnitude harmonics [1,2].

The most recurrent approach to achieving bearing condition monitoring and damage
diagnosis is to acquire vibration-based signals from accelerometers and perform supervised
learning algorithms. However, many industrial motors are unable to provide vibration
signals because they are installed at inaccessible locations or their housings are inadequate
to install new devices. The vibration data acquisition is also expensive, demanding new
sensors and devices to transduce, transmit and process [3]. Otherwise, current-based
data acquisition is available in most industrial electric motors because the stator current
is monitored for control, supply and protection purposes. Consequently, each motor
phase is a distinct data source for the machine status because the phases lose symmetry
due to disturbances, interferences, noises, intrinsic conditions, bearing damage or other
reasons [4,5].

In this context, the wavelet transform (WT) becomes a recurrent tool for signal pro-
cessing because of its advantage of a multiresolution analysis. The fractional wavelet
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transforms (FWTs) generalize the WT to represent signals in the fractional time-fractional
frequency domain, preserving sparsity, removing redundancy, denoising and narrowing
the resolution [6,7]. Therefore, appropriate denoising and reconstruction proceedings can
generate a database with multiple data sources from each motor phase.

Consequently, deep learning (DL) algorithms with a data-driven approach can extract
abstract features from multiple sources to improve the classification task [8,9]. Autoen-
coders [10], variational autoencoders [11], convolutional neural networks (CNN) [12,13],
generative models [14], recurrent neural networks (RNN) [15] and extreme learning [16],
among others, construct feature maps with deep levels of data abstraction. Moreover,
the DL approaches can outperform traditional signal processing techniques and feature
extraction methods to perform a bearing damage diagnosis [8,17].

Thus, this paper introduces a new deep learning approach based on an FWT, an
independent CNN and long short-term memory (LSTM) to perform bearing damage
identification from multiple sources. The raw and denoised signals become the multiple
inputs of the maps of several features with different receptive fields. Each feature map
inputs an independent flattened layer (FL) that feeds several artificial neural networks
(ANN) to perform supervised learning and a SoftMax classification. LSTM cells are
introduced in the feature maps with a large receptive field to improve the long time-
dependency feature extraction. An information fusion (IF) algorithm unifies each SoftMax
output into a novel feature set, reducing multiple source redundancy and preserving the
bearing condition monitoring. With this new approach, the information fusion problem is
replaced by a supervised classification task performed by a support vector machine (SVM).

Otherwise, in most industrial applications, the electric motors with damaged bearings
are prevented from performing their nominal functions because of industrial process safety
reasons. The bearing damage produces vibration signatures that propagate to pumps,
compressors, pipelines or other types of loads that affect processes or subsystems [18].
Therefore, the acquisition of a labelled database with several damages is unrealistic or
impracticable for most industrial facilities. However, one-class positive unlabeled learning
(PUL) algorithms can detect novelty in unlabeled databases. The positive class, in this case,
is the healthy bearing signals [19,20].

Thus, this paper introduces a second new approach that uses the feature maps from
multiple phases (raw and denoised sources) to input several fuzzy c-means (FCM) algo-
rithms in a paradigm to detect novelty in PUL instead of clustering data. Assuming that a
healthy class is available and two clusters are present in each source, the Fisher discrimi-
nant ratio (FDR) and the Kullback–Leibler divergence (KLD) can monitoring the center and
distribution behavior. A similar IF approach unifies the FDR and KLD of each FCM into a
new feature set, preserving the bearing condition monitoring while inputting a SoftMax
classifier to perform the bearing damage identification. The results of experimental and
on-site tests with both approaches (supervised and PUL) are promising.

The sequence of this paper presents the theoretical background in Section 2. The test
rig, setup and configurations are described in Section 3. Section 4 describes experimental
and on-site tests. Section 5 presents the conclusion.

2. Theoretical Background

2.1. Fractional B-Spline Wavelet Transform

Fractional B-splines (FS) are the extended version of splines with order α > −1 defined as:

βα±(x) =
1

Γ(α + 1)
Δα+1± xα± (1)

where k ∈ Z and Γ(α + 1) is the gamma function. The one-side causal function (+) is
xα
+ = xα and the anti-causal (–) is xα− = (−x)α

+. The fractional finite difference operator is:

Δα± f (x) = ∑∞
k=0(−1)k

(
α
k

)
f (x ∓ k). (2)
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The FS is obtained by interpolating polynomial B-splines. The centered fractional
B-splines of degree α are defined by the convolution operator � as:

βα
�(x) = β

α−1
2

+ � β
α−1

2− (3)

and Δα∗ ↔∣∣1 − e−jw
∣∣α denotes the symmetric fractional finite difference operator. The

Fourier transform of the one-side causal and centered fractional splines are calculated
as follows:

β̂α
+(w) =

(
1 − e−jw

jw

)α+1

β̂α
�(w) =

(
sin(w/2)

w/2

)α+1
. (4)

Fractional B-splines satisfy all requirements to construct a wavelet basis for an α > −0.5
given by:

βα(x/2) = ∑
k∈Z

hα(k)βα(x − k) (5)

where the filters hα
+(k), hα−(k) and hα

�(k) are defined as:

hα
+(k) =

1
2α

(
α + 1

k

)
↔ ĥα

+(w) = 2
(

1+e−jw

2

)α+1

hα
�(k) =

1
2α

(
α + 1

k

)
↔ ĥα

�(w) = 2
(

1+e−jw

2

)α+1
.

The anti-causal (–) is obtained by substituting hα−(k) = hα
+(−k). The general approach

to orthonormalize the fractional splines generates the scaling function given by:

φ(x) = ∑
k∈Z

(
aα

ϕ(k)
)− 1

2
βα(x − k) (6)

where (aα
ϕ(k))

−1/2 is the convolution of the FS sequence. The Fourier transform Aα
ϕ(w) is

defined as:
aα

ϕ = β2α+1∗ (k) Aα
ϕ(w) = ∑

k∈Z
β2α+1∗ (n)e−jwn.

Leading the corresponding two-relation:

φ(x/2) = ∑
k∈Z

hα
⊥(k)φ(x − k).

The low-pass filter and high-pass filter can be written as:

Hα
⊥(w) = ĥα(w)

√
Aα

ϕ(w)

Aα
ϕ(2w)

Gα
⊥(w) = e−jw Hα

⊥(w + π).

Thereby, the behavior of the filter tends to an ideal low-pass and high-pass filter as
α → 0 [6,21]. The overlapping group shrinkage (OGS) algorithm reconstructs the denoised
signal by observing the wavelet coefficients and performing a convex regularization while
minimizing a cost function [22,23]. Therefore, in this paper, the equivalent filter bank
denoises the raw signals to input the feature maps.

2.2. Long Short-Term Memory

A recurrent neural network (RNN) is a class of ANN that identifies patterns in se-
quential data. However, an RNN has a few drawbacks for most applications including
gradient vanishing and gradient explosion in the backpropagation. Long short-term mem-
ory (LSTM) solves the gradient vanishing problem, using a memory cell that improves the
RNN units [24,25]. Figure 1 shows a typical LSTM cell.
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Figure 1. Long short-term memory cell [25].

The LSTM gates control the information flow of the current state, the input gate (i) and
the output gate (o) [25]. The forget gate (ft) determines how much previous information
should be removed or saved as follows:

ft = σ
(

w f zzt + wh f h(t−1) + b f

)
where σ is a sigmoid function, w is the weight, zt is the current input, h(t−1) is the output
of the previous cell and b f is the bias. The input gate determines the behavior of xt, the
previous layer h(t−1) and the current state (Ct) as follows:

it = σ
(

wzizt + whih(t−1) + bi

)
Ĉt = tan h

(
wxczt + whch(t−1) + bi

)
.

The output gate controls the cell information and state as follows:

ct = ct−1 ft + itĈt

ot = σ
(

wzozt + whoh(t−1) + bo

)
ht = ot × tan(ct).

Thus, the LSTM can memorize relevant time-dependent features to discriminate
long-time delay events with overlapping low-frequency components [26].

2.3. Convolutional Neural Networks

The basic CNN contains three structures that provide feature extraction, perform
classification and represent the decision with a probabilistic function. The convolution
layer (CL) performs dot products, preserving the spatial structure of the previous layer
and output abstract features [27,28]. The convolutional process is described as follows:

xl
j = f

⎛⎝ ∑
i ∈Mj

xl−1
i ∗ kl

j + bl
j

⎞⎠ (7)

where ∗ is the convolution operation and xl−1 denotes the input data of the previous layer.
Each layer consists of nl kernels with a weight matrix kl

j and a bias vector bl
j. The output

of the nonlinear active function f (∗) is the nl matrices xl
j where j = 1 : nl corresponds

162



Energies 2021, 14, 2509

with n kernels from the layer l. The activation function leaky-Relu has a linear identity for
positive values and a slope for negative values to avoid gradient problems.

The pooling layer (PL) down-samples the previous CL to control the feature map
size and save abstract information. The function max

(
xl

j

)
= xl+1

j is the most recurrent
down-sampling operation in CNN models. Therefore, the feature map is an independent
structure containing successive CLs and PLs that control the size and depth to extract more
abstract features. The last PL can input LSTM cells to extract time-dependent features
or be transformed into a flattened layer (FL) to input an ANN or other classifier [27,28].
The third structure is the SoftMax probabilistic distribution operator that transforms the
classifier output zi into a normalized vector as follows:

pi =
e(zi)

∑N
j=1 e(zj)

pi ∈ [0, 1]. (8)

These three structures are used in different configurations to extract abstract features
and improve accuracy classification. The feature maps can also be arranged in parallel
with profound and shallow receptive fields to extract features from multiple sources [29].

2.4. Fuzzy C-Means Algorithm

The one-dimensional FL with data X = {x1, x2, . . . xk} inputs the FCM algorithm to
divide X into several clusters. The objective function of the FCM is defined as follows:

J =
c
∑

i=1

k
∑

j=1
um

i,j

∣∣∣∣xj − vi
∣∣∣∣2

s.t.
c
∑

i=1
uij = 1, 0 ≤ uij ≤ 1

where U = [uij]c×k is a membership matrix, m > 1 is the fuzzifier, vi are the prototypes
and c is the number of clusters. The solution for updating the partition matrix and the
prototypes is given by:

ui,j =
(
∣∣∣∣xj − vi

∣∣∣∣2)− 1
m−1

∑c
q=1 (

∣∣∣∣xj − vq
∣∣∣∣2)− 1

m−1
vi =

∑k
j=1 um

i,jxj

∑k
j=1 um

i,j

.

A recurrent approach to stop criteria is a threshold between two successive parti-
tions [30]. The fuzzy C-means can perform bearing detection and classification in an
unlabeled context, presenting remarkable results with vibration-based signals. The main
advantage is that the FCM algorithm allows changes in the regularization, cluster shape,
cost function and membership function to improve the performance. The intra-cluster
variance can also be minimized by adjusts in the fuzzifiers, keeping an adequate boundary.
Indeed, the support vector data description (SVDD) and the one-class SVM present bound-
ary problems including loose boundaries, data rejection and outlier misclassification among
others that increase the complexity of the distribution interpretation and classification.

In this paper, the Fisher discriminant ratio (FDR) and Kullback–Leibler divergence
(KLD) perform center monitoring and distribution behavior in the PUL context. Initially,
an FL from a healthy source inputs the FCM algorithm, configurated in a paradigm to
identify two clusters. Therefore, if the input remains healthy, the difference between the
centers and distribution divergence must remain constant after successive batches.
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2.5. Information Fusion

Multiple sources can merge into a new feature set throughout information fusion
algorithms (IF) [31,32]. Assuming that s samples, c classes and n independent sources and
classifiers are available, the features set from each source Xn is represented as follows:

X1 =
[
x1

1, x1
2, . . . , x1

s
]

X2 =
[
x2

1, x2
2, . . . , x2

s
]

Xn =
[
xn

1 , xn
2 , . . . , xn

s
]
.

Therefore, n feature sets input n CNNs to classify Ci classes in each feature set Xn.
The conditional probability P(·|·, ·) of the class i based on the observation of k CNN on the
sample xk

j is defined as:

Pk,j
i = P

(
Ci

∣∣∣xk
j , CNNk

)
i = 1 : c j = 1 : s k = 1 : n. (9)

All combinations of CNNk are rearranged in the matrix Pk with the size c × s. The
output of all classifiers is then merged to the (c × n)× s matrix P as follows:

Pk =

⎡⎢⎢⎣
Pk,1

1 · · · Pk,s
1

...
. . .

...
Pk,1

m · · · Pk,s
m

⎤⎥⎥⎦ P =

⎡⎢⎣ P1

...
Pn

⎤⎥⎦. (10)

The task of analyzing multiple sources becomes a task of classifying the new feature
set P. Consequently, the IF approach for the FCM is similar. The flattened vector from n
feature maps input n FCM. The s samples are replaced by batches with measures mj (KLD
and FDR) to form the feature sets:

X1 =
[
FDR1

1, KLD1
1, . . . , FDR1

s , KLD1
s
]

X2 =
[
FDR2

1, KLD2
1, . . . , FDR2

1, KLD2
1
]

Xn =
[
FDRn

1 , KLDn
1 , . . . , FDRn

1 , KLDn
1
]
.

Therefore, n FCM identifies the healthy class (c = 1) or detects the novelty (c = 2) of
Xn. The conditional probability P(·|·) of the class Ci based on the observation of k FCM on
the measure mk

j is defined as:

Pk,j
i = P

(
Ci

∣∣∣mk
j , FCMk

)
i = 1 : c j = 1 : s k = 1 : n. (11)

This new approach leads to similar Pk and P matrices of Equation (10), which depends
on the FCM performance, batch size and number measures.

3. Datasets

The tests were performed with every current-based signal developed by the Chair of
Design and Drive Technology from the University of Paderborn in Germany containing the
current-based signals from an induction motor. Two current probes acquired signals from
the test rig with a sampling frequency of 64 kHz, a rotor speed of 900 rpm and 1500 rpm
(N09 and N15) and loading conditions of 0.1 Nm and 0.7 Nm (M01 and M07). The classes
of these damages were healthy and incipient, distributed and punctual damages [33]. In
this test rig, the bearings were located externally from the induction motor to extract
more sensitive vibration-based information. However, the internal bearings produced
a few effects in data distribution that might cause misclassification in machine learning
algorithms that learn from external bearing damage.

This work also used the test rig available at CISE, Electromechatronic Systems Research
Centre at the University of Beira Interior in Portugal, to acquire bearing damaged current-
based signals. The test rig consisted of an inverter-fed three-phase squirrel-cage induction
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motor, a programmable AC power source of 0~300 V, 12 kVA, 192 Amps, 15~1.2 kHz
(Chroma), a data acquisition device USB-6366 (National Instruments) and a mechanical
system that provided a stable load with speed control. Two current probes sent the stator
currents to the acquisition board with a sampling frequency of 44 kHz, producing samples
with a rotor speed of 1800 rpm and loading conditions of 0.1 Nm and 0.7 Nm. The
first CISE damaged bearing had an incipient punctual damage in both rings caused by
electrical discharges. The inner ring damage diameter was 1.5 mm and the spheres and
cage remained intact. The outer ring had two opposite damages with diameters of 2.0 mm
and 1.5 mm. This type of damage is common in industrial machinery but it was absent in
the Padeborn dataset. The second CISE damaged bearing had punctual damage (hole) of
2.0 mm in the outer ring. Different from the Padeborn test rig, the CISE test rig inserted the
damaged bearing at the fan on the drive-end side of the induction motor.

Pre-Processing

All stator phases (R1 and R2) of each bearing damage from both datasets were de-
noised with a FWT and reconstructed with the OGS algorithm to generate F1 and F2 signals.
Several signal segments were then rearranged in a square matrix t × t to convert 1-D sig-
nals into grayscale images (base2). In this work, the segment t was defined by the lower
motor speed that produced (64,000× 60)/900 samples per revolution (�4266). Therefore,
t2 = 4096 samples produced the normalized gray images with a size of 64 × 64. The sets
of gray images from R1, R2, F1 and F2 sources inputted two independent arranges (A1 and
A2) of feature maps with a profound and shallow receptive field. Table 1 summarizes the
profound configuration, which was a conventional feature map with four CLs and PLs.

Table 1. Feature map architecture with a profound receptive field (A1).

Layer K. Size K. Number Input Output

CL 1 9 × 9 4 64 × 64 64 × 64
PL 1 2 × 2 4 64 × 64 32 × 32
CL 2 7 × 7 6 32 × 32 32 × 32
PL 2 2 × 2 6 32 × 32 16 × 16
CL 3 5 × 5 8 16 × 16 16 × 16
PL 3 2 × 2 8 16 × 16 8 × 8
CL 4 3 × 3 10 8 × 8 8 × 8
PL 4 2 × 2 10 8 × 8 4 × 4
FL 10 × 16 1 × 160

The feature map with a profound receptive field (A1) consisted of successive CLs and
PLs to extract deeper abstract features. The kernel size of the CLs reduced, concentrating
the abstract information into more compact structures, increasing the number of kernels.
This procedure allowed the extraction of more abstract features with different kernel
configurations. The PL controlled the output size through down-sampling operations
while grouping relevant information, allowing the CL to increase the kernel number. The
last PL inputted an FL with a 1 × 160 dimension. Thus, this feature map was capable of
extracting abstract information at each CL, increasing the number of kernels to diversify
the feature type.

The shallow receptive field (A2) was a feature map with two successive CLs and PLs
and LSTM cells to extract long time-dependent features. In this configuration, the last cell
of LSTM 2 also inputted an FL. Table 2 summarizes the shallow configuration.

This feature map consisted of a particular arrangement (A2) to extract shallow abstract
features within a large receptive field. The CL and PL controlled the feature map size,
avoiding deep features and allowing diversity in the kernels. The PLs reduced the feature
map size, revealing inner relations in each kernel. PL 2 inputted the LSTM cells that
behaved as recurrent neural networks, saving relevant time-dependent features to input an
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FL. Indeed, the main advantage of the LSTM cells was that the internal structures controlled
the flow of relevant information, keeping long-time relevant features.

Table 2. Feature map architecture with a shallow receptive field and LSTM cells (A2).

Layer K. Size K. Number Input Output

CL 1 9 × 9 5 64 × 64 64 × 64
PL 1 4 × 4 5 64 × 64 16 × 16
CL 2 7 × 7 10 16 × 16 16 × 16
PL 2 4 × 4 10 16 × 16 4 × 4

LSTM 1 32 cells 10 × 16 10 × 32
LSTM 2 16 cells 10 × 32 1 × 16

In summary, the multiple sources (4) inputted each feature map arrangement (2) to
generate eight independent FLs. The supervised learning was performed by eight ANNs
with a stochastic gradient descent, a learning rate at 0.0015, momentum at 0.5 and L2
regularization. The training set contained 1000 samples for each class (4000 in total) while
the test set had 250 samples for each class. Each SoftMax had four outputs corresponding
with each class. The IF unified the output from each SoftMax into the P matrix and a support
vector machine performed the classification task. All possible four class combinations
with different severity indexes were performed and the results were presented in terms of
average accuracy.

Otherwise, in the PUL context, the objective was to identify incipient bearing damage
using the KLD and FDR measures from FCM algorithms. Therefore, all possible combina-
tions for healthy versus damaged signals with A1 and A2 arranges were performed.

4. Experimental and On-Site Tests

4.1. Supervised Learning

This research compared R1 and R2 and F1 and F2 performance to verify the effec-
tiveness of the IF. The average accuracy of three operation conditions (N15M01, N09M07,
N15M07) is summarized in Table 3.

Table 3. Average accuracy of supervised learning.

Source Earlier Punctual Distributed

R1 91.38 94.82 91.87
R2 90.26 94.76 91.74
F1 91.70 95.21 92.24
F2 91.92 96.43 92.18

R1 and R2 93.56 95.97 92.65
F1 and F2 93.82 96.65 93.32

IF 94.11 97.02 93.55

The performance of F1 and F2 reached a similar accuracy of the IF with the four
signals. Considering the implementation aspect, one can choose to fuse the F1 and F2
sources instead of performing the four sources (IF) to reduce the computational efforts,
keeping a high accuracy performance. However, all tests performed in this paper were
conducted with four sources in an IF context. Condition N15M07 improved the accuracy
for each type of damage while the other two conditions decreased the average. An SVM
with a linear kernel and a soft margin approach performed the P matrix classification. The
setup of hyperparameters, training, stop criteria and kernel configurations were omitted
for the sake of brevity. The polynomial and Gaussian kernels performed similar results
although with more convergence time.
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4.2. Unlabeled Learning

Five recent FCM algorithms were performed to identify novelty in a one-class PU
context. The first was the FCM with a genetic optimization (FCM-GO) algorithm that
searched for a suboptimal solution [34]. The Gustafson–Kessel (GK) clustering algorithm
employed the Mahalanobis distance to update centers and proto-clusters. The FN-DBSC
could be characterized by a convex function with a particular set of hyperparameters [35].
The FCM with a focal point (FCMFP) introduced a regularization term into the loss func-
tion [35]. Lastly, the Gath-Geva (GG) clustering is an extended version of the FCM that
performed the previous detection of sizes and densities of clusters [36]. These fuzzy-
based algorithms could perform novelty detection in the PUL context with an appropriate
initialization method.

Assuming that two clusters were present in the PU data distribution, a previous batch
(−τ, t0) defined the centers and boundaries of these pseudo-clusters. In parallel, the
KLD and FDR measured the distribution and the center behavior. A successive batch with
current data (t0,−τ, ) was then used to calculate two new pseudo-clusters. The comparison
between the KLD and FDR of previous and current batches identified the changes in the
PU data. Figure 2 resumes the cluster behavior of the FCM algorithms in a one-class PU
novelty detection paradigm.

Figure 2. Center and distribution behavior of clusters.

Thus, the KLD and FDR measures could identify changes in the data distribution to
perform novelty detection. In this case, a healthy bearing signal produced small changes in
these measures because their outliers and noises were uncorrelated with bearing damage.
Consequently, when damage arose, the previous cluster contained data from the healthy
bearing (−τ, t0) while the current cluster contained data from the damaged bearing. This
discrepancy produced the center movement and divergence in distributions because the
clusters acquired data from the same signal in different conditions.

Indeed, healthy bearing distributions can be described as symmetric alpha-stable
probability density functions (PDFs) and damaged bearing distributions can be described
as non-symmetrical alpha-stable PDFs with elongated, exponential or dense tails, which
depend on the damage type and location. That is the principal advantage of KLD, which
can monitor this complex distribution computing the PDF with numerical methods. Fur-
thermore, the severity of the failure induced more significant changes in the distribution
and center behavior. The relative distance between centers provided a measure to monitor
the bearing damage evolution, quantifying the severity. Therefore, early bearing damage
detection can be extended to damage severity monitoring.

In this paper, the multiple sources and arranges (A1 and A2) created the FLs that
inputted eight FCM algorithms to measure the KLD and FDR and create the P matrix. The
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cumulative summation of each KLD and FDR, combined with changes in the P, performed
earlier bearing damage detection in PUL. Table 4 presents the average performance of
algorithms from healthy versus earlier bearing damage identification under different load
and speed conditions.

Table 4. Results of earlier damage identification with FCM-IF.

Source N15M01 N09M07 N15M07

FCM-GO 86.15 89.65 91.60
GK 87.32 88.91 92.13

FN-DBSC 86.31 89.00 91.93
FCMFP 87.45 89.72 91.23

GG 88.06 89.96 91.15

These algorithms presented a similar performance in a one-class PU context, con-
firming that it was challenging to identify incipient bearing damage with a stator current
under several operating conditions. Indeed, the identification of distributed and punctual
damage was performed with superior accuracy in the N15M07 condition but the results
were omitted for the sake of brevity. This research also performed these algorithms with
time, frequency and time-frequency features and the accuracy reached 88% in the best-case
scenarios. Furthermore, the performance of these FCM algorithms was similar to the
supervised learning approach of Table 3, attesting that the experimental tests presented a
promising result.

In this context, both approaches (CNN-IF and FCM-IF) achieved a high accuracy in
condition monitoring and bearing damage identification because of the FWT and LSTM,
allowing that conventional techniques (e.g., a kurtogram and spectral envelope) provided
the damage location (inner ring, outer ring or spheres). Indeed, well-known methods
could predict the location of the punctual and distributed bearing damage with a high
accuracy by a vibration signal analysis [37,38]. However, considering current-based signals,
it was non-trivial to extract the relevant information without performing an adequate
denoise technique (FWT) or monitoring relevant long-time behavior (LSTM). A remarkable
example is that the FCM-IF could detect a novelty in current-based signals (e.g., a change
in distribution) with insufficient information (e.g., harmonics buried in noises) to predict
the location with a kurtogram or spectral envelope.

4.3. On-Site Tests

On-site tests were conducted in a wastewater pump driven by an electric motor at
a gas processing facility (Figure 3). Initially, the supervised learning was achieved with
the historical data, allowing the training and testing of the CNN-IF algorithm with two
incipient bearing damage samples caused by wear and pitting, three punctual damages
(electrical discharge, scratches and pitting with low severity) and two distributed damages.

This motor operated in two predominant speed conditions of 1500 rpm and 1800 rpm
with a variable load that depended on process demand without vibration condition mon-
itoring. The training accuracy reached around 92.15%, 95.26% and 93.08% for incipient,
punctual and distributed damage identification, presenting similar results according to
Table 3. In these tests, the data acquisition avoided the load transient, interrupting the
training until the process (wastewater process) reached a more stable and stationary regime.
This approach reduced the misclassification of the supervised algorithm.

The CNN-IF algorithm ran in real-time for sixteen weeks, performing bearing damage
monitoring in both speed conditions with a variable load until the detection of an incipient
distributed damage caused by wear. The kurtogram and the spectral envelope analysis
using the R1 and R2 current-based signals were able to identify the same damage 48 h
later. Indeed, the low magnitude harmonics, the poor SNR and the loss of information in
the magnetic field reduced the performance of these approaches. Thus, the CNN-IF could
perform transfer learning from test benches to on-site historical data (target source), saving
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the relevant inner structure to retrain partially with on-site data if available. It was also
possible to perform transfer learning between similar on-site machines.

 

Figure 3. Industrial electric motor driving a wastewater pump.

The real-time test in a one-class PU context was then conducted with FCM-IF algo-
rithms to perform early bearing damage detection in a centrifugal pump driven by the
electric motor presented in Figure 4. In this case, the CNN-IF method was inviable because
only two bearing damages caused by wear were reported in two years of historical data.
This industrial motor pump was the main machine at this facility, running at 1800 rpm
with variable loading that depended on processing demand.

 

Figure 4. Industrial electric motor driving the principal centrifugal pump.

The motor condition monitoring was performed by current envelope signatures while
an automatized protection system prevented high levels of vibration and current. Therefore,
there was no vibration-based condition monitoring or other dedicated systems to perform
an independent bearing damage analysis. Figure 5 present the behavior of the most
sensitive KLD, FDR and FDR moving average (FDR-MA) of the F1 source and the FCM-GO
algorithm. In this case, the bearing damage was caused by wear and the early detection
occurred at sample 240 by either the KLD or FDR. The current envelope signature identified
the same damage at sample 282, approximately 50 h of difference.
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Figure 5. Early bearing damage detection caused by wear.

Indeed, the most sensitive FDR and KLD presented a drastic change around 200 samples,
indicating that the distribution was becoming different and that the centers were moving in
a new pattern. It was possible to identify these changes with the FDR and KLD because the
FWT extracted relevant information and the LSTM saved the abstract long-time behavior
from the healthy signal. Moreover, it was difficult to detect incipient wear by analyzing
current-based signals with a kurtogram or spectral envelope. The distributed damage
information produced low magnitude harmonics and energy information that were buried
into noise due to a poor SNR.

Furthermore, every FCM related to this work was performed in real-time with this
electric motor. The results were similar to Figure 5, surpassing the current envelope
signature performance with an average difference of 50 h. Thus, the performance of this
approach was independent of the FCM-IF choice but depended on sources, feature maps,
measures and the initialization method. After the bearing damage detection (novelty
detection), the clusters moved apart gradually because the successive data (damage versus
damage evolving) produced a similar center and distribution. This effect occurred after
300 samples. Furthermore, a few slight variations in the KLD and FDR indexes might
indicate that the severity evolved. Both on-site motors were driven by inverters but this
methodology could be also applied in line-connected motors.

5. Conclusions

This research introduced the challenges of current-based condition monitoring and
an early bearing damage diagnosis. Classic methods in supervised learning context that
extract features in time, frequency and the time-frequency domain provided a high accuracy
in a vibration-based analysis. However, these methods were insufficient for current-based
approaches due to a poor SNR and low magnitude harmonics. The principal drawbacks for
current-based bearing condition monitoring are the poor SNR, the loss of information in the
magnetic field, saturation harmonics, electrical faults, interference and indirect measures,
among others. Consequently, the traditional signal processing techniques that denoise and
extract information from vibration-based signals had a lower performance in the current-
based analysis. Current-based bearing condition monitoring has less available information
(e.g., indirect measure) and more feature extraction complexity (e.g., a poor SNR). Thus,
this paper introduced two new approaches with denoise methods and machine learning to
detect incipient bearing damage by current-based signals with a high accuracy.

Therefore, the first contribution of this paper was the development of the fractional
wavelet B-spline to denoise two phases of the stator current, taking advantage of mul-
tiple source analyses. The feature maps of CNNs then extracted profound and shallow
features from each source while the shallow map contained LSTM cells that identified long
time-dependent behavior. The ANN and SoftMax performed the classification and the

170



Energies 2021, 14, 2509

information fusion algorithm merged each SoftMax classification into a new matrix. This
approach addressed the multiple source information fusion problem to a supervised classi-
fication task. Indeed, this contribution improved the accuracy of current-based approaches
because two arrangements of feature maps extracted more relevant and abstract features
with different receptive fields from multiple sources.

The acquisition of a labelled database is unfeasible in most industrial applications
because industrial motors are prevented from performing their functions under damaged
conditions. Therefore, the second contribution of this work used multiple sources in two
arrangements of feature maps and several FCM algorithms to perform bearing damage
identification in a one-class positive unlabeled context. This new approach calculated the
KLD and FDR from successive FCM batches to input an information fusion algorithm that
merged these measures into a new matrix to perform bearing condition monitoring and
early damage identification.

Experimental tests with Paderborn and CISE datasets were performed with the most
representative type of damage and severity under several operation conditions with FW-
CNN-IF and FW-FCM-IF algorithms. Both contributions presented remarkable results
for incipient and distributed damage detection by current-based signals. Furthermore,
on-site tests were performed in a gas processing facility and these algorithms surpassed
the harmonic and envelope spectrum analysis every time.
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Abstract: The fault diagnosis of electrical machines during startup transients has received increasing
attention regarding the possibility of detecting faults early. Induction motors are no exception, and
motor current signature analysis has become one of the most popular techniques for determining
the condition of various motor components. However, in the case of inverter powered systems, the
condition of a motor is difficult to determine from the stator current because fault signatures could
overlap with other signatures produced by the inverter, low-slip operation, load oscillations, and
other non-stationary conditions. This paper presents a speed signature analysis methodology for a
reliable broken rotor bar diagnosis in inverter-fed induction motors. The proposed fault detection is
based on tracking the speed fault signature in the time-frequency domain. As a result, different fault
severity levels and load oscillations can be identified. The promising results show that this technique
can be a good complement to the classic analysis of current signature analysis and reveals a high
potential to overcome some of its drawbacks.

Keywords: fault detection; fault diagnosis; frequency analysis; induction motors; rotating machines;
signal processing; spectral analysis; time-frequency decompositions

1. Introduction

The use of induction motors (IMs) in industrial applications with variable speed
systems is widespread because they are more reliable, versatile, and efficient than line-fed
machines [1]. High-performance IMs are considered robust machines, but they require
reliable condition monitoring systems to avoid unprogrammed stops in production lines
and reduce maintenance costs. The rotor cages of IMs are usually made from copper bars;
these bars are exposed to failures in applications with variable operating conditions because
of the excessive mechanical stresses involved [2]. Much attention has been directed to the
study of broken rotor bar (BRB) fault, because if undetected it can develop into catastrophic
machine breakdown [3]. Many papers in the literature have studied the diagnosis and
condition monitoring of the IM rotor, but most only deal with machines operating at a
constant speed and whole broken rotor bars. Nowadays, variable speed systems where
the IM is driven by voltage source inverters (VSIs) are more common; they are used in
a wide range of applications—namely, material handling, lifting, textile, compressors,
pumps, mills, winders, and lifts [4]. These VSIs are usually pulse width modulators (PWM)
that produce non-sinusoidal voltages using a solid-state inverter by rapidly switching the
output voltage on and off. It is known that no matter how accurate the switching of the
PWM is, they are an inherent source of harmonic distortion in IM voltages and currents,
which has a negative impact on the efficiency of fault detection techniques [5].
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Motor current signature analysis (MCSA) is the most popular method in preventive
maintenance and it is considered the reference technique for broken bar fault diagnosis
in squirrel-cage motors. The stator current signature analysis of motors under transient
operation (such as startup) has received special attention in the last decade as an alternative
to improve the reliability of stationary analysis and reduce the rate of false alarms in the
classic MCSA [6,7]. To do this, detection and diagnosis methodologies have been proposed
based on time-frequency (t, f ) decompositions capable of identifying fault signatures and
complementing the analysis of the stationary current signals [8–12]. These works achieve
the identification of fault signatures and extract condition indicators from the single-phase
electrical current in the startup transient. Nevertheless, most of these methods assume a
line-fed induction machine, and the analysis of transients, such as startups, in inverter-fed
IMs is still an active field and an open question.

Different approaches for the condition monitoring of inverter-fed IMs under startup
transient regimes have been studied recently [13,14]. BRB detection under non-stationary
conditions consists of tracking fault-related signatures called sideband harmonics. Unlike
motors powered directly from the grid, VSIs introduce several harmonic components
produced by the PWM that overlap with these signatures, obstructing their recognition and
the accuracy of the fault diagnosis. Different tools have been proposed to overcome these
issues and improve the reliability of fault diagnostic methods based on transient analysis.
These tools include adaptive transforms [15,16], non-linear signal decompositions [17,18],
demodulation schemes [19–21], statistical methods [22–24], intelligent algorithms [25–28],
and combined techniques. However, all these methodologies focus on the analysis of the
stator current signal.

This paper proposes the analysis of the rotor speed signal for the detection of broken
rotor bars at incipient states in inverter-fed induction motors during the startup transient.
This technique is also used to distinguish load oscillations to avoid false positives. It is
demonstrated that the speed analysis of induction motors in the time-frequency domain
offers a reliable detection of broken rotor bars when the stator current analysis fails due
to low-slip operation, load oscillations, overlapped signatures, and other non-stationary
conditions. The proposed technique is used to obtain and evaluate speed fault pattern
variations and evolutions along the startup transient. The method is applied to real speed
signals from laboratory experiments and compared to the analysis of the stator current
of an induction motors subjected to different fault severities and load oscillations. This
proposal can be a valuable and attractive complement to other techniques based on stator
current, vibrations, or thermal analysis [29–31]. Results demonstrate that the analysis of
the motor speed during startups in VSI-fed IMs can detect broken rotor bars, even at low
fault severities, and distinguish this fault from load oscillations to avoid false positives.
This proposal can be a valuable and attractive complement to other techniques based on
stator current analysis and can help to avoid false alarms in VSI-fed IM systems. The
capability of speed analysis is examined in this work, which is an extended contribution of
the conference paper presented in [32].

2. Influence of Rotor Fault on Motor Speed

2.1. Theoretical Background

Electrical current analysis techniques for detecting BRB in IM are based on how the
power spectral density (PSD) of the stator current is affected. This fault type increases the
bar resistance, produces asymmetry in the airgap’s electromagnetic field, and gives rise to
sideband harmonics [33] located at:

fr f = fs(1 ± 2ks), k = 1, 2, 3..., (1)

where fs is the power supply fundamental frequency, s is the rotor slip, and k is an integer.
The low-order components (when (k = 1)) are of special interest for fault diagnosis because
they have larger amplitudes than high-order components. The (1 − 2s) fs component is
known as the left side-band harmonic (LSH) and the frequency component at (1 + 2s) fs is
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known as the right side-band harmonic (RSH), since they are located to the left and the
right of fs in steady-state analysis. In a faulty IM, the air-gap torque is affected by the flux
linkages and the stator currents. The linkages fluxes are given by:

ψ =
∫
(va − Rsia)dt, (2)

where va is the stator voltage, Rs is the stator resistance, and ia is the stator current. The
interaction of the (1 ± 2s) fs components with the fundamental magnetic flux produces an
oscillatory torque at frequency 2s fs in the total torque, which is given by:

∑ Γ(t) = Γ0 + 3Pψ
N

∑
k=1

I
′
ksin(2ks fst + αψ − αk), (3)

where Γ0 is the dominant torque component produced by the fundamental component
of the stator current, αk is the ripple phase, and P is the pole-pair number. The fault
components at the torque ripple produce a low-frequency modulation on the motor speed,
with twice the slip frequency when the rotor is damaged [34]. The content of the angular
speed for a faulty motor can be modeled in (rad/sec) by [35]:

ωr(t) = ωm(t) +
N

∑
k=1

3Pψ

J2sω
I
′
kcos(2ks fst + αψ − αk), (4)

This can be expressed in (r.p.m.) by:

nr(t) =
120ωr(t)

4π
, (5)

where 2ks fs are the speed oscillations due to the faulty rotor, J is the inertia, and ωm is the
angular speed fundamental component for a healthy induction motor in r.p.m., given by:

nm(t) =
120 fs(t)

P
(1 − 2s(t)). (6)

The most used method to detect fault-related oscillations in induction motors is the
steady-state analysis of the stator current based on frequency analysis by Fourier transform
(FT). Spectral leakage around the first harmonic is the main drawback of this analysis,
whose causes are non-strict stationary conditions, non-integral digital frequencies, and the
inherent finite time window of the analysis [36]. A comparison of the stator current and the
speed analysis performed on healthy and faulty conditions of the motor operating under
steady state is shown in Figure 1. The fundamental supply frequency at 50 Hz is noticed
in Figure 1a, where a concentration of leaked energy is present in adjacent spectral bins.
The LSH is observed at 44.86 Hz with an amplitude of −35.7 dB in the current spectrum of
the motor with one BRB. Its amplitude is higher than the LSH of the healthy motor with
−38.58 dB, which may be undetectable without a speed reference. Figure 1a,b shows the
spectra of the stator current and the speed of the same tests of an induction motor in healthy
and faulty states (one broken rotor bar). For the latter, the spectrum shows an increase in
the speed oscillation at a 2s fs frequency of 11.3 dB compared to the same component for
the healthy case. The spectral leakage around the dominant frequency fs (50 Hz) in the
stator current spectra is significant when compared to the low level of leakage around the
fundamental speed component nr (0 Hz).
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Figure 1. Spectra of the (a) stator current and (b) mechanical rotor speed of the motor supplied from
the voltage source inverter and in stationary operation.

2.2. Time-Frequency Analysis of Startup Transient

At start-up transient or speed variations, neither the current nor the rotor speed can be
considered as stationary or deterministic processes because their amplitude, frequency, and
phase are not constant, besides the fact that behaviors and measurements are susceptible
to many disturbances and unpredictable errors such as digital quantization, external
vibrations, noise, and other environmental effects. It becomes necessary to consider the
signals as random processes. In this work, the (t, f ) analysis of the speed signal is computed
by a high-resolution PSD estimation called multiple signal classification (MUSIC), which is a
frequency estimation technique based on eigen analysis. MUSIC algorithm requires a short
number of observed points to offer a high-resolution spectrum estimation, which makes it
a suitable technique for VSI-fed induction machines analysis at startup transient [37].

The PSD of n-observation samples of the speed process is defined as the discrete-time
Fourier Transform of its autocorrelation sequence:

Pxx( f ) = T
∞

∑
k=−∞

rnn[k]e−j2π f kT , (7)

where the variable rnn[k] is the autocorrelation function of the nr[k] and is defined as
nr[k] = E[nr[k]nr[k + l]]. The speed vector nr = [nr(0), ..., nr(n − 1)] can be written as
nr = x+η=Sa+η, where η is the additive noise in the measured signal and the x vector
[x(m), x(m + 1), ..., x(m + n − 1)] = Sa is defined as:

x =

⎡⎢⎢⎢⎢⎣
ejω1m ejω2m · · · ejωqm

ejω1(m+1) ejω2(m+1) · · · ejωq(m+1)

...
...

. . .
...

ejω1(m+n−1) ejω2(m+n−1) · · · ejωq(m+n−1)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a1ej2πφ1

a2ej2πφ2

...
aqej2πφq

⎤⎥⎥⎥⎦, (8)

The autocorrelation matrix of the measured mechanical speed can be written as the
sum of the autocorrelation matrices of the signal x and the noise η as Rnn = Rxx + Rηη .
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An eigen decomposition of Rxx and Rnn, s can be expressed as a linear combination of the
principal eigenvectors [vp+1, ..., vn] [38]. In the multiple signal classifications algorithm, the
power spectral density is defined as:

Pxx( f ) =
N

∑
k=p+1

∣∣∣sH( f )vk( f )
∣∣∣2, (9)

where s( f ) is the complex sinusoidal vector. Since Pxx( f ) has its zeros at the frequencies
of the sinusoids, it follows that the reciprocal of Pxx( f ) has its poles at these frequencies.
Therefore, the spectral estimation is computed as:

P̂q
xx( f ) =

1
sH( f )V( f )VH( f )s( f )

, (10)

where V = [vp + 1, ..., vn] is the matrix of eigenvectors of the noise subspace. The resulted
spectrum displays sharp peaks at frequencies of the mechanical speed oscillations, hence
the PSD estimation is used for a high-resolution time-frequency analysis.

3. Experimental Setup

A laboratory test bench that emulates a typical VSI-fed induction motor system was
used for experimental investigation. The laboratory setup consists of a 0.75 kW three-phase
induction motor (Model D-91056 by Siemens) fed by a voltage source PWM inverter (Model
ACS355-03E-15A6-4 by ABB). Appendices A and B summarize the technical parameters
and specifications. The mechanical load was provided by an electro-magnetic powder
brake (Model SE2662-5R by Lucas-Nülle).

Five cases of a rotor bar condition were studied, including the healthy status and four
different broken bar severity degrees (from an incipient fault condition to a full broken
rotor bar). In the healthy case, all bars of the rotor are in healthy condition. For the first fault
status, the damage degree was simulated by drilling a 2 mm-diameter hole in a rotor bar,
the depth of the hole (dp) was 1

4 of the bar height. In the second fault severity condition, the
depth of the hole in the bar was increased to 1

2 of the bar height. In the third fault severity
condition, the depth of the hole was increased to 3

4 of the bar height. Finally, the last fault
severity condition was the fully broken rotor bar, where the depth of the hole was equal to
the bar height, which is h = 13 mm. This results in five fault severity conditions, where s1
represents a healthy condition of the rotor, s2 a low level of degradation (dp = 3.25 mm), s3
the half-broken bar (dp = 6.5 mm), s4 a high level of degradation (dp = 9.75 mm), and s5 a
fully broken rotor bar (dp = 13 mm). Figure 2a shows a cross-sectional view of the rotor
cage with details of the different depth levels drilled into the bar and Figure 2b shows the
drilled rotor bar.

The machine speed nr was provided by a tachogenerator (Model SE2672-5U by Lucas-
Nülle) with an output voltage range of 0–10 V proportional to its rotation speed. One
phase current ia was also measured for comparison purposes using a Hall effect transducer
by LEM, model LV-25NP. A compact data acquisition system (NI cDAQ-9147) was used
for data acquisition. This incorporated an analog input module, NI 9215, with 16 bits of
resolution, and two independent input channels to capture the speed signal and stator
current. The input scale of these two channels was 10 V. Therefore, the quality and reliability
of the speed and stator current signals capture was the highest possible, as those signals
were recorded using the high range of the input scale. Every isolated analog to digital
converter was pre-programmed with a sampling frequency fn = 50 kHz based on the
Nyquist theorem (higher than twice of the highest PWM switching frequency) to prevent
unrealistic alias frequency components in the measured signals at the acquisition stage.
Figure 3 shows a photograph of the test ring.
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Figure 2. View of the rotor employed in the tests: (a) side view schematic for the transverse section
of the squirrel cage rotor, and (b) squirrel cage rotor with a complete broken rotor bar condition.

Figure 3. Experimental test ring configuration: (1) asynchronous motor, (2) electro-magnetic powder
brake, (3) powder brake control, (4) voltage source inverter, (5) signal condition stage, (6) data
acquisition system, (7) PC, and (8) programmable function generator.

4. Experimental Results

The startup transient analysis examined the five case studies of different severity
levels from healthy s1 to the faulty case s5, as explained in Section 3. The healthy case s1
and faulty case s5 were already analyzed in Section 2 (see Figure 1), but with the motor
operating in a stationary regime. For every case study, low load and high load operation
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tests are studied. All the acquired signals were processed and plotted by the Matlab®

software. The digital sequences of nr and ia are first decimated from the original fn to a
new sampling frequency fn/M in a pre-processing stage for selecting the frequency band
analysis [0 − fn/M) Hz and to decrease the computing requirements. The decimation is
carried out by means of a low-pass filter and a sample rate compressor with the down-
sample factor M. The Parks–MacClellan [39] algorithm was used to design the low-pass
filter; its parameters are cutoff frequency ωc =

π
M , pass-band attenuation Ap = 0 dB, and

stop-band attenuation As = 100 dB. The filter design was chosen to provide an adequate
response in the pass-band while limiting the high-frequency components. The decimation
factor M is selected according to the spectral behavior of the fault signature. In the case
of the stator current, the bandwidth of analysis (0, 62.5 Hz)contains the main spectral
components and the fault-related side-band harmonics. In the case of speed signal, the
bandwidth of analysis (0, 31.25 Hz)contains all the desired information for rotor fault
diagnosis purposes. The decimation is processed with a multi-stage approach to avoid
measurement errors and spectral aliasing at the signal processing stage. The decimation
factors are M = 5 × 4 × 5 × 4 and M = 5 × 4 × 5 × 4 × 2 for the stator current and rotor
speed, respectively. Figure 4 illustrates the proposed methodology.

Decimator

Low-pass
filter

Gain=1

Sampling rate
compresor

M
nr(t)

Mechanical
Load

VSI

rpm

ADC

Acquisition Time-Frequency

High-Resolution

Figure 4. Simplified block diagram of the decimation process.

The measured signals consisted of a 10 s startup transient followed by 1 s of steady-
state operation. During all the tests, nr(t) and ia(t) were recorded simultaneously to make
a fair comparison between the stator current and the speed analysis. The precision and
resolution of data acquisition are comparable to those used in industrial practice. Two
series of tests were carried out at two different constant load torques, 2.6 and 3.8 Nm—low
level (LL) and high level (HL), respectively. The VSI was programmed to provide a linear
startup following a ramp from 0 Hz to the motor-rated frequency ( fb = 50 Hz) with a
constant d f

dt during the first 10 s. Figure 5a presents the voltage and current waveforms of a
startup transient (10 s) followed by steady-state operation (1 s); the signal amplitudes are
normalized by their corresponding maximum value. As expected, ia(t) and va(t) exhibit a
larger harmonic content than a line-fed system.

In Figure 5b, the pulse-width-modulated waveform of va(t) and the switching effect
produced by the VSI can be seen, and the highest electrical magnitude of the stator current
during the startup transient occurs around 2 s after energization. Figure 6 presents the
spectral characteristics of a line-fed and VSI-fed motor; the comparison of these plots shows
the harmonics and inter-harmonics injected by the VSI in the system.

The measured rotor speed waveforms for a healthy and faulty case (s5) under LL and
HL are shown in Figure 7. The figure presents the time-varying synchronous speed ns =
120 fs(t)/p when the motor is supplied by a linear ramp of frequency voltage v/ f (0–50
Hz/0–10 s).

The rotor speed is closer to the synchronous speed (dashed line) when the motor
load is low due to the reduced motor slip. When the mechanical load is high, the slip
also increases, and the rotor speed separates more from the synchronous speed. Between
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second 1 and 2.5, a dead zone is observed after starting due to the time the motor takes to
overcome the load inertia at standstill.
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Figure 5. Voltage (va) and current (ia) waveforms in the induction motor fed by the voltage source
inverter during: (a) 10 s of startup transient and 1 s of steady state, and (b) close up of the steady
state.
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Figure 6. Spectra of the motor supply voltage when fed from the line or from the voltage source
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4.1. Time-Frequency Analysis of Startup

Time-frequency analyses for healthy and faulty tests are computed using the high-
resolution estimation MUSIC; the PSD magnitude is presented in the z-axis of the (t, f )
plane in a relative scale 20log10

∣∣Pxx
(
ejω)∣∣2. Rotor speed and stator current (t, f ) decom-

positions are produced by applying a 81-point rectangular window with a 49 percent
overlap.

4.1.1. Induction Motor Under High-Load Condition

The time-frequency decompositions of stator current and rotor speed for a high-loaded
motor are displayed in Figures 8 and 9, respectively. Figure 8a illustrates the application
of the stator current analysis for the healthy motor (s1), and Figure 8b presents the stator
current analysis for the motor with a broken rotor bar (s5). The high-resolution technique
is capable of realizing very sharp (t, f ) spectral analyses, allowing the observation of
individual spectral components. In both cases, Figure 8a,b, the maximum energy concen-
trations take place at the linear frequency variation fs(t) = 5t as a result of the dominant
component of the voltage supply. The spectral harmonics of winding, eccentricity, and
other components introduced by the VSI are also observed in the (t, f ) decompositions.
For non-sinusoidal voltage supplies, triplen harmonics are seldom present in three-phase
induction motors; conversely, 2nd and 4th harmonics can be observed in the stator current
analysis. In Figure 8b, the time-varying spectrum of the faulty motor is presented and
shows the appearance of the fault sidebands (1 ± 2s) fs, which are close to the fundamental
component and can be observed evolving with a positive slope. Although a visual com-
parison between Figure 8a,b shows the existence of the fault components in the vicinity
of fs in Figure 8b, a precise identification, isolation, and quantification of LSH or RSH is
complicated, as its trajectories are partly overlapped with fs.

The proposed motor speed signature analysis is presented in Figure 9 for the same
experimental tests of Figure 8. As envisioned in Equation (4), Figure 9a shows that for
a healthy motor the dominant spectral component in nr is nm and there is absence of a
fault harmonic component. In contrast, Figure 9b clearly exposes the presence of a speed
oscillation at the twice slip frequency during the startup transient, revealing a rotor defect
in the motor. Notice that even though the electrical starting point is at t = 0 when the VSI
energizes the induction motor, the fault oscillation 2s fs rises about two seconds later when
the shaft starts rotating. This is because the fault signature is directly related to the slip
and consequently to the rotor movement. This speed oscillation trajectory can be easily
tracked in the (t, f ) domain; the average speed value does not produce a signature in the
time-frequency domain and the trajectory of the speed oscillations are easily observed.

2nd
4th

LSH

RSH

Figure 8. Time-frequency analyses of the IM stator current under startup transient and high-load
level for: (a) healthy motor and (b) rotor with one full broken rotor bar.
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2sfs

nm

Figure 9. Time-frequency analyses of the motor speed under startup transient and high-load level
for: (a) healthy motor and (b) rotor with one full broken rotor bar.

4.1.2. Induction Motor Under Low-Load Condition

Time-varying analyses resulting from the stator current for healthy s1 and a faulty s5
cases are compared in Figure 10, when the motor is operating under low-slip condition.
Figure 10a illustrates the application of current signature analysis to the healthy motor;
apart from noise, Figures 8a and 10a present a similar time-varying spectra, and both
LL and HL condition (from a healthy machine) exhibit the presence of even harmonics,
eccentricity harmonics, and the main energy component in the t-f decomposition concen-
trated at fs. Conversely, Figure 10b shows a different energy distribution and depicts the
appearance of the symmetrical fault-components (LSH and RSH), which are separated
from the fundamental component and can be observed only after the second 10 at 45 and
55 Hz. However, its energy cannot be tracked in the startup transient (0 to 10 s), since
they are very close to fs and its trajectories are indistinguishable. The results presented in
Figure 10 illustrate the main limitation of the motor current signature analysis to detect
fault-harmonics when induction motors are operating under light load conditions. When
the motor is operating under light load conditions, the slip approaches zero and the stator
current analysis experience troubles in fault signature identification.

The proposed methodology, motor speed signature analysis, is presented in Figure 11
for the same experimental tests of Figure 10. In this case, the spectrum for the healthy
motor with a constant mechanical load of 2.6 Nm is shown in Figure 11a. Although the
result belongs to a startup transient under variable-frequency supply, it is found that nr is
composed only for a constant component nm embedded in noise. On the other hand, the
result shown in Figure 11b is different because the (t, f ) analysis reveals a new harmonic
component related to the broken rotor bar fault, now clearly the component appears at
frequency 2s fs. One can also observe a frequency decrement in the separation between nm
and the fault-component trajectory due to the lower slip than when the motor load was
high (in Figure 9b).
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LSH

RSHRSH

Figure 10. Time-frequency analyses of the IM stator current under startup transient and low load
level for: (a) healthy motor and (b) a rotor with one full broken rotor bar.

2sfs

nm

Figure 11. Time-frequency analyses of the motor speed under startup transient and low load level
for: (a) healthy motor and (b) a rotor with one full broken rotor bar.

If Figures 9b and 11b are compared, in the latter in Figure 9b the fault-related compo-
nent is far separated from the dominant component because the motor slip is higher due to
a high load: The greater the load level, the greater the rotor slip and, in consequence, the
higher the frequency speed fluctuation.

The results show that the fault components are better detected using the motor speed
analysis, which gives a clear separation of the spectral components at the (t, f ) plane and
permits the extraction of the speed oscillation amplitude at the fault frequency. In the speed
analyses given for a healthy and faulty cases, it can be observed that the dominant spectral
components in the (t, f ) decompositions are the constant trajectories nm (Figures 9 and 11).
Results of the stator current decompositions (Figures 8a and 10) are clearly different, where
the dominant component is the frequency modulated component fs (from 0 to 50 Hz).
The low-frequency variation in nm and 2s fs in the motor speed spectrum improves the
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PSD estimation by reducing bias and leakage in the (t, f ) decompositions, thus giving an
accurate localization and quantification of the fault signature.

4.2. Early Fault Detection

In addition to the fault detection analysis, the amplitude of the fault component is
isolated and extracted from the (t, f ) domain for diagnosis purposes. Figure 12 presents
the results of the 2s fs amplitude for the five severity levels from s1 to s5. The amplitudes
evolution for HL and LL conditions are shown in Figure 12a,b, respectively. In the case of
healthy condition s1 and the s2 severity level, the speed oscillation is small and it is difficult
to determine any difference. However, the amplitude of the fault signatures for the cases
s3, s4, and s5 expose a clear increment in the speed fluctuation at 2s fs as the severity of the
fault increases.
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Figure 12. Time evolution of the 2s fs amplitude during the startup transient for multiple severity
cases under: (a) high load condition and (b) low load condition.

4.3. Induction Motor Under Load Oscillations

To study the performance of the proposed methodology, the (t, f ) analysis is used to
process the rotor speed of an IM under load oscillations. In particular, the low-frequency
load oscillation phenomenon is interesting to consider because it is a common root cause of
rotor fault false alarms when the classical steady-state analysis is performed. The oscillation
in the load was produced by feeding the controller of a magnetic powder break with a
low-frequency sinusoid, which is provided by a programmable function generator. This
time the motor startup was programmed in the VSI with 5 s, to verify and validate the
effectiveness of the analysis under short transient startup. Figure 13a shows the result of
the healthy motor case under a normal condition without load oscillation, where there
are not low-frequency trajectories present in the (t, f ) decomposition. In Figure 13b, the
result of the same healthy motor is shown but with a load oscillating by 4 Hz. A clear
frequency component is present during the transient and the steady state at 4 Hz. The
2s fs pattern induced by a rotor fault is shown in Figure 13c; with the measured speed
signal, it is easy to corroborate that the slip at the stationary regime is s = 0.032, allowing
the method to confirm that the trajectory which converge to 3.28 Hz corresponds to a
rotor fault component. The (t, f ) decomposition of the speed signal for the faulty motor
operating under the oscillating load is shown in Figure 13d, where not only the oscillation
component of the load at 4 Hz is observed in the (t, f ) plane but also the presence of the
rotor fault trajectory with different direction can be noticed. These experimental results
show that the speed analysis of the startup transient is effective to identify rotor fault
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components and load oscillation components, even when in stationary regime they overlap
at the same frequency.

fault
Rotor = 4 Hzoscillation

Load

fault
Rotor

oscillation
No load

= 4 Hzoscillation
Load

motor
Healthy

motor
Healthy

2sfs

2sfs

Figure 13. Time-frequency decomposition of the rotor speed under startup transient and high load
level for: (a) healthy motor, (b) healthy motor and load oscillation, (c) rotor with a broken rotor bar
without load oscillation, and (d) rotor with a broken rotor bar with load oscillation.

In this work, a tachogenerator was used to measure the speed, but in real applications
other speed sensors can be used with a better reliability, robustness, and accuracy, such as
optical encoders or speed resolvers. It should not be forgotten that a reliable and effective
analysis of the stator current for fault detection is also based on a good estimate or accurate
measurement of the motor speed, which is necessary for the location of fault-related
components. The proposed method is a good complement to the analysis of the stator
current and can help to avoid false alarms.

5. Conclusions

This paper presents a new methodology for the early detection of broken rotor bars
in VSI-fed induction motors based on the analysis of motor speed in the time-frequency
domain. Although speed monitoring has been considered in stationary conditions, it
has not received attention under transient conditions. The proposed method has two
advantages with respect to stator current analysis: the rotor speed shows fewer spectral
components than the stator current and the average value of the rotor speed does not
produce a frequency pattern. The study confirms the existence of the fault pattern 2s fs in
the speed during the startup transient and reports the diagnostic capabilities of the method
to detect and distinguish between load oscillation components and rotor fault signatures
during non-stationary conditions. The results prove that: (i) speed analysis under startup
transients can be used as an effective and reliable technique for the diagnosis of broken rotor
bars in inverter-fed induction motors during startups compared to the analysis of the stator
current; (ii) broken rotor bars can be detected at early stages of the fault; (iii) the proposed
analysis technique avoids false positives by low-frequency oscillations, as their trajectories
in the time-frequency plane are different from those related to the fault. The analysis of
the speed signal was carried using a high-resolution technique, MUSIC. However, much
simpler techniques, such as short-time Fourier transform, can also be used if an appropriate
window length is chosen to avoid spectral leakage around the average value of speed.
As the development of a broken rotor bar is slow over time, this methodology can be
incorporated into an on-line condition monitoring system. The computational burden of
the proposed analysis is also low, so this is not an impediment either. One disadvantage of
the proposed technique, compared to stator current monitoring, is the sensor used, which
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is not usually available in many adjustable speed drives. In future works, the authors
will study if this methodology can be applied to the detection of other kinds of faults or
machines.
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Abbreviations

The following abbreviations are used in this manuscript:

BRB Broken rotor bar
fs Fundamental frequency
fb Motor rated frequency
fn Sampling frequency
FT Fourier Transform
HL High-load level
IM Induction Motor
LL Low-load level
LSH Left Side Harmonic
MCSA Motor current signature analysis
MUSIC Multiple signal classification
PSD Power spectral density
PWM Pulse width modulation
RSH Right side-band harmonic
s f s Slip frequency
t, f time-frequency
VSI Voltage source inverter

Appendix A

Three-phase induction motor rated characteristics: Rated power = 0.75 kW, Rated
voltage = 230/460 V, Rated current = 3.2/1.86, Synchronous speed = 1500 r.p.m.

Appendix B

Voltage source inverter characteristics: Rated output voltage = 220/240 V, Rated
power: 4 kW, Start-up mode = Linear, Control mode: scalar (v/ f ), Commutation method =
pulse width modulation.
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