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Preface

The shell model (SM) entered nuclear physics almost 70 years ago after Maria Goeppert Mayer

and Hans Jensen—who shared the Nobel prize in 1963 for their work—were able to explain the

mystery behind the magic numbers associated with the large stability in the ground state of some

nuclides.

The SM is widely considered the basic scheme for the microscopic description of the nucleus,

and, starting from its introduction; it has been successfully applied for investigating a variety of

nuclear structure phenomena, which have important implications in our understanding of both

astrophysics and physics beyond the standard model.

In the last two decades, thanks to high-performance computing facilities and the implementation

of very efficient codes and methods, large-scale SM calculations have become a well-established

approach to investigating medium- and heavy-mass nuclei whose description involves many valence

nucleons in large model space. Today, it is possible to deal with huge matrices of dimension 1011 -

1012, which was unthinkable until a few years ago.

Over about the same period, the extraordinary improvements in sensitivity and efficiency of the

experimental tools and the development of a large variety of radioactive beams have allowed the

exploration of new regions of the nuclide chart towards the drip lines. The richness of data emerging

from these experimental studies has probed the reliability and robustness of the SM in describing the

new phenomena observed far from stability, such as the onset of collectivity at the historical magic

numbers, the development of islands of inversion and the appearance of new magic numbers, the

evidence of shape coexistence. These studies have revealed modifications in the shell structure as a

function of proton and neutron numbers, leading to a paradigm shift away from the universality of

the magic numbers. Large-scale SM calculations are required to investigate these phenomena and to

understand the role of the different components of the nuclear force in determining the evolution of

the shell structure towards the driplines.

While the SM has been used predominantly with empirical effective Hamiltonians, substantial

progress has been achieved in recent years in deriving the SM Hamiltonians from realistic bare

interactions, including two and three-body forces based on chiral effective field theory; this has given

a further impulse towards a fully microscopic description of atomic nuclei starting from the quantum

chromodynamics degrees of freedom. Within this context, valence-space Hamiltonians can be derived

using many-body perturbation theory, and only very recently, nonperturbative approaches have been

introduced.

This Special Issue collects 14 contributions of leading experts in the field, intending to provide,

starting from the historical setting, a clear overview of the status and future developments of the

nuclear shell model, including its applications in describing various nuclear structure phenomena.

The book is primarily addressed to the nuclear physics community, but it may also interest other

branches of physics.

In closing, we would like to take this opportunity to express our deep gratitude to all authors

for their valuable contributions. We also warmly acknowledge the MDPI Book staff and the Atomic

Physics Section Editorial team. Thanks to Ms. Ling Yang, the Managing Editor, for her assistance

during the Volume preparation.

Angela Gargano, Giovanni De Gregorio, and Silvia Monica Lenzi

Editors
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Article

The Very Long Lifetime of 14C in the Shell Model

Igal Talmi

Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, 234 Herzl Street,
Rehovot 7610001, Israel; igal.talmi@weizmann.ac.il

Abstract: This is a fitting memory for our late friend and colleague Aldo Covello. For many years,
he was our host in the series of Spring Seminars which he organized. In these conferences, the shell
model was a central subject which was taken very seriously. This paper is written after 70 years of
successful shell model calculations of nuclear energies and also various transitions. The beta decay of
14C has been an enigma. The history and present situation are described. The importance check of
any theory to yield the strength of the mirror transition of 14O is pointed out.

Keywords: the shell model; 14C beta decay; mirror decay of 14O

In this paper, I look back at 70 years of the nuclear shell model. Actually, there is
a prehistoric part, which is close to 100 years old. Atomic nuclei were discovered by
Rutherford in 1911. For several years, their composition was a mystery until the neutron
was discovered by Chadwick in 1932. In the same year, Heisenberg published a paper in
which he showed that nuclei are composed of protons and neutrons.

In those early days before mass-spectroscopy was used to measure nuclear binding
energies, physicists used various transitions and reactions to determine that certain nuclei
are more stable than others. In atoms, extra stability is associated with closed shells. In the
same year, 1932, Bartlett suggested a similar structure for some nuclei [1]. He suggested
that, in 4He, there are closed 1s shells of protons and neutrons and in 16O there was also a
closed 1p shell. Not many papers followed Bartlett’s idea. Most thorough and systematic
ones were written by Elsasser [2–6]. By studying experimental data, he discovered several
nuclei with extra stability. It was difficult for most physicists to understand how a system
with a rather large number of particles interacting by strong short-range forces may be
described by an independent particle model. In addition, the nature of the magic numbers
was baffling. The lowest of them, 2, 8 and 20, could somehow make sense. Higher magic
numbers, discovered by Elsasser, 50, 82 and 126, could be obtained only from very strange
central potentials.

In a comprehensive review article, Bethe and Bacher [7] gave a description of nuclear
physics in 1936. They present the shell model, arguments against it but also a case where
only it seems to explain the data. A very devastating paper against any shell model was
published in the same year by no lesser person than Niels Bohr [8]. He wrote: “In the atom
and in the nucleus we have indeed to do with two extreme cases of mechanical many-body
problems for which a procedure of approximation resting on a combination of one-body
problems, so effective for the former case, loses any validity in the latter”.

During World War II, nuclear physicists in major countries were occupied with work
on nuclear weapons. In 1948, Maria Mayer published a detailed study [9] in which she
showed that nuclei whose proton and/or neutron numbers were found by Elsasser to be
magic have indeed extra stability. Mayer’s paper revived the interest in the shell model.
Feenberg and Hammack [10] and Nordheim [11] published detailed papers in which
they tried to reproduce the new data in models similar to that of Elsasser. The shells
which proposed contained certain orbits characterized by the orbital angular momenta l of
the nucleons.

Maria Mayer [12] and, independently, Jensen et al. [13] introduced a novel idea. The
shell structure, taken to be that of a harmonic oscillator central potential, is modified by a

Physics 2022, 4, 940–947. https://doi.org/10.3390/physics4030062 https://www.mdpi.com/journal/physics
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strong spin–orbit interaction. The l orbit is split into a lower j = l + 1/2 orbit and a higher
j = l – 1/2 one. Both orbits remain in the same major shell with an important exception.

The spin–orbit interaction,

2a(s.l) = a[(s + l).(s + l)− l.l − s.s] = a[j(j + 1)− l(l + 1)− 3/4] , (1)

is equal to al for j = l + 1/2 and to −a(l + 1) for j = l − 1/2. The j = l + 1/2 orbit with
the highest value of l in a shell is mostly affected. If its energy is sufficiently pushed down
(by a negative value of a), it may join the shell below it. This effect leads to the observed
magic numbers. For example, the closed shells 1s, 1p, 1d2s, 1 f 2p contain 40 protons or
neutrons but only when joined by the 10 protons (or neutrons) in the 1g9/2(l = 4, j = 9/2)
orbit is the magic number 50 reached. The simple Mayer–Jensen shell model has been
widely accepted and used by experimentalists and theorists. Wigner, who made seminal
contributions to nuclear physics, remained skeptical. He could not understand the origin
of the interaction (1).

Apart from the radial dependence, wave functions in the shell model are well defined
for ground states of closed shells nuclei. They remain well defined also if a single nucleon
is added or removed from such nuclei. If there are several nucleons outside closed shells
(valence nucleons), they may couple in several states (with the exception of two identical
j = 1/2 nucleons or holes). To calculate energies and wave functions, it is necessary to
calculate eigenvalues and eigenstates of the sub-matrix of the Hamiltonian, which is defined
by states of the shell. Maria Mayer was aware of this situation and stated coupling rules
for the spins of ground states. They were J = 0 for even-even nuclei of which there are
no exceptions and J equal to j of one of the orbits in the shell for odd-even (or even-odd)
nuclei. There are some exceptions to the second rule.

Mayer tried to find some theoretical basis for her rules. She looked at some jn con-
figurations of neutrons and of protons and “for simplicity”, calculated their energy levels
with a delta interaction [14]. The calculated ground state spins agreed with her rules! In
addition, the pairing energy emerged from the calculation. She thought that the exceptions
to her rule are due to the finite range of the interaction. Her student Dieter Kurath wrote a
short paper [15] on this subject and so did I, a student of Pauli in Zurich [16].

In spite of the schematic nature of the zero range delta interaction, Mayer’s novel
approach made an important impact. In earlier calculations, it was assumed that the
interaction between nucleons may be approximated by a constant over the nucleus. Short
range interactions were not easy to handle in standard spectroscopy. Matrix elements of
two-body interactions were expanded in terms of Slater integrals, each obtained from a
term in the expansion of the integrand in terms of the particle coordinates r1 and r2 . If
the interaction is constant where the wave functions do not vanish, only the k = 0 Slater
integral does not vanish. If, however, the interaction is a delta function, all Slater integrals
need not vanish; each is proportional to 2k + 1.

Kurath in Ref. [15] showed that an argument of Racah against a ground state spin
calculated in the shell model [17] is based on the k = 0 Slater integral. Racah created
modern spectrometry for the earlier version of the nuclear shell model, but, when it became
unpopular, he moved to atomic spectroscopy.

I had been looking for an expansion in which matrix elements of the delta interaction
will have only one term. Instead of the Slater expansion of the interaction, the product
of wave functions could be expanded in terms of the center-of-mass R = (r1 + r2)/2

and relative coordinate r = r1 − r2. A simple and finite expansion occurs only for the
kinetic energy and for the harmonic oscillator potential. The results should be independent
of R since the interaction is translationally invariant [18]. This transformation is used
now everywhere.

As mentioned above, for an efficient use of the shell model, it is necessary to know the
two-body interaction. In the early days, people tried to use the interaction between free
nucleons with or without some theoretical modifications. Even if agreement with some
experimental data was obtained, no agreement with other ones could be reached. The
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standard excuse was “configuration mixing”—disagreements were blamed on the effect of
shell model configurations not included. Such a procedure may lead to good agreement,
but it has no meaning. An amusing example of failure of such a calculation is offered
by dealing with calcium isotopes. In 1955, Ford and Levinson published a series of three
papers on levels of 43Ca. They started from levels of 42Ca of which the first excited level,
with J = 2, was known. Above it, two higher levels were measured, but their spins were
unknown. Ford and Levinson took those spins to be J = 4 and J = 6, as in some other
nuclei and, using their energies with those of the measured states, calculated positions
of 43Ca levels—so far, so good. However, they did not get correctly the position of the
first excited J = 5/2 state. This situation was known to several authors who left this
problem. Ford and Levinson did not give up but called for help with the mixing of other
configurations with the ( f7/2)

n one. As if by miracle, the calculated position of the J = 5/2
state came out very close to the measured value and so was the case with some other
observables. In the fall of 1956, there was an international conference on theoretical physics
in Seattle, WA, USA. Jensen gave a talk on the nuclear shell model and the Ford–Levinson
work seemed to be one of its successes. Not much later, the spins of the 2 levels, taken
by Ford and Levinson to have J = 4 and J = 6, were measured to have spins J = 0 and
J = 2 . . . They do not belong to the ( f7/2)

2 configuration. They are “intruder states” from
some other configuration.

Slowly, the realization that the operators which should be used in a model may be
very different from the real ones dawned on nuclear physicists. This was pointed out very
clearly by Keith Brueckner and his collaborators. The problem was how to determine the
effective interaction for the shell model in nuclei where the shell model seems to give a
reasonable description. Clearly, no theoretical derivation seems easy for such a complex
system. I have been looking for a case where the shell model description will indicate
a simple configuration. I chose a case which seemed simple and in summer 1954 asked
a student to study it and determine the effective two-body interaction. The system we
considered was the four low lying states of 40K which have spins obtained by coupling a
1d3/2 proton hole with a 1 f7/2 neutron (J = 2, 3, 4, 5).

To check the consistency of our calculation, we calculated energies of states of an-
other simple related shell model configuration. We chose the energy levels of the 1d3/2
proton—1 f7/2 neutron configuration (J = 2, 3, 4, 5) expected in 38Cl. We looked at the levels
published by 1954, and the only agreement was in the spin J = 2 of the ground state. We
were disappointed but not surprised. We used pure jj-coupling wave functions which may
have been rather extreme. In addition, it was not clear that it is a good approximation to
use matrix elements from one nucleus in another one. Only in 1956 were accurate measure-
ments of 38Cl levels published, and they were in very good agreement with our calculated
ones [19]. A few days after Ref. [19] was published, the case considered there appeared in
a paper by Pandya [20]. He derived the Pandya relation expressing analytically particle–
hole interaction as a linear combination of particle–particle interactions. He looked for an
example and found the 38Cl—40K case.

The work and results of Ref. [19] started a new period in shell model calculations. I
gave a talk on this work in a meeting of the Israel Physical Society and Racah said that
this is the beginning of nuclear spectroscopy. Matrix elements of the effective interaction,
diagonal and non-diagonal, were extracted from complex nuclei [21]. It took some time,
but the successful calculations were convincing. When I was advocating this method,
Arthur Kerman told me that, while he was a student at Caltech (California Institute of
Technology, CA, USA), Richard Feynman was trying to use this method on light nuclei
(probably in the 1p shell). In 1962, I gave a colloquium talk in Caltech. After the talk,
Feynman told me that he tried this approach until, for a certain nucleus, his prediction was
that four low lying levels are almost degenerate. He thought that this is very unlikely and
dropped this approach. Perhaps Feynman talked about 16N in which measured energies of
the four lowest states are below 0.4 MeV.

3
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Eigenvalues of the Hamiltonian obey the variational principle and hence may be
calculated even with approximate wave functions. This method has been widely applied
in calculations of energies and other observables [21]. Only one of the earlier papers and
books, where this approach is discussed, is mentioned here. It referred to the specific
case which is discussed in the following [22]. It is the 14C beta decay which should be an
allowed Gamow–Teller beta decay with a half life of a few days. Its observed lifetime is
more than 5000 years. It has been a great gift to archaeology and a great enigma to nuclear
structure physics.

The J = 0 ground state of 14C, according to the shell model, is due to the two proton
holes in the 1p orbit. This configuration has two possible J = 0 states, one with S = 0,
L = 0(1S0) and the other with S = 1, L = 1(3P0). The single nucleon spin–orbit interaction
Equation (1), which gives rise to the shell model, leads to a linear combination of these
two states:

x|1S0 > +y|3P0 > . (2)

This is an isospin T = 1 level. It decays by emitting an electron and neutrino to the T = 0
ground state of 14N which has J = 1. In the p−2 configuration, there are three independent
T = 0 states in which any state with J = 1 may be expressed as a linear combination of
them. Thus, the 14N ground state may be expressed as

α|3S1 > +β|1P1 > +γ|3D1 > . (3)

The operator of the allowed beta decay is σ = 2 s, which has non-vanishing matrix
elements only between states with the same part which depends on r. Thus, in the case
considered here, it is equal to a linear combination of αx and βy. Its precise value is

√
6(αx − βy/

√
3) . (4)

Inglis noted that, if the effective forces are central and even in the presence of spin-orbit
interaction, the matrix element (4) cannot vanish [23]. He argued, as shown below, that
the coefficients x and y in Equation (2) have the same signs. In the case of central-and
spin-orbit interactions, the L = 2 D state has a non-vanishing non-diagonal matrix element
only with the 1P1 state. This is due to the single particle spin–orbit interaction. The α and β
coefficients in Equation (3) have opposite signs. As a result, the matrix element (4) cannot
vanish. Inglis suggested that the near vanishing of the matrix element is due to mixing of
higher configurations into states of the 1p shell.

This is the situation, in the extreme case of jj-coupling. The coefficients of the (1p1/2)
−2

state with J = 0, T = 1 are x =
√

1/3 and y =
√

2/3. The coefficients of the J = 1, T = 0
state are α = −√

1/27, β =
√

6/27 and γ =
√

20/27 as in Ref. [23].
In 1954, Jancovici, a graduate student in Princeton and I, a visitor there, noticed that

the situation is changed if tensor forces are included in the shell model interactions. The 3D1
state may then strongly interact with the 3S1 state in addition to its spin–orbit interaction
with the 1P1 state. If this interaction is sufficiently strong, the signs of the α and β become
equal and cancellation or near cancellation may be possible [24]. That work was carried
out in the period when various interactions were used taken from attempts to extract them
from analysis of nucleon–nucleon reactions. Ref. [24] was no exception, and this was the
case with the several publications which followed it. One conclusion was clear: tensor
forces may play an important role in 14C beta decay.

Cohen and Kurath [22] carried out shell model calculations in the 1p shell. Following
our paper [24] and its followers, they determined the effective interaction by attempting to
achieve the best fit to measured energy levels. No attempt was made to obtain the longevity
of 14C, but they refer to it. They write in their comments on their results on 14N: “The major
point of interest here concerns the beta decay of 14C which has been difficult for the shell
model . . . actually, changing the 14N ground state to one which has an over-lap of 0.998
with the state from the latter case would produce the nearly exact cancellation indicated by

4
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experiment”. They mention a possible effect of mixing with configurations from a higher
shell. The experimental situation is still complex and the results of Ref. [22] support the
view that the longevity of 14C may have a simple explanation in the shell model.

The wave-function [2] is an eigenstate of the sub-matrix of the Hamiltonian

3P0
1S0

∣∣∣∣∣E(3P0) − 2a
√

2 =

−2a
√

2 E(1S)

∣∣∣∣∣E(3P0)− E′ − 2a
√

2 +

−2a
√

2 E(1S)− E′

∣∣∣∣E′ 0
0 E′ (5)

In the matrices (5), E(3P0) and E(1S0) are the energies of the states before diagonaliza-
tion. E′′ is the lower J = 0 eigenvalue of Hamiltonian (5), either of the left or right side of it.
The higher eigenvalue, E′ , lies 13.75 MeV above E′′. To diagonalize the matrix on the left, it
is sufficient to diagonalize the left matrix on the right. Diagonalization of the matrix on
the left yields the two eigenvalues E′′ and E′. Hence, diagonalization of the matrix on the
right yields the corresponding eigenvalues 0 and E′′–E′ . This difference is taken here to be
–13.75 MeV.

The difference between the two eigenvalues of the spin–orbit interaction (1) of a single
nucleon is

El+1/2 − El−1/2 = a(2l + 1) . (6)

The value of a in the case considered here can be obtained from the difference of the
single hole states in 15N. The ground state of 15N is a J = 1/2− state, and a J = 3/2− state is
6.324 MeV above it. Thus, the value of a is 2.108 MeV, the coefficient in Equation (1) is 4.216
and the non-diagonal matrix element in Hamiltonian (5) is –4.216

√
2 = –5.962 MeV.

The matrix to be diagonalized:

3P0
1S0

∣∣∣∣∣ U − 4.216
√

2
−4.216

√
2 W

(7)

Since one of its eigenvalues is 0, its determinant vanishes so that UW = 8 × 2.1082 =
8 × 4.442 = 35.54. The trace of matrix (7) is equal to the trace of the diagonalized matrix.
Thus, U + W = (E′′ – E′) + (E′ – E′) = –13.75 MeV. From these values follows U = –10.3 and
W = –3.45 MeV. The derivations above may be summarized by a simple expression of U
and W. The matrix (7) has an eingenvalue 0 and hence its determinant vanishes:

UW − 8a2 = 0 . (8)

The other eigenvalue, N, is equal to the trace of the matrix, E = U + W. Thus, Equation (8)
may be rewritten as

U(N − U)− 8a2 = 0 = U2 − UN + 8a2 = (U − N/2)2 − N2/4 + 8a2 . (9)

From Equation (9), the explicit expression for the lower diagonal matrix element
follows:

U =
1
2
(E −

√
(E2 − 4(8a2)) . (10)

The higher element is given by

W =
1
2
(E +

√
(E2 − 4(8a2)) . (11)

The sum of Equations (10) and (11) is U + W = N and their product is

UW = (E −
√
(E2 − 4(8a2)))(E +

√
(E2 − 4(8a2)))/4 = (E2 − (E2 − 4(8a2)))/4 = 8a2 . (12)
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The coefficients of the eigenstate (3) can be obtained from the matrix (5) by∣∣∣∣∣∣
−10.3 − 5.962

−5.962 − 3.45

∣∣∣∣∣∣
y

= −13.75
x

∣∣∣∣∣∣
y

x
(13)

The relation (8) is satisfied by

x = (13.75 − 10.3)y/5.962 = 0.579y or x = 5.962y/(13.75 − 3.45) = 0.579y. (14)

The normalized coefficients are equal, to a good approximation, to x = 0.5 and
y =

√
0.75. The wave function (2) with these coefficients has an overlap larger than 0.995

with the J = 0 state of two p1/2 holes.
The amplitudes in the 14N ground state, the coefficients of Equation (4), may be

obtained by diagonalization of the shell model sub-matrix

3S1
1P1
3D1

∣∣∣∣∣∣
V(S) a

√
2/3 VT

a
√

2/3 V(P) −a
√

5/6
VT −a

√
5/6 V(D)− a(3/2)

(15)

As shown in Ref. [24], due to the tensor forces, the coefficients α and β may have the
same sign. If it is absent, they have different signs due to the positive non-diagonal element
of the spin–orbit interaction between the 3S1 and the 1P1 states.

The matrix element of the Gamow–Teller beta decay is given by Equation (4) as
√

6(xα − yβ/
√

3) . (16)

Due to the values of x and y obtained above,
√

0.75/
√

3 =
√

0.25 = 0.5 and this matrix
element vanishes for any equal coefficients, α = β. The experimental situation in 14N is
more complicated than in 14C. In the following, we assume that the matrix element (11) is
strongly reduced. Using plausible coefficients, it is possible to check this mechanism by
looking at the mirror beta decay. The faster decay of 14O to the 14N ground state should be
due to the difference in Coulomb energies. The values of α and β in obtaining 0 or close to
them may occur in the actual nuclei. The measured matrix element in the 14C is actually
very small but not exactly zero.

As stated above, the near cancellation of the beta decay matrix element in 14C, should
not occur for the mirror transition of 14O. In the case considered above, states are of two
proton holes interacting also by the Coulomb interaction. In 14O, there are neutron holes
and the difference [10] is slightly smaller, 6.176 MeV. Hence, a = 2.059, the coefficient in
Equation (1) is 2a = 4.118 and the non-diagonal matrix element in Hamiltonian (5), in the
present case, is –4.118

√
2 = –5.824 MeV.

In matrix (5), E(3P0) includes -2α, and its energy should be increased by 0.1 MeV. Using
Equation (10) in this case yields U = 1

2 (–13.65 –
√

13.652 − 4 × 5.8242) = –10.38 MeV and
W = –3.27 MeV. In the case considered now, x = 3.27y/5.824 = 0.561 and x = 10.38y/13.65 =
0.561. The normalized coefficients are x = 0.489 and y = 0.872. To calculate the beta decay
matrix element (9), it is not sufficient to take α = β. A plausible choice, consistent with
a large value of γ, is α = β = 0.3. With this value, the square of the element (9) becomes
equal to 0.09 × 6(0.489 − 0.872/

√
3)2 = 0.000104. The f t value is obtained by dividing

5300 by this number [25]. Thus, log f t = log(5300/0.000104) = 7.7, which is in the region of
experimental results.

The importance of 14C dating in archaeology is demonstrated by the University of
Cambridge which publishes a journal called Radicarbon. Most of the articles in it deal
with applications of 14C, but, several years ago, an issue was devoted to the nuclear
physics behind the phenomenon. The paper “The half-life of 14C—–Why is it so long?” by
Kutschera was published online by Cambridge University Press [26]. It contains a detailed
bibliography on this subject—Ref. [24]—as well as recent large scale computations. No
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results on beta decay of 14O are presented. In the Introduction, Kutschera states that, in the
approach of Ref. [24], using the simple shell model, some reduction of the rate of 14C beta
decay is obtained but not sufficiently. No reference is quoted. This approach may turn out
to be not the correct one but not for the reason given in Radiocarbon.

Only three of the many papers listed in Ref. [27] are mentioned here. Fayache, Zamick,
and Muther considered central, spin–orbit and tensor forces [28]. They considered, however,
also mixing of nearby configurations and various values of the interactions. They found
a set of values which fits the data. They quote a theoretical derivation of these values (if
“the enhancement of the small component of the Dirac spinors of the nucleons is taken
into account”).

Negret et al. (38 authors, all listed in the References) present experimental results
relevant to beta decay from which information on A = 14 nuclei may be deduced. The
theoretical analysis is based on calculations in which shell model wave functions were
used, but no central potential (core) is assumed, NCSM. Not all low levels appear and the
big reduction of 14C beta decay is not reproduced. The important result is that the main
component of the J = 1, T = 0 ground state of 14N is indeed 3D1 . The authors, like some
others, believe that clustering is an important ingredient that should be included. The
authors of the next paper do not share this opinion.

Maris, Vary, Navratil, Ormand, Nam, and Dean use ”ab initio no-core shell model”
in their calculation [29]. The Hamiltonian is taken from “the chiral effective field theory
including three-nucleon force terms”. They find that the latter have a large effect leading
to the large reduction of the beta decay rate of 14C. If this sounds simple, the order of the
matrix with which they deal is 872,999,912. The number of non-vanishing, diagonal and
non-diagonal 3NF (3-nucleon-forces) matrix elements is about 2 × 1013. The shell model is
supposed to give some simplicity from the complexity of the nuclear many body system.
The results of this paper are far from simple.

To find if the shell model is sufficiently detailed to yield the results of beta decay of 14C
and 14O, it may be necessary to understand the level structure of these nuclei and of 14N. It
may be necessary to consider possible mixing between levels of the 1 f 2p configuration and
some 1g2d levels. Even small admixtures may affect the values of the small decay rates. At
this time, it is too early to give up the hope.
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Abstract: The present review takes steps from the domain of the shell model into open shell nuclei.
The question posed in the title is to dramatize how far shell model approaches, i.e., many nucleons
occupying independent-particle configurations and interacting through two-body forces (a configura-
tion interaction problem) can provide a description of nuclei as one explores the structure observed
where neither proton nor neutron numbers match closed shells. Features of doubly closed and singly
closed shell nuclei and adjacent nuclei are sketched, together with the roles played by seniority,
shape coexistence, triaxial shapes and particle–core coupling in organizing data. An illuminating
step is taken here to provide a detailed study the reduced transition rates, B(E2; 2+1 → 0+1 ), in the
singly closed shell nuclei with doubly closed shell plus or minus a pair of identical nucleons, and
the confrontation between such data and state-of-the-art shell model calculations: this amounts to a
review of the effective charge problem. The results raise many questions and point to the need for
much further work. Some guidance on criteria for sharpening the division between the domain of the
shell model and that of deformation-based descriptions of nuclei are provided. The paper is closed
with a sketch of a promising direction in terms of the algebraic structure embodied in the symplectic
shell model.

Keywords: nuclear structure; shell model; seniority; shape coexistence; effective charge; emer-
gent structure

1. Introduction

The shell model has served as the most fundamental view one possesses when looking
at the structure of nuclei. With its inception, at the hands of Maria Goeppert-Mayer [1]
and Hans Jensen and colleagues [2] in 1949, at “three-score years and ten”, it is not going
to die. It is based on the premise of independent-particle motion in a spherical mean
field with strong spin–orbit coupling. The quantum mechanical solution, at the level of
independent-particle motion in a harmonic-oscillator potential, can be obtained using
methods that all senior-year undergraduate students should be able to handle. It provides
a far-reaching language for talking about nuclear structure. With the “gift” of the harmonic
oscillator potential to the mathematics of quantum physics, the symmetries that emerge are
without equal in the quantum domain. Thus, why question “shell model” in its verbal (i.e.,
operative) form?

The problem is correlations. Correlations are the antithesis of independent-particle
motion in quantum many-body systems. The problem in nuclei is: Just how deeply do
correlations influence what we are studying? A shell modeler must start by assuming a
correlation-free basis: a complete set of states, which are many copies of single-particle
states each labelled by a principal quantum number (N), an angular momentum quantum
number (l), a directional component of angular momentum (ml), and spin plus direction-of-
spin quantum numbers (s, ms). (Spin–orbit coupling favors a j-coupled basis, |N, j, l, mj〉,
where j and mj are the total angular momentum and its projection.) However, pairing
correlations immediately dominate singly closed-shell nuclei; and most nuclei are deformed
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in their ground states while many that have spherical ground states exhibit low-energy
deformed states. A simple extension of the shell model philosophy to a deformed mean
field, the Nilsson model, augmented with adiabatic rotational degrees of freedom, provides
an enormously powerful organizing principle for handling large amounts of data, in
the guise of the unified or Bohr–Mottelson model. However, a very large number of
nuclei do not separate into this simple adiabatic factorization. Such nuclei are often called
“transitional nuclei”. Herein lies the biggest challenge that remains in order to achieve a
unified view of nuclear structure. Transitional nuclei are “sandwiched” between the shell
model [3] and the unified model [4], and correlations are dominant. How do we develop
theories applicable to such nuclei? To shell model or not to shell model?

The use of the term “to shell model” here is in reference to the time-honoured theo-
retical approach to nuclear structure which uses a basis of spherical independent-particle
states, truncated at a small number of shell model energy shells, and a residual two-body
interaction. The shell model is therefore a configuration interaction problem. The ques-
tion then is which correlations are important, and how can one ensure that the relevant
correlations emerge in the calculations.

The shell model approach is straightforward for handling all nuclei: start by intro-
ducing two-body interactions. Indeed, at the level of pairing interactions, this leads to the
quasispin and seniority concepts. Quasispin is a formulation that manifestly illustrates
what is meant by correlations in a quantum mechanical many-body system. With a simple
approximation (by use of quasispin coherent states) this leads to the Bardeen–Cooper–
Schrieffer (BCS) theory of superconductivity (see Section 4.5.3 in [5]). In finite many-body
systems, as applied to nuclei, the language only needs some simple constraints to accom-
modate shell structure. Seniority, and its implied quasispin structure, dominates excitation
patterns in singly closed shell nuclei. However, seniority breaks down immediately, at low
spin, when both protons and neutrons are active. This is again due to correlations, but
these correlations are not yet well understood: this is the point where nuclear deformation
emerges. This nexus is the focus of the present review.

The shell model provides the most fundamental language one possesses for discussion
of nuclear structure. This conceptual basis is often called the “shell model”. Here, as
defined, the term “shell model” is adopted in its more restricted usage as a computational
model, where a Hamiltonian defined by residual interactions is diagonalized in a spherical
independent-particle basis. Our view is that, with sufficient computing power, a suitable
basis, and appropriate interactions, all structural details of nuclei would likely emerge. The
issue, apart from the magnitude and complexity of the problem, is whether the structures
in the output would be evident and intelligible. Here, the task of discussing the emergent
structures in nuclei and the use of algebraic models to understand them is adopted in
the context of the nuclear shell model. Therefore, the experimental data are broadly
reviewed and the cases where simple models based on phenomenology and algebraic
models give insights that would not be evident in a complex large-scale shell model
approach are highlighted.

2. Nuclei with Closed Shells: An Experimental Perspective

Nuclei with closed shells, both singly and doubly closed, have been the base upon
which the shell model has been built. However, such nuclei are neither manifestations of
nor a sound basis for the shell model in its extreme independent-particle form. Such nuclei
(i.e., closed shell) can usefully be classified into three types: doubly closed shell nuclei with
equal numbers of protons (Z) and neutrons (N), i.e., N = Z; doubly closed shell nuclei
with N > Z; and singly closed shell nuclei.

The distinction of doubly closed shell nuclei with N = Z is that they exhibit shape
coexistence at low energy, even at the level of the first excited states in 16O and 40Ca, as
shown in Figure 1. In doubly even nuclei with N > Z, shown in Figure 2, shape coexistence
has not yet been observed. The simple explanation is that, for N = Z, spatial overlap of the
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proton and neutron configurations is maximal, and it is proton–neutron correlations that
are deformation producing.

Figure 1. Excited states in the N = Z doubly closed shell nuclei 16O and 40Ca. Collectivity associated
with the 2+1 and 3−1 states is shown. Collectivity involving deformation is supported by large electric-
quadrupole transition rates, as indicated by the B(E2) values in Weisskopf units (W.u.). Inferred
K quantum numbers for collective bands are indicated. The horizontal bars with upward pointing
arrows indicate excitation energies above which states are omitted. Adapted from [6].

Figure 2. Excited states in the N > Z doubly closed shell nuclei. Collectivity associated with the
2+1 and 3−1 states is indicated by B(Eλ) values. The lowest known pair excitations are labelled.
The horizontal bars with upward pointing arrows indicate excitation energies above which states
are omitted. Electromagnetic decay strengths for 132Sn are calculated from data appearing in [7].
Adapted from [8].

The distinction of singly closed shell nuclei is that they are dominated by the emer-
gence of pairing correlations. Pairing correlations are concisely formulated using the
concept of the seniority quantum number, v, i.e., the number of unpaired nucleons. This
was first recognized by Maria Goeppert-Mayer [9,10]. The quantum mechanics of pairing
correlations is concisely, even elegantly, described using quasispin, as introduced by Arthur
Kerman [11]. The basic features of quasispin, as applied to a series of (j = 7/2)n configu-
rations, where n denotes the occupation of the orbit, are shown in Figure 3; a view which
complements that in Figure 3 is shown for a series of (j = 9/2)n configurations in Figure 4.
The quasispin algebra is developed in detail in Chapter 6 of [6]. That Chapter includes a
thorough treatment of the origins of the key ideas from Racah’s seniority [12–14] through
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Flowers’ handling of j − j coupling [15], Helmers’ unitary symplectic invariants [16], Law-
son and Macfarlane’s identification of the rank-1/2 quasispin su(2) tensorial character of
one-body annihilation and creation operators [17], to Kerman’s simple formulation [11].
Furthermore, it can be noted that there is a profound duality structure residing in these
algebras [18], which shows how algebraic structure provides insight into the complexity
of many-body quantum systems. A pedagogical treatment of the quasispin algebra is
presented in Chapter 4 in [5]. That Chapter illustrates how P.W. Anderson’s idea [19]
provided the first conceptual recognition of quasispin as the essential algebraic structure
underlying many-fermion systems with Cooper pairs [20].

Figure 3. A schematic view of basic features possessed by a seniority-dominated j = 7/2 shell with
a many-proton or many-neutron structure. The excitation patterns and associated spins are shown
relative to the seniority zero, v = 0 states across the filling of the shell, where the filling is designated
by the particle number, n. The quasispin quantum numbers, s and ν are su(2) quantum numbers
and their relationship to shell model quantum numbers is shown in the box. Adapted from [6].
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Figure 4. A schematic view of basic features of a seniority-dominated j = 9/2 shell. The excitation
patterns and associated spins J are shown relative to the uncorrelated, v = max. states across the
filling of the shell, where the filling is designated by the particle number, n. For other details, see
Figure 3. Taken from [6].

Experimentally, the seniority coupling scheme is realized essentially exactly when
the low-energy structure of singly closed shell nuclei is dominated by a high-j orbital.
This is shown in Figure 5 for j = 11/2 neutron subshell filling in the Sn isotopes and in
Figure 6 for j = 11/2 proton subshell filling in the N = 82 isotones. The patterns are
almost indistinguishable. The domination of seniority extends into patterns of electric
quadrupole, E2 transition probabilities: this is shown in Figure 7 for j = 9/2 configurations
in even-Cd and even-Pd nuclei with N = 50 and N = 82. The pattern of E2 matrix elements
in nuclei dominated by seniority coupling shows a smoothly changing character which is
well described by the following relationship for the reduced transition strength [6]:

B(E2; sνJi → sνJ f ) ∝ 〈sν10|sν〉2 =
ν2

s(s + 1)
=

(n − Ω)2

4s(s + 1)
, (1)

where Ji and J f are spins of initial and final states, s, ν are quasispin quantum numbers,
details of which appear in Figure 3; 〈sν10|sν〉 is an su(2) Clebsch–Gordan coefficient and
Ω = (2j + 1)/2, e.g., Ω = 6 for j = 11/2. This Clebsch–Gordan coefficient emerges from
the quasispin su(2) algebra when applying the Wigner–Eckart theorem to the E2 operator:
this operator is a rank-1 quasispin tensor. Details are beyond the present discussion and
are given in [6]. (Note: ν (designated by the Greek letter nu) is distinct from the seniority
quantum number, v (designated by the Latin letter vee).) This relationship is illustrated
in Figures 8 and 9 for the j = 11/2 configurations in the even-mass Sn isotopes and
N = 82 isotones, respectively. Indeed, these patterns are one of the best signatures of
structure unique to singly closed shell nuclei. However, the clarity and interpretation of
these structures are dictated by quantum mechanics that is beyond that of the independent-
particle shell model in that correlations in the form of Cooper pairs have emerged. Pairing
Hamiltonians can be derived as a simplification of the nucleon–nucleon residual interaction;
however, the focus here is on the empirical simplicity of the seniority structures that persist
toward mid-shell where the number of valence nucleons is large, in contrast with the
connection between pairing correlations and the two-body residual interactions in a large-
basis shell model calculation, which is not obvious. Stated in rhetorical terms: Could one
ascertain the algebraic structure of Cooper pairs, in the guise of quasispin, and manifestly
controlling structure in all singly closed shell nuclei, based on a shell model computational
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program? Once the quasispin structure is recognized, its implications for the residual
interactions required in the shell model can be explored so that the structure emerges from
the calculations.

Figure 5. The seniority-dominated spectra versus the atomic mass number, A, in the neutron-rich
tin isotopes, shown relative to the highest spin state in each multiplet (note the J = 27/2 state in
the odd-mass isotopes is set at the same level as the J = 8 state in the even mass isotopes). These
structures are dominated by neutrons filling the 1h11/2 orbital. Note: multiple J = 4 states are seen in
120,122,124Sn and multiple J = 19/2 states are seen in 125Sn. Reproduced from [8].

Figure 6. The seniority-dominated spectrum in the proton-rich N = 82 isotones, shown relative to
the highest spin state in each multiplet (note the J = 27/2 state in the odd-mass isotones is set at the
same level as the J = 8 state in the even-mass isotones). These structures are dominated by protons
filling the 1h11/2 orbital. The structure of 146Gd and 147Tb involves two-state mixing, as depicted
schematically. Reproduced from [8].

14



Physics 2022, 4

Figure 7. (a) Seniority isomers involving j = 9/2 structures. The inset shows the half lives of the
states with spin 8, the corresponding 8+ → 6+ transition energies, and the deduced B(E2) values
for these transitions. The constancy of the B(E2) values, independent of mass, is remarkable and
shows the simple nature of seniority structures. The figure is adapted from one appearing in [21].
Data are from the Evaluated Nuclear Structure Data File (ENSDF) [22]. The 6+-state energy in 130Cd,
which is uncertain in ENSDF, is from [23]. (b) Seniority isomers involving the proton (1g9/2)

−4

configurations in the palladium isotopes at the N = 50 and N = 82 shell closures. The inset shows
the deduced B(E2) values. The 96Pd scheme is adapted from one appearing in [24] and the 128Pd
scheme is from [25]. The tabulated half lives and B(E2) values are taken from ENSDF. There are more
recent published values [26,27], but the conclusions do not change.

Figure 8. Illustration of Equation (1), expressed in square-root form, for the proton 1h11/2 config-
urations in the N = 82 isotones. The B(E2) data shown are for the 10+ → 8+ transitions in the
even-mass nuclei and for the 27/2− → 23/2− transitions in the odd-mass nuclei, cf. Figure 6. The
sign of the square root is allowed to change to match the matrix element changing from positive
to negative as depicted. If the proton number is counted with reference to 146Gd as n = 0: with
Ω = 6, according to Equation (1), the B(E2) value should vanish at 152Yb. Note that this is an effect
emerging from the Wigner–Eckart theorem for su(2), applied to reduction of the E2 matrix elements
with respect to their quasispin tensor structure. Redrawn from [28].
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Figure 9. A pattern of B(E2) values, similar to that shown in Figure 8, for the even-mass and odd-
mass Sn isotopes. These data suggest that the half-filled shell, where the B(E2) value goes to zero, is
at A ∼ 122, i.e., that the 1h11/2 orbital is not at the highest energy within the 50 < N < 82 shell: this
is consistent with 129Sn (and likely 131Sn) exhibiting a ground-state spin–parity of 3/2+. Note: there
is a scale factor of 0.514 applied between the even and odd-mass values, which accommodates the
v = 2 and v = 3 seniorities involved via the Clebsch–Gordan coefficient in Equation (1). Reprinted
with permission from [29]. Copyright (2008) by the American Physical Society.

In the remainder of this Section, some observations are made with respect to the
mathematical structure on which quasispin is based, in order to place this shell model view
into perspective.

The arrival at the concept of quasispin as a degree of freedom in nuclei requires the
recognition of mathematical structures that are not obvious. A brief sketch of the essential
details is given here in words. Full details are given by Rowe and Wood [6] and, at an
introductory level, by Heyde and Wood [5]. Specifically, the quasispin algebra is recog-
nized by expressing the Hamiltonian and the interaction using second quantization. The
mathematics emerge by taking bilinear combinations of the elements (one-body fermionic
creation and annihilation operators) of a Jordan algebra (anticommutator brackets of the
creation and annihilation operators). These bilinear combinations obey a Lie algebra (com-
mutator brackets). This is impossible to see until one works out the Lie bracket values
of the bilinear combinations, which is done by expanding them using anticommutator
bracket relations so as to express everything in terms of Jordan algebra elements in “normal
order”; see Equation (4.93) in Ref. [5]. Normal order means annihilation operators all to
the right and creation operators all to the left. Furthermore, the Lie bracket algebra for a
Jordan algebra element (single creation or annihilation operator) with quasispin algebra
elements (bilinear combinations of creation and annihilation operators) reveals that the
creation and annihilation operators are rank-1/2 quasispin tensors. This is also impossible
to see until one works out the Lie bracket values. Indeed, rank-1/2 tensors are unknown in
spin-angular momentum theory; see p. 423 in Ref. [6] for additional details.

Spectroscopy of low-spin and medium-spin states is beginning to provide a compre-
hensive (near-complete) view of excited states in doubly even nuclei at and near closed
shells. Consequently, seniority coupling has been shown to apply in nuclei where the
structure is dominated by two medium-spin j shells. This is illustrated in Figures 10 and 11
for the N = 82 isotones with Z < 64. The v = 2 structures in 134Te, 136Xe, 138Ba, and
140Ce are labelled in Figure 10: these include the 1g7/2 structures, with J = 2, 4, and 6, and
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the 1g7/2-2d5/2 structures, with J = 1, 2, 3, 4, 5, and 6. In 136Xe only, as expected, v = 4
structures are observed with the allowed spins, J = 2, 4, 5, and 8, cf. Figure 3. The compre-
hensive view of 136Xe is the result of an (n, n′γ) study [30]. Note that this seniority-based
organization of data is essentially complete; for example, there is no excited 7/2+ state
observed, as might be expected from a 1g7/2 ⊗ 2+1 coupling—such a coupling is forbidden
by the Pauli exclusion principle if the 2+1 states are seniority-dominated structures. The
B(E2; 2+1 → 0+1 ) = B20 values and the magnetic moments, μ(2+1 ), are shown for reference
and discussed further in Figure 12 as the g factors, where g(2+1 ) = μ(2+1 )/2.

Figure 10. A view of the systematics of the even-mass N = 82 isotones with 50 < Z < 64. The low-
energy structure of these isotones is dominated by occupancy of the π1g7/2 and π2d5/2 shell model
configurations: the Fermi surface progressing from the π1g7/2 to the π2d5/2 orbit is schematically
indicated by dashed lines between 140Ce and 142Nd. The seniority structures are identified. The 3−

states are shown for reference. Horizontal bars with vertical arrows indicate excitations above which
states are omitted from the figure.
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Figure 11. A view of the systematics of the odd-mass N = 82 isotones with 50 < Z < 64. The
low-energy structure of these isotones, as noted in Figure 10, is dominated by occupancy of the 1g7/2

and 2d5/2 shell model configurations: here, the completion of the filling of the 1g7/2 orbital at Z = 58
(140Ce) is manifest in the change in ground-state spins between 139La and 141Pr. In 135I and 137Cs
only, as expected, v = 3 structures are observed with the allowed spins, J = 3/2, 5/2, 9/2, 11/2, and
15/2, cf. Figure 3. Note: the spin of 1010 keV state in 135I is not known but is consistent with 3/2+. A
state with spin–parity 3/2+ is predicted at about 1 MeV excitation energy in 137Cs. Horizontal bars
with vertical arrows indicate excitations above which states are omitted from the figure. Additional
data for 141Pr, 143Pm, and 145Eu are not shown because they are not part of the present focus. Taken
from [8].

Figure 12. Shell model calculations of B(E2) and g factors in the N = 82 isotones with 50 < Z < 64.
Reproduced from [31], with the permission of AIP Publishing.
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The seniority structure of the N = 82 isotones and its breakdown is an issue for
future detailed study. However, shell model calculations affirm the dominant seniority
structures. The case of 136Xe has been studied comprehensively [30,32]. Table 1 shows
experimental B(E2) values between low-excitation states in 136Xe in comparison to the
(1g7/22d5/2) seniority model, as well as several shell model calculations that include all
orbits in the 50 ≤ Z ≤ 82 major shell but use alternative interactions. The B(E2) data
indeed demonstrate the pattern predicted by the seniority scheme. It should be noted that
136Xe represents the mid-shell for the π1g7/2 orbit, for which several E2 transitions are
forbidden. In such cases, the observed transition strengths result from small components of
the wavefunction, which can lead to considerable variations in the shell model predictions,
despite the calculations agreeing on the dominant structure of the states. It was noted in [32]
that the large-basis shell model calculations support the dominant configurations assigned
in the (1g7/22d5/2) seniority model up to the 4+2 state at 2.1 MeV excitation, although there
is considerable configuration mixing. The (1g7/22d5/2) model accounts for all states up
to about 2.8 MeV, with the exception of the 0+2 state (more on the 0+2 state below in this
Section). However, above the 2.1-MeV 4+2 state, where the level of density increases, the
correspondence between the two-level and full basis is less clear.

The 0+2 states are consistent with a multi-pair structure distributed over the 1g7/2 and
2d5/2 orbitals. For example, the jj55 model with sn100 interactions [33] has dominant
configurations of π(2d5/2)

2 (76%) [134Te], π(1g7/2)
2(2d5/2)

2 (45%) [136Xe], and π(1g7/2)
6

(51%) [138Ba], for the 0+2 states.

Table 1. Electric quadrupole transition rates in 136Xe. The seniority model in the (1g7/22d5/2) space
is described in [30] and in the text. The shell model calculations from [30,32,34] use alternative
interactions in the model space 1g7/2, 2d5/2, 3s1/2, 2d3/2, 1h11/2, which covers the 50 ≤ Z ≤ 82 major
shell.

Transition B(E2) (e2fm4)

Exp. [30,35] Seniority Ref. [34] N82K [30] jj55 [32]

2+1 → 0+1 415(12) 415 (a) 357 400 398
4+1 → 2+1 53.2(7) 0 63.6 86 48
6+1 → 4+1 0.55(2) 0 0.088 0.12 4.8
2+2 → 0+1 23(3) 0 − 12 0.7 (b)

2+3 → 0+1 38(3) 22.2 − 12 48 (b)

2+2 → 2+1 299(71) 419 − 103 308 (b)

2+3 → 2+1 21+58
−21 0.63 − 117 8 (b)

(a) The seniority model uses proton effective charge ep = 1.81, set to reproduce the experimental B(E2; 2+1 → 0+1 ).
(b) The calculated 2+2 state is identified with the experimental 2+3 state and vice versa.

Figure 12 shows the experimental g factors of the 2+ states and the B(E2; 2+1 → 0+1 )
values of the even-even N = 82 isotones with 50 < Z < 64, and compares them with large-
basis shell model calculations. In addition, the ground-state g factors of the interleaving
odd-A isotones are shown, which indicate that the Fermi surface moves from the 1g7/2
orbit into the 2d5/2 orbit at Z = 59. The B(E2) trend is quite well described, but the g(2+1 )
trend is not well described, particularly when the Fermi surface moves into the 2d5/2 orbit.
In contrast, the odd-A isotopes are well described. Focusing on the range 51 ≤ Z ≤ 57, the
g factor data in Figure 12, for both odd and even-A isotones, are near constant and thus
consistent with a simple π1gn

7/2 structure in both the ground states (odd-Z) and 2+1 states
(even-Z). The lowered experimental g(2+1 ) values for 140Ce, 142Nd and 144Sm have been
attributed to increasing contributions from ν(1h−1

11/22 f7/2) excitations [36]. Nevertheless,
the basic seniority structure appears to persist in these nuclei.

The complete pattern of excitations in odd-mass, singly closed shell nuclei is somewhat
more complex than for even-mass singly closed shell nuclei. This is shown for j = 11/2 in
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the tin isotopes in Figure 13. Note that the states expected for seniority v = 3 range over
14 spin values for j = 11/2, viz. 2J = 3, 5, 7, 9, 9, 11, 13, 15, 15, 17, 19, 21, 23, and 27 (see,
e.g., [37]). The experimental view is incomplete, but there is sufficient detail to conclude that
the seniority scheme provides a reliable basis for understanding the low-energy excitations
in these isotopes. This perspective is supported by a more global view of odd-mass nuclei
shown in Figure 14, wherein patterns for seniority-three multiplets in selected nuclides and
selected spin couplings are visible for j = 7/2, 9/2, and 11/2. This global behavior appears
not to have been recognized. We conjecture that there may be a geometric interpretation of
this pattern, similar to the geometrical interpretation of two-body interactions for a pair of
identical nucleons in a moderate to high j orbit, as introduced by Schiffer and True [38]. An
angle between the two spins can be defined, which gives a measure of the overlap of the
two orbits for different resultant spins; see discussions in Refs. [3,8].

One can conclude that seniority likely provides a complete description of the lowest-
energy excited states in singly closed shell nuclei—with one proviso: singly closed shell nu-
clei exhibit low-energy deformed structures that “coexist” with the low-excitation seniority-
dominated structures.

Figure 13. A view of the systematics of the seniority-three νhn
11/2 states in the neutron-rich odd-mass

tin isotopes. There are some states missing, according to seniority-dominated coupling; the full set
contains: 2J = 3, 5, 7, 9, 9, 11, 13, 15, 15, 17, 19, 21, 23, and 27 (see, e.g., [37]). Because of ambiguities
in some parity assignments, other potential candidate states are omitted. Note there are “second”
19/2− states observed in 123,125,127Sn.
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Figure 14. A global view of seniority-three multiplets in selected nuclides and selected spin couplings,
for j = 7/2, 9/2, and 11/2. Energies are omitted to avoid cluttering the figure; energies are also
relative, per isotope. To our knowledge, this universal behaviour has not been recognized. Note that
the j = 7/2 multiplets (with the proviso made for 135I in Figure 11) are complete; the j = 9/2 and
11/2 multiplets contain more states than shown here, cf. Figures 4 and 13.

The manifestation of shape coexistence in singly closed shell nuclei was recognized
already forty years ago [39] and was reviewed thirty years ago [40]. It is well established
for Z = 20, 50, and 82 and for N = 20 and 28; there are hints to its presence for Z = 8
and 28, and for N = 8, 50, and 82. Details can be found in the most recent review [41],
together with some details in the earlier review [40]. The emerging view is that shape
coexistence likely occurs in all nuclei; including that spherical states occur in nuclei with
deformed ground states [42]. A concise perspective of the occurrence of deformation in
nuclei as compared to atoms can be encapsulated in: “The difference between atoms and
nuclei is that atoms are a manifestation of many-fermion quantum mechanics with one
type of fermion, which repel, whereas nuclei involve two types of nucleon, which attract.
By deforming, the system can lower its energy via relaxing the constraints of the Pauli
exclusion principle in such a manner that more spatially symmetric configurations become
accessible, which leads to a lowering of the energy of the system”. (It can be noted that
the emerging view of baryons may signal correlated, even deformed structures, especially
the recent realization [43] that the proton contains more (virtual) anti-down quarks than
anti-up quarks: this is simply a manifestation of correlations that involve “particle–hole”
excitations, i.e., quark–antiquark pairs, and the Pauli principle.)

3. Hints of Correlations, beyond Pairing and Seniority, at Closed Shells

The dominance of seniority, with intruding shape coexistence, in singly closed shell
nuclei is not quite “the whole story”. The following analysis of effective charges implied
by the observed B(E2; 2+1 → 0+1 ) in even-even nuclei adjacent to doubly closed shells
demonstrates what can be encapsulated in the term “the effective charge problem”.

Electric multipole transition rates in the shell model are usually evaluated using
harmonic oscillator wavefunctions. For a single-particle transition jβ → jα, the reduced
matrix element 〈jα||T(E2)||jβ〉 can be evaluated from

〈jα||T(Eλ)||jβ〉 = e√
4π

(−1)jβ+λ− 1
2

1 + (−1)lα+lβ+λ

2
λ̂ ĵα ĵβ

(
jα jβ λ
1
2 − 1

2 0

)
bλR̃(λ)

αβ , (2)
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where ĵ ≡ √
(2j + 1) and R̃(λ)

αβ is the dimensionless radial integral that can be evaluated in
closed form with harmonic oscillator wavefunctions. The oscillator length b is defined as

b =

√
h̄

mNω
, (3)

where h̄ is the reduced Planck constant, mN is the nucleon mass, and h̄ω can be evaluated
as a function of the mass number A as

h̄ω = (45A−1/3 − 25A−2/3) MeV, (4)

which has been found to give satisfactory agreement with observed charge radii. In general,

B(Eλ; Ji → J f ) = |〈J f ||T(E2)||Ji〉|2/(2Ji + 1). (5)

For transitions between the states of the pure j2 configuration, the B(E2) values are related
to the single-particle matrix element 〈j||T(E2)||j〉, by

B(E2; Ji → Ji − 2) = 4(2Ji − 3)
{

j Ji − 2 j
Ji j 2

}2

|〈j||T(E2)||j〉|2. (6)

It is instructive to begin with the textbook cases of 17O and 18O, which can be consid-
ered as adding one and two neutrons, respectively, to a 16O core. Identifying the first-excited
state to ground, 1/2+1 → 5/2+1 , transition in17O as due to the neutron transition from the
2s1/2 to 1d5/2 orbits, the experimental value of B(E2) = 2.39(3) W.u. (Weisskopf units) re-
quires an effective neutron charge of en = 0.534(3)e. This value is close to en = 0.5e, which
is the default often adopted for shell model calculations. However, turning to 18O, and
identifying the 2+1 → 0+1 transition with ν(d5/2)

2
2+ → ν(d5/2)

2
0+ , requires en = 1.054(14)e

to explain the observed transition strength of 3.32(9) W.u. One might hope that this dis-
crepancy between 17O and 18O would be resolved by a shell model calculation in the full
sd model space with one of the “universal” sd interactions, but it is not. Such shell model
calculations describe 17O well. The same calculations, however, fall short of explaining
the B(E2 : 2+1 → 0+1 ) in 18 O by a factor of nearly 3. It is worth noting that the experimen-
tal B(E2) for 18O is based on about 20 independent measurements by four independent
techniques, all in reasonable agreement. The conclusion must be that the effective charge
handles 17O, but fails for 18O due to additional correlations.

Table 2 shows shell model calculations for the reduced transition rate, B(E2; 2+1 → 0+1 ),
in doubly magic nuclides plus or minus two like nucleons. The shell model calculations
were performed with NUSHELLX [44] and generally use a contemporary set of interactions
for the relevant basis space, and either the recommended effective charges for the selected
basis space, or the default ep = 1.5e and en = 0.5e, for protons and neutrons, respectively.
The effective charges required to bring the shell model calculations into agreement with
experiment are shown. For those nuclides adjacent to 48Ca and 56Ni, calculations were
run in a basis that treats these nuclei as doubly magic, as well as in the full fp shell, which
allows for excitations from the 1 f7/2 shell across the N, Z = 28 shell gap into the 2p3/2,
1 f5/2, and 1p1/2 orbits. These calculations account for the neutron core excitation in 48Ca,
including the ν(2p − 2h) 0+ state at 5.46 MeV, but cannot describe the π(2p − 2h) 0+ state
at 4.28 MeV; see Figure 2, and cf. Figure 60.
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Table 2. Effective charges, ep and en, in units of the elementary charge e, for B(E2; 2+1 → 0+1 ) in doubly
magic nuclides plus or minus two like nucleons. The experimental values are from the Evaluated
Nuclear Structure Data File (ENSDF) [22], with the following exceptions: 46Ar [45], 130,134Sn [46,47],
134Te [48], 210Po [49].

Nuclide Basis a Interaction B(E2) (W.u.) ep en

Experiment Shell Model b

16O core:
14C p pewt [50,51] 1.8 ± 0.3 5.42 0.86 ± 0.07 −
18O sd usdb [52] 3.32 ± 0.09 1.16 c − 0.76 ± 0.01

18Ne sd usdb [52] 17.7 ± 1.8 10.64 c 1.75 ± 0.09 −
40Ca core:

38Ar sd usdb [52] 3.4 ± 0.16 3.36 c 1.37 ± 0.03 −
38Ca sd usdb [52] 2.5 ± 0.6 0.37 c − 1.17 ± 0.14
42Ca f7 f7cdpn [53] 9.5 ± 0.4 0.64 − 1.92 ± 0.04

fp gx1a [54,55] 9.5 ± 0.4 0.77 − 1.76 ± 0.04
42Ti f7 f7cdpn [53] 16 ± 4 5.80 2.49 ± 0.31 −

fp gx1a [54,55] 16 ± 4 6.94 2.28 ± 0.28 −
48Ca core:

46Ar sdpf sdpfmu [56] 4.4 ± 0.4 7.77 d − −
46Ca f7 f7cdpn [53] 3.63 ± 0.3 0.60 − 1.23 ± 0.05

fp gx1a [54,55] 3.63 ± 0.3 0.94 − 0.98 ± 0.04
50Ca ho ho [57] 0.68 ± 0.02 0.83 − 0.45 ± 0.01

fp gx1a [54,55] 0.68 ± 0.02 0.84 − 0.45 ± 0.01
50Ti ho ho [57] 5.46 ± 0.19 5.05 1.56 ± 0.03 −
50Ti fp gx1a [54,55] 5.46 ± 0.19 9.19 − −

56Ni core:
54Fe f7 f7cdpn [53] 11.1 ± 0.3 4.76 2.29 ± 0.03 −

fp gx1a [54,55] 11.1 ± 0.3 13.08 − −
54Ni f7 f7cdpn [53] 10 ± 2 0.53 − 2.17 ± 0.22

fp gx1a [54,55] 10 ± 2 6.69 − −
58Ni ho ho [57] 10.0 ± 0.4 0.83 − 1.73 ± 0.03

fp gx1a [54,55] 10.0 ± 0.4 9.28 − −
132Sn core:

130Sn jj55 sn100 [33] 1.18 ± 0.25 0.76 − 0.62 ± 0.06
134Sn jj56 jj56cdb [33] 1.42 ± 0.25 0.94 − 0.62 ± 0.05
134Te jj55 sn100 [33] 5.12 ± 0.21 4.00 1.70 ± 0.03 −

208Pb core:
206Pb jj56 khhe [58] 2.8 ± 0.09 0.79 − 0.94 ± 0.02
210Pb jj67 khpe [58] 1.4 ± 0.4 0.55 − 0.80 ± 0.11
210Po jj67 khpe [58] 1.83 ± 0.28 e 3.51 1.08 ± 0.08 −

a Model basis spaces:
p: π & ν (1p3/2, 1p1/2)
sd: π & ν (1d5/2, 2s1/2, 1d3/2)
f7: π & ν (1 f7/2)
fp: π & ν (1 f7/2, 2p3/2, 1 f5/2, 2p1/2)

sdpf: π (1d5/2, 1d3/2, 2s1/2); ν (1 f7/2, 2p3/2, 1 f5/2, 2p1/2)
ho: π (1 f7/2); ν (2p3/2, 1 f5/2, 2p1/2)

jj55: π & ν (1g7/2, 2d5/2, 2d3/2, 3s1/2, 1h11/2)
jj56: π (1g7/2, 2d5/2, 2d3/2, 3s1/2, 1h11/2); ν (1h9/2, 2 f7/2, 2 f5/2, 3p3/2, 3p1/2, 1i13/2)
jj67: π (1h9/2, 2 f7/2, 2 f5/2, 3p3/2, 3p1/2, 1i13/2); ν (1i11/2, 2g9/2, 2g7/2, 3d5/2, 3d3/2, 4s1/2, 1j15/2)
b The default charges are ep = 1.5 and en = 0.5, unless otherwise indicated.
c For usdb the recommended values ep = 1.36, en = 0.45 were used.
d For sdpgmu the recommended values ep = 1.35, en = 0.35 were used.
e This experimental value has been questioned; see text.

There is no overall pattern in the effective charges shown in Table 2. Most of the shell
model B(E2) values are within a factor of 2 to 3 of the experiment; however, those for
the calcium isotopes, 38Ca and 42Ca, are underestimated by an order of magnitude. The
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experimental B(E2) value for 46Ar is almost a factor of two smaller than theory. While a
lifetime measurement [59] gave a B(E2) value consistent with theory, the weight of evidence
from independent Coulomb excitation measurements [45,60,61] makes the adopted value
in Table 2 firm and in tension with theory.

Good agreement in the fp-shell calculation is obtained for 50Ca and 54Fe. As noted
above, in these cases, 48Ca and 56Ni are not doubly magic cores but part of the fp model
space. It is puzzling that the calculation for 50Ti in the same model space is twice the
experiment, but the restricted f7/2 model space agrees with experiment.

Moving to heavier nuclei, the effective charges in the 132Sn region are near the default
values [62], although most recent calculations adopt ep ≈ 1.7e and en ≈ 0.8e [32,34,63,64].
The measured B(E2) for 130Sn [46,47] is lower than theory and the experimental systematics
(see [65]); the experiment should be repeated.

In the 208Pb region, en approaches +e. The experimental result for 210Po is problematic.
As shown below in this Section, an analysis of higher-excited states in 210Po corresponding
nominally to the π1h2

9/2 configuration implies ep ≈ 1.5e. The experimental B(E2) in Table 2
for 210Po is deduced from a recent lifetime measurement by the Doppler shift attenuation
method following the 208Pb(12C,10Be)210Po reaction, which gave τ = 2.6 ± 0.4 ps [49]. This
new result is certainly an improvement on the previous measurement which used (d,d′)
above the Coulomb barrier to excite a 210Po target [66]. However, it is difficult to measure
such a short lifetime below the longer-lived 4+, 6+ and 8+ states that tend to also be
populated in heavy ion reactions; Kocheva et al. [49] recommend additional experiments.
Coulomb excitation of the radioactive beam (e.g., at ISOLDE where 210Po activity remains
in used ion sources) would be a possibility, avoiding the problem of feeding from the
longer-lived higher excited states.

In several cases in Table 2, a j2 approximation is (at least at face value) a reasonable
starting point. For the case of 14C, it is not: holes in 16O nominally occupy the 1p1/2 orbit
which must couple with 1p3/2 to form a 2+ state. In other cases, like 130Sn, the 2d3/2, 3s1/2,
and 1h11/2 single-particle orbits are so close in energy that a single-j2 approximation cannot
be applicable.

In some respects, the comparison of effective charges from the 2+1 → 0+1 transitions
alone may be considered selective and not altogether fair. However, as discussed in this
Section, it fits our purpose, which is to examine the emergence of collectivity in nuclei. To
explore further the successes and limitations of the shell model approach, comparisons of
E2 strengths and g factors are now made for a selection of the semimagic nuclides in Table 2
that can be approximated as a single-j2 configuration adjacent to a doubly magic core. Later
in this section and again in Section 8, we argue that the properties of 2+1 states, especially
their electromagnetic properties, play an important part in developing an understanding of
the emergence of collectivity in nuclei.

Table 3 shows the effective charges required to explain B(E2) values between low-
excitation states associated with nominal j2 configurations in doubly magic nuclides plus
or minus two like nucleons. For most cases, only protons or neutrons are active in the
basis space. For 50Ti and 54Fe, calculations were performed in the fp model space which
allows neutron excitations across N = 28; thus, both protons and neutrons contribute to
the transition rate. In these cases, the proton effective charge required by experiment was
evaluated assuming that en = 0.5e. The uncertainty given is due to the uncertainty in the
experimental B(E2) alone. Concerning the uncertainty in the assumed value of en, it can
be noted that ep + en is near constant for 50Ti, so a decrease in en by say 0.1e leads to an
increase in ep of approximately 0.1. For 54Fe, the value of ep is less sensitive to the assumed
value of en.

As expected, the effective charge is generally reduced when the basis space is enlarged;
the j2 model is obviously an oversimplification. However, it is a better approximation
for the nuclei adjacent to the N > Z doubly magic 132Sn and 208Pb. One reason is that,
for nuclei adjacent to N = Z doubly closed shells, intruder configurations are present at
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low energy and these place the active nucleons in a much larger Hilbert space than can be
handled by the shell model.

From Table 3, one can conclude that the effective charge required to describe the
B(E2; 2+1 → 0+1 ) transition is often greater than that required to explain the transitions
between the higher spins in the j2 multiplet (i.e., the E2 decays of the states with Jπ = 4+,
6+, ... (2j)+), particularly for the j2 model. One can also see that the effective charges exceed
the bare nucleon values, even in the large basis shell model calculations. The effective
proton charges are reduced significantly for 50Ti and 54Fe when the basis space is expanded
to include the whole fp shell. The proton charge deduced for 50Ti even approaches unity,
but this assumes that en = 0.5e.

Table 3. Effective charges for nominal j2 configurations in selected doubly magic nuclides plus
or minus two like nucleons. The effective charges are evaluated assuming a pure j2 configuration
and for the mixed configurations of the (large basis) shell model (SM) calculations in Table 2. The
experimental transition rates, B(E2)exp, are from ENSDF [22] and from the references in Table 2.

Nuclide Config. Transition B(E2)exp (W.u.) eeff

j2 SM

Protons:
18Ne π1d2

5/2 2+1 → 0+1 17.7 ± 1.8 2.43 ± 0.12 1.75 ± 0.09
4+1 → 2+1 8.9 ± 1.2 2.08 ± 0.14 1.34 ± 0.09

42Ti π1 f 2
7/2 2+1 → 0+1 16 ± 4 2.5 ± 0.3 2.28 ± 0.28

6+1 → 4+1 3.2 ± 0.2 1.65 ± 0.05 0.95 ± 0.03
50Ti π1 f 2

7/2 2+1 → 0+1 5.46 ± 0.19 1.56 ± 0.03 1.06 ± 0.03 a

4+1 → 2+1 5.5 ± 1.5 1.57 ± 0.21 1.1 ± 0.2 a

6+1 → 4+1 3.14 ± 0.13 1.76 ± 0.04 1.24 ± 0.03 a

54Fe π1 f−2
7/2 2+1 → 0+1 11.1 ± 0.3 2.29 ± 0.03 1.36 ± 0.02 a

4+1 → 2+1 6.3 ± 1.3 1.73 ± 0.18 1.60 ± 0.18 a

6+1 → 4+1 3.24 ± 0.06 1.84 ± 0.02 1.36 ± 0.01 a

134Te π1g2
7/2 2+1 → 0+1 5.12 ± 0.21 1.80 ± 0.04 1.70 ± 0.03

4+1 → 2+1 4.3 ± 0.4 1.65 ± 0.08 1.58 ± 0.07
6+1 → 4+1 2.05 ± 0.04 1.69 ± 0.02 1.54 ± 0.02

210Po π1h2
9/2 2+1 → 0+1 1.83 ± 0.28 b 1.07 ± 0.08 1.08 ± 0.08

4+1 → 2+1 4.46 ± 0.18 1.56 ± 0.03 1.50 ± 0.03
6+1 → 4+1 3.05 ± 0.09 1.55 ± 0.02 1.50 ± 0.02
8+1 → 6+1 1.12 ± 0.04 1.48 ± 0.03 1.44 ± 0.03

Neutrons:
18O ν1d2

5/2 2+1 → 0+1 3.32 ± 0.09 1.054 ± 0.014 0.76 ± 0.01
4+1 → 2+1 1.19 ± 0.06 0.76 ± 0.02 0.51 ± 0.01

42Ca ν1 f 2
7/2 2+1 → 0+1 9.5 ± 0.4 1.92 ± 0.04 1.76 ± 0.04

4+1 → 2+1 8.3 ± 1.2 1.80 ± 0.13 1.6 ± 0.1
6+1 → 4+1 0.777 ± 0.022 0.82 ± 0.01 0.47 ± 0.01

134Sn ν2 f 2
7/2 2+1 → 0+1 1.42 ± 0.25 0.80 ± 0.07 0.62 ± 0.05

6+1 → 4+1 0.89 ± 0.17 0.94 ± 0.09 0.52 ± 0.05
210Pb ν2g2

9/2 2+1 → 0+1 1.4 ± 0.4 0.81 ± 0.12 0.80 ± 0.11
4+1 → 2+1 4.8 ± 0.9 1.40 ± 0.13 1.28 ± 0.12
6+1 → 4+1 2.1 ± 0.8 1.11 ± 0.21 1.0 ± 0.2
8+1 → 6+1 0.7 ± 0.3 1.02 ± 0.22 0.90 ± 0.19

a Evaluated in the fp basis with gx1a interactions and en = 0.5e. See text for details. b This experimental value has
been questioned; see text.
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There are broadly two scenarios to explain the effective charge. First, and universally
applicable, is the coupling of the valence nucleons to collective excitations of the core,
including the giant resonances, in such fashion that the concept of an effective charge as a
renormalization procedure has some operational justification. Second, and specific to partic-
ular cases, is the coupling between the valence nucleons and low-excitation configurations
outside the shell model basis. This later scenario means that the shell model configuration
is wrong in a more fundamental way.

An examination of the magnetic moments, or rather the g factors (g = μ/J), can
distinguish between these scenarios. To this end, Table 4 shows an evaluation of the
g factors for those nominal j2 configuration cases in Table 3 for which there are experimental
data. It is useful to make use of the fact that g(jn) = g(j); that is, the g factor of any number
of nucleons in a single-particle orbit is equal to the g factor of the single-particle orbit,
independent of the number of nucleons (n) and the resultant spin.

The empirical g factor of the j2 configuration was evaluated as the average of the
g factors of the ground-states of the neighbouring nuclei with A ± 1 and odd-Z or odd-
N, as appropriate. The shell model calculations in the sd and fp spaces use the default
effective M1 operator for those basis spaces. For the jj55 space, the M1 operator is as in
Refs. [48,64,65,67,68]. For 210Pb and 210Po (jj67), the effective gs was set to 70% of the free
nucleon value and gl adjusted to reproduce the ground state g factors of 209Pb (ν2g9/2)
and 209Po (π1h9/2). The values so obtained conform to expectations (gl(π) ≈ 1.1 and
gl(ν) � 0). It is important to note that the renormalization of the M1 operator is due to
processes quite distinct from those that give rise to the effective charge, namely meson
exchange currents, and core polarization. Here, the core polarization involves particle–
hole excitations between spin–orbit partners, which couple strongly to the M1 operator.
It thus differs in a fundamental way from the core polarization associated with the E2
effective charge.

It is convenient to discuss the results in Table 4 beginning with the heavier nuclei,
210Pb and 210Po. For these nuclei adjacent to 208Pb, there is good agreement between the
experimental g factors of the 6+1 and 8+1 states, and both the empirical j2 estimate and the
shell model. These can be considered text book examples. It is unfortunate that there are no
data for the 2+1 and 4+1 states, which, as the following discussion in this Section suggests,
might show additional collectivity.

Turning to 134Te, the E2 and g factor data for the π(1g7/2)
2 multiplet are complete,

and there is reasonable agreement with both the j2 model and the shell model calculations.
A detailed analysis has been given in Ref. [48], wherein it is shown that there is additional
quadrupole collectivity in the 2+1 state of 134Te that is not accounted for by large-basis shell
model calculations that assume an inert 132Sn core. It was demonstrated that coupling the
valence πg2

7/2 configuration to a core vibration with the properties of the first-excited state
in 132Sn can readily account for the observed 2+1 → 0+1 transition strength in 134Te, and
that the wavefunctions of the 2+1 , 4+1 and 6+1 states of 134Te nevertheless remain dominated
by the πg2

7/2 configuration. It can be concluded that 132Sn is a relatively inert shell-model
core. The caveat, however, is that the shell model calculations still require relatively large
effective charges.

In the fp shell, 50Ti shows quite good agreement with both the j2 model and the shell
model. For 54Fe, the experimental g factors show better agreement with the large-basis
shell model than the j2 model. The shell model calculations in the fp basis with the gx1a

interactions do a reasonable job of describing the different behaviour of the g factors in 50Ti
and 54Fe.

The isotopes with two neutrons outside the N = Z cores 16O and 40Ca show similar
behaviour: g(2+1 ) is reduced significantly in magnitude compared to both the j2 model and
the shell model calculation, whereas the higher excited states, 4+ in 18O, and 6+ in 42Ca,
have g factors in agreement with both the j2 model and the larger-basis shell model. In
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these isotopes, both the E2 transition strengths and the g factors indicate that the 2+ state
must contain collective admixtures. Writing the 2+1 wavefunction in the form

|2+1 〉 = α|SM〉+
√

1 − α2|coll〉, (7)

where SM denotes the part from the shell model basis space and “coll” denotes the collective
part (from multiparticle-multihole excitations), implies that

g(2+1 ) = α2gSM + (1 − α2)gcoll. (8)

Assuming that the collective g factor is gcoll ≈ Z/A ≈ 0.5, and taking the shell model
g factor from Table 4 implies that there is a collective contribution of α2 = 20 ± 2% in the
first excited state of 18O, and a huge 59 ± 5% collective contribution in the first-excited
state of 42Ca. This mixing in 42Ca is in excellent agreement with a 50% collective con-
tribution deduced from Coulomb excitation data and one-neutron transfer reaction data
(see Figures 41 and 42 for full details). To explain the observed g factor in 42Ca, Ref. [69]
requires that the basis space be expanded to include the sd as well as fp orbits for both
protons and neutrons. This strongly collective structure of the 2+1 state is in stark contrast
with the near pure ν( f7/2)

2 structure of the 6+1 state.

Table 4. g factors for nominal j2 configurations in doubly magic nuclides plus or minus two
like nucleons. Data are from [70] (with a correction for 54Fe g(2+1 ) from [71]).

Nuclide Config. Jπ
i g (exp) g (emp j2) g (SM)

18O ν1d2
5/2 2+1 −0.285 ± 0.015 −0.685 −0.476

4+1 −0.63 ± 0.10 −0.685 −0.603

42Ca ν1 f 2
7/2 2+1 0.04 ± 0.06 −0.416 −0.615

6+1 −0.415 ± 0.015 −0.416 −0.538

50Ti π1 f 2
7/2 2+1 1.45 ± 0.08 1.538 1.235

6+1 1.55 ± 0.17 1.538 1.379

54Fe π1 f−2
7/2 2+1 0.95 ± 0.11 1.407 1.091

6+1 1.37 ± 0.03 1.407 1.354

134Te π1g2
7/2 2+1 0.76 ± 0.09 0.833 0.837

4+1 0.75 ± 0.50 0.833 0.833
6+1 0.847 ± 0.025 0.833 0.842

210Pb ν2g2
9/2 6+1 −0.312 ± 0.015 −0.320 −0.304 a

8+1 −0.312 ± 0.007 −0.320 −0.307 a

210Po π1h2
9/2 6+1 0.913 ± 0.008 0.913 0.912 b

8+1 0.919 ± 0.006 0.913 0.911 b

a gs(ν) = 0.7gfree
s (ν) = −2.678 and gl(ν) = −0.033 set to reproduce the ground-state moment of 209Pb.

b gs(π) = 0.7gfree
s (π) = 3.910 and gl(π) = 1.16 set to reproduce the g.s. moment of 209Bi.

To sum up, for the nuclei with N = Z cores, the 2+1 structure is apparently affected by
mixing with low-excitation deformed multparticle-multihole states, whereas the higher-
spin states are closer to the naïve j2 structure. For N > Z cores, the low-spin states are
better approximated by the empirical j2 model and quite well described by the shell model.
However, in all cases, a substantial effective charge is required to explain the E2 strength,
even when the g factor suggests a relatively pure shell model configuration.
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Although a first assessment of the effective charges required to explain the B(E2; 2+1 →
0+1 ) data adjacent to closed shells may appear to show no pattern, some features can be
identified: (i) shape coexistence and mixing must be taken into account when the doubly
magic core has N = Z, (ii) there are always non-zero corrections to the nucleonic charges.
Defining δep and δen, where eeff

p = (1 + δep)e and eeff
n = δen e, the common assumption

that δep ≈ δen ≈ 0.5 is seen to be valid in many cases. However, δen appears to increase in
heavier nuclei.

The above data and discussion shows that, for E2 transition strengths, the bare electric
charges, ep = +1e and en = 0, do not work for configurations confined to a valence shell. A
correction to the effective charges δep(n) � 0.5 is usually required, even when the low-lying
core excitations are taken into account. Certainly, the use of effective charges has provided
a means for exploring nuclear structure using the shell model applied to nuclei that do
not have closed shells. However, such practice buries important aspects of the origin of
quadrupole collectivity in nuclei; one cannot learn the whole story about the origin of
nuclear collectivity using such theories. We suggest that the path forward is two-fold: first,
to develop models that obviate the need for effective charges, and second, where the use
of effective charges is unavoidable, to formulate appropriate strategies to understand and
manage their use.

There are “standard” approaches to evaluate effective charge—often conceptually
based on the particle-vibration model of Bohr and Mottelson for nuclei with a single valence
nucleon. The vibration can be described microscopically by particle–hole excitations in a
Random Phase Approximation (RPA)-type approach [72–76]. There is then some choice of—
and sensitivity to—the interaction used in the RPA calculation [76]. This procedure, based
on single particle–hole excitations, will not account for the effects of mixing between the
valence configurations and low-excitation multiparticle-multihole configurations, which
will particularly affect the E2 effective charge. The procedure to generalize from one valence
nucleon to many is less often discussed. The effective charge must vary to some extent with
the number of valence nucleons, but, in practice, it is usually held constant.

Some further comments on the path forward are made in Section 10.
A wider view of what one means by the shell model as an independent-particle model

is provided by quasi-elastic electron scattering knockout of protons from closed shell nuclei.
A summary view is provided in Figure 15. Quasielastic electron-scattering knockout of
protons is a probe of independent-particle behaviour in nuclei that is distinct from the more
familiar one-nucleon transfer reaction spectroscopy such as (d, 3He). First, the interaction is
purely electromagnetic; second, entrance and exit channel effects are limited to the outgoing
(high-momentum) proton. Thus, confidence can be placed in the extracted spectroscopic
factors for (e, e′p) reactions and the revelation that the single-particle view is “incomplete”.
The important insight is that one is never dealing with independent particles in a quantum
many-body system such as the atomic nucleus: correlations are ubiquitous. Indeed, there
are severe warnings of this in the theoretical literature, e.g., [77,78]. These correlations
go much deeper than pairing correlations. The subject of nucleon correlations in nuclei
is broad. Reference to them in the narrative here is minimal because our focus is on
systematics of low-energy phenomenology. For the interested reader, a useful entry point
is Ref. [79]. For recent access to the topic, a useful source is Ref. [80].
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Figure 15. Spectroscopic strengths from quasielastic electron scattering knockout of valence protons,
A(e, e′p). Adapted from [81] (taken from [82]). The conclusion is, relative to a mean-field view, that
never more than 70% of independent-particle strength is manifested in valence nucleon structure,
even at doubly closed shells, i.e., other degrees of freedom are contributing to these structures.

The dilemma presented by the data in Figure 15 is a direct confrontation of the shell
model approach to nuclear structure, so it can be viewed as a restatement of the question
that is used for the title of this review. The data raise two questions: (1) Where has the
single-particle strength gone? (2) What has replaced the single-particle strength? We do
not attempt to answer these questions. Note that we are in good (bad?) company with the
Standard Model of particles and fields. The Standard Model has a plethora of parameters,
and nobody knows where they come from. There is one difference in our favour: we believe
that protons and neutrons underlie the low-energy degrees of freedom in nuclei, but to
employ their bare parameters requires much larger model spaces. Let us note the subtle
point regarding correlations: it is primarily the number of configurations involved, not
the number of particles, that is relevant. Shell model computations are only tractable in
(relatively) small Hilbert spaces: the accumulating evidence is that these spaces are too
small. There is an exponential growth in matrix dimensions as the shell model space is
increased. However, “symmetry guided” approaches are beginning to circumvent this
limitation [83]. A few details are given in Section 10.

It is relevant to note here that the missing strength in (e, e′p) knockout and the effective
charge problem must be related at a fundamental level because the T(Eλ) matrix elements
for mass A can be expanded in terms of one-body spectroscopic factors connecting A and
A − 1. Whether the general missing strength in transfer reactions [84] is associated with
short-range [85] or long-range [86] correlations is crucial for the question of emerging
collectivity. Moreover, the role of this missing strength in the emergence of quadrupole
collectivity in nuclei could possibly be illuminated by examining how the effective charges
for higher multipolarities, particularly E4 and E6, compared to those for E2 transitions.
The negative polarization charge required for the E6 transition in 53Fe remains a puzzle;
see, e.g., [74,76]. Experimental verification of this sole example of an E6 transition is
clearly important.
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A useful tool that has been used to explore independent-particle degrees of freedom
in nuclei has been one-nucleon transfer reactions. However, the so-called spectroscopic
strengths extracted from such data must be treated with great caution. This was recognized
long ago by Baranger [87], and even earlier by Macfarlane and French [88]. These issues
have received renewed attention; see, e.g., [89,90] and references therein for a discussion of
the problem. The key issue is: Which nuclei provide the best view of independent-particle
degrees of freedom? The approach of looking at how degrees of freedom, which manifestly
are not independent-particle degrees of freedom, “intrude” into nuclei where independent-
particle degrees of freedom have the best chance of dominating (and are widely assumed
to do so [91]) is explored here.

By now, it is recognized that structures, even highly deformed structures, “intrude”
into the low-energy excitations of spherical nuclei [41]. However, there are subtleties in the
mechanism by which such intruder states appear at low excitation energy. An example is
shown in Figure 16 for low-energy excited states in 47,49Ca. The naïve interpretation of the
low energies of the 3/2− state in 47Ca and the 7/2− state in 49Ca would be that the N = 28
shell gap has broken down; but, with an understanding of the manifestation of pairing
correlations, the reality is that the N = 28 shell gap is strongly present. The persistence of
the shell gap can be seen on the right side of Figure 16 where the difference between the
observed excitation energies of the first-excited states in 47Ca and 49Ca (which correspond
to excitation of a neutron across N = 28) and the shell gap energy of ≈ 5.1 MeV is very close
to the pairing energy determined from the odd-even staggering in the neutron separation
energy, Sn. However, one reads about “collapse of shells” and “dissolving of shells”. This
would be true if there were no correlations present; but correlations are present.

Figure 16. Intruder states in 47,49Ca. The low energy of the 3/2− state in 47Ca and the 7/2− state
in 49Ca result from pairing correlations. The low B(E2) values associated with these states indicate
little or no collective core excitation is involved. The left-hand side of the figure illustrates how a
simple estimate of the pairing correlation energy can be made. This analysis shows that the energy
gap for N = 28 at Z = 20 is 5.1 MeV, in line with a well-defined shell gap. The data are taken from
ENSDF [22], AME2020 [92], and [90]. Reproduced from [8].
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A classic example of intruder states that illustrate the role of deformation is shown in
Figure 17 for the odd-mass thallium isotopes. The first hints of these deformed intruder
states were recognized long ago [93]; the thallium isotopes were a prime motivational
origin of the first review of shape coexistence [94]. The spectroscopic evidence resides in
the hindrances of the isomeric transitions and in the band structures associated with the
isomer (9/2− states). The key excitation is a proton across Z = 82 to leave a hole pair below
Z = 82; this hole pair correlates with the valence neutron pairs. These correlations result in
near-identical “parabolas” in Bi and Pb isotopes, scaled by the number of proton pairs (see
Figure 17 in [41]) and the parabolas exhibit a near collinearity when plotted versus neutron
number. The 9/2− intruder structure is the oblate Nilsson 9/2−[505] configuration. There
are extensive band structures which are well-described by the Meyer-ter-Vehn model [95,96].
The cores are A−1Hg; the parameters are the same as for odd-Hg 1i13/2 bands and odd-Au
1h11/2 bands (viz. β = 0.15, γ = 37◦). However, these details raise serious questions about
using simple shell model configurations when interpreting excited states even in nuclei
with one nucleon coupled to a singly closed shell.

Figure 17. The lowest-energy intruder states in the odd-mass thallium isotopes. A naïve interpretation
(from a spherical shell model perspective) would lead to the conclusion that because a 9/2− state is
below an 11/2− state in excitation energy, spin–orbit coupling has “broken down” or “collapsed”.
In reality, the 9/2− states shown are dominated by proton 1p − 2h excitations and are deformed
structures: the first collective excitation on these 9/2− states is shown. [41]. Further details are given
in the text. Reproduced from [8].

4. Nuclei with Open Shells; Emergence of Collectivity

Nuclear structure is dominated by open-shell nuclei. With excitation of nucleons
across shell gaps, and the resulting correlations, “open-shell” configurations intrude to low
energy, even to the ground state, in some closed-shell nuclei. Thus, one must understand
open-shell nuclei from a microscopic perspective. There are excellent limiting cases for
nuclear behavior in open-shell nuclei: these are the strongly deformed nuclei, but a detailed
microscopic understanding is lacking. Some perspectives on the current situation are
presented here. This is the main focal point of this paper.

The key criterion for this exploration is to identify signatures of shell model structure
in open-shell nuclei. Doubly even nuclei obscure shell model structure because of the
correlations of pairs of nucleons. Odd-mass nuclei manifestly provide a view, via the
unpaired nucleon. However, correlations are still an issue because there can be mixing
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of the configurations with different j values within a given shell. However, spin–orbit
coupling provides a way forward: each shell has a unique-parity orbital and configurations
involving this orbital will be the least mixed of any structures observed.

The power of the systematics of unique-parity states is illustrated in Figures 18 and 19.
These figures show the systematics of the positive-parity states in the odd-mass yttrium
isotopes across two shells, Figure 18, and of the negative-parity states in the odd-mass
N = 63 isotones across two shells, Figure 19. Noting that the “parent” j configurations
are 1g9/2 and 1h11/2, i.e., they differ by one unit of spin, the patterns are similar to the
point that they are close to identical. (We recognize that, in the yttrium isotopes, there is
a “delayed” onset of collectivity in 91,93,95,97Y, an issue which does not concern us here).
These patterns suggest that there is an underlying coupling scheme that is defined by
just a few simple basic features. Since multi-j shell structures (as manifested in, e.g., the
negative-parity states in the 28 < Z < 50 shell, involving the configurations 1 f5/2, 2p3/2,
and 2p1/2) are dominated by mixing of these configurations, the unique-parity states may
provide a basic guide, via recognized single-j shell dominated patterns, for a mixed j-shell
description across all open-shell odd-mass nuclear structure. Thus, we point to patterns
that are independent of specific open shells; and to the implication that “shell-specific”
interactions may be unnecessarily complex and intricate.

At present, the best description of experimental data for odd-mass nuclei in regions
where deformation is not large is: “incomplete”. However, a small number of such nuclei
have been sufficiently well studied that they can provide guidance to likely a more complete
view of the structure of unique-parity states. The best experimental example of the structure
we draw attention to is shown in Figure 20, i.e., the nucleus 125Xe. This is a pattern of
organization related to the studies of a single-j particle coupled to a rigid triaxial rotor, by
Juergen Meyer-ter-Vehn [95,96]; indeed, he suggested such a pattern in 187Ir, long before
detailed spectroscopic information was available: an up-to-date view of 187Ir is shown in
Figures 21 and 22, and these strongly support the view. Further note that a very similar
pattern appeared in a weak coupling description [97].

Figure 18. Systematics of the positive-parity states across the yttrium isotopes. These states are
the unique-parity states for protons in the 28 < Z < 50 open shell. Note the emergence of near-
identical excitation patterns at the extreme mass numbers (these are the Nilsson configurations
Ωπ [NnzΛ] = 5/2+[422], which differ only in rotational energy parameters).
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Figure 19. Systematics of negative-parity states across the N = 63 isotones. These states are the
unique-parity states for neutrons in the 50 < N < 82 open shell. Note the emergence of near-
identical excitation patterns at the extreme mass numbers (these are the Nilsson configurations
Ωπ [NnzΛ] = 5/2−[532], which differ only in rotational energy parameters and, slightly, in “stagger-
ing” or signature splitting).

Figure 20. Organization of the unique-parity states in 125Xe, associated with j = 11/2 into a “hyper-
band” pattern due to Meyer-ter-Vehn [95,96]. The inset shows the quantum numbers used to define
this pattern [98]. The data are taken from [99], but the pattern was not recognized there. Note that
“vertical” ΔI = 2 (i.e., E2) transitions are almost totally absent from the observed data. See the text for
more details.
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Figure 21. Organization of the unique-parity states in 187Ir associated with j = 11/2 into a “hyper-
band” pattern due to Meyer-ter-Vehn [95,96]. The data are taken from [100], but the pattern was not
recognized there. The states to the right may be associated with three-quasiparticle (3 q.p.) excitations.

Figure 22. Organization of the unique-parity states in 187Ir associated with j = 9/2 intruder configu-
ration into a “hyper-band” pattern due to Meyer-ter-Vehn [95,96]. The data are taken from [100], but
the pattern was not recognized there.

The pattern shown in Figure 20 is an organization of experimental data to reflect the
dominance of so-called “rotational-aligned” coupling, which occurs in odd-mass nuclei
that are not strongly deformed. The leading rotationally aligned set of states is highlighted
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in red and extends from the lowest I = 11/2 state, diagonally upwards to the right. The
spin 11/2 originates from the 1h11/2 spherical shell model state, which dominates all low-
energy negative-parity states in 125Xe. The lowest tier of states in this set has the spin
sequence 11/2, 15/2, 19/2, 23/2, 27/2, . . . ; the tier just above has the spin sequence 13/2,
17/2, 21/2, 25/2, . . . However, as shown, this basic pattern is “repeated”, within the set
of states highlighted in red, with tiers possessing spin sequences 15/2, 19/2, 23/2, . . . ,
17/2, 21/2, . . . Furthermore, with sets of states, highlighted in blue and green, the red
pattern is repeated built on states of I = 9/2 and 7/2, respectively. The tiers of ΔI = 2
spin sequences, beyond the first two, result from axial asymmetry and the coupling of the
j = 11/2 particle to an axially asymmetric rotor. The repeated sets of states, coded with
different colours, identified as I = 9/2 and I = 7/2, arise from alignment of the j = 11/2
particle in the deformed quadrupole field of 125Xe (such as occurs in the Nilsson model)
and rotations about the unfavored axis of the triaxial rotor. These multiple tiers have
been considered in some nuclei, by some authors, as candidates for so-called “wobbling”:
such wobbling, however, requires strong E2 transitions between tiers of states, i.e., decays
appearing as vertical arrows; in 125Xe, these transitions appear to be dominated by M1
transitions, which might be termed “magnetic” rotation; for further details, see Refs. [95,96].
There is controversy regarding E2 admixtures in ΔI = 1 transitions; see the general remarks
in [101].

A perusal of the literature over recent decades suggests that the view of Meyer-ter-
Vehn has been “forgotten”. The question that arises from consideration of Figures 18–20
(and Figures 21 and 22) is: How small a deformation is meaningful in weakly deformed
nuclei? We consider this question but do not reach a final answer. An important outcome
of the Meyer-ter-Vehn model [95,96] has been a multi-j version of the model, which is
usually described as the particle-triaxial-rotor model (PTRM) [102]. Indeed, it was applied
to a description of 125Xe [103,104] before the more recent detailed data set [99]. Thus, the
focus here is on a deeper look at the basics of these models, especially near their weak
deformation limit.

A major factor in particle-rotor models, both axially symmetric and axially asymmetric,
when the deformation is not large, is so-called “Coriolis” or “rotational” alignment. A
milestone paper that pointed to this effect was by Frank Stephens and coworkers [105],
based on observations in the odd-mass lanthanum isotopes; an up-to-date view of their
perspective is shown in Figure 23. An up-to-date view of all known negative-parity states
in the odd-mass lanthanum isotopes is shown in Figure 24. Except for 133La, the low-
spin couplings are not yet observed. The coupling to low spin is addressed shortly in
this Section. The pattern in Figure 23 is referred to as “rotation-aligned” coupling. A
simple explanation is given in Figure 25. The essential mechanism is the competition
between “rotation alignment” and “deformation alignment”, where deformation alignment
is embodied in the basic quantum mechanics of the Nilsson model. The quantum mechanics
of rotation alignment is described by the I · j term of the particle-rotor model: Figure 25 is
a semi-classical view of this term. A naïve view of the weak-coupling limit of this term is
that it dominates the coupling, and the total spin, I and j become collinear. This already
appears to happen in the odd-mass lanthanum isotopes for the I = j + 2 states, but this
does not address the question for the other possible couplings of j (to the even-even core)
to yield a resultant total spin I.
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Figure 23. Energy pattern of the high-spin unique-parity states in the odd-mass lanthanum isotopes,
compared to the ground-state bands of the (A − 1) even-mass barium isotopes. This figure is an
up-to-date view of one first proposed by Stephens et al. [105], where the term “rotation-aligned
coupling scheme” was introduced.

Figure 24. Systematics of unique-parity states in the odd-mass lanthanum isotopes for N ≤ 82. Note
the sparse information on low-spin states. The data are taken from ENSDF [22].
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Figure 25. Semi-classical view of the rotation-alignment or Coriolis term in the particle-rotor model.
The two coupling schemes depict the two extremes of the Nilsson model for a single-j state in a
spheroidally deformed mean-field, labelled by Ω = 1/2 and Ω = max. For the particle-rotor coupling,
I = R + j and very different alignments of I and j are possible. Recognizing that, e.g., Figure 23
focuses on energy differences, one sees from these diagrams that differences in I, i.e., ΔI, a vector
quantity, result in very different values for ΔI · j and hence for expectation values of this quantity.
Reproduced from [8].

Coupling of j to an even-even core to yield low-spin states with unique parity is
sparsely characterized in weakly deformed nuclei, as already noted. An extreme “weak
coupling” example is shown in Figure 26. By weak coupling, one means that a set of states,
resulting from coupling an odd-nucleon of spin j to the core 2+1 excitation, j⊗ 2+1 , with spins
|j− 2| ≤ J ≤ |j+ 2|, appears as a closely spaced multiplet, at an excitation centred on the 2+1
energy of the even-even core, connected by unfragmented E2 strength to the spin-j ground
state, is observed. This simple view is approximately realized in Figure 26: Coulomb
excitation strongly populates five states with J = 5/2, 7/2, 9/2, 11/2, and 13/2; it also
weakly populates a 5/2+ state at 941 keV and a 9/2+ state at 1461 keV. These two states are
due to a shape coexisting or intruder band (a Nilsson 1/2+[431] decoupled rotational band)
details of which are not important to the present focus. It is sufficient to note that the weakly
coupled multiplet is identifiable, with the provision that the spin 5/2 and 9/2 members
of the multiplet are manifested with some configuration mixing due to near degeneracies
with intruder band configurations. This would suggest that the weak coupling limit is a
familiar pattern, and the quest is nearly complete, pending filling in some minor details.
However, a recent result [64] shows that the situation is far from being the weak-coupling
limit: this is illustrated in Figure 27. Even though the energies appear to approximate
the weak-coupling pattern, significant collective E2 strength has been “acquired” by the
addition of a single extra-core proton. More specifically, the odd-A nucleus 129Sb shows
additional collectivity in Coulomb excitation from the ground state, above that of the 128Sn
core. A shell model description with effective charges of ep = 1.7e and en = 0.8e set
from the B(E2; 0+1 → 2+1 ) values of the semimagic neighbours 130Te for protons and 128Sn
for neutrons, goes some way towards describing this additional collectivity. This simple
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particle–core coupling situation therefore gives evidence of emerging collectivity over and
above that implied by the significant effective charges associated with the individual proton
and neutron contributions.

Figure 26. Example of near-weak coupling in 115In, observed by Coulomb excitation and shown
in comparison to Coulomb excitation for the neighbouring even-even “core” nucleus, 116Sn. These
states are due to the proton coupling 1g−1

9/2 ⊗ 2+1 . There is some fragmentation of strength for specific
spin-parities: this results from mixing with intruder states. The states at 941 keV, 5/2+ and 1449 keV,
9/2+ are members of a decoupled rotational band built on the 1/2+[431] Nilsson configuration [106].
This configuration has 1g7/2 parentage and results in a rotational band with decoupling parameter,
a  −2, which puts the 3/2+ state below the 1/2+ state. Note that the negative parity states are not
shown; the lowest negative parity states in the odd-In isotopes are shown in Figure 28. The numbers
in parentheses are B(E2) values for the excitation process, in units of e2fm4 × 102 (100 e2fm4 = 60 W.u.
for A = 115.) The data are taken from [107]. Reproduced from [6].

(a)

Figure 27. Cont.
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(b)

Figure 27. (a) Partial level scheme for 129Sb. Grey transitions result from excitation of the 1851-keV
isomer present in the beam. (b): Fragmentation of the E2 strength in W.u. over the 2+ ⊗ πg7/2

multiplet members and candidate πd5/2 state of 129Sb and enhancement of total strength as compared
to the 128Sn core. The grey colored transition was not experimentally observed. The figure is
reproduced from [64]. See also Ref. [64] for details of the large-basis shell model calculations SM1
and SM2, which employ the same basis space but alternative contemporary residual interactions.

The status of particle–core coupling presented above, and in additional calculations
by Gray et al. [108], suggests that there is not a good understanding with respect to the
Z = 50 closed shell and the odd-mass In and Sb isotopes. The issue extends across the
entire mass surface due to a severe lack of critical data. The systematics of the low-lying
states in the odd mass In and Sb isotopes are shown in Figures 28 and 29, respectively.
The pattern of the In isotopes suggests that, for the negative-parity states, there may be
important collective effects which would explain the energy minimum at mid shell. Weak
deformation is supported by laser hyperfine spectroscopy studies [109] and is shown in
Figure 30. Note that two views of deformation for the In isotopes are presented in Figure 30:
a direct view via spectroscopic quadrupole moments—the lower sequence of data points
centred on β ∼ 0.1, and an indirect view via isotope shifts—the upper sequence of data
points. The latter view can be inferred to contain a dynamical contribution, but this aspect
lies beyond the present discussion. The observed pattern for the Sb isotopes suggests a
“crossing” of the 2d5/2 and 1g7/2 configurations. However, at present, the question of the
collectivity associated with low-lying states in the odd-Sb isotopes suggests caution is
needed in making the interpretation of the lowest 5/2+ and 7/2+ states as resulting from
pure shell model configurations.

Skyrme Hartree–Fock calculations with the SKX interaction [110] correctly track the
nominal 2d5/2 vs. 1g7/2 level ordering in the Sb isotopes, but the location of the 3s1/2
orbit does not track with the behaviour of the observed J = 1/2+ state with its shift in
energy across the observed 7/2+ state. In the indium isotopes, the single-particle levels in
the potential generated by SKX are more separated in energy and roughly track with the
observed levels of the relevant spin–parity. It appears that the indium levels remain quite
regular because the parent orbits are well separated in energy in the mean field and the
observed states are less affected by residual interactions; however, one sees clear evidence
from the quadrupole moments in Figure 30 that deformation develops at mid-shell. In
contrast, the Sb isotopes have the 2d5/2 and 1g7/2 single-particle states quite close in the
mean field calculation. Thus, the observed level ordering can be sensitive not only to
changes in the mean field, but also to residual interactions and deformation effects.
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Figure 28. Systematics of the negative-parity states in the odd-mass indium isotopes relative to the
9/2+ ground states. Naïvely, these states could be interpreted as the shell model single proton–hole
configurations 2p1/2, 2p3/2, and 1 f5/2; but E2 transition strengths would be desirable before such an
interpretation is made. The “parabolic” energy trend suggests interactions with neutrons across the
shell with a characteristic energy minimum near the mid-shell point (N = 66), as indicated. Note the
severe deficiency of data for electromagnetic decay strengths: there is one half life, for the 589 keV
state in 117In, and the E2/M1 mixing ratio for the decay of this state is ambiguous. Data for 107In are
from [111] and for 131In are from [112]; other data are taken from ENSDF [22].

Figure 29. Systematics of selected states in the odd-mass antimony isotopes. The short blue lines
show the energies of the 2+1 states in the even-even A−1Sn isotopes with respect to which weak
coupling in the ASb isotopes can be assessed. The ground states of 125−135Sb are not shown; they all
have spin–parity 7/2+.
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Figure 30. Deformations of the odd-In isotopes deduced from spectroscopic quadrupole moments
and isotope shifts following laser hyperfine spectroscopy [109]. Reprinted from [109], Copyright
(1987), with permission from Elsevier.

Mass regions where the issue of emergent collectivity needs detailed spectroscopic
study are addressed in Section 5 through Section 9. In particular, Sections 5 and 6 focus on
the Ni and Ca isotopes, respectively.

Let us emphasize that there is a substantial body of evidence for the role of triaxial
shapes in nuclei that are of moderate deformation. This is supported by the observation
of “too many low-energy states for axial symmetry” in unique-parity excitations, such as
shown in Figures 20–22. It is also supported by the application of the Kumar–Cline sum
rules [113,114] to shell model electromagnetic strengths, as summarized for calculations
of the Bohr-model deformation parameters derived from the shape invariants for the
tellurium isotopes in Figure 31. These features do not imply that 128−134Te can be modeled
as weakly deformed triaxial rotors in their low-lying states up to spin 6+. Scrutiny of the
wave functions and predicted g factors, for example, indicates that the structures of the
lowest few states are very different, despite their apparently similar shape parameters.
These excitations are not rotations of a single intrinsic structure as is supposed in the triaxial
rotor model. Although the magnetic moments indicate that the Te isotopes near the N = 82
shell closure cannot be accurately modelled as weakly deformed triaxial rotors, a triaxial
rotor description may prove appropriate as the number of neutron holes increases. The fact
that the excited-state shapes in Figure 31 are all triaxial with γ ≈ 30◦ may suggest that the
pathway of emerging collectivity in this region progresses from near-spherical nuclei near
132Sn, to weakly-deformed triaxial rotors as an intermediate step, before finally reaching
more strongly deformed prolate rotors near mid-shell. Further data and calculations across
an extended range of Te and Xe isotopes would help to assess this conjecture.
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Figure 31. Average Bohr-model deformation parameters for yrast states in 128,130,132,134Te, assuming
an ellipsoidal deformed nucleus and determined from shell-model calculations using the Kumar–
Cline sum rules. For clarity, the fluctuations are not plotted. They are similar in magnitude for all
cases, and by happenstance, the “softness” or fluctuation associated with each point is comparable to
the scatter in the plotted points. Reproduced from [115].

5. Emergent Collectivity in the Nickel Isotopes

Currently, there is a high interest in neutron-rich nuclei. This is because of unprece-
dented access to completely new mass regions, and soon to come facilities that may “reach”
even further. In particular, the neutron-rich Ni isotopes and the adjacent open-shell isotopes
have received much attention. The systematic features of the low-energy excited states
in the even-mass Ni isotopes are shown in Figures 32 and 33. A naïve interpretation of
58−66Ni (Figure 32) is that they are vibrational; however, the error of using only energies
to make structural interpretations of weakly deformed nuclei has now been substantially
demonstrated [116]. The structure of 58−66Ni is addressed in detail in this Section, with
attention to seniority and shape coexistence. An unequivocal interpretation of 70−76Ni
(Figure 33) is that these isotopes are dominated by seniority coupling. However, this is an
incomplete view, as details in Figure 33 imply; the structure of 70−76Ni is also addressed in
detail in this Section.
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Figure 32. Systematics of the states with spin 0, 2, 4 and positive parity in 58−66Ni. The states in 66Ni
at 2443 and 2671 keV are assigned spin–parity 0+ and are taken from [117]; other data are taken from
ENSDF [22].

Figure 33. Systematics of the lowest positive-parity excited states in 68−78Ni. Data are taken
from: [118,119] (68Ni); [120–122] (70Ni); [123] (72Ni); [124] (74Ni); [125] (76Ni). The B(E2) data are
from ENSDF [22] for 68,70Ni, from [126] for 72Ni and from [127] for 74Ni. The dashed red lines are a
conjecture regarding the possibility of deformed intruder bands based on the interpretation of 2+2
and 4+2 states being members of such bands, and would be consistent with the interpretation of such
a structure in 70Ni, suggested by Chiara et al. [122]; they are interpreted as seniority-four states by
Morales et al. [124].
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Recently, a study of conversion electrons following (p, p′) excitation of 58,60,62Ni was
made by Evitts et al. [128,129]. A notable result was the observation of strong E0 decay
branches from second-excited 2+ states to the first-excited 2+ states. The details for 62Ni
are shown in Figure 34. Previously, strong E0 decays had been established for a series of
excited 0+ states in 58,60,62Ni [130]. However, an unresolved puzzle was that, whereas this
strength was associated with proton–pair excitations in 58,60Ni, this was not the situation in
62Ni. The paper of Evitts et al. [128,129] points to a possible resolution: Figure 34 suggests
that the 0+2 state at 2049 keV is the head of a strongly deformed band and the 2302-keV 2+

state is the first-excited band member. The proton pair–excitation at 3524 keV is shown.
Our interpretation of the 2049 keV 0+ state in 62Ni is a “4p-4h” excitation of the 56Ni
core. Such a structure would not be populated in (3He, n), (16O, 14C), (6Li, d) or (16O, 12C)
reactions, which were the spectroscopic probes used to identify the proton–pair excitations
in 58,60,62Ni [131–134].

Figure 34. Organization of the lowest excited states in 62Ni into seniority-dominated structures and a
new strongly deformed band. At present, this view must be considered a conjecture. The proposed
seniority-two structures are labelled by the shell model configurations with their associated spins
and parities. The deformed band is discussed in the text. The 0+ state at 3524 keV is assigned as a
proton–pair excitation based on two-proton [134] and α [132] transfer reaction spectroscopic studies.

The seniority-dominated structure of 70,72,74,76Ni has an unusual complication. While
it is simple in 76Ni, as established by direct observation of a cascade of four gamma rays
from an isomer with half-life 590 ns [125], this isomerism has disappeared in the lighter
even-mass nickel isotopes. The situation is now resolved at the level of the multiple
decay branches from the candidate spin–parity 8+ states characteristic of a (j = 9/2)2

seniority, v = 2 multiplet; but an open question is the nature of the low-lying states that
facilitate these “fast” decays. Two possibilities exist: the “extra” states are seniority four,
v = 4 states or, the “extra” states are members of coexisting deformed bands. It is possible
for v = 4 states to appear lower in energy than v = 2 states in the manner manifested in
72,74Ni [124]. It is also plausible that shape coexistence is occurring at low energy in these
nuclei. In favor of the latter interpretation is that shape coexistence has been suggested
to occur at low energy in 70Ni [121,122]. Furthermore, a near identical structure in the
N = 50 isotones involving the proton 1g9/2 subshell exhibits robust seniority isomerism
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with no involvement of v = 4 states producing fast decays (see, e.g., [135], although one
has to note seniority breakdown at low spin inferred from lifetime measurements [136]).

6. Collectivity in the Calcium Isotopes

The calcium isotopes hold a unique position in the study of nuclear structure. With
Z = 20 and a reach to either side of N = 20 and 28, they should be a perfect illustration of
closed-shell behaviour in nuclei, except that they are not. Figures 1 and 2 open the focus
of this contribution, with a perspective on 40Ca as an N = Z doubly closed-shell nucleus
and on 48Ca as an N > Z doubly closed-shell nucleus: 48Ca conforms to expectations; 40Ca
does not. Indeed, recently, the time-honored view that closed shells only occur at 2, 8, 20,
28, 50, 82, 126 has been questioned due to unusual systematic features in 52,54Ca: this is of
high interest with respect to forthcoming prospects for new facilities which will provide
access to very neutron-rich nuclei, and the calcium isotopes in particular. (The current
“reach” into the neutron-rich calcium isotopes is two events in 39 h of beam time, assigned
to 60Ca [137]).

A highly attractive feature of the calcium isotopes between N = 20 and 28 is that they
should be dominated by a single j shell, the 1 f7/2 shell. Figure 35 shows data that support
this view. The j = 7/2 seniority v = 2 states (J = 2, 4, 6) are highlighted in red; the j = 7/2
seniority v = 4 states (J = 2, 4, 5, 8) in 44Ca are highlighted in orange. Note that the J = 4,
v = 4 configuration mixes with the J = 4, v = 2 configuration. Further note that the J = 5
state has not been observed. Figure 35 also shows that other states appear at low energy in
42,44,46Ca: these are discussed with reference to the following, Figures 36–40 and Table 5.

Figure 35. Seniority and shape coexistence view of 42−46Ca. Data for 46Ca include recent results of
Pore et al. [138] and Ash et al. [139]. The deformed band in 42Ca (shown in blue) is observed up to
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spin 12 [140]. The deformed bands in 44Ca and 46Ca are indicated in purple. The seniority-two
states are indicated in red (but see details below in this caption); the seniority-four states, unique to
44Ca, are indicated in orange (but, again, see details below in this caption). The distinction between
the deformed bands is based on multi-nucleon transfer reactions: see Table 5. The seniority-2 and
seniority-4 structures in 44Ca, the 4+ states at 2.28 and 3.04 MeV, and the 2+ states at 1.16, 2.66 and
(probably) 3.30 MeV are mixed; see [141]. For the seniority structures associated with the ν1 f7/2

configuration, see Figure 3. Note that, while there is a high-spin study of 44Ca (Lach et al. [142]), the
deformed band has not been characterized. For a complementary perspective of the calcium isotopes,
see also details in Figures 36 and 41. The 3− states, which are not part of the present discussion, are
shown in green. Horizontal bars with vertical arrows indicate excitation energies above which states
are omitted.

Figure 36. Excited 0+ states in 40−48Ca. All known 0+ states up to 10 MeV are shown. Assign-
ments to particle–hole configurations are indicated where known and further details are given in
Figure 35 and 37, and Table 5. Note the inset box which indicates when the ν1 f7/2 shell is half filled.
Further note that the ν2p − 2h configurations are with respect to N = 28, and are identified by the
neutron–pair–addition reaction (t,p).
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Figure 37. Excited 0+ states in 40Ca viewed from the perspective of multiparticle transfer reactions.
The first excited 0+ state at 3353 keV is usually labelled as “4p-4h” on the basis of its strong population
in the 36Ar(6Li,d) reaction, but note the strong population of 0+ states, particularly around 8.3 MeV.
The second excited 0+ state at 5212 keV is usually labelled as “8p-8h” on the basis of its strong
population in the 32S(12C,α) reaction (the population of the 3353 keV state could involve partial filling
of the hole states in 32S, and does not necessarily imply an 8p-8h admixture to the 3353 keV state).
Figure 1 depicts the deformed and superdeformed bands built on the 3353 and 5212 keV states,
respectively. Proton–pair configurations appear to dominate 0+ states around 8 MeV, as supported
by the 38Ar(3He,n)40Ca reaction. Based on the 42Ca(p,t)40Ca reaction, neutron–pair configurations do
not dominate below 8.5 MeV. This leaves the 7301 keV excited 0+ state as the leading structure of
interest for an interpretation: possibly it is a “6p-6h” state (cf. Figure 40). Taken from [6].

Figure 38. Spectrum of deuterons following the reaction (6Li,d) on a 36Ar target. The most strongly
populated excited states are members of the deformed band with Ex (Jπ): 3353 (0+), 3904 (2+), 5279
(4+), 6930 (6+), cf. Figure 1. Note that the peaks at 5.28 and 6.93 MeV are multiplets. Reprinted with
permission from [143]. Copyright (1979) by the American Physical Society.
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Figure 39. Spectrum of alphas following the reaction (12C, α ) on a 32S target. States in both the 4p-4h
and the 8p-8h deformed bands are populated. The population of the 4p-4h band may involve a partial
filling of the “eight holes” in the target. Reprinted from [144], Copyright (1972), with permission
from Elsevier.

Figure 40. Estimate of the multiparticle-multihole basis state energies for 40Ca using a schematic
su(3)particle ⊗ su(3)hole model with a Q · Q interaction of strength C, where Q = Q1 + Q2 and Q1

and Q2 act on the Np (λ1, μ1) and Nh (λ2, μ2), p f and sd irreps, respectively. The figure is from a
collaboration between one of us (JLW) and the late David Rowe.
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Table 5. Tabulation of multi-nucleon transfer reaction spectroscopic data that provide (limited)
information on the multiparticle-multihole structures of excited 0+ states in 42,44,46Ca. The terms
“strong” and “weak” refer to strengths of population of states in these transfer reactions. Note that
the inference of “particle” and “hole” structure depends on the transfer nucleons and the target
configuration with respect to closed shells.

0+1 0+2 0+3 0+4 0+5 0+6 reference

42Ca
Ex (MeV): 0.00 1.84 a 3.30 b 5.35 5.86 c 6.02
40Ca(t,p)42Ca strong [145]
40Ar(3He,n)42Ca weak [146]
38Ar(6Li,d)42Ca strong [147]
44Ca
Ex (MeV): 0.00 1.88 b 3.58 a 5.86 c

48Ti(d,6Li)44Ca strong [148]
46Ti(14C,16O)44Ca strong [149]
42Ca(t,p)44Ca strong [145]
46Ca
Ex (MeV): 0.00 2.42 b 4.76 5.32 5.60 c 5.63 c

48Ti(14C,16O)46Ca strong [149]
44Ca(t,p)46Ca strong strong [145]

a 4p − 4h ⊗ ν1 f n
7/2 , b π(2p − 2h) , c ν(2p − 2h).

Figure 36 shows the problem of the simple 1 f7/2 shell-based view of 42,44,46Ca: there
are “too many 0+ states” at low energy in the even-mass calcium isotopes. A single-
shell-seniority view does not possess any excited 0+ states; but the second excited state
in 42,44,46Ca is a 0+ state. Furthermore, the first-excited 0+ states in 42,44,46Ca are not
configurations due to a common origin. The evidence for this is presented in the following
paragraphs.

The key to the structure of the calcium isotopes with N = 20 − 28 is manifested in
multi-nucleon transfer reaction spectroscopy for 40Ca, summarized in Figure 37. The details
are complex and counterintuitive. Indeed, the evidence “has to be seen to be believed”;
Figures 38 and 39 show the evidence. It is important to recognize the role of the target
nuclei in that they define “hole” structures with respect to which the transferred multi-
nucleon “clusters” are “added”. Added nucleons can completely fill the holes (ground-state
population), or partially fill the holes, or not fill the holes at all. There is a dominance of
transfer to states that involve the target holes remaining completely unfilled, i.e., a 4p-4h
configuration in the (6Li,d) reaction and an 8p-8h configuration in the (12C,α) reaction. Note
that the (6Li,d) reaction does not populate the states of the “8p-8h” band strongly, but band
mixing is suggested. Further note that the (12C,α) reaction can populate the states of the
“4p-4h” band by “partially filling” the holes.

A partial guide to the multiparticle-multihole structure of 42,44,46Ca is presented in
Table 5. This view is only partial because of a lack of stable isotope targets. The view leaves
open many questions, but overriding all questions is the clear view that the shell model, as
a simple model view, catastrophically breaks down in these isotopes. A guide to a likely
interpretation is provided by the schematic-model view presented in Figure 40. This treats
particle “clusters” and hole “clusters” as distinct entities that interact. This is tractable
using an su(3) algebra with a quadrupole–quadrupole, Q · Q interaction (see [150,151] for
details). This schematic view suggests a viable “coupling scheme”, which serves much
like the Nilsson scheme serves in nuclei with deformed ground states, but here serving to
handle multiparticle-multihole excitations at low energy in the calcium isotopes.
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Figure 40 reveals the enormous energy shifts associated with interactions that produce
nuclear deformation. In Figure 1, B(E2) values in association with the deformed bands in
40Ca are given: if the B(E2; 4+ → 2+) strength of 170 W.u. (in the 8p-8h band) is scaled
to A = 172 (A4/3 dependence), it has a strength of 1200 W.u., cf. the 4+ → 2+ transition
in the ground-state band of 172Yb, where the strength is 300 W.u. Note that the structural
interpretations of the deformed bands in 40Ca are not model based; they are mandated by
the transfer reaction data shown in Figures 38 and 39. Most importantly, Figure 40 and
specifically the interaction strength of the quadrupole-quadrupole interaction, C, illustrates
how configurations that are spread over ∼90 MeV in a spherical mean-field, i.e., 8h̄ω, can
appear almost degenerate in energy. Indeed, it is worthy of comment that Nature could be
said to have “barely realized a spherical ground state for 40Ca” (as also for 16O). In the spirit
of “islands of inversion”, there is a veritable archipelago of islands of inversion, multiple
inversions, within one-oscillator shell of excitation energy in 40Ca. Unfortunately, detailed
spectroscopy of multiparticle-multihole states in nuclei is confined to this local mass region.
A few more details are given before closing this Section.

Let us make some further comments on Figure 40. Just as one arrives at a shell model
basis using an oscillator potential with spin–orbit coupling (and further, by deforming the
oscillator potential, as a Nilsson model basis), so in Figure 40 one arrives at a multi-shell
basis. The justification of invoking this basis is the observation of the 4p-4h and 8p-8h
states in 40Ca at 3.5 and 5.2 MeV, respectively. The excitations of the 2p-2h and 6p-6h states
in 40Ca are not characterized, but there are many 0+ excited states known above 7 MeV, as
presented in Figure 37. Note that a 5% change in the interaction strength corresponds to
a 5 MeV shift in energy at C = 0.025 for the 8p-8h configuration. From this perspective,
the very existence of a shell model description of nuclei is a “just-so” story, i.e., for a
small change in this su(3)-model interaction, spherical states in nuclei would have only
been encountered as rare, exotic excitations. An example of this is realized in 44Ti, as
depicted in Figure 43. Details behind these schematic estimates are given in [150–152] (see
also [153,154]).

A useful spectroscopic view of the persistence of multiparticle-multihole excitations
in this mass region is provided by 42Ca. This nuclide is accessible to transfer reaction
spectroscopy and to Coulomb excitation. A view which combines such spectroscopic data
is presented in Figure 41. Figure 42 shows a simple view of the structure using “two-
state mixing”, applied to the lowest states with spins 0, 2, and 4; this description should
be compared with shell model and collective model views summarized in Table 6. An
important point to note is that, while these coexisting configurations mix, the mixing is
sufficiently weak that the underlying dominant structures can be identified: they are a
spherical (valence) neutron particle pair and a “6p-4h” structure resulting from the 40Ca
core 4p-4h structure, cf. Figure 37.

The description presented in Figure 42 correctly reproduces the largest E2 transition
strength, that between the 2+1 and 0+2 states, i.e., this strength is entirely due to mixing with
zero contribution from intrinsic strength. The description fails for the E2 transition strength
between the 2+2 and 0+1 states, and there is a serious failure for the diagonal matrix elements
of the 2+1 and 2+2 states. The conclusion is that two-state mixing for spin 2 is inadequate:
three (four)-state mixing is necessary. Experimentally, third and fourth 2+ states are known
at 3392 and 3654 keV (cf. ENSDF [22]); both are populated in the one-neutron addition
reaction: spectroscopic characterization of these states is lacking.
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Table 6. Comparison of E2 matrix elements in 42Ca with shell model (SM) and beyond mean-
field (BMF) calculations. The differences between theory (th) and experiment (ex) are shown as
[(〈E2〉ex − 〈E2〉th)/〈E2〉ex]× 100%. Details of these calculations are given in [155]: the shell model
calculations follow details similar to those employed in [156]. Comparison of the two-state mixing
results, shown in Figure 42, suggests serious deficiencies in these two models, which are state of the
art. Note that all three calculations obtain an incorrect sign for the 2+2 → 0+1 E2 matrix element, and
they all seriously fail for the diagonal matrix elements. Adapted from [155].

Ii → If 〈Ii||E2||If 〉 e fm2 % Difference

Experiment SM BMF SM BMF

2+1 → 0+1 20.5 ± 0.6 11.5 9.14 78 124
4+1 → 2+1 24.3 ± 1.2 11.3 12.2 115 99
6+1 → 4+1 9.3 ± 0.2 8.2 14.3
0+2 → 2+1 22.2 ± 1.1 11.9 6.1 87 264
2+2 → 0+1 −6.4 ± 0.3 9.4 4.4 32 a 45 a

2+2 → 2+1 −23.7+2.3
−2.7 −13.6 −7.7 74 208

4+2 → 2+1 42+3
−4 21.9 10.1 92 316

2+2 → 0+2 26+5
−3 32 42 19 38

4+2 → 2+2 46+3
−6 52 70 12 34

2+1 → 2+1 −16+9
−3 −4.3 0.1

2+2 → 2+2 −55 ± 15 −31 −42
a Wrong sign.

Figure 41. Two key spectroscopic views of 42Ca and a comparison with 46Ca. On the left, the
lowest positive-parity states are shown together with the E2 transition strengths in W.u. between
these states and diagonal values for the E2 matrix elements in eb of the 2+1 and 2+2 states, as
determined by Coulomb excitation [155]. In the centre of the figure, the population of these states
by the 41Ca(d,p)42Ca reaction is shown (the spectrum is reproduced from [157], Copyright (1972),
with permission from Elsevier.). This reaction should only populate the 0+ ground state and
one each for states of spin–parity 2+ , 4+ , and 6+ corresponding to a seniority v = 2 multiplet in
association with the expected 1 f7/2 orbital, which is the only shell model subshell for 20 < N < 28:
these data provide evidence that there is mixing between these seniority configurations and other
structure which is intruding to low energy. On the right, for comparison, the lowest positive-parity
states in 46Ca together with known E2 transition strengths are shown. In addition to cited sources,
data are taken from ENSDF [22].
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Figure 42. Two-state mixing for the lowest pairs of states with spin–parity 0+, 2+, and 4+ in 42Ca. The
E2 matrix elements are shown for transitions and level quadrupole moments. The mixing amplitudes
are fixed from the fragmentation of the one-neutron addition spectroscopy shown in Figure 41, viz.
0.807 in the ground state, 0.707 in the 2+1 state and 0.807 in the 4+1 for the 1 f7/2 components of these
states. There are two fitted parameters: Q0 = 10 e fm2 for the 1 f7/2 configurations and Q0 = 40 e fm2

for the intruder configurations. The Q0 value for intruder configurations is multiplied by a rotor
model Clebsch–Gordan coefficient for the respective spin values, i.e., −1.195Q0 for 〈21||E2||21〉 and
1.604Q0 for 〈41||E2||21〉. Differences between theory (th) and experiment (ex) are shown in the lower
part of the figure as [(〈E2〉ex − 〈E2〉th)/〈E2〉ex] × 100%. Other theoretical views are tabulated in
Table 6.

This conclusion that two-state mixing is inadequate is in line with recent experimental
observations of E0 decays from the normal-deformed and superdeformed 0+ states to the
nominally spherical ground state in 40Ca where it is found that two-state mixing cannot
explain the observed monopole decay strengths. Rather, three-state mixing is needed [158].
In this case large basis shell model calculations, which include multinucleon excitations
of both protons and neutrons across the Z = N = 20 shell gap, are able to describe the
E0 data. Of relevance for the present discussion is that these data confirm that the naïve
spherical ground-state configuration of 40Ca is mixed with deformed intruder structures.
This mixing contributes to the shortfall in single-particle strength displayed for valence
proton knockout in Figure 15.

A rare view of a deformed nucleus, where a non-intruder spherical excited state has
been identified, is 44Ti as depicted in Figure 43. The double-charge exchange reaction
identifies the double-isobaric analog state of the 44Ca ground state, which is manifestly
a spherical state as characterized by its seniority-dominated low-energy structure. This
highlights the role of the many-body symmetrization in dictating deformation. Recall,
the nucleon–nucleon interaction is short-ranged and attractive, and the total “space ⊗
spin ⊗ isospin” wave function is antisymmetric: thus, for maximum binding of nucleons
in a nucleus, the space-part of the wave function must be as symmetric as possible (a
spatially antisymmetric wave function results in “cancellations” in the many-body energy
correlations). It also reveals, via the excitation energy of 9.3 MeV, why the identification of
spherical states in nuclei with deformed ground states is extremely difficult and therefore
essentially never discussed, but such states are present. Identification of deformed states in
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nuclei with spherical ground states is usually achieved via the distinctive rotational bands
associated with deformed structures in nuclei; spherical states do not exhibit such easily
identified patterns.

Figure 43. Low-energy T = 0, 1 and 2 states of 44Ti and lowest-energy states of 44Ca which are states of
isospin T = 2. E2 transition rates between states are given by B(E2) values (in W.u.). The key feature
of the figure is the state at 9298 keV in 44Ti. This state is the double-isobaric analog state of the 44Ca
ground state and so, manifestly, it is a “spherical” state. See text for details. Reproduced from [42].
Note: the 1884 keV state in 44Ca is incorrectly identified. As per Table 5 and Figures 35 and 36, it
should be labelled as a π(2p − 2h) configuration.

The region of 40Ca could be regarded as the confrontational meeting point between
shell model descriptions of nuclei and the true nature of the structure of nuclei. Multi-shell
configurations manifestly dominate the low-energy structure. This is a proven spectroscop-
ically based interpretation, i.e., it is not a model-inspired interpretation. Beyond this mass
region, spectroscopic data that reveal the role of multiparticle-multihole configurations be-
come sparse. Indeed, this region is a key meeting point, not only for shell-model based and
multi-shell descriptions of nuclear structure, but also for incorporation of configurations
from the continuum, as pointed out in [159].

7. Intruder States, the Shell Model, and Nuclei Adjacent to Closed Shells

7.1. Intruder States

In the lexicon of nuclear structure study, the term “intruder states” has become es-
tablished. “Intruder” means a state that is observed where it is not expected or “does
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not belong”. These are states that appear to be shell model states which are observed at
low energy on the “wrong side” of a shell model energy gap. Examples are presented in
Figures 16 (47,49Ca) and 17 (Tl isotopes), and implicitly for the 9/2− intruder structure in
187Ir in Figure 22. However, intruder states are not simple shell model states because they
have underlying correlations in their structure. Indeed, the reason they intrude is because
of these correlations. Thus, in Figure 16, an example with important pairing correlations
is shown, namely that a simple addition, deduced from one-neutron separation energies,
“restores” the low energies of the intruder states to their uncorrelated energies, which reflect
the 5 MeV shell gap. In Figure 17, an example with important pairing and deformation
correlations is shown, notably that, in addition to the appearance at low energy (pairing
correlations), there is a systematic “parabolic” trend in the excitation energies as a function
of neutron number, with a minimum near the mid-shell point (N = 104), which is where the
greatest number of neutrons are active. Much confusion exists in the literature regarding
intruder state structures: it appears that they are often viewed as part of a shell model
picture. Let us emphasize that the shell model is an independent-particle model based on
a spherical mean field. Intruder states are usually strongly deformed and so they are of
completely different character to “shell model” structures. For example, they can exhibit
rotational bands which can expose their distinctly different character. In effect, the normal
and deformed states largely exist in different basis spaces.

It is not implied that rotational bands cannot emerge from shell model calculations. If
one could conduct shell model calculations in a sufficiently large space, intruders and their
deformation should emerge, but, at present, such calculations are not generally feasible.
Consequently, operationally, we have the “coexistence” of shell model descriptions and
the Nilsson model plus rotations where nuclei with intruder states are concerned; and
we observe actual structures characterized by different E2 properties, i.e., quadrupole
moments and B(E2) values.

Having noted that rotational structures can begin to emerge in current shell model
calculations, we also draw attention to the on-going challenge: the emergence of rotational
bands in a finite many-nucleon system calculation is arguably the most profound chal-
lenge in a nuclear structure. From everything we understand by the term “a shell model
calculation”, it is fair to say that this must be a future reality. We look beyond the use of
model interactions, such as employed in the Elliott model [160] (where the emergence of
rotational bands is guaranteed), and we look to this question using the best effective inter-
actions available. Note that the Elliott model is a single-shell description of states; intruder
states demand a multi-shell view. The Elliott model bands are not the generally observed
rotational bands in nuclei. It is noteworthy, however, that the Elliott model re-emerges
as a submodel of the symplectic shell model, which is discussed in Section 10. By way of
shape coexistence, especially in nuclei such as 40Ca, a convergence on a multi-shell view
appears most promising (see, e.g., [158]). However, let us note that the key observables
that characterize nuclear rotations are specific E2 properties: transition and diagonal E2
matrix elements with ratios given by rotor-model Clebsch–Gordan coefficients—these are
observed to high precision in some nuclei. To be convincing, such a calculation must use
the bare charges of the proton and neutron, ep = 1e and en = 0 and match the precision of
these observed properties.

The most dramatic examples of intruder states are where they appear as the ground-
state structures of nuclei. This only occurs in a few local mass regions (such as the 32Mg
region, the 42Si region, and perhaps near 68Ni): the term “island of inversion” has be-
come popular for the description of such an occurrence. There is a tendency to place
an unphysical emphasis on this terminology: one reads about mapping the borders (or
shores) of islands of inversion. However, the structures are not islands; they persist across
the entire mass surface, albeit mostly as excited states. A leading example is shown in
Figure 44, which depicts systematics in the even-mass N = 20 isotones. This is a celebrated
historical example. The first clues came from mass measurements [161] and isotope shift
measurements [162] in the sodium isotopes. This was shortly followed by a measurement
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of E(2+1 ) in 32Mg [163]. A suggested unified view of these observations, from earlier times,
is reproduced in Figure 45. However, it took thirty years to establish the lowest spherical
state in 32Mg [164], and to explore the structure as an excited state in the neighboring
34Si [165]. It appears that nobody has yet shown an interest in looking at the underlying
structure in 36S, but it has been known for a long time in 38Ar. Note that the deformed
band in 38Ar is nearly identical in energy spacing to the ground-state band in 32Mg. Our
message is that: to refer to the ground-state structure of 32Mg as being part of an “island” is
obscuring the discovery frontier of such structures, which must extend to higher excitation
energies and broadly encompass nuclides in the region. This is a severe criticism of the
misuse of language in science. A schematic view of the energies that contribute to intruder
states is shown in Figure 46. A global view that recognizes the dominance of deformation
in nuclear ground states is shown in Figure 47.

The challenge of the exploration of intruder states in nuclei is to arrive at the ability
to predict their occurrence. With reference to Figure 46, there is a current interest in the
so-called monopole energy contribution to the total energy that dictates the appearance
of intruder states at low energy in various mass regions. This has received attention
already a long time ago [166,167]; more recently, there has been attention from Heyde and
collaborators [168], Zuker and collaborators [169], and a review by Otsuka et al. [91]. The
theoretical formalism is not a critical concern; but identifying an empirical basis for fixing
the relative magnitudes of the energy contributions shown in Figure 46 needs in-depth
consideration. The problem is identifying manifestations of monopole energy effects that
are free of correlations from pairing and from deformation. These correlations already
feature in our chosen subject: they lie at the heart of emergent structures in nuclei, whether
involving intruder states or not. Some mass regions of critical concern are addressed below
in this Section and in Section 9.

Figure 44. Shape coexistence and intruder states in the N = 20 isotones. The 0+2 state identifications
are made in: 32Mg [164] and 34Si [165]. The intruder states can be understood in an exactly parallel
manner to the situation in the Sn isotopes. Thus, here, the 2p-2h configurations involve neutron pairs
interacting with protons. The excitation pattern reflects proton subshell structure (2s1/2, ld3/2) as
these orbitals are filled: this is beyond the present level of discussion. Note that the deformed bands
in 32Mg and 38Ar possess nearly identical energy spacing. Taken from [8].
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Figure 45. (a) Excited state systematics in the even-mass N = 20 isotones. The low-lying 2+1 state
in 32Mg is interpreted as resulting from a ground state intruder configuration. The ground state of
32Mg should have an anomalously larger mean-square radius. The ground-state binding energy of
32Mg has been reported variously as anomalous and normal. (b) Two-neutron separation energy, S2n,
and isotope shift, δ〈r2〉, systematics for the neutron-rich Na isotopes [161,162]. The discontinuity at
N = 20 indicates an increased ground-state mean-square charge radius and increased binding energy.
Reproduced from [170].

Figure 46. The different energy terms contributing to the energy of the lowest proton 2p-2h 0+

intruder state for heavy nuclei. On the right-hand side, a schematic view of the excitation is given.
On the left-hand side, the unperturbed energy, the pairing energy, the monopole energy shift, and
the quadrupole energy gain are presented, albeit in a schematic way. Reprinted with permission
from [41]. Copyright (2011) by the American Physical Society.
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Figure 47. A schematic view of the intruder-state “parabolas”, shown to dramatize the way that
shells and subshells suppress the emergence of low-energy collectivity in nuclei. (a) The situation
where deformed structures intrude to become the ground state at the middle of a singly closed shell,
e.g., 32Mg. (b) The situation where the ground states for a sequence of singly closed shell nuclei
remain spherical, but deformed structures form excited intruder bands, e.g., the Sn and Pb isotopes.
(c) The situation where a subshell may suppress intrusion of a deformed structure from becoming
the ground state or a low-lying excited band, e.g., N = 50, 82, cf. Figures 52–54. Reprinted with
permission from [41]. Copyright (2011) by the American Physical Society.

The perspective that is presented in Figure 47 appears useful. This view “inverts”
the parabolic energy perspective that can be applied to intruder states and, recognizing
that most nuclei are deformed, and that shape coexistence probably occurs in all nuclei,
expresses the occurrence of spherical shapes in nuclei as intruding to low energies only at
and near closed shells. The competition between the controlling energies that lie behind
this view devolve onto the configuration interaction problem that is foundational to the
nuclear many-body problem.

7.2. Shell Model States

The best view that one possesses of shell model states is of excited states in isotopic and
isotonic sequences adjacent to closed shells. Examples are shown in Figures 17, 28 and 29,
namely, the low-energy systematics of the odd-mass Tl, In and Sb isotopes, respectively.
These views are the best because they are not dominated by pairing correlations with respect
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to the unpaired nucleon: it is a single nucleon outside of a singly closed shell. Furthermore,
the singly closed shell cores are dominated by spherical, seniority type excitations (when
intruder states do not appear at low energy). Thus, one expects that the degrees of freedom
of these closed-shell plus or minus one nucleon nuclei are dominated by independent-
particle degrees of freedom. If there are any monopole energy shifts, i.e., changes in energy
of shell model states across an isotopic sequence, they will be easy to see and easy to
interpret. This was the universally held view until the observations on Coulomb excitation
of 129Sb summarized in Figure 27, and the implications of these data when compared to
the normal weak-coupling model case represented by 115In in Figure 26. The message
from the data in Figures 27 and 26 is that, while a nucleon in a unique-parity configuration
exhibits weak-coupling E2 strength, i.e., the summed strength in the odd-mass nucleus
equals the singly closed-shell core strength, manifested in B(E2; 0+1 → 2+1 ), cf. Figure 26;
when j mixing occurs, the E2 strength may exceed the weak-coupling value, cf. Figure 27.
Thus, B(E2) data such as those in Figures 26 and 27 become a key focal point for exploring
the emergence of collectivity in nuclei—j mixing must be quantified. In turn, the issue of j
mixing is critical for assessing monople energy shifts in nuclei: any use of data in nuclei
must first be assessed for j mixing before single-j energy shifts can be extracted.

The focus here on the role of j-mixing differs from the emphasis of the discussion of
the increased E2 strength in 129Sb by Gray et al. [64], where the discussion in terms of shell
model calculations identified that the collectivity of the neutron core was not increased by
the addition of the extra proton, but rather the increased E2 strength arose primarily from
the proton–neutron term, thus pointing to overall coherent contributions to the E2 strength.
The role of j mixing is not immediately evident in this approach.

To explore the role of j-mixing explicitly, schematic particle–vibration model calcula-
tions were performed for 115In and 129Sb. A code developed by one of the authors (AES)
was employed (see Refs. [171–173]). With 115In modeled as a 1g9/2 proton hole coupled
to the ground and first-excited state of 116Sn, the sum rule was confirmed for the weak-
coupling case; however, it was observed that a shortfall in the summed E2 strength occurs
when the particle–vibration coupling becomes finite. Turning to 129Sb, the low excitation
states were described by allowing the odd proton to occupy the π1g7/2 and π2d5/2 orbits,
coupled to the 128Sn core. This is a minimal model to describe the low-excitation positive-
parity states shown in Figure 27. The sum rule was confirmed for the weak-coupling limit,
and a short-fall in E2 excitation strength from the ground state was again observed when
the particle–vibration coupling became finite. However, when the proton was also allowed
to occupy the π2d3/2 orbit as well as π1g7/2 and π2d5/2, the summed E2 strength in 129Sb
exceeded that of the 128Sn core.

The above calculations demonstrate the role of j-mixing in the enhanced E2 strength
observed in 129Sb compared to 128Sn, perhaps in a more transparent way than the large-
basis shell model calculations. No tension between the shell model and these schematic
particle-vibration model calculations is seen. The important concept is that j mixing means
that the sphericity of the mean field has been broken. This is a fundamental point, based on
symmetry, behind the emergence of nuclear collectivity. Some additional observations are
made on j mixing in the discussion that follows in this Section.

Let us take the above points and consider the systematic features of the odd-mass
copper isotopes, shown in Figure 48. A natural first look at j mixing is to assemble
information for single-nucleon transfer reactions. As already noted, spectroscopic factors
must be handled with caution. However, far more directly, fragmentation of j strength is
often observed, as shown in Figure 49 for the copper isotopes. One makes the following
observation: j is a quantum number characteristic of a spherical mean-field with spin–orbit
coupling; if j strength is fragmented, the mean field is not spherical.

A particular feature of note in the odd-mass copper isotopes is the sudden change
in the relative energies of the lowest states with spin–parity 1/2−, 3/2−, and 5/2− above
N = 40, cf. Figure 48. These abrupt changes have been interpreted as a major illustration
of monople energy shifts [91], based on the assumption that the observed states are the
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2p1/2, 2p3/2, and 1 f5/2 shell model states. However, E2 transition strengths in 69,71,73Cu,
compared to the closed shell cores, 68,70,72Ni, cf. Figure 33 reveal that E2 transition strength
exceeds that in the cores, as seen also in 129Sb, cf. 128Sn (Figure 27). This collectivity is
independent of intruder state structures, which are identified in Figure 48. However, the
current status of monopole energy shifts requires detailed spectroscopy before it can be
discussed quantitatively. Indeed, a recent paper [174] appears to give it dominant status
in its role behind the appearance of intruder states at low energy. We would counsel
greater caution, and consideration of the structures, interactions and energy dependencies
of multiparticle-multihole intruder configurations as shown in Figure 40, in the pursuit of
interpretations of the energies of intruder states.

Figure 48. The lowest energy states in the odd-mass Cu isotopes. The naïve interpretation is that
these states are simply the manifestation of the expected f pg shell model states: 2p3/2, 2p1/2, 1 f5/2,
1 f7/2 and 1g9/2. The existence of rotational band patterns in 69,71,73Cu supports the 7/2− states as
the Nilsson state 7/2−[303]. The situation with respect to the other states remains confused: transfer
reaction data (shown in Figure 49) reveal fragmentation of single-particle j strength. The experimental
situation in 71−77Cu is very incomplete and any interpretation is premature, except—see comments
in the text. Horizontal bars with vertical arrows indicate excitation energies above which states are
omitted. The B(E2) data of Stefanescu et al. [175] for 67,69,71,73Cu can be compared with the Ni cores,
cf. Figure 33: an investigation into collective enhancement in the odd-Cu isotopes relative to the
corresponding Ni core nuclei appears to be in order.
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Figure 49. The three lowest states in 59−65Cu and states for which there is significant population in
the one-proton transfer reaction (3He,d). The lengths of the coloured bars are directly proportional
to the strength of population of the states in the transfer reaction. The ground-states can be naïvely
interpreted as the shell model configuration 2p3/2; similarly, the first excited states would appear to
be the configuration 2p1/2. However, the assumption that these are spherical shell model states breaks
down for the second excited state where the one-proton transfer strength is severely fragmented. The
colour coding indicates the � values of the transferred nucleon — blue (� = 1 with j = �+ 1/2), green
(� = 1 with j = �− 1/2), red (� = 3 with j = �− 1/2). The direct interpretation is that the � quantum
number is not a good quantum number in these nuclei, i.e.,they are deformed. Further discussion
of such issues must await a more advanced level of treatment. The data are taken from [176].
Reproduced from [8].

Whereas the issue of monopole shifts in subshell energies remains open, no systematic
study has been made; the idea has only been applied selectively where there is unfortunately
a lack of detailed spectroscopic information [91]. However, detailed information exists,
for example in the odd-mass Sc (Z = 21) isotopes, as shown in Figures 50 and 51. The
parabolic pattern in these figures points to a dominance of deformation-producing forces
controlling intruder state energies. Intruder states are strongly deformed structures with
both large correlations that originate in their multi-shell structure and in their pairing
structure. It would be interesting to make a thorough study of such structures across all
nuclei to clarify the role of monopole energy shifts as a factor underlying intruder states
and shape coexistence.

Deformation in nuclei immediately adjacent to closed shells has become a recent focus
in the odd-mass F (Z = 9) isotopes [177]. The data are consistent with deformed ground
states. This appears to lie outside of any shell model expectations. Indeed, the surprise that
the double-closed shell nucleus 28O does not have a bound ground state, but its neighbour,
29F does, may be because the double-closed shell of 28O does not favour ground-state
deformation, but 29F can deform in its ground state. This would appear to be a simple
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explanation of the surprise that 28O is unbound (but, to our knowledge, has never been
pointed out).

Figure 50. Intruder states in K, Sc, V isotopes. These states are the heads of bands, which are
consistent with K quantum numbers equal to the band head spins. B(E2) data for 45Sc are shown in
Figure 51. The pattern matches the parabolic trend shown schematically in Figure 46 and supports
the dominant role of a quadrupole interaction between protons and neutrons. Note that 45Sc is almost
an “island of inversion”, if one ignores the complete range of occurrence of the structure across the
entire shell. The figure is adapted from [41].
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Figure 51. Bands built on the intruder states (cf. Figure 50) in the odd-mass Sc and V isotopes. The
numbers given for 45Sc are magnitudes of the intrinsic quadrupole moments, Q0 (e· b) deduced from
B(E2) measurements [178]. Adapted from [41].

At present, information on odd-mass nuclei adjacent to N = 50 and N = 82 remains
very limited. Intruder states are observed in the N = 49 and N = 81 isotones as shown
in Figures 52 and 53, respectively. These manifestations are not at the mid-shell points.
Possibly, the proton structures, i.e., a subshell gap and/or proximity to a j = 1/2 subshell,
at Z = 40 and Z = 64 have something to do with this. Excited 0+ states for the N = 50
and N = 82 isotones are shown in Figure 54. At present, the reason for the dissimilarity
between N = 50, 82 and Z = 50, 82 remains an open question. Whether or not there are
low-lying excited 0+ states in, e.g., 82Ge and 150Er, would be worth exploring. The situation
at N = 48, i.e., in 80Ge, is of two contradicting reports [179,180] and a very recent result that
casts further doubt on the existence of a low-energy excited 0+ state in 80Ge [181]; unlike at
Z = 48 (the Cd isotopes) where low energy deformed excited 0+ states are well established
(see, e.g., [41,116]).
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Figure 52. Intruder states in the N = 49 isotones. The state in 79Zn is from Orlandi et al. [182]
and Yang et al. [183]. The configuration involved may be a prolate deformed structure built on the
1/2+[431] Nilsson state. Note that these structures are nearly identical to the intruder state structures
in the odd-In (Z = 49) isotopes, some details of which are noted in Section 4. Other data are taken
from ENSDF [22]. For comments on the energy maximum at the mid-shell point, see Figure 54
caption.

Figure 53. Intruder states in the N = 81 isotones (shown in red with all observed decay branches).
Horizontal bars with vertical arrows indicate excitation energies above which states are omitted. The
mid-shell point is indicated. The configuration involved may be an oblate deformed structure built
on the 7/2−[503] Nilsson state. The data are taken from ENSDF [22].
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Figure 54. Excited 0+ and 2+ states in the N = 50 and N = 82 isotones which are candidate states for
intruder configurations. They possess ν(2p − 2h) character as determined by two-neutron transfer
studies [184–188]. Population of these states as percentages relative to the ground states are given as:
blue for (t,p) and red for (p,t) reactions, respectively. These numbers are taken from [188–193]; other
data are taken from ENSDF [22]. The mid-shell points are indicated. Possibly, the local high energy
in 90Zr is due to a weak energy gap at Z = 40. See remarks on 82Ge in the text.

8. Survival of Seniority Structures Away from Closed Shells

The picture of the intrusion of deformed structures into the domain of spherical struc-
tures is summarized in the foregoing, but what about the survival of seniority structures
away from closed shells? This is an issue with only a few circumstantial focal points; it has
never been subjected to systematic study, to our knowledge.

A leading illustration of the survival of seniority away from closed shells is shown
in Figure 55 for the even-even N = 80 isotones. The dominance of a neutron 1h−2

11/2
broken pair is manifested at J = 10. Furthermore, as Z = 64 is approached, J = 10 states
involving a proton 1h11/2 broken pair appear. Magnetic moment data strongly complement
this observation. More specifically, the g factors of the 10+1 states in 138Ce and 140Nd,
g = −0.176(10) and g = −0.192(12), respectively, indicate their ν1h−2

11/2 structure. For
144Gd, however, g(10+1 ) = +1.276(14) [194] indicates the π1h2

11/2 configuration. But how
far from closed shells does this broken-pair structure dominate J = 10 states, notably yrast
states? A similar view is provided for the J = 6 state, due to the proton 1g2

7/2 broken pair
in the tellurium isotopes in Figure 56. These and other issues are discussed in this Section.
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Figure 55. Low-energy systematics of the positive-parity states in the N = 80 isotones. The high-spin
states are discussed in the text. Vertical arrows indicate energies above which other positive-parity
states are observed. First-excited 0+ states are observed at (keV): 134Xe (1636), 136Ba (1579), 138Ce
(1466), 140Nd (1413), 142Sm (1451), 144Gd (1887). The data are taken from ENSDF [22].

Figure 56. Yrast systematics in the even-mass Te (Z = 52) isotopes. Transition B(E2) values in
W.u., where measured, are shown in blue between levels. Quadrupole moments of 2+1 states, where
measured, are shown below the isotope mass numbers. Additional details are given in the text. Data
from [195–199] and ENSDF [22]. Figure is from [8].

High-J broken-pair states appear in localized regions across the entire mass surface.
In spherical nuclei, they are manifested as seniority isomers; in deformed nuclei, they are
manifested as K isomers. The topic of K isomerism is a time-honoured branch of nuclear
structure study with comprehensive reviews [200–203]. The situation for transitional
nuclei is poorly characterized. Two factors determine the excitation energies of high-
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spin broken-pair states: pairing energy and rotational energy. Pairing contributions to
broken-pair excitation energies are well understood and are well characterized. Rotational
energy contributions to broken-pair excitation energies are epitomized by Figure 25. This
aspect of nuclear structure is generally described as “rotational-alignment” effects: there
is an enormous literature addressing this topic using the so-called cranked shell model.
This model approximates the effects depicted in Figure 25 by “cranking” a deformed
mean-field about a fixed axis at right angles to the symmetry axis of the deformed mean
field. It has been extended to “tilting” the axis about which cranking occurs [204]. The
cranked shell model has completely dominated the study of high-spin states in nuclei.
Our concern here is with low-medium spin states in nuclei. Note that, at high spin, an
axis of directional quantization approaches a semi-classical description in that the cone of
uncertainty becomes narrow; thus, cranking about a fixed axis improves asymptotically
with increasing total spin.

To move forward on the topic of the breaking of pairs away from closed shells, it is
important to recognize that the prototype signature is properties of the 2+1 states in nuclei,
which manifestly involve breaking pairs. The leading question is: Which broken-pair
configurations underlie a given 2+1 state? While important insights can be gained through
large-basis shell model calculations in the valence shell, the full answer must extend
far beyond the valence shell, as manifested in the need for effective charges to describe
B(E2; 2+1 → 0+1 ) values (see Table 2). By looking at systematics of B(E2) values near closed
shells, one expects to learn something about this fundamental aspect of the emergence of
collectivity in nuclei. A natural first step is to look at even-even nuclei with one valence
proton pair and one valence neutron pair, particles or holes, as will now be discussed.

It turns out that 132Te is one of the more accessible nuclei for a detailed study of
what might be termed “prototype emergence of quadrupole collectivity in nuclei”. The
region around 132Sn is attractive for this purpose because 132Sn is an N > Z doubly magic
core without low-excitation intruder states, and because detailed spectroscopic studies
(including transfer reactions, B(E2), and g-factor measurements) show it to be a “good”
doubly magic core. However the challenge, which makes performing detailed spectroscopy
difficult, is that 132Te is accessible to radioactive beams, by beta-minus decay and as a
fission fragment—but not at stable-beam accelerators.

The current knowledge of excitations in 132Te is shown in Figure 57. The extent of
detailed information is best described as “inadequate”. For example, a naïve broken-pair
view would predict two low-lying 2+ states, one due to a broken neutron (hole) pair,
cf. 130Sn (E(2+1 ) = 1221 keV), the other due to a broken proton (particle) pair, cf. 134Te
(E(2+1 ) = 1279 keV). Thus, (naïvely) there should be two excited 2+ states in 132Te at 1221
and 1279 keV. The lowest-lying 2+ states in 132Te are 2+1 (974 keV), (2+) (1665 keV), (2+)
(1778 keV), and then (2+) states at 2249 and 2364 keV, where the parentheses indicate
that the spin–parity assignment is tentative. To pursue the naïve view, the broken-pair
configurations can be viewed as mixing and repelling, so that one resulting state appears
pushed down by 1221 − 974 = 247 keV and the other state is at 1270 + 247 = 1517 keV, cf.
(above) 1665 keV. This raises many questions, such as: What is the structure of the states
at 1778, 2249 and 2364 keV? What are the detailed properties of these states? Are they 2+

states? What are their lifetimes, magnetic moments, and quadrupole moments? At present,
all unanswered experimentally, except for some information on Coulomb excitation of the
1665 keV state. Note that the J = 0-coupled neutron-hole pair and the J = 0-coupled proton-
particle pair also interact and cause an energy shift in the 0+ configuration that dominates
the ground-state of 132Te; but [(π2)J ⊗ (ν−2)J ]0 configurations can also be expected to
contribute to the ground-state structure. Allowing for pair occupancies across the many
shell-model subshells, there are many possibilities. In addition, note that there is an
extensive literature that discusses the shell model configurations underlying the structure
of 132Te [33,62,205–215].

To begin to answer some of the questions raised concerning the lowest few 2+ states
in 132Te, one can note that there is a single low-excitation proton configuration that forms
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a 2+ state, namely π(1g7/2)
2
2+ , with g factor g = 0.82. In contrast, the neutron orbits

2d3/2, 3s1/2, and 1h11/2 are “almost degenerate”, which means that low-excitation 2+

states can be formed by the two-neutron-hole configurations ν(2d3/2)
−2
2+ , ν(1h11/2)

−2
2+ , and

ν(2d−1
3/23s−1

1/2)2+ , with g factors 0.54, −0.24, and −0.27, respectively.

Figure 57. Excited states in 132Te cf. 130Sn and 134Te excited states. Naïvely there should be an
appearance of both sets of states, corresponding to the independent “breaking” of the proton particle
pair or the neutron hole pair. However, these broken-pair configurations can be expected to interact;
thus, the 2+1 in 132Te is lower in energy than that in 130Sn and 134Te. See the text for details. The data
are taken from ENSDF [22].

Table 7 shows the results of shell model calculations for the lowest five 2+ states
in 132Te. The calculations were performed with NUSHELLX [44] in the jj55 basis
space and with the sn100 interactions; see Table 2 and [31,48,64,68] for additional
details including the parameters of the effective M1 operator. Along with a comparison
of the experimental and theoretical level energies, Table 7 lists the g factors and the
decomposition of the wavefunctions into the dominant proton and neutron components
coupled to 0+ and 2+. Note that there is no relative phase information available in these
structures. The mixing of the lowest two 2+ states discussed above in relation to Figure 57
is qualitatively consistent with the shell model calculations. The considerable variation
in the calculated g factors is an indication of the marked differences in the structures of
these 2+ states. As collectivity emerges, the g factors of all of the low-excitation states
would be expected to approach the collective value, typically gcoll ≈ 0.7Z/A. Such
measurements are extremely challenging even for stable nuclides.

Given the complexity of the low-excitation states in 132Te due to the small energy
spacing of the 2d3/2, 3s1/2, and 1h11/2 neutron hole orbits, one might consider nuclei
like 136Te (approximately π1g7/2 ⊗ ν2 f7/2) and 212Po (approximately π1h9/2 ⊗ ν2g9/2) as
alternative “prototypes” to study the emergence of collectivity. Shell model calculations
for these nuclei (see Table 2 for details of basis spaces and interactions) show that the
configuration mixing in the lowest 2+ states of these nuclei is already considerable.
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Table 7. Shell model calculations for the five lowest 2+ states in 132Te. The excitation energies and
g factors are shown, along with the structure of the state. The structure indicates how the angular
momentum is apportioned between protons and neutrons. It is not the wavefunction. The weights
indicated sum to unity when all contributions are included.

Iπ
i Ex g Structure

Exp Theory

2+1 974 954 0.48 0.38π(0+)ν(2+) + 0.51π(2+)ν(0+) + 0.07π(2+)ν(2+) + ...
2+2 1665 1645 0.37 0.49π(0+)ν(2+) + 0.32π(2+)ν(0+) + 0.02π(2+)ν(2+) + ...
2+3 1788 1931 0.03 0.71π(0+)ν(2+) + 0.11π(2+)ν(0+) + 0.13π(2+)ν(2+) + ...
2+4 2249 2258 0.30 0.83π(0+)ν(2+) + 0.03π(2+)ν(0+) + 0.07π(2+)ν(2+) + ...
2+5 2364 2468 0.98 0.06π(0+)ν(2+) + 0.77π(2+)ν(0+) + 0.01π(2+)ν(2+) + ...

There are limited simple and accessible cases to study in detail the proton plus
neutron broken-pair structures of 2+ states adjacent to a closed shell. Extending beyond
this simplest case, the stable Te isotopes below 132Te provide the opportunity for detailed
spectroscopy, including (n,n′ γ) studies [216], Coulomb excitation, and g-factor measure-
ments [115], to track the emergence of collectivity as increasing numbers of neutron holes
are added to the two protons outside the Z = 50 shell closure. The stable Xe isotopes,
with four protons, are likewise accessible to detailed measurements [30,32,217–223]. In
these iotopes, the cancellation of E2 strength for four protons in the 1g7/2 orbit (see
Equation (1)) makes the observed E2 strengths in the Xe isotopes below 136Xe sensitive
to the breakdown of the seniority structure and emerging collectivity.

Returning to the high-spin broken-pair states in this region, specifically the J = 10
broken-neutron-pair configurations and the J = 10 broken-proton-pair configurations,
these do not mix strongly, as manifested in Figure 55, cf. 142Sm and 144Gd. This suggests
that broken-pair high-j, high-spin configurations do not play a role in the emergence of
collectivity. Figure 56 suggests survival of both the proton-broken-pair and the neutron-
broken-pair structures, respectively for J = 6 and J = 10 in 126−132Te. The g factor
data, where available, support this suggestion. In the N = 82 case of 134Te, g(6+1 ) =
+0.847(25) [224], as expected for the π1g2

7/2 configuration. The g factors of the 2+1 [48] and
4+1 [225] states in 134Te are consistent with g(6+1 ), and hence the same configuration. In
132Te, with two neutron holes, g(2+1 ) = +0.46(5) [206,210,226,227] is closer to the collective
g ≈ Z/A ≈ 0.39, whereas g(6+1 ) = +0.78(8) [228] remains consistent with that of the pure
π1g2

7/2 configuration. Recent work at the Australian National University (ANU) tracks the
persistence and eventual weakening of the proton-broken-pair structure in the 4+ states of
124,126,128,130Te [115].

Indeed, discontinuities in yrast state energies persist throughout the open-shell,
Z > 50, N < 82 region and as an example yrast γ-ray energies, Eγ, versus the spins of
the initial states, Ii, are shown for the Ba isotopes in Figure 58. It is important to note
that K isomerism can emerge in this region, as manifested in Figure 59, which shows
the yrast sequences for the even-even N = 74 isotones. The band structures show that
the deformation increases from 128Xe to 140Dy. An important issue in the emergence
of collectivity in nuclei is: where and how is the validity of the K quantum number
established?

In principle, measurements of the magnetic dipole and electric quadrupole moments
along the sequence of isotones could help answer this question. Unfortunately, the data
are limited. The g factors of the 8− isomers in 128Xe and 130Ba have been measured to
be −0.036(9) [229] and −0.0054(35) [230], respectively. The quadrupole moment of the
isomer in 130Ba has also been measured to be Q = +2.77(30)b [230], which corresponds to
a deformation of ε2  0.2.

In 128Xe, the configuration of the isomer is assigned as ν(h11/2 ⊗ g7/2)8− . Evaluating
the g factor of this configuration with the spin g factor, gs, quenched from the free-
neutron value by the standard factor of 0.7 gives g(8−) = −0.046, consistent with
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experiments. Empirical values for g(1g7/2) and g(1h11/2) from neighboring nuclei give
g(8−) ≈ −0.07, somewhat larger than the experiment. For 130Ba, the isomer is assigned
as 9/2−[514]⊗ 7/2−[404]. The parentage of these Nilsson orbits is νh11/2 and νg7/2, i.e.,
as assigned to the isomer in 128Xe. Evaluating the g factor of the K-isomer with standard
Nilsson wavefunctions at ε2 = 0.2 and again quenching gs by the standard 0.7 factor,
gives g(8−) = −0.003, in excellent agreement with the experiment. This result is not
sensitive to the deformation. Thus, the moment data suggest that the validity of the
K quantum number is established in 130Ba. It appears not to be established in 128Xe.
Further insights could be gained from observation and characterization of bands built
on the isomers.

Figure 58. Yrast Eγ vs. Ii for 120−128Ba (Z = 56). Note the discontinuity above spin 10. The
interpretation is that this is due to dominance of a broken neutron pair, 1h2

11/2. See discussion in the
text. The data are taken from ENSDF [22].

Finally, with respect to the data shown in Figure 59, note that hindrance of the E1
isomeric transitions appears to increase with decreasing deformation: this appears coun-
terintuitive. E1 transitions are an observable for which systematic features often remain
elusive. In the normal valence space, they are forbidden. When looking at E1 strength,
probably this involves the net result of many small contributions to the matrix element.
Nevertheless, there is a visible systematic trend in Figure 59, which lacks an explanation.
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Figure 59. K isomers in N = 74 isotones. The figure is based on a more limited view presented in
Królas et al. [231]. Hindrance factors are f−7

ν = B(E1) (in W.u.); the exponent is given by ΔK − λ

where ΔK = 8 and λ = 1, i.e., decay between the Kπ = 8− isomer and 8+ state of the K = 0
ground-state band occurs by E1 multipole radiation. See text for details. The data are taken from
ENSDF [22].

9. A ∼ 56 and N ∼ 28: New Regions of Shape Coexistence at Closed Shells

The observation of a deformed band in the double-closed shell nucleus 56Ni [232]
suggested that an extension of shape coexistence from the 40Ca region to the A ∼ 56 region
seemed promising. This has not yet materialized. A leading factor is lack of stable targets
for multi-nucleon transfer reactions. However, an initiative is underway, with a high-
resolution internal-pair spectrometer, the Super-e, at the ANU to explore the occurrence of
E0 transitions in this mass region [128,129,233–236]. However, there is evidence that shape
coexistence is present in the N = 28 isotones 54Fe and 52Cr from transfer reactions: this
is placed in a broad framework in Figure 60. Consistent with the transfer data, the ANU
group observes E0 transitions in these N = 28 isotones.

The program of E0 decay studies at ANU has some surprises: while one expects a
pattern of shape coexistence adjacent to 56Ni, associated with excited 0+ states, similar
to that observed in nuclei adjacent to 40Ca, this is not apparent in the studies done so far.
Evidence of E0 transitions other than for Z = 28 isotopes and N = 28 isotones is limited.
However, note that the use of E0 transition strength as a spectroscopic fingerprint for shape
coexistence depends on a combination of two factors: coexistence of two configurations
with very different mean-square charge radii and strong mixing of these configurations [40].
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Figure 60. Systematics of the lowest positive-parity states in the N = 28 isotones. Candidate ν 2p-2h
states are depicted in red. Electric monopole transitions from these states, where observed, are depicted
as bold (orange) downwards-pointing arrows, the strengths are indicated where known. The 4282 keV
0+ state in 48Ca, a π 2p - 2h state is also depicted in red. These assignments are based on two-neutron
transfer reaction data [145,237–240]. The 58Ni(p,t)56Ni reaction does not strongly populate 0+ states
below 6.5 MeV [241]. Data for 46Ar are taken from [45,59,242]. The B(E2; 2+1 → 0+1 ) data are taken
from [199]. Other data are taken from ENSDF [22], except the B(E2) value for the decay of the first 4+

state in 52Cr, as quoted in ENSDF is in error; the value presented here is calculated from the half life
quoted in ENSDF.

With reference to Figure 60, a search for deformed bands built on 0+ and 2+ states in
52Cr and 54Fe would be of great interest. Based on the energies of the first excited 2+ states,
deformation appears to dominate the ground-state structure of 40Mg and 42Si (lifetime
data would help to support this suggestion). Strengths of E2 transitions are shown for
the transitions depopulating the 2+1 , 4+1 , and 6+1 states where lifetime data are available.
In 52Cr, two 4+ states are observed: the lowest is dominated by a seniority v = 4 π1 f 4

7/2
configuration and the upper is dominated by a seniority v = 2 π1 f 4

7/2 configuration. The
weak B42 value in 44S has been interpreted as due to K isomerism, but band structure is not
observed [243]; a seniority isomer resulting from a π1d5/2 broken pair is equally plausible.

The evidence for shape coexistence in nuclei with N ∼ 28 and Z < 20 is highlighted
in Figure 61, which summarizes the connection between intruder states in odd-mass nuclei
and low-energy excited 0+ states in neighbouring even-even nuclei. The accumulation
of the necessary data to establish shape coexistence in such neutron-rich nuclei is very
demanding with respect to technique and accelerator running times.
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Figure 61. Selected pairs of nuclei showing a possible relationship between lp-2h intruder states
(marked with solid triangles) and low lying excited 0+ states. The data are from [244–249] and
ENSDF [22]. The figure is adapted from [41].

10. A Quantum Mechanical Perspective on Emergent Structures in the Nuclear
Many-Body Problem

Nuclei are finite many-body quantum systems that self-organize to yield well-defined
sizes and moments. The size of the nucleus determines the energy scale of quantization
by virtue of the confinement (specific length) of nucleons (specific mass), scaled by h̄.
Defining the nucleon position and momentum observables, xj and pj, with j = 1, 2, 3,
and the nucleon mass m, this leads to the stationary states of any given nucleus via the
definition of a Hamiltonian and the fundamental relationships

[xj, pj] = ih̄, (9)

and
pj = mẋj. (10)

The consideration herein is limited to a discussion of model forms of independent-
particle potentials and residual two-body interactions between the nucleons. At this
point of inception, a representation of the problem for determining the eigenstates of the
Hamiltonian must be chosen. This involves the use of symmetries of the Hamiltonian. If
the nucleus has spherical symmetry, the handling of the independent-particle part of the
Hamiltonian is greatly simplified by using the familiar representation that is a factorization
into angular momentum and radial degrees of freedom. This extends to labeling states
with angular momentum quantum numbers. The familiar radial confining potentials—the
infinite square well and the harmonic oscillator—are solvable in closed form.

The factorization into radial and angular degrees of freedom equips us with the
powerful algebra of angular momentum,

Lk ≡ xi pj − xj pi, (11)

and
[Li, Lj] = ih̄εijkLk, (12)

where εijk is the permutation symbol. The power of this algebra, the so(3) Lie algebra, is
that it permits an enormous reduction of computational labor via the classification of states
and operators as so(3) tensors, with their associated irreducible representations, Kronecker
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products, and Wigner–Eckart theorem. Spins of nucleons are simply accommodated by
extension of so(3) to its isomorphic algebra, su(2). The Hamiltonian becomes block
diagonal in su(2) irreps, reducing computational labor; selection rules emerge; many
transitions of interest appear in ratios that depend only on Clebsch–Gordan coefficients.

But, when one factorizes the shell model problem into angular and radial parts, and
arrives at the so(3) algebra of angular momentum, one does not look any further for
algebraic structures in the problem. However, there is another algebra “right under our
noses”: the radial degree of freedom possess an su(1,1) algebra. This is a so-called dual
algebra for the shell model. Details are presented in pedagogical form in [250] and in a
more advanced form in [6]. This is not found in any quantum mechanics textbook. It can be
used to evaluate radial matrix elements in shell model computations, and this has recently
been explored [251]. The algebra is defined by

T1 ≡ r · r, T2 ≡ 1
2 (r · p + p · r), T3 ≡ p · p, (13)

which, via linear combinations of the {Ti} and scale factors, leads to the commutator
brackets recognizable as su(1,1) (see [250]). Indeed, radial matrix elements possess simple
relationships including “cancellations”, which reflect properties of su(1,1) irreps and a
su(1,1) Wigner–Eckart theorem.

Thus, what other algebraic structures can one expect in nuclei that emerge from
functions of xi, pi and Equation (9)? The clue comes from the dominance of quadrupole
deformation in nuclei. One can define “quadrupole” coordinates, xixj: these are rank-2
symmetric Cartesian tensors and there are six of them—using xi = x, xj = y, xk = z, they
are xx, xy, xz, yy, yz, zz. From these, in a straightforward manner, combinations such as
xpx, etc., and px px, etc., are obtained, yielding a Lie algebra with 21 generators, called
sp(3,R). Details are presented in pedagogical form in [5] and full details are presented
in [6]. The Lie algebra possesses many useful subalgebras: so(3), su(3), and others which
need not concern us here; however, note that the su(3) subalgebra is that of the historical
Elliott model [160]. A characteristic of the majority of nuclei is that they possess a very
large value for the leading sp(3,R) quantum number, N—the total number of shell model
oscillator quanta carried by the sum of all the nucleons—counting the number of oscillator
quanta for each nucleon partitioned across the entire occupancy of the oscillator shells
of the given nucleus. For example, for 168Er, N = 814 [252]. This leads to contraction in
nuclei dominated by the su(3) subalgebra, yielding a (near) rigid rotor with properties
that closely match observations [253] with the use of effective charges ep = +e, en =
0 [254]. Contraction is a process where a Lie product, e.g., Equation (12), approaches
zero asymptotically as quantum numbers become very large: for a state with angular
momentum L = 100 and projection mL = +100, the cone of indeterminacy appears almost
identical to a classical angular momentum vector with three sharp Cartesian components.
The origin of the concept of contraction is in a paper by Inonu and Wigner [255]; and the
process is often called Inonu–Wigner contraction.

Thus, how does the shell model stand in relationship to the foregoing categorization?
The shell model utilizes the su(2) spin-angular momentum algebra and adopts a central
potential, but one does not find use of the su(1,1) algebra. This leaves open the functional
form of the central potential: an su(1,1) algebraic structure is only realized for four central
potentials—the Coulomb potential, the harmonic oscillator potential and their less well-
known modifications—through augmentation with a 1/r2 term—the Kratzer potential
and the Davidson potential [256]. Furthermore, the shell model does not make use of the
sp(3,R) algebra because of spin–orbit coupling. Such an interaction lies “outside” of the
symplectic model and must be treated as a perturbation. While the shell structure of nuclei
and the dependence of magic numbers on spin–orbit coupling appear to invalidate the
symplectic model, Q ·Q interactions shift shell structures by up to 100 MeV, as manifested in
observed shape coexisting structure; thus, L · S and Q · Q interactions have their respective
domains of influence in nuclear structure. Indeed, the dividing line of their influence
epitomizes the primary focus of this contribution. Notably, where the L · S interaction
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dominates, J emerges as a good quantum number and pairing interactions result in the
emergence of seniority structure and its underlying quasispin su(2) algebra. These few
mathematical structures appear to cover all the structures manifested in nuclei, observed
so far, and as summarized in this contribution.

The foregoing leaves open the answer to the question posed by the title of this paper.
The shell model versus the symplectic model approaches, with their respective dominance
by spin–orbit coupling versus quadrupole–quadrupole coupling, each go some way to
describing the structure of transitional nuclei. A shell model description can be achieved by
using effective interactions. However, it should be noted that it is beginning to emerge that
the effective interactions used in ab initio shell model calculations appear to be dominated
by just those components that are compatible with symplectic model structures [257–259].

11. Conclusions

The present exploration of the interface between shell model and collective nuclear
structure, which we term “emergence of nuclear collectivity”, raises many questions.
From a summary of systematic features in data, this paper has focused on the effective
charge problem, which reveals itself already in the reduced transition strengths between
the first-excited state and the ground state, B(E2; 2+1 → 0+1 ), in nuclei possessing two
valence nucleons coupled to a doubly closed shell. A notable puzzle is the neutron
effective charge needed for 18O compared to the well-known value of en ∼ +0.5e in 17O.
It would appear that applying state-of-the-art shell model calculations beyond these
simple structures needs great caution; and claims of successful descriptions in such
nuclei deserve skepticism. Let us note the issue of spectroscopic factors as deduced
from proton knockout by quaiselastic electron scattering [81] (see also [260,261]). The
occupancies of particle configurations above the shell closures in doubly closed shell
nuclei, shown in Figure 62, indicate that one is likely never dealing with simple shell
model configurations when confronting data.

We have suggested directions in which shell model states should be explored as one
moves away from closed shells, in the guise of seniority isomers (which involve pairing
correlations). We have suggested criteria for exploring the validity of the language of
deformation (proton–neutron correlations) in describing weakly deformed nuclei. Notably,
nuclei that are termed “transitional” are severely neglected in the spectroscopic data base:
we have outlined focal points for experimental study. We concluded with a sketch of details
that leads shell model philosophy into the symplectic shell model: in the framework of this
model, specific multi-shell configurations are emerging as a major clue to what is going on
in low-energy nuclear excitations, and towards which state-of-the-art shell model activity
needs to move.

We close with the view: “Data will have the last word in this Shakespearian drama”
and “All the [nuclear] World’s a [data] stage, and all the protons and neutrons merely
players.” (Adapted from As You Like It by W. Shakespeare). The message is that one needs
precision spectroscopy across the mass surface, as well as pushing to exotic nuclei towards the
limits of nuclear stability.
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Figure 62. Quasiparticle strength for states just above the Fermi surface, observed in the reaction
(e, e′p) as a function of the target mass. All strengths are integrated to an excitation energy of about
20 MeV. Reprinted from [81], Copyright (1993), with permission from Elsevier. The language used in
the original paper, from which this figure is taken, needs some clarification. ‘Empty’ orbits refers to
shell model configurations above the shell closure, which are conventionally regarded as empty in
doubly closed shell nuclei. However, in the (e, e′p) studies, these configurations must have proton
occupancy in the doubly closed shell target nuclei to explain the pattern of protons that are knocked
out. Thus, one must conclude that the shells are not “closed”.

An underlying theme that emerges in this look at nuclear structure is the role of
algebraic structures in the quantum mechanics of the nuclear many-body problem. Two
structures are widely manifested where many nucleon configurations are involved. In
singly closed shell nuclei, the seniority coupling scheme dominates. This coupling scheme is
explained by an su(2) algebra for correlated pairs in j-shell configurations. This stems from
dominance of spin–orbit coupling imposed on a spherical mean-field independent-particle
description. In open-shell nuclei, the Bohr unified model coupling scheme dominates. This
can be traced to an sp(3,R) algebra with contraction on the very large quantum number
values involved. Thus, we suggest that a way forward is to explore algebraic structures
based on the shell model. This is being pursued, as noted, in the symmetry-adapted and
symmetry-guided approaches [257–259], wherein effective charges are not needed.
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Abbreviations

The following abbreviations are used in this paper:

ANU The Australian National University
BCS Bardeen–Cooper–Schrieffer theory of superconductivity
BMF Beyond Mean Field
ENSDF Evaluated Nuclear Structure Data File [22]
PTRM Particle Triaxial Rotor Model [102]
RPA Random Phase Approximation [72]
SM Shell Model
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et al. High-spin states in 44Ca. Eur. Phys. J. A 2001, 12, 381–382. [CrossRef]
143. Fortune, H.T.; Al-Jadir, M.N.I.; Betts, R.R.; Bishop, J.N.; Middieton, R. α spectroscopic factors in 40Ca. Phys. Rev. C 1979,

19, 756–764. [CrossRef]
144. Middleton, R.; Garrett, J.; Fortune, H. Search for multiparticle-multihole states of 40Ca with the 32S(12C,α) reaction. Phys. Lett. B

1972, 39, 339–342. [CrossRef]

80



Physics 2022, 4

145. Bjerregaard, J.; Hansen, O.; Nathan, O.; Chapman, R.; Hinds, S.; Middleton, R. The (t, p) reaction with the even isotopes of Ca.
Nucl. Phys. A 1967, 103, 33–70. [CrossRef]

146. Petersen, J.; Parkinson, W. The 40Ar(τ, n)42Ca reaction. Phys. Lett. B 1974, 49, 425–427. [CrossRef]
147. Fortune, H.; Betts, R.; Bishop, J.; AL-Jadir, M.; Middleton, R. Location of 0+ 4p-2h and 6p-4h configurations in 42Ca. Nucl. Phys.

A 1978, 294, 208–212. [CrossRef]
148. Fortune, H.; Vermeulen, J.; Saha, A.; Drentje, A.; Put, L.; de Ruyter van steveninck, R.; van Hienen, J. Configuration of 3.59 MeV

0+ state in 44Ca. Phys. Lett. B 1978, 79, 205–208. [CrossRef]
149. Peng, J.C.; Stein, N.; Sunier, J.W.; Drake, D.M.; Moses, J.D.; Cizewski, J.A.; Tesmer, J.R. Study of the Reactions 46,48Ti(14C,

16O)44,46Ca and 50,52Cr(14C, 16O)48,50Ti at 51 MeV. Phys. Rev. Lett. 1979, 43, 675–678. [CrossRef]
150. Rowe, D.J.; Thiamova, G.; Wood, J.L. Implications of deformation and shape coexistence for the nuclear shell model. Phys. Rev.

Lett. 2006, 97, 202501. [CrossRef]
151. Thiamova, G.; Rowe, D.; Wood, J. Coupled-SU(3) models of rotational states in nuclei. Nucl. Phys. A 2006, 780, 112–129.

[CrossRef]
152. Rowe, D.J. The fundamental role of symmetry in nuclear models. Aip Conf. Proc. 2013, 1541, 104–136. [CrossRef]
153. Zheng, D.C.; Berdichevsky, D.; Zamick, L. Near degeneracies of the intrinsic state energies of many-particle, many-hole deformed

configurations. Phys. Rev. Lett. 1988, 60, 2262–2265. [CrossRef] [PubMed]
154. Zuker, A.P.; Poves, A.; Nowacki, F.; Lenzi, S.M. Nilsson-SU3 self-consistency in heavy N = Z nuclei. Phys. Rev. C 2015, 92, 024320.

[CrossRef]
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Abstract: Some emerging concepts of nuclear structure are overviewed. (i) Background: the many-
body quantum structure of atomic nucleus, a complex system comprising protons and neutrons
(called nucleons collectively), has been studied largely based on the idea of the quantum liquid (à la
Landau), where nucleons are quasiparticles moving in a (mean) potential well, with weak “residual”
interactions between nucleons. The potential is rigid in general, although it can be anisotropic.
While this view was a good starting point, it is time to look into kaleidoscopic aspects of the nuclear
structure brought in by underlying dynamics and nuclear forces. (ii) Methods: exotic features
as well as classical issues are investigated from fresh viewpoints based on the shell model and
nucleon–nucleon interactions. The 70-year progress of the shell–model approach, including effective
nucleon–nucleon interactions, enables us to do this. (iii) Results: we go beyond the picture of the solid
potential well by activating the monopole interactions of the nuclear forces. This produces notable
consequences in key features such as the shell/magic structure, the shape deformation, the dripline,
etc. These consequences are understood with emerging concepts such as shell evolution (including
type-II), T-plot, self-organization (for collective bands), triaxial-shape dominance, new dripline
mechanism, etc. The resulting predictions and analyses agree with experiment. (iv) Conclusion:
atomic nuclei are surprisingly richer objects than initially thought.

Keywords: nuclear structure; shell model; exotic nuclei; shell evolution; type-II shell evolution;
nuclear shape; self-organization; dripline; monopole interaction; monopole-quadrupole interplay

1. Introduction

The atomic nucleus is in a unique position in physics in that it is an isolated object
but comprises many quantum ingredients. Some emerging concepts for the structure of
atomic nuclei are overviewed in this paper, focusing on the works in which the author
was involved. Obviously, those concepts have been found or clarified thanks to the great
progress of nuclear-structure physics over 70 years, including the shell model.

In fact, the understanding of nuclear structure is based, to a great extent, on the
shell model, which was introduced by Mayer [1] and Jensen [2] in 1949. Since then,
the shell model has been developed significantly in many ways: an initial phase as many-
body physics was presented, for instance, by Talmi in [3], in contrast to Mayer-Jensen’s
independent-particle model. The subsequent developments are reviewed, for instance
by Caurier et al. in [4] up to 2005, and in this volume up to date. I would like to sketch
emerging concepts of nuclear structure based on recent shell–model studies involving the
author, as many other studies are to be presented in other papers of the same volume.

The atomic nucleus comprises Z protons and N neutrons. Their sum is called the
mass number A = Z + N. Among atomic nuclei, stable nuclei are characterized by their
infinite or practically infinite life times and are characterized by rather balanced Z to N
ratios, with N/Z ranging from about 1 up to about 1.5. There are about 300 nuclear species
of this category. Other nuclei are called exotic (or unstable) nuclei. The total number
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of them is unknown but seems to be between 7000 and 10,000, providing a huge show
window of various features as well as the paths of nucleosynthesis in the cosmos (see,
for instance, [5–7]). The exotic nuclei decay, by β (i.e., weak) processes, to other nuclei
where Z and N are better balanced, as the β decay alters a neutron to a proton or vice versa.
This decay occurs successively, until the process terminates at a stable nucleus. Thus, only
stable nuclei exist on earth, while exotic nuclei do not, being exotic literally.

Some of the emerging concepts were conceived in the study of exotic nuclei, particu-
larly by looking at the shell structure and magic numbers of them. The obtained concepts
were found later not to be limited to exotic nuclei. In this way, after the initial trigger
by exotic nuclei, the overall picture of the nuclear shell structure has been renewed, and
Section 2 of this paper is devoted to a sketch of it with two major keywords, the monopole
interaction and the shell evolution.

We then focus on the deformation of the nuclear surface. The surface deformation from
the sphere has been a very important subject since the 1950s, as initiated by Rainwater [8]
and by Bohr and Mottelson in [9–13]. In particular, the shape coexistence phenomenon is
discussed as the crossroad between the shell evolution and the deformation, leading to the
concept of type-II shell evolution. Although I do not discuss extensively the methodology of
the shell model calculation in this paper because of the length limitation, the T-plot of the
Monte Carlo Shell Model (MCSM) is mentioned as an essential theoretical tool for many
physics cases of this paper. These are the main subjects of Section 3.

The in-depth clarification of the collective band is connected to the fundamental
question on the relation between the single-particle degrees of freedom and the collective
motion of nucleons. These two must be connected through nuclear forces. This question has
not been clarified enough as also addressed by G. E. Brown [14]. I shall focus, in Section 4,
on how this question may be understood more deeply, by introducing the self-organization
aspect of the collective bands and by raising the importance of the triaxiality of nuclear
shapes including the ground states.

The interplay between the monopole interaction and the quadrupole deformation
is shown to be a major mechanism of the determination of the neutron driplines. This
approach explains neutron driplines observed recently. We are led to two dripline mecha-
nisms: the traditional one with the single-particle origin and the present one. The monopole–
quadrupole interplay responsible for this new dripline mechanism is explained in detail
in Section 5. As an alternative case, spherical isotopes, such as Ca, Ni, Sn, and Pb, are
predicted to exhibit a different pattern.

The intention of this paper is to show the major flow of basic ideas and related results
without going into details. I hope that the reader can grasp this flow and could become
interested in watching further developments. The past 70 years are really great for the
shell model, but the coming years look equally or even more brilliant. I apologize for not
covering many of the major developments in the last 70 years, as such coverage is not
possible within this paper, but the other contributions of this volume are expected to help.

2. Shell Evolution Due to Monopole Interaction

2.1. Mayer–Jensen’s Shell Model and Observed Magic Numbers

Mayer [1] and Jensen [2] proposed, in 1949, the model of the shell structure and magic
numbers of atomic nuclei. This model provided major guides for a deeper and wider
understanding of the structure of atomic nuclei. While this is a similar situation to electrons
in atoms, there are some differences. Figure 1 depicts the basic idea and consequences of
the Mayer–Jensen’s scheme. We start with the nuclear matter composed of protons and
neutrons. This matter shows an almost constant density of nucleons (collective name of
protons and neutrons) inside the surface, which is a sphere as a natural assumption (see
Figure 1a). Because of the short-range character of nuclear forces, this constant density
results in a mean potential with a constant depth inside the surface, as shown in Figure 1b.
Let us assume that the density distribution is isotropic, producing an isotropic mean
potential. Figure 1b also suggests that the Harmonic Oscillator (HO) potential is a good
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approximation to this mean potential as long as the mean potential shows negative values
as a function of r, the radius from the center of the nucleus. We then switch from the mean
potential to the HO potential, which is analytically more tractable. Thus, the HO potential
can be introduced from the constant density (sometimes referred to as “density saturation”)
and the short-range attraction due to nuclear forces.

The eigenstates of the HO potential are single-particle states shown in the far-left
column of Figure 1c with associated magic numbers and HO quanta, N. These HO magic
numbers do not change by adding the minor correction of the �2 term, the scalar product of
the orbital angular momentum�l (see the second column from left in Figure 1c; for details
see [12]).

Figure 1. Schematic illustration of (a) density distribution of nucleons in atomic nuclei, (b) a mean
potential (solid line) produced by nucleons in atomic nuclei and an approximation by a Harmonic
Oscillator (HO) potential (dashed line). The abscissa, r, implies the radius from the center of the
nucleus. (c) The shell structure produced with resulting magic numbers in circles. Left column: only
the HO potential is taken with HO quanta shown as N = 0, N = 1, . . . (N here does not mean the
neutron number, N.) Middle column: the �2 term is aded to the HO potential, where the magic gaps
are shown in circles. The single-particle orbits are labeled in the standard way to the left. Right
column: the spin-orbit term, (�l ·�s), is included further, and magic gaps emerging from this term are
shown in red. The single-particle orbits are labeled to the right, including�j =�l +�s. The magic gaps
are classified as “HO” and “SO” for the HO potential and spin-orbit origins, respectively. Taken from
Figure 2 of [15], which was based on [16].

The crucial factor introduced by Mayer and Jensen was the spin-orbit (SO) term, (�l ·�s),
the effect of which is shown in the third column from the left in Figure 1c. The two orbits
with the same orbital angular momentum, �, and the same HO quanta are denoted as,

j> = �+ 1/2 and j< = �− 1/2, (1)

where 1/2 is due to the spin, s = 1/2. The notation of j> and j< is used frequently in this
paper. The spin-orbit term,

vls = f (�l ·�s), (2)

is added to the HO + �2 potential, where f is the strength parameter. With f < 0 as is the
case for nuclear forces, the j> state is lowered in energy, whereas the j< state is raised. The
value of f is known empirically to be about −20A−2/3 MeV (see Equation (2-132) of [12]).
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The final pattern of the single-particle energies (SPE) is shown schematically in
Figure 1c. The single-particle states are labeled in the standard way up to their j values,
and both HO and spin-orbit magic gaps are indicated in black and red, respectively. The
magic numbers have been considered to be Z, N = 2, 8, 20, 28, 50, 82, and 126, because the
effect of the spin-orbit term becomes stronger as j becomes larger. In fact, the magic num-
bers 28, 50, 82, and 126 are all due to this effect. Instead, the HO magic numbers beyond
20 were considered to be absent or show only minor effects. We shall look back on them,
from modern views of the nuclear structure covering stable and exotic nuclei.

We now investigate to what extent magic gaps in Figure 1c have been observed.
Figure 2 displays the observed excitation energies of the first 2+ states of even-even nuclei
as a function of N, where even-even stands for even-Z-even-N. These excitation energies
tend to be high at the magic numbers, because excitations across the relevant magic gap
are needed. The conventional magic numbers of Mayer and Jensen, N = 2, 8, 20, 28, . . . 126
are expected to arise, and we indeed see sharp spikes at these magic numbers in Figure 2a
where the excitation energies are shown for stable and long-lived (i.e., meta stable) nuclei.
Figure 2b includes all measured first 2+ excitation energies as of 2016. In addition to the
spikes in Figure 2a, one sees some new ones. One of them is at N = 40, which corresponds
to 68Ni40, representing a HO magic gap at N = 40. There are three others corresponding to
the nuclei, 24O16, 52Ca32, and 54Ca34, as marked in red. The 2+ excitation energies of these
nuclei are about a factor of two higher than the overall trend, suggesting that N = 16, 32
and 34 can be magic numbers, although none of them is present in Figure 1c.

These new possible magic numbers are consequences of what are missing in the
argument for deriving magic gaps in Figure 1c. We now turn to follow some passages
along which this subject has been studied.

Figure 2. Systematics of the first 2+ excitation energies (Ex(2+1 ), for (a) stable and long-lived nuclei
and (b) all nuclei measured up to 2016, as functions of the neutron number. Peaks in (a) are labelled
by the neutron number (N), while the names of the nuclei are displayed for some new points in (b).
Taken from Figure 4 of [15].
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2.2. Monopole Interaction

The change from the Mayer–Jensen scheme is discussed from the viewpoint of the
nucleon-nucleon (NN) interaction. The Hamiltonian is written as,

Ĥ = Ĥ0 + V̂ , (3)

where Ĥ0 denotes the one-body term given by

Ĥ0 = Σj ε
p
0;j n̂p

j + Σj εn
0;j n̂n

j , (4)

and V̂ stands for the NN interaction. Here, n̂p,n
j means the proton- or neutron-number

operator for the orbit j, and ε
p,n
0;j implies proton or neutron SPE of the orbit j. This SPE is

composed of the kinetic energy of the orbit j and the binding energy on the orbit j generated
by all nucleons in the inert core. We note that the interaction V̂ in Equation (3) can be
any interaction between two nucleons in the following discussions but actually refers to
effective NN interactions between valence (i.e., active) nucleons.

The interaction V̂ can be decomposed, in general, into the two components: monopole
and multipole interactions [17], irrespectively of its origin, derivation, or parameters.
The monopole interaction, denoted as V̂mono, is expressed in terms of the monopole matrix
element, which is defined for single-particle orbits j and j′ as,

Vmono(j, j′) =
Σ(m,m′) 〈j, m ; j′, m′|V̂|j, m ; j′, m′〉

Σ(m,m′) 1
, (5)

where m and m′ are magnetic substates of j and j′, respectively, and the summation over
m, m′ is taken for all ordered pairs allowed by the Pauli principle. The monopole matrix
element represents, as displayed schematically in Figure 3, an orientation average for two
nucleons in the orbits j and j′. See [15] for more detailed descriptions.

Figure 3. Schematic illustration of the monopole matrix element for a two-body interaction v. See
text for details. Taken from Figure 7 of [15].

The monopole interaction between two neutrons is then given as

V̂mono
nn = Σj Vmono

nn (j, j)
1
2

n̂n
j (n̂

n
j − 1) + Σj<j′ Vmono

nn (j, j′) n̂n
j n̂n

j′ . (6)

The monopole interaction between two protons is given similarly. The monopole
interaction between a proton and a neutron can be given as

V̂mono
pn = Σ j �= j′

1
2

{
Vmono

T=0 (j, j′) + Vmono
T=1 (j, j′)

}
n̂p

j n̂n
j′

+ Σj
1
2

{
Vmono

T=0 (j, j)
2j + 2
2j + 1

+ Vmono
T=1 (j, j)

2j
2j + 1

}
n̂p

j n̂n
j , (7)

where Vmono
T=0,1(j, j′) stands for the monopole matrix element for the isospin T = 0 or

1 channel, respectively, defined by Equation (5) including isospin-symmetry effects (see
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Sec. III A of Ref. [15] for details). Note that Vmono
T=1 (j, j′) implies Vmono

nn,pp (j, j′). The second
term on the right-hand-side (r.h.s.) of Equation (7) is slightly different from the first term on
the r.h.s. of Equation (7) due to the special isospin property for the cases of j = j′. Obviously,
V̂mono

pn can be rewritten as

V̂mono
pn = Σ j,j′ Ṽmono

pn (j, j′) n̂p
j n̂n

j′ , (8)

with Ṽmono
pn (j, j′) defined so as to reproduce Equation (7).

The functional forms in Equations (6) and (8) appear to be in accordance with the
intuition from the averaging over all orientations: no dependencies on angular properties
(e.g., coupled J values) between the two interacting nucleons and the sole dependence on
the number of particles in those orbits.

The (total) monopole interaction is written as

V̂mono = V̂mono
pp + V̂mono

nn + V̂mono
pn , (9)

and the monopole Hamiltonian is defined as,

Ĥmono = Ĥ0 + V̂mono = Σj ε
p
0;j n̂p

j + Σj εn
0;j n̂n

j + V̂mono . (10)

The multipole interaction is introduced as

V̂multi = V̂ − V̂mono , (11)

and the (total) Hamiltonian is written as Ĥ = Ĥmono + V̂multi. The multipole interaction
becomes crucial in many aspects of nuclear structure, for instance, the shape deformation,
as touched upon in later sections of this article. The monopole interaction has been studied
over decades with many works, for example, [17–20] (see [15] for more details).

We define the effective SPE (ESPE) of the proton (neutron) orbit j, denoted by ε̂
p
j (ε̂n

j ),

as the change of the monopole Hamiltonian, Ĥmono in Equation (10), due to the addition of
one proton (neutron) into the orbit j. This change is nothing but the difference, when np,n

j

is replaced by np,n
j +1. For instance, the first term on the r.h.s. of Equation (10) contributes

to ε̂
p
j by a constant, ε

p
0;j. As another example, the r.h.s. of Equation (8) contributes by

Σj′ Ṽmono
pn (j, j′){(n̂p

j + 1) n̂n
j′ − n̂p

j n̂n
j′ } = Σj′ Ṽmono

pn (j, j′)n̂n
j′ . Combining all terms, the ESPE

of the proton orbit j is given as,

ε̂
p
j = ε

p
0;j + Σj′ Vmono

pp (j, j′) n̂p
j′ + Σj′ Ṽmono

pn (j, j′) n̂n
j′ . (12)

The second and third terms on the r.h.s. are obviously contributions from valence
protons and neutrons, respectively. The neutron ESPE is expressed similarly as

ε̂n
j = εn

0;j + Σj′ Vmono
nn (j, j′) n̂n

j′ + Σj′ Ṽmono
pn (j′, j) n̂p

j′ . (13)

In many practical cases, an appropriate expectation value of the ESPE operator is
also called the ESPE with an implicit reference to some state characterizing the structure,
e.g., the ground state.

The ESPE as an expectation value is often discussed in terms of the difference between
two states, e.g., Ψ and Ψ′. The states Ψ and Ψ′ may belong to the same nucleus or to
two different nuclei. We here show the formulas for this difference. First we introduce
the symbol ΔO for an operator Ô implying the difference, 〈Ψ |Ô|Ψ〉 − 〈Ψ′ |Ô|Ψ′〉. Such
differences of the ESPE values are expressed as,

Δε
p
j = Σj′ Vmono

pp (j, j′)Δnp
j′ + Σj′ Ṽmono

pn (j, j′) Δnn
j′ , (14)
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and
Δεn

j = Σj′ Vmono
nn (j, j′)Δnn

j′ + Σj′ Ṽmono
pn (j′, j)Δnp

j′ . (15)

If Ψ′ is a doubly closed shell and Ψ is an eigenstate with some valence protons and neutrons
on top of this closed shell, these quantities stand for the evolution of ESPEs as functions of
Z and N. One can thus see various physics cases represented by Ψ and Ψ′. Such ESPEs can
provide picturesque prospects and great help in intuitive understanding without resorting
to complicated numerical calculations. The notion of the ESPE has been well utilized,
for instance, in empirical studies in [6,21], in certain ways related to the present article.

The interaction V̂ can be decomposed into several parts according to some classifica-
tions. The discussions in this subsection can then be applied to each part separately: the
monopole interaction of a particular part of V̂ can be extracted, and its resulting ESPEs can
be evaluated. Examples are presented in the subsequent subsections.

We note that the definition of the ESPE can have certain variants with similar con-
sequences, for instance, the combination of np,n

j − 1/2 and np,n
j + 1/2 instead of np,n

j and

np,n
j + 1. Appendix A shows a note on the relation to Baranger’s ESPE.

2.3. Central, Two-Body Spin-Orbit and Tensor Parts of the NN Interaction

With these formulations, we can discuss a variety of subjects ranging from the shell
structure, to the collective bands, and to the driplines. Let us start with the shell structure.
While the discussions in Section 2.1 are based on basic nuclear properties, some aspects are
missing. One of them is the orbital dependencies of the monopole matrix element. This
dependence generally appears but shows up more crucially in certain cases.

As we shall see, some parts of the NN interaction, V̂, show characteristic and substan-
tial orbital dependencies. Such parts can be specified in terms of their spin properties, as the
NN interaction involves a spin operator, an axial vector �σ of nucleon. We first take the
part where no spin operator is included or spin operators are coupled to scalar terms, like
(�σ1 ·�σ2) with�σ1,2 denoting the spin operator of the nucleon 1 or 2, and ( · ) being a scalar
product. This part is called the central force, and its effects are discussed in Section 2.4. In the
second part, spin operators are coupled to axial vectors. Such axial vectors must be coupled
with other axial vectors such as the orbital angular momentum. The two-body spin-orbit force
belongs to this case, and its effects are discussed in Section 2.8, while the effects remain
quite modest except for special orbital combinations. As presented in Section 2.5, significant
contributions arise from the tensor force, where spin operators are coupled to a (rank-2)
tensor, [�σ1 × �σ2]

(2), where the last superscript means rank 2. This is a very complicated
coupling, and this term must be coupled, in the interaction, with another (rank-2) tensor
of the coordinates, in order to form a scalar. Similar terms appear in the electromagnetic
interaction, but their effects are minor. The tensor force is, however, crucial in the nuclear
case, because the pion exchange process produces it as its primary source. Section 2.5
presents monopole properties of the lowest-order contribution of the tensor force, while
higher-order contributions are largely included in the central force of the effective NN
interaction mentioned above.

2.4. Monopole Interaction of the Central Force

We now discuss the monopole interaction of the central-force component of NN
interactions. Because the NN interaction is characterized by intermediate-range (∼1 fm)
attraction after modifications or renormalizations, the monopole matrix elements gain
large magnitudes with a negative sign (i.e., attractive), if radial wave functions of the
single-particle orbits, j and j′ in Equation (5), are similar to each other. This similarity is
visible, if these orbits are spin-orbit partners (j = j> and j′ = j<) with the identical radial
wave functions (see Equation (1)), for instance 1 f7/2 and 1 f5/2. Another example is the
coupling between unique-parity orbits, such as 1g9/2 and 1h11/2, for which the radial wave
functions are similar because of no radial node. These types of strong correlations were
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pointed out by Federman and Pittel in [22], where the total effect of the 3S1 channel of the
NN interaction was discussed without the reference to the monopole interaction.

2.5. Monopole Interaction of the Tensor Force

Another important source of the monopole interaction with strong orbital dependences
is the tensor force. The tensor force produces very unique effects on the ESPE. This is shown
in Figure 4: the intuitive argument in [15,23] proves that the monopole interaction of the
tensor force is attractive between a nucleon in an orbit j< and another nucleon in an orbit
j′>, whereas it becomes repulsive for combinations, (j>, j′>) or (j<, j′<). The magnitude of
such monopole interaction varies also. For example, it is strong in magnitude between
spin-orbit partners or between unique-parity orbits, etc. [15].

Figure 4. Monopole interaction of the tensor force for (a) between the orbits j< and j′>, and (b) between
the orbits j> and j′>. See Equation (1) for the definitions of the orbits j> and j<. See text for more
details. Taken from [23].

The ESPE is shifted in very specific ways as exemplified in Figure 5b: if neutrons
occupy a j′> orbit, the ESPE of the proton orbit j> is raised, whereas that of the proton
orbit j< is lowered. This is nothing but a reduction in a proton spin-orbit splitting due to
a specific neutron configuration. The amount of the shift is proportional to the number
of neutrons in this configuration, as shown in Equation (14) and in Figure 5c. Other cases
follow the same rule shown in Figure 4. These general features have been pointed out
in [23] with an analytic formula and an intuitive description of its origin.

Figure 5. Schematic picture of the effective single-paticle energy (ESPE) change (i.e., shell evolution)
due to the monopole interaction of the tensor force. (a) Single-particle energies (SPE) with no
neutrons in the orbit j′>. (b) The shifts in the proton ESPEs due to two (valence) neutrons in the orbit
j′>. (c) Same as (b) except for four neutrons. (d,e) Type-II shell evolution due to neutron particle–hole
excitations. See text for more details. Taken from [24].
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2.6. Monopole-Interaction Effects from the Central and Tensor Forces Combined

The combined effects of the central and tensor forces were discussed in [25] in terms of
realistic shell–model interactions, USD [26], and GXPF1A [27]. These interactions were ob-
tained in two steps: the starting point was given by microscopic G-matrix NN interactions
proposed initially by Kuo and Brown [28,29], and as the second step, certain phenomeno-
logical improvements were made by the fit to large numbers of experimental energy levels.
It is mentioned that some main features, for instance, the tensor-force component, remain
unchanged by this fit [25]. Many other valuable shell–model interactions, for instance,
KB3 [17], Kuo-Herling [30], sn100pn [31], and LNPS [32] interactions, have been constructed
from the G-matrix interactions sometimes with refinements like monopole adjustments.
It should be noticed that these shell–model interactions are derived microscopically to
a large extent and that they should be distinguished from purely phenomenological in-
teractions in earlier times, e.g., [33]. The M3Y interaction [34] is related to the G-matrix,
too. We appreciate the original contribution of the G-matrix approach to the effective NN
interaction [28,29].

The VMU interaction was then introduced as a general and simple shell–model NN in-
teraction. Its central part consists of Gaussian interactions with spin/isospin dependencies,
and their strength parameters are determined so as to simulate the overall features of the
monopole matrix elements of the central part of USD [26] and GXPF1A [27] interactions. Its
tensor part is taken from the standard π- and ρ-meson exchange potentials [23,35,36]. Thus,
the VMU interaction is defined as a function of the relative distance of two nucleons with
spin/isospin dependences, which enables us to use it in a variety of regions of the nuclear
chart, as we shall see. A wide model space, typically a HO shell or more, is required in
order to obtain reasonable results, though.

Figure 6 depicts some examples: Figure 6a displays the transition from a standard (à
la Mayer–Jensen) N = 20 magic gap to an exotic N = 16 magic gap by plotting 〈ε̂n

j 〉 within
the filling scheme (see Equation (13)), as Z decreases from 20 to 8. The tensor monopole
interaction between the proton d5/2 and the neutron d3/2 orbits plays an important role.
The small N = 20 magic gap for Z = 8–12 is consistent with the island of inversion picture
(see reviews, e.g., [4,15]). Figure 6b depicts the inversion between the proton f5/2 and p3/2
orbits as N increases in Ni isotopes, by showing 〈ε̂p

j 〉 (see Equation (12)). The figure exhibits
exotically ordered single-particle orbits for N > 44. The tensor monopole interactions
between the proton f7/2,5/2 and the neutron g9/2 orbits produce crucial effects. Figure 6c
shows significant changes in the neutron single-particle levels from 90Zr to 100Sn, in terms
of 〈ε̂n

j 〉. Without the tensor force, the approximate degeneracy of g7/2 and d5/2 orbits in
100Sn does not show up.

Figure 6. ESPEs calculated by the VMU interaction. The dashed lines are obtained by the central force
only, while the solid lines include both the central-force and the tensor-force contributions. See text
for more details. Taken from [25].

These changes in the shell structure as a function of Z and/or N were collectively called
shell evolution in [23]. The splitting between proton g7/2 and h11/2 in Sb isotopes shows
a substantial widening as N increases from 64 to 82 as pointed out by Schiffer et al. [37],
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which was one of the first experimental supports to the shell evolution partly because this
was not explained otherwise. Note that while the origin of the shell evolution can be any
part of the NN interaction, its appearance is exemplified graphically in Figure 5a–c for
the tensor force. The shell-evolution trend depicted in Figure 6 appears to be consistent
with experiment [15,25,38–42]. The monopole properties discussed in this subsection are
consistent with the results shown by Smirnova et al. [43] obtained through the spin-tensor
decomposition (see e.g., [15] for some account) for the “well-fitted realistic interaction for
the sdpf shell–model space” [43].

2.7. N = 34 New Magic Number as a Consequence of the Shell Evolution

Among various cases of shell evolution, a notable impact was made by predicting a
new magic number N = 34. Figure 7 displays the shell evolution of some neutron orbits
from Ni back to Ca isotopes, as Z decreases from 28 to 20. The 1 f5/2 orbit is between the
2p3/2 and 2p1/2 in Mayer–Jensen’s shell model (see Figure 1). By loosing eight protons
lying in the 1 f7/2 orbit of Ni isotopes (blue circles in Figure 7 left), this canonical shell
structure is destroyed as the 1 f5/2 orbit moves up above the 2p1/2 orbit. This movement of
1 f5/2 orbit creates the N = 32 gap as a byproduct [44]. The energy shift in the 1 f5/2 orbit is
due to the central and tensor forces by almost equal amounts. We mention that the N = 34
magic gap would not appear, if the Mayer–Jensen scheme holds, as expected, in Ni isotopes
but this shift did not occur. The appearance of the N = 34 magic number was predicted as a
result of a spin–isospin interaction in [45]. However, 12 years were required [46] until the
experimental verification became feasible [47] (see Figure 7 right). The measured 2+ energy
levels are included in Figure 2b. More details are presented in [15]. Further evidences have
been obtained recently by different experimental probes as reported in [48,49].

Figure 7. Left: Schematic illustration of the shell evolution from Ni back to Ca for neutron orbits.
Blue circles denote protons. The wavy line is the interaction between the proton 1 f7/2 orbit and the
neutron 1 f5/2 orbit. The numbers in circles indicate magic numbers. Taken from Figure 3 of [24].
Right: Observed excitation energies of the 2+1 states. Taken from Figure 2c of [47].

2.8. Monopole Interaction of the Two-Body Spin-Orbit Force

It is a natural question what effect can be expected from the two-body spin-orbit
force of the NN interaction. This force can be well described by the M3Y interaction, and
the monopole effects of the two-body spin-orbit force were described in detail in [15],
particularly in its supplementary document. Although the monopole effects of this force
contributes to the spin-orbit splitting [15], the effect is much weaker than the tensor force
in most cases, as also discussed in the article by Utsuno in this volume.

An interesting case is found in the coupling between an s orbit and p3/2,1/2 orbits.
There is no monopole effect from the tensor force, if an s orbit is involved. Instead, the s-p
coupling due to the two-body spin-orbit force can be exceptionally strong as intuitively
stressed in [15]. Figure 8 shows that the possible significant change in the neutron 2p3/2-
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2p1/2 gap between 35Si and 37S is explained to a good extent by the shell evolution due to
the two-body spin-orbit force.

Figure 8. (a) Neutron 2p3/2-2p1/2 splitting for N = 21 isotones. The symbols are the centroids for
37S [42], 39Ar [50], and 41Ca [50,51]. The horizontal bars are the energy differences between relevant
highest peaks [50,52]. Shell evolution predictions are shown by blue closed symbols and the solid
line connecting them. The loose binding effect for 35Si is included in the open circle. The calculation
with Woods–Saxon potential with parameters adjusted are shown by the yellowish shaded area [50].
(b) Neutron 2p1/2 single-particle energy (blue solid line) by a Woods–Saxon potential [12] for varying
depth parameter, V. The linear dependence of the deeply bound region is linearly extrapolated
(blue dashed line) and is compared to the curved dependence that results from the proximity of
the continuum. The dashed line is for the 2p3/2 orbit, and the loose-binding contribution to the
present splitting appears to be 0.06 MeV against 1.5 MeV splitting itself. Taken from Figure 8 of
Supplementary Material of [15].

2.9. Monopole Interaction from the Three-Nucleon Force

The three-nucleon force (3NF) is currently of intense interest (see, for instance, a re-
view [53]). Among various aspects, we showed [54] the characteristic feature of the
monopole interaction of the effective NN interaction derived from the Fujita–Miyazawa
3NF [55]. Figure 9a displays the effect of the Δ excitation in nucleon–nucleon interac-
tion. The Δ-hole excitation from the inert core changes the SPE of the orbit j as shown in
Figure 9b, where m is one of the magnetic substates of the orbit j, and m′ means any state.
This diagram renormalizes the SPE, and observed SPE should include this contribution.
If there is a valence nucleon in the state m′ as in Figure 9c, the process in Figure 9b is
Pauli-forbidden. However, in the shell–model and other nuclear-structure calculations,
the SPE containing the effect of Figure 9b is used. One has to somehow incorporate the
Pauli effect of Figure 9c, and a solution is the introduction of the process in Figure 9d.
In this process, the state m′ doubly appears in the intermediate state, but one can evaluate
the Pauli effect by including Figure 9b,d consistently. This is a usual mathematical trick
and enables us to correctly treat the Pauli principle within the simple framework. Figure 9d
is equivalent to Figure 9e, which is nothing but the Fujita–Miyazawa 3NF, where the state
m′ appears in double. Similar treatment is carried out in the chiral Effective Field Theory
(EFT) framework. Figure 9f corresponds to Figure 9e, but the violation of the Pauli principle
is slightly hidden, because of a vertex in the middle (depicted by a square) instead of the
Δ-hole excitation.
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In this argument, the 3NF produces a repulsive monopole NN interaction in the
valence space, after the summation over the hole states of the inert core (see Figure 9
bottom right), which corresponds to the normal ordering in other works.

The plot Figure 9 top right indicates an example of the repulsive effect on the ground-
state energy of oxygen isotopes, locating the oxygen dripline at the right place or solving
the oxygen anomaly [54]. This is rather strong repulsive monopole interaction, which is a
consequence of the inert core. This means that the present case is irrelevant to the no-core
shell model or other many-body approaches without the inert core (e.g., Green’s Function
Monte Carlo calculation [56]). This feature has caused some confusions in the past, but the
difference is clear. The present repulsive monopole effect is much stronger than the other
effects of the 3NF [57], and the latter will be better clarified by further developments of the
chiral EFT for 3NF in the future. I note that the repulsive T = 1 NN effect was empirically
noticed by Talmi in the 1960s [3].

Figure 9. Schematic illustration of the three-nucleon force (3NF). Left: The diagrams (a–e) show how
Δ-hole excitation effects are incorporated in accordance with Pauli principles, with the final form
shown in (e), as described in the text. The diagrams in (f–h) represent three contributions from 3NF
obtained in the chiral Effective Field Theory. Top right: the ground-state energy of oxygen isotopes,
calculated with and without the 3NF and observed experimentally. Bottom right: the intuitive
explanation of the diagrams in (d,e) of the left panel with the 16O inert core. Based on Figures 3 and 4
of [54].

2.10. Short Summary of This Section

The shell evolution phenomena are seen in many isotopic and isotonic chains and some-
times result in the formation of new magic gaps or the vanishing of old ones. Figure 2b
displays the emergence of such new magic numbers N = 16, 32, and 34, whereas the low-
ering of some 2+ levels can mean the weakening of some magic numbers. More changes
may appear in the future studies. Thus, the characteristic monopole features of the central,
tensor, two-body LS, and 3NF-based NN interactions and the resulting shell evolution
are among the emerging concepts of the nuclear structure. Interestingly, these findings
are neither isolated nor limited to particular aspects but are related to other aspects of the
nuclear structure. We now move on to such a case.

98



Physics 2022, 4

3. Type-II Shell Evolution and Shape Coexistence

3.1. Type-II Shell Evolution

The shell evolution shown in Figure 5b,c are due to the addition of two or four
neutrons into the orbit j′>, respectively. Instead of adding, one can put neutrons into the
orbit j′> by taking the neutrons from some orbits below j′>, or equivalently by creating
holes there, as shown in Figure 5d. If such a lower orbit happens to be the j′′< orbit as in
Figure 5d, its monopole matrix elements show just the opposite trends compared to the j′>
orbit. However, because holes are created in j′′<, the sign of the monopole-interaction effect
is reversed, and the final effect has the same sign as the monopole effect form the orbit
j′> (see Figure 5d). Thus, the particle–hole (ph) excitation of the two neutrons Figure 5d
reduces the proton j>-j< splitting even more than in Figure 5b. This reduction becomes
stronger with the ph excitations of four neutrons, as depicted in panel Figure 5e. Such
strong reduction in the spin-orbit splitting produces interesting consequences beyond
shell-structure changes. This type of the shell-structure change within the same nucleus is
called type-II shell evolution.

3.2. A Doubly-Closed Nucleus 68Ni

The Type-II shell evolution was first discussed in [58] for 68Ni as an example. Figure 10
shows its theoretical and experimental energy levels. The theoretical results were obtained
for the A3DA-m interaction by the MCSM [59–62], which is a powerful methodology for
the shell model calculation but is not discussed in this article due to the length limitation.

Figure 10. Level scheme of 68Ni. Taken from Figure 2 of [58].

Because Z = 28 is an SO magic number and N = 40 is an HO magic number (see
Figure 1), the ground state of 68Ni is primarily a doubly closed shell. Indeed, in the theoret-
ical ground state, the occupation of the neutron g9/2 orbit is negligibly small. In contrast,
the 0+3 state located at the excitation energy, Ex∼3 MeV, is the band head of a rotational
band of an ellipsoidal shape, and its neutron g9/2 occupation number is as large as ∼4.
The mechanism shown in Figure 5e is then switched on, reducing the proton f5/2– f7/2
splitting. A reduced splitting facilitates more configuration mixing between these two
orbits, which can produce notable effects on the quadrupole deformation as stated below.
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3.3. Coexistence between Spherical and Deformed Shapes

We here quickly overview the quadrupole deformation or the shape deformation from
a sphere to an ellipsoid [13]. The quadrupole deformation is driven by the quadrupole
interaction, a part of the multipole interaction in Equation (11). The quadrupole interaction
is a somewhat vague idea because of a certain mathematical complication, but its main
effects can be simulated by the (scalar) coupling of the quadrupole moment operators.
If the quadrupole moments are larger, i.e., a stronger quadrupole deformation occurs,
the nucleus gains more binding energy from the quadrupole interaction. This is a very
general phenomenon, and because of this the ground states of many nuclei are deformed,
although 68Ni is not among them.

The energy of 68Ni (intrinsic state) is graphically illustrated in Figure 11 left for various
ellipsoidal shapes, spherical, prolate, oblate and in between (called triaxial). The energy is
calculated by the constraint Hartree–Fock (CHF) calculation with the same shell–model
Hamiltonian as in Figure 10. The imposed constraints are given by the quadrupole moments
in the intrinsic (body-fixed) frame, represented usually by Q0 and Q2 [13]. This plot is
usually called the Potential Energy Surface (PES). The minimum energy occurs at the
spherical shape (red sphere), with Q0 = Q2 = 0. The constraints are changed to a more
prolate deformed ellipsoid (blue object) along the upper-right axis (“prolate deformation”
in the figure), where Q0 increases but Q2 = 0. (Between two axes in Figure 11, Q2 �= 0. We
come back to this point below.) The energy relative to the minimum energy climbs up by
6 MeV first. This is because protons and neutrons must be excited across the magic gaps
from the doubly closed shell in order to create states of deformed shapes (see Figure 1).
The energy then starts to come down, as the quadrupole moments increase, thanks to the
quadrupole interaction. It is lowered by 3 MeV from the local peak to the local minimum.
Beyond the local-minimum area, the effect of the quadrupole interaction is saturated, and it
cannot compete with the energy needed for exciting more protons and neutrons across
the gaps required by the constraints. This energy variation appears as the basin in the
three-dimensional PES. This is the usual explanation of the local deformed minimum.
The appearance of two (or more) different shapes with a rather small energy difference
is one of the phenomena frequently seen and is called the shape coexistence [63]. The
quadrupole interaction is undoubtedly among the essential factors of the shape coexistence.
However, this may not be a full story.

Figure 11. Left: Potential energy surface (PES) of 68Ni. Taken from Figure 5 of [24]. Right: PES of
68Ni with axially symmetric shapes. The solid line shows the PES of the full Hamiltonian, whereas
the dashed line is the PES with practically no tensor-force contribution. Taken from Figure 6 of [24].

100



Physics 2022, 4

Figure 11 right exhibits the same energy along the axis lines of Figure 11 left, where Q0
is varied from −400 fm2 to 400 fm2 while Q2 = 0 is kept. The positive (intrinsic) quadrupole
moments (Q0 > 0) imply prolate shapes (blue object in Figure 11 left), whereas the negative
ones imply (Q0 < 0) oblate shapes (green object). The red solid line shows the CHF results of
the full Hamiltonian, whereas for the dashed line, the tensor monopole interactions between
the neutron g9/2 orbit and the proton f5/2,7/2 orbits are practically removed. This removal
means no effects depicted in Figure 5d,e. The dashed line displays a less-pronounced prolate
local minimum at weaker deformation with much higher excitation energy. The significant
difference between the solid and dashed lines suggests that the monopole effects are crucial to
lower this local minimum and stabilize it. We now discuss the mechanism for this difference.
With the tensor monopole interaction, once sufficient neutrons are in g9/2, the proton f5/2– f7/2
splitting is reduced, and this reduced splitting facilitates the mixing between these two orbits
driven by the quadrupole interaction. The resulting deformation is stronger compared to no
tensor-force case. In parallel to this, the tensor monopole interaction involving the neutron
g9/2 orbit produces extra binding energy, if more protons are in f5/2 and less are in f7/2. This
extra binding energy lowers the deformed states, otherwise they are high in energy because
of the energy cost for promoting neutrons from the p f shell to g9/2. Thus, a strong interplay
emerges between the monopole interaction and the quadrupole interaction, and type-II shell
evolution materializes this interplay in the present case. It enhances the deformation and
lowers the energy of deformed states. Without this interplay, as indicated by blue dashed line
in Figure 11 right, the rotational band corresponding to the local minimum is pushed up by
4 MeV and may be dissolved into the sea of many other states. It is obvious that this interplay
mechanism works self-consistently.

3.4. T-Plot Analysis

The T-plot was introduced in the same Ref. [58], in order to clarify what shapes are
more relevant to individual eigenstates of the shell–model calculation. Let us take an
example. Figure 12 [64] depicts the PES of 66Ni with the same Hamiltonian as in Figure 10.
The small circles on the PES are the T-plot. The T-plot is obtained from MCSM eigenstate.
We therefore briefly explain the MCSM eigenstate. An MCSM eigenstate, Ψ, is written,
with the ortho-normalization, as

Ψ = ∑
k

fk P̂Jπ φk , (16)

where fk denotes amplitude; P̂Jπ means the projection operator on to the spin/parity Jπ

(this part is more complicated in practice); and φk stands for a Slater determinant called
(k-th) MCSM basis vector: φk = Πi c(k)†i |0〉. Here, |0〉 is the inert core (closed shell); c(k)†i
refers to a superposition of usual single-particle states,

c(k)†i = ∑
n

D(k)
i,n a†

n , (17)

with a†
n being the creation operator of a usual single-particle state, for instance, that of the

HO potential, and D(k)
i,n denoting a matrix element. By choosing an optimum matrix D(k),

we can select φk so that such φk better contributes to the lowering of the corresponding
energy eigenvalue. Thus, the determination of D(k) is the core of the MCSM calculation.
The index k runs up to 50–100 but sometimes to 300 at maximum. These are much smaller
than the dimension of the many-body Hilbert space.
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Figure 12. PES and T-plot for 66Ni. Taken from Figure 1 of [64].

Each φk has intrinsic quadrupole moments (〈φk|Q̂0|φk〉 and 〈φk|Q̂2|φk〉), where Q̂0,2
imply the operators for Q0,2 mentioned above. The T-plot circle for φk is placed according
to those values on the PES with its area proportional to the overlap probability with
the corresponding eigenstate, i.e., Ψ in Equation (16). Such T-plot circles are shown in
Figure 12. The white circles represent the MCSM basis vectors for the ground state, while
the red circles indicate the MCSM basis vectors for the 0+4 state, which is strongly deformed.
Although there is no local minimum for oblate shape, the 0+2 state is shown to be moderately
oblate deformed. The T-plot can thus give partial labeling to fully correlated eigenstates for
mean values as well as fluctuations with respect to their quadrupole shapes. The advantages
of mean-field approaches are now nicely incorporated into the shell model.

3.5. Short Summary of This Section

Type-II shell evolution occurs in various cases, especially in a number of shape co-
existence cases, providing deformed states with stronger deformation, lower excitation
energies, and more stabilities. It is an appearance of the monopole–quadrupole interplay
and plays crucial roles in various phenomena including the first-order quantum phase tran-
sition (Zr isotopes [65–67]), the second-order quantum phase transition (Sn isotopes [68]),
the multiple even-odd quantum phase transitions (Hg isotopes [69]), as well as the rais-
ing of the intruder band due to the suppression of the type-II shell evolution (lighter Ni
isotopes [64,70]). As the involvement of the monopole interaction in this manner had not
been recognized, type-II shell evolution appears to be among the emerging concepts of
nuclear structure. The type-II shell evolution has been clarified by the T-plot in many cases.
Including other contributions, the T-plot is undoubtedly one of the emerging concepts of
nuclear structure, apart from its impact on the computational methodology.

4. Self-Organization and Collective Bands in Heavy Nuclei

We now proceed to more general cases of the monopole–quadrupole interplay. This
interplay leads to unexpected consequences in the underlying mechanism of collective
bands of heavy nuclei [71], beyond the standard textbooks.

The MCSM has become powerful enough [62] to reproduce collective bands of heavy
nuclei such as 154Sm and 166Er, with one and half HO major shells [71]. We sketch the new
findings by using the results of such most-advanced MCSM calculations.

4.1. Shape Coexistence in 154Sm

Figure 13 shows low-lying energy levels of 154Sm. The present MCSM calculation
can describe the four low-lying bands including the negative-parity one. The agreement
between the experimental levels in Figure 13a and the theoretical levels in Figure 13b is
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rather good. Although the importance of the quadrupole interaction is evident for the
formation of deformed rotational bands, one can investigate to what extent the monopole
interaction is involved. The monopole interaction here was obtained from the shell–model
interactions, comprising the central, tensor, and other components.

Figure 13. Left: (a) Experimental energy levels [42], (b) calculated original energy levels and
(c,d) monopole-frozen energy levels of 154Sm. Right: ESPE (vertical position) and occupation number
(horizontal width). Taken from Figures 2 and 3 of [71].

The monopole interaction is an operator, but we “freeze” it now: its ESPE expectation
values 〈ε̂p,n

j 〉 are calculated for the state to be specified, and the obtained values are adopted

as the SPEs, ε
p,n
0;j in Equation (4), with the monopole interaction removed. We then perform

the shell-model calculation and draw the PES. This toy game is called the “monopole-
frozen” analysis [71], as the monopole properties are included only through the specified
state. Figure 13c exhibits the energy levels obtained by the monopole-frozen analysis
referring to the ground state. The band built on the 0+2 state (often called the β band) is
lifted up by 0.5 MeV (∼50% of the original excitation energy), suggesting that the active
monopole interaction produces a substantial lowering of this state. Figure 13d shows the
monopole-frozen analysis referring to the spherical HF state: the ground state is no longer
prolate, but triaxial, with the wave function close to the 0+2 state of the original Hamiltonian.
Thus, the crucial effect of the monopole interaction is verified.

Figure 13 right shows the actual values of 〈ε̂p,n
j 〉 for the 0+1 and 0+2 states. This figure

demonstrates the significant differences between two sets of the ESPE values. The occupa-
tion numbers are also different: there are more half-filled orbits for the 0+2 state, which is
indicative of its triaxial nature. The smaller occupation numbers of unique-parity orbits are
also consistent with the tendency away from the prolate shape.

We now introduce the deformation parameters β2 and γ [13], and their meanings
are sketched in Figure 14a. The parameter β2 represents the magnitude of the ellipsoidal
deformation from sphere. The ellipsoid has three axes: the longest, middle, and short-
est. The parameter γ is an angle between 0◦ and 60◦ and represents mutual relations
among the lengths of these axes: γ = 0◦ means that the middle and shortest axes have
the same length (prolate); γ = 60◦ implies that the longest and the middle ones have the
same length (oblate); and γ values in between stand for intermediate situations, called
triaxial. Figures 11 and 12 include them. The β2 and γ parameters can be obtained, in some
approximation, from intrinsic quadrupole moments through the formulas [72],

β2 =
√

5/16π {(e + e′p + e′n)/e} (4π/3R2
0 A5/3)

√
(Q0)2 + 2(Q2)2 , (18)

and
γ = arctan (

√
2Q2/Q0), (19)
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where e is the unit charge; e′p (e′n) denotes proton (neutron) effective charge induced by in-
medium (or core-polarization) effects; and R0 stands for the radius parameter of the droplet
model (spherical background) (see [73] for some detailed explanation). The relations in
Equations (18) and (19) worked very well in many works, for instance [64,69–71].

Figure 14c,d shows the T-plot for the original interaction, where the PES is shown
by using β2 and γ as coordinates (see Figure 14a). Figure 14e,f depicts the T-plot for the
monopole-frozen interaction obtained with the spherical HF state. The T-plot patterns are
consistent with the above features suggested by the shell–model diagonalization. The cut
of the PES shown in Figure 14b suggests that the local minimum is raised by the monopole-
frozen process referring to the ground state.

Figure 14c,d depict a valley of the PES with a local minimum around γ = 15◦. Similar
valleys are seen in the PES obtained by the mean-field calculations [74,75], implying that
this valley likely has a common origin. On the other hand, one can state that the present
monopole effect results in not only the valley but also the local minimum, and the latter
plays essential roles in the formation and stability of the side bands. It is of interest to refine
the monopole interaction in mean-field models.

Regarding the β vibration picture of the 0+2 state, the present view is opposed to
such a conventional view. The triaxial deformation is shared by the members not only of
the 0+2 band but also of the 2+3 band (usually called γ band), as can be verified by their
T-plots. Namely, the 0+2 state is the “ground” state of the triaxial states to which both
the 0+2 and 2+3 bands belong. In short, this is a shape coexistence between the prolate
and triaxial shapes assisted by the interplay between the monopole interaction and the
quadrupole deformation. It is noted that the β vibration picture of the 0+2 states has been
investigated from experimental viewpoints [76,77].

Figure 14. Properties of the 0+1,2 states of 154Sm. (a) Deformation parameters and shapes. (b) Lowest
values of PES for a given γ value for the original case (red) as well as for the prolate (blue) and
spherical (green) monopole-frozen cases. (c–f) Three-dimensional T-plot in the original and spherical
monopole-frozen cases. Based on Figure 3 of [71].

4.2. Collective Bands and γ Vibration in 166Er

The features of the collective motion in 166Er have been studied by the MCSM similarly
well (see Figure 15a). Among rotational nuclei, 166Er is characterized by particularly low-
lying 2+2 state and the γ band built on it. Aage Bohr stressed that this 2+2 state was a
γ vibration from the prolate ground state [9–11,13]. The relatively strong 2+2 → 0+1 E2
transition (B(E2)∼5 W.u., see Figure 15a, was ascribed to the annihilation of one γ phonon
in the 2+2 state. This was one of the major points of the Nobel lecture by Aage Bohr and has
been a common sense as stated in many textbooks of nuclear physics. We now challenge
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this traditional belief, by utilizing the recent MCSM calculation. It is reminded that no
firm experimental evidence to uniquely pin down the γ-vibration nature of 166Er has been
reported and also that in a systematic calculation of many heavy nuclei [78], the excitation
energies of the 2+2 states in the γ band appeared to be about twice higher than the observed
values, despite much better description of those of the 2+1 state in the ground band.

Figure 15. Experimental and calculated properties of the lowest states of 166Er. (a) Energy levels
and electromagnetic transitions (W.u.) [42] as well as spectroscopic electric quadrupole moments
(eb) [79]. (b) Three-dimensional PES and its cut surface for β2 = 0.3. (c–e) T-plots for the 0+1 and 2+2
states and for the monopole-frozen 0+1 state at spherical shape. Based on Figure 4 of [71].

Figure 15b shows the calculated PES, which shows the minimum not at γ = 0◦ but
around γ = 9◦ (see also [80]). The T-plot is shown for the 0+1 and 2+2 states in Figure 15c
and Figure 15d, respectively. The patterns of the T-plot circles are nearly identical between
these two panels. This is consistent with a (rigid) triaxial interpretation, and indeed E2
transition strengths follow the predictions of the Davydov triaxial model [81,82] with
γ = 9◦. Certainly, a pure rigid triaxiality is not the correct picture, and there are quantum
fluctuations, as evident from Figure 15c,d [80]. After all, the displacement from the γ = 0◦
is obvious. The triaxiality of 166Er is also suggested by the triaxial projected shell model,
although the rigid-triaxiality is not an outcome but an assumption [83,84].

The experimentally known Jπ = 4+ state around 2 MeV excitation energy provides a
long-standing puzzle [85,86]: the observed relatively strong E2 transition from this state
to the 2+2 state looks like a sign that the 2+2 state and this Jπ = 4+ states are the single-
and double-phonon states in the γ vibration picture (à la A. Bohr [9,10]), respectively,
but the excitation energy of this Jπ = 4+ state is too high for a double-phonon excitation.
The present calculation, on the other hand, reproduces both the excitation energy and
the E2 transition strength, and this Jπ = 4+ state appears as the Kπ = 4+ member of the
triaxial states including the 0+1 and 2+1,2 states (see Figure 15c,d) [71,80]. Thus, the triaxiality
is shown to be one of the key aspects for understanding/predicting the shapes of heavy
nuclei.

The monopole-frozen analysis referring to the spherical CHF state shows that the
ground state moves to γ = 0◦, confirming the important role of the monopole interaction
activated. The triaxial ground states are now shown to appear in a large number of nuclei
in the nuclear chart, besides the known triaxial domain [87].
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4.3. A Historical Touch and a Short Summary of This Section

The collective bands in heavy nuclei have traditionally been understood in terms
of the ground band with axially symmetric prolate shape and the side bands with the
β or γ vibrational excitations from the ground state. This picture is consistent with the
Nilsson model [88] and was confirmed by the Pairing + Quadrupole-Quadrupole (P+QQ)
model [89,90], where the monopole interaction is not included, however. It has been shown
in this section that the monopole interaction is crucial also for the collective bands in heavy
nuclei. We just note that in lighter nuclei, the situation can be different mainly because of
small model spaces comprising single or a few active orbits, where the rotational motion
has been nicely described by symmetry-based approaches, e.g., SU(3) model of Elliott for
the sd shell [91,92], and by realistic calculations, e.g., on 48Cr [93].

Regarding heavy nuclei, for individual rotational bands, the monopole interaction
contributes differently, and the intrinsic structure is determined not only by the quadrupole
interaction but also by the monopole interaction, as verified by the monopole-frozen
analyses. Thus, the monopole–quadrupole interplay arises. The monopole interaction
does not directly drive the deformation but optimizes the ESPEs so that more binding
energy is gained. This gain is state-dependent and even can alter the ordering of bands as
mentioned above. The present monopole–quadrupole interplay can be described also from
the viewpoint of the self-organization [71]: the nucleus is changed from a disorder (original
SPEs) to an order (ESPEs tailored to the shape of interest) by activating the monopole
interaction. As this occurs “purposely” towards certain shapes with positive feedback,
particularly between the monopole and quadrupole effects, the whole picture fits well the
(quantal) self-organization [71]. The self-organization for collective bands is among the
emerging concepts of nuclear structure, showing novel consequences. For example, the
dominant fraction of the ground states of heavy nuclei are expected to show triaxial shapes,
as another emerging concept of nuclear structure, in contrast to the traditional view of the
prolate shape dominance in those states.

Appendix B presents a possible extension or generalization of the current idea to
“many-ingredient” systems outside nuclear physics.

5. Dripline Mechanism

5.1. Traditional View

Figure 16a shows the left-lower part of the nuclear chart (Segrè chart) for Z ≤ 16. The
black squares represent stable nuclei while the orange ones exotic nuclei (see Section 1).
An isotopic chain is a horizontal belt, and its neutron-rich end is called neutron dripline.
The location of the dripline in the nuclear chart implies the extent of the isotopes and is of
fundamental importance to nuclear science. The experimental determination of the dripline
is a very difficult task. Very recently, as shown by red squares in Figure 16a, the driplines
of F and Ne isotopes and its candidate of Na isotope were reported [94].

The traditional view of the dripline is shown in Figure 16b: all bound single-particle
orbits are occupied, and the next neutron goes away. It is an open question whether this
view is valid for all nuclei or not. We look into this question now [57].

The structure of neutron-rich exotic isotopes of F, Ne, Na, and Mg can be well described
by the shell–model calculation with the full sd+p f shells and the EEdf1 interaction [95].
This interaction was derived from the chiral EFT interaction of Machleidt and Entem [96],
first processed by the Vlow-k method [97,98] and then processed by the EKK (Extended
Krenciglowa-Kuo) method [99–101]. The Vlow-k method is used to transform the nuclear
forces in the free space into a tractable form for further treatments. The Vlow-k method has
been adopted for the derivation of other modern shell–model interactions, for instance,
the one by Coraggio et al. for Sn and Cr-Fe regions [102,103].
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Figure 16. (a) Left-lower part of the nuclear chart with stable (black square), exotic (orange) and
(confirmed) unbound (blank) nuclei as well as dripline nuclei (red, and purple). (b) Schematic
illustration of the traditional view of the dripline. Based on Figure 2 of [57].

The present work is unique in the usage of the EKK method, which enlarges the scope
of the approaches based on the many-body perturbation theory (MBPT) [29]. The MBPT
produced the G-matrix interactions in its early formulations [28], from which many useful
shell–model interactions have been constructed (see Section 2.6). However, the resulting
G-matrix interaction shows a limitation that if two major shells are merged, the results
may diverge [101]. As the gap between two shells often vanishes or becomes smaller in
exotic nuclei, this difficulty can be fatal there, although it is irrelevant to one-major-shell
calculations. The EKK method nicely avoids this difficulty besides other merits.

Here, I present a very quick sketch of the formal aspect of the EKK method focusing on
the logical flow based on Refs. [99–101] particularly the last one. This paragraph is not so
relevant for understanding later parts of the article and can be skipped. In this paragraph,
the symbol ˆ for operators is omitted for clarity. The EKK method starts from the separation
of the Hamiltonian H with a parameter ξ as

H =

(
ξ 0
0 QH0Q

)
+

(
P(H − ξ )P PVQ

QVP QVQ

)
, (20)

where P stands for the projection onto the Hilbert space explicitly treated (called P space
usually), and Q = 1 − P. From this equation, we obtain the effective Hamiltonian for the P
space at the n-th stage of the successive process,

H̃(n)
eff = H̃BH(ξ) +

∞

∑
k=1

Qk(ξ){H̃(n−1)
eff }k, (21)

where Õ means O − ξ for any operator O, e.g., H̃BH(ξ) = HBH(ξ)− ξ. Here, the Bloch–
Horowitz Hamiltonian is written as,

HBH(ξ) = PHP + PVQ
1

ξ − QHQ
QVP , (22)

where the second term on the r.h.s. is called the Q-box. The quantity Qk in Equation (21)
represents its k-th derivative with respect to ξ. Provided that H̃(n)

eff ≈ H̃(n−1)
eff is achieved,

we can regard and use them as the effective Hamiltonian, H̃eff. The effective interaction,
like the EEdf1 interaction, is obtained as Veff = Heff − PH0P with H0 being the unperturbed
Hamiltonian (usually the SPEs). The solution of the given many-body problem remains
(almost) unchanged within a certain range of ξ. In fact, the ξ parameter can be interpreted
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as the origin point of a Tayler expansion in a generalized sense. The divergence due to the
energy denominator does not occur if the adopted ξ values are far from the poles causing
the divergence. I would like to stress that by construction, this effective Hamiltonian
produces the exact solutions, once the convergence is achieved. This sketch is expected
to depict that the EKK method is an expansion but not a perturbation one. This can be
exemplified by the feature that the final result is independent of the ξ parameter, in contrast
to the perturbation expansion.

The EEdf1 interaction has thus been derived in an ab initio way by the Vlow-k and
EKK methods from the chiral EFT interaction of Machleidt and Entem [96]. Some effects
of 3NF are included in terms of the effective NN interaction by averaging over the hole
states in the inert core, of which the monopole part is discussed in Section 2.9. While the
Fujita–Miyazawa 3NF was used so far, other 3NF can be taken [57]. The EEdf1 interaction
describes the properties of the ground and low-lying states of F, Ne, Na, and Mg isotopes
quite well [57,95].

5.2. Monopole–Quadrupole Interplay for the Driplines

Figure 17 shows the ground-state energies of F, Ne, Na, and Mg isotopes as functions
of the neutron number N. These energies are decomposed into several pieces according
to their origins: SPE (on top of the 16O inert core), monopole, pairing, and rest terms.
The Coulomb contribution is ignored in the following discussion, because it is of virtually
no relevance. Here, the multipole interaction is divided into the pairing and rest terms.
The pairing is the BCS-type pairing interaction acting on two neutrons coupled to Jπ = 0+

and on two protons coupled to Jπ = 0+. The rest term means the multipole interaction
subtracted by the pairing term. Although the rest term contains many different pieces, its
major effects in the present discussion is simulated by the quadrupole interaction. This is
the reason why the rest term is associated with “(quadrupole etc)” in the figure.

The lower edges of the red areas exhibit the ground-state energies as functions of
the neutron number N, while only even N values are taken. These values show a good
agreement with measured values shown by black dots. As long as the ground-state energy
becomes lower as N increases, the isotope gains more binding energy by having more
neutrons, and the isotope chain is stretched. However, if the ground-state energy is not
lowered, there is no gain in the binding energy by having these extra neutrons; these extra
neutrons are emitted, and the neutron dripline implies the nucleus with the lowest ground-
state energy. The driplines obtained by the present calculation are shown by red arrows for
each isotopic chain, reproducing experimental driplines for F, Ne, and Na isotopes [94].

We focus on the lower edge of the green areas in Figure 17. This represents the
monopole contributions comprising the SPE and the monopole interaction. For Ne, Na,
and Mg isotopes, this edge is lowered almost linearly as N increases from N = 16 to each
dripline. We then fit the edge with pink dashed, purple dotted, and black solid lines for
Ne, Na, and Mg isotopes, respectively. The lines of Ne and Na isotopes are copied to the
panel for Mg, with their positions adjusted at a certain N. It is evident that the lines become
steeper almost linearly as Z increases. This edge is almost flat for F isotopes for N ≥ 16,
and this feature is discussed below.

Figure 17 indicates that the effect of the pairing term shows small variations. In
contrast, the rest term changes more, which is largely due to the quadrupole interaction.
Figure 18a schematically indicates the variation of the effect of the quadrupole interaction:
The effect is small at the far-left position with a spherical shape. As some neutrons are added,
the shape is deformed, and the ground-state energy is lowered due to the quadrupole
interaction. This trend continues but becomes its maximum at a certain value of N (red
object in the figure). However, the dripline is not determined just by this maximum point.
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Figure 17. Ground-state energies of even-N isotopes of (a) F, (b) Ne, (c) Na and (d) Mg, relative to the
16O value. Colored segments exhibit decompositions into various effects from the monopole (green),
pairing (blue) and rest (such as quadrupole) (red) components of the effective nucleon–nucleon
interaction as well as those from Coulomb interaction (black) and single-particle energies (bare SPE;
grey). The monopole effect grows steadily as a function of N in all cases, as highlighted by straight
lines: dashed (Ne), dotted (Na) and solid (Mg). The experimental values are indicated by black
circles [42]. The theoretical driplines indicated by red arrows. Modified from Figure 4 of [57].

Figure 18. (a) Presently proposed mechanism based on shape evolution and the resulting change in
the ground-state energy. (b) The rest-term contribution to the ground-state energies for F, Ne, Na, and
Mg isotopes. Dashed arrows indicate the monopole displacement. See text for more details. Modified
from Figures 2 and 6 of [57].

Figure 18b depicts the actual effect of the rest term. It follows the trend illustrated in
Figure 18a, with the maximum effect at N = 22 in all four chains. However, the driplines
are different among these four. This is due to the monopole interaction. Let me explain it
by taking the Mg isotopes as an example. The black straight line of the monopole effect in
Figure 17d depicts about 3 MeV lowering per additional neutron, implying about 6 MeV

109



Physics 2022, 4

for an additional two neutrons. After N = 22, the rest effect loses its magnitude. If the loss
is less than the monopole gain (∼6 MeV), this loss is compensated by the monopole effect.
However, the loss becomes larger for N larger, and at a certain point, the loss exceeds the
monopole compensation. The dripline thus arises with the “monopole displacement” from
N = 22 to N = 30 as shown in Figure 18b (and also in Figure 18a schematically).

The monopole effect depends directly on the number of protons, as visualized by three
straight lines in Figure 17. Consequently, the monopole displacement is ΔN = 2 (6) for Ne
(Na) isotopes. For F isotopes, the monopole effect is negligibly small for N ≥ 16, and the
dripline is located at the maximum rest (quadrupole etc.) effect.

5.3. Stability of Spherical Isotopes and the Monopole-Quadrupole Interplay

An immediate lemma of the present dripline mechanism is that the driplines of
spherical nuclei, such as Ca, Sn, and Pb isotopes, can be further away from the stability line
than other elements. One can assume a basically constant pairing contribution and a minor
rest-term contribution. These two are thus irrelevant to the driplines of these isotopes.
The remaining monopole effect gradually changes, pushing the driplines away.

5.4. A Short Summary of This Section

The present new dripline mechanism [57] involves the monopole–quadrupole in-
terplay and is one of the emerging concepts. It definitely differs from the traditional
mechanism of the single-particle origin, where a neutron halo arises at extremes [104,105].
In the new mechanism, the coupling to continuum may be visible if the monopole effect
vanishes like heavy F isotopes [57]. As Z changes, two dripline mechanisms may appear
alternatively, but the present one may be more relevant to heavier nuclei where the defor-
mation develops more. Finally, I would like to point out that the Bethe–Weizäcker mass
formula does not include a deformation energy term, at least, explicitly .

6. Prospect

As this article is a kind of summary, I am afraid that a summary section may be
redundant. I state some prospects. First of all, ab initio no-core Monte Carlo shell–model
calculations became feasible recently up to 12C and beyond [106], and as an example, we
can look into α clustering in light nuclei, e.g., the Hoyle state, with correlations produced by
nuclear forces [107]. This direction will produce a major outcome from the shell model. This
includes clarifications of α decay, α knockout, etc. Another major frontier is the quest for
fission dynamics and superheavy elements, with (almost) full inclusion of the correlations
due to nuclear forces.

Although more computer power and further advancements in computational method-
ology are needed also, the perspectives of the shell model look unlimited, to me. May the
(nuclear) force be with you.
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Appendix A. Note on the Relation between the Present ESPE and the Baranger’s ESPE

This is a short note on the the relation between the present ESPE and Baranger’s
ESPE [19] discussed in [15]. A possible problem was pointed out by Y. Tsunoda. Al-
though the relevant arguments and results in [15] are basically correct, the following term is
found to be added to Equation (43) of [15]: −1/(2j + 1)Vm(j, j)〈0|n̂j |0〉, where j includes
the index, proton, or neutron. So, this is the contribution from the interaction between
a neutron orbit j and the same neutron orbit j (or between protons similarly), of which
the monopole interaction is known to be weak. In addition, the factor 1/(2j + 1) reduces
this quantity. Because of all these factors combined, the correction is quite minor. This
correction does not change the basic equivalence relation between the two schemes.

Appendix B. Self-Organization and Its Extension to Other “Many-Body” Systems

We here discuss briefly how the present self-organization mechanism may be applied
to other systems comprising many constituents, including human societies. One of the
essential points is two interactions with different characters: one drives the system into
specific modes, as denoted by the mode-driving force. The mode here generally refers
to a collective phenomenon involving many constituents, like the shape of an atomic
nucleus. A certain resistance usually exists against the mode development. The other
interaction is to control the resistance, called the resistance-control force. The monopole
interaction in this work is an example. The resistance-control force does not create any
mode, being neutral. However, it can change the disorder in the original environment
(=original SPE in this work) to the order where the resistance is weakened for certain
modes (ESPE tailored to the shape). This order thus gives extra stability to the system,
to varying degrees depending on the modes. Thus, the resistance-control force can be
a crucial factor in determining which mode gains the maximum stability (i.e., binding
energy). Obviously, in many systems, only the maximum-stability mode matters, which
may not be the one most favored by the driving force. If this general idea can be applied to
various problems, including social/economical issues, it is of great interest. While the mode
varies over different systems, the mode-driving force may be visible. The resistance-control
force, however, may not be so, because it exhibits less characteristics (like the monopole
interaction in atomic nuclei). Studies in this direction can be of interest. What are the
resistance and its control force in human societies?
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The Nuclear Shell Model towards the Drip Lines

B. Alex Brown

Department of Physics and Astronomy, and the Facility for Rare Isotope Beams, Michigan State University,
East Lansing, MI 48824-1321, USA; brown@frib.msu.edu

Abstract: Applications of configuration-mixing methods for nuclei near the proton and neutron drip
lines are discussed. A short review of magic numbers is presented. Prospects for advances in the
regions of four new “outposts” are highlighted: 28O, 42Si, 60Ca and 78Ni. Topics include shell gaps,
single-particle properties, islands of inversion, collectivity, neutron decay, neutron halos, two-proton
decay, effective charge, and quenching in knockout reactions.

Keywords: nuclear shell model; configuration-interaction method; magic numbers; proton drip line;
neutron drip line; proton decay; neutron decay; collectivity; islands of inverson; effective charge

1. Introduction

The starting point for the nuclear shell model is the establishment of model spaces
that allow for tractable configuration-interaction (CI) calculations from which we are able
to understand and predict the properties of low-lying states [1–5]. This choice is based on
the observation that a few even–even nuclei can be interpreted in terms of having magic
numbers for Z (atomic number) or N (nucleon number) and doubly-magic numbers for a
given (Z, N). These magic numbers can be inferred from experimental excitation energies
of 2+ states shown for the low end of the nuclear chart in Figure 1. Magic numbers are
those values of Z or N for nuclei that have a relatively high 2+ energy within a series of
isotopes or isotones.

Another measure of magic numbers is given by the double difference in the binding
energy, BE, defined by

D(q) = (−1)q[2BE(q)− BE(q + 1)− BE(q − 1)] (1)

for isotopes (q = N with Z held fixed) or isotones (q = Z with N held fixed) can also be
used to measure shell gaps [6]. An example for the neutron-rich calcium isotopes is shown
in Figure 2 (the dashed line extrapolation to N = 40 is discussed below.) The value of D(N)
at these magic numbers gives the effective shell gap. In between the magic numbers, D(N)
gives the pairing energy [6]. The excitation energies of the 2+ states at N = 28, 32 and 34,
also shown in Figure 2, are close to the D(N) values at these magic numbers. The neutron
gaps at N = 32 and 34 are weaker than the gap at N = 28, but they are strong enough to
allow the configurations to be dominated by the orbitals, shown in Figure 2.

In the simplest model, the magic number is associated with a ground state that has a
closed-shell configuration for the given value of Z or N. The following is from footnote
9 in [7]. It was Eugene Paul Wigner who coined the term “magic number”. Steven A.
Moszkowski, who was a student of Maria Goeppert-Mayer, in a talk presented at the
American Physical Society meeting in Indianapolis, 4 May 1996 said: “Wigner believed
in the liquid drop model, but he recognized, from the work of Maria Mayer, the very
strong evidence for the closed shells. It seemed a little like magic to him, and that is how
the words ‘Magic Numbers’ were coined”. The discovery of “magic numbers” lead M.
Goeppert-Mayer, and independently J. Hans D. Jensen in Germany, one year later, in 1949,
to the construction of the shell model with strong spin–orbit coupling, and to the Nobel
Prize they shared with Wigner in 1963.
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Figure 1. Lower mass region of the nuclear chart. The colors indicate the energy of the first 2+ state.
In addition to the data from [8], recent data for 40Mn [9], 62Ti [10], 66Cr [11] and 70,72Fe [11] are added.
The filled black circles show the doubly-magic nuclei associated with the most robust pairs of magic
numbers 8, 20, 28 and 50. The small open circles show the doubly-magic nuclei associated with less
robust magic numbers 6, 14, 16, 32, 34, and 40. The large open circles indicate the nuclei near the
neutron drip lines that are the focus of this paper. The triangles are those nuclei observed to decay by
two protons in the ground state. The cross indicates no magic number for protons or neutrons, and
the question mark indicates that the doubly-magic status is not known.
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shown. The red line is the results from the universal f p calcium (UFP-CA) Hamiltonian [12]. The
dashed line is the extrapolation based on the universal nuclear energy density functional (version
zero) (UNEDF0) binding energies. for 60,61,62Ca [13].

The nuclei marked with closed circles in Figure 1 are commonly used to define the
boundaries of CI model spaces. Those indicated by small open circles are usually contained
within a larger CI model spaces. Historically, the size of the assumed model space has
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depended on the computational capabilities. At the very beginning in the 1960s, they were
the 0p model space bounded by 4He and 16O, and the 0 f7/2 model space bounded by 40Ca
and 56Ni.

For heavy nuclei, doubly-magic nuclei are associated with the shell gaps at 28, 50, 82
and 126. These gaps are created by the spin–orbit splitting of the high � orbitals, which
lowers the the j = �+ 1/2 single-particle energies for � = 3 (28), � = 4 (50), � = 5 (82) and
� = 6 (126). Since the two j values for a given high � value are split, 28, 50, 82 and 126 will
be referred to as jj magic numbers. The nuclei with jj magic numbers for both protons and
neutrons will be called double-jj closed-shell nuclei. These are shown by the red circles in
Figure 3: 208Pb, 132Sn, 100Sn, 78Ni and 56Ni. The open red circle for 100Sn indicates that it is
expected to be double-jj magic [14], but it has not yet been confirmed experimentally. The
continuation of the double-jj sequence with � = 2 (14) and � = 1 (6) is shown by the open
blue circles for 42Si, 28Si, 18C and 12C on the lower left-hand side of Figure 3. As discussed
below, the calculations for these nuclei show rotational bands with positive quadrupole
moments indicative of an oblate intrinsic shape.
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Figure 3. The nuclear chart showing the jj magic numbers (see text for jj definition). The black lines
show where the two-proton (upper) and two-neutron (lower) separation energies obtained with the
universal nuclear energy density functional (version one) (UNEDF1) [13] cross 1 MeV. The filled red
circles show the locations of double-jj magic nuclei established from experiment. The open red circle
for 100Sn indicates a probably double-jj magic nucleus that has not been confirmed by experiment.
The blue circles in the bottom left-hand side are nuclei in the double-jj magic number sequence that
are oblate deformed.

In light nuclei, magic numbers 2, 8, 20 and 40 are associated with the filling of a major
harmonic-oscillator shell with No = (2nr + �) (nr is the radial quantum number), where
both members of the spin–orbit pair j = �± 1/2 are filled. Since one can recouple the two
orbitals with the same � value to total angular momentum L and total spin S, 2, 8, 20 and
40 will be referred to as LS magic numbers.

The LS magic numbers for isotopes and isotones are shown by the thin brown lines in
Figure 4. There are only three known double-LS magic nuclei, 4He, 16O and 40Ca shown by
the filled red circles in Figure 4. The next one in the sequence would be 80Zr, but in this
case the Z = N = 40 gap is too small due to the lowering of the 0g9/2 single-particle energy
from the spin–orbit splitting. As will be discussed below, 60Ca (the red open circle with
a question mark) could be a “fourth” double-LS magic nucleus. There are regions where
the LS magic numbers for isotopes or isotones dissappear as shown by the blue lines in
Figure 4. These will be referred to as “islands of inversion” [15].
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a possible doubly-magic nucleus that has not been confirmed by experiment. The green circles are
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where the LS magic number is observed to be broken.

The nuclei with green circles in Figure 4 also have doubly-magic properties. The
pattern is that when one type of nucleon (proton or neutron) has an LS magic number,
then the other one has a magic number for the filling of each j orbital. These are 6 (0p3/2),
8 (0p1/2), 14 (0d5/2), 16 (1s1/2), 20 (0d3/2), 28 (0 f7/2), 32 (1p3/2), 34 (1p1/2), 40 (0 f5/2),
50 (0g9/2) and 56 (1d5/2).

The only addition to the jj and LS closed-shell systematics discussed above is for 88Sr
shown in Figure 4, where there is an energy gap between the proton 1p1/2 and 1p3/2,0 f5/2
states. In early calculations, 88Sr was used as the closed shell for the 1p1/2, 0g9/2 model
space [16], but more recently the four-orbit model space of 0 f5/2,1p3/2,1p1/2,0g9/2 has been
used for the N = 50 isotones [17,18].

For a given shell gap, the LS magic numbers are more robust than those for jj. The
reason is that deformation for jj magic numbers starts with a one-particle one-hole (1p–1h)
excitation of a nucleon in the j = �+ 1/2 orbital to the other members of the same oscillator
shell, No = (2nr + �). Since 1p–1h excitations across LS closed shell gaps change parity,
ground-state deformation for LS magic numbers must come from np–nh (n ≥ 2) excitations
across the LS closed shells as in the region of 32Mg [15].

Let us discuss here results, obtained with Hamiltonians. based on data-driven im-
provements to the two-body matrix elements, provided by ab initio methods. The ab initio
methods are based on two-nucleon (NN) and three-nucleon (NNN) interactions obtained
by model-dependent fits to nucleon-nucleon phase shifts and properties of nuclei with
A = 2 to 4. For a given model space, these are renormalized for short-range correlations
and for the truncations into the chosen model space to provide a set of two-body matrix
elements (TBME) for nuclei near a chosen doubly-closed shell. From this starting point,
one attempts to make minimal changes to the Hamiltonian to improve the agreement with
energy data for a selected set of nuclei and states within the model space. A convenient
way to do this is by using singular value decomposition (SVD) [19]. In many cases, one
adjusts specific TBME or combinations of TBME. The most important are the monopole,
pairing and quadrupole components. An important part of the universal Hamiltonian is in
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the evolution of the effective single-particle energies (ESPE) as one changes the number
of protons and neutrons. Starting with a closed shell with a given set of single-particle
energies, the ESPE as a function of Z and N are determined by the monopole average parts
of the TBME [5].

These methods provide “universal” Hamiltonians in the sense that a single set of
single-particle energies and two-body matrix elements are applied to all nuclei in the model
space, perhaps allowing for some smooth mass dependence. This has turned out to be a
practical and useful approximation. As the ab initio, starting points are improved, these
“universal” Hamiltonians were replaced by Hamiltonians for a more restricted set of nuclei,
or even for individual nuclei as has been done in the valence-space in-medium similarity
renormalization group (VS-IMSRG) method [4,20].

The empirical modifications to the effective Hamiltonian account for deficiencies in the
more ab initio methods. Most ab initio calculations are carried out in a harmonic-oscillator
basis due to its convenient analytical properties. Near the neutron drip lines, the radial
wavefunctions become more extended, the single-particle energy spectrum becomes more
compressed, and the continuum becomes explicitly more important. To take this into
account, the ab initio methods require a very large harmonic-oscillator basis.

Due to the continuum, nuclei near the neutron drip line present a substantial theoretical
challenge [2,21]. Methods have been developed that take the continuum into account
explicitly. The density matrix renormalization group (DMRG) method [22,23] makes use
of a single-particle potential together with a simplified interaction based on halo effective
field theory [24,25]. In the Gamow shell model (GSM) [26–28], the many-body basis
is constructed from a single-particle Berggren ensemble [29,30]. The DMRG and GSM
methods rely on use of simplified two-body interactions with adjustable parameters. There
is also the shell model embedded in the continuum formalism that can make use of the
universal interactions [31]. Recent progress in the GSM method is presented in [32].

Ground-state nuclear halos are a unique feature of nuclei near the neutron drip line [33].
This is due to the loose binding of low-� orbitals with extended radial wavefunctions. The
most famous case is that for 11Li which was observed to have a rapid rise in the nuclear
matter radius compared to the trends up to 9Li [34]. The wavefunction of 11Li is dominated
by a pair of neutrons in the 1s1/2 orbital. As discussed below, halos in the region of 30Ne
and 42Si are dominated by the 1p3/2 orbital. Proton halos are not so extreme due to the
Coulomb barrier. The excited 1/2+ (1s1/2) state of 17F is a good example of an excited-state
halo as determined indirectly from its large Thomas–Ehrman energy shift of 0.87 MeV 17O
to 0.49 MeV in 17F.

States above the (proton/neutron) separation energy have (proton/neutron) decay
widths. In the conventional CI approach, one calculates states whose energy is taken to
be the centroid energy of the decaying state. The decay width is calculated using the
approximation Γ = C2S Γsp(Q), where C2S is the spectroscopic factor and Γsp is the single-
particle neutron decay width calculated with a a decay energy, Q, value taken from the
shell-model centroid or the experimental centroid if known. The explicit addition of the
continuum shifts down the energy relative to its CI energy [31]. Further, the continuum
(finite-well potential) is responsible for the Thomas–Ehrman shift for states in proton-rich
nuclei compared to those in the neutron-rich mirror nuclei [19].

In this review, I concentrate on four regions of neutron-rich “outposts” whose un-
derstanding are most important for future developments. These are shown in Figure 1:
28O, 42Si, 60Ca and 78Ni. 42Si is labeled by “×” since it does not have a magic number for
protons or neutrons. 78Ni is labeled by a filled circle since it is now known to be doubly
magic [35]. 60Ca is known to be inside the neutron drip line [36], but its mass and excited
states have not yet been measured.

Nuclei that are observed to decay by two protons are shown by the triangles in
Figure 1. The two-proton ground-state decays for 45Fe, 48Ni, 54Zn and 67Kr have half-lives
on the order of ms and compete with the β decay of those nuclei. An experimental and
theoretical summary of the results for those nuclei together with that of 19Mg has been
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given in [37]. There is qualitative agreement between experiment and theory. In order to
become more quantitative, the experimental errors in the partial half-lives need to be im-
proved. Theoretical models need to be improved to incorporate three-body decay dynamics
(presently based on single-orbit configurations) with the many-body CI calculations for the
two-nucleon decay amplitudes. The correlations for two-nucleon transfer amplitudes via
(t,p) or (3He,n) are largely determined by the (S, T) = (0, 1) structure of the triton or 3He,
whereas two-nucleon decay is determined by the decay through the Coulomb and angular-
momentum barriers that are dominated by the low-� components. For the lightest nuclei,
multi-proton emissions (shown in Figure 1 of [38]) are observed as broad resonances.

Knockout reactions are used to produce nuclei further from stability. The cross sections
for these reactions can be compared to theoretical models in terms of the cross-section ratio
Rs = σexp/σth; see [39] for a recent summary. It is observed for nuclei far from stability
where ΔS = | S1p − S1n | is large (S1 is the one nucleon separation energy) that Rs is near
unity when the knocked out nucleon is loosely bound but drops to approximately 0.3 for
deeply bound nucleons. This has been attributed to the short- and long-ranged correlations
that depletes the occupation of deeply-bound states [40]. The short-ranged correlations
are connected to the high-momemtum tail observed in observed in high-energy electron
scattering experiments [41]. The long-ranged correlations come fron particle-core coupling
and pairing correlations beyond that included within the valence space. Another reason
may be the approximations made in the sudden approximation for the dynamics used for
the reaction [39]. In the analysis of [40], the Rs factor for loosely-bound nucleons that comes
mainly from the long-ranged correlations is expected to be 0.6–0.7 rather than unity. The
analysis of (p, 2p) experiments [42] find Rs values that depend less on the proton separation
energy going from 0.6 to 0.7.

The σth depends on the CI calculations for the spectroscopic factors. An approximation
that is made in CI calculations is that only the change in configurations for the knocked
out nucleon contributes to the spectroscopic factor. The radial wavefunctions for all other
nucleons in the parent and daughter nuclei are assumed to be the same. However, consider,
as an example, the knockout of a deeply bound proton from 30Ne to 29F. The size of the
neutrons orbtials in 30Ne and 29F are changing due to the proximity to the continuum,
and the overlap of the spectator neutrons in the nuclei with the atomic mass numbers A
and A − 1 will be reduced from unity. This effect should be contained in ab initio and
continuum models [43,44], but an understanding within these models requires an explicit
separation of the one-nucleon removal overlaps in terms of the removed nucleon within
the basis states for (A, Z) and the radial overlaps between the nuclei with A and A − 1.

2. The Region of 28O

The oxygen isotopes provided the first complete testing ground for theory and ex-
periment from the proton drip line to the neutron drip line [45]. The prediction by the
“universal” sd-shell (USD) Hamiltonian [1,46], in the 1980s that 24O was a doubly-magic
nucleus was later confirmed experimentally in 2009 [47–49].

For the one-neutron decay of 25O, the USD charge-dependent (USDC) Hamiltonian
in the sd shell [19] gives Q = 1.15(15) MeV, to be compared to the experimental value of
Q = 0.749(10) MeV [50]. The explicit addition of the continuum will lower the calculated en-
ergy [31]. The calculated value of the spectroscopic factor is (25/24)2 C2S(0d3/2) = 1.01(1)
(the error, shown in the parentheses for the value last decimal, comes from the comparison
of the four sd-shell Hamiltonians developed in [19]). For the calculated decay width, one
obtains Γ = (25/24)2 C2S Γsp(Q) = 75(1) keV. Γsp = 74(1) keV is obtained using the
experimental Q value and a Woods–Saxon potential. The experimental neutron decay
width is Γ = 88(6) keV [50]. The theoretical error in the width is probably dominated by
the uncertainty in the parameters of the Woods–Saxon potential.

The measured masses of the Na isotopes [51] found more binding near N = 20 than
could be accounted for by the pure Δ = 0 configurations; here, the notation Δ = n is used
where n is the number of neutrons excited from sd to p f . Hartree–Fock calculations [52]
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showed that these mass anomalies were associated with a large prolate deformation,
where the 2Ωπ [N,nz,Λ] = 1− [3,3,0] and 3− [3,2,1] Nilsson orbitals from the f p shell cross
the 1+ [2,0,0] and 3+ [2,0,2] orbitals from the sd shell near a value for the deformation
paramater of β = +0.3. The anomaly was confirmed by Δ = 0, CI calculations in [53,54],
where in [53] it was called the “collapse of the conventional shell-model”. CI calculations
that included Δ = 2 components [15,55] showed that nuclei in this region have ground-state
wavefunctions dominated by the Δ = 2 component. This is due to a weakened shell gap at
N = 20 below Z = 14, pairing correlations in the Δ = 2 configurations, and proton–neutron
quadrupole correlations that give rise to the Nilsson orbital inversion. In [15], the region of
nuclei below 34Si involved in this inversion was called the “island-of-inversion”.

The Hamiltonian, used in [15], was appropriate for pure Δ = n configurations. This
Hamiltonian was modified to account for more recent data related to the energies of
Δ = 1 and Δ = 2 configurations resulting in the new Florida State University (FSU)
Hamiltonian [56]. As examples of the type of predictions, results, obtained with the FSU
Hamiltonian, are shown for 34Si in Figure 5, 32Mg in Figure 6, and 29F in Figure 7. All of
these calculaitons were carried out with NuShellX [57] code and allowed only for neutron
excitations from 1s–0d to 1p–0 f . Calculations in a full nh̄ω basis (h̄ being the reduced
Planck constant) with n > 0 also require the addition of proton excitations from 0p to 1s–0d
and proton exicitations from 1s–0d to 1p–0 f . In full nh̄ω basis, the 1h̄ω spurious states can
be removed with the Gloeckner-Lawson method [58]. Comparison to calculations in the full
nh̄ω basis with the Oxbash code [59] show that the energies are lowered relative to the Δ
basis by up to approximately 200 keV. This shows the Δ = 1, 2 proton and proton–neutron
components are small compared to the Δ = 1, 2 neutron components for the low-lying
states in these neutron-rich nuclei. For nuclei with N ≈ Z, removal of the spurious states
in the nh̄ω basis is important.
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Figure 5. Spectrum of 34Si obtained with the Florida State University (FSU) Hamiltonian [56]
compared to experiment. The length of the horizontal lines are proportional to the the angular
momentum, J. The experimental parity is indicated by blue for negative parity and red for positive
parity. Experimental spin-parity, Jπ , values that are tentative are shown by “()”, and those with
multiple of no Jπ assignments are shown by the black points. The calculated results are obtained
with the FSU Hamiltonian with pure Δ configurations. The parities are positive for Δ = 0 (green) and
Δ = 2 (red) and negative for Δ = 1 (blue).
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Figure 7. Spectrum of 29F obtained with the FSU Hamiltonian [56]. The results are obtained with
pure Δ configurations. The spins are proportional to the length of the horizontal lines. The parities
are positive for Δ = 0 (green) and Δ = 2 (red) and negative for Δ = 1 (blue).

The barrier between the Δ = 0 (spherical) and Δ = 2 (deformed) configurations
reduces the mixing between the lowest energy states of each configuration. When one
combines the Δ = 0 and Δ = 2 configurations in CI calculations, the state that is dominated
by Δ = 0 is pushed down in energy by the mixing with many Δ = 2 configurations mainly
due to the increase in the pairing energy. If one were to start with the FSU Hamiltonian and
add off-diagonal TBME of the type < sd | V | f p >, the components dominated by Δ = 0
would be pushed down in energy due to this increase in pairing. However, this results in a
double-counting since the sd part FSU interaction is already implicitly renormalized for the
f p admixtures. In addition, to achieve convergence in the mixed wavefunctions, one has to
add Δ = 4 and higher. This results in large matrix dimensions.

When one mixes the Δ components, one has to modify parts of the Hamiltonian that
are diagonal in Δ. This is sometimes performed by changing the pairing strength in the
J = 0, T = 1 two-body matrix elements, so that the ground-state binding energies agree
with experimental values. Hamiltonians that have been designed for mixed configurations
are called SDPF-U-MIX [60] and SDPF-M [61,62]. Details about the modifications to SDPF-
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U to obtain SDPF-U-MIX are given in the Appendix of [60]. In the remainder of this section,
I discuss some examples, obtained with the FSU Hamiltonian with pure Δ configurations.
This provides a starting point for more complete calculations with mixed Δ and those
explicitly involving the continuum.

The Δ = 0 (sd-shell) part of the FSU spectrum for 34Si (the green lines in Figure 5) has a
simple interpretation. The ground state is dominated by the (0d5/2)

6 proton configuration.
The 5.24 MeV 2+ and the 6.47 MeV 3+ states are dominated by the (0d5/2)

5(1s1/2)
1 proton

configuration. In the two-proton transfer experiment from 36S [63], a 2+ state at 5.33 is
observed that can be interpreted as two protons removed from (0d5/2)

6(1s1/2)
2 to make

(0d5/2)
5(1s1/2)

1. The (0d5/2)
4(1s1/2)

2 0+ state is predicted at 8.76 MeV. For the FSU
Hamiltonian, all of these predictions are based on the USDB effective Hamiltonian [64].
The ESPE for the 0d5/2 and 1s1/2 proton states near 34Si are determined from the binding
energies of 33Al, 34Si and 35P. Above 2.5 MeV the level density is dominated by the neutron
Δ = 1 and Δ = 2 configurations. The Δ = 1 states can be interpreted in terms of the
low-lying 3/2+ and 1/2+ 1h states of 33Si coupled to the low-lying 7/2− and 3/2− 1p
states of 35Si. The state with maximum spin-parity Jπ of 5− predicted at 5.12 MeV can be
compared to the proposed experimental 5− state at 4.97 MeV [65]. The theoretical spectra
from the mixed SDPF-U-Mix shown in [65] is similar to the FSU unmixed spectrum in
Figure 5.

The FSU results for 32Mg are shown in Figure 6. Compared to 34Si, there is an
inversion of the low-lying Δ = 0 and Δ = 2 configurations. For pure Δ configurations, the
reduced electric-quadrupole transition strength B(E2) for 2+1 (Δ = 2) to 0+2 (Δ = 0) is zero.
Experimentally, B(E2, 2+1 → 0+2 ) = 48+75

−20 e2 fm4 compared to B(E2, 2+1 → 0+1 ) = 96(16) e2

fm4; see Table 1 in [66]. An improved half-life for the 0+2 is important since it helps to
determine the Δ mixing.

One of the key experiments for 32Mg is the two-neutron transfer from 30Mg (t,p),
where the first two 0+ states were observed with approximately equal strength [67]. This
observatiom has proven difficult to understand; see the references in [68]. Starting from a
Δ = 0 configuration for the 30Mg ground state, one can populate the Δ = 0, 0+ configuration
in 32Mg by (sd)2 transfer and the Δ = 2, 0+ configuration by ( f p)2 transfer. Macchiavelli
et al. [68] analyzed the (t,p) cross sections by used centroid energies for the Δ = 0,2,4
configurations of 1.4, 0.2 and 0.0 MeV, respectively, obtained with the SDPF-U-MIX Hamil-
tonian [60]. This three-level model could account for the experimental observation with
a ground state that is 4% Δ = 0, 46% Δ = 2 and 40% Δ = 4 together with a ground-state
wavefunction for 30Mg that has 97% Δ = 0 and 3% Δ = 2. In this three-level model for 32Mg,
the main part of the Δ = 0 configuration is in the 0+3 state predicted to be near 2.2 MeV; see
Table 1 in [68].

Two-proton knockout from 34Si provides more information. Starting with a pure Δ = 0
configuration for the 34Si ground state, only Δ = 0, 0+ configurations in 32Mg can be made.
In the two-proton knockout experiment of [69,70], strong 0+ strength is observed in the
sum of the first two 0+ states; see Figure 9 in [70]. The strength to the 0+1 and 0+2 states
cannot be separated due to the long lifetime of the 0+2 state. Significant strength to 0+ states
above 1.5 MeV was not observed, in contradiction to that predicted in the three-level model
above [68] or the SDPF-M model. More needs to be done to understand the structure of
32Mg and how it connects to the experimental data discussed above.

Results from the FSU Hamiltonian provide an extrapolation down to 28O. 29F has been
called a “lighthouse on the island-of-inversion” [71]. The FSU results for 29F are shown
in Figure 7. The lowest state is 5/2+ with a Δ = 2 configuration. The lowest 1/2+, 3/2+,
7/2+ and 9/2+ Δ = 2 states are dominated by the configuration with 0d5/2 coupled to the
Δ = 2, 2+ state in 28O at 1.26 MeV. The 0d5/2 coupled to 2+, 5/2+ configuration is spread
over many higher 5/2+ states in 29F. The Δ = 3 states for 29F start at 3.9 MeV. An excited
state in 29F at 1.080(18) MeV [72] made from proton knockout from 30Ne was suggested to
be 1/2+ on the basis comparisons to the SDPF-M calculations shown in [72].
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With the FSU Hamiltonian, for 27F, the lowest Δ = 0, 5/2+ state is 1.9 MeV below
the Δ = 2, 5/2+ state. The large FSU occupancy of 1.38 in 29F for the loosely bound 0p3/2
orbital may explain the observed neutron halo [73]. In particular, the two-neutron transfer
amplitudes TNA[(0p3/2)]=0.62 for the 29F, Δ = 2, 5/2+ ground state going to the 27F, Δ = 0,
5/2+ ground state. Improved mass mesurements are needed for the neutron-rich fluorine
and neon isotopes.

Results for these calculations depend on the ESPE extrapolation down to 28O contained
in the FSU interaction. The ESPE for the neutron orbitals as a function of Z obtained with
the FSU Hamiltonian with (Δ = 0) are shown in Figure 8 (for 34Si I assume a (0d5/2)

6

configuration for the protons). These are compared with the results from the Skyrme-x
energy density functional (Skx EDF) calculations [74].

For unbound states, the energies can be approximated by first increasing the EDF
central potential to obtain a wavefunction bound by, for example, 0.2 MeV, and then taking
the expectation value of the wavefunction value with original EDF Hamiltonian. This
method provides a practical approximation to the centroid energy. Results for the unbound
resonances could be calculated more exactly from neutron scattering on the EDF potential.

The results in Figure 8 show that the N = 20 shell gap decreases from approximately
7.0 MeV in 34Si to approximately 2.7 MeV in 28O. The major part of this decrease is due
to the lowering energy for 1p3/2 relative to 0 f7/2 as the states become more unbound.
The energies for these two states cross at approximately Z = 10. Recent experimental
information on the ESPE near 28Mg and their interpretation similar to those of Figure 8
with a Woods–Saxon potential is given in [75]. For the FSU Hamiltonian, the loose binding
effects are implicitly built into the monopole components of the TBME from the SVD fit to
data on the BE and excitations energies.

There is also an increase in the gap in 34Si due to the proton-neutron tensor interaction
contribution to the spin–orbit splitting [5] that is built into the FSU Hamiltonian. The
spin–orbit tensor interacton is zero in the double-LS closed shell nuclei such as 28O and
40Ca. The tensor interaction is important for changing the effective single–particle energies
as a function of proton and/or neutron number [5] or as a function of the state-dependent
orbital occupancies [76].

The f p ESPE obtained from the Skx EDF [74] from 30Ne to 78Ni are shown in Figure 9.
The energies of 1p and 0 f systematically shift due to the finite-well potential.
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For nuclei near the neutron drip line, there are few bound states that can be studied
by their gamma decay. States above the neutron separation energy neutron decay. These
neutron decays can be complex both experimentally and theoretically. The neutron decay
spectrum depends upon how the unbound states are populated. They are often made
by proton and neutron knockout reactions. For one- and two-nucleon knockout, one can
calculate spectroscopic factors that can be combined with a reaction model to find which
states are most strongly populated. A recent example of this type of calculation was for
two-proton knockout from 33Mg going to 31Ne [77]. One neutron decay can often go to
excited states in the daughter [77]. Additionally, multi-neutron decay can occur. It is
important to measure the neutrons in coincidence with the final nucleus and its gamma
decays. On the theoretical side, one must use the calculated wavefunctions to obtain
neutron decay spectra.

An example of multi-neutron decay is in the one-proton knockout from 25F to make
24O [78,79]. The calculated one-proton knockout spectroscopic factors showed that 0d5/2
knockout mainly leads to the ground state of 24O, and that 0p knockout leads to many
negative-parity states above the neutron separation energy of 24O. These excited states
multi-neutron decay to 21−23O [78]. However, in the (p,2p) reaction [79], it was suggested
from the momentum-distribution of 23O that a low-lying positive-parity excited state in
24O above the neutron separation energy was strongly populated by 0d removal, in strong
disagreement with the calculations of [78]. This experimental result should be confirmed.

The two-neutron decay of 26O has a remarkably small Q value of 0.018(5) MeV [50].
The theoretical Q value from USDC Hamiltonian [19] is 0.02(15) MeV. The decay width
depends strongly on the � for the �2 two-nucleon decay amplitude. From Figure 2b of [80],
pure �2 two-nucleon decays widths with the experimental Q value are approximately
10−4, 10−8 and 10−14 MeV for � = 0, 1 and 2, respectively. The calculated TNA in the
sd model space with the USDC Hamiltonian are 0.99 for (0d3/2)

2 and 0.16 for (1s1/2)
2.

Thus, Γ = [TNA(1s1/2)
2]2 Γsp(Q) ≈ 0.003 keV. The (1p3/2)

2 TNA will be on the order
of TMBE < (0d3/2)

2 | V | (1p3/2)
2 > /2ΔE, where ΔE is the energy difference between

the the 1p3/2 and 0dd3/2 states in 25O. With typical values of TMBE < (0d3/2)
2 | V |

(1p3/2)
2 >≈ 2 MeV and ΔE ≈ 2 MeV [81] giving TNA = 0.5, the (1p3/2)

2 contribution to
the two-neutron decay width will be small.
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The nucleus 28O is unbound to four neutron decay. The theoretical understanding of
this complex decay involves the four-body continuum [80]. These continuum calculations
strongly depend upon the single-particle states involved; see Figure 2d in [80]. With the
FSU Hamiltonian, the Δ = 2 configuration for 28O lies 0.8 MeV below the Δ = 0 (closed-
shell) configuration due to the pairing correlations. The calculated four-neutron decay
energy is 1.5 MeV. The energy should be lowered by an explicit treatment of the many-body
continuum. Thus, the “island of inversion” may be a “peninsula of inversion” extending
from 32Mg all the way to the neutron drip line; below, I discuss what may be the first true
“island of inversion” between 60Ca and 78Ni. There are many paths for the four-neutron
decay of 28O. For example, in the FSU Δ = 2 model, it may proceed by a relatively fast
(1p3/2)

2 decay to the 26O ground state followed by its decay to 24O.

3. The Region of 42Si

In this Section, results for two often used effective Hamiltonians for this model
space, called SDPF-MU [82] and SDFP-U-SI [83], together with those based on the IM-
SRG method [20] are compared. The MU and U-SI Hamiltonians are “universal” in the
sense that a single Hamiltonian with a smooth mass-dependence is applied to a wide mass
region. MU is used for all nuclei in this model space, while U-SI was designed for Z ≤ 14
(the SDPF-U version was designed for Z > 14 [83]).

The 2+ energy in 42Si [Z, N] = [14, 28] (0.74 MeV) is low compared to those in 34Si
[14,20] (3.33 MeV) and 48Ca [20,28] (3.83 MeV). 34Si and 48Ca are doubly magic due to the
LS magic number 20. 28Si [14,14] has a known intrinsic oblate deformation [84].

The 2+ energy in 20C [6,14] (1.62 MeV) is low compared to those in 14C [6,8] (7.01 MeV)
and 22O [8,14] (3.20 MeV). 14C and 22O are doubly magic due to the LS magic number
8. Hartree–Fock calculations [85] as well as CI calculations for the Q moment within the
p − sd model space [86] show that 12C and 20C have intrinsic oblate shapes.

The oblate shapes for 28Si and 42Si are shown by their E2 maps in Figures 10 and 11.
The transition from spherical to oblate shapes for the jj doubly-magic numbers can be
qualitatively understood in the Nilsson diagram as shown, for example, for 42Si in Figure 12.
The highest filled Nilsson orbitals have rather flat energies between β = 0 and β = −0.3.
The important aspect is the concave bend of the 2Ωπ [N,nz,Λ] = 1+ [2,2,0] proton and 1−
[3,3,0] neutron Nilsson orbitals for oblate shapes. For the heavier jj doubly-magic nuclei,
� increases and the j = �+ 1/2 orbital decreases in energy, the bend will not be so large
and the energy minima come closer to β = 0. This is illustrated in Figure 10. In Figure 10a
and Figure 10c, the 0d spin–orbit gap is small enough to give an oblate rotational pattern.
The oblate shape is manifest in the positive Q moments. In Figure 10a, the 0d spin–orbit
gap is increased by 1 MeV and the rotational energy pattern is broken. The pattern in
Figure 10a is similar to that obtained for 56Ni in the f p model space as shown in Figure 13.
An interesting feature for 56Ni is the relatively strong 0+2 to 2+1 B(E2). I am not aware of a
simple explanation for this.
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Figure 10. Electric quadrupole (E2) maps for 28Si. The results shown are based on the universal
sd-shell version-B (USDB) Hamiltonian with (a) the 0d spin–orbit energy gap increased by 1 MeV,
(b) in the sd model space, and (c) with the 0d spin–orbit energy gap decreased by 1 MeV. For each
J value, ten states were calculated. The widths of the lines are proportional to the reduced electric
quadrupole transition strength, B(E2). Lines for B(E2) less than 5% of the largest value are not
shown. The radius of the circles are proportional to spectroscopic quadrupole moment, Qs (2). To set
the scale, for panel (b) the 2+1 to 0+1 B(E2) = 82 e2 fm4 and Qs (2+1 ) = +19 e fm are used.
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SI [83] (c) Hamiltonians. See Figure 10 and text for details.
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The oblate bands in 28Si and 42Si are linked to the 0d5/2 and 0 f7/2 orbitals. For
completeness, the E2 maps for 12C and 20C obtained with the WBP Hamiltonian [90] are
shown in Figure 14. For these nuclei, the oblate ground-state bands are linked with the
0p3/2 and 0d5/2 orbitals.
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Figure 14. E2 maps for 12C (bottom) and 20C (top), obtained with the WBP Hamiltonian [90]. See
Figure 10 and text for details.

For CI calculations, the B(E2) values depend on the effective charge parameters ep and
en. In the harmonic-oscillator basis, the E2 operator connects states within a major shell as
well as those that change No by two. The E2 strength function contains low-lying ΔNo = 0
strength as well “giant-quadrupole” strength near an energy of 2h̄ω. The effective charges
account for the renormalization of the proton and neutron components of the E2 matrix
elements within the CI basis of a major shell due to admixtures of the 1p–1h, ΔNo = 2
proton configurations. For the calculations, shown here, effective charges, which depend
on the model space, are used. The effective charges are chosen to best reproduce observed
B(E2) values and quadrupole moments within that model space. These are the sd model
space with ep = 0.45 and en = 0.36 [91], the f p model space with ep = en = 0.50 [88] and
the neutron-rich sd − p f model space with ep = en = 0.35 [82]. Since low-lying excitations
in nuclei are mostly isoscalar, only ep + en is well determined. It takes special situations
such as a comparison of B(E2) in mirror nuclei [92] to obtain the isovector combination
ep − en.

The isoscalar effective charge decreases for more neutron-rich nuclei (e.g., the drop
from 0.5 in the f p model space to 0.35 in the sd model space). This can be understood by
the macroscopic model of Mottelson [93], by the microscopic Hartree–Fock calculations of
Sagawa et al. [85], and by the microscopic models, discussed in [94,95]. Microscopic models
also give an orbital dependence to the effective charge. A recent example of this is for the
relatively small B(E2) value for the the 1/2+ to 5/2+ transition in 21O [96]. This transition is
dominated by the 1s1/2–0d5/2 E2 matrix element, and the relatively small neutron effective
charge is due to the node in the 1s1/2 wavefunction.

The results for CI calculations for 42Si are shown in Figure 11 for three Hamiltonians.
The IMSRG Hamiltonian is based on a VS-IMSRG calculation [20] similar to that used in [12].

130



Physics 2022, 4

The interpretation of the spectroscopic quadrupole moments, Qs, shown in Figure 11 in
terms of an intrinsic shape, Qo, is given by the rotational formula [97],

Qs =
2K2 − J(J + 1)
(J + 1)(2J + 3)

Qo e, (2)

with the Nilsson quantum number K = 0 for the ground-state bands in even–even nuclei.
The MU [82] and IMSRG [20] calculations show an intrinsic oblate ground-state band,
(Qs > 0 and Qo < 0), followed by a large energy gap to other more complex states.
The U-SI Hamiltonian [83] also gives an oblate ground-state band, but there is also an
intrinsic prolate band at relatively low energy. The presence of this low-lying prolate band
dramatically increases the level density below 4 MeV [98,99].

The Nilsson diagram in Figure 12 shows a higher-energy prolate minimum related to
a crossing of the 1− [3,2,1] and 7− [3,0,3] Nilsson orbitals near β = +0.3. At present, there is
not enough experimental information to determine the energy of the prolate band in 42Si.
The structure of 42Si is a touchstone for understanding all of the nuclei near the drip line
in this mass region. More complete experimental results for the energy levels of 42Si are
needed. The low-lying structure of 42Si depends on the details of the neutron ESPE that
are affected by the continuum for the 0p orbitals. The deformed neutron ESPE need to be
established by one-neutron transfer reactions on 42Si.

Deformation for N = 28 as a function of Z is determined by how the proton Nilsson
orbitals are filled in Figure 12. When six protons are added to make 48Ca with Z = 20, there
is a sharp energy minimum for protons at β = 0, and thus 48Ca is doubly magic. For 44S, the
protons have a intrinsic prolate minimum near β = +0.2 where the neutrons are near the
crossing of the 2Ωπ = 1− and 7− orbitals [100]. In 44S, a K = 4+ isomer at 2.27 MeV coming
from the two quasi-particle state made from these two neutron orbitals was observed [101].
In 43S rotational bands associated with these, two Ω states have been observed [102]. All of
these features are reproduced by CI calculations based on the SDPF-MU [82] and SDPF-
U [83] Hamiltonians. At higher excitation energy, the CI energy spectra are more complex
than anything that could be easily understood by the collective model.

The E2 map obtained with the SDPF-MU Hamiltonian for 40Mg is shown in Figure 15.
In this case, the ground-state band has an intrinsic prolate shape. In the nuclear chart,
prolate shapes are most common [103], in contrast to the oblate shapes obtained for jj magic
numbers discussed above. The oblate shape for 40Mg can be understood in the Nilsson
diagram of Figure 12. When two protons are removed, the energy minimum for protons
shifts to positive β in the 3− [2,1,1] orbital. The experimental energy of the first 2+ is
500(14) keV [9] compared to the result of 718 keV obtained with the SDPF-MU Hamiltonian.
Models that explicitly include the � = 1 levels in the continuum are needed.
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Figure 15. E2 map for 40Mg obtained with the SDFPF-MU Hamiltonian.
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4. The Region of 60Ca

Many Hamiltonians have been developed for the calcium isotopes for the f p model
space. Near 42Ca, it is known that Δ = 2 sd–p f proton excitations are necessary for the low-
lying intruder states and their mixing with the f p configurations which greatly increase the
B(E2) values compared to those obtained in the f p model space [95]. In the doubly-magic
nucleus 48Ca, the sd − p f intruder states start with the 0+ state at 4.28 MeV [104]. The
48−55Ca nuclei exhibit low-lying spectra which are dominated by f p configurations [12].
There are weak magic numbers at N = 32 and 34 as shown in Figure 2. The reason for the
low value of the pairing for the 1p1/2 at N = 33 was discussed in [104].

The KB3G [105] and GXPF1A [88,89] Hamiltonians have provided predictions for
the spectra in this region which have been a source of comparison for many experiments
over the last 20 years. Both of these are “universal” Hamiltonians for the p f model
space. Recently, it has been shown that a data-driven Hamiltonian for the calcium isotopes
improves the description of all of the known data [12]; this is called the UFP-CA (universal
f p for calcium) Hamiltonian. All of the known energy data for N ≥ 28 can be described
by an SVD-derived Hamiltonian that is close to the starting IMSRG Hamiltonian for 48Ca.
UFP-CA is able to describe the energy data for N ≥ 28 with an rms error of 120 keV. In
particular, the calculated D(N) values, shown by the red line in Figure 2, agree extremely
well with the data (the black points).

The UFP-CA Hamiltonian does not explicitly involve the 2s–1d–0g orbitals, but the
influence of these orbitals are present in their contributions to the renormalization into the
f p model space. This renormalization is contained microscopically in the IMSRG starting
point, as well as empirically in the SVD fit.

The success of UFA-CA is similar to the success of the USD-type Hamiltonians in the sd
model space for all nuclei except those in the island of inversion. If the UFP-CA predictions
for 55−59Ca turn out to be in relatively good agreement with experiment, the implication is
that 60Ca will be a doubly-magic nucleus similar to that of 68Ni [12]. If that is the case, 60Ca
will be the last doubly-magic nucleus to be discovered. In [12], EDF models are used to
estimate the 0 f5/2 0g9/2 shell gap at N = 40 to be approximately 3.0 MeV. The implication
of this for D(N) is shown by the red dashed line in Figure 2. The 0g9/2 orbital will first
appear as intruder states in the low-lying spectra of 55−60Ca. These nuclei can be reached
by proton knockout on the scandium and titatium isotopes. The proton knockout will
be dominated by 0 f7/2 removal to the low-lying f p neutron configurations. An example
of this is the population of the ground state of 54Ca from 55Sc [106]. Protons will also be
removed from the 1s1/2 and 0d3/2 orbitals to populate states at higher energy such as the
negative parity state in 54Ca. These will mix with the 2s–1d–0g configurations and neutron
decay to the lighter calcium isotopes. For example, in 57,59Ca, a 9/2+ (0g9/2) state just above
the neutron separation energy Sn value would neutron decay to the (0+, 2+, 4+) multiplet
predicted in 56,58Ca; see Figure 1 in [12]. Calculations that include proton excited from sd to
p f and neutrons excited from p f to sdg will be needed to understand the neutron dacays
of these states.

The position of the 0g9/2 orbital is crucial for the structure of nuclei around 60Ca [107].
Lenzi et al. [108] have extrapolated the neutron effective single-particle energies from
Z = 28 down to Z = 20 based on their LNPS Hamiltonian. Their 0 f5/2-0g9/2 ESPE gap
for 60Ca is close to zero (see Figure 1 in [108]) and the structure of 60Ca is dominated by
Δ = 4 ( f p to sdg) configurations (see Table 1 in [108]). With LNPS, 60Ca is very different
from 68Ni which is dominated by the closed f p-shell configuration (Δ = 0). Below 68Ni, the
nuclei 66−70Fe, [11] 64−66Cr [11] and 62Ti [10], have deformed spectra coming from f p − sd f
island of inversion for N = 40. Calculations with the LNPS Hamiltonian [108] show that
these are all dominated by Δ = 4. The N = 40 island of inversion is the topic of another
contribution to this series of papers [109].

The existence of 60Ca, confirmed only recently, agrees with UFP-CA as well as with
most of the other predictions [36]. It will be exciting to have more complete experimental
data for nuclei around 60Ca from FRIB and other radioactive-beam facilities.
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5. The Region of 78Ni
78Ni has recently been established as a double-jj magic nucleus from the relatively

high energy of 2.6 MeV for the 2+1 state [35]. More detailed magic properties can be obtained
from the D(N) and D(Z), derived from new experiments on the masses around 78Ni. The
ESPE can be established from the masses together with the low-lying spectra of 77Ni,
79Ni, 77Co and 79Cu. A proton knockout experiment from 80Zn has recently been used to
establish excitation energies of low-lying states in 79Cu [35] In particular, the ground state
and two lowest-lying states are likely associated with the triplet of states shown in Figure 9.
In comparison with the extrapolations of CI calculations, shown in [35], the order is likely
to be 0 f5/2, 1p3/2 and 1p1/2. The single-particle nature of low-lying states around 78Ni will
require one-nucleon transfer experiments.

The position of the proton 0g9/2 orbital above 78Ni is important for Gamow–Teller
strength in the electron-capture rates for core-collapse supernovae similations [110,111].
The filling of the 0g9/2 orbital leads to 100Sn on the proton drip line. 100Sn has the largest cal-
culated reduced Gamow-Teller transition probability, B(GT), value (see Table A1 in [112])
due to nearly filled 0g9/2 orbital decaying into the nearly empty 0g7/2 orbital. The under-
standing of 100Sn [113] and other nuclei near the proton drip line in this mass region will
be improved by radioactive-beam experiments.

As shown in Figure 4b of [35], large-scale CI calculations predict a deformed band
with β ≈ +0.3 at approximately 2.6 MeV. 56Ni is also spherical with a 2+1 state observed
at 2.7 MeV. For 56Ni, the deformed band is predicted to start at 5.0 MeV as shown in
Figure 13. The relatively low-lying deformed band in 78Ni is predicted to lead to a “5th
island-of-inversion” in 76Fe and other nuclei with N = 50 below Z = 28 [114].

6. Conclusions

I have discussed the new physics related to the properties of nuclei near the drip
lines that will be studied by the next generation of rare-isotope beam experiments. In
particular, I have focused on four “outposts” for the regions of 28O, 42Si, 60Ca and 78Ni,
where new experiments will have the greatest impact on understanding the evolution of
nuclear struture as one approaches the neutron drip line.
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Abstract: The Gamow shell model (GSM) is a powerful method for the description of the exotic
properties of drip line nuclei. Internucleon correlations are included via a configuration interaction
framework. Continuum coupling is directly included at basis level by using the Berggren basis, in
which, bound, resonance, and continuum single-particle states are treated on an equal footing in the
complex momentum plane. Two different types of Gamow shell models have been developed: its
first embodiment is that of the GSM defined with phenomenological nuclear interactions, whereas
the GSM using realistic nuclear interactions, called the realistic Gamow shell model, was introduced
later. The present review focuses on the recent applications of the GSM to drip line nuclei.

Keywords: Gamow shell model; realistic nuclear forces; phenomenological interactions; resonance;
continuum; drip line nuclei

1. Introduction

Exotic nuclei have been studied for many years using a new generation of accelerators,
which are now able to reach nuclear drip lines [1–4]. Contrary to well-bound nuclei, which
are closed quantum systems, drip line nuclei can be seen as open quantum systems, as they
are either weakly bound or unbound with respect to the particle emission threshold [5].
Many interesting phenomena appear at drip lines, such as a halo structure [1,6,7] and
particle emission in resonance states [4,8]. Continuum coupling plays an important role in
these loosely bound and unbound nuclear systems [5]. The proper description of nuclei at
drip lines is one of the main challenges of nuclear theory, which was mostly developed to
account for the structure of well-bound nuclei [5,6].

A clear consequence of the strong intertwinings of the continuum degrees of freedom
and internucleon correlations at drip lines consists of the odd–even staggering found
in the helium chain [9,10]. Indeed, odd helium isotopes (except 3He) are all resonances
and bear widths of several hundreds of keV [10–12]. Conversely, the even–even helium
isotopes 4,6,8He are bound, with 6,8He both exhibiting halo properties [13–15]. To accurately
reproduce nuclear halos, many-body wave functions in asymptotic regions must be treated
properly, which demands to take into account continuum coupling [1,6,7,16–19]. Adding
to that, these weakly bound and unbound drip line nuclei also provide good laboratories
to understand the single-particle structure, continuum coupling, internucleon correlations,
and nucleon-nucleon (NN) interactions, which are not well understood in these regions.

Most present nuclear models, such as the no-core shell model (NCSM) [20], self-
consistent Green’s function [21], coupled-cluster (CC) [22,23], in-medium similarity renor-
malization group (IM-SRG) [24], and standard shell model (SM) [25,26] have been devel-
oped for the study of well-bound nuclei, whereby continuum coupling is absent. Only few
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models explicitly include continuum coupling. The main models including both internu-
cleon correlations and continuum coupling in a unified picture are the no-core Gamow
shell model (NCGSM) [27–29], the no-core shell model with continuum (NCSMC) [30], the
complex CC [31,32], the Gamow IMSRG (Gamow-IMSRG) [33], continuum shell model
(CSM) [34,35], and the Gamow shell model (GSM) [19,36–39], which are extensions of
the NCSM, CC, IM-SRG, and SM, respectively. However, due to their huge model space
dimensions, the NCGSM and NCSMC can only be used to describe light nuclei [27,28,30].
Furthermore, only nuclei in the vicinity of closed-shell nuclear systems can be investigated
by the complex-CC and Gamow-IMSRG methods [31–33]. CSM [34,35] takes into account
the continuum effect by projecting the model space onto the subspaces of bound and
scattering states in a real-energy basis, in which, resonance states are not included. Within
GSM, continuum coupling is treated at basis level by way of the Berggren basis [36–38]. The
latter comprises bound, resonance, and continuum scattering states, with all of these states
treated on an equal footing within the Berggren ensemble [40]. Internucleon correlations in
GSM are induced by configuration mixing, similarly to conventional SM. GSM has been
seen to successfully reproduce many situations of physical interest [5,38]; for example, the
resonances of oxygen drip line nuclei [38,41,42] and the neutron halo structure of 31F [18].

The GSM was introduced in nuclear physics in 2002 [36,37], where only simple phe-
nomenological nuclear potentials were used, while calculations were limited to only two
valence neutrons outside of the inner core. After that, the GSM was extended to many
valence particle systems, such as 8He [17] and psd-shell nuclei [43]. The realistic Gamow
shell model was proposed in Refs. [44,45], with which, two- or three-particle systems could
be investigated. An effective Hamiltonian based on realistic interactions was constructed
by using the degenerate Q̂-box approach; however, folded diagrams are neglected [45]. A
folded diagram sums up the subset of diagrams to infinite order so as to include high-order
effects. In 2017, we developed the realistic GSM method with the full Q̂-box folded-
diagram method using the nondegenerate Berggren basis [38]. We applied it to the case of
the neutron-rich oxygen isotopes up to the neutron drip line. After that, many extensions
of the realistic GSM were developed, such as performing the realistic GSM in the Gamow
Hartree-Fock basis (GHF) [41].

In the present review, the framework of the two types of GSM (realistic GSM and phe-
nomenological GSM) is first introduced in Section 2. Then, we review our recent applications of
GSM, including the calculations of neutron-rich oxygen and fluorine isotopes [38,39,41,42,46],
neutron-rich calcium isotopes [47], and proton decays in 16Ne and 18Mg [48]. Finally, a short
summary of the review and the future challenges of the next GSM calculations are given.

2. Method

GSM is built within a configuration interaction framework based on the one-body
Berggren basis [5,36–38]. The Berggren basis [40,49] is generated by a finite-range potential,
which can be written as the solutions of the one-body Schröndinger equation in the complex
momentum space, which reads

d2u(k, r)
dr2 =

[
l(l + 1)

r2 +
2m
h̄2 U(r)− k2

]
u(k, r), (1)

where l is the orbital angular momentum of the nucleon motion, m is the mass of the
nucleon, r stands for the radius, and h̄ is the reduced Planck constant. The momentum k
and wave function u(k, r) can be complex. U(r) is the finite-range potential, which is, in
practice, a Woods–Saxon (WS) [50] or GHF potential [33,44]. When considering protons,
the Coulomb potential must be included in U(r). Bound, resonance, and scattering states
can then be generated. The eigenenergy of single-particle states in the above equation is
complex in general, and reads ẽn = k2/2m = en − iγn/2, where n denotes the state [40,49].
en stands for the energy, whereas γn represents the particle decay width, so that γn = 0
for bound states and γn > 0 for resonance states. A schematic Berggren basis set of states
in the complex k-plane is illustrated in Figure 1. The wave function of a resonance state
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is not square-integrable, as its exponential increase in modulus implies that the wave
function of a resonance state cannot be normalized with conventional techniques [40,49].
Consequently, one has to rely on the complex scaling method, which has been seen to
properly account for the normalization of resonance states [51].

The completeness relation borne by Berggren basis states [40,49] reads

∑
n
|n〉〈n|+

∫
L+

|k〉〈k|dk = 1, (2)

where |n〉 states are bound states and resonance states inside the L+ contour of Figure 1.
These states are called pole states, as they are the S-matrix poles of the finite-range potential.
|k〉 states are scattering states and follow the L+ contours in the complex k-plane, starting
from k = 0 and going to k → +∞, as shown in Figure 1. Scattering states initially form a
continuum. Hence, in order to be used in numerical applications, the scattering states along
the L+ contour must be discretized with a Gauss–Legendre quadrature [5,49]. It has been
checked that 10–45 states per contour are necessary to have converged results [5,38]. Once
discretized, the Berggren basis is, in effect, the same as that of the harmonic-oscillator (HO)
states within the standard SM [5,49]. Concerning resonance states, only narrow resonance
states contribute to the physical states, and thus are included in the real calculations,
whereas broad resonance states are not included, as they lie below the L+ contour.

Figure 1. Depiction of the Berggren basis in the complex-momentum-k plane for a fixed partial wave.
Typical complex momenta of bound, narrow, and broad-resonance states, i.e., S-matrix pole, are
provided. The L+ contour of scattering states encompasses the S-matrix poles of interest.

In fact, the Berggren basis is the complex extension of the real-energy completeness
relation of Newton [52], which consists of bound states and of a continuum of real-energy
scattering states. Contrary to the Newton completeness relation [52], with which, only
localized states can be expanded, the Berggren basis can expand unbound resonance
states [40,49]. The many-body completeness relation is obtained by constructing Slater
determinants from the one-body Berggren basis, which contains bound, resonance, and
scattering states [5,49]. In the GSM, the Hamiltonian is represented by a complex symmetric
matrix when using the one-body Berggren basis, which has to be diagonalized [5,49].
This process can be handled efficiently by using the complex symmetric extension of the
Jacobi-Davidson method [49,53], where one can take advantage of the relatively small
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coupling to continuum states in order to have a fast convergence of calculations [5]. The
full configuration space is extremely large due to the many scattering states within the
model space. In practical calculations, however, we often truncate basis model spaces
so that only two particles can occupy scattering states. It has been checked that this is
sufficient to obtain converged results for both the energy and decay width of many-body
states [5,38,54].

In GSM calculations, an effective Hamiltonian must be constructed. There are two
main methods to build the effective Hamiltonian in GSM calculations. One is to construct
an effective Hamiltonian based on realistic nuclear force [38,39,41], and hence in the frame
of the realistic GSM, whereas the other one consists of using an effective phenomenological
nuclear potential [5,36,37,49], in which, the parameters of the potential are optimized to
reproduce experimental data. In the following, we give details about these two versions
of GSM.

2.1. Realistic Gamow Shell Model Calculations

Within realistic GSM, one starts from the intrinsic Hamiltonian of an A-body system,
which reads

H =
A

∑
i=1

pi
2

2m
+

A

∑
i<j

Vij
NN − P2

2Am
, (3)

where pi is the nucleon momentum in laboratory frame, P = ∑A
i=1 pi is the center-of-

mass (CoM) momentum of the system, and V(ij)
NN is the realistic NN interaction, such as

CD-Bonn [55] and N3LO [56] interaction. In the above Hamiltonian, the CoM energy is
removed. In order to construct the effective Hamiltonian to be used in GSM calculations,
an auxiliary potential is usually introduced [38,57,58], so that the Hamiltonian can be
rewritten as,

H =
A

∑
i=1

(
p2

i
2m

+ U) +
A

∑
i<j

(V(ij)
NN − U − p2

i
2Am

− pi · pj

Am
)

= H0 + H1, (4)

where H0 = ∑A
i=1(

p2
i

2m + U) has a one-body form, and H1 = ∑A
i<j(V

(ij)
NN − U − p2

i
2Am − pi ·pj

Am )
is the residual two-body interaction, including the correction issued from the CoM motion.
For the auxiliary potential U, we usually take a WS finite-range potential. To speed up
the convergence of many-body calculations, the bare force is often softened by a similarity
renormalization group method [59], such as the similarity renormalization group (SRG)
and Vlow-k,in order to remove the strong short-range repulsive core.

The realistic NN interaction is firstly defined in a relative momentum space. However,
the many-body problem is usually solved in the laboratory frame (with, e.g., the HO basis),
so that a transformation from relative and CoM coordinates to the laboratory frame is
necessary. This procedure can be conveniently carried out in the HO basis via Brody–
Moshinsky brackets [60]. In the HO basis, the two-body completeness relation reads

∑
α≤β

|αβ〉〈αβ| = 1, (5)

where |αβ〉 is the two-particle state of the HO basis. The two-body interaction in the HO
basis is given by

VHO =
Nshell

∑
α≤β

Nshell

∑
γ≤δ

|αβ〉〈αβ|Vlow−k|γδ〉〈γδ|, (6)

where Nshell = 2n + l, indicates that a finite summation is performed up to Nshell. The
GSM calculations are carried out in the Berggren basis, so that the transformation of the
interaction matrix elements from the HO basis to the Berggren basis needs to be carried
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out. This is achieved, in practice, by computing the overlaps between the Berggren and
HO basis wave functions,

〈ab|V|cd〉 ≈
Nshell

∑
α≤β

Nshell

∑
γ≤δ

〈ab|αβ〉〈αβ|Vlow−k|γδ〉〈γδ|cd〉, (7)

where |ab〉 (|cd〉) is a two-particle state of the Berggren basis. For identical particles (proton–
proton or neutron–neutron), the overlap of the two-body state reads

〈ab|αβ〉 = 〈a|α〉〈b|β〉 − (−1)J−jα−jβ〈a|β〉〈b|α〉√
(1 + δab)(1 + δαβ)

, (8)

where J is the total angular momentum of the two-particle state, and j is the angular
momentum of a single-particle basis state. The 〈a|α〉(〈b|β〉) is the overlap of the one-body
basis state, and δαβ is the Kronecker delta. For the proton–neutron coupling, the overlap of
the two-body state is simply given by

〈ab|αβ〉 = 〈a|α〉〈b|β〉. (9)

The overlaps of one-body basis states are directly obtained from an integration
in r-space

〈a|α〉 =
∫

drr2ua(r)Rα(r)δlalα δja jα δtatα , (10)

where u(r) and R(r) are the radial parts of the single-particle Berggren and HO basis wave
functions, with l, j, and t being the orbital, total angular momentum, and isospin quantum
number, respectively. The single-particle wave functions of resonance and continuum
states are not localized and hence are not square-integrable. The transformation defined by
Equation (7), in fact, utilizes the short-range nature of nuclear force. Indeed, the Gaussian
fall-off of the HO wave function renders the overlaps integrable, even when one considers
resonances or scattering states of complex energy. For long-range operators, such as
the one-body kinetic energy and Coulomb potential, using Equation (7) is not suitable
in practice. In this case, we use the exterior complex scaling technique [51] to treat the
kinetic and Coulomb operator, i.e., terms proportional to p2 and 1/r, respectively, with the
Berggren basis.

The obtained interaction matrix elements in the Berggren basis are complex, and
associated operators are non-Hermitian. The many-body perturbation theory (MBPT),
named the full Q̂-box folded-diagram method [61], is employed to construct the realistic
complex effective Hamiltonian in the defined model space for GSM calculations. The
complex-k Berggren basis states in the model space are non-degenerate; therefore a non-
degenerate Q̂-box folded-diagram perturbation, i.e., the extended Kuo–Krenciglowa (EKK)
method [62], has been used. For this, we first calculate the Q̂-box using MBPT in the
Berggren complex-k basis,

Q̂(E) = PVP + PVQ
Q

E − QHQ
QVP

= PVP + PVQ
Q

E − QH0Q
QVP + . . . , (11)

where E is starting energy, P and Q represent the model space and the excluded space,
respectively, with P + Q = 1. The Q̂-box is composed of irreducible valence-linked
diagrams [57,58], which can be built order-by-order. V and H are the two-body interaction
and two-body Hamiltonian, respectively, and H0 is the unperturbed one-body Hamiltonian.
The derivatives of the Q̂-box are defined as
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Q̂s(E) =
1
s!

dsQ̂(E)
dEs

= (−1)sPVQ
Q

(E − QHQ)s+1 QVP, (12)

where s denotes the s-th derivative.
The effective Hamiltonian Heff can then be constructed in operator form [63], written as

H̃eff = H̃BH(E) +
∞

∑
k=1

Q̂k(E)H̃eff, (13)

where H̃eff stands for H̃eff = Heff − E, and H̃BH(E) = HBH(E)− E is the Block–Horowitz
Hamiltonian shifted by an energy E, with

HBH(E) = PH0P + Q̂(E)

= PH0P + PVP + PVQ
Q

E − QHQ
QVP. (14)

H̃eff is obtained by performing iterations of Equation (13), which is equivalent to
calculate folded-diagrams, where one considers high-order contributions by summing
up the subsets of diagrams to finite order. When convergence is obtained, the effective
Hamiltonian is given by Heff = H̃eff − E, and the effective interaction reads Veff = Heff −
PH0P. The extended Q̂-box folded-diagram calculations provide a useful approach for
including effects from the continuum coupling and core polarization [57,58,61,62].

2.2. Gamow Shell Model with Phenomenological Nuclear Potential

Within the Gamow shell model with phenomenological nuclear potential, the nucleus
is assumed to be a system of Nv valence particles outside a frozen closed core, from which,
core polarization is absent [5,36,37,49]. The GSM Hamiltonian, expressed with intrinsic
nucleon-core cluster-orbital shell model coordinates [64], writes

H =
Nv

∑
i=1

[
p2

i
2μi

+ Ucore(i)

]
+

Nv

∑
i<j=1

[
V(i, j) +

pi pj

Mcore

]
, (15)

where pi is the nucleon momentum in cluster-orbital shell model frame, Ucore is the single-
particle nucleon-core potential, and V is the phenomenological NN interaction between
valence nucleons. μi and Mcore stand for the reduced mass of the nucleon and the mass
of the core, respectively. The

pi pj
Mcore

term accounts for the two-body recoil term. As seen
in Equation (15), the GSM has two components: the one-body part Hamiltonian H0 =

∑Nv
i=1

[
p2

i
2μi

+ Ucore(i)
]

and the two-body part Hamiltonian HI = ∑Nv
i<j=1

[
V(i, j) +

pi pj
Mcore

]
.

The core-valence particle potential Ucore is usually a WS potential, in which a spin-orbit
term is included. The NN interaction V takes the form of an effective phenomenological NN
interaction, such as Minnesota [65], Furutani-Horiuchi-Tamagaki (FHT) [66,67], or effective
field theory (EFT) [18,56] interactions. The parameters within the effective Hamiltonian
in Equation (15), both one- and two-body interactions, need to be optimized to reproduce
experimental data. For optimizations, the χ2 optimization method is employed, where
one uses the Gauss–Newton algorithm augmented by the singular value decomposition
technique to calculate the Jacobian pseudo-inverse [43].
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3. Gamow Shell Model Calculations

3.1. Neutron-Rich Oxygen and Fluorine Isotopes

Neutron-rich oxygen isotopes form a particularly interesting chain for experimental
and theoretical research. Firstly, the proton number Z = 8 shows magical properties for the
neutron-rich oxygen isotopes, which provide a good laboratory to perform configuration
interaction (shell-model) calculations [22,38,68,69]. Secondly, the nuclei 22O and 24O exhibit
doubly magicity at the neutron number N = 14 and 16, respectively, [70–73]. Thirdly,
experiments have shown that the 25O and 26O are unbound and decay by one- and two-
neutron emission, respectively, [8,74]. Experimental studies suggest that 24O is the heaviest
bound isotope of the oxygen chain [8,74]. However, the loosely unbound property of
26O, which is only −18 keV unbound [8], is a strong incentive to investigate the bound or
unbound character of 28O, which should have a magicity of N = 20. Consequently, the
neutron-rich oxygen isotopes provide an ideal laboratory to study many-body correlation,
continuum coupling, and single-particle structure. By adding one valence proton to the
neutron-rich oxygen isotopes, one obtains the fluorine isotopes at the neutron drip line,
which can sustain six additional neutrons after 25F, hence, up to 31F, which is suspected
to be at the neutron drip line of the fluorine chain [75]. This dramatic change is called
an “oxygen anomaly”. Moreover, many exotic properties develop at the neutron drip
line for fluorine isotopes, such as halos in 29F [76] and 28F within the island of inversion
around N = 20 [77], and thus fluorine isotopes provide a very interesting ground for
theoretical studies.

3.1.1. Realistic Gamow Shell Model Calculations

We have developed realistic GSM with the Berggren basis using a WS potential,
while the realistic effective Hamiltonian is constructed within the model space using a
nondegenerate Q̂-box folded-diagram method [38]. We first employed it to investigate
the neutron-rich oxygen isotopes up to and beyond the neutron drip line [38]. In our
calculations, the realistic CD-Bonn potential [55] was used. To speed up the convergence of
many-body calculations, the bare force is usually softened to remove the strong short-range
repulsive core. The Vlow−k method [59] is used for that matter in Ref. [38].

Figure 2. Calculated spectrum of 24,25,26O, compared with available experimental data [8,10,74].
The resonances are indicated by shades, and their widths (in MeV) are given by the number below
or above the levels. The light blue shade indicates the 3/2+ many-body scattering states (with
permissions from Ref. [38]). The “CGSM” stays for “core Gamow shell model”.
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Figure 2 shows the calculated low-lying states of 24−26O, along with experimental
data [8,10,74]. Our realistic GSM calculations [38] reproduce the experimental excited-
state spectrum well, including the observed resonance widths. The ground state energies
and one-neutron separation energies Sn of the neutron-rich oxygen isotopes are also
calculated [38] (see Figure 3) and compared to the experimental data [8,10,74,78]. The
WS parameters used, taken from Ref. [38], reproduce the experimental 1s1/2 and 0d3/2
single-particle energies well, including the decay width of the 0d3/2 state, but give the 0d5/2
energy as lower than the experimental data, at about 1.17 MeV [10]. The results presented
in Figure 3 show that adopting the experimental 0d5/2 energy can dramatically improve
calculations. Overbinding in the GSM calculations of oxygen isotopes after 24O is obtained
in Ref. [38], which is caused by the absence of the three-nucleon force (3NF).

Figure 3. Calculated ground state energies of oxygen isotopes with respect to the 16O core (upper
panel) and associated neutron separation energies Sn (lower panel) as a function of atomic number
compared with experimental data [8,74,78]. “GSM with WS SPE” indicates that the calculations were
performed with Woods-Saxon (WS) single-particle energies (SPE), whereas “GSM with optimized
SPE” means that the calculations were performed with the 0d5/2 SPE replaced by its experimental
value (with permissions from Ref. [38]).

3.1.2. Ab-initio Realistic GSM Calculations within GHF Basis

GSM is usually performed using a basis generated by a WS potential [5,19,36–39],
whose parameters must be determined by fitting experimental single-particle energies and
resonance widths. However, the single-particle energies and resonance widths in the multi-
shell case are sometimes difficult to assess due to the lack of experimental data for that
matter [10]. We then developed an ab initio realistic GSM approach by introducing the GHF
basis as the Berggren basis [41]. The GHF basis is obtained by using the same interaction as
the one used in the construction of the effective SM Hamiltonian [41], and thus there is no
parameter introduced in the GHF Berggren basis. Starting from the chiral next-to-next-to-
leading-order (NNLOopt) force [79], we perform a nondegenerate Q̂-box folded-diagram
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calculation [38,62] in the GHF basis in order to construct a complex effective Hamiltonian.
The energies and widths of single-particle orbitals can also be obtained self-consistently
using the nondegenerate Ŝ-box folded-diagram method [41]. The neutron-rich fluorine
isotopes have been extended to the p f -shell, using a cross-shell effective Hamiltonian with
the following model space : {1s1/2, 0d5/2, 0d3/2} for the valence proton, and {1s1/2, 0d3/2 +
d3/2 scattering states, 1p3/2 + p3/2 scattering states, 1p1/2 + p1/2 scattering states, f7/2
scattering states} for valence neutrons. More details can be found in Ref. [41]. The con-
structed effective Hamiltonian was employed to study neutron-rich oxygen and fluorine
drip line nuclei.

Figure 4 shows the calculated ground-state energies and neutron separation ener-
gies Sn of oxygen and fluorine isotopic chains, as well as comparisons with experimental
data [78] and other theoretical calculations [31,68,79–83]. The GSM calculations using a
GHF basis and based on the NNLOopt [79] provide the correct location of the neutron
drip line of oxygen isotopes and a good description of the unbound nuclei 25,26O, which
lie beyond the neutron drip line (see the left panel of Figure 4). Note that, when using
the standard SM calculations with the USDB interaction [68], conventional SM calcula-
tions with NN + 3NF [82], or valence–space IMSRG (VS-IMSRG) calculations with NN +
3NF [81], the resonance and continuum couplings are absent. Complex CC [31] and GSM
calculations [80] are displayed in Figure 4 for comparison.

Figure 4. Calculated ground-state energies (upper panel) with respect to the 22O core and associated neutron separation en-
ergies Sn (lower panel) for oxygen and fluorine isotopes, compared with experimental data [78] (the AME2016 extrapolated
values are taken for 27,28O and 30,31F) and theoretical calculations from other groups: complex coupled-cluster (CC) with
next-to-next-to-next-to-leading-order nucleon-nucleon CC with NNLOopt interaction [79], GSM [80], –space in-medium
similarity renormalization group (VS-IMSRG) [81], SM with NN+3NF [82], SM with USDB [68], and SM with SDPF-M [83]
(with permissions from Ref. [41]).

The results of fluorine isotopes are shown in the right panels of Figure 4. For compari-
son, standard SM calculations using USDB [68] and SDPF-M [83] effective interactions are
also presented. All ground-state energies in Figure 4 are given with respect to the ground
state of 22O. Experiments revealed that 31F is a neutron drip line nucleus [75]. Although
our GSM calculations provide a lower energy of 31F compared to that of 30F, 31F is still
unbound compared to 29F. However, our GSM calculations provide good descriptions of
ground-state energies for 23−29F.
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3.1.3. GSM Calculations with Phenomenological Nuclear Potential

Many ab initio calculations, such as SM [82], VS-IMSRG [81], complex CC [31], and
realistic GSM [38,39,41] calculations, have been employed for the description of neutron-
rich oxygen and fluorine isotopes. However, these calculations bear a large theoretical
uncertainty. Furthermore, results arising from ab initio calculations depend on the realistic
nuclear forces used (a short summary of the VS-IMSRG calculations based on different
chiral nuclear forces can be found in Ref. [80]). Moreover, continuum coupling is absent in
the VS-IMSRG [81] and SM [82] calculations. Similar situations also occur for neutron-rich
fluorine isotopes, where few calculations have been performed and most of the calculations
are absent for the continuum coupling [83,84]. Based on these grounds, we performed the
GSM calculations with a phenomenological nuclear interaction for neutron-rich oxygen
and fluorine drip line nuclei.

Figure 5. Energies of ground states in 24−28O, calculated by GSM within the sdp f (s1/2, p1/2,3/2,
d3/2,5/2, f5/2,7/2 partial waves) (upper) and sd (s1/2, d3/2,5/2 partial waves) (lower) model spaces,
using the effective field theory (EFT) EFT(318)(the value within braket stands momentum cut-
offs), EFT(356), EFT(390), EFT(436), and Furutani–Horiuchi–Tamagaki (FHT) interactions, with
A-independence (A-indep) or A-dependence (A-dep) (see details in Ref. [42]). Results are compared
with the experimental data available, represented by a star. The data for 25,26O and 27,28O are taken
from experiment (see Refs. [8,74]) and evaluations given in AME2016 [78] (with permissions from
Ref. [42]).

For the considered neutron-rich oxygen isotopes, the closed-shell nucleus 22O is
selected to be the inner core. The one-body potential is mimicked by a WS potential, whose
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parameters are adjusted to reproduce the single-particle spectrum of 23O [10]. We use the
pionless EFT interaction [85,86] as the two-body interaction. Owing to the few available
data related to the oxygen drip line nuclei [10], only the leading order (LO) NN interaction
of the EFT force is fitted to reproduce selected experimental data. The effect of the 3NF at
LO is then effectively taken into account in the fitted parameters. Details can be found in
Ref. [42]. We calculated the energies of the ground states of 24−28O with GSM within sdp f
(s1/2, p1/2,3/2, d3/2,5/2, f5/2,7/2 partial waves) and sd (s1/2, d3/2,5/2 partial waves) active
spaces, using different EFT interactions (see details in Ref. [42]). The calculated ground-
state energies of 24−28O are shown in Figure 5. The calculations within the sd space show
that the 25−28O isotopes are unbound and that their binding energies are close to the
experimental data [8,74,78] and to calculations performed within the sdp f space. However,
the calculations obtained in the sd space provide an unbound 26O ground state, by about
300 keV relative to the ground state of 24O, which is a little higher than its experimental
value, which is about 20 keV unbound [8]. Though the energy difference obtained using the
two different model spaces is small, the calculation performed within the spd f space seems
to be more reasonable. The GSM calculations performed within the sdp f space provide
good agreements of the 23−26O ground states with experimental data [8,74,78]; in particular,
the two-neutron separation energy (S2n) of 26O is about 20 keV [8]. The calculated ground
state of 28O is unbound in all three cases and located about 700 keV above the ground
state of 24O. The ground states of the 26,28O isotopes are unbound, but bear negligible
widths. Together with the calculated one-body densities of the 26,28O isotopes in Ref. [42],
the results suggest that the ground state of 28O exhibits four-neutron decay by way of
2n-2n emission via the 26O ground state, which is consistent with few-body [87] and the
above ab initio GSM calculations [41].

Figure 6. Energies of 25−31F with respect to the 24O core, calculated within different theoretical
frameworks and compared to experimental data [78]. Besides the GSM calculations using FHT and
EFT interactions, calculations in the Hartree-Fock many-body perturbation theory (HF-MBPT) [88]
and VS-IMSRG [84] frameworks, utilizing the harmonic-oscillator (HO) basis, hence being without
continuum coupling, are presented (with permissions from Ref. [18]).

Figure 6 shows the GSM calculations of the binding energies of fluorine isotopes using
FHT and EFT interactions (see details in Ref. [18]), wich are compared with experimental
data [78] and Hartree-Fock MBPT (HF-MBPT) [88] and VS-IMSRG [84] calculations, which
are both performed in the HO basis. The energy of 25F has been fixed to its experimental
datum in all used models in Figure 6. We can see that all calculations reproduce the
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ground state energies of 25−28F isotopes well, situated in the well-bound region, whereas
differences start after 29F, i.e., when one reaches the neutron drip line. Due to the absence
of both multi-shell and continuum couplings, the VS-IMSRG calculations [84] provide
visible differences, which are about 4- to 5-MeV in magnitude for 30,31F. When applying
the HF-MBPT method [88], the cross-shell couplings generated by the sd and p f shells
are included, so that proper binding energies of up to 29F are predicted. However, due
to the lack of continuum coupling, the binding energies of 30,31F are about 1 MeV away
from experimental data. The GSM calculation performed with FHT and EFT interactions
correctly provides binding energies of up to 31F. Moreover, the odd–even staggering
encountered from the 28F isotope, typical of the presence of a strong proton–neutron
interaction, is well reproduced, with 30F being unbound and 31F being loosely bound in
our calculations.

Recent realistic shell model calculations [89] have pointed out that nuclear deformation
plays an important role in the neutron drip line nuclei. Within GSM, deformation can
be accounted for by configuration mixing using a cross-shell valence space [5]. Besides
deformation, continuum coupling also gives important contributions in drip line nuclei.
They are strongly coupled with continuum states near the particle-emission threshold,
which provides additional binding energy [5]. This situation is unlike that occurring
in well-bound systems, where one only has strong coupling with nearby deeply-bound
single-particle states.

Figure 7. One-nucleon densities of the bound 27,29,31F isotopes calculated with the GSM using the
EFT interaction in the valence space as a function of radii r, respectively, depicted by short-dashed,
long-dashed, and solid lines. The rms radii of these isotopes are shown in the inset (with permissions
from Ref. [18]).

The two-neutron separation energy S2n of 31F is about 170 keV [78], which is suffi-
ciently small for sustaining a two-neutron halo. We calculated the one-nucleon densities
and neutron rms radii of the neutron-bound 27,29,31F isotopes using GSM with the EFT
interaction (see Figure 7). From our calculations, a halo clearly develops in the asymptotic
region of 31F. Indeed, on the one hand, the one-nucleon density of 31F slowly decreases
on the real axis and is about one to two orders of magnitude larger than those of 27,29F in
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the asymptotic region. Added to that, on the other hand, the neutron rms radius of 31F
does not follow the trend noticed in 27,29F, as the rms radius sharply increases compared
to the associated values in 27F and 29F. Consequently, one can assume from these GSM
calculations [18] that 31F is a two-neutron halo state.

3.2. Realistic Gamow Shell Model Calculations of Neutron-Rich Calcium Isotopes

The long chain of calcium isotopes provides an ideal laboratory for both theoretical
and experimental investigations of unstable isotopes. With two typical doubly magic
isotopes, 40Ca and 48Ca, and two new magic isotopes discovered in the neutron-rich region,
52Ca [90] and 54Ca [91], the calcium chain is speculated to end the 70Ca isotope. Its rich
nuclear structure data [10] attract continued theoretical interest, especially using methods
that include continuum coupling. The realistic GSM based on the realistic CD-Bonn [55]
interaction has also been performed to investigate the properties of neutron-rich calcium
isotopes up to the drip line.

Figure 8. Calculated one-neutron separation energies Sn (a) and two-neutron separation energies S2n

(b), compared with data [78,92], and calculations obtained with SV-min density-functional theory
(DFT) [93] and multireference IM-SRG (S2n only) [94]. The Sn calculations end at 60Ca because
odd isotopes heavier than 60Ca become unbound in our GSM calculations (with permissions from
Ref. [47]).
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The calculated one-neutron separation energies Sn and two-neutron separation en-
ergies S2n are shown in Figure 8 and compared with experimental data [78,92], DFT [93],
and IM-SRG [94] calculations. The calculated one-neutron separation energies Sn show
that 57Ca is the heaviest odd-mass bound calcium isotope, which is consistent with MBPT
calculations [95]. 59Ca is weakly unbound with a small one-neutron separation energy
Sn = −326 keV in our GSM calculations. For the two-neutron separation energy S2n, the
GSM calculations are performed with two different cores, 48Ca and 54Ca. For 56,58,60Ca, the
two calculations give similar results. The calculated two-neutron separation energy S2n is
in good agreement with experimental data [78,92] and other theoretical calculations, e.g.,
with DFT [93] and IM-SRG [94] calculations. The large decrease in S2n at neutron number
N = 32 and 34 indicate that subshell closures occur therein, which has also been suggested
from experiments [90,91] and theoretical calculations [94–96]. Moreover, the calculated
two-neutron separation energy S2n using GSM predicts that the two-neutron drip line of
the calcium isotopes should be located at 70Ca. This is consistent with the recent mean-field
calculations of Ref. [97].

Figure 9. Neutron effective single-particle energies (ESPE) with respect to the 48Ca core, as a function
of neutron number. The Vlow−k Λ = 2.6 fm−1 CD-Bonn interaction is utilized (with permissions
from Ref. [47]).

In order to see the shell evolution of the calcium isotopes around the neutron number
N = 32, 34, 40, and 50, we calculated effective single-particle energies (ESPE) based on
the GSM effective Hamiltonian. Figure 9 shows the evolution of the valence neutron
ESPEs when increasing the neutron number. The calculations show that large shell gaps
between 1p3/2 and 1p1/2 and between 1p1/2 and 0 f5/2 exist, indicating that shell closures
occur at N = 32 and 34, respectively. These results are consistent with experimental
observations [90,91] and theoretical calculations [94–96,98]. The shell gap above the 0 f5/2
orbit is reduced at around N = 40, implying a weakening of the N = 40 shell closure in the
calcium chain. The 0g9/2 shell becomes bound at N ≥ 40, which can enhance the stability
of the heavy calcium isotopes. The observed 60Ca isotope in experiments [99] may be an
indication of this enhanced stability. Moreover, the calculated ESPEs show a significant
shell gap at N = 50, implying a shell closure at 70Ca.

152



Physics 2021, 3

3.3. One-Proton and Two-Proton Decays in 16Ne and 18Mg Unbound Nuclei

Two-proton decay is one of the most important drip-line phenomena. It occurs in
proton drip line nuclei, such as 48Ni, 54F, 54Zn, 76K, 16Ne, and 19Mg (see a review of this
topic in Ref. [4] ). While 18Mg has not been observed, it can decay in principle by proton
and/or two-proton emissions. The GSM is then a suitable method to study these types of
particle emissions. We carried out GSM calculations of the proton-rich carbon isotones of
14O, which are all resonance [10], using 14O as an inner core. The obtained energy spectra
of carbon isotones are depicted in Figure 10 with respect to the ground state of 14O. One
can see that both the energies and widths of experimentally known eigenstates are well
reproduced for the low-lying states in 15F and 16Ne [10]. We also provide predictions
for the 17Na and 18Mg nuclear spectra, of which, there are no experimental data. Our
calculations show that the 16Ne and 18Mg isotopes are unbound nuclei, where both one-
proton separation energies Sp and two-proton separation energies S2p are negative, thereby
indicating that two different particle-emission channels are open therein.

Figure 10. Excitation energies, Ex, and widths (in keV) of the ground and excited states of carbon
isotones. The GSM calculations are compared to available experimental data [10,100–102]. Energies
are given with respect to the 14O core. Widths are represented by green striped squares, and their
explicit values are written above (with permissions from Ref. [48]).

To evaluate one-proton and two-proton decay widths, we changed the central potential
depth V0 of the WS core potential in order for the Sp to become positive or very negative
(see details in Ref. [48]). Consequently, it is possible to find a central potential depth for
which only the two-proton decay channel is open, so that the obtained width is that of
the two-proton emission. The obtained results are shown in Figure 11. As 15F and 17Ne
are one-proton resonances, their width increases steadily with the Hamiltonian central
potential depth. In contrast, one can see that the widths of 16Ne and 18Mg increase abruptly
when the one-proton channel opens. The width of two-proton decay is almost constant
with respect to the central potential depth below the one-proton emission threshold, and
is also about 500 keV to 1 MeV above (see Figure 11). It is reasonable to assume that the
two-proton decay width is almost independent of energy. Therefore, the GSM results
shown in Figure 11, where only the two-proton channel is open, can be extrapolated to
the physical case (indicated by an arrow in Figure 11). This two-proton decay width is
about 10-15 keV for both 16Ne and 18Mg nuclei. The one-proton width can be assumed as
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the difference between the total width and the two-proton emission width of 10–15 keV.
Then, our calculations show that one-proton emission is negligible for 16Ne, whereas the
one-proton decay width in 18Mg is estimated to be about 85-90 keV. The obtained data for
16Ne are also in agreement with experimental data [10,100–102].

Figure 11. Calculated energies and widths (in MeV) of 15F, 16Ne (upper panel), 17Na, and 18Mg
(lower panel) as a function of the difference ΔV0 = V0 − V(fit)

0 (fit) of the WS central potential depths
(see details in Ref. [48]). Energies are depicted by blue disks and red lozenges for even and odd
nuclei, respectively. Widths are represented by segments centered on disks and lozenges. The widths
of 16Ne and 18Mg have been multiplied by 20 for readability. Energies are given with respect to
the 14O core. The physical GSM calculation, for which V0 = V(fit)

0 , is indicated by an arrow (with
permissions from Ref. [48]).

4. Summary

The Gamow shell model (GSM) is a powerful method for the description of the weakly
bound and resonance properties of drip line nuclei. In the present review, we presented
several recent applications of GSM dedicated to the study of drip line nuclei, including
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GSM calculations of neutron-rich oxygen and fluorine drip line nuclei, of the long chain of
neutron-rich calcium isotopes, and of the unbound proton-rich 16Ne and 18Mg isotopes.
For the neutron-rich oxygen and fluorine drip line nuclei, both the realistic GSM and GSM
with phenomenological forces have been utilized. Our calculations have described the
weakly-bound and unbound properties of drip line nuclei well. Furthermore, the unbound
properties of the 28O are obtained within the two both types of GSM calculations, and the
two-neutron halo property of 31F has been predicted in GSM calculations as well. The
realistic GSM calculations provide good agreements of the neutron-rich calcium isotopes
with experimental data, as GSM calculations predict that the one- and two-neutron drip
line nuclei of calcium isotopes are 57Ca and 70Ca, respectively. For the unbound proton-rich
16Ne and 18Mg nuclei, GSM calculations provide calculations and predictions for their low-
lying spectra. Added to that, the one- and two-proton emission widths could be estimated
for 16Ne and 18Mg isotopes. Our calculations have shown that 16Ne decays only by two-
proton emission, whereas 18Mg can decay through both one- and two-proton emission
channels, whose widths are estimated to be about 85–90 and 10–15 keV, respectively.

GSM has thus been shown to be the tool of choice for the study of drip line nuclei.
Many challenges remain to be overcome for the future applications of GSM:

• Due to the large computational cost of the GSM calculations, the GSM has been applied
for the neutron-rich nuclei with only one or two valence protons, and, for proton-rich
nuclei, with only one or two valence neutrons in the non-resonant continuum. For
example, the model space dimension of 31F is about 107 with two valence particles
in the continuum. It can easily reach 1010 without truncations, which is untractable
numerically. In the nuclear chart, most of the drip line nuclei need to be described with
many valence particles (protons and neutrons). One can think of the neutron-rich Ne
and Mg drip line isotopes, where both continuum coupling and strong internucleon
correlations must be treated properly. These isotopes will provide a challenge for
future GSM calculations, due to the large dimensions;

• The diagonalization of the GSM Hamiltonian in order to obtain eigenstates of large
resonance widths, such as the second 0+2 state in 8He, is very difficult from a numerical
point of view;

• The dimensions of the GSM Hamiltonian matrices increase extremely quickly when
one adds valence particles, and thus the treatment of the many-body Hamiltonian is
difficult when using the configuration interaction framework. Other kinds of many-
body methods are urgently needed. The two-particle reduced density matrix method
is one of the promising methods to solve the dimensionality problem of the GSM
many-body Hamiltonian [103];

• The unbound single-particle states of s waves in neutron-rich nuclei are anti-bound
states, which are difficult to include in many-body GSM calculations. The consider-
ation of many-body anti-bound states in GSM (the ground state of 10Li is supposed
to be anti-bound, for example [104]) is thus also a challenge for future applications
of GSM.
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Abstract: Nuclear shell model is a powerful approach to investigate nuclear structure microscopi-
cally. However, the computational cost of shell-model calculations becomes huge in medium-heavy
nuclei. I briefly review the theoretical framework and the code developments of the conventional
Lanczos diagonalization method for shell-model calculations. In order to go beyond the conventional
diagonalization method, the Monte Carlo shell model and the quasiparticle-vacua shell model were
introduced. I present some benchmark examples of these models.
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1. Introduction

Nuclear shell-model calculation is often called the “configuration interaction” (CI)
method in analogy to the CI method in quantum chemistry. It provides us with a detailed
description of the ground and low-lying excited states of medium-mass nuclei [1]. A shell-
model study is an excellent theoretical tool to discuss exotic structures of nuclei, such as the
shape coexistence, shape phase transition, emergence of new magic numbers in neutron-
rich nuclei, and so on [1,2]. In addition, it enables us to predict nuclear data required for
astrophysical applications [3,4] and for elementary particle physics [5–8]. In the shell-model
framework, one separates a nuclear wave function into two parts: an inert core and active
particles in the model space. Usually, an inert core is taken as a doubly magic nucleus
closest to the Fermi level. For example, in the case of 48Ca, 40Ca (N = Z = 20, where N
denotes the number of neutrons and Z the number of protons in a nucleus) is taken as a
frozen inert core and eight valence neutrons are actively occupying the p f -shell orbits. Its
wave function is written as a linear combination of the Slater determinants each of which
represents how the active particles occupy single-particle orbits. This model has achieved
successful description of p-shell [9], sd-shell [10], p f -shell, [1,11,12], and f5 pg9-shell [13]
nuclei with the conventional diagonalization method.

In most of the conventional shell-model studies, the shell-model Hamiltonian is
constructed by the many-body perturbation theory [14] with minor phenomenological
corrections to fit the experimental data. Its ab initio derivation has been recently developed
by the valence-space in-medium similarity renormalization group (VS-IMSRG) method [15],
the coupled-cluster method [16], the many-body perturbation theory [17], the extended
Krenciglowa–Kuo method [18], and Okubo–Lee–Suzuki approach [19], while ab initio
description of strongly quadrupole deformed states is still a challenge [15,20,21]. The
shell-model calculation is now applied to ab initio theory and its importance increases now.

However, solving the eigenvalue problem of the shell-model Hamiltonian matrix often
requires huge computational resources, which hampers us from performing the shell-model
study in the whole nuclear region. Moreover, in the case of neutron-rich nuclei, since the
proton and neutron Fermi levels locate in different shells, beyond one-major-shell model
space is required for such model space and the exact diagonalization is often infeasible. To
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circumvent this problem, Tokyo shell-model group introduced the Monte Carlo shell model
(MCSM), which provides us with successful description of medium-mass nuclei [22,23].
For heavy nuclei in which the treatment of the pairing correlation is important, the MCSM
is not sufficiently efficient and its extension, quasi-particle vacua shell model (QVSM), was
introduced [24].

In this paper, I briefly describe the framework of the shell-model calculations and the
developments of the shell-model codes in Section 2. In Section 3, various approximation
methods going beyond the limitation of the conventional shell-model diagonalization are
reviewed. Among them, the MCSM is discussed in Section 3.1. Section 3.2 is devoted to
the description of the QVSM framework and its capability. This paper is summarized in
Section 4.

2. Conventional Diagonalization Method for Shell-Model Calculations

In this Section, I briefly review computational aspects of conventional shell-model
calculations with the Lanczos method and the developments of shell-model codes.

2.1. Shell-Model Hamiltonian Matrix and Its Dimension

A shell-model Hamiltonian consists of one-body and two-body interactions as

H = ∑
i

εic†
i ci + ∑

ijkl
vijklc†

i c†
j clck , (1)

where ci (c†
i ) denote the annihilation (creation) operator of the single-particle state i. εi and

vijkl are the single-particle energies (SPEs) and the two-body matrix elements (TBMEs),
respectively, which are fixed so that rotational and parity symmetries are kept. In a con-
ventional way, the SPEs and TBMEs are determined based on the many-body perturbation
theory and are corrected phenomenologically so that the experimental binding energies and
excitation energies are reproduced. In the so-called M-scheme framework, the shell-model
wave function is written as a linear combination of the vast number of the M-scheme basis
states as

|Ψ〉 =
D

∑
α=1

vα|Mα〉, (2)

|Mα〉 =
A

∏
i=1

c†
αi
|−〉, (3)

where {αi} is a set of the single-particle orbits occupied by the active particles. The symbol
|−〉 denotes the wave function of the inert core. D is the number of the basis states allowed
with a specified z-component of the angular momentum (M) and parity (π), and called the
“M-scheme dimension”. The Schrödinger equation is reduced to the eigenvalue problem:

D

∑
β=1

〈Mα|H|Mβ〉vβ = Evα. (4)

Here, E denotes an eigenvalue of the Hamiltonian matrix, 〈Mα|H|Mβ〉.
What a shell-model code does is to solve the eigenvalue problem in Equation (4) and

obtain a few numbers of the lowest eigenvalues and their eigenvectors with the Lanczos
method. Since the M-scheme basis state |Mα〉 is not an eigenstate of the total angular
momentum, J2, the wave function in Equation (2) is generally not an eigenstate of J2.
However, since the shell-model Hamiltonian is commutable with J2, the solution obtained
by the Lanczos method automatically becomes an eigenstate of J2 in the case without any
degeneracy. On the other hand, a jj-coupled basis state with a good J2 eigenvalue can
be constructed with additional angular-momentum algebra. Such basis state is called a
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“J-scheme basis state” and the number of the allowed J-scheme basis states is called the
“J-scheme dimension”.

Table 1 shows the shell-model dimensions of several example nuclei with one-major-
shell model space. Since the current limitation of the M-scheme dimension is around
1011 ∼ 1012, nuclei with the f5 pg9 model space and nuclei in the smaller mass region are
able to be handled. Most open-shell heavy nuclei with the atomic mass number A > 100
are still far beyond the current capability. Since the numerical size of a vector with the
M-scheme dimension D is 8D Byte for the double precision, the capacity of the disk and
memory restricts the capability. The dimensions of the J-scheme basis states are also
shown in Table 1. It is two orders of magnitude smaller than the corresponding M-scheme
dimensions. However, the M-scheme Hamiltonian matrix is simpler and more sparse than
the J-scheme Hamiltonian matrix and then the M-scheme basis state is used for many
numerical computations.

Table 1. M-scheme and J-scheme dimensions of several nuclei. The dimension of the Mπ = 0+

(Jπ = 0+) subspace is shown. See text for details.

Nuclide Model Space M-Scheme Dim J-Scheme Dim

12C 2 ≤ N, Z ≤ 8 (p shell) 51 9
28Si 8 ≤ N, Z ≤ 20 (sd shell) 93,710 3372
56Ni 20 ≤ N, Z ≤ 40 (p f shell) 1.08 × 109 1.54 × 107

78Y 28 ≤ N, Z ≤ 50 ( f5 pg9, jj44) 1.31 × 1010 1.11 × 108

130Sm 50 ≤ Z, N ≤ 82 (jj55) 2.06 × 1015 9.58 × 1012

172Dy 50 ≤ Z ≤ 82, 82 ≤ N ≤ 126 1.71 × 1019 5.54 × 1016

(jj56)

In order to perform shell-model calculations in medium-heavy nuclei with huge dimen-
sions, various shell-model codes were developed. One of the most famous, popular shell-
model codes is the MSU (Michigan State University) version of the OXBASH code [25,26],
which was published in the 1980s. Its algorithm is a hybrid method combining M-scheme
and J-scheme basis states. It is equipped with a dialogue-type user-friendly interfaced
and had been most widely used in the nuclear physics community. It was replaced in the
2010s by its successor, NuShellX@MSU [27]. On the other hand, the M-scheme ANTOINE
code and its cousin, the J-scheme NATHAN code were developed by Strasbourg-Madrid
shell-model group [28,29]. The ANTOINE code has also been used in various studies. It is
equipped with an efficient algorithm based on on-the-fly generation of the coupling of the
proton and neutron basis states [1] and heavily relies on the FORTRAN 77 language. The
MSHELL and MSHELL64 codes were developed mainly by T. Mizusaki [30,31].

A recent major trend in the high-performance computing environment is massively
parallel computation. In order to perform shell-model calculations on modern massively
parallel computers efficiently, several shell-model codes have been developed recently, such
as the MFDn [32], BIGSTICK [33], and KSHELL [34] codes. Among them, the KSHELL
code was developing, which is equipped with MPI (Message Passing Interface)–OpenMP
(Open Multi-Processing) hybrid parallel computation and can be used both in a personal
computer and state-of-the-art supercomputer in the same manner. It shows good parallel
scaling up to around 104 threads [34]. The MFDn and BIGSTICK codes are mainly oriented
to the no-core shell-model approach by including three-body forces explicitly.

2.2. Lanczos Method

The Lanczos method [35] is one of the simplest Krylov subspace methods, in which the
low-lying exact eigenvalues are approximated by the Ritz values of the Krylov subspace.
The Krylov subspace is spanned by an initial vector, v0, and its vector multiplied by the
shell-model Hamiltonian matrix as

Kn(H, v0) = span{v0, Hv0, H2v0, · · · , Hn−1v0}. (5)
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The exact eigenvalues are approximated by the eigenvalues of the Hamiltonian matrix
in the subspace Kn(H, v0). In the Lanczos method one performs the orthonormalization of
the vector at every n, which makes the method numerically stable. While in the limit of n →
D the approximated eigenvalues agree with the exact ones, a few of the smallest eigenvalues
converge with small n, typically n  300 to obtain the 10 lowest eigenvalues [36]. In
practical codes, its extension, the thick-restart Lanczos method, is widely used [37].

2.3. Block Lanczos Method

In a large-scale problem, the number of the Hamiltonian matrix elements is too
huge to be stored in the memory. In the KSHELL code, the product of the Hamiltonian
matrix and a vector is the most time-consuming part of the Lanczos algorithm, since the
Hamiltonian matrix elements are generated on-the-fly for every matrix-vector product. In
order to reduce the time of the on-the-fly generation, the block algorithm to the thick-restart
Lanczos method, named the thick-restart block Lanczos method [34].

In the block algorithm, the on-the-fly generation is performed on every product of
the matrix and block vectors, not a vector. Since the number of the products in the block
Lanczos method is usually much smaller than that in the Lanczos method, the number of
the generations is reduced in comparison with the Lanczos method. The block Lanczos
method is one of the block Krylov subspace methods. The block Krylov subspace is defined
with a block of the initial vectors V0 = (v0,1, v0,2, · · · v0,q) as

Kn(H, V0) = span{V0, HV0, H2V0, · · · , Hn−1V0}, (6)

where q is the block size. Although this subspace is spanned by the nq vectors the number
of on-the-fly generation of the matrix elements is n. The eigenvalues of the Hamiltonian in
the Krylov block subspace are a good approximation to the exact ones. In practical code,
the thick-restart block Lanczos method was introduced in the KSHELL code [34].

As other eigensolvers for the shell-model calculations, the LOBPCG method [38]
and the Sakurai–Sugiura method [39] have been tested. In our KSHELL code, the block
Sakurai–Sugiura method and its variant, stochastic estimation of eigenvalue density, were
also implemented [40,41]. To study resonance states such as the Gamow shell model, the
energies of the target many-body resonant states correspond to interior eigenvalues, not the
lowest one, and are complex numbers. Since the simple Lanczos method cannot be used in
such a case, the Jacobi-Davidson method was adopted in the Gamow shell model [42] and
the Sakurai–Sugiura method was tested in the complex scaling method [43].

3. Approximation Methods to Exact Diagonalization

While shell-model codes for large-scale calculations have been developed vigorously,
various approximation schemes to the full model space were proposed. I briefly review
these attempts hereafter.

The auxiliary-field Monte Carlo was applied to shell-model calculations and became
one of the successful methods in describing p f -shell nuclei in the 1990s [44]. However, the
notorious sign problem in the quantum Monte Carlo method hampers us from utilizing
realistic effective interactions. As a possible solution to the sign problem, the extrapolation
method [44], the complex Langevin method [45], and a constrained-path approximation [46]
were suggested. Rather schematic interaction without the sign problem has been adopted
for the study of nuclear level density [47].

The density matrix renormalization group (DMRG) method is known to be an efficient
variational method to solve a one-dimensional quantum many-body problem. It was
applied to shell-model calculations coupled to continuum states [48,49]. Its advanced
one, the tensor network method, was applied later [50]. The projected shell model has
been a useful model with rather schematic interaction to describe high-spin states [51].
The angular-momentum projected CI is another variational method whose basis states
are the angular-momentum projected deformed Slater determinants with particle-hole
excitation [52]. On top of that, a lot of effort has been paid to developing efficient truncation
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schemes, such as the correlated basis method [53], the variational Monte Carlo method
with random walkers in M-scheme basis states [54,55], nucleon-pair truncation [56,57],
generator coordinate method (GCM) [58] and so on.

The variation after mean-field projection in realistic model space (VAMPIR) method
is one of the successful methods to describe the N  Z medium-mass nuclei [59,60]. In
the VAMPIR method, the nuclear wave function is expressed as a linear combination of
the parity, angular-momentum, number projected quasiparticle vacua. Each basis state is
determined one by one by minimizing the energy expectation value of this wave function.
In that sense, this method is the variation after the projection and superposition. In the
hybrid multi-determinant (HMD) method, the number-projected quasiparticle vacua are
replaced by the deformed Slater determinants [61,62]. The HMD has been used mainly for
the no-core shell-model approach [63].

These truncation methods provide us with the variational upper limit, which may be
controlled by a parameter to define the truncation. The exact energy can be estimated by the
extrapolation of the energy function of this parameter. The exponential convergence method
was suggested, the energy eigenvalue of the truncated subspace is expected to converge as
a function of its dimension [64]. As an alternative, the energy-variance expectation value
of the variational wave function can be used as a parameter for extrapolation. The energy
function of the energy variance can be fitted as a polynomial function, which enables
us to estimate the exact energy precisely. It was first introduced into the shell-model
calculation with particle-hole truncation in Ref. [65] and applied also to no-core shell model
calculations [66], the MCSM [67], QVSM [24], HMD [68], and the importance-truncated
shell model (ITSM) [69].

The ITSM was introduced firstly into the no-core shell model approach by R. Roth and
his collaborators successfully [70], and later applied also to the conventional shell model
approach [69]. The M-scheme basis states are truncated by the importance measure, which
is estimated by the many-body perturbation theory. The energy is calculated as a function
of the criteria of the importance measure, and it is extrapolated to the full space. One of its
results is shown in Section 3.2.

Among these efforts, the MCSM and the QVSM have been introduced. These models
are discussed in the following Subsections.

3.1. Monte Carlo Shell Model

Among all the efforts to develop various approximation schemes, the MCSM was
suggested in the 1990s [22,71,72] and revised in an advanced form [23,73] in the 2010s. It
has been used for extensive studies of neutron-rich nuclei. In this Section, I briefly review
the theoretical framework of the MCSM.

In the MCSM the nuclear wave function is written as a linear combination of the parity,
angular-momentum projected deformed Slater determinants:

|Ψ(Nb)〉 =
Nb

∑
n=1

J

∑
K=−J

fnKPJπ
MK|φn〉. (7)

|φn〉 is a deformed Slater determinant given as

|φn〉 = ∏
α

(
∑
k

D(n)
kα c†

k

)
|−〉, (8)
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which is parametrized by the complex matrix D(n)
kα . The energy E(Nb) is provided by solving

the following generalized eigenvalue problem of the Hamiltonian and norm matrices:

∑
nK

HmM,nK fnK = E(Nb) ∑
nK

HmM,nK fnK, (9)

HmM,nK = 〈φm|HPJπ
MK|φn〉,

NmM,nK = 〈φm|PJπ
MK|φn〉,

where PJπ
MK is the angular-momentum (J), parity (π) projector. fiK is the corresponding

eigenvector. In the early stage of the history of the MCSM, many candidates of Dkα are
generated by employing the auxiliary-field Monte Carlo technique and highly selected to
lower the energy expectation value E(Nb) [22]. In the advanced version of the MCSM [23],
one uses such selected basis states as initial states and optimize Dkα by minimizing the
energy expectation value utilizing the conjugate gradient method.

The angular-momentum projection in Equation (9) is performed by a three-fold integral
of the Euler angles and is time-consuming. The computation time of this part is almost
proportional to the number of the discretized mesh points of this integral. Ref. [74]
proposed that the Lebedev quadrature would reduce the number of the mesh points and
thus the amount of the computation to 2/3. The practical code was tuned employing the
technique in Ref. [75].

As a benchmark test, the ground-state energy of 56Ni with the FPD6 interaction [12]
and the p f -shell model space is shown in Figure 1. It has been used as a target of the
benchmark tests in various studies since the exact diagonalization is infeasible in the 1990s
and its structure is interesting in terms of the soft closed core and shape coexistence. Its
exact diagonalization was achieved in 2006 [76].

Figure 1. MCSM results of 56Ni with the FPD6 interaction. (a): MCSM energy against the number of
the MCSM basis states. (b): extrapolation plot with the energy variance. (c): magnified view of (b).
The red is the fitted curve with a second-order polynomial. See text for details.

Figure 1a shows the MCSM energy E(Nb) of the 56Ni as a function of Nb. The energy
drops rapidly in the region Nb < 20 and it gradually converges giving the variational
upper limit, −203.192 MeV (Nb = 150), which is only 6 keV higher than the exact one,
−203.198 MeV. In our preceding works, the MCSM gave −203.161 MeV with Nb = 150 in
2010 [67], −203.152 MeV in 2001 [22], −203.100 MeV in 1998 [77]. Thus, the methodological
development and progress in computational resources steadily improve the precision of
the MCSM.
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In this benchmark test, still the 6 keV difference with the exact value remains. In or-
der to fill this small gap, the extrapolation method utilizing the energy variance was
introduced. Figure 1b shows the energy against the corresponding energy variance,
ΔE(Nb) = 〈Ψ(Nb)|H2|Ψ(Nb)〉 − 〈Ψ(Nb)|H|Ψ(Nb)〉2. The energy variance is a good measure
of how well the approximation works since the energy variance of the exact eigenstate is
zero. As Nb increases, the energy and energy variance gradually decrease and the point
smoothly approaches y axis. Figure 1c shows the magnified view of Figure 1b. The red
line in Figure 1c is a second order polynomial fitted for these points. The y-intercept of the
fitted line becomes the extrapolated value, which agrees with the exact one within a keV.

Figure 2 shows the overlap probability between the MCSM wave function and the
exact wave function. Even at Nb = 1 the probability is 0.95. As Nb increases it approaches
the unit smoothly and surpasses 0.99 at Nb = 7. The final value at Nb = 150 is 0.9998. Thus,
the ground-state wave function of 56Ni is approximated by the MCSM in high precision,
and, moreover, the estimation of its eigenenergy is improved by the energy-variance
extrapolation. The MCSM method has been quite successful in medium-heavy nuclei
mainly in p f -shell and neutron-rich nuclei in the medium-heavy mass region. However,
the MCSM tends to underestimate the pairing correlation and 2+ excitation energies. In
order to treat the pairing correlation properly, the QVSM was introduced and is discussed
in the next Subsection.

Figure 2. Overlap probability between the MCSM wave function and the exact wave function by
the Lanczos method against the number of the MCSM basis states Nb. These wave functions were
computed for the ground state of 56Ni with the FPD6 interaction [12].

3.2. Quasiparticle Vacua Shell Model

The MCSM wave function is a linear combination of the Slater determinants, which
are not suitable for treating the pairing correlation in the heavy-mass region. In order to
include the pairing correlation efficiently, one can replace the Slater-determinant basis by
the number projected quasi-particle vacua. This framework is called the “QVSM“ [24]. The
QVSM wave function is defined as

|Ψ(Nb)〉 =
Nb

∑
n=1

J

∑
K=−J

fiKPJπ
MKPZPN |φn〉 (10)

where PZ and PN are the proton and neutron number projectors, respectively. |φn〉 is a
quasiparticle vaccum and is given as

β
(n)
k |φn〉 = 0 for any k,

β
(n)
k = ∑

i
(V(n)∗

ik c†
i + U(n)∗

ik ci), (11)

where βk denotes a quasi-particle annihilation operator and c†
i is the creation operator of the

single-particle orbit i. Thus, the basis state is parametrized by the complex matrices U and
V which keep the orthogonalization condition [78]. In the present work, this quasiparticle
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does not mix the proton and neutron spaces. The energy is obtained in the same manner to
the MCSM by solving Equation (9). U(n) and V(n) matrices are determined utilizing the
conjugate gradient method to minimize E(n).

As a benchmark test, shell-model calculations of 132Ba were performed with the
SN100PN interaction [79] and the jj55 model space. Figure 3 represents the results of
various approximation frameworks. In Figure 3, (a)–(d) present the results of the generator
coordinate methods (GCM) discussed in [58] in comparison with the MCSM result (e), the
QVSM result (f), and the exact shell-model energy (g). Figure 3A shows that the two GCM
results with the Slater determinants, (a) and (b), have 2 MeV or a larger deviation from
the exact one. The GCM results with the quasiparticle vacua basis, the MCSM result, and
the QVSM result show the deviation smaller than 1 MeV. The QVSM is the best result, the
deviation of which is only 45 keV.

Figure 3. Shell-model results of 132Ba with the SN100PN interaction by various approximation
methods. (A): the difference of shell-model energies from the exact one. (B): the excitation energies of
the ground-state band (2+1 , 4+1 , 6+1 and 8+1 ) and the quasi-γ band (2+2 , 3+1 , 4+2 , 5+1 , and 6+2 ). The results
are shown for: (a) generator-coordinate method (GCM) with the Hartree-Fock (HF) calculations
assuming axial symmetry, (b) GCM with the HF calculations without assuming axial symmetry,
(c) GCM with the Hartree-Fock-Bogoliubov (HFB) calculations assuming axial symmetry, (d) GCM
with the HFB calculations without assuming axial symmetry, (e) MCSM with 50 basis states without
variance extrapolation, (f) QVSM with 30 basis states without variance extrapolation, and (g) exact
shell-model result by the Lanczos diagonalization. Numerical data of (a–d) and (g) are taken from
Ref. [58].

Figure 3B shows the excitation energies of the yrast band (2+1 , 4+1 , 6+1 , and 8+1 ) and
the quasi-gamma band (2+2 , 3+1 , 4+2 , 5+1 , and 6+2 ) of 132Ba. The two GCM methods with the
Slater determinant basis states, (a) and (b), present too low excitation energies of the yrast
band because of the underestimation of the pairing correlation. The two GCM methods
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with the quasiparticle vacua basis, (c) and (d) show the correct excitation energies of the
yrast band. Two GCM methods assuming axial symmetry, (a) and (c), apparently failed
to reproduce the quasi-gamma band. The GCM method with the quasiparticle vacua
basis is referred to as the HFB+GCM (“HFB” stands for “Hartree-Fock-Bogoliubov”) in
Figure 3. The HFB+GCM result shows reasonable agreement with the exact one. The
MCSM also shows the reasonable agreement with the exact one, the moment of inertia
is slightly overestimated because of the underestimation of the pairing correlation. The
QVSM result shows the almost perfect agreement with the exact one.

This benchmark test confirms that the QVSM outperforms the GCM and the MCSM in
this mass region. Indeed, the QVSM wave function is superior to the MCSM wave function
of the same Nb by including the pairing correlation efficiently. However, the computation
time of the QVSM is longer than the MCSM with the same Nb mainly due to the number
projection. If the difference between the MCSM and QVSM energies with the same Nb is
small, the MCSM can surpass the QVSM by increasing Nb within the same computation
time. In Ref. [24], we demonstrated that in the case of 68Ni in the p f g9/2d5/2 model space
the MCSM and QVSM energies have small deviation with the same Nb, and thus the MCSM
is efficient in terms of the computation time. In practice, one can try both the QVSM and
the MCSM with a small Nb and identify which one is efficient before performing heavy
calculations. Empirically, it was found that the QVSM is more efficient in nuclei heavier
than tin isotopes, in which the pairing correlation becomes important.

As another test of the QVSM, one can perform shell-model calculation of 101Sn with
the 0g9/2, 0g7/2, 1d5/2, 1d3/2, and 2s1/2 orbits as the model space. One adopts an effective
interaction derived in an ab initio way, the VS-IMSRG method [15,80]. In the derivation,
the chiral N3LO 1.8/2.0(EM) (see details in Ref. [81]) was adopted for the two-body and
three-body forces with a similarity-renormalization-group evolution. Figure 4 shows the
results of the 7/2+1 and 5/2+1 energies of 101Sn provided by ITSM (Figure 4a), the Lanczos
diagonalization with particle-hole truncation (Figure 4b), and the QVSM (Figure 4c).

Figure 4. Energies of the 5/2+ (red) and 7/2+ (black) states of 101Sn. (a): ITSM result against Tmax

from Ref. [80]. (b): Result of the Lanczos diagonalization with t-particle t-hole truncation. (c): QVSM
with 60 basis states. The solid lines in (c) are fitted for the extrapolation. See text for details.

Figure 4a shows the ITSM result as a function of the number of the allowed particle-
hole excitation across the N = Z = 50 gap, Tmax [80]. The result shows good convergence
as a function of Tmax and predicts the ground 7/2+ state and the small excitation energy of
the 5/2+ state. Note that it does not mean a variational upper limit, since these results are
extrapolated values as a function of the importance measure. Figure 4b shows the Lanczos
diagonalization result with restricting t-particle t-hole excitation across the N = Z = 50 gap.
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The M-scheme dimension of t = 6 is 9.6 × 109, which is quite large. The energies gradually
lower as a function of t, but still it does not reach sufficient convergence. Figure 4c presents
the QVSM results against the energy variance. as Nb increases the energy and energy
variance decreases smoothly and approaches the y-axis or zero energy variance. The
y-intercepts of the fitted curve become the extrapolated values, which predict the 7/2+

ground state with small 5/2+ excitation energy.
Thus, these three methods predict the 7/2+ ground state and small excitation energy

of the 5/2+ state consistently. The extrapolated value of the QVSM seems consistent with
the behavior of and the diagonalization result with the t-particle t-hole truncation.

4. Summary

I reviewed the current status of the shell-model calculations, and our developments to
overcome the limitation of the conventional Lanczos diagonalization method. One of the
frontiers of shell-model study is to study neutron-rich nuclei towards the neutron drip line,
in which a larger model space is required. To perform shell-model calculations with such a
large model space, the MCSM was proposed and demonstrated in Section 3.1. The MCSM
has been applied to various studies of exotic nuclei [23]. Another frontier is to go heavier
open-shell nuclei, in which pairing correlation is essential to be treated efficiently. For such
purpose, the QVSM has been developed and its feasibility was demonstrated in Section 3.2.
Several benchmark tests to demonstrate the capabilities of the MCSM and QVSM methods
are presented.

Other frontiers for the shell-model study are the microscopic description of giant
resonance and statistical properties of the highly excited region. The Lanczos strength
function method [1] is a solution to this problem, but it is still trapped by the rapid growth
of the shell-model dimension. Although several attempts were performed to go beyond
this limit, which shows promising results [82], further study is required.
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Abstract: Low-energy Coulomb excitation is capable of providing unique information on static
electromagnetic moments of short-lived excited nuclear states, including non-yrast states. The
process selectively populates low-lying collective states and is, therefore, ideally suited to study
phenomena such as shape coexistence and the development of exotic deformation (triaxial or octupole
shapes). Historically, these experiments were restricted to stable isotopes. However, the advent of
new facilities providing intense beams of short-lived radioactive species has opened the possibility to
apply this powerful technique to a much wider range of nuclei. The paper discusses the observables
that can be measured in a Coulomb-excitation experiment and their relation to the nuclear structure
parameters with an emphasis on the nuclear shape. Recent examples of Coulomb-excitation studies
that provided outcomes relevant for the Shell Model are also presented.

Keywords: nuclear structure; low-energy Coulomb excitation; Shell Model

1. Introduction

Among the multitude of experimental techniques used in nuclear-structure physics,
low-energy Coulomb excitation is one of the oldest and, still to this day, one of the most
widely employed. The reason for its success is twofold. On the one hand, this technique
requires ion beams with relatively low energy (a few MeV per nucleon) and the large
cross sections of the Coulomb-excitation process can compensate for low beam intensity.
For these reasons, it was widely used for experimental nuclear-structure studies in their
early days and, at present, leads the way at new-generation radioactive ion beam (RIB)
facilities. On the other hand, low-energy Coulomb excitation is particularly sensitive to
nuclear collective properties, such as the shape. Specifically, this method can be used to
determine reduced transition probabilities between low-lying states and their spectroscopic
quadrupole moments. As it relies on the well-known electromagnetic interaction, all these
observables can be extracted in a model-independent way. Furthermore, the unique and
model-independent information on relative signs of E2 matrix elements, achievable solely
with this technique, makes it possible to link transitional and diagonal E2 matrix elements to
Hill–Wheeler parameters (β2, γ) describing a quadrupole shape, via non-energy weighted
quadrupole sum rules [1]. Hence, low-energy Coulomb excitation constitutes a powerful
tool to study phenomena such as shape coexistence, shape transitions, superdeformation,
and octupole collectivity (see [2–4] for recent examples).

This paper aims to outline how the results of low-energy Coulomb-excitation mea-
surements can be used to benchmark the Shell Model and inspire further theoretical
developments. In the next Section the method is briefly introduced, and first-order and
higher-order effects, giving rise to sensitivity to transitional and diagonal electromagnetic
matrix elements, are discussed. The following Section presents examples of low-energy
Coulomb-excitation experiments that provided outcomes particularly relevant for the Shell
Model. The aim of this paper is not to provide a comprehensive review of low-energy
Coulomb-excitation studies, as these can be found elsewhere (see, for instance, [5,6]).
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2. Basics of Low-Energy Coulomb Excitation

Coulomb excitation is an inelastic scattering process, in which the two colliding nuclei
are excited via a mutually-generated, time-dependent electromagnetic field. If the distance
between the collision partners is sufficiently large, the short-range nuclear interaction has a
negligible influence on the excitation process, which is governed solely by the well-known
electromagnetic interaction. This condition can be quantified using the Cline’s safe distance
criterion [7], appropriate for heavy nuclei, which states that if the distance of the closest
approach between the surfaces of the collision partners exceeds 5 fm, contributions from
the nuclear interaction to the observed excitation cross sections are below 0.5%.

The excitation cross sections depend on electromagnetic matrix elements coupling
the low-lying states in the nucleus of interest, including diagonal E2 matrix elements
related to spectroscopic quadrupole moments. The decay of Coulomb-excited states is
governed by the same set of electromagnetic matrix elements, although the influence of
specific matrix elements on the excitation and decay processes may be very different as
illustrated by Figure 1. Namely, low-energy Coulomb excitation favours the population of
collective states through E2 and E3 transitions, while other multipolarities typically have a
small impact on the measured cross sections (see [8] for further details). The M1 and E1
multipolarities, however, remain important in the de-excitation process. The quantities
measured in low-energy Coulomb-excitation experiments are, most commonly, γ-ray yields
in coincidence with at least one of the collision partners. It is, however, also possible to
measure Coulomb-excitation cross sections by detecting only scattered particles or only
γ rays.

m
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Figure 1. Low-lying level scheme of a fictitious even–even nucleus outlining dominant excitation (left) and de-excitation
(right) patterns in low-energy Coulomb excitation. The transitions are labelled with the corresponding matrix elements.
The inset on the left depicts the magnetic substates m of the 2+1 state and illustrates the reorientation effect. Some allowed
transitions are neglected for simplicity.

While Coulomb-excitation cross sections can be calculated using a full quantum-
mechanical treatment, a semi-classical approach is typically employed to overcome diffi-
culties arising from the long-range of the Coulomb interaction and complex level schemes
of the colliding nuclei. In this approach, introduced by K. Alder and A. Winther [9],
the relative motion of collision partners is described using classical equations, and the
quantal treatment is limited to the excitation process. The validity of this procedure,
which provides a significant simplification of the calculations without a relevant loss of
accuracy, stems from the fact that the interaction in the Coulomb-excitation process is
dominated by the Rutherford term. For the semi-classical approximation to be valid, the de
Broglie wavelength associated with the projectile must be small compared to the distance
of closest approach, and the energy transferred in the excitation process must be small
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compared with the total kinetic energy in the centre-of-mass reference system. These two
conditions are well satisfied in low-energy Coulomb-excitation experiments involving
heavy ions, but when light nuclei are involved (i.e., protons, deuterons, α particles), a full
quantum-mechanical analysis is required.

2.1. First-Order Effects

If the interaction between the colliding nuclei is weak, i.e., the excitation probability is
�1, Coulomb-excitation amplitudes can be calculated within the first-order perturbation
theory. In the first order, the cross section for the excitation of a final state I f from the ground
state Ig.s. is proportional to the square of the transitional matrix element 〈I f ||EL||Ig.s.〉 ,
where L = 2, 3. Therefore, from the measured Ig.s. → I f Coulomb-excitation cross section,
it is possible to extract the reduced transition probability B(EL; Ig.s. → I f ).

The excitation process strongly depends on the kinematics and the mass es A and
atomic numbers Z of the target and projectile nuclei. The first-order approximation is
usually sufficiently accurate to describe the population of excited states from the ground
state in experiments employing a light beam or a light target, or when small centre-of-mass
scattering angles are used; examples of such recent studies are presented in Section 3.4.
Larger kinetic energy, larger atomic numbers of the collision partners, and lower excitation
energies enhance the excitation probability, leading to the appearance of higher-order
effects in the excitation process.

2.2. Higher-Order Effects

If the electromagnetic field acting between the collision partners is strong enough and
the collision process lasts a sufficiently long time, multi-step excitation becomes a possibility
and higher-order contributions have to be taken into account. These contributions give
rise to the experimental sensitivity to relative signs of transitional matrix elements and
spectroscopic quadrupole moments of excited states, as described in the following.

2.2.1. Multi-Step Excitation and Relative Signs

To understand the importance of multi-step excitation, it is useful to consider the
population of two excited states , Iπ = 0+2 , 4+1 , in an even–even nucleus (see Figure 1). As
Coulomb excitation via an E0 transition is strictly forbidden, two-step excitation is the only
way to populate the 0+2 state. The 4+1 state can be Coulomb-excited in two ways: directly
from the ground state, via an E4 excitation, or with an E2 two-step excitation through the
first excited state. Since the probability of Coulomb-exciting a given state through an
E4 transition is much smaller than through the E2 excitation [8], the two-step excitation is
typically dominant. Consequently, by measuring the intensities of the 4+1 → 2+1 , 0+2 → 2+1
γ-ray transitions with respect to the 2+1 → 0+1 decay, and relating them to excitation cross
sections, it is possible to extract the B(E2; 4+1 → 2+1 ) and B(E2; 0+2 → 2+1 ) values.

In some cases, single-step and multi-step excitations are comparable in magnitude; an
example is the 2+2 state in an even–even nucleus (see Figure 1). This state can be populated
by a direct E2 transition from the ground state and by a two-step excitation through the
first excited state. The total excitation probability for the 2+2 state can be written as:

P(0+g.s. → 2+2 ) = |a(1)(0+g.s. → 2+2 ) + a(2)(0+g.s. → 2+1 → 2+2 )|2, (1)

where a(1), a(2) are first-order and second-order excitation amplitudes. Consequently,
P(0+g.s. → 2+2 ) includes a term related to one-step excitation (〈2+2 ||E2||0+g.s.〉2), one related
to two-step excitation (〈2+2 ||E2||2+1 〉2〈2+1 ||E2||0+g.s.〉2) and the interference term

〈2+2 ||E2||0+g.s.〉〈2+2 ||E2||2+1 〉〈2+1 ||E2||0+g.s.〉. (2)

In this last term, at variance with all the others, the matrix elements are not squared.
As the total Coulomb-excitation cross section will be different for a negative (destructive)
and a positive (constructive) interference term, its sign becomes an observable.
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More complex interference terms can influence the Coulomb-excitation cross sections
if states are populated through several excitation patterns involving multiple intermediate
states. As such terms include non-squared matrix elements, their appearance leads to the
experimental sensitivity to relative signs of transitional matrix elements. A sign convention
should be adopted to ensure consistent analysis and facilitate a comparison with model
predictions. Usually, signs of all in-band transitional E2 matrix elements are assumed to
be positive, and, for each band head, a positive sign is imposed for one of the transitions
linking it with a state in the ground-state band. The signs of all remaining matrix elements
can be determined relative to those.

The probability of exciting a state via a process involving two or more steps can be
comparable to that of one-step excitation, depending, for instance, on the magnitude of the
involved matrix elements. Multi-step excitation is enhanced for larger scattering angles
and masses of the collision partners. Experiments aiming at extracting reduced transition
probabilities between the ground state and an excited state are typically performed in
conditions reducing multi-step excitations, by limiting the scattering angle in the forward
direction and selecting a light collision partner. In contrast, if the relative signs of transi-
tional matrix elements and reduced transition probabilities between excited states are the
objective of the experiment, the detection of scattered particles at backward angles and the
use of a heavy collision partner is preferable.

2.2.2. Reorientation Effect and Spectroscopic Quadrupole Moments

The reorientation effect [10] is another second-order effect in Coulomb excitation,
which provides experimental sensitivity to spectroscopic quadrupole moments (Qs) of
excited nuclear states. This effect essentially consists in a double-step excitation, in which
the intermediate state is identical to the final state, but the magnetic substate is different
(see Figure 1). For a given state Iπ , reorientation produces a second-order correction to its
Coulomb-excitation cross section, which is proportional to the diagonal matrix element
〈Iπ ||E2||Iπ〉, i.e., to Qs(Iπ). Since this matrix element, and not its square, appears in the
expression for cross section, its sign is also an observable. In favourable conditions, the
reorientation effect may have a considerable influence on the measured γ-ray intensities.
For example, in a recent study of 74Kr Coulomb-excited on 208Pb [11], a change of sign of the
Qs(2+1 ) from negative to positive resulted in a 1.8-fold increase of the 4+1 → 2+1 /2+1 → 0+1
intensity ratio measured in coincidence with Kr nuclei scattered at 130◦ in the centre-of-
mass frame.

The influence of the reorientation effect on Coulomb-excitation cross sections is often
comparable to that of multi-step excitations. Consequently, the impact of the spectroscopic
quadrupole moment can compete with, for instance, that of the sign of an interference
term. This is why in early low-energy Coulomb-excitation measurements two values
of the spectroscopic quadrupole moment were often reported: one corresponding to a
positive sign of the 〈0+1 ||E2||2+1 〉〈2+1 ||E2||2+2 〉〈2+2 ||E2||0+1 〉 interference term, and the other
one for a negative sign. This ambiguity can be solved by measuring γ-ray yields as a
function of the scattering angle, thus exploiting the different angular dependence of the
two effects [5,12]. This approach, typically referred to as a differential Coulomb-excitation
measurement, is often employed in modern Coulomb-excitation studies. Alternatively,
the use of different beam-target combinations in the same experiment can also help to
disentangle competing contributions to the cross sections, and more constraints can be
provided by including known spectroscopic data (lifetimes, branching ratios, and E2/M1
branching ratios) in the Coulomb-excitation data analysis.

2.3. Quadrupole Sum Rules

The nuclear shape can be inferred indirectly from transition probabilities or spectro-
scopic quadrupole moments, but this approach is not always unambiguous and generally
depends on comparisons with models. An alternative model-independent approach,
proposed by K. Kumar [1] and D. Cline [7], exploits the specific properties of the electro-
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magnetic multipole operators. As these operators are spherical tensors, their zero-coupled
products are rotationally invariant. The expectation values of these products are observ-
ables, and they are strictly related to the parameters describing the shape of the charge
distribution.

The electric quadrupole operator in the principal axis system can be represented
using the variables Q and δ, whose expectation values are equivalent to the Hill–Wheeler
parameters (β2, γ) describing the quadrupole shape [1,7]. The simplest invariants read:

{E2 × E2}0 =
1√
5

Q2, (3)

{
[E2 × E2]2 × E2

}0
= −

√
2
35

Q3 cos 3δ. (4)

The expectation values of these invariants for a state In can be expressed through E2
matrix elements defined in the laboratory system. For instance:

〈In|Q2|In〉 =
√

5(−1)2In

√
2In + 1 ∑

m
Mnm Mmn

{
2 2 0
In In Im

}
, (5)

〈In|Q3 cos 3δ|In〉 = −
√

35
2
(−1)2In

2In + 1 ∑
ml

Mnl Mlm Mmn

{
2 2 2
In Im Il

}
, (6)

where Mab ≡ 〈Ia||E2||Ib〉 and the expression in curly brackets is a 6j coefficient. Higher-
order invariants can be defined, such as 〈Q4〉, which can be linked to the dispersion in
〈Q2〉 via

σ(Q2) =

√
〈Q4〉 − (〈Q2〉)2. (7)

A similar definition applies to σ(Q3 cos 3δ). In principle, this approach can be ex-
tended to more complex, non-quadrupole shapes.

The invariants obtained from quadrupole sum rules provide a model-independent de-
scription of the nuclear shape in the intrinsic reference system. However, the experimental
determination of such invariants requires numerous matrix elements to be known. While
for the lowest-order shape invariant, 〈Q2〉, all matrix elements enter the sum in squares,
this is not true for most higher-order invariants. In particular, the 〈Q3 cos 3δ〉 invariant is
constructed from triple products of E2 matrix elements, 〈In||E2||Il〉〈Il ||E2||Im〉〈Im||E2||In〉,
where |In〉 is the state in question and |Il〉 and |Im〉 are the intermediate states. The diagonal
matrix elements (i.e., |Il〉 = |Im〉 ) and their signs are necessary to extract this invariant, as
well as the relative signs of all relevant transitional matrix elements.

While the sums in Equations (5) and (6) formally run over all intermediate states
that can be reached from the state in question via a single E2 transition, usually only a
few key states contribute to the invariant. In particular, for the ground state of an even–
even nucleus, the contributions to 〈Q2〉 are dominated by the coupling to the 2+1 state,
which typically amounts to well over 90% of the total. Similarly, the largest contributions
to 〈Q3 cos 3δ〉 for the ground state come from the 〈0+1 ||E2||2+1 〉〈2+1 ||E2||2+1 〉〈2+1 ||E2||0+1 〉
and 〈0+1 ||E2||2+1 〉〈2+1 ||E2||2+2 〉〈2+2 ||E2||0+1 〉 products. The situation becomes much more
complicated for excited states, and the number of intermediate states that need to be
included in the sum rules varies from one case to another. While theoretical approaches
can, in principle, provide a complete set of electromagnetic matrix elements, this is not
always true for experiments. Systematic studies employing the Shell Model addressed this
convergence issue [13–15]. The contributions of individual products of matrix elements to
the experimentally determined invariants have also been analysed in some cases [14,16–18].
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3. Examples of Recent Low-Energy Coulomb-Excitation Studies Relevant for the
Shell Model

The examples of experimental studies presented in this Section illustrate the variety
of nuclear-structure questions, relevant for the Shell Model, that can be addressed using
low-energy Coulomb excitation. The discussion is focused on the region of mid-mass nuclei
between Ca and Sm and the reader is directed to [6] for other noteworthy examples,
particularly concerning lighter nuclei important for astrophysical processes.

3.1. Superdeformation in 42Ca

The potential of Coulomb excitation as a tool to study superdeformation has been
demonstrated in the very first experiment using the AGATA γ-ray tracking array [19].
The superdeformed (SD) structure in 42Ca was populated following Coulomb excitation
of a 42Ca beam on 208Pb and 197Au targets [3,18]. From the measured γ-ray intensities,
magnitudes and relative signs of numerous E2 matrix elements coupling the low-lying
states in 42Ca were determined. In particular, two key pieces of information were obtained
for the first time, which confirm that the band built on the 0+2 state in 42Ca has a SD character
at low spin: the spectroscopic quadrupole moment of the 2+2 state, which corresponds to
β2 = 0.48(16), as well as the enhanced B(E2; 2+2 → 0+2 ) = 15+6

−4 W.u. value. As discussed
in [12], even though the 2+2 → 0+2 transition is too weak to be observed and, prior to
the study of K. Hadyńska-Klȩk et al. [3,18] only an upper limit for the branching ratio
was known, the corresponding matrix element has a strong influence on excitation cross
sections of the observed states, and hence it could be determined from the intensities of
other transitions measured in the Coulomb-excitation experiment.

The obtained transitional and diagonal E2 matrix elements were further interpreted
in terms of quadrupole invariants of the 0+1,2 and 2+1,2 states, leading to the conclusion
that the spherical ground state of 42Ca exhibits large fluctuations into the β2–γ plane,
while the excited structure has a large quadrupole deformation of β2 = 0.43(4) for the
0+2 state, comparable to those deduced from lifetime measurements for other SD bands
in this mass region. The important increase of the 〈Q2〉 quadrupole invariant for the 2+1
state with respect to that for the ground state was attributed to the mixing of the 2+ states.
Additionally, the triaxiality parameter 〈cos 3δ〉 obtained for the 0+2 state, corresponding
to γ = (13+5

−6)
◦, provided the first experimental evidence for the non-axial character of

SD structures around A ≈ 40. The value obtained for the ground state, γ = 28(3)◦, was
interpreted as resulting from its softness.

This experimental study triggered new Large-Scale Shell Model (LSSM) calculations
for 42Ca [3,18]. They were performed using the SDPF.MIX interaction in the sdp f model
space for neutrons and protons, with a virtual 28Si core, as in the earlier study [20] that
successfully described properties of the deformed 4p–4h and 8p–8h structures in 40Ca.
Up to six particle –hole excitations from the 2s1/2 and 1d3/2 orbitals into the p f orbitals
were allowed, and the electric effective charges were 1.5e for protons and 0.5e for neutrons.
The overall agreement of the calculations with the experimental level energies and decay
patterns is remarkable, see Figure 2. The experimental values of the 〈Q2〉 and 〈Q3 cos 3δ〉
invariants for the 0+1,2 states were also well reproduced. The only notable systematic
difference is the overestimation of E2 matrix elements in the SD band and underestimation
of those in the yrast band as well as intra-band ones, which suggests that the mixing
between the two bands is not fully reproduced by the calculations.

The LSSM results provide insight into the configurations of normal-deformed and SD
states in 42Ca: the 0+2 and 2+2 states are predicted to be dominated by the 6p–4h excitation s,
while the ground-state band has a predominantly two-particle configuration, with consid-
erable 4p–2h and 6p–4h admixtures. Furthermore, they suggest that the experimentally
known 2+3 state is the band head of a K = 2 γ band related to the SD structure, with the
configuration dominated by almost equal contributions of 6p–4h and 8p–6h excitations
(≈40% each). This gives further support for the slightly triaxial shape of the SD band
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in 42Ca, while the identification of higher-spin members of the predicted K = 2 γ band
represents a challenge for future experimental studies.

3.1

1.6

0.6

35

34

24

42

13

1.1

2.8

0.3

3.0

0.2

16.3

12.2

4.3

2.1

6.3

0.4

7.5
2.0

9

50

27

15

57

0.72

7.6

9.7

14.3

1.0

12.9

23

0

2 1525

4 2752

6 3189

01837

22424

43254

64715

23392

0

2 1531

4 2468

6 3220

01666

22362

43421

64807

23322

34045

( –23)

( –3)

(+18)

( –42)

( –12)

LSSMEXP

42Ca

Figure 2. Comparison of the experimental low-energy part of the 42Ca level scheme with that
calculated using Large-Scale Shell Model (LSSM) [3,18]. States are labelled with their energies in
keV, transitions with E2 transition probabilities in Weisskopf units and spectroscopic quadrupole
moments for the 2+ states, expressed in efm2, are reported in brackets.

3.2. Shape Coexistence, Triaxiality, and the N = 50 Shell Closure in Germanium and Zinc Isotopes

Detailed low-energy Coulomb-excitation studies were performed to investigate
quadrupole properties of stable and exotic Ge and Zn isotopes, which are important
in the context of the numerous Shell-Model calculations developed for this region. While
extensive sets of electromagnetic matrix elements were extracted for the stable nuclei and
interpreted within the quadrupole sum rules approach, in neutron-rich isotopes these
measurements provided the first access to B(E2) values and, in some cases, also excita-
tion energies.

In the stable Ge isotopes, the 〈Q2〉 invariants extracted for the ground state and the 0+2
state via low-energy Coulomb excitation represent one of the strongest signatures of shape
coexistence [21,22]. As shown in Figure 3a, the ground-state 〈Q2〉 values in 70–76Ge are
similar, 0.2–0.3 e2b2, while those of the 0+2 states evolve as a function of the neutron number.
The 0+2 state in 70Ge is more deformed than the ground state [23], in 72Ge both states seem
to have comparable overall deformations and considerable triaxiality [24], while those for
the 0+2 states in 74,76Ge point to nearly spherical shapes [25,26]. Based on the similarity of
the 0+2 energy systematics in Ge and Zn nuclei (see Figure 3b), one could speculate that
shape coexistence is present also in the latter isotopic chain.

The first hints of the intruder character of the 0+2 states in the Zn isotopes came from
E0 measurements in the stable even–even 64–68Zn isotopes [27], a feature further supported
by the results of multi-step Coulomb-excitation experiments on 66,68Zn [14,28]. However,
only for 68Zn has the key 〈2+3 ‖E2‖0+2 〉 matrix element been determined, which, when
combined with other matrix elements involving the 0+2 state, leads to a 〈Q2〉 invariant
significantly different from that of the ground state [28]. On the other hand, multiple low-
energy Coulomb-excitation studies of stable Ge and Zn isotopes [14,25,28] demonstrated
the importance of the triaxial degree of freedom in their structure, which was also evoked
for the neighbouring 76,78Se nuclei [29,30]. Particularly relevant is the study of 76Ge [31],
which yielded (β2, γ) parameters for the 0+1 , 2+1 and 2+2 states and their dispersions, which
are consistent with rigid triaxial deformation. This is particularly important considering
that 76Ge is a candidate for searches of neutrinoless double-β decay, and the nuclear shape
is predicted to play a significant role in this process [32,33].
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Shell-model calculations focusing on the Ge, Zn, and Se isotopes well reproduced the
features related to their triaxial shapes [14,29,38,39], even though the degree of γ softness
and the presence of static triaxial deformation are still debated [38]. The V-shaped pattern
of the 0+2 excitation energies in the Ge isotopes between the neutron numbers N = 36 and
N = 44 (see Figure 3b) was related to shape coexistence by Shell-Model calculations [39]
using the JUN45 effective interaction in a model space consisting of the 56Ni inert core and
up to the 1g9/2 orbital for both neutrons and protons. The collectivity of the deformed
ground states was linked to strong correlations (arising from pairing and the quadrupole
–quadrupole force), which offset the N = 40 gap and lead to the enhanced occupation of
the 1g9/2 neutron orbital that has a maximum predicted for N = 40. In contrast, the role of
neutron excitations from the p f shell into the 1g9/2 orbital is smaller for the 0+2 states, with,
on average, two additional neutrons promoted through the N = 40 gap with respect to
the normal-order configuration. In particular, the wave function of the 0+2 state in 72Ge is
dominated by the normal-order configuration, i.e., neutrons completely filling the p f shell,
with a contribution of 37%, which suggests a nearly spherical shape.

As shown in Figure 3b, a decrease of the 0+2 state energy between N = 36 and
N = 40, similar to those observed in the Ge and Zn chains, is evident also in the Ni
isotopes. According to Monte-Carlo Shell-Model (MCSM) calculations with the A3DA
effective interaction in the p f g9/2d5/2 model space [40], the 0+2 states in 64,66,68Ni are oblate
deformed and result from neutron 2p–2h excitation across the N = 40 gap, similar to their
counterparts in the Ge isotones. The V-shaped trend of the 0+2 excitation energies with
the vertex at N = 40 does not persist for 70Ni and beyond, as different configurations
start to appear at low excitation energy. Specifically, proton 2p–2h excitations across
the energy gap at Z = 28 are suggested [40,41] to dominate the structure of the 0+4
state in 64,66Ni, the 0+3 state in 68Ni and the 0+2 state in 70Ni. MCSM calculations predict
that these predominantly π(2p–2h) states have well-deformed prolate shapes, resulting
from an interplay of type-I and type-II shell evolution. The experimental verification
of this multiple shape-coexistence scenario through the quadrupole sum rules approach
represents a challenge for future low-energy Coulomb-excitation studies. Unfortunately,
the population of excited 0+ states in both stable and radioactive Ni nuclei will be severely
limited due to the high excitation energies involved, which is further complicated by the
prohibitively low intensities of radioactive Ni beams that are currently available at energies
suitable for low-energy Coulomb excitation.

On the neutron-rich side, low-energy Coulomb excitation has provided valuable
structure information in the Ge and Zn isotopes. Experiments at ISOLDE identified the
first excited 2+1 state in 78,80Zn and yielded the B(E2; 2+1 → 0+g.s) values in 74–80Zn and the
B(E2; 4+1 → 2+1 ) values in 74,76Zn [42,43]. The obtained B(E2) values hint at the importance
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of triaxiality also in neutron-rich Zn isotopes, whose ground states were suggested to be
rather diffuse in the γ degree of freedom [42]. Furthermore, the energy of the first excited
state in 80Zn confirms the persistence of the N = 50 shell closure two protons away from
the doubly-magic 78Ni. The same conclusion was reached for the neutron-rich Ge isotopes
from the B(E2; 2+1 → 0+g.s) values of the radioactive 78,80Ge measured using low-energy
Coulomb excitation at ORNL [44].

The measured B(E2; 2+1 → 0+1 ) values in 74–80Zn were found in good agreement with
those deduced from the experimental 2+1 excitation energies via the Grodzins rule [45],
provided that a renormalization factor (0.92) was applied to the calculated values [42]. The
experimental results for 74–80Zn and 78,80Ge were compared with Shell-Model calculations
comprising the 2p3/2, 1 f5/2, 2p1/2, and 1g9/2 orbitals for both protons and neutrons outside
of an inert 56Ni core. Effective charges significantly different from the standard eν = 0.5e,
eπ = 1.5e values were adopted to compensate for the enhanced 56Ni core polarization
reported in [46,47]. The persistence of the N = 50 shell closure in neutron-rich Zn and
Ge isotopes, emerging from the experimental and calculated B(E2) values and excitation
energies, anticipated the more recent results for 78Ni , in which the first excited 2+1 state
was ultimately identified [48].

3.3. Shape Coexistence in Z ≈ 40 Nuclei

The sudden onset of deformation at N = 60 observed in the Zr and Sr isotopic
chains has attracted a lot of attention, both from theoretical and experimental points
of view. While the energies of the 2+1 states in 90–100Zr were well reproduced by the
LSSM calculations reported in [49], the required truncations of the model space made
it impossible to account for the enhanced transition probability in 100Zr. Recently, the
rapidity of the shape transition in the Zr isotopes has been reproduced, for the first time
both in terms of level energies and transition probabilities, using the MCSM [50]. The
calculations [50] also predict that 94,96,98,100Zr would present a multitude of low-lying states
with various quadrupole shapes. A Coulomb-excitation study of 94Zr aiming to verify this
scenario was performed at INFN-LNL [51], and its analysis is in progress. There exists,
however, strong experimental evidence for the coexistence of deformed and spherical
structures in 96,98Sr, recently reinforced by the results of Coulomb-excitation experiments
performed at ISOLDE [2,52]. The rich set of transitional and diagonal E2 matrix elements
determined in this study provides a consistent picture of a prolate-deformed ground-
state band in 98Sr that coexists with an almost spherical structure built on the 0+2 state.
Similarity of the B(E2; 2+2 → 0+2 ) = 13(2) W.u. value in 98Sr with the B(E2; 2+1 → 0+1 ) =
17+4

−3 W.u. value in 96Sr, as well as of the quadrupole moments of the 2+2 state in 98Sr and
the 2+1 state in 96Sr (both compatible with zero), suggest that the spherical and deformed
structures interchange at N = 60. Contrary to what is observed in most known cases
of shape coexistence, these two structures mix very weakly. This feature is in line with
the type-II shell-evolution scenario proposed in [50] that links particular multiparticle–
multihole excitations to significant reorganisations of the shell structure, which hinders
configuration mixing.

A notable result of [2,52] is the observed reduction of the Qs(2+1 ) value in 98Sr with
respect to the rotational estimate. This feature may indicate triaxiality of this state, which
gives way to a more prolate deformation for higher-spin members of the ground-state band.
Detailed Coulomb-excitation studies of 96,98,100Mo [17,53] yielded 〈Q2〉 and 〈Q3 cos 3δ〉
invariants for the ground states and the low-lying 0+2 states, demonstrating their different
shapes and confirming that triaxiality is also a key feature of Mo nuclei with A ≈ 100. The
obtained invariant quantities indicate that, in 96Mo, an almost spherical 0+2 state coexists
with a triaxial ground state, while, in 98Mo, both the 0+1 and 0+2 states have approximately
the same values of 〈Q2〉. However, the 〈cos 3δ〉 values suggest that the ground state in
98Mo is triaxial and the 0+2 state has a prolate shape. The same pattern of a prolate 0+2 state
coexisting with a triaxial ground state appears in 100Mo, but the 〈Q2〉 invariants obtained
for both the 0+1 and 0+2 states in this nucleus are significantly greater than those for 98Mo,
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with that for the 0+2 state being much larger. Given also that the proton vacancies and
neutron occupancies for the ground states of 98,100Mo were recently extracted from an
extensive series of single-proton and single-neutron transfer reactions [54], these nuclei
would represent a stringent test for Shell-Model calculations. Such investigation would
also be relevant in the context of neutrinoless double-β decay studies, as 100Mo is one of
candidate nuclei for this process.

3.4. Evolution of Collectivity in Z ≈ 50 Nuclei

The tin nuclei, forming the longest chain of experimentally accessible isotopes between
two doubly-magic nuclei, have traditionally been considered a prime example of the senior-
ity scheme. While this description is supported by the almost constant energies of the 2+1
states in the even–even Sn nuclei from 102Sn to 130Sn, the corresponding B(E2; 2+1 → 0+1 )
values seem to deviate from the expected parabolic behaviour (see Figure 4). Exten-
sive Coulomb-excitation studies of stable [55–57] and exotic [58–62] Sn nuclei yielded
B(E2; 2+1 → 0+1 ) values for 106–134Sn that were discussed in the context of Shell-Model
calculations. In the Coulomb-excitation campaigns aiming at high-precision measure-
ments of the B(E2; 2+1 → 0+1 ) values in stable Sn isotopes, the experimental conditions
minimised the role of multi-step excitation and the reorientation effect. The experiments at
ORNL [55] were performed in strongly inverse kinematics, with a 12C target bombarded
by 112,114,116,118,120,122,124Sn beams; a natTi target was also used for complementary
Qs(2+1 ) measurements.

In the IUAC campaign [56,57], a reaction partner with a much higher Z was used:
a 58Ni beam impinged on 112,116,118,120,122,124Sn targets. However, due to the selection of
events with the Ni beam particles scattered at forward angles, no excitation of higher-lying
states was observed, although their possible weak influence on the 2+1 excitation process
was taken into account in the data analysis. The B(E2; 2+1 → 0+1 ) values were obtained
with relative uncertainties of 5% or less in all cases, and the results of the two campaigns
agreed within 3σ for 120,122,124Sn and within 1σ for the other isotopes, demonstrating the
level of accuracy and precision that can be achieved (see Figure 4).

Low-energy Coulomb-excitation experiments on neutron-deficient Sn isotopes were
performed at ISOLDE [58,59] with 2.8-MeV/A 106,108,110Sn beams bombarding 58Ni tar-
gets. On the neutron-rich side, a campaign was performed at ORNL [60,61] to study
126,128,130,134Sn in very similar experimental conditions as those used for stable isotopes
in [55]. In order to increase the excitation cross section for the 2+1 state in 132Sn, located
at 4.04-MeV excitation energy, targets of 48Ti and 206Pb were used in the ORNL [60] and
HIE-ISOLDE [62] measurements, respectively.

While certain discrepancies with the values obtained using other methods exist (see
e.g., [63] for a compilation of experimental data), the ensemble of experimental results
points to an asymmetric shape of the B(E2; 2+1 → 0+1 ) distribution as a function of N, with
a plateau extending towards lighter nuclei. The reproduction of this plateau represented a
challenge for model calculations. Recently, its appearance has been discussed [64,65] in
the context of pseudo-SU(3) symmetry acting in the space of gds orbitals excluding 1g9/2.
The calculations were performed using Vlow−k variants of the realistic N3LO interaction,
with the monopole part of the interaction replaced by a Hamiltonian provided by the
GEMO code [66], adding the single-particle energies for 101Sn. They successfully repro-
duced the evolution of the B(E2; 2+1 → 0+1 ) values in 104–114Sn [64,65] (see Figure 4) and
demonstrated that modifications of the pairing strength had a negligible effect on the cal-
culated B(E2; 2+1 → 0+1 ) values, in contrast to what was observed for the B(E2; 4+1 → 2+1 )
strengths [65].
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Figure 4. Reduced transition probabilities B(E2; 2+1 → 0+1 ) in the Sn isotopic chain deter-
mined from low-energy Coulomb-excitation measurements. The experimental results obtained
at ORNL [55,60,61], IUAC [56,57], and ISOLDE [58,59,62] are compared with predictions from the
Monte-Carlo Shell Model (MCSM) [63] and LSSM [64,65].

An alternative explanation was offered by the MCSM calculations [63] performed in
the full gds model space complemented by the 1h11/2, 2 f7/2, and 3p3/2 orbitals for protons
and neutrons. These calculations provide good reproduction of all measured B(E2; 2+1 →
0+1 ) values in the Sn chain, including the local increase observed for 132Sn (see Figure 4),
and link their enhancement for 108–114Sn to the development of quadrupole deformation
driven by proton excitations from the 1g9/2 orbital. This scenario is consistent with the
observed increase of the Qs(2+1 ) values at mid shell [55], which was suggested to be due to
the mixing with a deformed configuration, resulting in the presence of proton 2p–2h and
4p–4h components in the 2+1 wave function [55]. Low-lying states of predominantly proton
2p–2h character have been identified in 114,116,118Sn via two-proton transfer reactions [67],
and later also in 110,112Sn and 120,122,124Sn, although at higher excitation energies. The
MCSM calculations [63] predicted indeed that the ground states of Sn nuclei involve a
significant promotion of protons across the Z = 50 gap, with the largest 2d5/2 occupation
predicted at N = 60. The occupation of proton orbitals above the Z = 50 gap becomes
even larger for the 2+1 states, and the corresponding T-plots indicate deformed shapes [63],
in line with the measured non-zero quadrupole moments. Multi-step Coulomb-excitation
studies aiming at the determination of deformation parameters of the deformed structures
built on the 0+2 states, as well as their mixing with the ground-state configurations, would
be of much interest. One should note here that the quadrupole invariants for the 0+1,2 states
in 110Cd were measured in a recent Coulomb-excitation experiment [68].

The B(E2; 2+1 → 0+1 ) and B(E2; 4+1 → 2+1 ) patterns in 100–110Cd nuclei closely resemble
that of the B(E2; 2+1 → 0+1 ) values in the corresponding Sn isotones. They were well
reproduced by the calculation of [65], and found almost independent of the assumed
pairing strength. This was linked [65] to their static quadrupole deformation, consistent
with non-zero quadrupole moments measured for the 102,104Cd isotopes in a Coulomb-
excitation experiment at ISOLDE [69]. Interestingly, the obtained Qs(2+1 ) values are positive,
in contrast to those measured for stable Cd nuclei. Unfortunately, they are subject to
large uncertainties, and the Qs(2+1 ) value for 104Cd significantly changes if a previously
measured lifetime of the 2+1 state is used as an additional constraint in the Coulomb-
excitation data analysis.

Quadrupole deformation of light Cd isotopes was explored in an LSSM study [15]
using a modified v3sb effective interaction [70] in the π(2p1/2, 1g9/2), ν(2d5/2, 3s1/2, 2d3/2,
1g7/2, 1h11/2) model space. The calculated E2 matrix elements provide a good reproduction
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of the experimental B(E2; 2+1 → 0+1 ) and B(E2; 4+1 → 2+1 ) values, and were analysed in
terms of quadrupole invariants 〈Q2〉 and 〈Q3 cos 3δ〉 pointing to a predominantly prolate
character of 100–108Cd with both β and γ increasing with N. Very recently, Coulomb excita-
tion of 106Cd was performed [71] at the NSCL ReA3 facility. Quadrupole moments of the
2+1 , 4+1 , 6+1 and 2+2 states were obtained, as well as the 〈Q2〉 and 〈Q3 cos 3δ〉 invariants for
the ground state, which suggest its considerable triaxiality. This feature does not emerge
from the LSSM calculations reported in [71], which also used a G-matrix-renormalized CD-
Bonn nucleon –nucleon potential and the same model space as those of [15], but allowed
at most two neutrons in the 1h11/2 orbital. While they well reproduced the experimental
〈Q2〉 invariant for the ground state, the shapes that they predict for light Cd isotopes
are decidedly prolate. The difference with respect to a more γ-soft behaviour suggested
by [15] was attributed to the different 1h11/2 single-particle energies, as well as the adopted
truncation. However, none of these calculations are able to explain the observed pat-
tern of spectroscopic quadrupole moments in the light Cd nuclei, which will hopefully
trigger future experimental and theoretical investigations aiming at understanding their
quadrupole properties.

3.5. Heavier Collective Nuclei: Triaxiality in 130Xe and 140Sm

The 130Xe and 140Sm isotopes are examples of relatively heavy nuclei, probed with
low-energy Coulomb excitation, for which extensive Shell-Model calculations have been
performed [16,72]. Both isotopes were studied at ISOLDE, with the measurement for the
stable 130Xe being a by-product of a radioactive beam experiment. Beam energies were
4.2 MeV/A and 2.8 MeV/A, respectively, and states up to Iπ = 6+1 were observed in 130Xe,
while the 2+1 , 4+1 and 2+2 states were populated in 140Sm. The results point to the importance
of the triaxial degree of freedom in the structure of low-lying levels in both nuclei.

The extracted transitional and diagonal E2 matrix elements indicate that 130Xe and
140Sm are collective, and their ground states are characterized by β2 ≈ 0.15 and γ ≈ 30◦.
For 130Xe, this conclusion was drawn on the basis of the determined quadrupole invariants,
while, for 140Sm, it results from the measured Qs(2+1 ) = −0.06+0.41

−0.15 eb, compatible with
zero, and the enhanced B(E2; 2+1 → 0+g.s.) = 53(5) W.u. value. Shell-Model calculations for
130Xe and 140Sm were performed in a large model space consisting of the 100Sn inert core
and all orbitals up to N = Z = 82. The GCN50:82 effective interaction [73] was employed
for both cases, complemented by the SN100PN effective interaction [74] for 130Xe. The
experimental and theoretical results showed good agreement (see Figure 5), which is
remarkable considering the evident collective nature of the two nuclei and the relatively
high number of allowed valence particles in the Shell-Model calculations. However, for
both 130Xe and 140Sm, effective charges larger than the standard eν = 0.5e, eπ = 1.5e values
were needed to reproduce the measured B(E2) values. For 130Xe, eν = 0.945e, eπ = 1.53e
and eν = 0.84e, eπ = 1.68e were adopted for the GCN50:82 and SN100PN interactions,
respectively, while eν = 0.64e, eπ = 1.65e were used for the GCN50:82 interaction in the
case of 140Sm. The need for increasing the effective charges in this mass region with respect
to the standard values is known [75,76], and it suggests that a further expansion of the
model space is necessary.

Despite the good reproduction of the experimental results by state-of-the-art Shell-
Model calculations, further developments are needed to properly describe the structure
of A ≈ 130–140 nuclei within this theoretical approach. This is particularly relevant for
130Xe, which would be the daughter of the 130Te neutrinoless double-β decay. If this process
is observed at ongoing experiments, such as CUORE [77] and SNO+ [78], the relevant
ββ nuclear matrix elements will need to be calculated in order to extract the Majorana
mass. Such calculations are under way, also within the Shell Model [79], with important
experimental constraints coming from recent measurements of valence proton and neutron
occupations in 130Te and 130Xe [80,81]. Further low-energy Coulomb-excitation studies
should help to elucidate the nuclear structure at A ≈ 130–140. A 130Xe beam could be
delivered by a stable ion beam facility with a much higher intensity than that available
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in [16], and the use of a heavier target (e.g., 208Pb) would increase the excitation cross
sections. For 140Sm, an experiment with a higher beam energy would be beneficial. Under
favourable conditions, such experiments should be capable of extracting higher-order
quadrupole invariants related to the dispersions in β2 and γ for the ground state.

130Xe - Exp 130Xe - GCN50:82 130Xe - SN100PN

140Sm - Exp 140Sm - GCN50:82

Figure 5. Comparison of low-energy parts of the experimental 130Xe and 140Sm level schemes with Shell-Model calculations
using GCN50:82 and SN100PN interactions [16,72]. The states are labelled with their spin and parity Iπ and excitation
energy in keV. Transitions are labelled with reduced transition probabilities expressed in Weisskopf units. Spectroscopic
quadrupole moments are reported in eb. See text for further details about the calculations.

4. Summary and Outlook

In parallel to recent advances in accelerator and ion-source technologies, and the
construction of new-generation high-resolution γ-ray tracking arrays as AGATA [19] and
GRETINA [82], noteworthy developments have taken place in nuclear-structure theory.
The state-of-the-art calculations, some of which were discussed in the preceding sections,
are now able to predict the properties of nuclei with an unprecedented level of detail,
particularly concerning the nuclear shape. Within the Shell Model, quadrupole shapes of
ground and excited states can be inferred using T-plots [40] and the quadrupole sum rules
approach [38]. Due to the large model spaces involved, Shell-Model studies of octupole
collectivity are more rare, and one may hope that the availability of precise experimental
data on E3 strengths will trigger further efforts in this direction.

The ongoing experimental and theoretical developments will bring forward our under-
standing of nuclear structure, while also being relevant for cross-disciplinary fields, such as
astrophysics, neutrino physics, and physics of (and beyond) the Standard Model [4,33,83].
In this context, a precise understanding of the nuclear shape can bring us closer to answering
long-standing questions in physics, such as how heavy elements originate in cataclysmic
stellar events and the reason for the matter-antimatter asymmetry in the universe.

Thanks to the constant development of powerful computational resources, and refine-
ments of Shell-Model codes and methods, this theoretical approach can now be extended
to vast regions of the nuclear chart. It can be anticipated that this progress will be com-
plemented and inspired by the availability of high-precision spectroscopic data and that
low-energy Coulomb excitation will continue to play an important role in future studies
throughout the nuclear chart. Let us emphasize, however, as in the cases of 98,100Mo and
130Xe, that the combination of data from a variety of techniques that probe both collective
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and single-particle degrees of freedom will provide perhaps the most demanding tests of
Shell-Model calculations, and studies in that direction should be pursued.
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GRETINA Gamma-Ray Energy Tracking In-beam Nuclear Array
HIE-ISOLDE High Intensity and Energy ISOLDE
INFN Istituto Nazionale di Fisica Nucleare (National Institute for Nuclear Physics)
ISOLDE Isotope Separator On-Line DEvice
IUAC Inter-University Accelerator Centre
LNL Legnaro National Laboratories
LSSM Large-Scale Shell Model
MCSM Monte-Carlo Shell Model
NSCL National Superconducting Cyclotron Laboratory
ORNL Oak Ridge National Laboratory
ReA3 Re-accelerator facility
RIB Radioactive Ion Beam
SD Superdeformed
SNO+ Sudbury Neutrino Observatory Plus
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2. Clément, E.; Zielińska, M.; Görgen, A.; Korten, W.; Péru, S.; Libert, J.; Goutte, H.; Hilaire, S.; Bastin, B.; Bauer, C.; et al.
Spectroscopic quadrupole moments in 96,98Sr: Evidence for shape coexistence in neutron-rich strontium isotopes at N = 60. Phys.
Rev. Lett. 2016, 116, 022701. [CrossRef]
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Benzoni, G.; et al. Shape coexistence in 94Zr studied via Coulomb excitation. Eur. Phys. J. Web Conf. 2019, 223, 01038. [CrossRef]
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Abstract: In this paper, the validity of the shell-evolution picture is investigated on the basis of
shell-model calculations for the atomic mass number 25 � A � 55 neutron-rich nuclei. For this
purpose, the so-called SDPF-MU interaction is used. Its central, two-body spin–orbit, and tensor
forces are taken from a simple Gaussian force, the M3Y (Michigan 3-range Yukawa) interaction, and a
π + ρ meson exchange force, respectively. Carrying out almost a complete survey of the predicted
effective single-particle energies, it is confirmed here that the present scheme is quite effective for
describing shell evolution in exotic nuclei.

Keywords: shell evolution; exotic nuclei; shell model; effective interaction; tensor force; spectroscopic
factor; effective single-particle energy

1. Introduction

One of the most important results obtained by investigating exotic nuclei (those
from the β stability) is the evolution of the shell structure, which is often called the shell
evolution [1]. The evolution sometimes occurs in a more drastic way than as predicted
by the standard Woods–Saxon potential model: some of the conventional neutron magic
numbers, such as N = 8, 20, and 28, disappear, and new magic numbers, such as N = 16
and 34, appear.

These phenomena indicate a mechanism of shell evolution beyond the potential mod-
els, and the role of effective interactions has recently received much attention. Historically,
this idea was developed in the context of the shell model, dating back to 1960 when Talmi
and Unna accounted for the inversion of single-particle levels in the p-shell nuclei [2]. Later,
a similar expression was derived in Ref. [3], in which the effect of two-body interactions
was formulated with what is now called the monopole interaction [4].

The impact of the monopole interaction on nuclear structure has been investigated
with the development of large-scale shell-model calculations [4–6], in which p f -shell nuclei
are very successfully described by using Kuo–Brown interactions with a few monopole
matrix elements appropriately modified. The single-particle energy that includes the effect
of the monopole interaction is often referred to as the effective single-particle energy [7,8].

One of the remaining issues concerning shell evolution is the general properties of
the monopole interaction and their origin. One of the earliest attempts in this direction
was carried out by Federman and Pittel [9], who indicated that the central force causes a
sharp drop of the neutron 1g7/2 orbital with the proton 1g9/2 orbital occupied. With more
data on exotic nuclei accumulated in the 1990s, the spin-isospin dependence of the effective
interaction was highlighted in Ref. [10]. This property well accounts for the monopole
interaction that was phenomenologically introduced in Ref. [11] to describe the shifting
magic number from N = 16 to 20. Finally, Otsuka et al. demonstrated [12] that the tensor
force significantly increases or decreases spin–orbit splitting depending on the relative
direction of the spin and orbital angular momenta that the last nucleons have.

For a unified description of the shell evolution, in [13], it was proposed that the central
and tensor forces are the major sources of shell evolution, whereas the two-body spin–orbit

Physics 2022, 4, 185–201. https://doi.org/10.3390/physics4010014 https://www.mdpi.com/journal/physics
193



Physics 2022, 4

force plays a unique role in the monopole matrix elements between specific orbitals [14]. The
same conclusion was drawn from the spin-tensor decomposition of an effective interaction
fitted to the experimental data [15]. In Ref. [13], shell evolution is described by an interaction
that consists of a simple Gaussian central force and a π + ρ meson exchange tensor force,
whose choice is supported by “renormalization persistency” [16]. This interaction, named
the monopole-based universal interaction, VMU, and its variant were successfully applied to
constructing effective interactions for shell-model calculations [17,18], whose focuses were
placed on many-body properties, such as the onset of deformation due to the tensor force.

The aim of the present study is to quantitatively examine to what extent the shell
evolution is described by such a simple scheme. To this end, the SDPF-MU interaction [18]
is employed here whose cross-shell part is made of a variant of the VMU interaction with
the two-body spin–orbit force included, and the validity of its shell evolution is carefully
examined by comparing with the relevant experimental data.

In this paper, neutron-rich nuclei with the atomic mass number 25 � A � 55 are
considered, where several doubly-closed-shell nuclei are known, including 24O, 34Si, 36S,
40Ca, 48Ca, 52Ca, and 54Ca. Hence, configuration mixing within the major shell is relatively
suppressed along the atomic number, Z, and N = 20 chains, for instance, which makes
easier to identify the monopole matrix element most relevant to the shell evolution under
debate. Here, a rather complete survey that covers both the proton and neutron shell
evolution is conducted, thus, enabling to separate the unique roles of the central, spin–orbit,
and tensor forces.

This paper is organized as follows. In Section 2, the VMU interaction is introduced as
used in the SDPF-MU interaction, and the different characteristics of the central, spin–orbit,
and tensor forces are quantitatively presented with regard to the monopole matrix element.
Section 3 dicusses how the shell evolution, caused by this interaction, can be validated by
experimental data. Sections 3.1 and 3.2 are devoted to proton shell evolution with varying
neutron number and neutron shell evolution with varying proton numbers, respectively.
Section 4 gives conclusions of the study.

2. Shell Evolution Caused by the SDPF-MU Interaction

2.1. Monopole Matrix Elements

The SDPF-MU interaction was constructed in Ref. [18] to describe the structure of
neutron-rich nuclei around N = 28 whose Fermi surface is located in the sd shell for protons
and the p f shell for neutrons. Hence, the proton–neutron cross-shell interaction, i.e., the
part of the interaction that is relevant to both the sd shell and the pf shell is responsible for
the shell evolution occurring in this region.

The cross-shell part of the SDPF-MU interaction is provided by a minor modification
of the VMU interaction [13]. The VMU interaction was proposed to give a universal behavior
of shell evolution over the nuclear chart, consisting of a Gaussian central force and a π + ρ
meson exchange tensor force. In the SDPF-MU interaction, the following refinements to the
original VMU interaction are introduced:

1. the central force includes density dependence;
2. the two-body spin–orbit force is included in addition.

The central force of the shell-model effective interaction is subject to complicated
renormalization and many-body effects. The basic strategy of VMU is to determine the
central force so that its monopole matrix elements are close to those of a reliable effective
interaction. Here, the monopole matrix element between the orbitals j1 and j2 is defined by

Vm
T (j1, j2) =

∑J(2J + 1)〈j1 j2; JT|V|j1 j2; JT〉
∑J(2J + 1)

, (1)

where J runs over all the possible angular-momentum coupling that the Pauli principle
allows, and T is the isospin coupling. In constructing the original VMU interaction, the
GXPF1A interaction [19] was used as a reference, and a reasonable but not perfect agreement
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was achieved. Namely, while most of the monopole matrix elements agree within 0.2 MeV,
a few matrix elements differ by 0.5 MeV or more; see Figure 1 of Ref. [13]. To obtain a better
result, the central force of the SDPF-MU interaction has the form of

VC(1, 2) = D(R)∑
S,T

fS,T PS,T exp
(
−(r/μ)2

)
, (2)

where S and T denote the spin and isospin coupling, respectively, and PS,T is the projection
operator onto a given (S, T). The�r and �R are the relative and center-of-mass coordinates,
respectively: �r = �r1 − �r2 and �R = (�r1 + �r2)/2. The D(R) is the density dependent part
that was newly introduced in the refined VMU, and its form was taken from the FPD6
interaction [20] as

D(R) = 1 + Ad{1 + exp((R − R0)/a)}−1 (3)

with R0 = 1.2A−1/3 MeV and a = 0.6 fm. The interaction, thus, has six free parameters, fS,T ,
μ, and Ad. They were chosen to be f0,0 = −140 MeV, f1,0 = 0, f0,1 = 0.6 f0,0, f1,1 = −0.6 f0,0,
μ = 1.2 fm, and Ad = −0.4. The resulting agreement with the monopole matrix elements
of the central force of GXPF1B is quite good, as illustrated in Figure 1 of Ref. [21].

The two-body spin–orbit force in the SDPF-MU interaction was taken from that of
the M3Y (Michigan 3-range Yukawa) interaction [22]. The two-body spin-orbit force plays
a minor role on shell evolution compared with the central and tensor forces, as far as
a restricted region of the nuclear chart is considered: see Table 1 and discussion below.
However, some specific evolutions of shell gaps are dominated by the two-body spin–orbit
force, thus, included here for completeness.

The overall strength of the SDPF-MU interaction is scaled by a factor A−0.3 in the same
way as the USD (Universal sd) [23] and GXPF1 [24] interactions.

Table 1. Proton–neutron monopole matrix elements between the sd and p f orbitals obtained by the
SDPF-MU interaction for the atomic mass number A = 42. The second to the fifth columns list the
central (C), tensor (T), spin–orbit (LS), and the total values (in MeV), respectively. The sixth to ninth
columns indicate the hierarchy of the C + T monopole matrix elements. The texts in red (blue) are
to highlight the correspondence between the most attractive matrix elements of the central (tensor)
force and Δn = 0 (spin direction). See text for details.

C T LS Total Δn Spin
Direction

Label C + T

1d5/2-1 f5/2 −1.10 −0.19 +0.05 −1.24 0 antiparallel −− −1.29
1d3/2-1 f7/2 −1.10 −0.21 −0.04 −1.34 0 antiparallel −− −1.31
2s1/2-2p3/2 −1.15 0 −0.09 −1.24 0 no direction −0 −1.15
2s1/2-2p1/2 −1.15 0 +0.17 −0.98 0 no direction −0 −1.15
1d5/2-1 f7/2 −1.16 +0.14 −0.03 −1.05 0 parallel −+ −1.02
1d3/2-1 f5/2 −1.18 +0.28 +0.04 −0.86 0 parallel −+ −0.91
1d5/2-2p1/2 −0.68 −0.06 −0.05 −0.78 1 antiparallel +(−) −0.74
1d3/2-2p3/2 −0.68 −0.05 +0.06 −0.66 1 antiparallel +(−) −0.72
2s1/2-1 f7/2 −0.88 0 −0.02 −0.90 1 no direction +0 −0.88
2s1/2-1 f5/2 −0.88 0 +0.03 −0.84 1 no direction +0 −0.88
1d5/2-2p3/2 −0.69 +0.03 −0.03 −0.70 1 parallel +(+) −0.66
1d3/2-2p1/2 −0.71 +0.09 +0.05 −0.57 1 parallel +(+) −0.61

Table 1 presents the proton–neutron cross-shell monopole matrix elements, calculated
with the SDPF-MU interaction, for central, tensor, and spin–orbit forces. The proton–
neutron monopole matrix element for a pair with (n1, l1) �= (n2, l2) is given by

Vm
pn(j1, j2) =

1
2
{Vm

T=0(j1, j2) + Vm
T=1(j1, j2)}. (4)

The second column of Table 1 indicates that the strengths of the central matrix elements
can be grouped into two categories: one has ∼ −1.1 MeV, and the other has much weaker
strengths. As explained [1,13], this difference occurs because two orbitals with the difference
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of the number of nodes, Δn = 0, have a large spatial overlap, thus, gaining much attraction
through short-range forces. Comparing the second and the sixth columns, one finds a good
correspondence between Δn and the strength of the central matrix elements.

The monopole matrix elements of the tensor force are characterized by the relative
spin direction between the two orbitals considered, as pointed out in Ref. [12]. When the
spins of two orbitals (with l > 0) are parallel, i.e., j> - j′> or j< - j′< (j> and j< stand for
j = l + 1/2 and j = l − 1/2, respectively), the tensor monopole matrix element is positive
and otherwise negative. The third and the seventh columns of Table 1 exactly point to this
property. This fact is accepted now, [1,12], and quantitative aspects of the tensor monopole
matrix elements are as follows.

1. Similar to the central force, the strengths for the Δn �= 0 orbitals are weaker than those
of Δn = 0.

2. Although the absolute values of the tensor matrix elements are much smaller than
those of the central force, the difference between the largest matrix element and the
smallest one reaches ∼ 0.5 MeV, equivalent to that of the central force.

From the point 2, one concludes that the tensor force plays a role as important as the
central force in shell evolution.

On the basis of the above arguments, let us label the orbital pairs to simply estimate
the strengths of the monopole matrix elements due to the central and tensor forces without
numerical calculations.

• The label consists of two characters: the first and the second ones are intended to
grade the central and tensor monopole matrix elements, respectively. The net effect of
these two characters stands for a rough estimate of the total monopole matrix element.

• Each part is evaluated on a scale of five levels defined by −, (−), 0, (+), and +, to
indicate relative attraction within each type of force. The ”−” character is given to the
most attractive (i.e., largest negative) pairs, and the ”+” character is given to the least
attractive (or most repulsive) pairs among the whole monopole matrix elements of the
central or tensor force.

• The first character gets ”−” for Δn = 0, or ”+” for Δn �= 0.
• When the first character is ”−”, the second character gets either ”−”, 0 or ”+” depend-

ing on the relative spin direction mentioned above. When the first character is ”+”,
the second character is replaced by (−), 0, or (+).

These labels are listed in the eighth column of Table 1. The actual sum of the central
and tensor monopole matrix elements shown in the ninth column of Table 1 rather well
follows this ordering, except for a few cases with Δn = 1 in which the tensor force is
less dominant.

Next, the two-body spin–orbit force is examined whose monopole matrix elements
are presented in the fourth column of Table 1. The strengths of the elements are usually
rather weak (see details in Supplemental Material in Ref. [1]), and the typical order of the
monopole matrix elements is ∼ 20A−5/3 MeV≈ 0.04 MeV at A = 42. The signs of the
elements are determined so that the inner nucleon (usually with lower orbital angular
momentum, l) produces the normal spin–orbit splitting to the outer orbitals. Namely, when
the inner and the outer orbitals are labeled i and j, respectively, their monopole matrix
elements satisfy Vm

pn(i, j) < 0 for j = l + 1/2 and Vm
pn(i, j) > 0 for j = l − 1/2.

More specifically, when monopole matrix elements between the sd and 1 f orbitals are
considered, the sd orbitals are located closer to the center and thus can be regarded as the
inner orbitals. Hence, this rule causes negative and positive monopole matrix elements
for the 1 f7/2 and 1 f5/2 orbitals, respectively. One can also find that the monopole matrix
elements between the 2s and 2p orbitals are much larger than the others. This is because
this pair, having a relative orbital angular momentum Lrel = 1 alone, gains much energy
due to the short-range nature of the two-body spin–orbit force.
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2.2. Effective Single-Particle Energies

Once the cross-shell monopole matrix elements are determined the above-described
way, one can obtain proton and neutron shell evolutions. The shell evolution is character-
ized by the effective-single-particle energy (ESPE), which includes the effects of valence
nucleons on the single-particle energy. While the ESPEs can be defined for any wave
function (see Ref. [1]), they are often estimated by filling configurations, so that one can
directly connect monopole matrix elements to shell evolution. To simplify the discussion,
a case of mass-independent two-body interactions is considered here. The ESPE of the
neutron orbital, jn, changes by filling protons in the orbital jp as

ενjn(π jp : filled) = ενjn(π jp : empty) + (2jp + 1)Vm
pn(jn, jp). (5)

When one defines the change of the ESPE of νjn with filling π jp as

Δπ jp ενjn ≡ ενjn(π jp : filled)− ενjn(π jp : empty), (6)

the evolution of the shell gap between νjn and νj′n with filling π jp is expressed as

Δπ jp(ενjn − ενj′n) = (2jp + 1){Vm
pn(jn, jp)− Vm

pn(j′n, jp)}. (7)

Figure 1 provides a schematic illustration of what is represented in Equation (7). One
of the most important properties of Δπ jp(ενjn − ενj′n) is that this quantity does not depend
on the choice of the core to define the ESPE. For example, the evolution of the N = 34 shell
gap can be probed not only by the systems with the N = 34 core but also by those with
the N = 28 core or the N = 20 core. This means that one can investigate a specific shell
evolution for very neutron-rich isotones by using that of less neutron-rich ones, which will
be utilized in some cases considered in Section 3.

Figure 1. Schematic illustration of what is investigated in this paper. The blue and green lines are,
respectively, the effective single-particle energies (ESPEs) of the neutron orbital, jn and j′n, that change
with the proton orbital, jp, filled. The evolution of the shell gap, denoted as Δπ jp (ενjn − ενj′n ), is the
main focus of this paper.

When one uses a mass-dependent interaction, Equation (7) is not exact but it is still
useful for estimating shell evolution from monopole matrix elements.

3. Comparison to Experimental Data

The main objective of this paper is to examine how well the shell evolution described
by Equation (7) is supported by experimental data. In Figure 2a,b, the proton shell evolu-
tion with neutrons occupying the p f shell, and the neutron shell evolution with protons
occupying the sd shell are plotted, respectively. The former and the latter are examined in
Sections 3.1 and 3.2, respectively. In the following, for brevity, the quantum number n are
omitted and only the other quantum numbers like d5/2 are given.
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Figure 2. Evolution of the ESPEs calculated with the SDPF-MU interaction with the tensor force
included (solid lines) and not included (dashed lines). (a) Proton orbitals measured from 1d3/2 for
the atomic number Z = 20 isotopes and (b) neutron orbitals measured from 1 f7/2 for the neutron
number N = 28 isotones. The ESPEs are obtained by assuming filling configurations whose orders
are indicated at the bottom of the figure.

In Figure 2, also the ESPE with the tensor force removed is plotted. One can immedi-
ately find that the proton d5/2 orbital (Figure 2a) and the neutron f5/2 orbital (Figure 2b)
have the largest effect from the tensor force. Since the ESPEs shown are measured from the
d3/2 and f7/2 orbitals, respectively, this result is a manifestation of a general property that
the tensor force strongly affects the spin–orbit splitting (see Figure 1a of Ref. [12]).

To be more specific, when the proton orbital j′ is filled, the evolution of the neutron
spin–orbit splitting between j< and j> is expressed, by using Equation (7), as Δπ j′(ενj< −
ενj>) = (2j′ + 1){Vm

pn(j<, j′) − Vm
pn(j>, j′)}. The Vm

pn(j<, j′) and Vm
pn(j>, j′) values for the

tensor force are always of the opposite sign due to the identity (2j> + 1)Vm
T (j>, j′) +

(2j< + 1)Vm
T (j<, j′) = 0 (valid for any isospin coupling T) [12], thus, magnifying the

Δπ j′(ενj< − ενj>) value.
In addition to evaluating the ESPE, we conducted large-scale shell-model calculations

to more directly compare to the data. The procedure of the calculation was the same as
that employed earlier [18,25]. The valence shell consists of the full sd and p f shells. The
basis states considered are truncated to allow only 0h̄ω (with h̄ being the reduced Planck
constant and ω the angular frequency) excitations for natural-parity states and to allow
1h̄ω excitations for unnatural-parity states. Note that, in the present case, nh̄ω excitation is
equivalent to n-particle-n-hole excitation across the N = Z = 20 shell gap.

Let us stress that this truncation scheme (restricted to the lowest h̄ω space) is intro-
duced not only to make numerical computation possible but also to be in accordance with
the way how the SDPF-MU interaction is constructed (see also Section 2.2 of Ref. [21]):
(i) the central force of the cross-shell interaction in SDPF-MU is fitted to the GXPF1B interac-
tion and (ii) the intra-shell interactions employed in the SDPF-MU interaction are based on
USD for the sd shell and GXPF1B for the p f shell. The USD and the GXPF1B interactions are
intended for the use of the 0h̄ω model space. As shown in Ref. [18], the binding energies of
neutron-rich nuclei in this region are well reproduced in this framework. The Hamiltonian
matrices spanned by those basis states are numerically diagonalized by using the KSHELL
code [26].
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3.1. Proton Shell Evolution
3.1.1. From N = 20 to N = 28

As shown in Figure 2a, the most distinct property by filling the ν f7/2 orbital is that the
Z = 16 shell gap sharply diminishes and that the order of πs1/2 and πd3/2 is finally inverted
at the 48Ca core. The change of this shell gap is expressed as Δν f7/2

(επd3/2
− επs1/2) ≈

8{Vm
pn(d3/2, f7/2) − Vm

pn(s1/2, f7/2)}. Since the d3/2- f7/2 and s1/2- f7/2 pairs are labeled
{−−} and {+0}, respectively, according to the rule, introduced in Section 2.1, this value
is a large negative value. The actual number calculated with the SDPF-MU interaction
is −3.32 MeV. If the tensor force is omitted from the interaction, this value decreases to
−1.71 MeV, pointing to almost equal contributions of the central and tensor forces.

Experimentally, the evolution of the Z = 16 shell gap is well examined by the first
excitation energies of 39K and 47K, which can be regarded as a proton hole in the 40Ca
and 48Ca cores, respectively, from very large spectroscopic factors for the lowest two
levels. The measured values of E(1/2+1 ) − E(3/2+1 ) for 39K and 47K are 2.52 MeV and
−0.36 MeV, respectively.

Hence, if one assumes the pure single-hole states for the 1/2+1 and 3/2+1 states in
39K and 47K, the Δν f7/2

(επd3/2
− επs1/2) value estimated from these experimental data

is −2.88 MeV. The corresponding value obtained from large-scale shell-model calcula-
tions is −3.33 MeV, which is somewhat overestimated; however, the sharp decrease of
E(1/2+1 )− E(3/2+1 ) in going from 39K to 47K is well explained. Note that this number
is very close to that evaluated from the ESPE (−3.32 MeV; see the first paragraph of this
Subsection) because the first two levels of 47K are very close to single-proton-hole states.

Another important property in filling the ν f7/2 orbital is that the proton spin–orbit
splitting for the d orbitals sharply decreases. This is caused almost solely by the tensor
force (Figure 2a) because the central force gives similar monopole matrix elements between
the d3/2- f7/2 and d5/2- f7/2 pairs: those are {−−} and {−+} pairs, respectively. Hence,
quantifying the spin–orbit splitting is the key to extracting the tensor-force driven shell
evolution. By using the SDPF-MU interaction, the proton spin–orbit splittings for the d
orbital are obtained to be 7.42 and 5.05 MeV for the 40Ca and 48Ca cores, respectively,
indicating a more than 2 MeV reduction.

Unlike the cases of d3/2 and s1/2, the d5/2 proton hole does not appear as a nearly
pure single-hole state because the excitation energy is much higher than other low-lying
levels, making the hole state fragmented over many levels. For the present purpose, the
distribution of spectroscopic factors provides crucial information. The one-proton removal
spectroscopic factors from 40Ca and 48Ca were measured with reactions, such as (d, 3He)
and (e, e′p). Although the (e, e′p) reaction gives more reliable spectroscopic factors, those
measured for 40Ca are concerning only a few low-lying states. Thus, the (d, 3He) data were
used to estimate the spin–orbit splitting for Ca isotopes from the centroid of the measured
spectroscopic factors, as discussed in Refs. [27,28].

The centroid of the spectroscopic factors, actually, provides the exact single-particle
energy. However, there are many energy levels that cannot be detected by the actual
experiment because their spectroscopic factors are too small to be measured. Although
each of these undetected levels has a tiny contribution to the centroid, the total effect is not
negligible because the number of such levels is very large. In this sense, the centroid of
the spectroscopic factors that is obtained from experiment cannot be free from uncertainty
associated with the limited experimental sensitivity. Hence, in order to validate theoretical
single-particle energies, it is rather helpful to compare between experiment and theory
regarding how major peaks are distributed. The results are shown in Figure 3, in which the
spectroscopic factor C2S(j) for the orbital j is defined as

C2S(j) =

∣∣∣〈ΨB||a†
j ||ΨA〉

∣∣∣2
2JB + 1

, (8)
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where ΨA and ΨB are the wave functions of the nuclei A and B, respectively (here, A and
B correspond to Ca and K isotopes, respectively), and JB is the angular momentum of B.
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Figure 3. Distribution of the one-proton removal spectroscopic strengths (see Equation (8)) from
48Ca (left) and 40Ca (right) comparing experimentalal results (”Expt.”) with shell-model calculations
(”Calc.”). The spectroscopic factors shown are divided by 2j + 1 to normalize to unity for fully
occupied orbitals. The bin widths are 0.25 MeV. Data are from Refs. [29] (48Ca) and [30] (40Ca). See
text for details.

For 48Ca, the calculations were carried out with the SDPF-MU interaction in the
0h̄ω model space [18]. The present calculation successfully captures the characteristics of
the measured distribution. For s1/2 and d3/2, although the strengths are dominated by
the lowest states, some strengths remain in the states slightly below 4 MeV due to the
coupling to the 2+1 state. Note that the sum of the experimental strengths for d3/2 exceeds
the sum-rule limit [29], indicating non-negligible uncertainties due to the reaction model
employed. For d5/2, the calculation well reproduces three major peaks located at 3–4, 5–6,
and 7–8 MeV, although the calculated peaks are located a few hundred keV lower than
those of the experiment. If the tensor force is omitted, the calculated weight of the d5/2
strengths is shifted higher and fails to reproduce the data as presented in [18].

For 40Ca, as seen in Figure 3, the d5/2 strengths are highly fragmented as in 48Ca. This
property is impossible to reproduce with the same setup as 48Ca, since only one 5/2+ state
appears in the 0h̄ω calculation. It is also found that the 2h̄ω calculation was not sufficient
to obtain enough fragmentation because of much smaller level densities compared with the
data. To resolve this problem, the large-scale shell-model calculations were done to allow
many-particle many-hole excitations across the N = Z = 20 core. Since it is still difficult
to perform such calculations in the full sd-p f valence shell, the p1/2 and f5/2 orbitals are
omitted from the valence shell, thus enabling 6h̄ω calculations with the KSHELL code [26].

The effective interaction is taken from Ref. [31], a modified SDPF-M interaction whose
single-particle energies are fine-tuned to reproduce the correct one-neutron separation
energies of 40,41Ca. Note that the original SDPF-M interaction [11] was designed for the full
sd + f7/2 + p3/2 model space. One expects that the 6h̄ω truncation is sufficient to achieve
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convergent results. The resulting spin–orbit splitting of the d orbitals for the 40Ca core is
close to that of SDPF-MU, 7.49 MeV, estimated from the ESPE.

Figure 3 presents the results of the calculations. Similar to 48Ca, the agreement with
experiment is quite satisfactory. For d3/2 and s1/2, the strengths near the 2+1 level of 40Ca
(∼4 MeV) are much smaller than those for 48Ca, in good accordance with the measured
distribution [30]. For d5/2, the calculated three major peaks at 5–6, ∼6, and 7–8 MeV
well correspond to the measured peaks, although the highest peak is more fragmented in
the experiment.

The above detailed comparisons of spectroscopic distributions confirm that a large
reduction of the spin–orbit splitting, which amounts to ∼2 MeV, occurs in reality as a π + ρ
meson exchange tensor force produces.

3.1.2. From N = 28 to N = 32 and Beyond

As the neutron number increases from N = 28, the Fermi surface moves to p3/2,
which causes a different proton shell evolution from that for 20 ≤ N ≤ 28. Figure 2a
indicates that the most prominent is that s1/2 goes down relative to d3/2. This is caused by a
positive Δπp3/2(ενd3/2

− ενs1/2) = 4{Vm
pn(d3/2, p3/2)−Vm

pn(s1/2, p3/2)} because the d3/2-p3/2
and s1/2-p3/2 pairs are labeled ”{+(−)}” and ”{−0}”. Although the tensor force causes
attraction for the former pair, the central force that favors the latter surpasses this effect
due to a larger spatial overlap. It is thus predicted that the d3/2 orbital becomes the highest
in the sd shell again at N = 32, leading to the reinversion of the s1/2-d3/2 level ordering.

Similar to that of Section 3.1.1, K isotopes play a key role in probing this level ordering
from experiment. The observed hyperfine structure ruled out a 1/2+ ground state for the
N = 32 isotope 51K [32], and its measured g-factor of +0.3420(15) [32] is very close to
that of the single-proton hole in d3/2. From these data, it is concluded in Ref. [32] that the
ground state of 51K must be a 3/2+ state that is dominated by the π(d3/2)

−1 configuration.
The predicted reinversion has thus been confirmed by experiment.

A deeper understanding of shell evolution can be obtained from excitation energies. In
Figure 4, the energies of the 1/2+1 levels, measured from the 3/2+1 levels in neutron-rich K
isotopes, are compared to theory. Very recently, the first excited levels in 51,53K (N = 32, 34)
were measured to be 0.74 and 0.84 MeV, respectively [33]. These states are assigned to
be 1/2+ from the observed parallel momentum distributions of the 51,53K residues after
(p, 2p) reactions.

As shown in Figure 4, the measured values are lower than the shell-model results with
the SDPF-MU interaction, 1.40 and 1.74 MeV, respectively. Although the calculated levels
are located lower than those estimated from the ESPE, 1.71 and 2.50 MeV, respectively;
the deviation from the experimental data may indicate the need of refining the monopole
matrix elements, related to the shell evolution under discussion.

In Ref. [33], a modified SDPF-MU interaction was introduced (named SDPF-MUs) in
which Vm

T=0(s, p) is shifted by +0.4 MeV, equivalent to a +0.2 MeV shift for the proton–
neutron channel. The resulting 1/2+1 levels in 51,53K are improved to be 0.85 and 0.79 MeV,
respectively. These SDPF-MUs levels are also somewhat lower than those estimated from its
ESPE, 0.95 and 1.38 MeV, respectively. This difference is caused by a many-body correlation,
which makes single-hole strengths fragmented. Experimentally, three more levels are
observed from the 52Ca(p, 2p)51K reaction [33], which may indicate some deviation from
the single-hole nature for 1/2+1 or proton d5/2 hole states fragmented.

As shown in Figure 4, the E(1/2+1 )− E(3/2+1 ) value evolves in a non-monotonic way;
that is, it decreases until N = 28 and then turns to increase. This evolution, following
the ESPE, is caused by that of the ESPE of πd3/2 measured from πs1/2. The reinversion
of the 1/2+1 -3/2+1 level ordering is a consequence of the non-monotonic evolution of
single-particle level spacings.
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Figure 4. Comparison of the evolution of the energy difference E(1/2+1 )− E(3/2+1 ) in neutron-rich
K isotopes between experiment and theory. The red circles represent experimental data, and the blue
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corresponding values evaluated from the ESPE (i.e., επ(s1/2)−1 − επ(d3/2)−1 = επd3/2

− επs1/2 ) for the
SDPF-MU and the SDPF-MUs interaction, respectively.

Let us point out that such a non-monotonic evolution constitutes a strong evidence
for the dominance of the effective interaction in shell evolution because simple one-body
potential models like the Woods–Saxon ones always produce monotonic evolution of
level spacings with changing mass number. Furthermore, in this particular case, the
non-monotonic evolution is caused by the central force. To account for this, let us first
remind one that the changes of επd3/2

− επs1/2 for N = 20–28 and for N = 28–32 amounts,
respectively, to ΔE1 = 8{Vm

pn(d3/2, f7/2)− Vm
pn(s1/2, f7/2)} and ΔE2 = 4{Vm

pn(d3/2, p3/2)−
Vm

pn(s1/2, p3/2)}.
For the tensor force, Vm

pn(s1/2, f7/2) = Vm
pn(s1/2, f7/2) = 0 holds, and only the first

terms contribute to ΔE1 and ΔE2. As shown in Table 1, both of them are negative, and
the επd3/2

− επs1/2 value keeps decreasing. On the other hand, the central-force contribu-
tions to ΔE1 and ΔE2 are negative and positive, respectively, thus producing a kink in
E(1/2+1 )− E(3/2+1 ) and επd3/2

− επs1/2 . Since this non-monotonic evolution is dominated
by the central force, any microscopic model, with a reasonable two-body force, is able
to describe that. In fact, both nonrelativistic and relativistic mean-field models produce
similar effects [34,35].

Here, let us comment on the idea behind the empirical shift of monopole matrix
elements employed in the SDPF-MUs interaction. As presented in Section 2.1, the cross-
shell part of the SDPF-MU interaction consists of the central, two-body spin–orbit, and
tensor terms. Among them, the tensor term is the most strongly supported by microscopic
theories in terms of the “renormalization persistency”, named in Ref. [16]. On the other
hand, the central term is constructed in a fully phenomenological way. The two-body
spin–orbit term is too small to tune.

On the basis of this general consideration, it seems that the most reasonable method of
monopole tuning is for the central term alone, with the other terms untouched. The SDPF-
MUs interaction is made to follow this policy. With respect to the cross-shell interaction,
the difference between SDPF-MU and SDPF-MUs is the shift of Vm

T=0(s, p). The shift,
ΔVm

T=0(s, p) = +0.4 MeV, is applied not only to the p3/2 orbital but also to the p1/2 orbital.
The latter change is needed to keep the tensor term unchanged after carrying out the
spin-tensor decomposition [36].
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Finally, let us mention that the Vm
pn(s, p)monopole matrix elements contain non-negligible

contributions from the two-body spin–orbit force. This feature is discussed in Section 3.2.2.

3.2. Neutron Shell Evolution

In this Subsection, the neutron shells that change with the proton number are consid-
ered, as illustrated in Figure 2b. Let us start with the 48Ca core, since its neutron p f -shell
energies are well established from the data. Next, the protons are removed from the
d3/2, s1/2, and d5/2 orbitals, and the relevant issues are discussed in Sections 3.2.1 to 3.2.3,
respectively.

3.2.1. From Z = 20 to Z = 16

As shown in Figure 2b, with protons removed from d3/2, the N = 28 shell gap changes
by −Δπd3/2

(ενp3/2 − εν f7/2
) ≈ 4{Vm

pn( f7/2, d3/2)− Vm
pn(p3/2, d3/2)}. Note that the negative

sign in −Δπd3/2
is needed because the shell evolution is considered with decreasing Z. Since

f7/2-d3/2 and p3/2-d3/2 are {−−} and {+(−)} pairs, respectively, this quantity should be
negative. As discussed in Section 3.1.1, the strongly attractive monopole matrix element of
Vm

pn( f7/2, d3/2) causes the rapid decrease of the Z = 16 shell gap in going from N = 20 to
N = 28.

The decrease of the N = 28 shell gap is difficult to evaluate from experimental data in
the vicinity of N = 28 isotones because the corresponding sulfur isotopes are deformed.
As emphasized in Section 2.2, however, this decrease can be probed from another isotone
chain. In this case, N = 20 isotones provide useful information since both 36S and 40Ca are
regarded as doubly-closed-shell nuclei with rather large first excitation energies (>3 MeV).

From the 36S(d, p)37S reaction data, the ν f7/2 and νp3/2 strengths are concentrated
in the ground state and the 0.646 MeV state, respectively, while some strengths remain
in the 3/2− state at 3.263 MeV with C2S ≈ 0.14 and in the 7/2− state at 3.443 MeV with
C2S ≈ 0.06 [37]. The measured spectroscopic strengths, thus, indicate a small N = 28
shell gap that is less than 1 MeV on top of the 36S core. The shell-model calculation with
the SDPF-MU interaction rather well reproduces this feature with C2S( f7/2) = 0.86 at
Ex = 0 MeV, C2S(p3/2) = 0.77 at Ex = 0.56 MeV, C2S(p3/2) = 0.19 at Ex = 2.97 MeV, and
C2S( f7/2) = 0.07 at Ex = 3.21 MeV. The calculated N = 28 shell gap for the 36S core is
0.32 MeV.

Similar data exist for the 40Ca core. The p3/2 strengths are fragmented into the states
at 1.94, 2.46, and 4.60 MeV, which is impossible to reproduce with the 0h̄ω calculations.
The centroids of the spectroscopic factors measured with the 40Ca(�d, p)41Ca reaction [38]
suggest that the N = 28 shell gap for 40Ca is 2.5 MeV. The SDPF-MU interaction produces
the N = 28 shell gap of 2.94 MeV, which is slightly larger than this value. Hence, a large
decrease of the N = 28 shell gap is confirmed, although the SDPF-MU interaction may
overestimate this decrease by a few hundred keV.

The reduction of the N = 28 shell gap should have a significant impact on the N = 28
closed-shell structure. The breaking of the N = 28 closure can be probed with one-neutron
removal spectroscopic strengths from p3/2: if no νp3/2 strengths are observed, then no
neutrons occupy the p3/2 orbital, implying a complete closure. Although summing up
all the p3/2 strengths are desirable for a quantitative evaluation, excited states available
in neutron-rich nuclei are limited. For this purpose, the strengths of the first 3/2− levels
between experiment and theory are compared and the results are shown in Figure 5.

It is natural that the strength for 48Ca is very small. As the proton number is away
from Z = 20, the strengths are naively expected to increase due to deformation caused by
valence proton particles or holes. If deformation is controlled by the number of valence
protons alone, those spectroscopic factors should be symmetric with respect to Z = 20.
However, the observed spectroscopic factors are rather large for the Z < 20 isotones,
whereas they remain small for the Z > 20 isotones.
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Figure 5. One-neutron removal spectroscopic factors of the 3/2−1 states from the ground states of
N = 28 isotones. The crosses denote the calculated neutron occupation numbers in the ground states
of the N = 28 isotones. Data are from Refs. [39] (Z = 20, 22, and 24), [40] (Z = 18), and [41] (Z = 16).

This behavior is well reproduced by the shell-model calculations with the SDPF-MU
interaction. The same trend is seen in the νp3/2 occupation numbers, which are the upper
limit of these spectroscopic factors. Hence, one concludes that the breaking of the N = 28
closure is much greater for Z < 20 than for Z > 20 and that the reduction of the N = 28
shell gap for lower Z works to enhance this property.

From Figure 5, it may look unexpected that the C2S value for Z = 16 is only half the
neutron p3/2 occupation number of 44S unlike that for 46Ar. This is caused by a unique
nuclear structure of 44S. As pointed out in Ref. [25], sulfur isotopes around 44S have two
nearly degenerate deformed neutron orbitals on the Fermi surface with Ωπ = 7/2− and
3/2−, which make the Kπ = 7/2− and 3/2− bands in 43S, respectively, by one-neutron
occupation. Here, Ω and K are, respectively, single-particle and total angular-momentum
projection onto the symmetry axis, and π is parity. The 3/2−1 state in 43S is a Kπ = 3/2−
member. Due to the near degeneracy of the Ωπ = 7/2− and 3/2− orbitals, the ground state
of 44S has a strongly mixed configuration with two neutrons in Ωπ = 7/2− and those in
Ωπ = 3/2−. As a result, about half the ground-state wave function of 44S, i.e., the part with
two neutrons occupying the Ωπ = 3/2−, is able to contribute to populating the Kπ = 3/2−
band in 43S. The remaining fractions of C2S should be distributed to the excited 3/2− states,
which was indeed observed [41].

Let us comment on other shell gaps. The discussions of the N = 32 shell gap is given in
Section 3.2.2, and here, just a brief remark to be made about the N = 34 shell gap. A recent
54Ca(p, pn)53Ca measurement clarified that the N = 34 shell closure is rather good [42],
while the N = 34 shell gap for the 54Ca core was estimated to be ∼ 2.5 MeV from the
GXPF1Br interaction [43]. It was predicted that this shell gap enlarges with decreasing Z
and that the fingerprint of the enlargement can be seen in the 2+1 energies of the N = 34
isotones with Z < 20 [44,45].

This prediction was confirmed later by measuring the 2+1 level in 52Ar that is located
at 1.656(18) MeV [46]. Interestingly, this level is even higher than that of the N = 28
isotope, 46Ar. The change of the N = 34 shell gap from Z = 20 to 16 is expressed as
−Δπd3/2

(εν f5/2
− ενp1/2) ≈ 4{Vm

pn(d3/2, p1/2) − Vm
pn(d3/2, f5/2)}. The d3/2-p1/2 and d3/2-

f5/2 are {+(+)} and {−+} pairs, respectively. Since the former pair is the most unfavored
combination in energy in terms of both the central and tensor forces, this value is positive
leading to the enlargement of the N = 34 shell gap. Experimental evaluation of this
enhancement is difficult for N = 34 cores, but it is, however, possible for N = 20 cores
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through spectroscopic strengths. Although the measured f5/2 strengths are not complete for
the 36S core, such an enlargement possibly occurs from the existing data (Figure 3 of [14]).

3.2.2. From Z = 16 to Z = 14

Two protons are removed from the s1/2 orbital as moving from Z = 16 to Z = 14.
Although the N = 28 Si isotope, 42Si, is strongly deformed, the N = 20 isotope, 34Si, can be
regarded as a doubly closed-shell nucleus: its first excited state is 0+ (not 2+) and is located
as high as 2.719(3) MeV [47]. In addition, a proton knockout experiment from 34Si [48]
indicated small spectroscopic strengths of s1/2 below Ex ≈ 4 MeV, thus, suggesting a good
π(d5/2)

6 closure in 34Si. For this reason, it is a good approximation to substitute the yrast
levels in 35Si for the neutron effective single-particle energies on top of the 34Si core.

As shown in Figure 2b, the N = 28 shell gap changes by −Δπs1/2(ενp3/2 − εν f7/2
) ≈

2{Vm
pn(s1/2, f7/2)− Vm

pn(s1/2, p3/2)} from Z = 16 to Z = 14. The s1/2- f7/2 and s1/2-p3/2
pairs are {+0} and {−0}, respectively, since the tensor force does not contribute to the
monopole matrix elements for s1/2 . As discussed next, the spin–orbit force also adds a
negative value for the s1/2-p3/2, and therefore the N = 28 shell gap should enlarge. This
enlargement is estimated from the yrast levels in 35Si and 37S to be +0.264 MeV. The shell-
model calculations with the SDPF-MU interaction lead to +0.667 MeV, which is somewhat
too large.

On the other hand, when one uses the SDPF-MUs interaction [33]—the one intro-
duced in Section 3.1.2—to reproduce the 1/2+ levels in 51,53K, this value is modified to
be +0.317 MeV. Note that the −Δπs1/2(ενp3/2 − εν f7/2

) values estimated from the ESPEs of
SDPF-MU and SDPF-MUs are +0.78 and +0.37 MeV, respectively. These two indepen-
dent experimental data—K isotopes and N = 21 isotones—consistently require about a
+0.2 MeV modification of Vm

pn(s, p) matrix elements for the SDPF-MU interaction. This
looks like due to the uncertainty of the central force that is determined empirically with a
simple potential.

Next, the evolution of the N = 32 shell gap is discussed. The 34Si(d, p) reaction
experiment in inverse kinematics found two prominent l = 1 peaks at 0.910 and 2.044 MeV,
the former and the latter of which should be the 3/2− and 1/2− levels, respectively [14].
The interval of these two levels, 1.134 MeV, is much smaller than the corresponding value
of 37S, 1.911 MeV. If these values are identical with the spin–orbit splitting between the p
orbitals, the data point to a sharp reduction of 0.857 MeV. Since the matrix elements for the
s1/2-p3/2 and s1/2-p1/2 pairs have no tensor contributions and the same central strengths
(see Table 1), only the spin–orbit force can change this shell gap in terms of the shell model.

As pointed out in Section 2.1, the two-body spin orbit force produces particularly large
monopole matrix elements between the s and p orbitals. The reduction of the p orbital
splitting is evaluated from the ESPEs of the SDPF-MU interaction to be 0.54 MeV, while
the actual shell-model calculation produces a 0.758 MeV reduction of the 3/2−1 -1/2−1 level
splitting in going from 37S to 35Si. Hence, although the two-body spin–orbit force is the
dominant source of the observed reduction, correlation energy may account for the energy
of a hundred keV order.

The origin of the observed reduction is still controversial. It is claimed [49] that Woods–
Saxon potentials well account for the observed reduction of the spin–orbit splitting in going
from the 40Ca to 34Si and that this occurs due to weak binding for lower Z isotopes. This
effect causes a gradual reduction with decreasing Z, whereas the two-body spin–orbit force
affects the p orbital splitting primarily with s1/2 filled. Hence, one of the key issues to
discriminate these effects is to establish how sharp this reduction occurs from the 36S to 34Si
cores compared to that occurring from the 40Ca to 36S cores. Although one-neutron adding
spectroscopic factors are measured for the 36S and 40Ca cores, the experimental uncertainty
does not converge within the required accuracy (see the Supplemental Material of Ref. [1]).
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3.2.3. From Z = 14 to Z = 8

Finally, protons in d5/2 are removed from Z = 14 to Z = 8. As shown in Figure 2b,
the N = 28 shell gap sharply decreases again. Note that Figure 2b presents neutron ESPEs
for the N = 28 cores. When a similar figure is drawn for the N = 20 cores, the ESPE of
p3/2 shifts downward by ∼2 MeV , and the neutron f7/2 and p3/2 orbitals cross at around
Z = 11. In this Section, the evolution of the N = 28 shell gap is examined; other gaps are
difficult to access with the current experimental capability.

The change of the N = 28 shell gap with Z decreasing from 14 to 8 is estimated
to be −Δπd5/2

(ενp3/2 − εν f7/2
) ≈ 6{Vm

pn(d5/2, f7/2) − Vm
pn(d5/2, p3/2)}. The d5/2- f7/2 and

d5/2-p3/2 pairs are {−+} and {+(+)}, respectively. Although the tensor force produces a
slightly larger positive value for the former pair, the central attraction overrides this effect,
thus, causing a negative value in total.

For such proton deficient isotopes, one cannot obtain sufficient experimental informa-
tion from the nuclei around N = 28. Moreover, N = 20 isotones do not provide direct data
for the present purpose because some isotopes in the “island of inversion” are strongly
deformed. Hence, one relies on single-particle levels on top of the N = 16 cores, although
N = 16 does not form a good closed shell except for with oxygen.

In Figure 6, the 3/2−1 energy levels relative to 7/2−1 are compared for experiment vs.
theory. The data for 27Ne, 29Mg, and 31Si indicate a nearly linear change of these energies.
Since the relevant one-neutron adding spectroscopic factors are not large, i.e., typically
∼0.5, as measured [50–52], these energy differences cannot be identified with the N = 28
shell gap. However, the linear evolution reminds one of the famous “Talmi plot” [2], which
successfully predicted the 1/2+1 level in 11Be from the linearity. Thus, this behavior is
worthy of particular attention.

One can see from Figure 6 that the measurements are in a good agreement with
the calculations based on the SDPF-MU and SDPF-MUs interactions. The SDPF-MUs
interaction achieves better agreement because its N = 28 shell gap on for the 34Si core is
improved (see Section 3.2.2). These two interactions are quite successful in reproducing the
slope of Ex(3/2−1 )− Ex(7/2−1 ).
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Figure 6. Evolution of the N = 28 shell gap in going from Z = 8 to 14 estimated from the
Ex(3/2−1 )− Ex(7/2−1 ) values in the N = 17 isotones (solid lines) and from the ESPE calculations
(dashed lines). Data are from Refs. [50–52].

As one can also see from Figure 6, the slope is quite similar to what the ESPE predicts.
Since the Vm

pn(d5/2, f7/2) and Vm
pn(d5/2, p3/2) values are kept unchanged in making the

SDPF-MUs interaction based on SDPF-MU, the νp3/2 ESPEs are parallel. On the other hand,
these ESPEs are shifted downward in parallel from Ex(3/2−1 )− Ex(7/2−1 ) by ∼1.5 MeV.
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This difference arises from the assumption of the ν(d5/2)
6(s1/2)

2 closure taken here to
evaluate the ESPE.

However, in reality, a significant number of neutron excitations to d3/2 occur in the
27Ne, 29Mg, and 31Si eigenstates. These neutron excitations attract a neutron in the f7/2
orbital more than a one in p3/2 because the T = 1 monopole matrix element of d3/2- f7/2 is
more attractive than that of d3/2-p3/2, thus, shifting Ex(3/2−1 )− Ex(7/2−1 ) upward. Such
significant neutron excitation to d3/2 occurs similarly in the Ne, Mg, and Si isotopes. Hence,
the evolution of Ex(3/2−1 )− Ex(7/2−1 ) is predominantly changed by the ESPE, providing
evidence for the narrowing N = 28 shell gap caused by the monopole matrix element
Vm

pn(d5/2, f7/2)− Vm
pn(d5/2, p3/2).

It should be noted that the predicted Ex(3/2−1 )− Ex(7/2−1 ) at Z = 8 is closer to the
ESPE estimate than those of other isotopes. This is due to the fact that the assumed N = 16
closure works better at Z = 8 due to the occurrence of the N = 16 magic number.

4. Conclusions

In this paper, an almost complete survey of proton and neutron shell evolution for
atomic mass number 25 � A � 55 neutron-rich nuclei is performed on the basis of shell-
model calculations, in order to understand how well the observed evolution is explained
with a simple monopole-based universal interaction, VMU.

On the proton side, the observed one-proton removal spectroscopic distributions in
40,48Ca were very well reproduced with shell-model calculations, pointing to a ∼2 MeV
change of πd5/2-πd3/2 spin–orbit splitting. Since this change is caused almost solely by the
tensor force, this agreement quantitatively confirms the validity of a π + ρ meson exchange
tensor force in the VMU interaction. The 1/2+1 -3/2+1 level difference in K isotopes changes
the sign twice, with ν f7/2 filled and with νp3/2 filled.

As discussed, this change is caused by the “reinversion” of single-particle level or-
dering between πd3/2 and πs1/2 as a result of the non-monotonic evolution of these level
spacings. Such a manner of evolution cannot be produced by one-body potential models,
and therefore it is strong evidence for the dominant role of two-body forces in shell evolu-
tion. In this particular case, the non-monotonic evolution observed in K isotopes is driven
by the central force.

On the neutron side, the neutron-number N = 28 shell gap is reduced with protons
removed from the d3/2 and d5/2 orbitals, dominated by the central force. The relevant
single-particle-like levels are well reproduced by the shell-model calculation. In addition,
the central force causes the enhancement of the N = 34 shell gap for the atomic-number
Z < 20 isotopes. This effect well accounts for the recently observed 2+1 level in 52Ar.

In this way, the present scheme, based on VMU, provides a successful description of
the shell evolution. Neutron shell evolution in exotic nuclei is often argued in the context of
weak binding. In the present study, we were successful in obtaining not only neutron shells
but also proton shells that were free from weak binding. Thus, such a unified description
strongly indicates the dominance of the effective interaction in shell evolution, as far as the
region of the present study is concerned, including the narrowing N = 28 shell gap toward
a neutron-rich nuclei.
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Abstract: One ambitious goal of nuclear physics is a predictive model of all nuclei, including the
ones at the fringes of the nuclear chart which may remain out of experimental reach. Certain
regions of the chart are providing formidable testing grounds for nuclear models in this quest as
they display rapid structural evolution from one nucleus to another or phenomena such as shape
coexistence. Observables measured for such nuclei can confirm or refute our understanding of the
driving forces of the evolution of nuclear structure away from stability where textbook nuclear
physics has been proven to not apply anymore. This paper briefly reviews the emerging picture
for the very neutron-rich Fe, Cr, and Ti isotopes within the so-called N = 40 island of inversion as
obtained with nucleon knockout reactions. These have provided some of the most detailed nuclear
spectroscopy in very neutron-rich nuclei produced at rare-isotope facilities. The results indicate that
our current understanding, as encoded in large-scale shell-model calculations, appears correct with
exciting predictions for the N = 40 island of inversion left to be proven in the experiment. A bright
future emerges with predictions of continued shell evolution and shape coexistence out to neutron
number N = 50, below 78Ni on the chart of nuclei.

Keywords: rare isotopes; shell evolution; N = 40 island of inversion; knockout reactions

1. Introduction

One of the challenging goals of the field of nuclear structure physics is to model
atomic nuclei, including their properties and their reactions—rooted in the fundamental
forces at play between protons and neutrons—with predictive power also for the shortest-
lived nuclear species located near the driplines of the chart. With this ultimate vision
to extrapolate towards the most neutron-rich nuclei that may elude experimental study
in the near future, much can be gleaned from nuclei in regions that display the effects
of structural evolution away from the valley of stability and so offer a window into the
driving forces of structural change and our understanding of it [1–3]. Specifically, the
complex interplay between single-particle and collective degrees of freedom can provide
exciting experimental challenges and demanding theoretical benchmarks.

The region of rapid structural change of interest in this review is the so-called “N = 40
island of inversion” [4,5], where the neutron-rich Fe and Cr nuclei around neutron number
40 become the most deformed in the region. In nuclear models, this is theorized to be caused
by the strong quadrupole-quadrupole interaction producing a nuclear shape transition in
which highly-correlated many-particle–many-hole configurations become energetically
more favored than the normal-order (spherical) ones [4]. Such islands of inversion are
characterized by rapid structural changes and shape coexistence [5,6], providing insight
into nuclear structure physics far from stability [7]. Large-scale shell-model calculations
with the LNPS (Lenzi-Nowacki-Poves-Sieja) effective interaction [4] in the full f p shell for
protons and the f5/2, p3/2, p1/2, g9/2, and d5/2 orbitals for neutrons have confirmed the
picture described above, with many successful predictions that preceded experimental
results [3].
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A recent prediction extends this island of inversion to N = 50 [5] and includes nuclei
that will only be reached at next-generation rare-isotope beam facilities. This exciting
prospect of extending the island towards the magic neutron number N = 50 is based
on extrapolations of calculations using the LNPS shell-model effective interaction and
its monopole drifts [4,5]. These prediction together with advances in experimentation
continue to push the field forward on the journey to the N = 50 island of inversion.

The furthest experimental reach into the Fe, Cr, and Ti isotopes has been afforded
by inverse-kinematics nucleon removal studies induced by fast rare-isotope projectile
beams [8,9] to probe the nuclei of interest via in-beam γ-ray spectroscopy [10]. Often,
such reactions provide the first glimpse of the excitation level scheme [11] and, in some
cases, the direct character of such reactions is used to conclude on wave function overlaps
within the shell-model framework [8,9]. This paper reviews the recent results for the very
neutron-rich nuclei 66,68,70,72Fe, 64,66Cr, and 60,62Ti, all located near the center of the N = 40
island of inversion or already on the path to N = 50, obtained with such experimental
approaches which have provided pioneering information the furthest away from the line
of stability; see Figure 1.
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Figure 1. Portion of the nuclear chart that shows the N = 40 island of inversion. Nuclei discussed
in this review are highlighted with a red outline. This chart was generated with [12] (half-life color
coding based on NuBase2020 and corresponding extrapolations).

2. Experimental Approaches

Experimental techniques aimed at tracking the changes in the structure of nuclei are
multi-pronged. They include measurements of ground-state properties such as masses,
radii, β-decay properties, and electromagnetic moments as well as the study of properties
of bound and unbound excited states. One way of probing specific nuclear structure aspects
in quantitative ways is the use of nuclear reactions that selectively probe a specific degree
of freedom. Inelastic scattering of nuclei, including Coulomb excitation, has long been used
to probe nuclear collectivity, characterized by the coherent motion of several protons and
neutrons. The single-particle degree of freedom, on the other hand, is commonly associated
with the single-particle composition of the many-body wave function in a shell-model
picture. Such single-particle properties can be studied rather selectively by using direct
reactions that add or remove one or a few nucleons from the nucleus of interest. Intriguing
possibilities now arise in the above mentioned islands of inversion, where the telltale onset
of collectivity and the underlying migration of single-particle levels can be tracked to
provide a consistent picture.
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At in-flight rare-isotope facilities, short-lived nuclei away from stability can be effi-
ciently produced by fragmentation (or fission) of stable, primary beams impinging upon
stable targets at high beam energy. The resulting secondary beams of rare isotopes are
then available for experiments at velocities typically exceeding a v/c of 30%, where c is
the speed of light. Well-established experimental techniques used for decades to study
stable nuclei are not readily applicable in inverse kinematics and at the low beam rates
encountered for the shortest-lived nuclear species. Instead, powerful new experimental
approaches have been developed to enable in-beam nuclear spectroscopy studies of fast
rare-isotope beams with intensities that are several orders of magnitude less than needed
for typical low-energy techniques.

The intensities of rare-isotope beams are lower than stable-beam rates by several
orders of magnitude. However, the experimental approach of in-beam γ-ray spectroscopy
compensates for the reduced intensities by enabling thick reaction targets, due to the high
beam velocity, and realizing measurements with luminosities comparable to stable-beam
experiments but at beam rates of up to a factor of 104 less. Reactions such as nucleon
removal are induced in thick reaction targets (several hundred mg/cm2 to g/cm2) and with
the detection of γ rays for the identification of the reaction residue’s final state [10]. Since
the residue’s γ-ray emission occurs in flight, the γ-ray detection systems have to be granular
or position-sensitive to allow for an angle-dependent event-by-event reconstruction of the
Doppler-shifted γ-ray energies into the rest frame of the emitter. The choice of the target
material depends on the desired reaction; one- and two-nucleon knockout reactions [8] are
often induced by light targets, for example 9Be or 12C, while quasi-free scattering of the
(p, 2p) or (p, pn) type are nowadays performed with MINOS, an extended liquid hydrogen
target that allows reaction vertex-reconstruction and tracking following the concept of a
time projection chamber [13]. The projectile-like reaction residues exiting the target has to
be identified with magnetic spectrographs or advanced detector systems to cleanly select
the reaction channel of interest. In-beam γ-ray spectroscopy programs with fast beams are
pursued at a number of fragmentation facilities around the world, while the work using
nucleon removal reactions in the N = 40 region has been performed largely at NSCL [14]
in the US and RIBF/RIKEN [15] in Japan with the GRETINA [16,17] and DALI2 [18] arrays
for γ-ray spectroscopy, respectively. A sketch of the experimental scheme is shown in
Figure 2.

v > 30%c

Rare projectile
beam

     Target Reaction
residues

Driver provides
stable “primary
beam” 

Fragment separator
selects nuclei of interest
produced in the frag-
mentation or fission
of the primary beam  

Spectrographs or
detectors to identify and 
momentum-analyze
the knockout residue

-ray detection arrays

Figure 2. Experimental scheme for inverse-kinematics nucleon knockout reactions at rare-isotope
beam facilities that provide fast beams of rare isotopes via projectile fragmentation or fission with
velocities, v, exceeding 30% of the speed of light, c.

For 9Be- or 12C-induced one-nucleon knockout reactions, the exit channel of interest
is one where—in a single step—one proton or neutron is removed from the fast rare-
isotope beam and the projectile-like residue with one less nucleon survives in a bound final
state. This channel is characterized by swift, surface-grazing collisions of the projectile
and the target nuclei. From a large body of experiments performed at energies from
50 MeV/nucleon to more than 1 GeV/nucleon at (rare-isotope) facilities around the world,
it has been established that, with large cross sections, the dominant single-hole states
relative to the projectile ground state are populated in the projectile-like reaction residue,
unambiguously demonstrating the unmatched sensitivity to the single-particle degree of
freedom. The residue parallel momentum distributions encode in their shape and width
the information of the orbital angular momentum � and separation energy of the removed
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nucleon [8]. The cross section of the selectively populated single-hole configurations scale
with the respective spectroscopic factor or wave-function overlap in a shell-model picture.
Statistical descriptions of these reactions will not capture these features. Comparisons
of such one-nucleon removal data with nuclear structure calculations have been enabled
by a direct reaction model [8,19,20] that uses the sudden (short interaction time) and the
spectator-core approximation to many-body eikonal (forward-scattering) theory [19] with
a detailed prescription provided in [21]. The single-particle nuclear structure information
then enters the calculations through spectroscopic factors, or wave-function overlaps, that
scale the calculated cross sections for the removal of one nucleon from the corresponding
orbital. With that, the measured knockout cross sections can serve as formidable probes of
shell-model interactions on the quest to identify the single-particle makeup of the projectile
ground state and the residue final states [8,22].

It has been shown also that two-proton and two-neutron removal from neutron-rich
and neutron-deficient projectiles, respectively, also proceed as direct reactions [23–25]. By
combining eikonal reaction dynamics, that assumes a sudden single-step removal of two
nucleons and shell-model calculations of the two-nucleon amplitudes (TNAs), the cross
sections for two-nucleon knockout from the parent-nucleus ground state to each of the final
states in the daughter nucleus can be calculated [26]. Also, it was shown that the shape
of the parallel momentum distribution of the two-nucleon knockout residues depends
strongly on the total angular momentum of the two removed nucleons, allowing spin values
to be assigned to populated final states [27–29]. One step further, it was proposed and
confirmed that since the two-nucleon overlaps contain components with different values
of the total orbital angular momentum, information beyond the total angular momentum
can be probed. This opens up the possibility to uniquely explore this composition and
couplings within the wave functions of rare isotopes [30,31].

More recently, quasi-free (p, 2p) and (p, pn) reactions, extensively used in normal
kinematics with stable targets, have been successfully adapted for inverse-kinematics
studies of rare-isotope beams on proton targets [9]. Just as the heavy-ion-induced knockout
reactions sketched above, the proton-induced knockout reaction selectively probes the
single-particle structure of the nucleus of interest. Also, the shape of the momentum
distribution of the knockout residue is connected to the momentum distribution of the
knocked-out nucleon. Protons are a penetrating probe that interrogate the nuclear interior,
and their rescattering inside the nucleus has to be understood and modeled [9]. In heavy-
ion induced knockout, the orbital radii need to be modeled precisely due to their surface
localization [21]. This experimental approach has been used recently at RIBF/RIKEN
for measurements reviewed here. Various reaction models have been developed and
their consistency remains a challenge for the future [32]. The different nucleon removal
reactions were described and confronted with each other recently and extensive details on
sensitivities and model dependencies can be found in reference [32].

3. The Fe Isotopic Chain

The first in-beam nuclear spectroscopy of 66Fe and 68Fe was published in 2008 from a
measurement performed at NSCL where these two Fe isotopes with 40 and 42 neutrons
were populated each in 9Be-induced one- and two-proton knockout reactions, using the
laboratory’s S800 spectrograph for particle identification and SeGA for in-beam γ-ray
spectroscopy [33]. For 66Fe, in addition to the tentative 2+1 → 0+1 and 4+1 → 2+1 transitions
reported earlier from β decay [34], a 957(10) keV γ-ray was observed in both reactions,
while a 1310(15) keV transition was only seen in the one-proton knockout. Within a simple
two-proton knockout picture, for two protons removed from the f7/2 orbital, one would
expect to populate states in 66Fe with spin-parity 6+, 4+, and 2+, suggesting that the 957-
keV line depopulates the 6+ state of 66Fe. Subsequent β-decay work limited to lower-spin
states seems to suggest that the 1310-keV transition could originate from the second 2+

level and feeds the first 2+ state [35]. This first in-beam work predates the publication
of the LNPS effective interaction [4] and it is interesting to explore the suggestion that
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the 6+1 state was observed. Kotila and Lenzi [36] discuss collective phenomena in Fe
and Cr and show that the 6+1 level predicted by the LNPS calculations agrees with the
tentatively assigned (6+) state proposed by Adrich et al. in 66Fe [36]. Subsequent in-
beam spectroscopy work performed at NSCL explored the 2+1 and 4+1 states of 66Fe in
9Be-induced inelastic scattering [37] and the quadrupole collectivity in intermediate-energy
Coulomb excitation [38] and excited-state lifetime measurements [39].

Beyond N = 40, in 68Fe, the first observation of γ-ray transitions was reported in [33]
from 9Be-induced one- and two-proton removal reactions with proposed 2+1 → 0+1 and
4+1 → 2+1 decays, later supported by intermediate-energy Coulomb excitation measure-
ments [38] as well as β decay [40]. It turned out that the energy of the first 2+ state in 68Fe
is lower than in 66Fe, indicating that the maximum collectivity is assumed beyond N = 40.
Taking the 4+1 assignment at face value, the R4/2 energy ratio increases as well. The shell
model calculations with the LNPS effective interaction are in good agreement with the
energies and transition strengths, lending even more confidence that the shell evolution
past N = 40 is captured by the incorporated driving forces [4]. Excited states beyond the
tentatively assigned yrast 2+ and 4+ remained elusive until a β-decay study [41], where a
number of low-spin states were proposed. Two candidates for the 6+1 state just emerged re-
cently from a 9Be-induced charge-exchange reaction on 68Co projectiles in the (7−) ground
state and a low-spin isomer [42]. Governed by the charge-exchange selection rules, access
to never-before observed states was provided, predominantly higher-spin states [42]. The
calculations with the LNPS effective interaction show good agreement with the energies
of the candidate yrast states up to the suggested candidate 6+ levels [42]. This reaction
mechanism holds great promise to reach beyond the selectivity of knockout reactions and
β decay, depending on the spin and parity of the projectile initial state.

At N = 44, spectroscopy of 70Fe became first possible in 2015 at the RIBF facility
at RIKEN using a (p, 2p) reaction with the MINOS hydrogen target [13] and the DALI2
scintillator array [43] and in the same year with β decay at RIKEN [41]. Two transitions were
consistently identified in both measurements and proposed to correspond to the 2+1 → 0+1
and 4+1 → 2+1 decays, establishing the corresponding states. It took until 2019 to get
beyond the yrast 4+ state and identify a transition on top of the 4+ level in a 9Be-induced
one-proton knockout measurement performed at NSCL with GRETINA and the S800
spectrograph [44]. The measured and calculated partial one-proton removal cross sections
were confronted and showed, at first glance, a striking disagreement with high-lying states
populated more strongly than the yrast states observed in the measurement. The emerging
picture is one that is not unlike the Pandemonium in β decay [45], where indiscernible
feeding from a multitude of higher-lying states funnels intensity into low-lying states which
then appear prominent albeit carrying little direct feeding. This demonstrates that, while
one-proton removal is a powerful experimental probe to reach nuclei more neutron-rich
than the projectile, the collectivity prevalent in this region of the nuclear chart can lead to
fragmentation of the single-particle strength which may then be thinly spread over many
states in the reaction residue, leading to a Pandemonium-like feeding scheme when γ-ray
spectroscopy is used [44].

The most neutron-rich Fe isotope with spectroscopic information is 72Fe, studied
at RIBF/RIKEN in the same experiment and with the same approach as 70Fe [43] and
two γ rays were observed and proposed to correspond to the 2+1 → 0+1 and 4+1 → 2+1
transitions, establishing the corresponding states. It will likely take a next-generation
rare-isotope facility to move beyond 72Fe with nuclear spectroscopy. A peculiar picture
emerges where starting at N = 40, the evolution of the 2+1 and 4+1 excitation energies
largely stays flat, as shown in Figure 3. Across the Fe isotopic chain, the LNPS shell-
model calculations, using the slightly modified LNPS-m effective interaction, reproduce
the measured excitation energies.
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Figure 3. Evolution of the yrast 2+ and 4+ states in the Fe isotopic chain from N = 36 to 46, the most
neutron-rich Fe isotope with spectroscopic information. The data is confronted with the results of
LNPS-m (modified Lenzi-Nowacki-Poves-Sieja) shell-model calculations from reference [43]. LNPS-
m is a slightly modified version of the original LNPS interaction as detailed in [43]. The calculations
reproduce the signature drop in excitation energy at N = 40, corresponding to an onset of collectivity,
and the subsequent flat evolution.

4. The Cr Isotopes

In the heart of the N = 40 island of inversion, the nucleus 64Cr eluded spectroscopy
until 2010. In fact, Adrich et al. attempted to populate 64Cr in the two-proton removal
from 66Fe. This measurement failed as the cross section turned out to be only 0.13(5) mb,
an order of magnitude smaller than the cross section leading from 68Ni to 66Fe along
N = 40 [33]. The conclusion at the time was that the cross section is small due to a structural
mismatch between the 66Fe ground state and the bound states of 64Cr. This early idea
was partially supported in 2010 through the LNPS effective interaction which predicts
significant differences in the neutron 2p2h and 6p6h content in the ground states of 66Fe
and 64Cr, hinting indeed at a potentially reduced overlap of the neutron wave functions [4].
The first spectroscopy of 64Cr was then accomplished via 9Be-induced inelastic scattering at
NSCL where candidates for the 2+1 → 0+1 and 4+1 → 2+1 transitions were identified. While
published in the same year, this data did not enter the development of the LNPS effective
interaction and so the close match between experiment and calculation can be viewed as a
stunningly successful prediction [4]. The 2+1 state and the energy of the candidate 4+1 level
were since confirmed in intermediate-energy Coulomb excitation [38] and β decay [46],
respectively. The first one- and two-proton knockout study into 64Cr, using GRETINA and
the S800, revealed a high γ-ray transition density, indicative of a rather complex and dense
level scheme [47]. A quantitative knockout study was not possible as the knockout reaction
channels may have contained small contaminations from 64Cr populated in fragmentation
of other projectiles in the cocktail beam [47]. A study of the B(E2) transition strength
predicted by the LNPS shell-model calculations revealed several very interesting collective
band structures, resembling a gamma and beta band but with deviations from the textbook
expectations for such structures [47]. These proposed bands are barely linked via E2
transitions. Identifying these predicted collective structures in measurements has to remain
a challenge for future studies and next-generation rare-isotope facilities where these states
can be accessed with reactions at low beam energies such as deep-inelastic scattering [47].

The most neutron-rich Cr isotope with spectroscopic information is 66Cr studied
at RIBF/RIKEN with γ-ray spectroscopy following a (p, 2p) reaction [43]. Candidate
transitions for the 2+1 → 0+1 and 4+1 → 2+1 decays were proposed, in agreement with
slightly modified LNPS shell-model calculations, termed LNPS-m in [43]. The Cr isotopes
mirror the observations for the Fe isotopic chain, with a rather flat evolution of the 2+1 and
4+1 energies, but starting at N = 38 already instead of at N = 40 as for the Fe chain; see
Figure 4.
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Figure 4. Evolution of the yrast 2+ and 4+ states in the Cr isotopic chain from N = 36 to 44, the
most neutron-rich Cr isotope with spectroscopic information. The data is confronted with the results
of LNPS-m shell-model calculations from reference [43]. LNPS-m is a slightly modified version of
the original LNPS interaction as discussed in [43]. The calculations reproduce the signature drop
in excitation energy at N = 38, corresponding to an onset of collectivity, and the subsequent flat
evolution. Note that the onset of collectivity in Cr sets in already at N = 38, unlike for the Fe isotopes.

5. The Ti Isotopic Chain

The N = 38 Ti isotope 60Ti was studied in the 9Be-induced one-proton knockout at
NSCL using GRETINA at the S800 spectrograph, providing the first spectroscopy of this
nucleus [48]. One γ-ray peak was observed which was argued to be a doublet of two
transitions corresponding to the 2+1 → 0+1 transition and perhaps the decay of the 4+1 level.
This measurement exploited the knockout reaction mechanism and compared calculated
and measured partial cross sections [48]. The comparison supported the suggestion of a
doublet as well as the spin assignments for the candidate states and the expectation for the
inclusive cross section. This analysis provided a unique benchmark for the LNPS effective
interaction that goes beyond excitation energies and includes wave-function overlaps, at
the time the closest to 60Ca as possible.

At N = 40, 62Ti was accessed with γ-ray spectroscopy only recently, using a (p, 2p)
reaction with the MINOS target and the DALI2 scintillator array at SAMURAI [49]. Candi-
date γ-ray decays attributed to the 2+1 → 0+1 and 4+1 → 2+1 transitions were proposed. As
in the work on 60Ti [48], also for 62Ti the direct nature of the reaction was exploited, compar-
ing measured and calculated partial cross sections that probe the wave-function overlaps
between projectile ground state and knockout residue final states. A 63V ground-state
spin assignment J = 3/2− was found the most likely given the calculated cross section
distributions for the other alternatives [49]. Along the N = 40 isotone line, 62Ti is the last
extrapolation point towards the elusive 60Ca (see Figure 5), which was proven to exist only
recently with implications for the dripline in the Ca isotopic chain [50].
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Figure 5. Evolution of the 2+ and 4+ energies in the N = 40 isotones from Ca to Zn as predicted by
LNPS shell-model calculations presented in reference [49] in comparison to data, where 62Ti is the
most neutron-rich in the chain. The excellent agreement lends confidence in the prediction for the
elusive nucleus 60Ca which was only recently identified [50].

6. Complementary Descriptions of the Region

While this review focuses on the shell-model description of the nuclei above, the reader
is referred to an interesting discussion of the Cr and Fe isotopic chains in the framework of
the proton neutron interacting boson model (IBM-2) by Kotila and Lenzi [36]. Among the
discussed collective observables, for example, the measured as well calculated energy ratios
R4/2 and R6/4 within the shell-model and the IBM-2 are examined from N = 30 − 40 [36].
Complementary to the effective-interaction shell model and the IBM, Coraggio et al. [51]
performed pioneering realistic shell-model calculations starting from a low-momentum
potential derived from the high-precision CD-Bonn free nucleon-nucleon interaction. The
energies of the first 2+ states and B(E2) strengths are calculated inside the N = 40 island
of inversion and the best agreement is reached with the largest possible model space [51].
These calculations were extended for 68,70Fe and confronted with experiment in [41]. The
level structures of odd-Z 63,65,67Mn isotopes located on the nuclear chart just between the
collective Cr and Fe isotopic chains were shown to be consistent with strongly coupled
rotational bands built on a state with K quantum number K = 5/2 [52], providing yet
another means to characterize the collectivity that has become a hallmark of the region.

7. Summary and Conclusions

The N = 40 island of inversion, centered on 64Cr, has enjoyed intense attention from
experimentalists and theorists alike. Experimental efforts at NSCL/MSU and RIBF/RIKEN
have pushed the frontiers of spectroscopy by utilizing proton removal reactions which
always lead to reaction residues more neutron-rich than the projectile. Technological
advances, such as GRETINA at NSCL and MINOS at RIBF, allowed γ-ray spectroscopy,
for the first time, at N = 46, N = 42 and N = 40 in the Fe, Cr, and Ti isotopic chains,
respectively. On the theory side, the LNPS effective shell-model interaction continues to
demonstrate not just the capability to reproduce the data but also to predict some of it.
This close collaboration between experiment and theory has led to continuous refinements
of the LNPS effective interaction and, in turn, motivated cutting-edge measurements at
rare-isotope facilities around the world. Particularly exciting are predictions of an N = 50
island of inversion which rely on the monopole drifts from the LNPS interaction. This
unmatched success of this effective interaction at N = 40 and beyond now lends confidence
to these extrapolation and promises an exciting future for experiments at next generation
rare-isotope facilities needed to reach these outskirts of the nuclear chart. In the N = 40
island of inversion itself, open challenges for experiment remain with respect to shape
and configuration coexistence as predicted to be manifested in quadrupole-collective band
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structures in 62,64Cr, for example. Also the study of such higher-lying off-yrast states has
to remain a challenge for upcoming rare-isotope facilities. The future is exciting with
experimental and theoretical advances in lockstep pushing the field forward to conquer
the N = 50 island of inversion and fully characterize the N = 40 one. For this, more exotic
fast-beam reactions such as the HI-induced charge exchange on high-spin projectiles [42]
or multi-nucleon pickup reaction [53] may turn out to be promising tools in the arsenal of
direct reactions.
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Abstract: Inevitable progress has been achieved in recent years regarding the available data on the
structure of 100Sn and neighboring nuclei. Updated nuclear structure data in the region is presented
using selected examples. State-of-the-art experimental techniques involving stable and radioactive
beam facilities have enabled access to those exotic nuclei. The analysis of experimental data has
established the shell structure and its evolution towards N = Z = 50 of the number of neutrons, N,
and the atomic number, Z, seniority conservation and proton–neutron interaction in the g9/2 orbit,
the super-allowed Gamow–Teller decay of 100Sn, masses and half-lives along the rapid neutron-
capture process (r-process) path and super-allowed α decay beyond 100Sn. The status of theoretical
approaches in shell model and mean-field investigations are discussed and their predictive power
assessed. The calculated systematics of high-spin states for N = 50 isotopes including the 5− state
and N = Z nuclei in the g9/2 orbit is presented for the first time.

Keywords: nuclear structure; shell model; magic nuclei; gamma-ray spectroscopy

1. Introduction and Ground-State Properties

The N = Z = 50 nucleus 100Sn, with N being the number of neutrons and Z being the
atomic number, is the heaviest self-conjugate and doubly-magic nucleus that remains stable
with respect to heavy-particle emission and thus provides an excellent opportunity for
shell-model studies. In particular, its unique placement in the chart of nuclei makes it and
its neighbors the most suitable to investigate neutron–proton correlations based on the
coupling of single particle states with respect to a doubly-magic-core. However, in view of
these advantages, the progress on the relevant experimental information in this region is
moderate in spite of enormous efforts of physicists around the globe.

It directly relates to the accessibility of these nuclei in any known production reaction
and therefore also to technical accelerator developments. Recent related technical devel-
opments have a large impact on this field. The history of the approaches to investigate
100Sn was addressed in the latest review [1] where the experimental and theoretical status
of the region was summarized until 2013. The purpose of this work is to report on recent
developments in this region relevant for the understanding of the nuclear force.

The 100Sn ground state is expected to be bound by about 3 MeV with respect to proton
emission [2], which makes its yrast states accessible to γ-ray spectroscopy. The proton
dripline was recently predicted [3] to be at N = 47 for the element of tin. The first ab initio
prediction for the charge radius and density distribution of 100Sn was attempted in Ref. [4].
The latest example of experimental developments to study nuclear size in this region
is given in Ref. [5]. In-gas-cell laser ionization spectroscopy and extraction of magnetic
moments and mean-square charge radii of light Ag isotopes was presented in Ref. [6].

The strength of the Super Gamow-Teller transition [7], B(GT) from the ground state
of 100Sn, which could yield the largest value observed within the electron capture (EC)
decay energy, QEC, window in the whole chart of nuclei, was originally predicted in
Ref. [8]. It was measured for the first time by Hinke et al. [9]. Significant progress was
obtained since then as the experimental value was revisited recently [10] and discussed
theoretically in [11–14]. The two experimental B(GT) values, originating from beta decay
process, differ significantly.
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This is mainly caused by the greatest deficiency of the beta-decay spectroscopy mea-
surements that is the determination of QEC, i.e., Qβ, which is needed for extraction of
B(GT) value. The reason for that is a strong dependence of phase-space factor f on the decay
energy. This calls for a high-precision mass measurement of 100Sn. Indeed, also here the
progress is significant. Mass measurements in the region were recently extended [15,16],
suggesting that the QEC of Ref. [9] to be more consistent with those new results. The mass
of 100Sn itself is likely within reach very soon.

The first possible excited yrast states in 100Sn are particle-hole excitations of the closed
core. No excited states of 100Sn were reported thus far, as shown in Figure 1. To address
directly the structure of 100Sn itself, an extended work has been invested into calculations
of both α-cluster formation and decay probabilities in ideal heavy α emitters 104Te and the
212Po for a direct comparison [16]. In this microscopic calculation of α-cluster formation
with an improved treatment of shell structure for the core nucleus, it was found out that
the effective potential is sensitive to the contributing single-particle wave functions.

 

Figure 1. Present status of experimental information on the ground-state lifetime and excited states
in the 100Sn region. Nuclei with only the ground-state lifetime known and no excited states reported
are indicated with a small yellow square. The nuclei to the left of them were only produced in an
experiment. The blue-shaded chains of nuclei highlight the main focus of this review.

Striking shell effects on the α-cluster formation probabilities are shown for magic
numbers 50, 82 and 126 by using the same nucleon-nucleon interaction. An enhanced
α-cluster formation probability was shown for both 104Te and 212Po as compared with
their neighbors. In Ref. [17], a particular enhancement in the 100Sn region was suggested
with respect to that in 208Pb. The analysis of the statistical significance of the neutron skin
thickness to the symmetry energy in 132Sn and comparison to proton skin in 100Sn was
performed by Muir et al. [18]. As in the first case, a clear correlation was observed for
neutron skin, in the later no correlation could be deduced for 100Sn.

The nuclear structure of hole states in the region “southwest” of the shell closure
at 100Sn, close to the N = Z line is dominated by the g9/2 intruder orbital from the N = 4
harmonic oscillator (HO) shell. This is well separated from the N = 3, pf orbitals, both ener-
getically and by parity, allowing only 2p-2h excitations into the intruder orbital space. Domi-
nated by the strong proton-neutron interaction, the 0g9/2 orbit gives rise to unique structural
features [1] such as spin-gaps, seniority [19–21] and parity-changing isomerism [22] in
addition to proton-neutron pairing correlations [23] and seniority-induced symmetries [24].
Moreover, when moving below Z = 45, deformation and shape coexistence of spherical and
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deformed shapes start to appear. Therefore, the region “southwest” of 100Sn has become
and remains, the subject of ever-increasing efforts both in experiments and theory.

The N = Z nuclei provide the best quantum laboratory to investigate the characteristics
of the neutron–proton (np) interaction, isospin symmetry and mixing, in addition to evolu-
tion of nuclear shapes. The N ≈ Z nuclei up to the A = 60 mass region have been intensively
investigated during the past twenty years in various laboratories around the world. Here,
the nuclei have been experimentally accessible as they are located only few neutrons away
from their stable isotopes. From the nuclear theory perspective, especially regarding the
nuclear shell model, the N ≈ Z nuclei between the A = 40–60 mass region have been an
ideal subject to study since the valence nucleons occupy primarily the f 7/2 orbital making
the calculations feasible due to the small valence space.

Currently, experimental ground-state decay and nuclear structure data, such as the
level schemes and lifetimes of excited states for the N ≈ Z nuclei around the A = 60–90 mass
region, are relatively scarce. This is due to the fact that these nuclei are located further away
from the line of stability, near the proton-drip line. The production cross sections of these
systems in nuclear reactions are very low (tens of nb to few μb). The missing experimental
data from this region is naturally required in order to scrutinize and develop theoretical
models operating in larger model spaces. However, radioactive ion beams (RIB) in this
region are becoming gradually available for experiments, which can be utilized in various
ways to search for new physics around the N = Z line.

The evolution of nuclear shell structure in the vicinity of doubly-magic nuclei is of
major importance in nuclear physics. The Sn isotopes provide a unique testing ground in
this respect. The Sn isotopes represent the longest chain of semi-magic nuclei in nature,
which makes them attractive for systematic investigations. How the shell structure evolves
as a function of the number of protons and neutrons can be related to collective as well
to single-particle effects. Unique correlation effects may be manifested at a self-conjugate
shell-closure as the same spin-orbit partners for neutrons and protons reside just above and
below the shell gap.

A sensitive probe for correlations of this kind is to measure transition probabilities
for certain selected states. With this approach the results of large-scale shell-model (LSSM)
calculations based on microscopically-derived interactions can be tested through direct
comparison with experiment. The study of simple nuclear systems, with only a few
nucleons outside a closed core, can thus provide insight into the underlying nucleon-
nucleon interaction as applied to finite nuclei.

This paper summarizes briefly the new results on the structure of excited states of
nuclei in 100Sn region and is organized as follows. After the general introduction including
ground-state properties, the most successful experimental methods to obtain knowledge
on excited states in nuclei in the region are elaborated in Section 2. Theoretical approaches
are summarized briefly in Section 3.

The focus on new results of the shell-model calculations and their comparison to
the recent experimental data is put in Section 4 for three sub regions describing certain
symmetries shaded in blue in Figure 1. The N = 50 isotones are addressed in Section 4.1.1.
The progress on N = Z nuclear chain just below 100Sn is described in Section 4.1.2. The
recent results on light Sn isotopes and selected nuclei with N > 50 below Sn are presented
in Section 4.2. The choice of presented data from recent experimental and theoretical results
is based on the author’s subjective taste.

2. Experimental Methods

Although a comprehensive summary of the experimental status in the 100Sn region
was reported in 2013 [1], the struggle to discover new aspects of structure of those nuclei
continued. To assure progress in this very difficult to reach nuclear region, an enormous
effort is devoted to the experimental techniques. Several aspects are crucial among the
developments. The prerequisite is the availability of accelerators with beam parameters,
i.e., energy and intensity etc., optimal for a given experimental apparatus.
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Two types of experiments are distinguished with the highest impact on the progress
obtained: low-energy facilities providing higher beam intensities for fusion and multi-
nucleon transfer reactions and high energy facilities for fragmentation and spallation
reactions producing radioactive beams, so called in-flight and isotope separation on-line
(ISOL) facilities. While in earlier times the majority of experimental information was
delivered from fusion-evaporation reactions at the low-energy facilities, recent years have
shown the significance of the later ones.

2.1. Low Energy Facilities

Highly-intense beams of stable isotopes are available at several facilities such as
GANIL (Large Heavy Ion National Accelerator, Caen, France) [25], Jyväskylä Univer-
sity [26], Argonne National Laboratory (ANL) [27] and INFN (National Institute for Nuclear
Physics, Italy) Legnaro [28], to name only a few. These low-energy accelerators serving
fusion-evaporation or multi-nucleon-transfer reactions newly-applied also in the 100Sn
region [29], play a very important role when combined with highly-efficient detectors.

Such a combination was recently available at GANIL [25] with AGATA [30,31] and
ancillary detectors as e.g., DIAMANT [32,33] and NEDA [34,35], which make the exit
channel identification possible. Alternatively, a recoil spectrometer such as VAMOS [36–38],
MARA [39], or the FMA [40] may serve for residue identification. A clear advantage of this
method is prompt spectroscopy at the reaction target tagged with identified recoils or a
decay particle (e.g. γ, β, α).

Often, population of high-spin states, in particular in fusion-evaporation reactions,
is considered advantageous. However, in the 100Sn region the most exotic nuclei that
can be investigated are produced in 2-neutron (2n) or more and 2nα exit channels [41].
Those residues are produced with the highest cross section at relatively low energies
above the Coulomb barrier keeping the total reaction cross section low in order to avoid
misidentification due to contaminants. At those lower energies, the reached spin values
and residue excitation energy are reduced.

Impressive experiments of this type were performed in the last years leading to
important discoveries, e.g., the delayed rotational alignment in a deformed N = Z88Ru [42].
Another way for the production of very neutron deficient Sn isotopes is alpha decay tagging
measurements of the Te isotopes. The two leading groups at ANL with FMA [43,44] and
at Oak Ridge National Laboratory (ORNL) [45,46] have been hunting for superallowed
α-decay signatures for the last 15 years. The burning question—whether it is energetically
possible to produce excited states in 100Sn in this way—remains open [47].

2.2. High-Energy Fragmentation and ISOL Facilities

When the beam energy reaches the range suitable for fragmentation reactions, in-flight
separation and identification of reaction products can be achieved. The lower beam in-
tensities at high energies and lowered production cross sections are then compensated
by the possibility of using thicker targets and higher efficiency of tracking and identifi-
cation detectors. Unprecedented primary-beam intensities at relativistic energies have
become available at the Radioactive Isotope Beam Factory (RIBF) at the RIKEN Nishina
Center (Japan).

The reaction products are identified in the BigRIPS fragment separator [48] accompa-
nied by an efficient γ-ray array, e.g., EURICA [49] (see Figure 2) consisting of EUROBALL
cluster detectors for high-energy resolution or DALI2+ spectrometer [50] for low-resolution
spectroscopy. Experiments of this type marked a new chapter in the available data in the
100Sn region including the discovery of new isotopes and proton emitters [51]. An impor-
tant add-on was the new measurement of the B(GT) value for 100Sn β-decay measurement
made with sufficient accuracy so that the interpretation allowed for distinguishing between
different models used [10].

The existing data can be used for B(GT) re-determination once the mass measure-
ment of 100Sn is available. Extensive data on lifetimes of β decay and β-delayed proton
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emission, as well as beta-delayed spectroscopy was published in Refs. [52,53]. Large
progress on excited states in the region was obtained including gamma-gamma coinci-
dence data for the 100In nucleus [10], identification of excited states in 96Cd [22,54] and
others [55,56] based on isomer spectroscopy are mentioned in Section 4.1. The disad-
vantage of this method is that it does not allow for prompt gamma-ray spectroscopy at
the (primary) target.

 

Figure 2. EURICA array consisting of 12 cluster detectors of EUROBALL at RIKEN RIBF in 2012 [49].
See text for details.

Two-step fragmentation is used to study prompt radiation from Coulomb excitation or
knockout reactions with the DALI2+ spectrometer. From several experimental campaigns,
extensive and spectacular data was collected and, to large extent, published as discussed in
Section 4.2. Very recently, in 2020–2021 the HICARI (High-resolution in-beam gamma-ray
spectroscopy at RIBF) project [57] used a Ge-detector array to perform several experiments
addressing this region.

Efforts continue at NSCL (National Superconducting Cyclotron Laboratory, Michigan,
USA) to contribute to the region [58], e.g., with spectroscopy using knock-out reactions [59],
or the recent mass measurement of 80Zr [60]. At GSI, revisited isomeric decay in 102Sn
and resulting effective neutron and proton charges based on state-of-the-art shell-model
calculations were published [61], 13 years after the RISING [62] experiment.

In 2020, the GSI (Society for Heavy Ion Research, Darmstadt, Germany) facility came
back into operation again after 6 years with the Fragement Separator (FRS) [63] and DEcay
SPECtroscopy (DESPEC) [64] setup including the FATIMA [65] gamma-ray array and a
Ge-detector array to address this region of nuclei again with lifetime measurement of
intermediate states below isomers or states populated in beta decay.

To determine the excitation energy of long-lived isomeric states, a complementary
technique employing the Multi-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS)
at the FRS Ion Catcher was recently used in this region of nuclei [15].

Alternatively, high-energy and high-intensity protons are used in spallation reaction
and the radioactive beam is stored and separated in an ion source. Laser-ionized secondary
beams are accelerated to fusion energies to impinge on a secondary target surrounded
by a γ-ray array. The enormous success of this method was demonstrated at CERN (the
European Organization for Nuclear Research) REX-ISOLDE [66] and continued with the
HIE-ISOLDE project [67] where secondary beams were used for transfer and Coulomb-
excitation measurements using the MINIBALL γ-ray array [68,69]. Several experiments
were devoted to the study of neutron-deficient tin via transfer and Coulomb excitation
measurements [70–74].

227



Physics 2022, 4

A similar principle was recently also applied at NSCL in [75] using the JANUS
setup [76].

3. Theoretical Approaches

Similarly, theory activities in the 100Sn region did not lose momentum in the years
since the last review [1]. Indeed, several approaches ([61,77–84]) could enlarge the treated
configuration space (truncation level) and/or go to new regions of the nuclidic chart for
The LSSM calculations, which helped to explain certain phenomena not clarified before
and suggested experiments for future studies. These calculations use mostly realistic
interactions derived from a nucleon-nucleon potential with various treatments to obtain
two-body matrix elements and single-particle energies as described for example in [1,83]
and references therein.

On the other hand, the comparison of those advanced calculation results to the ones
with a smaller model space and empirical interactions, which are doable in the scope of this
review work, can shed light on certain basic principles, which were not treated yet with
large codes and computer power. For this purpose, the empirical GF [85] and SLGT [86]
interactions in the p1/2g9/2 model space is used here, with single-particle level energies
adjusted as given in [1], to guide the basic understanding of the underlying structure.

In the scope of this work, JUN45 interaction [78] results in the πν(f 5/2,p3/2,p1/2,g9/2)
(or r3g) model space for high spin states are also presented in Section 4 for several N = 50
isotones and N = Z nuclei of the g9/2 shell. The shell-model code NuShellX [87] was used for
these computations. The MHJM interaction in the πp1/2g9/2 νd5/2g7/2d3/2s1/2h11/2 model
space originating from [88] was successfully used in the literature to describe the structure
of nuclei with Z ≤ 50 and N ≥ 50 [89], see e.g., [1,53,90,91]. The LSSM calculations in the
e.g., [61,92,93] with the SDG interaction [22] for the πυ(g9/2,d5/2,g7/2,s1/2,d3/2) model space
(further referred as gds) are described in more detaill below.

Recently, new approaches were proposed in this region of nuclei promising fur-
ther success. The role of 3-body residual interactions in nuclear chains in a single
j-shell is discussed within the shell model [94]. Beyond the standard shell-model
approach, the 3-body interaction was considered in calculations of the energies of
excited states in N = 50 isotones [95], which caused a significant improvement in re-
producing experimental values. Furthermore, nuclear flied theory group investigated
Sn isotopic chain using particle-vibration coupling [96]. The quadrupole-vibrational
excitations in even–even Cd isotopes was revisited by the mean-field interacting
boson model [97].

As already indicated in the introduction the ab initio methods are recently possible
for this region of nuclei. The prediction of energies of excited states of nuclei in vicinity of
100Sn were very recently presented based on the particle-hole effective interaction derived
from shell model couple cluster method [98].

4. Results

The results presented in this paper are narrowed to the three aspects of the structure
of 100Sn with an idea of demonstrating the role of like-nucleon vs. proton-neutron coupling
in the g9/2 shell (see Figure 1). First, the evolution of excited states was examined along the
N = 50 line describing seniority in a g9/2

n and simple level coupling g9/2p1/2. Additionally,
a JUN45 calculation and, even larger model spaces when available, are presented. Second,
the N = Z line is analyzed below 100Sn where the shape change is expected along the
g9/2

n orbital configuration. The recent developments in nuclear structure above N = 50 is
summarized in the last subsection.

4.1. Nuclei below 100Sn, A ≤ 100
4.1.1. Even-Even N = 50 Isotones of the g9/2 Shell

The seniority quantum number υ, which counts the number of unpaired nucleons
for protons and neutrons occupying the same shell-model orbital, is very useful when
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discussing the structure based on high-spin orbitals. Just below 100Sn, isotopes with even
Z form a long chain of a seniority isomers, which exhibit observable decays as the g9/2 is
well isolated from other high spin orbitals. A direct consequence of the short-range nature
of the nucleon-nucleon interaction is the conservation of the seniority υ in any n-particle
configuration jn of like particles [99].

As the mixing of states with different seniority is expected to be small, several
symmetries are imposed [24,100] (and references therein), of which the constant
excitation energies within the shell and symmetry against the mid shell of B(E2)
values for transitions with non-changing seniority, are addressed in this Section. In
Figure 3 the experimental excitation energies for the 2+–8+ levels, as well as 5− are
shown with the differently-colored symbols for each spin value. The lowering of
the excitation energy seen for the states with even spin values is understood mostly
by the increased binding of the 0+ ground-state when removing protons from 100Sn.
This effect is caused by the contribution of lower shell orbitals such as p3/2 and f 5/2,
becoming closer to the Fermi level.

Most of the shell-model calculations, presented for N = 50 isotones, can reproduce level
energies relatively well, with less accuracy for the 6+ and 8+ states. For the GF shell-model
calculation (shown with continuous lines in Figure 3), the agreement is very good (note the
expanded energy scale) in the lower shell e.g., for 92Mo, which is trivial as it was used to fit
the two-body matrix elements (TBME) and therefore effectively includes the contribution
of lower shells. It is also understandable that there is a trend of increased level deviation of
the g9/2

n coupling towards 100Sn.

Figure 3. Systematics of the level energies in the N (number of neutrons) = 50 isotonic chain, for
even-Z (atomic number) nuclei. Experimental data shown with colored symbols are taken from [101].
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The energy of the 5− state in 98Cd is taken from [102]. The lines shown in corresponding colors
represent theoretical level energies. Calculations were done with the NuShellX code [87] using
empirical interaction GF [85], SLGT [86] in the π(g9/2p1/2) and realistic effective interaction JUN45 [78]
in the π(f 5/2,p3/2,p1/2,g9/2) and SDG in πυ(g9/2,d5/2,g7/2,s1/2,d3/2) model spaces [92]. The values
of single-particle level energies were adopted from [1]. A pure πg9/2

n configuration explains the
levels 2+–8+. The 5− states are obtained from the πp1/2

−1g9/2
n + 1 coupling. The "EXP" denotes

experimental values.

To note is that the newly-observed 5− state in 98Cd [102] completes its systematics
in those nuclei build of coupling πp1/2

−1g9/2
n+1 and resembles the trend of increasing

deviation towards the full shell. The discrepancy of the calculated 5− and 8+ states from
the experimental values are almost identical, while their crossing is reproduced almost
perfectly at 94Ru. For the calculations using SLGT interaction (dotted lines in Figure 3),
instead, the absolute values of energies are improving with increasing Z towards 96Pd and
worsen again for 98Cd (except the 2+ state).

The energy trend of 5− states along the shell is not reproduced, similarly as for GF
interaction. While for the low-spin states the JUN45 [78] spectrum is compressed, the 6+

and 8+ are rather well reproduced, improving further towards the end of the shell (dashed
line). The 5− state is missed by about 200 keV, which indicates the p1/2 single particle
evolution correction needed for those isotopes.

The SDG spectrum is generally contracted, caused by the inclusion of core excitations,
but it reproduces consistently the slope of the line between 96Pd and 98Cd for which the
calculation is available [92]. Moreover, the second 4+ state (not shown in the figure for
clarity) is predicted only 250 keV higher than the first one, which is approximately at the
same energy as the first 6+ state. In contrast, the second 6+ state is predicted about 400 keV
above the first one, which is considerably higher than the 8+ state [92].

More relevant for the wave functions, however, is the comparison of experimental
reduced transition probabilities, B(E2) values in N = 50 isotones with the calculated values.
In that case, all calculations including the GF calculations, presented here, can reproduce
the data rather well for the 6+ and 8+ states as their wave functions are mostly not affected
by other configurations; see [1,100] and references therein. The B(E2) for transition from
the 6+ state in 98Cd became recently available and the accuracy of that from 8+ state was
improved [56]. The lower lying yrast states, however, caused an extended discussion in
recent years on seniority conservation and seniority mixing in the g9/2 orbital; see [1,100,103]
and references therein.

Particularly for the nonaligned 4+ systematics in the mid shell, of which two different
seniority states are predicted in close vicinity, evidence is discussed [100] for seniority
breakdown due to neutron excitations across the N = 50 shell gap. There, the clear ad-
vantage of LSSM calculation with core excitations included is evident. An extension of
the experimental data to lower Z for N = 50 isotones will be soon available [104,105] and
therefore the discussion on this topic is not extended in this work.

4.1.2. N = Z Chain from 100Sn to 80Zr

The region of the heaviest and bound N = Z nuclei is below 100Sn. This fact makes
it particularly attractive for studies of proton-neutron correlations and their dependance
on the spin of the nucleus. Already decades ago theoretical calculations predicted the
existence of Iπ = 16+ and Iπ = 25/2+ high-spin isomers in 96,97Cd, respectively. Only much
later, technical advances allowed the confirmation of these isomers experimentally [22,106].

Early shell-model studies employing empirical interactions in the πν(p1/2, g9/2) model
space were reviewed in Ref. [1]. Realistic interactions with LSSM calculations were pre-
sented for the full πν(f 5/2,p3/2,p1/2,g9/2) model space [78,79,107–109] as well as for the
upper πν(gds) shell using the SDG interaction [110]. The strength of the πν interaction in
the πνg9/2 orbits manifests itself best in the strongly-binding T = 0, Iπ = 9+ TBME, which is
comparable in strength with the “normal”, T = 1 pairing mode [85,86]. With the identifica-
tion of excited states in 92Pd [23], the role of the πνg9/2 pairs with maximum spin of Iπ = 9+
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in the N = Z nuclei 96Cd, 94Ag and 92Pd has been investigated in a series of multi-step shell
model and IBM studies with respect to the “fully aligned” 9+ -TBME [24,111–114].

The experimental yrast states for the even–even N = Z nuclei in the g9/2 shell are shown
with colored symbols in Figure 4. For the lower mass N = Z even–even nuclei the level
structure implies an onset of deformation. The spectrum of 88Ru [42] exhibits a rotational
band similar to the known states of 84Mo [115]. This could intuitively understood, similarly
to the N = 50 chain, as even stronger influence by the lower shell fp-shell therefore driving
deformation. However, recent developments in the calculation power could disprove this
hypothesis, as shown below.

 

Figure 4. Excitation energies of the even–even N = Z nuclei in the g9/2 shell with A (atomic mass
number) = 84–96 for spins Iπ = 2+–16+. The spins of excited states in all isotopes are assigned
tentatively [101]. Experimental energies are given with colored symbols distinguished by their
spin values. Shell-model calculations are shown with solid lines with different colors for each spin
for the GF [85] calculation, dashed line for the JUN45 calculation [78,107] and present work for
the higher-spin states and colored and short dashed-dotted colored lines for SDG [110] calculation
for 96Cd.
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Various shell-model approaches in different model spaces have been reported for this
region. The calculation presented with solid colored lines is GF [85], which includes all
yrast spins states up to the 16+ for all the N = Z nuclei in g9/2 shell nuclei and in particular
an isomeric trap, known to exist experimentally in 96Cd [110]. Calculation using JUN45
interactions [78] are shown with dashed lines whenever possible for the computer power
available within this work or in the literature [78,107].

The LSSM SDG [22] approach with up to 5p5h excitations (t = 5) across the Z, N = 50
closed shell are available only for 96Cd up to high spins and is shown with short, colored
dashed-dotted lines. A consistent description for all the calculations is obtained in the
upper g9/2 shell, as shown for 96Cd. However, towards the mid shell, the N = Z results
are hampered by severe truncation. The advantage of including a larger model space,
particularly the lower-lying orbitals, is evident. Nevertheless, with increasing spin the
lower-shell nuclei follow very different trend than the predicted one.

According to the GF calculation presented in Figure 4, the spin trap at Iπ = 16+ in 84Mo
will stay yrast even if the spherical 0+ state in the small model space of GF calculation is
shifted by ~2 MeV up in energy with respect to the known deformed ground state and the
rotational band member energies extrapolated with a constant moment of inertia to higher
spins [115].

However, a common conclusion of various shell model approaches with Z ≥ 40, N = Z
nuclei is the quest to include excitations across the Z, N = 50 shell closure [79,116–119] in
order to attempt the description of the deformation. 84Mo marks the transitional region
where the shape-driving role of the r3g space is replaced/enhanced by the gds space [79].
The spectra of 96Cd is a benchmark for both model spaces and yield similar results. In addi-
tion, the 84Mo spectrum was calculated with the help of the nucleon-pair approximation
method [120], which also could be expanded to higher spins and other N = Z nuclei in the
g9/2 shell in the future.

Recently, a new approach was proposed in the mean field [95], where within a simple
SO(8) pairing model, it was shown that the symmetry-projected condensates of mixed
isovector and isoscalar pairs very accurately describe properties of the exact solutions, in-
cluding the coexistence of the isovector and isoscalar pairing. Lack of symmetry restoration
thus explains the limited success in describing such a coexistence in the standard mean-field
approaches to date. It was concluded that the future work investigating properties of the
proton-neutron nuclear pairing can be carried out within the variation-after-projection
approach to mean-field pairing methods.

4.2. Nuclei with N > 50

The Sn isotopes represent the longest chain of semi-magic nuclei, which makes them
attractive for studies of shell-structure evolution as a function of the number of neutrons
and how it can be related to collective as well to single-particle effects. The known, almost
constant excitation energy of the first 2+ state in the Sn isotopic chain has been a textbook
example of the seniority scheme for a long time.

A sensitive probe for correlations of this kind is to measure transition probabilities for
first excited selected states, which will manifest the configuration content of those states.
With this approach the results of LSSM calculations based on microscopically-derived
interactions can be tested through direct comparison with experiment. This approached
was recognized with the availability of radioactive beams, and new measurements or new
theory values have been seen frequently in recent years. A recent update on 6+ states in
Sn isotopes is reported in [61] for the 6+ state lifetime and effective charge analysis. The
energy of the second 2+ state in 102Sn was recently claimed in Ref. [121].
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However, the main focus in the studies of Sn isotopes is on the first 2+ states since the
first measurement of radioactive isotopes 16 years ago [122], and the last ones being the
theoretical study of Togashi et al. [77] and experimental study of Siciliano et al. [29]. The
study of Togashi et al., represents the first approach in which it is possible to reproduce
remarkably well the whole Sn chain (shown in Figure 2 of [77]) in same calculation.

The method used for this unified description of the detailed nuclear structure is Monte
Carlo Shell Model including isospin conserving interaction calculation of the gds HO shell
as well as the lower part of the neighboring HO shells [77] (and reference therein). An
alternative calculation with a small modification is shown by the authors as to give an
Ansatz to the experimentalists for a more precise experimental answer to the values in
the mid-shell.

Within the generalized seniority scheme this mid-shell valley would be interpreted
as changing single-particle orbitals filled along the Sn chain (see also [123]). In Figure 3
of [77] the authors describe the complex wave functions including core excitation (and
deformation) for the 2+ as well as the 4+ states in Sn isotopes towards the mid shell modified
by the quadrupole component of the proton-neutron interaction, which was first postulated
in [124] by the LSSM analysis for the 2+ states. The quadrupole collectivity was also
predicted in Ref. [12].

The results, presented in Figure 3 by Siciliano et al. [29], show an overview of ex-
perimental knowledge on B(E2:2+→0+) for the full Sn isotopic chain based on intense
efforts of many laboratories and experimental groups. References [122,124–144] represent a
complete up-to-date list. The usage of general Doppler methods, such as the Doppler shift
attenuation (DSAM) and the recoil distance Doppler shift methods (RDDS) to measure the
lifetimes and to extract the B(E2) values, were hampered until recently by the existence of
higher-lying isomeric states.

Indeed, the authors of Ref. [29] managed to overcome the problem by using multi-
nucleon transfer reactions and adjusting the excitation energy of the final product such that
the 6+ isomer feeding was minimized allowing for RDDS measurements. Moreover, the
experimentalists harvested the first information on the lifetimes of 4+ states, which opened
up the systematics of B(E2:4+→2+) states below N = 60. This pioneering experimental
work was accompanied by LSSM calculations, which could well reproduce experimental
data using the new realistic effective interaction in the gds model space with a proper
monopole treatment.

Another calculation indicating for the first time the double-hump shape associated
to the quadrupole dominance, as shown in Ref. [77], refer to the importance of further
investigations of the 4+ states, where pairing effects related to single particle energies
dominate instead. The new findings, together with the recent theory calculation [145]
request for further experimental and theoretical effort in this direction.

The systematics of the reduced transition probabilities, the B(E2:2+→0+) values, is
expected to be completed soon with the inclusion of the 102Sn value [146]. The review dedi-
cated to nuclear collectivity is in preparation [147], where updated figure will be presented.

Alternatively, the collective properties of 100Sn can be approached again by studying
nuclei with slightly lower Z. Several dedicated attempts for such experiments were un-
dertaken at ISOLDE and NSCL. In particular, light Cd isotopes were addressed already
in earlier days and Coulomb excitation transition probabilities and quadrupole moments
were extracted up to 102Cd [70]. The latest update on this can be found in [148], where
B(E2:4+→2+) values were also measured, and the accompanying theory work, which
attempted to explain particular conditions for collectivity in light Cd isotopes [70].
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The beyond-mean-field calculations, presented in Ref. [148], reproduce the cadmium
systematics, but also predict rotational structures for all of the Z = 48 isotopes, breaking
the common view of the textbook example of vibrational nuclei. In addition, there (and
in Ref. [85] therein), Z = 48 isotopes are predicted to be semi-magic deformed nuclei. The
lightest Cd isotope for which B(E2:2+→0+) value measurement was attempted thus far is
100Cd [70].

5. Summary and Outlook

Recent years have shown a great deal of interest from experimental and theoretical
groups from all over the globe dedicated to investigations of the 100Sn region. This materi-
alized in many publications (referred to here and with more to come) in the last decade, as
well as active and waiting proposals and, presently, a large amount of as-yet unevaluated
data. The primary reason for the particular excitement is the relevance of this region for
understanding the nuclear force in general and various specific aspects that can be uniquely
studied in this region of the heaviest doubly-magic N = Z nucleus.

To further encourage a steady level of development and the need for new data of key
nuclei and particular states, two examples are mentioned here. The first one is the search for
excited states in 100Sn, which could be determined from the decay of the predicted isomeric
6+ state [93] (and references therein). The second is excited states in 98Sn (predictions
presented in Figure 5), a mirror nucleus of 98Cd [149]. Those two nuclei likely constitute
the heaviest possibly bound mirror pairs of all nuclei.

Figure 5. Predictions of the 98Sn excited states according to the available interactions. All of them
suggest an 8+ isomeric state as the one known in the mirror nucleus 98Cd [149]. The JUN45 spectrum
is identical to that one of 98Cd because of the isospin symmetry of this interaction.
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Abstract: A review of recent advances in the study of the energy splitting between excited isobaric
analogue states is presented. Some of the experimental developments, and new approaches, associ-
ated with spectroscopy of the most proton-rich members of isobaric multiplets, are discussed. The
review focuses on the immense impact of the shell-model in the analysis of energy differences and
their interpretation in terms of nuclear structure phenomena.

Keywords: isospin symmetry; nuclear shell model; charge symmetry; charge independence; γ-ray
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1. Introduction

The approximate charge symmetry and charge independence of the nucleon-nucleon
(NN) interaction [1] results in elegant symmetries in the behaviour of the otherwise ex-
ceptionally complex nuclear system. Examining and exploiting these isospin-related sym-
metries, and determining the extent to which they are broken, has become a rich field of
nuclear structure physics over the last 30 years. When the symmetries are slightly broken,
this provides an opportunity to observe nuclear behaviour through the lens of the well-
understood electromagnetic interaction, providing a probe of nuclear structure phenomena
such as pairing, particle alignments, shape changes and radii. It may even be possible to
learn about the charge-dependent components of the nuclear interaction itself. Moreover, it
is possible to exploit the often near-perfect isospin symmetry between pairs of analogue
states to extract information other phenomena; in this review such an example is provided
in the study of neutron skins.

Wigner’s isospin concept [2] provided the conceptual and mathematical foundation
for describing these symmetries. All states are assigned an isospin,T, quantum number,
T, with a projection defined by Tz = ∑i tz(i) = (N − Z)/2, where N denotes the number
of neutrons and Z the number of protons in a nucleus. In this formalism, the nucleon is
treated as two states of the same particle with quantum number t and projection tz = ∓ 1

2
for the proton/neutron respectively. With the concept of isospin established, we now have
a powerful isospin classification scheme, which enables us to map out, in isospin space,
the resulting symmetries—visualised in Figure 1. Crucially, the mathematical formalism
of isospin enables the treatment of the two types of fermion in the same system, allowing
predictions based on the assumption of pure isospin symmetry, and the tools to model the
observed deviations from that symmetry.

This short review focuses on the energy differences between excited isobaric analogue
states—i.e., analogue states of the same isospin T in different members of an isobaric multi-
plet (different Tz). With perfect isospin symmetry, and in the absence of electromagnetic
effects, the excitation energies would be identical. In reality the electromagnetic effects,
and any other isospin-non conserving interactions, such as charge-dependent nuclear
forces, lift the degeneracy. The study, and modelling, of these differences is discussed here.
Two types of energy difference are usually measured: mirror energy differences (MED)
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for mirror nuclei (Tz = ±T) or triplet energy differences (TED) for isobaric triplets (T = 1,
Tz = 0,±1). MED and TED, the differences in excitation energy, E∗, are defined by:

MEDJ,T = E∗
J,T,Tz=−T − E∗

J,T,Tz=T , and (1)

TEDJ,T=1 = E∗
J,Tz=−1 + E∗

J,Tz=1 − 2E∗
J,Tz=0 , (2)

respectively, with J the total angular momentum quantum number.
Developments of experimental technique, especially in the γ-ray spectroscopy of

excited states in proton-rich nuclei, have led to a wealth of new data in recent years,
allowing for experimental measurements of MED, e.g., [3–11], and TED, e.g., [12–15]. It
is, however, the interpretation of these observations through shell-model analysis that has
energised this field of study (e.g., [16–21]). This has allowed detailed nuclear structure
phenomena, and especially their evolution with angular momentum and excitation along
the yrast line, to be investigated in detail. This review outlines some experimental advances
in Section 2 including specific case studies. The shell-model approach is outlined in Section 3
and some recent advances, made through shell-model interpretation, are discussed in
Section 4.

Tz = N −Z( ) 2z (

Figure 1. A schematic visualisation of the classification of nuclear states according to the total isospin
quantum numbers T, Tz. Each circle represents a set of states, of given isospin, which are allowed by
the Pauli principle. Note that the diagram assumes that the lowest-energy set of states in any nucleus
have the lowest allowed value of isospin. This is usually, but not always, true, e.g., odd-odd N = Z
nuclei (equal and odd numbers of neutrons, N, and protons, Z).

2. Advances in Experimental Techniques and Selected Case Studies

The key challenge, in experimental measurements of energy differences between
excited states of isobaric multiplets, is the typically low cross sections for, or low pro-
duction rates of, the required proton-rich (i.e., Z ≥ N, Tz ≤ 0) nuclei. Two reaction
mechanisms are generally employed: fusion-evaporation reactions with stable beams at
near Coulomb-barrier energies and knockout reactions from relativistic radioactive beams.
For fusion-evaporation reactions, the major difficultly is the low production cross section
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of the neutron-evaporation channels that lead to the required proton-rich systems, leading
to cross sections often less than 1 μb—i.e., representing a fraction of <1 × 10−6 of the
total reaction cross section. The experimental challenge is therefore the clean selection
of the reaction channel to remove the huge background from proton-emission channels.
In the second method, knockout from fast radioactive beams, the knockout cross sections
are reasonable (∼few mb) and the identification of the desired proton-rich fragment is
straightforwardly achieved with post-target magnetic spectrometers. However, here the
experimental challenge comes from the potentially low secondary beam rates and from
performing high-resolution γ-ray spectroscopy at high beam velocities, v (v/c ∼0.35–0.55,
where c is the speed of light), with the associated Doppler-broadening issues. Since the last
reviews of this topic, e.g., [3,4], progress has been made in addressing these two sets of
challenges, which have in turn led to advances in our understanding of MED and TED.

In the following Sections 2.1–2.3, three example cases studies are presented which
highlight the recent experimental advances. The impact of these case studies on our shell-
model based interpretation of isospin-symmetry breaking, in mirror nuclei and T = 1
isobaric triplets, is discussed in Section 4.

2.1. Prompt Tagging of Fusion-Evaporation Channels and a Case Study: The A = 23, Tz = ± 1
2

Mirror Nuclei

In fusion-evaporation reactions, the required proton-rich nuclei are populated with
low cross sections and, following the evaporation of at least one prompt neutron, often
at the same time as evaporated charged particles. One method of selection of the desired
reaction channel is to surround the target with high-efficiency neutron- and charged-
particle detectors, in addition to the high-resolution γ-ray array. As a case study, we use the
example of the mass number A = 23, Tz = ± 1

2 mirror nuclei 23Mg/23Na [11]. This mirror
pair was studied at GANIL (Grand Accélérateur National d’Ions Lourds), Caen, France,
using an 16O beam on 12C target with the nuclei of interest populated through the α, n and
α, p reaction channels, respectively. The prompt γ rays were detected with the EXOGAM
array [22]. The prompt evaporated neutrons were detected with the Neutron Wall [23],
an array of 50 liquid scintillator detectors. The proton and alpha particles were detected
with DIAMANT [24], an array of 80 CsI scintillators. These highly-efficient detectors
enabled a clean channel selection through the full identification of all emitted particles,
allowing for the event-by-event tagging of the γ rays from the nuclei of interest. In this
case study, the cleanliness of the channel selection allowed for the confident assignment
of states in proton-rich 23Mg up to angular momentum/parity of Jπ = 15

2
+

, through a
γ–γ coincidence analysis and using comparisons with the mirror nucleus, on which an
identical analysis was performed. The identification of these states enabled MED to be
determined up to high spin, and this proved crucial in the subsequent shell-model analysis.
The impact of this measurement, and of the resulting shell-model analysis, connected to
radii and neutron skins, is discussed in Section 4.2.

For the study of heavier proton-rich or N = Z nuclei, and especially where N = Z
beam/target combinations are not possible, prompt particle tagging of the nuclei of interest
becomes more challenging due to very low production cross sections and the need to
identify more than one evaporated neutron. The development of more efficient, highly
modular, neutron detector arrays such as NEDA [25], coupled to the improvements in
high-resolution and high-efficiency γ-ray measurement afforded by the AGATA γ-ray
array [26], provide exciting possibilities (e.g., [27]). The recent in-beam spectroscopy of
88Ru [28] through a 2n evaporation channel, using the AGATA, DIAMANT, Neutron Wall
and NEDA arrays, provides a characteristic example.

2.2. Decay Tagging of Fusion-Evaporation Channels and a Case Study: The Tz = −1 Nucleus 66Se

Instead of tagging the prompt emitted γ rays by the prompt evaporated particles,
an alternative approach to select the low cross-section neutron-evaporation channel of
interest is to tag the γ rays by the ground-state decay emissions characteristic of the nucleus
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of interest. For spectroscopy of Z ≥ N nuclei, a highly effective technique is recoil-beta
tagging (RBT) [29,30], which takes advantage of cases where the ground state of the nucleus
of interest (N, Z) β-decays to its isobaric analogue state in the N + 1, Z − 1 neighbour. Such
decays are characterised by fast, superallowed, β-decays, with high β end-point energy.

In the RBT approach, outlined in Figure 2, a triggerless data acquisition system is
used to enable temporal correlation between prompt γ-ray emission at the target and the
subsequent decays of the residual nuclear ground state. The recoiling nuclei are separated
using a magnetic spectrometer and implanted in a highly pixellated double-sided silicon
strip detector (DSSSD). The subsequent decay of the ground state of the implanted nucleus
is detected in the same position as the implantation within the DSSSD and a second detector
(a planar Ge detector or plastic scintillator) is used to measure the remaining energy of
the β-decay A correlation in time of the three events (prompt emission, implantation and
β-decay) and in position using the pixellated DSSSD, allows the selection of the proton-rich
nucleus when a short correlation time (few 10 s of ms, typically) is required as well as a
high-energy β-decay

Figure 2. A schematic diagram summarising the recoil-beta-tagging technique, [29] used for iden-
tifying prompt γ decays, emitted from proton-rich nuclei through tagging with the characteristic
superallowed β-decay of the residue ground state. See text for details.

The example of spectroscopy of Tz = −1 66Se [12] is chosen as the case study for this
technique. The experiment was performed at the at the University of Jyväskylä (JYFL)
using the JUROGAMII γ-ray array and the RITU gas filled separator [31,32], in which 66Se
was populated through a 2n evaporation channel. The fusion products were implanted in
the DSSSD, which was followed by a planar Ge detector for detection of the high-energy
positrons from the fast superallowed β-decay. A key component of this experiment was
the inclusion of a high-efficiency veto detector to measure prompt charged particles—the
UoYTube [33] detector. This is essential to help identify, and remove, contamination in the
final spectrum coming from reaction channels with evaporation of one or more charged
particles. The resulting clean spectrum identified decays from states with Jπ = 2+, 4+ and
6+, which in turn enabled the completion of the full set of T = 1 isobaric analogue states
up to 6+ in the A = 66 T = 1 triplet, allowing the TED to be extracted. The impact of this
result on the understanding of isotensor isospin non-conserving interactions, within the
shell model description of TED, is discussed in Section 4.1.

Since the work on 66Se, the same RBT approach, including charged-particle vetoing,
has been applied successfully at JYFL to identify the excited states in the Tz = −1 nuclei
70Kr [13] and 74Sr [15], and a programme using the same methodology is underway
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using the new MARA spectrometer [34], which additionally allows for mass selection
and identification.

2.3. Knockout Reactions at Intermediate Energies and a Case Study: The Tz = −2 Nuclei 48Fe
and 56Zn

Spectroscopy of the most proton-rich systems (i.e., Tz ≤ − 3
2 ) presents significant

challenges for fusion reactions, since evaporation of at least three neutrons will be required
to access the nuclei of interest. Indeed the majority of the recent in-beam γ-ray spectroscopic
studies of Tz ≤ − 3

2 nuclei have been performed with one- (or two-) neutron knockout
reactions from relativistic fragmentation beams. The knockout reaction, being a direct
process, will populate specific, usually low-lying, states, those bound states for which there
is a large spectroscopic overlap between the ground-state configuration of the beam and
the final state of the residue, with respect to neutron removal from a specific orbital. Whilst
the range of final states can be rather limited, compared with fusion reactions, the reactions
(and final spectra) can be easier to interpret, especially when combined with cross-section
calculations based on a reaction model using shell-model spectroscopic factors. This,
in turn, helps give confidence to the Jπ assignment of the observed states, when comparing
with the analogue states in the mirror nucleus. Moreover, population of high-J states in
proton-rich systems is possible in specific conditions, e.g., through knockout from isomeric
states (e.g., [7]) or through two-neutron removal from a beam species with a J �= 0 ground
state (e.g., [5]).

The case studies discussed here are the very recent works related to the observation
of excited states in Tz = −2 nuclei 56Zn [9] and 48Fe [8]. These studies have enabled the
examination of T = 2, Tz = ±2, mirror pairs, providing stringent tests of the shell-model
prescription for “distant” mirror pairs (large difference in Tz). In both of these exam-
ples, one-neutron knockout reactions were performed on odd-A relativistic fragmentation
beams. For 56Zn [9], the experiment was performed at the RIBF facility (Radioactive Isotope
Beam Factory), at the RIKEN Nishina Center, Japan. Fragmentation of a beam of 78Kr at
345MeV/u produced a secondary beam of 57Zn fragments, separated and identified using
the BigRIPS spectrometer [35]. The Be reaction target was surrounded by the DALI2+ NaI
γ-ray array [36] and the final knockout residues identified by the Zero Degree Spectrome-
ter [35]. For 48Fe [8], the experiment was performed at NCSL (National Superconducting
Cyclotron Laboratory, East Lansing, MI, USA). A primary beam of 58Ni at 160 MeV/u
was used to create a 49Fe fragment beam, separated using the A1900 spectrometer [37].
The reaction target was surrounded by the GRETINA Ge γ-ray tracking array [38] and the
final knockout residues identified by the S800 Spectrograph [39].

In both the above reactions, the ground-state of the beam species was Jπ = 7
2
−

, where
the Fermi-level for the odd, unpaired, neutron was in the f 7

2
shell. In both cases, excited

states of Jπ = 2+, 4+, and 6+ were observed (6+ is the highest-J state that can be populated
directly). The predicted spectroscopic factors for both reactions suggest that the yrast and
yrare states of Jπ = 2+, 4+, and 6+ are expected to be directly populated, with strong
populations of 6+ states, which matched the experimental observations [8,9]. It was not
possible to identify decays from the yrare states in 56Zn, but the higher resolution of the
γ-ray array in the 48Fe study enabled the yrare state decays to be tentatively identified.

In the 48Fe case, the experiment also used the “mirrored knockout” technique, which
has proven to be especially powerful for the observation and assignment of analogue states
in mirror pairs. In this approach, as well as using the 49Fe−1n reaction, the mirror partner
to 48Fe, 48Ti, was studied through a 49V−1p reaction (this required a separate setting of the
A1900 spectrometer). Since the two beam species, 49Fe and 49V, are also mirror nuclei, these
reactions comprise a complete pair of “analogue” knockout reactions—i.e., reflected around
the N = Z line. Isospin symmetry also implies that the spectroscopic factor for each specific
knockout path (removal from a specific orbital to a specific final state) should be essentially
identical in both mirror nuclei, and this should, in turn, lead to very similar distributions of
knockout strength when the mirror nuclei are studied in the same experimental conditions.
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Since the scheme of 48Ti is known, this helps considerably in the assignment of their
analogue states in 48Fe. The mirrored knockout approach was first demonstrated in [6] and
has been employed in a number of other cases [10,14,40].

The spectra in Figure 3 show the resulting γ-ray spectra for this mirrored reaction:
Figure 3a shows the 49V−1p →48Ti reaction and Figure 3b the mirrored 49Fe−1n →48Fe
reaction. One can see very similar population distribution from the spectra. The spectra,
as expected, are dominated by the decays from the 2+1,2 states (labelled with blue squares),
the 4+1,2 states (green diamonds) and the 6+1,2 states (red stars) [8,41]. The spectra also
show the clear benefit of using a Ge γ-ray tracking array (i.e., GRETINA) for in-beam
spectroscopy with relativistic beams. The position-sensitivity afforded by the pulse-shape-
analysis approach allowed for accurate Doppler reconstruction (e.g., [38]), reducing the
otherwise huge impact of Doppler broadening at these high fragment velocities.

Figure 3. The γ-ray spectra observed in the case study [8]. The spectra are measured with the
GRETINA array following the identification and selection of the relevant incoming and outgoing
fragment beams. Panel (a) shows the 49V−1p →48Ti reaction and (b) the mirrored 49Fe−1n →48Fe
reaction. The peaks are labelled by the γ-ray energy and the symbols refer to the angular momen-
tum/parity, Jπ , of the states from which these decays proceed. Decays from the 2+1,2 states are labelled
with blue squares, the 4+1,2 states with green diamonds and the 6+1,2 states with red stars. The insert in
(b) shows how the peak around 970 keV comprises three γ rays. Adapted from [41].

The use of knockout reactions, and the mirrored-knockout technique, has provided
a wealth of data on MED in the upper f 7

2
region which has, in turn, helped shed light on

the role of isospin-non-conserving interactions in the shell-model analysis; see Section 4.1.
The 56Zn case has also yielded information on how occupation of specific shell-model
orbitals have a shape-driving effect; see Section 4.2.

3. Shell Model Approach for Energy Differences between Excited Analogue States

Without a reliable model to describe MED and TED as a function of J, the experi-
mental observations of the variation of MED and TED with J cannot be interpreted in
any physically meaningful sense. The shell-model approach to modelling MED and TED
has transformed this field of research, allowing interpretation in terms of detailed nuclear
structure phenomena including particle alignments and changes in nuclear shape/radii.
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Indeed, the happy coincidence that occurred around 20 years ago was that exceptionally
powerful large-scale shell-model calculations were becoming available (e.g., [42,43]) in
exactly the region where major experimental advances in the spectroscopy of mirror nuclei
were taking place—i.e., the lower part of the p f shell.

If perfect isospin symmetry between analogue states is assumed, and that the contri-
butions to MED and TED are entirely related to electromagnetic effects, there are a number
of effects that can contribute to MED/TED, and their variation with excitation energy/J,
which can in principle be calculated in the shell-model approach. The key factor is the
multipole effect of re-coupling the angular momentum of pairs of protons, resulting in a
decrease in spatial overlap of the protons, with increasing coupled J, and hence a reduction
in the Coulomb energy. This is straightforward to model in large-scale shell-model calcula-
tions through the application of Coulomb matrix elements, calculated in the usual harmonic
oscillator (HO) basis, in addition to the nuclear effective interaction. Initial attempts to
model MED, using just this approach, were only partially successful (e.g., [44,45]) and
it was concluded from that analysis that additional ingredients (including of multipole
origin) were missing in the model. Indeed, better agreement was obtained using “empirical”
effective f 7

2
Coulomb matrix elements, extracted from the A = 42 mirror nuclei (e.g., [46])

or sets of ad hoc Coulomb matrix elements derived from fits to the data in the centre of the
f 7

2
shell [44].

It was clearly important to develop a consistent shell-model approach for prediction of
MED and rooted correctly in the physics. The breakthrough came with the seminal work of
Zuker et al. [16], in which multipole and monopole effects were treated together in the same
shell-model prescription. The model was developed and tested using MED measured in the
centre of the f 7

2
shell, with shell-model calculations performed with the ANTOINE code [42,43]

in the full p f space, using the mass-dependent effective interaction for the p f -shell, KB3G [47].
This model has formed the basis of the large-scale shell-model approach to MED and TED
ever since; see, e.g., [3] for an earlier review. In this approach, the energy differences between
analogue states within the shell model can be separated into four components, which can be
calculated individually, so that the impact of each can be evaluated.

The first and last terms below are multipole terms. These can be calculated by determin-
ing the appropriate matrix elements of the interactions and calculating expectation values
through first-order perturbation theory using a set of wave functions calculated in an isoscalar
basis. The remaining two components are monopole terms, associated with bulk Coulomb
effects and EM-induced shifts in single-particle energies. The four components are as follows.

3.1. Coulomb Multipole Interaction: VCM

This multipole term accounts for the contribution of the two-body Coulomb interaction
to the MED. The contribution to the MED or TED arises due to protons re-coupling angular
momentum, with the resulting change in Coulomb energy, and the different numbers of
active pp pairs between the isospin-symmetric configurations of the isobaric analogue
states. It is accounted for in the shell-model simply through the application of Coulomb
matrix elements, calculated in a HO basis.

3.2. Single-Particle Contributions: Vll and Vls

It was recognised by Zuker et al. [16] that the single-particle splitting between neutron
and proton orbitals, induced by the Coulomb interaction, should be accounted for. In the shell
model, this can be achieved through introducing shifts between the neutron and proton single
particle levels before diagonalisation. The required Coulomb shifts (Vll) can be determined
through the formalism derived by Duflo and Zuker [48]. Since MED are normalised to the
ground state, this term will only become significant where configurations change along the
yrast line, and where there are different orbital occupancies between protons and neutrons.
This term was eventually neglected by Zuker et al. [16], since they showed that other monopole
effects (see Section 3.3) dominate in the specific region being tested. However, this will not
always be the case, and the term is routinely included in MED calculations.
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A second single particle term, not originally included by Zuker et al. [16], is the
electromagnetic spin-orbit effect (Vls). This is a purely electromagnetic effect, affecting
both proton and neutron levels, associated with the spin magnetic moment of the nucleon
interacting with the Coulomb field of the nucleus. The formalism was introduced by Nolen
and Schiffer [49] in their description of Coulomb displacement energies. This effect, which
has opposite signs for protons and neutrons, can be significant for MED, especially where
occupancy of orbitals with j = l + s and j′ = l′ − s (where j, l and s are the total, orbital
and spin angular momentum quantum numbers) are both changing (e.g., [50]).

In calculations of MED, both these effects are routinely included. Generally, however,
these contributions are expected to cancel in TED calculations, due to the double-difference
method of determining TED.

3.3. Radial Contribution: VCr

A major innovation, introduced by Lenzi et al. [51], and included in the prescription
of Ref. [16], is the recognition that the nuclear radius may change along the yrast line with
increasing excitation energy, resulting in a change in the bulk Coulomb energy. This, in turn,
will contribute to the MED through the difference in Z between the mirror pair. It was
recognised [16,51] that orbital radii depend on l and that, in the f 7

2
region, it was the changing

occupancy of the low-l orbitals p 3
2

and p 1
2

which would drive the nucleus to larger radii.
Unlike the Vll and Vls terms above, for which the MED will depend on the difference

between proton and neutron orbital occupancies, the VCr term will depend on the average
(proton plus neutron) occupancy of the two p orbits. The MED contribution due to the VCr
term is then calculated using

MEDVCr (J) = nα

[(mπ(gs) + mν(gs)
2

)
−

(mπ(J) + mν(J)
2

)]
(3)

where m(J) is the total occupancy of the p 3
2

and p 1
2

orbitals for neutrons (ν) and protons (π),
and n = 2|Tz| accounts for the difference in Z between the mirror nuclei. The coefficient α
was estimated in Ref. [3] as 200 keV, based on the A = 41 mirror nuclei, and this number has
been used extensively in the region. In the f 7

2
region, the occupancy of p 1

2
is often negligibly

small, and so is neglected in the MED calculation. However, above Z, N ∼ 28 it should
be included (e.g., [9]). In the sd-shell the same formalism has been used (e.g., [11,52,53]),
but instead tracking the occupancy of the s 1

2
orbital.

Again, as with the previous term, this effect cancels in the calculation of TED.

3.4. Isospin Non-Conserving (INC) Interaction: VB

Zuker et al. [16] recognised that an additional multipole component is required, in the
model, to account for the experimental MED and TED observed in the region (the inclusion
of the HO Coulomb matrix elements were shown to be insufficient). Zuker et al. [16]
extracted an additional effective INC interaction through comparing the HO Coulomb
matrix elements with the MED and TED for the A = 42 isospin triplet. An isovector matrix
element, V(1)

B was derived for f 7
2

orbital the from the A = 42, T = 1 mirror nuclei and an

isotensor f 7
2

matrix element V(2)
B extracted from the TED for T = 1 triplet. These matrix

elements were derived as a function of angular-momentum coupling J, and it was observed
that the dominant components appeared to be at J = 2 for V(1)

B and J = 0 for V(2)
B and

both of the order of +100 keV. It was observed [16] that these additional interactions, when
included in the shell-model calculations, along with the first and third terms above, allowed
for a very good description of the data available at the time. It was later noted [17], once
more data became available, that an isovector INC matrix element of the order of −100 keV
at J = 0 gives essentially very similar results to the original value of +100 keV at J = 2.
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Whatever the origin of this effect, the inclusion of these additional effective isovector
and isotensor interactions appeared to be an essential inclusion in the modelling of MED
and TED, respectively, at least in the f 7

2
region. The importance of inclusion of such INC

isovector and/or isotensor interactions has also been investigated in the sd shell [11,52]
and in the upper p f shell (e.g., [18,21]).

4. Recent Advances Based on Shell-Model Analysis

The shell-model approach described in Section 3 has formed the backbone of this field
of study over the last two decades. The strength of the shell-model prescription is the
simultaneous inclusion of the multipole and monopole effects, since the relative scale of
the contributions of the four components described in Section 3 changes from case to case.
Examples of this are the T = 1 and T = 2 mirror nuclei with A = 48 [8,54], one of which is
a case study in Section 2.3. Each of these pairs of mirror nuclei, which lie in the exact centre of
the f 7

2
shell, would also be “cross conjugate” nuclei in the assumption of a single isolated f 7

2
shell. In this extreme assumption, which is not bad for the f 7

2
shell, all multipole MED would

be zero since the number of protons in one nucleus is the same as the number of proton holes
in the mirror partner. In the case of the T = 1, A = 48 mirrors [54] this appears to be the case,
and the experimental MED is largely accounted for by the monopole VCr term. This nicely
demonstrates the power of the approach in accounting for a range of phenomena.

In this Section, some of the latest developments in this field, specifically relating to
shell-model analysis, are discussed, focussing in particular on the results from the case
studies presented in Section 2.

4.1. Isospin-Non-Conserving Interactions

One of the key areas of study has been to map out the influence of the additional
effective INC interactions (see Section 3.4). In the f 7

2
shell, a large amount of data have

become available which has enabled a more complete numerical evaluation of the influence
of these INC effects. In Refs. [17,18], all available MED and TED data in the f 7

2
shell (at

that time) were gathered and modelled using a consistent shell-model approach. The shell-
model MED and TED were then fitted to the experimental data, allowing the magnitude of
the J-dependent INC terms V(1)

B and V(2)
B to vary freely; the former (isovector) term was

derived from the MED and the latter (isotensor) term from the TED. The key results are
shown in Table 1. The results of two types of fit are presented: one where a single T = 1 VB
matrix element is considered (at a coupling of J = 0) and the second where all four T = 1
matrix elements J = 0, 2, 4, 6 were allowed to be non-zero. Only f 7

2
matrix elements were

considered. See Refs. [17,18] for a full discussion of the analysis.

Table 1. Data collected from Refs. [17,18]. The isovector V(1)
B (J) and isotensor V(2)

B (J) INC matrix
elements, for f7/2 pairs, extracted from fits across the whole f7/2 shell (see text for details). For the full
fits, a monopole centroid has been subtracted as part of the fitting process to allow the J-dependence
to be fully evaluated. The numbers in the parentheses are the errors on the fitted values.

EXTRACTED V (k)
B PARAMETERS FOR THE f 7

2
ORBITAL

Matrix elements V (1)
B (keV) Matrix elements V (2)

B (keV)
J = 0 J = 2 J = 4 J = 6 J = 0 J = 2 J = 4 J = 6

One-parameter fit
−79(6) - - - 98(11) - - -

Full fits: centroid-subtracted
−72(7) 32(6) 8(6) −12(4) 113(18) 23(29) 5(24) −21(22)

Two key results emerged from the analysis. Firstly, for the purpose of MED and
TED, it is having the correct J-dependence of these matrix elements that is crucial in the
determination of the theoretical MED and TED; the extracted results do indeed have a
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strong J-dependence. Secondly, it was shown that a single matrix element at J = 0 gives,
essentially, as good a fit as allowing all four matrix elements to vary. Hence a prescription
in which a single J = 0 INC matrix element (V(1)

B or V(2)
B ) is included is now the commonly

used approach for modelling MED and TED (e.g., [8–11,18,52]). The results in Table 1 suggest
that an isovector J = 0 matrix element of the order of −100 keV is required for MED and
an isotensor J = 0 matrix element of the order of +100 keV is required for TED. These
conclusions are essentially consistent with the original study of Zuker et al. [16]. Indeed,
the fits in Ref. [17] indicates that a positive isovector matrix element at J = 2 (as was originally
extracted in [16]) has a similar effect as a negative matrix element at J = 0. Again, the key
contributor is the J-dependence, not the absolute magnitude, of these matrix elements.

Figure 4 shows experimental and shell-model MED in the f 7
2

shell. The solid blue
lines contain the full shell-model calculation, performed exactly as described in Section 3,
with a single isovector J = 0 matrix element of VB = −79 keV, the figure extracted from the
fits [17] (see Table 1). The red dashed lines show the calculations without VB included. It is
clear from data like these the crucial role that this effective INC interaction has, especially
at low J, in the description of MED in the f 7

2
region.

It is certainly of interest to understand the importance of this effect in other mass regions.
In general, this is more challenging in regions where there are more orbitals in play and
where the influence of the monopole contributions may be large. In the sd shell, inclusion
of the INC VB term also appears to be necessary, with matrix elements of the same order as
described above [11,52]. In the upper f p shell, it has been challenging to find a consistent
picture for MED, and this remains an open question, e.g., [21]. However, a very recent analysis
of the A = 58, T = 1 mirror nuclei has been performed [9], using the same modelling as that
presented for the A = 56, T = 2 mirrors later in Section 4.2. In the A = 58 mirror nuclei,
the f 7

2
shell is expected to be almost fully filled and so the MED will be insensitive to the

inclusion of VB in the f 7
2

orbital, but will be sensitive to its inclusion in the other p f orbitals.
The analysis indicated that a much better match to the experimental MED was obtained when
a negative J = 0 matrix element for VB was included for all the f p orbitals.

The physical origin of the isovector INC interaction in the modelling of MED remains
unclear, and the analysis presented in Reference [17] suggests that the matrix elements
and their J dependence (see Table 1) cannot be reconciled easily with the properties of
known nuclear charge-symmetry breaking interaction. This therefore points to other
electromagnetic contributions missing in the model; see Ref. [17] for a discussion.

Figure 4. Experimental and shell-model MED in the f 7
2

shell. The solid blue lines contain the full
shell-model calculation, including a single isovector J = 0 INC matrix element of VB = −79 keV. See
text for details. The red dashed lines show the calculations without VB included. Data for “Shell
Model (no VB)” originally presented in Ref. [17]. Where error bars are not visible, they are smaller
than the data markers.
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Turning to TED, and the impact of the isotensor INC interaction V(2)
B , the case study

of 66Se (Section 2) and the A = 66, T = 1 isobaric triplet provides a practical example.
The successful spectroscopy of 66Se [12] up to Jπ = 6+ completed the T = 1 isobaric
triplet and allowed for TED to be determined to Jπ = 6+. The experimental data are
presented in Figure 5. The large negative TED observed are typical of all T = 1 triplets;
see, e.g., [18]. Figure 5 also contains the result of the shell-model calculation performed
following the prescription in Section 3 and using the JUN45 interaction [55]; see black
line. The calculations were originally performed in Ref. [18], and updated for this review.
The shell-model calculation does not contain calculations related to the two monopole
components (VCr and Vll,ls) since these effectively cancel to zero due to the double-difference
method of calculating the TED. Hence, only the two multipole interactions, VCM (Coulomb)
and VB (INC), are relevant for this calculation. The shell-model results are plotted in
Figure 5, for different strengths of the INC parameter V(2)

B , for J = 0 couplings. The blue
dotted line shows VB = 0 (i.e., just VCM contributes), the black solid line has VB = +100
keV and the red dashed line shows VB = +200 keV. The calculation with VB = +100 keV
(black line) is consistent with the prescription in [16] and with the data in Table 1. The VB
interaction was applied equally to all orbits in the p 3

2
f 5

2
p 1

2
g 9

2
valence space although, in this

case, it is the contribution from the f 5
2

that dominates [18].
Two conclusions can be drawn from the comparison with the shell-model results when

VB = +100 keV is applied. The first is that the agreement with experimental TED would
fail badly without the inclusion of this additional effective isotensor INC term. Secondly,
it can be shown from this analysis [18] that the two components, VCM (Coulomb) and VB
(INC), have approximately the same magnitude when VB = +100 is applied. This is not
that surprising since, as noted above, it is the J-dependence of the matrix elements that
influences the TED, and the Coulomb matrix elements generally vary by around 100 keV
from J = 0 to Jmax. The key point is that the contribution of the isotensor INC term, to the
TED, is as large as that of the Coulomb two-body interaction.

Figure 5. Experimental and shell-model TED for the A = 66, T = 1 isobaric triplet. The black line
shows the full shell-model calculation, including a single isotensor J = 0 INC matrix element of
VB = +100 keV in all orbitals in the valence space. The other lines show the shell-model results using
different strengths of the INC parameter, VB. See text for details. The calculations presented are based
on the approach of Ref. [18]. The error bars on the data points are smaller than the data markers.

Lenzi et al. [18] performed a similar analysis for all T = 1 triplets between A = 22
and A = 66, using four different interactions, as appropriate to the valence space being
used, and applying an isotensor J = 0 matrix element of VB = +100 keV in all orbitals.
A remarkably consistent picture emerged, with observations very similar to that for A = 66;
i.e., that the VB contribution is significant, and required, across the full range of triplets
studied. An important point to note is that, for TED, we have seen that the monopole
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terms of the shell-model prescription do not contribute significantly. Therefore, the TED is
essentially only sensitive to multipole effects and thus represents an observable that can
shed light on the nature of effective isospin-non conserving interactions. Since the size of
the required VB interaction appears to be largely independent of mass region, orbital or
shell-model interaction, it is natural to examine whether or not the true charge dependence
of the nuclear interaction [1] could be the origin. It was shown by Ormand and Brown [56]
that nucleon scattering data suggests that the np nuclear interaction is approximately
2–3% stronger than the pp and nn interactions. The analysis of Reference [18] indeed
indicated that the scale, and sign, of the effective isotensor interaction VB interaction appear
to be approximately consistent with that estimate for the charge-dependence of the NN
interaction. This indeed highlights the power of using energy differences, coupled to a
reliable shell-model calculation, to probe effective nucleon interactions.

4.2. Nuclear Radii and Neutron Skins

In Section 3, it was demonstrated how occupation of low-l orbitals can contribute
to MED and that this can be accounted for in the shell model through tracking of the
total (proton plus neutron) occupation of low-l orbits: in the f 7

2
region this would be the

occupancy of the p 3
2
, p 1

2
orbitals. This provides the first indication that MED can yield real

physical insight into changes in nuclear radii.
Recently, Bonnard et al. [19] have investigated the role of the occupation of low-l

“halo” orbitals in driving radii and on their influence in the development of neutron skins.
They have been able to show that the effect on the total radius of occupation of one of
the low-l orbitals is strongly dependent on the extent of the occupation of that orbital.
For example, in the f 7

2
shell, the occupancy of the p orbits is generally expected to be low

(the shell-model occupancies are � 1). Moreover, the parameterisation of the VCr term
(see Section 3) has been optimised for that region. However, in heavier nuclei, once the
f 7

2
shell is full, the occupancies of the p orbits will increase significantly, and the work of

Bonnard et al. [19] suggests that the radial-driving effect of the p orbit will be significantly
smaller in this circumstance.

This has been investigated in the A = 56, T = 2 mirror nuclei following the spec-
troscopy of 56Zn [9], discussed as a case study in Section 2.3. Figure 6 shows the experi-
mental MED compared with the shell-model calculations. These calculations have been
performed with a modified KB3G interaction, KB3GR (Caurier, E.; Poves, A. Unpublished
work) which has been optimised for this region. The calculation using the standard parame-
terisation for the radial term (α = 200 keV, see Equation (3)) is shown by the red dashed
line. However, in this case, protons in 56Zn (and neutrons in its mirror, 56Fe) are already
occupying the p 3

2
orbital, and the results of Reference [19] therefore imply that the radial

term VCr is likely to be overestimated. Therefore, in the analysis of the A = 56 mirrors,
Fernández et al. [9] reduced the α parameter (see Equation (3)) for the p 3

2
occupancies,

from the standard value of 200 keV. The α parameter for the p 1
2
, which remains largely

unoccupied, was left unchanged. The results can be seen in Figure 6 where a smaller
value of α = 50 keV is applied for the p 3

2
orbital; see solid blue line. This gives a much

better description, in qualitative agreement with the results of Bonnard et al. [19]. It is also
noteworthy that the multipole contributions to the MED for this mirror pair turn out to be
small, due to particle-hole symmetry; both nuclei have two particles and two holes with
respect to 56Ni. This makes this mirror pair sensitive to the remaining significant monopole
contribution, VCr, making this an ideal test case to examine radial effects.
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Figure 6. Results from [9]. The experimental MED for the A = 56, T = 2 mirror nuclei compared
with the results of shell-model calculations performed with the KB3GR interaction. The model uses
the standard parameterisation, but with a varying value of the scaling parameter, α (Equation (3)),
used in the determination of the radial contribution to the MED due to the occupation of the p 3

2
orbital. See text for details.

As well as the total nuclear radius having an impact on the Coulomb energy, and hence
MED, for a mirror pair, any difference between the neutron and proton radii (i.e., neutron
skin) could also have an effect on MED if, as isospin symmetry would suggest, the neutron
radius of one member of a mirror pair is equal to the proton radius of the other. This
idea, also inspired by the study in Ref. [19], was pursued in the analysis of the A = 23
mirror nuclei by Boso et al. [11], work that was made possible by the spectroscopy of
23Mg, our remaining case study (see Section 2.1). The analysis was undertaken using a
no-core shell-model approach based on the monopole-corrected interaction (MCI) [57],
which contains all the necessary Coulomb and charge-symmetry breaking terms. The MCI
matrix elements were computed using different size parameters for neutrons and protons
(i.e., allowing for the possibility of different neutron and proton radii). Whilst the proton
radius of 23Na is experimentally known, its neutron radius is not. The neutron radius (and
hence neutron skin) was then determined following the method of Duflo and Zuker [48]
by adjusting the neutron radius until the experimental ground state mirror displacement
energy (MDE) is reproduced by the model. The method was then repeated state by state,
in order to reproduce the MED, allowing for the variation of the skin thickness as a function
of J for the excited states.

Full details can be found in Ref. [11] but the key results are shown in Figure 7. The neu-
tron skin thickness parameter, ζ, is plotted using the blue circles. ζ, in the paramaterisation
of Duflo and Zuker [48], is proportional to difference between the neutron and proton rms
(root mean square) radii and is defined as ζ = Δrνπ A/(Tzeg/A), where the exponential
factor is a correction term, applied for light nuclei [48]. These results show that the neutron
skin, as derived from the MED, varies significantly from state to state. This, in turn, implies
neutron skin sizes, and their variation with excitation energy/J, can influence the MED and,
if so, it is an effect currently not included in the MED models. Another key observation is
that the skin thickness, has a correlation with the difference between the neutron and proton
occupancies of the s 1

2
orbit. This difference is plotted as Δνπ in Figure 7 (red squares). This

analysis was repeated for a range of other odd-A mirror nuclei in the sd shell, and similar
variations of neutron-skin thickness with J were suggested by that analysis; see Ref. [11]
for the full results and discussion. Inclusion of effects of this kind in the calculation of MED
is clearly an exciting future topic for investigation.
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Figure 7. Data from Ref. [11]. Blue circles: the neutron skin thickness parameter, ζ, defined in Ref. [48],
which is proportional to difference between the neutron and proton rms radii. This parameter has
been extracted through fitting to the measured MED. Red squares: Δνπ , the difference between the
neutron and proton occupancies of the s 1

2
orbit, for each state. See text and Ref. [11] for details.

5. Summary and Outlook

In this short review, some of the latest experimental advances have been presented.
The advent of the new radioactive beam facilities will allow some of these techniques to be
applied to allow spectroscopy of the most exotic proton-rich systems, or to perform high
precision tests of the predictions that come from the isospin formalism. The high-intensity
intermediate-energy fragmentation beams available at the upcoming FRIB (Facility for Rare
Isotope Beams, East Lansing, MI, USA) and FAIR (Facility for Antiproton and Ion Research,
Darmstadt, Germany) facilities are expected to have particular impact. Techniques such as
those described Section 2.3, can be applied to access nuclei with large proton excess and
pursue spectroscopy of mirror nuclei in the upper half of the f pg region. The high-velocity
beams also allow for a range of lifetime-measurement techniques to be applied, allowing
for precision tests of the isospin-dependence of transition strengths. From a theoretical
perspective, it will be especially important to develop a better understanding of the origin of
the effective isovector isospin non-conserving (INC) interactions (see Section 4.1). Moreover,
the link between mirror energy differences (MED) and radii/neutron skin is especially
exciting and should be developed further in future shell-model work. As the study of energy
splitting between isobaric multiplets develops in the future, the exciting developments in
the shell-model, some of which have been discussed, will have crucial role to play.
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Abstract: The paper reviews the recent progress in the description of isospin-symmetry breaking
within the nuclear shell model and applications to actual problems related to the structure and
decay of exotic neutron-deficient nuclei and nuclei along the N = Z line, where N is the neutron
number and Z the atomic number. The review recalls the fundamentals of the isospin formalism for
two-nucleon and many-nucleon systems, including quantum numbers, the spectrum’s structure and
selection rules for weak and electromagnetic transitions; and at the end, summarizes experimental
signatures of isospin-symmetry breaking effects, which motivated efforts towards the creation of
a relevant theoretical framework to describe those phenomena. The main approaches to construct
accurate isospin-nonconserving Hamiltonians within the shell model are briefly described and recent
advances in the description of the structure and (isospin-forbidden) decay modes of neutron-deficient
nuclei are highlighted. The paper reviews major implications of the developed theoretical tools to (i)
the fundamental interaction studies on nuclear decays and (ii) the estimation of the rates of nuclear
reactions that are important for nuclear astrophysics. The shell model is shown to be one of the
most suitable approaches to describing isospin-symmetry breaking in nuclear states at low energies.
Further efforts in extending and refining the description to larger model spaces, and in developing
first-principle theories to deal with isospin-symmetry breaking in many-nucleon systems, seem to be
indispensable steps towards our better understanding of nuclear properties in the precision era.

Keywords: nuclear shell model; isospin symmetry and its breaking; structure of neutron-deficient
nuclei; superallowed Fermi beta decay; fundamental interactions; astrophysical rp-process

1. Introduction

1.1. Isospin Symmetry in Nuclear Structure

Atomic nuclei are unique quantum many-body systems composed of two sorts of
fermions—protons and neutrons, which are known to have similar masses and possess
similar properties with respect to the strong interactions. It was Heisenberg [1] (see English
translation in Ref. [2]) who soon after the discovery of the neutron, introduced an isospin
formalism similar to the ordinary spin formalism as an elegant mathematical tool for dealing
with protons and neutrons. Nucleons are considered to be isospin t = 1/2 particles and
represented by two-component spinors spanning an abstract vector space where the isospin
operator, t̂, acts. The neutron and the proton are two eigenstates of t̂3 (the third component
of the isospin operator):

ψn(�r) = ψ(�r)
(

1
0

)
, ψp(�r) = ψ(�r)

(
0
1

)
,

with eigenvalues mt= ±1/2, respectively, and�r the radius vector. The three components
of the isospin operator, analogues of the Cartesian components, generate an isospin SU(2)
algebra:

[t̂j, t̂k] = iεjkl t̂l , (1)
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where j, k, l = 1, 2, 3, εjkl is the Levi-Civita symbol, and the square of the isospin operator,

t̂2 = t̂2
1 + t̂2

2 + t̂2
3 , (2)

commutes with each of the components: [t̂2, t̂j] = 0.
Operators corresponding to various physical observables can be conveniently ex-

pressed using isospin formalism. For example, the third component of the isospin operator
t̂3 allows one to express the nucleon charge operator,

q̂ =

(
1
2
− t̂3

)
e ,

and the ladder operators t̂±,
t̂± = t̂1 ± it̂2 , (3)

transforming a proton into a neutron and vice versa, can be useful to formulate nuclear β
decay. Here, “e” denotes the elementary charge.

Nowadays, isospin symmetry is an important concept in particle physics describing a
symmetry between u and d quarks with respect to the strong interaction and their similarly
light masses as compared to the other known quarks. The isospin character of nucleons, and
of other hadrons composed from u and/or d quarks, is a consequence of isospin coupling.

Based on the conservation of charge and the approximate charge-independence of the
nuclear forces, Wigner [3] introduced the total isospin operator for an A-nucleon system
arising from the coupling of the individual isospin operators:

T̂ =
A

∑
k=1

t̂(k) ,

or for the components:

T̂± =
A

∑
k=1

t̂±(k) , T̂3 =
A

∑
k=1

t̂3(k) , (4)

with T(T + 1) and MT = (N − Z)/2 being eigenvalues of T̂2 and T̂3, respectively, N the
neutron number, and Z the atomic number. A charge-independent nuclear Hamiltonian
would commute with T̂,

[Ĥnucl, T̂] = 0 ,

or
[Ĥnucl, T̂±] = [Ĥnucl, T̂3] = 0 .

An additional isospin quantum number T appears to label A-nucleon states besides
the total angular momentum, J, and parity, π. The spectrum of Hnucl thus consists of
degenerate isobaric multiplets, which can be labeled by (Jπ , T) in nuclei with the same
mass number A and MT = −T, . . . , T, called isobaric analogue states (IAS).

It was realized long ago that electromagnetic interactions destroy this degeneracy.
However, as it was shown by Wigner [4], this leads mainly to dynamical breaking of the
isospin SU(2) symmetry. Indeed, the Coulomb interaction between protons, which is the
main source of the isospin-symmetry breaking on the nuclear level, can be represented
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as a linear combination of an isoscalar (V̂(0)), an isovector (V̂(1)) and an isotensor (V̂(2))
operator:

V̂Coul =
A

∑
i<k

(
1
2
−t̂3(i)

)(
1
2
−t̂3(k)

)
e2

|�r(i)−�r(k)|

=
A

∑
i<k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

1
4
+

1
3

t̂(i)t̂(k)
]

︸ ︷︷ ︸
V(0)

− 1
2
(t̂3(i)+t̂3(k))︸ ︷︷ ︸

V(1)

+

[
t̂3(i)t̂3(k)−1

3
t̂(i)t̂(k)

]
︸ ︷︷ ︸

V(2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
e2

|�r(i)−�r(k)| .
(5)

By estimating the effect of this charge-dependent operator on the isobaric multiplets
within the lowest order perturbation theory (due to its expectation value within the states
of a given isospin, T) and applying the Wigner–Eckart theorem in the isospace, one gets an
expression quadratic in MT :

〈ηTMT |V̂Coul|ηTMT〉 =
(TMT00|TMT)√

2T + 1
〈ηT||V̂(0)||ηT〉

+
(TMT10|TMT)√

2T + 1
〈ηT||V̂(1)||ηT〉 (6)

+
(TMT20|TMT)√

2T + 1
〈ηT||V̂(2)||ηT〉,

where double bar denotes reduction in the isospin space; (TMTλμ|TMT) are the Clebsch–
Gordan coefficients; and η refers to other quantum numbers characterizing an isobaric
multiplet: η = (A, Jπ , . . .). By inserting Clebsch–Gordan coefficients, one gets:

〈ηTMT |VCoul|ηTMT〉 = E(0)(η, T) + E(1)(η, T)MT + E(2)(η, T)
[
3M2

T − T(T + 1)
]

, (7)

where E(λ)(η, T) are related to the reduced in isospace matrix elements of isotensors, as
seen from Equation (6). This expression remains valid if leading-order terms of charge-
dependent forces of nuclear origin are included, as discussed in Section 1.2. Such a de-
pendence, re-written for nuclear masses, is known as the isobaric-multiplet mass equation
(IMME) [4],

M(η, T, MT) = a(η, T) + b(η, T)MT + c(η, T)M2
T , (8)

with M being an atomic mass excess. Experimental a, b and c coefficients can be deduced
from available data on nuclear masses and spectra of up to about A = 71 [5,6].

Interestingly, Equation (8) holds exceptionally well, even for isobaric multiplets with
more than three members (T > 1). This makes the IMME a powerful tool for predicting the
nuclear masses of nuclei along the N = Z line, as illustrated in Section 3. Deviations from
the quadratic form are rare and small. They are specifically searched for in experiments,
as they can bring important information on the presence of charge-dependent many-body
forces or witness strong isospin mixing.

From a group-theoretical point of view [7], Equation (7), or equivalently, Equation (8),
expresses a reduction of the isospin SU(2) group to its SO(2) subgroup. The eigenstates
of the full Hamiltonian, Ĥnucl + V̂Coul, can still be characterized by the isospin quantum
number T, but the (2T + 1)-fold degeneracy inherent to the isotopic multiplets is now
removed. This effect is analogous to a Zeeman splitting of atomic levels in the presence of
a magnetic field.

As every symmetry, isospin symmetry proposes a number of selection rules for various
transition operators, on the basis of their tensorial character with respect to the SU(2) group
in isospace. For example, allowed β-decay, governed by the vector or axial-vector weak
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currents, is described by Fermi (F) or Gamow–Teller (GT) operators, respectively. In the
impulse approximation, these operators read

ÔF(β±) =
A

∑
k=1

t̂±(k) , ÔGT(β±) =
A

∑
k=1

σ̂σσ(k)t̂±(k) . (9)

Both operators are seen to be isovector components. The Fermi operator is a scalar, and the
Gamow–Teller operator is a vector in the ordinary spin space (σ̂σσ is the Pauli spin operator).
The Wigner–Eckart theorem establishes angular momentum parity, and isospin selection
rules can be established for transitions between an initial state (Jπi

i , Ti) and a final state
(J

π f
f , Tf ). For Fermi transitions, one has:

ΔJ = 0, ΔT = 0, Δπ = 0 ,

and for Gamow–Teller transitions, one has:

ΔJ = 0, 1, ΔT = 0, 1, Δπ = 0
(no Ji = 0 → J f = 0) .

From this one can conclude that Ji = 0 → J f = 0 decay can be only by the Fermi type.
A similar analysis can be performed for electromagnetic operators. Assuming a

one-body structure of nucleonic convection and spin currents and point-like nucleons,
electromagnetic operators can be shown to be a linear combination of an isoscalar and an
isovector operator [8], e.g., for an operator of multipolarity L, one has ÔLM = Ô(0)

LM + Ô(1)
LM,

where M = −L, . . . , L. Therefore, their matrix elements between states of given isospin can
be expressed as

〈J f Mf ; Tf MT |ÔLM|Ji Mi; Ti MT〉 = δTiTf 〈J f Mf |Ô(0)
LM|Ji Mi〉

+
(Ti MT10|Tf MT)√

2Tf + 1
〈J f Mf ; Tf ||Ô(1)

LM||Ji Mi; Ti〉 ,
(10)

where δTiTf is the Kronecker delta.
From Equation (10) one immediately gets the isospin selection rules for electromagnetic

transitions [8].

• For ΔT = 1 transitions (Tf = Ti ± 1), the (reduced) matrix elements of analogue
transitions in mirror nuclei or between respective analogue states should be identical,
since they are governed only by the isovector term.

• In transitions between the states of the same isospin (Ti=Tf=T), both isoscalar and
isovector terms contribute, and the matrix element for analogue transitions within an
isobaric multiplet exhibits a linear trend as a function of MT :

〈J f Mf ; TMT |ÔLM|Ji Mi; TMT〉 = 〈J f Mf |Ô(0)
LM|Ji Mi〉

+
MT√

T(T + 1)(2T + 1)
〈J f Mf ; T||Ô(1)

LM||Ji Mi; T〉 .
(11)

• Another specific rule can be established for electric dipole operator. In the lowest
order of the long-wavelength approximation, the electric-dipole (E1) operator is an
isovector operator:

Ô(E1) =
A

∑
k=1

e(k)�r(k) =
A

∑
k=1

(
1
2
− t̂3(k)

)
e�r(k) . (12)
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Hence, E1 transitions between the states of the same isospin (Ti=Tf=T) in N = Z
nuclei are forbidden by the isospin symmetry because of the vanishing Clebsch–
Gordan coefficient, (T 0 1 0| T 0 ) = 0 (see Equation (11)).

Finally, isospin selection rules govern also nuclear reactions (see also, e.g., Refs. [9–11],
for specific topics). Restricting ourselves to nuclear decays, only nucleon, two-nucleon and
α-particle emission are mentioned here: for example, for isospin-allowed proton emission,
the difference in isospin between the initial and final states is ΔT = 1/2; for two-proton
emission, it is ΔT = 1; α emission should be consistent with ΔT = 0.

Observation of isospin-forbidden decay modes indicates explicit isospin-symmetry
breaking and the presence of isospin mixing in nuclear states.

1.2. Isospin-Symmetry Breaking

Although isospin symmetry proved to be quite a useful concept in nuclear and particle
physics, which helps to simplify theoretical modeling of the nucleon–nucleon interaction
and provides an efficient framework for the nuclear many-body problem, experimental
evidence has been accumulated on the breaking of isospin symmetry.

First, it is known that isobaric multiplets are not degenerate. The differences in
energy between states forming an isobaric multiplet are called Coulomb displacement ener-
gies, since the Coulomb interaction is the main contributor to the effect. Such splittings
can be explained within dynamical breaking of isospin symmetry, as was pointed out in
Section 1.1. However, observation of isospin-forbidden decays, i.e., decays which break
isospin selection rules, indicates that isospin is not a good quantum number, and there is
a certain amount of isospin mixing in nuclear states. To describe such phenomena, one
must introduce an explicit breaking of isospin symmetry within a nuclear structure model.
Development of microscopic approaches for an accurate description of isospin-symmetry
breaking is important not only for understanding the structure and decay of proton-rich
nuclei, but also for the evaluation of nuclear-structure corrections to weak processes in
nuclei. Taking isospin-symmetry breaking into account may also help to improve our
knowledge of certain reactions involving proton-rich nuclei, which are crucial for nuclear
astrophysics.

At the nuclear level, isospin symmetry is broken mainly due to the Coulomb interac-
tion among protons (a long-range component of the electromagnetic interaction between
protons), and to a minor extent by the proton and neutron mass difference and the presence
of the charge-dependent forces of nuclear origin (short-range). At the quark level, these
causes can be rooted to the u and d quark mass difference and electromagnetic interac-
tions between the quarks. The need for charge-dependent forces of nuclear origin was
established long ago from the analysis of the nucleon–nucleon (NN) scattering data. For
example, it is known that there are differences in the neutron–neutron (ann), proton–proton
(app, with electromagnetic effects being subtracted) and neutron–proton (anp) 1S0 (a T = 1
channel) scattering lengths [12,13]. Namely, the difference of ann and app,

ann − app = 1.6 ± 0.6 fm , (13)

is a signature of charge-symmetry breaking of the strong NN force; and the even larger
difference between anp and the average of ann and app,

1
2
(ann + app)− anp = 5.64 ± 0.40 fm , (14)

is known as the charge-independence breaking property.
Moreover, still long ago, Nolen and Schiffer [14] noticed that the Coulomb force

alone cannot satisfactorily explain the binding energy differences in mirror nuclei if one
requires the model to reproduce nuclear charge radii and vise versa (the so-called Nolen–
Schiffer anomaly). The insufficiency of the two-body Coulomb interaction in reproduction
of splittings of isobaric multiplets was also demonstrated in more refined shell-model
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calculations (e.g., Refs. [15–17]). Many-body approaches must therefore, take into account
short-range charge-dependent components of the nucleon–nucleon interaction.

Henley and Miller [18] proposed to divide two-nucleon forces into four classes accord-
ing to their isospin characters, namely,

• class I (VI) are charge-independent forces {1, t̂(1)·t̂(2)};
• class II (VII) are forces which break the charge independence, but preserve the charge

symmetry of the two-nucleon system, {t̂3(1)t̂3(2)};
• class III (VIII) are charge-symmetry breaking forces, which vanish in the neutron-

proton system, {t̂3(1)+t̂3(2)};
• class IV (VIV) are forces which do not conserve the isospin of the two-nucleon system:

{t̂(1)× t̂(2), t̂3(1)− t̂3(2)}.

If, as an example the two-body Coulomb interaction, acting between protons, is
considered, one may notice that it comprises terms of classes I, II and III, as seen in
Equation (5). It is important to note that although class II and class III forces commute
with the two-nucleon isospin operator, such forces do violate the isospin symmetry in an
A-nucleon system with A > 2.

Isospin-symmetry breaking two-nucleon forces have been constructed and explored
in earlier meson-exchange models [12,19] and within the modern chiral effective field
theory χEFT) [13,20–22]. The details of various contributions from hadronic mass splittings
and electromagnetic processes can be found in the above-given references. From χEFT,
the following hierarchy was deduced [20]: VI > VII > VIII > VIV . In addition, charge-
dependent three-nucleon (3N) forces have been constructed within χEFT see, e.g., the
review [13] and references therein). Those may contribute to possible deviations of the
IMME from its quadratic form, as discussed in Section 3.1 below.

Although charge-dependent realistic inter-nucleon interactions are frequently used
in many-body calculations, in particular, in ab initio approaches, there have been few
studies specifically focused on the degree of isospin-symmetry breaking. Nevertheless, ab
initio Green’s function Monte Carlo calculations with charge-dependent forces from the
realistic Argonne v18 NN + Illinois-7 3N potential supplemented by more refined charge-
dependent terms have been performed [23]. Quite good reproduction of the binding-energy
differences in a few pairs of light mirror nuclei and the expected amount of isospin-mixing
in 8Be were reported. A significant feature of those calculations is that they introduced
and demonstrated the role of class IV forces. Charge-dependent NN+3N forces from χEFT
are used in state-of-the-art no-core shell model calculations for light nuclei [24,25], and the
validity of isospin symmetry in electric quadrupole moments of mirror nuclei has been
probed within the same theoretical approach in Ref. [26].

This review is devoted rather to the description of isospin-nonconserving phenomena
in spectra and decays of heavier nuclei, for which a solution of the nuclear many-body
problem needs an approach requiring effective charge-dependent interactions. Various
theoretical frameworks aimed at a reliable description of isospin-symmetry breaking have
been developed to deal with the problem. Among them are state-of-the-art shell-model
calculations [15–17,27–35], including its no-core realization [36] and continuum-coupling
extension [37], mean-field approaches and beyond (e.g., [38–47]) and others. Earlier com-
prehensive reviews on isospin symmetry and its breaking can be found in Refs. [9,48–50].

The present paper focuses rather on a particular theoretical approach to the problem,
namely, on the nuclear shell model (e.g., see books [51–54]). Indeed, the shell model
conserves all fundamental symmetries of atomic nuclei (such as angular momentum and
particle number) and describes quite accurately individual states and transitions at low
energies. This makes it an adequate approach for searching for tiny isospin-symmetry
breaking effects. In the following sections, we highlight recent progress achieved by the
isospin nonconserving shell model. A short summary of selected results has already been
published in the proceedings of EuNPC2018 [55].
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2. Formalism

The starting point of the shell model is a non-relativistic Hamiltonian for point-like
nucleons containing nucleon kinetic energies and effective NN interactions (only two-body
interactions are considered here):

Ĥ =
A

∑
k=1

T̂kin(k) +
A

∑
k<l=1

V̂nucl(k, l) . (15)

By adding and subtracting a one-body spherically symmetric potential (e.g., a harmonic-
oscillator potential), one can rewrite the Hamiltonian as a sum of an independent-particle
Hamiltonian (Ĥ0) and a residual interaction (V̂):

Ĥ =
A

∑
k=1

[
T̂kin(k) + Û(k)

]
+

[
A

∑
k<l=1

V̂nucl(k, l)−
A

∑
k=1

Û(k)

]
= Ĥ(0) + V̂ . (16)

The eigenstates of Ĥ (ĤΨm = EmΨm) are searched for in terms of a complete orthonor-
mal set of eigenfunctions of Ĥ0 (Ĥ0Φm = E0mΦm):

Ψm = ∑
m′

Cmm′Φm′ .

Using this expansion, the eigenproblem is reduced for Ĥ to the diagonalization of
the Hamiltonian matrix, 〈Φm′ |Ĥ|Φm〉, computed from single-particle energies of valence-
space orbitals, εp,n(a), and two-body matrix elements (TBMEs) of the residual interaction,
〈ab; JMTMT |V̂|cd; JMT′MT〉 (a, b, c, d run over valence-space orbitals in a spherically sym-
metric mean field, i.e., a = (nala ja) and so on). As a result, one gets eigenvalues Em and
the corresponding sets of expansion coefficients {Cmm′ }. If the nuclear Hamiltonian, which
is rotational invariant, is also taken to be charge-independent (the proton and neutron
single-particle energies are identical and TBMEs are independent from MT with T = T′),
its eigenstates are characterized by the angular momentum and isospin quantum numbers
(JMTMT), thereby forming degenerate spin (isospin) multiplets.

Since the model’s space dimensions grow quickly as the number of particles increases,
only for light nuclei can the shell model problem be solved for all nucleons considered in a
model space comprised of many harmonic-oscillator shells. When using realistic internu-
cleon interaction, the approach is referred to as an ab initio no-core shell model [24]. For
heavier nuclei, the shell-model problem is formulated for valence nucleons only, occupying
a model space consisting of one or two oscillator shells beyond a closed shell core. This
restriction of the model space has been proved to be sufficient for low-energy nuclear
structures. However, because of a severely truncated model space, one needs to derive a
so-called effective interaction.

In this context, the isospin formalism helps to reduce the number of parameters. Never-
theless, construction of robust valence-space effective Hamiltonians remains a challenging
and a long-standing problem of nuclear theory. Microscopic effective interactions have
been constructed, for example, within the many-body perturbation theory, starting from
the pioneering work in 60s [56,57] and continuing on into recent times (for reviews, see
Refs. [58–60]). In spite of important advances, microscopic interactions are known to be
less successful than more phenomenological parametrizations, based on the adjustment of
TBMEs to selected data on nuclear spectra from a given model space. In particular, with
two-nucleon forces only, the resulting effective interaction suffers from serious deficiencies
in their monopole component [61]. This feature was ascribed to missing 3N forces. In
addition, a number of theoretical issues in application of many-body perturbation theory
to nuclear effective interaction problem have been raised regarding convergence of the
expansion [62], which have not convincingly been answered yet.

In the last decade, new non-perturbative approaches to the construction of effective
valence-space Hamiltonians have been put forward, based on unitary transformation
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techniques—the in-medium similarity-renormalization group approach (IMSRG) [60,63]
and the Okubo–Lee–Suzuki transformations of no-core shell-model solutions [64,65]. In
addition, similar ideas have been implemented within the coupled-cluster method [66–68].
Moreover, some of these approaches, including modern many-body perturbation theory [69,
70], have successfully incorporated three-nucleon forces in their frameworks, producing
state-of-the-art microscopic effective valence-space interactions from first principles.

In spite of all these developments, phenomenological effective interactions still re-
main a benchmark. Therefore, let us start the discussion of isospin-nonconserving (INC)
Hamiltonians from a phenomenological perspective.

2.1. Phenomenological Approaches

Phenomenological effective Hamiltonians are typically isospin-conserving; therefore,
the Coulomb contribution is usually evaluated and subtracted from the data before it is used
in a fit. The resulting interactions are called realistic, and they can provide high accuracy
in the description of nuclear excited states and transitions at low energies for a large set
of nuclei (ideally, all nuclei) from a given model space. The most famous examples are
the Cohen–Kurath Hamiltonians [71] in the p shell; the universal sd shell (USD) family of
Hamiltonians [72,73], and Kuo-Brown modified KB3G [74] and GXPF1A [75] Hamiltonians
in the p f shell.

An attractive option to construct an accurate INC Hamiltonian is thus to adopt a
well-established charge-independent Hamiltonian as a lowest-order approximation and to
add an INC term. The latter must contain the two-body Coulomb interaction and effective
charge-dependent NN forces (V̂CD), at least of classes II and III (no class IV forces are
discussed here, but eventually, the framework can be extended to include them as well).
Such an operator is a sum of an isoscalar, an isovector and an isotensor term:

V̂INC = V̂Coul + V̂CD = ∑
λ=0,1,2

V̂(λ)
INC , where

⎧⎪⎪⎨⎪⎪⎩
V̂(0)

INC = (vpp + vnn + vT=1
np )/3 ,

V̂(1)
INC = vpp − vnn ,

V̂(2)
INC = (vpp + vnn)/2 − vT=1

np .

To describe the Coulomb effects of the core, an isovector one-body term is added
which gives rise to the so-called isovector single-particle energies, ε̃(a)=εp(a)−εn(a), where a
runs over model-space orbitals. In lowest-order perturbation theory, the splitting of the
isobaric multiplets is due to the expectation value of this operator; therefore, it is expressed
by a quadratic polynomial in MT , similarly to Equation (7):

〈ΨTMT |V̂INC|ΨTMT 〉 = E(0)(η, T) + E(1)(η, T)MT + E(2)(η, T)
[
3M2

T − T(T + 1)
]
.

In order to find the best set of parameters of V̂INC and isovector single-particle energies
ε̃a, one can perform a fit requiring that theoretical isovector and isotensor components
allow one to reproduce experimentally deduced b and c IMME coefficients for a wide
selection of lowest and excited isobaric multiplets with T = 1/2, 1, 3/2, . . .. This procedure
was first proposed in Ref. [15] and was used in the later work related to the sd-shell [16,27]
and p f -shell and heavier nuclei [28]. Among various possible forms of V̂CD, modelization
of that term either by a ρ-exchange Yukawa-type potential (with a scaled meson mass) or
by the T = 1 term of the isospin-conserving Hamiltonian in the isovector and isotensor
channels resulted in similar quality fits [15,27]. At the same time, the use of the π-exchange
potential was found to require much stronger renormalization of the two-body Coulomb
force, and therefore, it was not retained.

Figure 1 shows the b coefficients for the lowest doublets and c coefficients for the lowest
triplets obtained from such phenomenological interactions for sd-shell and p f -shell nuclei,
in comparison with the experimental values. It is evident that the agreement between
theory and experiment is remarkable. The root-mean-square (rms) deviations between
theory and experiment represented in Figure 1 are 30 keV (95 keV) for b coefficients in the
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sd (p f ) shell and around 9 keV (25 keV) for the c-coefficients in the sd (p f ) shell. One can
observe that the description of the p f -shell b coefficients worsens towards the middle of
the shell. By excluding data for A = 59, 61, 63, the rms deviation reduces to 55 keV. This
problem seems to be linked to the difficulty in the description of nuclei from the upper part
of the p f shell because of large dimensions involved, and may not be related to the form
of the INC terms. Note also that more realistic forms of V̂CD did not help to improve the
fit [16].
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Figure 1. Experimental (”Exp”) [5,76] and theoretical (”Theory”) IMME b coefficients for the lowest
doublets (left) and c coefficients for the lowest triplets (right) in the sd and p f shells. The sd-
shell results were quoted from Ref. [27], and p f -shell calculations were performed with GX1Acd
interaction [77]. See text for details.

As seen in Figure 1, the shell model well reproduces both the general trends and the
fine structure of b and c coefficients. The latter considers the staggering c coefficients as a
function of A, as well visible in Figure 1 (right): the c coefficients in A = 4n + 2 multiplets
are systematically larger than those in A = 4n (n being a positive integer). Similarly, the
b coefficients in doublets and quartets form two families for A = 4n + 1 and A = 4n + 3,
with opposite phases, however (for doublets, b coefficients are largest in A = 4n + 1 nuclei,
and for quartets, they are largest for A = 4n + 3 nuclei). To amplify the effect, in Figure 2,
the differences in b coefficients between A and A − 2 nuclei are plotted.
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Figure 2. Experimental [5,76] (left) and theoretical (right) differences in IMME b coefficients (Δb) for
the ground-state, first-excited and second-excited natural-parity T = 1/2 multiplets in the sd and p f
shells. The sd-shell results were obtained with the interaction from Ref. [27], and p f -shell calculations
were performed with GX1Acd interaction [77].

The staggering was noticed long ago and explained by the interplay between the
Coulomb force and the pairing TBMEs [78]. It should be visibly present in b coefficients
of multiplets with half-integer T and c coefficients of multiplets with integer values of
T. The same conclusions have been reached [79] within a simpler macroscopic approach
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supplemented by different proton and neutron average pairing gaps, which made it possible
to grasp the main features of staggering.

Modern microscopic approaches [27,28,34,44,45] using realistic interactions well re-
produce the effect. The main advantage of the shell-model type approaches is that they can
describe b and c coefficients of excited states as well. Figures 2 and 3 show the differences
among b coefficients, Δb and c coefficients for the three lowest positive-parity multiplets
in doublets and triplets, respectively. Interestingly, that the amplitudes of oscillations
diminish with excitation energy. This hints that the pairing effect gradually weakens as
systems become more and more excited.
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Figure 3. Experimental [5,76] (left) and theoretical (right) IMME c coefficients for the lowest, first-
excited and second-excited T = 1 multiplets in the sd and p f shells. The sd-shell results were
obtained with the interaction from Ref. [27], and p f -shell calculations were performed with GX1Acd
interaction [77]. For A = 42, the data are given for Jπ = 0+, 2+, 4+ states. See text for details.

The approach described above can rather well reproduce an extended set of b and
c coefficients and provides an attractive tool with which to predict binding energies and
states in mirror systems using a method of Coulomb energy differences, described in
Section 3.1 below. At the same time, a few drawbacks exist—namely, that it (i) does not
allow one to predict nuclear masses on purely theoretical grounds, (ii) does not account for
the so-called Thomas–Ehrman shift and (iii) it does not provide enough accuracy in the
description of the differences in excitation energies of analogue states, usually referred to
as Coulomb energy differences.

Another strategy was put forward by Zuker, Lenzi and collaborators in a series of
papers starting from [17] (see also Refs. [80–82] for a recent review). The idea consists
in modeling charge-dependent forces of nuclear origin with a few TBMEs, adjusted to
reproduce the differences in excitation energies of isobaric multiplets relative to the lowest
in energy multiplet. Those quantities are known as mirror energy differences (MEDs) and
triplet energy differences (TEDs) in T = 1 multiplets, and they are related to the differences
in b or c coefficients between the lowest multiplet and an excited one. For example, for
triplets,

MED(J) = −2(b(J)− b0) ,
TED(J) = 2(c(J)− c0) ,

where b0 (c0) is a b (c) coefficient of the lowest triplet. Considered as a function of J along
an excitation band (a pattern of excited states linked by pronounced electromagnetic tran-
sitions), MEDs and TEDs can bring pertinent information on nuclear structure effects. A
vary accurate description has been achieved [17,80] of the p f shell by a phenomenological
parameterization of various physical effects, such as changes in nuclear radius (or defor-
mation) and electromagnetic corrections to the single-particle energies, with V̂CD being
modeled by a few J = 0 TBMEs in isovector and isotensor channels.

In Ref. [28], it was shown that modelization of VCD by two J = 0, T = 1 TBMEs
in the f7/2 orbital and theoretically calculated single-particle energies was sufficient to
reproduce the staggering behavior of b and c coefficients. This may not be surprising, since
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we understand the staggering effect is due to the Coulomb contribution to the pairing-type
matrix elements.

Later on, the approach was generalized to other model spaces using a more extended
form of a charge-dependent term of nuclear origin as a number of TBMEs in Refs. [31,32].
MED and TED appear to be sensitive tools to unveil the structure of excited states, and
in particular, TEDs and MEDs can shed light onto pair alignment process or on the shape
evolution. Detailed study of the heavy N = Z region allowed researchers to understand
co-existing shapes and other effects in A = 66, 70, 74, 78 (e.g., [29,83]).

Moreover, MEDs have been shown [84] to depend linearly on the difference between
neutron and proton radii, known as “neutron skin”, and that they strongly correlate with the
s1/2-orbital occupation. In general, low-l orbitals, especially s1/2 orbitals, are characterized
by an extended radius and play thus a special role in nuclear structure. In particular, it was
noted that MEDs of states having higher occupation of s1/2 are unusually large. It turns
out that states in proton-rich nuclei having high occupation of such an orbital experience a
stronger shift with respect to their mirror states in neutron-rich partners. This is the essence
of the so-called Thomas–Erhman effect [85,86]. Parameterizations of the charge-dependent
forces mentioned above do not necessarily include this effect, which thus requires special
care. In order to account for the Thomas–Ehrman shift, several approaches have been
developed. For example, one can vary the energy of the proton ε(s1/2) single-particle
orbital (e.g., Ref. [87]) or quench TBMEs which involve s1/2 orbitals [88]. Recently, a direct
construction of TBMEs based on a simultaneous fit of isoscalar, isovector and isotensor
terms has been undertaken, which lead to a few new types of USD interactions [34], aiming
at consistent description of proton-rich and neutron-rich nuclei on similar grounds.

2.2. Semi-Phenomenological Approaches

A first step towards a more theoretical framework was to use a more realistic form of
V̂CD on top of phenomenological wave functions. This was introduced in Ref. [16] for the
sd shell but found to be less successful than a purely phenomenological charge-dependent
term. More recently, in Ref. [33], microscopic charge-independence breaking p f -shell
Hamiltonians have been constructed from the two-body CD-Bonn, Argonne v18 and chiral
N3LO (next-to-next-to-next-to-leading order) potentials on top of the phenomenological
GXPF1A interaction. The authors compared theoretical IMME c coefficients as a function
of the angular momentum in selected p f -shell nuclei with experimental data and conclude
that the theory indicates too-strong of a contribution of the charge-independence breaking
terms of nuclear origin.

2.3. Microscopic Approaches

A recent breakthrough in the construction of the NN interaction from effective field
theories and advances in nuclear many-body methods led to the appearance of the first
semi-microscopic and fully microscopic effective charge-dependent Hamiltonians. In
particular, large-scale calculations for proton-rich nuclei in the extended sd f7/2 p3/2 and
p f g9/2 model spaces with effective Hamiltonians, derived within many-body perturbation
theory from χEFT NN+3N interactions, have been reported in Ref. [30].

Later on, valence space Hamiltonians were constructed within the IMSRG approach [35]
based on two forces obtained within χEFT. The author tested the ability of their fully ab
initio methods to reproduce the experimental IMME b and c coefficients for a large selection
of nuclei of interest for superallowed β-decay applications with A between 10 and 74.
Their conclusion is that although the major trend comes out correctly, their results are
interaction-dependent and not precise enough to get the fine details.

Numerous modern theoretical investigations of nuclear properties are performed
nowadays within ab initio approaches using charge-dependent realistic interactions (for
example, those from χEFT). We believe that specific issues of isospin-symmetry breaking
will definitely be addressed in forthcoming studies.
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3. Structure and Decay of Neutron-Deficient Nuclei

Development of charge-dependent Hamiltonians has its ultimate goal of providing
an accurate description of nuclei along the N = Z line and proton-rich nuclei, making
it possible to describe the signatures of isospin-symmetry breaking. This Section gives
examples of how theoretical IMME coefficients can serve to predict nuclear masses and
excited states in mirror nuclei, and it summarizes the progress in the description of isospin-
forbidden transitions. The latter provide important tests of isospin mixing in nuclear wave
functions to validate theoretical models.

3.1. IMME Coefficients for Masses and Excitation Spectra of Proton-Rich Nuclei

It was recognized long ago that the quadratic IMME, Equation (8), been successful
throughout the nuclear chart, can provide a powerful method to determine masses, called
the method of Coulomb displacement energies [28,79,89–92]. Namely, the mass excess of
a proton-rich nucleus (with MT = −T) on the basis of an experimental mass excess of its
neutron-rich mirror (with MT = T) and the theoretical b coefficient as

M(η, T, MT = −T) = M(η, T, MT = T)− 2 b(η, T) T . (17)

If theoretically Coulomb displacement energies are calculated, then they can be used
straight instead of 2bT in Equation (18), as is done in Ref. [28,92]. Since the IMME is also
applicable to describe excited multiplets, the method can be used to predict the positions of
excited states in proton-rich nuclei.

Even more precise determination of the energy-level position is possible in triplets if
two of three members of an isobaric multiplet are known experimentally:

M(η, T, MT = −1) = 2M(η, T, MT = 0)−M(η, T, MT = 1) + 2c(η, T) . (18)

Since the rms (root-mean-square) deviation for c coefficients is typically smaller than
that for b coefficients, one would expect to have a smaller theoretical uncertainty value.
These methods can be advantageous for determination of the level in proton-rich nuclei of
astrophysical interest (e.g., [93]), as pointed out in Section 5.

The methods described above rely on the quadratic IMME given by Equation (8).
Indeed, for isobaric mutliplets with T > 1, which involve more than three members,
deviations from the quadratic law can be expected. An extended IMME equation would
include terms proportional to M3

T and M4
T , i.e.,

M(η, T, MT) = a(η, T) + b(η, T)MT + c(η, T)M2
T + d(η, T)M3

T + e(η, T)M4
T , (19)

which can be tested on quartets and quintets. Up till now, very few cases of non-zero d
or e coefficients have been reported [5,6,94]; see also Refs. [95,96] and references therein.
Typical values reach tens of keV.

Theoretically [94,97], deviations from a quadratic IMME are possible due to the pres-
ence of charge-dependent three-nucleon forces and/or due to isospin-mixing with nearby
states. It is worth noting that the diagonalization of an INC shell-model Hamiltonian
can generate an extended IMME, and several calculations have been reported [96,98]. To
understand the challenge of getting reliable estimations of cubic and quartic terms on
purely theoretical grounds, it is sufficient to notice that the rms errors of b and c coefficients
are of the same order of magnitude or even larger than possible non-zero values of d and
e coefficients. To avoid these ambiguities, a dedicated analysis constraining theory by
available experimental information on A = 32 quintet have recently been performed [99].
Further efforts towards required precision will be crucial to advance our understanding of
the origin of the IMME beyond its quadratic form.
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3.2. Isospin-Forbidden Decays

Observation of transitions violating isospin selection rules, pointed to in the Introduc-
tion, signifies that the states are not pure in isospin. To predict theoretically the magnitudes
of isospin impurities based on a fully microscopic calculation represents quite a compli-
cated task. This can be understood as follows. In the shell model discussed here, isospin
impurities arise from mixing of states of the same spin and parity but different isospin,
if charge-dependent forces are present. Let us consider the simplest case of just two
eigenstates of a charge-independent Hamiltonian, |Jπ , T〉 and |Jπ , T′〉, of isospin T and T′,
respectively. Inclusion of a charge-dependent interaction will result in new eigenstates,
being linear combinations of unperturbed states, as

|a, Jπ〉 = √
1 − x2|Jπ , T〉+ x|Jπ , T′〉

|b, Jπ〉 = √
1 − x2|Jπ , T′〉 − x|Jπ , T〉 .

The mixing amplitude, x, in the first order is given by the ratio of the isospin-mixing
matrix element and the energy difference between the two states:

x ∼ 〈Jπ , T|VINC|Jπ , T′〉/ΔE .

It is known that it is difficult to predict theoretically the energy difference between
states, especially for an odd–odd nucleus. Uncertainties of a few hundred keV may result
in huge uncertainty on the mixing probability. However, we would like to require from
theory to robustly predict the value of the mixing matrix element, 〈VINC〉. In practice, there
could be many-state mixing, and the theory should able to deal with such a problem.

Mixing matrix elements depend strongly on the structure of the states considered, and
therefore require in each case a dedicated calculation. Systematic calculations of 〈VINC〉,
and distinction between its long-range (Coulomb) and short-range contributions, may bring
interesting information, especially when compared to available experimental data (see
Refs. [16,49] for an earlier study). From various specific calculations, it seems that typical
values of 〈VINC〉 are between a few keV to a few tens of keV. Maximum values are 150 keV
in p-shell nuclei [23,100], around 100 keV for sd-shell nuclei [16] and about 50 keV in the p f
shell [101]. These estimations are in agreement with the largest observed values reported
until now: −145(20) keV for 8Be in the p shell [100], 106(40) keV for 24Mg [102] in the sd
shell and 40(23) keV for 56 Cu [103] in the p f shell. Although theoretical uncertainty on
energy differences between admixed states hampers direct predictions of isospin impurities
from theory, it often turns out that combining calculations with experimental data may be
sufficient to constrain predictions, as illustrated in Section 3.2.3 below.

3.2.1. Isospin-Forbidden β-Decay

To shed light on possible isospin impurities in nuclear states, one must appeal to
isospin-forbidden transition probabilities. Let us remark that the only model-independent
way to extract the amount of isospin-mixing from experiment is provided by Fermi β-
decay [49]. Since the Fermi operator (9) is given by the isospin ladder operators T̂±, its
matrix element between members of an isobaric multiplet can be expressed as

|M0
F| = |〈T, MT ± 1|T̂±|TMT〉| =

√
(T + MT)(T − MT + 1) . (20)

In isospin-symmetry limit, the whole strength would feed the IAS. A measured deple-
tion of the Fermi strength from the IAS or observation of Fermi transitions to non-analogue
states can bring information on the amount of isospin mixing in the IAS. In addition, if
a MT > 0 nucleus β+ (β−) decays, then the mixing is dominantly present in the parent
(daughter) nucleus, and inversely for a MT < 0 nucleus. Then, the isospin-forbidden
Fermi-matrix element in a non-analogue state can be estimated as |MIF

F | = |x||M0
F|.

Special cases of purely Fermi, non-analogue 0+ → 0+ transitions are known, and they
bring important information for the tests of the weak interaction in nuclear decays [104].
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Distribution of the non-analogue Fermi strength, as experimentally measured recently in
62Ga [105], can shed light on the mixing matrix elements to cross-check the theory.

Transitions between states of the same (but non-zero) angular momentum, Jπ → Jπ

(J �= 0), are governed by both Fermi and Gamow–Teller components of the β-decay operator.
A separation of the Gamow–Teller matrix element is an experimental challenge, bringing,
however, direct knowledge on on isospin impurities, as elaborated in Refs. [49,106,107].

3.2.2. Signatures of Isospin-Symmetry Breaking from Electromagnetic Transitions

Observation of other isospin-forbidden decays requires theoretical calculations of
corresponding nuclear processes for extraction of the mixing probability. For example,
electromagnetic transitions which violate isospin selection rules propose another possibility
to test the degree of isospin-symmetry breaking.

Electric dipole transitions play a special role in these explorations due to a specific
isovector character of the operator; see Equation (12). In particular, in Section 1.1, it was
mentioned that E1 transitions between the states of the same isospin in self-conjugate
(N = Z) nuclei are forbidden by isospin symmetry. A few cases of observation of weak E1
transitions in N = Z nuclei between states of the same isospin have been reported [108,109].
This indicates breaking of isospin symmetry in the states involved in the decay. The shell-
model calculation of individual E1 transition rates is hampered by the fact that the model
space should contain orbitals of different parities, which could also lead to a center-of-mass
motion. Given that the center-of-mass separation is only approximate, it is a challenge
to give a precise estimation of the E1 strength. Observed enhancements of E1 rates in
N = Z nuclei and enhanced asymmetries of mirror E1 transitions can be related to the
giant isovector monopole resonance [109].

An original idea of using E2/M1 (electric quadrupole/magnetic-dipole) mixing ratio
of decays in a self-conjugate nucleus 54Co has been elaborated in Ref. [110] to pin down
isospin impurities in a 4+ doublet.

Electromagnetic transitions between isobaric analogue states provide other possibili-
ties to test isospin selection rules. For example, linear dependence of the E2 matrix elements
on MT in ΔT = 1 analogue transitions have been explored experimentally in a number of
triplets (see Refs. [111,112] and references therein), and tests of equality of isovector matrix
elements in mirror systems have been carried out [113,114].

An interesting idea to extract the amount of isospin mixing from E1 transition rates in
mirror nuclei has been proposed and explored in Ref. [115].

Other possibilities to deduce isospin mixing in nuclear states from electromagnetic
responses have been explored, e.g., in electron-scattering experiments [116] or via excitation
of giant dipole resonance in N = Z nuclei, e.g., in Refs. [117–119].

3.2.3. β-Delayed Proton, Diproton or α Emission

Nucleon(s) emission may serve as a stringent test of isospin purity [120]. Interesting
cases are provided by β-delayed proton (or two-proton, α) emission when an IAS, populated
in the β-decay, is located beyond the corresponding particle separation threshold [121,122].
As follows from a typical energy balance, in this case the proton (two-proton, alpha)
emission from the IAS (Jπ , T), populated in the β-decay of a MT < 0 precursor, is forbidden
by isospin symmetry (see Figure 4). Observation of such processes evidences the presence
of isospin mixing, mainly, in the IAS which is surrounded by states of another isospin,
(Jπ , T − 1). A large amount of mixing can be deduced from the missing Fermi strength.
However, small amounts may be hidden by experimental uncertainties.
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Figure 4. Schematic picture of β-delayed p, γ, 2p and α emission from an IAS. See text for details.

To deduce spectroscopic factors from isospin-forbidden proton emission on purely
theoretical grounds is challenging [120,123]. Nevertheless, recently, it has been shown
that one can deduce isospin mixing using experimental proton-γbranching ratios in the
case of β-delayed pγ-emission [101,124] (two-proton or α emission were supposed to be
absent or negligible in that study). Since the proton to γ-decay branching ratio for the IAS,
IIAS
p /IIAS

γ , equals to the ratio of the corresponding widths, with the help of the theoretical
electromagnetic width, ΓIAS

γ , one can extract the proton width of the IAS as

ΓIAS
p = ΓIAS

γ

IIAS
p

IIAS
γ

. (21)

Generally, the shell model provides a relatively robust description of electromagnetic
widths, if experimental energies are used. Deduced proton widths are important in astro-
physics applications. For example, radiative proton capture is an inverse process, where a
nucleus capturing a proton gets excited to a specific level and is de-excited by γ emission.
Proton and electromagnetic widths are thus essential ingredients with which to estimate
the contribution of resonant capture.

In addition, if the angular momentum, l, of the proton is unambiguously determined
(as in the decay from 0+ state), from Equation (21) one can deduce the spectroscopic factor
for an isospin-forbidden proton emission from the IAS. To this end, one can estimate
theoretical single-particle proton width, ΓIAS

sp , of the IAS and express the spectroscopic
factor as

SIAS
p =

ΓIAS
γ

ΓIAS
sp

IIAS
p

IIAS
γ

. (22)

Let us remark that this estimation does not rely on the isospin mixing in the IAS, which
would depend on energies of admixed states, but only on the experimental ratio of proton
and gamma intensities and on the calculated width.

If a two-state mixing hypothesis approximately holds, for example, when the IAS is
mostly mixed with a single nearby non-analogue state (Jπ , T − 1), then one can approxi-
mately estimate the amount of isospin mixing in the IAS. Namely, using the shell-model
value for the spectroscopic factor of the admixed state, ST−1

p , the probability of mixing can
be expressed as x2 = SIAS

p / ST−1
p . This procedure can be generalized to include isospin-

forbidden 2p or α-particle emission from the IAS.

275



Physics 2023, 5

For several measured proton branches that form the IAS, one can apply the above
formalism to each of them separately, since relation (21) holds:

ΓIAS
p,i = ΓIAS

γ

IIAS
p,i

IIAS
γ

. (23)

Proceed to extract spectroscopic factors and isospin mixing, if a two-level mixing
model is applicable. This proposes an interesting possibility to cross-check the values of
x2 deduced from various branches. Such cases of β-delayed pγ emission from an odd A
precursor have also been reported (see, e.g., Refs. [121,122,125]).

Actually, one can also determine an approximate value of isospin mixing in the
IAS in a two-level mixing case, even if the set of quantum numbers (nlj) characterizing
the emitted proton is not unique. In this case, the proton width is a sum of contribut-
ing partial widths corresponding to all allowed orbitals from a given model space, e.g.,
ΓIAS

p = ∑nlj SIAS
p (nlj)ΓIAS

sp (nlj). Therefore, providing shell-model values of isospin-allowed
spectroscopic factors, ST−1

p (nlj), one can estimate the amount of isospin impurity of the
IAS to be

x2 =
ΓIAS

p

∑nlj ST−1
p (nlj)ΓIAS

sp (nlj)
, (24)

where ΓIAS
p is deduced as in Equation (21) and the denominator is evaluated theoretically.

Finally, individual spectroscopic factors (for each nlj channel) for isospin-forbidden proton
emission can be obtained as SIAS

p (nlj) = x2ST−1
p (nlj) The uncertainty of theoretical estima-

tion increases in this case, since a few theoretical quantities have to be used. In general, one
should also remember that small spectroscopic factors (below 0.1) carry a significant theo-
retical uncertainty and this may prohibit extraction of the detailed information according
to the proposed method.

4. Theoretical Isospin-Symmetry Breaking Corrections to Weak Processes in Nuclei

At present, many-body calculations for nuclear structure are required to link exper-
imental information on weak processes involving nuclei to the underlying theories of
fundamental interactions. In this context, the nuclear shell model is among the most fa-
vorite tools to provide nuclear matrix elements necessary for the tests of the symmetries
of the standard model and for the searches for physics beyond it. Those can be probed
in nuclear β-decay, but also in charge–exchange reactions or, eventually, in muon capture
experiments. Calculations allowing to account for isospin-symmetry breaking may become
vital in studies of individual transitions involving proton-rich nuclei and nuclei along
N = Z line.

The discussion below focuses on two activities related to the study of beta decay, which
can be described by an effective axial-vecor and vector, V–A, interaction Hamiltonian,

ĤV−A =
GV√

2
Ĵ†
μ ĵμ + h.c. , (25)

where J†
μ ((jμ) is hadronic (leptonic) weak current, the index μ represents the space-time

4-vector index and takes valuse 0 (time),1, 2, and 3 (space), “h.c.” stays for “hermitian
conjugate”, and GV is the weak-interaction coupling constant responsible for this semi-
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leptonic decay. The most general form of a Lorentz-covariant form of the vector and
axial-vector nucleon currents read

Ĵ†
μ = V̂μ + Âμ (26)

V̂μ = iψp

(
gV(k2)γμ +

gW(k2)

2mN
σμνkν + igS(k2)kμ

)
ψn (27)

Âμ = iψp

(
gA(k2)γμ +

gT(k2)

2mN
σμνkν + igP(k2)kμ

)
γ5ψn (28)

where ψp and ψn are nucleon field operators, mN is the nucleon mass; kμ is the 4-momentum
transferred from hadrons to leptons; σμν = [γμ, γν]/2i and γμ are Dirac matrices. The six
form-factors are arbitrary real functions of Lorentz invariants of k2, to be compatible with
time-reversal invariance. At low momentum transfer, they are known as the vector (gV),
weak magnetism (gW), scalar (gS), axial-vector (gA), tensor (gT) and pseudo-scalar (gP)
coupling constants.

The six terms have definite properties under the Ĝ-parity transformation, which is a
combination of charge-conjugation (Ĉ) and rotation in isospin space over 180 degrees about
the 2-axis (Ĝ = Ĉ exp (iπT̂2)). Those which transform as leading-order vector and axial-
vector terms are called first-class currents, and those which have opposite transformation
properties are called second-class currents. Of the latter type are the induced scalar term in
the vector current and induced tensor term in the axial-vector current.

Various constraints on these coupling constants come from the symmetries underlying
the standard model [126]. The most stringent condition is provided by the conserved
vector current (CVC) hypothesis, which is based on the similarity in structure of the vector
weak current and the isovector electromagnetic current. From CVC, it follows that the
vector and weak-magnetism form factors are related to their electromagnetic counterparts,
in particular, gV(k2 → 0) = 1. This symmetry also implies that the induced scalar term
vanishes (gS = 0).

For the axial-vector current, only a partially conserved axial-vector current hypothesis
exists, and it is less restrictive: it allows one to relate the main axial-vector coupling constant
to the pion–nucleon coupling constant by famous Goldhaber–Trieman relations.

Nuclear β-decay experiments provide an excellent ground to test the structure of
these currents and experimentally determine the magnitude of the coupling constants (see
extensive reviews [127,128]). Two particular domains are described below, when theoretical
calculation of nuclear matrix elements is required, along with an accurate treatment of
isospin-symmetry breaking.

4.1. Superallowed Fermi β-Decay

The most prominent application of the theoretical formalism exposed just above is the
calculation of realistic Fermi-matrix elements for β-decay between 0+ states or between the
mirror states in T = 1/2 nuclei [129].

Indeed, Fermi type β-decay is governed uniquely by the vector part of the weak
current. According to the CVC hypothesis, the absolute Ft values of such transitions in
various emitters with a given isospin T should be the same. If this feature holds, from Ft
one can deduce the vector’s coupling constant, GV , that is responsible for this semi-leptonic
decay (u → de+νe). Combining GV with the value of fundamental weak coupling constant
GF obtained from a purely leptonic muon decay (μ+ → e+νeνμ), one can determine the
absolute value of the |Vud| = GV/GF matrix element of the Cabibbo–Kobayasi–Maskawa
(CKM) quark-mixing matrix:

VCKM =

⎛⎝ Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞⎠.
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Numerical values of CKM matrix elements are important for the unitarity tests, such
as the normalization condition for its first row: |Vud|2 + |Vus|2 + |Vub|2 = 1.

The absolute Ft value is obtained from the experimentally deduced f t value after in-
corporation of a few non-negligible theoretical corrections [130] as defined by the following
equation:

Ft0+→0+ ≡ f t0+→0+(1 + δ′R)(1 + δNS − δC) =
K

|M0
F|2G2

V(1 + ΔR)
. (29)

Here, f is the statistical rate function calculated from the decay energy, t is the partial
half-life of the transitions, K = 2π3h̄ ln 2(h̄c)6/(mec2)5, |M0

F| is the Fermi-matrix element in
the isospin-symmetry limit (20), h̄ is the reduced Planck’s constant, c is the speed of light,
and ΔR, δ′R and δNS are transition-independent, transition-dependent and nuclear-structure-
dependent radiative corrections; and δC is the isospin-symmetry breaking correction due
to the lost analogue symmetry between the parent and the daughter nuclear states. The
detailed description of the electroweak corrections and the current status in the field can
be found in the latest survey by Hardy and Towner [130]. The most prominent feature
discussed in recent years is an updated value of the transition independent term, ΔR, which
was re-evaluated using the formalism of the effective field theory, and this brought fragility
to the unitarity tests [131].

The present discussion focuses on the isospin-symmetry breaking correction, δC. This
correction is defined as a deviation of the squared realistic Fermi-matrix element from its
isospin-symmetry value: |MF|2 = |M0

F|2(1 − δC). Therefore, the estimation of δC requires
an accurate calculation within a nuclear-structure model which can account for the broken
isospin symmetry.

There have been lots of efforts within various theoretical approaches during a few
decades already. Figure 5 summarizes predictions from different calculations for the 13
best known transitions (by now, the decay of 26Si has been added to this dataset).
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Figure 5. Isospin-symmetry breaking correction, δC, from various theoretical approaches: SM-
WS(2015) [130], SM-HF(1995) [132], RHF-RPA(2009) [39], RH-RPA(2009) [39], SV-DFT(2012) [42],
SHZ2-DFT(2012) [42], Damgaard(1969) [133], IVMR(2009) [134]. Figure is adapted from Ref. [135].

The values obviously diverge. In addition, to note is that theoretical approaches assign
important uncertainties to their values (those which present associated uncertainties).
Currently, evaluation of δC provides the largest contribution to the Ft-value uncertainty.
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As has been demonstrated in Section 2 above, the INC shell model represents a well-
suited tool for the δC calculation. By expressing the Fermi-matrix elements in the second
quantization, one gets:

MF = 〈Ψ f |T̂+|Ψi〉 = ∑
α

〈 f |ĉ†
αn ĉαp |i〉〈αn|t̂+|αp〉 , (30)

where ĉ†
α and ĉα are nucleon creation (destruction) operators; α denotes a full set of spherical

quantum numbers, α = (na, la, ja, ma) ≡ (a, ma) and the two ingredients of Equation (30)
are (i) one body-transition densities:

〈 f |ĉ†
αn ĉαp |i〉 ≡ ρα , (31)

and isospin single particle matrix elements, given by overlap integrals:

〈αn|t̂+|αp〉 =
∫ ∞

0
Rαn(r)Rαp(r)r

2dr ≡ Ωα. (32)

Here, Rα denotes the radial part of the single-particle wave function.
It has been pointed out by Miller and Schwenk [136,137] that the use of the exact

isospin operator in Equation (30) would involve terms where the radial quantum number,
nα, for of a proton state, αp, is different from that of a neutron state αn. Up till now, all
shell-model work [132,135,138,139] has been done within an approximation that allows
one to express the radial overlaps by Equation (32).

Calculation of realistic Fermi-matrix elements implies the use of one-body transition
densities computed using many-body states obtained from the diagonalization of an INC
Hamiltonian, and the use of radial wave functions, obtained from a realistic spherical
single-particle potential, such as Wood–Saxon (WS) or Hartree–Fock (HF) potential, instead
of the harmonic oscillator. Therefore,

MF = ∑
α

ραΩα ,

and the model-independent value (20) can be obtained from one-body transitions densities
in the isospin limit (ρ0

α) and harmonic-oscillator radial overlaps (Ω0
α = 1):

M0
F = ∑

α

ρ0
αΩ0

α = ∑
α

ρ0
α

(the superscript "0" indicates that those quantities were calculated in the isospin limit).
Therefore, there are two sources of isospin-symmetry breaking in the Fermi-matrix element:
first comes from the difference in configuration mixing of the parent and daughter nuclei
as obtained from the shell-model diagonalization of an INC Hamiltonian. The other is
due to the deviation of the radial overlaps from unity, when calculated with realistic
single-particle wave functions instead of the harmonic-oscillator ones. These deviations of
one-body transitions densities and radial overlaps from their isospin-symmetry values are
typically small. Keeping only linear terms in small quantities, one can express |MF|2 as

|MF|2 ≈ |M0
F|2

[
1 − 2

M0
F

∑
α

(
ρ0

α − ρα

)
︸ ︷︷ ︸

δC1

− 2
M0

F
∑
α

ρ0
α(1 − Ωα)︸ ︷︷ ︸

δC2

]
,

From this expression, it is seen that the correction splits into two terms according to
the two sources of isospin-symmetry breaking mentioned above:

δC ≈ δC1 + δC2 .
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To get δC1, it is sufficient to perform calculations with INC interactions. As has been
discussed in Section 3, the theoretical value for a depletion of the Fermi strength in the IAS
is due to the mixing of the IAS with non-analogue states (see Figure 6 (left)). Therefore, the
position of those states is vital.
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0+ 

0+ Tz =0 

T = 1 

T = 1 

T = 1 
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(A-1,Z-1)
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εn 0+

0+ T=1

εp

Figure 6. Schematic picture of the Fermi strength distribution in the daughter nucleus due to
the isospin-symmetry breaking effects, as can be viewed from the shell-model’s perspective. Left:
depletion of the Fermi strength from an IAS because of non-analogue transitions. Right: insertion of
the intermediate states to better constrain the radial part of the single-particle wave functions.

To avoid this uncertainty, one may scale the strengths of individual transitions to
non-analogue states with the energy difference between those states and the IAS [138]:

δC1 = δth
C1

(
ΔEth

ΔEexp

)2
.

Existing shell-model studies use various parametrizations of the INC Hamiltonian,
ranging from realistic phenomenological fits [132,135,140] to individual parametrization of
charge-dependent terms to each isobaric multiplet presented in Ref. [138,139]. Since this
part of the correction is small, the results of both approaches are within typical uncertainties.

In addition to the isospin-symmetry breaking inside the model space, one has to
replace harmonic-oscillator radial wave functions with realistic spherically symmetric
wave functions from a WS or a HF potential, including Coulomb. This is the largest part of
the correction; see Ref. [138] and references therein. A parametrization of a single-particle
potential is crucial for the value of the correction. Due to this reason, potential parameters
are adjusted to reproduce proton and neutron separation energies and nuclear charge
radii. To achieve this goal, a calculation has to be done beyond the closure approximation.
This means instead of inserts, a complete sum of intermediate nucleus states ({π}) in the
Fermi-matrix element. Then, the radial-overlap correction can be expressed as

δC2 =
2

M0
F

∑
α,π

〈 f |ĉ†
αn |π〉0〈π|ĉαp |i〉0(1 − Ωπ

α ) .

The two ingredients are the spectroscopic amplitudes, 〈 f |ĉ†
αn |π〉0, obtained within the

isospin-symmetry limit, and the radial-overlap integrals

Ωπ
α =

∫ ∞

0
Rπ

αn(r)Rπ
αp(r)r

2dr ,

which now contain dependence on the excitation energy of the intermediate states π; see
Figure 6 (right).

This opportunity to constrain theoretical calculations by experimental observables
greatly helps to reduce uncertainty in the potential parameters and guaranties consistency
of the results, as has been discussed in detail in Ref. [135]. In particular, the largest
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contribution to theoretical uncertainty on δC2 is because of the experimental uncertainty on
the nuclear charge radii.

Up till now, systematic calculations with the WS potential are the only ones who
produce corrections consistent with the CVC hypothesis within a non-zero confidence
limit [141]. The use of the HF wave functions, pioneered by Ormand and Brown [132,140,142],
has been explored by a few other groups as well [138,143,144]. Self-consistent HF potentials
are not immediately appropriate for calculations and have to also be adjusted to give rise to
experimental proton and neutron separation energies. The procedures exploited by various
authors are somewhat different, and, in general, led to smaller corrections than those ob-
tained from a WS potential. This issue has recently been explored in detail in Ref. [144]. In
particular, the authors examined the role of previously neglected effects, taking care of the
approximate elimination of spurious isospin-mixing, two-body center-of-mass corrections,
exact treatment of the exchange Coulomb term and many others. Moreover, INC terms have
been added to the energy-density functional. Those corrective terms indeed explain some
of the difference between the HF and WS results, allowing to suppose that the remaining
part of the difference is due to the need for correlations beyond the HF approximation.
Further efforts towards more sophisticated theories should be addressed in future studies.

In spite of these challenges in the computation of theoretical corrections, nuclear
0+ → 0+ β-decay provides the best opportunity to test the CVC and to extract the Vud
value, among other ways (mirror transitions, neutron or pion beta decay) [130]. Therefore,
it is reasonable to persist with efforts in improving theoretical modelization of the isospin-
symmetry breaking correction.

4.2. β-Decay between Mirror T = 1/2 States

It was pointed also that β-decay between mirror states with T = 1/2, which are
governed by both Fermi and Gamow–Teller operators, can also serve for the tests of the
CVC hypothesis and extraction of Vud, once the GT component is eliminated [130,145]. To
this end, an additional correlation coefficient has to be measured. Similarly to 0+ → 0+

decay, the experimentally determined f t value has to be corrected for radiative effects and
for isospin-symmetry breaking in decaying states. The shell-model framework relies on a
similar expression of the realistic Fermi-matrix element, as discussed, with an intermediate
state summation which involves a larger number of different states because of non-zero
values of angular momenta involved. Currently achieved results are summarized in
Ref. [129].

4.3. Gamow–Teller Transitions in Mirror Nuclei

Another long-standing application is related to the asymmetry of Gamow–Teller
β-decay rates in mirror nuclei, defined as

δ =

∣∣∣∣∣ M+
GT

M−
GT

∣∣∣∣∣
2

− 1 , (33)

where M±
GT are reduced matrix elements for mirror GT β± transitions. The initial interest

in the topic was due to the fact that the contribution to that asymmetry may be due to the
presence of the induced tensor term (gT) in the axial-vector current; see Equation (28).

To pin down a possible manifestation of the induced tensor term, an accurate calcu-
lation of GT matrix elements, including isospin-symmetry breaking, is required. In the
second-quantization formalism, the reduced matrix elements of the GT operator can be
expressed as follows:

M±
GT = 〈Ψ f ||ÔGT(β±)||Ψi〉 = 1√

3
∑
a,b
〈J f ||[ĉ†

a ˆ̃cb]
(1)||Ji〉〈a, mta ||σ̂t̂+||b, mtb〉 , (34)
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where double bars denote reduction in angular momentum, and ˆ̃ca,ma = (−1)ja+ma ĉa,−ma .
Again, realistic calculations should be ensured beyond the closure approximation, thereby
inserting a complete sum over intermediate nucleus states. Several theoretical investi-
gations have been performed from the 60s up to the present, without any indication on
a possible application of the analysis to the weak-interaction problem because of high
theoretical uncertainty of the nuclear wave functions (see Ref. [146,147] and references
therein). Although experimental measurements of mirror transitions main an active field,
the main impact of the results is on the structural aspects of the states involved in the decay.
In this context, alternative constraints on the induced tensor current from β-α and β-γ
angular correlation experiments tend to be much more advantageous [148,149].

5. Astrophysical Applications

One of the greatest motivations to explore the properties of nuclei is their need for
nuclear astrophysics. Nuclear masses, half-lives, level densities, and nuclear, electromag-
netic and weak-interaction reaction rates represent crucial ingredients for simulations and
understanding of astrophysical processes [150]. In particular, the structure of neutron-
deficient nuclei is important for comprehension of nucleosynthesis during stellar explosive
hydrogen burning. Among the possible sites are X-ray bursts and novae outbursts.

Novae are understood as a result of thermonuclear runaway at the surface of a white
dwarf within a binary star system. At high temperatures (∼ 108 K) and densities in
O-Ne type novae, the break-out of the hot CNO (carbon-nitrogen-oxygen) cycle leads to
nucleosynthesis of heavier elements A ≥ 20 by mainly (p, γ), in competition with (α, p) and
inverse reactions, with the end point around Ca [151]. In X-ray bursts [152,153], based on a
neutron star accreting hydrogen matter within a binary system, the temperatures are even
higher (up to 2 × 109 K), and radiative proton capture reactions involve proton-rich nuclei
towards the proton-drip line, being the most important reaction type in nucleosynthesis
with up to roughly A ∼ 100 (rp process). Simulations of X-ray bursts exploit a huge set of
nuclear reactions which have to be constrained.

For stable nuclei, the proton-capture reaction Q-values are relatively high, and the
reaction rate may be approximated by a statistical model. For unstable (proton-rich) nuclei,
Q values become small (in the order of a few MeV or less), and hence, the reaction rate
is dominated by a few isolated resonances above the proton-emission threshold, together
with a non-resonant reaction contribution in the energy range within a Gamow peak. In
this case, accurate knowledge of resonance energies and decay widths is required.

Current state-of-the-art simulations are based on experimentally deduced information
when it is available. If no data exist yet, then one can either deduce the missing information
from mirror systems, assuming the isospin symmetry, or appeal to theory. Therefore,
higher-precision theoretical calculations are important to reduce uncertainties.

Shell modeling is one of the approaches which can provide detailed information on
nuclear states and transitions at low energies. The resonant part of a thermonuclear (p, γ)
reaction rate for a single resonance can be expressed [154] as

NA〈σvs.〉r = 1.540 × 1011 (μT9)
−3/2 ω γ exp

(−11.605 Er

T9

)
cm3 s−1 mol−1 , (35)

where μ = Ap A/(Ap + A) is the reduced atomic mass number and Er is the resonance
energy above the proton-emission threshold (in MeV), T9 is the temperature in GK. The
resonance strength ω γ (in MeV) depends on the spins of initial Ji and final (resonance) J f
states, the partial proton width Γp for the entrance channel and gamma widths Γγ for the
exit channel:

ωγ =
2J f + 1

2(2Ji + 1)
ΓpΓγ

Γtot
, (36)

with Γtot = Γp + Γγ. The proton decay width depends on the resonance energy via the
proton width, which could be estimated from a single-particle potential model and the
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shell model’s spectroscopic factor. In case of a few resonances, the resonant reaction rate
represents a sum of single-resonance rates (35) over contributing final states.

The non-resonant part of (p, γ), the reaction rate is given by direct capture transitions
to the ground or low-level states of the final nucleus.

A number of radiative proton-capture reaction rates have been evaluated with a good
precision for sd-shell and p f -shell nuclei [155,156], since the shell model provides missing
information on resonance states, proton and electromagnetic widths. The INC formalism is
of particular interest for such problems. First, using theoretical IMME b coefficients, one
can not only provide nuclear masses of proton-rich nuclei [28,91,92], but also determine
positions of unknown resonances in a proton-rich nucleus, if the level scheme of a neutron-
rich mirror nucleus is known experimentally. The necessity to account for isospin-symmetry
breaking to get more accurate results was demonstrated first in Ref. [155] and followed in
numerous studies. A use of theoretical c coefficients may even be more advantageous for
an MT = −1 nuclei if experimental information on MT = 0, 1 exists (see, e.g., [93,157,158].)
The cross-shell p-sd-p f model space is necessary for the description of negative parity
resonances in sd-shell nuclei (see, e.g., Refs. [159,160]).

A particularly interesting result was obtained a few years ago, indicating that the
Thomas–Ehrman effect may significantly change values of theoretical spectroscopic fac-
tors [87]. More attention therefore has to be paid to small values of spectroscopic factors.
This also indicates that results on spectroscopic factors from mirror systems should be
accepted with caution.

6. Conclusions and Perspectives

The nuclear shell model provides a powerful formalism with which to deal with tiny
breaking of isospin symmetry in nuclear states. Currently, the most accurate results are
due to phenomenological treatment of nuclear wave functions and parametrization of the
INC terms of the Hamiltonian. Although more work is required to have a better handle on
large model spaces, extended applications to structure and decay proton-rich nuclei and
nuclei along the N = Z line support experimental investigations. Important applications
of that formalism exist, such as the calculation of isospin-symmetry breaking corrections
for Fermi-matrix elements required to test the symmetries underlying the standard model.
Finally, isospin-symmetry breaking is nowadays taken into account in the evaluation
of thermonuclear reaction rates in proton-rich nuclei, which plays an important role in
astrophysical simulations.

While phenomenological approaches still have to be pursued to assure solid support
to experimental investigations, the eventual goal of nuclear theorists is to develop funda-
mental ab initio frameworks for many-body calculations towards a higher precision level
that will be relevant for the isospin-symmetry breaking domain.
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Abbreviations

The following abbreviations are used in this manuscript
CD charge-dependent
CKM Cabbibo-Kobayashi-Moskawa
CNO carbon-nitrogen-oxygen
CVC conserved vector current
E1, E2 electric-dipole, electric-quadrupole
EFT effective field theory
F Fermi
GT Gamow-Teller
h.c. hermitian congugate
HF Hartree–Fock
IAS isobaric analogue state
IMME isobaric-multiplet mass equation
IMSRG in-medium similarity-renormalization group
INC Isospin-nonconserving
M1 magnetic-dipole
MED mirror energy difference
N3LO next-to-next-to-next-to-leading
NN nucleon–nucleon
rms root mean square
TED triplet energy difference
TMBE two-body matrix element
V–A vector–axial vector
WS Wood-Saxon
USD universal sd shell
χEFT chiral effective field theory
3N three-nucleon
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Double Beta Decay: A Shell Model Approach
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Abstract: Studies of weak interaction in nuclei are important tools for testing different aspects of the
fundamental symmetries of the Standard Model. Neutrinoless double beta decay offers an unique
venue of investigating the possibility that neutrinos are Majorana fermions and that the lepton number
conservation law is violated. Here, I use a shell model approach to calculate the nuclear matrix
elements needed to extract the lepton-number-violating parameters of a few nuclei of experimental
interest from the latest experimental lower limits of neutrinoless double beta decay half-lives. The
analysis presented here could reveal valuable information regarding the dominant neutrinoless
double beta decay mechanism if experimental half-life data become available for different isotopes.
A complementary shell model analysis of the two-neutrino double beta decay nuclear matrix elements
and half-lives is also presented.

Keywords: neutrino properties; double beta decay; nuclear shell model; many-body methods

1. Introduction

The recent experimental discovery of neutrino oscillations [1,2] proved that neutrinos
have mass, and this discovery was awarded a Nobel prize in 2015 [3,4]. Neutrino oscillation
experiments can only provide information about the squared mass differences, while
other properties of neutrinos, such as their mass hierarchy, their absolute masses, or their
fermionic signatures, Dirac or Majorana, remain to be determined. However, this new
information coming from the neutrino oscillations experiments has led to new interest in
neutrino physics and in particular in their nature as Dirac or Majorana fermions that may
be unraveled by neutrinoless double beta decay investigations.

Neutrinoless double beta decay (0νββ) is one of the best experimental approaches for
identifying processes that violate the lepton number conservation, thus signaling beyond
the Standard Model (BSM) physics. If neutrinoless double beta transitions occur, then the
lepton number conservation is violated by two units, and the black-box theorems [5–8]
indicate that the light left-handed neutrinos are Majorana fermions. As a consequence,
the BSM extension of the Standard Model Lagrangian would be significantly different
from that where neutrinos are Dirac fermions. Theoretical investigations of 0νββ decay
combine lepton number violation (LNV) amplitudes with leptonic phase-space factors
(PSFs) and nuclear matrix elements (NMEs). The NMEs are computed using a large variety
of nuclear structure methods and specific models. Among the LNV models considered,
the left-right symmetric model [9–13] is among the most popular, and its predictions are
currently investigated at the Large Hadron Collider [14]. In some recent papers [15–17], I
have investigated observables that could identify the contributions of different left-right
symmetric model mechanisms to the 0νββ decay rate, such as the angular distribution and
the energy distribution of the two outgoing electrons that could be measured. A more
general approach is effective field theory (EFT), which considers an expansion of the BSM
Lagrangian consistent with the Standard Model symmetries and including LNV and neu-
trino mass mechanisms. This approach has the advantage of being independent of specific
models, and it can be used to describe in a unified manner BSM-sensitive observables,
including those related to 0νββ decay. One can then use the existing data/limits from
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different experiments to evaluate the energy scales up to which the effective field operators
are not broken and limits for effective low-energy couplings.

The theoretical analysis of the 0νββ decay process has many steps, including the
nuclear structure calculation of the NMEs. However, in the first step, the weak interaction
of quarks and leptons described by the BSM EFT Lagrangian is considered in the lowest
order (see the diagram in Figure 1). In the next step, the hadronization process to nucleons
and exchanging pions is considered, leading to the diagram in Figure 2. Furthermore, the
nucleons are treated in the impulse approximation leading to free space 0νββ transition
operators, and the nucleon dynamics inside the nuclei are treated using nonperturbative
nuclear wave functions, which are later used to obtain the nuclear matrix elements needed
to calculate the 0νββ observables, such as half-lives and two-electron angular and energy
distributions [15]. A modern approach that can be used to make the transition from quarks
and gluons to nucleons and pions is based on the chiral effective field theory of pions and
nucleons [18,19]. This approach introduces a number of effective low-energy couplings,
which in principle can be calculated from the underlying theory of strong interaction using
lattice QCD techniques [18] or may be extracted within some approximation from the
known experimental data [19]. These couplings may have new complex phases, and they
could include effective contributions from the exchange of heavier mesons. The lattice QCD
approach is in progress (see, e.g., Ref. [20]), but it has proven to be difficult for extracting
some of the necessary weak nucleon coupllowestngs, even the known gA [20].

≈ + · · ·

(a) (b)

Figure 1. The 0νββ decay process diagrams: (a) typical 0νββ decay diagram at the quark (u and d)
level presents the generic description of the process and (b) light left-handed (L) neutrino exchange
diagram shows the most studied case in the literature, that of the light left-handed neutrino exchange.
Here, “. . .” stands for other diagrams involving left- and right-handed (R) leptons (see, e.g., Figure 1
of Ref. [17] for model diagrams).

≈ + · · ·

(a) (b)

Figure 2. Similar to Figure 1, the nucleon-level diagrams of 0νββ decay process: (a) the typical 0νββ

decay process nucleon-level diagram presents the generic description of the process and (b) the light
left-handed neutrino exchange diagram shows the light left-handed neutrino exchange. Here, “. . .”
stands for other higher-order effective field theory (EFT) diagrams (see Figure 2 of Ref. [17]).

Here, as in Ref. [17], I use the formalism of Refs. [21–24] that provides a general EFT
approach to the BSM Lagrangian. It also provides a somewhat older hadronization scheme,
which is needed to obtain the neutrinoless double beta decay transition operators. To
extract new limits for the effective Majorana mass and for the low-energy EFT couplings
from the current experiment for the isotopes listed in Table 1 below, I use the assumption
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that only one single coupling in the BSM Lagrangian may dominate the 0νββ amplitude.
In the analysis, about 20 nuclear matrix elements and nine phase-space factors are needed.
I use the existing neutrinoless double beta decay data to extract the limits for the BSM
EFT couplings and limits of validity for the energy scale of the BSM Lagrangian. In
addition, the calculated ratio of half-lives for different isotopes could be useful in guiding
the experimental effort, in estimating their scales and costs, in fine-tuning the experimental
searches for the 0νββ transition mechanism, and also in providing a better view and
comparison of the status of various experimental efforts. Our analysis suggests that the
experimental confirmation of 0νββ decay rates for several isotopes could possibly help in
identifying the dominant mechanism responsible for the transition.

Table 1. The Qββ values (in MeV), the experimental half-lives T2ν
1/2 [25,26] and T0ν

1/2 limits (in years),
and the calculated PSFs G2ν [27] and G01 (G02–G09 can be found elsewhere [17]) (in years−1) for all
five isotopes currently under investigation.

48Ca 76Ge 82Se 124Sn 130Te 136Xe

Qββ [28] 4.268 2.039 2.998 2.291 2.528 2.458
G01 · 1014 2.45 0.23 1.00 0.887 1.41 1.45
G2ν · 1020 1480 4.51 150.3 51.45 142.7 133.7
T2ν

1/2 · 10−20 0.53 19 0.87 >0.1 7.9 22
T0ν

1/2 · 10−23 > 0.2 [29] 800 [30] 2.5 [31] >0.01 [26] 40 [32] 1100 [33]

One important step in describing the 0νββ decay observables is obtaining the appropri-
ate NMEs. The nuclear structure methods used for NME calculations are the interacting shell
model [34–52], proton-neutron quasi random phase approximation (pnQRPA) [21–24,53–57],
interacting moson model [58–61], projected Hartree–Fock–Bogoliubov [62], energy density
functional [63], and relativistic energy density functional method [64]. The NMEs calcu-
lated with different methods and by different groups show sometimes large variations
by a factor of 3–5 [65,66]. Most references only provide NMEs for the light left-handed
Majorana neutrino exchange mechanism, but some provide results for the right/left heavy
neutrino exchange and some more exotic mechanisms. Ref. [50] provides tables and plots
that compare results for the light left-handed neutrino exchange and for the heavy right-
handed neutrino exchange, while Ref. [17] provides tables with all NMEs necessary for
the EFT approach. I calculate the NMEs using shell model techniques [36,41–51] and
a preferred set of effective Hamiltonians that were tested for a wide set of nuclei. The
shell model calculations of NMEs use a relatively small single-particle model space, but
they are better suited and more reliable for 0νββ decay calculations because they take
into account all the correlations around the Fermi surface, respect all nuclear many-body
problem symmetries, and can take into account the effects of the missing single particle
space via many-body perturbation theory (the effects were shown to be small [67]). In
addition, it was shown [68,69] that the QRPA approaches using the same model spaces
and effective Hamiltonian as in the shell model produce NMEs within 25% of the shell
model results. Furthermore, I test the shell model methods and the effective Hamiltonians
by comparing the calculations of spectroscopic observables for the nuclei involved in the
transition to the experimental data, as presented in Refs. [41,50,70]. I do not consider any
quenching for the bare 0νββ operator in these calculations. Such a choice is different from
that for the simple Gamow–Teller operator used in the single beta and two-neutrino double
beta decay (2νββ), where a quenching factor of about 0.7 is necessary [69]. For the PSFs,
I use an effective theory based on the formalism of Ref. [71], but fine-tuned as to take
into account the effects of a Coulomb-field-distorting finite-size proton distribution in the
daughter nuclei. Table 1 provides information relevant for the main nuclei that can be
calculated using shell model techniques (see Equations (1) and (13) below for a precise
definition of the PSFs used).
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In this paper, I mostly review the shell model techniques needed to accomplish the
plan outline above. The numerical results and their analysis are available in different
papers that are appropriately cited below. Although most material described below reviews
results already published, some new results can be found at the end of Section 3.2 and
in Section 4. The paper is organized as follows: Section 2 analyzes the contributions of
several BSM mechanisms to neutrinoless double beta decay, and it presents the framework
of effective field theory for neutrinoless double beta decay; Section 3 presents an analysis
of the 0νββ nuclear matrix elements in the shell model approach; Section 4 presents an
analysis of the 2νββ nuclear matrix elements in the shell model approach; Section 5 is
dedicated to conclusions.

2. Neutrinoless Double Beta Decay And Neutrino Physics

The main mechanism considered to be responsible for neutrinoless double beta decay
is the mass mechanism that assumes that the neutrinos are Majorana fermions and relies
on the assumption that the light left-handed neutrinos have mass. However, the possibility
that right-handed currents could contribute to neutrinoless double beta decay (0νββ) has
been already considered for some time [71,72]. Recently, 0νββ studies [13,73] have adopted
the left-right symmetric model [11,74] for the inclusion of right-handed currents at quark
level. In addition, the R-parity-violating (��Rp) supersymmetric (SUSY) model can also
contribute to the neutrinoless double beta decay process [75–77].

2.1. LNV Models Contributing to 0νββ

In the framework that includes the left-right symmetric model and R-parity-violating
SUSY model, after hadronization, the 0νββ half-life can be written as a sum of products of
PSFs, BSM LNV parameters, and their corresponding NMEs [15]:[

T0ν
1/2

]−1
= G01g4

A

∣∣∣η0ν M0ν +
(

ηL
NR

+ ηR
NR

)
M0N

+ηq̃ Mq̃ + ηλ′ Mλ′ + ηλXλ + ηηXη

∣∣2. (1)

Here, G01 is a phase-space factor that can be calculated with good precision for most
cases [27,28,78,79], gA is the axial vector coupling constant, η0ν =

〈
mββ

〉
/me, effective

Majorana neutrino mass (see Equation (3)), and me is the electron mass. ηL
NR

and ηR
NR

are the
heavy neutrino parameters with left-handed and right-handed currents, respectively [13,36],
ηq̃ and ηλ′ are��Rp SUSY LNV parameters [80], and ηλ and ηη are parameters for the so-called
“λ–” and “η–mechanisms”, respectively [13]. M0ν and M0N are the light and the heavy
neutrino exchange NMEs, Mq̃ and Mλ′ are the��Rp SUSY NMEs, and Xλ and Xη denote the
combinations of NMEs and other PSFs (G02–G09) corresponding to the the λ–mechanism
involving right-handed leptonic and right-handed hadronic currents and the η–mechanism
with right-handed leptonic and left-handed hadronic currents, respectively [15]. Assuming
a seesaw type I dominance [81], the term ηL

NR
is considered negligible if the heavy mass

eigenstates are larger than 1 GeV [52], and I ignore it here. For consistency with the
literature, the remaining term ηR

NR
is labeled as η0N .

Here, I exclusively describe transitions from the spin/parity Jπ = 0+ ground state
(g.s.) of the parent nucleus to the final Jπ = 0+ ground state of the daughter nucleus.
There is also the possibility of 0νββ decay to the excited states of the daughter, such as
the first Jπ = 2+. This alternative is rarely considered in the literature, mainly because
besides a significant reduction in the effective Q-values for most isotopes, thus reducing
the corresponding phase space factors, it has also been known for some time that based on
a general analysis the NMEs for this transition are suppressed for the mass mechanism [72].
In addition, the initial numerical estimates of the NMEs corresponding to the ηη and ηλ

in Equation (1) showed that they were also suppressed [82]. Recently, it was found that
more up-to-date QRPA calculations of these right currents’ contributions could lead to
a significant increase in the matrix elements for the lambda mechanism that might compete
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with the transition to the Jπ = 0+ ground state, at least for case of 136Xe [83,84]. These new
findings are clearly interesting, and I plan to investigate them using shell model techniques
similar to the ones described below and report them in future publications.

Table 1 presents the Qββ values, the most recent experimental half-life limits, and the
nine PSFs for the 0νββ transitions to the ground states of the daughter nucleus for five
isotopes considered in this investigation. The PSFs were calculated using a new effective
method described in detail in Ref. [27]. G01 values were calculated with a screening factor
(s f ) of 94.5, while for G02–G09 I used s f = 92.0, which was shown to provide results close
to those of the more accurate approach described in Ref. [85].

As indicated in Equation (1), the main observable related to 0νββ decay is the half-life
of the process. It is unlikely that this unique observable, even if measured for several
isotopes, could provide enough information to identify different mechanisms that may
contribute to this process. In Ref. [15], I investigated other observables that could be
used to disentangle contributions from different mechanisms, such as the two-electron
angular and energy distributions, in addition to the half-life data from several isotopes.
I considered the case where one mechanism dominates, i.e., there is one single term in
the decay amplitude of Equation (1). Table 2 of Ref. [17] shows the shell model values
of the NMEs that enter Equation (1). Details regarding the definitions of specific NMEs
can be found in Refs. [17,49]. All NMEs were calculated using the interacting shell model
(ISM) approach [36,43–46,49,52] (see also Ref. [49] for a review) and included short-range
correlation effects based on the CD-Bonn parametrization [41], finite-size effects [80], and,
when appropriate, optimal closure energies [70] (see Section 3 for more details). Table 2 of
Ref. [17] also presents the upper limits for the corresponding LNV parameters extracted
from the lower limits of the half-lives under the assumption of one-mechanism dominance.
However, less general analyses are available based on QRPA [71,80,85–87], NMEs, and
other interactive shell model NMEs [34–37].

If only the main diagram in Figure 2b is considered, the associated mechanism is
known as the light neutrino exchange mechanism and the half-life of Equation (1) becomes

[
T0ν

1/2

]−1
= G01g4

A

∣∣〈mββ

〉∣∣2
m2

e
M2

0ν, (2)

with the effective neutrino mass given by following sum over the light mass eigenstates:

∣∣〈mββ

〉∣∣ = ∣∣∣∣∣ ∑
i∈light

U2
eimi

∣∣∣∣∣, (3)

where Uei are the complex matrix elements of the first row in the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) neutrino mixing matrix. This quantity is very often used
in the literature as an example of how one could potentially extract additional information
about neutrino physics parameters, such as neutrino mass ordering and the mass of the
lowest mass eigenstate, from the experimental value of T0ν

1/2 [88].

2.2. EFT Approach to 0νββ Decay

As mentioned in the introduction, a more general approach could be constructed
based on the effective field theory extension of the Standard Model. Such an EFT analysis
is preferable because it does not rely on specific models and the parameters could be
constrained by the existing 0νββ data and by data from the Large Hadron Collider and
other experiments. In addition, the models considered in Equation (1) always lead to
a subset of terms in the low-energy (∼200 MeV) effective field theory Lagrangian. EFT
considers all terms in the BSM Lagrangian allowed by the symmetries, some of them
corresponding to the model terms incorporated in Equation (1), but the couplings might
have a wider meaning. Other terms in the EFT Lagrangian are new, not directly identifiable
with those originating from specific models.
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At the quark level, Figure 1 shows the generic 0νββ Feynman diagrams contribut-
ing to the 0νββ process. I consider contributions coming from the light left-handed
Majorana neutrino (Figure 1b) and a long-range part coming from the low-energy four-
fermion charged-current interaction (see Ref. [17] for details). After hadronization (see
Figure 2), the extra terms in the Lagrangian require the knowledge of about 20 individual
NMEs [22–24,75,80,89]. One can write the half-life in a factorized compact form:

[
T0ν

1/2

]−1
=g4

A

[
∑

i
|Ei|2M2

i + Re

(
∑
i �=j

EiEjMij

)]
. (4)

Here, the Ei contain the neutrino physics parameters, E1 = η0ν represent the exchange
of light left-handed neutrinos, E2–6 = {εV+A

V−A, εV+A
V+A, εS+P

S±P, εTR
TR, ηπν} are the long-range

LNV parameters, and E7–14 = {ε1, ε2, ε
LLz(RRz)
3 , ε

LRz(RLz)
3 , ε4, ε5, η1π , η2π} denote the

short-range LNV parameters at the quark level (see Ref. [17] for definitions of notations and
details). The contributions of pion-exchange diagrams are also included in the so-called
“higher-order term in nucleon currents” [80]. However, they are constrained by partial
conservation of axial current (PCAC) and are only included in the light neutrino exchange
contribution in Figure 2a. This contribution changes the associated NMEs by only 20%, and
one concludes that it does not represent a serious double counting issue.

In Equation (4), M2
i and Mij are combinations of NMEs and integrated PSFs [27]

denoted with G01–G09 (see Ref. [17] for definitions and details). In some cases, the inter-
ference terms EiEjMij are small [90] and can be neglected, but not all of them [91]. In
Ref. [15], I analyzed a subset of terms contributing to the half-life formula, with Equation (1)
originating from the left-right symmetric model. In that restrictive case, I showed that
one can disentangle different contributions to the 0νββ decay process using two-electron
angular and energy distributions as well as the half-lives of two selected isotopes.

3. Neutrinoless Double Beta Decay Nuclear Matrix Elements

From previous Sections, one can conclude that the analysis of main experimental
data regarding the 0νββ, the half-lives of multiple isotopes, and the two-electron angular
and energy distributions [15] require a set of nuclear matrix elements. In this Section, I
describe different techniques for calculating NMEs, starting with the direct summation on
the states in the intermediate nucleus (Z − 1, N − 1), where Z denotes the atomic number
and N the number of neutrons in a nucleus, and continuing with the often used closure
approximation. An alternative method that performs a summation on the intermediate
states in the (Z − 2, N) or (Z, N − 2) nuclei is described in Ref. [46].

3.1. The Anatomy of the 0νββ NMEs

The nuclear matrix elements needed in Equations (1)–(4) describe the transition from
an initial nucleus |i〉 = |0+i 〉 to a final nucleus | f 〉 = |0+f 〉, and the matrix elements can also
be presented as a sum over intermediate nuclear states |κ〉 = |Jπ

κ 〉 with certain angular
momentum Jκ , parity π, and energy Eκ :

M0ν
α = ∑

κ
∑

1234
〈13|Oα|24〉〈 f |ĉ†

3 ĉ4|κ〉〈κ|ĉ†
1 ĉ2|i〉, (5)

where operators Oα—with α denoting Gamow-Teller (GT), Fermi (F), tensor (T), etc.
operators—contain neutrino potentials, spin and isospin operators, and explicit depen-
dence on the intermediate state energy Eκ . The most common of the operators can be
found in Refs. [17,43], and they include vector and axial nucleon form-factors that take
into account nucleon size effects. The calculation details for two-body matrix elements,
〈13|Oα|24〉, are discussed in Appendix D of Ref. [43]. Let us note that the two-body
wave functions in the matrix elements (5) are not antisymmetrized, as one would expect
for nuclear two-body matrix elements. The wave functions should be understood as

296



Physics 2022, 4

|24〉 = |2〉 · |4〉 and |13〉 = |1〉 · |3〉, where 1, 2, 3, and 4 represent single-nucleon quantum
numbers, e.g., 1 = {τ1z, n1, l1, j1, μ1}

Calculations using a summation on intermediate states is very time-consuming, due to
the need for obtaining a large number of intermediate states κ and the associated one-body
transition densities 〈 f |ĉ†

3 ĉ4|κ〉 and 〈κ|ĉ†
1 ĉ2|i〉 in Equation (5), which can only be conducted

efficiently in J-scheme codes such as NuShellX code [92]. The results and analyses for most
of the nuclei in Table 1 can be found in Refs. [16,43,45,48,70].

Although time-consuming, this method has the advantage of being applicable for
a large class of effective nuclear Hamiltonian and transition operators. For example, it
can be used for isospin-breaking nuclear Hamiltonians and with transition operators that
are treating asymmetrically the initial neutron single particle (s.p.) states vs. the final
proton s.p. states, such as the in-medium similarity renormalization group and realistic
shell model methods. This method is always applicable for transitions to the 2+ states in
the daughter nucleus, even in cases when the transition operator is not a rotational scalar
anymore [83,84].

If one replaces the energies of the intermediate states in the form-factors by an average
constant value, one obtains the closure approximation. The operators Oα → Õα ≡ Oα(〈E〉)
become energy-independent and the sum over the intermediate states in the nuclear matrix
element (5) can be taken explicitly using the completeness relation:

∑
κ

〈 f |ĉ†
3 ĉ4|κ〉〈κ|ĉ†

1 ĉ2|i〉 = 〈 f |ĉ†
3 ĉ4 ĉ†

1 ĉ2|i〉. (6)

The advantage of this approximation is significant because it eliminates the need
for calculating a very large number of states in the intermediate nucleus, which could be
computationally challenging, especially for heavy systems. One needs only to calculate
the two-body transition densities (see Section 3.2) between the initial and final nuclear
states. This approximation is very good due to the fact that the values of q that dominate
the matrix elements are of the order of 100–200 MeV, while the relevant excitation energies
are only of the order of 10 MeV. The obvious difficulty related to this approach is that I
have to find a reasonable value for this average energy, 〈E〉, which can effectively represent
the contribution of all the intermediate states. This average energy needs to account also
for the symmetric part of the two-body matrix elements 〈13|Oα|24〉 in Equation (7) below.
Indeed, the two-body wave functions |13〉 and |24〉 are not antisymmetric; by replacing the
energies of the intermediate states with a constant, only the antisymmetric parts of these
matrix elements are taken into account.

Most reported calculations are using closure approximation with some closure energies
taken from Ref. [93]. By comparing the closure and the summation method results for
different isotopes in different model spaces, I find [48,70] the optimal closure energies for
a given model space and effective Hamiltonian (see end of Section 3.2 for examples). The
optimal closure energies for a given model space and effective Hamiltonian can then be
found by performing a calculation for a (fictitious) 0νββ NME of lower complexity.

3.2. The 0νββ NME in Closure Approximation

In the closure approximation, the 0νββ NME can be reduced to a sum of the products
of two-body transition densities (TBTD), defined by the right-hand side of Equation (6),
and antisymmetrized two-body matrix elements,

M0ν
α = ∑

jp jp′ jn jn′ Jπ

TBTD
(

jp jp′ , jn jn′ ; Jπ

)
〈

jp jp′ ; JπT | τ−1τ−2Oα
12 | jn jn′ ; JπT

〉
, (7)

where Oα
12 are the two-body operators corresponding to different transitions (here denoted

by α = F, GT, T, Fq, GTq, . . . [17]) contributing to some of the diagrams of the 0νββ process
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in Figure 2 (see Ref. [17] for details). One should not confuse the isospin T in the two-body
matrix elements with the tensor operator notation for α.

Having the two-body matrix elements ready, one can calculate the NME in Equation (7)
if two-body transition densities TBTD

(
jp jp′ , jn jn′ ; Jπ

)
are known. Most of the shell model

codes do not provide two-body transition densities. One alternative approach is to take
advantage of the isospin symmetry that most of the effective interactions have, which
creates wave functions with good isospin. The approach described below works also when
the proton and neutron are in different shells. If the above conditions are satisfied, one can
transform the two-body matrix elements of a change in isospin ΔT = 2 operator using the
Wigner–Eckart theorem, from a change in isopspin projection ΔTz = −2 to ΔTz = 0, which
can be further used to describe transitions between states in the same nucleus.

Then the transformed matrix elements preserve spherical symmetry and they can be
used as a piece of a Hamiltonian, Hα

ββ, which violates isospin symmetry, but it is a scalar
with respect to rotational group. One can then lower by two units the isospin projection
of the g.s. of the parent nucleus that has the higher isospin T>, e.g., that of 48Ca, thus
becoming an isobar analog state of the daughter nucleus that has isospin T< = T> − 2,
e.g., in 48Ti. Denoting by | 0+i< T> > the transformed state, one can now calculate the
many-body matrix elements of the transformed 0νββ operator,

M0ν
α (Tz = T<) =

〈
0+f T< | Hα

ββ | 0+i< T>

〉
. (8)

Choosing | 0+i< T> > as a starting Lanczos vector and performing one Lanczos iteration
with Hα

ββ, one obtains

Hα
ββ | 0+i< T> >= a1 | 0+i< T> > +b1 | L1 >, (9)

where | L1 > is the new Lanczos vector. Then, one can calculate the matrix elements in
Equation (8):

M0ν
α (Tz = T<) = b1

〈
0+f T< | L1

〉
. (10)

The transition matrix elements in Equation (7) can then be recovered using again the
Wigner–Eckart theorem,

M0ν
α = M0ν

α (Tz = T<)× CT> 2 T<
T> −2 T</CT> 2 T<

T< 0 T< , (11)

where CT1 T2 T
Tz1 Tz2 Tz

are isospin Clebsch-Gordan coupling coefficients.
This procedure can be implemented in most nuclear shell model codes. The transfor-

mation of the g.s. of the parent to an analog state of the daughter can be performed very
quickly, and one Lanczos iteration represents a small load as compared with the calculation
of the g.s. of the daughter. The additional calculations described in Equations (9)–(11)
require smaller resources than those necessary to calculate the TBTDs.

The form of the NME described in Equation (7) assumes that the underlying many-
body Hamiltonian and the resulting wave functions have good isospin symmetry. That
might not be the case when the Coulomb interaction is included or/and ab initio ap-
proaches to obtain the effective shell model Hamiltonian, such as the in-medium similarity
renormalization group [94] or realistic shell model [95], are used. In that case, one could
project the parent and daughter wave functions on good isospin components and extend
the above procedure for each pair of isospin components considering the appropriate jump
in isospin (which might be a difference of 2). In practice, the contributions from the main
isospin components described in the above procedure dominate.

There are also some limitations to this method. For example, the in-medium similarity
renormalization group and realistic shell model methods, as well as the G-matrix-like re-
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summation approach (see, e.g., [96] and references therein) also provide effective operators,
which breaks the symmetry of the two-body matrix elements,〈

jp jp′ ; JπT | τ−1τ−2Oα
12 | jn jn′ ; JπT

〉
between the nn and pp two-body states of the initial and final nucleus. In that case, one
could consider the average of the corresponding two-body matrix elements [96]. This
method is not always applicable for transitions to the 2+ states in the daughter nucleus
because if one uses the contributions from the right-handed currents, such as those of the λ
and η mechanisms (see Section 2.1), then the transition operator is not a rotational scalar
anymore [83,84]. In those cases, the Hα

ββ cannot be defined and the TBTDs are needed.
It would be interesting to compare the half-lives of two isotopes to identify the dom-

inant mechanisms contributing to 0νββ decays. It is often the case that even within the
shell model approach, using two different effective Hamiltonians leads to significantly
different results. Given that the conclusion of two-isotope analysis is sensitive to the ac-
curacy of NMEs, it is important to consider at least two sets of effective Hamiltonians.
In addition, for consistency, I use the optimal closure energies [43,45,48], with 〈E〉 corre-
sponding to each Hamiltonian and model space. One set of NMEs is obtained using the
Hamiltonians preferred by our CMU (Central Michigan University) group: for 48Ca in
the p f model space (0 f7/2, 1p3/2, 0 f5/2, 1p1/2), I use GXPF1A effective Hamiltonian [97]
with 〈E〉 = 0.5 MeV; for 76Ge and 82Se in the jj44 model space (0 f5/2, 1p3/2, 1p1/2, 0g9/2),
I choose JUN45 [98] with 〈E〉 = 3.4 MeV; and for 124Sn, 130Te, and 136Xe in the jj55
model space (0g7/2, 1d5/2, 1d3/2, 1s1/2, 0h11/2), I use SVD effective Hamiltonian [99] with
〈E〉 = 3.5 MeV. The second set of NMEs I calculate using the Hamiltonians preferred by
the Strasbourg–Madrid group: in this case, for 48Ca I use KB3G [100] with 〈E〉 = 2.5 MeV,
for 76Ge I use 82Se GCN.28-50 with 〈E〉 = 10 MeV, and for 130Te and 136Xe I use GCN.50-82
with 〈E〉 = 12 MeV [101] (see Section 3.1 for the definition of the optimal closure energies
〈E〉). The numerical analysis is given in Ref. [17], where I find that using the ratio of
experimental half-lives one could identify if a selected few mechanisms may be dominant.

4. Two-Neutrino Double Beta Decay

Two-neutrino double beta decay (2νββ) is an associated process allowed by the Stan-
dard Model, which was observed experimentally for about 10 isotopes, including most in
Table 1. Here, I describe an improved spectra-function technique for calculating associated
NMEs in very large model spaces in which a direct summation on intermediate states is
not practical. For the 2νββ mode, the relevant NMEs are of Gamow–Teller type, and have
the following expression for decays to states in the grand-daughter that have the angular
momentum J = 0 [93]:

M2ν = ∑
k

〈0+f ||στ−||1+k 〉〈1+k ||στ−||0+i 〉
(Ek + E0)

. (12)

Here, Ek is the excitation energy of the 1+k state of the intermediate odd-odd nucleus
and E0 = 1

2 Qββ + ΔM. Qββ is the Q-value corresponding to the ββ decay to the final 0+f
state of the grand-daughter nucleus, and ΔM is the mass difference between the parent
(e.g., 48Ca) and the intermediate nucleus (e.g., 48Sc). The most common case is the decay
to the 0+1 g.s. of the grand-daughter, but decays to the first excited 0+2 state were also
observed [80].

The 2νββ decay half-life is given by[
T2ν

1/2

]
= G2ν · g4

A ·
(

mec2 · M2ν

)2
(13)
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In Ref. [51], I fully diagonalized 250 1+ states of the intermediate nucleus 48Sc in
the p f valence space to calculate the 2νββ NME for 48Ca. This method of the direct
diagonalization of a large number of states can be used for somewhat heavier nuclei using
the J-scheme shell model code NuShellX [92], but for large-dimension cases one needs an
alternative method. In particular, the m-scheme dimensions needed for the 48Ca NME
calculations when taking into account up to 2h̄ω excitations sd-p f valence space are larger
than 1 billion (716 million for 48Sc). These large dimensions also require a method more
efficient than direct diagonalization. The pioneering work on 48Ca [102] used a strength-
function approach that converges after a small number of Lanczos iterations, but it requires
large-scale shell model diagonalization when one wants to check the convergence. Ref. [103]
proposed an alternative method which converges very quickly, but it did not provide full
recipes for all its ingredients, and it was never used in practical calculations. Here, I
propose a simple numerical scheme to calculate all coefficients of the expansion proposed
in Ref. [103]. Following Ref. [103], I choose as a starting Lanczos vector L±

1 either the initial
or final states in the decay (only 0+ to 0+ transitions are considered here), on which is
applied the Gamow–Teller operator,

|στ−0+i >= c−|dw− >≡ c−|L−
1 > , (14)

|στ+0+f >= c+|dw+ >≡ c+|L+
1 > . (15)

The results are the “door-way” states |dw± > multiplied by the constants c±, which
represent the square roots of the respective Gamow–Teller sum rule. Ref. [103] showed that
the matrix element in Equation (12) could be calculated using one of the following two
equations:

M2ν(0+) ≈ 3c+c− ∑
m

g−m < dw+|L−
m >≡ MGT−

2ν , (16)

M2ν(0+) ≈ 3c+c− ∑
m

g+m < L+
m |dw− >≡ MGT+

2ν . (17)

Here, the sum is over the Lanczos vectors Lm. One can show that the g±m factors can be
calculated with the following formula after N Lanczos iterations:

g±m =
N

∑
k=1

V±
1k V±

mk
EN

L (1+k )− Eg.s. + E0
. (18)

Here, Vmk are the eigenvectors of the N-order Lanczos matrix corresponding to eigen-
value EN

L (1+k ). The advantage of using Equations (14)–(18) is that in order to check the
convergence at each iteration one only needs the Lanczos vectors, which have to be stored
anyway, and not the eigenvectors of the many-body Hamiltonian. The g±m can be calculated
very quickly, and only the last overlap in the sum of Equation (16) or Equation (17) needs
to be calculated at each iteration. This algorithm can provide a gain in efficiency by a factor
of about two as compared with the strength-function approach of Ref. [102].

Another advantage of this method is that it can be used with both M-scheme and J-
scheme shell model codes, while a direct summation in Equation (12) on the 1+ states in the
intermediate nucleus can only be performed using J-scheme codes. The method described
here requires about 20 Lanczos iterations for convergence. I estimate (see, e.g., [51]) that
good convergence for the direct summation in Equation (12) requires about 300–500 1+ that
usually can be achieved with about 5000–10,000 iterations. Given the input/output burden
associated with so many iterations, I estimate computational speed improvement by a factor
of about 1000 in the present method as compared with the direct summation method.

It is known that a good comparison of the shell model results with experimental data
requires a multiplicative quenching factor for the Gamow–Teller operator. This numerical
analysis when compared with the experimental data [45,49–51,70] indicates that for the
selected effective Hamiltonians, only quenching factors between 0.6 and 0.74 are needed.
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5. Conclusions

In this paper, I provide an overview of the double beta decay process and describe
in some detail the shell model approach for the calculation of the nuclear matrix elements
necessary for the analysis of experimental data.

Analyzing the physics related to the neutrinoless double beta decay process, one
observes that it would entail physics beyond the Standard Model, namely the lepton
number violation, which may lead to the conclusion that neutrinos may be the only known
Standard Model fermions that are of Majorana type. This information may be crucial for
properly extending the Standard Model Lagrangian to describe the observed neutrino
masses and other LNV processes.

I describe the 0νββ decay half-life using BSM mechanisms induced by new particles
such as the left-right symmetric model or SUSY and also use a more general EFT approach
that includes the most general LNV addition to the Standard Model Lagrangian. Both
approaches lead to similar numbers of NMEs associated with either model-specific or
EFT-linked LNV couplings.

The largest part of the paper is dedicated to the techniques for calculating the needed
NMEs within the shell model approach. For 0νββ, I analyze the different scenarios under
which the NMEs can be calculated in the closure approximation that is good within 10%. I
also describe how to calculate the same NMEs beyond closure and identify optimal closure
energies which can minimize the error of the less time-consuming closure approximation.

Two-neutrino double beta decay is an associated process allowed by the Standard
Model, which was observed experimentally for about 10 isotopes. Here, I describe an im-
proved spectra-function technique of calculating the associated NMEs in very large model
spaces for which the dwerect summation on intermediate states is impractical.

Finally, although most of the paper reviews results already published, some new
results regarding techniques for calculating 0νββ and 2νββ NMEs in extreme situations
can be found at the end of Sections 3.2 and 4.
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Abbreviations

The following abbreviations are used in this manuscript:

0νββ neutrinoless double beta decay
2νββ two-neutrino double beta decay
BSM beyond the Standard Model
CMU Central Michigan University
EFT effective field theory
g.s. ground state
s.p. single particle
LNV lepton number violation
NME nuclear matrix element
PCAC Partial Conservation of Axial Current
PMNS Pontecorvo–Maki–Nakagawa–Sakata
PSF phase space factor
QCD Quantum Chromodynamics
QRPA quasiparticle random phase approximation
SUSY super symmetry
TBTD two-body transition densities
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Abstract: In recent years, shell model studies have significantly contributed in improving the nuclear
input, required in simulations of the dynamics of astrophysical objects and their associated nucleosyn-
thesis. This review highlights a few examples such as electron capture rates and neutrino-nucleus
cross sections, important for the evolution and nucleosynthesis of supernovae. For simulations
of rapid neutron-capture (r-process) nucleosynthesis, shell model studies have contributed to an
improved understanding of half lives of neutron-rich nuclei with magic neutron numbers and of the
nuclear level densities and γ-strength functions that are both relevant for neutron capture rates.

Keywords: shell model; core-collapse supernova; r-process nucleosynthesis; neutrino–nucleus reac-
tions; electron capture

1. Introduction

The interacting shell model, which takes in account correlations beyond mean field in
a valence space, is generally considered as the method of choice to describe medium-mass
nuclei [1–3]. Such nuclei play crucial roles for the dynamics of astrophysical objects and
their associated nucleosynthesis. Unfortunately, a direct experimental determination of
the required input is often prohibited due to the extreme conditions of the astrophysical
environment in terms of temperature, density and also proton-to-neutron ratio; hence,
the information has to be modeled. Here, the shell model has led to decisive progress in
many cases in recent years, mainly due to its ability to account for the relevant correlations
among nucleons and to accurately reproduce low-energy spectra and electromagnetic
transitions [2,4,5].

This paper summarizes some of the progress achieved on the basis of shell model
studies. Here, two different versions of the interacting shell model have been exploited: the
diagonalization shell model [2] and the Shell Model Monte Carlo (SMMC) approach [6,7].
Diagonalization shell model calculations, which in contrast to SMMC allow for detailed
spectroscopy, have been performed to derive rates for weak interaction processes of nuclei
up to the iron-nickel mass range [8–11]. In particular, the shell model rates for electron
captures on nuclei have significant impact on the presupernova core evolution of massive
stars [12,13], the core evolution at the end of the hydrostatic evolution of medium-mass
stars [11,14,15] and on the nucleosynthesis in thermonuclear supernovae [16].

The SMMC approach is based on a statistical description of the nucleus at finite
temperature. In contrast to diagonalization, the shell model allows the derivation of
nuclear properties at finite temperatures in extremely large model spaces by taking the
relevant nuclear correlations into account [6,7]. SMMC has been the basis for deriving
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electron capture rates for heavier neutron-rich nuclei for which cross-shell correlations are
essential in establishing the capture on nuclei as the main weak interaction process for the
dynamics of the core collapse of a massive star [17–19].

Both varieties of the interacting shell model have improved the nuclear input required
for simulations of rapid neutron-capture (r-process) nucleosynthesis. Diagonal shell model
calculations have been used to derive half lives for neutron-rich nuclei with magic neutron
numbers (called waiting points), which are crucial for the mass flow during the nucleosyn-
thesis process [20–22]. Shell model calculations have also been used to study the general
behavior of electromagnetic transitions, which are essential for modeling neutron capture
rates, where an experimentally observed increase in the dipole’s strength function at low
energies has drawn attention recently [23,24]. The nuclear level density is another impor-
tant ingredient in modeling neutron capture rates. Here, SMMC calculations have allowed
a microscopic derivation of level densities, also allowing the exploration of parameter
dependencies, used in phenomenological approachesl (see, e.g., [25,26]) .

2. Weak Interaction Processes in Supernovae

A massive star ends its life in a supernova explosion triggered by the gravitational
collapse of its inner core that is no longer supported by energy released in charged-particle
reactions [19,27]. Electron captures on nuclei have three important consequences during the
collapse [4,28]: (i) electron captures reduce the number of electrons and hence the pressure
with which the degenerate (relativistic) electron gas counteracts against the gravitational
contraction; (ii) the neutrinos, generated by the capture process, leave the star mainly
unhindered, carrying away energy and keeping the entropy in the core low such that heavy
nuclei survive during collapse; (iii) electron capture changes a proton in the nucleus into a
neutron, driving the core composition to be a more neutron-rich (and heavier) nuclei. In
the late stage of the collapse, coherent scattering with nuclei and inelastic scattering with
electrons are responsible for neutrinos becoming trapped and thermalized in what is called
the homologous core [27]. Other neutrino–nucleus interactions are of minor importance
during collapse; however, they play a role in the nucleosynthesis processes following
supernova explosions and for the detection of supernova neutrinos.

2.1. Electron Capture on Nuclei

At the stellar conditions early in the collapse at which the core composition (described
by nuclear statistical equilibrium) is dominated by nuclei from the iron-nickel mass range
(p f -shell nuclei), electron capture is dominated by Gamow-Teller (GT+) transitions. The
subscript refers to the isospin component in the GT operator such that in GT+ transitions a
proton is changed into a neutron, in GT− transitions, which are relevant for β− decay of
nuclei with neutron excess, a neutron is changed into a proton, and the GT0 strength, im-
portant for describing low-energy inelastic neutrino-nucleus scattering, refers to transitions
between proton states and neutron states. It is now possible to derive converged low-energy
spectra and transitions of p f -shell nuclei in the respective model space [2]. In fact, it turned
out that, in addition to a constant renormalization of the Gamow–Teller operator [29,30],
such highly correlated wave functions are required to describe the strong fragmentation
and total value of GT+ strength [31], as experimentally determined by charge-exchange
experiments [32,33].

The formalism for the calculation of electron capture rates has been introduced in
ref. [34,35]. Note that the strong energy dependence of phase space as well as the fact that
the electron Fermi energy is of the same order as the Q-value (the energy difference between
initial and final nuclear states) of the abundant nuclei under presupernova conditions makes
a detailed and accurate description of the GT+ distribution an important requirement for a
reliable description of stellar electron capture during this phase of the collapse. That the
diagonalization shell model is up to this task and indeed the method of choice to describe
stellar weak-interaction rates during presupernova collapse has been demonstrated by
Cole and collaborators [36]. In [36], the capture rates, derived from experimental GT+ data
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for all p f -shell nuclei for which data exist, are compared with rates calculated within the
shell model using two different residual interactions. As shown in Figure 1, the agreement
is quite satisfactory at the conditions at which these nuclei are abundant and relevant for
the core dynamics. A tabulation of shell model capture rates for p f -shell nuclei has been
made available based on large-scale studies using a variation of the Strasbourg–Madrid
KB3 interaction [10]. More recent studies using an improved residual interaction basically
confirmed prior calculations. These studies led to slight improvements for selected mid-p f -
shell nuclei; see Figure 1.

45
Sc

46
Ti

48
Ti

50
V

51
V

56
Fe

58
Ni

60
Ni

62
Ni

64
Ni

64
Zn�

E
C

  
  
  
/�

E
C

�Y
e
�����g/cm3

shell-model
KB3G
QRPA

{

(d,2He)

(t,3He)

(p,n)

x x x x x

x x x x x x

xx

KVI
NSCL

IUCF

th
e

o
ry

e
x
p

e
ri
m

e
n

t

0.1

1.0

10

Figure 1. Comparison of electron captures rates, calculated from experimental GT+ data and distribu-
tions, derived from the large-scale shell model calculations with two different interactions (KB3G [37]
and GXPF1 [38]) and from a Quasiparticle Random Phase Approximation (QRPA) approach [36].
See text for details. The conditions correspond to the early stage of the collapse where the capture
rates are sensitive to details of the GT+ distribution. The shell model rates have been quenched with
typical factor of (0.74)2, as derived in [30]. ρYe and T denote the electron density and temperature,
respectively. KVI, UCSL and IUCF stay for the laboratories at which the experiments were performed.
Taken from [39] with permission.

Stars in the mass range of 8–12M� (M� denotes the Sun mass) received a lot of
attention recently as they fill the gap between low-mass stars, which end their lives as
white dwarfs and massive stars which, as discussed above, run through the full circle of
hydrostatic burning stages ending finally as core-collapse supernovae. The intermediate
mass stars are not massive enough to ignite all advanced hydrostatic burning stages and
instead degenerate ONe or ONeMg cores. Electron captures are crucial for the final fate of
the stars, where the most abundant nuclei, 24Mg and 20Ne, are of key importance together
with selected Urca pairs, which reduce the temperature of the core. Shell model rates
for sd-shell nuclei exist since several years [8]. The important capture rate on 24Mg has
been recently updated, mainly due to improved experimental data [11]. The capture rate
on 20Ne has also been updated with, however, two remarkable highlights. First, it has
been pointed out that the rate at the relevant astrophysical conditions could be decisively
altered due to the influence of the second forbidden transition between the 20Ne and 20F
ground states [11]. Such a situation is a novum, as the electron capture process is usually
dominated by permitted transitions and (first) forbidden transitions are contributed only in
high-temperature, high-density environments. The transition was very recently measured
in a dedicated experiment [15], and it was indeed confirmed that it increases the capture
rate in the astrophysically relevant range by orders of magnitude (Figure 2). The measured
transition strength also agrees with the value calculated within the shell model [40]. Sec-
ondly, the electron capture rate on 20Ne at the astrophysical conditions, relevant for the core
evolution of intermediate-mass stars, is now completely determined experimentally [15,40].
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The improved 20Ne electron capture rate has interesting consequences for the final core
evolution as the faster electron capture supports the ignition of oxygen burning at slightly
smaller densities and off-center. Simulations, exploiting the larger rate, indicate that some
intermediate-mass stars might explode as thermonuclear rather than electron capture su-
pernovae [40]. Final conclusions can, however, only been drawn after multidimensional
simulations of the core evolution with improved treatments of convection becoming avail-
able [41,42]. Other nuclei, for which the electron capture rates are dominated by second
forbidden transitions under astrophysical conditions, are 24Na and 27Al [43]. The latter is
expected to play a minor role on the evolution of ONeMg cores. The former may trigger
convectional instabilities that again require multidimensional modeling.
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Figure 2. Electron capture (ec) rate for 20Ne as function of density and for a specific temperature
(log T[K] = 8.6) relevant for the core evolution of intermediate-mass stars. The rate is broken down
to the individual state-by-state contributions. In the density regime, particularly relevant for core
evolution, the rate is dominated by the second-forbidden ground-state-to-ground-state transition. The
rates labeled ’Takahara et al.’ are derived from allowed transitions calculated in the shell model [44].
Taken from [11].

In the later stage of the collapse of massive stars, the nuclei present in the core compo-
sition become heavier and more neutron-rich. The appropriate model space to describe
electron capture for such nuclei is too large (requiring two major shells) to allow for shell
model diagonalization calculations. The calculations are then based on the SMMC variant
of the shell model [7], which allows the determination of nuclear properties at finite tem-
peratures and in large multi-shell model spaces taking the relevant nuclear correlations into
account. Such correlations are particularly important for nuclei with proton number below
and neutron number, N, above an oscillator shell closure (such as N = 40). In such states,
GT+ transitions would be completely blocked by the Pauli principle in the Independent
Particle Model (IPM) [45] suppressing electron capture on nuclei drastically. However, it
has been shown in [17,46] that nuclear correlations induced by the residual interaction
move nucleons across the shell gap, enabling GT+ transitions and making electron capture
on nuclei the dominating weak interaction process during collapse [17,47]. Let us add two
remarks. The unblocking of the GT+ strength across the N = 40 shell closure has been
experimentally confirmed for 76Se (with 34 protons and 42 neutrons) [48], in agreement
with shell model studies [49]. Furthermore, shell model studies certainly show that the
description of cross-shell correlations is a rather slowly converging process that requires
the consideration of multi-particle multi-hole configurations [49–51].
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Recently, it has been pointed out that the N = 50 shell closure could serve as a
severe obstacle for electron capture on the very neutron-rich nuclei encountered in the later
stage of the collapse [52]. This finding was apparently confirmed by measurements of the
GT+ strength in the N = 50 nuclei 86Kr and 88Se, which showed basically the vanishing
strength for the ground state [53,54]. However, the situation is decisively different at the
high temperaures (about 1 MeV) present in the collapsing core when N = 50 nuclei are
abundantly present. Here, thermal excitations mix orbitals across the shell gap and unblock
the GT transitions in this way. This was confirmed in two independent calculations for
neutron-rich N = 50 nuclei using a thermal Quasiparticle Random Phase Approximation
(QRPA) approach [55,56], in agreement with the earlier results obtained within the SMMC
studies [17,57].

Based on the diagonalization shell model and the SMMC results and assuming a
nuclear statistical equilibrium distribution for the composition, electron capture rates have
been tabulated for the range of astrophysical conditions encountered during collapse of
massive stars [57]. These rates consider potential screening effects of the astrophysical
surroundings. The rate tabulation of Ref. [57] is now incorporated in many of the leading
supernova simulation codes. It turns out that the rates have significant impact on collapse
simulations. In the presupernova phase (ρ < 1010 g/cm3), the captures proceed slower than
assumed before, and for a short period during silicon burning, β-decays can compete [12,13].
As a consequence, the core is cooler, more massive and less neutron rich before the final
collapse. However, for a long time simulations of this final collapse assumed that electron
captures on nuclei are prohibited by the Pauli blocking mechanism, as mentioned above
(see, e.g., [27]). However, based on the SMMC calculations, it has been shown in [17] that
capture on nuclei dominates over capture on free protons. The changes compared to the
previous simulations are significant [17–19]. Importantly, the shock is now created at a
smaller radius with more infalling material to traverse, but the density, temperature and
entropy profiles are also strongly modified [18].

Finally, let us note that the shell model electron capture rates [10,58], which are notice-
ably slower than the pioneering rates of Fuller et al. (FFN) for p f -shell nuclei [34], have
important consequences in nucleosynthesis studies for thermonuclear (type Ia) supernovae
assuming the single-degenerate scenario as they result in a smaller reduction in the electron-
to-nucleon ratio being the burning front [16]. As a consequence, very neutron-rich nuclei
such as 50Ti and 54Cr are significantly suppressed compared to calculations, which use FFN
rates [59]. In fact, in calculations using the shell-model rates, no nuclide is significantly
overproduced compared to solar abundances [16].

2.2. Neutrino–Nucleus Scattering

At sufficiently high densities (ρ > 4 × 1011 g cm−3), neutrinos become trapped and
thermalized in the collapsing core by coherent scattering on nuclei and inelastic scattering
on electrons. It had been suggested that de-excitation of thermally excited nuclei by
neutrino pair emission [60] and inelastic neutrino–nucleus scattering [61] might be other
modes contributing to neutrino thermalization. Although both processes have been found
as rather unimportant cooling mechanisms [47,62], they have interesting impacts elsewhere.
Neutrino pair emission has been identified as the major source of neutrino types other
than electron neutrinos (produced overwhelmingly by electron capture) [47]. As the
consequences of inelastic neutrino scattering are based on shell model calculations, the
latter are briefly summarized. The formalism for the calculation of neutrino-nucleus
reactions has been introduced in Ref. [63].

Supernova neutrinos have rather low energies (of order 10 MeV). Therefore, inelastic
neutrino scattering of such neutrinos is dominated by allowed GT0 transitions. Unfortu-
nately, no data about inelastic neutrino scattering on nuclei exist at such energies. Due to
its success in describing GT+ (and GT−) distributions, one can expect that the shell model
will also reproduce the GT0 component quite well. Nevertheless, a validation of the shell
model approach to inelastic neutrino-nucleus scattering is desired. This can be achieved by
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exploiting the fact that the GT0 strength is, in a rather good approximation, proportional to
the M1 strength of spherical nuclei [64]. In fact, precision M1 data, obtained by inelastic
electron scattering for such nuclei, are well reproduced by shell model calculations [64,65].
The same approaches can also be used to derive GT0 distributions for excited nuclear states,
which can be thermally populated at finite supernova conditions [64,66]. At higher neutrino
energies, forbidden transitions also contribute to the inelastic scattering cross section, which
has been derived by RPA calculations. Supernova simulations that incorporate inelastic
neutrino–nucleus scattering indicate that this mode has a noticeable effect on the early
neutrino spectra emitted from supernova [62]. Here, nuclei act as obstacles for high-energy
neutrinos which are down scattered in energy. This reduces significantly the tail of the
neutrino spectra and, hence, also the predicted event rates for the observation of supernova
neutrinos by earthbound detectors [62].

Charged-current and neutral-current neutrino–nucleus reactions are key to a specific
nucleosynthesis process (called neutrino nucleosynthesis [67]), which are initiated by neu-
trinos emitted after core bounce in the supernova. Upon passing through the outer layers of
the star, these neutrinos excite nuclei above particle thresholds so that the subsequent decay
is by particle emission (mainly of protons or neutrons). Neutrino nucleosynthesis has been
identified as the main or a strong source for the production of selected isotopes, 11B and
19F, from charged- and neutral-current reactions on the abundant isotopes 12C and 20Ne;
138La and 180Ta mainly by charged-current reactions on Ba and Ta isotopes, which had been
previously been produced by the slow neutron-capture process (s-process) [67–71]. The
partial neutrino–nucleus cross sections have been obtained by combining shell-model or
RPA excitation functions with statistical model decay probabilities [72–74]. A particular in-
terest in neutrino nucleosynthesis arises from the fact that the abundances of the produced
nuclides depend on the spectra of those neutrino types (νμ, ντ and their antiparticles and
νe), which have likely not been observed from supernova 1987A.

In principle, neutrino–nucleus reactions also play a role in the νp process that operates
in the neutrino-driven wind during cooling of the newborn proton–neutron star [75–77].
Simulations, however, show that the main neutrino reaction is the absorption of ν̄e on
protons that produce a continuous source of free neutrons, which drives the process and
allows mass flow through long-lived waiting points such as 64Ge. The νp process is
discussed as a potential source of isotopes such as 92Nb and 94,96Ru.

3. r-Process Nucleosynthesis

The r-process is the astrophysical origin of about half of the elements heavier than
iron [78]. It occurs in an astrophysical environment with extreme neutron densities [79,80].
The r-process site has been a mystery for a long time until the observation of the neutron star
merger event GW170817 by gravitational waves and its associated electromagnetic signal
proved that heavy elements are produced by neutron star mergers [81,82]. The observed
electromagnetic transient, called “kilonova,” agreed well with prior predictions [83].

r-process simulations show that the reaction path in the nuclear chart runs through
nuclei with such large neutron excesses that most of them have yet not been made in the
laboratory and their properties have to be modeled. The relevant nuclear properties are
masses, half lives, fission rates and yields and neutron capture rates [80]. Shell model
calculations improved the determination of half lives for the nuclei with magic neutron
numbers, which with their relatively long half-lives, act as obstacles in the r-process flow.
They have also demonstrated new methods to calculate electromagnetic strength functions
and nuclear level densities, which are both required to calculate neutron capture rates
within the framework of the statistical model. For a very recent review of the various
astronomical, astrophysical, nuclear, and atomic aspects of r-process nucleosynthesis; see
Ref. [84].

r-Process nucleosynthesis proceeds by successive neutron captures and beta decays,
which increase the mass and charge numbers, respectively. Nuclear half lives decide the
time required to produce the heaviest elements, beginning from free protons and neutrons
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that exist in the hot environment of merging neutron stars before matter is ejected and
cooled allowing nuclei to form. Hence, nuclear beta decays compete with the time scales
of the dynamical evolution of the ejected matter. There has been important progress
made by measuring the half lives of some intermediate-mass nuclei on the r-process
path [85,86]. However, most half lives still have to be modeled. Global sets of r-process
half lives have been determined by QRPA calculations on the basis of phenomenological
parametrizations [87,88] and more recently of microscopic Hartree-Fock-Bogoliubov (HFB)
or density functional approaches [89–93].

Particularly important for the r-process mass flow are the waiting point nuclei at the
magic neutron numbers N = 50, 82 and 126, which have rather long half lives due to their
closed-shell configurations. For these nuclei, large-scale shell model calculations exist.
Importantly, a few of these half lives could also been measured, showing good agreement
with the shell model results: for 78Ni, an experiment done at the National Superconducting
Cyclotron Laboratory (NSCL) experiment found a half life of 110 ± 40 ms [94], while the
shell model predicted 127 ms [4]. Data and shell model results for the N = 82 waiting
points are compared in Figure 3. Unfortunately, no data exist yet for N = 126 waiting
points. For these nuclei, two independent shell model calculations have pointed to the
importance of forbidden transitions induced by intruder states [21,22]. These forbidden
transitions are predicted to shorten the half lives of the N = 126 waiting points noticeably
and enhanced the mass flow through these waiting points [95]. This implies more r-process
material available for fission, thus affecting the abundances of the second r-process peak
around atomic mass number, A = 130, which for very neutron-rich ejecta is built up by
fission yields [95,96]. The enhanced mass flow also increase late-time α-decays from the
decaying r-process matter, which influence the kilonova signal [97].
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Figure 3. Comparison of shell model half lives for neutron number N = 82 r-process (rapid neutron-
capture process) waiting point nuclei with data [86,98–100]. The GT strengths underlying the shell
model results have been quenched with the standard factor of (0.74)2 [30]. Taken from [84].

Neutron capture rates become relevant for r-process nucleosynthesis once the process
drops out of (n, γ) � (γ, n) equilibrium at temperatures below about 1 GK. Neutron
capture rates are traditionally derived within the statistical Hauser–Feshbach model, al-
though this approach might not always be justified for r-process nuclei; see discussion and
references in [84]. Important ingredients in the Hauser–Feshbach approach are the nuclear
level densities and the γ-strength functions [80]. Shell model calculations have provided a
better understanding of both quantities.
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A method has been presented to derive level densities within the SMMC approach
by exploiting its ability to describe nuclei in extremely large model spaces and to account
for the correlations among nucleons [25,26]. The method has been used to explore the
effects of parity, angular-momentum and pairing on the level density [101–103]. Based
on SMMC studies, Alhassid et al. [104] presented an approach in which a microscopically
derived parity-dependence is incorporated into phenomenological level density formulas.
This approach has been used to derive a large set of r-process nuclei by also employing a
temperature-dependent parametrization of the pairing parameter modeled after SMMC
calculations [105]. These improved level densities are now part of statistical model pack-
ages NON-SMOKER and SMARAGD, developed by Rauscher [106–108]. An alternative
microscopic approach to level densities, built on the HFB model, has been derived by
Goriely and collaborators [109–111].

Experimentally determined dipole γ-strength functions show an upbend of the strength
towards low gamma energies [112,113], which can have important impacts on neutron
capture rates [23,24,113–116]. The upbend in the M1 strength has been studied and re-
produced in shell model calculations for p f -shell and heavier nuclei [117,118]. Similar
studies have been used to calculate the M1 contribution to the neutron capture rate in a
consistent state-by-state approach [119]. This study found that the rate will be dominated
by a single resonance if this state happens to fall into the Gamow window of the reaction.
Such a situation is difficult to describe within a statistical approach. The calculation also
shows that the M1 scissors mode observed in deformed nuclei [120] can lead to a significant
enhancement of the capture rate.

4. Summary

Due to the extreme densities, temperatures or neutron excesses encountered in astro-
physical environments, the properties of nuclei cannot be measured directly in a laboratory
and have to be modeled. If these properties are strongly influenced by nucleon correlations,
the diagonalization shell model is the method of choice. In recent years, such studies have
been performed to derive the electron capture rates and neutrino-induced cross sections
for nuclei in the sd- and p f -shell advancing our understanding of the core evolution of
intermediate-mass and massive stars. Another important application of the diagonalization
shell model was the calculation of half-lives for rapid neutron-capture process (r-process)
nuclei with magic neutron numbers, which serve as waiting points for the r-process’ mass
flow. This example also shows the limitation of current shell model applications as such
studies would be also very desirable for the other nuclei on the r-process path, but cannot
be performed yet as the required model spaces exceed current computational possibili-
ties. These limitations in model space can be overcome within the Shell Model Monte
Carlo (SMMC) approach, which is an alternative formulation of the shell model. This
approach describes nuclear properties at finite temperature, but is not capable of detailed
spectroscopy. Thus, the SMMC cannot be used to calculate r-process half-lives, which
need a state-by-state description of transition strength. However, the ability of the SMMC
approach to describe nuclear properties at finite temperatures including correlations paves
the way to determine electron capture rates of heavier nuclei, which are crucial for the fate
of core-collapse supernovae. In particular, SMMC allows the evaluation of how the Pauli
blocking of Gamow–Teller strength at closed shells is overcome by correlations. On the
basis of these studies, it could be demonstrated that neither N = 40 nor N = 50 neutron
shell closure serve as severe obstacles for electron capture on nuclei. It is now commonly
accepted that electron capture proceeds on nuclei throughout the entire collapse.
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