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1. Introduction

Many complex phenomena in earth sciences and geography, including nonlinear fluid
motions in the atmosphere, oceans, rivers, and lakes, coastal morpho dynamics, volcanic
and seismic activities, the spatiotemporal dynamics of species, human movement trajectory,
and city transportation dynamics, among many others, have played significant roles in the
creation and development of complexity science, particularly chaos theory and fractal ge-
ometry [1]. With big data rapidly accumulating in almost every branch of earth sciences
and geography, our increasing understanding of complex systems, and the availability of
richer and more powerful methods for modeling complex systems, a golden age for the
study of the complexity of the earth and our living environment has emerged. This book
arises from a Special Issue of Applied Sciences that aimed to systematically examine the many
complex phenomena that occur in earth sciences and geography, employing state-of-the-art
methods for modeling complex data in order to invigorate research in earth sciences and
geography, and to facilitate the further development of complexity science. Altogether, this
Special Issue comprises 20 papers, contributed by researchers from all over the world and
covering a range of diverse topics, including the encryption of digital elevation models [2],
facies heterogeneity [3], the simulation of the snow cover process [4], the exploration of ice
elevation change [5], earthquake and seismic activity [6-9], landslide susceptibility [10,11],
the effect of reforestation [12], coordination between the supply and demand of ecosystem
services [13], indoor positioning [14], public transport flow networks and retail store loca-
tions [15], the equality of healthcare facilities [16], recommender systems for e-retail [17],

Citation: Gao, J. Advancing globalization [18], international trade and optimal industrial structure [19], risk analysis [20],
Complexity Research in Earth and the quantification of political processes [21]. Below, I briefly explain the premise of each
Sciences and Geography: Appl. Sci. work, and when appropriate, highlight what could be further explored in future.

2023, 13, 12275.

https://doi.org/10.3390/ 2. Topics Covered in the Book and Future Perspectives

app132212275 The encryption of digital elevation models (DEMs) is a crucial task in geosciences. In
Received: § November 2023 their study, Cheng and Li [2] tackle this issue by integrating a chaos system and a linear
Accepted: 10 November 2023 prediction technique. While their technique is innovative and interesting, in the future it would
Published: 13 November 2023 be interesting to determine which currently available encryption scheme, including those

developed by electrical engineers and computer scientists, operates the best for this purpose.
In their study, Jamil et al. [3] study facies heterogeneity in the West Crocker Formation
B of Sabah in northwest Borneo. By using the lithological characteristics, bed geometry,
sedimentary textures and structures of individual beds, they categorize the rock units into
nine sedimentary lithofacies: five sandstone lithofacies (51-S5), one hybrid bed facies (H),
two siltstone facies (Sil and Si2), and one shale or mudstone facies (M). These facies were
conditions of the Creative Commons €N grouped into four facies associations (FA1-FA4), which were further interpreted as lobe
Attribution (CC BY) license (https://  aXis (FA1), lobe off-axis (FA2), lobe fringe (FA3), and distal fringe to interlope (FA4) facies
creativecommons.org/licenses/by/ associations. In future, it would be interesting to determine whether this approach may be
40/). applicable for the determination of the distribution of lobes and their sub-seismic, multiscale

Copyright: © 2023 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
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Appl. Sci. 2023, 13, 12275. https:/ /doi.org/10.3390/app132212275 https:/ /www.mdpi.com/journal/applsci



Appl. Sci. 2023, 13, 12275

complexities, for the purpose of characterizing the potential hydrocarbon intervals in deep-
marine sand-shale systems around the globe.

The accurate simulation of the snow cover process is of great significance to the
study of climate change and the water cycle. In their study, Gao et al. [4] use the China
Meteorological Forcing Dataset (CMFD) and ERA-Interim as driving data to simulate
the dynamic changes in the snow depth and snow water equivalent (SWE) in the Irtysh
River Basin from 2000 to 2018 using the Noah-MP land surface model; they compare
the simulation results with the gridded dataset of snow depth at Chinese meteorological
stations (GDSD), the long-term series of the daily snow depth dataset in China (LSD), and
China’s daily snow depth and snow water equivalent products (CSS). The authors find
that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process,
while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow
surface albedo (ALB) schemes mainly affect the melting process.

Hitziger et al. [5] provide a fascinating account of a series of geodetic expeditions
conducted in order to explore ice elevation change based on GNSS measurements along
the Korth-Traverse in Southern Greenland. The efforts made by the researchers in these
expeditions are truly inspirational.

In the cluster of papers on earthquakes and seismic activity, Cucci et al. [6] make efforts
to compile all of the information available regarding the M6.3 earthquake that occurred in
southern Lazio (Central Italy) in 1654, the strongest seismic event to have ever occurred in
the area, in order to provide reliable landmarks with which to identify its seismic source.
Alaei et al. [7] propose a 2D pseudo-viscoelastic time-domain full-waveform inversion
approach for the seismic imaging of complex velocity structures. Hamdache et al. [8] em-
ploy a stochastic model entitled the restricted epidemic-type aftershock sequence (RETAS)
to examine the similarities / differences in the three aftershock sequences that occurred in
Al Hoceima, Morocco, in May 1994 (Mw 6.0), February 2004 (Mw 6.4) and January 2016
(Mw 6.3). In addition, in their study, Edigbue et al. [9] develop a combined local and global
optimization approach for jointly inverting two-dimensional direct current resistivity (DCR)
and seismic refraction (SR) data for the purpose of reliably estimating the corresponding
physical model parameters.

On the issue of landslide susceptibility, in their study, Martinello et al. [10] first
evaluate the reliability of regional landslide susceptibility models obtained by exploiting
inhomogeneously collected inventories for calibration. They find that models appearing to
perform well on a large scale may actually perform very poorly on a local scale. Then, they
choose the Torto River Basin (Central-Northern Sicily, Italy) as an example, and propose a
technique with which to overcome the limitations of Public Landslide Inventories in order to
assess landslide susceptibility more reliably [11]. The assessment of landslide susceptibility
is certainly of enormous practical importance. It would be interesting to observe whether
some salient patterns or regularities can be found in the measured landslide data so that
the assessment of landslide susceptibility is not solely data-driven, but also has a sound
theoretical foundation.

Haghtalab et al. [12] examine the impacts of potential tropical reforestation on surface
energy and moisture budgets, including precipitation and temperature. Using WRE.V3.9
(weather research and forecast model), they find that forest rehabilitation across the Ama-
zon Basin can make the atmosphere cooler, with more moisture and latent heat (LH),
especially between May and November. Choosing a large watershed area with a number
of counties, Zhang et al. [13] employ the coupling coordination degree model (CCDM)
and examine the coordination between supply and demand in ecosystem services (ESs),
including crop production, water retention, soil conservation, carbon sequestration, and
outdoor recreation. Within their study area, they find that different regions could be classi-
fied into four distinct types: extreme incoordination, moderate incoordination, reluctant
coordination, and moderate coordination. As one could readily expect, a mountain ecosys-
tem belongs to the first category, where the ES supply is much greater than the demand.
This study is based on data collected in 2000 and 2020. It would be interesting to observe
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how the degree of coordination between supply and demand in ESs continuously varies
with time.

In their study, Xu et al. [14] develop a real-time Bluetooth low-energy (BLE)/pedestrian
dead-reckoning (PDR) integrated system for enhanced indoor positioning. The system is
based on constructing a robust vector that is responsible for changing the observation co-
variance matrix of the extended Kalman filter (EKF). This is achieved by detecting the gross
error at different granularities. Focusing on three weighted centrality indices in the net-
works of public transport flows, namely degree, betweenness, and closeness, Liao et al. [15]
find that supermarkets, convenience stores, electronics stores, and specialty stores have the
highest weighted degree value. In contrast, building material stores and shopping malls
have the lowest weighted closeness and weighted betweenness values, respectively. In
their study, Tao et al. [16] develop a hierarchical maximal accessibility equality model to
examine the equality of accessibility to healthcare services in Shenzhen, China. In addition,
Huang and Liu [17] propose a more accurate personalized recommendation system for
e-retailers that is also computationally more efficient. While all this research is fascinating,
it would be desirable to see whether the results of these studies can be applied in practice
and make a profound impact on society.

Globalization is often understood in terms of an increase in human mobility with
time, an increase in the number of multinational corporations with time, as well as an
increase in connectedness over time, enabled by increasingly powerful communication
and information technologies. Considering this, Sun et al. [18] propose an alternative
globalization index, which is a valuable addition to the globalization indices proposed
previously [22-25]. One can readily see that with this kind of reasoning, globalization will
generally increase with time, despite being at times disrupted by some global catastrophe,
such as the COVID-19 pandemic. However, it is difficult to simultaneously understand
anti-globalization with regard to this concept. In future, it would be vital to develop
an approach that can simultaneously understand globalization and anti-globalization,
so that superior strategies can be developed to ensure that globalization benefits more
people and countries.

Analyzing massive international trade data from 1991 to 2019, Liu and Gao [19] find
that deviations from normality for the distribution of revealed comparative advantage
(RCA) are strongly negatively correlated with the logarithm of GDP and the Economic
Complexity Index (ECI). In particular, the correlation between this deviation and GDP is
stronger than that between ECI and GDP post 2008. These results suggest that this deviation
may serve as an excellent new index with which to quantify the economic complexity and
economic performance of a country. It would be interesting to use the entropy maximization
principle to gain further insights into the approach.

With extreme weather and natural disasters occurring more frequently, risk analysis
and mitigation have become increasingly crucial. Rising to this challenge, Bilotta et al. [20]
provide formal mathematical expressions for hazard, the exposure of hazard, vulnerability,
risk, and the mitigation of risk. It remains to be seen how these expressions can actually
be computed in various scenarios of real-world importance. In future, it is perhaps even
more vital to pay greater attention to insurance in countries where the insurance industry
lags the development of economy, since without the proper development of the insurance
industry, risk analysis cannot make a real impact. Here, of course, an important issue is to
properly quantify the term “lag”.

When dedicating this Special Issue of Applied Sciences to the study of complexity in
earth sciences and geography, it is assumed that a significant fraction of researchers and
students in the relevant fields understand the basics of complexity science. But however
significant this fraction is, there will still be many researchers and students who require help
in order to catch up with the recent developments in complexity science. This book thus
includes a review article by Gao and Xu [21], which first provides a tutorial introduction
to complex systems and emergence, then presents two multiscale approaches that may be
useful for analyzing complex temporal dynamics in earth sciences and geography, and
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beyond. This article can be used as a reference for an introductory but enhanced course on
complexity science for geosciences; by “enhanced”, it is meant that students in the class are
encouraged to perform extensive hands-on exercises, including programming, as much as
possible. Solely for this purpose, instructors, as well as readers interested in the relevant
computer analysis programs, are encouraged to contact the authors.

Reference [21] also briefly touches on the issue of characterizing the political evolution
of various countries, utilizing news media big data. Studies in geopolitics and digital
humanity may well instigate new frontiers in earth sciences and geography.

Funding: ]. Gao is supported by the Fundamental Research Funds for the Central Universities
in China.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: A digital elevation model (DEM) digitally records information about terrain variations and
has found many applications in different fields of geosciences. To protect such digital information,
encryption is one technique. Numerous encryption algorithms have been developed and can be used
for DEM. A good encryption algorithm should change both the compositional and configurational
information of a DEM in the encryption process. However, current methods do not fully take into
full consideration pixel structures when measuring the complexity of an encrypted DEM (e.g., using
Shannon entropy and correlation). Therefore, this study first proposes that configurational entropy
capturing both compositional and configurational information can be used to optimize encryption
from the perspective of the Second Law of Thermodynamics. Subsequently, an encryption algorithm
based on the integration of the chaos system and linear prediction is designed, where the one with
the maximum absolute configurational entropy difference compared to the original DEM is selected.
Two experimental DEMs are encrypted for 10 times. The experimental results and security analysis
show that the proposed algorithm is effective and that configurational entropy can help optimize the
encryption and can provide guidelines for evaluating the encrypted DEM.

Keywords: digital elevation model; information security; chaos system; configurational information;
configurational entropy

1. Introduction

A digital elevation model (DEM) is a digital representation of terrain variations and
can explicitly reveal information about the topographic complexity with computer graphics.
With the development of advanced equipment for data acquisition (e.g., high-resolution
satellite sensors, unmanned aerial vehicle (UAV), and LiDAR (Light Detection and Rang-
ing)), it is becoming more and more easy to acquire DEMs. In addition, DEM transmission
becomes more and more frequent due to the development of advanced computer and net-
work communication technologies. However, due to the openness and sharing of networks,
there exists a serious threat in information security and confidentiality [1,2]. Therefore,
information protection is desired and hence has attracted much attention. The literature on
information protection can be traced back to Shannon’s paper entitled “Communication
Theory of Secrecy System” [3]. By now, numerous information protection methods have
been proposed, and encryption is one such solution.

An increasing number of encryption algorithms have been developed to protect infor-
mation from images as much as possible, and such algorithms can be employed to protect
DEMs as well. Since chaotic systems are sensitive to the initial parameters, determinacy,
ergodicity, and so forth [4-7], chaotic-systems-based encryption algorithms [8-15] are
popular among these methods. In general, a chaotic-system-based algorithm encrypts an
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image via two stages (i.e., confusion and diffusion). At the confusion stage, the positions
of pixels are changed. To enhance security, the pixel values are changed at the diffusion
stage. Sometimes, these two stages can be achieved simultaneously. Nevertheless, one
may notice that the precision of initial parameters for generating chaotic sequences can
influence the encryption performance of a chaotic system. At this point, for a given image,
one may ask two questions: (i) Can we employ a metric to help optimize an encryption
algorithm based on the chaos system? and (ii) What abilities should such a metric have? To
answer these two questions, let us first recall the viewpoint proposed by Shannon that it is
possible to break many kinds of ciphers using a statistical analysis on the histogram and
the correlation of adjacent pixels in the cipher image [3]. From this viewpoint, we know
that both the composition (proportions of pixels) and configurational information (spatial
structures) of an image should be considered when designing an encryption algorithm and
when evaluating its performance. This further suggests that we may need to find metrics
for capturing both compositional and configurational information of an image.

Some metrics have been developed to evaluate the performance of encryption systems
upon an image, e.g., correlation [9], NPCR (Number of Pixels Change Rate) [9,16], UACI
(Unified Average Changing Intensity) [9], histogram [17], and Shannon entropy [18-20].
Theoretically speaking, these metrics are not good enough for capturing both compositional
and configurational information. For example, Shannon entropy is a type of statistical
entropy [21] and thus is unable to completely capture the configurational information
of an image since its calculation relies on the occurrence probabilities of pixels, not the
two-dimensional spatial structures. Three DEMs are shown in Figure 1, where the ones in
the middle and right frames are the scrambled results of the one in the left frame. They
have different spatial structures, whereas their Shannon entropy values are the same.
Additionally, the information content of the multiscale representation of a DEM cannot be
well-quantified by these metrics.

Figure 1. Three digital elevation models (DEMs) with the same histogram and, thus, same Shannon
entropy values.

To bridge the gaps induced by these metrics mentioned above, this study utilizes
the configurational entropy (thermodynamic entropy) to encrypt DEM. An encryption
algorithm is proposed with the integration of a chaos system and linear prediction and is
optimized by leveraging the configurational entropy. Apart from the Introduction section,
the remainder of this study is organized as follows. The Second Law of Thermodynamics
and configurational entropy are introduced first as the perspective for optimizing the DEM
encryption in Section 2. Then, a novel encryption algorithm based on the leverage of
configurational entropy is proposed and described in Section 3. Two DEMs are used in
experiments followed by the results analysis in Section 4. Finally, a conclusion is made in
Section 5.

2. The Second Law of Thermodynamics as a New Perspective for Optimizing
Encryption of Numerical Raster Data

The Second Law of Thermodynamics is concerned with the direction of natural
processes. This law states that an isolated and closed thermodynamic system can sponta-
neously evolve towards thermodynamic equilibrium, where its disorder degree (which
can be measured by entropy) is at maximum [22-24]. Inspired by this law, we can assume
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that a DEM could be considered an isolated and closed thermodynamic system where
pixels are taken as gas molecules. Different temperatures (i.e., different encryption tech-
niques or same techniques with different initial parameters) are imposed on the same
thermodynamic system (an image), and then, the gas molecules (pixels) move in different
directions and finally reach one type of status. Figure 2 shows different statuses of a closed
thermodynamic system under different temperatures. The disorder of the thermodynamic
system represents the complexity (randomness) of an image. The gas molecules move
in different directions and then form different distributions. The disorder degree of gas
molecules increases from (a) to (d).

° ° - 4 O
@ 909 O °

(*) o ©
®
° o ¢ @ @ o
(9 (d)

Figure 2. Four closed and isolated thermodynamic systems with the same gas molecules but different

distributions.

The disorder of an isolated and closed thermodynamic system can be quantified by the
thermodynamic entropy proposed by Ludwig Boltzmann [25,26]. The calculation formula
for the thermodynamic entropy (configurational entropy and Boltzmann entropy) is as
follows:

S = KlogW 1)

where K is the Boltzmann constant (1 in the case of digital images, as suggested by [27])
and W is the number of microstates for a given macrostate. The configurational entropy
of numerical raster data has been defined and computed in [28] with the assistance of the
concept of multiscale representation, leading to two types of terms: relative and absolute.
Concretely, the macrostate is defined as the upscaling results by an operation with a
2 x 2 sliding window; the microstates are all possible downscaling results, which can
be seen in Figure 3. For an image, its relative configurational entropy (Sr) is the sum of
configurational entropies of pixels in a sliding window of size 2 x 2 through the whole
image. The absolute configurational entropy (S,) is the sum of relative configurational
entropies across all scales, capturing the multiscale information, which can help us enhance
the analysis of the complexity of an encrypted DEM.
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Figure 3. An example of computing the configurational entropy.

y
Microstates S=Klog4

EE| A 2x2 sliding window for calculating configurational entropy

The experiments conducted in [29] demonstrates that Sg can measure the scrambling
degree of grayscale images at the confusion stage. Regarding the diffusion phase included
by an encryption function, the range of pixel values is modified. A good encrypted image
should have various value ranges and pixel structures different from the original one. At
this point, we can take the absolute configurational entropy as a metric to help choose
the best one among all encrypted images. Theoretically speaking, the higher the absolute
configurational entropy, the higher the complexity (and the lower the compressibility
concerning lossless compression). To improve the encryption security, we should select the
one with the maximum S 4 value among all cases. In this study, the base of the logarithmic
function in Equation (1) is set to 2 to measure the configurational information in units of
bits. The configurational entropy of an image is proportional to its complexity.

3. Encryption Based on the Integration of Chaos System and Linear Prediction

Inspired by the Second Law of Thermodynamics, this section proposes an encryption
algorithm consisting of two parts: (i) the encryption function and (ii) determination of the
best-encrypted image with configurational entropy, which are shown in Figures 4 and 5.
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Figure 4. The proposed encryption algorithm.
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Figure 5. The schematic process of the proposed encryption function. (a) Encryption of a DEM (an
image) for m rounds. (b) Determination of the best encrypted one with configurational entropy; m
(>1) represents the m total encryption rounds; 1 (>1) represents the number of scrambled images
with respect to 21 key pairs for generating logistic maps.

The confusion phase included under the proposed encryption function is implemented
by the chaos system generated by two logistic maps with different initial parameter values.
Mathematically, the logistic map [30] is written as follows

Xp1 = X (1 —xy) 2

where x;, is located in the interval [0,1] and 0 < r < 4. When r € (3.5699456, 4), the sequence
generated by the logistic map can show chaotic status, though there are many periodic
windows in this interval. We can assume that a DEM is read as a numerical matrix of size
M x N. The confusion phase scrambles the whole image, indicating that both row and
column scrambling are needed. To begin this process, first, we set the initial parameter
rg and x( values to iterate the chaotic system (i.e., Equation (2)) for M times and then a
chaotic sequence of length M, { x1, x2, x3, x4, x5, X}, is generated and referred to as Sy.
Then, sorting this chaotic sequence in ascending or descending order, we get {X{, X», X3,
X4, X5, X} named S,;. Next, we need to find the position values of Sy in S,u and to record
the transformation positions TP = { tpy, tpy, tp3, tpa, tps, tpm}. When we use TP for row
scrambling, we only need to move the fp; row to the first row and the fp, row to the second
row until all rows are scrambled. Similarly, regarding column scrambling, new parameter
o and yo values are needed to iterate the logistic map for N times and then to conduct the
same operation as the row scrambling.

Concerning the diffusion phase, the three-point prediction is employed. A 2 x 2
sliding window is moved pixel by pixel, which generates the predicted pixels. Regarding
the edge pixels, the missing ones among pixels a, b, and ¢ are automatically set to 0.
Thereafter, the difference between the confused image and the predicted one is computed
and then taken as the final encrypted DEM in one round. The advantages of three-point
prediction are (i) reducing the correlation between pixels (increasing the complexity of an
image) and (ii) changing the range of pixel values.

11
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After introducing the encryption function, we describe how the whole encryption al-
gorithm is optimized with the assistance of configurational entropy. As shown in Figure 5a,
users can determine the total encryption rounds, m, and the number of different confusion
phases, n, as illustrated in Figure 5b. The encrypted image (DEM) in the last round is taken
as the input of the encryption function for the next round in the whole encryption process.
Figure 5b shows how to select the best-encrypted image. An image can be scrambled by 2n
logistic maps with 2 different key pairs (o, xp) at the confusion phase; thus, n confused
DEMs with the same histogram but different structures. Among these n confused DEMs,
the one with the maximum absolute Sy difference (|DSg|) compared to the original is
selected as the input for the diffusion phase in which the range of pixel values is changed.
The absolute configurational entropy (S4) is finally employed to determine which one
is the most suitable for transmission. From a theoretical perspective of information, the
higher S 4 value, the higher the complexity (lower compressibility) of a DEM, indicating
higher encryption performance. Two modes are provided for users: (i) complexity first and
(ii) compressibility first. For the former, the one with the maximum S 4 is finally selected.
Regarding the latter, the one with the minimum absolute S 4 difference (|DS 4|) compared
to the original DEM is chosen.

The encrypted image can be further processed by lossless compression techniques,
such as Huffman encoding [31], free lossless image format (FLIF) [32], and multiscale
compression [33], to reduce the burden on transmission and storage. To improve the
encryption performance as much as possible, it is recommended that users encrypt a DEM
for at least 4 times (i.e., m > 4) using the proposed algorithm.

4. Experimental Results and Analysis
4.1. Encryption Results

Two 600 x 600 DEMs with different complexities tabulated in Table 1 were considered
experimental images. Their data formats were plain text, and their elevation values were
integer. Figure 6 shows these two DEMs, showing different complexities and various
ranges of pixel values.

Table 1. Two DEMs for the experiments [28]; Sg and S 4 denote relative and absolute configurational entropy, respectively.

DEM Latitude Extent Longitude Extent SR Sa Size (KB)
A 34°27'04" N-35°02'53" N 100°36/21" E-101°49'23" E 2,502,048.3 401,204,550.0 1758
B 31°23'17" N-32°06"40" N 104°07'31" E-105°06'55" E 2,416,595.3 308,809,911.3 1459
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800
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(a) (b)

Figure 6. Two experimental DEMs with different complexities.
For convenience conducting the experiments, both m and n were set to 10 to encrypt
two DEMs. The development environment was Microsoft Visual studio 2013 with .Net

Framework 4.5, and the language used for programming was C#. The keys for generating
chaotic sequences and corresponding |DSg| of the confused DEM A in the confusion phase

12
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of the first round are tabulated in Table 2. Figure 7 shows the scrambled images, while
they have the same histogram. The fourth one was selected for the diffusion phase because
its |DSg| was the maximum compared with the remaining confused images. By using
the proposed encryption algorithm, we obtained 10 encrypted DEM A, which are shown
in Figure 8, and the key pairs are shown in Table 3, where Cg represents the lossless
compression ratio (i.e., the ratio between the bytes used for storing the original data and
that for storing the compressed data) by using LZMA [34,35], which is a dictionary-based
compression algorithm and takes into consideration the spatial structure of data. From
Figure 8, we find that the pixel value range has been modified and the tenth one has the
maximum |DS 4| and S4 as shown in Table 3. Therefore, it is selected as the best one when
mode (i) is activated. Regarding mode (ii), Figure 8e is considered the best one. From
Figure 9, we find that the 5S4 values of the encrypted images increased, whereas the Cg
values decreased with the increase in the total encryption rounds (i.e., m). This can be
explained by the viewpoint derived from [19] that, from a theoretical perspective, the lower
the redundancy (which is measured by configurational entropy here) of an image, the
lower the compression ratio of the image achieved.

Table 2. Comparisons of relative configurational entropy of confused DEM A under different keys
in the first round. (ro, x¢) and (rp, yo) denote the keys to scramble the row and column of DEM A,
respectively. | DSg| means the absolute Sy difference compared to the original one.

No. (ro, x0) (ro, yo) IDSR |
1 (3.6949202, 0.94) (3.6477592, 0.16) 1,425,882.9
2 (3.7278720, 0.12) (3.7657562, 0.64) 1,455,723.6
3 (3.6158898, 0.54) (3.7451577, 0.34) 1,440,030.0
4 (3.6694297, 0.82) (3.6036054, 0.56) 1,490,201.9
5 (3.7033331, 0.43) (3.8601213, 0.80) 1,478,572.8
6 (3.5919501, 0.58) (3.7767205, 0.53) 1,472,217.3
7 (3.7562061, 0.76) (3.9686558, 0.74) 1,449,584.6
8 (3.7254665, 0.13) (3.942484, 0.03) 1,455,760.0
9 (3.7873567, 0.05) (3.6882554, 0.48) 1,443,565.6
10 (3.8638823, 0.83) (3.6808917, 0.04) 1,453,363.9

Table 3. The best key pairs among 10 encryption times for DEM A. |DS 4 | means the absolute S 4 difference compared to
the original one. S, is the absolute configurational entropy.

mth Round (rg, x0) (ro, yo) Sa IDSA | Size (KB) CRr
1 (3.6694297, 0.82) (3.6036054, 0.56) 267,144,464.1 134,060,085.9 1759 3.239
2 (3.9720618, 0.63) (3.8118391, 0.31) 300,969,521.6 100,235,028.4 1529 2.682
3 (3.9982823, 0.61) (3.6946723, 0.56) 329,305,875.0 71,898,675.0 1641 2.634
4 (3.6911029, 0.24) (3.7563811, 0.84) 359,120,512.9 42,084,037.1 1764 2.602
5 (3.6761227,0.71) (3.9535386, 0.56) 393,026,254.4 8,178,295.6 1850 2.531
6 (3.6468789, 0.54) (3.7460818, 0.2) 427,592,398.5 26,387,848.5 1946 2.485
7 (3.9889696, 0.77) (3.7643806, 0.9) 464,150,752.2 62,946,202.2 2074 2474
8 (3.7666660, 0.74) (3.7904553, 0.39) 511,483,888.6 110,279,338.6 2172 2.435
9 (3.9793047, 0.27) (3.7826054, 0.06) 550,795,418.0 149,590,868.0 2253 2.392
10 (3.8921841, 0.88) (3.8734612, 0.19) 604,312,707.5 203,108,157.5 2373 2.380
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Figure 7. Ten confused DEM A.
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) 1)
Figure 8. Three-dimensional images of confused and diffused DEM A. The numbering sequence is
consistent with the encryption round.
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Figure 9. Scatters plot of m rounds compared to the S4 value of the encrypted DEM A and that of Cg compared to the
S 4 values.

Regarding DEM B, Table 4 shows the |DSg| values of 10 confused ones illustrated in
Figure 10. We find the 10th one is the best in the confusion phase. Table 5 shows similar
results to DEM A. Obviously, when mode (i) is employed, the 10th one is the best since it
has the maximum S 4 value in comparison with the others shown in Figure 11. However,
the second one is selected when mode (ii) is activated. Figure 12a illustrates that the S4
values increase with the increase in encryption rounds. However, we find that the Cr
values decrease in Figure 12b. These experimental results indicate that the configurational
entropy is useful to optimize the proposed encrypted algorithm.

Table 4. Comparisons of the relative configurational entropy of confused DEM B under different
keys in the first round.

No. (r0, x0) (ro, yo) IDSg |
1 (3.9127452, 0.56) (3.9430024, 0.44) 1,366,081.4
2 (3.7803406, 0.42) (3.7118742, 0.28) 1,371,377.5
3 (3.9446201, 0.10) (3.6720488, 0.25) 1,401,148.1
4 (3.8410564, 0.11) (3.7863010, 0.4) 1,201,102.3
5 (3.6867861, 0.75) (3.5896140, 0.09) 1,373,653.2
6 (3.5921033, 0.19) (3.9948832, 0.07) 1,381,518.3
7 (3.6462285, 0.68) (3.5859005, 0.23) 1,375,019.6
8 (3.7970835, 0.63) (3.8113753, 0.49) 1,377,774.8
9 (3.9591995, 0.05) (3.9107138, 0.70) 1,382,701.9
10 (3.9429938, 0.25) (3.7159570, 0.45) 1,388,199.0
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Table 5. The best key pairs among 10 encryption rounds for DEM B.

mth Round (ro, x0) (ro, yo) Sa IDSA | Size (KB) Cr
1 (3.9446201, 0.1) (3.6720488, 0.25) 285,857,730.3 22,952,181.0 1491 2.696
2 (3.6978437, 0.44) (3.9206044, 0.49) 320,402,657.6 11,592,746.3 1592 2.636
3 (3.6557073, 0.03) (3.8864578, 0.33) 350,085,107.0 41,275,195.7 1728 2.606
4 (3.9037505, 0.02) (3.7374396, 0.21) 383,939,349.7 75,129,438.4 1826 2.550
5 (3.7128502, 0.56) (3.7213353, 0.35) 413,822,209.8 105,012,298.5 1911 2.492
6 (3.8007097, 0.09) (3.9265191, 0.78) 452,157,235.0 143,347,323.7 2031 2477
7 (3.5822104, 0.46) (3.7138054, 0.15) 494,673,201.5 185,863,290.2 2139 2.453
8 (3.6359581, 0.57) (3.9861503, 0.54) 532,925,355.6 224,115,444.3 2220 2.403
9 (3.9345383, 0.58) (3.7636595, 0.61) 590,387,815.5 281,577,904.2 2325 2.382
10 (3.8741445, 0.34) (3.900868, 0.25) 635,882,520.3 327,072,609.0 2446 2.377
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Figure 10. Cont.
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Figure 10. Ten confused DEM B. Their histograms are the same.
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Figure 11. Three-dimensional images of encrypted DEM B. The numbering sequence is consistent
with the encryption round.

From the two aforementioned encryption examples, we find that configurational
entropy can help users choose the best-encrypted one according to specific requirements,
e.g., the size of encrypted data should be as small as possible, and the encrypted image
should be as complicated as possible. For instance, in consideration of transmission
bandwidth, users can choose the encryption with the minimum S, value. To enhance
the complexity of the encrypted image, users can set larger and larger m and n values if
possible.
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Figure 12. Scatter plots of m rounds compared to the S value of the encrypted DEM B and that of Cgr compared to the

S 4 values.

4.2. Security Analysis

A good encryption algorithm should be capable of resisting all attacks. In this section,
we perform a security analysis on the proposed encryption algorithm.

1.  Key space and sensitivity analysis

A good encryption approach should be sensitive to the secret keys. In this study, the
iteration times, (i.e., m and 1) can be used as keys as well as the parameters ry and xg of a
logistic map. Moreover, the precision of parameters of the logistic map can be used as keys
as it can influence the performance of chaotic sequences. The key space is proportional to
the parameter precision: m (>1) and n (>1). If the precision is 10720, the key space size
can be at least m x 10%. Hence, the key space is big enough to resist brute-force attacks.
Moreover, using keys (rq, xq) only to recover the original image is very difficult as the range
of pixel values is changed after using the proposed encryption algorithm. Figure 13 shows
two decrypted DEM A with wrong keys.

<10°

(a) (b)

Figure 13. Three-dimensional images of decrypted DEM A: (a) with keys ry = 3.7004182, xo = 0.28,
ro = 3.8994119, and yo = 0.86; (b) with keys ry = 3.8777651, xo = 0.21, ry = 3.7276262, and yo = 0.27.

2. Classical attacks

Attackers have many methods of attack. Four classical types of attacks [7] are listed as
follows:
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e  Selected plaintext: The opponent chooses a plaintext string and constructs the cipher-
text string when temporary access to the encryption machine is granted.

e  Selected cipher text: The opponent obtains a ciphertext string and constructs the
corresponding plaintext string when temporary access to the encryption machine is
granted.

e  Known plaintext: The opponent owes a plaintext string and its corresponding cipher-
text.

e  Ciphertext only: The opponent owes a ciphertext string

The selected plaintext attack is considered the most powerful one. The proposed en-
cryption approach is highly sensitive to the initial parameters for a logistic map. Moreover,
at the fusion phase, the encryption data are related to not only the one in the confusion
phase but also the one predicted by the three-point prediction technique used at the diffu-
sion stage. Moreover, different encrypted numerical raster data are derived from various
former ones because m and 7 are variable. This means that the encrypted data are able to
resist the chosen plaintext attack, indicating that it can resist the remaining attacks.

4.3. Decryption Results with True Keys

To decrypt the encrypted DEMs A and B, the true keys tabulated in Tables 3 and 5 are
used. The decryption of an image is the inverse process of its encryption. With true keys,
the reconstructed DEMs A and B are illustrated in Figure 14.
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Figure 14. The decryption results of DEMs A and B with the use of true keys.

5. Conclusions

DEM is a digital representation of terrain information. Information security for DEMs
is an important topic due to the openness of computer and network communication. By
using encryption, the information from DEMs can be well protected. In this study, an
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algorithm based on chaos system and linear prediction is proposed. To optimize the
proposed encryption algorithm, configurational entropy is employed. At the confusion
stage, the one with the maximum relative configurational entropy different from the
original is selected for the diffusion stage, where the one with the maximum absolute
configurational entropy is chosen for the sake of obtain the best encryption performance
and the one with the minimum absolute configurational entropy is chosen to reduce the
burden on transmission and storage. Two DEMs are taken as experimental data and
encrypted 10 times. From the experimental results and analysis, we draw the following
major conclusions

e  The proposed encryption algorithm is valid, and its security is high.
e  Configurational entropy is helpful for optimizing the encryption process.

On the other hand, three areas are recommended for future research. The first is
to investigate the effects of different predictors in the diffusion phase of an encryption
performance. The second is to explore multiscale DEM encryption with the help of absolute
configurational entropy. Finally, more advanced chaos systems and watermark signature
techniques [36-39] are expected to be employed as one part of this study to provide
excellent performance in only one encryption round.
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Featured Application: A generalized conceptual model for the characterization of a deep-marine
siliciclastic complex deposition with respect to the integrated submarine fan and lobe architec-
ture, which are essential for understanding the subseismic lithological heterogeneities in poten-
tial petroleum reservoirs of a deep marine environment.

Abstract: Deepwater lobes constitute a significant volume of submarine fans and are primarily
believed to exhibit a simple sheet geometry. However, recent studies interpret the geometries of these
deep-marine lobes as distinct with respect to the complexity of the facies and their distribution. Hence,
a conceptual model of deep-marine sediments is essential to discuss the deep-marine sediments
associated with the fan and lobe architecture. The present study highlights the facies heterogeneity
and distribution of various lobe elements at a multiscale level by considering a case study of the
West Crocker Formation of Sabah in northwest Borneo. The formation was logged on a bed-to-
bed scale from recently well-exposed sections, with a total vertical thickness of more than 300 m.
The lithological characteristics, bed geometry, sedimentary textures and structures of individual beds
were used to categorize the rock units into nine sedimentary lithofacies: five sandstone lithofacies
(S51-55), one hybrid bed facies (H), two siltstone facies (Sil and Si2) and one shale or mudstone facies
(M). These facies were grouped into four facies associations (FA1-FA4), which were interpreted
as lobe axis (FA1), lobe off-axis (FA2), lobe fringe (FA3) and distal fringe to interlobe (FA4) facies
associations. This study is applicable for the distribution of lobes and their subseismic, multiscale
complexities to characterize the potential of hydrocarbon intervals in deep-marine sand-shale system
around the globe.

Keywords: deep-marine lobe—fan multiscale analysis; sedimentary facies and facies association;
subseismic lithological complexities; northwest Borneo; sand-shale depositional system; West
Crocker Fan

1. Introduction

Deep-marine siliciclastic deposition is primarily influenced by several factors, includ-
ing the rate, type and source of sediments, sea level changes and tectonic settings [1-3].
These deposits are mainly present at the basin floor, constituting various submarine
fans, which are considered one of the major hydrocarbon producing systems around
the globe [4,5]. However, these fan deposits are highly complex due to variations in
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geometry, internal architecture and vertical and lateral distribution [6-8]. A range of pro-
cesses related to sediment transportation and accumulation control the overall depositional
characteristics of deep-marine sediments. Gravity-driven flows are one of the major sed-
iment transport processes in a submarine depositional environment [9,10]. These flows
principally encompass two endmembers: turbidity currents (frictional flow) and debris
flow (cohesive flow) [9,11,12]. Such sedimentary processes and gravity flows result in the
development of submarine fan and lobe systems. The classification of deep-marine fan
and lobe deposits, with respect to sedimentary processes, requires the spatial distribution,
thickness of individual units, sedimentary structures and variation in grain size [13,14].

Deep-marine lobes are considered a vital component of submarine fans [15-17], and
they are radial features with thin apexes but distribute laterally like a fan toward the
distal end [18,19]. However, the lobe deposition is more complex in terms of internal
heterogeneity and the distribution of facies [20-22]. Various subenvironments (the lobe
axis, off-axis, lobe fringe and distal lobe fringe) have been assigned to these lobe deposits
with respect to their thicknesses and facies associations [19,23]. The excessive input of
siliciclastic sediments from a shallow marine environment result in the significant internal
heterogeneity and complex distribution of sediments in deep-marine lobes [20-22,24]. Later,
because of substantial uplift and denudation, these gigantic sand deposits are exposed on
the surface [25]. The study area selected for this project is present in the Malaysian part of
Borneo, named Sabah, which contains extensive exposures of deep-marine fan deposits
stratigraphically termed as the West Crocker Formation. In the case of our study area, with
recent infrastructure development (Pan Borneo Highway construction in East Malaysia),
numerous new outcrop sections were exposed as fresh roadcuts, which paved the way for
the detailed analysis of facies heterogeneity and the distribution of various lobe elements
in the West Crocker submarine fan.

The recent literature suggests that the sedimentary facies of deep-marine deposition
are significantly diverse and complex when compared with the previous classic Bouma
model [26]. Late Paleogene deep-marine sediments of the West Crocker Formation along
the Pan Borneo Highway in West Sabah are mainly comprised of thin to thick and massive
bedded sandstones, with some siltstone and shale units [27]. Although the previous studies
describe Late Paleogene sediments in terms of several components of a submarine fan
based on individual outcrops [27-30], this study highlights the multiscale heterogeneity to
interpret the distribution of deep-marine lobe complex systems in the West Sabah Basin.

The study area included five studied locations of the Crocker fan, representing the
sand-shale complex in West Sabah and having a total vertical thickness of more than 300 m,
principally on the roadsides from Kota Kinabalu to Telipok/Tuaran (Figure 1). The key
objectives of the study included (1) analyzing the facies and facies distribution of several
outcrop sections of the West Crocker Formation; (2) interpreting the differences in stacking
patterns and architectural elements of the studied sections; and (3) evaluating the charac-
teristics of various components of the submarine lobe complex. These sedimentological
details were supportive to determine the depositional characteristics and distribution of
lobe elements in the deep marine environment. This research work is intended to address
the following research questions: What are the main facies heterogeneities and facies
associations in the Oligocene West Crocker Formation? How we can relate these facies and
facies associations into the multiscale lobe elements of the lobe axis, off-axis, lobe fringe
and distal lobe? How could these lobe elements be effective for interpreting the individual
lobe and lobe complexes for each outcrop section? The purpose of this study is to analyze
the lobe architecture and the development of thickening and coarsening upward patterns,
which are interpreted as a part of the individual lobe or lobe elements.
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Figure 1. Location of the study area. (a) Regional map of Borneo bounded by the South China Sea in the west and the
Celebes Sea and Sulu Sea to the east, with Sabah being in the northwest part of Borneo [31,32]. The study area is marked
with a black rectangle in Sabah. (b) Map of the outcrop locations (1. The Kampung Madpai section (KM), 2. Prima University
section (UP), 3. Jalan UMS section (JU), 4. Jalan UMS behind KFC section (JK), and 5. The Jalan Sulaman section (JS)), mainly
located along roadsides in the area from Kota Kinabalu to Telipok. (c) Generalized stratigraphy of West Sabah with the
Oligocene age of the West Crocker Formation, where late Eocene unconformity (LEU) is present at the base while the top of
the West Crocker Formation is marked by base Miocene unconformity (BMU) [28].

2. Geological Background

The northwest Sabah Basin is considered as one of the major Tertiary depositional
systems of northwest Borneo, having two distinct phases of sedimentation. The older
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deposition is termed as the Rajang Group, mainly comprised of the Paleocene to Eocene
Trusmadi and East Crocker formations. These deposits were later uplifted and eroded
to form late Eocene unconformity (LEU). After this LEU unconformity, the second phase
of deposition started from the late Eocene to early Miocene epochs (West Crocker and
Temburong formations) [28,29,33]. The present study focuses only on the second phase of
deep-marine Tertiary deposition (late Paleogene) in the northwest Sabah Basin.

2.1. Deep Marine Environment, Processes and Lobe Complex

Deep-marine siliciclastic deposits are vital for the petroleum industry, with respect
to hydrocarbon exploration, with a gradual increase in exploration for huge petroleum
discoveries in a large volume of deep-water sediments [34]. The development of these
deep-marine deposits is the result of various sedimentary processes, which resulted in
numerous architectural elements and sedimentary facies [35-38]. In the deep marine
environment, the components of a submarine fan are dependent on the distribution and
variation of density flows and flow processes. Low-density turbidity flows are common in
all subenvironments of deep-marine systems but are mostly abundant in the distal part of a
submarine fan [39]. High-density flow processes are commonly associated with the feeder
channels and distributary channels of a lobe in a submarine fan system. The variation
in the thickness of sand units is also responsible for a variety of facies associations and
depositional environments, such as the massive or thick-bedded sandstone with rare shale
unit being most likely associated with the proximal lobe deposition. The lateral variation
in the sedimentary succession of the individual lobe can be depicted from a decrease in the
thickness of sand units with respect to neighboring shales, which represents the distal part
of a submarine fan. The thickening up stacking patterns of lobes could be the result of the
progradation of individual lobes [15,39-41].

In order to understand the paleoenvironments and facies analysis, the classical Bouma
sequence has limited applications for deep-marine lobe systems [26,42]. Certain termi-
nologies emerged in the past decade to refine the classification of deep-marine sediments.
For example, the term “hybrid bed” is a product of the deceleration or transition of the
turbidity current to mixed turbidite events [11,43,44]. Flow transformation is characterized
by the erosion of underlying rock units within the feeder channels and the axial or proximal
part of the lobe. The transition of flow from turbulent to laminar results in the development
of heterogeneity in the form of hybrid beds, owing to the deceleration and expansion of
flow [11,44,45].

Recent investigations explained that the deep-marine sand sheet or fan deposits
included a feeder channel with several individual lobes [19,46]. The relative age of each
lobe may vary as the older lobe may be overlapped by the younger one (Figure 2), and
this overlapping of lobes may continue in a lobe complex [19,47]. The lobe complex can be
classified based on the relative position of the feeder channel. Those present close to the
feeder channel are termed as proximal lobes (Figure 2), the middle part of lobe complex
is called the medial lobes, while those farther away from the medial lobes are labeled as
distal lobes [24].
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Figure 2. Lobe terminology used for the discussion of facies heterogeneity and multiscale analysis of the lobe complex
system. (a) Classification of the lobe complex into proximal, medial, and distal parts of the individual lobes [24,46].
(b) Hierarchy of the lobe system, where the smallest unit is the bed or bed set while the largest unit is known as the lobe
complex set [47] or lobe complex system. (c) Characterization of the lobe, with a feeder channel into the lobe axis, off-axis,
fringe and distal fringe, each with representative logs [14,19,48].

Lobes are divided into four subenvironments—the lobe axis, lobe off-axis, lobe fringe
(both frontal and lateral) and distal lobe fringe—on the basis of the amount of sand, amal-
gamated surfaces and sedimentary facies [17,45,49,50]. The lobe axis is predominantly
composed of structureless, thick-to-massive bedded sandstone with amalgamation, indi-
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cating greater depositional rates with high energy turbidity currents [17,48]. The growth of
the lobe off-axis mainly results from the deposition of medium-to-thick bedded sandstone,
representing relatively low deposition rates and low energy turbidity deposits [17]. The de-
position of the lobe fringe is mainly characterized by thin-bedded sandstone (fine grained
and rippled) with the hybrid event beds, which are created due to the transformation
of flow [17,45,48]. However, the distal lobe fringe or interlobe only contain thin-bedded
siltstone and thick-to-massive shale units [14,48].

2.2. Paleogene and Neogene Geology of West Sabah

Borneo has a complex geological history of sedimentation and deformation, espe-
cially in the Tertiary period, when a large volume of sediments was transported from
southern Borneo, namely the Schwaner Mountains and the Tin Belt, resulting in the huge
thickness of deep-marine deposits [29,30,51]. The development of Borneo is associated
with tectonic subduction, along with the obduction of ophiolite rocks and the collision of
tectonic fragments with the continental part of the Sunda Plate, resulting in the closure of
paleobasins [31,52-54]. The Borneo Accretionary Orogen is present in the center of South
East Asia, which is bounded by the subduction of the Pacific and Indian plates with a
passive continental margin of the South China Sea. The Borneo Accretionary Orogen is
currently active, as the subduction of the Dangerous Grounds under the Borneo Block is
still continuous [55].

Northern Borneo comprises the Sabah Basin at the geological complex junction be-
tween Sunda, Celeb, Sulu and the South China Sea, where Tertiary sediments are ex-
posed due to the Sabah orogenic belt, which resulted in the closure of the South China
Sea [51,56-60]. The post-orogenic foreland Sabah Basin is mainly comprised of marine
sediments, where the depositional processes were disrupted by several tectonic events in
the form of unconformities. These unconformable surfaces are well-preserved in the Paleo-
gene and Neogene stratigraphic record of West Sabah [61]. The Top Crocker Unconformity
(TCU) or Base Miocene Unconformity (BMU) is the major unconformity separating the
Late Paleogene West Crocker Formation from the Neogene Setap Shale [62]. The northwest
Sabah Basin is mainly comprised of the Crocker fold and thrust belt (CFTB), which is also
termed as the Crocker Range [29,63,64]. The Crocker fold and thrust belt was developed
due to the collision of continental plates and largely consists of siliciclastic sediments of the
deep marine environment [52].

2.3. West Crocker Formation

The West Crocker Formation crops out in the form of several vertical to subvertical
rock sections around Kota Kinabalu and generally in the West Sabah [61,65]. The late
Paleogene Crocker sediments were deposited by erosion of the early Paleogene rocks. The
thickness of the late Paleogene sediments varies from at least 1000 m to more than 2000 m,
and the lithologies include sandstone, shales and siltstones [30,33,66]. Late Paleogene
sediments mainly consist of sand-dominated debris flow deposits and heterolith siltstone
mudstones, having all components of the inner, middle and outer fan environments [27],
while at a few studied sections, the formation is interpreted to be only a middle-to-outer
fan system [67]. These sediments are mainly sand-rich facies deposited by high density
turbidity currents; however, they also contain low-density turbidites and mass-transport
deposits like slumps and contorted layers [68,69].

High-density turbidity flows result in texturally immature, poorly sorted and an-
gular fragments in siliciclastic rocks [30,70-72]. Sedimentary structures like flute marks,
cross bedding, convolution, parallel lamination, amalgamation and dish structures have
been reported [27]. Water escape dish structures and convolution are the result of rapid
deposition [73] and are termed as soft sediment deformation structures (SSDSs). These
deformation structures are inferred to be seismites, which are representative of active
tectonic settings [74]. The early Paleogene Rajang Group was eroded and resedimented to
form the late Paleogene rocks of the West Crocker Formation [72].
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3. Materials and Methods
3.1. Geological Fieldwork

The dataset included sedimentological logs and lithological details from outcrops.
Standard field geological operations were followed to delineate the detailed sedimentary
evaluation of the West Crocker Formation in West Sabah. The best-exposed sections
were selected for the detailed sedimentological description of rock units with the help of
available geological maps, google satellite imagery as well as several reconnaissance field
visits. Measurements of the vertical thicknesses of the beds, identification of numerous
sedimentary structures and grain size variations and descriptions of the geometries of
rock units were noted for understanding complexities. These details were quite helpful to
discuss the facies heterogeneity and lobe systems of deep-marine multiscale sedimentary
successions. The methodology was used for classifying the deep-marine sediments into
sedimentary lithofacies based on variations in bed thickness, grain size and types of
sedimentary features. These sedimentary facies were grouped into facies associations,
which were interpreted to be part of the submarine lobe environment.

3.2. Field Sedimentary Logging and Facies Analysis

The dataset comprised of detailed sedimentological characterization of the outcrops,
including (1) the Kampung Madpai (KM) section, (2) the Jalan Universiti Prima (UP) section,
(3) the Jalan UMS (JU) roadside, (4) the Jalan UMS behind KFC (JK) section and (5) the Jalan
Sulaman (JS) section around Kota Kinabalu (Figure 1). These logs contained the particulars
of individual rock units, including the bed thickness, lithological character, sedimentary
structures and types of bed contacts. These details were investigated to analyze, evaluate
and interpret the complexity of the deep-marine exposed sections. The field sedimentary
details were applied to interpret the facies analysis and facies association, which were
correlated with the submarine lobe architecture (e.g., lobe element, lobe complex and
composite lobe system).

3.3. Sandstone Thickness Analysis and Trends

The pattern of thickness of rock units varied considerably, like how thin-bedded sand
units were related to distinct elements of lobe fringes while thick-bedded sands were
linked to the proximal part of the lobe. These thin or thick beds were indicative of the
flow conditions, such as interbedded, thin-bedded sandstones and siltstone representing
low-density turbidity flows while thick-bedded or massive sandstones indicating high-
density flow conditions. These thick-bedded sand units were quite established by feeder
channels in the axial or off-axial parts of the lobes [75,76]. However, lobe progradation
could generally be linked with thickening up cycles, or it could be the onset of a new
individual lobe. The medial and distal frontal fringe lobe were associated with hybrid units
and were the result of a downward dip of high-density turbidites or low-density flows,
representing the lower part of the prograding lobe succession [77].

Deepwater lobes are explained as simple radial deposits which are fine and thin in
morphology at the initiation point or feeder channel, but they are more complex with
respect to their geometry and facies characterization. These lobes are further classified
by the relative thickness of the sand and shale beds. The lobe complex is the larger entity
of lobe deposition that is primarily comprised of a feeder channel and individual lobes,
having a variety of morphologies and geometric distributions [19,23,46].

4. Results and Interpretations
4.1. Stratigraphic Distribution of Outcrop Sections

Geological field logs explained the stratigraphic distribution of each outcrop in the
study area. Recently exposed road cuts and fresh exposures were selected to study the
West Crocker Formation. In general, the stratigraphy was sand-dominated sections with
multimeter sand beds present throughout the outcrops. It is pertinent to mention here
the Kampung Madpai outcrop (KM) contained mainly massive sand units with thin shale
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laminae, and massive shale beds were completely absent, representing the inner part of the
submarine fan. The basal part of the Prima University section (UP) contained both shale
and sand beds, and the middle part of the section contained massive sandstone intervals
while the upper part of the outcrop contained thick-to-massive sandstone (Figure 3) with
little influx of shale, representing the middle part of the submarine fan.

Outcrop
L Locations

Figure 3. Stratigraphic distribution of the selected exposed outcrops that represent the multiscale
sand-shale complex system. These lithological heterogeneities are interpreted as various components
of the submarine fan-lobe architecture.

The lower part of the Jalan UMS road section (JU) comprised thick-bedded to mas-
sive sandstone beds, while the upper part of the section predominantly consisted of only
massive multimeter sandstone beds, representing a high influx of sand, which is character-
istic of a proximal fan environment. These massive beds were also common in the lower
part of the Jalan UMS behind KFC section (JK), and the upper part was characterized by
massive sandstone and shale intervals. The Jalan Sulaman section (JS) is a classic example
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of massive sandstone beds with alternate massive shale representing the cyclicity in the
lobe—fan deposition.

4.2. Facies Analysis and Depositional Environment

A facies is defined as a rock unit comprising one or more beds which has specific
characteristics, such as composition, bed thickness or texture. These facies are distinctive
rock units which have been developed by a geological process and are indicative of certain
conditions of sedimentation [42]. The clastic sedimentary rock units present in the study
area were classified based on sedimentary structures and lithology, in which the sandstones
are denoted with sandstone lithofacies (S), hybrid event beds (H), siltstone lithofacies (Si)
and mudstone or shale lithofacies (M). These lithofacies were numbered according to each
type of sedimentary facies.

4.2.1. S1 Facies: Graded Coarse-to-Fine-Grained Sandstone

The physical characteristics of this facies included thick-to-massive bedded sand
units, mainly poorly sorted, some beds have normal grading and fine-to-coarse-grained
sandstone units. The thicknesses of individual sand units ranged from 30 cm to more than
100 cm. Many sand units in this facies had thicknesses more than 2 m, which were often
amalgamated. Based on amalgamation structures, the facies were interpreted as a result
of multiple depositional events and a high-energy environment [11]. Moreover, a high
vertical thickness and multimeter individual sand units were the result of a high sediment
influx in a basin, where the lower part was characterized by high-density flow deposition,
Ta division [78] or F5 and F8 facies [79].

4.2.2. S2 Facies: Ungraded Coarse Sandstone (Structureless)

The sandstone units were moderately sorted, having coarse to very coarse grain sizes
(Figure 3). The thicknesses of the sand beds ranged from thick-bedded to massive (more
than 30 cm up to 5 m). Most of the units had no grading and limited variation in grain
size, which were termed as structureless and moderately sorted. Sand beds are often
amalgamated showing tabular geometry and mainly lack any sedimentary structures. The
facies was deposited by high-density turbidity currents, containing a traction carpet and
classified as the S2 type [18,80], the lower part of Ta division by [78], and the flow is termed
as dense sandy and gravely flow [79].

4.2.3. S3 Facies: Parallel Laminated Fine-to-Medium-Grained Sandstone

The thicknesses of sand units fluctuated from thin- to medium-bedded, while the grain
size ranged from fine- to medium-grained sand. These beds exhibited parallel laminations
and, in a few cases, laminated muddy sandstone were present. The parallel laminations
(Tb) were often present above the massive structureless (Ta) units, indicating high en-
ergy conditions. The parallel stratification (Figure 4) indicated the near-bed suspension
generated by progressive turbulent flow, where the rate of deceleration was relatively
sluggish [81]. The facies was classified as the S3 type of sediment [80], with the Tb after
Bouma [78] and F7 and F9 facies [79] representing high density turbidity currents [82,83].

4.2.4. 54 Facies: Ripple-Laminated Sandstone

The facies included fine- to very fine-grained sandstone showing ripple cross-lamination.
These units were thin- to thick-bedded sands. The height of the ripple lamination may have
varied from 4 to 10 cm (Figure 4C), and length ranged from 10 cm to 32 cm. The deposited
rock unit indicated the lower flow regime and was marked as Tc [78] and F9 facies by [79].
These cross laminations were interpreted to be the result of a change in flow regime from
higher energy to transitional or a low energy environment and loss of flow confinement.
These facies are more frequently found in lobe off-axis settings [84].
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Figure 4. Sedimentary facies. (a) Amalgamated massive sand with floating mud clasts in the Jalan
UMS road section, interpreted to be S1 lithofacies. (b) Massive, coarse-grained sandstone at the
Jalan UMS road section, which belongs to the S2 facies. (c) Parallel lamination S3 facies and cross-
lamination S4 facies in the Jalan UMS road section. (d) Parallel laminated S4 facies at the Jalan UMS
road section. (e) Flame structure S5 facies. (f) Laminated siltstone facies Sil at the Jalan UMS KFC
section. (g) Laminated muddy siltstone Si2 facies at the Jalan UMS KFC section. (h) Massive dark
shale or mudstone M facies at the University of Prima Condo road section.

4.2.5. S5 Facies: Medium- to Fine-Grained Soft Sediment Deformation Units

Convoluted lamination due to the deformation of unlithified sand units [74] is a typical
characteristic of this sedimentary succession (Figure 5). The deformation of sandstone
units varied from gentle to moderately strong, which indicates variation in the degree
of deformation. Flame structures are also present in a few units, representing the facies
at the hydraulic jump interprets to be a part of the proximal lobe [39]. Dewatering of
unlithified clastic units due to the upward movement of fluids and some particles which
had deformed the overlying strata can also be present [85]. The phenomenon of the
generation of a deformational structure (Figure 5) is related with the fluidization process
that develops the instabilities in the gravity flows, or it may also be related to seismic
activity [74].

4.2.6. H Facies: Hybrid Event Beds

Hybrid beds are characterized by intermediate flow behavior comprised of two ar-
rangements of lower mud-deficient sand overlain by a mud-rich sand interval, and various
terms were assigned like slurry flows [18], transitional flow deposit [9], linked debrite [86],
hybrid event [87] and matrix-rich sand [88]. The hybrid beds are often termed as bi- or
tripartite beds, depending on the characteristics of the underlying and overlying units, and
vary significantly from the downslope of the channelized to the unconfined area. Lateral
lobe fringes are predominantly low-density turbidites and have hybrid events [23,45].
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Figure 5. Sedimentary structures. (a) Tool marks in the Kampung Madpai section. (b) Load casts
in the Kampung Madpai section. (c) Flute casts at the base of the sandstone in the Jalan UMS KFC
outcrop. (d) Massive coarse-grained sandstone with dewatering in the Jalan UMS KFC section.
(e) Ripple and parallel laminations in the Jalan UMS KFC section. (f) Flame structure in the Jalan
Sulaman outcrop. (g) Load structure in the Jalan Sulaman section. (h) Convolute lamination in the
Jalan Sulaman outcrop.

A great variety of lithofacies can be prevalent within the hybrid units and are also
variable within the individual beds over a scale of centimeters to meters. These hybrid beds
contain both the characteristics of turbidite and debrite within the same depositional event.
The scales of thickness of hybrid beds vary considerably from tens of centimeters to more
than a meter, which is associated with the influx of sediments deposited within the single
event of hybrid flow. The hybrid beds in the study area (Universiti Prima road section)
consisted of only three divisions (H1, H3 and H5) of hybrid event deposition [43]. The basal
structureless graded sandstone (H1), overlain by a banded sand unit (H2), was composed
of both sand and shale (irregular) bands. The third division was more chaotic (H3), having
patches of sand with more mud, with the fourth subdivision having a laminated sand mud

unit (H4) capped by a clayey shale unit (H5).

4.2.7. Sil Facies: Laminated Siltstone

The facies represent the siltstone units, which are laminated siltstone and range
in thickness from 6 to 17 cm. The major lithology was siltstone in the form of thin to
laminated units with interbeds of shale or mudstone. Fine sand units and silt laminations
are common in this facies, alternating with mudstone or shale lamination. The traction
fallout and low energy depositional environment, or the diluted turbidity currents in the
hemipelagic settings [11], are the possible explanations of these heterolithic facies, which
were deposited from a suspension during a lower flow regime. This facies is equivalent to
the Bouma Td division, representing a low-density flow deposit (Table 1).
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Table 1. Summary of sedimentary facies, with their descriptions, outcrop locations and interpretations.

No. Facies Description Sedimentary Log Location Interpretation
Thick to massive Rapid .
. Basal and upper part of accumulation
S1 facies sandstone . .
1 ] the Jalan UMS High-density
(sandstone) Normal grading .
road section currents
Amalgamated
Ta Bouma
Structureless sand- Basal part of the
. Lower part of the
. stoneUngraded Kampung Madpai .
S2 facies ) Ta Bouma facies
2 (sandstone) Amalgamated section Sandy and gravel
Coarse- to very Middle part of the Jalan f}',low [7g9] y
coarse-grained UMS road section
Thin- to
. medium-bedded Lower part of the‘ Jalan Tb Bouma facies
S3 facies . UMS road section
3 Parallel-laminated . . F7 and F9
(sandstone) . Middle part of the Prima .
Fine- to . . . facies [79]
. . University section
medium-grained
R1pP1e lamination Basal part of the Jalan .
. Fine- to very : Tc Bouma facies
54 facies . . UMS road section AP
4 fine-grained . F9 Mutti facies
(sandstone) ; Basal part of the Prima .
Thin- to Uni it " Lower flow regime
thick-bedded niversity section
Soft sedlment Lower part of the
deformation Kampung Madpai Proximal part of
S5 Facies Thickly to pung P b
5 (sandstone) massively bedded section the lobe
il Middle part of the Jalan Te Bouma facies
Medium- to .
s UMS section
coarse-grained
Bipartite or L
H facies tripartite beds Lower part of the Prima Transfﬂona% flow
6 . g . R . Intermediate
(hybrid event) Rich in mud and University section .
flow behavior
broken clasts
Siltstone units
Sil facies Very thin to thin Lower and upper parts  Suspension fallout
7 (siltstone) units of the Jalan UMS Bouma Td facies
Rare interbeds of KFC section Low density
shale or mudstone
Higher mud Upper part of the Jalan Dilute sediment
8 Si2 facies content in siltstone UMS KEC section gravity flow
(siltstone) Laminations are Lower part of the Prima Td-Te
discontinuous University section Bouma facies
Mainly shale Te Bouma facies
M facies Thickly to Upper part of the.] alan Mud turbidites
. UMS KEC section . .
9 (mudstone or massively bedded . Final deposition of
A Basal part of the Prima -
shale) Lacking internal . . - sediment
University section .
structures gravity flow

4.2.8. Si2 Facies: Laminated Muddy Siltstone

Laminated to medium-bedded siltstone beds with shale or mudstone layers were
included in this sedimentary facies. The amount of mud or argillaceous material was
relatively higher than the siltstone units. The siltstone lamination could be discontinuous
due to more shale material, where these lithological characteristics are associated with lobe
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fringes or distal lobe settings [19]. Numerous individual lobes are usually separated by
muddy siltstone intervals. Suspension fallout occurs due to a low energy of flow from
a relatively dilute sediment gravity flow. It is also interpreted as change in swiftness of
flow and a lower sediment influx. The shale input increases in this type of sedimentary
facies, which indicates the energy conditions equivalent to Bouma Td-Te facies. Argilla-
ceous sediments present in the turbidity currents were finally settling down in the lower
flow regime.

4.2.9. Mudstone (M) or Massive Shale Facies

The massive shale or mudstone facies predominantly contained thick-bedded to
massive shale units although, it may have held a little influx of silt laminae. However, the
thickness of shale or mud was considerably larger than the silt laminae, which indicates the
strong influx of shale or mud in the sedimentary basin. These mudstone facies represent
the lateral lobe settings [19] that separate the individual lobe or lobe complex. A massive
mudstone interval could also be evident from the most distal part of the lobe environment.
The term “interlobe” is also used for massive shale intervals to differentiate between
deposition of the multiple lobes in a submarine environment [22,24,41]. The mudstone
or shale primarily lacked any internal structures. The facies was equivalent to Bouma Te
facies or T6 or T7 Stow’s classification [89,90] and was termed as mud turbidites. These
units represent the final deposition from the phase of sediment gravity flow [91].

4.3. Facies Associations and Lobe Complexity

In this section, the outcrop sections are discussed with respect to various thickening
or thinning cycles based on the range of thickness of the individual sand units. These
cycles or trends are quite useful to relate the outcrop sections with lobe elements and lobe
progradation, aggradation or cessation. The dynamics of the lobe in a deep marine system
were quite evident from the thickening or thinning trends. Additionally, the lithological
units were categorized into lobe elements, which were grouped into lobes and further
into lobe complexes. Several individual sedimentary facies were identified for any rock
formations, which were later grouped and categorized into facies associations [42]. Several
facies associations were identified based on the facies analysis of lithological beds, including
sandstone, siltstones and shales or mudstones. These facies associations are essentially
connected with various components of submarine lobe deposits [17] equivalent to the
proximal lobe or axial lobe (FA1), lobe off-axis (FA2), lobe fringe (FA3) and distal lobe
fringe or interlobe (FA4).

4.3.1. Facies Association 1 (FA1): Lobe Axis

Lobe axis facies association is characterized by massive sandstone units, generally
having thicknesses of more than 100 cm. The thickness of an individual sand unit may go
up to more than 800 cm. These units are often structureless as there is no grading and only
a minor change in grain size within the sand beds. Multimeter massive sandstone with an
amalgamation structure is the characteristic of this facies. S2 and S5 facies and occasionally
S1 facies are included in this facies association. The association of this facies is interpreted
as unconfined lobe settings with lobe axis and lobe off-axis alternate beds that are stacked
together [92,93], having amalgamated bodies (Figure 6) representing the proximal part of
the lobe system. The facies is associated with high-density turbidity currents, where the
huge amount of sand influx with rare or no argillaceous content is indicative of a lobe axis
depositional environment.
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Figure 6. Lobe architecture and facies association of lobe settings. Thickening and thinning cycles are also marked on the
bed scale for better understating of deep-marine lobe complex systems. L1 is the old event of lobe deposition, while L3 is
the younger event partially overlapping the older lobe L1 and L2. Each lobe is further classified into axis (yellow color),

off-axis (brown), fringe (brownish gray) and distal fringe (gray) from sand to shale or mud alterations [48].

4.3.2. Facies Association 2 (FA2): Lobe Off-Axis

The facies denote mainly sandstone units, which are medium- to thick-bedded and
massive and where the average thickness was about 42.5 cm, while most thickness values
ranged from 10 cm to 250 cm. There was a significant decrease in the sand-to-mud ratio and
a lesser degree of amalgamation in the sand units. Hybrid event beds having greater sand
bed thicknesses were also contained in this lobe off-axis [11] facies association. Sedimentary
features like load casts and tool marks are common in this facies association. Some thick
sand units are characterized by being massive or structureless, which is mostly associated
with S§1, S2 and S3 facies as well as with very rare S4 facies. Soft sediment deformation
S5 is relatively common in this facies association. Amalgamated sand units also exist
within this facies association. The abundant S3, S4 and Sil facies represent the lobe off-axis
deposition [50].

4.3.3. Facies Association 3 (FA3): Lobe Fringe

The lobe fringe is primarily characterized by muddy units, which comprise most of the
percentage of sedimentary rocks. The main feature is rhythmic sandstone and mudstone
units, which ranges in thickness from a few centimeters to tens of centimeters. The average
thickness value was about 10.8 cm, where the thicknesses of the bed units ranged from
1 to 18 cm. The facies association included the S3, S4, Sil, Si2 and M facies. S1 facies are
quite rare in this facies association. Furthermore, hybrid event beds (H) with a lower sand
thickness are associated with lobe fringe deposits [49]. The rock units have sharp contact
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and are relatively continuous laterally. A complete Bouma sequence (from Ta to Te) could
be present, but typically, the basal massive sequence (Ta) is usually absent in the lobe fringe
settings [26,94]. Thin-bedded sand and shale interbeds with a high fraction of mud and
good lateral continuity are interpreted to be a part of lobe fringe deposits.

4.3.4. Facies Association 4 (FA4): Distal Lobe or Interlobe

All types of clastic units, like sandstones (thin-bedded fine to very fine-grained),
siltstones and medium- to thick-bedded mudstones or shales were present in this facies
association (Figure 7). However, mudstone or shale units mainly comprised this association.
The thicknesses of most of sandstone units were less than 10 cm, and the average value
of the sand bed thickness was only 4.1 cm. The thickness of the shale units (M facies)
was significantly higher (more than 230 cm) compared with other sandstone and siltstone
facies. Owing to thin-bedded fine to very fine-grained deep-marine units having quite
good lateral thicknesses and high fractions of thick mudstone or shale units, they were
interpreted to be interlobe and lobe distal fringe facies associations. The slow hemipelagic
to pelagic deposition was the result of low-density turbidity currents.

Figure 7. Facies associations. (a) Medium- to thick-bedded sandstone lobe fringe FA3 facies as-
sociation in the Kampung Madpai section. (b) Medium- to thin-bedded sandstone of distal lobe
fringe associated with the FA4 facies association in the Kampung Madpai outcrop. (c¢) Thin-bedded
sandstone in the Jalan UMS road section, interpreted to be the distal lobe fringe to interlobe facies
association FA4. (d) Mudstone facies interbedded with a thin sand unit, representative of distal lobe
to interlobe FA4 settings in the Prima University Condo road outcrop. (e) Medium- to thick-bedded
sandstone overlain by a massive sand unit of lobe axis FA2 in the Jalan UMS KFC outcrop. (f) Massive
unit with amalgamation in the Jalan UMS road section, interpreted to be an FA1 facies association.
(g) Massive sand with mudclasts and amalgamation in the Jalan UMS road section, belonging to the
FA1 facies association. (h) Hybrid sand body in the Prima University road section, interpreted to be a
lobe off-axis FA2 association.
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5. Discussion
5.1. Thickening and Thinning Multiscale Trends

Deep-marine sedimentary successions are characterized by multiscale thinning or
thickening upward successions in exposed sections. These patterns were sometimes quite
evident as we moved stratigraphically in the younging direction. Generally, lobe deposition
is characterized by thickening or coarsening upward cycles, whereas channel setting is
mostly linked with a thinning and fining upward sequence [17,95]. However, lobe progra-
dation is considered a thickening (Figure 8) or coarsening sequence that has variations in
the rate of sediment influx, resulting in a variety of sedimentary facies and their associa-
tions [14], while an individual thinning sequence may also be developed due to starvation
of the deep-marine lobe system toward the lobe fringe or lateral lobes [39,50]. These thick-
ening and thinning sand units represent unconfined lobe settings, and these thickening
sandstone cycles are related to lobe axis and lobe off-axis facies associations [11,15,88,96].

m
PL *"f//a”

0m,
ey .«Z/Jy

Figure 8. Thinning and thickening cycles in the Jalan UMS road section, where the vertical thicknesses
of the cyclic patterns ranged only from 1.2 to 2.7 m, which is indicative of a bed set or a lobe element.
(a) Thinning pattern interpreted to be a lobe element. (b) Thinning and then thickening sequence,
where each pattern represents the geometry of an individual lobe element. (c) Thinning trend with a
vertical thickness of about 2.6 m in the set of beds.

A thinning upward sequence was observed in the Jalan UMS road section (Figure 8)
because of lobe abandonment, while at one location, a thinning and then thickening
cycle was observed in the outcrop, representing the cessation of a relatively older lobe
and subsequently followed by the development of a newer, younger lobe [15,97]. Lobe
thickness variation was significant in the Jalan UMS behind KFC section, where three
cycles were observed. First was the thinning cycle, where the thicknesses of the individual
sand units gradually decreased while the shale content increased as the stratigraphic order
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became younger (Figure 9). Another event of thinning and then thickening followed by
two cycles of thickening was present, which were interpreted to be progradational lobe
geometry. A thinning upward cycle was also marked in the Jalan Sulaman outcrop that
was distinctive of lobe desertion.

géfﬁfjﬁ

Figure 9. Thinning and thickening patterns (a) marked by three cycles—two thinning and one
thickening—each of about a 2 m vertical thickness in the Jalan UMS behind KFC outcrop. (b) Massive
sand unit overlain by two thickening trends in the Jalan UMS behind KFC outcrop. (c) One cycle of
thinning with a vertical thickness of only 1 m in the Jalan Sulaman outcrop.

5.2. Distribution of the Lobe Complex

A submarine lobe system is a vital constituent of deep-marine fans. These lobes are
characterized by geometries which are quite useful for interpreting the geological processes
related to fan deposition [15]. Tectonically active regions are generally characterized
by coarse sand units, representing the development of deep-marine fans having less
than 10 km radial exposure on relatively higher slope angles, where a fan lobe system is
frequently surrounded by shale cover [39].

These submarine fans are composed of numerous lobe complexes. The lobe architec-
ture consists of a composite hierarchy from a smaller unit of a lobe element to a larger unit,
which is termed as a composite lobe system or lobe complex set [22,24]. The lobe element
is essentially comprised of one or more beds, with the thickness extending from a few
decimeters to more than a meter [39]. The individual lithologies or beds collectively form
an element of a lobe, while the group of lobe elements constitutes an individual lobe [15,24].
These lobes are characterized by interbedded sandstone and shale, with a collective range
in size of several meters in thickness, combined to form a lobe complex (Figure 10) or also
termed as stacked composite lobes [15,24]. Lobe components or sand-rich lobe complexes
are separated from each other by a thick to massive hemipelagic to pelagic shale unit [22].
It is pertinent to mention here that each lobe component consists of one or more sandstone
or shale beds, which enabled us to characterize the deep-marine deposits at a meter scale
level. These high-resolution lithological observations could not be achieved by using
seismic data. Hence, the study of lobe architecture at a lobe element scale caters to the idea
of subseismic reservoir heterogeneity in submarine lobe—fan systems.
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Figure 10. The distribution of facies, facies associations and thickening and thinning cycles in the exposed sections from
Kota Kinabalu to Tuaran in northwest Sabah.

The results presented in this study reveal that there are multiple feeder channels
in West Sabah’s deposition, where the number of feeder channels and lobe complexes
increased toward northwest Sabah. Multiple feeder channels resulted in three to four
lobe complexes (LC), each of which was classified into individual lobes (L) and further
into lobe elements (LE) (Figure 11). The thick to massive shale separated the individual
lobe complexes.
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Figure 11. Distribution of lobe elements, individual lobes and lobe complexes in the studied outcrop sections [17,24].
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5.3. Submarine Fan—Lobe System

The present study highlights that all the exposed sections were interpreted to be
proximal to medial fan depositions, which were further classified into a lobe hierarchy.
It incorporates the concept of a submarine fan and lobe system with respect to the multiscale
analysis of sand-shale complexes in a deep marine environment. The individual lithological
bed or bed set at a centimeter-to-meter scale is termed as a lobe element, which is the
basic building block for the whole lobe—fan architecture. These lobe elements combine to
form multimeter lobes, which are the cyclic or repetitive structures in a lobe complex or
in a composite lobe system, which are tens of meters in thickness, while the composite
lobes eventually constitute a smaller portion of the submarine fan at a scale of hundreds of
meters. A complete fan system is present at a km scale over a large depositional area in a
sedimentary basin.

6. Conclusions

The results highlight the facies analysis and facies association linked with the architec-
tural elements of lobes in the submarine fan deposits of West Sabah. Based on these results,
the following conclusions are drawn:

1. Although the West Crocker Formation is mainly considered to have sand-rich de-
posits (Crocker sands), the formation also contains massive shale and siltstone units.
All types of sedimentary facies related to sandstone, siltstone and mudstone and
could be termed as a sand-shale system. This variety of sediments shows more
heterogeneity in lithological characteristics than previously thought;

2. The sedimentary facies were grouped into four facies associations, which were linked
to the lobe architecture of deep-marine systems. These facies associations are dis-
cussed as components of individual lobes, namely the lobe axis, lobe off-axis, lobe
fringe and distal fringe;

3. The thicknesses of individual sandstone units are helpful for interpreting several
thickening and thinning multiscale sequences, which are characteristics of lobe progra-
dation and lobe abandonment. These cycles of thickness variations represent the
multiple tabular sand bodies of a lobe complex.

4. The deep-marine lobe deposits can be classified into beds or bed sets, which constitute
the lobe elements. These lobe elements are grouped into individual lobes, which
are broadly categorized into lobe complexes. These lobe element to lobe complex
nomenclature can be identified on all exposed sections of West Sabah, where the indi-
vidual thicknesses of lobe elements highly vary from as small as 1-3 m up to a large
thickness of 8-10 m in the studied sections having multiscale sand-shale complex.

5. The West Crocker Formation is interpreted as a lobe complex set in which multiple
lobe complexes are present, with their individual lobes and lobe elements based on
bed-to-bed sedimentary analysis and supporting the multiscale modeling of deep
ocean sediments.

6.  The lobe complex sets are more developed in northwest Sabah, while West Sabah has
a lower number of lobe complexes. This distribution of lobe complexes also verifies
that the paleocurrent direction is mainly from the south to the north, where the feeder
channels form multiple lobe complexes in northwest Sabah.

7. The detailed facies and lobe architecture depict reservoir heterogeneities in deep-
marine siliciclastic rocks, which are usually interpreted as single homogeneous sand
units by seismic data. Hence, the present study highlights the subseismic lithological
complexities in deep-marine depositional settings.

8. The alternate lobe off-axis and lobe axis distributions, interpreted as unconfined lobe
settings, could be applicable for several unconfined deep-marine sedimentary succes-
sions around the globe which are potential sites of exploration of natural resources.
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Abstract: Accurate simulation of snow cover process is of great significance to the study of climate
change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and
ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow
water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface
model, and the simulation results were compared with the gridded dataset of snow depth at Chinese
meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD),
and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we
compared the combinations of four parameterizations schemes of Noah-MP model at the Kuweti site.
The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation
process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow
surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation
results was much higher than the other three schemes; when STC uses a fully implicit scheme, the
error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit
scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim
is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high
snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results
of model simulation, it is concluded that the snow depth and snow water equivalent in the north
of the basin are higher than those in the south. The average snow depth, snow water equivalent,
snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly
during the study period, but the end time of snow melting was significantly advanced.

Keywords: snow depth; snow water equivalent; ERA-Interim; CMFD; Noah-MP model; microwave
remote sensing; Irtysh River Basin

1. Introduction

Snow plays an important role in the climatic system due to its high reflectivity, low
thermal conductivity, and high melting latent heat, which directly affect the surface energy
balance, and has obvious feedback, regulation, and indication effects on regional and
global climate change [1-4]. It is also an important part of the global water cycle and an
important source of fresh water [5]. In addition, the losses caused by floods, avalanches,
and other disasters caused by snowmelt to industrial and agricultural production as well as
the loss of people’s lives and property cannot be ignored. Therefore, accurate snow cover
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simulation has important significance for water resources development, climate change,
and geological disaster prediction.

Modeling is an important means to study snow cover change [6]. Snow models can be
generally divided into two categories: one is an empirical model based on simple statistical
methods; the other is physical models based on the energy and mass balance processes [7-9].
The advantage of the empirical model is that it requires fewer input parameters. Therefore,
it has been widely used to simulate snow and glacier melting in Northern Europe, the Alps,
the Greenland ice sheet, the Tibetan Plateau, and other regions [10,11]. Some hydrological
models, such as Snowmelt Runoff Model (SRM) [12,13] and the HBV model [14,15], also
use an empirical model to describe the melting process of ice, snow and glacier. These
snowmelt runoff simulations also achieved good results [16-19]. However, the empirical
model simulation accuracy decreases with the improvement in time resolution, and it is
impossible to describe the spatial variation of snow surface ablation [20]. Compared with
the empirical model, the snow model based on energy balance can better reflect the physical
process, the exchange of energy and water between snow cover and atmosphere, the snow
melt infiltration, the dynamic change in snow surface albedo, the compaction of snow cover,
and other processes [21-23]. Therefore, physical models have a wide range of applications.
There are many snowmelt models based on energy balance, such as the Utah Energy
Balance model (UEB) [24] and the SNOWPACK model [25,26]. Some hydrological models,
such as VIC [27] and WEB-DHM [28], also use physical models to describe snowmelt
runoff. Land surface models, such as CLM [29], Noah-MP [30,31] and SURFEX [32], have
continuously evolved according to the requirements of atmospheric and hydrological
disciplines and can also effectively simulate snow processes. Wrzesien et al. [33] combined
the Weather Research and Forecasting (WRF) regional climate model with the Noah-MP
model to simulate the snow cover fraction (SCF) and snow water equivalent (SWE) over
the central Sierra Nevada Mountains and demonstrated that the models can be an efficient
approach to simulate snow processes.

Irtysh River is the second largest river in Xinjiang, and it is also an international river.
It flows through China, the Republic of Mongpolia, Kazakhstan, and Russia, which plays
an important role in the social and economic development of these countries [23]. Snow
has an important contribution to the hydrological process in the basin. However, due to
the lack of systematic observation, there is little research on snow cover in the basin. Wu
et al. [34] used a UEB model to simulate the snowmelt process at a site in the upper reaches
of Irtysh River Basin. Wu et al. [35] coupled the WRF model with the temperature-index
model to simulate snow melt in the Kayiertesi River Basin, which is in the upper reaches
of the Irtysh River Basin. Zhang et al. [36] used a stable isotope technique to analyze the
influence of snow melt water on regional hydrological processes in the upper reaches of
the Irtysh River Basin. Wu et al. [37] relied on the Geomorphology-Based Ecohydrological
Model (GBEHM) to simulate snowmelt processes of a river basin in the Altai Mountains of
northwestern China. However, these studies mainly focused on small parts of the Irtysh
River Basin, and there is a lack of research on the snow cover process in the whole basin.

Based on the above background, this study used two sets of high-resolution meteoro-
logical forcing data sets as drivers to simulate the spatial-temporal change in snow cover in
the Irtysh River Basin from 2000 to 2018 by using the Noah-MP model. The main objective
of this study is to obtain the dynamic change process of snow cover in the Irtysh River
Basin in recent decades. The rest of the paper is arranged as follows: The overview of the
study area and the models, data and statistical methods used in this study are introduced
in Section 2. In Section 3, the simulation results of the Noah-MP model were verified at
a single site, and the parameterization scheme suitable for the study area was selected
and the long time series snow cover process in the whole study area was simulated. In
Section 4, we discuss the possible reasons for the simulation errors and the shortcomings
of this study. The conclusions are presented in Section 5.
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2. Materials and Methods
2.1. Study Area

Irtysh River is the largest tributary of Ob River. It originates from the Altai Mountains,
crosses the Chinese border, and flows west through Zaysan Lake and northwest across
eastern Kazakhstan. The total length of Irtysh River is 4248 km, and total area of the
basin is 1.64 million km? [38]. The upper reaches are above the border between China and
Kazakhstan, the middle reaches are above the border between Kazakhstan and Russia, and
the lower reaches are from the border between Kazakhstan and Russia to the confluence of
the Ob River. Our study area is located in the Irtysh River Basin of China (Figure 1), with a
river length of 633 km and a basin area of 4.53 x 10* km?. The annual average precipitation
of the basin is 200-500 mm, and the annual average runoff at the estuary is 95 billion md.
The basin is higher in the northeast and lower in the southwest, with an average elevation
of 1790 m. It has a temperate continental climate in the middle temperate zone, with long
and cold winters and short and cool summers. The average annual temperature is about
4 °C. The water vapor in the basin mainly comes from the Atlantic Ocean, the precipitation
is more in winter and summer than in spring and autumn, and there is more snowfall than
rainfall. The runoff is mainly supplied by snow melting, precipitation, and ice melting.
The proportion of snow melting water is the largest, accounting for 45%, while rainfall
and glacier melting water account for 26% and 7.7%, respectively. The snow cover period
lasts from November to April of the next year, and the snow cover period is longer in the
areas with higher elevations [39]. The snow cover is thick, and the maximum snow cover
thickness can even reach more than 1 m in some years.
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Figure 1. Geographical location of the Irtysh River Basin.

In the Irtysh River Basin, the National Meteorological Administration of China has
set up three meteorological observation stations in Altay, Habahe, and Fuyun. The ob-
servations include temperature, relative humidity, wind speed, and precipitation. The
observations of Altay station also include downward shortwave radiation. In the up-
per reaches of the basin, the Kuwei comprehensive meteorological observation station
(47°21'9.1" N, 89°39'43.22"" E; altitude of 1379 m) was set up in 2011. At the Kuwei site,
meteorological observations include temperature, wind speed, wind direction, relative hu-
midity, precipitation, downward and upward shortwave radiation, and longwave radiation;
snow observations include snow depth, snow water equivalent, and snow temperature;
and soil observations include soil temperature, soil moisture, and soil heat flux. The
specifications of these observation instruments are presented in Table 1.
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Table 1. Specifications of the observations and the instruments at Kuwei site.

Observations Instruments Accuracy
Air temperature 1000 Q) PRT, IEC 751 1/3 Class B +0.4 °C
Wind speed R.M. YOUNG 05103 +0.3m/s
Wind direction R.M. YOUNG 05103 +3°
Relative humidity HUMICAP 180R +2%
Precipitation Geonor T-200B £0.1 mm
Radiation Kipp and Zonen CNR4 +1%
Snow depth Campbell SR50A +1cm
Snow water equivalent Snow pillow +1mm
Snow temperature Campbell SI-111 (USA) +0.5°C
Soil temperature Hydra +0.1°C
Soil moisture Campbell CS616/CS625 (USA) +0.1%
Soil heat flux Thermopile +5%
Data logger Campbell CR1000 (USA) -

2.2. Model Description

Noah-MP is a new land surface model developed on the basis of the Noah model [30,31].
Compared to Noah, Noah-MP adds 12 physical processes and provides multiple alternative
parameterization schemes for each physical process (Table 2). The physical processes
directly related to snow cover include snow surface albedo (ALB) and rainfall and snowfall
(SNF). Snow/soil temperature time scheme (STC) is a solver option used to solve heat
conduction equations and also has a great impact on snow cover [40]. You et al. [40] also
proposed that surface layer drag coefficient (SFC) is also closely related to snow cover
process.

Table 2. Alternative parameterization schemes for 12 physical processes in Noah-MP model.

Physical Process Short Name Parameterization Schemes
. 1. prescribed (table LAI, shdfac = FVEG); 2. dynamic; 3.
Vegetation model DEVG tablg LAI, calculate FVEG 4. table LAI, shdfac :ymaximum
Canopy stomatal resistance CRS 1. Ball-Berry; 2. Jarvis
Soil moisture factor for stomatal resistance BTR 1. Noah; 2. CLM; 3. SSiB
Runoff and groundwater RUN 1. SIMGM,; 2. SIMTOP; 3. Schaake96; 4. BATS
Surface layer drag coefficient SEC 1. M-O; 2. Chen97
Supercooled liquid water FRZ 1. NY06; 2. Koren99
Frozen soil permeability INF 1. NY06; 2. Koren99
Radiation transfer RAD 1. gap = F (3D, cosz); 2. gap = 0; 3. gap = 1-veg
Snow surface albedo ALB 1. BATS; 2. CLASS
Rainfall and snowfall SNF 1. Jordan91; 2. BATS; 3. Noah
Lower boundary of soil temperature TBOT 1. zero-flux; 2. Noah
Snow /soil temperature time scheme STC 1. semi-implicit; 2. fully implicit
2.3. Dataset

ERA-Interim [41] and CMFD [42-44] were used as driving data for the Noah-MP
land surface model, respectively. ERA-Interim data were downloaded from the European
Centre for Medium-Range Forecasts (https://apps.ecmwf.int/ (accessed on 4 May 2020)).
Air temperature, dew point temperature, and wind speed are real-time data with a time
resolution of 6 h. Radiation and precipitation are forecast data, and 3 h time resolution
can be obtained through processing. There are 11 kinds of spatial resolution available; the
highest resolution is 0.125 x 0.125°, the lowest resolution is 3 x 3°, and the data resolution
selected in this study is 0.125 x 0.125°. The CMFD data has a temporal resolution of 3 h
and a spatial resolution of 0.1 x 0.1°. The data can be downloaded from the National
Tibetan Plateau Third Pole Environment Data Center (http://data.tpdc.ac.cn/ (accessed
on 26 April 2020)), and the detailed description of the data can also be obtained from the
website.
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In addition to meteorological data, land use data is also needed for Noah-MP model
operation. In this study, we selected the global land use data developed by Tsinghua
University (http://data.ess.tsinghua.edu.cn/ (accessed on 10 May 2020)), and the spatial
resolution of the data was 30 m [45]. By resampling, we obtained land use data with the
same resolution as ERA-Interim and CMFD data.

A gridded dataset of snow depth at Chinese meteorological stations (GDSD) was used
to evaluate the simulation accuracy of the Noah-MP model at watershed scale. GDSD
data was obtained by interpolation based on the snow depth data observed by more than
700 meteorological observation stations in China [46]. This interpolation method divides
the 200 km range into one unit, calculates the orientational relationship (O), distance (D),
and correlation coefficient (C) of all observation stations in each unit, and finally determines
the interpolation weight of each grid point based on the relationship between O, D, and
C. This interpolation method fully considers the spatial representation of snow depth at
each station and its functional relationship with the snow depth at surrounding stations.
The gridded snow depth obtained by this interpolation method was also compared with
the snow depth data obtained by arithmetic average method and inverse distance weight
method. The results show that the difference of snow depth data obtained by the three
methods is very small. The GDSD data has a temporal resolution of about 5 days and a
spatial resolution of 0.5 x 0.5°. This data can be downloaded from the National Cryosphere
Desert Data Center (http:/ /www.ncdc.ac.cn/ (accessed on 31 May 2021)) and a detailed
description of the data can also be found on this website.

The error of snow depth simulated by the Noah-MP model was also compared with
two sets of snow depth data retrieved based on microwave remote sensing. The first
was the long-term series of daily snow depth dataset in China (LSD) released by Che
and Dai [47], and the second was China’s daily snow depth and snow water equivalent
products (CSS) released by Jiang et al. [48]. These two sets of data were both produced
using SMMR, SSM/I, and SSMIS satellite remote sensing brightness temperature data with
a spatial resolution of 25 km x 25 km and a temporal resolution of 1 day. The LSD data can
be downloaded from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/
(accessed on 23 May 2021)) and the CSS data can be downloaded from the National
Cryosphere Desert Data Center (http://www.ncdc.ac.cn/ (accessed on 31 May 2021)).

2.4. Statistical Method

Several statistical indicators were used to represent the characteristics of snow cover
in the study area and the accuracy of simulation results or meteorological data. These
indicators are listed as follows:

(1) Snow year

The snow year is considered to be the time from the beginning of snow accumulation in
a year to the next year before the snow starts to accumulate. According to the characteristics
of snow cover in the Irtysh River Basin, we regard 1 September to 30 August of the following
year as a SNow year.

(2) Mean deviation (MD) and root mean squared error (RMSE)

Mean deviation (MD) and root mean squared error (RMSE) are used to evaluate the
accuracy of model simulation results or weather-driven data. The calculation formulas of
MD and RMSE are as follows:

n
MD = 1y (RD, - 0)) )
i3
RMSE = li (RD; — 0;)* @)
- nl:l 1 1

In the above formula, RD; is the meteorological value recorded by meteorological
forcing data or the snow parameter value simulated by the model at ith time, O; is the
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observed meteorological element or snow parameter value at ith time, and 7 is the number
of samples. The closer the MD and RMSE values are to 0, the higher the accuracy of
meteorological forcing data or model simulation results are. If the MD value is greater than
0, it means meteorological forcing data or simulation results are overestimated, and if the
MD value is less than 0, it means underestimated.

(8) Linear slope and Mann-Kendall test

The linear slope is used to indicate trends of snow depth, snow water equivalent, snow
days, and other snow parameters. The Mann-Kendall (M-K) test is used to determine the
significance of the trends. When the statistic p > 0.1, the change trend of the time series is
not significant; otherwise, the change trend is significant. The calculation process of the
M-K method can be found in the published literature [49].

3. Results
3.1. Testing Noah-MP Model at Kuwei Site

In order to evaluate the simulation effect of the Noah-MP model on a single point,
we first drive the model based on the meteorological observation data of Kuwei site from
September 2013 to April 2014, and verify it based on the observed snow depth and snow
water equivalent. As can be seen from Table 2, Noah-MP can combine more than 20,000
optional parameterization schemes. You et al. [40] tested these parameterization schemes
at a site in the Altai Mountains, which is also located in the Irtysh River Basin, and the
results show SFC and STC have the greatest influence on the simulation results of snow
depth and snow water equivalent. At the Kuwei site, we also tested the SFC and STC
parameterization schemes, and obtained four simulation results (Figure 2a,b). It can be
seen from Figure 2a,b that different SFC and STC schemes have little influence on the
simulation results during the snow accumulation period, but have a great influence on
the simulation results during the ablation period. During the ablation period, the effect
of SFC scheme on the simulation results was smaller than that of STC; when STC uses a
fully implicit scheme, the error of simulated snow depth and snow water equivalent is
greater than that of a semi-implicit scheme. The ALB and SNF parameterizations schemes
were also tested at the Kuwei site. From the results obtained (Figure 2c—f), ALB mainly
affects the melting process of snow, while SNF mainly affects the accumulation process.
However, compared with STC, ALB and SNF have much less influence on the snow cover
process. Furthermore, the simulated snow depth of all combined schemes is less than the
observed value. In this study, SR50 sensor with a resolution of 1 cm is used for snow depth
observation at the Kuwei site. However, in actual monitoring, especially in mountainous
areas with complex terrain, the error of the SR50 sensor may be much higher than 1 cm.
This may also be an important reason for the difference between the Noah-MP-simulated
and the observed snow depth during the snow accumulation and melting period.
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Figure 2. Modeling snow depth (a,c,e) and snow water equivalent (b,d,f) using Noah-MP model
at Kuwei site. SFCISTC1 means the surface layer drag coefficient uses the M-O scheme, and
snow /soil temperature time uses the semi-implicit scheme. Similarly, the parameterization schemes
selected by SFC1STC2, SFC2STC1, SFC2STC2, SFC1STC1AB1, SFC1STC1AB2, SFC1STC1AB2SNF1,
SFC1STC1AB2SNF2, and SFC1STC1AB2SNEF3 can be obtained.

3.2. Testing Noah-MP Model in the Irtysh River Basin

From the simulation results at the Kuwei site, the simulation accuracy of SFC1STC1
and SFC2STC1 is better than that of SFCISTC2 and SFC2STC2. At another site in the Irtysh
River Basin, You et al. [40] also proposed that the SFC1STC1 scheme has the best simulation
accuracy for snow depth and snow water equivalent. Combined with the test results of
this study at the Kuwei site, we chose the SFCISTC1AB2SNF1 scheme to simulate the
snow depth and snow water equivalent at the whole basin, and the other eight schemes
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adopted the default selection of the model. Considering that the Noah-MP model requires
a long time to reach equilibrium state [50-52], this study refers to the method proposed
by You et al. [53], and uses the forcing data from 1 January 2000 to 30 August 2001 to
spin-up the model. Through the simulation, we get the simulation results of snow depth
and snow water equivalent at a 3 h time scale in the Irtysh River Basin from September
2001 to December 2018. In order to evaluate the accuracy of the model simulation results,
we process the snow depth data from all sources to the same time resolution as the GDSD
data, and give the time series of the average snow depth in the Irtysh River Basin (Figure 3).
As can be seen from Figure 3c,d, the accuracy of snow depth simulated by the Noah-MP
model is distinctly higher than that obtained based on microwave remote sensing inversion
in the Irtysh River Basin. In years with small snow depth, the snow depth recorded by
LSD and CSS data is highly consistent with GDSD data. However, in years with high
snow depth, such as 2002, 2006, 2008, 2009, 2010, and 2012, LSD and CSS snow depth
are seriously underestimated. The snow depth series simulated based on the CMFD and
ERA-Interim data were in good agreement with the GDSD data. Through the calculation
results of MD and RMSE (Table 3), it is found that the MD and RMSE values between
Noah_CMFD and GDSD are smaller than those between Noah_ERA and GDSD. Therefore,
the results obtained by using CMFD as the driving simulation in Irtysh River Basin are the
most accurate.

100

100

(a) GDSD (b) GDSD
Noah CMFD Noah ERA|
80 E 80 g
60 g 60 B
5 £
S 3
a a
7 @
40 g 40 B
20 g 20 B
04 T T T T = 04 T T T T =
2001/6/10  2004/6/10  2007/6/10  2010/6/10  2013/6/10 2001/6/10  2004/6/10  2007/6/10  2010/6/10  2013/6/10
100 T T T T 100 T T T T
(c) —— GDSD (d) —— GDSD
——LSD ——Css
804 1 80 g
= 901 12 B
S 3
[=] a
7 @
40 1 40 R
204 1 20 B
04 T T T T = 04 T T T T -
2001/6/10  2004/6/10  2007/6/10  2010/6/10  2013/6/10 2001/6/10  2004/6/10  2007/6/10  2010/6/10  2013/6/10

Figure 3. Average snow depth (SD) of each five-day period in the Irtysh River Basin from September
2001 to August 2014 based on GDSD data and CMFD simulation (a), GDSD data and ERA-Interim sim-
ulation (b), GDSD and LSD data (c), GDSD and CSS microwave remote sensing data (d). Noah_CMFD
represents the SD series by Noah-MP simulation with CMFD as the driving data and Noah_ERA
represents the SD series by Noah-MP simulation with ERA-Interim as the driving data.

Table 3. MD and RMSE values between Noah_CMFD, Noah_ERA, and GDSD snow depth.

Noah_CMFD vs. GDSD Noah_ERA vs. GDSD

MD
RMSE

5.07
6.47

10.27
11.32
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3.3. SD and SWE Distribution and Variation Characteristics in the Irtysh River Basin

Based on the simulation results of the Noah-MP model, the annual maximum snow
depth and snow water equivalent are calculated, and the spatial distribution of annual
average maximum snow depth and snow water equivalent in the Irtysh River Basin is
given (Figure 4). It can be seen from Figure 4 that the annual average maximum snow
depth and snow water equivalent simulated based on CMFD and ERA-Interim data have
good consistency in spatial distribution. Both snow depth and snow water equivalent are
high in the north and low in the south of the basin. This spatial distribution feature is
consistent with the topography of the basin. In the north of the basin, the altitude is high
and the temperature is relatively low, which is conducive to the accumulation of snow. In
the south of the basin, the altitude is relatively low, the temperature is relatively high, and
the snow is easier to melt. Based on CMFD and era interim data, we also give the spatial
distribution characteristics of the annual average precipitation in the basin (Figure 5). It can
be seen from Figure 5 that the precipitation in the north of the basin is much higher than
that in the south. High altitude and higher precipitation are the main reasons for the higher
snow depth and snow water equivalent in the north of the basin than that in the south.
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Figure 4. Annual average maximum snow depth and snow water equivalent from 2001 to 2018 based
on Noah-MP simulations. (a,c) represent SD and SWE with CMFD as the drive, (b,d) represent the
results obtained with ERA-Interim as the drive.

When analyzing the temporal variation characteristics of snow cover, because the
accuracy of snow depth based on ERA-Interim simulation is slightly lower than that based
on CMFD simulation, only the simulation results based on CMFD data are selected. In ad-
dition to the average maximum snow depth (SDpax) and snow water equivalent (SWEnax),
we also selected the average snow days, the average start time of snow accumulation
(STSA), and the end time of snow melting (ETSM) to analyze the variation characteristics
of snow from 2001 to 2017. The linear slope and M-K test were used to determine the trend
of these time series (Figure 6). As can be seen from Figure 6, the maximum snow depth,
snow water equivalent, and snow days in the Irtysh River Basin showed an insignificant
decreasing trend from 2001 to 2017. The start time of snow accumulation was delayed, but
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the change trend was not significant, while the end time of snow melting was significantly
advanced.
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Figure 5. Spatial distribution of annual average precipitation based on CMFD (a) and ERA-Interim
(b) data in the Irtysh River Basin.
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Figure 6. Average SDmax (a), SWEmax (b), snow days (c), STSA (d), and ETSM (e) in the Irtysh River
Basin from 2001 to 2017.

4. Discussion
4.1. The Influence of Data Quality Uncertainty on Simulation Results

In previous studies, Guenther et al. [9] and Zhang et al. [54] analyzed the factors that
affect the accuracy of snow cover simulation by land surface process model, and found
that the uncertainty of forcing data has a greater impact on the simulation results than the
structure and parameterization scheme of the model itself. In this study, meteorological
station observation data were used to evaluate the accuracy of CMFD and ERA-Interim
data. Since the data of Habahe, Altay, and Fuyun stations are used in the production of
CMEFD data, only the observation data of Kuwei station were selected. Meteorological data
from CMFD and ERA-Interim were extracted based on the longitude and latitude of the
Kuwei site. Scatter plots were drawn based on the CMFD, ERA-Interim, and the observed
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data, and the accuracy of the two meteorological forcing data was evaluated using MD
and RMSE statistical parameters (Figure 7). It can be seen from Figure 7 that there are
some deviations between CMFD, ERA-Interim and the observed temperature, wind speed,
relative humidity, precipitation, and downward shortwave and longwave radiation. On
the one hand, the reason for this phenomenon lies in the difference in spatial range between
grid points and stations; on the other hand, the error of meteorological forcing data itself
is also an important reason. From the calculated MD and RMSE values, the accuracy of
CMFD temperature, wind speed, and downward shortwave and longwave radiation data
is higher than ERA-Interim data. Although the accuracy of ERA-Interim relative humidity
and precipitation is slightly better than that of CMFD at the Kuwei site, considering that
the CMFD precipitation and relative humidity data were generated through fusion of
remote sensing products, reanalysis datasets, and in situ station data [42], it is considered
that CMFD also has high accuracy at the watershed scale. This is also the reason why the
modeled snow depths by using the CMFD data are more consistent with GDSD data.
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Figure 7. Scatter plot based on the hourly CMFD, ERA-Interim, and the observed temperature (a,g),
relative humidity (b,h), wind speed (c,i), precipitation (d,j), downward shortwave radiation (e k),
downward longwave radiation (f,1) data during the study period.
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4.2. Limitations of This Study

In high-latitude mountainous areas, wind blowing snow is also a factor that cannot
be ignored. Wind blowing snow includes material migration and sublimation, which
have great influence on the secondary distribution of snow in space [55,56]. In previous
studies, the minimum wind speed threshold for wind blowing snow was generally set at
7m/s [57], and when the wind speed is higher than the threshold, blowing snow will occur.
Through the analysis of the daily maximum wind speed at the Altay, Habahe, and Fuyun
meteorological stations in the study area from 2001 to 2018 (Figure 8), it was found that
there are many days when the daily maximum wind speed of the three stations exceeds the
wind blowing snow threshold. However, the Noah-MP model lacks the consideration of
the wind blowing snow process, which may also be an important reason for the deviation
between the snow depth simulated in this study and GDSD data.
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Figure 8. Daily maximum wind speed at the Altay, Habahe, and Fuyun sites from 2001 to 2018.

5. Conclusions

In this study, we tested the Noah-MP model for snow accumulation and melting
process modeling at the Kuwei site in the Irtysh River Basin, and simulated the snow cover
process by using CMFD and ERA-Interim as forcing data at the whole basin from 2000 to
2018. The simulation results were also compared with the gridded dataset of snow depth at
Chinese meteorological stations (GDSD) and snow depth obtained from microwave remote
sensing (LSD and CSS data). The main findings are as follows:

(1). STC, SFC, and ALB schemes mainly affect the snow melting process, while SNF
mainly affects the accumulation process. Among the four schemes, STC has the
greatest impact on the accuracy of snow cover simulation. When STC use the semi-
implicit scheme, the overall simulation accuracy is better than that of the fully implicit
scheme.

(2). CMFD and ERA-Interim as the forcing data can accurately simulate the snow accu-
mulation and melting process of the whole basin, and the results of CMFD simulation
are more accurate than those of ERA-Interim simulation. The main reason is that the
data accuracy of CMFD is higher than that of ERA-Interim.

(3). In the years with low snow depth, the snow depth retrieved based on microwave
remote sensing is in good agreement with the observed snow depth. However, in the
years with high snow depth, such as 2002, 2004, 2008, 2009, 2010, and 2012, the snow
depth retrieved by remote sensing is seriously underestimated.

(4). Spatially, the snow depth and snow depth equivalent in the north of Irtysh River Basin
are higher than those in the south, mainly because the altitude and precipitation in
the north are higher than those in the south. The snow depth, snow water equivalent,
snow days, and the start time of snow accumulation (STSA) in the basin did not
change significantly from 2001 to 2017. However, the end time of snow melting was
obviously advanced.
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Abstract: In 1912, a Swiss expedition led by meteorologist Alfred de Quervain crossed the Greenland
ice sheet on a route from Disko Bay to Tasiilaq. Based on that, in 2002, a series of geodetic expeditions
carried out by W. Korth and later by T. Hitziger began along the same traverse as in 1912, with the
last measurements taken in May 2021. The statically collected GPS/GNSS data provide very accurate
elevation changes at 36 points along the almost 700 km long crossing over a period of 19 years.
According to this, there is a maximum increase of 2.1 m in the central area and a decrease of up to
38.7 m towards the coasts (influence Ilulissat Isbree). By using kinematic GNSS measurements, there
is a very dense profile with a spacing of a few meters. The comparison of those measurements is
performed using crossing points or minimum distances and gives equivalent results for both methods.
It is shown that local ice topography is preserved, and thus gaps in data sets can be caught. Areas of
accumulation and ablation on the ice sheet can be identified, showing the widespread influence of
outlet glaciers up to 200 km. The data can be used for direct verification of altimetry data, such as
IceSat. Both IceSat elevations and their changes can be compared.

Keywords: Greenland ice sheet; monitoring; GNSS; expedition; Jakobshavn Isbrae; Helheim Glacier;
IceSat; climate change; glacier profile

1. Introduction

This article is dedicated to the geodesist, polar explorer, and friend Wilfried Korth. He
was the project initiator and scientific leader for a long time. The article is also based on his
results, so he is mentioned here in memory as an additional author (Figure 1).

Figure 1. Project initiator Wilfried Korth (1959-2019) on his last Greenland Expedition in 2017.

The processes and consequences of climate change have been discussed for many
years. Leaving aside catastrophic changes such as volcanic eruptions or earthquakes,
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it is indisputable that never in the recent history of the Earth, i.e., in the last million
years, have there been fundamentally very rapid changes in the living conditions on our
planet [1]. However, the climate today is changing rapidly. Geodetic measurements can
make important and precise contributions to the monitoring of changes. In addition to
remote sensing technique, which uses a wide variety of technologies, there are also ground-
based measurements. These serve as “ground truth” for remote sensing, but because of
their accuracy, they can also be used independently.

In the 1970s, only ground-based measurements, often obtained during scientific ex-
peditions or from measuring stations, could be used to monitor the Greenland ice sheet.
Aerial methods were also used, but only for coastal parts of Greenland. Here it is worth
recalling the pioneering expeditions that began exploring inland Greenland more than a
century ago.

One of the first was certainly the expedition of Fridtjof Nansen (1888-1889), who
was the first to cross the southern part of Greenland on skis [2]. He brought back a
wealth of scientific information and meteorological measurements and proved that the
entire Greenland interior was covered by an ice sheet. Another important expedition
was undertaken by the Swiss Alfred de Quervain in 1912. De Quervain, a meteorologist,
crossed Greenland with three other expedition members considerably further north than
Nansen [3]. He was shortly followed by Alfred Wegener and Lauge Koch [4,5].

After the First World War, expeditions were more frequent and much better prepared
technically. Airplanes also began to be used for research after the First World War. The
systematic mapping of the coastline by the Danish Geodetic Survey in 1931-1934 was
significant. The mapping work was carried out using photogrammetry from an aircraft.
Today there are thousands of unique photographs in the Danish Airbase project database,
which serve as a source of information on the historical state of glaciation [6,7]. Several
US military airfields were built in Greenland during World War II, some of which were
converted to civilian airfields after the war and are still in use today [8]. Germany also
built a small meteorological base in Greenland, but it was destroyed by an American air
raid [9]. After the war, economic development began in Greenland, but other US military
bases were also built in Greenland during the Cold War. More intensive research on the
Greenland ice sheet took place after the fall of the Iron Curtain in the 1990s.

Modern instruments, expedition equipment, and technical support were available,
as well as the possibility of using satellite data. The significant progression of global
warming and the rapid melting of the western and southern parts of the Greenland ice
sheet, in particular, increased interest in research activities [10-12]. Combined data sources
and non-traditional technologies like drones, for example, were used in research. Today,
drones are the most popular, which allow very detailed measurements in smaller areas, e.g.,
tracking the movement of a glacier face or capturing the surface with cm resolution [13-15].
Special remote sensing satellites have been used for a long time, since the 1970s, but it’s
only relatively recently that some data has been free of charge and freely downloadable.

Geodetic satellites monitor gravity changes, radar satellites can use INSAR technology
to determine displacements or create digital surface models, and optical satellite systems
can help monitor the extent of glaciation [13,16]. Fast and accurate GNSS instruments
can monitor the height or movement of glaciers [17-19]. In the context of Arctic polar
research, it is worth remembering Nansen’s unique polar expedition on the Fram ship
(1893-1896); this was followed in 2019 by an international expedition aboard the modern
research ship Polarstern. The aim was the comprehensive mapping of the Arctic and, in
particular, research on global warming [20]. Glacier changes related to global warming
have been investigated in many other scientific papers [21,22].

Twenty years ago, in the summer of 2002, geodesist Wilfried Korth (Figure 1) started
a climate research project in Greenland. The main objective was to determine elevations
and their changes along a profile across the Greenland ice sheet. A 700 km traverse was
surveyed between Tasiilaq on the east coast and Ilulissat on the west coast of Greenland (see
Figure 2). After his tragic death, however, some members of his expeditions continued his
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work. This provided another valuable amount of information on the changing Greenland
ice sheet. The results from all the expeditions are summarized in the following text.
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Figure 2. Map of Greenland [17] and route of Greenland Korth Expedition (GKE) with walking
direction, camps from 2002 and historical camps from 1912. The blue line approximately marks
the catchment area of the Helheim and Ilulissat (Jakobshavn) glaciers and the top of the Greenland
ice sheet.

This route was first successfully crossed by the Swiss Alfred de Quervain in 1912.
Even if the accuracy of his measurements was only relatively low compared to today’s
possibilities, the large time difference of more than a hundred years naturally tempts a
comparison [18], which is especially interesting in the strongly changing marginal area of
the ice sheet.

Meanwhile, during the eight expeditions since 2002, the profile was surveyed five
times completely and three times partially with high accuracy (see Table 1). The process
results in surface elevations with a measurement accuracy of 3-5 cm, from which annual
surface changes are derived with similar accuracy. The measurements were carried out
between the end of July and the beginning of September. During this period, the summer
thaw was ending, while the winter snowfall had not yet begun. It is, therefore, the time of
the year when the seasonal variations in ice elevations reach their minimum.

Table 1. Overview of geoscientific Expeditions on the historic route.

Year Scientific Director Method of Measurement Remark

1912 A. de Quervain barometric 39 camps; accuracy in the coastal area +/—3-5m

2002 W. Korth GPS static 34 positions; +/—3 cm

2006 W. Korth GPS static 34 positions; +/—3 cm

2010 W. Korth GNSS static 34 positions; +/—2 cm

2012 W. Korth GNSSS static only east coast; 17 positions +/—2 cm

2015 W. Korth GNSS kinematic and static continuous profile; spot spacing 2-6 m; 700 km; +/—3 cm
2017 W. Korth GNSS kinematic continuous pr.; spot spacing 2-6 m; approx. 180 km; +/—3 cm
2020 T. Hitziger GNSS kinematic continuous pr.; spot spacing 2-6 m; approx. 500 km; +/—3 cm
2021 T. Hitziger/]. Heim GNSS kinematic continuous pr.; spot spacing 2-6 m; approx. 680 km; +/—3 cm

Based on GNSS technology progress since the 2015 expedition, the measurement
program was changed. Unlike in previous years, not only were the profile points de-
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termined but the measurements were carried out continuously along the entire route at
1-second intervals. Thus, for the first time, a 700 km long profile with a point spacing of
less than 2 m is available. The possibilities for comparison with satellite data have thus
improved enormously.

Measurements on the ice sheet can be carried out in very different ways with today’s
technical possibilities. However, extreme problems occur, especially in the marginal areas,
which lead to limitations: the use of (heavy) snowmobiles is hardly possible because of
the numerous crevasses, which are often blown, and impossible in the large areas with
melt-water rivers, gullies, and ice humps. But this concerns the most interesting area, about
20-30% of the planned route.

As alogistical alternative, skis and pulkas (freight sledges) were used on all expedi-
tions, and the routes were covered on foot. What appears at first glance to be an increased
risk is, on closer inspection, a gain in safety. On some expeditions, kites were used as
towing devices on the glacier plateau. In good winds, it made the journey faster. The
comparatively low travel speed, on the other hand, is not a measuring problem because the
aim is to keep the distances between the measuring points as short as possible. Of course,
this type of expedition requires the willingness of the participants to face the physical
demands. But this has never been different throughout the history of polar research, from
the expeditions of the pioneers to the present day.

2. Materials and Methods

The basic measurement in this project was the use of GNSS. The theory of GNSS is
described in many technical articles, as well as the development of accuracy [23-25]. In
high geographical latitudes, the integration of the GLONASS navigation system proves to
be advantageous [26,27].

In our case, for the static GNSS measurements from 2002 to 2015, different generations
of Trimble antennas and receivers were used. Since 2015, additional kinematic GNSS
measurements have been performed using the NavXperience 3G + C antenna with the
Trimble R7 receiver in 2015. Subsequent expeditions used the combined Trimble R10 and
R12 systems. Portable GNSS units were used for orientation on all expeditions. Signals
in the L- and G-band range of GPS and GLONASS (later also BeiDou and Galileo) were
received. The accuracies of the campaigns are shown in Table 1. All measured coordinates
are used with ellipsoidal heights.

During the nearly 40-day expedition, field logs were made of antenna heights as
well as sled lowering depths and how they changed throughout the day. In addition to
these geodetic records, weather data and density measurements were also noted (2017,
2020, 2021).

2.1. Static GNSS Measurements

Static GNSS measurements were taken approximately every 20 km at the respective
overnight camps in 2002, 2006, 2010, 2012, and 2015, with each expedition member reaching
the camp established in 2002 to ensure comparability. Upon arrival, the antenna was set up,
aligned, and connected to the receiver (see Figure 3). The system is powered by solar cells.
The measurement time is between 8 and 12 h, and the equipment is stored at a sufficient
distance to avoid interference with the signal. The earlier measurements were made using
ground stations on both coasts (Kangerlussuaq and Kulusuk and Tasiilaq, Kangerlussuaq
and Ilulissat, respectively), and later, precision was achieved using Precise Point Positioning
(PPP) by correcting the orbits afterward. WGS84 was used as a reference frame.

68



Appl. Sci. 2022, 12, 12066

Figure 3. Static GNSS measurement during GKE 2015.

2.2. Kinematic GNSS Measurements

Kinematic GNSS measurements took place in 2015, 2017 (east coast only), 2020 (about
500 km), and 2021. The antenna was mounted on the pulka of an expedition member, and
there were second-by-second recordings of the individual GNSS points. The 2 systems,
GPS and GLONASS, were used (see Figure 4).

Figure 4. Kinematic GNSS measurement during GKE 2020 (a) on the pulka. (b) Trimble R12.

During post-processing, the TEQC software quality check was performed to verify the
quality of the obtained data and to adjust the approximate position in the header of the
observation files *.yyO of the RINEX data [26]. Because Greenland is a remote location and
the technology has evolved, no extension systems or ground stations were used as reference
stations for the kinematic measurements. Precise Point Positioning (PPP) in the Interna-
tional Terrestrial Reference Frame (ITRF2014) is used to achieve the precision of the data.
Natural Resources Canada (NRCan) is used as the provider. Uploading is done through a
web interface, and corrected positions are sent by mail. Using accurate ephemerides and
clock corrections, the position can be determined to the nearest centimeter [28]. It takes
13 days to calculate the final corrections, so this period should be weighted between data
collection and precision. Care should also be taken to use the correct evaluation method
(static/kinematic) with the associated data, to always have enough satellites available, and
to minimize the individual error sigma.

In the next step, the plate kinematics are considered, using 01.06.2015 (00:00:00) as the
reference date, and the corresponding displacements and rotations of the North American
plate are included in the plate motion model according to ITRF2014. This allows us to
compensate for the effect of the Glacial Isostatic Adjustment (GIA) in Greenland [29].
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After the data have been specified and reduced, they are further processed with Matlab.
An overview of the program flow can be seen in Appendix A. First, the entries for the
sled sinking depth and the antenna height are taken from the field book records. This is
followed by a temporal sort and subsequent low-pass filtering of the data using Gaussian
filtering to minimize the influence of noise. After a parameter study, a filter order of m = 50
is used as a target for the local topography of the Greenland ice sheet [30-32]. Due to the
second-by-second measurement points and the largely tall jump-free relief, more distant
points can also be considered for smoothing.

Two different principles are used to compare the GNSS kinematic data. First, crossing
points are investigated, which requires a linear interpolation of two data points at the same
position coordinates. Second, the principle of minimum distances between each data point
of the 2015 expedition and subsequent expeditions is considered [32-36].

2.2.1. Crossing Point Comparison

For this purpose, the data are converted into the appropriate format so that they can
be read and processed by the Linux-based program Generic Mapping Tool (GMT). The
crossing points are determined as a linear interpolation between two different years. It
should be noted that these are calculated values and not measured values. However, the
advantage is that the position coordinates match exactly, and local unevenness has less
influence. Since there are no large jumps on the Greenland ice sheet, the method is well
suited. The x2sys package included in GMT is used for the calculation. The obtained
crossing points are transformed to UTM coordinates in order not to neglect the curvature
of the Earth. Then, the crossing points are assigned to the continuous track of the 2015
expedition by using the closest data point in each case. This method is sufficiently accurate
over the entire track of nearly 700 km. In each case, the distances within a UTM zone are
searched. The altitude differences previously calculated with GMT can now be visualized
and analyzed.

2.2.2. Comparison of the Minimum Distances

For the comparison over the minimum distances, UTM coordinates are also used, and
the holding times, which are caused, e.g., by pauses, are eliminated. As tolerance for the
elimination of values, the distance of 0.005 m is used. Thus, the total matrix can be slimmed
down considerably, and the computation time is shortened enormously. With this method,
the distances of the position coordinates of an expedition to those of a following expedition
are determined, and afterward, the respective data point with the smallest distance to the
reference distance (here: 2015) is assigned. The calculation is very time-consuming and can
be significantly shortened by using multiple processors via parallel computing in Matlab.
After each point is assigned a minimum distance to a point in the follow-up measurement,
data that are above tolerance are truncated. For the Greenland ice sheet, this was chosen
for 5 m after the completion of the parameter study.

In addition, an adjustment to the data was made for the crossing point comparison.
In the seasonally comparable expeditions in 2015 and 2020, almost 200 km were missing
on the west coast because the expedition had to be aborted prematurely. However, in the
following May 2021, the route could be walked completely, so the elevation component
of the coordinates on the west coast is shifted to the connection point. The further one
moves away from the endpoint of the 2020 expedition, the greater the uncertainty in the
result becomes. Finally, the differences obtained are plotted and illustrated using Matlab’s
mapping toolbox.

3. Results
3.1. Static GNSS Measurements

Static measurements were made at 36 points spaced about 20 km apart. Figure 5 shows
the mean annual elevation change at these points.
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Figure 5. Annual elevation changes in the camps from 2002.

The catchment areas of the two glaciers Helheim (East coast in Figure 5) and Ilulissat
Isbrae (West coast in Figure 5) are clearly visible. The watershed is located at km 420 (in
Figure 5) and represents the highest point along the route. The 2002, 2006, 2010, and 2015
measurements seem to indicate an acceleration of mass loss, but the 2020/21 measurement
does not confirm this. It appears that longer time series are needed to identify more
reliable trends.

Figure 6 shows the absolute elevation changes at the camps between 2002 and 2021.
While there is hardly any increase in the accumulation area (max. 2.1 m), there is an
elevation loss of max. 38.7 m in the reservoirs in the Ilulissat Isbree catchment. An elevation
decreases of max. 6.4 m in the comparable area in the Helheim Glacier catchment and
10.1 m in the marginal area of the ice sheet on the east coast can be seen in Figure 6.
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Figure 6. Total elevation changes in the camps from 2002.

3.2. Kinematic GNSS Measurements
3.2.1. Profile Comparison

First, the elevation profiles are compared. These retain their rough but finer details,
which can be seen when magnified (Figure 7). As expected, the ice elevation decrease is
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more pronounced along the coasts, which is enhanced by the two outlet glaciers Helheim
(fastest flowing outlet glacier on the east coast of Greenland at approx. 30 m/d and
Jakobshavn Isbree (the most productive glacier on the west coast) since the expedition
route lies within the influence of these [28]. However, when local ice elevation topography
is considered, slight terrain elevations show a larger elevation change than the adjacent
depressions (Figure 7). Overall, individual values fluctuate up to +/—30 cm per year
around a sectionally stable mean or median.
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Figure 7. Comparison of a selected part of the profile from 2015 and 2020.

3.2.2. Elevation Change Comparison

With the help of the crossing point comparison, between 300 and 3000 intersections
could be found, depending on the comparative section of the respective expedition, pro-
viding a dense network of data over the entire route. On the sections covered by skis and
pulka, the density is significantly higher than in the sections covered by the kite. In practice,
it is easier to generate crossing points in these areas because the speed traveled is lower.
Particularly in the marginal area of the ice sheet, the variance of measured values is larger
when comparing the expeditions’ data, which is mainly due to the surface topography, as
it is characterized by meltwater channels (see Figure 8) at the time of most expeditions
(except 2021). In addition, the change from the minimum distance calculation is added here.
After applying the previously described cutoff rule with a tolerance of 5 m, significantly
more comparison points remain than for the crossing points. Occasionally, measurement
gaps occurred during the expeditions, so no comparison is possible at these points.

Figure 8. Meltwater channels during the expedition 2020 on the east coast.
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The elevation change produces very similar results with both methods (Figure 9).
Statistical values such as the mean and median deviate only by 2-3 cm in selected sections.
However, the method is not generally valid in this form. Only because of the known
topography of the ice sheet with few slopes does it remain very reliable. However, it can be
assumed that the error in the method of minimum distances is larger than in the method of
the crossing point comparison.
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Figure 9. Comparison of the minimum distances method with 5 m tolerance (top) and the crossing
point method (bottom).

3.2.3. Seasonal Changes during the Winter

The 2020 expedition took place in August/September and the next in the following
May 2021 so that the seasonal changes could be observed over the winter. In Figure 10,
these changes are shown along the profile, with the elevation component almost constant in
the ice center. Towards the coasts, an increase due to precipitation of up to 2 m is observed.
The west coast could not be investigated in more detail because the expedition had to be
terminated prematurely.
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Figure 10. Elevation changes between before winter (August 2020-September 2020) and after winter
(May 2021). Difference (blue points) = 2020-2021.
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3.2.4. Modification of Missing Parts

For the kinematic data, complete profiles were only measured in 2015 and 2021, with
the 2021 expedition taking place as early as May rather than between late July and early
September as all previous expeditions had. An expedition took place in the previous
season, covering about 500 km, so a link to the data from 2021 is made in this step to
obtain a complete and seasonally comparable data set. Figure 11 shows the crossing point
comparison for both 2015 and 2020 as well as 2015 and 2021, where the data density is not
quite as high due to flooded sections.
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Figure 11. Comparison of crossing points (a) 2015-2020 and (b) 2015-2021.

The change in elevation over the winter from 2020 to 2021 is accounted for by append-
ing to the endpoint of the 2020 data and the 2021 data set and shifted by the difference of
—0.7448 m to get more realistic results for the coastal area (Figure 11). The farther the data
is from the connection point, the larger the inaccuracy becomes.

In Figure 12, as in the static measurements, it can be seen that the influence of the two
heads of glaciers is clearly visible in the data set. A larger ice elevation decrease is expected
near the coast, which is amplified by calving the glaciers. Near the east coast, the decrease
is somewhat delayed, which is probably related to the damming effect of the Schweizerland
Alps (mountains on the east coast of Greenland, as de Quervain called them).

Elevation change [m]
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Figure 12. Comparison of crossing points along the expedition route with modified elevation change
at the west coast. Blue color = 2020; orange color = 2021.
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3.2.5. Accumulation and Ablation

The data show accumulation and ablation along the profile (see Figure 13). As ex-
pected, there is accumulation in the central part of the ice sheet and ablation toward the
coasts. It should be noted that the seasonal change shifts the equilibrium line. It also
illustrates the influence of the Helheim Glacier and the Jakobshavn Isbreae, with a catchment
area of up to 200 km inland. For comparison, the ice velocity in Greenland was deter-
mined in [17] by Sentinel-1. The extensive catchment areas of the glaciers in relation to the
expedition route are shown in Figure 14.
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Figure 13. Accumulation (blue) and ablation (red) along the expedition route based on data from
(a) 2015-2020. (b) 2015-2021.
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Figure 14. Ice velocity from synthetic aperture radar of Sentinel-1 acquired over October 2015-
September 2016 with camps of the Greenland Korth Expedition route. The direction of glacier flow is
from the central axis of the Greenland ice sheet towards the coast [17].

3.2.6. Comparison with Other Data

Satellite altimetry provides a real information on glacier elevation. However, these
are only partially usable. There are gaps of several kilometers between the ground satellite
tracks (see Figure 15). A direct comparison of our traverse data with those of the satellite
altimetry is only possible at the crossing points. The Geoscience Laser Altimeter System
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(GLAS) is developed for the IceSat mission and has a precision of about 3 cm for a footprint
with less than 80 m diameter [37].

\
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Figure 15. Coverage of the operation area by the IceSat mission (2003-2010). The diagonal line
represents the profile measured by GKE on the ground.

The NASA IceSat satellite (Ice, Cloud, and land Elevation Satellite, 2003-2010) data
were used. Comparing the profiles measured in this project with an elevation model
derived from IceSat data [29], the qualitative difference between the two data sets becomes
clearly visible (Figure 16). The elevation model is from 2010, based on the end of the
IceSat mission and shows considerable deviations from the profile measurements due
to the different spatial resolution. The IceSat provides a set of laser pulses, which have
approximately 70 m spots on Earth’s surface with a spacing of 170 m. The model from
IceSat is interpolated and smoothed (blue line) compared to the profile measurement, which
is more detailed (red line).
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Figure 16. Part of the elevation profile from the west side (2015).
C30, C31, C32 and C33 are some of the points measured multiple times since 2002. The
waves in the surface profile with amplitudes of up to 20 m are clearly visible. The blue line

shows the heights derived from IceSat data; the red line shows the measured profile from
this project.
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4. Discussion—Error Influences

The aim was to demonstrate the possible link between terrestrial static or kinematic
GNSS measurement and data derived from the GLAS device onboard the IceSat-1 satellite
and, next, to verify the reliability and accuracy of the digital surface model based on IceSat-1
satellite measurements. The measured values were examined for random jumps using
the difference quotient. There are jumps of a maximum of 1.2 cm, so that jump measured
values cannot be identified as a significant source of error. Moreover, these are eliminated
as much as possible by Gaussian filtering.

After PPP evaluation, the position accuracy is +/—3 cm, and the height accuracy is
+/—5 cm for a single data set. For the investigations performed here, the elevation com-
ponent is most relevant. Of course, there are some defined outliers; during measurement
at these locations, a lower number of GNSS satellites occurred (PDOP). This influence is
also visible in the dispersion of the elevation component (Figure 11, comparison km 680)
around kilometer 680. This is classified as not trustworthy.

Regarding the measured antenna heights, a deviation of +/—1 cm is to be expected
when it is attached to the pulkas. Likewise, variations of nearly 0 cm (in good conditions)
to +/—5 cm (in uneven terrain) due to the ground conditions can be seen.

5. Conclusions

Geodetic-glaciological field work for monitoring glaciers and ice sheets is necessary
even in the age of satellite technology. On the one hand, it is for the verification of the
satellite data, but on the other hand, they also provide important results of their own.

The elevation changes determined during the Greenland Korth Expeditions (GKE)
show a continuous melting process since 2002, mainly on the west coast. On the east
side, the amount has increased from 20-40 cm/yr to 40-80 cm/yr. On the west side, the
maximum annual ice loss has increased from 1.7 to 2.7 m/yr. Overall, the ice elevation at
profile kilometer 100 has decreased by more than 35 m since 2002.

It turns out that long-term observations are always needed to make claims about
climate change. Our observations are based on a historically short period of time, about
100 years. Nevertheless, it can be argued that we are now observing an enormous melt-
ing of Arctic ice, especially on the west coast of Greenland. It is not the purpose here
to discuss causes or consequences, although this may have far-reaching implications for
climate change, a possible change in the Gulf Stream, sea level rise and thus a significant
impact on humanity. The aim was to demonstrate the possible link between terrestrial
static or kinematic GNSS measurement and data derived from the GLAS (Geoscience Laser
Altimeter System) device onboard the ICESat-1 satellite and, next, to verify the reliability
and accuracy of the digital surface model based on ICESat-1 satellite measurements. A rela-
tively good agreement was achieved, the differences being due to the different resolutions
and the different terms of observation of the Greenland ice sheet.
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Abstract: The M6.3 earthquake that occurred in southern Lazio (Central Italy) in 1654 is the strongest
seismic event to have occurred in the area. However, our knowledge about this earthquake is scarce
and no study has been devoted to the individuation of its causative source. The main purpose of this
study is putting together all of the information available for this shock to provide reliable landmarks
to identify its seismic source. To this end, we present and discuss historical, hydrological, geological,
and seismological data, both reviewed and newly acquired. An important, novel part of this study
relies on an analysis of the coseismic hydrological changes associated with the 1654 earthquake
and on the comparison of their distribution with models of the coseismic strain field induced by a
number of potential seismogenic sources. We find more satisfactory results when imposing a lateral
component of slip to the faults investigated. In particular, oblique left-lateral sources display a better
fit between strain and hydrological signatures. Finally, the cross-analysis between the results from
modeling and the other pieces of evidence collected point to the Sora fault, with its trend variability,
as the probable causative source of the 1654 earthquake.

Keywords: historical seismicity; earthquake environmental effects; coseismic hydrological changes;
earthquake source modeling; central Italy

1. Introduction

Motivated by the limited knowledge concerning the M > 6 earthquake of 1654, this
study is an attempt to understand the event that damaged the region of Lazio-Abruzzo
in Central Italy, less than 100 km from Rome and Naples (Figure 1). Records on this
earthquake are available but they are too old for seismogram data and are beyond the age
limit for applying seismological analysis to robust historical documentation, including
recognition of the causative fault that ruptured during the event. For these reasons, the
approach used could not be solely based on direct data so validation through modeling
was used as well.

The study area is located in the Central Apennines, an East verging, fold-and-thrust
belt that developed during the Late Cretaceous to present Africa—Europe plate conver-
gence [1,2]). The present-day landscape and tectonic setting of the region is the result of a
long deformation history, characterized by cyclical extensional and contractional phases [3].
The regional seismicity and fault setting reflects the present-day NE-SW-oriented exten-
sional regime characterizing the Central Apennines [4], with a broad and complex system
of normal faults that dissect the belt and crosscut the pre-existing compressional structures.

Our analysis is based on the different typologies of direct historical coseismic data
and geological/seismological data. Among the historical data, we utilize records extracted
from the available seismic catalogues [5] and the hydrological and geological earthquake
signatures newly acquired and derived from the archival research conducted in this study.
Among the geological data, we take into account the active faults commonly considered as
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potential sources of the 1654 event. With regard to the seismological data, the distribution
and the parameters of the present-day instrumental seismicity are considered.

13°0'0"E 14°Q0"E

Abruzzo

- Rucino

CASSINO

Tyrrhenian Sea

N NAPLES® *

Figure 1. Epicentral location of the 1654 earthquake (red star). The cities of Rome and Naples are less
than 100 km of distance from the source.

The 1654 earthquake had an MCS intensity of 9-10 and an Me of 6.33+/—0.14 [5], with
the uncertainty in its epicentral location being +/—2.5 km. Although which fault caused this
earthquake is still unknown, the 1654 earthquake occurred in a highly seismogenic region
in Central Italy, which has been struck by medium to large earthquakes in present and
historical times [5], with a ~200-year M6+ earthquakes average regional recurrence time [6].
The main aim of this study is to identify the source of the 1654 earthquake and to provide
suggestions regarding the kinematics of the 1654 rupture mechanism. To this aim, we (1)
modeled the intensity data (Boxer 4.0 code by Gasperini et al. [7], deriving different types
of macroseismic sources; (2) calculated the strain fields imposed by all the potential faults;
(3) analyzed which sources best matched the coseismic hydrological/geological signals
that we collected; and (4) discriminated among the resulting potential faults considering
the seismological imprint of the region as defined by the instrumental seismicity and by
the geometry of the active faults in the area.

2. The 1654 Earthquake: Geological, Seismological, and Macroseismic Context

The earthquake hit during the early hours of the 24th of July, producing destructive effects
(I'=9-10, M =6.3) [5] over a vast area of the Southern Latium region between Sora and Cassino
and widespread damage on the southern side of the Fucino area (Figures 1 and 2).

The map of the macroseismic intensities extends approximately 25 km from the
epicenter, and the effects are differentiated, mainly because of different geological and
topographical conditions of the villages involved. Six localities were almost completely
destroyed and another twelve were heavily affected by the shock that was felt as far as
Rome and Naples (IV-V MCS intensity). The relatively limited spatial distribution of
the intensities associated with the 1654 earthquake partly reflects the paucity of official
documents and historical sources available for this event. The economic marginality
of the affected area (scarce productive activities, far from the main roads, no relevant
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center damaged) did not encourage the authorities to send investigators (scientists and
technicians) to produce detailed descriptions of the event, neither did the subsequent local
historiography show interest in this seismic disaster. Additionally, the fact that this is a
‘border’ earthquake that occurred between the two former states of the Vatican and the
Kingdom of Naples (Figure 2) may have played a role in the general knowledge of the
event and further investigation could help to extend the map of damage. Despite this
and except for the ancient 1349 M6.8 earthquake of which the location and magnitude are
still debated [8,9], the 1654 Sora event is the most powerful earthquake to have occurred
south of latitude 42° S and within 150 km southeast of Rome, representing the local seismic
maximum for the study area (Figure 3).
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Figure 2. Map of the Mercalli-Cancani-Sieberg (MCS) intensities of the 1654 earthquake. A black star
indicates the macroseismic epicenter of the event. The dashed line indicates the border between the
two former states of the Vatican (West) and the Kingdom of Naples (East) in the XVII Century, at the
time of the earthquake. Colored boxes are the modeled sources: BF, Balsorano fault; PF, Posta-Fibreno
fault; SFa, Sora fault from ITHACA Working Group [12]; SFb, Sora fault from Boncio et al. [13]; MFE,
Macroseismic fault.
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Figure 3. Historical seismicity [5] of the southern Lazio region. The 1654 earthquake is the strongest
event to have occurred in this area, apart from the 1349 event.
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Figure 4. M > 2.5 instrumental seismicity from 1985 [10] in the area of the 1654 earthquake (Latitude
41.45-41.90°, Longitude 13.30-14.00°). In the inset, we show the parameters of the five M > 4 instru-
mental earthquakes that occurred in the area since 1984. A black star indicates the macroseismic

epicenter of the 1654 event.
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The instrumental seismicity recorded in the area starting from 1985 [10] shows both
low-to-moderate magnitude seismic sequences and diffuse swarm-like events, with the
magnitude ranging from 0.4 to 4.8. Figure 4 reports the instrumental seismicity within
30 km from the 1654 epicenter, along with the focal mechanisms of the five most powerful
(M > 4.1) seismic events in the study area that testify to a predominant normal faulting
with an oblique left-lateral component [10,11].

The 1654 earthquake area contains at least three main active tectonic lineaments [12],
hereinafter referred to as the Balsorano fault (BF), Posta-Fibreno fault (PF), and Sora fault
(SFa and SFb) (Figure 2 and Table 1), that are generally indicated as potential sources for
this event because of their location and geometry. The three faults are closely spaced and
they belong to the western system of active faults of the Central Apennines [13]. They have
a NNW-SSE average strike, dip towards WSW, and dip-slip to normal-oblique kinematics.
They remain poorly investigated and are reported with differences in the mapping due to
uncertainties on their longitudinal continuity, and their characterization is debated among
the authors. Recently, evidence of Upper Pleistocene-Holocene activity has been collected
along the BF and PF [14,15] while direct evidence of recent activity of the SF is unavailable.

Table 1. List of the five potential sources of the 1654 earthquake that represent the input to the
modeling of the coseismic static strain.

Source

Length (km)

Width (km) Min Depth (km) Max Depth (km) Strike® Dip® Rake®

Seismic Moment

(Dyne cm) Ref.

BF Balsorano
PF Posta-Fibreno
SFa Sora
SFb Sora
MF
Macroseismic

16.0
13.0
16.6
17.0

19.6

120 1 114 134 60 —50/-90/~130 29 x 1025 [12]
104 1 10.0 133 60 ~50/-90/-130 22 x 105 [12]
115 1 114 125 60 ~50/-90/-130 29 x 1025 2]
144 1 135 115 60 —50/-90/—130 37 x 1025 [13]

5

103 139 142 60 ~50/-90/~130 32 x 1025 ul

3. Effects of the Earthquake on the Natural Environment

The CFTI Catalogue of Strong Earthquakes in Italy [16] reports that this earthquake
had two effects on the natural environment: a wide surface fracturing along Monte Corvo
(M. Corvo) and a large landslide in Roccasecca (Figure 5 and Table 2). We re-positioned
the fracture (number 4) that was misplaced in the Catalogue. In fact, Guidoboni et al. [16]
located the fracture in Pontecorvo whilst the original source reports it at Monte del Corvo,
10 km NW of Sora. The landslide (number 7) reasonably occurred along the steep slope
north of Roccasecca, where a scarf is still visible. We performed an in-depth round of
investigation in local and national libraries and archives to seek new data of this type; the
search in coeval chronicles, letters, and diaries and in later reports allowed us to add five
new observations (Figure 5 and Table 2). Most of these new data concern hydrological
changes that occurred immediately after the event. An increase in the discharge of the Gari
River close to its springs in Cassino (number 1), a decreased and turbid flow of the Liri
River in Isola Liri (numbers 2 and 3), and a decrease in discharge in the Fucino area (number
5) were reported. A fifth significant and previously unknown datum (number 6) derives
from direct observation of fractures affecting the ancient structure of the Cathedral of Sora
and it is indirectly inferred from the analysis of the church reconstruction history [17,18].
Some of the fractures of walls and the basement are preserved and appear aligned and
adjacent to the trace of the SF. Moreover, an intriguing piece of evidence regarding the
Cathedral is that its northwest end (presbyterium) is presently accessed through three steps
as it is higher than the rest of the building [17,18]; however, according to the description of
Bishop Giovannelli in 1618, it does not result in a higher position. This change possibly
reflects a local ground deformation corresponding to the fractured zone.
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Figure 5. Distribution of the effects of the 1654 earthquake on the natural environment (see Table 1
and text for the description of the effects). Colored boxes are the modeled sources: BF, Balsorano
fault; PF, Posta-Fibreno fault; SFa, Sora fault from ITHACA Working Group [12]; SFb, Sora fault from
Boncio et al. [13]; ME, Macroseismic fault.

Table 2. List of the effects observed in the natural environment following the 1654 earthquake
(progressive number corresponds to Figure 5). The epicentral distance is calculated from the location
of the Italian seismic Catalogue (red star in Figure 1) [5].

No Locality Lat® Lon® Epic. dist. (km) Effects References
Increase in
1 Cassino 41.480 13.832 21.2 discharge of Gari [19,20]
springs
2 Isola del Liri 41.680 13.574 105 Decrease in flow [21]
from Liri River
3 Isola del Liri 41.678 13.571 10.6 Turbid water from [21]
Liri River
4 M. Corvo 41.772 13.468 235 V\;‘de surface [16,19,20]
racturing
Chasms and
5 Luco dei Marsi 41973 14.461 418 lowering of waters [22]

in the Fucino Lake
area
Inferred coseismic

fracturing in the
6 Sora 41.723 13.615 11.3 flooring of the [17,18]
Cathedral
7 Roccasecca 41.554 13.669 9.1 Landslide [16,23]
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4. Source Modeling

The scarcity of records belonging to the 1654 event is reasonably due to the ca. 350-year
age of the earthquake itself, more than due to the real absence of effects on the landscape
and villages. However, we are still able to use the collected records to infer the 1654 source
parameters. Indeed, an analysis of the geographic distribution and the type of earthquake
effect (i.e., building damage, ground failures, and hydrological change) is a way to provide
constraints on both the fault location and the deformation style.

In particular, the coseismic hydrological changes (increase or decrease in the discharge
of springs and streamflows, the water level in wells, turbid flow from springs and rivers,
and liquefaction) can be a valid alternative method to provide further constraints to esti-
mate (or to confirm related hypotheses) the faulting style of major historical earthquakes of
which the seismogenic source is unknown or in dispute, as is the case of the 1654 earthquake.
The basic rationale is that such hydrological variations are explained by the coseismic static
strain and pore pressure changes predicted by the poroelastic theory, as first proposed
by Wakita [24]. Following this theory, an earthquake imposes a coseismic strain field that
causes rocks to dilate or contract; the opening or closing of saturated cracks in rocks result
in decreases or increases in the ground water discharge from springs and streams. The
amplitude of the hydrological changes is proportional to the volumetric strain field, so that
the groundwater discharge increases in areas that contract and decreases in areas that ex-
tend. Following this rationale, in recent decades, the character of the coseismic hydrological
changes has often been found to be related to the style of faulting (Cucci [25] and references
therein). The most important caveat regarding the use of hydrological changes in this kind
of study is that local precipitation can influence the effect that is observed and it must be
carefully investigated. In the case of the 1654 earthquake, the available reports confirm the
absence of rainfall in the days preceding the event, which is reasonable as the earthquake
occurred at the end of July—the driest period in peninsular Italy. For a complete review of
the application and of the limits of this theory in seismogenic studies, see Cucci [25]. It is
possible now to perform the calculations of the coseismic strain for the 1654 earthquake
produced by the potential sources listed in Table 1 to verify the best fault solution fitting
with the observed hydrological and geological effects. The static strain change induced
by an earthquake can be calculated using a fault dislocation model. The calculations of
the strain were made in an elastic half-space with uniform isotropic elastic properties
following Okada [26], and using Coulomb 3.4 [27,28]. In particular, we investigated the
deformation imposed by the BF, SFa, and PF [12] and by the Sora fault as proposed by
Boncio et al. [13], referred to as SFb. The fifth modeled source (macroseismic fault, referred
as MF) is derived from Boxer 4.0 [7], a code that computes the quantitative parameters of
earthquakes from the inversion of macroseismic intensity data, which is routinely used
for the parametrization of the historical events of the Catalogue. The considered faults
are generally reported by the authors with dip-slip to normal-oblique kinematics; this is
also confirmed by the focal mechanisms displayed in Figure 4. Thus, we first performed
our modeling on pure normal sources (rake —90°, Figure 6a—e); then, a second round of
calculation was carried out considering left-lateral oblique slip (rake —50°, Figure 6f-i,1).
Finally, we tested the strain calculations on a set of normal sources with oblique right-lateral
slip component (rake —130°, Figure 6m-q). The outputs of our calculations are plots of the
volumetric strain at the free surface on the five selected individual sources; the plots are
shown in Figure 6. We expect to find an increase in discharge in areas of compressional
strain and a decrease in discharge in areas of dilatational strain.
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Figure 6. Comparison between the calculated coseismic strain fields along five potential sources and
the observed hydrological effects produced by the 1654 earthquake. The calculation of strain was
made using Coulomb 3.4 [27,28]. Plots ‘(a—e)’ show the calculations for normal sources (rake —90°),
plots ‘(f-i,1)" show the calculations for oblique left-lateral sources (rake —50°), and plots ‘(m—q)’ show
the calculations for oblique right-lateral sources (rake —130°). In the plots of strain, blue shading
indicates areas in compression and red shading indicates areas in dilatation. Units: 107°. A red
rectangle indicates the surface projection of the fault plane; a green line is the intersection of the updip
projection of the fault with the surface. Streamflow changes are indicated by circles (black/discharge
increase; white/discharge decrease).

5. Results and Discussion

A total of 15 plots of the volumetric strain at the free surface have been computed for the
modeled faults, inferring a different sense of slip (Figure 6a—q). Being inferred by inversions
of intensity data, the source MF (Figure 6e,1,q) obviously shows a good fit with the map
of intensities and the location of the earthquake. However, the performance of the strain
modeling of this source is limited, with no agreement between observed hydrological changes
and the expected pattern of strain, independent of the style of faulting adopted. Additionally,
there is no close association between the location of this source and the distribution of the
other effects observed following the earthquake, all located northwest of the fault. When we
impose pure normal kinematics to all of the seismogenic sources investigated (Figure 6a—e),
we obtain a limited agreement between the predicted pattern of strain and the location of the
hydrological changes. In particular, the noticeable increase in discharge of the Gari springs
observed in Cassino constantly falls in an area of expected dilatation. Conversely, if we
impose a lateral component of the slip on the five sources, we find more satisfactory solutions
for data merging. In general, oblique left-lateral sources display a better fit between strain
and hydrological signatures; in particular, PF (Figure 6h) and SF (Figure 6g,i) show the best
fit for the observations in Cassino (increase in discharge/expected compression) and Isola
Liri (decrease in discharge/expected dilatation).

The potential source of the 1654 earthquake is inferred through the cross-analysis
between the results from modeling and the other pieces of evidence described above (see
chapter 3). Though there is a fairly good fit from strain modeling shown by the Balsorano
fault with rake —130° (only for the two observations in Isola Liri, Figure 6m), we exclude
this source from the group of most likely causative faults of the 1654 earthquake because
(1) there is no agreement between its location and the map of the intensities (see Figure 2);
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(2) oblique-right lateral source seems to be an infrequent style of faulting in this sector
of the Central Apennines based on seismological and geodetic data [11,29]; and (3) the
epicenter of the 1654 quake is located 15 km from the southern tip of the BE. With regard to
the Posta-Fibreno fault, its location fits better than the Balsorano fault when compared with
the 1654 epicenter and distribution of macroseismic intensities, and an oblique left-lateral
sense of slip along this fault (Figure 6h) displays a good fit with the distribution of the
hydrological changes (effects 1, 2, and 3 in Figure 5 and Table 1). However, given the
present mapping, the magnitude of a seismic event along this fault (M6.1-6.2, see also
Table 2) would be underestimated when compared with the M6.3 magnitude presently
reported for the 1654 event in the Catalogue (see Table 2). The results from the strain
calculations suggest that the Sora fault, when modeled with a left-lateral component of slip,
is the most probable candidate fault of the 1654 earthquake. In particular, the SFb source as
traced in Boncio et al. [13] fits the most outstanding hydrological observations at Cassino
and Isola del Liri as well as the evidence of fractures (effects 1, 2, 3, 4, and 6 respectively,
in Figure 5 and Table 1). It is worth noting that the fractures we newly found at the Sora
Cathedral would be located in the very near fault. Moreover, the magnitude of a seismic
event along this source would coincide with the magnitude 6.3 quoted in the Catalogue for
the 1654 earthquake.

6. Conclusions

As stated at the beginning of this manuscript, this study represents a first effort to
search for new data, to merge the available information for an earthquake never studied
despite its magnitude and heavy effects on the territory, and to provide some reliable
landmarks for the individuation of its seismic source.

We collected five novel 1654 coseismic effects on the natural environment concerning
hydrological changes (increase in discharge from a spring in Cassino and decrease in flow
from Liri river in Isola Liri) and coseismic fracturing in Sora. We also shifted almost 40 km
farther NNW and re-positioned one of the effects already documented (coseismic fracturing
in Monte Corvo), thus enriching the picture of the natural and anthropic coseismic impact.
Though it is a difficult task, due to the age of the event, the retrieval of further data on
damage and natural effect as well as detailing of the fracturing would possibly consolidate
the earthquake scenario and then support the source modeling.

In summary, the scenarios modeled on the basis of the collected evidence point to
the Sora fault, with its trend variability, as the most probable candidate as the causative
source of the 1654 event. However, the results of our model do not rule out the possibility
of a complex fault rupture during the 1654 event, such as fault linkage between the Sora
fault and the adjacent Posta-Fibreno fault, and possible slip along this latter source. The
1654 earthquake would be the most recent M > 5.5 event along the Sora fault since no
earlier damaging earthquake is reported in the historical catalogue for this area of study.
Based on these reasons and on our results, the Balsorano fault would be silent for similar
energetic events, raising its potential to generate a damaging earthquake in the area.
Finally, this study confirms that the hydrological signatures of earthquake strains and field
observations are valid supplemental data for estimating geometry and fault style even
for early earthquakes limited by historical memory and historical reports, and they help
to isolate the fault source within an active dense and complex system such as that of the
Central Apennines.
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Abstract: In the presented study, multi-parameter inversion in the presence of attenuation is used
for the reconstruction of the P- and the S- wave velocities and the density models of a synthetic
shallow subsurface structure that contains a dipping high-velocity layer near the surface with varying
thicknesses. The problem of high-velocity layers also complicates selection of an appropriate initial
velocity model. The forward problem is solved with the finite difference, and the inverse problem is
solved with the preconditioned conjugate gradient. We used also the adjoint wavefield approach
for computing the gradient of the misfit function without explicitly build the sensitivity matrix. The
proposed method is capable of either minimizing the least-squares norm of the data misfit or use the
Born approximation for estimating partial derivative wavefields. It depends on which characteristics
of the recorded data—such as amplitude, phase, logarithm of the complex-valued data, envelope
in the misfit, or the linearization procedure of the inverse problem—are used. It showed that by a
pseudo-viscoelastic time-domain full-waveform inversion, structures below the high-velocity layer
can be imaged. However, by inverting attenuation of P- and S- waves simultaneously with the
velocities and mass density, better results would be obtained.

Keywords: complex velocity model; full waveform inversion; wave attenuation; preconditioned
conjugate gradient; vibroseis sources

1. Introduction

Imaging of geological complex structures in the subsurface can be used for geotech-
nical site characterization by geophysical methods. The term ‘complex’ is used for those
subsurface earth models which cannot be easily imaged by conventional seismic imag-
ing methods due to their complex velocity structures or geometry. Examples of complex
structures can be steep dipping beds, intensive faulted or folded media, and earth models
with strong velocity changes. In addition, the near-surface velocity anomalies can increase
complexity of imaging problems, mostly due to the complexity in the simulation of the
seismic wave propagation, or in other words, the complication caused by the propagation
of the body waves through the complex near-surface layers [1]. The most realistic of such
situations is the near-surface salt layers which can or cannot play a role as the caprock
for petroleum reservoirs. In those cases, the fluids trapped in the layers beneath the salt
have considerable effects on the elastic properties of the subsurface media. The better these
properties are modeled, the more accurate an image of the subsurface will be obtained.

Conventional seismic imaging methods are no more reliable in solving imaging prob-
lems raised from complex geological media. High quality seismic imaging is needed in
most exploration studies such as gas storage projects, geological hazard, CO, storage
projects in target finding and monitoring, and also in geothermal resources. To obtain
a high-quality seismic image, further investigation of obstacles to obtaining reasonable
seismic images and developing reliable imaging methods are required. Considering the
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problems of seismic imaging in complex media, it was stated that poor seismic images
from different regions mostly resulted from the application of inappropriate imaging al-
gorithms [2]. The minor concerns were related to the data acquisition problems due to
harsh topography, but the major issues are rooted in extreme complexity in subsurface
media and poor quality in signal to noise ratio (SNR) [3]. The former could be resolved by
adequate acquisition; however, the later requires deep investigation on developing proper
imaging tools. In one study, it was proposed resolving obstacle partially by the common
reflection surface (CRS) and the normal incidence point (NIP) tomography method [4].
However, the CRS still suffers in handling strong lateral velocity changes or geologically
complicated media [5]. The reverse time migration (RTM) and the full waveform inversion
(FWI) methods, as the latest introduced methods, deal with a vast majority of problems in
seismic imaging [6,7]. However, these methods are still present issues in application to large
field datasets, poor quality data with shortage in frequency content, and low SNR in the low
frequency part of the data [8]. Challenges for FWI land applications consist of addressing
the wavefield propagation from rough topography, low SNR of the low-frequency data, and
determination of an appropriate source wavelet throughout the iterations by improving
the velocities and model parameters [9].

The FWI employs an iterative procedure that is based on a forward modeling and
inversion procedure to find the optimal parameters [10,11]. Some studies have been carried
out to show the efficiency of FWI in the imaging of complex media [7], presented the
application of the FWI method in the frequency domain on the wide-aperture onshore
seismic data with a complex geological setting (thrust belt) [12], and applied the elastic
frequency-domain FWI to the synthetic onshore Marmousi2 model [13]. They implemented
a velocity-gradient starting model and a very low starting frequency to image the complex
structure model. Reference [14] also tested the application of this strategy to the offshore
versions of the synthetic Marmousi2 model. They successfully imaged the complex model
using their strategy. Reference [8] presented a parallel 2D elastic frequency-domain FWI
algorithm based on a discontinuous forward problem [15] that was applied to a realistic
synthetic onshore case study. They obtained a high-resolution P- and S- wave velocity of the
complex onshore structure using a joint inversion of the surface and body waves recorded
by a wide aperture acquisition geometry. Reference [16] studied the application of the FWI
method in the time-domain on the problem of subsalt imaging with the modified Flood-
ing Technique and showed the difference between the results of elastic and acoustic FWI
methods. These differences reveal that the result of the acoustic FWI algorithm on elastic
data for the subsalt imaging problem is not reliable. The application of the multi-parameter
viscoelastic FWI using a frequency-domain on synthetic data example was proved by [17].
The low-order finite element discontinuous Galerkin method was used to solve the for-
ward problem which can be a good option when studying the complex topographies and
high-velocity contrasts, and the quasi-Newton L-BFGS optimization was implemented
to estimate the inverse of the Hessian matrix in order to decrease the computational cost
and improve the reconstruction of the velocities, density, and attenuation parameters.
Reference [9] implemented the FWI-SIMAT algorithm to investigate the capability of the
acoustic FWI in the reconstruction of the Marmousi velocity model both in the time and
frequency domain. Reference [18] used a developed FWI method in which a two-stage
sequential approach (SFWI) was tested on the field datasets recorded in the Black Sea and
in the shallow-water area of a river delta in the Atlantic Ocean to obtain detailed subsurface
images containing rock formations that might be potential gas deposits. Most applications
of the FWI methods on complex structures have been performed in the frequency domain
or ignored seismic wave attenuation. Ignoring the viscous effect of the propagation media
provides an unrealistic reconstructed S- wave velocity model, especially in the study of the
complex geologic media [19]. Reference [20] showed that taking key elements properly
into account, FWI produces a reliable high-resolution near-surface model that could not
be otherwise recovered through traditional methods. Although few attempts have been
reported that incorporate FWI for land studies [18]; however, they were convincing in
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providing acceptable seismic image. Therefore, it is supposed that deriving a processing
workflow modified for accurate imaging of seismic data from complex regions would be
promising in resolving the problem of low SNR and strong lateral velocity changes due to
complexity in wave propagation media.

2. Problem Statement

It was shown that seismic imaging in seismic data with above mentioned properties is
technically a challenging task due to several reasons. The first is complexity of the media.
These complexities will introduce lateral velocity changes, make reduction in quality of
data and reduce SNR of data. These problems prevent application of conventional imaging
methods and require advanced methods, such as RTM and FWI, to be modified accordingly.
The FWI method estimates subsurface properties affecting the seismic wave-field via
minimizing the field data and synthetic seismogram generated from forward modeling. An
ultimate FWI method should take attenuation and dispersions into account, which means
considering the wave propagation medium as a viscoelastic medium. An appropriate choice
of model parameterization is also very important in viscoelastic FWI. Various approaches
are presented for FWI in viscous media in the frequency and time domain [21]. Shot
parallelization, variable grids in the near future and better free surface implementation are
also other compatibilities of an appropriate FWI method. Obviously, to make the inversion
process converge to the correct and accurate response, the initial velocity model needs
to be close enough to the real field velocity model. The focal issue here is to resolve the
problem of imaging on data which contains a high-velocity layer and causes less energy of
transmitted wavefield reach to the structures under this layer. Presence of steep dips, low
SNR, and energy absorption by thick layers of evaporites—which dramatically reduce the
quality of images in deeper parts—are obstacles in obtaining high quality images. Since
the data suffer from reduction in quality due also to faults and variations in the thickness
of the high-velocity layer, it is required that the FWI method modified accordingly in
considering attenuation and wavelet estimations [22]. The lateral velocity changes due
to the evaporites will reduce the sensitivity of the FWI method in reconstruction of the
velocity models. Therefore, it is important to define appropriate initial velocity models.
Furthermore, since the FWI package of the Karlsruhe institute of technology (KIT) could
model the viscoelastic properties of the media in wave propagation simulation, it is assumed
that the data quality will increase in regions with above mentioned problem [23]. The
model parameterization and discretization of the media is also challenging in application
of FWI method in such regions. Discretization should be flexible and appropriate for
boundaries of abrupt changes in elastic properties of the media, which is the result of
complex mud intrusions [24]. This complexity will also introduce problems in model
parameterization, which needs to be optimized via parameter analysis. In this study, the
performance of the 2D pseudo-viscoelastic FWI proposed by [20] to image a synthetic
model with velocity complexity is investigated. A time-domain multi-parameter FWT is
applied to reconstruct the P- wave velocity, S- wave velocity, and density models. The
forward problem is solved using the finite difference method (FD) and the viscoelastic
wave equation is discretized considering the convolutional perfectly matched layers (PMLs)
absorbing boundary condition to prevent the edge effects. To solve the inverse problem,
the preconditioned conjugate gradient (PCG) is used. The gradients are computed with the
adjoint-state method. A simple model generated by the 1D linear gradient is considered as
the initial model.
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3. Theory
3.1. Forward problem

In this study, the stress—velocity equation of the wave equation in the time domain in
an anisotropic viscoelastic medium with rheology described by a GSLS [25,26] is taken to
solve the forward problem [27,28]:

81/1‘ - 80'1]
Por = + fi 1
. avk p s avi s L . . .
oij = {M(1+T ) — ZH(1+T)}+2BTCJ-”(1+T)+Z§1’W if i=j, )
. 81/1 aV]
gij = ax + o, n(1+7) Zr,ﬂ if i#j 3)
. 1 al/k 8 . . .
Fiji = m{(MTp —2ut )(-,* +28*VT + rz]l} if i=j (4)
| d; o .
rijl - _thl{(M ax] + 5= a +rlﬂ} lf 1 5& J- (5)

where 0j; denotes the i jth component of the stress tensor, v; denotes the components of
particle velocity, f; is the components of external body force, p is density, M is the P- wave
modulus, and y is the S- wave modulus. 7;;; denotes the L memory variables (I =1,...,L)
which correspond to the stress tensor 0j;, 7, are the L stress relaxation times for P- and S-
waves and 7, T° are the level of attenuation for P- and S- waves respectively. It is necessary
to mention that the dot over symbols indicates partial differentiation with respect to time.
The attenuation of rocks is defined by the seismic quality factor (Q):

1 +ZZ 1 1+w2T2 T

Qw, T, T) = ———7—— (6)
Zl:l 1:55;2 T

where w is the angular frequency, and the variable T denotes

Tel

T o (7)
where 7,; is the stress relaxation time, and T is the strain retardation time for the /th
Maxwell body of the GSLS. With Equation (6), L + 1 parameters 7,;, T are obtained that
describe a constant Q-spectrum within a limited frequency range by a limited number
of Maxwell bodies [27]. The forward problem is solved by using a time-domain two-
dimensional second order FD operator in time and space on a staggered grid [27]. To reduce
the edge effects and reflections at the boundaries the CPMLs are implemented [29,30].

3.2. Inverse Problem

FWI is a non-linear optimization problem that needs an appropriate objective function
to be minimized. The L2-norm of the data residuals as the objective function E is used in
the presented study [28,31].

E = i )E i/ xS,xr, ) s]-<?5,¥,,t,m>)2dt (8)

s=1r=1j=1

where d]- denotes the observed data, and sj is the synthetic data at receiver r at point

- . . .
Xr. ns and n, are the number of sources and receivers respectively. 7 is the number of
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components and T is the recording time. The PCG method [32] is implemented to minimize
the objective function by iteratively updating the model parameters m along the conjugate
direction dcy,

dcy = 0my + Brdcy—1 )

At the first iteration step (1 = 1), the model is updated along the steepest descent direction
My = my + p16my (10)

The model is updated along the conjugate direction in all subsequent steps (n > 1)
My 1 = My + Ppdcy (11)

where dc; = dmy. py denotes the step length that is estimated by a parabolic line search
method [33-36]. The weighting factor beta is calculated using the Polak-Ribiere formulation:

pr _ Oy (81 — S1m,_1) (12)
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omy a o E denotes the gradients of material parameters that can be calculated using the

adjoint state method [28,32,37,38]. The model parameters can be density p and unrelaxed P-

and S-wave moduli 77, yt,, for a viscoelastic medium assuming a constant a priori known

quality factor Q. The gradients of the misfit function for the unrelaxed moduli of a grid cell

at a point x" can be calculated by a zero-lag cross-correlation of the forward propagated s
and the adjoint wavefield st are approximated [28].
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The parametrization considered in this study is (o, V5, Vs). The gradients are calcu-
lated for these parameters using the chain rule. To change the parametrization from the
parameters (o, 7Ty, fu) to (0, V), Vs) one can apply the chain rule according to the relations
of unrelaxed moduli with the unrelaxed Lamé parameters (o', A}, yt,) and seismic velocity
parameters respectively (Equations (16) and (20)).

p =0t =Ny, +2u,, and py = py, (16)
The gradients for density and Lamé parameters can be expressed by
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It is worth noting that an approximated Hessian (after [39]) is applied as an appropriate
preconditioning operator P to the gradient Jm before updating the model parameters. The
Hessian is calculated for each shot individually and will be applied to the gradient from
each shot directly. A multi-scale inversion strategy is implemented to reduce the high
nonlinearity at the beginning of the inversion and pass the cycle skipping problem [40].

4. Synthetic Data Example

In this section, a synthetic example is performed to investigate the capability of 2D
pseudo-viscoelastic FWI in the time domain to image shallow complex structures using
IFOS2D. The true model used to simulate the observed data for three parameters (P- wave
and S- wave velocity model and density model) is generated inspired by a real model
located in Iran, which contains large synclinal shape of evaporite layers with very high
velocity, faulted in the left side and the thickness of the high-velocity layers varies through
the section. The seismic velocity of this evaporite layers is between 3840 and 5420 m/s,
according to the percent of the containing salt compare to anhydrite, depth and thickness
of the layer, which is in the range investigated in different studies [41,42]. The surrounding
carbonate and shale layers show velocities around 2800-3420 m/s. The main problem in
the seismic data with the abovementioned problem is to image target layers below the
high-velocity layer, which is supposed to be resolved by FWI method. Therefore, in our
study, in the first step, we tried to build a synthetic model with same geometry and shape of
the high-velocity layer. In the next step, we tried to select velocities for each layer according
to the real velocity of the media. In this step, since the provided forward and reverse codes
for FWI in this study are mainly used for near-surface data, rather than deep seismic; so to
prevent instability in analysis, we scaled down all the velocities of the layers in the model
with a constant value. Therefore, we modeled the high-velocity layer near the surface with
velocity close to 600 m/s. It should not be considered as the real high-velocity layers in
deep earth, but a downscaled version of that.

Due to high velocity, propagation of the surface and body waves through the complex
near-surface layers would be more complicated. This example can test the capability of
the FWI to image a complex velocity structure. The model space has a size of 400 grid
points in the horizontal direction and 160 grid points in the vertical direction. Therefore,
the actual dimension would be 50 x 20 m considering a grid spacing of 0.125 m. A total of
19 shots and a total of 73 receivers located at the constant depth of 0.2 m that record both
horizontal and vertical components are used. A cubed sine wavelet with a center frequency
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of 31.25 Hz generated by a hammer source is used as the source signal. The CPML frame is
marked by the black dashed line. A viscoelastic medium is considered in this example and
approximated a constant quality factor of Qs = Q) = 20 in the analyzed frequency band
up to 60 Hz (a high-cut frequency filter of 10, 20, 30, 40, 50, and 60 Hz is used in stages)
with three relaxation mechanisms of a generalized standard linear solid. A minimum of
five iterations are taken into account at each stage. A 1D linear gradient is used to build the
background of the true model and the background is considered as the initial model for
each parameter in inversion. All models are updated simultaneously during inversion Itis
worth mentioning that the true and initial velocity models are built with a L ratio of 1.5
and a total propagation time of 0.6 s is considered. Initially, we tried the Vy / VS ratio of 1.5
because it is the minimum ratio which can be used as a reasonable value for sediments or
soft rocks near the surface. In the following, we have selected the V), / V; ratio of 2.5 which
is more realistic for our example. The PCG is carried out to solve the inverse problem.

5. Results

In this study, 314 iteration steps are calculated, and the inversion takes about 10 h
when using a system with four cores with 3.1 GHz speed and 16 Gb of ram. The true,
initial, and inverted P- wave velocity models are shown in Figure 1. The same order is
given, for the S- wave velocity and density models in Figures 2 and 3, respectively. Figure 4
shows the vertical profiles through the P- wave and S- wave velocity and density models
that are considered to compare the results with the true model in more detail. Vertical
profiles through the models are obtained at x = 25 m. The reconstructed models are in
good accordance with the true models, especially for the S- wave velocity model. In the
inverted S- wave velocity model, the upper edge of the high-velocity layer can be seen
more sharply compared to the two other models. The bottom edge of the high-velocity
layer is reconstructed in each model but not in the accurate location. Some artifacts are seen
in the low-velocity zone of the density and P- wave velocity models. Regarding the low
sensitivity of surface waves with respect to the P- wave velocity and density model [41],
inaccurate results of inversion for the P- wave velocity and density models can be expected,
also because the amplitude of surface waves is much higher than the amplitude of P- waves.
The sensitivity of surface waves with respect to the P- waves is low and it leads to an
inaccurate P- wave velocity model at each iteration step.

Because the density model is in relation to the P- wave velocity model using an
empirical relation. Therefore, it affects the density model and the result of these two models
is not as accurate as of the inverted S- wave velocity model [42].

To assess the results precisely, the final synthetic shot gathers are compared with the
observed data. The vertical velocity seismogram of the shot at x = 9 m is obtained and the
seismograms for the initial models are calculated for trace 36 of the shot and compared
with the seismogram of the observed and inverted model. The comparison of the synthetic
and observed seismograms of the shot at x = 9 m is shown in Figure 5a and the comparison
of the initial, observed, and inverted data for trace 36 at this shot is shown in Figure 5b.
Each seismogram is normalized to its maximum amplitude. The comparison of the initial
and inverted data indicates the good performance of the inversion method and application
of the software IFOS2D (Inversion of Full Observed Seismograms (2D)) in reconstructing
model parameters. The calculated data agreeably fit the observed data. Therefore, the
inversion result is a model which better explains the observed data. In the following, the
true and initial models are built considering the ” ratio of 2.5 that is more realistic in the
case of studying the soft rocks near the surface n this case, due to the increase in the
velocity values, the wavelengths propagated through the medium are increased and the
resolution is influenced by the wavelength. The high-velocity layer is not resolved with
the P- wave velocity model. Therefore, to reconstruct the model, a broad bandwidth of
the source signal is needed. A broad bandwidth signal cannot be generated by a hammer
source, thus a vibroseis source can be used to generate a signal which has a higher center
frequency and covers a broader frequency range than a cubed sine wavelet [43,44]. Since a
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Ricker wavelet is similar to a Klauder wavelet generated by vibroseis source and is used in
the synthetic seismic modeling, in the following a Ricker wavelet with a center frequency
of 50 Hz is considered as the source signal.
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Figure 1. Multi-parameter synthetic example when using a low-frequency source signal: (a) the true
P- wave velocity model for the calculation of the observed data, (b) the initial P- wave velocity model,
and (c) the inverted P- wave velocity model. The CPML frame is marked by a thin black line.
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Figure 2. Multi-parameter synthetic example when using a low-frequency source signal: (a) the true
S- wave velocity model for the calculation of the observed data, (b) the initial S- wave velocity model,
and (c) the inverted S- wave velocity model. The CPML frame is marked by a thin black line.
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Figure 3. Multi-parameter synthetic example when using a low-frequency source signal: (a) the

true density model for the calculation of the observed data, (b) the initial density model, and (c) the
inverted density model. The CPML frame is marked by a thin black line.
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Figure 4. Model fitting when using a low-frequency source signal: (a) vertical profiles of the P- wave
velocity model, (b) vertical profiles of the S- wave velocity model, and (c) vertical profiles of the
density model. The true model is plotted with the grey line, the initial model is represented by the
dashed black line and vertical profile at x = 25 m of the inverted models is the plotted blue line.

101



Appl. Sci. 2022, 12, 7741

a) Trace

o
N
T
AN
AN
~"
1

T T T T I

—observed dataH
— = inverted data
initial data 1

=
~
o
- o

plitude

- o

Normalized

/‘\m

I 1 1
0.2 0.3 04 05 0.6
Time (s)

o
©

Figure 5. Fitting of the data in the shot at x = 9 m when using a low-frequency source signal.
(a) Comparison of the vertical velocity observed and inverted seismograms. (b) Comparison of the
normalized seismograms calculated for the initial, inverted, and observed data for trace 36.

Therefore, it can be said that in this study by considering a broad bandwidth signal
as the source wavelet, the capability of the multi-parameter pseudo-viscoelastic FWI
of the shallow-seismic wavefield is tested in the case of using a vibroseis source, too.
A reflector is then added to the bottom of the true models (Figures 6a, 7a and 8a) at
the depth of 15 m. A 1D model is also used for the initial and background of the true
models (Figures 6b, 7b and 8b). Multi-parameter inversion is conducted for the parameters
discretized at a 2D cartesian grid with the same grid spacing and the total propagation
time as were used in the previous example. The high cut frequency filter, up to 100 Hz
is applied progressively in the multi-scale strategy. In order to reduce the computational
time, the number of receivers was reduced to 66 and the total of shots used in this test
is 17. This test takes about 11 hours, and 317 iteration steps are calculated by using the
same system as used in the previous test. In this example, the inverted S- wave velocity
model (Figure 7¢), is still better reconstructed than the P- wave velocity (Figure 6c) and the
density (8c) models. The high-velocity layer is reconstructed sharper and more accurate
compared to the inverted S- wave velocity model in the previous test. As can be seen in
the vertical profile obtained for this model in Figure 9b, the velocity value of the high-
velocity layer matches the value of the true high-velocity layer robustly. The velocity
value of the low-velocity zone is obtained precisely too. There is an improvement in the
results of inversion of the P- wave velocity and density models. As the artefacts in the
low-velocity zone are decreased. In the presence of the reflector at the bottom of the model,
the structure beneath the high-velocity layer is resolved with higher quality and resolution.
In other words, the artefacts at the dipper parts of the models are significantly decreased
too. Similar to the previous example, the final synthetic data nicely fits the observed data
(Figure 10a). According to the zoomed comparison of the initial and inverted data for trace
36 (Figure 10b), misfit of the inverted and observed data is low.
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Figure 6. Multi-parameter synthetic example when using a high-frequency source signal: (a) the true
P- wave velocity model for the calculation of the observed data, (b) the initial P- wave velocity model,
and (c) the inverted P- wave velocity model. The CPML frame is marked by a thin black line.
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Figure 7. Multi-parameter synthetic example when using a high-frequency source signal: (a) the true
S- wave velocity model for the calculation of the observed data, (b) the initial S- wave velocity model,
and (c) the inverted S- wave velocity model. The CPML frame is marked by a thin black line.
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Figure 8. Multi-parameter synthetic example when using a high-frequency source signal: (a) the

true density model for the calculation of the observed data, (b) the initial density model, and (c) the
inverted density model. The CPML frame is marked by a thin black line.
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Figure 9. Model fitting when using a high-frequency source signal: (a) vertical profiles of the P- wave
velocity model, (b) vertical profiles of the S- wave velocity model, (c) vertical profiles of the density
model. The true model is plotted with the grey line, the initial model is represented by the dashed
black line and vertical profile at x = 25 m of the inverted models is the plotted blue line.
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Figure 10. Fitting of the data in the shot at x = 9 m when using a high-frequency source signal.
(a) Comparison of the vertical velocity observed and inverted seismograms. (b) Comparison of the
normalized seismograms calculated for the initial, inverted, and observed data for trace 36.

6. Conclusions

In this study, a 2D multi-parameter pseudo-viscoelastic time domain is applied to a
synthetic shallow complex velocity model where a dipping high-velocity layer near the
surface with varying thicknesses is used as the case study and both surface and body waves
are present. Investigation of these problems requires consideration of various aspects in the
presented FWI methods. Some of these aspects that need to be considered in this workflow
could be noise contamination, initial velocity model building, elastic and viscoelastic effects,
Q factor estimation, and handling long offsets. The other concern about the presented FWI
is the convergence speed and computational time of both the forward and inverse steps.
Obviously, the size of the velocity model and observed data for near-surface application
is not comparable with deep reflection data. The forward modeling step for generating
synthetically predicted data from the initial model, back propagation, and computing
the gradient, are time consuming steps in the proposed strategy. Thus, to speed up the
processing time and increase the converge speed, the nonlinear conjugate gradient method
was used. Defining the order of the finite difference operator, discretization, built-in
wavelet, Q factor approximation, optimization method, and boundary condition definitions
also need to be considered. The first synthetic example shows that when the velocity
values in the model are not high, P- wave and S- wave velocity, and density models can
be reconstructed well using a low frequency source signal. When the velocity values in
the model are higher, the high-velocity layer cannot be resolved with the P- wave velocity
model because of the large p-wavelength propagated through the medium. Therefore,
the use of a wavelet with a broader bandwidth and higher center frequency can be the
solution. In the second experiment, a Ricker wavelet is used to fulfill this issue. Both
experiments provide satisfactory and reasonable results as the high-velocity layer near the
surface is fairly reconstructed and the structures below this layer are also partially imaged.
Reconstruction of the S- wave velocity model is more reliable and accurate compared to
p-wave velocity and density models, due to less sensitivity of the surface waves with
respect to the P- wave velocity and density parameters. This issue needs to be studied
and improved in the future. However, it should be noted that a better image of subsurface
structures would be obtained if attenuation of P- and S- waves are inverted simultaneously
with the model parameters.
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N U R W N

Abstract: The three aftershock sequences that occurred in Al Hoceima, Morocco, in May 1994
(Mw 6.0), February 2004 (Mw 6.4) and January 2016 (Mw 6.3) were stochastically modeled to in-
vestigate their temporal and energetic behavior. A form of the restricted trigger model known as
the restricted epidemic type aftershock sequence (RETAS) was used for the temporal analysis of
the selected series. The best-determined fit models for each sequence differ based on the Akaike
information criteria. The revealed discrepancies suggest that, although the activated fault systems
are close (within 10 to 20 km), their stress regimes change and shift across each series. In addition, a
stochastic model was presented to study the strain release following a specific strong earthquake. This
model was constructed using a compound Poisson process and depicted the progression of the strain
release during the aftershock sequence. The proposed model was then applied to the data. After
the RETAS model was used to evaluate the behavior of the aftershock decay rate, the best-fit model
was obtained and integrated into the strain-release stochastic analysis. By detecting the potential
disparities between the observed data and model, the applied stochastic model of strain release
allows for a more comprehensive examination. Furthermore, comparing the observed and expected
cumulative energy release numbers revealed some variations at the start of all three sequences. This
demonstrates that significant aftershock clusters occur more frequently shortly after the mainshock at
the start of the sequence rather than if they are assumed to occur randomly.

Keywords: point process modeling; RETAS model; aftershock energy release; Al Hoceima; Morocco

1. Introduction

Seismic events can be classified into three main types based on their distribution
over time [1]: (1) mainshock followed by a number of aftershocks decreasing in frequency,
(2) slow build-up of seismicity leading to a type (1) sequence and (3) gradual increase and
decay of seismicity without a distinct mainshock (seismic swarm), which occurs in areas
with complex tectonic structures.

The decrease in aftershock occurrences caused by a strong earthquake can be studied
using a wide range of methods, according to [2]. The Omori law model is the most
typically adopted model [3], which [4] adapted into the modified Omori formula (MOF) by
assuming that the fluctuation of the stress field of the mainshock initiates all the events in
the sequence.

The trigger events are conditionally independent and follow a non-stationary stochas-
tic Poisson process. Considering the complex behavior of some earthquake series, partic-
ularly in the presence of secondary events, [5] introduced the epidemic type aftershock
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sequence (ETAS) model, by increasing the capacity to generate secondary events for each
event in the sequence. There are several triggering models between these two limit sit-
uations: the MOF and ETAS models being two of them [6,7]. The RETAS model [8] was
developed by applying the principle of Bath’s law [9,10] to the subsequences caused by
principal events, such as the mainshock. It is worth mentioning that the magnitude differ-
ence between the mainshock and the strongest aftershock is commonly considered to be
constant, ranging between 1.2 and 1.4 on average, depending on the criterion [11], although
with a lot of variability between individual aftershock sequences [12].

In this study, we focus on three sequences of type (1) designated as the aftershock
sequences of Al Hoceima 1994, 2004 and 2016, occurring near the city of Al Hoceima, in
Morocco (Figures 1 and 2). The multifractal properties of these sequences have already
been investigated in the framework of the spatial modeling of many seismic series in the
Ibero-Maghrebian region [13]; however, even more temporal, energy and stress evalua-
tions are required. Therefore, this study aims to examine three aftershock series using
stochastic modeling.
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Figure 1. Geologic sketch map of the Betic-Rif region and location of the Al Hoceima study area. Bk:
Bokoya Massif; Ra: Ras Afrou; Rt: Tas Tarf; Tf: Tres Forcas Cape. Internal Zone includes Sebtides and
Ghomarides in the Rif and Nevado-Filabrides, Alpujarrides and Malaguides in the Betics.
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Figure 2. Seismicity recorded by the Spanish IGN included in the 1994, 2004 and 2016 seismic series
from magnitude 2.0. Main tectonic features are displayed.

This contribution includes the first section, which describes the regional geological
context. In the second section, as suggested by [14], the three aftershock sequences are
analyzed, and the stress regime in each series is comprehensively described. The Gutenberg-
Richter relationship analysis, performed in a later section, attempts to derive reliable
threshold magnitude values and b-value estimates for each sequence. A stochastic point
process modeling analysis was performed in the previous two sections. As described
previously, the aftershock decay rate was comprehensively studied using the RETAS model.
The identified best-fit model was then integrated into a stochastic analysis of strain release.
A comparison between the real values of the cumulative energy release and the expected
modeled values is also examined and addressed.

2. Geological Setting Overview

The Rif, along with the Betics, forms the westernmost alpine ranges of the Mediterranean
Sea and are linked by the Gibraltar Arc. The Alboran Sea is in the center (Figures 1 and 2).
The central-south region of the Alboran Sea and the eastern Rif Cordillera belong to the
seismically active area of Al Hoceima. The Internal and External Zones separated by the
Flysch Units tectonically constitute the Rif Cordillera. In addition, several late intramontane
Neogene-Quaternary sedimentary basins emerged, some of which were linked to the Alboran
Sea, forming the largest basin of the orogen [15].

The Internal Zone comprises Sebtide and Ghomaride superposed tectonic complexes
formed by Paleozoic, Mesozoic and Cenozoic rocks, which are strongly affected by the
Alpine Orogeny and have their equivalents in the Betics, called Alpujarride and Malaguide.
Some of these complexes have undergone metamorphism and have been thrust over the
Flysch Units and the External Zone in the Rif.
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The Flysch Units, which are mostly Tertiary sedimentary rocks with some locally
ultrabasic rocks, constitute the sedimentary basin that separates the Internal and External
Zones and is underlain by oceanic crust. They thrust southward across the External
Zone, which is formed by Mesozoic and Cenozoic sedimentary rocks that are mostly
unmetamorphosed or, in some cases, have a low degree of metamorphism.

The Alboran Sea is primarily formed by Neogene and Quaternary sediments deposited
on a basement that corresponds to the Internal Zone complexes [16]. Furthermore, Neogene
to Quaternary volcanic rocks can be found in the central-eastern Alboran Sea and eastern
Rif and Betics.

The main alpine deformations in this area occurred throughout the Oligocene and
Miocene and continue into the present. The earliest stages of deformation were partially
simultaneous with the process of western migration of the Betic and Rif Internal Zones,
coinciding with the opening of the Alboran Sea and forming the Gibraltar Arc during
a period of severe weakening of the continental crust. The new Alboran marine area
corresponds to the western end of the Algero-Provengal Basin, which began to open at the
end of the Oligocene [17], forming a new oceanic floor. In the Alboran Sea, the continental
crust was markedly weaker and situated on the new oceanic floor on its eastern border.

Subduction processes, combined with NNW-SSE convergence and regional compres-
sion of the Iberian and Nubian plates [18-20], resulted in significant deformation in the
northern and southern borders of the earliest Alboran Sea. These processes developed
the Gibraltar Arc, with the uplift of the Rif and Betic Cordillera, which were radially
deformed [21] around the Alboran Sea and undergoing a regional E-W compression.

Later, from the late Miocene, when the opening was nearly at its end ceasing the
E-W compression, the general NNW-SSE compression was completely re-established [22].
The region then began to undergo folding (e.g., the Alboran Ridge anticline) and faulting
(e.g., the AlIdrisi, Yusuf, Carboneras, Averroes, Jebha and Nekor faults, in addition to other
minor faults).

Since the Miocene, important NNE-SSW sinistral strike-slip fault systems crossing
the Alboran Sea (Trans Alboran shear zone; [23]) were formed, such as the Carboneras
Fault, coming from Almeria, Spain and the Nekor and Jebha faults, the last being renowned
inland [24]. Later, the Al Idrisi and other conjugated NW-SE faults developed (e.g., the
Averroes Fault), as well as some E-W faults and thrusts with a general ENE-SWS strike.
The upper Neogene and Quaternary sediments of the central and eastern Alboran Sea are
affected by these deformations, whereas the western Alboran Sea undergoes mud volcanic
tectonics [25]. This regional geodynamic setting continues into the present.

Almost all the domains mentioned are present in the study area. The Internal Zone
forms the inland Bokoya Massif, between Al Hoceima and Melilla to the west, as well as
a smaller outcrop, Ras Afrou, on the coast between Al Hoceima and Melilla. The Flysch
Units and External Zones, as well as several Neogene-Quaternary basins, appear south
of the Internal Zones. Furthermore, Miocene volcanic rocks comprise most of the Raf Tarf
and Tres Forcas capes. There are also significant faults (Figures 1 and 2), the most notable
of which are located around the Nekor Basin limits, east of Al Hoceima, whose directions
range from nearly N-S to NE-SW (e.g., the Trougout Fault, separating Ras Tarf volcanic
rocks from Al Hoceima Bay). Some of these faults remain active offshore.

Evidently, all existing seismogenic faults, both onshore and offshore, are unknown,
particularly because some are in the early stages of development [26].

3. Aftershock Sequences Description

The Alboran region, specifically the Al Hoceima region, has been the subject of nu-
merous tectonic studies, including those by [27-31]. Owing to its location in the complex
border zone between the Eurasian and Nubian plates, near the border between the eastern
Rif Cordillera tip and the Alboran Sea, the Al Hoceima region is known to be the most
seismically active sector in northern Morocco. Furthermore, because of its strong seismicity,
it is one of the most seismically active sites in the western Mediterranean region.
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The seismic database of the Spanish Instituto Geogréfico Nacional (IGN) was used
to assemble the data for this study, with no further processing or parameters from other
local or regional agencies. This was performed to keep the database as homogeneous as
possible, working in all cases with my, magnitude.

The 1994 earthquake sequence (Figure 2) began on 26 May 1994, with a strong earth-
quake of magnitude Mw 6.0, which struck the coastal region near Al Hoceima. This event
had a strong impact on the studied region of Al Hoceima [32]. The maximum felt intensity
was VIII-IX (EMS-98), indicating an extended NNE-SSW corridor that accounted for over
80% of the damage reported. The magnitude of the earthquake was revised to Md 5.7
(Moroccan Scientific Institute), and the epicenter was relocated north of Al Hoceima at a
focal depth of 13 km. According to [32], the distribution of aftershock epicenters in Figure 2
is largely scattered along a NNE-SSW trending cluster over an almost vertical plane.

Another seismic series struck the region on 24 February 2004, with a damaging main-
shock of Mw 6.4 (Figure 2). This event occurred on land and caused severe damage.
Ref. [33] estimated the maximum perceptible intensity around XI (EMS-98). In Al Hoceima
and the surrounding area, nearly 630 people died, 926 were injured, and nearly 15,000 were
left homeless. Ref. [34] relocated the 2004 sequence. According to [35] and other authors,
the series epicenter occurred on a NE-SW trending strike-slip fault, while the presence of a
NW-SE fault with conjugate NE-SW branches cannot be ruled out [34].

The third examined sequence (Figure 2) is linked to the major event on 25 January 2016
(Mw 6.3), whereas it is possible that the series began on January 21 with an event of Mw 5.1.
Following these events, a major earthquake series with decreasing activity occurred in 2016
and 2017 [33,35,36]. The major event, with a maximum intensity of VI-VII, was felt over the
Alboran area, particularly in Melilla, Spain, on the northern African coast, where extensive
damage was reported, as well as in Al Hoceima [33,37].

The Spanish IGN found two distinct epicenter clusters in 2016, each with distinct
tendencies. The first one is aligned NNE-SSW changing to N-S, with dominant strike-slip
focal mechanisms, while the second one is to the northeast of the first, with a rounded
shape and a dominant reverse focal mechanism solution. A NNE-SSW subvertical fault,
roughly parallel to the elongation of the alignment and displaced west of the Al Idrisi Fault,
is linked to the main NNE-SSW alignment [26].

Figure 3 shows the number of events per day for the selected series in the 150 days
after the mainshock, while Table 1 provides the number of events in each series, the
minimum recorded magnitude and other computed parameters, which will be discussed
later. The 1994 Al Hoceima sequence had 263 recorded events with a magnitude above 2.0,
which occurred until December 1994 (some early events have been included in the series);
the 2004 sequence had 969 recorded events with a magnitude above 1.5, which occurred
until February 2005; and the 2016 Al Hoceima sequence had 2577 recorded events with a
magnitude above 0.8, which occurred until August 2016.
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Figure 3. Temporal evolution of the studied series (magnitudes above 2.0). Starting of the x-axis does
not always correspond to the occurrence of the main event.

Table 1. Number of events (n), minimum recorded magnitude (M), computed threshold magni-
tude (m) using the Maxc method and a and b-parameters.

Sequence n Min me ato bto Sequence
1994 263 2.0 2.8 5.05+0.02 1.01+0.07 1994
2004 969 1.5 3.4 6.56 £0.02 1.14 £0.05 2004
2016 2577 0.8 2.0 486 +0.03 0.82+0.02 2016

For the 1994 and 2004 sequences, Figure 3 reveals a direct decrease in the number of
events per day over time, whereas the trend for the 2016 series is more complex, apparently
because of the complexity of the rupture(s). There were several different phases in the late
aftershock sequence. The recorded occurrences followed a deformation band with two
unambiguous alignments with widths of less than 10 to 20 km for the first 30 days [26].
The main alignment, which is moved 5-10 km westward, appears to be spatially associated
with the Al Idrisi Fault. A decrease in the seismic activity rate was observed over the next
30 days, resulting in an increase in the width of both alignments, which reached 10-20 km.
A clear decrease in activity rate was observed at least 60 days after the mainshock, affecting
a wider area than 15-25 km in width as [26] indicated.

4. Seismic Series Stress Regime

The IGN database, international agencies and numerous studies aimed at analyzing
these seismic series were used to obtain earthquake focal mechanisms for the selected
series. Figure 4 shows earthquakes with magnitudes greater than 3.0, from the 1994 Al
Hoceima sequence, as well as the focal mechanism of aftershock events computed by [32]
(Figure 4A); different solutions for the focal mechanism of the main shock (Figure 4B) from
the Global Centroid Moment Tensor (GCMT), International Seismological Centre (ISC); and
specific works by [38-41] (for both a pre-event and the main quake) and [29].
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© 3.0-40

Figure 4. (A) 1994 seismic sequence showing earthquakes with magnitude above 3.0 and computed
focal mechanisms for aftershocks [32]. (B) Different focal mechanism solutions for the mainquake.
GCMT: Global Centroid Moment Tensor; Té&al.: [40]; M&R: [38]; ISC: International Seismologi-
cal Centre; B&B-I and B&B-II: [41], for a pre-event and the main quake, respectively; B&al.: [29];
EA&al.: [32,39].

Figure 5A depicts the distribution of events with magnitudes greater than 3.0, which
were included in the 2004 series, as well as the estimated focal mechanisms of the largest
events. In addition, Figure 5B shows the earthquakes and computed focal mechanisms of
the so-called “eastern cluster” from [34].

Figure 5. (A) 2004 seismic sequence showing earthquakes with magnitude above 3.0 and computed
focal mechanisms for the biggest events. (B) Earthquakes with magnitude above 1.0 and focal
mechanism solutions for the biggest events (m}, 1.9-3.0) of the “eastern cluster” studied by [34].

Figure 6 shows events with magnitudes more than 3.0 as well as estimated focal
mechanism solutions for the 2016 Al Hoceima sequence.
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Figure 6. 2016 seismic sequence showing earthquakes with magnitude above 3.0 and computed
focal mechanisms.

The stress pattern from the inversion of the available focal mechanism data was
used to characterize the three seismic series. It is worth noting that for the inversion
process, it was not necessary to select between two available nodal planes. To estimate the
different parameters of the reduced stress tensor, we used the improved right dihedron
method [42] combined with the iterative rotational dihedron method [43]. Our aim was to
calculate the four parameters of the reduced stress tensor, 01, 0, 03 and the stress ratio,
R = (02 — 03)/(01 — 03).

According to [19], this method allows for estimating previous parameters and the
extraction of filtered focal mechanism data by deleting nodal planes that are incompatible
with the average stress regime. The compatible focal mechanisms and the calculated stress
tensor produced at this point were then employed as the direct starting point for the
rotational optimization technique.

The iterative grid-search rotational optimization process is based on a controlled grid
search of the stress tensor using the Win-TensorTM code to reduce the so-called misfit
(F5) [44]. According to [45], the nodal plane best explained by the stress tensor was chosen
as the actual fault plane from the two planes of the focal mechanism. Consequently, the
final inversion examines the focal planes that a uniform stress field best fits [46]. After the
ultimate optimization, the omitted focal planes must be reconsidered without modifying
the stress tensor. If this is the case, the data are re-entered into the database, the stress
tensor is re-optimized, and the software runs another check for the rejected data.

This method was used to analyze the focal mechanism data for each seismic se-
quence. Table 2 and Figure 7 show the results of the stress inversion. Several authors
(e.g., [19,44,47-49]) have used a similar approach to investigate the stress regime in
other regions.
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Table 2. Stress regime for the cases considered in Figure 7.

Sequence o1 o) o3 R F5

1994 main event 327° N/13°  226° N/40° 072° N/47° 0.19 7.1

1994 aftershocks 132° N/44°  349° N/39°  242° N/20° 0.38 3.5

2004 all, without ‘eastern’ cluster ~ 330° N/25°  149° N/65°  239° N/00° 0.59 2.6
2004 ‘eastern’ cluster 020° N/79°  141°N/06°  232° N/09° 0.82 5.6

2016 main cluster 332° N/06° 224° N/72° 064° N/17° 0.74 1.6

2016 secondary cluster 330° N/23°  062°N/04° 161°N/67° 049 3.3

The variability in the stresses is highlighted in Figure 7 and Table 2. The different
solutions of the mainshock, when considered together, and those determined for the
aftershocks were not very distinct in the 1994 seismic series. A prolate stress ellipsoid
with a near NW-SE horizontal (compressive stress regime) and roughly similar o, and
03 values appeared in the mainshock. The slope then turns southeast, highlighting the
NE-SW expansion with the horizontal o3 being more noticeable (extensive stress regime).

The seismic series from 2004 appears to be more uniform, with oblate stress ellipsoids
and a noticeable NE-SW extension trend. While the main cluster shows NW-SE sub-
horizontal o1 and NE-SW sub-horizontal o3 values, clearly indicating a strike-slip stress
regime, in the “eastern cluster” [34], a cluster with a few low-energy earthquakes and oy
and oy values becoming closer, and a NE-SW horizontal extension is dominant (extensional
stress regime).

In the 2016 sequence, the computed stress regime for the main cluster agrees with that
obtained in the 2004 main cluster (strike-slip stress regime); however, there is a noticeable
increase in the axial ratio, where o and o, magnitudes are closer, highlighting the well-
defined NE-SW sub horizontal extensive stresses. In contrast, the secondary cluster is
dominated by NW-SE compressive 0 stresses and a subvertical 03, suggesting thrusting
(compressional stress regime). Furthermore, the secondary cluster stresses are like those
obtained for the mainshock of 1994, which had a primary NNW-SSE o7 odd axis.

The maximum compressive horizontal stress (SHmax) in all solutions was between
142° N and 153° N, which is consistent with previous results for regional stresses
(e.g., [18-20,50]). However, the extension directions are compatible with the Internal
Zone movement of the Betic—Rif toward the southwest [26,51-53].
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Figure 7. Stress regime computed from focal mechanisms. (A) For the 1994 mainshock, (B) for the
1994 aftershock sequence, (C) for the 2004 aftershock sequence, (D) for the ‘eastern cluster’ considered
by [34], (E) for the 2016 ‘main cluster” and (F) for the 2016 ‘secondary cluster’.

5. Magnitude-Frequency Relationships

The Gutenberg—Richter recurrence relationship [54,55] is a frequently used approach
for quantifying seismic activity in each region and has been shown to apply aftershock
frequency-magnitude data. The equation is a reasonable approximation of the frequency-
magnitude statistics that describe the correlation between earthquake occurrence frequency
and magnitude

logiy N (> m) =a—bm m > me (1)
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where N (>m) is the number of events with magnitudes greater than or equal to m. For the
estimation of both the a and b-values, it is widely recommended to use a complete dataset
for all ranges of magnitude.

The threshold magnitude parameter 1, is typically determined using one of two
methods: a network-based [56,57] or catalog-based approach [56,57]. The first group uses
the day-to-night ratio to calculate the earthquake frequency, if noise reduces the detection
threshold at night [58,59]. The second set of approaches assumes that earthquake produc-
tion is self-similar, allowing us to use a power law or the Gutenberg—-Richter relationship
to construct earthquake frequency—magnitude distributions. The most applied methods
in this group reviewed by [60,61] are the maximum curvature (Maxc) method [62], en-
tire magnitude range (EMR) method [60,63], median-based analysis of the segment slope
(Mbase) [64], determination of b-value instability [65] and goodness-of-fit test (Gft) by [62],
which was later modified by [66].

The threshold magnitude for each of the three sequences under consideration was
thoroughly estimated in the current study. Although both the maximum curvature (Maxc),
Gft, Gft at levels of 5% and 10% (Gft5% and Gft10%), and modified goodness of fit (mGft)
methods were first investigated, the maximum curvature method produced better results,
i.e., a better fit (Table 1). Threshold magnitude values of 2.8, 3.4 and 2.0 were obtained for
the 1994, 2004 and 2016 aftershock sequences, respectively. The threshold value fluctuated
over time, which was also studied. This temporal fluctuation is depicted in Figure 8 and
was computed using a sliding-window method.

Prior to each new computation, a window of 20 events was shifted by five events [67].
The middle time of the associated window is supplied to each new threshold magnitude
value. The window length was chosen as the balance between the need for temporal
resolution and smoothness. Multiple tests were conducted first, changing the number of
occurrences per window and the shift; however, neither aspect had a significant influence
on the definition. The maximum likelihood approach was used and is considered one of
the most reliable approaches for computing the b-value among the available methods. The
estimator by [68], given below, was used to calculate the b-value:

_ logyge
"= ) —me ®

(m) being the average value of the magnitude. An estimate of the standard deviation oy is
obtained using the [69] relation, given as follows:

N (mi—m)?

_ 2
0 =230D NN 1)

®)

According to [69,70], even when the b-value varies in time and/or space, this re-
lationship provides a reliable approximation of b-uncertainty. When utilizing rounded
magnitudes, the estimator by [68] is inaccurate but agrees with the modified distribu-
tion of [71]. Then, the improved estimator by [72], given below, is used to determine the
maximum likelihood b-value:

_ logye
- (mlco -%) ?

The estimated b-value appraisal for the 1994, 2004 and 2016 aftershock sequences, us-
ing the maximum likelihood estimator by [72], with a bin width of 0.1 units, are 1.01 £ 0.07,
1.14 £ 0.05 and 0.82 =+ 0.02, respectively (Table 1). Figure 9 shows the power law dis-
tributions for the three sequences as fitted by a straight line. The greatest magnitudes,
corresponding to the mainshock, are not explained by the Gutenberg—Richter relationship
and are thus regarded as outliers in all series. It is worth mentioning that the estimated
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maximum likelihood parameters are closely linked to and impacted by the previously
determined threshold magnitude.
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Figure 8. Temporal evolution of the threshold magnitude for the three sequences.
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6. Temporal Stochastic Modeling for the Al Hoceima Sequences

This section focuses on the point process modeling of the studied aftershock sequences.
Many approaches for modeling this gradual decrease in aftershock frequency have been
presented in the literature. The most commonly used model is the Omori law [3], which
was improved by [4] into the modified Omori formula (MOF). According to [4], the decay
rate of the aftershock per unit time is given as follows:

K
(t+c)?

n(t) = )
where t is the time after the occurrence of the mainshock, and the parameter K is re-
lated to the mainshock event and threshold magnitude. The c parameter is a debatable
number [73,74], with the early stages of imprecise detection of low events in the sequence
having a significant effect [75]. Finally, the p parameter is a decay constant, and it is quite
likely the most important parameter for understanding the behavior of the sequence. The
p-value varies from sequence to sequence and typically ranges from 0.5 to 1.8 [73]. This vari-
ation may be related to tectonic activity in the area. However, the elements that influence
the p-value remain unclear [76,77].

The quantity n(t) allows us to connect with the point process model by considering it
a conditional intensity.

n(t) = "(t), (6)
bearing in mind that [5]:

P {an event occurs in (t,t +dt)|J} = “(#Sy) dt + o(dt), (7)

where 3¢ denotes the internal history of the occurrence process at time t, “(#/S¢) is the
conditional intensity function [5,78], and o(dt), in the Landau notation, is a function of a
lower order than the function A, i.e., o(df) being negligible. The MOF model includes only
the mainshock occurrence time because it is based on the concept that the entire relaxation
process is driven by the stress changes induced by the mainshock alone. The aftershocks
are conditionally independent and follow a non-stationary Poisson process.

The MOF model fits data for simple aftershock sequences well; however, secondary
clustering is common when there are secondary aftershocks triggered by strong earthquakes
in a sequence. The authors in [5] argued that aftershock clustering is a self-similar process in
which all aftershocks might induce other aftershocks, with a triggering capacity dependent
on their magnitudes, because of these complex situations involving one or more secondary
events.

The model was named ETAS, and its conditional intensity function is given
as follows [79]:
koea(miﬂm)

[l o

S =p+ Y

i; i<t
where y is the background seismicity rate. The internal history S; includes the time
occurrence t; (in days after the mainshock) and magnitude events m; of all the events
occurring before time t. The summation includes all events with occurrence times t; and
magnitudes equal to or greater than the lower cut-off m.. The c and p model parameters
were the same as those used in the MOF model. Furthermore, kj is a parameter that affects
total aftershock productivity and is common to all aftershocks.

According to [80], every term of the summation in Equation (8) indicates the contri-
bution of a prior event to the occurrence probability of subsequent events at time t. The
exponential term is controlled by two factors: (a) the temporal rate decrease, as presented
by the MOF model and (b) the exponential term chosen because the logarithm of the
aftershock area and the magnitude of the mainshock present a linear relationship [81].
Parameter « measures the effect of the magnitude of the production of ‘children” events,
also called “descendants”.
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The MOF and ETAS models, as expressed by Equations (5) and (8), respectively,
present two limited cases for modeling the temporal distribution of an aftershock sequence.
Ref. [2] proposed a similar model, the RETAS model, based on the assumption that not all
events in a series; however, only aftershocks with magnitudes greater than or equal to a
threshold value, can directly cause the aftershocks of “descendants”. This model allows
for the inclusion of all potential models between the two limit cases of the MOF and ETAS
models, resulting in the conditional intensity expressed as follows:

kog“(""i*mr)
“(HS)) = u + Rl )
(‘ t) " i;;<f (tft,‘+c)7’
m; =My

It is worth noting that the RETAS model developed by [8] is based on Bath’s law,
which states that the difference between mainshock magnitude and the strongest aftershock
magnitude, ranges between 1.2 to 1.4 units. According to this relationship, ref. [8] argued
that the difference between the weaker primary event and the weakest event in the after-
shock sequence must be at least 1.2 units, by applying this principle to the subsequences
generated by the primary trigger model.

Furthermore, the RETAS model has the advantage of examining all potential models
between the MOF and ETAS models because the triggering magnitude ranges from the
threshold magnitude to the mainshock magnitude. The Akaike information criterion [82],
abbreviated as AIC, was used to choose the best-fit model in our case, with the lower AIC
value. This is expressed as follows:

AIC = -2 max log L(6;0,T) + 2k (10)

where k" represents the number of parameters of the model, and log L is the logarithm of
the likelihood function, given as follows:

T

N

log L(8;0,T) = ¥ logyy7s(H]S1,) —/“g(s|85)ds (1)
i=1 0

In the previous Equation (12), N is the number of earthquakes with magnitudes greater
than or equal to 1., occurring at times tj (j=1,2,...,N),during [0, T]. Due to the features
of the described model, it was used in this study to investigate three aftershock sequences.
Table 1 lists the magnitude thresholds used in this study.

As a result of the RETAS model analysis, Figure 10 displays the AIC value versus
the triggering magnitude value. Analysis of this curve reveals the aftershock clustering
type that is most common in the sequence. The AIC parameter was calculated for all the
potential models by varying the triggering magnitude from the threshold magnitude to the
magnitude of the mainshock. The best-fit model shows the AIC minimum values in Table 3
as well as the triggering magnitude and model parameters.
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Figure 10. The AIC values of the RETAS model vs. the triggering magnitude for the three sequences.

Table 3. The computed parameters for the RETAS model.

Sequence Mtr Best Model AIC Ky o c P
1994 3.9 RETAS —12.4 1.727 0.0630 0.024 0.909
2004 3.4 ETAS —1222.5 3.426 0.0035 0.082 1.070
2016 2.0 ETAS —7209.0 1.477 0.0380 0.039 1.183
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When examining the AIC values vs. M;, curves (Figure 10), we can see that the
best-fit model for the minimal AIC value was found to be for a M;, value of 3.9 for the
1994 sequence. For the 2004 sequence, an M;, value of 3.4 is the best-fit model obtained and,
for the 2016 sequence, a magnitude of 2.0. The best-fit model became an ETAS model when
the triggering magnitude M;, coincided with the completeness threshold magnitude . in
the last two M. Analyzing the AIC vs. M}, trigger magnitude curve for the 2016 sequence,
a monotonic trend exists, resulting in a continuous increase in AIC values, the lowest of
which is for My, = m,.

According to the model presented in Figure 11, the estimated best model parameters
shown in Table 3 were used to compute the expected cumulative number of earthquakes
and error bounds. The computed values were compared with the observed cumulative
number of earthquakes. Figure 11 shows that the estimated model matches the observed
data well for all three sequences, with the observed values remaining inside the error
boundaries throughout the whole sequence.
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7. Stochastic Model for the Energy Release

In the literature, several attempts have been made to improve earthquake time models
by including data on other characteristics associated with event occurrences, such as space-
time models or those that relate event occurrence time to a size value of the event (intensity,
magnitude or energy). In this context, this section aims to investigate the relationship
between the occurrence times {Ty, k =1, ..., n} and released energy {Ex, k=1, ..., n},
providing information on the size of the events in the studied sequences. It is typically
considered that the time of occurrence and scale of an event are unrelated.

As a result, our aim was to create an energetic stochastic model that incorporates these
considerations and examines how well it represents the observed data. According to [83],
marked point processes have similar counting processes [84,85]. The following is a descrip-
tion of this model. Given a Poisson process {N(t); t > 0} with a rate A > 0, it is assumed
that the time T} of each event is linked to a realization, which is a family {Yy; k > 0} of
independent and identically distributed random variables called marks, with a probability
distribution function equal to

Gly) = P{¥i <y} 12)

The second requirement is that the random variables are at the same time independent
from {N(t); t > 0}. Then, according to [84,85], the stochastic model, typically called the
compound Poisson process, is defined as follows:

N(t)
Z(t)=Y Y5 t>0 (13)
k=1

Denoted by y and 7?2 are the mean and variance of the marks Y}; the moments of Z(f)
are then given as follows:
E[Z(t)] = “ut (14)

var[Z(H)] = (72 + 1)t (15)

Consequently, in the case of a series of occurrence times and event sizes, the compound
Poisson process can be used as a model process for random behavior. In the most general
treatment of a compound point process, {N(t); t > 0} is an inhomogeneous Poisson process
with an intensity function {A(t); + > 0}, and marks {Y}; k > 0} do not have to form an
independent series of random variables. Equations (14) and (15) must be rewritten in the
context of an inhomogeneous Poisson process with a rate that varies with time A = A(f)

E[Z()] = [ (s)ds (16)
var(Z(1)] = (72 +4?) /“(s)ds 17)

to
The following relationship (18) between the log of the released energy and the magni-
tude is used [55,86] because the most common way of describing the size of an earthquake
is by its magnitude.
log;oVE =24 +0.75 M (18)

The relationship described by this Equation (18), according to [86,87], is consistent
with what is expected theoretically for classical crack models with a constant stress drop.
This generalized energy—magnitude scaling equation works for various magnitude ranges.

As the cumulative released energy is a physical quantity, it is helpful to consider the
series of released energies in the compound Poisson process scheme. It is worth noting that
this method has several limitations. First, the energy is determined by the wide dynamic
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range of the released energy, as well as an instrumentation earthquake record. Thus, to
reduce this variability, Equation (18) is transformed as follows:

Ex 10%8+1.5 My

tr
k Eo 1048+1.5 Mo

=10"° (M=Mo) (19)

where Ej, and M correspond to the energy and magnitude of the k-th event, respectively,
and Eg and M are the energy and magnitude of the first event considered, respectively. E}(’
is the Benioff’s energy.

The approach described above was used to analyze the considered aftershock se-
quences. Considering the compound Poisson process, given as follows:

N(t)
Z(t)= Y Ef (20
k=1

Equations (16) and (17) were used to derive the estimation of the mean E[Z(t)] and the
variance var[Z(t)] for each series, considering the best-fit model derived and analyzed in
the previous section. Figure 12 displays the expected cumulative energy and confidence
bounds, mean plus/minus the standard deviation, according to the appropriate best-fit
model for each aftershock sequence, and this is compared to the computed cumulative
energy released in the sequences.
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Al Hoceima 2016
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Figure 12. Cumulative released energy for the three sequences. Circles: observed values. Lines: mean
=+ o fitted model. Magnitudes of the events included in the sequences are also depicted. The inset
shows the first ten days of the series.

It should be noted that the stochastic model used follows the two previously quoted
assumptions: both the independence of the magnitudes and the independence of the
magnitudes with the occurrence time. Figure 12 shows that, for the 1994 sequence, no
significant deviation of real data values from the model was observed, which supports
the above assumptions. However, deviations of the real data values with the model were
observed for the two other aftershock sequences.

For the 2004 sequence, the main deviation was observed at the beginning of the
sequence, up to the 30th day, where the clustering of stronger aftershocks was recognized.
This reveals that the assumption of the independence of magnitudes with occurrence times
is not valid in this case. In addition, another deviation of the observed data out of the
error bounds can be observed in the 2016 sequence, where an additional concentration of
stronger aftershocks is recognized.

8. Discussion

In the present study, the stress pattern analysis revealed that all solutions had a
maximum compressive horizontal stress (SHmax) between 142° N and 153° N, which is
compatible with previous regional stress data as determined by previous studies. Further-
more, according to these results, the extension directions are clearly compatible with the
Betic-Internal Rif’s zone movement southwestward.

The results for all the seismic sequences share horizontal stresses, showing a NW-SE
compression and a NE-SW extension as a result of the regional setting. Nonetheless, some
significant differences can be observed in the axial ratios and local stress regimes because
of the series location in the main shear zone crossing the Alboran Sea and the activated
structures in the main and secondary clusters. The three series induced a different fault
system, also hosting seismicity, from which the sequence began.

Concerning observed differences in the tectonic characteristics of the series, the 1994
sequence is mainly scattered along a NNE-SSW trending cluster over an almost vertical
plane [32], the 2004 sequence is mainly scattered along a NE-SW strike slip fault, and the
2016 sequence is initially scattered along a NNE-SSW trending cluster over a subvertical
strike-slip fault, then changing to N-S and finally distributed on a second rounded cluster
with a dominant reverse focal mechanism solution [26]. The magnitude of completeness
values considered in the current study were compared with those derived using Gft and
mGft methods.

Figure 13 shows plots of residuals vs. the minimum magnitudes for the three series.
The results obtained matched the estimated values derived using the maximum curvature
(Maxc) method. All approaches yield a result of 2.8 for the 1994 series. For the 2004 series,
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the difference was of the order of 0.1 using mGft, Gft5% and Maxc and 0.2 between Gft10%
and Maxc. However, in the case of the 2016 series, the difference varies between 0.2 and 0.3.
The results are 1.9 using Gft10%, 2.2 for Gft5%, 2.3 for mGft and 2.0 for Maxc.
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Figure 13. The obtained residuals vs. magnitude when fitting the observed data to the mGft power
law (solid line) and theoretical distribution power law (dashed line). The 5% and 10% residual levels
are shown as reference.

As discussed in this study, the RETAS model was used to study the gradual decay of
the aftershock frequency based on the triggering magnitude M;, assumption. The minimum
value of the AIC parameter was used as a criterion for selecting the best-fit model. All
possible models were estimated by varying the triggering magnitude M, from the threshold
magnitude m, (ETAS model) or m,,s (MOL model) to the mainshock magnitude. The results
derived for the 1994 and 2004 series highlight and improve on the previous ones derived
by [88]. For instance, for the 2004 aftershock sequence, as in [88], the minimum AIC value
shows results for the best ETAS model. Considering that the 2016 sequence began on
January 21 with an event of Mw 5.1, as suggested by some authors [26], the ETAS model
was obtained as the best-fit model.

Stochastic modeling of the energy revealed that the energy released over the series
was outlined well by the proposed model in the 1994 and 2004 series. However, there
were minor discrepancies in the 2016 sequence and the computed cumulative released
energy did not match the model well. We deduced from the analysis that large aftershock
clusters occurred more frequently and quickly after the main shock than they would if they
occurred at random. This observation holds true for the Zemmouri, Algeria aftershock
series of 2003 [88].

9. Conclusions

Stochastic modeling was used to analyze three sequences of events that occurred in
Al Hoceima, Morocco, May 1994, February 2004 and January 2016. The analysis of the
behavior of the decay rate of the three series, together with the composite stress pattern
and the obtained b-value, led us to conclude that the 2016 sequence is the most complex of
the three series, likely because of two different fault systems being activated—the main one
corresponding to a strike-slip stress and the second one to reverse faults.

The released energy analysis allowed us to characterize the occurrence of large af-
tershocks shortly after the mainshock better than it would if they occurred at random.
However, further research is needed to estimate the recurrence period of such large oc-
currences, as well as the probability of exceeding a specific magnitude shortly after the
mainshocks. This type of research could be conducted in other seismically active regions
to investigate the behavior of the seismic series occurring in these areas. This could help
to understand the characteristics of the earthquake generation process aimed at seismic
forecasting studies.

It should be noted that earthquake forecasting is the ultimate challenge for seismolo-
gists because it accumulates scientific knowledge about the earthquake occurrence process
and is an essential component of any efficient risk-mitigation strategy [89,90]. As stated by
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different authors (e.g., [80,91]), RETAS models can be applied to forecast the occurrence
probability evolution of a certain sequence, providing the possibility to identify the type
of clustering in future seismic series. This is an issue also related to, for instance, the fault
distribution and possible fault interactions in the studied area.
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Abstract: Most geophysical inversions face the problem of non-uniqueness, which poses a challenge
in the mapping and delineation of the subsurface anomalies. To tackle this challenge, a combined
local and global optimization approach is considered for jointly inverting two-dimensional direct
current resistivity (DCR) and seismic refraction (SR) data that aim to estimate the corresponding
physical model parameters. In this combined approach, the output of the local optimization method
is used to determine the search space and tuning parameters for the global optimization algorithm.
The multi-objective genetic algorithm (non-dominated sorting genetic algorithm) was utilized to
jointly optimize the objective functions of two different methods. Because the genetic algorithm is a
population-based optimization method, it requires numerous forward calculations. To deal with the
expected high computational cost associated with this approach, parallel computing was utilized
for the forward function evaluations to reduce the run time of the entire process. The proposed
approach was tested using synthetic two-dimensional resistivity and velocity models that had three
different types of anomalies (dyke, positive, and combined positive and negative). The results
showed an improvement in the anomaly delineation in the output of the combined local and global
optimization method compared with the local optimization method. Additionally, similar synthetic
models were tested using only the single objective global optimization algorithm (conventional global
optimization), which showed promising anomaly delineation.

Keywords: individual inversion; joint inversion; seismic refraction; direct current resistivity; com-
bined local and global optimization

1. Introduction

The primary goal of inverting geophysical data is to estimate the parameters of a
model that will give a theoretical response similar to the field observations [1,2]. However,
it is unusual to have a unique solution since most geophysical inverse problems are ill-
posed. Previous studies included regularization constraints in the objective function to
solve the problem of instability [3-6]. In some cases, with a regularization term in the
objective function, the inversion still faces the challenge of non-uniqueness (i.e., ambiguity)
associated with the inverse problem. To reduce uncertainties related to the inversion
of a dataset belonging to a single geophysical method, many researchers have applied
the concept of joint inversion [7-16] of more than one method, which provides better
model resolution than individual inversion [17-19]. Joint inversion can even resolve
ambiguity associated with the geophysical method(s) applied in an area with low physical
properties contrast [20-22]. Geophysical joint inversion tries to optimize a single objective
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function formed by a weighted or arithmetic sum of the individual objective functions
of corresponding methods [23]. However, the issue of parametric coupling (i.e., model
integration) arises when we are dealing with the inversion of datasets acquired with more
than one geophysical method [24].

In this study, we apply the structural model coupling approach, which involves the
cross-gradient constraint method that is commonly used for geophysical inversion [8].
The basic idea using this approach is that the gradients of relevant model parameters are
spatially correlated. The cross-gradient approach has been adapted for the joint inversion
of different geophysical data [13-16,25-29]. Wang et al. [17] applied the cross-gradient
algorithm in a joint inversion involving both the controlled-source audio magnetotelluric
(CSAMT) and magnetic methods. Demirci et al. [15] formulated an objective function
concerning weighted cross-gradient, which limits the dominance of one type of model
parameter to another. Zhang et al. [30] utilized the cross-gradient constraint to impose
a common structural framework in the joint inversion of EM and acoustic data, which
reconstructs the structures satisfactorily.

Furthermore, Yin et al. [31] applied a cross-gradient technique to invert magnetotel-
luric (MT) and gravity data and tested their algorithm using both synthetic and real datasets.
Finally, Jordi et al. [32] introduced a new approach to the cross-gradient constraint, which in-
volved the use of an irregular grid in unstructured mesh in the finite element method. They
used the method to invert the DCR and ground penetrating (GPR) data. All the above exam-
ples used the conventional or local optimization method that incorporated all acquired data
within the same Jacobian using a unique objective function for all geophysical methods.

The local optimization techniques are applied iteratively to obtain an updated model
that minimizes the objective function, which may not be the global solution to the inverse
problem. The global optimization algorithm in geophysical inversion might be used to
search for a solution space to avoid being stuck in the local minimum of the objective func-
tion. For instance, Liu et al. [33] applied the particle swarm optimization (PSO) algorithm in
a parametric inversion involving magnetic data. Rani et al. [34] used the genetic price algo-
rithm (GPA) to monitor the movement of contaminants in the subsurface. Additionally, [35]
introduced a hybrid approach by using the results of the local optimization method as an
input to the genetic algorithm for the modeling of the SR data. This novel algorithm by [35]
overcame the problem of being stuck in the local minima. It optimized the computational
cost of the genetic algorithm using the multicore parallel computing method.

Similarly, local and global (hybrid) optimization has been applied to complement
each other to subdue their shortcomings [35-37]. Most previous work has considered an
objective function from a different perspective to perform joint inversion using a global
optimization method, such as when using a local optimization algorithm. For instance,
Schwarzback et al. [38] and Ayani et al. [39] considered the objective function for the
inversion of electromagnetic data in two terms. First, they tried to minimize the data misfit
and the roughness of the model at the same time. Akca et al. [40] applied a non-dominated
sorting genetic algorithm in a joint 1D parametric inversion involving magnetic resonance
and vertical electrical sounding.

In previous studies, joint inversion/interpretation was applied by using either local
or global optimization methods. Moreover, local and global (hybrid) optimization has
been applied to complement each other to subdue their shortcomings. However, based on
our knowledge, the joint modeling of different geophysical data by using the results from
the inversion (local optimization) to constrain the search space of the global optimization
approach has never been reported in the literature. Thus, a procedure that constrains the
global part of the combined optimization algorithm by using the local optimization to
define a close search space to the real model parameters was proposed and designed. In
this way, the search space of the model parameters has been limited to a more reliable
range, drastically reducing the computation time.

This study presents the combined local and global optimization approach to jointly
model SR and DCR data. With this proposed approach, the multi-objective (i.e., integration
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of the DCR and SR misfit functions) global optimization algorithm is used for the first time
for the two-dimensional joint inversion of two different geophysical datasets, i.e., SR and
DCR data. Specifically, in this algorithm, the global part of the combined optimization
algorithm is constrained by using the output of the local optimization to define a search
space, significantly improving its run time and mitigating model instability. In addition
to the improved computational cost that resulted from applying the combined local and
global optimization methods, we made the multi-objective global optimization algorithm
run on parallel computing. This process further optimized the computational cost and
devised the optimum technique using the combined optimization algorithm. We tested
and discussed the efficacy of our proposed algorithm using synthetic SR and DCR data.

2. Optimization Methods
2.1. Local Optimization Method

The individual and joint inversion of DCR and SR data are usually regularized with a
smoothing function due to the non-uniqueness and instability associated with the inverse
process. In the inversion of both DCR and SR methods, the data misfit can be formulated
as follows:

E(m) = ||Wa(dops — fm)) |, ()

f(m) is a function that is used to describe forward modeling, d,; is the observed field
record, and W; is the weight matrix used to adjust the data anomaly (e.g., high or low
amplitudes). Usually, we use norms to quantify the misfit between the observed and
calculated data, and the common one used for this type of inverse problem is the L, norm
because we assume that the error in the data is Gaussian. Therefore, the objective functions
for the DCR and SR data are given as follows:

2
D(mye) = |Wac(dae — f1(ma0)) > + ael| V2mgc| 2

2
O (mgr) = || Wer(dsr _fsr(msr))Hz + a5,||V2m5,H 3)

where & is the misfit or objective function, d;. and ds;, are the measured data, and f,;. and f,,
is the model response for the DCR and SR methods, respectively. Additionally, S = V2ms,?
is the Laplacian of the model parameter that is transformed into the smoothness matrix
by obtaining its Laplacian operator, while a;. and as; are the regularization parameters
that determine the level of the smoothness of resistivity and seismic models, respectively.
The joint inversion offers conventional ways of integrating data from different geophysical
methods in such a manner that the outcome models are consistent and similar. One of the
methods used to accomplish this goal is to apply the cross-gradient constraint proposed
by Gallardo et al. [8] in the objective function. The parallel spatial variation in the models
(resistivity or seismic velocity) is required to satisfy the cross-gradient constraint [8,13,15].
This means that model anomalies or layer boundaries must essentially point in the same or
opposite direction. Applying the cross-gradient constraint, Equations (2) and (3) become:
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Mgy
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D (mye, msr) = ’

N
subject to ?(mdc,ms,) = 0. Where ?(mdc,msr) is the cross-gradient constraint and can be
defined as: N

¢ (mge, msy) = Vmg.(x,z) X Vg (x,z) )

Equation (4) can be minimized by applying the appropriate regularized local opti-
mization algorithm similar to the approach used in [15]. Therefore, the model parameter
correction vector can be expressed as:

Am =G 'n—G BT (Bc—lsT) - [Bc—ln — BAm; 1 + ?(mi_l)] ©)
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where G and n are defined as:

G= (]TwTw1+ aCTC) @)

n= (]TWTWR . aCTCmi’l) ®)

In Equations (7) and (8), ] is the Jacobean matrix, W is the weighting matrix, R is the
data residual, C is the Laplacian operator, and B is the cross-gradient derivative. The terms
given in Equations (7) and (8) may be rewritten for the joint inversion case as follows:

Am — {Amres:|, G— |:Gres 0 :|, and n — |:nres:| ©)

Amgeis 0 Gseis Mseis

In this inversion approach, a resistivity model is created for the DCR method, while
for the slowness model, the inverse of velocity is used for the SR method [15]. Conceptually,
the joint inversion process requires the model discretization for all the geophysical methods
to be structurally similar.

2.2. Global Optimization Method

The global optimization method applied in this study involves the application of the
genetic algorithm (GA) for a single objective function case and non-dominated sorting
genetic algorithm 2 (NSGA II) for the multi-objective joint optimization approach. The
GA is a special case of evolutionary algorithm that simulates the process of biological
evolution, and it is adapted to solve an optimization problem [41-43]. The process of
the genetic algorithm starts from population initialization, which creates chromosomes
(potential solutions with respect to the objective function) using the binary coding scheme.
The binary coding scheme is conceptualized in a way that it constitutes a solution to the
objective function of the inverse problem [43]. The binary coding system has a bit string or
chromosome that describes each element or individual in the population. Each bit in the bit
string represents a gene that can be assigned values of 0 or 1, also known as an allele [43].
Two individuals or parents are paired or selected from the initial population to produce two
offspring. The higher the fitness value of an individual in the population, the higher the
chance of being selected and the better its performance in the evolution loop. Among other
selection methods, we apply the tournament selection because it practically depicts natural
competition for mating rights among individuals in a population. Crossover involves
exchanging information (genetic properties) between two paired models (parents) to create
two new models (offspring). Three types of crossover options are available in the code used
in this study: single point, two points, and scattered crossover. The final evolution operator
used in the genetic algorithm is the mutation. This is the random alteration of genes in a
chromosome to introduce diversity in the entire population of the genetic algorithm. This
process is usually conducted using a probability index that is appropriately chosen based
on the degree of randomness to be allowed and computation cost. The process described
above is generally referred to as a single objective genetic algorithm; it is suitable for the
inverse problem having one objective function (i.e., applied in the individual inversion of
DCR or SR). All these GA evolution operators (i.e., selection, crossover, and mutation) are
used to modify the solution parameters.

As mentioned above, the non-dominated sorting genetic algorithm 2 (NSGA 1II) is a
variant of the GA commonly used to solve multi-objective optimization problems. The
NSGA 1II procedures involve the creation of an offspring population (Q;) that has an equal
size to the initial population (P;) using the selection, crossover, and mutation processes
as shown in Figure 1. After that, (Q;) and (P;) are combined to produce (R;), which is
double the size of (P;). Then, the non-domination (i.e., the optimum set of solutions in
all the objective functions) sorting of the entire population (R;) is performed, and the
best non-dominated solutions are selected, which are indicated as F;, F,, and F; (levels of
non-domination) in Figure 1. The topmost non-dominated solutions are accepted until the
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initial population size is reached; thereafter, the rest of the non-dominated solutions are
rejected because the process cannot accept more than the initial population size. Sometimes
only F; can satisfy the initial population size requirement, and that will be enough for the
next generation (P;;1); then, the rest are rejected (Figure 1). Consequently, the NSGA-II
emphasizes both the non-dominated and less crowded points.

Non-dominated

Crowding distance |
sorting

sorting

el

o

o

R;

Figure 1. Illustration of the non-dominated sorting algorithm 2 (NSGA II). Qt is the offspring
population; Pt is the initial population; Rt is the total population; and Fy, F;, and F3 are the levels of
non-domination solutions.

One of the major challenges in applying the genetic algorithm to the inverse problems
that require the simultaneous optimization of more than one objective function is preventing
the domination of one objective function to another. Therefore, the multi-objective genetic
algorithm was used to search for the optimum solutions that do not dominate (i.e., a set of
optimum solutions in both DCR and SR objective functions) each other. The two objectives
of the joint inversion of DCR and SR data using the multi-objective global optimization
method can be represented similar to Equation (1) as:

GA(mye) = |[Wac(dge — foe (mae)) || (10)

and
GA(ms) = ||Wsr (dsy _fsr(msr))Hz (11)

The objective functions are used to map the decision variables (model parameters)
into an objective space where we delineate solutions that are not dominated or perform
optimally in both objectives. These sets of solutions (Pareto sets) align in a pattern known
as Pareto optimal solutions or the Pareto front [44]. Basically, the term “Pareto optimality”
is used to describe these sets of solutions, implying that no further optimal solution in
both objectives can be obtained. Details about the concept of Pareto optimality and non-
domination is discussed by [12]. The NSGA II algorithm sorts the set of solutions as
they arrive at the Pareto optimal front. This technique was proposed by [45] to overcome
some of the limitations observed in some previous evolutionary multi-objective algorithms.
These limitations include computational intricacy, elitism problems, and parameter sharing
specifications. The NSGA II only utilizes standard parameters of the genetic algorithm
needs, and no extra parameters are needed for its multi-objective base optimization (see
the appendix section for the concept of NSGA 1I).
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2.3. Combined Local and Global Optimization Method

In the combined optimization algorithm, we used the output of the local optimization
method to define the search space for the global optimization technique to speed up and
reach the global solution faster. Since the local optimization has been constrained by
smoothing terms (i.e., second terms of Equations (2) and (3)), the combined optimization
algorithm is linearly constrained by applying the output of the local optimization algorithm
to define the lower and upper bounds of the search space. Fundamentally, the search space
is determined by modifying the range (minimum and maximum) of the model parameters
obtained from the output of the local optimization algorithm. Depending on the quality of
the output from the local optimization algorithm, scaling the model parameters up and
down by 10 to 30% is recommended to obtain a good result. The variability (10-30%)
of the model parameters was selected based on the expected variation in the modeled
geophysical properties, such as velocity and resistivity, in Saudi Arabia. This process
creates adequate diversity in the initial population for the global optimization algorithm.
A flowchart illustrating the combined local and global optimization algorithm is shown
in Figure 2. The summary of all terms we used to describe the combined optimization
algorithms is presented in Table 1.

Local optimization
(Gauss-Newton)

The optimum model parameter from
the local optimization is modified.
i.e., 30% decrease (lower limit) and
30% increase (upper limit)

—
2

Define upper and lower
bounds (search space)

!

Initialize the GA
population

Single objective GA

4 Global solution ; \
\ ; .

Multi-objective GA (NSGA II)
\ l - ~
g .

A Y
! Fitness function Pareto set solutions I— N\

!

| Proportional selection |

Selection
Crossover operator

| Genetic manipulation |

Update global
Pareto solutions

Mutation operator

Stopping
criteria

/
> . -

Figure 2. Flowcharts of the proposed combined local and global optimization algorithm.

Table 1. A summary of all the types of inversion applied in this study, their description, and
abbreviations are presented below.

S/N Inversion Type Abbreviation Description
1 Local optimization method LOM Optimization involves the derivatives of the objectives, e.g.,
Gauss-Newton.
2 Global optimization method GOM Non-derivation optimization, e.g., genetic algorithm.
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Table 1. Cont.

S/N Inversion Type Abbreviation Description
3 Individual inversion method M Inversion of a datgset. fro.rn one geophysm?l meﬂ‘.\od using the
local optimization, e.g., SR data inversion.
A . Inversion of datasets from more than one geophysical method
4 Joint inversion method M using the local optimization, e.g., SR and DCR data inversion.
5 Single-objective optimization 300 Processing of a daFasFet fr~om one geophys%cal mgthod using
global optimization, e.g., SR data inversion.
S o Processing of dataset from more than one geophysical method
6 Multi-objective optimization MOO using global optimization, e.g., SR and DCR data inversion.
Inversion of a dataset from either one or more geophysical
7 Combined (local plus global) cco methods using the combination of local (to define a search
optimization method space) with global optimization, e.g., DCR, or SR and DCR
data inversion.
. Processing a dataset from either one or more geophysical
8 (Global conventional) GOM methods using only the global optimization, e.g., DCR, or SR

optimization method

and DCR data inversion.

3. Synthetic Test
3.1. Synthetic Data

We examined the feasibility of the combined global optimization (CGO) algorithm
by using synthetic earth models that simulated three near-surface scenarios. The first
model comprised a dyke anomaly with a resistivity of 1250 ohm-m and a two-layered host
environment with resistivities of 50 ohm-m and 250 ohm-m. Similarly, a dyke anomaly
having a velocity of 2200 m/s and a two-layered host environment with layer velocities
of 1000 m/s and 1500 m/s, respectively, was used for the corresponding velocity model
(Figure 3a,d). The second model contained two blocks of positive anomalies, having
a resistivity of 250 ohm-m and velocity of 2000 m/s, which was greater than the host
environment as shown in Figure 3b,e. The third model was similar to the second one, with a
higher parameter contrast (higher and lower than the host model anomalies) compared with
the host rock, where the block parameters were set as 1250 ohm-m, 2500 m/s (Figure 3c,f).
Generally, these models had the same profile length of 240 m in both methods, with a
depth of 50 m in the DCR and 60 m in the SR methods. The DCR data were calculated
for a setup with equally spaced 49 electrodes 5 m apart using the dipole-dipole (DD)
array. The DD array was selected, since it had a fair penetration depth and a very good
to excellent lateral resolution. The seismic survey layout was similar to the DCR profile,
where we used 49 receivers with 5 m spacing and 13 sources with 20 m intervals in the SR
forward calculations.

3.2. Synthetic Results

To obtain good local optimization (LOM) results, an appropriate regularization param-
eter was used in addition to adding the smoothing term in the objective function [46,47].
The regularization parameter was determined by obtaining the maximum value of the
diagonal matrix in the singular value decomposition of the Jacobian matrix in both the
individual and joint inversion of the DCR and SR data. The value of the regularization
parameter was modified using a cooling approximation at each iteration. The inversion
process started with the initial guess of the model parameters that improved with each
iteration. This procedure was used to estimate the model parameter correction vector as
applied by [15,16]. The LOM was terminated when there was no decrease in error and
the RMS dropped below a certain threshold value (convergence criteria). In the combined
global optimization (CGO) techniques, a forward modeling algorithm was used to esti-
mate the theoretical data in both DCR and SR methods; thereafter, the calculated data
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were compared to the observed field data to compute their misfits. The data misfit (from
Equations (10) and (11)) for the DCR method is presented in a simplified form as:

= 100 x Wy X (|[dae — tdacll»)
‘ lldacll>

where d is the observed real data, W, is the weighting matrix of the real data, and td;,
is the theoretical data. The misfit function for the SR method is defined with a similar
annotation as:

(12)

100 X Wy x (||dsr — tdsr||5)
[l dsrl,

The combined misfits form the objective function for the multi-objective optimization
algorithm that is represented as:

Mg = (13)

Mac sr = [Mdc Msr} (14)
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Figure 3. Synthetic models for (a) resistivity (dyke anomaly) model, (b) resistivity (positive anomaly)
model, (c) resistivity (positive and negative anomalies) model, (d) velocity (dyke anomaly) model,
(e) velocity (positive anomaly) model, and (f) velocity (positive and negative anomalies) model. The
dark red and green lines are used to mark the anomaly boundaries.

Notice that for the multi-objective (MOO) algorithm in Equation (14), the individual
misfits are not added together but are simply concatenated to make a two-column matrix of
the misfits. In addition, selecting the number of populations and generations is important
to improve the model resolution in the CGO algorithm for both methods. Conventionally,
the population size of 50 is recommended for the GA, with the number of decision variables
less than or equal to five. Otherwise, 200 populations should be used when the decision
variable is greater than five. The CGO algorithm is terminated when the average change
in the spread of Pareto solutions is less than the function tolerance (i.e., 1 x 107 for
multi-objective optimization, MOO) and the specified number of generations (i.e., for single
objective optimization, SOO).
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The single objective genetic algorithm runs between 1000 and 1500 generations with
an average population size of 250 individuals in both DC-resistivity and SR methods. The
SR genetic algorithm runs were completed in about 748, 876, and 1194 min for the dyke,
positive, and combined positive—negative anomalies synthetic models, respectively, while
the processing times were measured as 176, 181, and 150 min for DC data. After applying
the single objective (SOO) genetic algorithm in both geophysical methods (DCR and SR)
separately, we performed the joint parameter estimation using the multi-objective (MOO)
genetic algorithm. The non-dominated sorting genetic algorithm (NSGA II) used in the
multi-objective global optimization showed that there were feasible solutions depicted by
their Pareto optimal fronts (Figure 4). The compromised solution (the green star in Figure 4)
was chosen and presented as the output of the MOO method. The NSGA II (for both
geophysical methods) ran for about 3136, 2953, and 2891 min for the dyke, positive, and
the combined positive and negative anomalies synthetic models, respectively. Figures 5-10
show the results of the local and combined optimization methods for the dyke anomaly
model (Figures 5 and 6), positive anomaly (Figures 7 and 8), and the positive and negative
anomaly models (Figures 9 and 10). The first column of each of the figures contains the
inverted resistivity models, while the second column is the inverted velocity models. In
addition, the first row in each figure contains the synthetic models, the second row is the
individual (IIM)/single objective (SOO) inverted models, and the third row is the joint
(JIM) /multi-objective (MOO) inverted models.
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Figure 4. Plots of the Pareto fronts showing the compromise solution (green star shape) for (a) a dyke
anomaly model, (b) a positive anomaly model, and (c) positive and negative anomalies model.
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Figure 5. Dyke anomaly model inversion using local optimization method; (a) synthetic dc-resistivity
model, (b) individual inverted resistivity model, (c) joint inverted resistivity model, (d) synthetic
velocity model and its ray path coverage, (e) individual inverted velocity model, (f) joint inverted
velocity model. The dark red line is used to mark the anomaly boundary.
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Figure 6. Dyke anomaly model inversion using combined optimization method; (a) synthetic dc-
resistivity model, (b) single objective inverted resistivity model, (c) multi-objective inverted resistivity
model, (d) synthetic velocity model and its ray path coverage, (e) single objective inverted velocity
model, and (f) multi-objective inverted velocity model. The dark red line is used to mark the
anomaly boundary.
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Figure 7. Positive anomaly model inversion using local optimization method; (a) synthetic dc-
resistivity model, (b) individual inverted resistivity model, (c) joint inverted resistivity model,
(d) synthetic velocity model and its ray path coverage, (e) individual inverted velocity model,
and (f) joint inverted velocity model. The dark red line is used to mark the anomaly boundary.
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Figure 8. Positive anomaly model inversion using combined optimization method; (a) synthetic
dc-resistivity model, (b) single objective inverted resistivity model, (c) multi-objective inverted
resistivity model, (d) synthetic velocity model and its ray path coverage, (e) single objective inverted
velocity model, and (f) multi-objective inverted velocity model. The dark red line is used to mark the

anomaly boundary.
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Figure 9. Positive and negative anomaly model inversion using local optimization method;
(a) synthetic dc-resistivity model, (b) individual inverted resistivity model, (c) joint inverted re-
sistivity model, (d) synthetic velocity model and its ray path coverage, (e) individual inverted
velocity model, and (f) joint inverted velocity model. The dark red and green lines are used to mark

the anomaly boundary.
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Figure 10. Positive and negative anomaly model inversion using the combined optimization method;
(a) synthetic dc-resistivity model, (b) single objective inverted resistivity model, (c) multi-objective
inverted resistivity model, (d) synthetic velocity model and its ray path coverage, (e) single objective
inverted velocity model, and (f) multi-objective inverted velocity model. The dark red and green
lines are used to mark the anomaly boundary.
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To see the performance of the conventional global optimization (GOM) only using a
similar misfit function as applied in the CGO method, we applied the genetic algorithm
with a search space defined apart from the local optimization results using the same
DCR and SR synthetic models. Applying the single objective genetic GOM algorithm
to the resistivity model showed that the GOM technique provided unstable solutions in
delineating both DCR and SR anomalies. For example, Figures 11-14 are the outputs of
the genetic algorithm application on the dyke anomaly model (for both DCR and SR), the
positive anomaly model, and the combined positive and negative anomaly model (for DCR
only). Some of the artifacts observed in the results could probably be attributed to the
absence of a constraint or model regularization [38]. The genetic algorithm was applied
for 200 generations in the case of the SR method and 2500 generations for all DCR models
inversion with a population size of ten times the amount of model parameters [35] in both
geophysical methods. This inversion is feasible with the use of high performance and
parallel computing (HPPC).
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Figure 11. Dyke anomaly model inversion using the single objective global optimization method;
(a) synthetic dc-resistivity model, (b) single object inverted resistivity model, (c) synthetic velocity
model, and (d) single objective inverted velocity model. The dark red line is used to mark the
anomaly boundary.
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Figure 12. Positive anomaly model inversion using the single objective global optimization method;
(a) synthetic dc-resistivity model and (b) single object inverted resistivity model. The dark red line is
used to mark the anomaly boundary.
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Figure 13. Positive and negative anomaly model inversion using the single objective global optimiza-
tion method; (a) synthetic dc-resistivity model and (b) single object inverted resistivity model. The
dark red /blue lines are used to mark the anomaly boundary.
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Figure 14. Negative anomaly model inversion using the single objective global optimization method;
(a) synthetic dc-resistivity model and (b) single object inverted resistivity model. The dark blue line
is used to mark the anomaly boundary.
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4. Discussion

The local optimization algorithm performed optimally in delineating both resistivity
and velocity anomalies regarding the tested models. This result is attributed to the appli-
cation of the smoothing term and appropriate regularization parameters in the objective
function to mitigate the effect of the non-uniqueness of the inverse problem. Tables 2-4
summarize the performance of both LOM and CGO algorithms in the inversion involving
both DCR and SR methods. Generally, the results from Tables 2—4 show that the CGO
improved the misfits compared with the LOM in both the DCR and SR methods but at a
relatively high computation cost. Table 5 summarizes the results of the CGO for both (DCR
and SR) synthetic models. Despite using a parallel computing approach, the GOM results
showed a run time of 6642.15 to 13,962.00 min. This suggests that the most significant
challenge with applying the GOM algorithm is the run time.

Table 2. Local and global optimization inversion results parameter for both DCR and SR (synthetic
dyke anomaly model) methods.

No. of Iterations/ Target's Reconstruction (%)

Inversion Type Methods : Time (min)  Misfit (%)
Generations Geometry Amplitude
SR 10 1.69 0.68 80 95
oM M DC 8 0.81 10.61 70 97
JIM SR 10 10.07 8.83 60 95
DC 10 10.07 8.83 80 97
SR 1000 747.85 0.58 85 100
o SO0 DC 1500 17557 0.48 65 100
MOO SR 4000 3136.42 0.62 90 100
DC 4000 3136.42 2.13 70 100
Table 3. Local and combined (local plus global) optimization inversion results parameters for both
DCR and SR (synthetic positive anomaly model) methods.
Inversion Type  Methods . NO-OFI'®R" fime min)  Misfit (%) Target's Reconstruction (%)
Geometry Amplitude
SR 9 1.83 1.74 90 95
M DC 8 0.76 2.98 80 98
LOM M SR 10 2651 1.68 75 100
DC 10 26.51 1.68 920 105
SR 1000 876.00 0.37 93 100
SO0 DC 1500 181.09 0.46 85 100
€GO OO SR 4697 2953.45 031 95 100
DC 4697 2953.45 0.37 95 100
Table 4. Local and global optimization inversion results parameters for both DCR and SR (synthetic
positive and negative anomalies model) methods.
s 2 0,
Inversion Type Methods tioxli?é(;f\eletrzl;?;ns Time (min)  Misfit (%) Target’s Reconstruction (%)
Geometry Amplitude
M SR 11 2.034 0.31 80 90
DC 8 0.93 1.55 70 920
LOM M SR 8 20.08 146 95 95
DC 8 20.08 1.46 98 95
SR 1500 1193.68 0.14 85 95
SO0 DC 1500 150.22 0.12 80 95
€GO SR 3502 2891.43 0.13 97 100
MOO DC 3502 2891.43 0.10 80 100
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Table 5. Summary of the convectional global optimization inversion results parameter for both DCR
and SR (dyke, positive, positive and negative anomalies model) methods.

Method Inversion Type Cores Population Size Misfit (%) Generations Run Time (min)
DCR Dyke 16 9500 1.04 2500 6642.15
SR Dyke 16 4800 3.32 200 6803.45
DCR Positive 6 9500 1.40 2500 13,962.00
DCR Negative 6 9500 2.70 2500 11,426.68
DCR Pos. & Neg. 4 9500 14.51 2500 13,929.15

The results showed that the CGO algorithm inherited some features of the model, such
as the geometry and amplitude of the anomaly from the local optimization that reflects in
its optimum performance. For example, the amplitude and geometry of the DCR in the
Dyke model was reflected in the final output of global optimization (Figure 6). Notice that
in Figures 9d and 10d, the ray path avoided the negative anomaly; thus, the ideal model
structure cannot be reconstructed with high resolution. This scenario is peculiar with the
application of the SR method regarding a low-velocity layer (e.g., cavity) surrounded by a
high-velocity media [48].

In the CGO method, using the same size of the synthetic model from the LOM, we
observed that obtaining a good inversion result for the SR model using a computer with
12 logical processors configuration (6 cores) takes a longer time than the DCR method. This
is because the DCR method produces electrical perturbation and estimates the apparent
resistivity of the model at once; however, the SR method first computes the travel time
from one source to all receivers sequentially and thereafter repeats the same procedure for
all other available sources. To optimize the computation time of both SOO and MOO, we
made the misfit algorithm part of the code to run on parallel computing by using the built-
in parallel computing (e.g., parfor loop) command in MATLAB. This process enhanced
the computation cost of the hybrid global optimization algorithm. For instance, it took
189.75 min to obtain the same result as in Figure 8b (single-objective GA for the positive
anomaly DCR model) without parallel computing, whereas it took 55.25 min (71% run
time optimization) to obtain the same output with parallel computing. Similarly, running
the single objective genetic algorithm for the positive anomaly velocity (SR) model for
100 generations took 664.56 min without parallel computing, whereas it took 75.66 min (89%
run time optimization) to obtain the same result with parallel computing. The percentage
of run time optimization depends on the population size, number of generations, and
type of geophysical method involved. To make the synthetic test challenging for the CGO
algorithm, we added 3% Gaussian noise to the data resulting from the positive anomaly
model. Although the output did not match noise-free data perfectly, a larger portion of the
anomaly was recovered (Figures 15 and 16).

Regarding the GA population size, we observed that the CGO algorithm involving
the DCR and SR methods performed better with an increasing number of populations. For
example, Figure 15 shows a graduate improvement in the model resolution as the number
of populations increased in the DCR genetic algorithm result. Similarly, the CGO algorithm
offered a better performance with increasing generations. Notwithstanding, increasing the
number of populations and generations prolonged the computation run time (Figure 17).

Considering these criteria (number of generations, population size, and computation
time), we applied an average population size of 500 and 500 generations for both DCR and
SR combined global optimization inversions.
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Figure 15. Test of the combined optimization algorithm using data (both DCR and SR) with added 3%
gaussian noise; (a) synthetic dc-resistivity model, (b) single objective inverted resistivity model
(noisy), (c) single objective inverted resistivity model (noiseless), (d) synthetic velocity model,
(e) single objective inverted velocity model (noisy), and (f) single objective inverted velocity model
(noiseless). The dark red lines are used to mark the anomaly boundary.
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Figure 16. Test of the combined optimization algorithm using data (both DCR and SR) with added 3%
gaussian noise; (a) synthetic dc-resistivity model, (b) multi-objectives inverted resistivity model
(noisy), (c) multi-objectives inverted resistivity model (noiseless), (d) synthetic velocity model,
(e) multi-objectives inverted velocity model (noisy), and (f) multi-objectives inverted velocity model
(noiseless). The dark red lines are used to mark the anomaly boundary.
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Figure 17. Effect of population size on DC-resistivity inversion using the genetic algorithm; (a) test of
optimum population size that produces the most significant misfit and (b) test of optimum run time

with respect to population size.

5. Conclusions

The proposed CGO used in this study begins with the application of a local optimiza-
tion algorithm that requires the use of appropriate regularization parameters incorporated
into the DCR and SR objective functions, and it is optimized (using the LOM) to obtain the
best model, which will be used as an input model for the combined local-global optimiza-
tion CGO method. This study applied this concept to obtain the best model parameters
for both an individual and joint inversion of the DCR and SR geophysical methods. The
CGO algorithm used to overcome the challenges associated with the separate application
of LOM and GOM involved the application of the final output (optimum model param-
eter) of the LOM as the input for the CGO techniques. The global optimization part of
the single objective CGO applied the GA to optimize the DCR and SR misfit functions
(Equations (13) and (14), respectively) while the NSGA II was used to optimize the resul-
tant misfit from the DCR and SR in the multi-objective optimization algorithm. Apart
from the CGO method, which improved the computation run time, we made a part (the
misfit function) of the CGO algorithm run on parallel computing. This approach not only
contributed to the optimization of the CGO algorithm run time but also provided an oppor-
tunity to test the convectional GOM using a computer with 12 logical processor units (six
cores). The CGO algorithm was tested with both resistivity and velocity models that had a
dyke, two blocks (positive), and two blocks (positive and negative) anomalies. Generally,
the CGO algorithm showed an improvement when compared with the local optimization
output (Tables 2—4). However, the conventional GOM results showed instability in the
delineation of the anomalies in all the tested SR and DCR models, and the model instability
was probably due to the use of an unconstraint objective function. However, the CGO
method overcame the challenge of model instability since it was linearly constrained by
using the LOM’s output to define the search space’s lower and upper bounds. Additionally,
the conventional GOM application remained computationally expensive (especially for the
SR method) relative to the CGO techniques. Therefore, this study recommends applying
a combined approach (local and global optimization algorithm) when characterizing the

subsurface when both DCR and SR data are acquired.
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Featured Application: This research deals with a very relevant topic in the framework of land-
slide susceptibility mapping, highlighting some very critical drawbacks in using a weak land-
slide inventory for regional-scale assessment. Tools and strategies for recognizing and approach-
ing such limits are given.

Abstract: This research is focused on the evaluation of the reliability of regional landslide suscep-
tibility models obtained by exploiting inhomogeneous (for quality, resolution and/or triggering
related type and intensity) collected inventories for calibration. At a large-scale glance, merging more
inventories can result in well-performing models hiding potential strong predictive deficiencies. An
example of the limits that such kinds of models can display is given by a landslide susceptibility
study, which was carried out for a large sector of the coastal area of El Salvador, where an appar-
ently well-performing regional model (AUC = 0.87) was obtained by regressing a dataset through
multivariate adaptive regression splines (MARS), including five landslide inventories from volcanic
areas (Ilopango and Coatepeque caldera; San Salvador, San Miguel, and San Vicente Volcanoes). A
multiscale validation strategy was applied to verify its actual predictive skill on a local base, bringing
to light the loss in the predictive power of the regional model, with a lowering of AUC (20% on
average) and strong effects in terms of sensitivity and specificity.

Keywords: incomplete landslide archives; MARS; Central America; validation procedures; regional-scale;
debris flows

1. Introduction

Due to the subduction of the Cocos Plate under the Caribbean Plate along the Mid-
dle America Trench [1], El Salvador is characterized by intense tectonic activity and a
number of active volcanoes, meaning that severe earthquakes and volcanic eruptions fre-
quently affect the country. As a consequence, volcanic rocks (from Cenozoic hard rocks
to pseudo-coherent recent ones) and their weathered products largely outcrop [2] along
very highly steep slopes in this country. In particular, the tropical-humid climate setting of
El Salvador [3], with a mean annual rainfall above 1846 mm and a temperature between
20 and 30 °C [4], is responsible for the intense weathering of the topsoil, resulting in poor
geotechnical properties. At the same time, intense rainfall events associated with recurrent
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hurricanes frequently result in water saturation and neutral pression increasing in the
regolithic mantle, causing the triggering of slope failures [5-7]. As a consequence, the vol-
canoes and the caldera’s inner flanks are very frequently affected by landslides of a debris
slide/flow type. These failures, in light of the high steepness of the initiation zones, very
frequently take the form of very fast and long-runout debris flow phenomena, threatening
those villages, which are set along the track channels or at the foot of the slopes. In recent
years, the Nepaja (2020) [8] and San Vicente (2009) [9,10] disasters clearly illustrated this
kind of phenomenon, resulting in widespread damage to houses and high numbers of
injured and dead.

Differing from rockfall susceptibility studies [11-13], slide- and flow-type landslides
are typically analyzed on a basin to regional scale, meaning that large inventories are
required for robust modelling. In particular, a need arises to detect the potential initiation
sites of landslides. To this end, landslide susceptibility modelling based on statistical
analysis can offer a suitable approach for obtaining quantitative, objective, and validated
prediction images of the potential triggering sites, which can then be processed with
propagation tracking algorithms for a full hazard assessment.

Indeed, civil protection urgently requires regional-scale landslide susceptibility sce-
narios attempting to define statistically based national maps, eventually even exploiting
limited but available landslide inventories for their calibration. To this end, grouping
multiple clustered available datasets is frequently adopted as a solution to obtain landslide
inventories large enough to train the statistical models. However, such landslide datasets
can result in heterogeneity in terms of spatial distribution, the expertise of the operators,
classification and mapping criteria, survey recognition methods and resolution (field, re-
mote, reports), epoch and related triggering events, etc. It is worth noting that these limits
could hamper the resolution and precision of the predictive models without giving clear
effects down from standard validation procedures.

A number of landslide susceptibility studies have been conducted in the last fifteen years.
In particular, post-Hurricane Mitch (1998) and post the 2001 earthquake, landslide inventories
were processed through principal component analysis for assessing landslide susceptibility of
an area in the extreme north-western sector of the country [14]. At the same time, regional
susceptibility assessment studies in El Salvador have been carried out, exploiting the same
2001 seismically induced inventory (set on the epicentral area), both through binary logistic
regression [15] and neural networks [16]. More recently, a regional landslide susceptibility
scenario with a 30-arcsecond resolution was also proposed by applying a fuzzy-based heuristic
approach [17]. Rotigliano et al. [5,6] and Mercurio et al. [7] extensively applied logistic regres-
sion and MARS to assess landslide susceptibility in two limited volcanic sectors (llopango
caldera and San Vicente, respectively). Regarding the civil protection authorities, MARN
(Ministerio de Medio Ambiente y Recursos Naturales) adopted a 1:50,000 scale landslide
susceptibility map for the whole country [18] by applying the heuristic approach of [19,20].
However, all of the proposed regional models [14-17] were obtained through a calibration in
very small sectors, with very weak, if any, validation procedures.

In this paper, an application to the El Salvador territory was carried out, aimed at
suggesting approaches and strategies suitable for correctly investigating the actual quality
of a susceptibility map obtained by calibrating a predictive model through a heteroge-
neous landslide inventory. In spite of its relevance, few other scientists have faced similar
issues [21,22].

The susceptibility modelling was based on applying Multivariate Adaptive Regression
Splines (MARS; [23]) and implemented by exploiting open source software (QGIS [24],
SAGA GIS [25], RStudio [26]).

2. Materials and Methods
2.1. Study Areas

In this research, landslide susceptibility assessment was focused on the slopes of a
set of volcano/caldera areas where debris flows are frequently activated (Figure 1): (i) the
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Coatepeque area, which extends for about 82 km? east of the homonymous caldera lake;
(ii) the San Salvador area, surrounding the homonymous volcano for about 144 km?; (iii) the
watershed inner basins of the Ilopango caldera, covering a total area of about 121 km?; (iv)
the San Vicente area, which includes the whole homonymous volcano, extending for about
287 km?; and (v) the tip sector of the San Miguel volcano, covering a total area of about
11 km?.

— )
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(’(/V § 4o ¥
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Figure 1. Setting of the study area.

Focusing on the five study areas, the lithologic units of the San Salvador formation
are the most frequently outcropping rocks: Holocene pyroclastites named “Tobas color
café”, in the Coatepeque area (77%), “Tierra Blanca”, in the Ilopango area (45%) and to
a lesser extent in the San Salvador area. Accumulation cones dominate the San Miguel
area (72%), while Pleistocene effusive rocks prevail in the San Salvador area (57%) largely
outcropping also in the San Vicente area. In addition, acid pyroclastites of the Cuscatlan
formation are widely diffused both in the Ilopango and the San Vicente areas. Finally, with
very limited outcropping areas, the pyroclastic and effusive rocks of the Balsamo formation
are observed in the Coatepeque, Ilopango, and San Vicente areas.

2.2. Landslides Inventory and Related Triggering Rainfall Events

The main task of this research was to test the suitability of aggregated regional land-
slide archives in the evaluation of landslide susceptibility assessment. For this reason, a
set of independent available debris flows/slides archives were exploited for training and
validating a regional landslide susceptibility map. Archives from five different sectors of
the El Salvador territory were considered, which, even in the same sector, were considered
as un-uniform in terms of operators, methods (field/remote), and epoch (which means
grouping debris flows/slides linked to multiple and/or different extreme rainfall). These
landslide inventories were prepared in the framework of different studies (master’s de-
gree thesis, PhD thesis and so on, see Author Contributions), many of which have been
part of the RIESCA project (Proyecto Regional de Formacion Aplicada a los Escenarios
de Riesgos con Vigilancia y Monitoreo de los Fenémenos Volcanicos, Sismicos e Hidro-
geologicos en Centro América). For this reason, the study areas were not a priori limited
and as mentioned above, they were restricted to the sectors affected by the activation of
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the inventoried debris flows/slides: the Ilopango (ILO), Coatepeque (COA), San Miguel
(SMG), San Vicente (SVC), and San Salvador (SSV) areas. The ILO and the COA inventories
were mapped through systematic remote analysis and integrated by some random file
checks, consisting of 38,525 and 1895 debris flows/slides, respectively. The SVC inventory
included 4975 phenomena, which were remotely recognized according to an irregular spa-
tial scheme. The debris flows/slides of the SMG (233 cases) were extracted by a historical
simplified archive inventory, whilst the SSV inventory (382 cases) merged the results of
some spot field surveys. At the same time, the expertise and perspective of the operators
were different, with ILO and COA having been mapped in the framework of scientific
research, all the other inventories coming from civil protection tasks and SMG collecting
a number of historical reports. The main triggering events for these landslide scenarios
were Hurricane Ida and the tropical depression 12 E (TD12 E). The tropical-humid climate
setting of El Salvador produces, in the rainy season between May and October, very high
rainfall amounts (above 1846 mm, on average) that, usually, occur in the form of intense
storms. Therefore, rapid saturation of the regolithic mantle and powerful surface runoff
trigger a huge number of landslides even in the case of a normal rainfall season [5].

Between November 7th and 8th, Hurricane Ida, and the low-pressure system 96 E,
simultaneously struck the central area of El Salvador, with cumulated rainfall exceeding
300 mm/24 h in the Ilopango and San Vicente villages [5,6,27,28]. Floods and landslides
lashed these areas, causing around 200 deaths and huge economic losses [9], with damages
to cropland, rural houses, and roads. In particular, the most devastating debris flows were
triggered from the north-western flank of the San Vicente Volcano, hitting the villages of
Verapaz and Guadalupe [5,7].

Tropical depression 12 E affected El Salvador during the period from the 10th to
20th October. With a cumulative maximum of 1513 mm, equivalent to 42% of the mean
annual rainfall of the period 1971-2000 [28], DT12 E was classified as the most severe
meteorological event recorded in the region. Additionally, in this case, with 10% of the
national territory affected, especially along the coastal plains and the volcanic mountains,
El Salvador was heavily hit by the related floods and landslides, reporting 35 victims and
an economic loss of more than USD nine hundred million [10,28].

The Coatepeque debris flows were triggered by the tropical depression (TD) 12 E in 2011.
The same extreme rainfall event activated the debris flows/slides of the San Salvador dataset.
Hurricane Ida was the trigger of the phenomena mapped in the San Vicente archive, while both
TD12 E and Ida activated the debris flows/slides of the llopango dataset. Finally, the landslides
of the San Miguel archive were triggered by several rainfall events from 2001 to 2018.

All of the mapped phenomena were individuated by exploiting Google Earth images,
and the landslide identification point (LIP), which was generated for each of the mapped
phenomena corresponding to the highest point along the landslide crown, was also taken
as indicating the area that effectively represents the activation conditions for surface debris
flows [5,6,29-33].

2.3. Model Building and Validation Strategy
2.3.1. Predictors and Mapping Units

The selection of a set of geo-environmental variables potentially expressing the land-
slide preparatory causes (Table 1) was based on widely adopted geomorphological crite-
ria [5-7,34-37]. In particular, outcropping lithology (GEO) and soil use (USE) were derived
from an available thematic map [38] and a remote survey, respectively. By processing a
10 m pixel digital terrain model (DTM), the following continuous variables were derived:
elevation (ELE), steepness (STP), plan (PLN), and profile (PRF) curvatures, topographic
wetness index (TWI), and aspect, the latter expressed in terms of easternness (EASTNS)
and northernness (NORTHNS). In addition, the landform classification (LCL) categorical
variable was obtained. In this way, a set of three categorial and seven continuous variables
was prepared.
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Table 1. Details of the selected geo-environmental variables.

Factor Acronym Description of Source Parameter Units References
Elevation ELE Raster of elevation distribution m
Landform Outhme of an automated Procedure th'at Wilson and
classification LCL recognize landforms on a gridded elevation Galland [39]
distribution (TPI)
Slope gradient STP Highest first derivative of elevation degree Burrough and
pe 8 & & McDonell [40]
Cosine of aspect (Direction of steepest Wilson and Galland
Northerness NORTHNS downwards slope from each cell to its neighbors) [39] (Aspect)
Sine of aspect (Direction of steepest downwards Wilson and Galland
Easterness EASTNS slope from each cell to its neighbors) [39] (Aspect)
Second derivative of elevation, computed along Zevenbergen and
Plan curvature PLN the horizontal plane rad/m Thorne [41]
Profile PRE Second derivative of elevation, computed along rad/m Zevenbergen and
curvature the direction of the highest slope gradient Thorne [41]
Calculated as In[A /tanf], where A and f3,
Topographic computed on each cell, correspond to the area of .
wetness index wi upslope drained cells and the slope m Beven and Kirkby [42]
gradient, respectively
Lithological CEO Geolithological map of the study area, modified modified from
map from original geological map Schmidt-Thomé [43]
Soil use USE Land use map derived from 2002 satellite images

and filed survey

With regard to lithology, based on the geomechanical expected response, the outcrop-
ping lithologies were grouped as soft, medium, and hard rocks and very soft, soft, medium,
and hard soils. On the basis of the landslide distribution in the study areas, very soft
and hard soils account for more than 80% of the mapped cases. The very low number of
landslides recognized in soft soils has to be ascribed to the very limited extension of the
outcropping areas.

All of the controlling factors were arranged in 10 x 10 m raster layers. The same
grid cell structure was then adopted as the susceptibility mapping unit, assigning a sta-
ble/unstable status depending on the intersection of LIPs. In fact, according to a number of
debris flow susceptibility assessment studies (e.g., [7,22,29,31,32,36,37,44-50]), we consid-
ered the instability conditions of each inventoried landslides to be effectively captured in
the highest crown 10 x 10 m pixel. In order to optimize the final selected predictors that
were included in the MARS modelling procedure, the variance inflation factor (VIF) [51]
test was performed for multicollinearity analysis through the continuous variables.

2.3.2. Modelling and Validation Tools

Multivariate adaptive regression splines (MARS; [23]), which was successfully applied
in a number of recent landslide and soil erosion susceptibility studies [5-7,35,37,52-59], was
then applied to regress the outcome (stable/unstable status) onto the covariates set from
the controlling factor layers. MARS is a non-parametric regression method that exploits
the splitting of each independent variable into hinge functions to boost the maximum
likelihood-based adaptation skill of the logistic regression method, according to:

N
y=f(x)=a+) Bihix) ¢))
=
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where y is the dependent variable (the outcome) predicted by the function f(x), « is the
model intercept, and p; is the coefficient of the h; basis functions, given the N number of
basis functions. MARS analysis was performed by exploiting the “earth” R-package [60].

The MARS statistical modelling of landslide susceptibility conditions requires the
random extraction of a sample made of a balanced number of stable and unstable cases to be
split into calibration and validation subsets: the first is exploited for regressing the outcome
status on the set of covariates that express the adopted controlling factors, while the latter
furnishes the unknown-to-model target pattern whose status has to be blindly predicted. In
a pixel-based method, where the number of stable cases is typically largely greater than the
unstable, balanced samples are obtained by merging all the positives to an equal number
of randomly extracted negatives. To account for any potential unrepresentativeness of the
extracted negatives, by adopting recurrent random selection routines, multiple samples
were produced. Similarly, to control the influence of the specific cases which feed the
calibration subsets, multiple (75/25%) calibration/validation splitting was applied to
each sample as well. In this way, one hundred samples were split one hundred times
so that each pixel was classified ten thousand times, allowing us to estimate the model
resolution and precision. Finally, to fully evaluate the prediction skill of the model, the
regression coefficients gained in the calibration/validation subset were applied to the
whole investigated area.

Receiver operating curve (ROC) [61-63] and confusion matrices analyses were the
tools employed to investigate the model’s accuracy. In particular, ROC plot analysis is
based on evaluating true- versus false-positive rates for decreasing susceptibility scores,
with a larger area under the curve (AUC) [64,65] attesting to more effective classifications.
The score at the maximum gradient of the ROC is then used as an optimized cut-off [66]
for building a binarized (positive/negative-observed/predicted) confusion matrix. In this
way, the accuracy of the model can be evaluated both with score-independent (ROC_AUC)
and -dependent (ACC) indices.

2.3.3. Research Design and Model Building Strategy

In the following, we will refer to a super area (ALL), considering that it is obtained by
merging all the positive and negative cases of each of the five sectors (volcanic areas), the
latter defining five local datasets (ILO, COA, SMG, SVC, and SSV).

It is worth noting that, in light of the number of causes that have been here claimed as
responsible for the inventory incompleteness, a different approach from Steger et al. [21] was
designed for evaluating the influence of the bias landslide inventory. In particular, to explore
the topic of the research, the following model building procedure was designed by submitting
the hypothesizing of completeness of the inventory to a strict validation procedure.

First, a grand model (ALL) was prepared by applying the typical approach aimed
at obtaining a regional model from the available landslide inventories, including in the
processed dataframe the whole set of positives and negatives from the five sectors. To
maintain control over the variability of the negatives and the calibration/validation subset
assignment of positives, a suite of one thousand multiple datasets were obtained by ran-
domly extracting one hundred sets of negatives and submitting each dataset to ten random
calibration/validation (75/25%) splitting processes.

Once the grand model was prepared, it was first validated with respect to the spatial
distribution of the landslides in the whole super area (ALL_ALL), according to a self-
validation scheme [5-7,32,35-37,46,67,68]. The validation performance of the grand model
was then locally evaluated by restricting the validation dataset to a single sector in turn
(e.g., ALL_ILO). For comparison, independent local models (e.g., LOC_ILO) were prepared
for the five sectors by limiting the application of the modelling procedure to every single
dataset and applying a local self-validation scheme. Finally, five one-leave-out models
were prepared by applying the same above-described procedure but adopting a 4/1 sectors
calibration/validation splitting in the modelling scheme; a local validation was then ob-
tained, by assessing the predictive skill in recognizing the specific positives and negatives
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of the extracted (left-out) target sector. In the following, these models are referred to as

OLO models (e.g., OLO_ILO).
Table 2 provides a summary of the prepared models, including the specification of the

main characteristics.

Table 2. Adopted model building scheme for the tested models. Green and orange dots represent
calibration and validation cases, respectively, on the schematized five sectors.

Type Calibration Validation Graphic Example
EN N
75% randomly conjugate 25% .
extracted balanced randomly extracted P .
—. -5 .
ALL_ALL subset from the ALL *  balanced subset from o2l e
dataset the ALL dataset _'3 T4 -
I | 2’
100% randomly 100% randomly . o|| <
ALL tarcet extracted balanced extracted balanced ] 5
—Harge subset from the ALL*  subset from a single M A
dataset target ** sector 3% ’ ‘4 -
e.g., ALL_4
FEER
100% randomly 100% randomly T ol
extracted balanced extracted balanced Lok S" .
OLO_target subset from a subset from the P
[ALL-target] *** subtracted target ** : 4
dataset sector Y O
e.g., OLO_3
75% randomly conjugate 25%
extracted balanced randomly extracted
LOC_target balanced subset from
subset from a target **

a target ** sector

sector dataset dataset
e.g., LOC_5

* ALL: the sum of the positive and negative cases of the five sectors. ** target: the sum of positive and negative
cases of a single sector. *** [ALL-target]: the difference between ALL and a target.

According to the main task of the research, the ALL_ALL is considered as the model
that one can take as representative for a regional prediction image. At the same time,
the imported models (ALL_local), in re-defining the validation set on a local basis, could
furnish a useful warning in case the performance of the grand models is actually locally
misleading. The local models give an estimation of the reference performance that the
imported model (ALL or OLO) should achieve to be considered more informative. Finally,
the one-leave-out modelling procedure simulates the results of applying the model to totally
unknown sectors (such as a hypothetical sixth unknown volcanic area in our research).

3. Results

For each of the models described above, the results of the validation are reported both
in Figures 2—4, where ROC curves and related AUCs are drawn, and in Table 3, where
binarized positive/negative status comparisons between predicted/observed target cases
are given.
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Figure 2. ROC plots and relative AUC values for the ALL models.
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Figure 3. ROC plots and relative AUC values for the LOC models.
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Figure 4. ROC plots and relative AUC values for the OLO models.
Table 3. Validation results (confusion matrices) for the sixteen models.
Count Positives Negatives TN FN FP TP ACC Sensitivit Specificit AUC
ALL 6,311,320 46,010 6,265,310 4,786,221 8022 1,479,089 37,988 0.76 0.82 0.76 0.87
COA 806,671 1895 804,576 698,607 967 105,969 928 0.87 0.44 0.87 0.82
= SSvV 1,429,050 382 1,428,668 1,369,074 367 59,594 15 0.96 0.04 0.96 0.54
< ILO 1,161,436 38,525 1,122,911 378,750 4171 744,161 34,354 0.36 0.89 0.34 0.69
svC 2,794,399 4975 2,789,424 2,221,036 2295 568,388 2680 0.80 0.54 0.80 0.73
SMG 119,964 233 119,731 118,754 222 977 11 0.99 0.05 0.99 0.78
COA 806,471 1895 804,576 590,261 219 214,315 1676 0.73 0.88 0.73 0.88
o SSvV 1,429,050 382 1,428,668 839,269 66 589,399 316 0.59 0.83 0.59 0.78
.9 ILO 1,161,436 38,525 1,122,911 737,214 13392 385,697 25,133 0.66 0.65 0.66 0.72
svC 2,794,399 4975 2,789,424 1,880,683 1038 908,741 3937 0.67 0.79 0.67 0.80
SMG 119,964 233 119,731 79,805 25 39,926 208 0.67 0.89 0.67 0.87
COA 806,471 1895 804,576 622,805 562 181,771 1333 0.77 0.70 0.77 0.82
o SSvV 1,429,050 382 1,428,668 1,343,953 361 84,715 21 0.94 0.05 0.94 0.53
8 ILO 1,161,436 38,525 1,122,911 455,548 7448 66,7363 31,077 0.42 0.81 0.41 0.63
svC 2,794,399 4975 2,789,424 2,044,869 2021 744,555 2954 0.73 0.59 0.73 0.69
SMG 119,964 233 119,731 119,002 229 729 4 0.99 0.02 0.99 0.76

The performance of the ALL_ALL model is very high, with excellent AUC and accuracy
(0.87 and 0.76, respectively) and highly satisfactory sensitivity (0.82) and specificity (0.76).
Comparing these values to the ones obtained in importing the grand model into the specific
sectors (ALL_local), satisfactory to excellent AUC and ACC values still hold, with the
exception of ILO and SSV. However, lower sensitivity and higher specificity were recorded

165



Appl. Sci. 2022, 12, 6151

for all the models, with the exception of ILO. It is worth noting that only the SVC imported
local model still performs with acceptable scores for all the main indices (sensitivity, specificity,
ACC, AUC). At the same time, the local models are in general characterized by higher (0.8-0.9)
AUC values, with a much more balanced sensitivity /specificity ratio, as a result of higher
sensitivity and lower specificity. Again, the opposite behavior is observed for ILO.

Finally, the one-leave-out models confirm the general trend of performance indices
variation, which was observed for ALL_local validations.

With regard to the role of the predictors, the results obtained from the local modelling
highlight two very different responses (Figure 5): SMG and SSV are fully controlled by
elevation and steepness, whilst ILO, COA, and SVC also required the discriminating
contribution of either landform classification (COA and SVC) or outcropping lithology
(ILO and SVC) or soil use (for COA and ILO). Elevation, steepness, outcropping lithology,
and soil use are all selected by the ALL grand model.

,
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Figure 5. The most important variables for the ALL model (a) and the LOC (left side) and the OLO
(right side) models (b—f). The common variables for the LOC and the OLO models are presented
in amaranth, while the different variables are presented in green. Thin lines are used for variables
with a lower overall (minor than 30 out of 100). Here are the acronyms used: geo 2 = soft rock;
geo 3 = hard rock; geo 4 = medium rock; geo 5 = very soft soil; geo 6 = soft soil; geo 8 = medium soil;
Icl 3 = valleys; Icl 4 = plains; Icl 5 = open slopes; Icl 8 = midslope ridges; uso 2 = forest; uso 4 = crop
and pasture; uso 5 = permanent crop; uso 11 = shrub vegetation.

In Figure 6, a comparison between the ALL and LOC landslide susceptibility maps
for two representative sectors (Ilopango and San Salvador) is given, highlighting either
coherent or incoherent spatial patterns among the models for the two sectors.
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Figure 6. ALL (a,c) and LOC (b,d) landslide susceptibility maps for Ilopango (on the right side)
and San Salvador (on the left side) sectors. The histograms (e,f) show the percentage of observed
(stable/unstable) cases, when (i) LOC model assigns a higher susceptibility with respect to the ALL
model (LOC™), (ii) both the models assign the same predicted status (Equal) or (iii) the ALL model
sets higher susceptibility with respect to the LOC model (ALL™).
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4. Discussion

The local landslide distribution in five different volcanic sectors was predicted both
from imported (both ALL and OLO models) and locally calibrated models. The latter
resulted in smoothly (with the exception of SSV) higher AUC values, with a proportional
decrease in the cut-off-dependent accuracy, but driven by a marked sensitivity increase and
a slight specificity decrease. In particular, the greater the LIP% incidence of a single sector,
the higher the TPR decrease recorded for the imported models. A relevant exception that
was highlighted by the results is the very odd behavior of ILO, whose local model produced
a worse performance in recognizing its own positives. At the same time, in terms of scoring
and status prediction, ALL and LOC models can result in different prediction images.

The ILO sector includes the great majority of landslides (83.7%) and, in light of its
limited extension (18.4%), the maximum ratio between unstable and stable pixels. When
trying to discriminate the status of the ILO pixels, on the basis of the ALL or OLO imported
model, a better performance arises in positive detection when compared to the skill of
the local model. This is due to the undifferentiated presence of positives and negatives
in the same geomorphologic conditions, and this effect could have been enhanced by
the severe triggering conditions (IDA tropical storm) that activated landslides even in
less susceptible areas. In fact, the better performance of ALL and OLO relies on the
circumstance that these models take their cases outside ILO, for positive and negative cases
of OLO, or prevalently outside ILO, for the negatives of ALL. As a consequence, the local
dataset confuses the binary discrimination whilst recurring for the outside pixels, which
allowed us to better understand the unstable conditions. At the same time, for a more
geomorphologically differentiated setting, the sub-catchment of ILO (“Arenal de Cujuapa”),
Rotigliano et al. [5,6] obtained, with the same MARS modelling approach, higher AUC
and accuracy values (0.83 and 0.73, respectively). Moreover, the same loss in the model
performance was observed when trying to temporally predict the landslide inventory of
2003 (produced by a non-extreme rainfall triggering event) from the model calibrated with
the same 2009 hurricane-induced inventory that was used in the present research.

Once the potentially hampering specific conditions of the ILO sector arose, a new
grand model (ALL*) was tested excluding ILO from all sectors (which were reduced to
four) and obtaining better locally imported results (Table 4). With the exception of SSV,
these new imported models performed with similar, largely satisfactory AUCs to the local
models and even higher sensitivity.

Table 4. Validation results (confusion matrices) for the ALL* models.

Count Positives  Negatives N FN FP TP ACC Sensitivity ~ Specificity ~AUC
ALL*_COA 806,471 1895 804,576 515,857 166 288,719 1729 0.64 0.91 0.64 0.85
ALL*_SSV 1,429,050 382 1,428,668 1,314,478 349 114,190 33 0.92 0.09 0.92 0.61
ALL*_SVC 2,794,399 4975 2,789,424 1,813,333 1026 976,091 3949 0.65 0.79 0.65 0.79
ALL*_SMG 119,964 233 119,731 37,646 8 82,085 225 0.32 0.97 0.31 0.75

5. Conclusions

On the basis of the obtained results, it is confirmed that grouping landslide inventories
from different areas to increase the number of cases can lead to very unreliable results
unless further validation tests are carried out. In particular, depending on both the number
of landslides and frequency distribution of all the predictors in each of the grouped sectors,
the grand model can be seen as having very high performance on average, but is very
misleading and unstable on a local scale. In light of this effect, locally calibrated models can
have better performance even if trained with a lower number of cases. This would typically
lead to attaining a sense of security and considering the obtained prediction image as
reliable for the study area, eventually suggesting that the obtained model also be exported
to new neighboring unrecognized sectors (e.g., those between the five mapped ones). In
this paper, a new approach was adopted, and related tools were proposed for verifying the
inventory completeness hypothesis. This approach can be involved in any model building
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procedure so as to obtain warnings about the quality of the source data and its influence on
the resolution of the derived susceptibility models.

Comparing grand to local models should be a standard procedure when assembling
large landslide inventories, even in the case of secondary catchments in large basin-scale
studies. The main factors controlling the performance of the grand model are the number
of total pixels and the number of positives and the spatial distribution of the predictors.
Two main factors hamper the accuracy and reliability of any grand model, based on a
presence/absence method: depending on the relative spatial extension of the classes of each
covariate, in light of the need to randomly extract the negatives to prepare balanced datasets,
using the more diffused classes results in stable conditions; depending on the different
levels of completeness of the merged landslide inventories, unstable conditions may come
to light in the sectors or catchments with a higher number of mapped landslides. These two
effects are much more severe for the categorical variables in the case of inhomogeneous
geologic/geomorphologic settings, whilst DTM-derived variables are more unlikely to be
so largely different as to mislead the modelling. It is worth noting that the limits produced
by the qualitative and quantitative differences in the landslide inventories suggest that
the adoption of presence-only methods is not suitable, also in light of the strong influence
produced by any unrepresentativeness of the landslide inventories.

Optimizing susceptibility models for predicting new debris flow activation sites in
volcanic areas is of crucial importance in El Salvador. In fact, under the triggering of
the recurrent tropical storms which frequently strike the country, this kind of landslide
rapidly evolves along the steep volcano flanks into very destructive debris flow phenomena
hitting the hillside areas and causing damage and life losses. Investigating the reliability of
prediction images for landslide activation constitutes a mandatory step in obtaining the
starting base to be coupled with propagation algorithms for producing complete debris
flow event scenarios.
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Abstract: In statistical landslide susceptibility evaluation, the quality of the model and its prediction
image heavily depends on the quality of the landslide inventories used for calibration. However,
regional-scale inventories made available by public territorial administrations are typically affected
by an unknown grade of incompleteness and mapping inaccuracy. In this research, a procedure
is proposed for verifying and solving such limits by applying a two-step susceptibility modeling
procedure. In the Torto River basin (central-northern Sicily, Italy), using an available regional
landslide inventory (267 slide and 78 flow cases), two SUFRA_1 models were first prepared and
used to assign a landslide susceptibility level to each slope unit (SLU) in which the study area was
partitioned. For each of the four susceptibility classes that were obtained, 30% of the mapping units
were randomly selected and their stable/unstable status was checked by remote analysis. The new,
increased inventories were finally used to recalibrate two SUFRA_2 models. The prediction skills
of the SUFRA_1 and SUFRA_2 models were then compared by testing their accuracy in matching
landslide distribution in a test sub-basin where a high-resolution systematic inventory had been
prepared. According to the results, the strong limits of the SUFRA_1 models (sensitivity: 0.67 and
0.57 for slide and flow, respectively) were largely solved by the SUFRA_2 model (sensitivity: 1 for
both slide and flow), suggesting the proposed procedure as a possibly suitable modeling strategy for
regional susceptibility studies.

Keywords: landslide susceptibility; public landslide inventory; MARS; landslide incompleteness

1. Introduction

Landslide susceptibility assessment can be performed by applying statistical methods
to model the dependence between a set of predictors and an outcome expressing the
stable/unstable status of a mapping unit [1-4]. The reliability of a predictive model strongly
relies on the completeness and representativeness of the landslide inventory that is used
for calibration [5-9]. In particular, regional landslide susceptibility studies require the use
of landslide inventories, which are typically available only from public administrations. In
fact, such a big database is typically the result of long-term cumulative reported cases that
are mapped following warnings from local municipality offices, transportation companies,
or even citizens. As a matter of fact, the reported landslide cases are clustered around
urban areas and the infrastructural axis. For this reason, this kind of inventory suffers from
an unknown grade of incompleteness and inaccuracy. The number of cases is also too large
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for an accurate check to be performed by regional authorities. Both multiple typologies
and landslide polygons are frequently corrected. These limits are obviously much more
marked in agricultural and pastoral areas [10,11], where the potential interest for urban
development is not infrequent. On the other hand, regional landslide databases allow
the available landslide inventories to be immediately obtained, thereby saving time and
resources from mapping [12].

Thus, defining a useful way to increase the quality of regional landslide inventories
is a goal of research focused on landslide susceptibility evaluation but also of public
administrations. In fact, the latter, generally determine landslide risk by crossing the
inventoried phenomena (and their typological /geometrical characteristics) and the exposed
vulnerable areas (e.g., urbanized sectors or communication routes). In addition, support
for territory management, planning, and safety measures is mainly defined based on geo-
hydrological hazards. In this sense, public administrations have made various efforts to
obtain more correct and complete landslide inventories [13,14].

In light of the abovementioned issues, a need arises to find possible modeling proce-
dures for regional landslide susceptibility assessment that are capable of both detecting
and solving the potential limits induced by poor calibration inventories. However, studies
aimed at evaluating the effects of incomplete inventories are nowadays focused on the
models’ performance [7] or the variables” importance [5,10]. In this research, a procedure for
using regional landslide inventories to prepare reliable and accurate susceptibility models
is proposed. By applying the approach suggested by Martinello et al. [7], the potential
limits of a susceptibility model calibrated with the source inventory were first identified.
By systematically checking a portion of the study area, an enrichment of the original cali-
bration landslide inventory was then obtained. A new model was then recalibrated and its
accuracy evaluated and compared with that of the source model.

The research was carried out in the context of the SUFRA project, a challenging project
that involves the analysis and evaluation of all types of landslide susceptibilities (slide,
flow, rapid flow, fall-topple, and lateral spread) for the whole regional territory of Sicily
(~26,000 km?). Tt is the first project focused on landslide susceptibility evaluation at the
regional scale, and it will be used by the public administration for territorial planning
and civil protection aims. Considering the short duration of the project (only two years),
we were forced to base our analysis on the landslide inventories already available with
the Sicilian public administration. At the same time, in the context of the PNRR project
GeoSciences IR, the research was focused on defining strategies to increase the overall
quality of public landslide inventories, thus optimizing costs, resources, and time.

2. Materials and Methods

The available slide and flow inventories of the Torto River basin (420 km?2, central-
northern Sicily), which were prepared by the “Dipartimento Regionale dell’ Autorita di
Bacino del Distretto Idrografico Sicilia” (the so-named P.A L inventories), and a set of twelve
geo-environmental predictors were used to produce two basin-scale susceptibility models
(for slides and flows, respectively) by applying multivariate adaptive regression splines
(MARS). The obtained first-level landslide susceptibility maps were used for checking
30% of mapping units in which no landslides of P.A.I. were present and defining their
stable/unstable status with respect to flow and slide movements. The checked archives
were used for integrating the main inventories (the P.A.I. inventories) in order to obtain
second-level landslide susceptibility maps. Once all landslide susceptibility maps were
produced (first level and second level), the accuracy of the obtained maps was verified by
validating high-resolution flow /slide archives detected for a small sub-basin (Sciara) of the
Torto catchment.

The research was implemented using open-source geographical information system
software (GIS; Quantum GIS [15], GRASS GIS [16], and SAGA GIS [17]) and the Rstudio
statistical platform [18].
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2.1. Study Area

The Torto River extends for 423 km? in the northern section of Sicily (Italy, Figure 1a)
between two mountain ranges, namely, the Madonie Mountains at the east and the Termini
Mountains at the west, and the Tyrrhenian Sea. The geomorphological setting of the study
area is the result of tectonic and selective erosion, karstification, and deep-seated gravitation
slope deformation [19,20].
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Figure 1. (a) Location of the Torto River basin. (b) Bedrock lithology map of the study area.
(1) Anthropic deposits; (2) alluvial deposits; (3) alluvial fan and talus deposit; (4) colluvium and
old landslide deposits; (5) evaporitic rocks; (6) sandstones; (7) Flysch Numidico pelites; (8) Fly-
sch Numidico sandstones/conglomerates; (9) “Terravecchia” pelites; (10) “Terravecchia” sand-
stones/conglomerates; (11) “Varicolori” clays; (12) calcareous and clayey marls; (13) lithoid units.

In fact, the study area falls within the central-western section of the Sicilian fold
and thrust belt, which is the result of the retreat of the subduction hinge of the Ionian
oceanic lithosphere and the postcollisional convergence between Africa and Europe [21-24].
This complex structural setting results in a multiduplex system where the basin tectonic
units overthrust platform tectonic units across subhorizontal surfaces with prevalent S-SW
transport direction and components of northward back-thrusting. In the area, Sicilide
units and the Numidian Flysch are widely outcropped, while Imerese basin units mainly
represent the basal body. However, Plio-Quaternary high-angle faults create new contacts
between the carbonatic Imerese successions and Cenozoic clayey rocks belonging to the
Numidian Flysch, which are sometimes overthrust by the Sicilide units [19,20] (Figure 1b).

According to the geological setting, the study area is characterized by a hilly landscape
modeled by gravitational movements and water erosion, whilst carbonate reliefs [20,25]
are affected by gravitational (mainly falls) and karstic processes. Mount San Calogero is
the highest relief of the area (1370 m s.L.m).
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The climate of the Torto River basin is classified as the Mediterranean type, with rainfall
concentrated mainly in the winter semester, while the summer period is characterized by
almost drought conditions. The mean annual rainfall is around 600 mm, while the mean
temperature value is about 15 °C.

2.2. Landslide Inventory

Starting from the available P.A.L. (Piano stralcio di bacino per I’Assetto Idrogeologico)
landslide archives prepared by the “Dipartimento Regionale dell’Autorita di Bacino del
Distretto Idrografico Sicilia”, slide, flow, and complex inventories were distinct and submit-
ted to remote checking. In fact, frequently, single phenomena are typically grouped into
large polygons in these inventories, and, moreover, their boundaries are not so accurate
(Figure 2a).

@ LIP

\ Landslide
body

Figure 2. (a) Top image: landslides as mapped in the original P.A.I. inventory (yellow polygons are
complex landslides, purple polygons are flows, red polygons are slides, and green polygons are
diffused erosional areas); bottom image: mapping of single phenomena (red polygons). (b) Example
of P.A.I-driven mapping: original P.A I landslide inventory (polygons) and checked P.A I landslide
inventory (LIPs).

In order to propose a landslide susceptibility evaluation technique with statistical
methods, it is necessary to discriminate every individual landslide and, when needed,
reinterpret the type of movement [26,27]. It is worth noting that the single phenomena were
checked only inside the P.A.L. landslide polygons. This means that instead of a systematic
(and complete) inventory, P.A.I-driven mapping was produced (Figure 2b). The reason
for this choice lies in the aim of the research, i.e., testing a good practice where available
regional public landslide inventory can be used to obtain basin-scale susceptibility maps.
In this way, according to Hungr et al. [26], for complex landslides, each component of the
phenomenon was defined so that only two different inventories were obtained at the end of
the mapping: the slide (78 cases) and the flow (267 cases) archives. In fact, it was assumed
here that rotational and translational slides share their slope susceptibility conditions to a
large extent. With regard to checking the P.A.I. inventory, the more frequently observed
flaws (12 cases) concerned large earth-flows, which were misclassified as (rotational) slides.

Two examples of these very diffused landslide types are given in Figure 3. The
landslide identification point (LIP), which corresponds to the highest point along the crown
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of the landslide area, was assumed as diagnostic in potentially marking unstable slope
conditions [27-31].

Figure 3. (a) Rotational slide/flow landslide affecting the slope of the A19 motorway; (b) multiple
rotational slide/flow landslides affecting the slope of the SS120 national road.

2.3. Mapping Units and Landslide Conditioning Factors

Considering the type of phenomena analyzed and the scale of the landslide suscepti-
bility evaluation, we decided to employ slope units as mapping units (SLU). In fact, for the
purpose of the project, we needed to detect the activation area but also include the potential
area of propagation and arrest of the phenomena. According to the literature [6,9,32], SLUs
have been demonstrated to be more geomorphologically adequate to represent all land-
slide phases (for the flow and slide phenomena) as it is assumed the complete landslide
kinematic (initiation, propagation, and accumulation) occurs inside. For this research,
SLUs were delimited by applying the r.watershed [33,34] GRASS GIS module using the
2000 contributing area threshold. By overlapping the SLUs with the landslide inventories,
the stable/unstable status with respect to the slide and flow phenomena was defined for
each slope unit depending on whether it hosts at least one LIP.

Geo-environmental predictors were selected on the basis of the expected direct or
proxied role in landslides [7,27,35] (Table 1): outcropping lithology (LITO), land use (ob-
tained by the Corine Land Cover 2018-USE), elevation (ELE—10 m), landform classification
(LCL), steepness (SLO), aspect (expressed as northerness and easterness), plan (PLN), and
profile (PRF) curvatures, topographic wetness index (TWI), and stream power index (SPI).
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For the continuous variables, a multicollinearity analysis was carried out using the variance
inflation factor (VIF) obtained by applying the “usdm” R-package [36]. No multicollinearity
emerged between the selected predictors. However, considering that specific modeling
procedures were implemented separately for flow and slide, the SPI predictor was excluded
for the slide model, while the TWI variable was excluded from the flow model.

Table 1. Details of the employed geo-environmental variables (modified from [7,27]).

Acronym Description of Predictor References Potential Proxy Significance

ELE Distribution of elevation Mean annual rainfall

Morphological classification of the
territory based on the variation in

LCL elevation with respect to the (371 Morphological setting
neighbouring areas
SLO The first derivative of elevation [38] Speed (?f the water and potential
underlying rupture surfaces [6,27]
Cosine of aspect (direction in which .
N the slope degrades more rapidly) [39] Seasonal wet/dry cycles of soils [40]
E Sine of aspect (direction in which the [39] Seasonal wet/dry cycles of soils [40]

slope degrades more rapidly)

The second derivative of elevation,
PLN computed along the [41]
horizontal plane

Activation and propagation of
landslides [42]

The second derivative of elevation,
PRF computed along the direction of the [41] The direction of flow [42]
highest slope gradient

Calculated as In[A/tanf], where A
and 3, computed on each cell,
TWI corresponds to the area of upslope [43]
drained cells and the slope gradient,
respectively

Potential infiltration or saturated soil
thickness [6,27]

Natural logarithm of the catchment
SPI area multiplied by the tangent of the [44]
slope gradient

Proxy of the intensity of surface
water erosion [6]

Physical-mechanical properties of
rocks [27]

Potential hydrological and surface
USE CORINE land cover (2018) hydric erosion induced
disturbances [27]

LITO Original geological map

Each variable was then characterized inside the SLUs by zonal statistics as deciles for
the continuous variables and as relative frequencies for the categorical ones.

2.4. Statistical Model, Validation Tools, and Model-Building Strategies

The multivariate adaptive regression splines (MARS; [45]) method was used for all
modeling procedures as it has been confirmed to be very effective in modeling nonlinear
components of the relationship between landslides and their causative factors [6,46].

MARS is a nonparametric regression method that splits each independent variable
into branches (optimizing their number based on the characteristics of the variable itself
and the correlation with the distribution of other predictors). Each branch is defined by
a hinge function (a function used for defining a nonlinear relationship between y and x)
and the relative knot. The derived structures (hinge function and knots) identify a basis
function that can take the shape of a simple linear regression (when the basis function
corresponds to the model intercept, set to a constant value of 1) or more complex geometry
(when the basis function is the product of one or more hinge functions associated with
different covariates).
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In this way, hinge functions boost the maximum-likelihood-based adaptation skill of
the logistic regression method, according to

y=fx)=a+ Y Bihi(x) (1)

where y is the dependent variable (the outcome) predicted by the function f(x), « is the
model intercept, and f; is the coefficient of the hi basis functions given the N number of
base functions. For other information about the method, please refer to [6,27,35,47-49]. For
this research, MARS analysis was performed using the “earth” R-package [50].

Due to the fact that the MARS method is based on a presence—absence approach, a
random extraction of negative cases in the same number as the positive cases was carried
out. The random selection of negative cases and the subsequent modeling was replicated
one-hundred times to evaluate the independence of the results (resolution and precision)
from the specific choice of the negative cases [6,27]. On the other hand, to verify the
prediction skill of the models, each balanced dataset was randomly split using 75% for
calibration and the remaining 25% for validation [51].

AUC value (area under the curve) in the ROC (receiver operating characteristics) [52-54]
was employed to evaluate the prediction skill of the model according to Hosmer and
Lemeshow [55]. At the same time, the Youden index optimized score cut-off [56] was
obtained from the ROC plots to set confusion matrices and calculate the related validation
indices (sensitivity, specificity, and accuracy). Nested applications of the Youden index
cut-off were employed to define the different cut-offs of four susceptibility levels in an
objective way: S1 (low), S2 (moderate), S3 (high), and S4 (very high).

In Figure 4, the model-building strategy employed in this research is synthetically
shown. Once the P.A.IL inventory was checked and the relative LIPs extracted, a first model
named SUFRA_1 was obtained and validated, both for slide and flow landslides. Thus,
each SLU was classified according to the resulting susceptibility score classes.

(1) checking the (7) Comparison between
P.A.l. inventories Sufra_1 and Sufra_2
(2) First step of modelling and validation: (6) Second step of modelling and validation:
SUFRA_1 model SUFRA_2 model
(3) Classification of Mapping Units (5) Remote detection
according to landslide of the stable/unstable status
susceptibility classes of selected mapping units
(4) 30% random selection
of mapping units
for each susceptibility class

Figure 4. Synthetic scheme of the adopted model-building procedures.

To test the quality of the prediction images in predicting a high-resolution unknown
landslide inventory, a second validation was performed in the small Sciara sub-basin
(~21 km?), where a new systematic inventory for flow and slide was prepared using remote
surveys. The Sciara sub-basin was selected because, in light of its geomorphological setting,
it is largely representative of the landslide susceptibility in the whole Torto basin area.
Then, 30% of unrecognized P.A.I. SLUs were randomly extracted for each susceptibility
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class and submitted to remote detection of stable/unstable status with respect to flow and
slide movements. Thus, using both the checked P.A.I inventory and the 30% systematically
mapped one, two new (slides/flows) SUFRA_2 models were prepared. Finally, the per-
formance of the models was evaluated both with respect to the whole Torto basin (P.A.L
checked inventories) and the Sciara basin.

3. Results

In Figure 5, the ROC plots for the SUFRA_1 models, both for the validation in the
whole Torto basin and the Sciara sub-basin, are shown. The AUC values for SUFRA_1
models were outstanding for validation in the Torto basin (Figure 5a,b). However, the
values decreased when the validation was focused on the Sciara sub-basin with respect
to the systematic inventories (Figure 5¢,d). This lowering was more marked for the flow
model whose performance went from outstanding to good (0.77).
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Figure 5. ROC plots of the two SUFRA_1 models validated in the whole Torto River basin (a,b) and
in the Sciara sub-basin (c,d). AUC mean values were computed through one-hundred replicates
given by extraction of different random negatives.

Confusion matrices (Table 2) confirmed these behaviors, with very high values of
sensitivity (Sens. values of 1 and 0.98 for slide and flow model, respectively). However,
a limited specificity (Spec. values of 0.69 and 0.67 for slide and flow model, respectively)
resulted due to the high number of false positives (FPs) produced. These very low values
of specificity also affected the accuracy (Acc.), which showed just sufficient values (~0.7).
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Table 2. Confusion matrix of the SUFRA_1 models in the Torto basin and in the Sciara sub-basin.

Positive  Negative

Cases Cases TN FN FP TP Acc. Sens.  Spec.
SUFRALL 45 968 666 0 2 45 070 1 0.69
e Slide
‘5 o
B < SUFRA 78 935 627 1 308 77 069 098 067
Flow
SUFRA_1
g o 9 90 70 3 20 6 077 067 078
58
o
# < SUFRAL 7 92 7 3 20 4 077 057 07
Flow

On the other hand, the validation in the Sciara sub-basin revealed that the sensitivity
suffered in the prediction images produced for both the slide and flow models when a
systematic high-resolution archive was detected. This limit was more evident for the flow
model for which the sensitivity was markedly insufficient (<0.6).

The ROC plots relative to the validation of the SUFRA_2 models for slide and flow
movements are shown in Figure 6. In this case, outstanding AUC values (>0.9) were
achieved for both the whole Torto basin (Figure 6a,b) and the Sciara sub-basin (Figure 6¢,d).
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Figure 6. ROC plot of the two SUFRA_2 models validated in the whole Torto River basin (a,b) and in
the Sciara sub-basin (¢,d). AUC mean values were computed through one-hundred replicates given
by extraction of different random negatives.

Confusion matrices (Table 3) confirmed the high performance in validation within a
coeval/homogeneous inventory of calibration with sensitivity values of 1 for slide and 0.95
for flow. Again, the specificity was just over 0.7 due to the high number of FPs produced.
However, the validation in the Sciara sub-basin confirmed the better performance of the
prediction images produced: the sensitivity was 1 for both flows and slides and, at the
same time, the specificity was 0.75 for slides and 0.8 for flows; better values of accuracy
(0.77 and 0.82 for slides and flows, respectively) were consequently obtained.
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Table 3. Confusion matrix of the SUFRA_2 models in the Torto basin and in the Sciara sub-basin.

Positive  Negative

Cases Cases TN FN FP TP Acc. Sens.  Spec.
SUFRA_2 85 928 682 0 26 8 076 1 0.73
e Slide
‘5 o
=< SURRA2 -, 891 643 6 248 116 075 095 072
Flow
SUFRA_2
g o 9 90 67 0 25 9 o077 1 o074
58
o
A< SUFRA2 7 92 74 0 18 7 08 1 080
Flow

4. Discussion

The validation results of the SUFRA_1 models in the whole Torto River basin showed
outstanding AUC values but with limited specificity compared to the very high values of
sensitivity. Considering that the false positives are not only errors but also future positives,
these results gave us a warning about the accuracy of the predicted landslide scenario. The
validation in the Sciara sub-basin, where new systematic inventories for flow and slide were
detected, showed that the quality of the prediction images produced was inaccurate. In fact,
the sensitivity dramatically decreased here, especially for the flow model, clearly reflecting
the limited skill of the models to detect new unknown phenomena. Considering the
geomorphological setting of the Sciara sub-basin is representative of a very large part of the
Torto River catchment, the limits of SUFRA_1 were considered relevant. On the other hand,
the SUFRA_2 models maintained outstanding AUC values with very high sensitivity and
good specificity and, differently from SUFRA_1, the new models still showed outstanding
AUC values in the Sciara basin. More importantly, the sensitivity reached the maximum
performance with good to excellent specificity. The false-positive rates still suggest the
basin is characterized by relevant proneness to both flow- and slide-type slope failures. The
same high-model performance was observed for both the landslide typologies, confirming
that the goodness of this model procedure is independent of the landslide typology and
number of cases (provided the inventory is representative).

According to our test, the proposed two-step approach is suitable for optimizing
landslide susceptibility evaluation when the source inventory is affected by incompleteness
or mapping inaccuracy. In fact, the second step of mapping (the susceptibility level-driven
checking) permitted us to increase the quality of the calibration inventory and to cost-
effectively correct the potential misleading results of the SUFRA_1 models. Obviously,
the percentage of slope units checked (30% in this test) is not a standard but needs to
be tuned case by case. At the same time, the selection of a single test sub-basin could
be insufficient in the case of a more articulated geomorphological setting of the whole
study area, and criteria for selecting the number and extension of such sectors need to be
optimized (see [7] for a deeper inside of this issue). Indeed, different criteria for selecting
the checking areas to improve the original inventory could be also explored. In our study,
we precautionarily decided to maintain the same percentage of random extraction for each
SUFRA_1 susceptibility class.

5. Conclusions

The research we conducted was focused on detecting a useful way to use public
landslide regional inventory in statistical landslide susceptibility evaluation at a basin
scale. In the Torto River basin, the original P.A.I. inventories of slide and flow movements
were submitted to remote checking to produce more accurate archives that are suitable for
statistical modeling. The proposed procedure seems to be robust in strengthening weak
inventories, maximizing cost-effectiveness in regional landslide susceptibility studies. In
fact, the proposed procedure simply requires, together with a first susceptibility model, a
status slope unit check for a small percentage of the study area and systematic mapping in
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one or more smaller subareas. The study was focused on slide and flow landslide typologies,
but the strategies of analysis can also be helpful for increasing landslide archives and related
resolution of landslide susceptibility maps for any other type of landslide (such as falls,
topples, and deep-seated typologies) with the aim of identifying areas to be analyzed
at a larger scale through the application of empirical or analytical models for rockfalls
(e.g., [57-59]) or to assess the magnitude and deformations rate for other slower and more
complex landslides (e.g., [60,61]).
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Abstract: Following potential reforestation in the Amazon Basin, changes in the biophysical char-
acteristics of the land surface may affect the fluxes of heat and moisture behavior. This research
examines the impacts of potential tropical reforestation on surface energy and moisture budgets,
including precipitation and temperature. The study is novel in that while most studies look at the
opposite driver (deforestation), this one examines the impact of potential forest rehabilitation on
atmospheric behavior using WRE.V3.9 (weather research and forecast model). We found that forest
rehabilitation across the Amazon Basin can make the atmosphere cooler with more moisture and
latent heat (LH), especially during May-November. For instance, the mean seasonal temperature
decreased significantly by about 1.2 °C, indicating the cooling effects of reforestation. Also, the
seasonal precipitation increased by 5 mm/day in reforested areas. By reforestation, the mean monthly
LH also increased as much as 50 W m~2 in August in certain areas, while available moisture to the
atmosphere increased by 27%, indicating possible causal mechanisms between increased LH and
precipitation and emphasizing the mechanisms that were identified between the onset of the wet
season and forest cover. Therefore, it is likely that forest regrowth across the basin leads to, if not
reverses regional climate change, at least slowing down the rate of changes in the climate.

Keywords: reforestation; land-atmosphere interactions; Amazon basin; heat and moisture fluxes; WRF

1. Introduction

The land surface plays an important role in global energy, the hydrologic cycle, and
carbon balance. Land cover change (LCC) directly alters surface-absorbed solar radiation,
longwave radiation, and atmospheric turbulence. These alterations lead to changes in fluxes
of momentum, heat, and water vapor through the mediation of albedo, evapotranspiration
(ET), roughness, and CO; [1,2]. Land cover changes through atmospheric feedback can
have a striking impact on the local, regional, and even global mean climate as well as
climatic extremes and variability [3].

While 25 to 35% of Amazon precipitation is related to regional moisture recycling [4],
during the rainy season, moist air from the basin travels along the Andes and provides
precipitation over the La Plata basin too [5,6] through tele-connection processes. Therefore,
any changes to land surface biophysical characteristics, even at the local scale, may alter
the climate over the entire basin.

LCC in the Amazon basin has been studied to be one of the driving forces for climate
change [7,8]. It affects the energy, carbon and water balance, and land-atmosphere interac-
tions. It alters evapotranspiration and the hydrologic cycle more broadly which further
affects Amazon rainforest stability [9], primarily through a reduction in moisture recy-
cling [10,11]. Such changes have been investigated across the Amazon basin using global
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and regional climate models: notably, via complete deforestation scenarios e.g., [12-16] or
scenarios ranging from low to extreme conversion of forest e.g., [17,18].

The conversion of forest to cropland in the Amazon Basin has resulted in a decrease in
precipitation (P) [15], a decrease in ET [19,20], an increase in temperature (T) [18], and also
indirectly intensifies fire occurrence [21]. Due to deforestation, the onset of the rainy season
has also delayed 11 days, on average, over the last thirty years across the highly deforested
areas in the state of Rondonia, Brazil [19]. In addition, the length of the dry season has
been increased by one month in some areas [22-26] and drought conditions have also been
exacerbated as a result of deforestation [27-29].

The spatial scale of LCC from local to regional to global is very important in land-
atmosphere interaction analysis [30,31]. The most recent deforestation in the Amazon basin
occurred at small-scale patches (less than 1 ha) during 2008-2014 [27]. In addition, the
temporal scale of analysis is also important in understanding the magnitude and amplitude
of the effects. For instance, Ref. [28] found that the impact of land surface variability on
climate is more apparent at monthly timescales than at other timescales. Ref. [29] analyzed
the interactions between clouds, rains, and the underlying land surface through biosphere
processes in southwestern Rondonia, Brazil. They found that land-atmosphere interactions
are higher during the dry season (May-November) than the wet season (December-April).
They also hypothesized more complex interactions between cloudiness, moisture transport,
and fluxes during the wet season.

When considering the effects of LCC at the basin scale, the land-atmosphere interaction
is more intense [22]. For instance, Ref. [30] used IPCC CMIP3 models and found an increase
in the annual mean temperature between 0.1 and 3.8 °C and a decrease in the annual
precipitation of about 10-30% which could lead to changes in seasonality. Also, Ref. [11]
argued that upon reaching 40% reduction in Amazon forest cover, wet and dry season
rainfall totals may reduce by 12% and 21%, respectively. However, the magnitude and the
location of rainfall changes is uncertain [31,32].

Ref. [14] also used a GCM to capture the climate response to Amazon deforestation.
They found that the sensitivity of climate to LCC depends on the initial tree cover and
type of irrigation. Using satellite observations to assess crop responses to drought in the
basin, Refs. [33,34] found that due to reduced cloud cover, droughts induce a “greening-
up” although other researchers have rejected this hypothesis, e.g., [35-37]. According
to Ref. [35], analysis and model simulations of the impacts of Amazon deforestation over
the past 40 years showed that more than 90% of studies agree on the sign of change which
is a reduction in rainfall. But the amplitude, magnitude, and predictability are inconsistent
since they highly depend on the spatio-temporal scale of analysis [15,36-43].

Even if the regional impacts of deforestation on precipitation patterns have been
studied intensively e.g., [8,21,28,44—47], the reverse effects are still unclear. Therefore, in
this study, we aim to examine the extent to which potential Amazon Forest regrowth may
influence fluxes, precipitation, and temperature patterns during both wet (December—April)
and dry seasons (May—-November). We should note that wet and dry seasons are not
consistent across the domain, but these timespans are a practical compromise for analysis.

Thus, in this research, we examined the sensitivity and magnitude of changes to
the surface energy budget, including precipitation, due to potential new growth forests
across the Amazon Basin (Figure 1). Our prescribed reforestation scenario using the
Weather Research and Forecasting model (WRF)V3.9 is designed to answer the following
questions: (a) How might forest regrowth contribute to changes in fluxes, temperature, and
precipitation amounts across the basin at monthly and seasonal timescales; (b) what are the
spatio-temporal patterns of changes; and (c) Do any tele-connected processes develop due
to forest rehabilitation?
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Figure 1. Geographic location of the Amazon Basin. The red box indicates our simulation boundary.

2. Materials and Methods
2.1. Study Area and Simulation Domain

Figure 1 shows the topography of the Amazon Basin along with our simulation
boundary. The Amazon Basin extends through Brazil, Peru, Colombia, Ecuador, and
Bolivia covering about 6 million km?. The rainiest part of the basin is located on the eastern
edge of the Andes Cordillera [48,49]. The Amazon Basin contains more than 20% of the
world’s fresh water and is a hot-spot for ecosystem diversity. The forest biomass holds an
estimated 100 billion tons of carbon [50].

The basin’s climate varies from continuously rainy in the northwest to long dry sea-
sons in the east and south [51,52], where more conversion to agriculture has occurred.
This is referred to as the “Arc of Deforestation”. The basin’s climate is controlled by
atmosphere-ocean-land coupling as well as moisture recycling through evapotranspira-
tion [53]. The El Nino Southern Oscillation (ENSO) decreases the Amazon River flow
on the eastern side of the basin during El Nino years [54] while, during La Nina years,
flooding increases [55]. The Southern American Monsoon System brings rainfall to the
southern portion of the basin with the maximum rainfall during DJF (December-January-
February) [56]. During JJA (June-July-August) the South American Convergence Zone
(SACZ) contributes to the precipitation variability across the south of the Basin [57]. During
MAM (March-April-May), rainfall is dominated by the Intertropical Convergence Zone
(ITCZ), which is highly variable [58].

2.2. Data

We forced WRF with ESA 2009 land cover data which was reclassified based on US
Geological Survey land cover classes to match the WRF settings and mosaicked to account
for differences in resolution. The land cover was kept constant over the simulation years;
this is a prescribed simulation, so we needed to control for annual land cover variations
from our analysis. We choose 2009 to be consistent with our boundary layer data starting
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in 2009. For vertical boundary conditions, ERA_Interim with 80 km spatial resolution and
60 vertical levels, and 6-hourly temporal resolution for 2009, 2013, and 2014 were used to
force the model. These years are among the most recent ENSO-neutral years and the data
was more homogenous in terms of extreme events and outliers than other neutral years.
Due to the lack of adequate and robust observational information on precipitation
and temperature that poses great difficulties in validating our climate model outputs, we
used Tropical Rainfall Measuring Mission (TRMM) with a 0.25° spatial resolution and
MODIS Land-Surface Temperature with a 1 km spatial resolution to validate the simulated
temperature. All data were resampled based on the model output resolution.

2.3. WRF Model Setup

WRE3.9 (ARW) is a three-dimensional, non-hydrostatic climate model that is widely used
for atmospheric research. Simulations were initialized at 00:00 UTC and the first 15 days were
considered spin-up and were removed from the analysis. Early trials using longer spin-up
proved to be computationally expensive and unlikely to significantly affect the sensitivity
tests. The horizontal grid spacing was 16 km, with 38 levels of vertical levels up to 1000 m.
The thickness of the lowest atmospheric layer is about 50 m on smooth topography. At
this resolution, cumulus parameterization is necessary to resolve convection, clouds, and
precipitation properly [59]. Table 1 summarizes WRF parameterizations that were used in
this study. SSTs (sea surface temperature) came from ERA data to be time-consistent with
the vertical boundary conditions.

Table 1. WRF parameterizations.

Parameter Scheme Option
Longwave radiation scheme Rapid Radiative Transfer Model
Shortwave radiation Dudhia scheme

Fifth-generation Pennsylvania State
Surface layer University—National Center for Atmospheric
Research Mesoscale Model (MM5) scheme.

Cumulus scheme Kain-Fritsch
Mp_physics WSM6 Hong and Lim
LSM NOAH
PBL Yonsei University scheme

To quantify the model performance, we calculated the root-mean-square error (RMSE)
and the systematic error (percent bias; PBias) on the areal basin mean of daily data. We
also mapped the differences between the model outputs and observations at monthly and
seasonal timescales to estimate model performance and examine the errors spatially. We
resampled our observations based on the simulation outputs to eliminate spatial resolution
discrepancies in our data and comparison.

2.4. Land Cover Change Scenario

The last 50 years have witnessed a rapid conversion of forest to pasture and soy
agriculture, driven by new road building. For deforested areas, this has brought reduced
soil moisture, higher SH, seasonally bare soils, higher albedos, and lowered zero-plane
displacement heights. Figure 2 shows maps of current and reforested land cover that was
used in this study to analyze the sensitivity of the atmosphere to deforestation across the
Amazon Basin. In this study, only conversion from cropland to forest has been considered;
cropped cerrado was not changed. Every grid cell which was primarily cropland has been
replaced by mature evergreen rainforest (although this is complex in the southeastern
domain). This conversion is dominant along the arc of deforestation and on the main stem
of the Amazon River.
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Figure 2. ESA land covers that were used in the simulation. In the Reforest map, all croplands are
replaced by evergreen broadleaf forests. The highlighted areas on the difference map (right image)
indicate reforested regions.

3. Results and Discussion
3.1. Model Validation

Figure 3 shows RMSE and Pbias errors for both precipitation and temperature. We val-
idated the simulated precipitation against Brazilian Federal hydro-meteorological network
(ANA) rain gauge measurements and TRMM reanalysis precipitation data and compared
basin-wide averages. As stated before, due to high levels of missing values in ANA data,
we removed them from our analysis. They are shown in this image only to highlight the
shortcomings of some ANA data.
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Figure 3. Difference maps between the simulated precipitation and simulated temperature, forced
with reforested and current LCC on the left. On the right, the mean monthly temperature and
precipitation (averaged over the basin) from observation and model output, along with the errors in
the inset boxes.

Looking at temperature, the model performed very well with deviations at most
2 degrees centigrade cooler than the observations for most of the basin. Only at high
altitudes over complex terrain on the edges did the model underestimate the temperature by
up to —17 °C. This error is consistent with WRF’s well-known cold bias at high altitudes [60].
Also, along water bodies, the model simulated up to 2 degrees warmer than observations.
Our model performed well in simulating the precipitation, too. Due to complex interactions
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between cloudiness, the land surface, and precipitation in the Amazon Basin [61] during
the wet season (December—April), the model overestimates precipitation for the arc of
deforestation by up to 5 mm/day compared to the observations. In terms of basin average,
the temperature is simulated with the same spatial pattern as MODIS temperature but 1 °C
cooler. Simulated precipitation shows broadly the same pattern as TRMM precipitation.
The RMSE and Bias are reported in Figure 3 which are minimal and acceptable.

3.2. Sensitivity of Fluxes and Precipitation to Land Cover Change across the Basin

The results that are shown here are averaged across the three years of simulation. To
assess the impacts of regrowth on fluxes and precipitation, we applied a Student t-test for
each season spatial time series at each grid point (over space and time). In this test, the null
statistical hypothesis is that the reforested and current population had the same mean [44].
Each grid point that could reject the null hypothesis at a 95% significance level is considered
to have experienced a significant impact from the reforestation process. Although we used
ENSO-neutral years, there exists interannual variability across the three years, and both
positive and negative changes resulted from the model in response to reforestation.

3.2.1. Heat Flux

Figures 4 and 5 show the effects of LCC on LH and sensible heat (SH) (only significant
changes are shown here). According to Figure 4, the LH has increased by 30 Wm ™2 during
May-November and by 15 Wm~2 during December—April despite some extreme increases
in the north side of the region. We found no pronounced negative changes in the domain-
averaged mean SH across the region with reforestation. As the land surface has a complex
relationship with the atmosphere, SH did not show significant sensitivity to changes in
the land surface biophysical characteristics at a seasonal scale. There is only the northeast
area of the basin which shows a significant decreasing trend for SH with reforestation. This
decrease is the highest in December—April which is geographically consistent with the
highest increase in LH during the same time period.

Next, we looked at monthly changes. For regions with added tree cover, the LH
has increased by 20, 50, and 30 Wm 2 in July, August, and September, respectively. SH
shows a decrease of 10 Wm™2 in August and September at the same location. These
months are in the dry season, therefore, an increase in the LH can provide more moisture
to the environment if other criteria are met. By adding more vegetation cover through
reforestation or forest rehabilitation, the transpiration rate and surface roughness increased
leading to an increase in the LH and a decrease in SH. Since July has the highest LAI in the
basin and it decreases toward the end of the year, we found the highest influence of LCC
on exchanges of both SH and LH starting in July.

The effects of LCC on the temperature are spatially different in May-November and
December—April. Reforestation decreased the surface temperature by about 1.2 °C in the
northeast part of the basin and about 0.2 °C on the west side of the basin (Figure 6), far
from the reforested areas. The increased ET drives a significant increase in the cloud cover
that gets advected westward. The cooling effect of reforestation is clearer on a monthly
scale, especially in Aug and Sept by about 2 °C. This finding is consistent with Ref. [38]
who found 2 °C warmer air temperatures as a result of deforestation, as well as Ref. [18]
who found 0.3 °C warmer surface temperatures due to deforestation of the Xingu region
along the arc of deforestation.

3.2.2. Moisture Flux and Precipitation

Our results showed that reforestation significantly increased the domain-averaged
available moisture to the atmosphere (QFX) (Figure 7), mostly during May-November,
by 27%. The maximum increase in moisture flux occurred in August and September, about
0.03 g m~2 s, especially in the arc of deforestation which has had significant widespread
deforestation. However, other heavily deforested areas of the basin (along the rivers in
the centroid of the basin, and near Iquitos) did not exhibit significant changes in moisture
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flux. These regions receive much more rainfall and have virtually no dry season. The
QFX value of 0.01 g m~2 s~ ! in the difference panel of Figure 7 converts to approximately
25 mm/month of precipitation, which is at the upper end of the RMSE that was measured
by global ET products [62].
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Figure 4. Simulated LH, forced with current and reforested land cover on the left. On the right, the
difference between the two simulated LHs at a 95% significance level. Plus signs indicate major cities.
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Figure 5. Simulated SH, forced with current and reforested land cover on the left. On the right, the
difference between the two simulated SHs at a 95% significance level. Plus signs indicate major cities.
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Figure 6. Simulated temperature, forced with current and reforested land cover on the left. On the
right, the difference between the two simulated temperatures is at a 95% significance level. Plus signs

indicate major cities.
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Figure 7. 