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1. Introduction

Many complex phenomena in earth sciences and geography, including nonlinear fluid
motions in the atmosphere, oceans, rivers, and lakes, coastal morpho dynamics, volcanic
and seismic activities, the spatiotemporal dynamics of species, human movement trajectory,
and city transportation dynamics, among many others, have played significant roles in the
creation and development of complexity science, particularly chaos theory and fractal ge-
ometry [1]. With big data rapidly accumulating in almost every branch of earth sciences
and geography, our increasing understanding of complex systems, and the availability of
richer and more powerful methods for modeling complex systems, a golden age for the
study of the complexity of the earth and our living environment has emerged. This book
arises from a Special Issue of Applied Sciences that aimed to systematically examine the many
complex phenomena that occur in earth sciences and geography, employing state-of-the-art
methods for modeling complex data in order to invigorate research in earth sciences and
geography, and to facilitate the further development of complexity science. Altogether, this
Special Issue comprises 20 papers, contributed by researchers from all over the world and
covering a range of diverse topics, including the encryption of digital elevation models [2],
facies heterogeneity [3], the simulation of the snow cover process [4], the exploration of ice
elevation change [5], earthquake and seismic activity [6–9], landslide susceptibility [10,11],
the effect of reforestation [12], coordination between the supply and demand of ecosystem
services [13], indoor positioning [14], public transport flow networks and retail store loca-
tions [15], the equality of healthcare facilities [16], recommender systems for e-retail [17],
globalization [18], international trade and optimal industrial structure [19], risk analysis [20],
and the quantification of political processes [21]. Below, I briefly explain the premise of each
work, and when appropriate, highlight what could be further explored in future.

2. Topics Covered in the Book and Future Perspectives

The encryption of digital elevation models (DEMs) is a crucial task in geosciences. In
their study, Cheng and Li [2] tackle this issue by integrating a chaos system and a linear
prediction technique. While their technique is innovative and interesting, in the future it would
be interesting to determine which currently available encryption scheme, including those
developed by electrical engineers and computer scientists, operates the best for this purpose.

In their study, Jamil et al. [3] study facies heterogeneity in the West Crocker Formation
of Sabah in northwest Borneo. By using the lithological characteristics, bed geometry,
sedimentary textures and structures of individual beds, they categorize the rock units into
nine sedimentary lithofacies: five sandstone lithofacies (S1–S5), one hybrid bed facies (H),
two siltstone facies (Si1 and Si2), and one shale or mudstone facies (M). These facies were
then grouped into four facies associations (FA1–FA4), which were further interpreted as lobe
axis (FA1), lobe off-axis (FA2), lobe fringe (FA3), and distal fringe to interlope (FA4) facies
associations. In future, it would be interesting to determine whether this approach may be
applicable for the determination of the distribution of lobes and their sub-seismic, multiscale
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complexities, for the purpose of characterizing the potential hydrocarbon intervals in deep-
marine sand-shale systems around the globe.

The accurate simulation of the snow cover process is of great significance to the
study of climate change and the water cycle. In their study, Gao et al. [4] use the China
Meteorological Forcing Dataset (CMFD) and ERA-Interim as driving data to simulate
the dynamic changes in the snow depth and snow water equivalent (SWE) in the Irtysh
River Basin from 2000 to 2018 using the Noah-MP land surface model; they compare
the simulation results with the gridded dataset of snow depth at Chinese meteorological
stations (GDSD), the long-term series of the daily snow depth dataset in China (LSD), and
China’s daily snow depth and snow water equivalent products (CSS). The authors find
that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process,
while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow
surface albedo (ALB) schemes mainly affect the melting process.

Hitziger et al. [5] provide a fascinating account of a series of geodetic expeditions
conducted in order to explore ice elevation change based on GNSS measurements along
the Korth-Traverse in Southern Greenland. The efforts made by the researchers in these
expeditions are truly inspirational.

In the cluster of papers on earthquakes and seismic activity, Cucci et al. [6] make efforts
to compile all of the information available regarding the M6.3 earthquake that occurred in
southern Lazio (Central Italy) in 1654, the strongest seismic event to have ever occurred in
the area, in order to provide reliable landmarks with which to identify its seismic source.
Alaei et al. [7] propose a 2D pseudo-viscoelastic time-domain full-waveform inversion
approach for the seismic imaging of complex velocity structures. Hamdache et al. [8] em-
ploy a stochastic model entitled the restricted epidemic-type aftershock sequence (RETAS)
to examine the similarities/differences in the three aftershock sequences that occurred in
Al Hoceima, Morocco, in May 1994 (Mw 6.0), February 2004 (Mw 6.4) and January 2016
(Mw 6.3). In addition, in their study, Edigbue et al. [9] develop a combined local and global
optimization approach for jointly inverting two-dimensional direct current resistivity (DCR)
and seismic refraction (SR) data for the purpose of reliably estimating the corresponding
physical model parameters.

On the issue of landslide susceptibility, in their study, Martinello et al. [10] first
evaluate the reliability of regional landslide susceptibility models obtained by exploiting
inhomogeneously collected inventories for calibration. They find that models appearing to
perform well on a large scale may actually perform very poorly on a local scale. Then, they
choose the Torto River Basin (Central-Northern Sicily, Italy) as an example, and propose a
technique with which to overcome the limitations of Public Landslide Inventories in order to
assess landslide susceptibility more reliably [11]. The assessment of landslide susceptibility
is certainly of enormous practical importance. It would be interesting to observe whether
some salient patterns or regularities can be found in the measured landslide data so that
the assessment of landslide susceptibility is not solely data-driven, but also has a sound
theoretical foundation.

Haghtalab et al. [12] examine the impacts of potential tropical reforestation on surface
energy and moisture budgets, including precipitation and temperature. Using WRF.V3.9
(weather research and forecast model), they find that forest rehabilitation across the Ama-
zon Basin can make the atmosphere cooler, with more moisture and latent heat (LH),
especially between May and November. Choosing a large watershed area with a number
of counties, Zhang et al. [13] employ the coupling coordination degree model (CCDM)
and examine the coordination between supply and demand in ecosystem services (ESs),
including crop production, water retention, soil conservation, carbon sequestration, and
outdoor recreation. Within their study area, they find that different regions could be classi-
fied into four distinct types: extreme incoordination, moderate incoordination, reluctant
coordination, and moderate coordination. As one could readily expect, a mountain ecosys-
tem belongs to the first category, where the ES supply is much greater than the demand.
This study is based on data collected in 2000 and 2020. It would be interesting to observe
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how the degree of coordination between supply and demand in ESs continuously varies
with time.

In their study, Xu et al. [14] develop a real-time Bluetooth low-energy (BLE)/pedestrian
dead-reckoning (PDR) integrated system for enhanced indoor positioning. The system is
based on constructing a robust vector that is responsible for changing the observation co-
variance matrix of the extended Kalman filter (EKF). This is achieved by detecting the gross
error at different granularities. Focusing on three weighted centrality indices in the net-
works of public transport flows, namely degree, betweenness, and closeness, Liao et al. [15]
find that supermarkets, convenience stores, electronics stores, and specialty stores have the
highest weighted degree value. In contrast, building material stores and shopping malls
have the lowest weighted closeness and weighted betweenness values, respectively. In
their study, Tao et al. [16] develop a hierarchical maximal accessibility equality model to
examine the equality of accessibility to healthcare services in Shenzhen, China. In addition,
Huang and Liu [17] propose a more accurate personalized recommendation system for
e-retailers that is also computationally more efficient. While all this research is fascinating,
it would be desirable to see whether the results of these studies can be applied in practice
and make a profound impact on society.

Globalization is often understood in terms of an increase in human mobility with
time, an increase in the number of multinational corporations with time, as well as an
increase in connectedness over time, enabled by increasingly powerful communication
and information technologies. Considering this, Sun et al. [18] propose an alternative
globalization index, which is a valuable addition to the globalization indices proposed
previously [22–25]. One can readily see that with this kind of reasoning, globalization will
generally increase with time, despite being at times disrupted by some global catastrophe,
such as the COVID-19 pandemic. However, it is difficult to simultaneously understand
anti-globalization with regard to this concept. In future, it would be vital to develop
an approach that can simultaneously understand globalization and anti-globalization,
so that superior strategies can be developed to ensure that globalization benefits more
people and countries.

Analyzing massive international trade data from 1991 to 2019, Liu and Gao [19] find
that deviations from normality for the distribution of revealed comparative advantage
(RCA) are strongly negatively correlated with the logarithm of GDP and the Economic
Complexity Index (ECI). In particular, the correlation between this deviation and GDP is
stronger than that between ECI and GDP post 2008. These results suggest that this deviation
may serve as an excellent new index with which to quantify the economic complexity and
economic performance of a country. It would be interesting to use the entropy maximization
principle to gain further insights into the approach.

With extreme weather and natural disasters occurring more frequently, risk analysis
and mitigation have become increasingly crucial. Rising to this challenge, Bilotta et al. [20]
provide formal mathematical expressions for hazard, the exposure of hazard, vulnerability,
risk, and the mitigation of risk. It remains to be seen how these expressions can actually
be computed in various scenarios of real-world importance. In future, it is perhaps even
more vital to pay greater attention to insurance in countries where the insurance industry
lags the development of economy, since without the proper development of the insurance
industry, risk analysis cannot make a real impact. Here, of course, an important issue is to
properly quantify the term “lag”.

When dedicating this Special Issue of Applied Sciences to the study of complexity in
earth sciences and geography, it is assumed that a significant fraction of researchers and
students in the relevant fields understand the basics of complexity science. But however
significant this fraction is, there will still be many researchers and students who require help
in order to catch up with the recent developments in complexity science. This book thus
includes a review article by Gao and Xu [21], which first provides a tutorial introduction
to complex systems and emergence, then presents two multiscale approaches that may be
useful for analyzing complex temporal dynamics in earth sciences and geography, and
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beyond. This article can be used as a reference for an introductory but enhanced course on
complexity science for geosciences; by “enhanced”, it is meant that students in the class are
encouraged to perform extensive hands-on exercises, including programming, as much as
possible. Solely for this purpose, instructors, as well as readers interested in the relevant
computer analysis programs, are encouraged to contact the authors.

Reference [21] also briefly touches on the issue of characterizing the political evolution
of various countries, utilizing news media big data. Studies in geopolitics and digital
humanity may well instigate new frontiers in earth sciences and geography.

Funding: J. Gao is supported by the Fundamental Research Funds for the Central Universities
in China.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: A digital elevation model (DEM) digitally records information about terrain variations and
has found many applications in different fields of geosciences. To protect such digital information,
encryption is one technique. Numerous encryption algorithms have been developed and can be used
for DEM. A good encryption algorithm should change both the compositional and configurational
information of a DEM in the encryption process. However, current methods do not fully take into
full consideration pixel structures when measuring the complexity of an encrypted DEM (e.g., using
Shannon entropy and correlation). Therefore, this study first proposes that configurational entropy
capturing both compositional and configurational information can be used to optimize encryption
from the perspective of the Second Law of Thermodynamics. Subsequently, an encryption algorithm
based on the integration of the chaos system and linear prediction is designed, where the one with
the maximum absolute configurational entropy difference compared to the original DEM is selected.
Two experimental DEMs are encrypted for 10 times. The experimental results and security analysis
show that the proposed algorithm is effective and that configurational entropy can help optimize the
encryption and can provide guidelines for evaluating the encrypted DEM.

Keywords: digital elevation model; information security; chaos system; configurational information;
configurational entropy

1. Introduction

A digital elevation model (DEM) is a digital representation of terrain variations and
can explicitly reveal information about the topographic complexity with computer graphics.
With the development of advanced equipment for data acquisition (e.g., high-resolution
satellite sensors, unmanned aerial vehicle (UAV), and LiDAR (Light Detection and Rang-
ing)), it is becoming more and more easy to acquire DEMs. In addition, DEM transmission
becomes more and more frequent due to the development of advanced computer and net-
work communication technologies. However, due to the openness and sharing of networks,
there exists a serious threat in information security and confidentiality [1,2]. Therefore,
information protection is desired and hence has attracted much attention. The literature on
information protection can be traced back to Shannon’s paper entitled “Communication
Theory of Secrecy System” [3]. By now, numerous information protection methods have
been proposed, and encryption is one such solution.

An increasing number of encryption algorithms have been developed to protect infor-
mation from images as much as possible, and such algorithms can be employed to protect
DEMs as well. Since chaotic systems are sensitive to the initial parameters, determinacy,
ergodicity, and so forth [4–7], chaotic-systems-based encryption algorithms [8–15] are
popular among these methods. In general, a chaotic-system-based algorithm encrypts an
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image via two stages (i.e., confusion and diffusion). At the confusion stage, the positions
of pixels are changed. To enhance security, the pixel values are changed at the diffusion
stage. Sometimes, these two stages can be achieved simultaneously. Nevertheless, one
may notice that the precision of initial parameters for generating chaotic sequences can
influence the encryption performance of a chaotic system. At this point, for a given image,
one may ask two questions: (i) Can we employ a metric to help optimize an encryption
algorithm based on the chaos system? and (ii) What abilities should such a metric have? To
answer these two questions, let us first recall the viewpoint proposed by Shannon that it is
possible to break many kinds of ciphers using a statistical analysis on the histogram and
the correlation of adjacent pixels in the cipher image [3]. From this viewpoint, we know
that both the composition (proportions of pixels) and configurational information (spatial
structures) of an image should be considered when designing an encryption algorithm and
when evaluating its performance. This further suggests that we may need to find metrics
for capturing both compositional and configurational information of an image.

Some metrics have been developed to evaluate the performance of encryption systems
upon an image, e.g., correlation [9], NPCR (Number of Pixels Change Rate) [9,16], UACI
(Unified Average Changing Intensity) [9], histogram [17], and Shannon entropy [18–20].
Theoretically speaking, these metrics are not good enough for capturing both compositional
and configurational information. For example, Shannon entropy is a type of statistical
entropy [21] and thus is unable to completely capture the configurational information
of an image since its calculation relies on the occurrence probabilities of pixels, not the
two-dimensional spatial structures. Three DEMs are shown in Figure 1, where the ones in
the middle and right frames are the scrambled results of the one in the left frame. They
have different spatial structures, whereas their Shannon entropy values are the same.
Additionally, the information content of the multiscale representation of a DEM cannot be
well-quantified by these metrics.

Figure 1. Three digital elevation models (DEMs) with the same histogram and, thus, same Shannon
entropy values.

To bridge the gaps induced by these metrics mentioned above, this study utilizes
the configurational entropy (thermodynamic entropy) to encrypt DEM. An encryption
algorithm is proposed with the integration of a chaos system and linear prediction and is
optimized by leveraging the configurational entropy. Apart from the Introduction section,
the remainder of this study is organized as follows. The Second Law of Thermodynamics
and configurational entropy are introduced first as the perspective for optimizing the DEM
encryption in Section 2. Then, a novel encryption algorithm based on the leverage of
configurational entropy is proposed and described in Section 3. Two DEMs are used in
experiments followed by the results analysis in Section 4. Finally, a conclusion is made in
Section 5.

2. The Second Law of Thermodynamics as a New Perspective for Optimizing
Encryption of Numerical Raster Data

The Second Law of Thermodynamics is concerned with the direction of natural
processes. This law states that an isolated and closed thermodynamic system can sponta-
neously evolve towards thermodynamic equilibrium, where its disorder degree (which
can be measured by entropy) is at maximum [22–24]. Inspired by this law, we can assume
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that a DEM could be considered an isolated and closed thermodynamic system where
pixels are taken as gas molecules. Different temperatures (i.e., different encryption tech-
niques or same techniques with different initial parameters) are imposed on the same
thermodynamic system (an image), and then, the gas molecules (pixels) move in different
directions and finally reach one type of status. Figure 2 shows different statuses of a closed
thermodynamic system under different temperatures. The disorder of the thermodynamic
system represents the complexity (randomness) of an image. The gas molecules move
in different directions and then form different distributions. The disorder degree of gas
molecules increases from (a) to (d).

(a) (b) 

 
(c) (d) 

Figure 2. Four closed and isolated thermodynamic systems with the same gas molecules but different
distributions.

The disorder of an isolated and closed thermodynamic system can be quantified by the
thermodynamic entropy proposed by Ludwig Boltzmann [25,26]. The calculation formula
for the thermodynamic entropy (configurational entropy and Boltzmann entropy) is as
follows:

S = K log W (1)

where K is the Boltzmann constant (1 in the case of digital images, as suggested by [27])
and W is the number of microstates for a given macrostate. The configurational entropy
of numerical raster data has been defined and computed in [28] with the assistance of the
concept of multiscale representation, leading to two types of terms: relative and absolute.
Concretely, the macrostate is defined as the upscaling results by an operation with a
2 × 2 sliding window; the microstates are all possible downscaling results, which can
be seen in Figure 3. For an image, its relative configurational entropy (SR) is the sum of
configurational entropies of pixels in a sliding window of size 2 × 2 through the whole
image. The absolute configurational entropy (SA) is the sum of relative configurational
entropies across all scales, capturing the multiscale information, which can help us enhance
the analysis of the complexity of an encrypted DEM.

9
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Figure 3. An example of computing the configurational entropy.

The experiments conducted in [29] demonstrates that SR can measure the scrambling
degree of grayscale images at the confusion stage. Regarding the diffusion phase included
by an encryption function, the range of pixel values is modified. A good encrypted image
should have various value ranges and pixel structures different from the original one. At
this point, we can take the absolute configurational entropy as a metric to help choose
the best one among all encrypted images. Theoretically speaking, the higher the absolute
configurational entropy, the higher the complexity (and the lower the compressibility
concerning lossless compression). To improve the encryption security, we should select the
one with the maximum SA value among all cases. In this study, the base of the logarithmic
function in Equation (1) is set to 2 to measure the configurational information in units of
bits. The configurational entropy of an image is proportional to its complexity.

3. Encryption Based on the Integration of Chaos System and Linear Prediction

Inspired by the Second Law of Thermodynamics, this section proposes an encryption
algorithm consisting of two parts: (i) the encryption function and (ii) determination of the
best-encrypted image with configurational entropy, which are shown in Figures 4 and 5.

Figure 4. The proposed encryption algorithm.
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(b) 

Figure 5. The schematic process of the proposed encryption function. (a) Encryption of a DEM (an
image) for m rounds. (b) Determination of the best encrypted one with configurational entropy; m
(≥1) represents the m total encryption rounds; n (≥1) represents the number of scrambled images
with respect to 2n key pairs for generating logistic maps.

The confusion phase included under the proposed encryption function is implemented
by the chaos system generated by two logistic maps with different initial parameter values.
Mathematically, the logistic map [30] is written as follows

xn+1 = rxn(1 − xn) (2)

where xn is located in the interval [0,1] and 0 ≤ r ≤ 4. When r ∈ (3.5699456, 4), the sequence
generated by the logistic map can show chaotic status, though there are many periodic
windows in this interval. We can assume that a DEM is read as a numerical matrix of size
M × N. The confusion phase scrambles the whole image, indicating that both row and
column scrambling are needed. To begin this process, first, we set the initial parameter
r0 and x0 values to iterate the chaotic system (i.e., Equation (2)) for M times and then a
chaotic sequence of length M, { x1, x2, x3, x4, x5, ,xm}, is generated and referred to as SM.
Then, sorting this chaotic sequence in ascending or descending order, we get {x1, x2, x3,
x4, x5, ,xm} named Sm. Next, we need to find the position values of SM in Sm and to record
the transformation positions TP = { tp1, tp2, tp3, tp4, tp5, tpm}. When we use TP for row
scrambling, we only need to move the tp1 row to the first row and the tp2 row to the second
row until all rows are scrambled. Similarly, regarding column scrambling, new parameter
r0 and y0 values are needed to iterate the logistic map for N times and then to conduct the
same operation as the row scrambling.

Concerning the diffusion phase, the three-point prediction is employed. A 2 × 2
sliding window is moved pixel by pixel, which generates the predicted pixels. Regarding
the edge pixels, the missing ones among pixels a, b, and c are automatically set to 0.
Thereafter, the difference between the confused image and the predicted one is computed
and then taken as the final encrypted DEM in one round. The advantages of three-point
prediction are (i) reducing the correlation between pixels (increasing the complexity of an
image) and (ii) changing the range of pixel values.

11
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After introducing the encryption function, we describe how the whole encryption al-
gorithm is optimized with the assistance of configurational entropy. As shown in Figure 5a,
users can determine the total encryption rounds, m, and the number of different confusion
phases, n, as illustrated in Figure 5b. The encrypted image (DEM) in the last round is taken
as the input of the encryption function for the next round in the whole encryption process.
Figure 5b shows how to select the best-encrypted image. An image can be scrambled by 2n
logistic maps with 2n different key pairs (r0, x0) at the confusion phase; thus, n confused
DEMs with the same histogram but different structures. Among these n confused DEMs,
the one with the maximum absolute SR difference (|DSR|) compared to the original is
selected as the input for the diffusion phase in which the range of pixel values is changed.
The absolute configurational entropy (SA) is finally employed to determine which one
is the most suitable for transmission. From a theoretical perspective of information, the
higher SA value, the higher the complexity (lower compressibility) of a DEM, indicating
higher encryption performance. Two modes are provided for users: (i) complexity first and
(ii) compressibility first. For the former, the one with the maximum SA is finally selected.
Regarding the latter, the one with the minimum absolute SA difference (|DSA|) compared
to the original DEM is chosen.

The encrypted image can be further processed by lossless compression techniques,
such as Huffman encoding [31], free lossless image format (FLIF) [32], and multiscale
compression [33], to reduce the burden on transmission and storage. To improve the
encryption performance as much as possible, it is recommended that users encrypt a DEM
for at least 4 times (i.e., m ≥ 4) using the proposed algorithm.

4. Experimental Results and Analysis

4.1. Encryption Results

Two 600 × 600 DEMs with different complexities tabulated in Table 1 were considered
experimental images. Their data formats were plain text, and their elevation values were
integer. Figure 6 shows these two DEMs, showing different complexities and various
ranges of pixel values.

Table 1. Two DEMs for the experiments [28]; SR and SA denote relative and absolute configurational entropy, respectively.

DEM Latitude Extent Longitude Extent SR SA Size (KB)

A 34◦27′04′′ N–35◦02′53′′ N 100◦36′21′′ E–101◦49’23′′ E 2,502,048.3 401,204,550.0 1758
B 31◦23′17′′ N–32◦06′40′′ N 104◦07′31′′ E–105◦06’55′′ E 2,416,595.3 308,809,911.3 1459

 

 

(a) (b) 

Figure 6. Two experimental DEMs with different complexities.

For convenience conducting the experiments, both m and n were set to 10 to encrypt
two DEMs. The development environment was Microsoft Visual studio 2013 with .Net
Framework 4.5, and the language used for programming was C#. The keys for generating
chaotic sequences and corresponding |DSR| of the confused DEM A in the confusion phase
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of the first round are tabulated in Table 2. Figure 7 shows the scrambled images, while
they have the same histogram. The fourth one was selected for the diffusion phase because
its |DSR| was the maximum compared with the remaining confused images. By using
the proposed encryption algorithm, we obtained 10 encrypted DEM A, which are shown
in Figure 8, and the key pairs are shown in Table 3, where CR represents the lossless
compression ratio (i.e., the ratio between the bytes used for storing the original data and
that for storing the compressed data) by using LZMA [34,35], which is a dictionary-based
compression algorithm and takes into consideration the spatial structure of data. From
Figure 8, we find that the pixel value range has been modified and the tenth one has the
maximum |DSA| and SA as shown in Table 3. Therefore, it is selected as the best one when
mode (i) is activated. Regarding mode (ii), Figure 8e is considered the best one. From
Figure 9, we find that the SA values of the encrypted images increased, whereas the CR
values decreased with the increase in the total encryption rounds (i.e., m). This can be
explained by the viewpoint derived from [19] that, from a theoretical perspective, the lower
the redundancy (which is measured by configurational entropy here) of an image, the
lower the compression ratio of the image achieved.

Table 2. Comparisons of relative configurational entropy of confused DEM A under different keys
in the first round. (r0, x0) and (r0, y0) denote the keys to scramble the row and column of DEM A,
respectively. |DSR| means the absolute SR difference compared to the original one.

No. (r0, x0) (r0, y0) |DSR|

1 (3.6949202, 0.94) (3.6477592, 0.16) 1,425,882.9
2 (3.7278720, 0.12) (3.7657562, 0.64) 1,455,723.6
3 (3.6158898, 0.54) (3.7451577, 0.34) 1,440,030.0
4 (3.6694297, 0.82) (3.6036054, 0.56) 1,490,201.9
5 (3.7033331, 0.43) (3.8601213, 0.80) 1,478,572.8
6 (3.5919501, 0.58) (3.7767205, 0.53) 1,472,217.3
7 (3.7562061, 0.76) (3.9686558, 0.74) 1,449,584.6
8 (3.7254665, 0.13) (3.942484, 0.03) 1,455,760.0
9 (3.7873567, 0.05) (3.6882554, 0.48) 1,443,565.6
10 (3.8638823, 0.83) (3.6808917, 0.04) 1,453,363.9

Table 3. The best key pairs among 10 encryption times for DEM A. |DSA| means the absolute SA difference compared to
the original one. SA is the absolute configurational entropy.

mth Round (r0, x0) (r0, y0) SA |DSA| Size (KB) CR

1 (3.6694297, 0.82) (3.6036054, 0.56) 267,144,464.1 134,060,085.9 1759 3.239
2 (3.9720618, 0.63) (3.8118391, 0.31) 300,969,521.6 100,235,028.4 1529 2.682
3 (3.9982823, 0.61) (3.6946723, 0.56) 329,305,875.0 71,898,675.0 1641 2.634
4 (3.6911029, 0.24) (3.7563811, 0.84) 359,120,512.9 42,084,037.1 1764 2.602
5 (3.6761227, 0.71) (3.9535386, 0.56) 393,026,254.4 8,178,295.6 1850 2.531
6 (3.6468789, 0.54) (3.7460818, 0.2) 427,592,398.5 26,387,848.5 1946 2.485
7 (3.9889696, 0.77) (3.7643806, 0.9) 464,150,752.2 62,946,202.2 2074 2.474
8 (3.7666660, 0.74) (3.7904553, 0.39) 511,483,888.6 110,279,338.6 2172 2.435
9 (3.9793047, 0.27) (3.7826054, 0.06) 550,795,418.0 149,590,868.0 2253 2.392
10 (3.8921841, 0.88) (3.8734612, 0.19) 604,312,707.5 203,108,157.5 2373 2.380
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(i) (j) 

Figure 7. Ten confused DEM A.
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Figure 8. Cont.
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(i) (j) 

Figure 8. Three-dimensional images of confused and diffused DEM A. The numbering sequence is
consistent with the encryption round.

 
(a) (b) 

Figure 9. Scatters plot of m rounds compared to the SA value of the encrypted DEM A and that of CR compared to the
SA values.

Regarding DEM B, Table 4 shows the |DSR| values of 10 confused ones illustrated in
Figure 10. We find the 10th one is the best in the confusion phase. Table 5 shows similar
results to DEM A. Obviously, when mode (i) is employed, the 10th one is the best since it
has the maximum SA value in comparison with the others shown in Figure 11. However,
the second one is selected when mode (ii) is activated. Figure 12a illustrates that the SA
values increase with the increase in encryption rounds. However, we find that the CR
values decrease in Figure 12b. These experimental results indicate that the configurational
entropy is useful to optimize the proposed encrypted algorithm.

Table 4. Comparisons of the relative configurational entropy of confused DEM B under different
keys in the first round.

No. (r0, x0) (r0, y0) |DSR|

1 (3.9127452, 0.56) (3.9430024, 0.44) 1,366,081.4
2 (3.7803406, 0.42) (3.7118742, 0.28) 1,371,377.5
3 (3.9446201, 0.10) (3.6720488, 0.25) 1,401,148.1
4 (3.8410564, 0.11) (3.7863010, 0.4) 1,201,102.3
5 (3.6867861, 0.75) (3.5896140, 0.09) 1,373,653.2
6 (3.5921033, 0.19) (3.9948832, 0.07) 1,381,518.3
7 (3.6462285, 0.68) (3.5859005, 0.23) 1,375,019.6
8 (3.7970835, 0.63) (3.8113753, 0.49) 1,377,774.8
9 (3.9591995, 0.05) (3.9107138, 0.70) 1,382,701.9
10 (3.9429938, 0.25) (3.7159570, 0.45) 1,388,199.0
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Table 5. The best key pairs among 10 encryption rounds for DEM B.

mth Round (r0, x0) (r0, y0) SA |DSA| Size (KB) CR

1 (3.9446201, 0.1) (3.6720488, 0.25) 285,857,730.3 22,952,181.0 1491 2.696
2 (3.6978437, 0.44) (3.9206044, 0.49) 320,402,657.6 11,592,746.3 1592 2.636
3 (3.6557073, 0.03) (3.8864578, 0.33) 350,085,107.0 41,275,195.7 1728 2.606
4 (3.9037505, 0.02) (3.7374396, 0.21) 383,939,349.7 75,129,438.4 1826 2.550
5 (3.7128502, 0.56) (3.7213353, 0.35) 413,822,209.8 105,012,298.5 1911 2.492
6 (3.8007097, 0.09) (3.9265191, 0.78) 452,157,235.0 143,347,323.7 2031 2.477
7 (3.5822104, 0.46) (3.7138054, 0.15) 494,673,201.5 185,863,290.2 2139 2.453
8 (3.6359581, 0.57) (3.9861503, 0.54) 532,925,355.6 224,115,444.3 2220 2.403
9 (3.9345383, 0.58) (3.7636595, 0.61) 590,387,815.5 281,577,904.2 2325 2.382
10 (3.8741445, 0.34) (3.900868, 0.25) 635,882,520.3 327,072,609.0 2446 2.377

  

 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Cont.
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(i) (j) 

Figure 10. Ten confused DEM B. Their histograms are the same.
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(c) (d) 

Figure 11. Cont.
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(e) (f) 

(g) (h) 

(i) (j) 

Figure 11. Three-dimensional images of encrypted DEM B. The numbering sequence is consistent
with the encryption round.

From the two aforementioned encryption examples, we find that configurational
entropy can help users choose the best-encrypted one according to specific requirements,
e.g., the size of encrypted data should be as small as possible, and the encrypted image
should be as complicated as possible. For instance, in consideration of transmission
bandwidth, users can choose the encryption with the minimum SA value. To enhance
the complexity of the encrypted image, users can set larger and larger m and n values if
possible.
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(a) (b) 

Figure 12. Scatter plots of m rounds compared to the SA value of the encrypted DEM B and that of CR compared to the
SA values.

4.2. Security Analysis

A good encryption algorithm should be capable of resisting all attacks. In this section,
we perform a security analysis on the proposed encryption algorithm.

1. Key space and sensitivity analysis

A good encryption approach should be sensitive to the secret keys. In this study, the
iteration times, (i.e., m and n) can be used as keys as well as the parameters r0 and x0 of a
logistic map. Moreover, the precision of parameters of the logistic map can be used as keys
as it can influence the performance of chaotic sequences. The key space is proportional to
the parameter precision: m (≥1) and n (≥1). If the precision is 10−20, the key space size
can be at least m × 1040. Hence, the key space is big enough to resist brute-force attacks.
Moreover, using keys (r0, x0) only to recover the original image is very difficult as the range
of pixel values is changed after using the proposed encryption algorithm. Figure 13 shows
two decrypted DEM A with wrong keys.

(a) (b) 

Figure 13. Three-dimensional images of decrypted DEM A: (a) with keys r0 = 3.7004182, x0 = 0.28,
r0 = 3.8994119, and y0 = 0.86; (b) with keys r0 = 3.8777651, x0 = 0.21, r0 = 3.7276262, and y0 = 0.27.

2. Classical attacks

Attackers have many methods of attack. Four classical types of attacks [7] are listed as
follows:
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• Selected plaintext: The opponent chooses a plaintext string and constructs the cipher-
text string when temporary access to the encryption machine is granted.

• Selected cipher text: The opponent obtains a ciphertext string and constructs the
corresponding plaintext string when temporary access to the encryption machine is
granted.

• Known plaintext: The opponent owes a plaintext string and its corresponding cipher-
text.

• Ciphertext only: The opponent owes a ciphertext string

The selected plaintext attack is considered the most powerful one. The proposed en-
cryption approach is highly sensitive to the initial parameters for a logistic map. Moreover,
at the fusion phase, the encryption data are related to not only the one in the confusion
phase but also the one predicted by the three-point prediction technique used at the diffu-
sion stage. Moreover, different encrypted numerical raster data are derived from various
former ones because m and n are variable. This means that the encrypted data are able to
resist the chosen plaintext attack, indicating that it can resist the remaining attacks.

4.3. Decryption Results with True Keys

To decrypt the encrypted DEMs A and B, the true keys tabulated in Tables 3 and 5 are
used. The decryption of an image is the inverse process of its encryption. With true keys,
the reconstructed DEMs A and B are illustrated in Figure 14.

Decryption 

Decryption 

The decrypted DEM A 

The decrypted DEM B 

Figure 14. The decryption results of DEMs A and B with the use of true keys.

5. Conclusions

DEM is a digital representation of terrain information. Information security for DEMs
is an important topic due to the openness of computer and network communication. By
using encryption, the information from DEMs can be well protected. In this study, an
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algorithm based on chaos system and linear prediction is proposed. To optimize the
proposed encryption algorithm, configurational entropy is employed. At the confusion
stage, the one with the maximum relative configurational entropy different from the
original is selected for the diffusion stage, where the one with the maximum absolute
configurational entropy is chosen for the sake of obtain the best encryption performance
and the one with the minimum absolute configurational entropy is chosen to reduce the
burden on transmission and storage. Two DEMs are taken as experimental data and
encrypted 10 times. From the experimental results and analysis, we draw the following
major conclusions

• The proposed encryption algorithm is valid, and its security is high.
• Configurational entropy is helpful for optimizing the encryption process.

On the other hand, three areas are recommended for future research. The first is
to investigate the effects of different predictors in the diffusion phase of an encryption
performance. The second is to explore multiscale DEM encryption with the help of absolute
configurational entropy. Finally, more advanced chaos systems and watermark signature
techniques [36–39] are expected to be employed as one part of this study to provide
excellent performance in only one encryption round.
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Featured Application: A generalized conceptual model for the characterization of a deep-marine

siliciclastic complex deposition with respect to the integrated submarine fan and lobe architec-

ture, which are essential for understanding the subseismic lithological heterogeneities in poten-

tial petroleum reservoirs of a deep marine environment.

Abstract: Deepwater lobes constitute a significant volume of submarine fans and are primarily
believed to exhibit a simple sheet geometry. However, recent studies interpret the geometries of these
deep-marine lobes as distinct with respect to the complexity of the facies and their distribution. Hence,
a conceptual model of deep-marine sediments is essential to discuss the deep-marine sediments
associated with the fan and lobe architecture. The present study highlights the facies heterogeneity
and distribution of various lobe elements at a multiscale level by considering a case study of the
West Crocker Formation of Sabah in northwest Borneo. The formation was logged on a bed-to-
bed scale from recently well-exposed sections, with a total vertical thickness of more than 300 m.
The lithological characteristics, bed geometry, sedimentary textures and structures of individual beds
were used to categorize the rock units into nine sedimentary lithofacies: five sandstone lithofacies
(S1–S5), one hybrid bed facies (H), two siltstone facies (Si1 and Si2) and one shale or mudstone facies
(M). These facies were grouped into four facies associations (FA1–FA4), which were interpreted
as lobe axis (FA1), lobe off-axis (FA2), lobe fringe (FA3) and distal fringe to interlobe (FA4) facies
associations. This study is applicable for the distribution of lobes and their subseismic, multiscale
complexities to characterize the potential of hydrocarbon intervals in deep-marine sand-shale system
around the globe.

Keywords: deep-marine lobe–fan multiscale analysis; sedimentary facies and facies association;
subseismic lithological complexities; northwest Borneo; sand–shale depositional system; West
Crocker Fan

1. Introduction

Deep-marine siliciclastic deposition is primarily influenced by several factors, includ-
ing the rate, type and source of sediments, sea level changes and tectonic settings [1–3].
These deposits are mainly present at the basin floor, constituting various submarine
fans, which are considered one of the major hydrocarbon producing systems around
the globe [4,5]. However, these fan deposits are highly complex due to variations in
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geometry, internal architecture and vertical and lateral distribution [6–8]. A range of pro-
cesses related to sediment transportation and accumulation control the overall depositional
characteristics of deep-marine sediments. Gravity-driven flows are one of the major sed-
iment transport processes in a submarine depositional environment [9,10]. These flows
principally encompass two endmembers: turbidity currents (frictional flow) and debris
flow (cohesive flow) [9,11,12]. Such sedimentary processes and gravity flows result in the
development of submarine fan and lobe systems. The classification of deep-marine fan
and lobe deposits, with respect to sedimentary processes, requires the spatial distribution,
thickness of individual units, sedimentary structures and variation in grain size [13,14].

Deep-marine lobes are considered a vital component of submarine fans [15–17], and
they are radial features with thin apexes but distribute laterally like a fan toward the
distal end [18,19]. However, the lobe deposition is more complex in terms of internal
heterogeneity and the distribution of facies [20–22]. Various subenvironments (the lobe
axis, off-axis, lobe fringe and distal lobe fringe) have been assigned to these lobe deposits
with respect to their thicknesses and facies associations [19,23]. The excessive input of
siliciclastic sediments from a shallow marine environment result in the significant internal
heterogeneity and complex distribution of sediments in deep-marine lobes [20–22,24]. Later,
because of substantial uplift and denudation, these gigantic sand deposits are exposed on
the surface [25]. The study area selected for this project is present in the Malaysian part of
Borneo, named Sabah, which contains extensive exposures of deep-marine fan deposits
stratigraphically termed as the West Crocker Formation. In the case of our study area, with
recent infrastructure development (Pan Borneo Highway construction in East Malaysia),
numerous new outcrop sections were exposed as fresh roadcuts, which paved the way for
the detailed analysis of facies heterogeneity and the distribution of various lobe elements
in the West Crocker submarine fan.

The recent literature suggests that the sedimentary facies of deep-marine deposition
are significantly diverse and complex when compared with the previous classic Bouma
model [26]. Late Paleogene deep-marine sediments of the West Crocker Formation along
the Pan Borneo Highway in West Sabah are mainly comprised of thin to thick and massive
bedded sandstones, with some siltstone and shale units [27]. Although the previous studies
describe Late Paleogene sediments in terms of several components of a submarine fan
based on individual outcrops [27–30], this study highlights the multiscale heterogeneity to
interpret the distribution of deep-marine lobe complex systems in the West Sabah Basin.

The study area included five studied locations of the Crocker fan, representing the
sand–shale complex in West Sabah and having a total vertical thickness of more than 300 m,
principally on the roadsides from Kota Kinabalu to Telipok/Tuaran (Figure 1). The key
objectives of the study included (1) analyzing the facies and facies distribution of several
outcrop sections of the West Crocker Formation; (2) interpreting the differences in stacking
patterns and architectural elements of the studied sections; and (3) evaluating the charac-
teristics of various components of the submarine lobe complex. These sedimentological
details were supportive to determine the depositional characteristics and distribution of
lobe elements in the deep marine environment. This research work is intended to address
the following research questions: What are the main facies heterogeneities and facies
associations in the Oligocene West Crocker Formation? How we can relate these facies and
facies associations into the multiscale lobe elements of the lobe axis, off-axis, lobe fringe
and distal lobe? How could these lobe elements be effective for interpreting the individual
lobe and lobe complexes for each outcrop section? The purpose of this study is to analyze
the lobe architecture and the development of thickening and coarsening upward patterns,
which are interpreted as a part of the individual lobe or lobe elements.
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Figure 1. Location of the study area. (a) Regional map of Borneo bounded by the South China Sea in the west and the
Celebes Sea and Sulu Sea to the east, with Sabah being in the northwest part of Borneo [31,32]. The study area is marked
with a black rectangle in Sabah. (b) Map of the outcrop locations (1. The Kampung Madpai section (KM), 2. Prima University
section (UP), 3. Jalan UMS section (JU), 4. Jalan UMS behind KFC section (JK), and 5. The Jalan Sulaman section (JS)), mainly
located along roadsides in the area from Kota Kinabalu to Telipok. (c) Generalized stratigraphy of West Sabah with the
Oligocene age of the West Crocker Formation, where late Eocene unconformity (LEU) is present at the base while the top of
the West Crocker Formation is marked by base Miocene unconformity (BMU) [28].

2. Geological Background

The northwest Sabah Basin is considered as one of the major Tertiary depositional
systems of northwest Borneo, having two distinct phases of sedimentation. The older

27



Appl. Sci. 2021, 11, 5513

deposition is termed as the Rajang Group, mainly comprised of the Paleocene to Eocene
Trusmadi and East Crocker formations. These deposits were later uplifted and eroded
to form late Eocene unconformity (LEU). After this LEU unconformity, the second phase
of deposition started from the late Eocene to early Miocene epochs (West Crocker and
Temburong formations) [28,29,33]. The present study focuses only on the second phase of
deep-marine Tertiary deposition (late Paleogene) in the northwest Sabah Basin.

2.1. Deep Marine Environment, Processes and Lobe Complex

Deep-marine siliciclastic deposits are vital for the petroleum industry, with respect
to hydrocarbon exploration, with a gradual increase in exploration for huge petroleum
discoveries in a large volume of deep-water sediments [34]. The development of these
deep-marine deposits is the result of various sedimentary processes, which resulted in
numerous architectural elements and sedimentary facies [35–38]. In the deep marine
environment, the components of a submarine fan are dependent on the distribution and
variation of density flows and flow processes. Low-density turbidity flows are common in
all subenvironments of deep-marine systems but are mostly abundant in the distal part of a
submarine fan [39]. High-density flow processes are commonly associated with the feeder
channels and distributary channels of a lobe in a submarine fan system. The variation
in the thickness of sand units is also responsible for a variety of facies associations and
depositional environments, such as the massive or thick-bedded sandstone with rare shale
unit being most likely associated with the proximal lobe deposition. The lateral variation
in the sedimentary succession of the individual lobe can be depicted from a decrease in the
thickness of sand units with respect to neighboring shales, which represents the distal part
of a submarine fan. The thickening up stacking patterns of lobes could be the result of the
progradation of individual lobes [15,39–41].

In order to understand the paleoenvironments and facies analysis, the classical Bouma
sequence has limited applications for deep-marine lobe systems [26,42]. Certain termi-
nologies emerged in the past decade to refine the classification of deep-marine sediments.
For example, the term “hybrid bed” is a product of the deceleration or transition of the
turbidity current to mixed turbidite events [11,43,44]. Flow transformation is characterized
by the erosion of underlying rock units within the feeder channels and the axial or proximal
part of the lobe. The transition of flow from turbulent to laminar results in the development
of heterogeneity in the form of hybrid beds, owing to the deceleration and expansion of
flow [11,44,45].

Recent investigations explained that the deep-marine sand sheet or fan deposits
included a feeder channel with several individual lobes [19,46]. The relative age of each
lobe may vary as the older lobe may be overlapped by the younger one (Figure 2), and
this overlapping of lobes may continue in a lobe complex [19,47]. The lobe complex can be
classified based on the relative position of the feeder channel. Those present close to the
feeder channel are termed as proximal lobes (Figure 2), the middle part of lobe complex
is called the medial lobes, while those farther away from the medial lobes are labeled as
distal lobes [24].
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Figure 2. Lobe terminology used for the discussion of facies heterogeneity and multiscale analysis of the lobe complex
system. (a) Classification of the lobe complex into proximal, medial, and distal parts of the individual lobes [24,46].
(b) Hierarchy of the lobe system, where the smallest unit is the bed or bed set while the largest unit is known as the lobe
complex set [47] or lobe complex system. (c) Characterization of the lobe, with a feeder channel into the lobe axis, off-axis,
fringe and distal fringe, each with representative logs [14,19,48].

Lobes are divided into four subenvironments—the lobe axis, lobe off-axis, lobe fringe
(both frontal and lateral) and distal lobe fringe—on the basis of the amount of sand, amal-
gamated surfaces and sedimentary facies [17,45,49,50]. The lobe axis is predominantly
composed of structureless, thick-to-massive bedded sandstone with amalgamation, indi-
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cating greater depositional rates with high energy turbidity currents [17,48]. The growth of
the lobe off-axis mainly results from the deposition of medium-to-thick bedded sandstone,
representing relatively low deposition rates and low energy turbidity deposits [17]. The de-
position of the lobe fringe is mainly characterized by thin-bedded sandstone (fine grained
and rippled) with the hybrid event beds, which are created due to the transformation
of flow [17,45,48]. However, the distal lobe fringe or interlobe only contain thin-bedded
siltstone and thick-to-massive shale units [14,48].

2.2. Paleogene and Neogene Geology of West Sabah

Borneo has a complex geological history of sedimentation and deformation, espe-
cially in the Tertiary period, when a large volume of sediments was transported from
southern Borneo, namely the Schwaner Mountains and the Tin Belt, resulting in the huge
thickness of deep-marine deposits [29,30,51]. The development of Borneo is associated
with tectonic subduction, along with the obduction of ophiolite rocks and the collision of
tectonic fragments with the continental part of the Sunda Plate, resulting in the closure of
paleobasins [31,52–54]. The Borneo Accretionary Orogen is present in the center of South
East Asia, which is bounded by the subduction of the Pacific and Indian plates with a
passive continental margin of the South China Sea. The Borneo Accretionary Orogen is
currently active, as the subduction of the Dangerous Grounds under the Borneo Block is
still continuous [55].

Northern Borneo comprises the Sabah Basin at the geological complex junction be-
tween Sunda, Celeb, Sulu and the South China Sea, where Tertiary sediments are ex-
posed due to the Sabah orogenic belt, which resulted in the closure of the South China
Sea [51,56–60]. The post-orogenic foreland Sabah Basin is mainly comprised of marine
sediments, where the depositional processes were disrupted by several tectonic events in
the form of unconformities. These unconformable surfaces are well-preserved in the Paleo-
gene and Neogene stratigraphic record of West Sabah [61]. The Top Crocker Unconformity
(TCU) or Base Miocene Unconformity (BMU) is the major unconformity separating the
Late Paleogene West Crocker Formation from the Neogene Setap Shale [62]. The northwest
Sabah Basin is mainly comprised of the Crocker fold and thrust belt (CFTB), which is also
termed as the Crocker Range [29,63,64]. The Crocker fold and thrust belt was developed
due to the collision of continental plates and largely consists of siliciclastic sediments of the
deep marine environment [52].

2.3. West Crocker Formation

The West Crocker Formation crops out in the form of several vertical to subvertical
rock sections around Kota Kinabalu and generally in the West Sabah [61,65]. The late
Paleogene Crocker sediments were deposited by erosion of the early Paleogene rocks. The
thickness of the late Paleogene sediments varies from at least 1000 m to more than 2000 m,
and the lithologies include sandstone, shales and siltstones [30,33,66]. Late Paleogene
sediments mainly consist of sand-dominated debris flow deposits and heterolith siltstone
mudstones, having all components of the inner, middle and outer fan environments [27],
while at a few studied sections, the formation is interpreted to be only a middle-to-outer
fan system [67]. These sediments are mainly sand-rich facies deposited by high density
turbidity currents; however, they also contain low-density turbidites and mass-transport
deposits like slumps and contorted layers [68,69].

High-density turbidity flows result in texturally immature, poorly sorted and an-
gular fragments in siliciclastic rocks [30,70–72]. Sedimentary structures like flute marks,
cross bedding, convolution, parallel lamination, amalgamation and dish structures have
been reported [27]. Water escape dish structures and convolution are the result of rapid
deposition [73] and are termed as soft sediment deformation structures (SSDSs). These
deformation structures are inferred to be seismites, which are representative of active
tectonic settings [74]. The early Paleogene Rajang Group was eroded and resedimented to
form the late Paleogene rocks of the West Crocker Formation [72].
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3. Materials and Methods

3.1. Geological Fieldwork

The dataset included sedimentological logs and lithological details from outcrops.
Standard field geological operations were followed to delineate the detailed sedimentary
evaluation of the West Crocker Formation in West Sabah. The best-exposed sections
were selected for the detailed sedimentological description of rock units with the help of
available geological maps, google satellite imagery as well as several reconnaissance field
visits. Measurements of the vertical thicknesses of the beds, identification of numerous
sedimentary structures and grain size variations and descriptions of the geometries of
rock units were noted for understanding complexities. These details were quite helpful to
discuss the facies heterogeneity and lobe systems of deep-marine multiscale sedimentary
successions. The methodology was used for classifying the deep-marine sediments into
sedimentary lithofacies based on variations in bed thickness, grain size and types of
sedimentary features. These sedimentary facies were grouped into facies associations,
which were interpreted to be part of the submarine lobe environment.

3.2. Field Sedimentary Logging and Facies Analysis

The dataset comprised of detailed sedimentological characterization of the outcrops,
including (1) the Kampung Madpai (KM) section, (2) the Jalan Universiti Prima (UP) section,
(3) the Jalan UMS (JU) roadside, (4) the Jalan UMS behind KFC (JK) section and (5) the Jalan
Sulaman (JS) section around Kota Kinabalu (Figure 1). These logs contained the particulars
of individual rock units, including the bed thickness, lithological character, sedimentary
structures and types of bed contacts. These details were investigated to analyze, evaluate
and interpret the complexity of the deep-marine exposed sections. The field sedimentary
details were applied to interpret the facies analysis and facies association, which were
correlated with the submarine lobe architecture (e.g., lobe element, lobe complex and
composite lobe system).

3.3. Sandstone Thickness Analysis and Trends

The pattern of thickness of rock units varied considerably, like how thin-bedded sand
units were related to distinct elements of lobe fringes while thick-bedded sands were
linked to the proximal part of the lobe. These thin or thick beds were indicative of the
flow conditions, such as interbedded, thin-bedded sandstones and siltstone representing
low-density turbidity flows while thick-bedded or massive sandstones indicating high-
density flow conditions. These thick-bedded sand units were quite established by feeder
channels in the axial or off-axial parts of the lobes [75,76]. However, lobe progradation
could generally be linked with thickening up cycles, or it could be the onset of a new
individual lobe. The medial and distal frontal fringe lobe were associated with hybrid units
and were the result of a downward dip of high-density turbidites or low-density flows,
representing the lower part of the prograding lobe succession [77].

Deepwater lobes are explained as simple radial deposits which are fine and thin in
morphology at the initiation point or feeder channel, but they are more complex with
respect to their geometry and facies characterization. These lobes are further classified
by the relative thickness of the sand and shale beds. The lobe complex is the larger entity
of lobe deposition that is primarily comprised of a feeder channel and individual lobes,
having a variety of morphologies and geometric distributions [19,23,46].

4. Results and Interpretations

4.1. Stratigraphic Distribution of Outcrop Sections

Geological field logs explained the stratigraphic distribution of each outcrop in the
study area. Recently exposed road cuts and fresh exposures were selected to study the
West Crocker Formation. In general, the stratigraphy was sand-dominated sections with
multimeter sand beds present throughout the outcrops. It is pertinent to mention here
the Kampung Madpai outcrop (KM) contained mainly massive sand units with thin shale
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laminae, and massive shale beds were completely absent, representing the inner part of the
submarine fan. The basal part of the Prima University section (UP) contained both shale
and sand beds, and the middle part of the section contained massive sandstone intervals
while the upper part of the outcrop contained thick-to-massive sandstone (Figure 3) with
little influx of shale, representing the middle part of the submarine fan.

Figure 3. Stratigraphic distribution of the selected exposed outcrops that represent the multiscale
sand–shale complex system. These lithological heterogeneities are interpreted as various components
of the submarine fan–lobe architecture.

The lower part of the Jalan UMS road section (JU) comprised thick-bedded to mas-
sive sandstone beds, while the upper part of the section predominantly consisted of only
massive multimeter sandstone beds, representing a high influx of sand, which is character-
istic of a proximal fan environment. These massive beds were also common in the lower
part of the Jalan UMS behind KFC section (JK), and the upper part was characterized by
massive sandstone and shale intervals. The Jalan Sulaman section (JS) is a classic example
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of massive sandstone beds with alternate massive shale representing the cyclicity in the
lobe–fan deposition.

4.2. Facies Analysis and Depositional Environment

A facies is defined as a rock unit comprising one or more beds which has specific
characteristics, such as composition, bed thickness or texture. These facies are distinctive
rock units which have been developed by a geological process and are indicative of certain
conditions of sedimentation [42]. The clastic sedimentary rock units present in the study
area were classified based on sedimentary structures and lithology, in which the sandstones
are denoted with sandstone lithofacies (S), hybrid event beds (H), siltstone lithofacies (Si)
and mudstone or shale lithofacies (M). These lithofacies were numbered according to each
type of sedimentary facies.

4.2.1. S1 Facies: Graded Coarse-to-Fine-Grained Sandstone

The physical characteristics of this facies included thick-to-massive bedded sand
units, mainly poorly sorted, some beds have normal grading and fine-to-coarse-grained
sandstone units. The thicknesses of individual sand units ranged from 30 cm to more than
100 cm. Many sand units in this facies had thicknesses more than 2 m, which were often
amalgamated. Based on amalgamation structures, the facies were interpreted as a result
of multiple depositional events and a high-energy environment [11]. Moreover, a high
vertical thickness and multimeter individual sand units were the result of a high sediment
influx in a basin, where the lower part was characterized by high-density flow deposition,
Ta division [78] or F5 and F8 facies [79].

4.2.2. S2 Facies: Ungraded Coarse Sandstone (Structureless)

The sandstone units were moderately sorted, having coarse to very coarse grain sizes
(Figure 3). The thicknesses of the sand beds ranged from thick-bedded to massive (more
than 30 cm up to 5 m). Most of the units had no grading and limited variation in grain
size, which were termed as structureless and moderately sorted. Sand beds are often
amalgamated showing tabular geometry and mainly lack any sedimentary structures. The
facies was deposited by high-density turbidity currents, containing a traction carpet and
classified as the S2 type [18,80], the lower part of Ta division by [78], and the flow is termed
as dense sandy and gravely flow [79].

4.2.3. S3 Facies: Parallel Laminated Fine-to-Medium-Grained Sandstone

The thicknesses of sand units fluctuated from thin- to medium-bedded, while the grain
size ranged from fine- to medium-grained sand. These beds exhibited parallel laminations
and, in a few cases, laminated muddy sandstone were present. The parallel laminations
(Tb) were often present above the massive structureless (Ta) units, indicating high en-
ergy conditions. The parallel stratification (Figure 4) indicated the near-bed suspension
generated by progressive turbulent flow, where the rate of deceleration was relatively
sluggish [81]. The facies was classified as the S3 type of sediment [80], with the Tb after
Bouma [78] and F7 and F9 facies [79] representing high density turbidity currents [82,83].

4.2.4. S4 Facies: Ripple-Laminated Sandstone

The facies included fine- to very fine-grained sandstone showing ripple cross-lamination.
These units were thin- to thick-bedded sands. The height of the ripple lamination may have
varied from 4 to 10 cm (Figure 4C), and length ranged from 10 cm to 32 cm. The deposited
rock unit indicated the lower flow regime and was marked as Tc [78] and F9 facies by [79].
These cross laminations were interpreted to be the result of a change in flow regime from
higher energy to transitional or a low energy environment and loss of flow confinement.
These facies are more frequently found in lobe off-axis settings [84].
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Figure 4. Sedimentary facies. (a) Amalgamated massive sand with floating mud clasts in the Jalan
UMS road section, interpreted to be S1 lithofacies. (b) Massive, coarse-grained sandstone at the
Jalan UMS road section, which belongs to the S2 facies. (c) Parallel lamination S3 facies and cross-
lamination S4 facies in the Jalan UMS road section. (d) Parallel laminated S4 facies at the Jalan UMS
road section. (e) Flame structure S5 facies. (f) Laminated siltstone facies Si1 at the Jalan UMS KFC
section. (g) Laminated muddy siltstone Si2 facies at the Jalan UMS KFC section. (h) Massive dark
shale or mudstone M facies at the University of Prima Condo road section.

4.2.5. S5 Facies: Medium- to Fine-Grained Soft Sediment Deformation Units

Convoluted lamination due to the deformation of unlithified sand units [74] is a typical
characteristic of this sedimentary succession (Figure 5). The deformation of sandstone
units varied from gentle to moderately strong, which indicates variation in the degree
of deformation. Flame structures are also present in a few units, representing the facies
at the hydraulic jump interprets to be a part of the proximal lobe [39]. Dewatering of
unlithified clastic units due to the upward movement of fluids and some particles which
had deformed the overlying strata can also be present [85]. The phenomenon of the
generation of a deformational structure (Figure 5) is related with the fluidization process
that develops the instabilities in the gravity flows, or it may also be related to seismic
activity [74].

4.2.6. H Facies: Hybrid Event Beds

Hybrid beds are characterized by intermediate flow behavior comprised of two ar-
rangements of lower mud-deficient sand overlain by a mud-rich sand interval, and various
terms were assigned like slurry flows [18], transitional flow deposit [9], linked debrite [86],
hybrid event [87] and matrix-rich sand [88]. The hybrid beds are often termed as bi- or
tripartite beds, depending on the characteristics of the underlying and overlying units, and
vary significantly from the downslope of the channelized to the unconfined area. Lateral
lobe fringes are predominantly low-density turbidites and have hybrid events [23,45].
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Figure 5. Sedimentary structures. (a) Tool marks in the Kampung Madpai section. (b) Load casts
in the Kampung Madpai section. (c) Flute casts at the base of the sandstone in the Jalan UMS KFC
outcrop. (d) Massive coarse-grained sandstone with dewatering in the Jalan UMS KFC section.
(e) Ripple and parallel laminations in the Jalan UMS KFC section. (f) Flame structure in the Jalan
Sulaman outcrop. (g) Load structure in the Jalan Sulaman section. (h) Convolute lamination in the
Jalan Sulaman outcrop.

A great variety of lithofacies can be prevalent within the hybrid units and are also
variable within the individual beds over a scale of centimeters to meters. These hybrid beds
contain both the characteristics of turbidite and debrite within the same depositional event.
The scales of thickness of hybrid beds vary considerably from tens of centimeters to more
than a meter, which is associated with the influx of sediments deposited within the single
event of hybrid flow. The hybrid beds in the study area (Universiti Prima road section)
consisted of only three divisions (H1, H3 and H5) of hybrid event deposition [43]. The basal
structureless graded sandstone (H1), overlain by a banded sand unit (H2), was composed
of both sand and shale (irregular) bands. The third division was more chaotic (H3), having
patches of sand with more mud, with the fourth subdivision having a laminated sand mud
unit (H4) capped by a clayey shale unit (H5).

4.2.7. Si1 Facies: Laminated Siltstone

The facies represent the siltstone units, which are laminated siltstone and range
in thickness from 6 to 17 cm. The major lithology was siltstone in the form of thin to
laminated units with interbeds of shale or mudstone. Fine sand units and silt laminations
are common in this facies, alternating with mudstone or shale lamination. The traction
fallout and low energy depositional environment, or the diluted turbidity currents in the
hemipelagic settings [11], are the possible explanations of these heterolithic facies, which
were deposited from a suspension during a lower flow regime. This facies is equivalent to
the Bouma Td division, representing a low-density flow deposit (Table 1).
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Table 1. Summary of sedimentary facies, with their descriptions, outcrop locations and interpretations.

No. Facies Description Sedimentary Log Location Interpretation

1 S1 facies
(sandstone)

Thick to massive
sandstone

Normal grading
Amalgamated

Basal and upper part of
the Jalan UMS
road section

Rapid
accumulation
High-density

currents
Ta Bouma

2 S2 facies
(sandstone)

Structureless sand-
stoneUngraded
Amalgamated
Coarse- to very
coarse-grained

Basal part of the
Kampung Madpai

section
Middle part of the Jalan

UMS road section

Lower part of the
Ta Bouma facies

Sandy and gravely
flow [79]

3 S3 facies
(sandstone)

Thin- to
medium-bedded

Parallel-laminated
Fine- to

medium-grained

Lower part of the Jalan
UMS road section

Middle part of the Prima
University section

Tb Bouma facies
F7 and F9
facies [79]

4 S4 facies
(sandstone)

Ripple lamination
Fine- to very
fine-grained

Thin- to
thick-bedded

Basal part of the Jalan
UMS road section

Basal part of the Prima
University section

Tc Bouma facies
F9 Mutti facies

Lower flow regime

5 S5 Facies
(sandstone)

Soft sediment
deformation

Thickly to
massively bedded

Medium- to
coarse-grained

Lower part of the
Kampung Madpai

section
Middle part of the Jalan

UMS section

Proximal part of
the lobe

Tc Bouma facies

6 H facies
(hybrid event)

Bipartite or
tripartite beds

Rich in mud and
broken clasts

Lower part of the Prima
University section

Transitional flow
Intermediate
flow behavior

7 Si1 facies
(siltstone)

Siltstone units
Very thin to thin

units
Rare interbeds of

shale or mudstone

Lower and upper parts
of the Jalan UMS

KFC section

Suspension fallout
Bouma Td facies

Low density

8 Si2 facies
(siltstone)

Higher mud
content in siltstone

Laminations are
discontinuous

Upper part of the Jalan
UMS KFC section

Lower part of the Prima
University section

Dilute sediment
gravity flow

Td–Te
Bouma facies

9
M facies

(mudstone or
shale)

Mainly shale
Thickly to

massively bedded
Lacking internal

structures

Upper part of the Jalan
UMS KFC section

Basal part of the Prima
University section

Te Bouma facies
Mud turbidites

Final deposition of
sediment

gravity flow

4.2.8. Si2 Facies: Laminated Muddy Siltstone

Laminated to medium-bedded siltstone beds with shale or mudstone layers were
included in this sedimentary facies. The amount of mud or argillaceous material was
relatively higher than the siltstone units. The siltstone lamination could be discontinuous
due to more shale material, where these lithological characteristics are associated with lobe
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fringes or distal lobe settings [19]. Numerous individual lobes are usually separated by
muddy siltstone intervals. Suspension fallout occurs due to a low energy of flow from
a relatively dilute sediment gravity flow. It is also interpreted as change in swiftness of
flow and a lower sediment influx. The shale input increases in this type of sedimentary
facies, which indicates the energy conditions equivalent to Bouma Td–Te facies. Argilla-
ceous sediments present in the turbidity currents were finally settling down in the lower
flow regime.

4.2.9. Mudstone (M) or Massive Shale Facies

The massive shale or mudstone facies predominantly contained thick-bedded to
massive shale units although, it may have held a little influx of silt laminae. However, the
thickness of shale or mud was considerably larger than the silt laminae, which indicates the
strong influx of shale or mud in the sedimentary basin. These mudstone facies represent
the lateral lobe settings [19] that separate the individual lobe or lobe complex. A massive
mudstone interval could also be evident from the most distal part of the lobe environment.
The term “interlobe” is also used for massive shale intervals to differentiate between
deposition of the multiple lobes in a submarine environment [22,24,41]. The mudstone
or shale primarily lacked any internal structures. The facies was equivalent to Bouma Te
facies or T6 or T7 Stow’s classification [89,90] and was termed as mud turbidites. These
units represent the final deposition from the phase of sediment gravity flow [91].

4.3. Facies Associations and Lobe Complexity

In this section, the outcrop sections are discussed with respect to various thickening
or thinning cycles based on the range of thickness of the individual sand units. These
cycles or trends are quite useful to relate the outcrop sections with lobe elements and lobe
progradation, aggradation or cessation. The dynamics of the lobe in a deep marine system
were quite evident from the thickening or thinning trends. Additionally, the lithological
units were categorized into lobe elements, which were grouped into lobes and further
into lobe complexes. Several individual sedimentary facies were identified for any rock
formations, which were later grouped and categorized into facies associations [42]. Several
facies associations were identified based on the facies analysis of lithological beds, including
sandstone, siltstones and shales or mudstones. These facies associations are essentially
connected with various components of submarine lobe deposits [17] equivalent to the
proximal lobe or axial lobe (FA1), lobe off-axis (FA2), lobe fringe (FA3) and distal lobe
fringe or interlobe (FA4).

4.3.1. Facies Association 1 (FA1): Lobe Axis

Lobe axis facies association is characterized by massive sandstone units, generally
having thicknesses of more than 100 cm. The thickness of an individual sand unit may go
up to more than 800 cm. These units are often structureless as there is no grading and only
a minor change in grain size within the sand beds. Multimeter massive sandstone with an
amalgamation structure is the characteristic of this facies. S2 and S5 facies and occasionally
S1 facies are included in this facies association. The association of this facies is interpreted
as unconfined lobe settings with lobe axis and lobe off-axis alternate beds that are stacked
together [92,93], having amalgamated bodies (Figure 6) representing the proximal part of
the lobe system. The facies is associated with high-density turbidity currents, where the
huge amount of sand influx with rare or no argillaceous content is indicative of a lobe axis
depositional environment.
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Figure 6. Lobe architecture and facies association of lobe settings. Thickening and thinning cycles are also marked on the
bed scale for better understating of deep-marine lobe complex systems. L1 is the old event of lobe deposition, while L3 is
the younger event partially overlapping the older lobe L1 and L2. Each lobe is further classified into axis (yellow color),
off-axis (brown), fringe (brownish gray) and distal fringe (gray) from sand to shale or mud alterations [48].

4.3.2. Facies Association 2 (FA2): Lobe Off-Axis

The facies denote mainly sandstone units, which are medium- to thick-bedded and
massive and where the average thickness was about 42.5 cm, while most thickness values
ranged from 10 cm to 250 cm. There was a significant decrease in the sand-to-mud ratio and
a lesser degree of amalgamation in the sand units. Hybrid event beds having greater sand
bed thicknesses were also contained in this lobe off-axis [11] facies association. Sedimentary
features like load casts and tool marks are common in this facies association. Some thick
sand units are characterized by being massive or structureless, which is mostly associated
with S1, S2 and S3 facies as well as with very rare S4 facies. Soft sediment deformation
S5 is relatively common in this facies association. Amalgamated sand units also exist
within this facies association. The abundant S3, S4 and Si1 facies represent the lobe off-axis
deposition [50].

4.3.3. Facies Association 3 (FA3): Lobe Fringe

The lobe fringe is primarily characterized by muddy units, which comprise most of the
percentage of sedimentary rocks. The main feature is rhythmic sandstone and mudstone
units, which ranges in thickness from a few centimeters to tens of centimeters. The average
thickness value was about 10.8 cm, where the thicknesses of the bed units ranged from
1 to 18 cm. The facies association included the S3, S4, Si1, Si2 and M facies. S1 facies are
quite rare in this facies association. Furthermore, hybrid event beds (H) with a lower sand
thickness are associated with lobe fringe deposits [49]. The rock units have sharp contact
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and are relatively continuous laterally. A complete Bouma sequence (from Ta to Te) could
be present, but typically, the basal massive sequence (Ta) is usually absent in the lobe fringe
settings [26,94]. Thin-bedded sand and shale interbeds with a high fraction of mud and
good lateral continuity are interpreted to be a part of lobe fringe deposits.

4.3.4. Facies Association 4 (FA4): Distal Lobe or Interlobe

All types of clastic units, like sandstones (thin-bedded fine to very fine-grained),
siltstones and medium- to thick-bedded mudstones or shales were present in this facies
association (Figure 7). However, mudstone or shale units mainly comprised this association.
The thicknesses of most of sandstone units were less than 10 cm, and the average value
of the sand bed thickness was only 4.1 cm. The thickness of the shale units (M facies)
was significantly higher (more than 230 cm) compared with other sandstone and siltstone
facies. Owing to thin-bedded fine to very fine-grained deep-marine units having quite
good lateral thicknesses and high fractions of thick mudstone or shale units, they were
interpreted to be interlobe and lobe distal fringe facies associations. The slow hemipelagic
to pelagic deposition was the result of low-density turbidity currents.

Figure 7. Facies associations. (a) Medium- to thick-bedded sandstone lobe fringe FA3 facies as-
sociation in the Kampung Madpai section. (b) Medium- to thin-bedded sandstone of distal lobe
fringe associated with the FA4 facies association in the Kampung Madpai outcrop. (c) Thin-bedded
sandstone in the Jalan UMS road section, interpreted to be the distal lobe fringe to interlobe facies
association FA4. (d) Mudstone facies interbedded with a thin sand unit, representative of distal lobe
to interlobe FA4 settings in the Prima University Condo road outcrop. (e) Medium- to thick-bedded
sandstone overlain by a massive sand unit of lobe axis FA2 in the Jalan UMS KFC outcrop. (f) Massive
unit with amalgamation in the Jalan UMS road section, interpreted to be an FA1 facies association.
(g) Massive sand with mudclasts and amalgamation in the Jalan UMS road section, belonging to the
FA1 facies association. (h) Hybrid sand body in the Prima University road section, interpreted to be a
lobe off-axis FA2 association.
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5. Discussion

5.1. Thickening and Thinning Multiscale Trends

Deep-marine sedimentary successions are characterized by multiscale thinning or
thickening upward successions in exposed sections. These patterns were sometimes quite
evident as we moved stratigraphically in the younging direction. Generally, lobe deposition
is characterized by thickening or coarsening upward cycles, whereas channel setting is
mostly linked with a thinning and fining upward sequence [17,95]. However, lobe progra-
dation is considered a thickening (Figure 8) or coarsening sequence that has variations in
the rate of sediment influx, resulting in a variety of sedimentary facies and their associa-
tions [14], while an individual thinning sequence may also be developed due to starvation
of the deep-marine lobe system toward the lobe fringe or lateral lobes [39,50]. These thick-
ening and thinning sand units represent unconfined lobe settings, and these thickening
sandstone cycles are related to lobe axis and lobe off-axis facies associations [11,15,88,96].

Figure 8. Thinning and thickening cycles in the Jalan UMS road section, where the vertical thicknesses
of the cyclic patterns ranged only from 1.2 to 2.7 m, which is indicative of a bed set or a lobe element.
(a) Thinning pattern interpreted to be a lobe element. (b) Thinning and then thickening sequence,
where each pattern represents the geometry of an individual lobe element. (c) Thinning trend with a
vertical thickness of about 2.6 m in the set of beds.

A thinning upward sequence was observed in the Jalan UMS road section (Figure 8)
because of lobe abandonment, while at one location, a thinning and then thickening
cycle was observed in the outcrop, representing the cessation of a relatively older lobe
and subsequently followed by the development of a newer, younger lobe [15,97]. Lobe
thickness variation was significant in the Jalan UMS behind KFC section, where three
cycles were observed. First was the thinning cycle, where the thicknesses of the individual
sand units gradually decreased while the shale content increased as the stratigraphic order
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became younger (Figure 9). Another event of thinning and then thickening followed by
two cycles of thickening was present, which were interpreted to be progradational lobe
geometry. A thinning upward cycle was also marked in the Jalan Sulaman outcrop that
was distinctive of lobe desertion.

Figure 9. Thinning and thickening patterns (a) marked by three cycles—two thinning and one
thickening—each of about a 2 m vertical thickness in the Jalan UMS behind KFC outcrop. (b) Massive
sand unit overlain by two thickening trends in the Jalan UMS behind KFC outcrop. (c) One cycle of
thinning with a vertical thickness of only 1 m in the Jalan Sulaman outcrop.

5.2. Distribution of the Lobe Complex

A submarine lobe system is a vital constituent of deep-marine fans. These lobes are
characterized by geometries which are quite useful for interpreting the geological processes
related to fan deposition [15]. Tectonically active regions are generally characterized
by coarse sand units, representing the development of deep-marine fans having less
than 10 km radial exposure on relatively higher slope angles, where a fan lobe system is
frequently surrounded by shale cover [39].

These submarine fans are composed of numerous lobe complexes. The lobe architec-
ture consists of a composite hierarchy from a smaller unit of a lobe element to a larger unit,
which is termed as a composite lobe system or lobe complex set [22,24]. The lobe element
is essentially comprised of one or more beds, with the thickness extending from a few
decimeters to more than a meter [39]. The individual lithologies or beds collectively form
an element of a lobe, while the group of lobe elements constitutes an individual lobe [15,24].
These lobes are characterized by interbedded sandstone and shale, with a collective range
in size of several meters in thickness, combined to form a lobe complex (Figure 10) or also
termed as stacked composite lobes [15,24]. Lobe components or sand-rich lobe complexes
are separated from each other by a thick to massive hemipelagic to pelagic shale unit [22].
It is pertinent to mention here that each lobe component consists of one or more sandstone
or shale beds, which enabled us to characterize the deep-marine deposits at a meter scale
level. These high-resolution lithological observations could not be achieved by using
seismic data. Hence, the study of lobe architecture at a lobe element scale caters to the idea
of subseismic reservoir heterogeneity in submarine lobe–fan systems.
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Figure 10. The distribution of facies, facies associations and thickening and thinning cycles in the exposed sections from
Kota Kinabalu to Tuaran in northwest Sabah.

The results presented in this study reveal that there are multiple feeder channels
in West Sabah’s deposition, where the number of feeder channels and lobe complexes
increased toward northwest Sabah. Multiple feeder channels resulted in three to four
lobe complexes (LC), each of which was classified into individual lobes (L) and further
into lobe elements (LE) (Figure 11). The thick to massive shale separated the individual
lobe complexes.

Figure 11. Distribution of lobe elements, individual lobes and lobe complexes in the studied outcrop sections [17,24].
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5.3. Submarine Fan–Lobe System

The present study highlights that all the exposed sections were interpreted to be
proximal to medial fan depositions, which were further classified into a lobe hierarchy.
It incorporates the concept of a submarine fan and lobe system with respect to the multiscale
analysis of sand–shale complexes in a deep marine environment. The individual lithological
bed or bed set at a centimeter-to-meter scale is termed as a lobe element, which is the
basic building block for the whole lobe–fan architecture. These lobe elements combine to
form multimeter lobes, which are the cyclic or repetitive structures in a lobe complex or
in a composite lobe system, which are tens of meters in thickness, while the composite
lobes eventually constitute a smaller portion of the submarine fan at a scale of hundreds of
meters. A complete fan system is present at a km scale over a large depositional area in a
sedimentary basin.

6. Conclusions

The results highlight the facies analysis and facies association linked with the architec-
tural elements of lobes in the submarine fan deposits of West Sabah. Based on these results,
the following conclusions are drawn:

1. Although the West Crocker Formation is mainly considered to have sand-rich de-
posits (Crocker sands), the formation also contains massive shale and siltstone units.
All types of sedimentary facies related to sandstone, siltstone and mudstone and
could be termed as a sand–shale system. This variety of sediments shows more
heterogeneity in lithological characteristics than previously thought;

2. The sedimentary facies were grouped into four facies associations, which were linked
to the lobe architecture of deep-marine systems. These facies associations are dis-
cussed as components of individual lobes, namely the lobe axis, lobe off-axis, lobe
fringe and distal fringe;

3. The thicknesses of individual sandstone units are helpful for interpreting several
thickening and thinning multiscale sequences, which are characteristics of lobe progra-
dation and lobe abandonment. These cycles of thickness variations represent the
multiple tabular sand bodies of a lobe complex.

4. The deep-marine lobe deposits can be classified into beds or bed sets, which constitute
the lobe elements. These lobe elements are grouped into individual lobes, which
are broadly categorized into lobe complexes. These lobe element to lobe complex
nomenclature can be identified on all exposed sections of West Sabah, where the indi-
vidual thicknesses of lobe elements highly vary from as small as 1–3 m up to a large
thickness of 8–10 m in the studied sections having multiscale sand-shale complex.

5. The West Crocker Formation is interpreted as a lobe complex set in which multiple
lobe complexes are present, with their individual lobes and lobe elements based on
bed-to-bed sedimentary analysis and supporting the multiscale modeling of deep
ocean sediments.

6. The lobe complex sets are more developed in northwest Sabah, while West Sabah has
a lower number of lobe complexes. This distribution of lobe complexes also verifies
that the paleocurrent direction is mainly from the south to the north, where the feeder
channels form multiple lobe complexes in northwest Sabah.

7. The detailed facies and lobe architecture depict reservoir heterogeneities in deep-
marine siliciclastic rocks, which are usually interpreted as single homogeneous sand
units by seismic data. Hence, the present study highlights the subseismic lithological
complexities in deep-marine depositional settings.

8. The alternate lobe off-axis and lobe axis distributions, interpreted as unconfined lobe
settings, could be applicable for several unconfined deep-marine sedimentary succes-
sions around the globe which are potential sites of exploration of natural resources.
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Abstract: Accurate simulation of snow cover process is of great significance to the study of climate
change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and
ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow
water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface
model, and the simulation results were compared with the gridded dataset of snow depth at Chinese
meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD),
and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we
compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site.
The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation
process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow
surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation
results was much higher than the other three schemes; when STC uses a fully implicit scheme, the
error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit
scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim
is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high
snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results
of model simulation, it is concluded that the snow depth and snow water equivalent in the north
of the basin are higher than those in the south. The average snow depth, snow water equivalent,
snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly
during the study period, but the end time of snow melting was significantly advanced.

Keywords: snow depth; snow water equivalent; ERA-Interim; CMFD; Noah-MP model; microwave
remote sensing; Irtysh River Basin

1. Introduction

Snow plays an important role in the climatic system due to its high reflectivity, low
thermal conductivity, and high melting latent heat, which directly affect the surface energy
balance, and has obvious feedback, regulation, and indication effects on regional and
global climate change [1–4]. It is also an important part of the global water cycle and an
important source of fresh water [5]. In addition, the losses caused by floods, avalanches,
and other disasters caused by snowmelt to industrial and agricultural production as well as
the loss of people’s lives and property cannot be ignored. Therefore, accurate snow cover
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simulation has important significance for water resources development, climate change,
and geological disaster prediction.

Modeling is an important means to study snow cover change [6]. Snow models can be
generally divided into two categories: one is an empirical model based on simple statistical
methods; the other is physical models based on the energy and mass balance processes [7–9].
The advantage of the empirical model is that it requires fewer input parameters. Therefore,
it has been widely used to simulate snow and glacier melting in Northern Europe, the Alps,
the Greenland ice sheet, the Tibetan Plateau, and other regions [10,11]. Some hydrological
models, such as Snowmelt Runoff Model (SRM) [12,13] and the HBV model [14,15], also
use an empirical model to describe the melting process of ice, snow and glacier. These
snowmelt runoff simulations also achieved good results [16–19]. However, the empirical
model simulation accuracy decreases with the improvement in time resolution, and it is
impossible to describe the spatial variation of snow surface ablation [20]. Compared with
the empirical model, the snow model based on energy balance can better reflect the physical
process, the exchange of energy and water between snow cover and atmosphere, the snow
melt infiltration, the dynamic change in snow surface albedo, the compaction of snow cover,
and other processes [21–23]. Therefore, physical models have a wide range of applications.
There are many snowmelt models based on energy balance, such as the Utah Energy
Balance model (UEB) [24] and the SNOWPACK model [25,26]. Some hydrological models,
such as VIC [27] and WEB-DHM [28], also use physical models to describe snowmelt
runoff. Land surface models, such as CLM [29], Noah-MP [30,31] and SURFEX [32], have
continuously evolved according to the requirements of atmospheric and hydrological
disciplines and can also effectively simulate snow processes. Wrzesien et al. [33] combined
the Weather Research and Forecasting (WRF) regional climate model with the Noah-MP
model to simulate the snow cover fraction (SCF) and snow water equivalent (SWE) over
the central Sierra Nevada Mountains and demonstrated that the models can be an efficient
approach to simulate snow processes.

Irtysh River is the second largest river in Xinjiang, and it is also an international river.
It flows through China, the Republic of Mongolia, Kazakhstan, and Russia, which plays
an important role in the social and economic development of these countries [23]. Snow
has an important contribution to the hydrological process in the basin. However, due to
the lack of systematic observation, there is little research on snow cover in the basin. Wu
et al. [34] used a UEB model to simulate the snowmelt process at a site in the upper reaches
of Irtysh River Basin. Wu et al. [35] coupled the WRF model with the temperature-index
model to simulate snow melt in the Kayiertesi River Basin, which is in the upper reaches
of the Irtysh River Basin. Zhang et al. [36] used a stable isotope technique to analyze the
influence of snow melt water on regional hydrological processes in the upper reaches of
the Irtysh River Basin. Wu et al. [37] relied on the Geomorphology-Based Ecohydrological
Model (GBEHM) to simulate snowmelt processes of a river basin in the Altai Mountains of
northwestern China. However, these studies mainly focused on small parts of the Irtysh
River Basin, and there is a lack of research on the snow cover process in the whole basin.

Based on the above background, this study used two sets of high-resolution meteoro-
logical forcing data sets as drivers to simulate the spatial–temporal change in snow cover in
the Irtysh River Basin from 2000 to 2018 by using the Noah-MP model. The main objective
of this study is to obtain the dynamic change process of snow cover in the Irtysh River
Basin in recent decades. The rest of the paper is arranged as follows: The overview of the
study area and the models, data and statistical methods used in this study are introduced
in Section 2. In Section 3, the simulation results of the Noah-MP model were verified at
a single site, and the parameterization scheme suitable for the study area was selected
and the long time series snow cover process in the whole study area was simulated. In
Section 4, we discuss the possible reasons for the simulation errors and the shortcomings
of this study. The conclusions are presented in Section 5.
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2. Materials and Methods

2.1. Study Area

Irtysh River is the largest tributary of Ob River. It originates from the Altai Mountains,
crosses the Chinese border, and flows west through Zaysan Lake and northwest across
eastern Kazakhstan. The total length of Irtysh River is 4248 km, and total area of the
basin is 1.64 million km2 [38]. The upper reaches are above the border between China and
Kazakhstan, the middle reaches are above the border between Kazakhstan and Russia, and
the lower reaches are from the border between Kazakhstan and Russia to the confluence of
the Ob River. Our study area is located in the Irtysh River Basin of China (Figure 1), with a
river length of 633 km and a basin area of 4.53 × 104 km2. The annual average precipitation
of the basin is 200–500 mm, and the annual average runoff at the estuary is 95 billion m3.
The basin is higher in the northeast and lower in the southwest, with an average elevation
of 1790 m. It has a temperate continental climate in the middle temperate zone, with long
and cold winters and short and cool summers. The average annual temperature is about
4 ◦C. The water vapor in the basin mainly comes from the Atlantic Ocean, the precipitation
is more in winter and summer than in spring and autumn, and there is more snowfall than
rainfall. The runoff is mainly supplied by snow melting, precipitation, and ice melting.
The proportion of snow melting water is the largest, accounting for 45%, while rainfall
and glacier melting water account for 26% and 7.7%, respectively. The snow cover period
lasts from November to April of the next year, and the snow cover period is longer in the
areas with higher elevations [39]. The snow cover is thick, and the maximum snow cover
thickness can even reach more than 1 m in some years.

 
Figure 1. Geographical location of the Irtysh River Basin.

In the Irtysh River Basin, the National Meteorological Administration of China has
set up three meteorological observation stations in Altay, Habahe, and Fuyun. The ob-
servations include temperature, relative humidity, wind speed, and precipitation. The
observations of Altay station also include downward shortwave radiation. In the up-
per reaches of the basin, the Kuwei comprehensive meteorological observation station
(47◦21′9.1′′ N, 89◦39′43.22′′ E; altitude of 1379 m) was set up in 2011. At the Kuwei site,
meteorological observations include temperature, wind speed, wind direction, relative hu-
midity, precipitation, downward and upward shortwave radiation, and longwave radiation;
snow observations include snow depth, snow water equivalent, and snow temperature;
and soil observations include soil temperature, soil moisture, and soil heat flux. The
specifications of these observation instruments are presented in Table 1.
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Table 1. Specifications of the observations and the instruments at Kuwei site.

Observations Instruments Accuracy

Air temperature 1000 Ω PRT, IEC 751 1/3 Class B ±0.4 ◦C
Wind speed R.M. YOUNG 05103 ±0.3 m/s

Wind direction R.M. YOUNG 05103 ±3◦

Relative humidity HUMICAP 180R ±2%
Precipitation Geonor T-200B ±0.1 mm

Radiation Kipp and Zonen CNR4 ±1%
Snow depth Campbell SR50A ±1 cm

Snow water equivalent Snow pillow ±1 mm
Snow temperature Campbell SI-111 (USA) ±0.5 ◦C
Soil temperature Hydra ±0.1 ◦C

Soil moisture Campbell CS616/CS625 (USA) ±0.1%
Soil heat flux Thermopile ±5%
Data logger Campbell CR1000 (USA) -

2.2. Model Description

Noah-MP is a new land surface model developed on the basis of the Noah model [30,31].
Compared to Noah, Noah-MP adds 12 physical processes and provides multiple alternative
parameterization schemes for each physical process (Table 2). The physical processes
directly related to snow cover include snow surface albedo (ALB) and rainfall and snowfall
(SNF). Snow/soil temperature time scheme (STC) is a solver option used to solve heat
conduction equations and also has a great impact on snow cover [40]. You et al. [40] also
proposed that surface layer drag coefficient (SFC) is also closely related to snow cover
process.

Table 2. Alternative parameterization schemes for 12 physical processes in Noah-MP model.

Physical Process Short Name Parameterization Schemes

Vegetation model DEVG 1. prescribed (table LAI, shdfac = FVEG); 2. dynamic; 3.
table LAI, calculate FVEG 4. table LAI, shdfac = maximum

Canopy stomatal resistance CRS 1. Ball-Berry; 2. Jarvis
Soil moisture factor for stomatal resistance BTR 1. Noah; 2. CLM; 3. SSiB

Runoff and groundwater RUN 1. SIMGM; 2. SIMTOP; 3. Schaake96; 4. BATS
Surface layer drag coefficient SFC 1. M-O; 2. Chen97

Supercooled liquid water FRZ 1. NY06; 2. Koren99
Frozen soil permeability INF 1. NY06; 2. Koren99

Radiation transfer RAD 1. gap = F (3D, cosz); 2. gap = 0; 3. gap = 1-veg
Snow surface albedo ALB 1. BATS; 2. CLASS
Rainfall and snowfall SNF 1. Jordan91; 2. BATS; 3. Noah

Lower boundary of soil temperature TBOT 1. zero-flux; 2. Noah
Snow/soil temperature time scheme STC 1. semi-implicit; 2. fully implicit

2.3. Dataset

ERA-Interim [41] and CMFD [42–44] were used as driving data for the Noah-MP
land surface model, respectively. ERA-Interim data were downloaded from the European
Centre for Medium-Range Forecasts (https://apps.ecmwf.int/ (accessed on 4 May 2020)).
Air temperature, dew point temperature, and wind speed are real-time data with a time
resolution of 6 h. Radiation and precipitation are forecast data, and 3 h time resolution
can be obtained through processing. There are 11 kinds of spatial resolution available; the
highest resolution is 0.125 × 0.125◦, the lowest resolution is 3 × 3◦, and the data resolution
selected in this study is 0.125 × 0.125◦. The CMFD data has a temporal resolution of 3 h
and a spatial resolution of 0.1 × 0.1◦. The data can be downloaded from the National
Tibetan Plateau Third Pole Environment Data Center (http://data.tpdc.ac.cn/ (accessed
on 26 April 2020)), and the detailed description of the data can also be obtained from the
website.
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In addition to meteorological data, land use data is also needed for Noah-MP model
operation. In this study, we selected the global land use data developed by Tsinghua
University (http://data.ess.tsinghua.edu.cn/ (accessed on 10 May 2020)), and the spatial
resolution of the data was 30 m [45]. By resampling, we obtained land use data with the
same resolution as ERA-Interim and CMFD data.

A gridded dataset of snow depth at Chinese meteorological stations (GDSD) was used
to evaluate the simulation accuracy of the Noah-MP model at watershed scale. GDSD
data was obtained by interpolation based on the snow depth data observed by more than
700 meteorological observation stations in China [46]. This interpolation method divides
the 200 km range into one unit, calculates the orientational relationship (O), distance (D),
and correlation coefficient (C) of all observation stations in each unit, and finally determines
the interpolation weight of each grid point based on the relationship between O, D, and
C. This interpolation method fully considers the spatial representation of snow depth at
each station and its functional relationship with the snow depth at surrounding stations.
The gridded snow depth obtained by this interpolation method was also compared with
the snow depth data obtained by arithmetic average method and inverse distance weight
method. The results show that the difference of snow depth data obtained by the three
methods is very small. The GDSD data has a temporal resolution of about 5 days and a
spatial resolution of 0.5 × 0.5◦. This data can be downloaded from the National Cryosphere
Desert Data Center (http://www.ncdc.ac.cn/ (accessed on 31 May 2021)) and a detailed
description of the data can also be found on this website.

The error of snow depth simulated by the Noah-MP model was also compared with
two sets of snow depth data retrieved based on microwave remote sensing. The first
was the long-term series of daily snow depth dataset in China (LSD) released by Che
and Dai [47], and the second was China’s daily snow depth and snow water equivalent
products (CSS) released by Jiang et al. [48]. These two sets of data were both produced
using SMMR, SSM/I, and SSMIS satellite remote sensing brightness temperature data with
a spatial resolution of 25 km × 25 km and a temporal resolution of 1 day. The LSD data can
be downloaded from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/
(accessed on 23 May 2021)) and the CSS data can be downloaded from the National
Cryosphere Desert Data Center (http://www.ncdc.ac.cn/ (accessed on 31 May 2021)).

2.4. Statistical Method

Several statistical indicators were used to represent the characteristics of snow cover
in the study area and the accuracy of simulation results or meteorological data. These
indicators are listed as follows:

(1) Snow year

The snow year is considered to be the time from the beginning of snow accumulation in
a year to the next year before the snow starts to accumulate. According to the characteristics
of snow cover in the Irtysh River Basin, we regard 1 September to 30 August of the following
year as a snow year.

(2) Mean deviation (MD) and root mean squared error (RMSE)

Mean deviation (MD) and root mean squared error (RMSE) are used to evaluate the
accuracy of model simulation results or weather-driven data. The calculation formulas of
MD and RMSE are as follows:

MD =
1
n

n

∑
i=1

(RDi − Oi) (1)

RMSE =

√
1
n

n

∑
i=1

(RDi − Oi)
2 (2)

In the above formula, RDi is the meteorological value recorded by meteorological
forcing data or the snow parameter value simulated by the model at ith time, Oi is the
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observed meteorological element or snow parameter value at ith time, and n is the number
of samples. The closer the MD and RMSE values are to 0, the higher the accuracy of
meteorological forcing data or model simulation results are. If the MD value is greater than
0, it means meteorological forcing data or simulation results are overestimated, and if the
MD value is less than 0, it means underestimated.

(3) Linear slope and Mann–Kendall test

The linear slope is used to indicate trends of snow depth, snow water equivalent, snow
days, and other snow parameters. The Mann–Kendall (M–K) test is used to determine the
significance of the trends. When the statistic p > 0.1, the change trend of the time series is
not significant; otherwise, the change trend is significant. The calculation process of the
M–K method can be found in the published literature [49].

3. Results

3.1. Testing Noah-MP Model at Kuwei Site

In order to evaluate the simulation effect of the Noah-MP model on a single point,
we first drive the model based on the meteorological observation data of Kuwei site from
September 2013 to April 2014, and verify it based on the observed snow depth and snow
water equivalent. As can be seen from Table 2, Noah-MP can combine more than 20,000
optional parameterization schemes. You et al. [40] tested these parameterization schemes
at a site in the Altai Mountains, which is also located in the Irtysh River Basin, and the
results show SFC and STC have the greatest influence on the simulation results of snow
depth and snow water equivalent. At the Kuwei site, we also tested the SFC and STC
parameterization schemes, and obtained four simulation results (Figure 2a,b). It can be
seen from Figure 2a,b that different SFC and STC schemes have little influence on the
simulation results during the snow accumulation period, but have a great influence on
the simulation results during the ablation period. During the ablation period, the effect
of SFC scheme on the simulation results was smaller than that of STC; when STC uses a
fully implicit scheme, the error of simulated snow depth and snow water equivalent is
greater than that of a semi-implicit scheme. The ALB and SNF parameterizations schemes
were also tested at the Kuwei site. From the results obtained (Figure 2c–f), ALB mainly
affects the melting process of snow, while SNF mainly affects the accumulation process.
However, compared with STC, ALB and SNF have much less influence on the snow cover
process. Furthermore, the simulated snow depth of all combined schemes is less than the
observed value. In this study, SR50 sensor with a resolution of 1 cm is used for snow depth
observation at the Kuwei site. However, in actual monitoring, especially in mountainous
areas with complex terrain, the error of the SR50 sensor may be much higher than 1 cm.
This may also be an important reason for the difference between the Noah-MP-simulated
and the observed snow depth during the snow accumulation and melting period.
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Figure 2. Modeling snow depth (a,c,e) and snow water equivalent (b,d,f) using Noah-MP model
at Kuwei site. SFC1STC1 means the surface layer drag coefficient uses the M-O scheme, and
snow/soil temperature time uses the semi-implicit scheme. Similarly, the parameterization schemes
selected by SFC1STC2, SFC2STC1, SFC2STC2, SFC1STC1AB1, SFC1STC1AB2, SFC1STC1AB2SNF1,
SFC1STC1AB2SNF2, and SFC1STC1AB2SNF3 can be obtained.

3.2. Testing Noah-MP Model in the Irtysh River Basin

From the simulation results at the Kuwei site, the simulation accuracy of SFC1STC1
and SFC2STC1 is better than that of SFC1STC2 and SFC2STC2. At another site in the Irtysh
River Basin, You et al. [40] also proposed that the SFC1STC1 scheme has the best simulation
accuracy for snow depth and snow water equivalent. Combined with the test results of
this study at the Kuwei site, we chose the SFC1STC1AB2SNF1 scheme to simulate the
snow depth and snow water equivalent at the whole basin, and the other eight schemes
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adopted the default selection of the model. Considering that the Noah-MP model requires
a long time to reach equilibrium state [50–52], this study refers to the method proposed
by You et al. [53], and uses the forcing data from 1 January 2000 to 30 August 2001 to
spin-up the model. Through the simulation, we get the simulation results of snow depth
and snow water equivalent at a 3 h time scale in the Irtysh River Basin from September
2001 to December 2018. In order to evaluate the accuracy of the model simulation results,
we process the snow depth data from all sources to the same time resolution as the GDSD
data, and give the time series of the average snow depth in the Irtysh River Basin (Figure 3).
As can be seen from Figure 3c,d, the accuracy of snow depth simulated by the Noah-MP
model is distinctly higher than that obtained based on microwave remote sensing inversion
in the Irtysh River Basin. In years with small snow depth, the snow depth recorded by
LSD and CSS data is highly consistent with GDSD data. However, in years with high
snow depth, such as 2002, 2006, 2008, 2009, 2010, and 2012, LSD and CSS snow depth
are seriously underestimated. The snow depth series simulated based on the CMFD and
ERA-Interim data were in good agreement with the GDSD data. Through the calculation
results of MD and RMSE (Table 3), it is found that the MD and RMSE values between
Noah_CMFD and GDSD are smaller than those between Noah_ERA and GDSD. Therefore,
the results obtained by using CMFD as the driving simulation in Irtysh River Basin are the
most accurate.

 
Figure 3. Average snow depth (SD) of each five-day period in the Irtysh River Basin from September
2001 to August 2014 based on GDSD data and CMFD simulation (a), GDSD data and ERA-Interim sim-
ulation (b), GDSD and LSD data (c), GDSD and CSS microwave remote sensing data (d). Noah_CMFD
represents the SD series by Noah-MP simulation with CMFD as the driving data and Noah_ERA
represents the SD series by Noah-MP simulation with ERA-Interim as the driving data.

Table 3. MD and RMSE values between Noah_CMFD, Noah_ERA, and GDSD snow depth.

Noah_CMFD vs. GDSD Noah_ERA vs. GDSD

MD 5.07 10.27
RMSE 6.47 11.32
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3.3. SD and SWE Distribution and Variation Characteristics in the Irtysh River Basin

Based on the simulation results of the Noah-MP model, the annual maximum snow
depth and snow water equivalent are calculated, and the spatial distribution of annual
average maximum snow depth and snow water equivalent in the Irtysh River Basin is
given (Figure 4). It can be seen from Figure 4 that the annual average maximum snow
depth and snow water equivalent simulated based on CMFD and ERA-Interim data have
good consistency in spatial distribution. Both snow depth and snow water equivalent are
high in the north and low in the south of the basin. This spatial distribution feature is
consistent with the topography of the basin. In the north of the basin, the altitude is high
and the temperature is relatively low, which is conducive to the accumulation of snow. In
the south of the basin, the altitude is relatively low, the temperature is relatively high, and
the snow is easier to melt. Based on CMFD and era interim data, we also give the spatial
distribution characteristics of the annual average precipitation in the basin (Figure 5). It can
be seen from Figure 5 that the precipitation in the north of the basin is much higher than
that in the south. High altitude and higher precipitation are the main reasons for the higher
snow depth and snow water equivalent in the north of the basin than that in the south.

Figure 4. Annual average maximum snow depth and snow water equivalent from 2001 to 2018 based
on Noah-MP simulations. (a,c) represent SD and SWE with CMFD as the drive, (b,d) represent the
results obtained with ERA-Interim as the drive.

When analyzing the temporal variation characteristics of snow cover, because the
accuracy of snow depth based on ERA-Interim simulation is slightly lower than that based
on CMFD simulation, only the simulation results based on CMFD data are selected. In ad-
dition to the average maximum snow depth (SDmax) and snow water equivalent (SWEmax),
we also selected the average snow days, the average start time of snow accumulation
(STSA), and the end time of snow melting (ETSM) to analyze the variation characteristics
of snow from 2001 to 2017. The linear slope and M–K test were used to determine the trend
of these time series (Figure 6). As can be seen from Figure 6, the maximum snow depth,
snow water equivalent, and snow days in the Irtysh River Basin showed an insignificant
decreasing trend from 2001 to 2017. The start time of snow accumulation was delayed, but
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the change trend was not significant, while the end time of snow melting was significantly
advanced.

Figure 5. Spatial distribution of annual average precipitation based on CMFD (a) and ERA-Interim
(b) data in the Irtysh River Basin.
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Figure 6. Average SDmax (a), SWEmax (b), snow days (c), STSA (d), and ETSM (e) in the Irtysh River
Basin from 2001 to 2017.

4. Discussion

4.1. The Influence of Data Quality Uncertainty on Simulation Results

In previous studies, Guenther et al. [9] and Zhang et al. [54] analyzed the factors that
affect the accuracy of snow cover simulation by land surface process model, and found
that the uncertainty of forcing data has a greater impact on the simulation results than the
structure and parameterization scheme of the model itself. In this study, meteorological
station observation data were used to evaluate the accuracy of CMFD and ERA-Interim
data. Since the data of Habahe, Altay, and Fuyun stations are used in the production of
CMFD data, only the observation data of Kuwei station were selected. Meteorological data
from CMFD and ERA-Interim were extracted based on the longitude and latitude of the
Kuwei site. Scatter plots were drawn based on the CMFD, ERA-Interim, and the observed
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data, and the accuracy of the two meteorological forcing data was evaluated using MD
and RMSE statistical parameters (Figure 7). It can be seen from Figure 7 that there are
some deviations between CMFD, ERA-Interim and the observed temperature, wind speed,
relative humidity, precipitation, and downward shortwave and longwave radiation. On
the one hand, the reason for this phenomenon lies in the difference in spatial range between
grid points and stations; on the other hand, the error of meteorological forcing data itself
is also an important reason. From the calculated MD and RMSE values, the accuracy of
CMFD temperature, wind speed, and downward shortwave and longwave radiation data
is higher than ERA-Interim data. Although the accuracy of ERA-Interim relative humidity
and precipitation is slightly better than that of CMFD at the Kuwei site, considering that
the CMFD precipitation and relative humidity data were generated through fusion of
remote sensing products, reanalysis datasets, and in situ station data [42], it is considered
that CMFD also has high accuracy at the watershed scale. This is also the reason why the
modeled snow depths by using the CMFD data are more consistent with GDSD data.
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Figure 7. Scatter plot based on the hourly CMFD, ERA-Interim, and the observed temperature (a,g),
relative humidity (b,h), wind speed (c,i), precipitation (d,j), downward shortwave radiation (e,k),
downward longwave radiation (f,l) data during the study period.
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4.2. Limitations of This Study

In high-latitude mountainous areas, wind blowing snow is also a factor that cannot
be ignored. Wind blowing snow includes material migration and sublimation, which
have great influence on the secondary distribution of snow in space [55,56]. In previous
studies, the minimum wind speed threshold for wind blowing snow was generally set at
7 m/s [57], and when the wind speed is higher than the threshold, blowing snow will occur.
Through the analysis of the daily maximum wind speed at the Altay, Habahe, and Fuyun
meteorological stations in the study area from 2001 to 2018 (Figure 8), it was found that
there are many days when the daily maximum wind speed of the three stations exceeds the
wind blowing snow threshold. However, the Noah-MP model lacks the consideration of
the wind blowing snow process, which may also be an important reason for the deviation
between the snow depth simulated in this study and GDSD data.

 
Figure 8. Daily maximum wind speed at the Altay, Habahe, and Fuyun sites from 2001 to 2018.

5. Conclusions

In this study, we tested the Noah-MP model for snow accumulation and melting
process modeling at the Kuwei site in the Irtysh River Basin, and simulated the snow cover
process by using CMFD and ERA-Interim as forcing data at the whole basin from 2000 to
2018. The simulation results were also compared with the gridded dataset of snow depth at
Chinese meteorological stations (GDSD) and snow depth obtained from microwave remote
sensing (LSD and CSS data). The main findings are as follows:

(1). STC, SFC, and ALB schemes mainly affect the snow melting process, while SNF
mainly affects the accumulation process. Among the four schemes, STC has the
greatest impact on the accuracy of snow cover simulation. When STC use the semi-
implicit scheme, the overall simulation accuracy is better than that of the fully implicit
scheme.

(2). CMFD and ERA-Interim as the forcing data can accurately simulate the snow accu-
mulation and melting process of the whole basin, and the results of CMFD simulation
are more accurate than those of ERA-Interim simulation. The main reason is that the
data accuracy of CMFD is higher than that of ERA-Interim.

(3). In the years with low snow depth, the snow depth retrieved based on microwave
remote sensing is in good agreement with the observed snow depth. However, in the
years with high snow depth, such as 2002, 2004, 2008, 2009, 2010, and 2012, the snow
depth retrieved by remote sensing is seriously underestimated.

(4). Spatially, the snow depth and snow depth equivalent in the north of Irtysh River Basin
are higher than those in the south, mainly because the altitude and precipitation in
the north are higher than those in the south. The snow depth, snow water equivalent,
snow days, and the start time of snow accumulation (STSA) in the basin did not
change significantly from 2001 to 2017. However, the end time of snow melting was
obviously advanced.
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Abstract: In 1912, a Swiss expedition led by meteorologist Alfred de Quervain crossed the Greenland
ice sheet on a route from Disko Bay to Tasiilaq. Based on that, in 2002, a series of geodetic expeditions
carried out by W. Korth and later by T. Hitziger began along the same traverse as in 1912, with the
last measurements taken in May 2021. The statically collected GPS/GNSS data provide very accurate
elevation changes at 36 points along the almost 700 km long crossing over a period of 19 years.
According to this, there is a maximum increase of 2.1 m in the central area and a decrease of up to
38.7 m towards the coasts (influence Ilulissat Isbræ). By using kinematic GNSS measurements, there
is a very dense profile with a spacing of a few meters. The comparison of those measurements is
performed using crossing points or minimum distances and gives equivalent results for both methods.
It is shown that local ice topography is preserved, and thus gaps in data sets can be caught. Areas of
accumulation and ablation on the ice sheet can be identified, showing the widespread influence of
outlet glaciers up to 200 km. The data can be used for direct verification of altimetry data, such as
IceSat. Both IceSat elevations and their changes can be compared.

Keywords: Greenland ice sheet; monitoring; GNSS; expedition; Jakobshavn Isbræ; Helheim Glacier;
IceSat; climate change; glacier profile

1. Introduction

This article is dedicated to the geodesist, polar explorer, and friend Wilfried Korth. He
was the project initiator and scientific leader for a long time. The article is also based on his
results, so he is mentioned here in memory as an additional author (Figure 1).

Figure 1. Project initiator Wilfried Korth (1959–2019) on his last Greenland Expedition in 2017.

The processes and consequences of climate change have been discussed for many
years. Leaving aside catastrophic changes such as volcanic eruptions or earthquakes,
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it is indisputable that never in the recent history of the Earth, i.e., in the last million
years, have there been fundamentally very rapid changes in the living conditions on our
planet [1]. However, the climate today is changing rapidly. Geodetic measurements can
make important and precise contributions to the monitoring of changes. In addition to
remote sensing technique, which uses a wide variety of technologies, there are also ground-
based measurements. These serve as “ground truth” for remote sensing, but because of
their accuracy, they can also be used independently.

In the 1970s, only ground-based measurements, often obtained during scientific ex-
peditions or from measuring stations, could be used to monitor the Greenland ice sheet.
Aerial methods were also used, but only for coastal parts of Greenland. Here it is worth
recalling the pioneering expeditions that began exploring inland Greenland more than a
century ago.

One of the first was certainly the expedition of Fridtjof Nansen (1888–1889), who
was the first to cross the southern part of Greenland on skis [2]. He brought back a
wealth of scientific information and meteorological measurements and proved that the
entire Greenland interior was covered by an ice sheet. Another important expedition
was undertaken by the Swiss Alfred de Quervain in 1912. De Quervain, a meteorologist,
crossed Greenland with three other expedition members considerably further north than
Nansen [3]. He was shortly followed by Alfred Wegener and Lauge Koch [4,5].

After the First World War, expeditions were more frequent and much better prepared
technically. Airplanes also began to be used for research after the First World War. The
systematic mapping of the coastline by the Danish Geodetic Survey in 1931–1934 was
significant. The mapping work was carried out using photogrammetry from an aircraft.
Today there are thousands of unique photographs in the Danish Airbase project database,
which serve as a source of information on the historical state of glaciation [6,7]. Several
US military airfields were built in Greenland during World War II, some of which were
converted to civilian airfields after the war and are still in use today [8]. Germany also
built a small meteorological base in Greenland, but it was destroyed by an American air
raid [9]. After the war, economic development began in Greenland, but other US military
bases were also built in Greenland during the Cold War. More intensive research on the
Greenland ice sheet took place after the fall of the Iron Curtain in the 1990s.

Modern instruments, expedition equipment, and technical support were available,
as well as the possibility of using satellite data. The significant progression of global
warming and the rapid melting of the western and southern parts of the Greenland ice
sheet, in particular, increased interest in research activities [10–12]. Combined data sources
and non-traditional technologies like drones, for example, were used in research. Today,
drones are the most popular, which allow very detailed measurements in smaller areas, e.g.,
tracking the movement of a glacier face or capturing the surface with cm resolution [13–15].
Special remote sensing satellites have been used for a long time, since the 1970s, but it’s
only relatively recently that some data has been free of charge and freely downloadable.

Geodetic satellites monitor gravity changes, radar satellites can use InSAR technology
to determine displacements or create digital surface models, and optical satellite systems
can help monitor the extent of glaciation [13,16]. Fast and accurate GNSS instruments
can monitor the height or movement of glaciers [17–19]. In the context of Arctic polar
research, it is worth remembering Nansen’s unique polar expedition on the Fram ship
(1893–1896); this was followed in 2019 by an international expedition aboard the modern
research ship Polarstern. The aim was the comprehensive mapping of the Arctic and, in
particular, research on global warming [20]. Glacier changes related to global warming
have been investigated in many other scientific papers [21,22].

Twenty years ago, in the summer of 2002, geodesist Wilfried Korth (Figure 1) started
a climate research project in Greenland. The main objective was to determine elevations
and their changes along a profile across the Greenland ice sheet. A 700 km traverse was
surveyed between Tasiilaq on the east coast and Ilulissat on the west coast of Greenland (see
Figure 2). After his tragic death, however, some members of his expeditions continued his
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work. This provided another valuable amount of information on the changing Greenland
ice sheet. The results from all the expeditions are summarized in the following text.

Figure 2. Map of Greenland [17] and route of Greenland Korth Expedition (GKE) with walking
direction, camps from 2002 and historical camps from 1912. The blue line approximately marks
the catchment area of the Helheim and Ilulissat (Jakobshavn) glaciers and the top of the Greenland
ice sheet.

This route was first successfully crossed by the Swiss Alfred de Quervain in 1912.
Even if the accuracy of his measurements was only relatively low compared to today’s
possibilities, the large time difference of more than a hundred years naturally tempts a
comparison [18], which is especially interesting in the strongly changing marginal area of
the ice sheet.

Meanwhile, during the eight expeditions since 2002, the profile was surveyed five
times completely and three times partially with high accuracy (see Table 1). The process
results in surface elevations with a measurement accuracy of 3–5 cm, from which annual
surface changes are derived with similar accuracy. The measurements were carried out
between the end of July and the beginning of September. During this period, the summer
thaw was ending, while the winter snowfall had not yet begun. It is, therefore, the time of
the year when the seasonal variations in ice elevations reach their minimum.

Table 1. Overview of geoscientific Expeditions on the historic route.

Year Scientific Director Method of Measurement Remark

1912 A. de Quervain barometric 39 camps; accuracy in the coastal area +/−3–5 m
2002 W. Korth GPS static 34 positions; +/−3 cm
2006 W. Korth GPS static 34 positions; +/−3 cm
2010 W. Korth GNSS static 34 positions; +/−2 cm
2012 W. Korth GNSS static only east coast; 17 positions +/−2 cm
2015 W. Korth GNSS kinematic and static continuous profile; spot spacing 2–6 m; 700 km; +/−3 cm
2017 W. Korth GNSS kinematic continuous pr.; spot spacing 2–6 m; approx. 180 km; +/−3 cm
2020 T. Hitziger GNSS kinematic continuous pr.; spot spacing 2–6 m; approx. 500 km; +/−3 cm
2021 T. Hitziger/J. Heim GNSS kinematic continuous pr.; spot spacing 2–6 m; approx. 680 km; +/−3 cm

Based on GNSS technology progress since the 2015 expedition, the measurement
program was changed. Unlike in previous years, not only were the profile points de-
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termined but the measurements were carried out continuously along the entire route at
1-second intervals. Thus, for the first time, a 700 km long profile with a point spacing of
less than 2 m is available. The possibilities for comparison with satellite data have thus
improved enormously.

Measurements on the ice sheet can be carried out in very different ways with today’s
technical possibilities. However, extreme problems occur, especially in the marginal areas,
which lead to limitations: the use of (heavy) snowmobiles is hardly possible because of
the numerous crevasses, which are often blown, and impossible in the large areas with
melt-water rivers, gullies, and ice humps. But this concerns the most interesting area, about
20–30% of the planned route.

As a logistical alternative, skis and pulkas (freight sledges) were used on all expedi-
tions, and the routes were covered on foot. What appears at first glance to be an increased
risk is, on closer inspection, a gain in safety. On some expeditions, kites were used as
towing devices on the glacier plateau. In good winds, it made the journey faster. The
comparatively low travel speed, on the other hand, is not a measuring problem because the
aim is to keep the distances between the measuring points as short as possible. Of course,
this type of expedition requires the willingness of the participants to face the physical
demands. But this has never been different throughout the history of polar research, from
the expeditions of the pioneers to the present day.

2. Materials and Methods

The basic measurement in this project was the use of GNSS. The theory of GNSS is
described in many technical articles, as well as the development of accuracy [23–25]. In
high geographical latitudes, the integration of the GLONASS navigation system proves to
be advantageous [26,27].

In our case, for the static GNSS measurements from 2002 to 2015, different generations
of Trimble antennas and receivers were used. Since 2015, additional kinematic GNSS
measurements have been performed using the NavXperience 3G + C antenna with the
Trimble R7 receiver in 2015. Subsequent expeditions used the combined Trimble R10 and
R12 systems. Portable GNSS units were used for orientation on all expeditions. Signals
in the L- and G-band range of GPS and GLONASS (later also BeiDou and Galileo) were
received. The accuracies of the campaigns are shown in Table 1. All measured coordinates
are used with ellipsoidal heights.

During the nearly 40-day expedition, field logs were made of antenna heights as
well as sled lowering depths and how they changed throughout the day. In addition to
these geodetic records, weather data and density measurements were also noted (2017,
2020, 2021).

2.1. Static GNSS Measurements

Static GNSS measurements were taken approximately every 20 km at the respective
overnight camps in 2002, 2006, 2010, 2012, and 2015, with each expedition member reaching
the camp established in 2002 to ensure comparability. Upon arrival, the antenna was set up,
aligned, and connected to the receiver (see Figure 3). The system is powered by solar cells.
The measurement time is between 8 and 12 h, and the equipment is stored at a sufficient
distance to avoid interference with the signal. The earlier measurements were made using
ground stations on both coasts (Kangerlussuaq and Kulusuk and Tasiilaq, Kangerlussuaq
and Ilulissat, respectively), and later, precision was achieved using Precise Point Positioning
(PPP) by correcting the orbits afterward. WGS84 was used as a reference frame.
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Figure 3. Static GNSS measurement during GKE 2015.

2.2. Kinematic GNSS Measurements

Kinematic GNSS measurements took place in 2015, 2017 (east coast only), 2020 (about
500 km), and 2021. The antenna was mounted on the pulka of an expedition member, and
there were second-by-second recordings of the individual GNSS points. The 2 systems,
GPS and GLONASS, were used (see Figure 4).

(a) (b) 

Figure 4. Kinematic GNSS measurement during GKE 2020 (a) on the pulka. (b) Trimble R12.

During post-processing, the TEQC software quality check was performed to verify the
quality of the obtained data and to adjust the approximate position in the header of the
observation files *.yyO of the RINEX data [26]. Because Greenland is a remote location and
the technology has evolved, no extension systems or ground stations were used as reference
stations for the kinematic measurements. Precise Point Positioning (PPP) in the Interna-
tional Terrestrial Reference Frame (ITRF2014) is used to achieve the precision of the data.
Natural Resources Canada (NRCan) is used as the provider. Uploading is done through a
web interface, and corrected positions are sent by mail. Using accurate ephemerides and
clock corrections, the position can be determined to the nearest centimeter [28]. It takes
13 days to calculate the final corrections, so this period should be weighted between data
collection and precision. Care should also be taken to use the correct evaluation method
(static/kinematic) with the associated data, to always have enough satellites available, and
to minimize the individual error sigma.

In the next step, the plate kinematics are considered, using 01.06.2015 (00:00:00) as the
reference date, and the corresponding displacements and rotations of the North American
plate are included in the plate motion model according to ITRF2014. This allows us to
compensate for the effect of the Glacial Isostatic Adjustment (GIA) in Greenland [29].
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After the data have been specified and reduced, they are further processed with Matlab.
An overview of the program flow can be seen in Appendix A. First, the entries for the
sled sinking depth and the antenna height are taken from the field book records. This is
followed by a temporal sort and subsequent low-pass filtering of the data using Gaussian
filtering to minimize the influence of noise. After a parameter study, a filter order of m = 50
is used as a target for the local topography of the Greenland ice sheet [30–32]. Due to the
second-by-second measurement points and the largely tall jump-free relief, more distant
points can also be considered for smoothing.

Two different principles are used to compare the GNSS kinematic data. First, crossing
points are investigated, which requires a linear interpolation of two data points at the same
position coordinates. Second, the principle of minimum distances between each data point
of the 2015 expedition and subsequent expeditions is considered [32–36].

2.2.1. Crossing Point Comparison

For this purpose, the data are converted into the appropriate format so that they can
be read and processed by the Linux-based program Generic Mapping Tool (GMT). The
crossing points are determined as a linear interpolation between two different years. It
should be noted that these are calculated values and not measured values. However, the
advantage is that the position coordinates match exactly, and local unevenness has less
influence. Since there are no large jumps on the Greenland ice sheet, the method is well
suited. The x2sys package included in GMT is used for the calculation. The obtained
crossing points are transformed to UTM coordinates in order not to neglect the curvature
of the Earth. Then, the crossing points are assigned to the continuous track of the 2015
expedition by using the closest data point in each case. This method is sufficiently accurate
over the entire track of nearly 700 km. In each case, the distances within a UTM zone are
searched. The altitude differences previously calculated with GMT can now be visualized
and analyzed.

2.2.2. Comparison of the Minimum Distances

For the comparison over the minimum distances, UTM coordinates are also used, and
the holding times, which are caused, e.g., by pauses, are eliminated. As tolerance for the
elimination of values, the distance of 0.005 m is used. Thus, the total matrix can be slimmed
down considerably, and the computation time is shortened enormously. With this method,
the distances of the position coordinates of an expedition to those of a following expedition
are determined, and afterward, the respective data point with the smallest distance to the
reference distance (here: 2015) is assigned. The calculation is very time-consuming and can
be significantly shortened by using multiple processors via parallel computing in Matlab.
After each point is assigned a minimum distance to a point in the follow-up measurement,
data that are above tolerance are truncated. For the Greenland ice sheet, this was chosen
for 5 m after the completion of the parameter study.

In addition, an adjustment to the data was made for the crossing point comparison.
In the seasonally comparable expeditions in 2015 and 2020, almost 200 km were missing
on the west coast because the expedition had to be aborted prematurely. However, in the
following May 2021, the route could be walked completely, so the elevation component
of the coordinates on the west coast is shifted to the connection point. The further one
moves away from the endpoint of the 2020 expedition, the greater the uncertainty in the
result becomes. Finally, the differences obtained are plotted and illustrated using Matlab’s
mapping toolbox.

3. Results

3.1. Static GNSS Measurements

Static measurements were made at 36 points spaced about 20 km apart. Figure 5 shows
the mean annual elevation change at these points.

70



Appl. Sci. 2022, 12, 12066

Figure 5. Annual elevation changes in the camps from 2002.

The catchment areas of the two glaciers Helheim (East coast in Figure 5) and Ilulissat
Isbræ (West coast in Figure 5) are clearly visible. The watershed is located at km 420 (in
Figure 5) and represents the highest point along the route. The 2002, 2006, 2010, and 2015
measurements seem to indicate an acceleration of mass loss, but the 2020/21 measurement
does not confirm this. It appears that longer time series are needed to identify more
reliable trends.

Figure 6 shows the absolute elevation changes at the camps between 2002 and 2021.
While there is hardly any increase in the accumulation area (max. 2.1 m), there is an
elevation loss of max. 38.7 m in the reservoirs in the Ilulissat Isbræ catchment. An elevation
decreases of max. 6.4 m in the comparable area in the Helheim Glacier catchment and
10.1 m in the marginal area of the ice sheet on the east coast can be seen in Figure 6.

Figure 6. Total elevation changes in the camps from 2002.

3.2. Kinematic GNSS Measurements
3.2.1. Profile Comparison

First, the elevation profiles are compared. These retain their rough but finer details,
which can be seen when magnified (Figure 7). As expected, the ice elevation decrease is
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more pronounced along the coasts, which is enhanced by the two outlet glaciers Helheim
(fastest flowing outlet glacier on the east coast of Greenland at approx. 30 m/d and
Jakobshavn Isbræ (the most productive glacier on the west coast) since the expedition
route lies within the influence of these [28]. However, when local ice elevation topography
is considered, slight terrain elevations show a larger elevation change than the adjacent
depressions (Figure 7). Overall, individual values fluctuate up to +/−30 cm per year
around a sectionally stable mean or median.

Figure 7. Comparison of a selected part of the profile from 2015 and 2020.

3.2.2. Elevation Change Comparison

With the help of the crossing point comparison, between 300 and 3000 intersections
could be found, depending on the comparative section of the respective expedition, pro-
viding a dense network of data over the entire route. On the sections covered by skis and
pulka, the density is significantly higher than in the sections covered by the kite. In practice,
it is easier to generate crossing points in these areas because the speed traveled is lower.
Particularly in the marginal area of the ice sheet, the variance of measured values is larger
when comparing the expeditions’ data, which is mainly due to the surface topography, as
it is characterized by meltwater channels (see Figure 8) at the time of most expeditions
(except 2021). In addition, the change from the minimum distance calculation is added here.
After applying the previously described cutoff rule with a tolerance of 5 m, significantly
more comparison points remain than for the crossing points. Occasionally, measurement
gaps occurred during the expeditions, so no comparison is possible at these points.

 

Figure 8. Meltwater channels during the expedition 2020 on the east coast.
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The elevation change produces very similar results with both methods (Figure 9).
Statistical values such as the mean and median deviate only by 2–3 cm in selected sections.
However, the method is not generally valid in this form. Only because of the known
topography of the ice sheet with few slopes does it remain very reliable. However, it can be
assumed that the error in the method of minimum distances is larger than in the method of
the crossing point comparison.

Figure 9. Comparison of the minimum distances method with 5 m tolerance (top) and the crossing
point method (bottom).

3.2.3. Seasonal Changes during the Winter

The 2020 expedition took place in August/September and the next in the following
May 2021 so that the seasonal changes could be observed over the winter. In Figure 10,
these changes are shown along the profile, with the elevation component almost constant in
the ice center. Towards the coasts, an increase due to precipitation of up to 2 m is observed.
The west coast could not be investigated in more detail because the expedition had to be
terminated prematurely.

Figure 10. Elevation changes between before winter (August 2020–September 2020) and after winter
(May 2021). Difference (blue points) = 2020–2021.
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3.2.4. Modification of Missing Parts

For the kinematic data, complete profiles were only measured in 2015 and 2021, with
the 2021 expedition taking place as early as May rather than between late July and early
September as all previous expeditions had. An expedition took place in the previous
season, covering about 500 km, so a link to the data from 2021 is made in this step to
obtain a complete and seasonally comparable data set. Figure 11 shows the crossing point
comparison for both 2015 and 2020 as well as 2015 and 2021, where the data density is not
quite as high due to flooded sections.

 
(a) (b) 

Figure 11. Comparison of crossing points (a) 2015–2020 and (b) 2015–2021.

The change in elevation over the winter from 2020 to 2021 is accounted for by append-
ing to the endpoint of the 2020 data and the 2021 data set and shifted by the difference of
−0.7448 m to get more realistic results for the coastal area (Figure 11). The farther the data
is from the connection point, the larger the inaccuracy becomes.

In Figure 12, as in the static measurements, it can be seen that the influence of the two
heads of glaciers is clearly visible in the data set. A larger ice elevation decrease is expected
near the coast, which is amplified by calving the glaciers. Near the east coast, the decrease
is somewhat delayed, which is probably related to the damming effect of the Schweizerland
Alps (mountains on the east coast of Greenland, as de Quervain called them).

Figure 12. Comparison of crossing points along the expedition route with modified elevation change
at the west coast. Blue color = 2020; orange color = 2021.
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3.2.5. Accumulation and Ablation

The data show accumulation and ablation along the profile (see Figure 13). As ex-
pected, there is accumulation in the central part of the ice sheet and ablation toward the
coasts. It should be noted that the seasonal change shifts the equilibrium line. It also
illustrates the influence of the Helheim Glacier and the Jakobshavn Isbræ, with a catchment
area of up to 200 km inland. For comparison, the ice velocity in Greenland was deter-
mined in [17] by Sentinel-1. The extensive catchment areas of the glaciers in relation to the
expedition route are shown in Figure 14.

 
(a) (b) 

Figure 13. Accumulation (blue) and ablation (red) along the expedition route based on data from
(a) 2015–2020. (b) 2015–2021.

 

Figure 14. Ice velocity from synthetic aperture radar of Sentinel-1 acquired over October 2015–
September 2016 with camps of the Greenland Korth Expedition route. The direction of glacier flow is
from the central axis of the Greenland ice sheet towards the coast [17].

3.2.6. Comparison with Other Data

Satellite altimetry provides a real information on glacier elevation. However, these
are only partially usable. There are gaps of several kilometers between the ground satellite
tracks (see Figure 15). A direct comparison of our traverse data with those of the satellite
altimetry is only possible at the crossing points. The Geoscience Laser Altimeter System
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(GLAS) is developed for the IceSat mission and has a precision of about 3 cm for a footprint
with less than 80 m diameter [37].

 
Figure 15. Coverage of the operation area by the IceSat mission (2003–2010). The diagonal line
represents the profile measured by GKE on the ground.

The NASA IceSat satellite (Ice, Cloud, and land Elevation Satellite, 2003–2010) data
were used. Comparing the profiles measured in this project with an elevation model
derived from IceSat data [29], the qualitative difference between the two data sets becomes
clearly visible (Figure 16). The elevation model is from 2010, based on the end of the
IceSat mission and shows considerable deviations from the profile measurements due
to the different spatial resolution. The IceSat provides a set of laser pulses, which have
approximately 70 m spots on Earth’s surface with a spacing of 170 m. The model from
IceSat is interpolated and smoothed (blue line) compared to the profile measurement, which
is more detailed (red line).

IceSat 
GKE 

Figure 16. Part of the elevation profile from the west side (2015).

C30, C31, C32 and C33 are some of the points measured multiple times since 2002. The
waves in the surface profile with amplitudes of up to 20 m are clearly visible. The blue line
shows the heights derived from IceSat data; the red line shows the measured profile from
this project.
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4. Discussion–Error Influences

The aim was to demonstrate the possible link between terrestrial static or kinematic
GNSS measurement and data derived from the GLAS device onboard the IceSat-1 satellite
and, next, to verify the reliability and accuracy of the digital surface model based on IceSat-1
satellite measurements. The measured values were examined for random jumps using
the difference quotient. There are jumps of a maximum of 1.2 cm, so that jump measured
values cannot be identified as a significant source of error. Moreover, these are eliminated
as much as possible by Gaussian filtering.

After PPP evaluation, the position accuracy is +/−3 cm, and the height accuracy is
+/−5 cm for a single data set. For the investigations performed here, the elevation com-
ponent is most relevant. Of course, there are some defined outliers; during measurement
at these locations, a lower number of GNSS satellites occurred (PDOP). This influence is
also visible in the dispersion of the elevation component (Figure 11, comparison km 680)
around kilometer 680. This is classified as not trustworthy.

Regarding the measured antenna heights, a deviation of +/−1 cm is to be expected
when it is attached to the pulkas. Likewise, variations of nearly 0 cm (in good conditions)
to +/−5 cm (in uneven terrain) due to the ground conditions can be seen.

5. Conclusions

Geodetic-glaciological field work for monitoring glaciers and ice sheets is necessary
even in the age of satellite technology. On the one hand, it is for the verification of the
satellite data, but on the other hand, they also provide important results of their own.

The elevation changes determined during the Greenland Korth Expeditions (GKE)
show a continuous melting process since 2002, mainly on the west coast. On the east
side, the amount has increased from 20–40 cm/yr to 40–80 cm/yr. On the west side, the
maximum annual ice loss has increased from 1.7 to 2.7 m/yr. Overall, the ice elevation at
profile kilometer 100 has decreased by more than 35 m since 2002.

It turns out that long-term observations are always needed to make claims about
climate change. Our observations are based on a historically short period of time, about
100 years. Nevertheless, it can be argued that we are now observing an enormous melt-
ing of Arctic ice, especially on the west coast of Greenland. It is not the purpose here
to discuss causes or consequences, although this may have far-reaching implications for
climate change, a possible change in the Gulf Stream, sea level rise and thus a significant
impact on humanity. The aim was to demonstrate the possible link between terrestrial
static or kinematic GNSS measurement and data derived from the GLAS (Geoscience Laser
Altimeter System) device onboard the ICESat-1 satellite and, next, to verify the reliability
and accuracy of the digital surface model based on ICESat-1 satellite measurements. A rela-
tively good agreement was achieved, the differences being due to the different resolutions
and the different terms of observation of the Greenland ice sheet.
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Appendix A

Figure A1. Program flow for kinematic analysis.
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17. Bezděk, A.; Kostelecký, J.; Sebera, J.; Hitziger, T. GNSS Profile from the Greenland Korth Expeditions in the Context of Satellite
Data. Appl. Sci. 2021, 11, 1115. [CrossRef]

18. Riffeler, M. Eishöhenänderung in Grönland zwischen 1912 und 2010. Master’s Thesis, Beuth Hochschule für Technik Berlin,
Berlin, Germany, 2012.

19. Korth, W.; Hitziger, T.; Hofmann, U.; Pavelka, K. Monitoring of surface ice height changes in Greenland. Berichte zur Polar-und
Meeresforschung 716, Polar Systems under Pressure. In Proceedings of the 27th International Polar Conference, Rostock, Germany,
25–29 March 2018; Alfred Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 2018. [CrossRef]

20. Shupe, M.D.; Rex, M.; Blomquist, B.; Persson, P.O.G.; Schmale, J.; Uttal, T.; Althausen, D.; Angot, H.; Archer, S.; Bariteau, L.; et al.
Overview of the MOSAiC expedition: Atmosphere. Elem. Sci. Anthr. 2022, 10, 00060. [CrossRef]
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Abstract: The M6.3 earthquake that occurred in southern Lazio (Central Italy) in 1654 is the strongest
seismic event to have occurred in the area. However, our knowledge about this earthquake is scarce
and no study has been devoted to the individuation of its causative source. The main purpose of this
study is putting together all of the information available for this shock to provide reliable landmarks
to identify its seismic source. To this end, we present and discuss historical, hydrological, geological,
and seismological data, both reviewed and newly acquired. An important, novel part of this study
relies on an analysis of the coseismic hydrological changes associated with the 1654 earthquake
and on the comparison of their distribution with models of the coseismic strain field induced by a
number of potential seismogenic sources. We find more satisfactory results when imposing a lateral
component of slip to the faults investigated. In particular, oblique left-lateral sources display a better
fit between strain and hydrological signatures. Finally, the cross-analysis between the results from
modeling and the other pieces of evidence collected point to the Sora fault, with its trend variability,
as the probable causative source of the 1654 earthquake.

Keywords: historical seismicity; earthquake environmental effects; coseismic hydrological changes;
earthquake source modeling; central Italy

1. Introduction

Motivated by the limited knowledge concerning the M > 6 earthquake of 1654, this
study is an attempt to understand the event that damaged the region of Lazio-Abruzzo
in Central Italy, less than 100 km from Rome and Naples (Figure 1). Records on this
earthquake are available but they are too old for seismogram data and are beyond the age
limit for applying seismological analysis to robust historical documentation, including
recognition of the causative fault that ruptured during the event. For these reasons, the
approach used could not be solely based on direct data so validation through modeling
was used as well.

The study area is located in the Central Apennines, an East verging, fold-and-thrust
belt that developed during the Late Cretaceous to present Africa–Europe plate conver-
gence [1,2]). The present-day landscape and tectonic setting of the region is the result of a
long deformation history, characterized by cyclical extensional and contractional phases [3].
The regional seismicity and fault setting reflects the present-day NE–SW-oriented exten-
sional regime characterizing the Central Apennines [4], with a broad and complex system
of normal faults that dissect the belt and crosscut the pre-existing compressional structures.

Our analysis is based on the different typologies of direct historical coseismic data
and geological/seismological data. Among the historical data, we utilize records extracted
from the available seismic catalogues [5] and the hydrological and geological earthquake
signatures newly acquired and derived from the archival research conducted in this study.
Among the geological data, we take into account the active faults commonly considered as
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potential sources of the 1654 event. With regard to the seismological data, the distribution
and the parameters of the present-day instrumental seismicity are considered.

Figure 1. Epicentral location of the 1654 earthquake (red star). The cities of Rome and Naples are less
than 100 km of distance from the source.

The 1654 earthquake had an MCS intensity of 9–10 and an Me of 6.33+/−0.14 [5], with
the uncertainty in its epicentral location being +/−2.5 km. Although which fault caused this
earthquake is still unknown, the 1654 earthquake occurred in a highly seismogenic region
in Central Italy, which has been struck by medium to large earthquakes in present and
historical times [5], with a ~200-year M6+ earthquakes average regional recurrence time [6].
The main aim of this study is to identify the source of the 1654 earthquake and to provide
suggestions regarding the kinematics of the 1654 rupture mechanism. To this aim, we (1)
modeled the intensity data (Boxer 4.0 code by Gasperini et al. [7], deriving different types
of macroseismic sources; (2) calculated the strain fields imposed by all the potential faults;
(3) analyzed which sources best matched the coseismic hydrological/geological signals
that we collected; and (4) discriminated among the resulting potential faults considering
the seismological imprint of the region as defined by the instrumental seismicity and by
the geometry of the active faults in the area.

2. The 1654 Earthquake: Geological, Seismological, and Macroseismic Context

The earthquake hit during the early hours of the 24th of July, producing destructive effects
(I = 9–10, M = 6.3) [5] over a vast area of the Southern Latium region between Sora and Cassino
and widespread damage on the southern side of the Fucino area (Figures 1 and 2).

The map of the macroseismic intensities extends approximately 25 km from the
epicenter, and the effects are differentiated, mainly because of different geological and
topographical conditions of the villages involved. Six localities were almost completely
destroyed and another twelve were heavily affected by the shock that was felt as far as
Rome and Naples (IV–V MCS intensity). The relatively limited spatial distribution of
the intensities associated with the 1654 earthquake partly reflects the paucity of official
documents and historical sources available for this event. The economic marginality
of the affected area (scarce productive activities, far from the main roads, no relevant
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center damaged) did not encourage the authorities to send investigators (scientists and
technicians) to produce detailed descriptions of the event, neither did the subsequent local
historiography show interest in this seismic disaster. Additionally, the fact that this is a
‘border’ earthquake that occurred between the two former states of the Vatican and the
Kingdom of Naples (Figure 2) may have played a role in the general knowledge of the
event and further investigation could help to extend the map of damage. Despite this
and except for the ancient 1349 M6.8 earthquake of which the location and magnitude are
still debated [8,9], the 1654 Sora event is the most powerful earthquake to have occurred
south of latitude 42◦ S and within 150 km southeast of Rome, representing the local seismic
maximum for the study area (Figure 3).

Figure 2. Map of the Mercalli–Cancani–Sieberg (MCS) intensities of the 1654 earthquake. A black star
indicates the macroseismic epicenter of the event. The dashed line indicates the border between the
two former states of the Vatican (West) and the Kingdom of Naples (East) in the XVII Century, at the
time of the earthquake. Colored boxes are the modeled sources: BF, Balsorano fault; PF, Posta-Fibreno
fault; SFa, Sora fault from ITHACA Working Group [12]; SFb, Sora fault from Boncio et al. [13]; MF,
Macroseismic fault.
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Figure 3. Historical seismicity [5] of the southern Lazio region. The 1654 earthquake is the strongest
event to have occurred in this area, apart from the 1349 event.

Figure 4. M ≥ 2.5 instrumental seismicity from 1985 [10] in the area of the 1654 earthquake (Latitude
41.45–41.90◦, Longitude 13.30–14.00◦). In the inset, we show the parameters of the five M > 4 instru-
mental earthquakes that occurred in the area since 1984. A black star indicates the macroseismic
epicenter of the 1654 event.
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The instrumental seismicity recorded in the area starting from 1985 [10] shows both
low-to-moderate magnitude seismic sequences and diffuse swarm-like events, with the
magnitude ranging from 0.4 to 4.8. Figure 4 reports the instrumental seismicity within
30 km from the 1654 epicenter, along with the focal mechanisms of the five most powerful
(M ≥ 4.1) seismic events in the study area that testify to a predominant normal faulting
with an oblique left-lateral component [10,11].

The 1654 earthquake area contains at least three main active tectonic lineaments [12],
hereinafter referred to as the Balsorano fault (BF), Posta-Fibreno fault (PF), and Sora fault
(SFa and SFb) (Figure 2 and Table 1), that are generally indicated as potential sources for
this event because of their location and geometry. The three faults are closely spaced and
they belong to the western system of active faults of the Central Apennines [13]. They have
a NNW–SSE average strike, dip towards WSW, and dip–slip to normal–oblique kinematics.
They remain poorly investigated and are reported with differences in the mapping due to
uncertainties on their longitudinal continuity, and their characterization is debated among
the authors. Recently, evidence of Upper Pleistocene–Holocene activity has been collected
along the BF and PF [14,15] while direct evidence of recent activity of the SF is unavailable.

Table 1. List of the five potential sources of the 1654 earthquake that represent the input to the
modeling of the coseismic static strain.

Source Length (km) Width (km) Min Depth (km) Max Depth (km) Strike◦ Dip◦ Rake◦ Seismic Moment
(Dyne cm)

Ref.

BF Balsorano 16.0 12.0 1 11.4 134 60 −50/−90/−130 2.9 × 1025 [12]
PF Posta-Fibreno 13.0 10.4 1 10.0 133 60 −50/−90/−130 2.2 × 1025 [12]

SFa Sora 16.6 11.5 1 11.4 125 60 −50/−90/−130 2.9 × 1025 [12]
SFb Sora 17.0 14.4 1 13.5 115 60 −50/−90/−130 3.7 × 1025 [13]

MF
Macroseismic 19.6 10.3 5 13.9 142 60 −50/−90/−130 3.2 × 1025 [7]

3. Effects of the Earthquake on the Natural Environment

The CFTI Catalogue of Strong Earthquakes in Italy [16] reports that this earthquake
had two effects on the natural environment: a wide surface fracturing along Monte Corvo
(M. Corvo) and a large landslide in Roccasecca (Figure 5 and Table 2). We re-positioned
the fracture (number 4) that was misplaced in the Catalogue. In fact, Guidoboni et al. [16]
located the fracture in Pontecorvo whilst the original source reports it at Monte del Corvo,
10 km NW of Sora. The landslide (number 7) reasonably occurred along the steep slope
north of Roccasecca, where a scarf is still visible. We performed an in-depth round of
investigation in local and national libraries and archives to seek new data of this type; the
search in coeval chronicles, letters, and diaries and in later reports allowed us to add five
new observations (Figure 5 and Table 2). Most of these new data concern hydrological
changes that occurred immediately after the event. An increase in the discharge of the Gari
River close to its springs in Cassino (number 1), a decreased and turbid flow of the Liri
River in Isola Liri (numbers 2 and 3), and a decrease in discharge in the Fucino area (number
5) were reported. A fifth significant and previously unknown datum (number 6) derives
from direct observation of fractures affecting the ancient structure of the Cathedral of Sora
and it is indirectly inferred from the analysis of the church reconstruction history [17,18].
Some of the fractures of walls and the basement are preserved and appear aligned and
adjacent to the trace of the SF. Moreover, an intriguing piece of evidence regarding the
Cathedral is that its northwest end (presbyterium) is presently accessed through three steps
as it is higher than the rest of the building [17,18]; however, according to the description of
Bishop Giovannelli in 1618, it does not result in a higher position. This change possibly
reflects a local ground deformation corresponding to the fractured zone.
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Figure 5. Distribution of the effects of the 1654 earthquake on the natural environment (see Table 1
and text for the description of the effects). Colored boxes are the modeled sources: BF, Balsorano
fault; PF, Posta-Fibreno fault; SFa, Sora fault from ITHACA Working Group [12]; SFb, Sora fault from
Boncio et al. [13]; MF, Macroseismic fault.

Table 2. List of the effects observed in the natural environment following the 1654 earthquake
(progressive number corresponds to Figure 5). The epicentral distance is calculated from the location
of the Italian seismic Catalogue (red star in Figure 1) [5].

No Locality Lat◦ Lon◦ Epic. dist. (km) Effects References

1 Cassino 41.480 13.832 21.2
Increase in

discharge of Gari
springs

[19,20]

2 Isola del Liri 41.680 13.574 10.5 Decrease in flow
from Liri River [21]

3 Isola del Liri 41.678 13.571 10.6 Turbid water from
Liri River [21]

4 M. Corvo 41.772 13.468 23.5 Wide surface
fracturing [16,19,20]

5 Luco dei Marsi 41.973 14.461 41.8

Chasms and
lowering of waters
in the Fucino Lake

area

[22]

6 Sora 41.723 13.615 11.3

Inferred coseismic
fracturing in the
flooring of the

Cathedral

[17,18]

7 Roccasecca 41.554 13.669 9.1 Landslide [16,23]
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4. Source Modeling

The scarcity of records belonging to the 1654 event is reasonably due to the ca. 350-year
age of the earthquake itself, more than due to the real absence of effects on the landscape
and villages. However, we are still able to use the collected records to infer the 1654 source
parameters. Indeed, an analysis of the geographic distribution and the type of earthquake
effect (i.e., building damage, ground failures, and hydrological change) is a way to provide
constraints on both the fault location and the deformation style.

In particular, the coseismic hydrological changes (increase or decrease in the discharge
of springs and streamflows, the water level in wells, turbid flow from springs and rivers,
and liquefaction) can be a valid alternative method to provide further constraints to esti-
mate (or to confirm related hypotheses) the faulting style of major historical earthquakes of
which the seismogenic source is unknown or in dispute, as is the case of the 1654 earthquake.
The basic rationale is that such hydrological variations are explained by the coseismic static
strain and pore pressure changes predicted by the poroelastic theory, as first proposed
by Wakita [24]. Following this theory, an earthquake imposes a coseismic strain field that
causes rocks to dilate or contract; the opening or closing of saturated cracks in rocks result
in decreases or increases in the ground water discharge from springs and streams. The
amplitude of the hydrological changes is proportional to the volumetric strain field, so that
the groundwater discharge increases in areas that contract and decreases in areas that ex-
tend. Following this rationale, in recent decades, the character of the coseismic hydrological
changes has often been found to be related to the style of faulting (Cucci [25] and references
therein). The most important caveat regarding the use of hydrological changes in this kind
of study is that local precipitation can influence the effect that is observed and it must be
carefully investigated. In the case of the 1654 earthquake, the available reports confirm the
absence of rainfall in the days preceding the event, which is reasonable as the earthquake
occurred at the end of July—the driest period in peninsular Italy. For a complete review of
the application and of the limits of this theory in seismogenic studies, see Cucci [25]. It is
possible now to perform the calculations of the coseismic strain for the 1654 earthquake
produced by the potential sources listed in Table 1 to verify the best fault solution fitting
with the observed hydrological and geological effects. The static strain change induced
by an earthquake can be calculated using a fault dislocation model. The calculations of
the strain were made in an elastic half-space with uniform isotropic elastic properties
following Okada [26], and using Coulomb 3.4 [27,28]. In particular, we investigated the
deformation imposed by the BF, SFa, and PF [12] and by the Sora fault as proposed by
Boncio et al. [13], referred to as SFb. The fifth modeled source (macroseismic fault, referred
as MF) is derived from Boxer 4.0 [7], a code that computes the quantitative parameters of
earthquakes from the inversion of macroseismic intensity data, which is routinely used
for the parametrization of the historical events of the Catalogue. The considered faults
are generally reported by the authors with dip–slip to normal–oblique kinematics; this is
also confirmed by the focal mechanisms displayed in Figure 4. Thus, we first performed
our modeling on pure normal sources (rake −90◦, Figure 6a–e); then, a second round of
calculation was carried out considering left-lateral oblique slip (rake −50◦, Figure 6f–i,l).
Finally, we tested the strain calculations on a set of normal sources with oblique right-lateral
slip component (rake −130◦, Figure 6m–q). The outputs of our calculations are plots of the
volumetric strain at the free surface on the five selected individual sources; the plots are
shown in Figure 6. We expect to find an increase in discharge in areas of compressional
strain and a decrease in discharge in areas of dilatational strain.
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Figure 6. Comparison between the calculated coseismic strain fields along five potential sources and
the observed hydrological effects produced by the 1654 earthquake. The calculation of strain was
made using Coulomb 3.4 [27,28]. Plots ‘(a–e)’ show the calculations for normal sources (rake −90◦),
plots ‘(f–i,l)’ show the calculations for oblique left-lateral sources (rake −50◦), and plots ‘(m–q)’ show
the calculations for oblique right-lateral sources (rake −130◦). In the plots of strain, blue shading
indicates areas in compression and red shading indicates areas in dilatation. Units: 10−5. A red
rectangle indicates the surface projection of the fault plane; a green line is the intersection of the updip
projection of the fault with the surface. Streamflow changes are indicated by circles (black/discharge
increase; white/discharge decrease).

5. Results and Discussion

A total of 15 plots of the volumetric strain at the free surface have been computed for the
modeled faults, inferring a different sense of slip (Figure 6a–q). Being inferred by inversions
of intensity data, the source MF (Figure 6e,l,q) obviously shows a good fit with the map
of intensities and the location of the earthquake. However, the performance of the strain
modeling of this source is limited, with no agreement between observed hydrological changes
and the expected pattern of strain, independent of the style of faulting adopted. Additionally,
there is no close association between the location of this source and the distribution of the
other effects observed following the earthquake, all located northwest of the fault. When we
impose pure normal kinematics to all of the seismogenic sources investigated (Figure 6a–e),
we obtain a limited agreement between the predicted pattern of strain and the location of the
hydrological changes. In particular, the noticeable increase in discharge of the Gari springs
observed in Cassino constantly falls in an area of expected dilatation. Conversely, if we
impose a lateral component of the slip on the five sources, we find more satisfactory solutions
for data merging. In general, oblique left-lateral sources display a better fit between strain
and hydrological signatures; in particular, PF (Figure 6h) and SF (Figure 6g,i) show the best
fit for the observations in Cassino (increase in discharge/expected compression) and Isola
Liri (decrease in discharge/expected dilatation).

The potential source of the 1654 earthquake is inferred through the cross-analysis
between the results from modeling and the other pieces of evidence described above (see
chapter 3). Though there is a fairly good fit from strain modeling shown by the Balsorano
fault with rake −130◦ (only for the two observations in Isola Liri, Figure 6m), we exclude
this source from the group of most likely causative faults of the 1654 earthquake because
(1) there is no agreement between its location and the map of the intensities (see Figure 2);
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(2) oblique-right lateral source seems to be an infrequent style of faulting in this sector
of the Central Apennines based on seismological and geodetic data [11,29]; and (3) the
epicenter of the 1654 quake is located 15 km from the southern tip of the BF. With regard to
the Posta-Fibreno fault, its location fits better than the Balsorano fault when compared with
the 1654 epicenter and distribution of macroseismic intensities, and an oblique left-lateral
sense of slip along this fault (Figure 6h) displays a good fit with the distribution of the
hydrological changes (effects 1, 2, and 3 in Figure 5 and Table 1). However, given the
present mapping, the magnitude of a seismic event along this fault (M6.1–6.2, see also
Table 2) would be underestimated when compared with the M6.3 magnitude presently
reported for the 1654 event in the Catalogue (see Table 2). The results from the strain
calculations suggest that the Sora fault, when modeled with a left-lateral component of slip,
is the most probable candidate fault of the 1654 earthquake. In particular, the SFb source as
traced in Boncio et al. [13] fits the most outstanding hydrological observations at Cassino
and Isola del Liri as well as the evidence of fractures (effects 1, 2, 3, 4, and 6 respectively,
in Figure 5 and Table 1). It is worth noting that the fractures we newly found at the Sora
Cathedral would be located in the very near fault. Moreover, the magnitude of a seismic
event along this source would coincide with the magnitude 6.3 quoted in the Catalogue for
the 1654 earthquake.

6. Conclusions

As stated at the beginning of this manuscript, this study represents a first effort to
search for new data, to merge the available information for an earthquake never studied
despite its magnitude and heavy effects on the territory, and to provide some reliable
landmarks for the individuation of its seismic source.

We collected five novel 1654 coseismic effects on the natural environment concerning
hydrological changes (increase in discharge from a spring in Cassino and decrease in flow
from Liri river in Isola Liri) and coseismic fracturing in Sora. We also shifted almost 40 km
farther NNW and re-positioned one of the effects already documented (coseismic fracturing
in Monte Corvo), thus enriching the picture of the natural and anthropic coseismic impact.
Though it is a difficult task, due to the age of the event, the retrieval of further data on
damage and natural effect as well as detailing of the fracturing would possibly consolidate
the earthquake scenario and then support the source modeling.

In summary, the scenarios modeled on the basis of the collected evidence point to
the Sora fault, with its trend variability, as the most probable candidate as the causative
source of the 1654 event. However, the results of our model do not rule out the possibility
of a complex fault rupture during the 1654 event, such as fault linkage between the Sora
fault and the adjacent Posta-Fibreno fault, and possible slip along this latter source. The
1654 earthquake would be the most recent M ≥ 5.5 event along the Sora fault since no
earlier damaging earthquake is reported in the historical catalogue for this area of study.
Based on these reasons and on our results, the Balsorano fault would be silent for similar
energetic events, raising its potential to generate a damaging earthquake in the area.
Finally, this study confirms that the hydrological signatures of earthquake strains and field
observations are valid supplemental data for estimating geometry and fault style even
for early earthquakes limited by historical memory and historical reports, and they help
to isolate the fault source within an active dense and complex system such as that of the
Central Apennines.
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Abstract: In the presented study, multi-parameter inversion in the presence of attenuation is used
for the reconstruction of the P- and the S- wave velocities and the density models of a synthetic
shallow subsurface structure that contains a dipping high-velocity layer near the surface with varying
thicknesses. The problem of high-velocity layers also complicates selection of an appropriate initial
velocity model. The forward problem is solved with the finite difference, and the inverse problem is
solved with the preconditioned conjugate gradient. We used also the adjoint wavefield approach
for computing the gradient of the misfit function without explicitly build the sensitivity matrix. The
proposed method is capable of either minimizing the least-squares norm of the data misfit or use the
Born approximation for estimating partial derivative wavefields. It depends on which characteristics
of the recorded data—such as amplitude, phase, logarithm of the complex-valued data, envelope
in the misfit, or the linearization procedure of the inverse problem—are used. It showed that by a
pseudo-viscoelastic time-domain full-waveform inversion, structures below the high-velocity layer
can be imaged. However, by inverting attenuation of P- and S- waves simultaneously with the
velocities and mass density, better results would be obtained.

Keywords: complex velocity model; full waveform inversion; wave attenuation; preconditioned
conjugate gradient; vibroseis sources

1. Introduction

Imaging of geological complex structures in the subsurface can be used for geotech-
nical site characterization by geophysical methods. The term ‘complex’ is used for those
subsurface earth models which cannot be easily imaged by conventional seismic imag-
ing methods due to their complex velocity structures or geometry. Examples of complex
structures can be steep dipping beds, intensive faulted or folded media, and earth models
with strong velocity changes. In addition, the near-surface velocity anomalies can increase
complexity of imaging problems, mostly due to the complexity in the simulation of the
seismic wave propagation, or in other words, the complication caused by the propagation
of the body waves through the complex near-surface layers [1]. The most realistic of such
situations is the near-surface salt layers which can or cannot play a role as the caprock
for petroleum reservoirs. In those cases, the fluids trapped in the layers beneath the salt
have considerable effects on the elastic properties of the subsurface media. The better these
properties are modeled, the more accurate an image of the subsurface will be obtained.

Conventional seismic imaging methods are no more reliable in solving imaging prob-
lems raised from complex geological media. High quality seismic imaging is needed in
most exploration studies such as gas storage projects, geological hazard, CO2 storage
projects in target finding and monitoring, and also in geothermal resources. To obtain
a high-quality seismic image, further investigation of obstacles to obtaining reasonable
seismic images and developing reliable imaging methods are required. Considering the
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problems of seismic imaging in complex media, it was stated that poor seismic images
from different regions mostly resulted from the application of inappropriate imaging al-
gorithms [2]. The minor concerns were related to the data acquisition problems due to
harsh topography, but the major issues are rooted in extreme complexity in subsurface
media and poor quality in signal to noise ratio (SNR) [3]. The former could be resolved by
adequate acquisition; however, the later requires deep investigation on developing proper
imaging tools. In one study, it was proposed resolving obstacle partially by the common
reflection surface (CRS) and the normal incidence point (NIP) tomography method [4].
However, the CRS still suffers in handling strong lateral velocity changes or geologically
complicated media [5]. The reverse time migration (RTM) and the full waveform inversion
(FWI) methods, as the latest introduced methods, deal with a vast majority of problems in
seismic imaging [6,7]. However, these methods are still present issues in application to large
field datasets, poor quality data with shortage in frequency content, and low SNR in the low
frequency part of the data [8]. Challenges for FWI land applications consist of addressing
the wavefield propagation from rough topography, low SNR of the low-frequency data, and
determination of an appropriate source wavelet throughout the iterations by improving
the velocities and model parameters [9].

The FWI employs an iterative procedure that is based on a forward modeling and
inversion procedure to find the optimal parameters [10,11]. Some studies have been carried
out to show the efficiency of FWI in the imaging of complex media [7], presented the
application of the FWI method in the frequency domain on the wide-aperture onshore
seismic data with a complex geological setting (thrust belt) [12], and applied the elastic
frequency-domain FWI to the synthetic onshore Marmousi2 model [13]. They implemented
a velocity-gradient starting model and a very low starting frequency to image the complex
structure model. Reference [14] also tested the application of this strategy to the offshore
versions of the synthetic Marmousi2 model. They successfully imaged the complex model
using their strategy. Reference [8] presented a parallel 2D elastic frequency-domain FWI
algorithm based on a discontinuous forward problem [15] that was applied to a realistic
synthetic onshore case study. They obtained a high-resolution P- and S- wave velocity of the
complex onshore structure using a joint inversion of the surface and body waves recorded
by a wide aperture acquisition geometry. Reference [16] studied the application of the FWI
method in the time-domain on the problem of subsalt imaging with the modified Flood-
ing Technique and showed the difference between the results of elastic and acoustic FWI
methods. These differences reveal that the result of the acoustic FWI algorithm on elastic
data for the subsalt imaging problem is not reliable. The application of the multi-parameter
viscoelastic FWI using a frequency-domain on synthetic data example was proved by [17].
The low-order finite element discontinuous Galerkin method was used to solve the for-
ward problem which can be a good option when studying the complex topographies and
high-velocity contrasts, and the quasi-Newton L-BFGS optimization was implemented
to estimate the inverse of the Hessian matrix in order to decrease the computational cost
and improve the reconstruction of the velocities, density, and attenuation parameters.
Reference [9] implemented the FWI-SIMAT algorithm to investigate the capability of the
acoustic FWI in the reconstruction of the Marmousi velocity model both in the time and
frequency domain. Reference [18] used a developed FWI method in which a two-stage
sequential approach (SFWI) was tested on the field datasets recorded in the Black Sea and
in the shallow-water area of a river delta in the Atlantic Ocean to obtain detailed subsurface
images containing rock formations that might be potential gas deposits. Most applications
of the FWI methods on complex structures have been performed in the frequency domain
or ignored seismic wave attenuation. Ignoring the viscous effect of the propagation media
provides an unrealistic reconstructed S- wave velocity model, especially in the study of the
complex geologic media [19]. Reference [20] showed that taking key elements properly
into account, FWI produces a reliable high-resolution near-surface model that could not
be otherwise recovered through traditional methods. Although few attempts have been
reported that incorporate FWI for land studies [18]; however, they were convincing in
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providing acceptable seismic image. Therefore, it is supposed that deriving a processing
workflow modified for accurate imaging of seismic data from complex regions would be
promising in resolving the problem of low SNR and strong lateral velocity changes due to
complexity in wave propagation media.

2. Problem Statement

It was shown that seismic imaging in seismic data with above mentioned properties is
technically a challenging task due to several reasons. The first is complexity of the media.
These complexities will introduce lateral velocity changes, make reduction in quality of
data and reduce SNR of data. These problems prevent application of conventional imaging
methods and require advanced methods, such as RTM and FWI, to be modified accordingly.
The FWI method estimates subsurface properties affecting the seismic wave-field via
minimizing the field data and synthetic seismogram generated from forward modeling. An
ultimate FWI method should take attenuation and dispersions into account, which means
considering the wave propagation medium as a viscoelastic medium. An appropriate choice
of model parameterization is also very important in viscoelastic FWI. Various approaches
are presented for FWI in viscous media in the frequency and time domain [21]. Shot
parallelization, variable grids in the near future and better free surface implementation are
also other compatibilities of an appropriate FWI method. Obviously, to make the inversion
process converge to the correct and accurate response, the initial velocity model needs
to be close enough to the real field velocity model. The focal issue here is to resolve the
problem of imaging on data which contains a high-velocity layer and causes less energy of
transmitted wavefield reach to the structures under this layer. Presence of steep dips, low
SNR, and energy absorption by thick layers of evaporites—which dramatically reduce the
quality of images in deeper parts—are obstacles in obtaining high quality images. Since
the data suffer from reduction in quality due also to faults and variations in the thickness
of the high-velocity layer, it is required that the FWI method modified accordingly in
considering attenuation and wavelet estimations [22]. The lateral velocity changes due
to the evaporites will reduce the sensitivity of the FWI method in reconstruction of the
velocity models. Therefore, it is important to define appropriate initial velocity models.
Furthermore, since the FWI package of the Karlsruhe institute of technology (KIT) could
model the viscoelastic properties of the media in wave propagation simulation, it is assumed
that the data quality will increase in regions with above mentioned problem [23]. The
model parameterization and discretization of the media is also challenging in application
of FWI method in such regions. Discretization should be flexible and appropriate for
boundaries of abrupt changes in elastic properties of the media, which is the result of
complex mud intrusions [24]. This complexity will also introduce problems in model
parameterization, which needs to be optimized via parameter analysis. In this study, the
performance of the 2D pseudo-viscoelastic FWI proposed by [20] to image a synthetic
model with velocity complexity is investigated. A time-domain multi-parameter FWI is
applied to reconstruct the P- wave velocity, S- wave velocity, and density models. The
forward problem is solved using the finite difference method (FD) and the viscoelastic
wave equation is discretized considering the convolutional perfectly matched layers (PMLs)
absorbing boundary condition to prevent the edge effects. To solve the inverse problem,
the preconditioned conjugate gradient (PCG) is used. The gradients are computed with the
adjoint-state method. A simple model generated by the 1D linear gradient is considered as
the initial model.

95



Appl. Sci. 2022, 12, 7741

3. Theory

3.1. Forward problem

In this study, the stress–velocity equation of the wave equation in the time domain in
an anisotropic viscoelastic medium with rheology described by a GSLS [25,26] is taken to
solve the forward problem [27,28]:

ρ
∂νi
∂t

=
∂σij

∂xj
+ fi (1)

.
σij =

∂νk
∂xk

{M(1 + τp)− 2μ(1 + τs)}+ 2
∂νi
∂xj

μ(1 + τs) +
L

∑
l=1

rijl i f i = j, (2)

.
σij =

(
∂νi
∂xj

+
∂νj

∂xi

)
μ(1 + τs) +

L

∑
l=1

rijl i f i �= j (3)

.
rijl = − 1

τσl

{
(Mτp − 2μτs)

∂νk
∂xk

+ 2
∂νi
∂xj

μτs + rijl

}
i f i = j, (4)

.
rijl = − 1

τσl

{
(Mτs

[
∂νi
∂xj

+
∂νj

∂xi

]
+ rijl

}
i f i �= j. (5)

where σij denotes the i jth component of the stress tensor, νi denotes the components of
particle velocity, fi is the components of external body force, ρ is density, M is the P- wave
modulus, and μ is the S- wave modulus. rijl denotes the L memory variables (l = 1, . . . , L)
which correspond to the stress tensor σij, τσl , are the L stress relaxation times for P- and S-
waves and τp, τs are the level of attenuation for P- and S- waves respectively. It is necessary
to mention that the dot over symbols indicates partial differentiation with respect to time.
The attenuation of rocks is defined by the seismic quality factor (Q):

Q(ω, τσl , τ) =
1 + ∑L

l=1
ω2τ2

σl
1+ω2τ2

σl
τ

∑L
l=1

ωτσl
1+ω2τ2

σl
τ

(6)

where ω is the angular frequency, and the variable τ denotes

τ =
τεl
τσl

(7)

where τσl is the stress relaxation time, and τεl is the strain retardation time for the lth
Maxwell body of the GSLS. With Equation (6), L + 1 parameters τσl , τ are obtained that
describe a constant Q-spectrum within a limited frequency range by a limited number
of Maxwell bodies [27]. The forward problem is solved by using a time-domain two-
dimensional second order FD operator in time and space on a staggered grid [27]. To reduce
the edge effects and reflections at the boundaries the CPMLs are implemented [29,30].

3.2. Inverse Problem

FWI is a non-linear optimization problem that needs an appropriate objective function
to be minimized. The L2-norm of the data residuals as the objective function E is used in
the presented study [28,31].

E =
ns

∑
s=1

nr

∑
r=1

nc

∑
j=1

∫ T

0

(
dj

(→
x s,

→
x r, t

)
, sj

(→
x s,

→
x r, t, m

))2
dt (8)

where dj denotes the observed data, and sj is the synthetic data at receiver r at point
→
x r. ns and nr are the number of sources and receivers respectively. nc is the number of

96



Appl. Sci. 2022, 12, 7741

components and T is the recording time. The PCG method [32] is implemented to minimize
the objective function by iteratively updating the model parameters m along the conjugate
direction δcn

δcn = δmn + βnδcn−1 (9)

At the first iteration step (n = 1), the model is updated along the steepest descent direction

m2 = m1 + μ1δm1 (10)

The model is updated along the conjugate direction in all subsequent steps (n > 1)

mn+1 = mn + μnδcn (11)

where δc1 = δm1. μn denotes the step length that is estimated by a parabolic line search
method [33–36]. The weighting factor beta is calculated using the Polak–Ribiere formulation:

βPR
n =

δmT
n (δmn − δmn−1)

δmT
n−1δmn−1

(12)

δmn = ∂E
∂m denotes the gradients of material parameters that can be calculated using the

adjoint state method [28,32,37,38]. The model parameters can be density ρ and unrelaxed P-
and S-wave moduli πu, μu for a viscoelastic medium assuming a constant a priori known
quality factor Q. The gradients of the misfit function for the unrelaxed moduli of a grid cell

at a point x
→
′′

can be calculated by a zero-lag cross-correlation of the forward propagated s
and the adjoint wavefield s† are approximated [28].
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The parametrization considered in this study is (ρ, Vp, Vs). The gradients are calcu-
lated for these parameters using the chain rule. To change the parametrization from the
parameters (ρ, πu, μu) to (ρ, Vp, Vs) one can apply the chain rule according to the relations
of unrelaxed moduli with the unrelaxed Lamé parameters (ρ′, λ′

u, μ′
u) and seismic velocity

parameters respectively (Equations (16) and (20)).

ρ = ρ′, πu = λ′
u + 2μ′

u, and μu = μ′
u (16)

The gradients for density and Lamé parameters can be expressed by

∂E
∂ρ′

=
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with the relations

ρ′ = ρ and v′p =
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ρ
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It is worth noting that an approximated Hessian (after [39]) is applied as an appropriate
preconditioning operator P to the gradient δm before updating the model parameters. The
Hessian is calculated for each shot individually and will be applied to the gradient from
each shot directly. A multi-scale inversion strategy is implemented to reduce the high
nonlinearity at the beginning of the inversion and pass the cycle skipping problem [40].

4. Synthetic Data Example

In this section, a synthetic example is performed to investigate the capability of 2D
pseudo-viscoelastic FWI in the time domain to image shallow complex structures using
IFOS2D. The true model used to simulate the observed data for three parameters (P- wave
and S- wave velocity model and density model) is generated inspired by a real model
located in Iran, which contains large synclinal shape of evaporite layers with very high
velocity, faulted in the left side and the thickness of the high-velocity layers varies through
the section. The seismic velocity of this evaporite layers is between 3840 and 5420 m/s,
according to the percent of the containing salt compare to anhydrite, depth and thickness
of the layer, which is in the range investigated in different studies [41,42]. The surrounding
carbonate and shale layers show velocities around 2800–3420 m/s. The main problem in
the seismic data with the abovementioned problem is to image target layers below the
high-velocity layer, which is supposed to be resolved by FWI method. Therefore, in our
study, in the first step, we tried to build a synthetic model with same geometry and shape of
the high-velocity layer. In the next step, we tried to select velocities for each layer according
to the real velocity of the media. In this step, since the provided forward and reverse codes
for FWI in this study are mainly used for near-surface data, rather than deep seismic; so to
prevent instability in analysis, we scaled down all the velocities of the layers in the model
with a constant value. Therefore, we modeled the high-velocity layer near the surface with
velocity close to 600 m/s. It should not be considered as the real high-velocity layers in
deep earth, but a downscaled version of that.

Due to high velocity, propagation of the surface and body waves through the complex
near-surface layers would be more complicated. This example can test the capability of
the FWI to image a complex velocity structure. The model space has a size of 400 grid
points in the horizontal direction and 160 grid points in the vertical direction. Therefore,
the actual dimension would be 50 × 20 m considering a grid spacing of 0.125 m. A total of
19 shots and a total of 73 receivers located at the constant depth of 0.2 m that record both
horizontal and vertical components are used. A cubed sine wavelet with a center frequency
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of 31.25 Hz generated by a hammer source is used as the source signal. The CPML frame is
marked by the black dashed line. A viscoelastic medium is considered in this example and
approximated a constant quality factor of Qs = Qp = 20 in the analyzed frequency band
up to 60 Hz (a high-cut frequency filter of 10, 20, 30, 40, 50, and 60 Hz is used in stages)
with three relaxation mechanisms of a generalized standard linear solid. A minimum of
five iterations are taken into account at each stage. A 1D linear gradient is used to build the
background of the true model and the background is considered as the initial model for
each parameter in inversion. All models are updated simultaneously during inversion. It is
worth mentioning that the true and initial velocity models are built with a vp

vs
ratio of 1.5

and a total propagation time of 0.6 s is considered. Initially, we tried the Vp/Vs ratio of 1.5
because it is the minimum ratio which can be used as a reasonable value for sediments or
soft rocks near the surface. In the following, we have selected the Vp/Vs ratio of 2.5 which
is more realistic for our example. The PCG is carried out to solve the inverse problem.

5. Results

In this study, 314 iteration steps are calculated, and the inversion takes about 10 h
when using a system with four cores with 3.1 GHz speed and 16 Gb of ram. The true,
initial, and inverted P- wave velocity models are shown in Figure 1. The same order is
given, for the S- wave velocity and density models in Figures 2 and 3, respectively. Figure 4
shows the vertical profiles through the P- wave and S- wave velocity and density models
that are considered to compare the results with the true model in more detail. Vertical
profiles through the models are obtained at x = 25 m. The reconstructed models are in
good accordance with the true models, especially for the S- wave velocity model. In the
inverted S- wave velocity model, the upper edge of the high-velocity layer can be seen
more sharply compared to the two other models. The bottom edge of the high-velocity
layer is reconstructed in each model but not in the accurate location. Some artifacts are seen
in the low-velocity zone of the density and P- wave velocity models. Regarding the low
sensitivity of surface waves with respect to the P- wave velocity and density model [41],
inaccurate results of inversion for the P- wave velocity and density models can be expected,
also because the amplitude of surface waves is much higher than the amplitude of P- waves.
The sensitivity of surface waves with respect to the P- waves is low and it leads to an
inaccurate P- wave velocity model at each iteration step.

Because the density model is in relation to the P- wave velocity model using an
empirical relation. Therefore, it affects the density model and the result of these two models
is not as accurate as of the inverted S- wave velocity model [42].

To assess the results precisely, the final synthetic shot gathers are compared with the
observed data. The vertical velocity seismogram of the shot at x = 9 m is obtained and the
seismograms for the initial models are calculated for trace 36 of the shot and compared
with the seismogram of the observed and inverted model. The comparison of the synthetic
and observed seismograms of the shot at x = 9 m is shown in Figure 5a and the comparison
of the initial, observed, and inverted data for trace 36 at this shot is shown in Figure 5b.
Each seismogram is normalized to its maximum amplitude. The comparison of the initial
and inverted data indicates the good performance of the inversion method and application
of the software IFOS2D (Inversion of Full Observed Seismograms (2D)) in reconstructing
model parameters. The calculated data agreeably fit the observed data. Therefore, the
inversion result is a model which better explains the observed data. In the following, the
true and initial models are built considering the vp

vs
ratio of 2.5 that is more realistic in the

case of studying the soft rocks near the surface. In this case, due to the increase in the
velocity values, the wavelengths propagated through the medium are increased and the
resolution is influenced by the wavelength. The high-velocity layer is not resolved with
the P- wave velocity model. Therefore, to reconstruct the model, a broad bandwidth of
the source signal is needed. A broad bandwidth signal cannot be generated by a hammer
source, thus a vibroseis source can be used to generate a signal which has a higher center
frequency and covers a broader frequency range than a cubed sine wavelet [43,44]. Since a
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Ricker wavelet is similar to a Klauder wavelet generated by vibroseis source and is used in
the synthetic seismic modeling, in the following a Ricker wavelet with a center frequency
of 50 Hz is considered as the source signal.

Figure 1. Multi-parameter synthetic example when using a low-frequency source signal: (a) the true
P- wave velocity model for the calculation of the observed data, (b) the initial P- wave velocity model,
and (c) the inverted P- wave velocity model. The CPML frame is marked by a thin black line.

Figure 2. Multi-parameter synthetic example when using a low-frequency source signal: (a) the true
S- wave velocity model for the calculation of the observed data, (b) the initial S- wave velocity model,
and (c) the inverted S- wave velocity model. The CPML frame is marked by a thin black line.
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Figure 3. Multi-parameter synthetic example when using a low-frequency source signal: (a) the
true density model for the calculation of the observed data, (b) the initial density model, and (c) the
inverted density model. The CPML frame is marked by a thin black line.

Figure 4. Model fitting when using a low-frequency source signal: (a) vertical profiles of the P- wave
velocity model, (b) vertical profiles of the S- wave velocity model, and (c) vertical profiles of the
density model. The true model is plotted with the grey line, the initial model is represented by the
dashed black line and vertical profile at x = 25 m of the inverted models is the plotted blue line.

101



Appl. Sci. 2022, 12, 7741

Figure 5. Fitting of the data in the shot at x = 9 m when using a low-frequency source signal.
(a) Comparison of the vertical velocity observed and inverted seismograms. (b) Comparison of the
normalized seismograms calculated for the initial, inverted, and observed data for trace 36.

Therefore, it can be said that in this study by considering a broad bandwidth signal
as the source wavelet, the capability of the multi-parameter pseudo-viscoelastic FWI
of the shallow-seismic wavefield is tested in the case of using a vibroseis source, too.
A reflector is then added to the bottom of the true models (Figures 6a, 7a and 8a) at
the depth of 15 m. A 1D model is also used for the initial and background of the true
models (Figures 6b, 7b and 8b). Multi-parameter inversion is conducted for the parameters
discretized at a 2D cartesian grid with the same grid spacing and the total propagation
time as were used in the previous example. The high cut frequency filter, up to 100 Hz
is applied progressively in the multi-scale strategy. In order to reduce the computational
time, the number of receivers was reduced to 66 and the total of shots used in this test
is 17. This test takes about 11 hours, and 317 iteration steps are calculated by using the
same system as used in the previous test. In this example, the inverted S- wave velocity
model (Figure 7c), is still better reconstructed than the P- wave velocity (Figure 6c) and the
density (8c) models. The high-velocity layer is reconstructed sharper and more accurate
compared to the inverted S- wave velocity model in the previous test. As can be seen in
the vertical profile obtained for this model in Figure 9b, the velocity value of the high-
velocity layer matches the value of the true high-velocity layer robustly. The velocity
value of the low-velocity zone is obtained precisely too. There is an improvement in the
results of inversion of the P- wave velocity and density models. As the artefacts in the
low-velocity zone are decreased. In the presence of the reflector at the bottom of the model,
the structure beneath the high-velocity layer is resolved with higher quality and resolution.
In other words, the artefacts at the dipper parts of the models are significantly decreased
too. Similar to the previous example, the final synthetic data nicely fits the observed data
(Figure 10a). According to the zoomed comparison of the initial and inverted data for trace
36 (Figure 10b), misfit of the inverted and observed data is low.
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Figure 6. Multi-parameter synthetic example when using a high-frequency source signal: (a) the true
P- wave velocity model for the calculation of the observed data, (b) the initial P- wave velocity model,
and (c) the inverted P- wave velocity model. The CPML frame is marked by a thin black line.

Figure 7. Multi-parameter synthetic example when using a high-frequency source signal: (a) the true
S- wave velocity model for the calculation of the observed data, (b) the initial S- wave velocity model,
and (c) the inverted S- wave velocity model. The CPML frame is marked by a thin black line.
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Figure 8. Multi-parameter synthetic example when using a high-frequency source signal: (a) the
true density model for the calculation of the observed data, (b) the initial density model, and (c) the
inverted density model. The CPML frame is marked by a thin black line.

Figure 9. Model fitting when using a high-frequency source signal: (a) vertical profiles of the P- wave
velocity model, (b) vertical profiles of the S- wave velocity model, (c) vertical profiles of the density
model. The true model is plotted with the grey line, the initial model is represented by the dashed
black line and vertical profile at x = 25 m of the inverted models is the plotted blue line.
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Figure 10. Fitting of the data in the shot at x = 9 m when using a high-frequency source signal.
(a) Comparison of the vertical velocity observed and inverted seismograms. (b) Comparison of the
normalized seismograms calculated for the initial, inverted, and observed data for trace 36.

6. Conclusions

In this study, a 2D multi-parameter pseudo-viscoelastic time domain is applied to a
synthetic shallow complex velocity model where a dipping high-velocity layer near the
surface with varying thicknesses is used as the case study and both surface and body waves
are present. Investigation of these problems requires consideration of various aspects in the
presented FWI methods. Some of these aspects that need to be considered in this workflow
could be noise contamination, initial velocity model building, elastic and viscoelastic effects,
Q factor estimation, and handling long offsets. The other concern about the presented FWI
is the convergence speed and computational time of both the forward and inverse steps.
Obviously, the size of the velocity model and observed data for near-surface application
is not comparable with deep reflection data. The forward modeling step for generating
synthetically predicted data from the initial model, back propagation, and computing
the gradient, are time consuming steps in the proposed strategy. Thus, to speed up the
processing time and increase the converge speed, the nonlinear conjugate gradient method
was used. Defining the order of the finite difference operator, discretization, built-in
wavelet, Q factor approximation, optimization method, and boundary condition definitions
also need to be considered. The first synthetic example shows that when the velocity
values in the model are not high, P- wave and S- wave velocity, and density models can
be reconstructed well using a low frequency source signal. When the velocity values in
the model are higher, the high-velocity layer cannot be resolved with the P- wave velocity
model because of the large p-wavelength propagated through the medium. Therefore,
the use of a wavelet with a broader bandwidth and higher center frequency can be the
solution. In the second experiment, a Ricker wavelet is used to fulfill this issue. Both
experiments provide satisfactory and reasonable results as the high-velocity layer near the
surface is fairly reconstructed and the structures below this layer are also partially imaged.
Reconstruction of the S- wave velocity model is more reliable and accurate compared to
p-wave velocity and density models, due to less sensitivity of the surface waves with
respect to the P- wave velocity and density parameters. This issue needs to be studied
and improved in the future. However, it should be noted that a better image of subsurface
structures would be obtained if attenuation of P- and S- waves are inverted simultaneously
with the model parameters.
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Abstract: The three aftershock sequences that occurred in Al Hoceima, Morocco, in May 1994
(Mw 6.0), February 2004 (Mw 6.4) and January 2016 (Mw 6.3) were stochastically modeled to in-
vestigate their temporal and energetic behavior. A form of the restricted trigger model known as
the restricted epidemic type aftershock sequence (RETAS) was used for the temporal analysis of
the selected series. The best-determined fit models for each sequence differ based on the Akaike
information criteria. The revealed discrepancies suggest that, although the activated fault systems
are close (within 10 to 20 km), their stress regimes change and shift across each series. In addition, a
stochastic model was presented to study the strain release following a specific strong earthquake. This
model was constructed using a compound Poisson process and depicted the progression of the strain
release during the aftershock sequence. The proposed model was then applied to the data. After
the RETAS model was used to evaluate the behavior of the aftershock decay rate, the best-fit model
was obtained and integrated into the strain-release stochastic analysis. By detecting the potential
disparities between the observed data and model, the applied stochastic model of strain release
allows for a more comprehensive examination. Furthermore, comparing the observed and expected
cumulative energy release numbers revealed some variations at the start of all three sequences. This
demonstrates that significant aftershock clusters occur more frequently shortly after the mainshock at
the start of the sequence rather than if they are assumed to occur randomly.

Keywords: point process modeling; RETAS model; aftershock energy release; Al Hoceima; Morocco

1. Introduction

Seismic events can be classified into three main types based on their distribution
over time [1]: (1) mainshock followed by a number of aftershocks decreasing in frequency,
(2) slow build-up of seismicity leading to a type (1) sequence and (3) gradual increase and
decay of seismicity without a distinct mainshock (seismic swarm), which occurs in areas
with complex tectonic structures.

The decrease in aftershock occurrences caused by a strong earthquake can be studied
using a wide range of methods, according to [2]. The Omori law model is the most
typically adopted model [3], which [4] adapted into the modified Omori formula (MOF) by
assuming that the fluctuation of the stress field of the mainshock initiates all the events in
the sequence.

The trigger events are conditionally independent and follow a non-stationary stochas-
tic Poisson process. Considering the complex behavior of some earthquake series, partic-
ularly in the presence of secondary events, [5] introduced the epidemic type aftershock
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sequence (ETAS) model, by increasing the capacity to generate secondary events for each
event in the sequence. There are several triggering models between these two limit sit-
uations: the MOF and ETAS models being two of them [6,7]. The RETAS model [8] was
developed by applying the principle of Bath’s law [9,10] to the subsequences caused by
principal events, such as the mainshock. It is worth mentioning that the magnitude differ-
ence between the mainshock and the strongest aftershock is commonly considered to be
constant, ranging between 1.2 and 1.4 on average, depending on the criterion [11], although
with a lot of variability between individual aftershock sequences [12].

In this study, we focus on three sequences of type (1) designated as the aftershock
sequences of Al Hoceima 1994, 2004 and 2016, occurring near the city of Al Hoceima, in
Morocco (Figures 1 and 2). The multifractal properties of these sequences have already
been investigated in the framework of the spatial modeling of many seismic series in the
Ibero–Maghrebian region [13]; however, even more temporal, energy and stress evalua-
tions are required. Therefore, this study aims to examine three aftershock series using
stochastic modeling.

Figure 1. Geologic sketch map of the Betic-Rif region and location of the Al Hoceima study area. Bk:
Bokoya Massif; Ra: Ras Afrou; Rt: Tas Tarf; Tf: Tres Forcas Cape. Internal Zone includes Sebtides and
Ghomarides in the Rif and Nevado-Filabrides, Alpujarrides and Malaguides in the Betics.
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Figure 2. Seismicity recorded by the Spanish IGN included in the 1994, 2004 and 2016 seismic series
from magnitude 2.0. Main tectonic features are displayed.

This contribution includes the first section, which describes the regional geological
context. In the second section, as suggested by [14], the three aftershock sequences are
analyzed, and the stress regime in each series is comprehensively described. The Gutenberg–
Richter relationship analysis, performed in a later section, attempts to derive reliable
threshold magnitude values and b-value estimates for each sequence. A stochastic point
process modeling analysis was performed in the previous two sections. As described
previously, the aftershock decay rate was comprehensively studied using the RETAS model.
The identified best-fit model was then integrated into a stochastic analysis of strain release.
A comparison between the real values of the cumulative energy release and the expected
modeled values is also examined and addressed.

2. Geological Setting Overview

The Rif, along with the Betics, forms the westernmost alpine ranges of the Mediterranean
Sea and are linked by the Gibraltar Arc. The Alboran Sea is in the center (Figures 1 and 2).
The central-south region of the Alboran Sea and the eastern Rif Cordillera belong to the
seismically active area of Al Hoceima. The Internal and External Zones separated by the
Flysch Units tectonically constitute the Rif Cordillera. In addition, several late intramontane
Neogene–Quaternary sedimentary basins emerged, some of which were linked to the Alboran
Sea, forming the largest basin of the orogen [15].

The Internal Zone comprises Sebtide and Ghomaride superposed tectonic complexes
formed by Paleozoic, Mesozoic and Cenozoic rocks, which are strongly affected by the
Alpine Orogeny and have their equivalents in the Betics, called Alpujarride and Malaguide.
Some of these complexes have undergone metamorphism and have been thrust over the
Flysch Units and the External Zone in the Rif.
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The Flysch Units, which are mostly Tertiary sedimentary rocks with some locally
ultrabasic rocks, constitute the sedimentary basin that separates the Internal and External
Zones and is underlain by oceanic crust. They thrust southward across the External
Zone, which is formed by Mesozoic and Cenozoic sedimentary rocks that are mostly
unmetamorphosed or, in some cases, have a low degree of metamorphism.

The Alboran Sea is primarily formed by Neogene and Quaternary sediments deposited
on a basement that corresponds to the Internal Zone complexes [16]. Furthermore, Neogene
to Quaternary volcanic rocks can be found in the central-eastern Alboran Sea and eastern
Rif and Betics.

The main alpine deformations in this area occurred throughout the Oligocene and
Miocene and continue into the present. The earliest stages of deformation were partially
simultaneous with the process of western migration of the Betic and Rif Internal Zones,
coinciding with the opening of the Alboran Sea and forming the Gibraltar Arc during
a period of severe weakening of the continental crust. The new Alboran marine area
corresponds to the western end of the Algero–Provençal Basin, which began to open at the
end of the Oligocene [17], forming a new oceanic floor. In the Alboran Sea, the continental
crust was markedly weaker and situated on the new oceanic floor on its eastern border.

Subduction processes, combined with NNW–SSE convergence and regional compres-
sion of the Iberian and Nubian plates [18–20], resulted in significant deformation in the
northern and southern borders of the earliest Alboran Sea. These processes developed
the Gibraltar Arc, with the uplift of the Rif and Betic Cordillera, which were radially
deformed [21] around the Alboran Sea and undergoing a regional E–W compression.

Later, from the late Miocene, when the opening was nearly at its end ceasing the
E–W compression, the general NNW–SSE compression was completely re-established [22].
The region then began to undergo folding (e.g., the Alboran Ridge anticline) and faulting
(e.g., the Al Idrisi, Yusuf, Carboneras, Averroes, Jebha and Nekor faults, in addition to other
minor faults).

Since the Miocene, important NNE–SSW sinistral strike-slip fault systems crossing
the Alboran Sea (Trans Alboran shear zone; [23]) were formed, such as the Carboneras
Fault, coming from Almería, Spain and the Nekor and Jebha faults, the last being renowned
inland [24]. Later, the Al Idrisi and other conjugated NW–SE faults developed (e.g., the
Averroes Fault), as well as some E–W faults and thrusts with a general ENE–SWS strike.
The upper Neogene and Quaternary sediments of the central and eastern Alboran Sea are
affected by these deformations, whereas the western Alboran Sea undergoes mud volcanic
tectonics [25]. This regional geodynamic setting continues into the present.

Almost all the domains mentioned are present in the study area. The Internal Zone
forms the inland Bokoya Massif, between Al Hoceima and Melilla to the west, as well as
a smaller outcrop, Ras Afrou, on the coast between Al Hoceima and Melilla. The Flysch
Units and External Zones, as well as several Neogene–Quaternary basins, appear south
of the Internal Zones. Furthermore, Miocene volcanic rocks comprise most of the Raf Tarf
and Tres Forcas capes. There are also significant faults (Figures 1 and 2), the most notable
of which are located around the Nekor Basin limits, east of Al Hoceima, whose directions
range from nearly N–S to NE–SW (e.g., the Trougout Fault, separating Ras Tarf volcanic
rocks from Al Hoceima Bay). Some of these faults remain active offshore.

Evidently, all existing seismogenic faults, both onshore and offshore, are unknown,
particularly because some are in the early stages of development [26].

3. Aftershock Sequences Description

The Alboran region, specifically the Al Hoceima region, has been the subject of nu-
merous tectonic studies, including those by [27–31]. Owing to its location in the complex
border zone between the Eurasian and Nubian plates, near the border between the eastern
Rif Cordillera tip and the Alboran Sea, the Al Hoceima region is known to be the most
seismically active sector in northern Morocco. Furthermore, because of its strong seismicity,
it is one of the most seismically active sites in the western Mediterranean region.
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The seismic database of the Spanish Instituto Geográfico Nacional (IGN) was used
to assemble the data for this study, with no further processing or parameters from other
local or regional agencies. This was performed to keep the database as homogeneous as
possible, working in all cases with mb magnitude.

The 1994 earthquake sequence (Figure 2) began on 26 May 1994, with a strong earth-
quake of magnitude Mw 6.0, which struck the coastal region near Al Hoceima. This event
had a strong impact on the studied region of Al Hoceima [32]. The maximum felt intensity
was VIII–IX (EMS-98), indicating an extended NNE–SSW corridor that accounted for over
80% of the damage reported. The magnitude of the earthquake was revised to Md 5.7
(Moroccan Scientific Institute), and the epicenter was relocated north of Al Hoceima at a
focal depth of 13 km. According to [32], the distribution of aftershock epicenters in Figure 2
is largely scattered along a NNE–SSW trending cluster over an almost vertical plane.

Another seismic series struck the region on 24 February 2004, with a damaging main-
shock of Mw 6.4 (Figure 2). This event occurred on land and caused severe damage.
Ref. [33] estimated the maximum perceptible intensity around XI (EMS-98). In Al Hoceima
and the surrounding area, nearly 630 people died, 926 were injured, and nearly 15,000 were
left homeless. Ref. [34] relocated the 2004 sequence. According to [35] and other authors,
the series epicenter occurred on a NE–SW trending strike-slip fault, while the presence of a
NW–SE fault with conjugate NE–SW branches cannot be ruled out [34].

The third examined sequence (Figure 2) is linked to the major event on 25 January 2016
(Mw 6.3), whereas it is possible that the series began on January 21 with an event of Mw 5.1.
Following these events, a major earthquake series with decreasing activity occurred in 2016
and 2017 [33,35,36]. The major event, with a maximum intensity of VI–VII, was felt over the
Alboran area, particularly in Melilla, Spain, on the northern African coast, where extensive
damage was reported, as well as in Al Hoceima [33,37].

The Spanish IGN found two distinct epicenter clusters in 2016, each with distinct
tendencies. The first one is aligned NNE–SSW changing to N–S, with dominant strike-slip
focal mechanisms, while the second one is to the northeast of the first, with a rounded
shape and a dominant reverse focal mechanism solution. A NNE–SSW subvertical fault,
roughly parallel to the elongation of the alignment and displaced west of the Al Idrisi Fault,
is linked to the main NNE–SSW alignment [26].

Figure 3 shows the number of events per day for the selected series in the 150 days
after the mainshock, while Table 1 provides the number of events in each series, the
minimum recorded magnitude and other computed parameters, which will be discussed
later. The 1994 Al Hoceima sequence had 263 recorded events with a magnitude above 2.0,
which occurred until December 1994 (some early events have been included in the series);
the 2004 sequence had 969 recorded events with a magnitude above 1.5, which occurred
until February 2005; and the 2016 Al Hoceima sequence had 2577 recorded events with a
magnitude above 0.8, which occurred until August 2016.
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Figure 3. Temporal evolution of the studied series (magnitudes above 2.0). Starting of the x-axis does
not always correspond to the occurrence of the main event.

Table 1. Number of events (n), minimum recorded magnitude (Mmin), computed threshold magni-
tude (mc) using the Maxc method and a and b-parameters.

Sequence n Mmin mc a ± σ b ± σ Sequence

1994 263 2.0 2.8 5.05 ± 0.02 1.01 ± 0.07 1994
2004 969 1.5 3.4 6.56 ± 0.02 1.14 ± 0.05 2004
2016 2577 0.8 2.0 4.86 ± 0.03 0.82 ± 0.02 2016

For the 1994 and 2004 sequences, Figure 3 reveals a direct decrease in the number of
events per day over time, whereas the trend for the 2016 series is more complex, apparently
because of the complexity of the rupture(s). There were several different phases in the late
aftershock sequence. The recorded occurrences followed a deformation band with two
unambiguous alignments with widths of less than 10 to 20 km for the first 30 days [26].
The main alignment, which is moved 5–10 km westward, appears to be spatially associated
with the Al Idrisi Fault. A decrease in the seismic activity rate was observed over the next
30 days, resulting in an increase in the width of both alignments, which reached 10–20 km.
A clear decrease in activity rate was observed at least 60 days after the mainshock, affecting
a wider area than 15–25 km in width as [26] indicated.

4. Seismic Series Stress Regime

The IGN database, international agencies and numerous studies aimed at analyzing
these seismic series were used to obtain earthquake focal mechanisms for the selected
series. Figure 4 shows earthquakes with magnitudes greater than 3.0, from the 1994 Al
Hoceima sequence, as well as the focal mechanism of aftershock events computed by [32]
(Figure 4A); different solutions for the focal mechanism of the main shock (Figure 4B) from
the Global Centroid Moment Tensor (GCMT), International Seismological Centre (ISC); and
specific works by [38–41] (for both a pre-event and the main quake) and [29].
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Figure 4. (A) 1994 seismic sequence showing earthquakes with magnitude above 3.0 and computed
focal mechanisms for aftershocks [32]. (B) Different focal mechanism solutions for the mainquake.
GCMT: Global Centroid Moment Tensor; T&al.: [40]; M&R: [38]; ISC: International Seismologi-
cal Centre; B&B-I and B&B-II: [41], for a pre-event and the main quake, respectively; B&al.: [29];
EA&al.: [32,39].

Figure 5A depicts the distribution of events with magnitudes greater than 3.0, which
were included in the 2004 series, as well as the estimated focal mechanisms of the largest
events. In addition, Figure 5B shows the earthquakes and computed focal mechanisms of
the so-called “eastern cluster” from [34].

Figure 5. (A) 2004 seismic sequence showing earthquakes with magnitude above 3.0 and computed
focal mechanisms for the biggest events. (B) Earthquakes with magnitude above 1.0 and focal
mechanism solutions for the biggest events (mb 1.9–3.0) of the “eastern cluster” studied by [34].

Figure 6 shows events with magnitudes more than 3.0 as well as estimated focal
mechanism solutions for the 2016 Al Hoceima sequence.
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Figure 6. 2016 seismic sequence showing earthquakes with magnitude above 3.0 and computed
focal mechanisms.

The stress pattern from the inversion of the available focal mechanism data was
used to characterize the three seismic series. It is worth noting that for the inversion
process, it was not necessary to select between two available nodal planes. To estimate the
different parameters of the reduced stress tensor, we used the improved right dihedron
method [42] combined with the iterative rotational dihedron method [43]. Our aim was to
calculate the four parameters of the reduced stress tensor, σ1, σ2, σ3 and the stress ratio,
R = (σ2 − σ3)/(σ1 − σ3).

According to [19], this method allows for estimating previous parameters and the
extraction of filtered focal mechanism data by deleting nodal planes that are incompatible
with the average stress regime. The compatible focal mechanisms and the calculated stress
tensor produced at this point were then employed as the direct starting point for the
rotational optimization technique.

The iterative grid-search rotational optimization process is based on a controlled grid
search of the stress tensor using the Win-TensorTM code to reduce the so-called misfit
(F5) [44]. According to [45], the nodal plane best explained by the stress tensor was chosen
as the actual fault plane from the two planes of the focal mechanism. Consequently, the
final inversion examines the focal planes that a uniform stress field best fits [46]. After the
ultimate optimization, the omitted focal planes must be reconsidered without modifying
the stress tensor. If this is the case, the data are re-entered into the database, the stress
tensor is re-optimized, and the software runs another check for the rejected data.

This method was used to analyze the focal mechanism data for each seismic se-
quence. Table 2 and Figure 7 show the results of the stress inversion. Several authors
(e.g., [19,44,47–49]) have used a similar approach to investigate the stress regime in
other regions.
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Table 2. Stress regime for the cases considered in Figure 7.

Sequence σ1 σ2 σ3 R F5

1994 main event 327◦ N/13◦ 226◦ N/40◦ 072◦ N/47◦ 0.19 7.1
1994 aftershocks 132◦ N/44◦ 349◦ N/39◦ 242◦ N/20◦ 0.38 3.5

2004 all, without ‘eastern’ cluster 330◦ N/25◦ 149◦ N/65◦ 239◦ N/00◦ 0.59 2.6
2004 ‘eastern’ cluster 020◦ N/79◦ 141◦ N/06◦ 232◦ N/09◦ 0.82 5.6

2016 main cluster 332◦ N/06◦ 224◦ N/72◦ 064◦ N/17◦ 0.74 1.6
2016 secondary cluster 330◦ N/23◦ 062◦ N/04◦ 161◦ N/67◦ 0.49 3.3

The variability in the stresses is highlighted in Figure 7 and Table 2. The different
solutions of the mainshock, when considered together, and those determined for the
aftershocks were not very distinct in the 1994 seismic series. A prolate stress ellipsoid
with a near NW–SE horizontal (compressive stress regime) and roughly similar σ2 and
σ3 values appeared in the mainshock. The slope then turns southeast, highlighting the
NE–SW expansion with the horizontal σ3 being more noticeable (extensive stress regime).

The seismic series from 2004 appears to be more uniform, with oblate stress ellipsoids
and a noticeable NE–SW extension trend. While the main cluster shows NW–SE sub-
horizontal σ1 and NE–SW sub-horizontal σ3 values, clearly indicating a strike-slip stress
regime, in the “eastern cluster” [34], a cluster with a few low-energy earthquakes and σ1
and σ2 values becoming closer, and a NE–SW horizontal extension is dominant (extensional
stress regime).

In the 2016 sequence, the computed stress regime for the main cluster agrees with that
obtained in the 2004 main cluster (strike-slip stress regime); however, there is a noticeable
increase in the axial ratio, where σ1 and σ2 magnitudes are closer, highlighting the well-
defined NE–SW sub horizontal extensive stresses. In contrast, the secondary cluster is
dominated by NW–SE compressive σ1 stresses and a subvertical σ3, suggesting thrusting
(compressional stress regime). Furthermore, the secondary cluster stresses are like those
obtained for the mainshock of 1994, which had a primary NNW–SSE σ1 odd axis.

The maximum compressive horizontal stress (SHmax) in all solutions was between
142◦ N and 153◦ N, which is consistent with previous results for regional stresses
(e.g., [18–20,50]). However, the extension directions are compatible with the Internal
Zone movement of the Betic–Rif toward the southwest [26,51–53].
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Figure 7. Stress regime computed from focal mechanisms. (A) For the 1994 mainshock, (B) for the
1994 aftershock sequence, (C) for the 2004 aftershock sequence, (D) for the ‘eastern cluster’ considered
by [34], (E) for the 2016 ‘main cluster’ and (F) for the 2016 ‘secondary cluster’.

5. Magnitude–Frequency Relationships

The Gutenberg–Richter recurrence relationship [54,55] is a frequently used approach
for quantifying seismic activity in each region and has been shown to apply aftershock
frequency–magnitude data. The equation is a reasonable approximation of the frequency–
magnitude statistics that describe the correlation between earthquake occurrence frequency
and magnitude

log10 N (≥ m) = a − bm m ≥ mc (1)
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where N (≥m) is the number of events with magnitudes greater than or equal to m. For the
estimation of both the a and b-values, it is widely recommended to use a complete dataset
for all ranges of magnitude.

The threshold magnitude parameter mc, is typically determined using one of two
methods: a network-based [56,57] or catalog-based approach [56,57]. The first group uses
the day-to-night ratio to calculate the earthquake frequency, if noise reduces the detection
threshold at night [58,59]. The second set of approaches assumes that earthquake produc-
tion is self-similar, allowing us to use a power law or the Gutenberg–Richter relationship
to construct earthquake frequency–magnitude distributions. The most applied methods
in this group reviewed by [60,61] are the maximum curvature (Maxc) method [62], en-
tire magnitude range (EMR) method [60,63], median-based analysis of the segment slope
(Mbase) [64], determination of b-value instability [65] and goodness-of-fit test (Gft) by [62],
which was later modified by [66].

The threshold magnitude for each of the three sequences under consideration was
thoroughly estimated in the current study. Although both the maximum curvature (Maxc),
Gft, Gft at levels of 5% and 10% (Gft5% and Gft10%), and modified goodness of fit (mGft)
methods were first investigated, the maximum curvature method produced better results,
i.e., a better fit (Table 1). Threshold magnitude values of 2.8, 3.4 and 2.0 were obtained for
the 1994, 2004 and 2016 aftershock sequences, respectively. The threshold value fluctuated
over time, which was also studied. This temporal fluctuation is depicted in Figure 8 and
was computed using a sliding-window method.

Prior to each new computation, a window of 20 events was shifted by five events [67].
The middle time of the associated window is supplied to each new threshold magnitude
value. The window length was chosen as the balance between the need for temporal
resolution and smoothness. Multiple tests were conducted first, changing the number of
occurrences per window and the shift; however, neither aspect had a significant influence
on the definition. The maximum likelihood approach was used and is considered one of
the most reliable approaches for computing the b-value among the available methods. The
estimator by [68], given below, was used to calculate the b-value:

b =
log10e

〈m〉 − mc
(2)

〈m〉 being the average value of the magnitude. An estimate of the standard deviation σb is
obtained using the [69] relation, given as follows:

σb = 2.30 b2

√
∑N

i=1(mi − m)2

N(N − 1)
(3)

According to [69,70], even when the b-value varies in time and/or space, this re-
lationship provides a reliable approximation of b-uncertainty. When utilizing rounded
magnitudes, the estimator by [68] is inaccurate but agrees with the modified distribu-
tion of [71]. Then, the improved estimator by [72], given below, is used to determine the
maximum likelihood b-value:

b =
log10e

〈m〉 −
(

mc − Δm
2

) (4)

The estimated b-value appraisal for the 1994, 2004 and 2016 aftershock sequences, us-
ing the maximum likelihood estimator by [72], with a bin width of 0.1 units, are 1.01 ± 0.07,
1.14 ± 0.05 and 0.82 ± 0.02, respectively (Table 1). Figure 9 shows the power law dis-
tributions for the three sequences as fitted by a straight line. The greatest magnitudes,
corresponding to the mainshock, are not explained by the Gutenberg–Richter relationship
and are thus regarded as outliers in all series. It is worth mentioning that the estimated
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maximum likelihood parameters are closely linked to and impacted by the previously
determined threshold magnitude.

Figure 8. Temporal evolution of the threshold magnitude for the three sequences.
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Figure 9. The cumulative number of earthquakes vs. magnitude (black points and linear fits) and
the non-cumulative number of earthquakes (open points) for the three sequences. The threshold
magnitude is highlighted.
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6. Temporal Stochastic Modeling for the Al Hoceima Sequences

This section focuses on the point process modeling of the studied aftershock sequences.
Many approaches for modeling this gradual decrease in aftershock frequency have been
presented in the literature. The most commonly used model is the Omori law [3], which
was improved by [4] into the modified Omori formula (MOF). According to [4], the decay
rate of the aftershock per unit time is given as follows:

n(t) =
K

(t + c)p (5)

where t is the time after the occurrence of the mainshock, and the parameter K is re-
lated to the mainshock event and threshold magnitude. The c parameter is a debatable
number [73,74], with the early stages of imprecise detection of low events in the sequence
having a significant effect [75]. Finally, the p parameter is a decay constant, and it is quite
likely the most important parameter for understanding the behavior of the sequence. The
p-value varies from sequence to sequence and typically ranges from 0.5 to 1.8 [73]. This vari-
ation may be related to tectonic activity in the area. However, the elements that influence
the p-value remain unclear [76,77].

The quantity n(t) allows us to connect with the point process model by considering it
a conditional intensity.

n(t) ≈ ˘(t), (6)

bearing in mind that [5]:

P {an event occurs in (t, t + dt)|�t} = ˘(t|�t) dt + o(dt), (7)

where �t denotes the internal history of the occurrence process at time t, ˘(t|�t) is the
conditional intensity function [5,78], and o(dt), in the Landau notation, is a function of a
lower order than the function λ, i.e., o(dt) being negligible. The MOF model includes only
the mainshock occurrence time because it is based on the concept that the entire relaxation
process is driven by the stress changes induced by the mainshock alone. The aftershocks
are conditionally independent and follow a non-stationary Poisson process.

The MOF model fits data for simple aftershock sequences well; however, secondary
clustering is common when there are secondary aftershocks triggered by strong earthquakes
in a sequence. The authors in [5] argued that aftershock clustering is a self-similar process in
which all aftershocks might induce other aftershocks, with a triggering capacity dependent
on their magnitudes, because of these complex situations involving one or more secondary
events.

The model was named ETAS, and its conditional intensity function is given
as follows [79]:

˘(t|�t) = μ + ∑
i; ti<t

k0eα(mi−mc)

(t − ti + c)p (8)

where μ is the background seismicity rate. The internal history �t includes the time
occurrence ti (in days after the mainshock) and magnitude events mi of all the events
occurring before time t. The summation includes all events with occurrence times ti and
magnitudes equal to or greater than the lower cut-off mc. The c and p model parameters
were the same as those used in the MOF model. Furthermore, k0 is a parameter that affects
total aftershock productivity and is common to all aftershocks.

According to [80], every term of the summation in Equation (8) indicates the contri-
bution of a prior event to the occurrence probability of subsequent events at time t. The
exponential term is controlled by two factors: (a) the temporal rate decrease, as presented
by the MOF model and (b) the exponential term chosen because the logarithm of the
aftershock area and the magnitude of the mainshock present a linear relationship [81].
Parameter α measures the effect of the magnitude of the production of ‘children’ events,
also called “descendants”.
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The MOF and ETAS models, as expressed by Equations (5) and (8), respectively,
present two limited cases for modeling the temporal distribution of an aftershock sequence.
Ref. [2] proposed a similar model, the RETAS model, based on the assumption that not all
events in a series; however, only aftershocks with magnitudes greater than or equal to a
threshold value, can directly cause the aftershocks of “descendants”. This model allows
for the inclusion of all potential models between the two limit cases of the MOF and ETAS
models, resulting in the conditional intensity expressed as follows:

˘(t|�t) = μ + ∑
i; ti<t

mi≥Mtr

k0eα(mi−mc)

(t − ti + c)p (9)

It is worth noting that the RETAS model developed by [8] is based on Bath’s law,
which states that the difference between mainshock magnitude and the strongest aftershock
magnitude, ranges between 1.2 to 1.4 units. According to this relationship, ref. [8] argued
that the difference between the weaker primary event and the weakest event in the after-
shock sequence must be at least 1.2 units, by applying this principle to the subsequences
generated by the primary trigger model.

Furthermore, the RETAS model has the advantage of examining all potential models
between the MOF and ETAS models because the triggering magnitude ranges from the
threshold magnitude to the mainshock magnitude. The Akaike information criterion [82],
abbreviated as AIC, was used to choose the best-fit model in our case, with the lower AIC
value. This is expressed as follows:

AIC = −2 max
θ

log L(θ; 0, T) + 2k” (10)

where k” represents the number of parameters of the model, and log L is the logarithm of
the likelihood function, given as follows:

log L(θ; 0, T) =
N

∑
i=1

log10˘θ(ti|�ti )−
T∫

0

˘θ(s|�s)ds (11)

In the previous Equation (12), N is the number of earthquakes with magnitudes greater
than or equal to mc, occurring at times tj (j = 1, 2, . . . , N), during [0, T]. Due to the features
of the described model, it was used in this study to investigate three aftershock sequences.
Table 1 lists the magnitude thresholds used in this study.

As a result of the RETAS model analysis, Figure 10 displays the AIC value versus
the triggering magnitude value. Analysis of this curve reveals the aftershock clustering
type that is most common in the sequence. The AIC parameter was calculated for all the
potential models by varying the triggering magnitude from the threshold magnitude to the
magnitude of the mainshock. The best-fit model shows the AIC minimum values in Table 3
as well as the triggering magnitude and model parameters.
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Figure 10. The AIC values of the RETAS model vs. the triggering magnitude for the three sequences.

Table 3. The computed parameters for the RETAS model.

Sequence Mtr Best Model AIC K0 α c p

1994 3.9 RETAS −12.4 1.727 0.0630 0.024 0.909
2004 3.4 ETAS −1222.5 3.426 0.0035 0.082 1.070
2016 2.0 ETAS −7209.0 1.477 0.0380 0.039 1.183
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When examining the AIC values vs. Mtr curves (Figure 10), we can see that the
best-fit model for the minimal AIC value was found to be for a Mtr value of 3.9 for the
1994 sequence. For the 2004 sequence, an Mtr value of 3.4 is the best-fit model obtained and,
for the 2016 sequence, a magnitude of 2.0. The best-fit model became an ETAS model when
the triggering magnitude Mtr coincided with the completeness threshold magnitude mc in
the last two Mtr. Analyzing the AIC vs. Mtr trigger magnitude curve for the 2016 sequence,
a monotonic trend exists, resulting in a continuous increase in AIC values, the lowest of
which is for Mtr = mc.

According to the model presented in Figure 11, the estimated best model parameters
shown in Table 3 were used to compute the expected cumulative number of earthquakes
and error bounds. The computed values were compared with the observed cumulative
number of earthquakes. Figure 11 shows that the estimated model matches the observed
data well for all three sequences, with the observed values remaining inside the error
boundaries throughout the whole sequence.

Figure 11. The cumulative number of events above magnitude mc for the three sequences. Circles:
observed values. Lines: mean ±σ fitted model. The magnitudes of the events included in the
sequences are also depicted. Inset stand out the first ten days of the series.
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7. Stochastic Model for the Energy Release

In the literature, several attempts have been made to improve earthquake time models
by including data on other characteristics associated with event occurrences, such as space-
time models or those that relate event occurrence time to a size value of the event (intensity,
magnitude or energy). In this context, this section aims to investigate the relationship
between the occurrence times {Tk, k = 1, . . . , n} and released energy {Ek, k = 1, . . . , n},
providing information on the size of the events in the studied sequences. It is typically
considered that the time of occurrence and scale of an event are unrelated.

As a result, our aim was to create an energetic stochastic model that incorporates these
considerations and examines how well it represents the observed data. According to [83],
marked point processes have similar counting processes [84,85]. The following is a descrip-
tion of this model. Given a Poisson process {N(t); t ≥ 0} with a rate λ > 0, it is assumed
that the time Tk of each event is linked to a realization, which is a family {Yk; k > 0} of
independent and identically distributed random variables called marks, with a probability
distribution function equal to

G(y) = P{Yk ≤ y} (12)

The second requirement is that the random variables are at the same time independent
from {N(t); t ≥ 0}. Then, according to [84,85], the stochastic model, typically called the
compound Poisson process, is defined as follows:

Z(t) =
N(t)

∑
k=1

Yk; t ≥ 0 (13)

Denoted by μ and γ2 are the mean and variance of the marks Yk; the moments of Z(t)
are then given as follows:

E[Z(t)] = ˘μt (14)

var[Z(t)] = ˘
(

γ2 + μ2
)

t (15)

Consequently, in the case of a series of occurrence times and event sizes, the compound
Poisson process can be used as a model process for random behavior. In the most general
treatment of a compound point process, {N(t); t ≥ 0} is an inhomogeneous Poisson process
with an intensity function {λ(t); t ≥ 0}, and marks {Yk; k > 0} do not have to form an
independent series of random variables. Equations (14) and (15) must be rewritten in the
context of an inhomogeneous Poisson process with a rate that varies with time λ = λ(t)

E[Z(t)] = μ

t∫
t0

˘(s)ds (16)

var[Z(t)] =
(

γ2 + μ2
) t∫

t0

˘(s)ds (17)

The following relationship (18) between the log of the released energy and the magni-
tude is used [55,86] because the most common way of describing the size of an earthquake
is by its magnitude.

log10

√
E = 2.4 + 0.75 M (18)

The relationship described by this Equation (18), according to [86,87], is consistent
with what is expected theoretically for classical crack models with a constant stress drop.
This generalized energy–magnitude scaling equation works for various magnitude ranges.

As the cumulative released energy is a physical quantity, it is helpful to consider the
series of released energies in the compound Poisson process scheme. It is worth noting that
this method has several limitations. First, the energy is determined by the wide dynamic
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range of the released energy, as well as an instrumentation earthquake record. Thus, to
reduce this variability, Equation (18) is transformed as follows:

Etr
k =

Ek
E0

=
104.8+1.5 Mk

104.8+1.5 M0
= 101.5 (Mk−M0) (19)

where Ek and Mk correspond to the energy and magnitude of the k-th event, respectively,
and E0 and M0 are the energy and magnitude of the first event considered, respectively. Etr

k
is the Benioff’s energy.

The approach described above was used to analyze the considered aftershock se-
quences. Considering the compound Poisson process, given as follows:

Z(t) =
N(t)

∑
k=1

Etr
k (20)

Equations (16) and (17) were used to derive the estimation of the mean E[Z(t)] and the
variance var[Z(t)] for each series, considering the best-fit model derived and analyzed in
the previous section. Figure 12 displays the expected cumulative energy and confidence
bounds, mean plus/minus the standard deviation, according to the appropriate best-fit
model for each aftershock sequence, and this is compared to the computed cumulative
energy released in the sequences.

Figure 12. Cont.
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Figure 12. Cumulative released energy for the three sequences. Circles: observed values. Lines: mean
± σ fitted model. Magnitudes of the events included in the sequences are also depicted. The inset
shows the first ten days of the series.

It should be noted that the stochastic model used follows the two previously quoted
assumptions: both the independence of the magnitudes and the independence of the
magnitudes with the occurrence time. Figure 12 shows that, for the 1994 sequence, no
significant deviation of real data values from the model was observed, which supports
the above assumptions. However, deviations of the real data values with the model were
observed for the two other aftershock sequences.

For the 2004 sequence, the main deviation was observed at the beginning of the
sequence, up to the 30th day, where the clustering of stronger aftershocks was recognized.
This reveals that the assumption of the independence of magnitudes with occurrence times
is not valid in this case. In addition, another deviation of the observed data out of the
error bounds can be observed in the 2016 sequence, where an additional concentration of
stronger aftershocks is recognized.

8. Discussion

In the present study, the stress pattern analysis revealed that all solutions had a
maximum compressive horizontal stress (SHmax) between 142◦ N and 153◦ N, which is
compatible with previous regional stress data as determined by previous studies. Further-
more, according to these results, the extension directions are clearly compatible with the
Betic–Internal Rif’s zone movement southwestward.

The results for all the seismic sequences share horizontal stresses, showing a NW–SE
compression and a NE–SW extension as a result of the regional setting. Nonetheless, some
significant differences can be observed in the axial ratios and local stress regimes because
of the series location in the main shear zone crossing the Alboran Sea and the activated
structures in the main and secondary clusters. The three series induced a different fault
system, also hosting seismicity, from which the sequence began.

Concerning observed differences in the tectonic characteristics of the series, the 1994
sequence is mainly scattered along a NNE-SSW trending cluster over an almost vertical
plane [32], the 2004 sequence is mainly scattered along a NE-SW strike slip fault, and the
2016 sequence is initially scattered along a NNE-SSW trending cluster over a subvertical
strike-slip fault, then changing to N-S and finally distributed on a second rounded cluster
with a dominant reverse focal mechanism solution [26]. The magnitude of completeness
values considered in the current study were compared with those derived using Gft and
mGft methods.

Figure 13 shows plots of residuals vs. the minimum magnitudes for the three series.
The results obtained matched the estimated values derived using the maximum curvature
(Maxc) method. All approaches yield a result of 2.8 for the 1994 series. For the 2004 series,
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the difference was of the order of 0.1 using mGft, Gft5% and Maxc and 0.2 between Gft10%
and Maxc. However, in the case of the 2016 series, the difference varies between 0.2 and 0.3.
The results are 1.9 using Gft10%, 2.2 for Gft5%, 2.3 for mGft and 2.0 for Maxc.

Figure 13. The obtained residuals vs. magnitude when fitting the observed data to the mGft power
law (solid line) and theoretical distribution power law (dashed line). The 5% and 10% residual levels
are shown as reference.

As discussed in this study, the RETAS model was used to study the gradual decay of
the aftershock frequency based on the triggering magnitude Mtr assumption. The minimum
value of the AIC parameter was used as a criterion for selecting the best-fit model. All
possible models were estimated by varying the triggering magnitude Mtr from the threshold
magnitude mc (ETAS model) or mms (MOL model) to the mainshock magnitude. The results
derived for the 1994 and 2004 series highlight and improve on the previous ones derived
by [88]. For instance, for the 2004 aftershock sequence, as in [88], the minimum AIC value
shows results for the best ETAS model. Considering that the 2016 sequence began on
January 21 with an event of Mw 5.1, as suggested by some authors [26], the ETAS model
was obtained as the best-fit model.

Stochastic modeling of the energy revealed that the energy released over the series
was outlined well by the proposed model in the 1994 and 2004 series. However, there
were minor discrepancies in the 2016 sequence and the computed cumulative released
energy did not match the model well. We deduced from the analysis that large aftershock
clusters occurred more frequently and quickly after the main shock than they would if they
occurred at random. This observation holds true for the Zemmouri, Algeria aftershock
series of 2003 [88].

9. Conclusions

Stochastic modeling was used to analyze three sequences of events that occurred in
Al Hoceima, Morocco, May 1994, February 2004 and January 2016. The analysis of the
behavior of the decay rate of the three series, together with the composite stress pattern
and the obtained b-value, led us to conclude that the 2016 sequence is the most complex of
the three series, likely because of two different fault systems being activated—the main one
corresponding to a strike-slip stress and the second one to reverse faults.

The released energy analysis allowed us to characterize the occurrence of large af-
tershocks shortly after the mainshock better than it would if they occurred at random.
However, further research is needed to estimate the recurrence period of such large oc-
currences, as well as the probability of exceeding a specific magnitude shortly after the
mainshocks. This type of research could be conducted in other seismically active regions
to investigate the behavior of the seismic series occurring in these areas. This could help
to understand the characteristics of the earthquake generation process aimed at seismic
forecasting studies.

It should be noted that earthquake forecasting is the ultimate challenge for seismolo-
gists because it accumulates scientific knowledge about the earthquake occurrence process
and is an essential component of any efficient risk-mitigation strategy [89,90]. As stated by
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different authors (e.g., [80,91]), RETAS models can be applied to forecast the occurrence
probability evolution of a certain sequence, providing the possibility to identify the type
of clustering in future seismic series. This is an issue also related to, for instance, the fault
distribution and possible fault interactions in the studied area.
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Abstract: Most geophysical inversions face the problem of non-uniqueness, which poses a challenge
in the mapping and delineation of the subsurface anomalies. To tackle this challenge, a combined
local and global optimization approach is considered for jointly inverting two-dimensional direct
current resistivity (DCR) and seismic refraction (SR) data that aim to estimate the corresponding
physical model parameters. In this combined approach, the output of the local optimization method
is used to determine the search space and tuning parameters for the global optimization algorithm.
The multi-objective genetic algorithm (non-dominated sorting genetic algorithm) was utilized to
jointly optimize the objective functions of two different methods. Because the genetic algorithm is a
population-based optimization method, it requires numerous forward calculations. To deal with the
expected high computational cost associated with this approach, parallel computing was utilized
for the forward function evaluations to reduce the run time of the entire process. The proposed
approach was tested using synthetic two-dimensional resistivity and velocity models that had three
different types of anomalies (dyke, positive, and combined positive and negative). The results
showed an improvement in the anomaly delineation in the output of the combined local and global
optimization method compared with the local optimization method. Additionally, similar synthetic
models were tested using only the single objective global optimization algorithm (conventional global
optimization), which showed promising anomaly delineation.

Keywords: individual inversion; joint inversion; seismic refraction; direct current resistivity; com-
bined local and global optimization

1. Introduction

The primary goal of inverting geophysical data is to estimate the parameters of a
model that will give a theoretical response similar to the field observations [1,2]. However,
it is unusual to have a unique solution since most geophysical inverse problems are ill-
posed. Previous studies included regularization constraints in the objective function to
solve the problem of instability [3–6]. In some cases, with a regularization term in the
objective function, the inversion still faces the challenge of non-uniqueness (i.e., ambiguity)
associated with the inverse problem. To reduce uncertainties related to the inversion
of a dataset belonging to a single geophysical method, many researchers have applied
the concept of joint inversion [7–16] of more than one method, which provides better
model resolution than individual inversion [17–19]. Joint inversion can even resolve
ambiguity associated with the geophysical method(s) applied in an area with low physical
properties contrast [20–22]. Geophysical joint inversion tries to optimize a single objective
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function formed by a weighted or arithmetic sum of the individual objective functions
of corresponding methods [23]. However, the issue of parametric coupling (i.e., model
integration) arises when we are dealing with the inversion of datasets acquired with more
than one geophysical method [24].

In this study, we apply the structural model coupling approach, which involves the
cross-gradient constraint method that is commonly used for geophysical inversion [8].
The basic idea using this approach is that the gradients of relevant model parameters are
spatially correlated. The cross-gradient approach has been adapted for the joint inversion
of different geophysical data [13–16,25–29]. Wang et al. [17] applied the cross-gradient
algorithm in a joint inversion involving both the controlled-source audio magnetotelluric
(CSAMT) and magnetic methods. Demirci et al. [15] formulated an objective function
concerning weighted cross-gradient, which limits the dominance of one type of model
parameter to another. Zhang et al. [30] utilized the cross-gradient constraint to impose
a common structural framework in the joint inversion of EM and acoustic data, which
reconstructs the structures satisfactorily.

Furthermore, Yin et al. [31] applied a cross-gradient technique to invert magnetotel-
luric (MT) and gravity data and tested their algorithm using both synthetic and real datasets.
Finally, Jordi et al. [32] introduced a new approach to the cross-gradient constraint, which in-
volved the use of an irregular grid in unstructured mesh in the finite element method. They
used the method to invert the DCR and ground penetrating (GPR) data. All the above exam-
ples used the conventional or local optimization method that incorporated all acquired data
within the same Jacobian using a unique objective function for all geophysical methods.

The local optimization techniques are applied iteratively to obtain an updated model
that minimizes the objective function, which may not be the global solution to the inverse
problem. The global optimization algorithm in geophysical inversion might be used to
search for a solution space to avoid being stuck in the local minimum of the objective func-
tion. For instance, Liu et al. [33] applied the particle swarm optimization (PSO) algorithm in
a parametric inversion involving magnetic data. Rani et al. [34] used the genetic price algo-
rithm (GPA) to monitor the movement of contaminants in the subsurface. Additionally, [35]
introduced a hybrid approach by using the results of the local optimization method as an
input to the genetic algorithm for the modeling of the SR data. This novel algorithm by [35]
overcame the problem of being stuck in the local minima. It optimized the computational
cost of the genetic algorithm using the multicore parallel computing method.

Similarly, local and global (hybrid) optimization has been applied to complement
each other to subdue their shortcomings [35–37]. Most previous work has considered an
objective function from a different perspective to perform joint inversion using a global
optimization method, such as when using a local optimization algorithm. For instance,
Schwarzback et al. [38] and Ayani et al. [39] considered the objective function for the
inversion of electromagnetic data in two terms. First, they tried to minimize the data misfit
and the roughness of the model at the same time. Akca et al. [40] applied a non-dominated
sorting genetic algorithm in a joint 1D parametric inversion involving magnetic resonance
and vertical electrical sounding.

In previous studies, joint inversion/interpretation was applied by using either local
or global optimization methods. Moreover, local and global (hybrid) optimization has
been applied to complement each other to subdue their shortcomings. However, based on
our knowledge, the joint modeling of different geophysical data by using the results from
the inversion (local optimization) to constrain the search space of the global optimization
approach has never been reported in the literature. Thus, a procedure that constrains the
global part of the combined optimization algorithm by using the local optimization to
define a close search space to the real model parameters was proposed and designed. In
this way, the search space of the model parameters has been limited to a more reliable
range, drastically reducing the computation time.

This study presents the combined local and global optimization approach to jointly
model SR and DCR data. With this proposed approach, the multi-objective (i.e., integration
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of the DCR and SR misfit functions) global optimization algorithm is used for the first time
for the two-dimensional joint inversion of two different geophysical datasets, i.e., SR and
DCR data. Specifically, in this algorithm, the global part of the combined optimization
algorithm is constrained by using the output of the local optimization to define a search
space, significantly improving its run time and mitigating model instability. In addition
to the improved computational cost that resulted from applying the combined local and
global optimization methods, we made the multi-objective global optimization algorithm
run on parallel computing. This process further optimized the computational cost and
devised the optimum technique using the combined optimization algorithm. We tested
and discussed the efficacy of our proposed algorithm using synthetic SR and DCR data.

2. Optimization Methods

2.1. Local Optimization Method

The individual and joint inversion of DCR and SR data are usually regularized with a
smoothing function due to the non-uniqueness and instability associated with the inverse
process. In the inversion of both DCR and SR methods, the data misfit can be formulated
as follows:

E(m) = ‖Wd(dobs − f(m))‖2, (1)

f (m) is a function that is used to describe forward modeling, dobs is the observed field
record, and Wd is the weight matrix used to adjust the data anomaly (e.g., high or low
amplitudes). Usually, we use norms to quantify the misfit between the observed and
calculated data, and the common one used for this type of inverse problem is the L2 norm
because we assume that the error in the data is Gaussian. Therefore, the objective functions
for the DCR and SR data are given as follows:

Φ(mdc) = ‖Wdc(ddc − fdc(mdc))‖2 + αdc‖∇2mdc‖
2

(2)

Φ(msr) = ‖Wsr(dsr − fsr(msr))‖2 + αsr‖∇2msr‖
2

(3)

where Φ is the misfit or objective function, ddc and dsr are the measured data, and fdc and fsr
is the model response for the DCR and SR methods, respectively. Additionally, S = ∇2msr

2

is the Laplacian of the model parameter that is transformed into the smoothness matrix
by obtaining its Laplacian operator, while αdc and αsr are the regularization parameters
that determine the level of the smoothness of resistivity and seismic models, respectively.
The joint inversion offers conventional ways of integrating data from different geophysical
methods in such a manner that the outcome models are consistent and similar. One of the
methods used to accomplish this goal is to apply the cross-gradient constraint proposed
by Gallardo et al. [8] in the objective function. The parallel spatial variation in the models
(resistivity or seismic velocity) is required to satisfy the cross-gradient constraint [8,13,15].
This means that model anomalies or layer boundaries must essentially point in the same or
opposite direction. Applying the cross-gradient constraint, Equations (2) and (3) become:

Φ(mdc, msr) =

∥∥∥∥Wdc(ddc − fdc(mdc))
Wsr(dsr − fsr(msr))

∥∥∥∥
2

+
αdc
αsr

∥∥∥∥∇2mdc
∇2msr

∥∥∥∥
2

+
→
c
∥∥∥∥mdc

msr

∥∥∥∥
2

(4)

subject to
→
c (mdc, msr) =

→
0 . Where

→
c (mdc, msr) is the cross-gradient constraint and can be

defined as: →
c (mdc, msr) = ∇mdc(x, z)×∇msr(x, z) (5)

Equation (4) can be minimized by applying the appropriate regularized local opti-
mization algorithm similar to the approach used in [15]. Therefore, the model parameter
correction vector can be expressed as:

Δm = G−1n − G−1BT
(

BG−1BT
)−1[

BG−1n − BΔmi−1 +
→
c (mi−1)

]
(6)

137



Appl. Sci. 2022, 12, 11589

where G and n are defined as:

G =
(

JTWTWJ + αCTC
)

(7)

n =
(

JTWTWR − αCTCmi−1
)

(8)

In Equations (7) and (8), J is the Jacobean matrix, W is the weighting matrix, R is the
data residual, C is the Laplacian operator, and B is the cross-gradient derivative. The terms
given in Equations (7) and (8) may be rewritten for the joint inversion case as follows:

Δm =

[
Δmres
Δmseis

]
, G =

[
Gres 0

0 Gseis

]
, and n =

[
nres
nseis

]
(9)

In this inversion approach, a resistivity model is created for the DCR method, while
for the slowness model, the inverse of velocity is used for the SR method [15]. Conceptually,
the joint inversion process requires the model discretization for all the geophysical methods
to be structurally similar.

2.2. Global Optimization Method

The global optimization method applied in this study involves the application of the
genetic algorithm (GA) for a single objective function case and non-dominated sorting
genetic algorithm 2 (NSGA II) for the multi-objective joint optimization approach. The
GA is a special case of evolutionary algorithm that simulates the process of biological
evolution, and it is adapted to solve an optimization problem [41–43]. The process of
the genetic algorithm starts from population initialization, which creates chromosomes
(potential solutions with respect to the objective function) using the binary coding scheme.
The binary coding scheme is conceptualized in a way that it constitutes a solution to the
objective function of the inverse problem [43]. The binary coding system has a bit string or
chromosome that describes each element or individual in the population. Each bit in the bit
string represents a gene that can be assigned values of 0 or 1, also known as an allele [43].
Two individuals or parents are paired or selected from the initial population to produce two
offspring. The higher the fitness value of an individual in the population, the higher the
chance of being selected and the better its performance in the evolution loop. Among other
selection methods, we apply the tournament selection because it practically depicts natural
competition for mating rights among individuals in a population. Crossover involves
exchanging information (genetic properties) between two paired models (parents) to create
two new models (offspring). Three types of crossover options are available in the code used
in this study: single point, two points, and scattered crossover. The final evolution operator
used in the genetic algorithm is the mutation. This is the random alteration of genes in a
chromosome to introduce diversity in the entire population of the genetic algorithm. This
process is usually conducted using a probability index that is appropriately chosen based
on the degree of randomness to be allowed and computation cost. The process described
above is generally referred to as a single objective genetic algorithm; it is suitable for the
inverse problem having one objective function (i.e., applied in the individual inversion of
DCR or SR). All these GA evolution operators (i.e., selection, crossover, and mutation) are
used to modify the solution parameters.

As mentioned above, the non-dominated sorting genetic algorithm 2 (NSGA II) is a
variant of the GA commonly used to solve multi-objective optimization problems. The
NSGA II procedures involve the creation of an offspring population (Qt) that has an equal
size to the initial population (Pt) using the selection, crossover, and mutation processes
as shown in Figure 1. After that, (Qt) and (Pt) are combined to produce (Rt), which is
double the size of (Pt). Then, the non-domination (i.e., the optimum set of solutions in
all the objective functions) sorting of the entire population (Rt) is performed, and the
best non-dominated solutions are selected, which are indicated as F1, F2, and F3 (levels of
non-domination) in Figure 1. The topmost non-dominated solutions are accepted until the
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initial population size is reached; thereafter, the rest of the non-dominated solutions are
rejected because the process cannot accept more than the initial population size. Sometimes
only F1 can satisfy the initial population size requirement, and that will be enough for the
next generation (Pt+1); then, the rest are rejected (Figure 1). Consequently, the NSGA-II
emphasizes both the non-dominated and less crowded points.

Figure 1. Illustration of the non-dominated sorting algorithm 2 (NSGA II). Qt is the offspring
population; Pt is the initial population; Rt is the total population; and F1, F2, and F3 are the levels of
non-domination solutions.

One of the major challenges in applying the genetic algorithm to the inverse problems
that require the simultaneous optimization of more than one objective function is preventing
the domination of one objective function to another. Therefore, the multi-objective genetic
algorithm was used to search for the optimum solutions that do not dominate (i.e., a set of
optimum solutions in both DCR and SR objective functions) each other. The two objectives
of the joint inversion of DCR and SR data using the multi-objective global optimization
method can be represented similar to Equation (1) as:

GA(mdc) = ‖Wdc(ddc − fdc(mdc))‖2 (10)

and
GA(msr) = ‖Wsr(dsr − fsr(msr))‖2 (11)

The objective functions are used to map the decision variables (model parameters)
into an objective space where we delineate solutions that are not dominated or perform
optimally in both objectives. These sets of solutions (Pareto sets) align in a pattern known
as Pareto optimal solutions or the Pareto front [44]. Basically, the term “Pareto optimality”
is used to describe these sets of solutions, implying that no further optimal solution in
both objectives can be obtained. Details about the concept of Pareto optimality and non-
domination is discussed by [12]. The NSGA II algorithm sorts the set of solutions as
they arrive at the Pareto optimal front. This technique was proposed by [45] to overcome
some of the limitations observed in some previous evolutionary multi-objective algorithms.
These limitations include computational intricacy, elitism problems, and parameter sharing
specifications. The NSGA II only utilizes standard parameters of the genetic algorithm
needs, and no extra parameters are needed for its multi-objective base optimization (see
the appendix section for the concept of NSGA II).
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2.3. Combined Local and Global Optimization Method

In the combined optimization algorithm, we used the output of the local optimization
method to define the search space for the global optimization technique to speed up and
reach the global solution faster. Since the local optimization has been constrained by
smoothing terms (i.e., second terms of Equations (2) and (3)), the combined optimization
algorithm is linearly constrained by applying the output of the local optimization algorithm
to define the lower and upper bounds of the search space. Fundamentally, the search space
is determined by modifying the range (minimum and maximum) of the model parameters
obtained from the output of the local optimization algorithm. Depending on the quality of
the output from the local optimization algorithm, scaling the model parameters up and
down by 10 to 30% is recommended to obtain a good result. The variability (10–30%)
of the model parameters was selected based on the expected variation in the modeled
geophysical properties, such as velocity and resistivity, in Saudi Arabia. This process
creates adequate diversity in the initial population for the global optimization algorithm.
A flowchart illustrating the combined local and global optimization algorithm is shown
in Figure 2. The summary of all terms we used to describe the combined optimization
algorithms is presented in Table 1.

 

Figure 2. Flowcharts of the proposed combined local and global optimization algorithm.

Table 1. A summary of all the types of inversion applied in this study, their description, and
abbreviations are presented below.

S/N Inversion Type Abbreviation Description

1 Local optimization method LOM Optimization involves the derivatives of the objectives, e.g.,
Gauss–Newton.

2 Global optimization method GOM Non-derivation optimization, e.g., genetic algorithm.
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Table 1. Cont.

S/N Inversion Type Abbreviation Description

3 Individual inversion method IIM Inversion of a dataset from one geophysical method using the
local optimization, e.g., SR data inversion.

4 Joint inversion method JIM Inversion of datasets from more than one geophysical method
using the local optimization, e.g., SR and DCR data inversion.

5 Single-objective optimization SOO Processing of a dataset from one geophysical method using
global optimization, e.g., SR data inversion.

6 Multi-objective optimization MOO Processing of dataset from more than one geophysical method
using global optimization, e.g., SR and DCR data inversion.

7 Combined (local plus global)
optimization method CGO

Inversion of a dataset from either one or more geophysical
methods using the combination of local (to define a search
space) with global optimization, e.g., DCR, or SR and DCR

data inversion.

8 (Global conventional)
optimization method GOM

Processing a dataset from either one or more geophysical
methods using only the global optimization, e.g., DCR, or SR

and DCR data inversion.

3. Synthetic Test

3.1. Synthetic Data

We examined the feasibility of the combined global optimization (CGO) algorithm
by using synthetic earth models that simulated three near-surface scenarios. The first
model comprised a dyke anomaly with a resistivity of 1250 ohm-m and a two-layered host
environment with resistivities of 50 ohm-m and 250 ohm-m. Similarly, a dyke anomaly
having a velocity of 2200 m/s and a two-layered host environment with layer velocities
of 1000 m/s and 1500 m/s, respectively, was used for the corresponding velocity model
(Figure 3a,d). The second model contained two blocks of positive anomalies, having
a resistivity of 250 ohm-m and velocity of 2000 m/s, which was greater than the host
environment as shown in Figure 3b,e. The third model was similar to the second one, with a
higher parameter contrast (higher and lower than the host model anomalies) compared with
the host rock, where the block parameters were set as 1250 ohm-m, 2500 m/s (Figure 3c,f).
Generally, these models had the same profile length of 240 m in both methods, with a
depth of 50 m in the DCR and 60 m in the SR methods. The DCR data were calculated
for a setup with equally spaced 49 electrodes 5 m apart using the dipole–dipole (DD)
array. The DD array was selected, since it had a fair penetration depth and a very good
to excellent lateral resolution. The seismic survey layout was similar to the DCR profile,
where we used 49 receivers with 5 m spacing and 13 sources with 20 m intervals in the SR
forward calculations.

3.2. Synthetic Results

To obtain good local optimization (LOM) results, an appropriate regularization param-
eter was used in addition to adding the smoothing term in the objective function [46,47].
The regularization parameter was determined by obtaining the maximum value of the
diagonal matrix in the singular value decomposition of the Jacobian matrix in both the
individual and joint inversion of the DCR and SR data. The value of the regularization
parameter was modified using a cooling approximation at each iteration. The inversion
process started with the initial guess of the model parameters that improved with each
iteration. This procedure was used to estimate the model parameter correction vector as
applied by [15,16]. The LOM was terminated when there was no decrease in error and
the RMS dropped below a certain threshold value (convergence criteria). In the combined
global optimization (CGO) techniques, a forward modeling algorithm was used to esti-
mate the theoretical data in both DCR and SR methods; thereafter, the calculated data
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were compared to the observed field data to compute their misfits. The data misfit (from
Equations (10) and (11)) for the DCR method is presented in a simplified form as:

Mdc =
100 × Wdc × (‖ddc − tddc‖2)

‖ddc‖2
(12)

where ddc is the observed real data, Wdc is the weighting matrix of the real data, and tddc
is the theoretical data. The misfit function for the SR method is defined with a similar
annotation as:

Msr =
100 × Wsr × (‖dsr − tdsr‖2)

‖dsr‖2
(13)

The combined misfits form the objective function for the multi-objective optimization
algorithm that is represented as:

Mdc sr = [Mdc Msr] (14)

Figure 3. Synthetic models for (a) resistivity (dyke anomaly) model, (b) resistivity (positive anomaly)
model, (c) resistivity (positive and negative anomalies) model, (d) velocity (dyke anomaly) model,
(e) velocity (positive anomaly) model, and (f) velocity (positive and negative anomalies) model. The
dark red and green lines are used to mark the anomaly boundaries.

Notice that for the multi-objective (MOO) algorithm in Equation (14), the individual
misfits are not added together but are simply concatenated to make a two-column matrix of
the misfits. In addition, selecting the number of populations and generations is important
to improve the model resolution in the CGO algorithm for both methods. Conventionally,
the population size of 50 is recommended for the GA, with the number of decision variables
less than or equal to five. Otherwise, 200 populations should be used when the decision
variable is greater than five. The CGO algorithm is terminated when the average change
in the spread of Pareto solutions is less than the function tolerance (i.e., 1 × 10−4 for
multi-objective optimization, MOO) and the specified number of generations (i.e., for single
objective optimization, SOO).
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The single objective genetic algorithm runs between 1000 and 1500 generations with
an average population size of 250 individuals in both DC-resistivity and SR methods. The
SR genetic algorithm runs were completed in about 748, 876, and 1194 min for the dyke,
positive, and combined positive–negative anomalies synthetic models, respectively, while
the processing times were measured as 176, 181, and 150 min for DC data. After applying
the single objective (SOO) genetic algorithm in both geophysical methods (DCR and SR)
separately, we performed the joint parameter estimation using the multi-objective (MOO)
genetic algorithm. The non-dominated sorting genetic algorithm (NSGA II) used in the
multi-objective global optimization showed that there were feasible solutions depicted by
their Pareto optimal fronts (Figure 4). The compromised solution (the green star in Figure 4)
was chosen and presented as the output of the MOO method. The NSGA II (for both
geophysical methods) ran for about 3136, 2953, and 2891 min for the dyke, positive, and
the combined positive and negative anomalies synthetic models, respectively. Figures 5–10
show the results of the local and combined optimization methods for the dyke anomaly
model (Figures 5 and 6), positive anomaly (Figures 7 and 8), and the positive and negative
anomaly models (Figures 9 and 10). The first column of each of the figures contains the
inverted resistivity models, while the second column is the inverted velocity models. In
addition, the first row in each figure contains the synthetic models, the second row is the
individual (IIM)/single objective (SOO) inverted models, and the third row is the joint
(JIM)/multi-objective (MOO) inverted models.

Figure 4. Plots of the Pareto fronts showing the compromise solution (green star shape) for (a) a dyke
anomaly model, (b) a positive anomaly model, and (c) positive and negative anomalies model.
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Figure 5. Dyke anomaly model inversion using local optimization method; (a) synthetic dc-resistivity
model, (b) individual inverted resistivity model, (c) joint inverted resistivity model, (d) synthetic
velocity model and its ray path coverage, (e) individual inverted velocity model, (f) joint inverted
velocity model. The dark red line is used to mark the anomaly boundary.

Figure 6. Dyke anomaly model inversion using combined optimization method; (a) synthetic dc-
resistivity model, (b) single objective inverted resistivity model, (c) multi-objective inverted resistivity
model, (d) synthetic velocity model and its ray path coverage, (e) single objective inverted velocity
model, and (f) multi-objective inverted velocity model. The dark red line is used to mark the
anomaly boundary.
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Figure 7. Positive anomaly model inversion using local optimization method; (a) synthetic dc-
resistivity model, (b) individual inverted resistivity model, (c) joint inverted resistivity model,
(d) synthetic velocity model and its ray path coverage, (e) individual inverted velocity model,
and (f) joint inverted velocity model. The dark red line is used to mark the anomaly boundary.

Figure 8. Positive anomaly model inversion using combined optimization method; (a) synthetic
dc-resistivity model, (b) single objective inverted resistivity model, (c) multi-objective inverted
resistivity model, (d) synthetic velocity model and its ray path coverage, (e) single objective inverted
velocity model, and (f) multi-objective inverted velocity model. The dark red line is used to mark the
anomaly boundary.
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Figure 9. Positive and negative anomaly model inversion using local optimization method;
(a) synthetic dc-resistivity model, (b) individual inverted resistivity model, (c) joint inverted re-
sistivity model, (d) synthetic velocity model and its ray path coverage, (e) individual inverted
velocity model, and (f) joint inverted velocity model. The dark red and green lines are used to mark
the anomaly boundary.

Figure 10. Positive and negative anomaly model inversion using the combined optimization method;
(a) synthetic dc-resistivity model, (b) single objective inverted resistivity model, (c) multi-objective
inverted resistivity model, (d) synthetic velocity model and its ray path coverage, (e) single objective
inverted velocity model, and (f) multi-objective inverted velocity model. The dark red and green
lines are used to mark the anomaly boundary.
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To see the performance of the conventional global optimization (GOM) only using a
similar misfit function as applied in the CGO method, we applied the genetic algorithm
with a search space defined apart from the local optimization results using the same
DCR and SR synthetic models. Applying the single objective genetic GOM algorithm
to the resistivity model showed that the GOM technique provided unstable solutions in
delineating both DCR and SR anomalies. For example, Figures 11–14 are the outputs of
the genetic algorithm application on the dyke anomaly model (for both DCR and SR), the
positive anomaly model, and the combined positive and negative anomaly model (for DCR
only). Some of the artifacts observed in the results could probably be attributed to the
absence of a constraint or model regularization [38]. The genetic algorithm was applied
for 200 generations in the case of the SR method and 2500 generations for all DCR models
inversion with a population size of ten times the amount of model parameters [35] in both
geophysical methods. This inversion is feasible with the use of high performance and
parallel computing (HPPC).

Figure 11. Dyke anomaly model inversion using the single objective global optimization method;
(a) synthetic dc-resistivity model, (b) single object inverted resistivity model, (c) synthetic velocity
model, and (d) single objective inverted velocity model. The dark red line is used to mark the
anomaly boundary.

Figure 12. Positive anomaly model inversion using the single objective global optimization method;
(a) synthetic dc-resistivity model and (b) single object inverted resistivity model. The dark red line is
used to mark the anomaly boundary.
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Figure 13. Positive and negative anomaly model inversion using the single objective global optimiza-
tion method; (a) synthetic dc-resistivity model and (b) single object inverted resistivity model. The
dark red/blue lines are used to mark the anomaly boundary.

Figure 14. Negative anomaly model inversion using the single objective global optimization method;
(a) synthetic dc-resistivity model and (b) single object inverted resistivity model. The dark blue line
is used to mark the anomaly boundary.
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4. Discussion

The local optimization algorithm performed optimally in delineating both resistivity
and velocity anomalies regarding the tested models. This result is attributed to the appli-
cation of the smoothing term and appropriate regularization parameters in the objective
function to mitigate the effect of the non-uniqueness of the inverse problem. Tables 2–4
summarize the performance of both LOM and CGO algorithms in the inversion involving
both DCR and SR methods. Generally, the results from Tables 2–4 show that the CGO
improved the misfits compared with the LOM in both the DCR and SR methods but at a
relatively high computation cost. Table 5 summarizes the results of the CGO for both (DCR
and SR) synthetic models. Despite using a parallel computing approach, the GOM results
showed a run time of 6642.15 to 13,962.00 min. This suggests that the most significant
challenge with applying the GOM algorithm is the run time.

Table 2. Local and global optimization inversion results parameter for both DCR and SR (synthetic
dyke anomaly model) methods.

Inversion Type Methods
No. of Iterations/

Generations
Time (min) Misfit (%)

Target’s Reconstruction (%)

Geometry Amplitude

LOM
IIM

SR 10 1.69 0.68 80 95
DC 8 0.81 10.61 70 97

JIM
SR 10 10.07 8.83 60 95
DC 10 10.07 8.83 80 97

CGO
SOO

SR 1000 747.85 0.58 85 100
DC 1500 175.57 0.48 65 100

MOO
SR 4000 3136.42 0.62 90 100
DC 4000 3136.42 2.13 70 100

Table 3. Local and combined (local plus global) optimization inversion results parameters for both
DCR and SR (synthetic positive anomaly model) methods.

Inversion Type Methods
No. of Itera-

tions/Generations
Time (min) Misfit (%)

Target’s Reconstruction (%)

Geometry Amplitude

LOM
IIM

SR 9 1.83 1.74 90 95
DC 8 0.76 2.98 80 98

JIM
SR 10 26.51 1.68 75 100
DC 10 26.51 1.68 90 105

CGO
SOO

SR 1000 876.00 0.37 93 100
DC 1500 181.09 0.46 85 100

MOO
SR 4697 2953.45 0.31 95 100
DC 4697 2953.45 0.37 95 100

Table 4. Local and global optimization inversion results parameters for both DCR and SR (synthetic
positive and negative anomalies model) methods.

Inversion Type Methods
No. of Itera-

tions/Generations
Time (min) Misfit (%)

Target’s Reconstruction (%)

Geometry Amplitude

LOM
IIM

SR 11 2.034 0.31 80 90
DC 8 0.93 1.55 70 90

JIM
SR 8 20.08 1.46 95 95
DC 8 20.08 1.46 98 95

CGO
SOO

SR 1500 1193.68 0.14 85 95
DC 1500 150.22 0.12 80 95

MOO
SR 3502 2891.43 0.13 97 100
DC 3502 2891.43 0.10 80 100
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Table 5. Summary of the convectional global optimization inversion results parameter for both DCR
and SR (dyke, positive, positive and negative anomalies model) methods.

Method Inversion Type Cores Population Size Misfit (%) Generations Run Time (min)

DCR Dyke 16 9500 1.04 2500 6642.15
SR Dyke 16 4800 3.32 200 6803.45

DCR Positive 6 9500 1.40 2500 13,962.00
DCR Negative 6 9500 2.70 2500 11,426.68
DCR Pos. & Neg. 4 9500 14.51 2500 13,929.15

The results showed that the CGO algorithm inherited some features of the model, such
as the geometry and amplitude of the anomaly from the local optimization that reflects in
its optimum performance. For example, the amplitude and geometry of the DCR in the
Dyke model was reflected in the final output of global optimization (Figure 6). Notice that
in Figures 9d and 10d, the ray path avoided the negative anomaly; thus, the ideal model
structure cannot be reconstructed with high resolution. This scenario is peculiar with the
application of the SR method regarding a low-velocity layer (e.g., cavity) surrounded by a
high-velocity media [48].

In the CGO method, using the same size of the synthetic model from the LOM, we
observed that obtaining a good inversion result for the SR model using a computer with
12 logical processors configuration (6 cores) takes a longer time than the DCR method. This
is because the DCR method produces electrical perturbation and estimates the apparent
resistivity of the model at once; however, the SR method first computes the travel time
from one source to all receivers sequentially and thereafter repeats the same procedure for
all other available sources. To optimize the computation time of both SOO and MOO, we
made the misfit algorithm part of the code to run on parallel computing by using the built-
in parallel computing (e.g., parfor loop) command in MATLAB. This process enhanced
the computation cost of the hybrid global optimization algorithm. For instance, it took
189.75 min to obtain the same result as in Figure 8b (single-objective GA for the positive
anomaly DCR model) without parallel computing, whereas it took 55.25 min (71% run
time optimization) to obtain the same output with parallel computing. Similarly, running
the single objective genetic algorithm for the positive anomaly velocity (SR) model for
100 generations took 664.56 min without parallel computing, whereas it took 75.66 min (89%
run time optimization) to obtain the same result with parallel computing. The percentage
of run time optimization depends on the population size, number of generations, and
type of geophysical method involved. To make the synthetic test challenging for the CGO
algorithm, we added 3% Gaussian noise to the data resulting from the positive anomaly
model. Although the output did not match noise-free data perfectly, a larger portion of the
anomaly was recovered (Figures 15 and 16).

Regarding the GA population size, we observed that the CGO algorithm involving
the DCR and SR methods performed better with an increasing number of populations. For
example, Figure 15 shows a graduate improvement in the model resolution as the number
of populations increased in the DCR genetic algorithm result. Similarly, the CGO algorithm
offered a better performance with increasing generations. Notwithstanding, increasing the
number of populations and generations prolonged the computation run time (Figure 17).

Considering these criteria (number of generations, population size, and computation
time), we applied an average population size of 500 and 500 generations for both DCR and
SR combined global optimization inversions.
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Figure 15. Test of the combined optimization algorithm using data (both DCR and SR) with added 3%
gaussian noise; (a) synthetic dc-resistivity model, (b) single objective inverted resistivity model
(noisy), (c) single objective inverted resistivity model (noiseless), (d) synthetic velocity model,
(e) single objective inverted velocity model (noisy), and (f) single objective inverted velocity model
(noiseless). The dark red lines are used to mark the anomaly boundary.

Figure 16. Test of the combined optimization algorithm using data (both DCR and SR) with added 3%
gaussian noise; (a) synthetic dc-resistivity model, (b) multi-objectives inverted resistivity model
(noisy), (c) multi-objectives inverted resistivity model (noiseless), (d) synthetic velocity model,
(e) multi-objectives inverted velocity model (noisy), and (f) multi-objectives inverted velocity model
(noiseless). The dark red lines are used to mark the anomaly boundary.
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Figure 17. Effect of population size on DC-resistivity inversion using the genetic algorithm; (a) test of
optimum population size that produces the most significant misfit and (b) test of optimum run time
with respect to population size.

5. Conclusions

The proposed CGO used in this study begins with the application of a local optimiza-
tion algorithm that requires the use of appropriate regularization parameters incorporated
into the DCR and SR objective functions, and it is optimized (using the LOM) to obtain the
best model, which will be used as an input model for the combined local–global optimiza-
tion CGO method. This study applied this concept to obtain the best model parameters
for both an individual and joint inversion of the DCR and SR geophysical methods. The
CGO algorithm used to overcome the challenges associated with the separate application
of LOM and GOM involved the application of the final output (optimum model param-
eter) of the LOM as the input for the CGO techniques. The global optimization part of
the single objective CGO applied the GA to optimize the DCR and SR misfit functions
(Equations (13) and (14), respectively) while the NSGA II was used to optimize the resul-
tant misfit from the DCR and SR in the multi-objective optimization algorithm. Apart
from the CGO method, which improved the computation run time, we made a part (the
misfit function) of the CGO algorithm run on parallel computing. This approach not only
contributed to the optimization of the CGO algorithm run time but also provided an oppor-
tunity to test the convectional GOM using a computer with 12 logical processor units (six
cores). The CGO algorithm was tested with both resistivity and velocity models that had a
dyke, two blocks (positive), and two blocks (positive and negative) anomalies. Generally,
the CGO algorithm showed an improvement when compared with the local optimization
output (Tables 2–4). However, the conventional GOM results showed instability in the
delineation of the anomalies in all the tested SR and DCR models, and the model instability
was probably due to the use of an unconstraint objective function. However, the CGO
method overcame the challenge of model instability since it was linearly constrained by
using the LOM’s output to define the search space’s lower and upper bounds. Additionally,
the conventional GOM application remained computationally expensive (especially for the
SR method) relative to the CGO techniques. Therefore, this study recommends applying
a combined approach (local and global optimization algorithm) when characterizing the
subsurface when both DCR and SR data are acquired.
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Featured Application: This research deals with a very relevant topic in the framework of land-

slide susceptibility mapping, highlighting some very critical drawbacks in using a weak land-

slide inventory for regional-scale assessment. Tools and strategies for recognizing and approach-

ing such limits are given.

Abstract: This research is focused on the evaluation of the reliability of regional landslide suscep-
tibility models obtained by exploiting inhomogeneous (for quality, resolution and/or triggering
related type and intensity) collected inventories for calibration. At a large-scale glance, merging more
inventories can result in well-performing models hiding potential strong predictive deficiencies. An
example of the limits that such kinds of models can display is given by a landslide susceptibility
study, which was carried out for a large sector of the coastal area of El Salvador, where an appar-
ently well-performing regional model (AUC = 0.87) was obtained by regressing a dataset through
multivariate adaptive regression splines (MARS), including five landslide inventories from volcanic
areas (Ilopango and Coatepeque caldera; San Salvador, San Miguel, and San Vicente Volcanoes). A
multiscale validation strategy was applied to verify its actual predictive skill on a local base, bringing
to light the loss in the predictive power of the regional model, with a lowering of AUC (20% on
average) and strong effects in terms of sensitivity and specificity.

Keywords: incomplete landslide archives; MARS; Central America; validation procedures; regional-scale;
debris flows

1. Introduction

Due to the subduction of the Cocos Plate under the Caribbean Plate along the Mid-
dle America Trench [1], El Salvador is characterized by intense tectonic activity and a
number of active volcanoes, meaning that severe earthquakes and volcanic eruptions fre-
quently affect the country. As a consequence, volcanic rocks (from Cenozoic hard rocks
to pseudo-coherent recent ones) and their weathered products largely outcrop [2] along
very highly steep slopes in this country. In particular, the tropical-humid climate setting of
El Salvador [3], with a mean annual rainfall above 1846 mm and a temperature between
20 and 30 ◦C [4], is responsible for the intense weathering of the topsoil, resulting in poor
geotechnical properties. At the same time, intense rainfall events associated with recurrent
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hurricanes frequently result in water saturation and neutral pression increasing in the
regolithic mantle, causing the triggering of slope failures [5–7]. As a consequence, the vol-
canoes and the caldera’s inner flanks are very frequently affected by landslides of a debris
slide/flow type. These failures, in light of the high steepness of the initiation zones, very
frequently take the form of very fast and long-runout debris flow phenomena, threatening
those villages, which are set along the track channels or at the foot of the slopes. In recent
years, the Nepaja (2020) [8] and San Vicente (2009) [9,10] disasters clearly illustrated this
kind of phenomenon, resulting in widespread damage to houses and high numbers of
injured and dead.

Differing from rockfall susceptibility studies [11–13], slide- and flow-type landslides
are typically analyzed on a basin to regional scale, meaning that large inventories are
required for robust modelling. In particular, a need arises to detect the potential initiation
sites of landslides. To this end, landslide susceptibility modelling based on statistical
analysis can offer a suitable approach for obtaining quantitative, objective, and validated
prediction images of the potential triggering sites, which can then be processed with
propagation tracking algorithms for a full hazard assessment.

Indeed, civil protection urgently requires regional-scale landslide susceptibility sce-
narios attempting to define statistically based national maps, eventually even exploiting
limited but available landslide inventories for their calibration. To this end, grouping
multiple clustered available datasets is frequently adopted as a solution to obtain landslide
inventories large enough to train the statistical models. However, such landslide datasets
can result in heterogeneity in terms of spatial distribution, the expertise of the operators,
classification and mapping criteria, survey recognition methods and resolution (field, re-
mote, reports), epoch and related triggering events, etc. It is worth noting that these limits
could hamper the resolution and precision of the predictive models without giving clear
effects down from standard validation procedures.

A number of landslide susceptibility studies have been conducted in the last fifteen years.
In particular, post-Hurricane Mitch (1998) and post the 2001 earthquake, landslide inventories
were processed through principal component analysis for assessing landslide susceptibility of
an area in the extreme north-western sector of the country [14]. At the same time, regional
susceptibility assessment studies in El Salvador have been carried out, exploiting the same
2001 seismically induced inventory (set on the epicentral area), both through binary logistic
regression [15] and neural networks [16]. More recently, a regional landslide susceptibility
scenario with a 30-arcsecond resolution was also proposed by applying a fuzzy-based heuristic
approach [17]. Rotigliano et al. [5,6] and Mercurio et al. [7] extensively applied logistic regres-
sion and MARS to assess landslide susceptibility in two limited volcanic sectors (Ilopango
caldera and San Vicente, respectively). Regarding the civil protection authorities, MARN
(Ministerio de Medio Ambiente y Recursos Naturales) adopted a 1:50,000 scale landslide
susceptibility map for the whole country [18] by applying the heuristic approach of [19,20].
However, all of the proposed regional models [14–17] were obtained through a calibration in
very small sectors, with very weak, if any, validation procedures.

In this paper, an application to the El Salvador territory was carried out, aimed at
suggesting approaches and strategies suitable for correctly investigating the actual quality
of a susceptibility map obtained by calibrating a predictive model through a heteroge-
neous landslide inventory. In spite of its relevance, few other scientists have faced similar
issues [21,22].

The susceptibility modelling was based on applying Multivariate Adaptive Regression
Splines (MARS; [23]) and implemented by exploiting open source software (QGIS [24],
SAGA GIS [25], RStudio [26]).

2. Materials and Methods

2.1. Study Areas

In this research, landslide susceptibility assessment was focused on the slopes of a
set of volcano/caldera areas where debris flows are frequently activated (Figure 1): (i) the
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Coatepeque area, which extends for about 82 km2 east of the homonymous caldera lake;
(ii) the San Salvador area, surrounding the homonymous volcano for about 144 km2; (iii) the
watershed inner basins of the Ilopango caldera, covering a total area of about 121 km2; (iv)
the San Vicente area, which includes the whole homonymous volcano, extending for about
287 km2; and (v) the tip sector of the San Miguel volcano, covering a total area of about
11 km2.

Figure 1. Setting of the study area.

Focusing on the five study areas, the lithologic units of the San Salvador formation
are the most frequently outcropping rocks: Holocene pyroclastites named “Tobas color
café”, in the Coatepeque area (77%), “Tierra Blanca”, in the Ilopango area (45%) and to
a lesser extent in the San Salvador area. Accumulation cones dominate the San Miguel
area (72%), while Pleistocene effusive rocks prevail in the San Salvador area (57%) largely
outcropping also in the San Vicente area. In addition, acid pyroclastites of the Cuscatlán
formation are widely diffused both in the Ilopango and the San Vicente areas. Finally, with
very limited outcropping areas, the pyroclastic and effusive rocks of the Bálsamo formation
are observed in the Coatepeque, Ilopango, and San Vicente areas.

2.2. Landslides Inventory and Related Triggering Rainfall Events

The main task of this research was to test the suitability of aggregated regional land-
slide archives in the evaluation of landslide susceptibility assessment. For this reason, a
set of independent available debris flows/slides archives were exploited for training and
validating a regional landslide susceptibility map. Archives from five different sectors of
the El Salvador territory were considered, which, even in the same sector, were considered
as un-uniform in terms of operators, methods (field/remote), and epoch (which means
grouping debris flows/slides linked to multiple and/or different extreme rainfall). These
landslide inventories were prepared in the framework of different studies (master’s de-
gree thesis, PhD thesis and so on, see Author Contributions), many of which have been
part of the RIESCA project (Proyecto Regional de Formación Aplicada a los Escenarios
de Riesgos con Vigilancia y Monitoreo de los Fenómenos Volcánicos, Sísmicos e Hidro-
geológicos en Centro América). For this reason, the study areas were not a priori limited
and as mentioned above, they were restricted to the sectors affected by the activation of
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the inventoried debris flows/slides: the Ilopango (ILO), Coatepeque (COA), San Miguel
(SMG), San Vicente (SVC), and San Salvador (SSV) areas. The ILO and the COA inventories
were mapped through systematic remote analysis and integrated by some random file
checks, consisting of 38,525 and 1895 debris flows/slides, respectively. The SVC inventory
included 4975 phenomena, which were remotely recognized according to an irregular spa-
tial scheme. The debris flows/slides of the SMG (233 cases) were extracted by a historical
simplified archive inventory, whilst the SSV inventory (382 cases) merged the results of
some spot field surveys. At the same time, the expertise and perspective of the operators
were different, with ILO and COA having been mapped in the framework of scientific
research, all the other inventories coming from civil protection tasks and SMG collecting
a number of historical reports. The main triggering events for these landslide scenarios
were Hurricane Ida and the tropical depression 12 E (TD12 E). The tropical-humid climate
setting of El Salvador produces, in the rainy season between May and October, very high
rainfall amounts (above 1846 mm, on average) that, usually, occur in the form of intense
storms. Therefore, rapid saturation of the regolithic mantle and powerful surface runoff
trigger a huge number of landslides even in the case of a normal rainfall season [5].

Between November 7th and 8th, Hurricane Ida, and the low-pressure system 96 E,
simultaneously struck the central area of El Salvador, with cumulated rainfall exceeding
300 mm/24 h in the Ilopango and San Vicente villages [5,6,27,28]. Floods and landslides
lashed these areas, causing around 200 deaths and huge economic losses [9], with damages
to cropland, rural houses, and roads. In particular, the most devastating debris flows were
triggered from the north-western flank of the San Vicente Volcano, hitting the villages of
Verapaz and Guadalupe [5,7].

Tropical depression 12 E affected El Salvador during the period from the 10th to
20th October. With a cumulative maximum of 1513 mm, equivalent to 42% of the mean
annual rainfall of the period 1971–2000 [28], DT12 E was classified as the most severe
meteorological event recorded in the region. Additionally, in this case, with 10% of the
national territory affected, especially along the coastal plains and the volcanic mountains,
El Salvador was heavily hit by the related floods and landslides, reporting 35 victims and
an economic loss of more than USD nine hundred million [10,28].

The Coatepeque debris flows were triggered by the tropical depression (TD) 12 E in 2011.
The same extreme rainfall event activated the debris flows/slides of the San Salvador dataset.
Hurricane Ida was the trigger of the phenomena mapped in the San Vicente archive, while both
TD12 E and Ida activated the debris flows/slides of the Ilopango dataset. Finally, the landslides
of the San Miguel archive were triggered by several rainfall events from 2001 to 2018.

All of the mapped phenomena were individuated by exploiting Google Earth images,
and the landslide identification point (LIP), which was generated for each of the mapped
phenomena corresponding to the highest point along the landslide crown, was also taken
as indicating the area that effectively represents the activation conditions for surface debris
flows [5,6,29–33].

2.3. Model Building and Validation Strategy
2.3.1. Predictors and Mapping Units

The selection of a set of geo-environmental variables potentially expressing the land-
slide preparatory causes (Table 1) was based on widely adopted geomorphological crite-
ria [5–7,34–37]. In particular, outcropping lithology (GEO) and soil use (USE) were derived
from an available thematic map [38] and a remote survey, respectively. By processing a
10 m pixel digital terrain model (DTM), the following continuous variables were derived:
elevation (ELE), steepness (STP), plan (PLN), and profile (PRF) curvatures, topographic
wetness index (TWI), and aspect, the latter expressed in terms of easternness (EASTNS)
and northernness (NORTHNS). In addition, the landform classification (LCL) categorical
variable was obtained. In this way, a set of three categorial and seven continuous variables
was prepared.

160



Appl. Sci. 2022, 12, 6151

Table 1. Details of the selected geo-environmental variables.

Factor Acronym Description of Source Parameter Units References

Elevation ELE Raster of elevation distribution m

Landform
classification LCL

Outcome of an automated procedure that
recognize landforms on a gridded elevation

distribution (TPI)

Wilson and
Galland [39]

Slope gradient STP Highest first derivative of elevation degree Burrough and
McDonell [40]

Northerness NORTHNS Cosine of aspect (Direction of steepest
downwards slope from each cell to its neighbors)

Wilson and Galland
[39] (Aspect)

Easterness EASTNS Sine of aspect (Direction of steepest downwards
slope from each cell to its neighbors)

Wilson and Galland
[39] (Aspect)

Plan curvature PLN Second derivative of elevation, computed along
the horizontal plane rad/m Zevenbergen and

Thorne [41]

Profile
curvature PRF Second derivative of elevation, computed along

the direction of the highest slope gradient rad/m Zevenbergen and
Thorne [41]

Topographic
wetness index TWI

Calculated as ln[A/tanβ], where A and β,
computed on each cell, correspond to the area of

upslope drained cells and the slope
gradient, respectively

m Beven and Kirkby [42]

Lithological
map GEO Geolithological map of the study area, modified

from original geological map
modified from

Schmidt-Thomé [43]

Soil use USE Land use map derived from 2002 satellite images
and filed survey

With regard to lithology, based on the geomechanical expected response, the outcrop-
ping lithologies were grouped as soft, medium, and hard rocks and very soft, soft, medium,
and hard soils. On the basis of the landslide distribution in the study areas, very soft
and hard soils account for more than 80% of the mapped cases. The very low number of
landslides recognized in soft soils has to be ascribed to the very limited extension of the
outcropping areas.

All of the controlling factors were arranged in 10 × 10 m raster layers. The same
grid cell structure was then adopted as the susceptibility mapping unit, assigning a sta-
ble/unstable status depending on the intersection of LIPs. In fact, according to a number of
debris flow susceptibility assessment studies (e.g., [7,22,29,31,32,36,37,44–50]), we consid-
ered the instability conditions of each inventoried landslides to be effectively captured in
the highest crown 10 × 10 m pixel. In order to optimize the final selected predictors that
were included in the MARS modelling procedure, the variance inflation factor (VIF) [51]
test was performed for multicollinearity analysis through the continuous variables.

2.3.2. Modelling and Validation Tools

Multivariate adaptive regression splines (MARS; [23]), which was successfully applied
in a number of recent landslide and soil erosion susceptibility studies [5–7,35,37,52–59], was
then applied to regress the outcome (stable/unstable status) onto the covariates set from
the controlling factor layers. MARS is a non-parametric regression method that exploits
the splitting of each independent variable into hinge functions to boost the maximum
likelihood-based adaptation skill of the logistic regression method, according to:

y = f (x) = α +
N

∑
i=1

βihi(x) (1)
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where y is the dependent variable (the outcome) predicted by the function f (x), α is the
model intercept, and βi is the coefficient of the hi basis functions, given the N number of
basis functions. MARS analysis was performed by exploiting the “earth” R-package [60].

The MARS statistical modelling of landslide susceptibility conditions requires the
random extraction of a sample made of a balanced number of stable and unstable cases to be
split into calibration and validation subsets: the first is exploited for regressing the outcome
status on the set of covariates that express the adopted controlling factors, while the latter
furnishes the unknown-to-model target pattern whose status has to be blindly predicted. In
a pixel-based method, where the number of stable cases is typically largely greater than the
unstable, balanced samples are obtained by merging all the positives to an equal number
of randomly extracted negatives. To account for any potential unrepresentativeness of the
extracted negatives, by adopting recurrent random selection routines, multiple samples
were produced. Similarly, to control the influence of the specific cases which feed the
calibration subsets, multiple (75/25%) calibration/validation splitting was applied to
each sample as well. In this way, one hundred samples were split one hundred times
so that each pixel was classified ten thousand times, allowing us to estimate the model
resolution and precision. Finally, to fully evaluate the prediction skill of the model, the
regression coefficients gained in the calibration/validation subset were applied to the
whole investigated area.

Receiver operating curve (ROC) [61–63] and confusion matrices analyses were the
tools employed to investigate the model’s accuracy. In particular, ROC plot analysis is
based on evaluating true- versus false-positive rates for decreasing susceptibility scores,
with a larger area under the curve (AUC) [64,65] attesting to more effective classifications.
The score at the maximum gradient of the ROC is then used as an optimized cut-off [66]
for building a binarized (positive/negative-observed/predicted) confusion matrix. In this
way, the accuracy of the model can be evaluated both with score-independent (ROC_AUC)
and -dependent (ACC) indices.

2.3.3. Research Design and Model Building Strategy

In the following, we will refer to a super area (ALL), considering that it is obtained by
merging all the positive and negative cases of each of the five sectors (volcanic areas), the
latter defining five local datasets (ILO, COA, SMG, SVC, and SSV).

It is worth noting that, in light of the number of causes that have been here claimed as
responsible for the inventory incompleteness, a different approach from Steger et al. [21] was
designed for evaluating the influence of the bias landslide inventory. In particular, to explore
the topic of the research, the following model building procedure was designed by submitting
the hypothesizing of completeness of the inventory to a strict validation procedure.

First, a grand model (ALL) was prepared by applying the typical approach aimed
at obtaining a regional model from the available landslide inventories, including in the
processed dataframe the whole set of positives and negatives from the five sectors. To
maintain control over the variability of the negatives and the calibration/validation subset
assignment of positives, a suite of one thousand multiple datasets were obtained by ran-
domly extracting one hundred sets of negatives and submitting each dataset to ten random
calibration/validation (75/25%) splitting processes.

Once the grand model was prepared, it was first validated with respect to the spatial
distribution of the landslides in the whole super area (ALL_ALL), according to a self-
validation scheme [5–7,32,35–37,46,67,68]. The validation performance of the grand model
was then locally evaluated by restricting the validation dataset to a single sector in turn
(e.g., ALL_ILO). For comparison, independent local models (e.g., LOC_ILO) were prepared
for the five sectors by limiting the application of the modelling procedure to every single
dataset and applying a local self-validation scheme. Finally, five one-leave-out models
were prepared by applying the same above-described procedure but adopting a 4/1 sectors
calibration/validation splitting in the modelling scheme; a local validation was then ob-
tained, by assessing the predictive skill in recognizing the specific positives and negatives
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of the extracted (left-out) target sector. In the following, these models are referred to as
OLO models (e.g., OLO_ILO).

Table 2 provides a summary of the prepared models, including the specification of the
main characteristics.

Table 2. Adopted model building scheme for the tested models. Green and orange dots represent
calibration and validation cases, respectively, on the schematized five sectors.

Type Calibration Validation Graphic Example

ALL_ALL

75% randomly
extracted balanced

subset from the ALL *
dataset

conjugate 25%
randomly extracted

balanced subset from
the ALL dataset

ALL_target

100% randomly
extracted balanced

subset from the ALL*
dataset

100% randomly
extracted balanced

subset from a single
target ** sector

e.g., ALL_4

OLO_target

100% randomly
extracted balanced

subset from a
[ALL-target] ***

dataset

100% randomly
extracted balanced

subset from the
subtracted target **

sector

e.g., OLO_3

LOC_target

75% randomly
extracted balanced

subset from a target **
sector dataset

conjugate 25%
randomly extracted

balanced subset from
a target ** sector

dataset

e.g., LOC_5
* ALL: the sum of the positive and negative cases of the five sectors. ** target: the sum of positive and negative
cases of a single sector. *** [ALL-target]: the difference between ALL and a target.

According to the main task of the research, the ALL_ALL is considered as the model
that one can take as representative for a regional prediction image. At the same time,
the imported models (ALL_local), in re-defining the validation set on a local basis, could
furnish a useful warning in case the performance of the grand models is actually locally
misleading. The local models give an estimation of the reference performance that the
imported model (ALL or OLO) should achieve to be considered more informative. Finally,
the one-leave-out modelling procedure simulates the results of applying the model to totally
unknown sectors (such as a hypothetical sixth unknown volcanic area in our research).

3. Results

For each of the models described above, the results of the validation are reported both
in Figures 2–4, where ROC curves and related AUCs are drawn, and in Table 3, where
binarized positive/negative status comparisons between predicted/observed target cases
are given.
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Figure 2. ROC plots and relative AUC values for the ALL models.

Figure 3. ROC plots and relative AUC values for the LOC models.
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Figure 4. ROC plots and relative AUC values for the OLO models.

Table 3. Validation results (confusion matrices) for the sixteen models.

Count Positives Negatives TN FN FP TP ACC SensitivitySpecificity AUC

A
L

L

ALL 6,311,320 46,010 6,265,310 4,786,221 8022 1,479,089 37,988 0.76 0.82 0.76 0.87
COA 806,671 1895 804,576 698,607 967 105,969 928 0.87 0.44 0.87 0.82
SSV 1,429,050 382 1,428,668 1,369,074 367 59,594 15 0.96 0.04 0.96 0.54
ILO 1,161,436 38,525 1,122,911 378,750 4171 744,161 34,354 0.36 0.89 0.34 0.69
SVC 2,794,399 4975 2,789,424 2,221,036 2295 568,388 2680 0.80 0.54 0.80 0.73
SMG 119,964 233 119,731 118,754 222 977 11 0.99 0.05 0.99 0.78

L
O

C

COA 806,471 1895 804,576 590,261 219 214,315 1676 0.73 0.88 0.73 0.88
SSV 1,429,050 382 1,428,668 839,269 66 589,399 316 0.59 0.83 0.59 0.78
ILO 1,161,436 38,525 1,122,911 737,214 13392 385,697 25,133 0.66 0.65 0.66 0.72
SVC 2,794,399 4975 2,789,424 1,880,683 1038 908,741 3937 0.67 0.79 0.67 0.80
SMG 119,964 233 119,731 79,805 25 39,926 208 0.67 0.89 0.67 0.87

O
L

O

COA 806,471 1895 804,576 622,805 562 181,771 1333 0.77 0.70 0.77 0.82
SSV 1,429,050 382 1,428,668 1,343,953 361 84,715 21 0.94 0.05 0.94 0.53
ILO 1,161,436 38,525 1,122,911 455,548 7448 66,7363 31,077 0.42 0.81 0.41 0.63
SVC 2,794,399 4975 2,789,424 2,044,869 2021 744,555 2954 0.73 0.59 0.73 0.69
SMG 119,964 233 119,731 119,002 229 729 4 0.99 0.02 0.99 0.76

The performance of the ALL_ALL model is very high, with excellent AUC and accuracy
(0.87 and 0.76, respectively) and highly satisfactory sensitivity (0.82) and specificity (0.76).
Comparing these values to the ones obtained in importing the grand model into the specific
sectors (ALL_local), satisfactory to excellent AUC and ACC values still hold, with the
exception of ILO and SSV. However, lower sensitivity and higher specificity were recorded
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for all the models, with the exception of ILO. It is worth noting that only the SVC imported
local model still performs with acceptable scores for all the main indices (sensitivity, specificity,
ACC, AUC). At the same time, the local models are in general characterized by higher (0.8–0.9)
AUC values, with a much more balanced sensitivity/specificity ratio, as a result of higher
sensitivity and lower specificity. Again, the opposite behavior is observed for ILO.

Finally, the one-leave-out models confirm the general trend of performance indices’
variation, which was observed for ALL_local validations.

With regard to the role of the predictors, the results obtained from the local modelling
highlight two very different responses (Figure 5): SMG and SSV are fully controlled by
elevation and steepness, whilst ILO, COA, and SVC also required the discriminating
contribution of either landform classification (COA and SVC) or outcropping lithology
(ILO and SVC) or soil use (for COA and ILO). Elevation, steepness, outcropping lithology,
and soil use are all selected by the ALL grand model.

 

Figure 5. The most important variables for the ALL model (a) and the LOC (left side) and the OLO
(right side) models (b–f). The common variables for the LOC and the OLO models are presented
in amaranth, while the different variables are presented in green. Thin lines are used for variables
with a lower overall (minor than 30 out of 100). Here are the acronyms used: geo 2 = soft rock;
geo 3 = hard rock; geo 4 = medium rock; geo 5 = very soft soil; geo 6 = soft soil; geo 8 = medium soil;
lcl 3 = valleys; lcl 4 = plains; lcl 5 = open slopes; lcl 8 = midslope ridges; uso 2 = forest; uso 4 = crop
and pasture; uso 5 = permanent crop; uso 11 = shrub vegetation.

In Figure 6, a comparison between the ALL and LOC landslide susceptibility maps
for two representative sectors (Ilopango and San Salvador) is given, highlighting either
coherent or incoherent spatial patterns among the models for the two sectors.
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Figure 6. ALL (a,c) and LOC (b,d) landslide susceptibility maps for Ilopango (on the right side)
and San Salvador (on the left side) sectors. The histograms (e,f) show the percentage of observed
(stable/unstable) cases, when (i) LOC model assigns a higher susceptibility with respect to the ALL
model (LOC+), (ii) both the models assign the same predicted status (Equal) or (iii) the ALL model
sets higher susceptibility with respect to the LOC model (ALL+).
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4. Discussion

The local landslide distribution in five different volcanic sectors was predicted both
from imported (both ALL and OLO models) and locally calibrated models. The latter
resulted in smoothly (with the exception of SSV) higher AUC values, with a proportional
decrease in the cut-off-dependent accuracy, but driven by a marked sensitivity increase and
a slight specificity decrease. In particular, the greater the LIP% incidence of a single sector,
the higher the TPR decrease recorded for the imported models. A relevant exception that
was highlighted by the results is the very odd behavior of ILO, whose local model produced
a worse performance in recognizing its own positives. At the same time, in terms of scoring
and status prediction, ALL and LOC models can result in different prediction images.

The ILO sector includes the great majority of landslides (83.7%) and, in light of its
limited extension (18.4%), the maximum ratio between unstable and stable pixels. When
trying to discriminate the status of the ILO pixels, on the basis of the ALL or OLO imported
model, a better performance arises in positive detection when compared to the skill of
the local model. This is due to the undifferentiated presence of positives and negatives
in the same geomorphologic conditions, and this effect could have been enhanced by
the severe triggering conditions (IDA tropical storm) that activated landslides even in
less susceptible areas. In fact, the better performance of ALL and OLO relies on the
circumstance that these models take their cases outside ILO, for positive and negative cases
of OLO, or prevalently outside ILO, for the negatives of ALL. As a consequence, the local
dataset confuses the binary discrimination whilst recurring for the outside pixels, which
allowed us to better understand the unstable conditions. At the same time, for a more
geomorphologically differentiated setting, the sub-catchment of ILO (“Arenal de Cujuapa”),
Rotigliano et al. [5,6] obtained, with the same MARS modelling approach, higher AUC
and accuracy values (0.83 and 0.73, respectively). Moreover, the same loss in the model
performance was observed when trying to temporally predict the landslide inventory of
2003 (produced by a non-extreme rainfall triggering event) from the model calibrated with
the same 2009 hurricane-induced inventory that was used in the present research.

Once the potentially hampering specific conditions of the ILO sector arose, a new
grand model (ALL*) was tested excluding ILO from all sectors (which were reduced to
four) and obtaining better locally imported results (Table 4). With the exception of SSV,
these new imported models performed with similar, largely satisfactory AUCs to the local
models and even higher sensitivity.

Table 4. Validation results (confusion matrices) for the ALL* models.

Count Positives Negatives TN FN FP TP ACC Sensitivity Specificity AUC

ALL*_COA 806,471 1895 804,576 515,857 166 288,719 1729 0.64 0.91 0.64 0.85
ALL*_SSV 1,429,050 382 1,428,668 1,314,478 349 114,190 33 0.92 0.09 0.92 0.61
ALL*_SVC 2,794,399 4975 2,789,424 1,813,333 1026 976,091 3949 0.65 0.79 0.65 0.79
ALL*_SMG 119,964 233 119,731 37,646 8 82,085 225 0.32 0.97 0.31 0.75

5. Conclusions

On the basis of the obtained results, it is confirmed that grouping landslide inventories
from different areas to increase the number of cases can lead to very unreliable results
unless further validation tests are carried out. In particular, depending on both the number
of landslides and frequency distribution of all the predictors in each of the grouped sectors,
the grand model can be seen as having very high performance on average, but is very
misleading and unstable on a local scale. In light of this effect, locally calibrated models can
have better performance even if trained with a lower number of cases. This would typically
lead to attaining a sense of security and considering the obtained prediction image as
reliable for the study area, eventually suggesting that the obtained model also be exported
to new neighboring unrecognized sectors (e.g., those between the five mapped ones). In
this paper, a new approach was adopted, and related tools were proposed for verifying the
inventory completeness hypothesis. This approach can be involved in any model building
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procedure so as to obtain warnings about the quality of the source data and its influence on
the resolution of the derived susceptibility models.

Comparing grand to local models should be a standard procedure when assembling
large landslide inventories, even in the case of secondary catchments in large basin-scale
studies. The main factors controlling the performance of the grand model are the number
of total pixels and the number of positives and the spatial distribution of the predictors.
Two main factors hamper the accuracy and reliability of any grand model, based on a
presence/absence method: depending on the relative spatial extension of the classes of each
covariate, in light of the need to randomly extract the negatives to prepare balanced datasets,
using the more diffused classes results in stable conditions; depending on the different
levels of completeness of the merged landslide inventories, unstable conditions may come
to light in the sectors or catchments with a higher number of mapped landslides. These two
effects are much more severe for the categorical variables in the case of inhomogeneous
geologic/geomorphologic settings, whilst DTM-derived variables are more unlikely to be
so largely different as to mislead the modelling. It is worth noting that the limits produced
by the qualitative and quantitative differences in the landslide inventories suggest that
the adoption of presence-only methods is not suitable, also in light of the strong influence
produced by any unrepresentativeness of the landslide inventories.

Optimizing susceptibility models for predicting new debris flow activation sites in
volcanic areas is of crucial importance in El Salvador. In fact, under the triggering of
the recurrent tropical storms which frequently strike the country, this kind of landslide
rapidly evolves along the steep volcano flanks into very destructive debris flow phenomena
hitting the hillside areas and causing damage and life losses. Investigating the reliability of
prediction images for landslide activation constitutes a mandatory step in obtaining the
starting base to be coupled with propagation algorithms for producing complete debris
flow event scenarios.
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Abstract: In statistical landslide susceptibility evaluation, the quality of the model and its prediction
image heavily depends on the quality of the landslide inventories used for calibration. However,
regional-scale inventories made available by public territorial administrations are typically affected
by an unknown grade of incompleteness and mapping inaccuracy. In this research, a procedure
is proposed for verifying and solving such limits by applying a two-step susceptibility modeling
procedure. In the Torto River basin (central-northern Sicily, Italy), using an available regional
landslide inventory (267 slide and 78 flow cases), two SUFRA_1 models were first prepared and
used to assign a landslide susceptibility level to each slope unit (SLU) in which the study area was
partitioned. For each of the four susceptibility classes that were obtained, 30% of the mapping units
were randomly selected and their stable/unstable status was checked by remote analysis. The new,
increased inventories were finally used to recalibrate two SUFRA_2 models. The prediction skills
of the SUFRA_1 and SUFRA_2 models were then compared by testing their accuracy in matching
landslide distribution in a test sub-basin where a high-resolution systematic inventory had been
prepared. According to the results, the strong limits of the SUFRA_1 models (sensitivity: 0.67 and
0.57 for slide and flow, respectively) were largely solved by the SUFRA_2 model (sensitivity: 1 for
both slide and flow), suggesting the proposed procedure as a possibly suitable modeling strategy for
regional susceptibility studies.

Keywords: landslide susceptibility; public landslide inventory; MARS; landslide incompleteness

1. Introduction

Landslide susceptibility assessment can be performed by applying statistical methods
to model the dependence between a set of predictors and an outcome expressing the
stable/unstable status of a mapping unit [1–4]. The reliability of a predictive model strongly
relies on the completeness and representativeness of the landslide inventory that is used
for calibration [5–9]. In particular, regional landslide susceptibility studies require the use
of landslide inventories, which are typically available only from public administrations. In
fact, such a big database is typically the result of long-term cumulative reported cases that
are mapped following warnings from local municipality offices, transportation companies,
or even citizens. As a matter of fact, the reported landslide cases are clustered around
urban areas and the infrastructural axis. For this reason, this kind of inventory suffers from
an unknown grade of incompleteness and inaccuracy. The number of cases is also too large
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for an accurate check to be performed by regional authorities. Both multiple typologies
and landslide polygons are frequently corrected. These limits are obviously much more
marked in agricultural and pastoral areas [10,11], where the potential interest for urban
development is not infrequent. On the other hand, regional landslide databases allow
the available landslide inventories to be immediately obtained, thereby saving time and
resources from mapping [12].

Thus, defining a useful way to increase the quality of regional landslide inventories
is a goal of research focused on landslide susceptibility evaluation but also of public
administrations. In fact, the latter, generally determine landslide risk by crossing the
inventoried phenomena (and their typological/geometrical characteristics) and the exposed
vulnerable areas (e.g., urbanized sectors or communication routes). In addition, support
for territory management, planning, and safety measures is mainly defined based on geo-
hydrological hazards. In this sense, public administrations have made various efforts to
obtain more correct and complete landslide inventories [13,14].

In light of the abovementioned issues, a need arises to find possible modeling proce-
dures for regional landslide susceptibility assessment that are capable of both detecting
and solving the potential limits induced by poor calibration inventories. However, studies
aimed at evaluating the effects of incomplete inventories are nowadays focused on the
models’ performance [7] or the variables’ importance [5,10]. In this research, a procedure for
using regional landslide inventories to prepare reliable and accurate susceptibility models
is proposed. By applying the approach suggested by Martinello et al. [7], the potential
limits of a susceptibility model calibrated with the source inventory were first identified.
By systematically checking a portion of the study area, an enrichment of the original cali-
bration landslide inventory was then obtained. A new model was then recalibrated and its
accuracy evaluated and compared with that of the source model.

The research was carried out in the context of the SUFRA project, a challenging project
that involves the analysis and evaluation of all types of landslide susceptibilities (slide,
flow, rapid flow, fall-topple, and lateral spread) for the whole regional territory of Sicily
(~26,000 km2). It is the first project focused on landslide susceptibility evaluation at the
regional scale, and it will be used by the public administration for territorial planning
and civil protection aims. Considering the short duration of the project (only two years),
we were forced to base our analysis on the landslide inventories already available with
the Sicilian public administration. At the same time, in the context of the PNRR project
GeoSciences IR, the research was focused on defining strategies to increase the overall
quality of public landslide inventories, thus optimizing costs, resources, and time.

2. Materials and Methods

The available slide and flow inventories of the Torto River basin (420 km2, central-
northern Sicily), which were prepared by the “Dipartimento Regionale dell’Autorità di
Bacino del Distretto Idrografico Sicilia” (the so-named P.A.I. inventories), and a set of twelve
geo-environmental predictors were used to produce two basin-scale susceptibility models
(for slides and flows, respectively) by applying multivariate adaptive regression splines
(MARS). The obtained first-level landslide susceptibility maps were used for checking
30% of mapping units in which no landslides of P.A.I. were present and defining their
stable/unstable status with respect to flow and slide movements. The checked archives
were used for integrating the main inventories (the P.A.I. inventories) in order to obtain
second-level landslide susceptibility maps. Once all landslide susceptibility maps were
produced (first level and second level), the accuracy of the obtained maps was verified by
validating high-resolution flow/slide archives detected for a small sub-basin (Sciara) of the
Torto catchment.

The research was implemented using open-source geographical information system
software (GIS; Quantum GIS [15], GRASS GIS [16], and SAGA GIS [17]) and the Rstudio
statistical platform [18].
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2.1. Study Area

The Torto River extends for 423 km2 in the northern section of Sicily (Italy, Figure 1a)
between two mountain ranges, namely, the Madonie Mountains at the east and the Termini
Mountains at the west, and the Tyrrhenian Sea. The geomorphological setting of the study
area is the result of tectonic and selective erosion, karstification, and deep-seated gravitation
slope deformation [19,20].

 

Figure 1. (a) Location of the Torto River basin. (b) Bedrock lithology map of the study area.
(1) Anthropic deposits; (2) alluvial deposits; (3) alluvial fan and talus deposit; (4) colluvium and
old landslide deposits; (5) evaporitic rocks; (6) sandstones; (7) Flysch Numidico pelites; (8) Fly-
sch Numidico sandstones/conglomerates; (9) “Terravecchia” pelites; (10) “Terravecchia” sand-
stones/conglomerates; (11) “Varicolori” clays; (12) calcareous and clayey marls; (13) lithoid units.

In fact, the study area falls within the central-western section of the Sicilian fold
and thrust belt, which is the result of the retreat of the subduction hinge of the Ionian
oceanic lithosphere and the postcollisional convergence between Africa and Europe [21–24].
This complex structural setting results in a multiduplex system where the basin tectonic
units overthrust platform tectonic units across subhorizontal surfaces with prevalent S–SW
transport direction and components of northward back-thrusting. In the area, Sicilide
units and the Numidian Flysch are widely outcropped, while Imerese basin units mainly
represent the basal body. However, Plio-Quaternary high-angle faults create new contacts
between the carbonatic Imerese successions and Cenozoic clayey rocks belonging to the
Numidian Flysch, which are sometimes overthrust by the Sicilide units [19,20] (Figure 1b).

According to the geological setting, the study area is characterized by a hilly landscape
modeled by gravitational movements and water erosion, whilst carbonate reliefs [20,25]
are affected by gravitational (mainly falls) and karstic processes. Mount San Calogero is
the highest relief of the area (1370 m s.l.m).
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The climate of the Torto River basin is classified as the Mediterranean type, with rainfall
concentrated mainly in the winter semester, while the summer period is characterized by
almost drought conditions. The mean annual rainfall is around 600 mm, while the mean
temperature value is about 15 ◦C.

2.2. Landslide Inventory

Starting from the available P.A.I. (Piano stralcio di bacino per l’Assetto Idrogeologico)
landslide archives prepared by the “Dipartimento Regionale dell’Autorità di Bacino del
Distretto Idrografico Sicilia”, slide, flow, and complex inventories were distinct and submit-
ted to remote checking. In fact, frequently, single phenomena are typically grouped into
large polygons in these inventories, and, moreover, their boundaries are not so accurate
(Figure 2a).

 

Figure 2. (a) Top image: landslides as mapped in the original P.A.I. inventory (yellow polygons are
complex landslides, purple polygons are flows, red polygons are slides, and green polygons are
diffused erosional areas); bottom image: mapping of single phenomena (red polygons). (b) Example
of P.A.I.-driven mapping: original P.A.I. landslide inventory (polygons) and checked P.A.I. landslide
inventory (LIPs).

In order to propose a landslide susceptibility evaluation technique with statistical
methods, it is necessary to discriminate every individual landslide and, when needed,
reinterpret the type of movement [26,27]. It is worth noting that the single phenomena were
checked only inside the P.A.I. landslide polygons. This means that instead of a systematic
(and complete) inventory, P.A.I.-driven mapping was produced (Figure 2b). The reason
for this choice lies in the aim of the research, i.e., testing a good practice where available
regional public landslide inventory can be used to obtain basin-scale susceptibility maps.
In this way, according to Hungr et al. [26], for complex landslides, each component of the
phenomenon was defined so that only two different inventories were obtained at the end of
the mapping: the slide (78 cases) and the flow (267 cases) archives. In fact, it was assumed
here that rotational and translational slides share their slope susceptibility conditions to a
large extent. With regard to checking the P.A.I. inventory, the more frequently observed
flaws (12 cases) concerned large earth-flows, which were misclassified as (rotational) slides.

Two examples of these very diffused landslide types are given in Figure 3. The
landslide identification point (LIP), which corresponds to the highest point along the crown
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of the landslide area, was assumed as diagnostic in potentially marking unstable slope
conditions [27–31].

 

Figure 3. (a) Rotational slide/flow landslide affecting the slope of the A19 motorway; (b) multiple
rotational slide/flow landslides affecting the slope of the SS120 national road.

2.3. Mapping Units and Landslide Conditioning Factors

Considering the type of phenomena analyzed and the scale of the landslide suscepti-
bility evaluation, we decided to employ slope units as mapping units (SLU). In fact, for the
purpose of the project, we needed to detect the activation area but also include the potential
area of propagation and arrest of the phenomena. According to the literature [6,9,32], SLUs
have been demonstrated to be more geomorphologically adequate to represent all land-
slide phases (for the flow and slide phenomena) as it is assumed the complete landslide
kinematic (initiation, propagation, and accumulation) occurs inside. For this research,
SLUs were delimited by applying the r.watershed [33,34] GRASS GIS module using the
2000 contributing area threshold. By overlapping the SLUs with the landslide inventories,
the stable/unstable status with respect to the slide and flow phenomena was defined for
each slope unit depending on whether it hosts at least one LIP.

Geo-environmental predictors were selected on the basis of the expected direct or
proxied role in landslides [7,27,35] (Table 1): outcropping lithology (LITO), land use (ob-
tained by the Corine Land Cover 2018-USE), elevation (ELE—10 m), landform classification
(LCL), steepness (SLO), aspect (expressed as northerness and easterness), plan (PLN), and
profile (PRF) curvatures, topographic wetness index (TWI), and stream power index (SPI).
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For the continuous variables, a multicollinearity analysis was carried out using the variance
inflation factor (VIF) obtained by applying the “usdm” R-package [36]. No multicollinearity
emerged between the selected predictors. However, considering that specific modeling
procedures were implemented separately for flow and slide, the SPI predictor was excluded
for the slide model, while the TWI variable was excluded from the flow model.

Table 1. Details of the employed geo-environmental variables (modified from [7,27]).

Acronym Description of Predictor References Potential Proxy Significance

ELE Distribution of elevation Mean annual rainfall

LCL

Morphological classification of the
territory based on the variation in

elevation with respect to the
neighbouring areas

[37] Morphological setting

SLO The first derivative of elevation [38] Speed of the water and potential
underlying rupture surfaces [6,27]

N Cosine of aspect (direction in which
the slope degrades more rapidly) [39] Seasonal wet/dry cycles of soils [40]

E Sine of aspect (direction in which the
slope degrades more rapidly) [39] Seasonal wet/dry cycles of soils [40]

PLN
The second derivative of elevation,

computed along the
horizontal plane

[41] Activation and propagation of
landslides [42]

PRF
The second derivative of elevation,
computed along the direction of the

highest slope gradient
[41] The direction of flow [42]

TWI

Calculated as ln[A/tanβ], where A
and β, computed on each cell,

corresponds to the area of upslope
drained cells and the slope gradient,

respectively

[43] Potential infiltration or saturated soil
thickness [6,27]

SPI
Natural logarithm of the catchment
area multiplied by the tangent of the

slope gradient
[44] Proxy of the intensity of surface

water erosion [6]

LITO Original geological map Physical–mechanical properties of
rocks [27]

USE CORINE land cover (2018)
Potential hydrological and surface

hydric erosion induced
disturbances [27]

Each variable was then characterized inside the SLUs by zonal statistics as deciles for
the continuous variables and as relative frequencies for the categorical ones.

2.4. Statistical Model, Validation Tools, and Model-Building Strategies

The multivariate adaptive regression splines (MARS; [45]) method was used for all
modeling procedures as it has been confirmed to be very effective in modeling nonlinear
components of the relationship between landslides and their causative factors [6,46].

MARS is a nonparametric regression method that splits each independent variable
into branches (optimizing their number based on the characteristics of the variable itself
and the correlation with the distribution of other predictors). Each branch is defined by
a hinge function (a function used for defining a nonlinear relationship between y and x)
and the relative knot. The derived structures (hinge function and knots) identify a basis
function that can take the shape of a simple linear regression (when the basis function
corresponds to the model intercept, set to a constant value of 1) or more complex geometry
(when the basis function is the product of one or more hinge functions associated with
different covariates).
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In this way, hinge functions boost the maximum-likelihood-based adaptation skill of
the logistic regression method, according to

y = f (x) = α+ ∑N
i=1 βihi(x) (1)

where y is the dependent variable (the outcome) predicted by the function f(x), α is the
model intercept, and βi is the coefficient of the hi basis functions given the N number of
base functions. For other information about the method, please refer to [6,27,35,47–49]. For
this research, MARS analysis was performed using the “earth” R-package [50].

Due to the fact that the MARS method is based on a presence–absence approach, a
random extraction of negative cases in the same number as the positive cases was carried
out. The random selection of negative cases and the subsequent modeling was replicated
one-hundred times to evaluate the independence of the results (resolution and precision)
from the specific choice of the negative cases [6,27]. On the other hand, to verify the
prediction skill of the models, each balanced dataset was randomly split using 75% for
calibration and the remaining 25% for validation [51].

AUC value (area under the curve) in the ROC (receiver operating characteristics) [52–54]
was employed to evaluate the prediction skill of the model according to Hosmer and
Lemeshow [55]. At the same time, the Youden index optimized score cut-off [56] was
obtained from the ROC plots to set confusion matrices and calculate the related validation
indices (sensitivity, specificity, and accuracy). Nested applications of the Youden index
cut-off were employed to define the different cut-offs of four susceptibility levels in an
objective way: S1 (low), S2 (moderate), S3 (high), and S4 (very high).

In Figure 4, the model-building strategy employed in this research is synthetically
shown. Once the P.A.I. inventory was checked and the relative LIPs extracted, a first model
named SUFRA_1 was obtained and validated, both for slide and flow landslides. Thus,
each SLU was classified according to the resulting susceptibility score classes.

 

Figure 4. Synthetic scheme of the adopted model-building procedures.

To test the quality of the prediction images in predicting a high-resolution unknown
landslide inventory, a second validation was performed in the small Sciara sub-basin
(~21 km2), where a new systematic inventory for flow and slide was prepared using remote
surveys. The Sciara sub-basin was selected because, in light of its geomorphological setting,
it is largely representative of the landslide susceptibility in the whole Torto basin area.
Then, 30% of unrecognized P.A.I. SLUs were randomly extracted for each susceptibility
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class and submitted to remote detection of stable/unstable status with respect to flow and
slide movements. Thus, using both the checked P.A.I inventory and the 30% systematically
mapped one, two new (slides/flows) SUFRA_2 models were prepared. Finally, the per-
formance of the models was evaluated both with respect to the whole Torto basin (P.A.I.
checked inventories) and the Sciara basin.

3. Results

In Figure 5, the ROC plots for the SUFRA_1 models, both for the validation in the
whole Torto basin and the Sciara sub-basin, are shown. The AUC values for SUFRA_1
models were outstanding for validation in the Torto basin (Figure 5a,b). However, the
values decreased when the validation was focused on the Sciara sub-basin with respect
to the systematic inventories (Figure 5c,d). This lowering was more marked for the flow
model whose performance went from outstanding to good (0.77).

 

Figure 5. ROC plots of the two SUFRA_1 models validated in the whole Torto River basin (a,b) and
in the Sciara sub-basin (c,d). AUC mean values were computed through one-hundred replicates
given by extraction of different random negatives.

Confusion matrices (Table 2) confirmed these behaviors, with very high values of
sensitivity (Sens. values of 1 and 0.98 for slide and flow model, respectively). However,
a limited specificity (Spec. values of 0.69 and 0.67 for slide and flow model, respectively)
resulted due to the high number of false positives (FPs) produced. These very low values
of specificity also affected the accuracy (Acc.), which showed just sufficient values (~0.7).

180



Appl. Sci. 2023, 13, 9449

Table 2. Confusion matrix of the SUFRA_1 models in the Torto basin and in the Sciara sub-basin.

Positive
Cases

Negative
Cases

TN FN FP TP Acc. Sens. Spec.

To
rt

o
A

re
a

SUFRA_1
Slide 45 968 666 0 302 45 0.70 1 0.69

SUFRA_1
Flow 78 935 627 1 308 77 0.69 0.98 0.67

Sc
ia

ra
A

re
a

SUFRA_1
Slide 9 90 70 3 20 6 0.77 0.67 0.78

SUFRA_1
Flow 7 92 72 3 20 4 0.77 0.57 0.78

On the other hand, the validation in the Sciara sub-basin revealed that the sensitivity
suffered in the prediction images produced for both the slide and flow models when a
systematic high-resolution archive was detected. This limit was more evident for the flow
model for which the sensitivity was markedly insufficient (<0.6).

The ROC plots relative to the validation of the SUFRA_2 models for slide and flow
movements are shown in Figure 6. In this case, outstanding AUC values (>0.9) were
achieved for both the whole Torto basin (Figure 6a,b) and the Sciara sub-basin (Figure 6c,d).

 

Figure 6. ROC plot of the two SUFRA_2 models validated in the whole Torto River basin (a,b) and in
the Sciara sub-basin (c,d). AUC mean values were computed through one-hundred replicates given
by extraction of different random negatives.

Confusion matrices (Table 3) confirmed the high performance in validation within a
coeval/homogeneous inventory of calibration with sensitivity values of 1 for slide and 0.95
for flow. Again, the specificity was just over 0.7 due to the high number of FPs produced.
However, the validation in the Sciara sub-basin confirmed the better performance of the
prediction images produced: the sensitivity was 1 for both flows and slides and, at the
same time, the specificity was 0.75 for slides and 0.8 for flows; better values of accuracy
(0.77 and 0.82 for slides and flows, respectively) were consequently obtained.
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Table 3. Confusion matrix of the SUFRA_2 models in the Torto basin and in the Sciara sub-basin.

Positive
Cases

Negative
Cases

TN FN FP TP Acc. Sens. Spec.

To
rt

o
A

re
a

SUFRA_2
Slide 85 928 682 0 246 85 0.76 1 0.73

SUFRA_2
Flow 122 891 643 6 248 116 0.75 0.95 0.72

Sc
ia

ra
A

re
a

SUFRA_2
Slide 9 90 67 0 25 9 0.77 1 0.74

SUFRA_2
Flow 7 92 74 0 18 7 0.82 1 0.80

4. Discussion

The validation results of the SUFRA_1 models in the whole Torto River basin showed
outstanding AUC values but with limited specificity compared to the very high values of
sensitivity. Considering that the false positives are not only errors but also future positives,
these results gave us a warning about the accuracy of the predicted landslide scenario. The
validation in the Sciara sub-basin, where new systematic inventories for flow and slide were
detected, showed that the quality of the prediction images produced was inaccurate. In fact,
the sensitivity dramatically decreased here, especially for the flow model, clearly reflecting
the limited skill of the models to detect new unknown phenomena. Considering the
geomorphological setting of the Sciara sub-basin is representative of a very large part of the
Torto River catchment, the limits of SUFRA_1 were considered relevant. On the other hand,
the SUFRA_2 models maintained outstanding AUC values with very high sensitivity and
good specificity and, differently from SUFRA_1, the new models still showed outstanding
AUC values in the Sciara basin. More importantly, the sensitivity reached the maximum
performance with good to excellent specificity. The false-positive rates still suggest the
basin is characterized by relevant proneness to both flow- and slide-type slope failures. The
same high-model performance was observed for both the landslide typologies, confirming
that the goodness of this model procedure is independent of the landslide typology and
number of cases (provided the inventory is representative).

According to our test, the proposed two-step approach is suitable for optimizing
landslide susceptibility evaluation when the source inventory is affected by incompleteness
or mapping inaccuracy. In fact, the second step of mapping (the susceptibility level-driven
checking) permitted us to increase the quality of the calibration inventory and to cost-
effectively correct the potential misleading results of the SUFRA_1 models. Obviously,
the percentage of slope units checked (30% in this test) is not a standard but needs to
be tuned case by case. At the same time, the selection of a single test sub-basin could
be insufficient in the case of a more articulated geomorphological setting of the whole
study area, and criteria for selecting the number and extension of such sectors need to be
optimized (see [7] for a deeper inside of this issue). Indeed, different criteria for selecting
the checking areas to improve the original inventory could be also explored. In our study,
we precautionarily decided to maintain the same percentage of random extraction for each
SUFRA_1 susceptibility class.

5. Conclusions

The research we conducted was focused on detecting a useful way to use public
landslide regional inventory in statistical landslide susceptibility evaluation at a basin
scale. In the Torto River basin, the original P.A.I. inventories of slide and flow movements
were submitted to remote checking to produce more accurate archives that are suitable for
statistical modeling. The proposed procedure seems to be robust in strengthening weak
inventories, maximizing cost-effectiveness in regional landslide susceptibility studies. In
fact, the proposed procedure simply requires, together with a first susceptibility model, a
status slope unit check for a small percentage of the study area and systematic mapping in
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one or more smaller subareas. The study was focused on slide and flow landslide typologies,
but the strategies of analysis can also be helpful for increasing landslide archives and related
resolution of landslide susceptibility maps for any other type of landslide (such as falls,
topples, and deep-seated typologies) with the aim of identifying areas to be analyzed
at a larger scale through the application of empirical or analytical models for rockfalls
(e.g., [57–59]) or to assess the magnitude and deformations rate for other slower and more
complex landslides (e.g., [60,61]).
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Abstract: Following potential reforestation in the Amazon Basin, changes in the biophysical char-
acteristics of the land surface may affect the fluxes of heat and moisture behavior. This research
examines the impacts of potential tropical reforestation on surface energy and moisture budgets,
including precipitation and temperature. The study is novel in that while most studies look at the
opposite driver (deforestation), this one examines the impact of potential forest rehabilitation on
atmospheric behavior using WRF.V3.9 (weather research and forecast model). We found that forest
rehabilitation across the Amazon Basin can make the atmosphere cooler with more moisture and
latent heat (LH), especially during May-November. For instance, the mean seasonal temperature
decreased significantly by about 1.2 ◦C, indicating the cooling effects of reforestation. Also, the
seasonal precipitation increased by 5 mm/day in reforested areas. By reforestation, the mean monthly
LH also increased as much as 50 W m−2 in August in certain areas, while available moisture to the
atmosphere increased by 27%, indicating possible causal mechanisms between increased LH and
precipitation and emphasizing the mechanisms that were identified between the onset of the wet
season and forest cover. Therefore, it is likely that forest regrowth across the basin leads to, if not
reverses regional climate change, at least slowing down the rate of changes in the climate.

Keywords: reforestation; land-atmosphere interactions; Amazon basin; heat and moisture fluxes; WRF

1. Introduction

The land surface plays an important role in global energy, the hydrologic cycle, and
carbon balance. Land cover change (LCC) directly alters surface-absorbed solar radiation,
longwave radiation, and atmospheric turbulence. These alterations lead to changes in fluxes
of momentum, heat, and water vapor through the mediation of albedo, evapotranspiration
(ET), roughness, and CO2 [1,2]. Land cover changes through atmospheric feedback can
have a striking impact on the local, regional, and even global mean climate as well as
climatic extremes and variability [3].

While 25 to 35% of Amazon precipitation is related to regional moisture recycling [4],
during the rainy season, moist air from the basin travels along the Andes and provides
precipitation over the La Plata basin too [5,6] through tele-connection processes. Therefore,
any changes to land surface biophysical characteristics, even at the local scale, may alter
the climate over the entire basin.

LCC in the Amazon basin has been studied to be one of the driving forces for climate
change [7,8]. It affects the energy, carbon and water balance, and land-atmosphere interac-
tions. It alters evapotranspiration and the hydrologic cycle more broadly which further
affects Amazon rainforest stability [9], primarily through a reduction in moisture recy-
cling [10,11]. Such changes have been investigated across the Amazon basin using global
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and regional climate models: notably, via complete deforestation scenarios e.g., [12–16] or
scenarios ranging from low to extreme conversion of forest e.g., [17,18].

The conversion of forest to cropland in the Amazon Basin has resulted in a decrease in
precipitation (P) [15], a decrease in ET [19,20], an increase in temperature (T) [18], and also
indirectly intensifies fire occurrence [21]. Due to deforestation, the onset of the rainy season
has also delayed 11 days, on average, over the last thirty years across the highly deforested
areas in the state of Rondonia, Brazil [19]. In addition, the length of the dry season has
been increased by one month in some areas [22–26] and drought conditions have also been
exacerbated as a result of deforestation [27–29].

The spatial scale of LCC from local to regional to global is very important in land-
atmosphere interaction analysis [30,31]. The most recent deforestation in the Amazon basin
occurred at small-scale patches (less than 1 ha) during 2008–2014 [27]. In addition, the
temporal scale of analysis is also important in understanding the magnitude and amplitude
of the effects. For instance, Ref. [28] found that the impact of land surface variability on
climate is more apparent at monthly timescales than at other timescales. Ref. [29] analyzed
the interactions between clouds, rains, and the underlying land surface through biosphere
processes in southwestern Rondônia, Brazil. They found that land-atmosphere interactions
are higher during the dry season (May–November) than the wet season (December-April).
They also hypothesized more complex interactions between cloudiness, moisture transport,
and fluxes during the wet season.

When considering the effects of LCC at the basin scale, the land-atmosphere interaction
is more intense [22]. For instance, Ref. [30] used IPCC CMIP3 models and found an increase
in the annual mean temperature between 0.1 and 3.8 ◦C and a decrease in the annual
precipitation of about 10–30% which could lead to changes in seasonality. Also, Ref. [11]
argued that upon reaching 40% reduction in Amazon forest cover, wet and dry season
rainfall totals may reduce by 12% and 21%, respectively. However, the magnitude and the
location of rainfall changes is uncertain [31,32].

Ref. [14] also used a GCM to capture the climate response to Amazon deforestation.
They found that the sensitivity of climate to LCC depends on the initial tree cover and
type of irrigation. Using satellite observations to assess crop responses to drought in the
basin, Refs. [33,34] found that due to reduced cloud cover, droughts induce a “greening-
up” although other researchers have rejected this hypothesis, e.g., [35–37]. According
to Ref. [35], analysis and model simulations of the impacts of Amazon deforestation over
the past 40 years showed that more than 90% of studies agree on the sign of change which
is a reduction in rainfall. But the amplitude, magnitude, and predictability are inconsistent
since they highly depend on the spatio-temporal scale of analysis [15,36–43].

Even if the regional impacts of deforestation on precipitation patterns have been
studied intensively e.g., [8,21,28,44–47], the reverse effects are still unclear. Therefore, in
this study, we aim to examine the extent to which potential Amazon Forest regrowth may
influence fluxes, precipitation, and temperature patterns during both wet (December–April)
and dry seasons (May–November). We should note that wet and dry seasons are not
consistent across the domain, but these timespans are a practical compromise for analysis.

Thus, in this research, we examined the sensitivity and magnitude of changes to
the surface energy budget, including precipitation, due to potential new growth forests
across the Amazon Basin (Figure 1). Our prescribed reforestation scenario using the
Weather Research and Forecasting model (WRF)V3.9 is designed to answer the following
questions: (a) How might forest regrowth contribute to changes in fluxes, temperature, and
precipitation amounts across the basin at monthly and seasonal timescales; (b) what are the
spatio-temporal patterns of changes; and (c) Do any tele-connected processes develop due
to forest rehabilitation?
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Figure 1. Geographic location of the Amazon Basin. The red box indicates our simulation boundary.

2. Materials and Methods

2.1. Study Area and Simulation Domain

Figure 1 shows the topography of the Amazon Basin along with our simulation
boundary. The Amazon Basin extends through Brazil, Peru, Colombia, Ecuador, and
Bolivia covering about 6 million km2. The rainiest part of the basin is located on the eastern
edge of the Andes Cordillera [48,49]. The Amazon Basin contains more than 20% of the
world’s fresh water and is a hot-spot for ecosystem diversity. The forest biomass holds an
estimated 100 billion tons of carbon [50].

The basin’s climate varies from continuously rainy in the northwest to long dry sea-
sons in the east and south [51,52], where more conversion to agriculture has occurred.
This is referred to as the “Arc of Deforestation”. The basin’s climate is controlled by
atmosphere-ocean-land coupling as well as moisture recycling through evapotranspira-
tion [53]. The El Nino Southern Oscillation (ENSO) decreases the Amazon River flow
on the eastern side of the basin during El Nino years [54] while, during La Nina years,
flooding increases [55]. The Southern American Monsoon System brings rainfall to the
southern portion of the basin with the maximum rainfall during DJF (December-January-
February) [56]. During JJA (June-July-August) the South American Convergence Zone
(SACZ) contributes to the precipitation variability across the south of the Basin [57]. During
MAM (March-April-May), rainfall is dominated by the Intertropical Convergence Zone
(ITCZ), which is highly variable [58].

2.2. Data

We forced WRF with ESA 2009 land cover data which was reclassified based on US
Geological Survey land cover classes to match the WRF settings and mosaicked to account
for differences in resolution. The land cover was kept constant over the simulation years;
this is a prescribed simulation, so we needed to control for annual land cover variations
from our analysis. We choose 2009 to be consistent with our boundary layer data starting
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in 2009. For vertical boundary conditions, ERA_Interim with 80 km spatial resolution and
60 vertical levels, and 6-hourly temporal resolution for 2009, 2013, and 2014 were used to
force the model. These years are among the most recent ENSO-neutral years and the data
was more homogenous in terms of extreme events and outliers than other neutral years.

Due to the lack of adequate and robust observational information on precipitation
and temperature that poses great difficulties in validating our climate model outputs, we
used Tropical Rainfall Measuring Mission (TRMM) with a 0.25◦ spatial resolution and
MODIS Land-Surface Temperature with a 1 km spatial resolution to validate the simulated
temperature. All data were resampled based on the model output resolution.

2.3. WRF Model Setup

WRF.3.9 (ARW) is a three-dimensional, non-hydrostatic climate model that is widely used
for atmospheric research. Simulations were initialized at 00:00 UTC and the first 15 days were
considered spin-up and were removed from the analysis. Early trials using longer spin-up
proved to be computationally expensive and unlikely to significantly affect the sensitivity
tests. The horizontal grid spacing was 16 km, with 38 levels of vertical levels up to 1000 m.
The thickness of the lowest atmospheric layer is about 50 m on smooth topography. At
this resolution, cumulus parameterization is necessary to resolve convection, clouds, and
precipitation properly [59]. Table 1 summarizes WRF parameterizations that were used in
this study. SSTs (sea surface temperature) came from ERA data to be time-consistent with
the vertical boundary conditions.

Table 1. WRF parameterizations.

Parameter Scheme Option

Longwave radiation scheme Rapid Radiative Transfer Model

Shortwave radiation Dudhia scheme

Surface layer
Fifth-generation Pennsylvania State

University–National Center for Atmospheric
Research Mesoscale Model (MM5) scheme.

Cumulus scheme Kain–Fritsch

Mp_physics WSM6 Hong and Lim

LSM NOAH

PBL Yonsei University scheme

To quantify the model performance, we calculated the root-mean-square error (RMSE)
and the systematic error (percent bias; PBias) on the areal basin mean of daily data. We
also mapped the differences between the model outputs and observations at monthly and
seasonal timescales to estimate model performance and examine the errors spatially. We
resampled our observations based on the simulation outputs to eliminate spatial resolution
discrepancies in our data and comparison.

2.4. Land Cover Change Scenario

The last 50 years have witnessed a rapid conversion of forest to pasture and soy
agriculture, driven by new road building. For deforested areas, this has brought reduced
soil moisture, higher SH, seasonally bare soils, higher albedos, and lowered zero-plane
displacement heights. Figure 2 shows maps of current and reforested land cover that was
used in this study to analyze the sensitivity of the atmosphere to deforestation across the
Amazon Basin. In this study, only conversion from cropland to forest has been considered;
cropped cerrado was not changed. Every grid cell which was primarily cropland has been
replaced by mature evergreen rainforest (although this is complex in the southeastern
domain). This conversion is dominant along the arc of deforestation and on the main stem
of the Amazon River.
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Figure 2. ESA land covers that were used in the simulation. In the Reforest map, all croplands are
replaced by evergreen broadleaf forests. The highlighted areas on the difference map (right image)
indicate reforested regions.

3. Results and Discussion

3.1. Model Validation

Figure 3 shows RMSE and Pbias errors for both precipitation and temperature. We val-
idated the simulated precipitation against Brazilian Federal hydro-meteorological network
(ANA) rain gauge measurements and TRMM reanalysis precipitation data and compared
basin-wide averages. As stated before, due to high levels of missing values in ANA data,
we removed them from our analysis. They are shown in this image only to highlight the
shortcomings of some ANA data.

Figure 3. Difference maps between the simulated precipitation and simulated temperature, forced
with reforested and current LCC on the left. On the right, the mean monthly temperature and
precipitation (averaged over the basin) from observation and model output, along with the errors in
the inset boxes.

Looking at temperature, the model performed very well with deviations at most
2 degrees centigrade cooler than the observations for most of the basin. Only at high
altitudes over complex terrain on the edges did the model underestimate the temperature by
up to −17 ◦C. This error is consistent with WRF’s well-known cold bias at high altitudes [60].
Also, along water bodies, the model simulated up to 2 degrees warmer than observations.
Our model performed well in simulating the precipitation, too. Due to complex interactions
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between cloudiness, the land surface, and precipitation in the Amazon Basin [61] during
the wet season (December–April), the model overestimates precipitation for the arc of
deforestation by up to 5 mm/day compared to the observations. In terms of basin average,
the temperature is simulated with the same spatial pattern as MODIS temperature but 1 ◦C
cooler. Simulated precipitation shows broadly the same pattern as TRMM precipitation.
The RMSE and Bias are reported in Figure 3 which are minimal and acceptable.

3.2. Sensitivity of Fluxes and Precipitation to Land Cover Change across the Basin

The results that are shown here are averaged across the three years of simulation. To
assess the impacts of regrowth on fluxes and precipitation, we applied a Student t-test for
each season spatial time series at each grid point (over space and time). In this test, the null
statistical hypothesis is that the reforested and current population had the same mean [44].
Each grid point that could reject the null hypothesis at a 95% significance level is considered
to have experienced a significant impact from the reforestation process. Although we used
ENSO-neutral years, there exists interannual variability across the three years, and both
positive and negative changes resulted from the model in response to reforestation.

3.2.1. Heat Flux

Figures 4 and 5 show the effects of LCC on LH and sensible heat (SH) (only significant
changes are shown here). According to Figure 4, the LH has increased by 30 Wm−2 during
May–November and by 15 Wm−2 during December–April despite some extreme increases
in the north side of the region. We found no pronounced negative changes in the domain-
averaged mean SH across the region with reforestation. As the land surface has a complex
relationship with the atmosphere, SH did not show significant sensitivity to changes in
the land surface biophysical characteristics at a seasonal scale. There is only the northeast
area of the basin which shows a significant decreasing trend for SH with reforestation. This
decrease is the highest in December–April which is geographically consistent with the
highest increase in LH during the same time period.

Next, we looked at monthly changes. For regions with added tree cover, the LH
has increased by 20, 50, and 30 Wm−2 in July, August, and September, respectively. SH
shows a decrease of 10 Wm−2 in August and September at the same location. These
months are in the dry season, therefore, an increase in the LH can provide more moisture
to the environment if other criteria are met. By adding more vegetation cover through
reforestation or forest rehabilitation, the transpiration rate and surface roughness increased
leading to an increase in the LH and a decrease in SH. Since July has the highest LAI in the
basin and it decreases toward the end of the year, we found the highest influence of LCC
on exchanges of both SH and LH starting in July.

The effects of LCC on the temperature are spatially different in May–November and
December–April. Reforestation decreased the surface temperature by about 1.2 ◦C in the
northeast part of the basin and about 0.2 ◦C on the west side of the basin (Figure 6), far
from the reforested areas. The increased ET drives a significant increase in the cloud cover
that gets advected westward. The cooling effect of reforestation is clearer on a monthly
scale, especially in Aug and Sept by about 2 ◦C. This finding is consistent with Ref. [38]
who found 2 ◦C warmer air temperatures as a result of deforestation, as well as Ref. [18]
who found 0.3 ◦C warmer surface temperatures due to deforestation of the Xingu region
along the arc of deforestation.

3.2.2. Moisture Flux and Precipitation

Our results showed that reforestation significantly increased the domain-averaged
available moisture to the atmosphere (QFX) (Figure 7), mostly during May–November,
by 27%. The maximum increase in moisture flux occurred in August and September, about
0.03 g m−2 s−1, especially in the arc of deforestation which has had significant widespread
deforestation. However, other heavily deforested areas of the basin (along the rivers in
the centroid of the basin, and near Iquitos) did not exhibit significant changes in moisture
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flux. These regions receive much more rainfall and have virtually no dry season. The
QFX value of 0.01 g m−2 s−1 in the difference panel of Figure 7 converts to approximately
25 mm/month of precipitation, which is at the upper end of the RMSE that was measured
by global ET products [62].

 

Figure 4. Simulated LH, forced with current and reforested land cover on the left. On the right, the
difference between the two simulated LHs at a 95% significance level. Plus signs indicate major cities.

 

Figure 5. Simulated SH, forced with current and reforested land cover on the left. On the right, the
difference between the two simulated SHs at a 95% significance level. Plus signs indicate major cities.
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Figure 6. Simulated temperature, forced with current and reforested land cover on the left. On the
right, the difference between the two simulated temperatures is at a 95% significance level. Plus signs
indicate major cities.

 

Figure 7. Simulated QFX, forced with current and reforested land cover on the left. On the right,
the difference between the two simulated QFXs is at a 95% significance level. Plus signs indicate
major cities.
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Simulated precipitation data showed that the mean seasonal precipitation increased
with forest regrowth by 5 mm/day (Figure 8). During May–November, these changes are
spatially located on the west side of the region where the moisture gets transferred making
more cloud fractions indicating the tele-connection impacts of reforestation on precipitation,
as discussed in Ref. [63]. According to Ref. [19] precipitation is produced by both large and
small-scale forcings, including thunderstorms and the development of deep convection at a
larger scale and through shallow convection at a local scale. During December–April across
the basin, Rossby waves can propagate northward and produce precipitation. Squall lines
originating on the northeast coast of South America transport moisture and precipitation
west toward the Andes. At larger scales, although the positioning and strength of the ITCZ
control different precipitation regimes in the region, El Nino can affect the Walker-type
circulations and can thus affect the spatial distribution of rainfall [64,65]. Therefore, the
amount of rainfall is likely more dependent on synoptic-scale forcings such as the ITCZ
and Walker-type cells and less on localized reforestations. Reforestation provides moisture,
but larger processes typically initiate rainfall.

Thus, following potential reforestation in the Amazon Basin, changes in the biophysi-
cal characteristics of the land surface can affect the fluxes of heat and moisture behavior.
As such, forest rehabilitation across the Amazon Basin can make the atmosphere cooler
with more moisture and LH, especially during May–November. In addition, some laterally
translated features suggest that land cover creates perturbations that get advected else-
where, and large patterns also exist that suggest continent/synoptic-scale processes are
being modified as a result of deforestation. This suggests complex interactions between
climate and LCC that we will explore in future work.

 

Figure 8. Simulated precipitation, forced with current and reforested land cover on the left. On the
right, the difference between the two simulated precipitations is at a 95% significance level. Plus
signs indicate major cities.
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4. Conclusions

This paper examines the regional-scale impacts of potential reforestation on the energy
and moisture budgets and precipitation across the Amazon Basin. Through the analysis of
changes in regional moisture and heat fluxes, we presented results from regional simula-
tions showing that the land surface and atmosphere are interacting tightly across the basin.
We found several principal outcomes. First, the effects of reforestation on the atmosphere
were more evident during May–November than December-April. Second, spatial patterns
of the changes in fluxes due to reforestation were consistent with the pattern of LCC, with
minimal tele-connected impacts. Third, the effects of forest regrowth on the atmosphere
were more evident on a monthly time scale. For instance, although at the seasonal scale, the
changes in SH were minimal, at the monthly scale, it simulated a decrease by 10 W m−2.
Forest regrowth enhances LH in the region due to an increase in the transpiration rate and
surface roughness. In addition, the highest LAI in July highlights the highest influence of
LCC on exchanges of both SH and LH starting in July.

Fourth, the mean seasonal temperature decreased by up to 1.2 ◦C, which is consistent
with several studies, e.g., [18,46,66]. This decrease in temperature is more obvious in the
northeastern side of the basin during December–April. Fifth, reforestation also increased
the mean monthly LH by as much as 50 W m−2 in August in certain areas, while avail-
able moisture to the atmosphere increased by 27%. Other studies found equivalent scale
results but due to deforestation e.g., [18,49,67]. Sixth, seasonal precipitation increased
by 5 mm/day in reforested areas in both May-Nov and Dec-Apr, illustrating the causal
mechanisms between increased LH and precipitation and emphasizing the mechanisms
identified between wet season start and forest cover [68,69]. Precipitation also increased in
the western side of the region, where is constantly wet, by forest regrowth. This indicates
tele-connected influence of vegetation recovery on the atmosphere behavior.

Our results show that by altering the land surface biophysical characteristics—in
this case, reforestation—temperature, LH and SH fluxes, moisture at the surface, and
precipitation are strongly modified. With a higher proportion of LH, PBL cools down,
increases its humidity, and becomes shallower. This further affects the transfer of moisture
and energy from the surface to the boundary layer, even influencing transfer to the free
atmosphere. Although unavailable, parameters for young moist forests would improve
these simulations further. Due to tele-connection mechanisms, changing the exchange
of energy and moisture balance between the PBL and the free atmosphere influences
tropical convection, impacting the intensity of high-level tropical outflow and providing
a mechanism that could affect the extratropics [70]. Consequently, changes in the surface
fluxes of energy and moisture due to LCC causes impacts beyond the areas of disturbances.
Thus, it would be reasonable if deforestation forces disturbances in the general circulation,
including the Hadley and Walker-type circulations; the mechanisms for these disturbances
are illustrated in Ref. [67].

Future work needs to focus on identifying the coupling strength of land cover changes
to atmospheric processes to identify areas where rainfall is most sensitive to changes in
the land surface and examining the extent to which changes in the regional scale can alter
the circumstances at the larger scale. Also, different time scales from hourly to daily to
monthly evaluations should be considered to distinguish the sensitivity of time-sensitive
processes such as cloud formation and convection, which determine the amount and timing
of precipitation to reforestation.
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Abstract: Understanding the coordination relationship between ecosystem service (ES) supply and
demand and elucidating the impact of driving factors is critical for regional land use planning and
ecological sustainability. We use a large watershed area as a case to map and analyze ES supply,
demand and the coordination relationship, and identify the associated socio-ecological driving vari-
ables. This study assessed the supply and demand of five ESs (crop production, water retention,
soil conservation, carbon sequestration, and outdoor recreation) in 2000 and 2020, and evaluated
the coordination between them employing the coupling coordination degree model (CCDM). Ad-
ditionally, we utilized the geo-detector model (GDM) to identify driving determinants and their
interactive effects on the spatial pattern of the coupling coordination degree (CCD) between ES
supply and demand. The results showed that mountainous regions with abundant forest coverage
were high-value areas for ES supply, while the ESs were predominantly required in city center areas
within each basin area. From 2000 to 2020, there was a slight decline in ES supply and a significant
increase in ES demand. Counties were grouped into four coordination zones in the study area:
extreme incoordination, moderate incoordination, reluctant coordination, and moderate coordination.
The number of counties with extreme incoordination linked to regions with a mountain ecosystem
is increasing, where the ES supply is much greater than the demand. The moderate incoordination
counties dominated by a cropland ecosystem exhibited slightly higher levels of ES supply than
demand. The moderate and reluctant coordination were linked to counties with distinct ecological
characteristics. Construction land played a major role in the characteristics of the CCD, followed by
grassland. The interaction between construction land and all other factors significantly increased the
influence on the CCD. These findings offered valuable insights for land managers to identify areas
characterized by incoordination between ES supply and demand and understand associated factors
to develop optimal ES management strategies.

Keywords: ecosystem services (ESs); ES supply; ES demand; coupling coordination degree model;
geo-detector model; Shanxi Province

1. Introduction

Ecosystem services (ESs) are defined as the benefits that humans directly or indirectly
receive from ecosystems [1]. The Millennium Ecosystem Assessment (MA) [2], first con-
ducted in 2005, established a framework for the global assessment of ecosystems. This
framework divides indicators of ESs into four categories: provisioning, regulating, cultural,
and supporting services. These categories are based on the connection between ESs and
human well-being. Due to regional socio-economic factors and the rapid, high-intensity
expansion of land for human use, ecological systems are facing continuous destruction [3].
This has caused a significant reduction in the ecosystem service supply (ESS), while the
demand for a better living environment continues to grow [4]. Consequently, this has
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intensified the incoordination relationship between ESS and ecosystem service demand
(ESD), negatively affecting sustainable development and human well-being [5]. Thus, it
will be difficult to effectively manage and optimize regional ecosystems and encourage
sustainable development via only the supply of ESs, while ignoring the human demand for
ESs. Investigating the relationship between ESS and ESD not only addresses the challenges
of sustainability arising from increasing human demand, but also establishes a solid the-
oretical foundation for adept and efficient ES management and utilization practices [6,7].
Therefore, understanding the relationship between ESS and ESD is essential for effective
land use planning and decision-making processes that ensure the long-term resilience of
ecosystems and social well-being.

As a closer relationship is established between ESs and human well-being, ES demand
(ESD) gradually integrates with ESS. ESS is generally defined as the beneficial effect that
ecosystems have on society [8]. The structure and function of ecosystems often result in
simultaneous positive and negative changes in ESS [9]. However, there is no universally
accepted definition of ESD. Currently, it is mainly defined from two perspectives. From a
consumption perspective, ESD refers to the services provided by ecosystems that are useful
to consumers, reflecting the actual demand for ESs [10]. From a preference perspective,
ESD refers to the ecosystem services requested by social groups [11], reflecting not only the
actual demand for ESs, but also the potential demand that cannot be met due to certain
conditions. ESD includes the requirements, desires, or aspirations of human societies
in relation to the benefits and contributions provided by ecosystems [12]. These needs
arise from the dependence of human well-being and quality of life on the services and
resources provided by natural ecosystems. ESD is driven by various factors, including
population growth, economic activities, urbanization, and societal preferences. When the
demand for ESs exceeds the natural capacity of ecosystems to provide them, it can lead
to the overexploitation, degradation, or loss of those services. Conversely, if the supply
of ES surpasses the demand, it can result in the underutilization or inefficient allocation
of resources. Therefore, the relationship between ESS and ESD is crucial for creating a
dynamic balance through which ecosystem products and services are transferred from
ecosystems to social systems [13,14].

In recent years, an increasing number of studies have focused on evaluating the rela-
tionship between ESS and ESD, considering the coordination or conflict between regional
social systems and ecosystems [15,16]. Thus far, these studies have primarily concentrated
on quantifying and comparing the supply and demand of distinct ES indicators, such
as water supply [17], flood regulation [18], air purification [19], and erosion control [20],
and identifying the degree of mismatch, imbalance or incoordination between ESS and
ESD. The majority of these investigations are centered around specific types of ecosystems,
including forests [21], croplands [22], and urban regions [23]. These studies were mainly
conducted in European contexts; however, in recent years, an increasing number of studies
have been conducted in China, driven by ecological regionalization policies at different
scales. Most previous studies assessed ESS, mainly focusing on quantifying and identifying
the patterns and functions of ESs, as well as the effects of land use and land cover changes
on ESs [24]. Compared to ESS, there are two main distinct approaches to ESD assessment:
One is to evaluate the demand for each individual ES, and the other involves conduct-
ing a comprehensive assessment of the overall demand for ecosystem services. The land
development index (LDI) has been widely used to comprehensively assess the ESD [25].
The rationale behind using the LDI to assess demand for ESD lies in its capacity to gauge
the intensity of land development and its corresponding impact on the demand for these
services [26]. Thus, ESS and ESD can be expressed from the perspective of the interaction
between ecosystems and social systems; hence, the coordination relationship between ESS
and ESD is a significant reflection of whether regional socio-economic structure and natural
ecological backgrounds can develop in a coordinated manner [27].

Previous studies mainly analyzed temporal dynamic variations and spatial imbalances
or mismatches in ESS and ESD [28,29], using methods such as modeling, mapping, partici-
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patory methods, etc. [30]. The concept of “coupling coordination” provides a framework
for quantitating the coordination between ESS and ES [31,32]. The coupling coordination
degree (CCD) is a measure used to assess the level of coordination and interdependence
between different components or subsystems within a larger system [33]. In the context of
ES, the coupling coordination degree model (CCDM) can be used to evaluate the level of
coordination between the ecological system that provides services and the social system
that demands and utilizes such services. It can also be applied to assess how effectively the
ESS and ESD function together and whether their interactions are balanced and mutually
beneficial. In recent years, many studies have applied the CCDM to analyze the relationship
between ESS and ESD. For example, Guan et al. [34] provided valuable insights into the
evolving characteristics of the spatial coupling between ESS and ESD using the CCDM.
Li et al. [35] analyzed the dynamic characteristics of the supply and demand coupling of
ESs in Lanzhou, China. Yang et al. [36] identified the coupling coordination relationship
between sustainable development and ESs in Shanxi Province, China. Therefore, CCD
is regarded as an efficient tool for researchers and policymakers to gain insights into the
functioning of the coupled ecological and social systems and identify areas that require
attention or intervention. Consequently, this helps us to understand the complex interac-
tions between systems as well as design strategies for the sustainable management and
conservation of ESs.

The coordination between ESS and ESD is influenced by the rapid development of
regional socio-economic factors and the ecological factors, especially when socio-economic
factors interact with natural and ecological factors [37]. Natural factors, land use/land
cover, and socio-economic factors have been identified as the primary determinants of the
relationship between ESS and ESD. For instance, Sun et al. [38] conducted an empirical
study examining the correlations among 12 natural and socio-economic variables related
to both ESS and ESD. Their study sheds light on the disparity between these two aspects
within the United States. Wu et al. [16] analyzed the relationships between ES supply
and demand and identified the effect of forest area on ESS, as well as the effects of per
capita GDP, energy consumption per unit of GDP, and permanent population on ES de-
mand in China. Peng et al. [39] systematically analyzed the impact of urbanization on
ESs in metropolitan areas. Previous studies identified multiple influencing factors and
encompassed different ESs. However, the majority of studies primarily focus on identifying
the individual influencing factors of ESS or ESD. Alternatively, some studies have solely
examined the influencing factors of ESS and ESD as substitutes for the actual relationship
between the two [40]. As a result, there is a lack of studies investigating factors that directly
impact the relationship between ESS and ESD. Research on the relative importance of
socio-ecological drivers of coordination between ESS and ESD remains limited, and little
attention has been given to the relationships between various drivers and the coordination
between ESS and ESD, as well as associated spatial influences [41,42].

Shanxi Province is a typical resource-based area heavily reliant on coal and other re-
sources for rapid economic growth. However, this excessive consumption of resources has
created an exceedingly fragile ecosystem across the province. This increase in ecosystem
degradation is having a negative effect on the economy and society, posing significant
challenges to the sustainable development of Shanxi Province [43]. For example, intensive
agriculture and mining activities are contributing to soil degradation in Shanxi. Erosion,
the loss of topsoil, and contamination from pollutants can have serious consequences for
agricultural productivity and ecosystem health. Unsustainable mining practices, particu-
larly in coal mining, are causing land subsidence issues in Shanxi [44,45]. This phenomenon
can lead to infrastructure damage, waterlogging, and the disruption of ecosystems [46]. In
addition, some parts of Shanxi are vulnerable to desertification due to factors such as soil
erosion, overgrazing, and unsustainable land use practices. This threatens agricultural pro-
ductivity and ecosystem stability [47]. Since 2000, large-scale ecological restoration projects,
such as the Natural Forest Protection Projects (NFPP) and the Grain for Green Program
(GFGP), have significantly bolstered vegetation restoration in Shanxi Province. Efforts to
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address these ecosystem problems likely involve a combination of policy interventions,
stricter environmental regulations, technological innovations, public awareness campaigns,
and sustainable development practices.

Based on this context, this study aims to analyze the coupling coordination relationship
between ESS and ESD and identify the associated socio-ecological driving variables in
Shanxi Province. The objectives of this study are to (i) quantify and map the spatial
distribution of the ES supply and demand, respectively; (ii) analyze the spatial–temporal
characteristics of CCD between ESS and ESD based on CCDM; and (iii) determine the
decisive influencing factors and the effects of interactions between factors using GDM. The
results are anticipated to provide valuable information for achieving a harmonious balance
between economic development and ecological restoration on a national scale within the
provincial administrative units of China.

2. Materials and Methods

2.1. Study Area

Shanxi Province, located in the northern part of China (110◦14′–114◦33′ E, 34◦34′–40◦44′ N),
covers an area of 156,700 km2, accounting for 1.6% of the country’s territory (Figure 1a).
It consists of 107 counties and is characterized by a typical mountain plateau terrain. Its
topography is complex and diverse, including mountains, hills, plateaus, basins, and
platforms. Mountains and hills make up 80% of its area, with altitudes ranging from
208 m to 2988 m above sea level (Figure 1b). The study area falls within the temperate
continental monsoon climate region, the annual average temperature is between 4 ◦C and
14 ◦C, and the average annual rainfall is 468 mm. The dominant land use/land cover types
include cropland, grassland, forest, and construction land (Figure 1c). Shanxi Province
straddles the Yellow River basin and the Haihe River basin, and the river system is a
self-generated outflow. The total population of the study area accounts for 2.48% of the
national population and 1.71% of China’s total GDP [48].

Figure 1. Study area location in China (a), elevation (b), and land use/land cover type of Shanxi
Province (c).

Shanxi Province is one of the most important provinces with coal and mineral resources
in China. As a region highly dependent on coal and mineral resources, its economic
and social development is closely linked to its ecological environment [49]. However,
excessive coal and mineral resource exploitation, the overexploitation of groundwater,
rapid urbanization, and accelerated water and land resource exploitation have made
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the ecosystem in the study area extremely fragile. In 2019, the Chinese Government
put forth the objectives of “ecological protection and high-quality development” for the
Yellow River basin. As part of the Yellow River basin, in recent decades, Shanxi Province
has faced daunting challenges in coordinating population, resources, ecosystems, and
economic development.

2.2. Data Collection

In this study, we selected 2000 and 2020 as representative years to collect and analyze
data. The data encompass both spatial and statistical information. The spatial data were
processed at a grid cell resolution of 1 km × 1 km, while statistical data were aggregated
at the county level. Table 1 provides a comprehensive list of the primary data required to
calculate the ES indicators. To ensure consistency, all spatial data were transformed to a
common spatial reference system, specifically the WGS84 coordinate system and Albers
equal-area conic projection. The flowchart depicted in Figure 2 illustrates the methodology
that we employed to achieve our study objectives.

Table 1. Datasets used in the study.

ES Variable Data Type
Spatial
Resolution

Data Source

Land use/land cover Raster 30 m
National Geomatics Center of China
(http://www.globallandcover.com/GLC30Download/index.aspx,
accessed on 11 December 2020)

NDVI Raster 250 m

National Aeronautics and Space Administration and United States
Geological Survey
(http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.006/, accessed on
7 December 2020)

DEM Raster 90 m Geospatial Data Cloud (https://www.gscloud.cn/#page1, accessed
on 20 December 2020)

Meteorological data Numeric Sites
China Meteorological Data Sharing Service System
(http://www.escience.gov.cn/metdata/page/index.html, accessed
on 5 November 2020)

Soil database Raster 30 arc-second

Harmonized World Soil Database
(http://www.fao.org/soils-portal/soil-survey/soil-maps-and-
databases/harmonied-world-soil-datebse-v12/en/, accessed on
1 December 2020)

Administrative map Vector County National Geomatics Center of China
(http://ngcc.sbsm.gov.cn/ngcc/, accessed on 11 December 2020)

Crop yield, GDP and
population Numeric County Statistical Yearbook

 

Figure 2. Flowchart of the proposed methodology.
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2.3. Quantifying ES Supply
2.3.1. Selection of ES Indicators

The selection of appropriate ES indicators is a critical step in assessing ecosystem
services. In this study, we followed certain criteria for selecting ES indicators: (i) aligning
with the classification of ES according to the Millennium Ecosystem Assessment [2] to
ensure comparability with other studies; (ii) considering existing case studies conducted in
Shanxi Province and selecting ES indicators that are closely related to the natural, ecological,
social, and economic conditions of the study area; and (iii) the availability of the primary
data required for evaluating ES indicators. Based on these criteria, our study focused on
five key ES indicators relevant to the study area. These included one provisioning service
(crop production), three regulating services (water retention, soil conservation, and carbon
sequestration), and one cultural service (outdoor recreation).

2.3.2. Calculation of the ES Indicators

To quantify the selected ES indicators, we employed existing and widely used assess-
ment models originally developed for this purpose. Specifically, the assessment of crop
production was based on annual crop yield data [50]. The water balance equation served as
a proxy for measuring water retention. The Universal Soil Loss Equation (USLE) model was
used to calculate soil conservation [51]. Net primary production (NPP) was used as a proxy
for carbon sequestration [52,53] and was assessed using the Carnegie–Ames–Stanford
Approach (CASA) model, a widely adopted approach for NPP estimation [54,55]. The
spatial distribution of individual ES indicators was visualized via mapping in ArcGIS.

To analyze the relationships between the five ES indicators, we employed ArcGIS 10.2,
which serves as a common spatial unit, to aggregate all ES indicators at a national level.
According to Raudsepp-Hearne et al. [56], administrative boundaries are suitable for
identifying socio-ecological systems in a landscape, as management decisions at this level
influence the provision and consumption of ES. The specific models and processes used for
assessing the ES indicators are summarized in Table 2.

2.3.3. Assessment of ES Supply Index

Since each ES has its own measurement unit, we individually standardized the ES
values and then summarized them within each county to mitigate the influence of magni-
tude and variability. We employed min–max normalization to standardize the values of the
five ES indicators [63,64]. This normalization method removes the units of the input data
and scales them to a common range. After standardization, the standardized values were
accumulated to obtain the ES supply index (ESSI), which represents the total ecosystem
service supply. The calculation equation for ESSI is as follows:

ESSij =
ESij − minESj

maxESj − minESj
(1)

ESSIi = ∑n
j=1 ESSij (2)

where ESSIi is the ES supply index of county i; ESSij is the standardized value for ES j of
county i; ESij is the initial value for ES j of county i; max ESj is the maximum value of ES
over 107 counties, and min ESj denotes the minimum value of ESj; n = 5.
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2.4. Quantifying ES Demand

The ES demand represents the human demand and preference for ecosystem products
and services within a specific time period. In this study, we used a research method [26,65]
to quantify ESD by considering land development intensity, population density, and gross
domestic product (GDP) per area. This helped us to understand the coordination between
the development and preservation of essential natural processes that sustain human well-
being and environmental quality [29,66,67]. Specifically, land development intensity was
measured as the percentage of construction land in the total land area. It reflects the
intensity of the human consumption of ES. A higher percentage of construction land
indicates a greater intensity of human land development in a given area, and consequently,
a higher demand for ES. Population density serves as an indicator of the amount of ES
demand. A higher population density corresponds to a greater ESD. GDP per area reflects
the economic development of the region and indirectly indicates how much humans wish
to consume or utilize ESs. Logarithmic methods were employed to remove fluctuations in
the data. The ESD index is calculated using the following formula:

ESDIi = Di × lg(Pi)× lg(Gi) (3)

where ESDIi is the ES demand index of each county i; Di, Pi, and Gi are the land develop-
ment intensity (%), population density (person/km2), and GDP per area (yuan/km2) of
county i, respectively.

2.5. Assessing Coordination between ES Supply and Demand

In this study, we employed the CCDM to investigate the interactive coordination
relationship between ESS and ESD. The CCDM highlights the interdependence of ecological
and social systems and aims to understand how they interact and mutually influence each
other. By adopting this model, we can develop a holistic understanding of the relationship
between ecosystems and human societies.

The CCDM recognizes the interconnectedness of ecological and social systems and
emphasizes the importance of studying them together. This enables us to analyze the de-
velopmental pattern of these systems or indicators, progressing from disorder to order [68].
This representation provides insights into the overall effectiveness and synergistic impact
between systems [69].

Mathematically, the CCDM is expressed as follows:

CCDi =
√

Ci·Ti (4)

Ci =
{(

SESSCIi ·DESSDIi

)
/
[(

SESSCIi + DESSDIi

)
/2
]2
}1/2

(5)

Ti = α·SESSCIi + β·DESSDIi (6)

where CCDi represents the coupling coordination degree of county i (0 ≤ CCDi ≤ 1)
between ESS and the ESSD; Ci refers to the coupling degree between ESS and the ESSD;
Ti is the comprehensive development index of ESS and the ESSD; and SESSIi and DESDIi
are the values of standardized ESSI and ESDI (0 ≤ SESSIi ≤ 1, 0 ≤ DESDIi ≤ 1). α and
β are the weights to be determined; due to the equal importance of ESS and the ESSD
in the coordination, α and β are given the same weight, that is, α = β = 0.5. Referring
to previous research [32], we divide the CCD into five levels: When 0 ≤ CCDi ≤ 0.20,
the ESS and ESSD are in extreme incoordination; when 0.20 < CCDi ≤ 0.35, they are in
moderate incoordination; when 0.35 < CCDi ≤ 0.55, they are in reluctant coordination;
when 0.55 < CCDi ≤ 0.70, they are in moderate coordination; and when 0.70 < CCDi ≤ 1,
they are in superior coordination.
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2.6. Driving Variables of ES Coordination
2.6.1. Critical Driving Variables

In this study, we selected socio-ecological variables to explain the spatiotemporal
differences between ESS and ESD, based on relevant research [70,71]. Potential explanatory
variables were chosen from three sources: (1) the variables used to quantify ESS or ESD
in our study, (2) variables identified in the literature as directly or indirectly driving
individual ESs and/or their associations [72], and (3) variables for which quantitative data
were available. After considering these factors, we ultimately selected thirteen potential
socio-ecological variables, including natural variables such as elevation (DEM), slope
(SLOPE), average annual precipitation (PRE), and average annual temperature (TEM);
ecological variables such as NDVI, percentage of crop land (CROP), percentage of forestland
(FOREST), and percentage of grassland (GRASS); and socio-economic variables such as
percentage of construction land (CON), total population (POP), GDP, proportion of urban
population (URBAN) and distance to the nearest county center (COUNTY) (Table 3).

Table 3. Details of the driving variables for coupling coordination between ESSI and ESDI in
this study.

Variable Code Description Unit

Elevation DEM Derived from the SRTM3 global digital elevation model Meter
Slope SLOPE Derived from the SRTM3 global digital elevation model Degree
Precipitation PRE Annual trends of precipitation for the period 1956–2017 mm
Temperature TEM Annual trends of temperature for the period 1956–2017 ◦C
Normalized Difference
Vegetation Index NDVI Vegetation cover %

Cropland CROP County land area that is occupied by area that is
classified as cropland %

Forestland FOREST County land area that is occupied by area that is
classified as forest %

Grassland GRASS County land area that is occupied by area that is
classified as grassland %

Construction land CON County land area that is occupied by area that is
classified as construction land %

Population POP Annual total population person
Economic level GDP Gross domestic product yuan
Urbanization rate URBAN Urban population proportion %
Distance to the nearest county COUNTY Distance to the nearest county center km

2.6.2. Effects of Driving Variables on Coordination via Geo-Detector Model

The geo-detector model (GDM) can help identify the most influential factors or vari-
ables that contribute to specific spatial patterns, and reveal how different factors interact
in a spatial context. It offers insights into the potential effects of human activities on
ecosystems, water resources, or air quality. In this study, we employed the GDM to assess
the spatial correlation between the explanatory variables and the dependent variables
through spatial variance analysis (SVA) [73,74]. The GDM is a valuable analytical tool to
identify and quantify the spatial associations between driving factors and specific outcomes.
This insight can guide decision making by highlighting where interventions or ecological
resource allocation should be focused for maximum impact. By employing statistical and
spatial analytical techniques, the GDM enables researchers to identify dominant driving
factors and their interactive effects, as well as explore spatial patterns and trends in complex
geographical processes [75]. The fundamental assumption of the GDM is as follows: if
an independent variable X significantly affects a dependent variable Y, then the spatial
distributions of X and Y should exhibit similarity. SVA is used to compare the spatial
consistency between the dependent variable and independent variables. Based on this com-
parison, the interpretation of independent variables in relation to the dependent variable
can be quantified.
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In this study, we utilized the “factor detector” module of GDM to identify the driving
factor(s) that determine the distribution of CCD. This module identifies the extent to which
the driving variables explain the spatial differentiation of CCD. The calculation results
of the factor detector include the q-statistic and p-value. The q-statistic represents the
influencing coefficient of the driving variable on CCD, with larger values indicating a
stronger impact of the driving variable on CCD. The p-value indicates the significance level
of the explanation, and a significance level of 0.1 (p-value < 0.1) is considered statistically
significant. The formula for the factor detector is as follows:

q = 1 − ∑l
h=1 Nhσ2

h
Nσ2 (7)

where q signifies the influencing coefficients of the driving variables for the ES (q -statistic),
the values of which range from 0 to 1, where 0 corresponds to no correlation between the
two and 1 to CCD’s complete dependence on a driving variable. σ2 is the variance of the
CCD, and N is the size of CCD. The superposition of the driving variables and CCD forms
L layers in CCD, which are indexed by h = 1, 2. . . l, and Nh and σ2

h represent the scale and
variance of layer h, respectively.

The “interaction detector” module of GDM was used to examine whether two fac-
tors have a stronger or weaker effect on ESs than they do independently. The types of
interactions between two variables are as follows:

Enhance: if q (D1 ∩ D2) > q (D1) or q (D2)
Enhance, bivariate: if q (D1 ∩ D2) > q (D1) and q (D2)
Enhance, nonlinear: if q (D1 ∩ D2) > q (D1) + q (D2)
Weaken: if q (D1 ∩ D2) < q (D1) + q (D2)
Weaken, univariate: q (D1 ∩ D2) < q (D1) or q (D2)
Weaken, nonlinear: if q (D1 ∩ D2) < q (D1) and q (D2)
Independent: if q (D1 ∩ D2) = q (D1) + q (D2)

where the symbol “∩” denotes the intersection between the layers D1 and D2. The attributes
of layer (D1 ∩ D2) are determined by the combination of the attributes of layer D1 and D2
using a spatial overlay to form a new layer. q (D1), q (D2), and q (D1 ∩ D2) were calculated
using Equation (1). By comparing the sum (q (D1) + q (D2)) of the factors’ contribution to
two individual attributes (q (D1), q (D2)) with the contribution of the two attributes when
combined (q (D1 ∩ D2)), the interactive effects of the two factors can be defined using the
above seven types.

3. Results

3.1. Spatial–Temporal Patterns of ES Supply and Demand

Using a quantitative method, we calculated ESSI and ESDI data for the 107 counties of
Shanxi Province for the reference years 2000 and 2020. We normalized the two indices to a
range of 0–1 and mapped them to facilitate comparisons (Figures 3 and 4).

The unique geographical location of Shanxi Province resulted in significant variations
in natural conditions, leading to considerable heterogeneity in the counties’ ability to
provide ESs. The ESSI exhibited substantial variation across Shanxi Province in both
2000 and 2020, which was similar to the distribution characteristics of outdoor recreation
(Figure 3). Areas with high ESS were dispersed across the mountainous regions of the
study area, surrounded by counties with higher ESSI. Specifically, Mount Taiyue, Mount
Zhongtiao, and Mount Wangwu, located in the southern parts of the province, have a
particularly abundant supply of ESs. The areas with low supply were concentrated in the
northwest edge of Shanxi and the western part of Mount Luliang. From 2000 to 2020, the
spatial pattern of ESSI remained largely unchanged in most counties. However, there was
a slight overall decrease in the level of ESS, and the ESSI of Yuanping and Xinzhou, located
in the northwestern part of Shanxi Province, experienced significant increases. There was
a clear upward trend in the number of counties with the lowest supply, increasing from
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20.6% for the 107 counties in 2000 to 32.7% in 2020. However, the number of counties with
the highest supply remained static.

Figure 3. Spatial distributions of the key five ESs and ESSI across the 107 counties of Shanxi Province
in 2000 and 2020.

Figure 4. Spatial distributions of ES demand and the ESDI across the 107 counties of Shanxi Province
in 2000 and 2020.
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The spatial distribution hierarchy of ESDI was weaker compared to ESSI (Figure 4). In
both 2000 and 2020, ESDI displayed spatial distribution characteristics with higher values
in the central areas and lower values in the outer areas of the study area, which closely
resemble the spatial distribution of construction land. The areas with the highest and
higher ESS grades were primarily concentrated in central Shanxi, southeastern areas, and
the northern plains, indicating a relatively concentrated distribution. The areas with the
lowest demand were contiguous and distributed in mountainous regions such as Mount
Luliang in the west and Mount Taihang in the east. From 2000 to 2020, due to population
growth and economic development in the study area, there was a clear increase in ESDI.
The number of counties with higher grades of ESS increased, while the counties with the
lowest demand decreased. Some areas with medium demand in 2000 shifted to higher
demand categories by 2020, indicating a transformation from relatively lower to higher
grades. Overall, the spatial distribution of ESDI displayed noticeable differences between
the outskirts and the middle regions of the study area.

3.2. Coupling Coordination Characteristics of ES Supply and Demand

Using the CCDM, we measured and mapped the CCD of ESSI and ESDI for the
107 counties of Shanxi Province in 2000 and 2020 (Figure 5). The CCD values ranged from
0 to 0.57 in 2000 and from 0 to 0.43 in 2020 (Table 4), indicating a relatively low level of
coupling coordination.

There are four main types of coupling coordination relationships between ESSI and
ESDI: extreme incoordination, moderate incoordination, reluctant coordination, and mod-
erate coordination (Figure 5). Most counties belong to the extreme incoordination and
moderate incoordination patterns, mainly located in the western and eastern parts of
Shanxi. In 2000, the areas with reluctant coordination were primarily found in the Taiyuan
Basin in central Shanxi, Linfen Basin, and the Yuncheng Basin in the southeastern parts.
However, in 2020, reluctant coordination areas were sparsely distributed in only a few
municipalities. Overall, there was a clear incoordination relationship between ES supply
and demand in Shanxi.

Figure 5. The coupling coordination degree between ES supply and demand of Shanxi Province in
2000 and 2020.
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Table 4. The statistical values of standardized values of ES supply, ES demand, and coupling
coordination degree in 2000 and 2020.

ESSI ESDI CCD

Year 2000 2020 2000 2020 2000 2020

Minimum value 0.528 0.512 0.649 0.638 0.002 0.059
Maximum value 0.859 0.870 0.979 0.980 0.566 0.427
Mean value 0.670 0.649 0.044 0.067 0.212 0.196

Between 2000 and 2020, the number of counties with extreme incoordination signifi-
cantly increased from 29.0% to 36.5%. The number of reluctant coordination areas decreased
from 34.6% to 24.3%, with fourteen counties transitioning from reluctant coordination to
moderate incoordination. This indicated a substantial decline in the coupling coordination
between ESSI and ESDI in Shanxi over the 20-year period. The main change characteristics
were the negative transitions from relatively high coordination grades to incoordination
grades. The most significant changes were observed in the shifts from moderate incoordina-
tion to extreme incoordination and from reluctant coordination to moderate incoordination,
accounting for 20.31% and 16.28% of the counties, respectively.

In general, the analysis of coordination between ES supply and demand revealed
coexisting states of coordination and incoordination, with incoordination being predomi-
nant in most counties. The difference in the spatial polarization of CCD in 2020 was more
significant than in 2000. Overall, the coordination relationship between ES supply and
demand in Shanxi Province deteriorated between 2000 and 2020.

3.3. Determining Drivers for the Coupling Coordination Degree between ES Supply and Demand

The GDM was utilized to identify the most influential socio-ecological drivers for the
coupling coordination between ES supply and demand. The factor detection results for
thirteen socio-ecological variables yielded the influencing coefficients (q-statistic values)
and significance levels (p-values) (Figure 6).

Figure 6. Factor-detected results of socio-ecological variables of CCD using GDM in 2000 (a) and
2020 (b). “***” p < 0.001, “**” p < 0.01, “*” p < 0.05. Panels (a) and (b) display the prominent influencing
factors of CCD in 2000 and 2020, respectively. All factors are organized in descending order based on
their influencing coefficients (q-statistic values).

In 2000 and 2020, the variables SLOPE, PRE, and COUNTY did not pass the signifi-
cance tests. Meanwhile, the variable TEM was a statistically significant driving variable
(p-value < 0.001) in 2000, but its significance level was greater than 0.1 in 2020. Conversely,
the variable URBAN was not significant in 2000 (p-value > 0.1) but became a significant
driving variable in 2020 (p-value < 0.05). Figure 6 presents the sorting results for the
q-statistic values for significant variables (p-value ≤ 0.05), revealing their influencing coeffi-
cients on CCD in 2000 and 2020. The influencing coefficients of CON, POP, and GDP were
greater than 0.5 and higher than the other factors in both 2000 and 2020. This demonstrates
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that these variables were the main drivers of the spatial pattern of CCD during both time
periods. GRASS, CROP, and DEM were considered sub-high determinate variables based
on their q-statistic values. Notably, the variables TEM, NDVI, and FOREST had weak effects
on CCD in 2000, whereas in 2020, the variables URBAN, FOREST, and NDVI had a weak
effect. This suggests that the impact of forest coverage on the coordination relationship was
relatively small in the study area.

Furthermore, the interaction detector module of GDM assessed the influencing co-
efficients of any two socio-ecological variables (Figure 7) and compared them with their
separate influencing coefficients (q-statistic values). The results reveal two interaction
modes of socio-ecological variables on CCD: nonlinear enhancement and mutual enhance-
ment. This indicates that the explanatory power of the interaction between any two
variables for CCD is greater than that of any single variable. The interactive effects on CCD
between CON and the other variables were the strongest, with q-statistic values exceeding
0.85. After interacting with POP and GDP in both 2000 and 2020, the q-statistic values of
all variables were above 0.65, which was higher than the values for the separate effects of
POP and GDP on CCD. It is important to note that SLOPE, PRE, and COUNTY did not
exhibit significant effects on CCD in the single-factor detection results (Figure 6). However,
after interacting with CON, POP, and GDP, the influencing coefficients of SLOPE, PRE,
and COUNTY were 0.88, 0.67, and 0.68 in 2000, respectively, and similar results were
observed in 2020. This suggests that even if individual socio-economic variables do not
have a significant effect on the spatial distribution of CCD, they may play a key role via
interaction with variables that have high influencing coefficients. Thus, SLOPE, PRE, and
COUNTY were identified as important external driving factors for CCD between ESSI and
ESDI. Additionally, this highlights the importance of considering the interactions between
variables in understanding the spatial distribution of CCD.

 

Figure 7. Cont.
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Figure 7. Interaction-detected results of socio-ecological variables of CCD using GDM for 2000 (a)
and 2020 (b). “*” indicates nonlinear enhancement: q (X1∩X2)> q (D1) + q (D2); “+” indicates
bivariate enhancement: q (D1 ∩ D2) > q (D1) and q (D2). A deeper shade of blue indicates a smaller
interaction coefficient between X1 and X2 on CCD, and a darker shade of red signifies a larger
interaction coefficient.

4. Discussion

4.1. Spatial–Temporal Characteristics of ESSI and ESDI

Our framework of analysis was used to make sense of relationships between ES supply
(ESS) and ES demand (ESD) in a complex social–ecological system. Utilizing the ES supply
index (ESSI), we have derived the spatiotemporal variation characteristics of ESS (Figure 3).
These characteristics provide valuable insights into assessing the level of ES supply, as well
as tracking its enhancement or decline in every county within Shanxi Province.

We found that high values of ESSI were predominantly observed in mountainous
areas with dense forest coverage. In contrast, low values were mainly found in the Fen
River basin, which is dominated by cropland and stretches from northeast to southwest.
The Fen River basin is the most active area in terms of social and economic activities in
Shanxi Province. The extensive human disturbance in this basin, characterized by high
population density and economic growth, has led to the rapid expansion of construction
land, causing a reduction in ecological land. As a result, the supply of ESs in the counties
within this watershed is relatively low. Similarly, the northwestern parts of the study area,
dominated by cropland and grassland, also exhibited relatively low ESSI values. This
aligns with findings from previous studies [76]. This region represents a transition zone
from scrub steppe to typical steppe, and factors such as increasing population, livestock,
and desertification posed significant threats to the area for an extended period. Despite
the implementation of the GFGP in these northwestern counties of Shanxi Province since
2000, the supply of local ESs continues to deteriorate [77]. Hence, the grass-planting-based
GFGP in this region is required to improve efficiency and achieve ecological protection.
Additionally, the western area of Mount Luliang exhibited relatively low ESSI values.

215



Appl. Sci. 2023, 13, 9262

This can be attributed to Mount Luliang’s location in the loess hilly and gully region,
which is characterized by severe soil and water loss [78]. Moreover, these mountainous
areas are contiguous to regions with concentrated mineral resources and frequent human
activities. As of 2021, there are 91 coal mines in Luliang, accounting for 13.62% of the total
number of coal mines in Shanxi. Extensive mining methods and inadequate management
measures have imposed a burden on ecosystems, leading to a diminished supply level of
regional ESs.

Concerning the ES demand index (ESDI), we carefully curated three indicators repre-
senting land use, population dynamics, and economic factors (Figure 4). These indicators
collectively offer a comprehensive representation of ESD, encompassing preferences and
requirements. We found that high values of ESDI were primarily distributed in the central
Taiyuan Basin, northern Datong Basin, southern Linfen Basin and Yuncheng Basin, and
southeastern Changzhi Basin, while low values were observed in the mountainous areas
on the east and west sides. These basin regions, with Taiyuan, Datong, Linfen, Yuncheng,
and Changzhi as their central cities, have experienced significant population and industrial
concentration, resulting in high demand for ESs. Notably, the spatial pattern of ESDI
closely resembles that of the degree of land use development (Figure 3). This finding
is consistent with existing studies [79] that indicate a strong correlation between ESDI
distribution and land use development degree, population density, and per capita GDP. It
is a common phenomenon in many parts of China to expand the area of construction land
in order to meet social and economic needs, particularly in areas with extensive human
activity [16]. From 2000 to 2020, the average ESDI values significantly increased in the
Datong Basin, decreased in the Taiyuan Basin and Yuncheng Basin, and the disparity in
ESD values among the counties within these basins significantly decreased. Additionally,
ESDI levels in Taiyuan city and Changzhi city district, which had the highest ESDI values
in the whole study area, remained relatively stable between 2000 and 2020. This stability
can be attributed to the slower economic and population growth in Taiyuan and Changzhi,
reaching a stable socio-economic agglomeration state within Shanxi Province [16]. Overall,
Shanxi Province exhibits clear spatial mismatch characteristics between ESS and ESD.

4.2. Spatial–Temporal Characteristics of CCD between ESSI and ESDI

The coordination mechanism between ESS and ESD primarily revolves around the
harmonization of the ecosystem and social system [80]. It involves a feedback loop, where
societal choices, such as land use and economic activities, impact the provision of ESs. In
turn, the condition and health of the ecosystem shape the quality and quantity of services
that can be supplied to meet social needs. Thus, it is rare to gain a clear spatial relationship
between the biophysical supply of ESs and their demand; it is a rare achievement. This
rarity primarily stems from the utilization of distinct measurement units for assessing
supply and demand [78]. Furthermore, this situation underscores a current challenge
within this field of study. In this study, we introduced the CCD model to address this
challenge, and obtained the spatiotemporal variation characteristics of the coordination
relationship between ESS and ESD in various counties of the Shanxi Province.

The majority of counties exhibited a state of incoordination in terms of CCD (Figure 5).
Extreme incoordination was predominantly observed in Mount Taihang in the east, Mount
Luliang in the west, and Mount Taiyue in the south of Shanxi Province. This can be
attributed to the higher supply of the five key ESs compared to the demand in these
counties (Figures 3 and 4). Most of these counties are situated in mountainous areas
characterized by forest and grassland with high vegetation coverage [36]. Due to the
implementation of ecological protection projects, there is minimal interference from human
activities in these counties, resulting in little change in the type and quantity of land
use. Furthermore, NFPP and GFGP contribute to increased vegetation coverage in these
mountainous areas, enhancing the types and capacities of ESs. As a result, a high level of
“lock-in effect” of regional ESS has been achieved [35,76], and ESS in these mountains is
significantly weaker compared to the plain and basin areas. On the other hand, moderate

216



Appl. Sci. 2023, 13, 9262

incoordination was primarily observed in the Datong Basin, Xinding Basin, Taiyuan Basin,
Linfen Basin, Yuncheng Basin, and Changzhi Basin, spanning from the north to south of
the study area. This can be attributed to the extensive human activity in these basin regions
and indicates the need for additional efforts to improve the coordination between ESS and
ESD in these areas.

The coordination relationship between ESSI and ESDI exhibited a decrease in inco-
ordination between 2000 and 2020, as evidenced by an increase in the number of extreme
incoordination counties and a decrease in reluctant coordination and moderate coordina-
tion counties. For example, the relationship between ESSI and ESDI in Taiyuan, Linfen,
Yuncheng, and Changzhi cities shifted from moderate coordination in 2000 to reluctant
coordination in 2020. No other counties changed to a moderate coordination, resulting in
the absence of moderate coordination counties/districts in the study area in 2020. This
shift can be attributed to the slower growth rate of ESS compared to ESD in these cities.
The increase in population, expansion of construction land, and economic growth have led
to higher ESD in these districts [81]. Despite the increase in green spaces within the cities
between 2000 and 2020 due to China’s ecological civilization construction projects, it falls
short of meeting the substantial demand for ES in urban production and daily life [82].

Overall, the distribution of CCD in 2020 exhibited noticeable spatial differences be-
tween the basin region and the mountain region compared to 2000. The coordination
relationship between ESSI and ESDI demonstrates incoordination and spatially varies
across Shanxi Province. The degree of incoordination intensified in nearly half of the
counties from 2000 to 2020. In 2020, the CCD highlighted the spatial disparities between
urban areas, agricultural areas, and forest–grassland areas from the perspective of land
use, as well as the differences between valleys, basins, and mountains from the perspective
of terrain.

4.3. Associations between CCD and Driving Covariates

In our study, we employed a geo-detector model (GDM) to capture the spatially
response characteristics of the dependent variable in relation to the independent variable.
This approach allowed us to analyze how different factors contribute to the observed spatial
patterns of the coordination between ESS and ESD across the study area (Figures 6 and 7).
We found that socio-economic factors had a greater impact on the coordination relationship
between ESS and ESD than natural and ecological factors, emphasizing the significance of
socio-economic factors in shaping the spatial pattern of this relationship. This finding aligns
with previous research that highlighted the role of socio-economic variables as determinants
of ES supply and demand distribution [43,83]. The dominant factors influencing the spatial
pattern of CCD were identified as construction land, followed by population and GDP.
The expansion of construction land, driven by extensive human activity, has significantly
influenced land use patterns in terms of magnitude, type, and distribution [84]. The
complex nature of human activity further complicates these relationships. However, these
findings contrast with a study by Yang et al. [82] in China’s Loess Plateau, which found
that vegetation cover had the greatest positive effect on the relationship between ES supply
and demand. This discrepancy could be attributed to the dominant influence of vegetation
coverage on both ESS and ESD in the Loess Plateau.

Interestingly, the effect of grassland on CCD was second only to socio-economic
factors, ranking below elevation and cropland. Grassland emerged as the vegetation cover
factor with the strongest impact on CCD, indicating its significant role in shaping the
spatial pattern of the coordination relationship between ESS and ESD in Shanxi Province.
This finding is supported by previous studies that emphasized the influence of land use
changes caused by socio-economic factors on ESs [85]. Notably, the effect of forestland
and NDVI on CCD was much smaller compared to grassland, suggesting that the increase
in grassland area through GFGP mainly influenced the relationship between ES supply
and demand in Shanxi Province. According to data from the 2020 “Shanxi Province Third
Land Survey Main Data Bulletin”, grassland covers an area of 3.11 million hectares in
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Shanxi Province, and is primarily distributed in Datong, Xinzhou, Luliang, Jinzhong, and
Linfen cities, accounting for 73% of the province’s grassland [86]. However, the grassland
ecosystem in the study area remains fragile, with 70% of the grassland experiencing
varying degrees of degradation and facing challenges such as insufficient protection and
restoration, low utilization and management efficiency, and a lack of effective technological
support. Therefore, the coordination degree between ESS and ESD could be improved by
implementing quantitative and spatial adjustments to grassland planting policies.

In this study, the slope and precipitation factors were found to have no significant
direct effect on CCD. However, after interacting with construction land, population, and
GDP, slope and precipitation played an important role in shaping the spatial pattern of CCD.
This indicates that socio-economic factors enhance the influence of natural factors on CCD.
Generally, slope and precipitation influence the supply capacity and demand preferences
for ESs by controlling the spatial distribution of human activity and landscapes [76], and
previous studies demonstrated that precipitation facilitates coordination between ESS and
ESD in arid and semi-arid areas [79]. The changes in terrain and precipitation affect both
social and economic processes, leading to changes in coordination relationships. Previous
research provided guidance on identifying factors that contribute to ES supply and demand
mismatch [87], ESS, and ESD, including terrain ruggedness for supply and population
density for demand [88].

The spatial distribution of the coordination relationship between ESS and ESD is
primarily supported by the expansion of construction land, population growth, and eco-
nomic benefits. However, this puts immense pressure on ES supply. Although forest
and grassland coverage significantly increased between 2000 and 2020, the expansion of
construction land has outpaced these gains. The growth rates of forestland and grassland
in the study area were 4.2% and 4.3%, respectively, while the growth rate of construction
land was as high as 105.4%. Since 2000, Shanxi Province has been the subject of economic
system reforms, and thus rapid economic development, but the lack of awareness regarding
ecological protection has resulted in the degradation of ESs. Consequently, the coordination
relationship between ES supply and demand deteriorated somewhat between 2000 and
2020, indicating that the expansion of construction land and the concentration of population
and industry have threatened the coordination between ESS and ESD in the counties of
Shanxi. To address this issue, policymakers in Shanxi Province must make significant
progress in promoting the coordination between ESS and ESD, implementing measures to
ensure a dynamic balance between ES supply and demand.

4.4. Limitations

There are several limitations and uncertainties in this study. Firstly, the evaluation
of five types of ES was limited in terms of reflecting the overall ESS level due to data
availability and quality constraints [89]. In addition, the equal-weight superposition
calculation method used to calculate total ESS may have overlooked significance of various
ES types in Shanxi Province. Future studies should strive to include a more comprehensive
range of ES indicators and consider their relative importance. Secondly, the selection of
indicators to represent ESD focused on land development intensity, population density, and
GDP per area, assuming that all types of ESs have the same demand. This oversimplification
may not accurately reflect spatiotemporal changes in ESD. Further research is needed to
refine the measurement of ESD and capture its dynamics. Thirdly, this study compared the
changes in ESS and ESD between 2000 and 2020, overlooking the temporal volatility of ES.
Incorporating temporal dynamics would enhance our understanding of the coordination
relationship between ES supply and demand.

The use of county-level administrative boundaries was advantageous [90], providing
official statistical data; however, this limits our understanding of causality and spatial
heterogeneity in coordination relationships [91]. Shanxi Province has diverse topography,
vegetation and natural geographical features, and there is a significant spatial mismatch
between ESS and demand. Thus, it is difficult to reveal the variation of ESS at a local scale
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in the spatial units of county. In addition, spatial heterogeneity and scale effects impact
the relationship between ESS and ESD [92]. Focusing only on a single scale tends to miss
information about the correlation between scales, and the influence mechanism is inevitably
one-sided. Future research should use a multi-scale analysis to capture the correlation
between scales and comprehensively investigate influence mechanisms.

Additionally, our study assumed that ESD in a county is solely provided by the local
ecosystem without considering the flow of ecosystem services across county boundaries.
For example, water resources can originate from upstream regions, and food shortages
in a city can be mitigated via food trade [93]. Future studies should account for the cross-
boundary flow of ES, as services from neighboring ecosystems can also contribute to ESD.
Furthermore, while GDM helped identify the strength of influence of socio-ecological
factors on the spatial pattern of CCD, it was unable to capture whether this effect was
positive or negative. Exploring the positive or negative nature of these effects would
provide a more comprehensive understanding of the coordination relationship between
ESS and ESD.

5. Conclusions

Shanxi Province has experienced a stage of rapid expansion of construction land; there
has been a rapid transformation in the intensity, type, and pattern of land use, which has
created an urgent need to optimize ESs, social progress, and economic development. Under
this background, this study analyzed spatiotemporal changes in ES supply, demand, and
their coordination relationship, and identified the relevant socio-ecological driving factors
across 107 counties in Shanxi from 2000 to 2020.

The results reveal that the spatial pattern of ESS was closely linked to forest coverage,
while ESD was closely related to the degree of land use development. The changes in
ESS and ESD exhibited spatial heterogeneity. Over the study period, Shanxi Province
experienced a slight decrease in ESS and an increase in ESD. The evaluation using the
CCDM demonstrated significant incoordination between ESS and ESD in Shanxi, which
worsened between 2000 and 2020. Based on the CCD of ESS and ESD, Shanxi Province
was divided into four zones: extreme incoordination, moderate incoordination, reluctant
coordination, and moderate coordination. The extreme incoordination zone was mainly
located in mountainous regions, where ecosystems dominated by the eastern Taihang
Mountain and western Luliang Mountain provided high levels of ESs but low ESD. The
moderate incoordination zone was primarily found in basins with intensive human activity,
where ecosystems dominated by cropland exhibited slightly higher levels of ESs compared
to ESD. The reluctant coordination and moderate coordination zones were mainly located
in central cities within basins, where the CCD between ESS and ESD significantly decreased.
The spatial distribution of CCD was primarily influenced by construction land, population,
and GDP, with grassland playing a secondary role, largely driven by the GFGP policy.

Accordingly, in order to promote the sustainable development of the counties, we
propose the following recommendations: Firstly, the government should enhance ecological
compensation policies for residents in mountainous regions, with a special focus on areas
like Taihang Mountain and Luliang Mountain. This entails raising compensation for ecosys-
tem service providers. Secondly, county and municipal district administrations should
adopt advanced strategies for balanced ecological, social, and economic development. This
will bolster land use efficiency and curb haphazard expansion of construction projects.
Thirdly, policymakers and governments need to comprehensively assess the distinct im-
pacts of various drivers on the interplay between ESS and ESD at both the local and county
scales. This is particularly pertinent when formulating strategies for regional management
approaches. These policy insights are applicable not just to Shanxi Province, but also to
other regions endowed with coal and mineral resources. In future research, it is imperative
to prioritize effective land management decisions that account for the interrelation between
socio-ecological factors and the supply and demand of ecosystem services.
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Abstract: Indoor position technologies have attracted the attention of many researchers. To pro-
vide a real-time indoor position system with high precision and stability is necessary under many
circumstances. In a real-time position scenario, gross errors of the Bluetooth low energy (BLE) finger-
print method are more easily occurring and the heading angle of the pedestrian will drift without
acceleration and magnetic field compensation. A real-time BLE/pedestrian dead-reckoning (PDR)
integrated system by using an improved robust filter has been proposed. In the PDR method, the
improved Mahony complementary filter based on the pedestrian motion states is adopted to estimate
the heading angle reducing the drift error. Then, an improved robust filter is utilized to detect and
restrain the gross error of the BLE fingerprint method. The robust filter detected the gross error at
different granularity by constructing a robust vector changing the observation covariance matrix of
the extended Kalman filter (EKF) adaptively when the application is running. Several experiments
are conducted in the true position scenario. The mean position accuracy obtained by the proposed
method in the experiment is 0.844 m and RMSE is 0.74 m. Compared with the classic EKF, these
two values are increased by 38% and 18%, respectively. The results show that the improved filter
can avoid the gross error in the BLE method and provide high precision and scalability in indoor
position service.

Keywords: indoor position; robust filter; integrated system; BLE; PDR

1. Introduction

With the rapid development of technology and people’s increasing demands for a
better life, various applications based on location-based service (LBS) provide a great conve-
nience for people’s life. Position information is the key element for LBS to provide services.
Global Navigation Satellite System (GNSS) can provide high accuracy position outdoors.
However, the accuracy deteriorates significantly because GNSS signals are unreliable or
blocked in indoor environments. To provide a reliable, stable position service in indoor
environments, many types of indoor positioning technologies such as wireless fidelity
(Wi-Fi) [1–3], Bluetooth low energy (BLE) beacons [4,5], radio frequency identification
(RFID) [6,7], ultrasonic [8], infrared [9], ultra-wideband (UWB) [10,11], pseudolite [12,13],
computer vision [14,15] had been proposed by experts and scholars.

Among them, the positioning techniques based on Wi-Fi are the most popular indoor
positioning method due to the wide deployment of Wi-Fi routers in shopping malls, hospi-
tals, airports, and stations. However, the process of Wi-Fi scanning is time-consuming and
power-consuming. Many devices have optimized their systems to limit the scanning fre-
quency. According to the latest google android development document [16], it is specified
that the scanning frequency of Wi-Fi is limited no more than four times in two minutes
after the Android Oreo system. It is difficult for the Wi-Fi-based positioning method to be
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applied to indoor position service applications with high real-time performance. Fortu-
nately, Bluetooth-based techniques are another good choice to position due to the increased
popularity of smartphones along with the development of the Internet of Things. Low cost,
power-saving, and ease of deployment without affecting the infrastructures of buildings
can avoid the shortcoming of Wi-Fi scanning [17]. Most importantly, the principle of the
BLE positioning method is the same as that of Wi-Fi. Some of the current Wi-Fi positioning
algorithms can be directly used for BLE positioning [18]. The fingerprint-based method
of BLE is one of the popular approaches for the indoor position which can offer many
advantages for the realizable position accuracy and is infrastructure-free. However, the
radio signals of BLE can be affected by the multipath effect and device heterogeneity [19]
which cause the signal to change during offline acquisition and online position, resulting
in the error in the positioning process.

In short, all of these indoor position techniques mentioned above have both advan-
tages and disadvantages. It is the focus of researchers to propose a fusion of indoor position
methods to keep a balance among accuracy, coverage, cost, and complexity. Common fu-
sion position methods include multimodal fingerprinting, triangulation-based fusion, and
pedestrian dead reckoning (PDR)-based fusion [20]. The PDR-based fusion method which
combines PDR with wireless localization methods is widely used in the literature. PDR is a
self-positioning method that provides a relatively high accuracy position estimation based
on the smartphone’s built-in sensors, but it suffers from the drift problem, resulting in huge
cumulative error for long-time positioning [21]. By contrast, wireless positioning method
such as BLE fingerprint position can obtain absolute position without cumulative error but
has poor accuracy position estimation. Fusing PDR with wireless localization methods
which are often known as Bayes filter, Kalman Filter (KF), Extended Kalman filter (EKF), or
particle filter (PF) can make up for both methods’ shortcomings to provide high accuracy
and stable position service. The PF has good performance in solving nonlinear problems
but suffers from a high computational load. In our research, the fusion EKF algorithm
was chosen to combine PDR with the BLE fingerprint position method in the real-time
integrated system. To inhibit the outliers from the BLE fingerprint method, a robust filter
based on EKF was proposed to compensate for the gross error in the real-time positioning
procedure. Our contributions are as follows:

1. We found that the errors of the BLE fingerprint method are not only related to the
signal fluctuation but are also affected by scanning numbers of BLE beacons after
statistically analyzing the real-time signal data in a harsh environment. When the
scanning BLE beacon numbers are few, coarse errors will more likely occur;

2. We found that the accuracy of the heading is also affected by the motion states of the
pedestrian. An improved Mahony complementary filter is introduced to keep the
heading angle stable by adaptively changing the control parameters in the filter after
considering the different people’s motion states;

3. To meet the demand of real-time position and considering the computational load
of the smartphone, we adopt the EKF method to solve the nonlinear fusion problem
to combine PDR with the BLE fingerprint position method to provide the real-time
position service. To cope with the gross error caused by the BLE fingerprint method
in a harsh environment, a robust filter based on the EKF was proposed. The robust
filter detected the gross error at different granularity by constructing a robust vector
changing the observation covariance matrix of the extended Kalman filter (EKF)
adaptively when the application is running. The experimental results demonstrate
that the proposed method has better performance at position accuracy and stability.

The remainder of this paper is organized as follows: Section 2 is about the related
works of the BLE-based position, self-contained position, and fusion position algorithms
in detail. Section 3 introduces the BLE fingerprint method and analyzes the error of
the position method. PDR method and the heading estimation based on the motion
state are also introduced in this section. Next, the fusion method EKF and a robust
filter are presented as well. Finally, a diagram about the BEL/PDR integrated system
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localization framework is demonstrated. Section 4 describes the experiments and analyzes
the results. Then the discussion of the paper and the conclusions are presented in Section 5
and Section 6.

2. Related Works

The BLE-based position systems have been widely used by utilizing the received
signal strength (RSS) measurements. Zuo et al. pointed out that the radio signals of BLE
had two features. One is that the signal can change dramatically in a small spatial change.
The other is that the signal can be reported multiple times or not reported at all during a
single scan. Both features will cause huge noises in both RSS and BLE beacon availabil-
ity [22]. In addition to the features of the signal, multipath effect, device heterogeneity, and
deployment are the sources of errors in the BLE fingerprint position [19,23]. To analyze
the effects of dense deployment, Ng et al. proposed a high-resolution proximity detection
using an adaptive scanning mechanism fusion with spontaneous differential evolution [24].
Tian et al. defined a coverage degree criterion by leveraging the Cramer Rao Lower Bound
(CRLB) and the differential evolution algorithm to optimize the placement of Wi-Fi and
BLE access points (APS) to hybrid two types of signals to fuse position based on the posi-
tion performance analysis [23]. Andrew et al. applied three Bayesian filtering techniques
to fit the BLE signal distance equation based on considering various errors and conduct
comparison experiments to verify the significant modification in two environments [25].
Subhan et al. presented an in-depth experimental analysis of RSS and its effect on distance
and position [26]. The position methods based on BLE and WiFi are the same, which
can be divided into two categories: proximity detection, multilateration, and fingerprint-
ing approaches. The research by Zhao et al. showed that under the same environment
and conditions, the BLE-based position is more accurate than Wi-Fi because of its lower
transmission power and unique channel hopping mechanism [27]. The key point of much
research on proximity detection and multilateralism is a distance-based estimation [25,28].
Moreover, it is difficult to obtain an accurate distance model under complex environmental
circumstances. The fingerprint method has become the popular approach in real-time posi-
tioning with many advantages of being infrastructure-free and easily realizable. RADAR
was the first RSS-based fingerprint system that used a K-nearest neighbor (KNN) algo-
rithm to estimate the location indoors [29]. Zuo et al. introduced an efficient and graph
optimization-based way for estimating the beacon positions and the reference fingerprint
map to combine range-based and fingerprint-based methods of BLE [21]. A self-adaptive
weighted KNN algorithm PhaseFi proposed a deep network instead of the fingerprint
database and estimated the position by a radial basis function probabilistic method [30].

The self-contained position method mainly contains two types: the data-driven inertial
navigation method and the PDR method. The data-driven inertial navigation technology
has been increasingly used in recent works which use the deep neural network with great
potential in model-free generalization to regress pedestrian motion characteristics. It used
inertial measurement units (IMU) in a short time and ground-truth motion trajectories
to regress motion parameters (velocity and heading). Robust IMU double integration
(RIDI) had made a breakthrough in coordinate frame normalization and used support
vectors to regress a more accurate velocity vector [31]. IONet and RoNIN utilized trained
neural networks to regress the magnitude of speed and the rate of heading angle change,
showing the capability to obtain plain displacement [32,33]. ILIO demonstrated a network
that regresses 3D displacement estimation and its uncertainty to tightly fuse the relative
state measurement into a stochastic cloning EKF to solve for the pose, velocity, and sensor
biases [34]. IDOL presented a two-stage, data-driven pipeline using a commodity smart-
phone that first estimates device orientations and then estimates device position to solve
the problem of inaccurate orientation estimates [35]. Although the data-driven inertial
navigation has a good performance in long-time tracking based on the sophisticated deep
learning technology, it needs a large amount of data to train and extra equipment to get
the ground-truth trajectory in advance, and for real-time positioning, the device will be
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under greater computational load. PDR position is a self-positioning method that consists
of three key components of step detection, step length, and heading estimation that is a
good choice for the real-time position. Lachapelle et al. proposed three-step length error
models: Gaussian model, constant random model, and Gauss Markov model. He modeled
the error of the gyroscope as a random constant deviation when establishing the PDR
error model, so the heading error was considered to be linear with time [36]. Jahn et al.
established the error models for four methods of measuring step length and discussed
the systematic and random errors with the Taylor expansion [37]. You et al. proposed the
multipoint positioning algorithm based on the received RSSI for calibration to eliminate
the cumulative error existing in the traditional PDR system by analyzing the characteristics
of walking postures [38].

For fusion methods, Li et al. [39] proposed an adaptive system noise EKF algorithm
to develop an integrated Wi-Fi/PDR system. The proposed filter could determine the
dynamic noise of the transition matrix according to the movement (straight or turning)
of the pedestrian and reduce the computational complexity of the matching fingerprint
database by using an affinity clustering algorithm. The positioning error could be reduced
to 2.32 m by the experiment. Deng et al. [40] also presented a novel data fusion framework
by using an EKF to integrate Wi-Fi localization with PDR. They developed a measurement
model based on kernel density estimation to enable accurate Wi-Fi localization and adaptive
measurement noise statistics estimation. The experiments show that the proposed method
obtains comparable accuracy and greatly reduces computation cost compared with a
particle filter. Atia et al. [41] utilized a grid-based nonlinear Bayesian filter algorithm to
fuse the Wi-Fi, BLE, and inertial navigation system (INS) sensor information to develop a
calibration-free hybrid indoor positioning methodology. The experiments demonstrated
that the performance of the fusion method is much better than the BLE fingerprint position
method. However, the harsh indoor environment will lead to coarse errors in the wireless
localization method while different motion states of pedestrians affect the performance of
PDR, which both affect the accuracy of the dynamic and observation models. Adaptive
and robust filters can be employed to mitigate the effects of large errors in the dynamic
and observation models, respectively. Yang et al. [42] proposed an adaptively robust filter
based on a robust maximum-likelihood estimation to kinematic geodetic positioning and
measurement. The method could not only balance the contribution between the updated
parameters and measurement but also mitigated the influence of measurement outliers.
Yang et al. [43] also presented an adaptively robust filter with multi adaptive factors
based on the principles of the adaptive KF and bifactor robust estimations for correlated
observations. The proposed filter is more flexible in controlling the disturbing effects of the
state components compared to the classified adaptive factors. Chang et al. [44] proposed a
robust KF using the Chi-squared test to detect measurement outliers. Li et al. [45] presented
an adaptive and robust filter to combine the Wi-Fi and PDR information to develop an
integrated system. The adaptive filter is based on scenario and motion state recognition
and the robust filter is based on the Mahalanobis distance. The experiment results indicate
that the proposed filter is better than the common EKF.

3. Materials and Methods

3.1. BLE Position Technology

The fingerprint position is mainly based on the similarity of the received signal
strength (RSS) and the fingerprint database to obtain the position result. The RADAR
system was the first RSS-based fingerprint system developed by Bahl et al. [29] for indoor
localization by utilizing a KNN algorithm. Like any other fingerprint method, the BLE
fingerprint position method consists of two stages: the offline data training stage and
the online positioning stage. During the offline data training stage: people stand at the
reference points (RPs) whose coordinates are known in advance to collect the RSS from the
access points (APs) for some time. Then, the fingerprint database as shown in Equation (1)
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is constructed after computing the distribution of collected data. Suppose that there are n
RPs and m APs in the position scenario.

Fingerprint database =

⎡
⎢⎢⎢⎢⎢⎢⎣

(x1, y1)
〈

rssi11, rssi12, rssi13, . . . , rssi1m
〉

(x2, y2)
〈

rssi11, rssi12, rssi13, . . . , rssi1m
〉

...
...

(xn, yn)
〈

rssi11, rssi12, rssi13, . . . , rssi1m
〉

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

During the online positioning stage, the position of the target is obtained by matching
the real-time fingerprint to the database on certain algorithms. There are many matching
algorithms. Considering the efficiency of real-time positioning and the simplicity of
implementation, the classic matching method is K-nearest Neighbor (KNN). The basic
idea of the KNN algorithm is to classify the target into the nearest sample class in the
feature space. For the BLE fingerprint position method, the feature space is the fingerprint
database. The process of BLE fingerprint KNN algorithms is shown as follows:

Step 1: When online positioning is carried out, a real-time fingerprint is collected by
smartphone. The real-time fingerprint is expressed as Equation (2).

Real time fingerprint = [〈rssi1, rssi2, . . . , rssim〉] (2)

Step 2: Then the Euclidean distance between the real-time fingerprint and fingerprint
database can be calculated by the following Equation (3).

di =

√
(rssi1 − rssii

1)
2
+ (rssi2 − rssii

2)
2
+ · · ·+ (rssim − rssii

m)
2 (3)

Step 3: Then we sort the n distance di in ascending order and choose the first K items
to calculate the target position by averaging the K corresponding coordinates as shown in
Equation (4).

(x, y) =
1
K

K

∑
i
(xi, yi) (4)

The process of the fingerprint position method is shown in Figure 1.

Figure 1. The process of the BLE fingerprint position method.
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In addition to the general fingerprint position process described above, BLE real-time
fingerprint also has its features. When we carry out a real-time BLE fingerprint position,
the BLE module broadcasts data at a certain frequency. The broadcast data include the
identity number, module name, mac address, received signal strength indicator (RSSI), and
other information. The broadcast frequency is usually from 10 nanoseconds to 10 s, and
the default broadcast frequency is 500 milliseconds. The common android devices such
as smartphones provide a function to scanning the BLE signal for real-time fingerprint
position. Generally, the continuous positioning with a time interval of 1 s is regarded as
the real-time position. Due to the influence of the scanning mechanism, the number of the
scanning BLE RSSI is often different in 1 s. In addition to the impact of signal fluctuations,
the number of the scanning BLE RSSI will also cause errors in fingerprint position.

Here are the real-time RSSIs from 54 BLE APs in one position scenario at certain RP
collected by smartphone HUAWEI P20 in 60 s. The collected data per second correspond
to a real-time fingerprint data, totaling 60 fingerprint data. Then we count the scanning
RSSI number of each fingerprint and Figure 2 shows the scanning RSSI number of each
fingerprint in detail with a bar chart.

Figure 2. The scanning RSSI number of the per real-time fingerprint in 60 s.

As can be seen from Figure 2, there are differences in the scanning RSSI number
per second. The scanning RSSI number per second is at least 1 and at most 37, with
an average of 19.78 RSSI. The different number of the scanning RSSI directly affects the
positioning accuracy of BLE fingerprint position. If the scanned number of APs is too
small, it is easy to cause a coarse error in the BLE fingerprint position [46]. A robust filter is
needed to restrain the coarse error.

3.2. PDR Technology

Pedestrian dead reckoning (PDR) is a self-positioning method for indoor navigation.
The key technologies of PDR are step detection (or counting), step length estimation, and
heading angle of pedestrian estimation. After a pedestrian step was detected, the position
can be obtained using step length and heading angle based on the previous position [20].
The general process of PDR is illustrated as Equation (5):

{
Nk+1 = Nk + sk·cosψk
Ek+1 = Ek + sk·sinψk

(5)
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where Nk and Ek refer to the coordinate of the pedestrian at the north and east direction at
time k, respectively. sk is the step length and ψk is the heading angle at time k.

In the PDR method, step detection and step length are estimated according to the ac-
celerometer readings. Many step detection algorithms have been proposed by researchers,
including peak detection [47], threshold setting [29], zero velocity update [48], auto-
correlation [49] and finite-state machine (FSM) [50]. Among them, the FSM method is easy
to implement and more resistant to interference from errors. After detecting a step, step
length is estimated by different models. Studies have shown that the step length is related
to the acceleration, heights, and strides of different people. Linear models [51], constant
models [52], and nonlinear models [53] are the most common methods which are used to
estimate the step length. The step length estimated by different methods differs little. For
simplicity, we choose the Weinberg model [54] to estimate the step length in our research
and the expression for the model is as follows in Equation (6):

sk = K· 4
√

amax − amin (6)

where K is the scale factor of the step length, amax and amin are the maximum and minimum
acceleration in one step cycle.

Apart from step detection and step length estimation, heading estimate is another
important component of PDR. The compass [55] or the gyroscope [56] are usually used to
estimate the heading angle. Because of the inherent sensor noise in the smartphone, the
accuracy of the heading obtained by the compass is not high but it will not drift for a long
time. In contrast, using the gyroscope to estimate the heading, the accuracy in a short time
will be high, but it will suffer a drift problem. We also found that different motion states of
pedestrians would affect the accuracy of heading estimation. To avoid the shortcomings
of compass and gyroscope and take into account the different motion states of people, an
improved Mahony complementary filter (AMMCF) based on the motion states had been
proposed in our research. The parameter Kp in the filter can adaptively change based on
the motion states which are judged according to the acceleration readings. The principle of
PDR is illustrated in Figure 3.

Figure 3. The principle of PDR.

3.3. An Improved Mahony Complementary Filter Based on the Motion States

The attitude of the device can be described by Euler angle, rotation matrix, and
quaternion methods. The Euler angle is the angle between the three axes of the carrier
coordinate system (CCS) and geographic coordinate system (GCS) which include pitch,
roll, and yaw. The pitch, roll, and yaw represent rotation around x, y, and z axes as shown
in Figure 4 and are denoted by the symbol θ, γ and ψ, respectively. The Euler angle method
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only needs three elements to store attitude information, which is simple, intuitive, and easy
to understand, but it is easy to generate a universal joint deadlock phenomenon.

Figure 4. The attitude angle of the smartphone.

Different from the Euler angle, the Euler angle describes the attitude of the device at
a certain moment, while the rotation matrix describes the motion process of the device
rotation. In a GCS defined by the North-East-Up (NEU), the rotation matrix Cb

n between
the two systems can be defined in Equation (7):

Cb
n = Cγ

n Cθ
nCψ

n =

⎡
⎣ cosγ 0 sinγ

0 1 0
−sinγ 0 cosγ

⎤
⎦
⎡
⎣ 1 0 0

0 cosθ sinθ
0 −sinθ cosθ

⎤
⎦
⎡
⎣ cosψ sinψ 0

−sinψ cosψ 0
0 0 1

⎤
⎦ (7)

where Cb
n represents the rotation matrix from GCS to CCS, Cψ

n , Cθ
n, Cγ

n represent the cor-
responding matrices for yaw, pitch, and roll in order. As we know, the matrix Cb

n is the
orthogonal matrix, so the rotation matrix Cn

b is the inverse matrix of Cb
n, which repre-

sents the rotation matrix from CCS to GCS. The matrix Cn
b can be defined as following

Equation (8):

Cn
b = (Cb

n)
T
= (Cb

n)
−1

=

⎡
⎣ cosψcosγ − sinψsinθsinγ sinψcosθ cosψsinγ + sinψsinθcosγ

−sinψcosγ − cosψsinθsinγ cosψcosθ −sinψsinγ + cosψsinθcosγ
−cosθsinγ −sinθ cosθcosγ

⎤
⎦ (8)

Because the rotation matrix will suffer universal joint deadlock phenomenon and need
9 parameters to store attitude information, the quaternion is the most commonly used
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method to calculate the attitude. Assuming that the quaternion vector is Q = [q0, q1, q2, q3]
T ,

the attitude angles expressed in quaternions are as follows in Equation (9):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ = arctan 2q1q2−2q0q3
1−2q2

1−2q2
3

, ψ ∈ (0, 2π)

θ = arcsin(−2q2q3 − 2q0q1), θ ∈ (−π
2 , π

2 )

γ = arctan−2q1q2+2q0q2
1−2q2

1−2q2
2

, γ ∈ (−π, π)

(9)

The Mahony complementary filter (MCF) [39] utilizes the gyroscope to calculate
the attitude angle of the device and the accelerometer and magnetometer are used to
complement the accumulated error. When a gyroscope raw data ω =

(
ωx, ωy, ωz

)T was
obtained, we can use the first-order Runger-Kutta method to obtain the quaternion update
as shown in Equations (10) and (11):

Q[t + Δt] = Q[t] + Δt·Ωw[t]·Q[t] (10)

⎛
⎜⎜⎝

q0
q1
q2
q3

⎞
⎟⎟⎠

t+Δt

=

⎛
⎜⎜⎝

q0
q1
q2
q3

⎞
⎟⎟⎠

t

+
Δt
2
·

⎛
⎜⎜⎝

0 −ωx
ωx 0

−ωx −ωx
ωz −ωy

ωy −ωz
ωz ωy

0 ωx
−ωx 0

⎞
⎟⎟⎠·

⎛
⎜⎜⎝

q0
q1
q2
q3

⎞
⎟⎟⎠

t

(11)

where the Equation (11) is an expansion of the Equation (10), Q[t] refers to the quaternion
vector of time t, Δt represents tiny time and is often assigned of sampling cycles, Ωw[t] is
the corresponding matrix as shown in Equation (11), which is made up of gyroscope raw
data at time t. As a result, we can obtain the latest quaternion vector by utilizing the
gyroscope data based on the Runger-Kutta method. However, as time goes on, it will suffer
a drift problem, resulting in huge cumulative error for long-time orientation. To reduce
the drift problem, the acceleration and magnetometer field are used to compensate for the
cumulative error. Supposed that the gyroscope error correction is e =

[
ex, ey, ez

]T , it can be
defined as:

e = ea + em (12)

where ea, em are the error correction items calculated by accelerometer and magnetometer
readings, respectively. They are expressed as ea =

[
eax, eay, eaz

]T and em =
[
emx, emy, emz

]T ,
and can be obtained by Equation (13):

{
ea = ab

n × a
em = mb

n × m
(13)

where a, m are the normalized accelerometer and magnetometer readings. ab
n, mb

n are the
normalized vectors of gravity acceleration and magnetic field after matrix Cb

n conversion.
The symbol “×” represents the vector cross product. After getting the error correction,
the compensated gyroscope value ω′ =

(
ω′

x, ω′
y, ω′

z

)
can be calculated based on the

proportional-integral (PI) method as follows in Equation (14):

ω′ = ω + Kp·e + Ki·
∫

e (14)

where Kp, Ki are the proportional and integral control parameters, respectively. The
compensated gyroscope value ω′ is plugged into the quaternion differential Equation (11)
and the quaternion is updated. Then the attitude is obtained by Equation (9) based on the
updated quaternion.

In general, Kp, Ki are fixed empirical values without considering the impact of pedes-
trian motion status. In our research, we proposed an improved MCF to change the control
parameter Kp and Ki adaptively based on the pedestrian motion status. For simplicity, the
pedestrian motion status can be divided into three types including static, walking, and
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running which can be judged by the standard deviation of triaxial acceleration modulus.
The triaxial acceleration modulus can be calculated by Equation (15):

accmod = ‖acc‖ =
√

acc2
x + acc2

y + acc2
z (15)

where acc and ‖acc‖ refer to the acceleration vector and the corresponding modulus,
respectively. Figure 5 shows the performance of the acceleration modulus on different
motion statuses. The dotted green line is an artificial boundary between different motion
states. The acceleration modulus is collected for 1 min at the frequency of 50 Hz. People
in the first 20 s are in a static state, people in the middle 20 s are in a walking state, and
people in the last 20 s are in a running state.

Figure 5. The acceleration modulus on different motion statuses.

We set up a sliding window to store the acceleration modulus and calculate the
standard deviation in the window as shown in Equations (16) and (17).

μacc =
1
n
·

n

∑
i=1

accmodi
(16)

σacc =

√
1
n
·

n

∑
i=1

(
accmodi

− μacc
)2 (17)

where μacc is the average acceleration modulus of the sliding window in size n, σacc refers
to the standard deviation of the sliding window. Then, a moving average filter (MAF) is
applied to process the σacc value to classify the motion state. Figure 6 demonstrates that
the standard deviation of the acceleration modulus is smoother and easier to distinguish
after MAF. Therefore, σacc can be used to judge different motion states of pedestrians.
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Figure 6. The curve of different motion states between the raw standard deviation of acceleration modulus and the standard
deviation of acceleration modulus after MAF.

In our research, we proposed an improved MCF to change the control parameters Kp
and Ki adaptively based on the pedestrian motion status. The parameters and Ki can be
calculated by Equations (18) and (19):

Kp =

⎧⎪⎨
⎪⎩

Kp·(σacc + 1) σacc < 0.05 g
Kp

(σacc+1) 0.05 g < σacc < 0.2 g

0 0.2g < σacc

(18)

Ki =

⎧⎪⎨
⎪⎩

Ki·(σacc + 1) σacc < 0.05 g
Ki

(σacc+1) 0.05g < σacc < 0.2 g

0 0.2 g < σacc

(19)

The gyroscope is sensitive to changes in motion status which are often accompanied
by changes in acceleration. The value of 0.2 g is approximately the average value of running
which is almost the boundary from static, walking to fast motion. When the device is in a
strenuous state, in which the acceleration mode is bigger than the value g, the attitude is
mainly calculated by the gyroscope. The experiments show that the improved Mahony
complementary filter based on the motion states has a better performance.

3.4. BLE/PDR Integrated System Based on EKF

PDR is a self-contained algorithm that can provide accurate position information at a
short distance but it suffers accumulated errors. BLE fingerprint position accuracy is poor
without cumulative error. The positioning result obtained by the BLE fingerprint method
at present will not be affected by the previous result. To improve the positioning accuracy,
continuity, and stability of the system, two positioning methods are often combined as
an integrated system based on the Kalman filter (KF). Since the PDR position method is
a non-linear algorithm, the Extended Kalman filter (EKF) is often utilized to replace the
KF method to fuse two positioning methods. The hybrid position model mainly includes
two models, one is the state transition model and the other is the observation model.

The state transition model is mainly to estimate the state vector which is composited
of position coordinates, step length, and heading angle. The state vector is expressed by
Equation (20):

X = [N, E, s, ψ] (20)
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The state transition model is expressed by Equation (21) at time k:

⎧⎪⎪⎨
⎪⎪⎩

Nk = Nk−1 + sk−1·cosψk−1 + ωN
Ek = Ek−1 + sk−1·sinψk−1 + ωE
sk = sk−1 + ωs
ψk = ψk−1 + ωψ

(21)

where Nk and Ek are the position coordinates of the PDR position method in the north and
east, respectively. sk and ψ are the step length and the heading angle calculated by the
PDR method at time k. Further, ωN , ωE, ωs, ωψ are the corresponding process noise of the
state vector. They conform to Gaussian distribution, and their variances are denoted by
δ2

N , δ2
E, δ2

s , δ2
ψ, respectively. The state transition matrix A−

k is expressed as Equation (22):

A−
k =

⎡
⎢⎢⎣

1 0
0 1

cosψk−1 0
sinψk−1 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦ (22)

The Jacobi matrix Ak of A−
k is expressed as Equation (23):

Ak =

⎡
⎢⎢⎣

1 0
0 1

cosψk−1 −sk−1·sinψk−1
sinψk−1 sk−1·cosψk−1

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦ (23)

The observation model is mainly to estimate the observation vector which is compos-
ited of position coordinates of BLE fingerprint position. The observation vector is expressed
by Equation (24):

Z =
[
N′, E′] (24)

The observation model is expressed as follow (25):{
N′

k = N′
k−1 + ωN′

E′
k = E′

k−1 + ωE′
(25)

where N′
k and E′

k are the position coordinates of the BLE fingerprint method in the north
and east, respectively, ωN′ and ωE′ are the corresponding observation noise that conforms
to Gaussian distribution and their variances are δ2

N′ , δ2
E′ . The observation matrix Hk is

expressed as Equation (26):

Hk =

[
1 0
0 1

0 0
0 0

]
(26)

When the state vector and observation vector are obtained by BLE fingerprint and
PDR methods, respectively, the EKF estimation is employed to update the state parameters
through time as well as the observation parameters. In the EKF, the process of prior
estimation is expressed as follows:

Xk = A−
k ·X̂k−1 (27)

P−
k = Ak·Pk−1·AT

k + Qk (28)

The Gain matrix is expressed as (29):

Gk = P−
k ·HT

k ·
(

Hk·P−
k ·HT

k + Rk

)
(29)
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Then, the state vector and the covariance matrix are updated according to the observa-
tions. The update process is written as follows:

X̂k = Xk + Gk·(Zk − Hk·Xk) (30)

Pk = P−
k − Gk·Hk·P−

k (31)

where Xk and X̂k are the prior and posterior state estimate vector, Gk is the gain matrix of
EKF, P−

k and Pk are the prior and posterior system covariance matrix, Qk is the covariance
matrix of the process noise, Rk is the covariance matrix of the observational noise vector.
When the integrated system runs, the prior position, step length, and heading angle are
obtained by the PDR method. The state vector composed of previous elements and the
other observation vector obtained by the BLE position method is input into the fusion
method. When the fusion method is cyclically executed, the corrected position results will
be obtained.

3.5. A Robust Filter Model

The EKF model described above can effectively suppress the drift error of the PDR
method and improve the overall positioning accuracy and stability, but the effect of sup-
pressing the gross error of the BLE fingerprint position is poor. This paper proposes a robust
filter model. In the EKF model, the innovation vector rk is expressed as Equation (32):

rk = Zk − Hk·Xk =
[
N′

k − Nk, E′
k − Ek

]
= [ΔN, ΔE] (32)

where ΔN and ΔE represent the position coordinate difference in the north and east,
respectively. From Equation (32), the rk represents the position coordinate difference
between the BLE and PDR methods.

When there are gross errors in the positioning method, there are the following situations:

1. The difference ΔN exceeds the limit;
2. The difference ΔE exceeds the limit;
3. The innovation vector rk exceeds the limit, ΔN and ΔE are within the acceptable range;
4. The difference ΔN, ΔE, and the innovation vector rk exceed the limit.

Therefore, to judge whether there is a gross error in the process of position, it is
necessary to determine the distribution of the ΔN, ΔE and rk.

In the EKF method, Zk should conform to Gaussian distribution with mean HkXk and
covariance Pr

k as shown in Equation (33). The innovation vector rk conforms to Gaussian
distribution with mean 0, covariance Pr

k .

Pr
k = Hk·P−

k ·HT
k + Rk (33)

while the difference ΔN conforms to the Gaussian distribution with mean 0, covariance δ2
ΔN

and the difference ΔE conforms to the Gaussian distribution with mean 0, covariance δ2
ΔN .

δ2
ΔN =

[
1 0

]
·Pr

k ·[
1
0
] (34)

δ2
ΔE =

[
0 1

]
·Pr

k ·[
0
1
] (35)

λΔN = ΔN ∼ N
(

0, δ2
ΔN

)
(36)

λΔE = ΔE ∼ N
(

0, δ2
ΔE

)
(37)
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The squared Mahalanobis distance Mk of rk conforms to the chi-square distribution
χ2

m,α with the freedom m which is the dimension of the observation Zk.

λr = M2
k = rT

k (Pr
k )

−1rk ∼ χ2
m,α (38)

The chi-square distribution χ2
m,α is constructed to determine whether the actual vector

rk calculated in the EKF exceeds the limit under the Gaussian assumption. Significance
level α is the probability threshold and 5% is adopted in our research.

Pr

[
λr > χ2

m,α

]
< α (39)

where Pr represents the probability of a random event that the probability of λr being
larger than χ2

m,α is very small. Hence, if the actual rk is larger than the α-quantile, the null
hypotheses are rejected and it can be concluded that rk exceeds the limit and Zk has a gross
error in the positioning. For ΔN and ΔE, when the actual measurements are larger than
twice the corresponding standard deviation, the significance level is less than 5%, and it
can be concluded that ΔN or ΔE or both exceed the limit and Zk has a gross error.

When the vector Zk has a gross error, the observational covariance matrix Rk should
multiply a robust vector:

Rk = βT
k ·Rk·βk (40)

where Rk represents vector. Rk is the modified observation covariance matrix. When
the vector Zk has a gross error in the first situation, the robust vector βk is constructed
as follows:

βk = [ λΔN
δΔN

1 ]
T

(41)

When the vector Zk has a gross error in the second situation, the robust vector βk is
constructed as follows:

βk = [ 1 λΔE
δΔE

]
T

(42)

When the vector Zk has a gross error in the third situation, the robust vector βk is
constructed as follows:

βk = [
λr

χ2
m,α

λr
χ2

m,α
]
T

(43)

When the vector Zk has a gross error in the fourth situation, the robust vector βk is
constructed as follows:

βk = [
λΔN
δΔN

+
λr

χ2
m,α

λΔE
δΔE

+ λr
χ2

m,α
]
T

ss (44)

According to the above method, the robust filter can effectively restrain the gross error
in the observation vector Zk. In practice, it is possible for the matrix Rk to be modified even
there is no gross error in the observation Zk.

At last, we proposed the BLE/PDR integrated System localization framework in the
following diagram of Figure 7. In the PDR position method, the gyroscope readings are
used to compute the heading angle and the accelerations and magnetometer are utilized
to compensate for accumulated error as well. To improve the accuracy of the heading
angle, people’s motion status is considered in correcting the control parameters of MCF.
The accelerations are also used to detect the steps and estimate the step length. With the
step length and heading angle, a position is computed by the PDR method. The other
position is obtained by the BLE fingerprint method at the same time. Then, two positioning
estimations are input into the Extend Kalman filter to resolve the fusion position. To
improve the integrated system robustness and scalability, a robust filter is used to restrain
the gross error of BLE observational position results.
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Figure 7. The BLE/PDR integrated system localization framework.

4. Experiments and Analysis

4.1. BLE Fingerprint Position Experiments and Error Analysis

The experiments were set up on the second floor of the C7 test site which has
three floors in the 54th Research Institute of China Electronics Technology Group Cor-
poration as shown in Figure 8. The second-floor test site is 24.92 m long and 27.49 m wide
which consists of a rectangular corridor and several rooms. The center part of Figure 8
is a hollow space enclosed with glass. When the radio signal of BLE propagates, there is
a severe multipath effect. There are 54 Bluetooth beacons installed on the whole C7 test
site and 18 on each floor. The deployment of the Bluetooth beacon in Figure 8 is based on
the principle of optimizing beacon placement by maximizing localization accuracy and
satisfying a predefined coverage degree [23]. The HUAWEI P20 smartphone was chosen as
the test device. In Figure 8, the blue triangle refers to the Bluetooth low energy beacon and
there are 18 BLE beacons were installed on the second-floor test site. For the BLE fingerprint
position method, all of the BLE beacons installed on the C7 test site were utilized to collect
signals for the experiment. Another scenario called 331 test site had been chosen to conduct
a comparison experiment. The test site is 21.72 m long and 7.75 m wide. The deployment
of the Bluetooth beacon in the 331 test site is upon the same optimization solution as C7.

Then we carried out a BLE fingerprint positioning experiment in this position scenario.
The BLE fingerprint database was constructed in advance. People stranded with the
HUAWEI P20 at each known RP to collect data for 7 s, the time is set randomly. Then the
data was processed per second into real-time fingerprint data. In the actual acquisition
process, only 6 s of data were collected at some RPs. There were real-time 332 BLE
fingerprint data collected at 48 RPs for fingerprint position. We calculated the positioning
results through the KNN matching method and compared them with the true coordinates of
RPs to obtain the position error. We analyzed the gross error of the BLE fingerprint method,
whose error is larger than twice the standard deviation under the Gaussian distribution.
Then we picked out the gross error caused by the few numbers of scanning RSSI which
is less than 5 and we eliminate the corresponding fingerprint. Finally, we recalculate the
position error, and both position errors were obtained and they were illustrated in Table 1
and Figure 9.
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Figure 8. The two location scenarios. (a) The location scenario of the second floor of the C7 test site. (b) The location
scenario of the 331 test site.
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Table 1. Position error comparison/(m).

Method Min Max Mean RMSE

BLE fingerprint method 0.005 18.289 2.834 3.106
Eliminating the less scanned BLE number 0.005 18.289 2.312 2.042

Figure 9. BLE fingerprint method and BLE fingerprint method after eliminating the few scanning numbers of RSSI.
(a) Position error curves of two methods (b) Cumulative distribution of position error of two methods.

As shown in Table 1, after eliminating the few numbers of scanning RSSI real-time
fingerprints, the mean position accuracy and the root-mean-square error (RMSE) were
2.312 m and 2.043 m, respectively. Compared with all data on the BLE fingerprint method,
the position accuracy was reduced by 0.5220 m and RMSE decreased by 1.064 m. In
Figure 8, the blue line refers to the result of all real-time fingerprint data and the green
line refers to eliminating the few numbers of scanning RSSI real-time fingerprints. The red
dashed line represents twice the standard deviation which means the position error that
exceeds the red dashed line is a gross error. From Figure 9a, the gross error number shown
in the green line is greatly reduced compared with the blue line. Figure 9b indicates that
the method of eliminating the few numbers of scanning RSSI has a higher confidence level
than the BLE fingerprint method. From the statistics of gross errors, the total number of
gross errors is 31. Among them, the number of gross errors caused by the few numbers of
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scanning RSSI is 17, accounting for about 54.8%. Therefore, we can conclude that the causes
of gross errors in the BLE fingerprint method are not only caused by signal fluctuations
but also affected by the few numbers of scanning RSSI. It is necessary to find a robust filter
to restrain the gross error of the BLE fingerprint method.

4.2. Heading Estimation Based on Motion States

The experiment about heading estimation was carried out in the same position scenario
as shown in Figure 9.

In Figure 10, the red star refers to the start point and endpoint of the trajectory. The
dark green line represents the trajectory and the arrow represents the direction. The current
motion state is indicated on each trajectory which includes walking and running. The static
state of the pedestrian is contained inside the red ellipse. The pedestrian walked along the
dark green trajectory with different motion states.

Figure 10. Trajectory and motion state of heading estimation.

Then the heading is estimated by different methods as shown in the following Figure 11.
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Figure 11. Heading angle estimated based on the four methods and partially enlarged view.

Four methods were utilized to estimate the heading angle. In Figure 11, the blue line
refers to the heading angle estimated by the electronic compass while the magenta line, red
line, and green line were represented as gyroscope-based, Mahony, and improved Mahony
based on motion state methods, respectively. The black line denoted the true heading.
From Figure 10, the accuracy of the heading angle estimated by the electronic compass was
poor and suffered severe fluctuation, but it would be no drift for a long time. In contrast,
the heading estimated by gyroscope did not have severe fluctuation but would suffer huge
drift problems that would distort the heading.

For the MCF method, the control parameters Kp and Ki were given two values of 0.001
and 0.000001, respectively. The MCF performed well in the early state but would suffer
little drift for a long time without the adaptive parameter adjustment based on the motion
state. From the partially enlarged view of the last trajectory, the heading estimated by the
improved Mahony based on the motion state was the most accurate, which fluctuated
around the true angle and had no cumulative error. Finally, a diagram of different motion
states of experiment trajectory is shown in Figure 12 which contained a semi-transparent
layer of heading estimation for comparison. It could be concluded that the heading
estimation is closely related to the motion state. When stationary, the heading estimation
was relatively stable when walking or moving, and the heading would fluctuate.
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Figure 12. Comparison of Motion state and heading estimation.

4.3. BLE/PDR Integrated System Position Experiment

The BLE/PDR integrated system position experiment was carried out in the C7 test
site. The BLE AP routers and the smartphone used in the experiment are the same as in the
experiment of Section 3.1. The new trajectory was planned and was shown in Figure 13.

Figure 13. The trajectory of BLE/PDR integrated system position experiments in the C7 test site.

In Figure 13, the red star and blue cycle refer to the start point endpoint of the
trajectory, respectively. The green dotted line represents the reference trajectory and the
arrow represents the direction. During the experiment, the data sampling frequency of
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PDR was set as 50 Hz and the smartphone scanned the BLE APs per second. The pedestrian
started from the start point and reached the endpoint at a constant speed. The pedestrian
held the smartphone level and walked 107 steps in total during the experiment. Another
integrated system position experiment was conducted at the 331 test site. The comparison
results of the different methods were shown in Figure 16.

To validate the efficiency of the robust filter method, another two methods, the BLE
fingerprint method and the EKF method, were also utilized for the experiment. Position
errors of the three methods were computed concerning the reference points for evaluation.
Figure 14a showed the time series of the position errors and (b) showed the corresponding
cumulative distribution errors.

Figure 14. Comparison of Position errors and cumulative errors of three methods. (a) Time series of
position errors, (b) cumulative errors of three methods.

In the above figure, the blue line refers to the BLE fingerprint method. The red line
and green line represent the EKF and robust filter methods, respectively. From the value
and distribution of the position error, the robust filter method denoted by the green line
performs best. The cumulative distribution of the robust filter indicates that it has a higher
confidence level than the other two methods. About 74% of the position error of points are
lower than 1 m and about 86% of the position error of points are lower than 2 m. Compared
with the common EKF, these two indicators are increased by 38% and 18%, respectively.
Then, Table 2 shows the detail of the mean error and RMSE of the three methods.

Table 2. Position error comparison/(m).

Method Min Max Mean RMSE

BLE fingerprint method 0.165 13.033 2.647 2.727
Extend Kalman filter method 0 7.122 1.960 1.727

Robust filter base on EKF 0 2.641 0.844 0.745
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As shown in Table 2. The mean position accuracy and the RMSE of the robust filter
method are 0.844 m and 0.745 m respectively. Comparing with the EKF and BLE fingerprint
methods, the position accuracies were reduced by 1.116 m and 1.803 m, and the RMSEs
were decreased by 1.982 m and 0.982 m. From the perspective of max value, the max value
of the robust filter is 2.641 m which is also significantly reduced. The figure and table
mentioned above show that the proposed robust filter can not only reduce the position
error but also improve the stability.

Figure 15 shows the trajectory of three methods in the true position scenario at the
C7 test site. Another fusion method particle filter is also utilized to solve the result as a
comparison experiment.

Figure 15. Cont.
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Figure 15. Cont.
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Figure 15. The trajectory of three methods in the true position scenario. (a) The trajectory and jump
points, (b) the trajectory in the position scenario, (c) the comparison of different fusion methods with
trajectory one, (d) the comparison of different fusion methods with trajectory two.

The blue line, red line, green line, and dark green line represent the trajectory of BLE
fingerprint, EKF, robust filter methods, and reference trajectory, respectively. In Figure 15a,
some jump points, which mean the gross error surrounded by the red circle, appear in the
BLE fingerprint method or the EKF method. The robust filter can improve the observation
matrix based on detecting the gross errors and get a smooth trajectory without jump points.
We can see that the proposed robust filter performs better than the other two methods in (b).
(c) and (d) are the results of different hybrid positioning methods under two trajectories.
From the comparison of the curves with the real trajectory in (c) and (d), the proposed
method is superior to the classical EKF. The particle filter also performs well in some
positions compared to the proposed method. However, the particle filter requires the
construction of a large number of particles requiring a heavy computational load. The
proposed method is more suitable for real-time localization than the particle filter method.
Another comparison of the experimental results of the integrated system was conducted in
the 331 test site and the results were shown in Figure 16. From Figure 16, the green line that
represents the proposed method is closer to the real track and smoother in some corners
compared to other methods. Although the test paths are relatively short because of the
extent of the experimental scenarios, the two methods of fusion position have different
principles, in which PDR has high instantaneous accuracy but suffers cumulative errors,
and the real-time Bluetooth fingerprint method can compensate for this shortcoming based
on the robust filter. Therefore, even with the test paths becoming longer, there will be no
cumulative error to make the path diverge. We can conclude that the proposed method
makes it possible to have similar improvement under different circumstances.
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Figure 16. The trajectory of four methods in 331 test site.

5. Discussion

In the process of real-time positioning, poor position results may be obtained by the
BLE fingerprint method. The heading of the device is affected by different motion states
of people. Then we get rid of the bad results of the BLE fingerprint method when the
scanning number of RSSI is smaller than 5. We correct the heading based on different
motion states. Even if the BLE fingerprint method and PDR are integrated, the gross
error is difficult to be suppressed. Compared with the adaptive and robust filter proposed
in the research of Li et al. [27], the robust filter proposed in this paper considering the
error distribution in more conditions and provides a robust vector instead of a numerical
correction. The experimental results conducted on the true position scenario show that the
proposed method can detect, suppress the gross errors and make the results smoother. The
mean position accuracy of the proposed robust filter was 0.844 m and RMSE was 0.745. The
experiments are in line with expectations. From Figure 14, we can find that the green points
obtained by the robust filter are far away from the true position. The reason for this is the
bad position results caused by the BLE fingerprint method at the previous few steps. The
jump points in blue color have occurred continuously. The robust filter can only suppress
gross errors but not eliminate them. If gross errors occur continuously, then the results will
deviate from the true trajectory and it would take some time to converge. We will improve
the method by considering the situation of continuous gross errors to get better results in
future research work.

6. Conclusions

In this paper, we concentrated on the real-time BLE/PDR integrated System and fusion
method. For BLE real-time fingerprint, we found that the position error of BLE is not only
with the signal fluctuation but also with the scanned number of BLE APs. If the scanned
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number is too few, there will easily be gross errors. Next, we introduced the method
of commonly used attitude methods and an improved Mahony complementary filter is
proposed to estimate the heading angle under different motion states. Finally, a robust
filter model was proposed to fusion the BLE/PDR methods because of the gross error in
the BLE method. We conducted an experiment to validate the efficiency of the proposed
method in the true position scenario. The mean position accuracy obtained by the robust
filter was 0.844 m and RMSE was 0.745. The experiment showed that the proposed method
has better performance in positioning accuracy and stability. The experimental scenario in
this paper is surrounded by glass in the center, which has serious multi-path effects for the
fingerprint positioning method and can easily cause coarse errors. The classic Kalman filter
or Extended Kalman filter is not effective for coarse difference suppression. The proposed
method can detect gross errors at different granularities and suppress them. The fusion
methods based on the KNN and EKF are suitable for the high-real-time requirements of the
positioning applications, keeping a balance between computational efficiency and position
accuracy. The estimation of the heading angle is more stable based on the people’s motion
states. However, the effect of different pedestrian motion states on hybrid positioning was
not analyzed in detail. In addition to the detection and suppression of coarse differences
in the observation noise matrix, some modifications of the state transition matrix will
be made based on the people’s motion states. How the variance matrix of process noise
adaptively changes according to the people’s motion states will be investigated in-depth in
future work. Combined with other positioning methods such as map matching, landmarks
matching for multi-mode fusion positioning will be considered too.
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Abbreviations

rssi Received signal strength indicator
Ek The east coordinate in the pedestrian dead reckoning at time k
Nk The north coordinate in the pedestrian dead reckoning at time k
sk The step length at time k
ψ The heading angle
θ The pitch angle
γ The roll angle

Cb
n

Refer to the rotation matrix from the geographic coordinate system to the carrier
coordinate system

Cn
b Refer to the rotation matrix from the carrier system to the carrier coordinate system

Q The quaternion vector
qi The ith item of the quaternion vector
e Refer to the error correction in the Runger-Kutta method
Kp The proportional control parameters in the proportional-integral method
Ki The integral control parameters in the proportional-integral method
ω Refer to the gyroscope data in Section 3.3
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m Refer to the magnetometer data in Section 3.3
a Refer to the accelerometer data in Section 3.3
g Refer to the acceleration of gravity in Section 3.3
μacc The average acceleration modulus
σacc The standard deviation of acceleration modulus
X Refer to the state vector in the EKF
ωN The process noise of the north coordinate in Section 3.4
ωE The process noise of the east coordinate in Section 3.4
ωs The process noise of the step length in Section 3.4
ωψ The process noise of the heading angle in Section 3.4
δ2

N The variances of the north coordinate process noise
δ2

E The variances of the east coordinate process noise
δ2

s The variances of the step length process noise
δ2

ψ The variances of the heading angle process noise
A−

k The state transition matrix in the EKF
Ak The Jacobi matrix of A−

k
Z Refer to the observation vector in the EKF
N′

k The north coordinate of observation at time k
E′

k The east coordinate of observation at time k
ωN′ The observation noise of the north coordinate
ωE′ The observation noise of the east coordinate
δ2

N′ The variances of the north coordinate observation noise
δ2

E′ The variances of the east coordinate observation noise
Hk The observation matrix at time k
P−

k Refer to the prior system covariance matrix in the EKF
Pk Refer to the posterior system covariance matrix in the EKF
Gk Refer to the gain matrix of the EKF
Qk Refer to the covariance matrix of the process noise in the EKF
Rk Refer to the covariance matrix of the observational noise vector in the EKF
ΔN Refer to the position coordinate difference in the north
ΔE Refer to the position coordinate difference in the east

rk
The innovation vector consisting of ΔN and ΔE, which represents the position
coordinate difference between two methods in the EKF

Pr
k Refer to the covariance of the innovation vector in the EKF

λΔN Refer to the distribution of the position coordinate in the north
λΔE Refer to the distribution of the position coordinate in the east
λr The distribution of the squared mahalanobis distance of the innovation vector
χ2

m,α The symbol of chi-square distribution with eh freedom m
α The significance level of the distribution

βk
The robust vector defined in the paper which is utilized to modify the observation
noise covariance matrix

Rk Refer to the modified observation noise covariance matrix
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Abstract: The spatial relationship between transport networks and retail store locations is an impor-
tant topic in studies related to commercial activities. Much effort has been made to study physical
street networks, but they are seldom empirically discussed with considerations of transport flow
networks from a temporal perspective. By using Beijing’s bus and subway smart card data (SCD)
and point of interest (POI) data, this study examined the location patterns of various retail stores and
their daily dynamic relationships with three weighted centrality indices in the networks of public
transport flows: degree, betweenness, and closeness. The results indicate that most types of retail
stores are highly correlated with weighted centrality indices. For the network constructed by total
public transport flows in the week, supermarkets, convenience stores, electronics stores, and specialty
stores had the highest weighted degree value. By contrast, building material stores and shopping
malls had the weighted closeness and weighted betweenness values, respectively. From a temporal
perspective, most retail types’ largest correlations on weekdays occurred during the after-work
period of 19:00 to 21:00. On weekends, shopping malls and electronics stores changed their favorite
periods to the daytime, while specialty stores favored the daytime on both weekdays and weekends.
In general, the higher store type level of the shopping malls correlates more to weighted closeness
or betweenness, and the lower-level store type of convenience stores correlates more to weighted
degree. This study provides a temporal analysis that surpasses previous studies on street centrality
and can help with urban commercial planning.

Keywords: complex network; POI; smart card data; public transport flows; KDE; weighted centrality

1. Introduction

Location is a key factor for the commercial success of retail stores, as consumers tend
to patronize stores that have higher access advantages [1,2]. The configuration of a city’s
transport network has been found to have significant impacts on the distribution of retail
service activities [3–7]. Additionally, in urban planning and design, the locations of retail
services are important for city growth and vitality [8]. Therefore, location analysis of retail
stores is important for retail investment decisions and urban planning.

Location analysis has been increasingly applied to the retail sector with the growing
computing power and the advent of big data [9]. While many location-allocation mod-
els have been developed and used for location decision making of retail stores [10,11],
identifying the spatial pattern of retail locations is still an important and basic research
task to date. Generally, many factors may affect the location retail stores, which made it
a complex and multi-dimensional problem [12]. Among these factors, transportation is
often regarded as a key element for retail locations. There is much empirical literature
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focusing on exploring the spatial relationships between physical street networks and re-
tail stores. Various accessibility indices are optional to capture the convenience of retail
stores in physical street networks [13,14]. Among them, the centrality features of a store
are critical for the commercial competition of market areas according to the central place
theory and spatial interaction theory [15]. Based on the approaches of space syntax or
complex networks, the centrality features of a transport network can be measured by
various centrality indices [16]. The multiple centrality assessment (MCA) model, which
groups several indices together, has been applied to examine the relationship between
street centrality and the spatial distributions of retail stores [17]. Different cities around the
world have been examined, and the findings indicate that the centralities of the physical
street network may well explain the retail distributions [18–21]. The study of Wang and
Chen et al. [22] first examined the differences among location preferences for different types
of retail stores. Later, new data sources as point of interest (POI) data were introduced [23].
As the relationship between various types of stores and multiple centrality indices of street
networks across regions and cities were examined, it was revealed that different store types
may correlate to different spatial networks centralities [23,24], which is helpful for retail
location selection and planning.

While these previous studies have focused on examining the physical street network,
few quantitative empirical studies have examined centrality in networks with transport
flows. However, the location advantage of attracting transport flows is one important factor
that influences the location selection of commercial services. The transport flows can reflect
where people would like to go, and the correlation for retail stores is an important element
for commercial development. According to the classic Hotelling model [25], the location
strategy serves to obtain maximum flows, which are not necessarily geometric central
points in space [26]. In addition, the flow network has a temporal attribute. Exploring
temporal dynamics in flow networks may provide some possible insights into retail location
patterns [27], as temporal factors such as store opening hours and individuals’ travel time
cannot be addressed by the static location analyses on the physical street network [28,29].

For retail location, it was recognized early that accessibility by public transport is
a key issue for a store [30]. Several studies have verified that public transport has a
substantial impact on retail patterns in city centers when compared to those of out-of-town
malls [31–34]. In the big data era, public transport flow data become available from a smart
card system and a number of studies have devised various weighted centrality indices
to analyze the complex network of transport flows [35–37]. However, to the best of our
knowledge, research on the relationships between retail store locations and their centrality
in public transport flow network still lacking.

This paper aims to examine the relationship between weighted centrality indices
and various retail stores from a temporal perspective. Beijing is chosen as the case city,
in which public transport is well-developed. According to the 2020 Beijing transport
development annual report released by the Beijing Transport Institute (http://www.bjtrc.
org.cn/, accessed on 10 August 2021), the modal shares of public transport (bus and
subway) in most urbanized areas of Beijing are more than 31%, which is greater than that
of car and taxi (about 22% and 2.5%). In our study, the public transport flows are extracted
from the bus and subway smart card data (SCD) of Beijing. The remainder of this study
is organized as follows. Section 2 describes the study area and data preparation, and
discusses the research methods. Section 3 presents the results. The last section discusses
and summarizes the main findings.

2. Materials and Methods

2.1. Study Area and Data Preparation

Beijing is the capital of China and includes both urban and rural areas. As this study
addresses public transport flows and retail activity, the analysis is conducted in the urban
area of Beijing. Here, an area of approximately 38.64 km2 within the sixth ring road of
Beijing is selected as the case study area. The area covers most urbanized areas of Beijing.

256



Appl. Sci. 2021, 11, 9069

The study area is divided into grid cells to conduct further analysis. The appropriate
cell size of the study units may affect the results and computational complexity. In previous
studies of retail stores and network centralities, a cell size of 1 km × 1 km has most
commonly been used despite some variances [21]. Considering the road network density,
this study selects a cell size of 1 km × 1 km (see Figure 1).

Figure 1. Case study area: (a) Beijing; (b) sixth ring road of Beijing.

Point of interest (POI) data are used to construct a dataset of retail stores. The POI
data for 2018 are sourced from Autonavi (Gaode), which is a popular electronic navigation
map in China that provides information on the names, location, and types of various retail
stores. Based on previous studies and the classification of POI data [21,23,37], 72 subtypes
of retail stores (as illustrated in Table 1) were extracted from the POI dataset. According to
the Retail Type Categorization of China (RTCC), they were categorized within six major
categories, including shopping malls, supermarkets, convenience stores, specialty stores,
electronics stores, and building material stores. A total of 91,243 POI retail stores in Beijing
were extracted. The distributions of the six types of POI are shown in Figure 2.

Table 1. Categories and total counts of POI.

Category Sub-Category Total Counts

Shopping malls Shopping Plaza, Shopping
Center, etc. 768

Supermarkets Carrefour, Wal-Mart, Hualian,
Watsons, etc. 12,756

Convenience stores 7-ELEVEN, Circle K, etc. 15,027

Specialty stores
Sports Store, Clothing Store,

Franchise Store, Personal Care
Items Shop, etc.

27,222

Electronics stores
Home Electronics Hypermarket,

Digital Electronics, Mobile
Handsets Sales, etc.

7894

Building material stores
Furniture Store, Kitchen Supply,

Hardware Store, Lighting, Porcelain
Market, etc.

27,576
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Figure 2. The POI distributions of six types of retail stores: (a) shopping malls; (b) supermarkets; (c) convenience stores;
(d) specialty stores; (e) electronics stores; (f) building material stores.

According to the Beijing Statistical Yearbook in 2018, the public transport lines of
Beijing sum to a total length of 19,881 km, including 637 km of metro lines. The annual
passenger volume of public transport is 7038.18 million, which includes 3848.43 million
metro passengers. Approximately 565 bus lines and 22 subway lines pass through the case
study area, and there are more than 3000 bus stations and 259 subway stations within the
sixth ring road of Beijing. Approximately 7.5 million bus and 2.5 million subway cards
swipes are recorded each day. The modal shares of public transport in the urbanized areas
of Beijing are more than 30%.

The public transit flow data used in this study were obtained from one week of bus
and subway smart card data (SCD) from 19 April to 25 April 2015, which were obtained
from the Beijing Public Transport Group. In recent years, two big events have serious
impacts on public transit in Beijing. In 2014, Beijing started a price reform on its public
transport system and adjusted public transportation fares to a higher level since then.
Another event happened in 2019: the transport flows were much impacted by COVID-19.
Therefore, the year 2015 may well reflect the stage of post-era of price reform and pre-
era of COVID-19. We processed the data in two steps. First, the total flow for one week
was accumulated by time periods of one day to capture temporal changes in transit flow.
Various divisions of time periods have been used to aggregate the datasets in previous
studies [38–40]. Considering the purpose of analysis and data features, the dataset was
organized into seven periods based on two-hour intervals from 7:00 to 21:00 in the day.
Then, we separated the weekly data according to weekdays and weekends to detect the
differences in public traffic flow between working days and rest days. Sample records and
selected fields of smart card data are shown in Table 2. All flow data were accumulated on
the above-mentioned raster grid with a cell size of 1 km × 1 km and were based on 7 time
periods. The aggregation process was completed in Python.
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Table 2. Sample records of smart card data.

Time
Card

Number
Type

Line
Number

Vehicle
Number

Boarding
Station

Departure
Station

20150813091012 46,343,397 1 751 95,740 17 11
20150813112013 80,245,649 1 609 83,601 5 8

2.2. Research Methods

In this paper, the SCDs of buses and subways are used to construct a network of
public transport flows, and then, a weighted MCA model is used to calculate centralities
for multiple time slices. The kernel density estimation (KDE) method is used to transform
the centrality indices and the distribution of different types of retail stores to the same data
framework.

Constructing a network is the basis for further complex network analysis. In this
study, a weighted complex network is established according to public transport flows in
the study area. Each raster grid is abstracted as a network node, and then, the transport
flows between nodes are used as the weights of edges between nodes. The generated
complex network has the topological characteristics of P-space, as all stops along a route
can be connected if there is one line connecting two nodes [41].

2.2.1. Multiple Weighted Centrality Assessment Indices

Centrality indices provide a common and effective approach to analyze the spatial
configurations of transport networks [42]. For a flow network, weighted complex indices
have been developed and applied to public transport [43–45]. We select three critical
indices in the MCA model to measure the characteristics of centrality: namely, weighted
degree, weighted betweenness, and weighted closeness. These measures were computed
by using the “networkx” package in Python [46].

Equation (1): weighted node degree centrality (WNDC). The unweighted degree is
a basic indicator that is defined as the number of nodes that are connected to the focal
node [47]. In a weighted network, WNDC is generally defined as the sum of weights and
labeled as node strengths [48]. In this study, WNDC is defined as the traffic flow between
network nodes on the constructed complex network that directly flows in or out of a node,
which is formalized as follows:

WNDCw
i = ∑

j∈v(i)
wij (1)

where wij represents the traffic flows between nodes i and j. Here, the WNDC value of
node i is the total volume of the passenger O-D flows connected with node i.

Equation (2): weighted node betweenness degree (WNBC). The original indicator of
betweenness refers to how often a node is traversed by the shortest paths connecting all
pairs of nodes in the network [47]. In a weighted network, it has been suggested that the
reciprocal link weights should be used to define the shortest path in a weighted graph,
which reflects the ability to transmit through the chain or indicates whether a node is
included in a path with a relatively large flow [49]. Here, the WNBC is adopted, which can
be formalized as follows:

WNBCw
i = ∑k �=i �=j∈N

δkj(i)
δkj

(2)

where δkj is the number of shortest paths between nodes j and k and δkj(i) is the number of
these shortest paths through node i.

Equation (3): weighted node closeness centrality (WNCC). The original indicator
of closeness is the average distance from a given starting node to all other nodes in the
network [50]. It measures how close a node is to all other nodes along the shortest paths of
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the network. In a weighted network, WNCC considers both the number of intermediary
nodes and the tie weights [51], which are defined as:

WNCCw
i =

n − 1
∑j∈v(i) dij

(3)

where n is the total number of nodes in the network. dij is the shortest distance between
nodes i and j. In a public transport flow network, dij is the minimum number of nodes to
pass between nodes i and j. The weight in this case is defined in the same manner as that in
the weighted betweenness.

2.2.2. Using KDE to Convert Density Values to a Grid Frame

The KDE method is used to convert the density values of retail stores and multiple
centrality values to the same raster data frame to further perform correlation analysis. The
advantage of KDE is that the density values at the middle locations of the raster grid are
generated by considering the surrounding events [52,53]. For points that fall within the
search range, different weights are assigned. The closer the point to the search center, the
greater the weight, and vice versa. Equation (4) for estimating the kernel density at point x
at the center of a grid is as follows:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(4)

where K is the kernel function, h is the bandwidth, and n is the total number of points within
the bandwidth. In this study, the grid cell size is set at 1 km × 1 km, and a bandwidth is
set at 5 km. The KDE tool in ArcGIS was used to obtain the density values.

3. Results

3.1. Distribution Characteristic of Retail Stores

Figure 3 shows the spatial distribution characteristics of the KDE values of six types
of retail stores. The values are graded into five classes in the sub-figures, and the method
of natural breaks is applied, which minimizes the sum of variance within the groups. A
general pattern of higher values in the core area and lower values in the peripheral areas
can be observed. Among the densities of the six types of retail stores, building material
stores have the largest average density, which is followed by specialty stores, convenience
stores, supermarkets, electronics stores, and shopping malls. For the high-density centers,
building material stores, specialty stores, supermarkets, and electronics stores had multiple
centers. Shopping malls and convenience stores showed a strong monocentric pattern.

3.2. Distribution Characteristics of Weighted Centrality

Figure 4 shows the spatial distributions of three weighted centrality indices: namely,
weighted degree, weighted betweenness, and weighted closeness, based on the network
constructed by the total public transport flows in the week. The lighter the color, the lower
the centrality value. The degree values gradually decrease from the core to peripheral areas,
and high values are mainly distributed within the fourth ring road. Betweenness presents
a pattern with a high-value core and multiple secondary centers. The high-value core of
the closeness is mainly distributed between the second east ring road and fourth east ring
road. The closeness also exhibits a decreasing trend from the core to the peripheral areas,
and the area with a high value covers a wider range.
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Figure 3. Density distributions of different types of retail stores determined by KDE: (a) building material stores; (b) specialty
stores; (c) supermarkets; (d) electronics stores; (e) shopping malls; (f) convenience stores.

Figure 4. Spatial distributions of three weighted centrality indices of the total flow network: (a) degree; (b) betweenness;
(c) closeness.

Figure 5 shows the temporal changes in the average values of the three weighted
centrality indices on weekends and on weekdays. The horizontal axis represents time, and
the points on the graph correspond to the median values of the different time periods.
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Figure 5. Temporal variations of the three weighted centrality indices on weekdays and weekends: (a) degree; (b) between-
ness; (c) closeness.

The vertical axis represents the centrality values. Overall, three indices show quite
different temporal patterns. For weekdays, the degree curve shows two peaks, which
indicate a morning peak from 7:00 to 9:00 and an evening peak from 17:00 to 19:00, and the
value of the early peak is greater than that of the late peak. The betweenness and closeness
curve also show two peaks, but the late peak is greater than the early peak. The low point
of three indices appeared at 11:00–13:00, and an extra low point appeared at 13:00–15:00 for
betweenness.

Compared with weekdays, the weighted degree curve for weekends fluctuates mildly
before 17:00. The peak appeared at 17:00–19:00 and then the low point appeared at
19:00–21:00. For betweenness, the curve of weighted betweenness for weekends shows
a trend of high in the middle and low on both sides. The peak appeared at 15:00–17:00,
which is earlier than the time of the evening peak for weekdays (17:00–19:00). Compared
with weekdays, the range of fluctuation for the weighted closeness curve for weekends is
smaller. The peak appeared at 17:00–19:00.

The spatial distributions of weighted centrality indices in seven periods of a day from
7:00 to 21:00 are calculated, and here, we present three of them, including the morning
period from 7:00 to 9:00, noon period from 11:00 to 13:00, and after-work period from 19:00
to 21:00.

Figure 6 shows the spatial distributions on weekdays. In general, the core area
of Beijing maintains an advantageous position in the networks with public transit flow.
Although the distributions exhibit certain similarities for different time periods for the
same index, there are some differences. The degree centrality values between the west
second ring and west third ring road change with time, with a trend of increasing first and
then decreasing. For betweenness, the two secondary centers between the west second
ring road and west third ring road and the south second ring road and south third ring
road change over time, with a trend of increasing first and then decreasing. The other
sub-centers also exhibit minor changes with time. For closeness, peripheral areas change
slightly with time, and the central area also exhibits minor changes with time. Figure 7
shows the spatial distributions on weekends. Compared with weekdays, the weighted
centrality values change relatively smoothly over the weekends.
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Figure 6. Spatial distributions of weighted degree centrality indices on weekdays: (a) degree, 7:00–9:00; (b) degree,
11:00–13:00; (c) degree, 19:00–21:00; (d) betweenness, 7:00–9:00; (e) betweenness, 11:00–13:00; (f) betweenness, 19:00–21:00;
(g) closeness, 7:00–9:00; (h) closeness, 11:00–13:00; (i) closeness, 19:00–21:00.

3.3. Relationships between Retail Store Locations and Weighted Centrality from a
Temporal Perspective

This section examines how the density distribution of retail stores may correlate with
the weighted centrality indices. First, the flow network without temporal division is
examined, which is constructed by the total public transit flows of the whole week. Table 3
shows the highest correlation coefficients between various retail stores and weighted
centrality indices. Pearson’s correlation analysis was conducted between the density of
retail stores and weighted centrality indices.
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Figure 7. Spatial distributions of weighted degree centrality indices on weekends: (a) degree, 7:00–9:00; (b) degree,
11:00–13:00; (c) degree, 19:00–21:00; (d) betweenness, 7:00–9:00; (e) betweenness, 11:00–13:00; (f) betweenness, 19:00–21:00;
(g) closeness, 7:00–9:00; (h) closeness, 11:00–13:00; (i) closeness, 19:00–21:00.

Table 3. Correlation coefficients of KDE values of stores and weighted centrality indices of total flow
network.

Retail Types Degree Betweenness Closeness

Shopping malls 0.770 0.785 0.580
Supermarkets 0.722 0.625 0.718

Convenience stores 0.812 0.747 0.740
Electronics stores 0.716 0.636 0.685
Specialty stores 0.553 0.485 0.413

Building material stores 0.261 0.211 0.371

First, most store types have rather high correlation coefficients with weighted centrality
indices. Convenience stores, shopping malls, supermarkets, and electronics stores have
strong correlations with all weighted centrality indices, with coefficients above 0.6. The
highest correlation coefficients for each type of store are more than 0.7, and the highest
coefficient is achieved by convenience stores (with values above 0.8). Specialty stores
have the highest coefficient, exceeding 0.5. Only building material stores exhibit weak
correlations with weighted centrality indices (the highest coefficient is less than 0.4), which
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is consistent with the previous findings by using street centrality indices [22–24], which
implies that building material stores may be relatively less correlated to the public transport
flow. These results indicate that most of the six types of retail stores are highly correlated
to weighted centralities in the public transport flow network.

Second, four types, namely, supermarkets, convenience stores, electronics stores, and
specialty stores, show the highest correlations with weighted degree. Only shopping malls
show the highest correlation coefficients with weighted betweenness, with the highest
correlation coefficient value reaching 0.785. This finding indicates that high-grade retail
stores prefer nodes that are included in paths with relatively large flows. In comparison,
it has been reported that betweenness performs well in previous physical street network
studies [18,22–24]. This is also consistent with our findings, as betweenness in street
networks reflects the frequency of the shortest paths passing through, while the weighted
degree in this study directly reflects public traffic volume. The results indicate that transport
volume has a significant impact on the location patterns of retail stores.

Then, the flow networks for different periods of a day with a distinction between
weekdays and weekends are examined. Tables 4–6 show the temporal analysis results.
Tables 4 and 5 show the correlation coefficients to the three weighted centrality indices
across store types at different periods, and Table 6 shows the highest correlation coeffi-
cients for each store type across the periods of a day and the relative centrality indices.
Tables 4 and 5 indicate that correlation coefficients vary across the day. For the relationship
between weighted closeness and most retail stores on weekends, there is a continuous
slight upward trend in the correlation coefficients with time. The relationships between the
weighted degree and building material stores on weekdays are high in the morning and
evening and low at noon. However, for the weighted degrees among specialty stores on
weekdays, this pattern is reversed.

Table 4. Correlation coefficients of KDE values of stores and weighted centrality indices for each period on weekdays.

Centrality Retail Types 7:00–9:00 9:00–11:00 11:00–13:00 13:00–15:00 15:00–17:00 17:00–19:00 19:00–21:00

degree

Shopping mall 0.763 0.786 0.775 0.772 0.768 0.768 0.784
Supermarket 0.723 0.711 0.717 0.714 0.718 0.717 0.718

Convenience store 0.807 0.810 0.812 0.809 0.809 0.808 0.812
Specialty store 0.545 0.546 0.562 0.563 0.561 0.552 0.538

Electronics store 0.715 0.711 0.710 0.708 0.709 0.710 0.721
Building material store 0.266 0.253 0.252 0.248 0.253 0.257 0.264

betweenness

Shopping mall 0.771 0.786 0.814 0.811 0.815 0.754 0.775
Supermarket 0.643 0.615 0.637 0.635 0.648 0.572 0.605

Convenience store 0.751 0.738 0.762 0.763 0.774 0.710 0.724
Specialty store 0.473 0.460 0.506 0.511 0.515 0.443 0.453

Electronics store 0.638 0.620 0.650 0.643 0.656 0.581 0.618
Building material store 0.222 0.215 0.215 0.208 0.220 0.177 0.204

closeness

Shopping mall 0.570 0.589 0.611 0.616 0.628 0.622 0.640
Supermarket 0.715 0.727 0.741 0.744 0.748 0.742 0.750

Convenience store 0.733 0.749 0.766 0.770 0.776 0.769 0.783
Specialty store 0.406 0.420 0.439 0.443 0.454 0.444 0.455

Electronics store 0.680 0.691 0.704 0.708 0.713 0.709 0.718
Building material store 0.373 0.372 0.369 0.371 0.368 0.371 0.368

Table 5. Correlation coefficients of KDE values of stores and weighted centrality indices for each period on weekends.

Centrality Retail Types 7:00–9:00 9:00–11:00 11:00–13:00 13:00–15:00 15:00–17:00 17:00–19:00 19:00–21:00

degree

Shopping mall 0.747 0.747 0.742 0.747 0.750 0.750 0.763
Supermarket 0.749 0.733 0.724 0.719 0.720 0.727 0.734

Convenience store 0.817 0.811 0.806 0.805 0.806 0.810 0.820
Specialty store 0.540 0.554 0.559 0.563 0.564 0.557 0.550

Electronics store 0.733 0.717 0.712 0.709 0.709 0.719 0.727
Building material store 0.294 0.270 0.260 0.253 0.253 0.266 0.277
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Table 5. Cont.

Centrality Retail Types 7:00–9:00 9:00–11:00 11:00–13:00 13:00–15:00 15:00–17:00 17:00–19:00 19:00–21:00

betweenness

Shopping mall 0.752 0.758 0.769 0.753 0.729 0.766 0.769
Supermarket 0.688 0.694 0.703 0.655 0.639 0.667 0.694

Convenience store 0.765 0.776 0.790 0.754 0.734 0.770 0.777
Specialty store 0.486 0.504 0.556 0.587 0.581 0.564 0.519

Electronics store 0.672 0.677 0.685 0.644 0.630 0.657 0.683
Building material store 0.266 0.267 0.266 0.220 0.213 0.226 0.256

closeness

Shopping mall 0.577 0.588 0.601 0.610 0.622 0.624 0.640
Supermarket 0.726 0.728 0.735 0.740 0.744 0.744 0.752

Convenience store 0.745 0.749 0.758 0.764 0.770 0.771 0.783
Specialty store 0.413 0.423 0.433 0.441 0.451 0.451 0.460

Electronics store 0.688 0.691 0.699 0.704 0.710 0.711 0.719
Building material store 0.375 0.368 0.367 0.366 0.364 0.366 0.366

Table 6. Highest correlation coefficients of all periods.

Store Types
Weekdays Weekends

Period Centrality Coefficient Period Centrality Coefficient

Shopping malls 19:00–21:00 Betweenness 0.815 11:00–13:00 Betweenness 0.769
Supermarkets 19:00–21:00 Closeness 0.750 19:00–21:00 Closeness 0.752

Convenience stores 19:00–21:00 Degree 0.812 19:00–21:00 Degree 0.820
Specialty stores 11:00–13:00 Degree 0.563 13:00–15:00 Betweenness 0.587

Electronics stores 19:00–21:00 Degree 0.721 7:00–9:00 Degree 0.733
Building material stores 7:00–9:00 Closeness 0.373 7:00–9:00 Closeness 0.375

Table 6 shows that most of the highest correlation coefficients are rather large both
on weekends and on weekdays. Compared with the results for the total flow network
(Table 3), the values of the highest correlation coefficients here are larger, which means
that analyses without time divisions may underestimate correlations. For the same store
types, most types, except for shopping malls, have higher correlations on weekends. Most
types show consistency in a preference for the highest centrality index from weekdays
to weekends. Only the index type of specialty stores changes in degree on weekdays to
betweenness on weekends, but its correlations are less than 0.7.

It is noteworthy that the three types of shopping malls, supermarkets, and convenience
stores sell general commodities but differ in store size and diversity in their commodity
types. For these three types, they all nearly achieve the highest correlations during the
period of 19:00–21:00 for the whole week, while the only outlier is that the shopping mall
type correlates more strongly to a different period of 11:00–13:00 on weekends. The same
period implies that most consumers go shopping after work, but shopping behavior for
malls on weekends may differ, as people may like to spend time in malls.

Another interesting result for the three types is that the highest centrality indices are
different: convenience stores correlate best with degree, supermarkets correlate best with
closeness, and shopping malls correlate best with betweenness. Recall that for the total
flow network without periods in Table 3, the highest centrality index for the supermarket
changed here from degree to closeness. In this case, the results of the total flow network
may be misleading. Moreover, recall that the degree reflects the total traffic flow, the
closeness reflects the closeness to all nodes in the flow network, and the betweenness
reflects the traffic corridor. Thus, it can be inferred that the higher levels of store types are
associated with higher correlations to the key structure of the flow network.

For the two types of specialty stores and electronics stores, both correlate best to
degree centrality on weekdays, and neither correlate best with the period of 19:00–21:00 on
weekends. These results imply that people may visit these types of stores after work on
weekdays and may visit them at various periods in the daytime on weekends.
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4. Discussion and Conclusions

This paper examines the relationships between the spatial distributions of six types
of retail stores and their weighted centrality indices in the public transport flow network
from the perspective of temporal dynamics. Three weighted node centrality indices were
measured, e.g., degree, betweenness, and closeness. This study contributes to existing
research on static physical street networks by analyzing the traffic flows of networks and
their dynamic time processes.

The findings illustrate that generally, the distribution patterns of six types of retail
stores are influenced by weighted street centrality significantly. Except for building material
stores, all types of stores are highly correlated with weighted centrality indices. Among
the three weighted centrality indicators, weighted degree is the best for four types of retail
stores in terms of correlation coefficients and is followed by closeness and betweenness.

Temporal analysis can reveal more details and allow an inference of consumer behav-
iors. The correlation coefficients at different periods on weekdays and weekends vary over
the time of day. For shopping malls, supermarkets, and convenience stores, the highest
correlation coefficients on weekdays occur during the after-work period of 19:00 to 21:00.
These may change on weekends for shopping malls, as shopping malls provide more than
shopping services. Lower store levels correlate to degree centrality, that is, traffic volume
itself, such as convenience stores and electronics stores. Higher store levels are correlated
with the spatial characteristics of the flow network, such as closeness or betweenness. For
specialty stores and electronics stores, people may visit these types of stores after work on
weekdays and visit them at various times of the day on weekends.

This research provides a more comprehensive understanding of retail location analysis
from a static physical street network to a dynamic flow network. Further research can
be conducted to examine the following topics. As consumers may travel in a variety
of traffic modes, the flow network that is based on various travel modes is needed to
more comprehensively describe traffic flow information. In addition, there is a significant
characteristic of disparity of centrality in different cities. Thus, it is necessary to identify
the differences among different cities by conducting more case studies.
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Abstract: Equal accessibility to healthcare services is essential to the achievement of health equality.
Recent studies have made important progresses in leveraging GIS-based location–allocation models
to optimize the equality of healthcare accessibility, but have overlooked the hierarchical nature of
facilities. This study developed a hierarchical maximal accessibility equality model for optimizing
hierarchical healthcare facilities. The model aims to maximize the equality of healthcare facilities,
which is quantified as the variance of the accessibility to facilities at each level. It also accounts for
different catchment area sizes of, and distance friction effects for hierarchical facilities. To make
the optimization more realistic, it can also simultaneously consider both existing and new facilities
that can be located anywhere. The model was operationalized in a case study of Shenzhen, China.
Empirical results indicate that the optimal healthcare facility allocation based on the model provided
more equal accessibility than the status quo. Compared to the current distribution, the accessibility
equality of tertiary and secondary healthcare facilities in optimal solutions can be improved by
40% and 38%, respectively. Both newly added facilities and adjustments of existing facilities are
needed to achieve equal healthcare accessibility. Furthermore, the optimization results are quite
different for facilities at different levels, which highlights the feasibility and value of the proposed
hierarchical maximal accessibility equality model. This study provides transferable methods for the
equality-oriented optimization and planning of hierarchical facilities.

Keywords: health equality; spatial optimization; hierarchical healthcare facilities; maximal
accessibility equality; 2SFCA

1. Introduction

Healthcare services are widely regarded as one of the essential public services that
affect residents’ health and well-being. Efficient and equal provision of healthcare ser-
vices to the population is always at the center of the governance and planning of healthy
cities [1]. From the spatial perspective, the distribution of healthcare facilities directly influ-
ences the accessibility of residents to healthcare services and the utilization of healthcare
services, which in turn impact their respective health outcomes [2–4]. Accessibility is a
multidimensional concept that is related to both spatial and non-spatial factors [5,6]. The
concept of spatial accessibility is adopted in this study, which measures how easily and
how many opportunities can be reached by residents from different locations [7]. Ensuring
essential and equal accessibility to healthcare services is a key target of the Sustainable
Development Goal proposed by the United Nations [8,9]. In China, both the central and
municipal governments have set up strategies to promote the equalization of healthcare
services [10,11]. The worldwide outbreak of the COVID-19 pandemic and its far-reaching
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impacts have significantly highlighted health and safety issues and the rational planning
of healthcare resources [12,13].

However, the distribution of healthcare services decided in the traditional man-
ner often do not provide equal accessibility to all [3,14–16]. There are significant dis-
parities in healthcare accessibility across different locations or different socio-economic
groups (e.g., natives vs. immigrants, high-income vs. local income, and the elderly
vs. the young) [17–19], which has important spatial/social equity implications [20]. In
Shenzhen, China, the study area, significant inequality in healthcare accessibility has also
been revealed by existing studies [16,21]. The irrational distribution of healthcare facilities
and inequality of accessibility make a strong call for the optimization of healthcare facilities.

Academia from fields such as public health and geography have paid increased
attention to the optimization of healthcare facilities. A series of optimization models
have been developed, which are usually known as the location–allocation models [22,23].
Typically, these models set up one or more objective functions and a set of constraints [24].
Efficiency and equality are the most important objectives for allocating public facilities to
different sites [25]. However, most of existing studies focus on the efficiency objectives
such as minimizing the numbers or cost of facilities, maximizing the coverage of facilities,
and minimizing the travel cost between consumers and facilities [26,27]. By contrast, little
attention has been paid to equality of facilities distribution in location–allocation studies,
partially due to the difficulty in modelling and optimizing equality [4].

Recently, an innovative stream of studies has considered spatial/accessibility equal-
ity in the location–allocation analysis [28–31]. The maximal accessibility equality (MAE)
model developed by Wang and Tang [28] is a novel and helpful method for researchers and
practitioners who are interested in improving the equality in demanders’ accessibility to
public services (e.g., healthcare services). However, the development and implementation
of the MAE model are still confined to single-level facilities. Comparatively little atten-
tion has been paid to the equality optimization of hierarchical (or multi-level) healthcare
facilities. As existing studies [32–34] have demonstrated, spatial analysis of hierarchical
facilities should account for more characteristics such as various service scopes, frictions
of distance, and transport modes. Therefore, the existent MAE model is not suitable for
analyzing accessibility to hierarchical facilities. Although hierarchical location–allocation
problems have been studied for decades [35–37], few have addressed the equality issue
or incorporated spatial accessibility into location–allocation analysis. There are still gaps
in terms of simultaneously considering the hierarchical nature and accessibility equality
optimization of healthcare facilities.

This study’s contributions are threefold. First, it develops a hierarchical maximal
accessibility equality (HMAE) model, which is hierarchy-sensitive and can act as a useful
tool in the equality-oriented spatial optimization of hierarchical healthcare facilities or
other hierarchical facilities. Second, this study provides a method that simultaneously
accounts for both existing fixed facility locations and newly added locations that are
flexible in the location–allocation analysis. This can make the optimized solution more
feasible because the fixed resources/stocks of existing facilities are considered in the
optimization. Third, online map application programming interface (API) is introduced to
improve the accuracy of estimated travel time in location–allocation analysis. The proposed
model maximizes the equality of spatial accessibility to healthcare facilities by minimizing
the variation in accessibility across all locations. This is achieved by both adding new
facilities and reallocating the resources at existing facilities. The method is valuable for the
implementation of equality-oriented healthcare planning and policymaking. Shenzhen,
which is one of the first cities to have highlighted the policy goal to achieve equality in
healthcare services in China, was selected as the study area to demonstrate the feasibility
and usefulness of the proposed model.
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2. Literature Review

2.1. Classic Location–Allocation Models

Serving as a tool for people to analyze and optimize locations of facilities, location–
allocation models have been present for more than five decades [22]. There are a set of such
models that are termed as the classic location–allocation models [24,26]. In addition to the
p-median model, the classic models also include the maximal covering location model, the
location set covering model, and the p-center model. The covering models deal with the
coverage of demanders (usually represented by discrete and aggregate locations) within a
certain radius of each facility [38]. The maximal covering location model aims to maximize
the coverage on the basis of a certain number of facilities [27], whereas the location set
covering model is designated to achieve full coverage using the least number of facilities.
The p-center model is different from the above models, aiming to minimize the maximal
distance from each demand nodes to its nearest facility. It is also known as the minimax
problem [24]. To some extent, the p-center model considers equity issues by improving the
situation of the remotest demanders.

The classic models are tailored to approach various policy objectives and have en-
gendered numerous applications [22,24]. The classic models have also been extended and
improved in other instances, e.g., the gravity p-median model that incorporates a gravity
rule into the p-median model [39], making them applicable in more complicated real-world
contexts. The classic models, however, are faced with several drawbacks [4]. First, they fail
to explicitly address the equity issue. Most of the existing location–allocation models only
address efficiency-oriented objectives. Second, the assumptions of the spatial interaction
between demanders and facilities in these models are relatively simple. Most notably,
few have employed realistic accessibility measurement when considering how demanders
reach facilities.

2.2. Hierarchical Location–Allocation Problems

Researchers have developed location–allocation models for hierarchical facilities.
Hierarchical facilities are a type of facility that consist of multi-level facilities, facilities at
each level that provide (totally or partially) different functions of service within different
territories [36,40]. A healthcare facility is a typical type of hierarchical facility [32].

From a modelling perspective, hierarchical facilities can be classified according to their
flow patterns, service varieties, spatial configurations, and optimization objectives [36,37].
Flow pattern is about the organization and delivery of services among different levels of
facilities. The single-flow pattern assumes demanders at each node are serviced in facilities
at the lowest-level, then transferred to facilities at higher levels, if necessary. The multi-
flow pattern indicates that demanders can be allocated to facilities at any level. Service
varieties determine whether the functions at a lower level can also be supplied at higher
levels. According to spatial configurations, the service scopes of facilities at a lower level
should be in accord with those at higher levels. The optimization objectives of hierarchical
location–allocation models are mainly built on the basis of the classic models described
above, e.g., the hierarchical p-median model, hierarchical maximal covering model, and
hierarchical location set covering model [35,41,42]. Therefore, these models focus on the
efficiency of facility configurations and more or less overlook equity/equality issues. In
addition, most hierarchical location–allocation models also fail to address the complex
interactions between the demand and supply. In other words, the two drawbacks of the
classic models previously pointed out by Wang [4] persist in hierarchical models.

2.3. The Maximal Accessibility Equality Model

Aiming to address the equality issue, Wang and Tang [28] initiated a novel location–
allocation model, termed the “maximal accessibility equality” (MAE) model. The MAE
model quantifies the equality dimension of facilities’ spatial configuration as the sum of
squares of differences in the accessibility to different facilities. The optimal configuration
would minimize the disparity in the accessibility to facilities [28]. The objective function
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of this problem represents how spatial equality is understood and quantified. Solving the
problem thus addresses the policy concerns over equality in public services. The MAE
model can be expressed and solved as a quadratic programming problem.

Tao et al. [29] applied the maximal equality model to analyze optimal configuration of
residential facilities and introduced the particle swarm optimization heuristic algorithm to
solve the model. Another study tried to extend it by selecting newly added facility locations
rather than reallocating resources at existing or given locations [43]. Two studies further
introduced a two-step procedure, with the first step to optimize locations of facilities, while
the second step to optimize the respective sizes of the facilities [30,44]. Dai et al. [31]
incorporated a random allocation mechanism into the MAE model to optimize educational
opportunities. To date, however, few have paid attention to the equality optimization of
hierarchical facilities. To achieve this goal, the MAE model needs to be extended to account
for hierarchical nature of facilities.

Note that a few recent studies have made efforts to model the spatial accessibility to
hierarchical healthcare facilities [32–34]. These studies adapted the spatial accessibility
measurements, e.g., the two-step floating catchment area (2SFCA) method, in order to
account for the hierarchical characteristics of facilities, including variable service scopes,
different distance frictions, and different transport modes for facilities at various levels.
Although these studies fail to improve and optimize the accessibility to hierarchical facili-
ties, the above advancements in modelling accessibility to hierarchical facilities can help to
develop a hierarchical version of MAE model. The current study makes further efforts to
combine the measurement of accessibility to hierarchical facilities and the MAE model that
optimizes the equality of accessibility.

3. Data and Methods

3.1. Study Area and Data

Shenzhen was chosen for the empirical analysis. It was selected because existing
studies have revealed hierarchical features in healthcare facilities and in accessibility to
these facilities in Shenzhen [32]. Shenzhen is one of the special economic zones and
megacities in China. It is located in the Pearl River Delta region in China. Shenzhen
has undergone rapid socio-economic development in the last four decades since China’s
reform and opening in 1978. By 2018, Shenzhen has 11 million permanent residents and
1997 square kilometers of land area. It is composed of 10 administrative districts, 55 sub-
districts (or jiedao in Chinese), and 771 communities (or Shequ in Chinese) (see Figure 1). In
Shenzhen, like in other Chinese cities, public healthcare facilities play a predominant role in
the provision of healthcare services to the residents. According to the “Medical Regulations
of Shenzhen Special Economic Zone” issued by Shenzhen’s municipal government in
2016, healthcare facilities in the city are organized as a three-level system. They are the
tertiary, secondary, and primary healthcare facilities from the top to the bottom. The
primary facilities consist of the community health service centers (CHSCs) serving the
city’s 771 communities. The secondary and tertiary facilities serve the 10 districts and
the city, respectively. The current hierarchical healthcare system in Shenzhen is not well
established, wherein the referral system between various levels has not been formulated,
and patients are free to choose healthcare facilities at various levels [16].

The data used in this study comprised three types:

(1) community-level population counts;
(2) point-level healthcare facilities with attribute information such as names, hierarchy,

number of physicians, and addresses;
(3) the travel time between community centroids to healthcare facilities.
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Figure 1. Location and distribution of population and healthcare facilities in Shenzhen.

The population counts are from the sixth population census of China, which was
conducted in 2010 and is the most up to date of its kind available to the public. Centroids of
communities and their geospatial information such as longitude and latitude coordinates
are obtained via the geocoding API of Baidu Maps. The average population size of each
community is 13,500. Each community is treated as a demand node in our ensuing analyses.

Detailed information concerning all the three levels’ facilities is available at the official
website of Shenzhen Municipal Health Commission [45]. As of December 2018, there
were 19 tertiary healthcare facilities, 35 secondary healthcare facilities, and 612 primary
healthcare facilities in Shenzhen. The average numbers of physicians in these facilities
were 422, 182, and 6 physicians, respectively (Table 1).

Table 1. Basic statistics of the hierarchical healthcare facilities in Shenzhen.

Facility Levels Number of Facilities Total Physicians Average Physicians

Primary facilities 612 3672 6
Secondary facilities 35 6377 182

Tertiary facilities 19 8012 474

The primary facilities are the largest in quantity and the smallest in the average
number of physicians. They are widely distributed in all districts in Shenzhen (Figure 1).
The primary facilities provide incredibly wide-ranging functions and service qualities
that they usually become the first choice of patients residing in proximity. Therefore, the
maximal equality model may be not applicable to these facilities. Furthermore, existing
studies have found that the spatial accessibility to primary hospitals is relatively equal in
Shenzhen [32]. Given this, only the tertiary and secondary facilities were considered in
this study. In brief, tertiary and secondary healthcare facilities are different mainly in three
aspects. First, tertiary facilities usually provide more complicated and higher-level services
than secondary facilities. Second, tertiary facilities usually have larger coverage areas than
secondary facilities, which can be reflected by the different catchment sizes in the model.
Third, the average size (number of physicians) of tertiary facilities is significantly larger
than that of secondary facilities.

The measurement of spatial accessibility relies on the travel times between demand
nodes and different facility locations. Following existing studies [16,21], the travel times
are estimated using the driving navigation API of Baidu Map [46], the most popular online
map in China. The estimation is based on real-world transportation network, historical
traffic congestion information, and the local driving rules. The departure time of these trips
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are assumed to be between 10 a.m. and 5 p.m. on weekdays. This is done to avoid extreme
travel times during peak hours.

3.2. The Hierarchical Maximal Accessibility Equality (HMAE) Model

The maximal equality model was developed by Wang and Tang [28]. It aims to achieve
equal accessibility by minimizing the variation in the spatial accessibility to healthcare
facilities from different demand nodes. In this study, the original MAE model was further
adapted into a hierarchical version. The objective function can be expressed as Equation (1).

minimize
m

∑
i

Pi

(
Al

i −
∑m

i Pi Al
i

∑m
i Pi

)2

(1)

where Al
i is the spatial accessibility at demand node i to facilities at level l, Pi is the

population, and m is the number of demand nodes (i.e., communities in this study). The
function means the population-weighted sum of the difference between the accessibility at
each node and the population-weighted average accessibility. In the original study, spatial
accessibility is calculated using the 2SFCA method. The generalized form of 2SFCA can be
written as Equation (2).

Al
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n

∑
j
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where Sl
j is the supply size (amount of physicians in this study) at candidate level-l facility

location j, n is the amount of candidate facility locations, dij is the travel cost (e.g., travel
time or distance) between each demand node and each candidate facility location, and f is a
function that describes the distance friction effect. In this study, the Gaussian-based 2SFCA
method is adopted to measure spatial accessibility, which is advocated by existing studies
on measuring healthcare accessibility [16]. The model takes a Gaussian distance friction
function that is suitable for hierarchical facilities, which can be expressed as Equation (3):

f (dij) =

⎧⎨
⎩ e−1/2×(dij/Dl )

2
−e−1/2

1−e−1/2 , dij ≤ Dl

0, dij > Dl

(3)

where Dl is the catchment area size, i.e., the radius of service scope, of candidate facility at
level l. Note that in the traditional spatial accessibility and maximal equality optimization
studies, the catchment area is the same for all facilities. When applied to hierarchical
facilities, however, this setting is inappropriate. Following existing studies on the spatial
accessibility to hierarchical healthcare facilities [32], we assigned different catchment sizes
for facilities at different levels. Generally, the catchment size is larger for facilities at
a higher level. Furthermore, on the basis of the Gaussian function, a larger catchment
size also means a weaker distance friction for higher levels, which is another important
characteristic of hierarchical healthcare facilities [32]. Note that the HMAE model in this
study intends to maximize the equality of accessibility to healthcare facilities for each level
independently. The reason for this setting is that the current hierarchical healthcare system
in Shenzhen is a multi-flow and nested hierarchical system, where facilities at various
levels provide service to residents independently [16].

3.3. Implementation of the HMAE Model

The process of spatial optimization is to determine the optimal value of the decision
variable that can optimize the objective function for each facility level (tertiary and sec-
ondary) independently. Figure 2 summarizes the procedures in this study. The decision
variable of the maximal equality model is the supply size Sj at each candidate location.
It can be zero, which means no facility is located at the location, or any positive value.
Therefore, the selection of candidate locations is crucial for spatial optimization. In existing
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studies, there are two ways to select candidate locations. The first way is to set up candidate
locations without consideration of existing facilities. The candidate locations can be the
centroids or random locations within administrative or census units, or evenly distributed
locations across the study area. The second way, by contrast, aims to rearrange the supply
of existing facilities. In other words, the locations of existing facilities are used as candidate
locations. The advantage of the second way is that the existing resources can be accounted
for, making it more cost-efficient and realistic for policy decision making.

Figure 2. The framework of the procedures in this study.

In this study, the selection of candidate locations was based on the existing facility
locations. Furthermore, considering that the existing facility locations might not be enough
to provide coverage to all demand nodes within given catchment areas, we also accounted
for the possibility that new facility locations may be needed. Despite the existing facility
locations, we examined whether there are demand nodes that are located outside the
catchment areas of all existing facilities. If yes, additional candidate locations were be
selected from these underserved demand nodes. In sum, candidate locations for locating
facilities consisted of two parts, i.e., existing facilities and underserved demand nodes. The
selected candidate locations are described below.

This study introduces online map API to improve the estimation of travel time from
patients to facilities. Specifically, the driving and transit navigation APIs provided by Baidu
Map, a leading online map provider in China, were utilized to estimate travel time by
driving or by public transit, respectively. Online map API can provide more accurate and
reliable estimates of travel time on the basis of the frequently updated transport network,
navigation rules, transit schedule, and traffic status [16,47].

A few studies have demonstrated that various transport modes should be considered
in accessibility analysis such that heterogenous demand of different socio-economic groups
can be reflected [16,34,48]. This study considered two transport modes, i.e., private car and
public transit. The latter includes both regular buses and subway and inter-mode transfers.
Following Tao and Cheng [19], travel times by the two modes were combined on the basis
of modal shares. Modal shares of private car, bus, and subway at the district level were
collected from the Shenzhen 2016 Travel Survey.

As for hierarchical healthcare facilities, the catchment sizes should vary across different
levels. Following existing studies [19,21], we determined the catchment sizes on the basis
of the exceptional breakpoint of the distribution of the travel time from each demand node
to the closest existing facility. The threshold was determined so that most demand nodes
were within the catchment areas of existing facilities. Only a few extreme demand nodes
that were extremely far away from existing facilities were excluded from the catchment
areas. As a result, the catchment sizes for tertiary and secondary facilities were 70 and
40 min of travel times, respectively (see Figure 3).
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Figure 3. Underserved demand nodes of existing healthcare facilities.

In the next step, the travel times from each demand node to the closest existing
tertiary and secondary facilities were calculated on the basis of the travel time matrix. If
the minimum travel time between a demand node and tertiary facilities was larger than
the catchment size, it could be considered to be an underserved demand node of tertiary
facilities. The same procedure was executed for secondary facilities. The distribution of
underserved demand nodes (communities) is shown in Figure 3.

The underserved demand nodes of tertiary facilities are concentrated in the east part
of Shenzhen, one in Pingshan District, and the others in Dapeng District. Population
density is relatively low in these areas. Therefore, one new candidate location was added
in each district. Furthermore, even though all demand nodes in the west part of Shenzhen
(i.e., Bao’an and Guangming districts) are covered by existing tertiary facilities, most of
these demand nodes are quite far away from existing tertiary facilities. The closest tertiary
facility is in the southernmost area of Bao’an District. Therefore, two new candidate
locations were added in the northern Bao’an and Guangming Districts. The underserved
demand nodes of secondary facilities are mainly concentrated in Longhua district, where
moderate population density presents. There is another underserved demand node in
Luohu District. Although Luohu is one of the central districts, population density in this
subdistrict is relatively low, where the highest mountain, Wutong mountain, is located.
Therefore, new candidate locations were only selected in Longhua District, on the basis
of the distribution pattern of underserved demand nodes. Taken together, as shown
in Figure 3, there are 23 and 39 candidate locations for tertiary facilities and secondary
facilities, respectively. The average supply size of each facility was set as the same with
existing facilities at each level. The total numbers of physicians at the two levels were
found to be 9700 and 7100, respectively. Table 2 summarizes the setting of all parameters.

Table 2. Parameters at each level.

Facility Level Catchment Size
Number of Underserved

Communities
Number of Candidate

Locations
Total Physicians

Secondary facilities 40 min 23 39 7100
Tertiary facilities 70 min 9 23 9700

Following existing studies [29,49], the HMAE model was solved by using the parti-
cle swarm optimization (PSO) algorithm developed by Kenned and Eberhart [50]. PSO
specifies a fitness function to evaluate the performance of each possible solution, which is
represented as the total accessibility difference calculated by Equation (1). It provides an
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efficient approach to solving optimization problems by simultaneously considering a wide
range of possible solutions and moving towards the optimal solution in an evolutionary
manner. Each solution is termed as a particle, which consists of the facility sizes at all
candidate locations. In each iteration, the performance of current solutions is evaluated
by the fitness function and compared with the previous iteration. If the current solution
generates better performance, it would be retained and the solutions in the next iteration
would be determined on the basis of the trend. These solutions are expected to converge to
a global optimal solution after a certain number of iterations.

PSO was first introduced by Tao et al. [29] into the maximal equality model. PSO can be
operationalized with a toolbox in MATLAB developed by Birge [51]. The implementation
of PSO is required for set-up of a few parameters, among which range of X (i.e., the size of
facility) and dimension of particles are related to the specific case. Dimension of particles
was set as the number of candidate locations, i.e., 39 and 23 for tertiary and secondary
facilities, respectively. Range of X is defined by upper bound and lower bound. The
lower bound was set as 0. The upper bound was set as two times of the size of the largest
existing facility, i.e., 1500 and 800 for tertiary and secondary facilities, respectively. Other
parameters were determined on the basis of the work of Tao et al. [29] and the default
parameters given by the manual of the toolbox.

4. Results

4.1. Optimal Distribution of Tertiary Healthcare Facilities

In addition to the existing 19 tertiary facilities, four new facility locations were added
in areas that are quite far away from existing facilities. The newly added locations are
located in Bao’an, Guangming, Pingshan, and Dapeng Districts. The optimal sizes of
these candidate locations, both the existing facilities and newly added locations, were
determined by using the hierarchical maximal equality model, aiming to minimize the
variation in the spatial accessibility to facilities for all demand nodes.

The results are shown in Figure 4. The optimized facilities were classified into small-,
middle-, and large-sized facilities (corresponding to facilities with 100–300, 300–800, or
800–1200 physicians, respectively) on the basis of the natural-breaks method. The ratios
of three types of facilities were 48%, 39%, and 13%, respectively. Small- and middle-
sized facilities are dominant. There are only three large-sized tertiary facilities, which are
respectively located in Nanshan, Bao’an and Guangming Districts. By contrast, the tertiary
facilities in Futian and Luohu Districts, which are regarded as the core of Shenzhen, are
middle- or small-sized. However, a relatively large number of existing tertiary facilities are
concentrated in Futian and Luohu Districts. The tertiary facilities in Longhua, Longgang,
and Pingshan Districts, where the distribution of facilities is relatively dispersed, are mainly
middle-sized. The only tertiary facility in Dapeng District, which is newly added, is small-
sized, due to the low population density in Dapeng and the surrounding areas. Generally,
the optimized distribution of tertiary healthcare facilities presents a pattern in that facilities
in the central areas are densely distributed but small-to-middle-sized, while facilities in the
peripheral areas are middle-to-large-sized but dispersedly distributed.

The differences between optimized sizes and actual sizes of existing tertiary facilities
were also calculated. This can help determine which adjustments of existing facilities are
needed to achieve the optimal distribution, which is useful for decision making. As shown
in Figure 5, the differences were significant, indicating that large adjustments are needed
to materialize healthcare accessibility equality. In other words, the distribution of existing
tertiary facilities is poorly performed in terms of providing equal healthcare accessibility.

Existing tertiary facilities that require positive size adjustments are mainly located in
Nanshan, Bao’an, Longgang, and Longhua districts, while most facilities in Luohu and
Futian districts need to be cut down in size. The pattern reveals that to achieve equal
accessibility, more healthcare resources need to be allocated in the peripheral areas. Note
that in the optimized distribution, some downsized (“negative adjustment”) facilities may
be close to upsized (“positive adjustment”) facilities, e.g., the example marked by a yellow
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box in Figure 5. In such cases, the positive and negative adjustments close to each other
can be counteracted. By doing so, many costs of adjustments can be saved, but with only
negligible impacts on resources distribution and healthcare accessibility.

 

Figure 4. Optimized distribution of tertiary healthcare facilities.

 

Figure 5. Size adjustments of existing tertiary healthcare facilities according to optimization.

4.2. Optimal Distribution of Secondary Healthcare Facilities

Similarly, the optimized secondary healthcare facilities are classified according to
their sizes using the natural breaks method. The sizes of small-, middle-, and large-sized
secondary facilities were less than 100, 100–300, and 300–600 physicians, respectively.
The ratios of facility amount for three types were 46%, 36%, and 18%. The number of
small-sized secondary facilities was the largest. As shown in Figure 6, the distribution of
each type of secondary facilities is relatively even in most districts. In Pingshan, Dapeng,
and Yantian districts, however, optimized secondary facilities were found to be relatively
small in size. Large-sized secondary facilities with more than 300 physicians are relatively
evenly distributed, which can cover moderate-to-high population density (higher than
10,000 persons/km2) areas within a relatively small distance.
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Figure 6. Optimized distribution of secondary healthcare facilities.

The needed size adjustments of existing secondary facilities to achieve equal acces-
sibility are shown in Figure 7. Facilities that require positive size adjustments are mainly
located in areas with relatively high population density. This indicates that the distribution
of existing secondary facilities may fail to match the distribution of the demand, which can
result in poor and unequal healthcare accessibility. There are also situations where negative
and positive adjustment are close to each other, e.g., the areas marked by yellow boxes
in Futian and southern Longgang districts. Counteracting these inverse size adjustments
can make the optimized solution more economically feasible with negligible impacts on
healthcare accessibility.

 

Figure 7. Size adjustments of existing secondary healthcare facilities according to optimization.

4.3. Examining the Improvement of Accessibility Equality

The disparities and distributions of the optimized as well as actual healthcare acces-
sibility were further estimated and compared to examine whether and how the equality
in accessibility is improved. The healthcare accessibility based on the actual distribution
of healthcare facilities was estimated by using the Gaussian-based 2SFCA method with
the same parameters as in the above optimization model. The disparity in accessibility
was measured by coefficient of variation (CV), which ranges from 0 to 1, with a larger
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CV representing larger disparity. CV was selected as the measure of disparity because it
can make the measures at two levels comparable. In the calculation of CV, the standard
deviation of accessibility is divided by the mean.

As shown in Table 3, the CVs of actual and optimized distributions of healthcare
accessibility to tertiary facilities were 0.53 and 0.32, respectively. Similarly, the respective
CVs for actual and optimized secondary facilities were 0.58 and 0.36. After optimization,
the disparities in healthcare accessibility to tertiary and secondary facilities decreased
by 40% and 38%, respectively. In other words, the optimization improved the equality
in the spatial accessibility to the tertiary and secondary healthcare facilities by 40% and
38%, respectively.

Table 3. The coefficients of variation in actual and optimized healthcare accessibility.

Facility Level Actual Optimized Improvement

Secondary facilities 0.58 0.36 38%
Tertiary facilities 0.53 0.32 40%

The accessibility was calculated first for discrete community locations, and then extrap-
olated into continuous distribution with the inverse distance weighted spatial interpolation
method. As shown in Figure 8, after optimization, the healthcare accessibility to the tertiary
facilities ranging from 0.0005 to 0.0010 is relatively evenly distributed in Shenzhen. The
distribution of higher accessibility was found to be positively related to population density
distribution. Low accessibility could only be observed in few marginal areas.

 

Figure 8. The distribution of optimized accessibility to tertiary healthcare facilities.

As shown in Figure 9, the optimized healthcare accessibility to the secondary facil-
ities in most areas was found to range from 0.0004 to 0.008 in Shenzhen. However, the
distributions of higher and lower accessibility were more dispersed than that of the tertiary
facilities. This corresponds to the fact that the distribution of higher-level facilities is gen-
erally more concentrated. This proves that the optimization resulted in relatively equal
healthcare accessibility to both the tertiary and secondary facilities.
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Figure 9. The distribution of optimized accessibility to secondary healthcare facilities.

5. Discussion

Rational distribution and equalization of healthcare services are critical for the im-
provement of health and well-being. Equality-oriented spatial optimization models can
act as scientific tools for healthcare facilities planning and policymaking. This study de-
veloped a hierarchical maximal equality model that sought to maximize the equality in
healthcare accessibility. The case study of Shenzhen proves that the model can significantly
improve the equality in healthcare accessibility at each level as compared to the status
quo. Considering the ubiquitous inequality in healthcare accessibility and the popularity
of equalization of healthcare services as a key policy goal in different contexts, this study
provides replicable procedures and methods for promoting the equalization of healthcare
accessibility. Furthermore, the model can be applied or adapted for analyzing other hierar-
chical facilities (e.g., educational facilities and public parks) because the equal accessibility
to various public services is a common public policy goal.

Compared to the original maximal accessibility equality model, the hierarchical maxi-
mal accessibility equality model developed in this study further incorporates hierarchical
features of healthcare facilities. It specifies different catchment area sizes of, and distance
friction effects for facilities at various levels. The empirical analyses demonstrate that
the numbers and distribution of healthcare facilities at various levels are quite different.
Existing studies have reported significant differences between healthcare accessibility at
various levels [32–34]. The model developed in this study can better quantify the accessi-
bility to hierarchical healthcare facilities across levels and optimize the equality of such
accessibility. It highlights that the hierarchy structure of healthcare facilities should be
carefully considered in the spatial optimization of public facilities.

Spatial optimization of hierarchical facilities is a classic and recurrent topic, as men-
tioned previously. A set of hierarchical location–allocation models have been developed in
the past several decades [24,36,37]. These existing studies highlight the needs for taking
into account the hierarchy structure of healthcare facilities in the optimization but fail to ad-
dress the equality issue and comprehensively measure accessibility. This study contributes
to the efforts in this respect by extending the maximal equality model into a hierarchical
location–allocation model. Compared to existing hierarchical location–allocation models,
it improves the measurement of accessibility, namely, interactions between demand and
supply, by using a Gaussian-based 2SFCA method.

Furthermore, this study is one of the first studies that has attempted to account
for both existing facility locations and newly added locations in the location–allocation
analysis. The results reveal that not only existing facilities should be adjusted, but more
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new facilities need to be added in areas that are not well served by existing facilities.
Considering that substantial fixed resources have been invested in existing facilities, such
setting of candidate facility locations can better reflect the actual base of optimization or
planning. Therefore, the procedures developed in this study can provide more feasible
solutions of facility planning.

Our findings suggest a dispersal strategy to improve spatial equality in healthcare
accessibility in Shenzhen by reallocating the existing healthcare resources and supplying ex-
tra resources. Generally, the sizes of existing facilities in central areas should be decreased,
while the sizes of existing facilities should be increased, and more new facilities should be
constructed in periphery areas. Considering that the space and land resources in central
areas are in great shortage, the dispersal strategy is feasible to be put into implementation.
However, it should be noted that our analyses are based on the population data (i.e., de-
mand for healthcare resources) in 2010, and future growth of demands for healthcare
resources were not considered. According to relevant plans in Shenzhen, peripheral areas
are expected to experience larger population growth in the future. Therefore, the dispersal
strategy can work even when the future population growth is taken into account. Note
that the optimized healthcare facilities in the peripheral areas are middle-to-large-sized
but dispersedly distributed. This suggests that the sizes of facilities in the peripheral
areas should be expanded on one hand, and more new facilities may need to be built in
these areas.

Despite the strengths of our study, there are also some limitations. First, the costs of
the size adjustments of existing facilities are not considered in the optimization. As a result,
in the optimized distribution of healthcare facilities, some facilities that need positive- or
negative-size adjustments are close to each other. It is suggested that adjustments of existing
facilities in such cases may be unnecessary and should not be implemented. By doing so,
the costs of adjustments could be saved while the impacts on healthcare accessibility are
negligible. In future study, such costs of size adjustments should be modelled into the
optimization objectives or constraint conditions in a more normative way. Nevertheless, our
optimization results can act as a scientific baseline for decision making. Second, although
the analysis unit in this study (community) is already the smallest geographical area used
by the local government, the analysis may still be faced with the modifiable area unit
problem (MAUP), due to different areas and irregular shapes of the communities. More
efforts are needed to examine whether and to what extent MAUP exists, as well as to figure
out how to address MAUP in location–allocation modelling. Third, the accessibility to
facilities and its equality was optimized independently for each level on the basis of the
characteristics of the current hierarchical healthcare system in Shenzhen. However, this
assumption may be inappropriate in some cases. In future works, efforts should be made
to explore the interaction between various facility levels and to optimize the equality of the
overall healthcare accessibility.

6. Conclusions

This study proposes a hierarchical maximal accessibility equality model for optimizing
the locations of hierarchical healthcare facilities to improve the equality in accessibility
to them. It extends the maximal accessibility equality model, which aims to minimize
the variance of spatial accessibility to facilities by accounting for the hierarchical features
of healthcare facilities. The minimal variance in spatial accessibility is pursued at each
respective level. The Gaussian-based 2SFCA method is applied to measure the spatial
accessibility to healthcare facilities at each level. The optimization model is solved by using
the PSO algorithm. The empirical results demonstrate that healthcare facilities at each
level need to be more dispersedly distributed to achieve maximal accessibility equality
in Shenzhen. Compared to the current distribution, the accessibility equality of tertiary
and secondary healthcare facilities in optimal solutions can be improved by 40% and 38%,
respectively, which proves the validity of the proposed optimization model. Both newly
added facilities and adjustments of existing facilities are needed to achieve equal healthcare
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accessibility. Furthermore, the optimization results are quite different for facilities at
different levels, which highlights the importance of considering hierarchy structure in the
optimization of healthcare facilities. The findings provide evidence-based suggestions
for the policymaking in Shenzhen to improve the accessibility to hierarchical healthcare
facilities. All in all, this study provides transferable methods for the equality-oriented
spatial optimization of hierarchical facilities.
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Abstract: The personalized recommendation system is a useful tool adopted by e-retailers to help
consumers to find items in line with their preferences. Existing methods focus on learning user
preferences from a user-item matrix or online reviews after purchasing, and they ignore the interactive
features in the process of users’ learning about product information through search queries before
they make a purchase. To this end, this study develops a topic augmented hypergraph neural network
framework to predict the user’s purchase intention by connecting the latent topics embedded in
a consumer’s online queries to their click, purchase, and online review behavior, which aims at
mining the connection information existing in the interaction graph domain. Meanwhile, in order
to reduce the influence of text noise words by fusing topic information, we integrate the topic
distribution and convolutional embedding to better represent each user and item, which can make
up for the lack of topic information in traditional convolutional neural networks. Extensive empirical
evaluations on real-world datasets demonstrate that the proposed framework improves the novelty
of recommendation items as well as accuracy. From a managerial perspective, recommending
diversified and novel items to consumers may increase the users’ satisfaction, which is conducive to
the sustainable development of e-commerce enterprises.

Keywords: personalized recommender system; online query sessions; user’s preference modeling;
topic model; hypergraph neural network

1. Introduction

As mobile Internet and information technology has achieved great technological
progress, consumers can browse products and make purchase through mobile devices
from anywhere at any time [1]. The rapid development of mobile e-commerce has inten-
sified competition between e-commerce companies. E-commerce enterprises maintain
their competitive advantage by implementing product differentiation strategies, offering
consumers more products and discounts, as well as exploiting intelligent information
filtering systems to assist online users in quickly finding products that are in line with
their preferences [2]. Online retailers need to provide customers with targeted goods and
services according to their different needs to avoid homogeneous competition [3]. The
recommender system is a classical type of information filtering system that attempts to
recommend products to users that can conform to their different hobbies and personal
experience [4,5]. However, the traditional recommendation method only uses ratings to
reflect the user’s overall preference for items, but it is difficult to depict users’ relative
preferences for multiple dimensions of product features [6]. E-commerce platforms hope to
help consumers to quickly find the right product that satisfies the heterogeneous needs of
consumers and delivers their business ideas and product information to these potential
consumers in a targeted manner [7,8]. E-commerce enterprises are committed to developing
a more powerful personalized recommender system to enhance shopping experience of
online consumers.

Although traditional personalized recommendation methods (such as collaborative
filtering and content-based recommendation algorithms) are widely used, they all have
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their own shortcomings. Therefore, hybrid recommender systems are proposed to deal
with these shortcomings by combining different recommendation algorithms. Recently,
the most widely used hybrid recommender systems are based on collaborative filtering
algorithms and content-based algorithms, while other types of combinations have also
been developed. The main idea of collaborative filtering is to use the preferences of user
groups with similar tastes to the target user to predict what the target user might like. The
data sparsity problem and the cold start problem are considered as two key problems faced
by collaborative filtering techniques [9–12]. The data sparsity problem seriously restricts
the performance of collaborative filtering. For large business websites, due to the large
number of products and users, the user rating products generally do not exceed 1% of the
total number of products. The cold start problem usually occurs when new users arrive.
As there is no user behavior data when a new user enters the system, it is difficult to make
effective recommendations. The basic idea of content-based filtering is to recommend
other items similar to the items that the user liked in the past. The content-based filtering
technology relies on user portraits. Therefore, even if the database does not contain user
interests, it will not affect the accuracy of the recommendation results [13]. However, the
content-based filtering technique depends on the item’s metadata. That is to say, the system
needs rich item content descriptions and complete user portraits. Hence, users can only get
recommendations similar to items in their own profile, hardly getting diversified options.
One of the ways to build a hybrid recommender system is to independently apply collabo-
rative filtering, content-based and other algorithms, for recommendations by combining
the recommendation results of two or more systems and using the linear combination
of prediction scores to make recommendations. Some hybrid recommender systems are
content-based collaborative filtering algorithms. That is, the similarity of users is calculated
through content-based profiles, rather than the information of products that are rated to-
gether. This can overcome the sparsity problem in collaborative filtering systems. Another
hybrid recommendation mechanism is utilizing multiple independent recommendation
algorithms, each of which generates its own recommendation results, and fusing these
recommendation results in the mixing stage to generate the final recommendation result. It
can be seen from the above analysis that the above recommendation techniques predict
consumer purchase intention based on product ratings of what other similar users have
purchased or what they themselves have purchased. User preferences characterized by
these methods are commonly presented based on user ratings of 1 to 5, which can capture
a user’s overall evaluation of the product. However, ratings data is too simple to capture
consumers’ multi-dimensional and fine-grained evaluation of product attributes. Unlike
sparse consumer purchasing data, consumers conduct extensive online search queries
before making a purchasing decision. Take the laptop as an example, customers formulate
queries like “best laptop for programming” that directly reflect their content preferences for
product features. Thus, it is important to understand the navigation keywords associated
with product features in users’ online query sessions. It is critical for e-commerce platforms
to extract consumer content preferences from online search sessions [14].

Despite the importance of inferring user preferences from online query sessions,
few studies have focused on this area. Roscoe et al. [15] revealed that online search
queries focused on superficial product features rather than key knowledge. Information
search behavior is an important factor that is assessed to identify differences in consumers
regarding their purchasing patterns and preferences [16]. Kim et al. [17] verified that there
is a significant relationship between new product diffusion and internet search volume.
Internet search volume is an important indicator for predicting new product demand.
Liu and Toubia [18] suggested that marketers should focus their efforts on keywords and
queries that reflect content preferences that are well aligned with the content they are
trying to promote. Codignola et al. [19] found that these browsing data can be saved with
cookies and can be used to show customers potentially suitable items. Although numerous
studies have been conducted to empirically verify that online queries can explicitly express
consumers’ content preference or can be used to predict product demand, quantitative
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studies that can estimate content preferences from online queries in an interpretable manner
are lacking. Therefore, it is managerially important for sustainable e-retailers to develop
intelligent recommendations based on learning dynamic customer preference from online
query sessions [20].

In this study, we develop a topic augmented hypergraph neural network (Topic-
HGNN) framework, which uses the hypergraph structure to capture the complex mul-
tivariate relationship among users, query topics, items, and item features. Besides, we
incorporate topic models into the hypergraph neural network to more finely depict user
preferences and product characteristics. To this end, we specifically propose an Aggregated
Latent Dirichlet Allocation model to jointly extract users’ content preference topics from
queries and webpages, and apply the Latent Dirichlet Allocation [21] model to extract
product feature topics from online reviews, which is useful to enhance feature interaction
interpretability. In detail, the proposed Topic-HGNN framework involves: (1) adopting a
hypergraph to model the multivariate relationship among users, query topics, items, and
item features and applying the dual-embedding mechanism to handle complex and high-
order correlations; (2) applying hyperedge corruption to generate a user-query hypergraph
and an item-feature hypergraph and utilizing the hyperedge convolution layer to obtain
user embedding and item embedding; (3) developing an Aggregated Latent Dirichlet Allo-
cation model to jointly extract users’ content preference topics from queries and webpages
and applying the Latent Dirichlet Allocation model to extract product feature topics from
online reviews; (4) integrating topic distribution and convolutional embedding to represent
each user and item; and (5) using multilayer perceptron to calculate the soft match score
between query entities and item entities.

We summarize the main contributions in the paper as follows:

• Despite the importance of inferring user preferences from online query sessions, very
little research has focused on this area. In this paper, we propose a sustainable recom-
mender system architecture based on inferring users’ preferences from online query
sessions, which can more accurately predict user purchase intentions;

• We develop an Aggregated Latent Dirichlet Allocation (ALDA) model, a novel topic
model that can simultaneously learn user query topics and topics of corresponding
clicked webpages. The ALDA model treats the joint topic distribution of queries and
webpages as the topic distribution of user preferences. The data sparsity of online
query data is avoided by aggregating corresponding webpages to assist in learning
users’ content preferences;

• To handle the complex multivariate relationship among users, query topics, items,
and item features, we design a topic augmented hypergraph neural network (Topic-
HGNN) framework to more accurately represent each user and item by integrating
the convolution information and the topic information. The Topic-HGNN framework
can significantly improve the accuracy and the novelty of recommended items;

• Extensive tests verify that our approach can better capture consumers’ multi-dimensional
preferences for product attributes and can better predict consumers’ purchase intentions.

We organize the rest of this paper as follows. Section 2 summarizes the related works.
Section 3 describes the proposed recommender system in details. Section 4 presents the
extensive experiments designed to evaluate the effectiveness and the efficiency of the
proposed framework. Section 5 summarizes the paper.

2. Related Work

From the above analysis, this paper aims to develop a novel personalized recommen-
dation system based on learning dynamic customer preference from online query sessions.
Thus, in this section, we briefly summarize related works from the following three aspects:
traditional recommendation systems, online query sessions, and recommendations based
on graph learning.
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2.1. Traditional Recommendation Systems

The recommendation system is a widely used information filtering tool to provide
customers with product information and suggestions to help users to decide which prod-
ucts they should purchase. Bobadilla et al. [22] classified recommendation methods into
three categories: collaborative filtering, content-based filtering, and hybrid recommender
systems.

Collaborative filtering is one of the earliest and the most successful techniques used in
recommender systems. It generally uses the preference of user groups with similar tastes
to the target user to predict the target user’s preference for a specific product. Generally
speaking, there are two types of collaborative filtering techniques. The first is user-based
collaborative filtering [23,24], and the second is item-based collaborative filtering [25,26].
User-based collaborative filtering mainly considers the similarity between users. It predicts
the target user’s rating for a particular item based on the ratings of items liked by similar
users. The basic idea of item-based filtering is to calculate the similarity between items
based on the historical preference data of all users, and then to recommend items similar to
the user’s favorite item to the target user. Currently, a large number of scholars focus on
utilizing machine learning models to improve the performance of collaborative filtering
technique. Matrix factorization [27], neural network [28], and graphic models [29] are
commonly used in combination with collaborative filtering. The most difficult challenge
faced by the collaborative filtering technique is the cold start problem when a new user
arrives. Since the recommender system does not have any data of new users, it cannot
effectively recommend items for new users. In addition, collaborative filtering cannot
understand different scenarios, which is unable to capture the specific consumption purpose
of users at a specific moment.

Content-based filtering works by evaluating the similarity between items that the
user has not seen and items that the user has liked in the past. To generate meaningful
recommendation results, content-based filtering uses different models to find similarities
between items. It typically uses a vector space model (e.g., term frequency inverse docu-
ment frequency) or a probabilistic model (naive Bayes classifier, decision tree, and neural
network) to model relationships between different items [30–32]. Content-based filtering
technology does not need to refer to other user portraits because other user portraits will
not affect the final recommendations. Moreover, content-based filtering technology can
still adjust the recommendation results in a very short period of time if the user profile
changes. The main disadvantage of this technique is that it requires the system to have a
deep understanding of the characteristics of the item. Since content-based filtering depends
only on the user’s past preferences for certain items, users can only get recommendations
similar to items in their own profile, hardly getting diversified options.

Hybrid recommender systems combine multiple recommendation algorithms to avoid
the problems of a single technique. Burke [33] distinguished hybrid recommender systems
into three basic design ideas: monolithic, parallelized, and pipelined. The monolithic
paradigm integrates multiple recommendation algorithms into the same algorithm system,
and the integrated recommendation algorithm provides a unified recommendation service.
The parallelized paradigm utilizes multiple independent recommendation algorithms, each
of which generates its own recommendation results, and fuses these recommendation
results in the mixing stage to generate the final recommendation result. In the pipelined
paradigm, the recommendation result generated by one algorithm is given to another
recommendation algorithm as input, and then the recommendation result is generated,
which is input to the next recommendation algorithm, and so on.

With the rapid development of mobile commerce, more and more recommendation
services occur in dynamically changing contexts, such as user location, access time, current
traffic, and other surrounding environments. Traditional personalized recommendation
technology is no longer enough to deal with the new impact caused by contextual fac-
tors [34,35]. Therefore, a current trend is to integrate and to apply contextual information
in traditional recommendation systems to form a context-based recommendation system,
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so as to accurately and to efficiently provide information resources that not only conform
to the current situation of the user but also satisfies the user’s preference [36].

In summary, recent recommendation techniques predict the consumer’s purchase
intention based on product ratings of what other similar users have purchased or what
they themselves have purchased. Unlike sparse consumer purchasing data, consumers
conduct extensive online search queries before making a purchasing decision. Different
from these studies, this paper tried to extract users’ explicit content preferences from online
query sessions to alleviate the problems mentioned above.

2.2. Online Query Sessions

Online query sessions contain a wealth of valuable information about users’ hobbies,
preferences and intensions. The content and the quantity of online search queries can be
used to predict product or service demand in the era of big data [37]. Choi and Varian [38]
showed how to predict near-term values of economic indicators, e.g., automobile sales,
unemployment claims, travel destination planning, and consumer confidence, based on
Google search data. Yang, Pan, and Song [39] utilized traditional econometric models to
predict hotel demand and hotel occupancy in tourist destinations based on web query
volumes. Roscoe et al. [15] debated how online search and the holistic stance of a web
search toward a consumer product contributed to decision making, and they assessed
decision making by combining analyses of online searches with robust choice modeling.
Taking bottled water as an example, this approach revealed how different product attributes
(e.g., type of product, type of packaging, and cost) affected users purchase intentions in
different degrees. Tibau et al. [40] applied the Exploratory Search Knowledge-intensive
Process Model to visualize search patterns and to identify best practices associated with
users’ decision-making processes. They identified four important characteristics of users’
decision-making processes while searching online. Liu and Toubia [18] suggested that mar-
keters should focus their efforts on keywords and queries that reflect content preferences
that are well aligned with the content they are trying to promote. Codignola et al. [19] found
that these browsing data can be saved with cookies and can be used to show customers
potentially suitable items.

Although numerous studies have been done to empirically verify that online queries
can explicitly express consumers’ content preference or can be used to predict product
demand, quantitative studies that can estimate content preferences from online queries in
an interpretable manner are lacking. In this paper, we propose a novel Aggregated Latent
Dirichlet Allocation (ALDA) topic model that can simultaneously learn the potential topics
hidden in user’s online search queries and the corresponding webpages. Since online query
phrases data is sparse, the ALDA model aggregates click documents corresponding to user
queries to assist in more accurately learning users’ content preferences.

2.3. Recommendation Based on Graph Learning

Graph is becoming a core area of machine learning. Graph learning is widely used to
understand the structure of social networks by predicting potential connections, detecting
fraud, understanding consumer behavior, or making real-time recommendations. Graph
neural network (GNN) techniques have been widely used in recommender systems be-
cause most of the information in recommender systems has a graph structure in nature
and GNNs have excellent performance in learning graph structures [41,42]. He et al. [43]
proposed a light graph convolution network (LightGCN) model that uses user-interacted
item records to enhance user representation and interacted user records to enhance item
representation. Multi-layer GNNs can simulate the information transfer process and effi-
ciently establish higher-order connections. Li et al. [44] designed a novel feature interaction
graph neural network (Fi-GNN) to model sophisticated feature interactions in a flexible
and an explicit fashion, which provides good model explanations for click-through rate pre-
diction. Chang et al. [45] proposed a new graph-based geographical latent representation
(GGLR) that models geographic influences between the POIs and the transition patterns of
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user sequence behavior based on spatial and temporal features, which can capture highly
non-linear geographical influences from complex user-POI networks.

The GNN methods mentioned above employ pairwise connections between data.
However, data structures in real-world applications can go beyond pairwise connections
and they can be even more complicated. Feng et al. [46] proposed a hypergraph neural
network (HGNN) framework that can deal with complex data correlations by encoding
high-order data correlation (beyond pairwise connections) using its degree-free hyperedges.
Chen et al. [47] proposed a neural signed hypergraph to extract non-linear relationships
among users, items, and features. He et al. [48] proposed a hypergraph click-through rate
prediction framework (HyperCTR) that learns item representations based on multi-modal
information interactions among users and items. However, existing research focuses on
learning user interaction characteristics with products during and after purchase (e.g., pur-
chase and online review), and it ignores the interactive features in the process of users’
learning about product information through search queries before they make a purchase
(e.g., product information search). However, user association with a product is a coherent
process that should not be isolated into different nodes. Only sorting the user’s process of
searching-understanding-purchasing-using products and finding opportunity points from
each stage can help the recommender system to better discover the potential needs of users.
In this paper, we develop a hypergraph framework to handle the interaction behavior of
consumers in the whole process of shopping (i.e., searching-understanding-purchasing-
using).

3. Materials and Methods

In order to make effective recommendations to users, recommendation systems need
to solve two problems. One is to predict consumers’ product ratings, that is, recommending
products with higher predicted scores to target consumers. The second is the interpretation
of the recommendation results, that is, explaining the working mechanism of the recom-
mendation system and the specific reasons for recommending a product to consumers
in an appropriate way. Since the recommendation process is still a relatively mysterious
process for most consumers, a reasonable explanation of the recommendation results is
necessary to improve consumers’ trust in the recommendation system, which greatly affects
consumers’ perception and acceptance of recommendation results. The existing recommen-
dation algorithms generally directly rely on the users’ overall rating score for products,
and the obtained recommendation results are greatly affected by the sparsity of the rating
matrix and the cold start problem. This study believes that this situation is mainly caused
by the coarse information granularity of the user’s product ratings. That is to say, it is
impossible for any product to fully meet all the needs of users, and it is impossible for users
to have the same degree of preference for all attributes of a product. The recommendation
results generated by directly relying on the user’s overall ratings cannot reflect the users’
preferences for various attributes of the product, and it is difficult to explain the real reasons
for the user’s preference for the product.

As consumers are more likely to submit online search phrases to search engines to
gather information before making an intended purchase decision. They enter keywords
to explicitly express their preferences for product attributes. For example, customers
formulate queries such as “best laptop for programming” that directly reflect their content
preferences for product configurations. Interpreting consumers’ search phrases renders a
better understanding of their purchase intentions and preferences for product attributes,
which is critical for developing an effective personalized recommendation system.

In this paper, we introduce a sustainable recommender system architecture based on
fusing a topic model and a hypergraph neural network, which can deal with the interaction
behavior of consumers in the whole process of shopping (i.e., searching-understanding-
purchasing-using). Figure 1 shows the topic augmented hypergraph neural network
(Topic-HGNN) framework for searching-scenario oriented recommendation. First, we
adopt a hypergraph to model the multivariate relationship among users, query topics,
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items, and item features, which aims at mining the connection information existing in
the interaction graph domain. Then, we utilize hyperedge corruption [47] to generate a
user–query hypergraph and an item–feature hypergraph, and we utilize the hyperedge
convolution layer [46] to obtain user embedding and item embedding. Meanwhile, in order
to reduce the influence of text noise words by fusing topic information, we specially design
an Aggregated Latent Dirichlet Allocation (ALDA) model to jointly extract users’ content
preference topics from queries and webpages and to apply Latent Dirichlet Allocation
model to extract product feature topics from online reviews. Then, we integrate the topic
distribution and convolutional embedding to represent each user and item, which can make
up for the lack of topic information in traditional convolutional neural networks. Finally,
we use multilayer perceptron to calculate the soft match score between query entities and
item entities.
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Figure 1. The proposed topic augmented hypergraph neural network (Topic-HGNN) framework for
searching-scenario oriented recommendation.

3.1. Searching-Scenario Oriented Hypergraph Generation

Existing research focuses on learning user interaction characteristics with products
during and after purchase (e.g., purchase and online review), and ignores the interactive
features in the process of users’ learning about product information through search queries
before they make a purchase (e.g., product information search). However, user association
with a product is a coherent process that should not be isolated into different nodes. Only
sorting the user’s process of searching-understanding-purchasing-using products and find-
ing opportunity points from each stage can help the recommender system to better discover
the potential needs of users. Thus, this work considers quaternary relationships between
interacting entities (user, query topic, item, and item feature) and employs a hypergraph to
model the interaction behavior of consumers in the whole process of shopping.

Let V =
{

Vu, Vq, Vi, Vf

}
denote the vertex set, where Vu represents user vertex, Vq is

the query vertex sent by the user, Vi represents item vertices, and Vf is the product feature
node extracted from the product online reviews. E represents the set of hyperedges ej built
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from V. Each hyperedge “vu-vq-vi-v f ” is a complete purchasing path for the user, which
means that user u finds a product i that matches his preference for feature f through query
q, and makes a purchase. Thus, G = (V, E) represents a hypergraph, and a hypergraph G
can be represented by a |V| × |E| incidence matrix H, with entries defined as:

h(v, e) =
{

1, v ∈ e
0, v /∈ e

For a vertex v ∈ V, its degree is defined as d(v) = ∑e ∈ E w(e)h(v, e), where w(e)
represents the weight of the hyperedge e. For an hyperedge e ∈ E, its degree is defined as
δ(e) = ∑v ∈ V h(v, e). The degree matrices of vertex and hyperedge are represented by the
diagonal matrices Dv and De, respectively.

3.2. Topic Feature Learning of User and Item

In this section, we introduce the Aggregated Latent Dirichlet Allocation (ALDA)
model in detail. ALDA is a bag-of-word model that depicts the semantic relation between
user preferences and their online query sessions. Instead of modeling the topic intensities
in the query sessions and the topic intensities in the webpages hierarchically [49], the
ALDA conjointly models the topic intensities in the query sessions and the topic intensities
in the webpages into the same document layer. The data sparsity of online query data
is avoided by aggregating corresponding webpages to assist in learning users’ content
preferences. Consumers’ online shopping behavior is usually a learning process. First,
users may enter inaccurate keywords to express their needs. Then, users enhance their
understanding of products through browsing the search results and adjusting the input
keywords. Consumers will repeat this learning process until finding the right product.
That is to say, the topics of query keywords and the topic of search results are semantically
related to each other. Liu and Toubia [49] assumed the topic intensities in webpages is
affected by query keywords while ignoring that webpages can in turn affect the topic
intensities in query keywords. Thus, we model the interactive relationship between queries
and webpages in ALDA. The graphical representation of ALDA proposed in this paper is
illustrated in Figure 2. The main notations in ALDA are listed in Table 1.

Figure 2. The graphical representation of ALDA model.
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Table 1. Summary of the main notations.

Notations Explanation

u ∈ {1, 2, · · · , U} Set of users
q ∈ {1, 2, · · · , Q} Set of user queries
p ∈ {1, 2, · · · , P} Set of webpages

θu The vector of topic probabilities in users’ preferences
α Dirichlet prior distribution for θu
ϕk The vector of word probabilities for topic k
β Dirichlet prior distribution for ϕk

zqi Topic assignment of the ith word in query q
zpj Topic assignment of the jth word in webpage p
wqi The ith observed word in query q
wpj The jth observed word in webpage p

3.2.1. Model Description

First, we introduce the notations of the ALDA model. Supposing that there is a
collection of U users in a particular e-commerce platform: u ∈ {1, 2, · · · , U}. The user u
entered different queries for a particular search domain: q ∈ {1, 2, · · · , Q}. There are P
webpages underlying a particular query q: p ∈ {1, 2, · · · , P}. There are K topics that the
user u is interested in: k ∈ {1, 2, · · · , K}. There are V topic words in the vocabulary. wqi
represents the ith word in the query q. wpj represents the jth word in the webpage p.

• θu denotes the topics probability distribution in user u’s preferences.
• ϕk denotes the words probability distribution of the kth topic.
• α is the symmetric Dirichlet prior hyper-parameter for θu.
• β is the symmetric Dirichlet prior hyper-parameter for ϕ

q
k and ϕ

q
k.

• zqi denotes the topic of the ith word in query q.
• zpj denotes the topic of the jth word in webpage p.
• wqi denotes the ith word in the query q.
• wpj denotes the jth word in the webpage p.

Formally, the generative process of query sessions and webpages based on the ALDA
model is described as follows:

Topics: We continue to work on the assumption proposed by Liu and Toubia [49]. Liu
and Toubia [49] assumed that search query documents and webpage documents follow the
same topic distributions. The topic intensities in the documents are reflected by the words
displayed in the documents and each document has different topic intensities. Similar to
an LDA, each topic k ∈ {1, 2, · · · , K} is represented as a topic-word distribution vector ϕk.
The vector ϕk follows a Dirichlet distribution over V topic words in the vocabulary:

ϕk ∼ Dirichlet(β)

Queries: To model the ith word wqi observed in the query q, ALDA sequentially
samples the topic distribution of the query q and the topic assignment of the ith word in
the query q. The generation process of users’ query online queries is as follows:

1 For each query q (q ∈ {1, 2, · · · , Q}):

1.1 Generate topic probabilities θu from a homogeneous Dirichlet distribution with
parameter α: θu ∼ Dirichlet(α)

2 For each topic k (k ∈ {1, 2, · · · , K}):

2.1 Generate ϕk independently from a homogeneous Dirichlet distribution with
parameter β: ϕk ∼ Dirichlet(β)

3 For each word wqi in the query q:

3.1 Choose a topic zqi from the K topics with probabilities given by θu: zqi ∼
Multinomial(θu)
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3.2 Choose a word wqi from the dictionary with probabilities given by ϕk: wqi ∼
Multinomial(ϕk)

Webpages: To model the jth word wpj observed in the webpage p, ALDA sequentially
samples the topic distribution of the webpage p and the topic assignment of the jth word in
the webpage p. The generation process of webpages related to online queries is as follows:

1 For each query p (p ∈ {1, 2, · · · , P}):

1.1 Generate topic probabilities θu from a homogeneous Dirichlet distribution with
parameter α: θu ∼ Dirichlet(α)

2 For each topic k (k ∈ {1, 2, · · · , K}):

2.1 Generate ϕk independently from a homogeneous Dirichlet distribution with
parameter β: ϕk ∼ Dirichlet(β)

3 For each word wpj in the query p:

3.1 Choose a topic zpj from the K topics with probabilities given by θu: zpj ∼
Multinomial(θu)

3.2 Choose a word wpj from the dictionary with probabilities given by ϕk: wpj ∼
Multinomial(ϕk)

3.2.2. Parameter Estimation

It is an intractable task to exactly estimate the parameters θu, ϕk. Similar to LDA,
we use Gibbs sampling to approximately infer the parameters. First, we need to sample
P
(
zqi
∣∣wqi, wpj

)
and P

(
zpj
∣∣wqi, wpj

)
to obtain the topic assignment zqi in query documents

and the topic assignment zpj in webpage documents. Thus, the following conditional
probability distribution is derived:

P
(
zqi = k, zpj = k

∣∣z−qi, z−pj, wqi, wpj
)

P
(
zqi = k, zpj = k

∣∣z−qi, z−pj, wqi, wpj
)

∝ P
(
zqi = k, zpj = k, wqi = t1, wpj = t2

∣∣z−qi, z−pj, w−qi, w−pj
)

=
∫

P
(
zqi = k, zpj = k, wqi = t1, wpj = t2, θu, θu, ϕk

∣∣z−qi, z−pj, w−qi, w−pj
)
dθudθudϕk

=
∫

P
(
zqi = k, θu

∣∣z−qi, z−pj, w−qi, w−pj
)
·P
(
zpj = k, θu

∣∣z−qi, z−pj, w−qi, w−pj
)

·P
(

wqi = t1, ϕk,wqi

∣∣∣z−qi, z−pj, w−qi, w−pj

)
·P
(

wpj = t2, ϕk,wpj

∣∣∣z−qi, z−pj, w−qi, w−pj

)
dθudθudϕk,wqi

dϕk,wpj

=
∫

P
(
zqi = k

∣∣θu
)

P
(
θu
∣∣z−qi, z−pj, w−qi, w−pj

)
·P
(
zpj = k

∣∣θu
)

P
(
θu
∣∣z−qi, z−pj, w−qi, w−pj

)
·P
(

wqi = t1

∣∣∣ϕk,wqi

)
P
(

ϕk,wqi

∣∣∣z−qi, z−pj, w−qi, w−pj

)
·P
(

wpj = t2

∣∣∣ϕk,wpj

)
P
(

ϕk,wpj

∣∣∣z−qi, z−pj, w−qi, w−pj

)
dθudθudϕk,wqi

dϕk,wpj

=
∫

P
(
zqi = k

∣∣θu
)

Dir
(
θu
∣∣nq,−qi + α

)
·P
(
zpj = k

∣∣θu
)

Dir
(
θu
∣∣np,−pj + α

)
·P
(

wqi = t1

∣∣∣ϕk,wqi

)
Dir

(
ϕk,wqi

∣∣∣nq
k,−qi + β

)
·P
(

wpj = t2

∣∣∣ϕk,wpj

)
Dir

(
ϕk,wpj

∣∣∣np
k,−pj + β

)
dθudθudϕk,wqi

dϕk,wpj

=
∫

θ
(k)
u Dir

(
θu

∣∣∣n(k)
q,−qi + α

)
·θ(k)u Dir

(
θu

∣∣∣n(k)
p,−pj + α

)
·ϕ(t1)

k Dir
(

ϕk,wqi

∣∣∣nq(t1)
k,−qi + β

)
·ϕ(t2)

k Dir
(

ϕk,wpj

∣∣∣np((t2)
k,−pj + β

)
dθudθudϕk,wqi

dϕk,wpj

= E
(

θ
(k)
u

)2
·E
(

ϕ
(t1)
k

)
·E
(

ϕ
(t2)
k

)
=

n(k)
q,−qi+α

∑K
k=1 n(k)

q,−qi+Kα
· n(k)

p,−pj+α

∑K
k=1 n(k)

p,−pj+Kα
· n

q(t1)
k,−qi+β

∑V
v=1 nq(v)

k,−qi+Vβ
· np((t2)

k,−pj +β

∑V
v=1 np(v)

k,−pj+Vβ

(1)
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Inside, wqi = t1 denotes the ith word in the query q is t1. wpj = t2 denotes the jth
word in the webpage p is t2. z−qi denotes the topic assignments to all words except the ith
word in the query q. z−pj denotes the topic assignments to all words except jth word in
the webpage p. w−qi denotes all words except the ith word in the query q. w−pj denotes all

words except the jth word in the webpage p. n(k)
q,−qi denotes the number of words generated

by topic k in the query q excluding the ith word in the query q, n(k)
p,−pj denotes the number

of words generated by topic k in the webpage p excluding the jth word in the webpage
p, nq,−qi =

(
n(1)

q , n(2)
q , · · · , n(k)

q − 1, · · · , n(K)
q

)
denotes the number of words generated by

topic k in the query q excluding the ith word, np,−pj =
(

n(1)
p , n(2)

p , · · · , n(k)
p − 1, · · · , n(K)

p

)
denotes the number of words generated by topic k in the webpage p excluding the jth word.
nq(t)

k,−qi denotes the number of times the word t is assigned to the topic k excluding the ith

word in the query q, nq
k,−qi =

(
nq(1)

k , nq(2)
k , · · · , nq(t)

k − 1, · · · , nq(V)
k

)
. np(t)

k,−pj denotes the
number of times the word t is assigned to the topic k excluding the jth word in the webpage
p, np

k,−pj =
(

np(1)
k , np(2)

k , · · · , np(t)
k − 1, · · · , np(V)

k

)
.

Algorithm 1 summarizes the overall procedure of Gibbs sampling to estimate the
parameters θu, ϕk. First, the assignments of topic to each word are initialized according
to a uniform distribution. Then, the assignment of topics to each word will be updated
by examining Equation (1). Finally, n(k)

q , n(k)
p , nq(v)

k , np(v)
k can be counted after a sufficient

number of iterations. n(k)
q denotes the number of times the topic k occurs in the query q. n(k)

p

denotes the number of times the topic k occurs in the webpage p. nq(v)
k denotes the number

of times the word v is assigned as a query word to topic k. np(v)
k denotes the number of

times the word v is assigned as a webpage word to topic k.
Here, we only give the derivation of the parameter θu, the derivation of other parame-

ters is the same.
P( θu|nu, α) =

P(nu |θu)P(θu |α)∫
P(nu |θu)P(θu |α)dθu

= Mult(nu |θu)Dir(θu |α)∫
Mult(nu |θu)Dir(θu |α)dθu

= Dir(θu|α + nu)

Inside, nu = nq + np
The estimated value of each parameter is:

E(θu) =

⎛
⎝ n(1)

q + n(1)
p + α

∑K
k=1 n(k)

q + n(k)
p + Kα

, · · · ,
n(k)

q + n(k)
p + α

∑K
k=1 n(k)

q + n(k)
p + Kα

, · · · ,
n(K)

q + n(K)
p + α

∑K
k=1 n(k)

q + n(k)
p + Kα

⎞
⎠ (2)

E(ϕk) =

⎛
⎝ nq(1)

k + np(1)
k + β

∑V
v=1 nq(v)

k + np(v)
k + Vβ

, · · · ,
nq(v)

k + np(v)
k + β

∑V
v=1 nq(v)

k + np(v)
k + Vβ

, · · · ,
nq(V)

k + np(V)
k + β

∑V
v=1 nq(v)

k + np(v)
k + Vβ

⎞
⎠ (3)

Finally, the topic feature vector of each user can be expressed as θu.
Similarly, we can use LDA [21] to mine each product’s topic feature vector from its

online reviews: θi.
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Algorithm 1: The Gibbs sampling for ALDA

Input : topic number K, vocabulary number V, document sets, α, β.
Output : θu, ϕk.

1. Initialization
Sample zqi, zpj according to the uniform distribution

n(k)
q = n(k)

q + 1, nq = nq + 1, n(k)
p = n(k)

p + 1, np = np + 1, nq(t)
k = nq(t)

k + 1, nq
k = nq

k + 1, np(t)
k =

np(t)
k + 1, np

k = np
k + 1.

2. Gibbs sampling
For each query q and webpage p do:

For each word wqi in query q do:

(1) zqi = k→n(k)
q = n(k)

q − 1, nq = nq − 1, nq(t)
k = nq(t)

k + 1, nq
k = nq

k + 1.

(2) Sample zqi = k̂ ∼ P
(

zqi = k
∣∣∣z−qi, wqi

)
according to Equation (1)

n(k̂)
q = n(k̂)

q − 1, nq = nq − 1, nq(t)
k̂

= nq(t)
k̂

+ 1, nq
k̂
= nq

k̂
+ 1.

For each word wpj in webpage p do:

(1) zpj = k→n(k)
p = n(k)

p − 1, np = np − 1, np(t)
k = np(t)

k + 1, np
k = np

k + 1.

(2) Sample zpj = k̂ ∼ P
(

zpj = k
∣∣∣z−pj, wpj

)
according to Equation (1)

n(k̂)
p = n(k̂)

p − 1, np = np − 1, np(t)
k̂

= np(t)
k̂

+ 1, np
k̂
= np

k̂
+ 1.

3. Parameter estimation
Estimating θu, ϕk according to Equations (2) and (3)

3.3. Convolutional Feature Learning of User and Item

The searching-scenario oriented hypergraph obtains high-order correlations between
data, while it contains heterogeneous vertices (i.e., user vertex, query vertex, item vertex,
feature vertex). Thus, it is necessary to obtain not only high-order information between
paths but also vertex-based semantic information within paths. Therefore, based on the
searching-scenario oriented hypergraph, this paper utilizes a dual-embedding mecha-
nism [47] and hyperedge convolution [46] to obtain high-order information between paths
and vertex-based semantic information within paths, respectively.

3.3.1. Path Semantic Association Learning

A path contains any number of nodes, these nodes are of the same or different types,
so the generated paths have different semantic information. In this paper, dual-embedding
mechanism [47] is used to obtain semantic associations among consumers’ online queries,
their click, purchase, and online review behavior.

The semantic associations among consumers’ online queries, their click, purchase,
and online review behavior is illustrated as follows. Take the query “harry potter” for
example. By using the searching-scenario oriented hypergraph, “harry potter” entered by
different users can reach different items such as “harry potter PVC figure”, “harry potter
book”, “harry potter magic wand” or “harry potter LEGO”. Obviously, we can obtain more
recommendation candidates for the query “harry potter” by using the searching-scenario
oriented hypergraph. More importantly, the structural superiority of the searching-scenario
oriented hypergraph gives the recommender system a chance to identify different semantic
facets of the input search phrases. Similarly, the searching-scenario oriented hypergraph
can leverage user behavior to mine related queries with different query phrases. For
example, the query “python” entered by user A and the query “Data Analysis” entered by
user B can reach the same book “Python for Data Analysis”. We can infer from this example
that consumer B who bought the book had a preference for using Python even though it
was not explicitly expressed in his query. Query-item collaborative filtering greatly solves
the item entity recall problem under sparse data.

Therefore, to augment semantic information propagation and training efficiency, we
use second-order neighbor relations instead of first-order neighbor relations. To ensure the
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timeliness of recommended items, we use a strategy of 20% uniform sampling and 80%
popularity-based sampling to sample node neighbors.

3.3.2. Convolutional Semantic Features Learning

Not only are there complex associations between paths but the vertices in paths also
contain rich semantic information. This paper adopts hyperedge corruption [47] to cut the
hyperedge into ordinary edges, which connect the user-query, query-item, and item-feature,
respectively. Then, ordinary edges are used to generate association matrices, and the initial
weights of the vertices are calculated to generate the hypergraph Laplacian matrix based on
meta-path information. Then, this matrix is added to the hypergraph neural network [46]
to learn the hyperedge convolution:

X(l+1) = σ

(
D− 1

2
v HWD−1

e HT D− 1
2

v X(l)Θ(l)
)

(4)

where X, Dv, De, and Θ is the signal of the hypergraph at l layer, σ denotes the nonlinear
activation function.

Therefore, the final convolutional feature can be obtained by connecting L layer
features:

xu =
[

X0, X1, · · · , XL
]

(5)

Similarly, for the online reviews of each item i, the corresponding convolutional
semantic feature xi can be obtained through the hypergraph neural network.

3.4. Prediction

For each user u, the obtained convolutional semantic feature xu and query topic feature
θu are combined to represent the final user embedding Xu of user u:

Xu = xu ⊕ θu (6)

Similarly, the final feature Xi of each item i is:

Xi = xi ⊕ θi (7)

Since the number of words in each query is different, the dimension of the word vector
matrix is inconsistent, which cannot be processed by the convolutional neural network.
Therefore, this paper fixes the number of search phrases in each query as 32, that is, when
the number of words is less than 32, it is filled with 0, and when the number of words
is greater than 32, the first 32 words are taken. This paper uses BERT to pre-train all the
obtained text content to obtain vectors of words Xq.

We want to integrate query embedding, user embeddings, item embedding, and high-
order correlations to capture more complex connections. We utilize a deep architecture [48]
to predict link relationships between users, queries, items, and features:

ŷ = φL
(
φL−1

(
. . . φ1

([
Xq; Xu; Xi

])))
(8)

where [; ; ;] concatenates the input vectors and {φ1, φ2, . . . , φL} are non-linear layers with
sigmoid as the active function.

We also take the widely used binary cross-entropy as the loss function:

L = ∑ y log(ŷ) + (1 − y) log(1 − ŷ) + λω2 (9)

where ω is the learnable parameters set, λ is the regularization parameter.
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4. Results

In order to test the improvement of the proposed Topic-HGNN framework, we con-
ducted experiments based on different datasets obtained from real-world applications. The
experiments were designed to verify two aspects of the proposed recommender frame-
work: (1) the quality of topics in online query sessions identified by the ALDA model,
and (2) the improvement of recommendation accuracy and novelty of the Topic-HGNN
framework that connects the latent topics embedded in consumers’ online queries to their
click, purchase, and online review behavior.

All empirical evaluations in this paper were implemented on a Dell Precision T5820
workstation with Xeon W-2102 CPU, 8.00 GB RAM, and we chose to implement the program
in the Python language.

4.1. Data Description

The public AOL query log dataset (http://www.gregsadetsky.com/_aol-data accessed
on 18 September 2019) in the real word is used for experimental verification. This collection
consists of 20 M web queries collected from 650 k users over three months in 2006. The
data is sorted by anonymous user ID and sequentially arranged. The data set includes
{AnonID, Query, QueryTime, ItemRank, ClickURL}. AnonID represents an anonymous
user ID number. Query indicates the query issued by the user. QueryTime indicates the
time at which the query was submitted for search. If the user clicked on a search result,
the rank of the item on which they clicked is listed, and it is marked as ItemRank. If the
user clicked on a search result, the domain portion of the URL in the clicked result is listed,
which is marked as ClickURL.

We preprocessed the AOL query log dataset before conducting experiments. First,
we successively removed query terms containing URL strings, query terms containing
special characters, and query terms that did not contain click URLs. Then, we utilized
“15 min interval” [50] to derive reasonable session breaks in online queries in order to better
investigate the effectiveness of the ALDA model. Finally, we divided each user’s search
records into training sets and test sets with a ratio of 80%/20%. Part of the AOL query log
dataset format is shown in Table 2.

The Retailrocket data (https://www.kaggle.com/retailrocket/ecommerce-dataset
accessed on 18 September 2019) was collected from a real-world e-commerce site. The
data includes 2,756,101 behavior records from 1,407,580 users, including 2,664,312 views,
69,332 cart additions, and 22,457 purchases.

Table 2. The example of the AOL query log dataset.

AnonID Query QueryTime ItemRank ClickURL

479 car decals 2006-03-03 23:20:12 4 http://www.decaljunky.com
479 car decals 2006-03-03 23:20:12 1 http://www.modernimage.net
479 car decals 2006-03-03 23:20:12 5 http://www.webdecal.com
479 car window decals 2006-03-03 23:24:05 9 http://www.customautotrim.com
479 car window sponsor decals 2006-03-03 23:27:17 3 http://www.streetglo.net
1020 slot machine tips 2006-04-18 12:43:46 1 http://www.slotadvisor.com
1020 slot machine tips 2006-04-18 12:43:46 4 http://www.thegamblersedge.com
1020 slot machine tips 2006-04-18 12:43:46 8 http://www.gambling.jaxworld.com
1020 slot machine tips 2006-04-18 13:06:52 11 http://www.licensed4fun.com

The entire dataset contains three files: behavioral data file, category relationship file,
and item properties file. Each row of data describes the user’s behavior on an item at a
certain time.
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4.2. Evaluation of the ALDA Model

In order to examine the quality of topics in online query sessions identified by the
ALDA model proposed in our paper, five typical methods for inferring user preference
distributions are selected as baseline methods.

• LDA is a generative probabilistic model in which each document is modeled as a
finite mixture over an underlying set of topics and each topic is modeled as an infinite
mixture over an underlying set of word distributions [21].

• Twitter-BTM aggregates user-based biterms to learn user specific topic distribution and
incorporates a background topic to distinguish user’s preference between background
words and topical words [51].

• UCIT learns users’ short-term and long-term preferences based on their followees’
topic distributions, the content of current short texts, and the previously estimated
distributions [52].

• HDLDA is a hierarchically dual latent Dirichlet allocation that assumes there is a
semantic relation between search query documents and search result documents, and
it quantitatively characterizes how consumers translate their content preferences into
search queries [49].

• UATM infers topic intensities in user’s preference by learning topic intensities in user’s
preference and topic intensities in followees’ preference, which can efficiently alleviate
the sparsity problem [53].

We use the AOL query log dataset in this section. By comparing the parameter settings
of the above models, we set the hyperparameters α = 50/K, β = 0.01, γ = 0.5.

4.2.1. Topic Coherence

Topic coherence is mainly used to measure whether the words within a topic are
coherent. So, how can these words be considered coherent? If the words support each other,
then the group of words is coherent. In other words, if you put words from multiple topics
together and cluster them with a perfect cluster, then words from the same topic should be
in the same category. PMI uses external text datasets to measure the coherence of a topic,
which is a fair metric of evaluating the quality of topics extracted by each model. The PMI
can be calculated by:

PMI
(
wi, wj

)
= log

p
(
wi, wj

)
+ ε

p(wi)·p
(
wj
)

where wi and wj are topic words, and ε is a random disturbance term. The larger the value
of PMI, the better the coherence between topic words.

To further evaluate the PMI of randomly selected topics, Wikipedia articles down-
loaded from the official Wikipedia website were used as an auxiliary corpus. We selected
the top 5, 10, and 20 words in each topic and calculated the average PMI score. Figure 3
shows the topic coherence results of selected topics learned by each topic discovery model.
In the comparison of six models, it clearly shows that the PMI score of our ALDA model is
significantly better than the other models. The results demonstrate that topics extracted
by our ALDA are more coherent than other models. This is due to the fact that our ALDA
conjointly models the topic intensities in the query sessions and the topic intensities in
the webpages into the same document layer. The data sparsity of online query data is
avoided by aggregating corresponding webpages to assist in learning users interested
topics. Because Twitter-BTM and LDA can only model query documents and webpage
documents separately, these two models perform worst. Twitter-BTM outperforms LDA
because Twitter-BTM inherits BTM’s excellent ability to deal with short texts. UCIT and
UATM significantly outperforms Twitter-BTM and LDA. This is because UCIT and UATM
not only extract topics from content generated by the user themself but also extracts topics
from content generated by user clusters that are similar to them. HDLDA can generate
more coherent topics than UATM, UCIT, Twitter-BTM, and LDA. This is because HDLDA
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models query the document and the webpage document in two hierarchical LDA processes.
HDLDA can better capture the semantic relation between query and webpage.

Figure 3. PMI score of each model on AOL query log dataset.

Unlike HDLDA, which models the topic intensities in the query sessions and the topic
intensities in the webpages, our ALDA conjointly models the topic intensities in the query
sessions and the topic intensities in the webpages into the same document layer. Thus, our
ALDA obtained better results than HDLDA.

4.2.2. User’s Preference Prediction

We utilize perplexity to compare the accuracy of predicting users’ content preference
drift estimated by these models. As perplexity in information theory is a measure that is
often used to judge probability models or probability distribution prediction samples, we
utilize perplexity to evaluate the effect of user’s preference inferred by each model. The
ability of perplexity is to predict words in new documents, which are not observed. The
smaller the value of perplexity, the better the performance of the model in mining user’s
intention. Perplexity can be calculated as follows:

Perplexityportion(M) =

(
D

∑
d=1

Nd

∑
i=P+1

p
(
wi
∣∣M, w1:p

))− 1
∑D

d=1 (Nd−p)

where M is the set of model parameters learned from the training set, d represents the
document, and Nd is the number of words in the document.

To make the experimental results more reliable, we sample the observed in the AOL
dataset at different scales (from 10% to 90%). It can be seen from Figure 4 that the perplexity
of each model gradually decreases with the expansion of the percentage of the observed
data. This shows that each model gets better at predicting consumer preferences with the
growth of the observed data. Compared with the other five models, the perplexity degree
of our ALDA model is the smallest, from 1100 to 2500, which indicates that ALDA preforms
best among the six models for identifying consumer interests. This is because ALDA
models the interactive relationship between queries and webpages. In reality, a consumer’s
shopping process is actually a process of understanding and evaluating products. First,
users may enter inaccurate keywords to express their needs. Then, users enhance their
understanding of products through browsing the search results and adjusting the input
keywords. Consumers will repeat this learning process until finding the right product.
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That is to say, the topics of query keywords and the topic of search results are semantically
related to each other. Thus, modeling this interaction between queries and webpages helps
us to more accurately capture changes in consumer’s interests and preferences. This is
the fundamental reason our model is better than other models in identifying consumers’
purchase intentions.
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Figure 4. Comparison of user’s preference inferring performance.

As LDA and Twitter-BTM do not model how the topics in search queries relate to
the topics in the corresponding search results, they obtain the worst performance on
understanding users’ preference. Both UCIT and UATM learn the topic distributions in the
user’s content and followees’ content, which enables extensive mining and understanding
of user’s preference and intention, and the experimental results also confirm that UCIT and
UATM significantly perform better than LDA and Twitter-BTM. HDLDA models query
the document and the webpage document in two hierarchical LDA processes, and they
assume that the query document is semantically related to the webpage document, which
contributes to a slight lead over UCIT and UATM in understanding the user’s interest.
Although HDLDA produces good results, it performs worse than ALDA. This is due to
HDLDA failing to capture the interactive relationship between queries and webpages.
In summary, our ALDA model always outperforms the other comparison models on
predicting consumers’ purchase intentions.

4.3. Evaluation of Recommendation Results

The proposed Topic-HGNN framework incorporates the topic model into a hyper-
graph neural network for enhancing user and item embedding representation. Five typical
topic model-based recommendation techniques and two state of art neural network-based
recommendation methods are selected as baselines.

In order to examine whether the user and the item feature identified by the Topic-
HGNN can achieve better personalized recommendations, we utilized precision and diver-
sification to evaluate the recommendation results in detail. The experiment was conducted
on the Retailrocket dataset.

• CTR provides an interpretable latent structure for users and items by combining the
merits of traditional collaborative filtering and probabilistic topic modeling [54].

• SVD-LDA improves SVD-based recommendations for items with textual content with
topic modeling of this content [55].

• CoAWILDA relies on an adaptive online Latent Dirichlet Allocation to model newly
available items arriving as a document stream and incremental matrix factorization
for collaborative filtering [56].
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• AR-LDA uses topic modeling and sequential association rule mining to capture the
preference of the user’s product changes over time [57].

• EUU-CF extracts topics in Wikipedia by using the LDA model and then uses the topics
on user browsing history to extract user preferences [58].

• Graph-CNN is a graph convolutional neural network-based approach to recommend
products to users by analyzing their previous interactions [42].

• HyperCTR learns item representations based on multi-modal information interactions
among users and items [48].

4.3.1. Precision of Recommendation Results

We adopt two commonly used metrics, Precision and Recall, to evaluate the accuracy
of recommendation results obtained by each recommender method. Precision and Recall
are defined as:

Precision = ∑u∈U |R(u)∩T(u)|
|R(u)|

Recall = ∑u∈U |R(u)∩T(u)|
|T(u)|

where R(u) denotes the recommendation list based on the training dataset, and T(u)
denotes the recommendation list based on the test dataset.

To evaluate the accuracy of recommendation results obtained by each recommender
technique, we set the number of recommendations from top10 to top100.

Figure 5 shows the comparison of the accuracy of recommendation results generated
by each recommender technique.
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Figure 5. Comparison of recommendation result accuracy: (a) precision of top-k items; (b) recall of
top-k items.

We can observe that the accuracy of recommendation results generated by topic-based
methods CTR, SVD-LDA, CoAWILDA, AR-LDA, and EUU-CF are very close to each
other and are significantly worse than Graph-CNN, HyperCTR, and Topic-HGNN. This is
because topic-based methods focus on improving recommendations for items with textual
content. They infer the user’s interest based on the user’s purchase behavior, which is
difficult to refine user preferences for different product attributes and capture high-order
correlations between users and items. Different from topic-based recommendation models,
Graph-CNN, HyperCTR, and Topic-HGNN infer the user’s preference from rich user-
product interaction information. Although Graph-CNN and HyperCT also produces good
accurate recommendations, it performs worse than Topic-HGNN. This is due to the Graph-
CNN and HyperCT only focusing on learning user interaction characteristics with products
during and after purchase (e.g., purchase and online review) and ignoring the interactive
features in the process of users’ learning about product information through search queries
before they make a purchase (e.g., product information search). However, user association
with a product is a coherent process that should not be isolated into different nodes. Our
Topic-HGNN integrates a topic model and a hypergraph neural network, which can deal
with the interaction behavior of consumers in the whole process of shopping (i.e., searching-
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understanding-purchasing-using). Besides, the Topic-HGNN obtains the convolutional
semantic features of users and items, and uses the topic model to obtain the corresponding
topic features. The result shows that incorporating the topic information from users and
items into a convolutional neural network can effectively represent user preferences and
item features, which can significantly improve the accuracy of prediction scores. The result
also demonstrates the structural superiority of the searching-scenario oriented hypergraph,
which gives the recommender system a chance to identify different semantic facets of the
input search phrases.

4.3.2. Novelty of Recommendation Results

Only verifying the accuracy of model recommendation results is not enough to explain
the personalized effect of a recommendation model. As the collaborative filtering only
depends on the user’s past purchase behavior, users can only get recommendations similar
to items in their own profile and hardly get diversified options. So, experiments are further
designed to verify the ability of the recommendation model to discover novel items to
the target user. We adopt the novelty metric [59] to measure the ability of recommenda-
tion model to find novel items. The lower the Novelty is, the more novel products are
recommended. Novelty is defined as:

novelty =
1

mk ∑m
u=1 ∑i∈Lu

di

where Lu is the top-k list of a user u, m is the number of users, and di is the degree of item i,
i.e., the number of users that rated the item i.

We set the number of recommendation items to 10, and experimented on the Retail-
rocket datasets 32 times each. A smaller novelty value indicated that the recommendation
items were more novel.

Figure 6 shows the comparison of the novelty of recommendation results generated by
each recommender technique. We can observe that the novelty of recommendation results
generated by CTR, SVD-LDA, CoAWILDA, EUU-CF, and AR-LDA are very close to each
other and are significantly worse than Graph-CNN, Hyper-CTR, and Topic-HGNN. This is
because CTR, SVD-LDA, CoAWILDA, EUU-CF, and AR-LDA infer the user’s interest based
on the user’s historical purchase behavior, which is difficult to discover new products for
consumers. This result demonstrates that the topic-based method is significantly worse
than the graph-based method. The Topic-based method regards the interaction between
users and products as a matrix, and it focuses on mining linear correlation and low-rank
information. However, graph-based methods focus on mining interaction information
and high-order relation in the graph. Compared with the matrix, the graph can describe
more information, such as the link to describe the connection between adjacent vertices,
the overall connection between all vertices in the graph, and the link density to describe
the community structure in the graph. The graph has a powerful representation ability
and the effect of the graph-based method is significantly better than that of the traditional
recommendation algorithm.

Our Topic-HGNN is significantly better than Graph-CNN, Hyper-CTR, which demon-
strates that Topic-HGNN can identify different semantic facets of input search phrases.
Topic-HGNN can obtain semantic associations among consumers’ online queries, their
click, purchase, and online review behavior that are better than Graph-CNN, Hyper-CTR.
Topic-HGNN simultaneously considers heterogeneous interactions and homogeneous
interactions in the user purchasing paths, which can better utilize the deep connection
information contained in the interactive graph domain, and it is not limited to the observed
links.
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Figure 6. Comparison of recommendation result novelty.

In summary, our Topic-HGNN could improve the novelty of recommendation items
without sacrificing accuracy.

4.3.3. Efficiency of Topic-HGNN

The running time and the memory consumption of each method under different query
search volumes on Retailrock dataset is shown in Tables 3 and 4. We set the number of
recommendation results as 10. From Table 3, it can be seen that the recommendation frame-
work based on a topic model is significantly better than the recommendation framework
based on graph learning in terms of running time. Although the recommendation frame-
work based on a topic model is approximately 15% more efficient than the recommendation
framework based on graph learning, the quality of the results identified by the recommen-
dation framework based on graph learning on the accuracy, recall, and novelty indicators
improved by 53%, 51%, and 46%. This also demonstrates that the method based on graph
learning can significantly improve the quality of recommendation results at the expense of
a small amount of operating efficiency. Among the three graph-learning-based methods,
the running time of our model is slightly higher since our method models the quaternary
higher-order relationship among consumers, queries, items, and features. Thus, Topic-
HGNN is significantly superior to that of Hyper-CTR and Graph-CNN, when sacrificing a
relatively low efficiency.
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Table 3. The running time of each method under different query search volumes on Retailrock dataset
(the number of recommendation results is 10).

Method
Running Time
(103 Queries)

Running Time
(104 Queries)

Running Time
(105 Queries)

CTR 12.12 ms 2095.54 ms 49,514.16 ms

SVD-LDA 11.87 ms 2294.63 ms 48,510.53 ms

CoAWILDA 11.65 ms 3220.22 ms 46,767.78 ms

AR-LDA 8.02 ms 3076.21 ms 38,881.03 ms

EUU-CF 8.54 ms 3085.96 ms 48,736.47 ms

Graph-CNN 15.57 ms 5014.59 ms 58,294.41 ms

Hyper-CTR 19.56 ms 4963.22 ms 59,324.57 ms

Topic-HGNN 19.67 ms 5038.40 ms 58,290.89 ms

Table 4. The memory consumption of each method under different query search volumes on Retail-
rock dataset (the number of recommendation results is 10).

Method
Memory Consumption

(103 Queries)
Memory Consumption

(104 Queries)
Memory Consumption

(105 Queries)

CTR 83 MB 347 MB 970 MB

SVD-LDA 89 MB 385 MB 1102 MB

CoAWILDA 96 MB 403 MB 1165 MB

AR-LDA 77 MB 311 MB 928 MB

EUU-CF 79 MB 284 MB 944 MB

Graph-CNN 882 MB 1509 MB 3259 MB

Hyper-CTR 926 MB 1647 MB 3895 MB

Topic-HGNN 974 MB 1802 MB 3971 MB

As can be seen from Table 4, the Topic-HGNN framework does not consume addi-
tional memory compared to other graph-based learning methods. This is because the
Topic-HGNN is decomposed by hyperedge corruption, importing batches of vertices and
hyperedges each time to relieve memory pressure. Therefore, in summary, the Topic-HGNN
proposed in this work can produce better recommendation results, while being almost as
effective as other graph-based methods.

5. Conclusions

Personalized product recommendation systems are a useful tool adopted by e-retailers
to help consumers find items in line with their preferences. Existing research focuses on
learning user interaction characteristics with products during and after purchase (e.g., pur-
chase and online review), while ignoring the interactive features in the process of users’
learning about product information through search queries before they make a purchase
(e.g., product information search). However, users’ association with a product is a coherent
process that should not be isolated into different nodes. Only sorting the user’s process
of searching-understanding-purchasing-using products and finding opportunity points
from each stage can help the recommender system to better discover the potential needs
of users. To this end, we develop a topic augmented hypergraph neural network frame-
work to predict users’ purchase intentions by connecting the latent topics embedded in
consumers’ online queries to their click, purchase, and online review behavior. First, we
adopt a hypergraph to model the multivariate relationship among users, query topics,
items, and item features, which aims at mining the connection information existing in
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the interaction graph domain. Then, we utilize the hyperedge corruption to generate a
user-query hypergraph and an item-feature hypergraph and utilize the hyperedge con-
volution layer to obtain user embedding and item embedding. Meanwhile, in order to
reduce the influence of text noise words by fusing topic information, we specially design
an Aggregated Latent Dirichlet Allocation (ALDA) model to jointly extract users’ content
preference topics from queries and webpages and apply Latent Dirichlet Allocation model
to extract product feature topics from online reviews. Then, we integrate the topic distri-
bution and convolutional embedding to represent each user and item, which can make
up for the lack of topic information in traditional convolutional neural networks. Finally,
we use multilayer perceptron to calculate the soft match score between query entities and
item entities. Extensive empirical evaluations on real-world datasets demonstrate that
the proposed framework could improve the novelty of recommendation items without
sacrificing accuracy. From the managerial perspective, recommending diversified and
novel items to consumers may increase the user’s satisfaction, which is conducive to the
sustainable development of e-commerce enterprises.

With the rapid development of mobile commerce, more and more recommendation
services occur in dynamically changing contexts, such as user location, access time, current
traffic, and other surrounding environments. Traditional personalized recommendation
technology is no longer enough to deal with the new impact caused by contextual factors.
Therefore, our future work will focus on integrating and applying contextual information
into the hypergraph framework, which aims at combining context development diagram
and user behavior prediction to form a unified and concise context-based recommendation
model. In this work, we assumed that search query documents and webpage documents
follow the same topic distributions. In reality, search query documents and webpage
documents sometimes didn’t follow the same topic distributions. Thus, examining the
impact in the results when search query documents and webpage documents did not follow
the same topic distribution is also a future research topic.
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Abstract: Analyzing, evaluating, and predicting the trend of globalization are highly valuable
endeavors. However, existing literature lacks a quantifiable metric for objective evaluation. To fill the
gap, we first compiled a Globalization Index based on existing globalization indices and using the
CRITIC weighting method. Second, we constructed the Globalization Barometer and a trend term
for trend analysis using the HP filtering method. Third, we conducted time-series predictions for
globalization trajectory by applying the Random Forest model. Our results indicate that: (1) The
de facto and de jure globalization both displayed a gradually upward trend over time; (2) the 2008
financial crisis and the 2020 COVID-19 pandemic negatively impacted globalization and served as
turning points; (3) on a positive note, COVID-19 has narrowed the gap in both de facto and de jure
globalization. This is due to the fact that the shocks were uneven, with economies that participated
more in globalization weathering the brunt of the impact, while economies that participated less
experiencing little changes; (4) the de facto and de jure globalization are predicted to remain on an
upward trend for the subsequent 5 years. This research provides essential references for assessing
and predicting globalization trends.

Keywords: globalization; COVID-19 pandemic; globalization barometer; trend analysis; trend
forecasting

1. Introduction

Globalization is an impactful force for countries and regions all over the world. The
trend of globalization influences multiple stakeholders, not least of which include actors in
the economic, social, and even political fields. Most stakeholders need to base and readjust
their strategies on how globalization will proceed.

Despite its importance, there is no consensus on assessing the trend of globalization in
the existing literature. Some scholars believe that globalization is irreversible and it will
continue to move forward. They argue that the globalization variables are more resilient
than most people expected [1]. The increasing mobility of people, information, and technol-
ogy worldwide has reduced the possibility of deglobalization [2]. Among them, positive
globalization trends are especially reflected in increasing global exchanges of services and
data [3]. Moreover, based on the fact that the world remains highly collaborative during
the coronavirus outbreak, globalization will not end as a result of the pandemic [4]. Some
foresee a slowdown in globalization in the near and long-term future, characterized by
the concept of “slowbalization” [5]. These ideas predate the COVID-19 outbreak, such as
the likely deceleration of globalization suggested by Bordo [6]. However, slowbalization
is not a uniform trend. It includes a recession in economic globalization and a boom
in information globalization [7]. Others hold the view that globalization is suffering a
downturn. The current deglobalization is partially triggered by the pandemic exposing
the underlying fragility in globalization [8,9]. This crisis has spurred the pre-pandemic
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globalization skeptics [10], with economic and social factors further accelerating this skep-
ticism worldwide [11]. Scholars conclude that, due to various anti-globalization factors,
including inter-country inequalities, populism, protectionism, and unilateralism, a greater
globalization process is difficult to achieve in the current world economy [12]. Populism, in
particular, is heavily impactful. It threatens not only economic but also social and political
globalization [13,14]. This rise of populism is fueled by the backlash against neoliberal
constitutionalism [15]. Some scholars have refrained from defining a fixed standpoint, as it
remains uncertain whether the crisis triggered by the COVID-19 pandemic marks the end
of globalization [16]. However, they have pointed out crucial factors that may influence
future trends. Digitalization, for instance, projects both centrifugal and centripetal forces on
globalization [17], while the pandemic has transformative effects that paint a new image of
a post-Covid era global market [18]. While recent studies have made important progress in
evaluating and projecting how connections in the world will develop moving forward, they
are mainly qualitative studies and therefore by nature, are prone to subjective judgements.

Another related strand of literature is the study of globalization indices. Traditionally,
sociologists, economists, and others worked on different dimensions of globalization [19].
However, globalization by definition is a multifaceted concept that includes economic,
social, and political aspects [20]. Therefore, to measure globalization in a more compre-
hensive way, most of the existing globalization indices have adopted an interdisciplinary
approach, i.e., a composite index of globalization. The A.T. Kearney/Foreign Policy Glob-
alization Index [21] was the first systematic measure of globalization, which measured
and ranked 62 countries worldwide on four dimensions: Economic integration, personal
contact, technological connectivity, and political engagement. Noteworthy indices include:
The KOF Globalization Index [22] uses 43 indicators in the economic, social, and political
dimensions and covers data pooled from 203 economies between 1970 and 2018. The CSGR
Globalization Index [23] applies 16 indicators along the economic, social, and political di-
mensions, covering data from 119 countries and regions from 1982 to 2004. The Maastricht
Globalization Index [24] measures the level of globalization in 117 countries in 2002, 2008,
and 2012 presenting five dimensions: Political, economic, social and cultural, technological,
and environmental. The DHL Global Connectedness Index [1] measures the depth and
breadth of global connectivity of 140 economies between 2005 and 2020, using 12 indicators
along four dimensions: Trade, capital, information, and people. The prior research showed
its merits in providing the basic quantitative framework and methodology for constructing
a globalization index. However, their scope is rather limited to presenting globalization in
the past and present rather than trend analysis and forecasting.

In this case, an approach which quantifies the trend of globalization will be useful to
provide forward-looking analyses, especially given that it is the changes of globalization
than globalization per se that fulfills the greatest need. Current literature in economics and
other fields used barometers to assess the trend of specific variables [25,26]. A barometer is
a composite indicator designed for assessing the trend of growth and discovering turning
points [25,26]. This implies that the construction of a barometer would serve as a suitable
way to quantify globalization trends, which is rarely covered in the existing literature. The
barometer can deliver fact-based, future-oriented solutions for industrial activities, provide
theoretical instruments for academic purposes, and serve as a window for the public to
monitor the current state of global interconnectedness.

In this paper, we constructed the Globalization Barometer and provided a trend
analysis of globalization. Our research pooled data from 142 economies from 2000 to 2020,
spanning economic, social, and political dimensions. The CRITIC method was used to
assign indicator weights. The HP filter was used to implement the trend analysis. Finally,
the Random Forest model was used to conduct time-series predictions for globalization
trajectory.

The rest of the article is organized as follows. Section 2 illustrates the data and methods.
Section 3 presents the results. Sections 4 and 5 are intended for discussion and conclusion.
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2. Materials and Methods

2.1. Methodology Procedures

As presented in Figure 1, the assessment and prediction of globalization trend involve
three steps:

(1) The compilation of the Globalization Index. Initially, we compiled our globalization
indicator framework by making revisions and amendments to existing globalization
indices. Accordingly, relevant data were collected, imputed and normalized. Then,
we used the CRITIC method to assign weights and aggregated the indicators to the
globalization index.

(2) The construction of the Globalization Barometer. We applied the HP filtering method
to decompose the globalization index into two parts: The trend term and the deviation
term, of which the latter is used to construct the Globalization Barometer.

(3) Time-series prediction of globalization trajectory. The Random Forest model is used
to predict the subsequent periods of globalization level.

Figure 1. Methodology procedures.

2.2. Compilation Framework of the Globalization Index

A clear and universally recognized definition of globalization is necessary for com-
piling a globalization index. Based on emblematic articles in the field of globalization,
including Sklair [27,28], Stoudmann and Al-Rodhan [29], and Scholte [30], globalization
is defined as the global increase in connection, interdependence, and convergence of all
economies in the economic, social, and political fields. In this work, we define global-
ization in three sub-dimensions: Economic globalization is reflected in the cross-border
flows of products and services and the allocation of production factors on a global scale.
Social globalization covers the migration of people and the transmission of information,
accompanied by the convergence of cultures and exchanges in science and technology.
Political globalization denotes intergovernmental cooperation and collaboration within the
framework of international organizations.

Existing globalization indices have provided an adequate structure to quantify the
level of globalization. Following Gygli et al. [22], we introduce two dimensions, namely, de
facto and de jure globalization. De facto globalization refers to the extent to which a country’s
participation in globalization has been achieved, while de jure globalization is defined as
the decisions, policies, institutions, and other proactive factors that the country has put in
place to make its participation in globalization more possible.

Based on prior indices, our index also made several adjustments and improvements
as described below.

(1) We measured political globalization more broadly. As an expansion of existing in-
dices [22–24], the political dimension is determined by two sub-dimensions: Inter-
national cooperation and global governance. International cooperation measures
the degree of intergovernmental coordination and communication, while global gov-
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ernance evaluates the participation level of each government in the framework of
international organizations. Of note, this paper differs from existing indices in the
identification of international organizations. Existing indices mostly use all inter-
governmental organizations (IGOs) and non-governmental organizations (NGOs).
This approach assumes that all IGOs and NGOs contribute equally to the process
of globalization, neglecting the individual difference in capacity. In our context, the
international organization mainly refers to the UN and its affiliated institutions, since
we propose that UN plays a crucial role in the formation of modern globalization and
thus should lay emphasis on its work.

(2) We measured social globalization more impartially. Indicators, such as McDonald’s
restaurants and IKEA stores, have long been criticized for measuring Americanization
or Westernization rather than cultural globalization, as pointed out in the founding
paper of the KOF index [22]. Accordingly, we removed these indicators and used trade
in printed goods and international trademarks instead to evaluate de facto cultural
globalization.

Another adjustment reflects in the inclusion of decentralized indicators. Some new
indicators, such as the language popularity index, are added to our index system. Rather
than measuring the average proficiency of English in a given country, the language pop-
ularity index measures the number of foreign nationals speaking the majority language
of that country (the most spoken language among all official languages of that country)
as a percentage of those speaking that language worldwide. Language functions as the
medium of culture [31], opens more possibilities for cultural transmission and exchange,
and thus could be included in cultural globalization. Additionally, the social tolerance in-
dex, which refers to the extent of recognition and acceptance of differences, and willingness
to grant equal rights [32], was included to address the importance of mutual respect and
appreciation of different cultures.

(3) In addition to the adjustments in the indicators, there are some amendments to the
measurements. Previous studies have shown that absolute indicators are prone to the
impact of scale [22]. Therefore, the indicators chosen in this paper are mostly relative
indicators. This method ensures all components are statistically comparable.

In conclusion, this paper constructed a de facto and de jure globalization index sys-
tem consisting of three primary, eight secondary, and twenty-eight tertiary indicators as
demonstrated in Table 1. See Table A1 in Appendix A for measurement of all indicators.

Table 1. The globalization index: Variables description.

Primary Indicators Secondary Indicators Tertiary Indicators Source

Economic

Trade

de facto Trade in products World Bank WDI
Trade in services World Bank WDI

de jure Tariffs World Bank WDI
Trade agreements DESTA

Financial

de facto
Foreign direct investment IMF IIP

Portfolio investment IMF IIP
International income payments IMF BoP

de jure Capital account openness Knoema
International investment agreements Investment Policy Hub
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Table 1. Cont.

Primary Indicators Secondary Indicators Tertiary Indicators Source

Social

Informational
de facto Used internet bandwidth ITU ICT-Eye
de jure Internet access ITU ICT-Eye

Interpersonal

de facto
International tourism World Bank WDI
International students World Bank WDI

Migration World Bank WDI

de jure Freedom to visit DEMIG VISA
International airports CIA World Factbook *

Technological
de facto International patents World Bank WDI

High technology exports World Bank WDI

de jure Global innovation index GII

Cultural

de facto Trade in printed goods UN Comtrade
International trademarks WIPO IP Portal

de jure Social tolerance index World Value Survey
Language popularity index Ethnologue *

Political

International
Cooperation

de facto Foreign affairs agencies Lowy Global
Diplomacy

de jure International organizations CIA World Factbook *
International treaties UN Treaty Collection *

Global governance de facto Speech contribution in UN UN Digital Library *
de jure UN peacekeeping contribution UN Peacekeeping *

* Indicators manually collected and calibrated from accessible databases.

2.3. Data
2.3.1. Data Collection and Sample Selection

In this work, we covered diverse data from the economic, social, and political fields.
Our primary sources of data are obtained from databases of the UN, the World Bank, and
the IMF. In addition, our work collected data from trustworthy sources, such as the CIA,
the World Value Survey, and Ethnologue. In total, all 19 different databases were consulted
(Table 1).

The raw dataset covers 217 economies with 28 variables (indicators) over the timespan
(year 2000 to 2020). However, it suffers from a severe missing observation problem, which
calls for sample selection. We decide whether to retain a sample following two principles:
(1) Data coverage ratio should be improved; (2) the structure of the sample should be in
proportion to the raw dataset from a geographic and economic perspective. With careful
consideration, we narrowed our sample to 142 economies. See Table A2 in Appendix A for
the structure of the sample compared with the raw dataset.

2.3.2. Data Processing

Data processing involves imputation of missing data and data normalization. Fol-
lowing the practice of existing globalization indices [22–24], we imputed the missing data
within a series using linear interpolation and extrapolation. In addition, the values of the
indicators themselves are not comparable due to differences in the scale and units of the
indicators. Therefore, we normalized the data using the max-min method.

2.4. Methods
2.4.1. The CRITIC Method

Two major weighting systems are used in related studies: The objective and subjective
weighting methods [33]. The former is dataset-driven, while the latter is expert-driven. In
order to eliminate subjective biases, our work employs the CRITIC method to aggregate
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our indicators. This method is based on evaluating the comparative strength between
indicators and the deviation of indicators to determine the weights of indicators.

Consider a normalized dataset represented by matrix M:

M =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤
⎥⎥⎥⎦ (1)

where m denotes the number of observations, and n denotes the number of indicators under
the same category.

While determining the weights of a specific indicator, both standard deviation and
its correlation between indicators are considered. In this regard, the weights are obtained
as follows:

wj =
Cj

∑n
j=1 Cj

(2)

where Cj denotes the quantity of information j-th indicator contains, which is determined as:

Cj = σj ·
n

∑
k=1

(
1 − rkj

)
(3)

where σj represents the standard deviation, and rkj represents the correlation coefficient
between indicator k and j.

2.4.2. HP Filter

Inspired by the Global Trade Barometer issued by World Trade Organization
(WTO) [28], our work uses the Hodrick-Prescott (HP) filter method to formulate the Global-
ization Barometer. The HP filter, first proposed by Hodrick and Prescott [34], is a commonly
used data-smoothing tool in macroeconomics. We use the HP filter method to decompose
a series into trend and cyclical components. The original series can be represented as the
following function:

yt = τt + ct (4)

where yt is the original series, τt is the trend component for the long-term path, and ct is
the cyclical component which denotes short-run dynamics. The deviation is the actual level
of output from the long-term trend. Therefore, the HP filter is defined as the following
optimization function:

min{τt}

{
T

∑
T=1

(yt − τt)
2 + λ

T−1

∑
t=2

[(τt+1 − τt)− (τt − τt−1)]
2

}
(5)

where the first term is interpreted as the sum of the squared differences between actual
globalization and trend, and the second term is a second-order difference equation that
exists for the trend multiplied by the smoothing parameter λ. This parameter will determine
the amount of volatility associated with a trend, namely, the higher λ that is used, the
smaller the volatility will be. Following Backus and Kehoe [35], the value of the smoothing
parameter λ is assigned to a value of 100 for annual data in this paper.

2.4.3. Random Forest Model

Machine learning is the learning process of analyzing data automatically to obtain
a model from the data and using the model to make predictions about unknown data.
Random Forest is an integrated algorithm that reduces the variance of a model by com-
bining multiple decision trees, correcting the habit of a single decision tree to over-fit its
training set. Among various machine learning algorithms, Random Forest generally has
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better generalization performance [36]. It is resilient to outliers in the dataset and does not
require considerable parameter-tuning. In 2001, Breiman [37,38] improved the Random
Forest model, which not only simplified the computational effort and improved accuracy,
but also better predicted small sample sizes and unbalanced datasets.

In this work, 5-fold cross-validation and “out-of-bag” (OOB) method are used to
evaluate the model performance. K-fold cross-validation is a resampling procedure for
evaluating machine learning models on the limited sample [39]. We validate our results by
randomly partitioning data into k mutually exclusive subsets. One set is used for validation,
the other k-1 sets are used for training. The validation process is repeated for k times. K is
usually chosen to be 5 or 10, but there is no formal rule. We choose k = 5 in this paper. The
OOB method is another evaluation method, in which OOB observations are used to create
training samples [40].

3. Results

3.1. Globalization Barometers and Trend Terms on World Average

Drawing on the idea of the Global Trade Barometer of WTO [28], this paper compiles
the Globalization Barometer with de facto and de jure dimensions. The steps are as follows:
First, the HP filter is applied to the Globalization Index measured in Section 2, and the
trend term is extracted; next, the index value is subtracted from the trend term to obtain the
deviation term; finally, the deviation term is normalized and added by 100, and compared
against the barometer standard interval. The standard barometer interval is set by taking
100 as the baseline, and the intervals (99, 101), (101, +∞), and (−∞, 99) are defined as “in
trend” (yellow), “above trend” (green), and “below trend” (red), respectively.

Figure 2 shows the de facto and de jure Globalization Barometer, as well as the trend
components. In terms of de facto globalization, the trend term is generally upward. During
the past two decades, two global events, i.e., the 2008 financial crisis and the COVID-19
outbreak in 2020, influenced its progress, as shown by the grey areas. The financial crisis in
2008 caused a significant dip in de facto globalization. The de facto Globalization Barometer
soared to 101.58 on the eve of the 2008 crisis, and then fell to the bottom of 98.84 when the
crisis started to spread, turning from “above trend” to “below trend”. Since then, de facto
globalization resumed its positive development until the pandemic hit the world in 2020,
when de facto globalization suffered an even greater fluctuation. As shown in Figure 2b, a
significant “above trend” could be observed in 2019, before a sharp drop to “below trend”
in 2020, when the pandemic began to exert its negative influence on the world economy
as well as other aspects of human lives. Moreover, the pandemic even caused the trend
component to decrease. This is partly a reflection of the fragility and relative instability of
globalization, where global events at the economic, social or political level could destabilize
the level of de facto globalization. Overall, however, a positive trend is evident in de facto
globalization.

The de jure globalization shows a relatively flat upward trend in general, which is also
impacted by the 2008 crisis and the 2020 pandemic. The 2008 crisis had a lagging effect
on the de jure globalization. Since 2010, there has been a general slowdown in the growth
of de jure globalization, even if it remained positive until 2020. The de jure Globalization
Barometer fell from 101.86 (above trend) in 2008 to 98.71 (below trend) in 2011. From
2018 onwards, de jure globalization remained at the previous level until 2020 when de
jure globalization dipped following the outbreak of the COVID-19 pandemic. The trend
component eventually fell, and the barometer dropped to 98.41 (below trend). The above
results further illustrate the continuing negative impact of the crisis on de jure globalization.
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Figure 2. Barometers and trend terms of de facto and de jure globalization. (a) De facto globalization
trend term. (b) De facto globalization barometer. (c) De jure globalization trend term. (d) De jure
globalization barometer.

Figure 3 shows the de facto and de jure Globalization Barometer for 2020. In 2020, the
de facto Globalization Barometer of 97.86 was “below trend”. The de jure Globalization
Barometer was 98.41, also “below trend”. The results show that the pandemic in 2020 has
challenged the development of globalization in the world and has dealt a huge blow to the
globalization process.

 
(a) (b) 

Figure 3. Globalization barometer. (a) De facto globalization barometer. (b) De jure globalization
barometer.

3.2. Spatial Variations

For further analysis, we have systematically analyzed the level of de facto and de jure
globalization and barometers for all sample economies. The spatial variations of de facto
and de jure globalization and their barometers in 2020 are illustrated in Figure 4. We observe
that the variations of de facto and de jure globalization are characterized by regional spatial
agglomeration.
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Figure 4. Cont.
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(d) 

Figure 4. Spatial variation of the globalization index and globalization barometer in 2020. (a) Spatial
variations of de facto globalization. (b) Spatial variations of de facto globalization barometer. (c) Spatial
variations of de jure globalization. (d) Spatial variations of de jure globalization barometer.

For de facto globalization and its barometer in 2020, we can observe the following, as
illustrated in Figure 4a,b:

(1) Economies with higher de facto globalization tend to cluster in the North America,
North-Eastern Asia, and Europe. For instance, the de facto globalization of the United
Kingdom, the United States, Germany, China, and France were higher than 1.0, which
indicates that their participation level surpassed the global average by at least one
standard deviation.

(2) Comparatively speaking, South America, Central Asia, Central, and Eastern Europe,
and Africa were less involved. For instance, the de facto globalization of Uganda,
Nepal, Venezuela, and Sri Lanka were less than −0.50.

(3) The Barometers of different regions and countries were also differentially impacted by
the pandemic. Interestingly, we have found a greater impact in economies with more
involvement in globalization. Economies with traditionally high de facto globalization
values, such as China, Russia, and the US, ranked lower in the barometer, scoring 97.74,
97.55, and 97.53, respectively. Meanwhile, countries with lower de facto globalization
were less exposed to shocks, especially those in South America, Central Asia, and
Africa as well as Oceania, with economies sitting at or above trend. These results
indicate that the impact of the pandemic on globalization is not uniform across
the globe, serving as an equalizer of sorts, leveling the differences in globalization
participation in the post-COVID world.

Second, let us focus on the de jure globalization and its barometer in 2020. From
Figure 4c,d, we can observe:

(1) Economies in Western Europe, Northern Europe, and North America tend to have
higher de jure globalization scores, with the de jure globalization of France, Germany,
Netherlands, Belgium, and the United Kingdom higher than 1.0.

(2) Certain countries or regions showed lower de jure participation, especially those in
South America, Central Asia, and Africa, with the Philippines, Myanmar, Fuji, Sri
Lanka, and Uzbekistan scoring less than −0.50.

(3) Of note, the de jure globalization of most countries has not been significantly ham-
pered by the pandemic. The proportion of countries with the barometer of de jure
globalization above or in trend was about 74.6%. Only North America and a few
countries in Asia and Europe were below trend, including Germany, Japan, and the
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United States, scoring 97.86, 97.77, and 97.55 in 2020, respectively. Compared with de
facto globalization, de jure globalization was more stable.

3.3. Driving Forces

Figure 5 presents the three-dimensional forces, i.e., economic, social, and political
factors, of the de facto and de jure Globalization Barometer for 2020.

(a) 

(b) 

Figure 5. Three-dimensional forces of globalization barometer. (a) Three-dimensional forces of de
facto globalization barometer. (b) Three-dimensional forces of de jure globalization barometer.

3.3.1. Driving Forces of de Facto Globalization Barometer

In 2020, the de facto economic Globalization Barometer was in trend (99.26). The de
facto social Globalization Barometer was also in trend (100.86), while the de facto political
Globalization Barometer was below trend (97.44).

First, the de facto economic globalization displayed remarkable buoyancy in the face
of the significant shocks caused by the COVID-19 outbreak. In response to the virus,
economies around the world implemented lockdowns and restrictions, generally disrupting
international trade. However, after a brief negative depression, global trade quickly turned
positive in the second half of 2020, as suggested by the DHL connectedness index. Mirroring
this trend was the global financial markets, which responded negatively with increased
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uncertainty and systematic risks during the pandemic, likely exacerbated by the loss of
confidence from investors and other actors responding to more pessimistic forecasts. Yet,
a general recovery in the global trade was thought to have contained the panic in the
global financial markets, contributing to more stability and positive prospects regarding
international capital flows.

Second, de facto social globalization is characterized by structural differences. Restric-
tions on international travel greatly disrupted cross-border human exchange, leading to
a fall in interpersonal globalization. The main means of international transportation, air
transport services, including the airline industry, suffered a great blow. However, it is
also worth mentioning that informational globalization boomed during the pandemic, to
some extent mitigating social impacts. Limitations on public gatherings and activities led
to a significant increase in online activities and far more frequent internet use compared
with pre-pandemic times, which fostered thriving online communities. The exchanges of
information became considerably more efficient thanks to the internet, and informational
globalization acted as a major counter-weight against the negative impact of interpersonal
globalization. Therefore, de facto social globalization maintained a mildly steady trend
in 2020.

Third, as for political globalization, both international cooperation and governance
displayed a downward trend in the post-pandemic period. A relatively lower speech
contribution in UN conferences, which brings more uncertainty to political globalization,
may provide one of the reasonable explanations for the trend.

Overall, there are well-grounded reasons to expect the optimistic development of
economic and social globalization in the short-term, whereas more attention needs to be
paid to the dynamics of de facto political globalization.

3.3.2. Driving Forces of de Jure Globalization

In 2020, the de jure economic Globalization Barometer is falling at 97.85, far below
trend; the de jure social Globalization Barometer is 98.1, also “below trend”; the de jure
political Globalization Barometer is 99.93, in trend.

First, before the pandemic, populism and protectionism actions by several economies
have stirred up hostile emotions in international trade. These emotions were exacerbated
by the 2020 global health crisis and its concomitant economic fallout, as economies trying
to establish new trade agreements diverted strategies to cope with the ongoing pandemic.
Consequently, fewer trade agreements have been signed since the onset of the pandemic.
According to the United Nations Treaty Collection, 356 trade agreements were signed in
2020, six less than in 2019; 437 trade agreements entered into force in 2020, 51 less than
in 2019.

Second, when considering de jure social globalization, the clear inconvenience caused
by restrictive measures discouraged international human exchange, especially cross-border
travel. The construction of new airports also slowed down due to a decrease in international
traffic demand, following a decrease in visas issued due to stricter border controls and other
relevant COVID-19 countermeasures. An inactive trend in interpersonal infrastructure was
one of the major factors that explained the falling trend of de jure social globalization.

Third, from the perspective of de jure political globalization, international organi-
zations, especially World Health Organization, have been working around the clock to
mitigate the global impact of the pandemic with programs, such as the COVAX initiative
for worldwide vaccine distribution. Furthermore, relaxed restrictions related to the pan-
demic lead to a recovery of some UN peacekeeping missions around the world, leading to
higher participation in peacekeeping missions and indicating that political globalization is
regaining its strengths.

3.4. Forecasting Globalization Trends

Following Petukhova et al. [41], we use the Random Forest model to predict the
time-series data. The de facto and de jure globalization, as well as the economic, social, and
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political dimensions, for the subsequent 5 years after 2020 are predicted and analyzed in
this section.

In this paper, eight Random Forest models were built based on eight dimensions, i.e.,
the de facto and de jure globalization and the three subdimensions of each. For example,
the dependent variable is the de facto globalization for each economy in period t, and the
independent variables would be set to be the de facto globalization for each economy in
period t-n to t-1. To expand the sample size, we chose n = 10. Since our sample spans
from year 2000 to 2020, period t would be from year 2010 to 2020. In this way, we use data
of each dimension as dependent variables, and the independent variables are set as the
previous 10-year data for the corresponding dimension.

We used 5-fold cross-validation to find the set of parameters with the best prediction
results and chose parameters with the number of subtrees of 100, a minimum number of
samples required for internal node subdivision of 2, a minimum number of samples for
leaf nodes of 1, and the maximum number of features used for a single decision tree is

√
N

(N is the total number of features). The performance of the model was evaluated by the
coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error
(MAE) via 5-fold cross-validation (CV) and the “out-of-bag” (OOB) method. The R2 are all
above 84%, the RMSE and MAE are small for all eight models. The model is generalized
well, with no overfitting occurring. The detailed model evaluation results are shown in
Table 2.

Table 2. Model evaluation results.

Dimension
5-Fold Cross-Validation Out-of-Bag

R2 RMSE MAE R2 RMSE MAE

De facto globalization 0.9502 0.0129 0.0628 0.9508 0.0126 0.0620
De facto economic globalization 0.9750 0.0248 0.0630 0.9818 0.0190 0.0551

De facto social globalization 0.8731 0.0608 0.0697 0.8486 0.0490 0.0649
De facto political globalization 0.9400 0.0469 0.1344 0.9390 0.0462 0.1335

De jure globalization 0.9864 0.0038 0.0366 0.9865 0.0037 0.0357
De jure economic globalization 0.9896 0.0088 0.0576 0.9899 0.0085 0.0560

De jure social globalization 0.9885 0.0035 0.0332 0.9903 0.0029 0.0310
De jure political globalization 0.9459 0.0257 0.0668 0.9547 0.0228 0.0624

After training the model, we used the 10-year data from 2011 to 2020 to forecast the
result of 2021. Then, with the predicted data of 2021 as one of the features, we used the data
from 2012 to 2021 to forecast the result in 2022, followed by four more periods of prediction
from 2022 to 2025 using the same method.

Model Results

Figure 6 shows prediction results for globalization trajectory using the Random Forest
model. Both de facto and de jure globalization are projected to exhibit a steady upward trend
in the next five periods after 2020.

The projected de facto globalization for 2021 to 2025 is as follows: A significant rebound
is expected for 2021, describing a “V” curve. After the rebound, de facto globalization is
highly likely to follow a steady upward trajectory for the remainder of the 5 years; de facto
economic globalization in the same 5-year period would experience a large-scale rebound;
de facto social globalization would decrease in 2021, followed by a steady, gradual recovery;
while de facto political globalization has the potential to experience a large-scale rebound in
2021, followed by a steadily increasing trend.

The de jure globalization trend in general may remain relatively stable. For the next
5 years, de jure globalization is projected to maintain steady yet slow levels of upward
momentum. De jure economic globalization keeps pace with overall globalization, i.e., a
rebound to form a “V” curve, tapering into a slow increase; de jure social globalization
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maintains a slowly upward pace for this period; while de jure political globalization is
expected to maintain its previous level for 2021, and increases after 2022.

Figure 6. Forecasting of the globalization trends.

4. Discussion

The globalization trend impacts the economic, social, and political development of all
countries around the world, making it a highly relevant topic of discussion. Current litera-
ture is limited to qualitative judgements or point-quantifications, leaving the broader stroke
issue of trend largely untouched. In order to fill the gap, we developed the Globalization
Barometer to evaluate the trend of globalization in more depth.

We constructed a Globalization Index based on existing indices and used the HP
filter method to decompose the trend and deviation terms, of which the latter is used to
construct the Globalization Barometer. Our results indicate that since 2000, de facto and
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de jure globalization generally maintained an upward trajectory. The 2008 financial crisis
and the 2020 COVID-19 pandemic have negatively impacted globalization trends, serving
as turning points on the curve. From a world average perspective, de facto globalization
saw a significant setback post the 2008 financial crisis, followed by a rapid rebound until
the pandemic in 2020. De jure globalization generally maintained steady growth but also
experienced the shocks of the two crises, including the 2008 slowdown in growth and the
dip in trend in 2020. Our results are intuitive and support previous observations [5,7].

Although the 2020 pandemic has exerted a negative impact on globalization, it is
well-worth noting the unexpected positive effect of reducing the gap in de facto and de jure
globalization. Further analysis revealed an uneven distribution of globalization across
the world. We find that economies in North America, Northeast Asia, and Europe feature
high de facto globalization; on the other hand, economies with high de jure globalization
are generally concentrated in Western Europe, Northern Europe, and North America.
However, the spatial variation of globalization barometer shows that the impact of the
pandemic is not evenly felt around the world. Economies with higher scores in de facto and
de jure globalization experience greater shocks, while economies with lower scores remain
relatively untouched. Our results complement current literature on globalization trends
and the pandemic’s impacts and threats [8,9] while also adding to the current debate the
argument that the impact of globalization mainly was felt in a few economies and regions
and may help form a more balanced post-COVID global paradigm.

By deconstructing the driving forces of globalization, our research shows uneven
levels of globalization across the economic, social, and political dimensions. De facto global-
ization grew below trend with economic and social globalization on trend, and political
globalization below trend. De jure globalization turned out to be below trend as well for
this year, due mainly to economic and social globalization’s downturn compared with
political globalization. Our results indicate that albeit the fact that the current development
of globalization in general failed to meet our expectations, there are still positive dimen-
sions in globalization, and may serve as the future driving forces of stable and positive
development.

Finally, we have also used the Random Forest model to conduct time-series predictions
for the years between 2021 and 2025. For the subsequent 5 years, de facto and de jure global-
ization will likely maintain an upward trajectory, thereby providing quantitative, machine
learning-backed response to current qualitative research on future globalization trends.

5. Conclusions

In summary, our research has confirmed and complemented existing studies on glob-
alization trends in the following two aspects. Approach-wise, our research adopted ap-
propriate methods to quantify globalization trends. Although these methods, including
the HP filter and Random Forest, are not novel in the scientific community, we are one
of the early adopters of these methods in the research of globalization. Conclusion-wise,
our research can adequately respond to the theoretical debates on the direction of post-
pandemic globalization trend within the greater sphere of sociology and international
relations. For instance, Contractor [2] believes the pandemic has a short-term impact from
which the world will recover soon, while Ciravegna and Michailova [12] believe that the
pandemic “will have significant long-lasting effects on globalization.” Additionally, even
fewer researchers conduct detailed and in-depth discussions on the globalization trend
due to the lack of quantifiable metrics. Our paper fills in the theoretical gap and comes
to an unexpectedly interesting conclusion that the pandemic has decreased the uneven
distribution of globalization.

Other than academic research, globalization quantification can be used by business
analysis, mass and specialized media, and public policy. Stakeholders can make informed
predictions and decisions on globalization trends using the Globalization Barometer. Com-
panies can adjust how they deploy their regional investment strategy and transnational
operations. Media can use the barometer to provide their audience with a more neutral
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and accurate image of globalization. In addition, policymakers can reference this research
to set foreign policy and international relations decisions.

Considering the complicated nature of globalization development, quantifiable trend
analysis will continue to pose a challenge for academia. Our paper is an exploratory
attempt at quantifying globalization and is far from perfect. For the future, we will focus
on: (1) The barometer’s application and validation using more variables and time-series;
(2) more detailed study on national or regional globalization trends that were excluded in
this paper due to space constraints; and (3) a more in-depth study on the driving factors of
globalization to better aid globalization development trend analysis.
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Appendix A

Table A1. Measurements of all indicators in the globalization index.

Primary Indicators Secondary Indicators Tertiary Indicators Measurements

Economic

Trade

de facto
Trade in products goods imports and exports (% of GDP)

Trade in services service imports and exports (% of GDP)

de jure
Tariffs the unweighted mean of custom duties

Trade agreements the number of trade agreements

Financial

de facto

Foreign direct investment
(FDI)

the inbound and outbound flows of FDI
(% of GDP)

Portfolio investment (PI) the inbound and outbound flows of PI
(% of GDP)

International income
payments (IIP) the asset and liability of IIP (% of GDP)

de jure

Capital account openness Chinn-Ito index

International investment
agreements

the total number of Bilateral Investment
Treaties (BIT) and Treaties with Investment
Provisions (TIP)
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Table A1. Cont.

Primary Indicators Secondary Indicators Tertiary Indicators Measurements

Social

Informational
de facto Used internet bandwidth international bandwidth measured in Mbit/s

de jure Internet access the total of individuals using the Internet
(% of population)

Interpersonal

de facto

International tourism the inbound and outbound tourists
(% of population)

International students the inbound and outbound tourists
(% of population)

Migration the immigrants and emigrants
(% of population)

de jure
Freedom to visit the number of visa-free countries or regions

International airports the number of international airports
(% of population)

Technological
de facto

International patents the nonresident-applied patents (% of total)

High technology exports the high-tech exports
(% of manufactured exports)

de jure Global innovation index Global innovation index

Cultural

de facto

Trade in printed goods the imports and exports in printed goods HS
Code 49 (% of GDP)

International trademarks the nonresident-applied trademarks
(% of total trademarks)

de jure

Social tolerance index Social tolerance index

Language popularity index foreign nationals speaking the majority
language of that country (% of total speakers)

Political

International
Cooperation

de facto Foreign affairs agencies the sum of embassies, consulates, permanent
missions, and other representations

de jure

International organizations the number of international organizations

International treaties
the number of international treaties signed
after 1945 and ratified by the legislative
organization

Global
governance

de facto Speech contribution in UN the total speech number made in UN

de jure UN peacekeeping
contribution the number of peacekeeping personnel

Table A2. The structure of the original and selected dataset.

Categories
Original Selected

Number Percentage Number Percentage

Geographic
Location

Europe and Central Asia 58 26.73% 46 32.39%
Sub-Saharan Africa 48 22.12% 33 23.24%

Latin America and Caribbean 42 19.35% 25 17.61%
East Asia and Pacific 37 17.05% 19 13.38%

Middle East and North Africa 21 9.68% 12 8.45%
South Asia 8 3.69% 5 3.52%

North America 3 1.38% 2 1.41%

Income
Group *

High income 79 36.57% 65 45.77%
Lower middle income 55 25.46% 39 27.46%
Upper middle income 55 25.46% 33 23.24%

Low income 27 12.50% 5 3.52%
* Venezuela, RB was not assigned to any income group when data were collected.
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Abstract: The Revealed Comparative Advantage (RCA) index is an important metric for evaluating
competitiveness of a country in exporting certain commodity. While it is desirable to have a normally
distributed RCA index, the opposite is often found in empirical studies, and efforts for developing
alternative indices of the RCA index have not been very successful. This motivates us to ask a more
fundamental question: what is the significance of a normally distributed RCA index? To answer
this question, we have defined a quantity called the Deviation from Gaussianity (DfG) based on the
KS test, which quantifies the deviation of the distribution of a country’s RCA index from normality.
By systematically analyzing the distribution characteristics of RCA index for each country from
1991 to 2019, we find that DfG is strongly negatively correlated with the logarithm of GDP and the
Economic Complexity Index (ECI). In particular, correlation between DfG and GDP is stronger than
that between ECI and GDP since 2008. These results suggest that DfG may serve as a new excellent
index to quantify the economic complexity and economic performance of a country.

Keywords: RCA index; economic complexity; Gaussian distribution; economic development

1. Introduction

The revealed comparative advantage (RCA) index, also called Balassa index as it
was first proposed by Balassa in 1965 [1], is an important metric for quantifying the
relative strength of a country in producing a product vis-à-vis its trading partners. While it
has been widely used in empirical studies, the RCA index has also been further studied
theoretically. Those works mainly focus on the statistical features of the RCA index, and can
be roughly classified into two groups. One group is somewhat traditional, with emphasis
on clarifying the statistical characteristics of the RCA index across sectors or countries. In
many applications, it is desirable to have a normally distributed RCA index, so that it can
reliably measure a country’s revealed comparative advantage [2]. However, in the majority
of empirical studies, a non-Gaussian distribution of the RCA index has been observed. The
non-Gaussianity has made the RCA index to suffer from many disturbing properties such
as unstable distribution and poor ordinal ranking property [3], the unstable mean [4,5],
asymmetric distributional shape [2], and skewness and variable upper bound [6,7]. These
features of the RCA index have made its interpretation difficult [3,4,8–10], and thus have
motivated a lot of researchers to develop alternative indices of the RCA index so that
the new indices can be more normally distributed [3–5,11–15]. These efforts are not
very successful, however. To understand why the RCA index and its alternatives may
not follow Gaussian distributions, Liu and Gao systematically analyzed the distribution
characteristics of the RCA index cross sectors and countries [16]. They find that the RCA
index in the majority of the situations cannot be normally distributed, since it is the ratio of
two distributions, one following an exponentially truncated Zipf–Mandelbrot’s law, the
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other being a permutation of the truncated Zipf–Mandelbrot’s law [16]. Only occasionally
can a normally distributed RCA index be observed—it may emerge with about 1% chance.
The significance of a normally distributed RCA index has not yet been explained, however.

The other group of the work on the theoretical aspects of the RCA index mainly
employs matrix and complex network theory by constructing the country–product bipar-
tite network, where countries are connected to the products they export. The bipartite
network is an 0–1 adjacency matrix constructed according to the value of the RCA in-
dex (the element is 1 if the corresponding RCA ≥ 1 and 0 otherwise). By developing
the Method of Reflections to interpret an export bipartite network, Hidalgo and Haus-
mann proposed the Economic Complexity Index (ECI) and Product Complexity Index
(PCI) [17,18]. Hidalgo and Hausmann’s approach has been proven to be equivalent to a
spectral clustering algorithm that partitions a similarity graph into two parts [19]. Although,
the ECI may offer a good description of global macroeconomic relations, technological
trends, and growth dynamics [20], and could be used to measure the gap in the economic
development between countries [21], the approach suffers from a number of conceptual
and practical problems [22–26]. To overcome these problems, the Fitness Index (FI) and
some other variants of the ECI have been developed [22–24,27,28]. The ECI and its vari-
ants have been widely used to study the impact of economic structures on economic
development [18,20,29–42]. Fundamentally speaking, however, the FI and the other new
variants of the ECI are not very different from the ECI, since the ECI and FI (or log FI)
are strongly positively correlated [37–41], and both metrics have almost the same skill in
predicting economic growth [42]. This raises an important question as to which of the
neglected aspects of the RCA index by the network based approach should be reinstated so
that characterization of economic complexity can be fundamentally improved.

In this article, we attempt to answer both the above questions: why a normally dis-
tributed RCA index is important and how to better quantify economic complexity. In doing
so, we will find a bridge connecting the two groups, one more traditional, the other based
on the network approach. Concretely, we will define a quantify called the Deviation from
Gaussianity (DfG) based on the KS test, which measures the deviation of the distribution
of a country’s RCA index from normality. Then, we will systematically analyze the distri-
bution characteristics of RCA index for each country from 1991 to 2019, and examine the
relationship between the DfG and economic development and economic complexity.

The remainder of the paper is organized as follows: Section 2 describes Materials
and methods, Section 3 presents the main results, and Section 4 contains conclusion
and discussion.

2. Materials and Methods

2.1. Materials

In this work, we analyze international commodity trade data with products disaggre-
gated according to the COMTRADE Harmonized System at the four-digital level (abbrevi-
ated as HS4). The data covered 29 years from 1991 to 2019, and were downloaded from
UNComtrade database (International Trade Statistics Database: https://comtrade.un.org/
accessed on 5 August 2021 ).

2.2. Methods
2.2.1. RCA Index

The RCA index is defined as

RCAk
(ix) =

Xk
(i)/X(i)

Xk
(w)

/X(w)

=
pk
(ix)

pk
(wx)

, (1)

where X (or x) denotes export, i denotes country, while w denotes world, k denotes product.
For example, Xk

(i) represents country i’s export of product k, X(i) denotes country i’s total

export, and Xk
(i)/X(i) is the export share of country i in product k. Being a probability, it can
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also be expressed as pk
(ix), and ∑Nc

k=1 pk
(ix) = 1, where Nc represents the number of products

in a country.

2.2.2. Economic Complexity Index

The Economic Complexity Index (ECI) was developed by Hidalgo and Hausmann
in 2009 [18]. The algorithm for computing it is as follows. Consider a country-product
bipartite network represented by a matrix with elements Mcp defined as 1 or 0, depending
on whether the corresponding RCA ≥ 1 or RCA < 1. Summing up rows and columns of
the matrix, one obtains kc,0 = ∑p Mcp, kp,0 = ∑c Mcp, which represent, respectively, the
observed the number of products exported by some country, and the number of countries
exporting some product. The ECI is obtained by an iteration algorithm,

kc,N =
1

kc,0
∑
p

Mcpkp,N−1, (2)

kp,N =
1

kp,0
∑
p

Mcpkc,N−1, (3)

where N ≥ 2 is the number of iterations. Collecting kc,N , c = 1, · · · , Cn, where Cn is the
total number of countries with data, we then obtain ECI as

ECIc∗ =
kc∗ ,N − mean{kc,N}

stdev{kc,N}
, (4)

where c∗ denotes a country of interest, and mean and stdev are performed over all the
countries with data. It is thought that the larger the ECI, the higher the economic complexity.

2.2.3. Deviation from Gaussianity Based on KS Test

The KS test (Kolmogorov–Smirnov test or K-S test) is one of the most useful and
general nonparametric methods. The one-sample KS test can be used to compare a sample
with a reference probability distribution. In this paper, we define the Deviation from
Gaussianity (DfG) based on one-sample KS test. The algorithm is as follows:

Fn(x) =
1
n

N

∑
n=1

I[−∞,x](Xi), (5)

where I[−∞,x](Xi) is the indicator function, which is equal to 1 if Xi < x and 0 otherwise.
The Kolmogorov–Smirnov statistic for a given cumulative distribution function F(x) is

Dn = supx |Fn(x)− F(x)|, (6)

where supx is the supremum of the set of distances. We define the divergence of DfG in the
distribution of RCA index as follows:

DfG = Dn − CV, (7)

where CV is the critical value of KS test. A negative DfG indicates Gaussian distribution of
RCA index, while a positive DfG indicates rejection of the Gaussian distribution—the more
positive DfG, the larger the deviation from Gaussianity [16].

2.2.4. Pooled OLS and Panel VAR

In this article, we will also employ regression analysis to further explore the connec-
tions among DfG, ECI, and economic development. Considering that our data may be
considered panel data, we will employ two regression models—pooled Ordinary Least
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Square (OLS) and panel Vector Autoregression (VAR) models. The general econometric
model for panel data is as follows [43,44]:

Yit = αi + �βi · �Xit + μit, (8)

where, i = 1, 2, . . . , N, t = 1, 2, . . . , T, and N and T are the number of individual countries
and total time (in year), respectively. Yit is the dependent variable, �Xit is the independent
variables (column vector), αi and �βi are parameters (the latter a row vector with dimension
matched to the column vector �Xit so that the inner product is defined), and μit is the
error term. As our purpose in this research is to find (and design) effective measures
for quantifying economic complexity, we first assume that αi and �βi are constant for all
countries and time. This scenario is called the pooled OLS model, which is equivalent to the
simple OLS model performed on panel data. The concrete equation used here is as follows:

ln GDPit = α + β1DfGit + β2ECIit + μit, (9)

We also use a panel-data VAR methodology. This technique combines the traditional VAR
approach, which treats all the variables in the system as endogenous, with the panel-data
approach, which allows for unobserved individual heterogeneity [45,46]. We employ a
first-order panel VAR model as follows:

zi,t = Γ0 + Γ1zi,t−1 + μt, (10)

where i represents the country in the panel-data, zi,t is a three-variable vector
(ln GDP, DfG, ECI), Γ1 is a 3 × 3 matrix of coefficients, Γ0 is a vector of individual ef-
fects. The stationarity of the three variables will be examined by using the LLC test [47]
before we employ the PVAR model. Moreover, we can explore the statistical causality
between the three variables based on the PVAR model.

3. Results

3.1. DfG and Economic Growth

There are two types of distributions for the RCA index. One is the distribution of
the RCA index for all the sectors/products of an economy or a country. The other is the
distribution of the RCA for all countries in the world given a sector/product. In this article,
we focus on the former. Since the RCA index is the ratio of two probabilities, it is useful
to first understand the distributions of the two probabilities. It turns out that both the
numerator and the denominator defining the RCA index (pk

(ix) and pk
(wx)) basically follow

exponentially truncated Zipf–Mandelbrot’s law, given by:

p(k) ∼ (k + p)−αe−βk
γ

, k > k∗, (11)

where p, α, β, and γ are parameters. The exponential truncation can be naturally expected
due to finiteness of the data.

To better understand deviations from normality in the distribution of RCA index
for different countries, we use Japan and Germany as two examples. Figure 1 shows the
distribution features of the two parts of RCA index and the probability distribution function
(PDF) of the RCA index for Japan and Germany under the HS4 scheme in 2018. Obviously,
the p(wx) in Figure 1a,b follows exponentially truncated Zipf–Mandelbrot’s law. If the p(ix)
in Figure 1a,b are also arranged in descending order, they will also follow exponentially
truncated Zipf–Mandelbrot’s law (but possibly with different parameters). Interestingly,
by comparing the layout of p(ix) (red diamonds) around p(wx) (blue circles) in Figure 1a,b,
we can observe that the p(ix) of Germany is more concentrated around p(wx) than Japan’s.
This highlights that Germany’s export share of most products relative to its total exports is
closer to the world average level than Japan’s.

Next, we discuss how the differences between Figure 1a,b results in the differences in
the distribution of the RCA index shown Figure 1c,d. Clearly, the PDFs for the RCA index
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of Germany and Japan are very different. Concretely, the PDF of Japan’s RCA index has
more asymmetry, stronger skewness, and longer tail than that of Germany’s. This suggests
that the PDF of Germany’s RCA index should be closer to a Gaussian distribution than
Japan’s. To better quantify how the PDF of a country’s RCA index deviates from normality,
we employ DfG we have defined earlier. The DfG for Germany and Japan is 0.088 and 0.266
in 2018, respectively. According to the nature of DfG—the more positive DfG, the larger
the deviation from Gaussianity, one can conclude that the PDF of Germany’s RCA index is
indeed closer to a normal distribution than that of Japan’s, just as one has anticipated from
Figure 1.

Figure 1. The distribution features of the two parts of RCA index (a,b) and the Probability Distribution
Function (PDF) of RCA index (c,d) for Germany and Japan under the HS4 scheme in 2018.

It is interesting to examine the spatiotemporal evolution of the DfG of all the economies
in the world. For this purpose, we have systematically computed DfG for all the economies
in the world from 1991 to 2019. The spatial variations of the DfG in 1998, 2008 and 2018
are illustrated in Figure 2. We observe that the variations of DfG are characterized by
spatiotemporal heterogeneity and regional spatial agglomeration.

First, let us focus on the spatiotemporal heterogeneity. From Figure 2a, we can observe:
(1) only the DfG of USA and Germany was less than 0.1, followed by France and Italy,
(2) only a few countries (such as China, South Korea, Japan, etc.) had DfG between 0.2
and 0.3, and (3) the DfG of most countries was greater than 0.3, especially in Africa, South
America, Southern and Western Asia, and Eastern Europe. By 2008, which is shown in
Figure 2b, the spatial variation of DfG had undergone some changes. Now Germany is
the only economy with DfG < 0.1, indicating that Germany is the only country with the
PDF of its RCA index to be very close to a normal distribution. The decrease in China’s
DfG was significant. In contrast, the DfG in some countries has become larger, such as
USA, France, Australia, Egypt, etc. The DfG in most other countries and regions did not
change much though, especially in Africa and South America. The major changes in DfG
can at least be partially be attributed to the global financial crisis in 2008. Interestingly, by
2018, as shown in Figure 2c, the DfG in India and Vietnam had decreased significantly. This
clearly reflected transfer of many production activities to India and Vietnam in recent years.
Overall, compared with 2008, the pattern of the spatial variation of DfG for most countries
in the world in 2018 did not change significantly. This suggests that the negative impact of
the 2008 global financial crisis has been quite long-lasting.
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Figure 2. Spatial variations of the DfG in 1998, 2008 and 2018 under the HS4 scheme.

Second, let us focus on the regional spatial aggregation phenomena in Figure 2. That
is, countries with smaller DfG are mainly concentrated in North America, Western Europe
and Eastern Asia, while countries with larger DfG are mainly concentrated in Africa, South
America, Western and Southern Asia. It is worth paying attention to the Eastern Asia
represented by China, Japan and South Korea. In 1998, the DfG in this region was larger
than USA and Germany. By 2008, this gap had shrunk substantially, and by 2018, the level
of DfG in this region was already comparable to that in North America and Western Europe.
By now, we can conclude that this aggregated region with smaller DfG represented by
China, Japan and South Korea has been well formed. It is worth noting that these three
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areas with fairly small DfG are very consistent with the description of “The world seems to
have three interconnected production hubs for the extensive trade in parts and components”
in the “Global Value Chain Development Report 2017—Measuring and Analyzing the
Impact of GVCs on Economic Development”.

The pattern of DfG’s spatial variation suggests that DfG may be indicative of a coun-
try’s economic performance. To check this idea, we have examined the relationship between
DfG and GDP (current dollars) from 1991 to 2019. The result is shown in Figure 3. We
observe that DfG and the logarithm of GDP is strongly negatively correlated. This means
that the larger the economic scale of a country, the smaller its DfG. In other words, the
larger GDP a country has, the easier for the country to have the distribution of its RCA
index to converge to a Gaussian distribution. This observation suggests that the level of
specialization and division of labor is connected to the deviations from normality in the
distribution of a country’s RCA index. Generally, the bigger a market (as characterized by
GDP) is, the more its participants can specialize and the deeper the division of labor in the
market can be achieved.

Figure 3. Regression analysis showing correlation between DfG and the logarithm of GDP in 1998,
2008 and 2019.

Finally, let us turn to discuss the dynamic evolution of the DfG for a few more or less
arbitrarily chosen countries, including China, India, Australia and Zambia. The results are
shown in Figure 4. We observe that China’s DfG bascially monotonically decreases in most
of the time. India has similar behavior, especially after 1999. In contrast, Australia’s DfG
has largely been increasing most of the time, while the DfG for Zambia has been fluctuating.
Considering that DfG is highly negatively correlated with the logarithm of GDP, we have
good reason to conclude that DfG characterizes the trade as well as economic structure of a
country to some degree. Therefore, we can associate the temporal variation of DfG for a
country with the temporal evolution of its trade and economic structure, as a result of its
effort in maintaining competitiveness in the world economy. In short, in general, DfG of a
country must be expected to vary with time with trends, instead of being stationary.

3.2. DfG and Economic Complexity

Considering that the level of DfG is closely related to specialization and division of
labor, it is necessary to examine the connection between DfG and economic complexity.
Figure 5a–c show correlations between DfG and ECI in 1998, 2008 and 2019, respectively.
Clearly, we observe that the DfG is very strongly negatively correlated with the ECI. This
suggests that the higher level of economic complexity, the smaller the DfG. In other words,
the higher level of economic complexity, the closer a country’s RCA index to a normal
distribution. Therefore, relationships between the DfG and economic development and
economic complexity reflect that a closer a country’s RCA index to a normal distribution,
the higher degree of economic complexity and better economic performance of a country.
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Figure 4. Dynamic evolution of the DfG for China, India, Australia and Zambia from 1991 to 2019
under the HS4 scheme.

Figure 5. Regression analysis showing correlation between DfG and ECI in 1998, 2008 and 2019.

It is interesting to compare the Pearson correlation coefficient between DfG and the
logarithm of GDP and that between ECI and the logarithm of GDP. Since the correlation
coefficient for the former is negative but positive for the latter, it is more convenient to
use the Pearson correlation coefficient between DfG and the logarithm of GDP in absolute
value. The result for the comparison is shown in Figure 6, where the red curve denotes the
absolute value of the correlation coefficient between DfG and the logarithm of GDP, and
the blue curve is for the correlation coefficient between ECI and the logarithm of GDP. We
observe that before the global financial crisis of 2008, the correlation coefficients between
DfG and the logarithm of GDP, and between ECI and the logarithm of GDP, are comparable.
However, after the global financial crisis, the correlation coefficients between DfG and the
logarithm of GDP are persistently larger than those between ECI and the logarithm of GDP.
The significance of this feature for designing better indicators of economic complexity will
be further discussed in the last section.

Out of curiocity, we have examined whether DfG using import data is still strongly
negatively correlated with the logarithm of GDP. The answer is positive. In fact, the
correlation coefficient using import data is basically identical to that using export data. This
interesting property however, is not shared by ECI—when using import data, whether we
focus on adjacency matrices based on RCA ≥ 1 or RCA < 1, the computed “ECI” essentially
has no correlation with the logarithm of GDP. This signifies that RCA ≥ 1 or RCA < 1 based
on import data cannot be interpretated as that based on export data to have comparative
advantage or disadvantage.
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Figure 6. Variation of the Pearson correlation with time, where the red and the blue curves are for
the absolute value of the correlation coefficient between DfG and the logarithm of GDP, and the
correlation coefficient between ECI and the logarithm of GDP.

3.3. Regression and Causality Analysis

To understand more deeply the connection between DfG and economic development,
we have employed the Pooled OLS model. The results are summarized in Table 1. Here,
we select 60 countries which have continuous data from 1996 to 2019. We thus have a total
of 1440 observations. We have first run a pooled OLS regression for the whole period. The
results are shown in columns 1 to 3 of Table 1, where the 1st column is for the model with
only DfG considered, the 2nd column for the results with only ECI considered, and the
3rd column for both DfG and ECI considered. We call these models 1–3. We observe that
the regression coefficients for models 1–3 are significant at the 1% level. By comparing the
columns 1 and 2, we find that DfG can explain 57.3 percent of the variance in GDP, while
ECI accounts for 45.7 percent, as shown by the R2 of the regression. This suggests that the
explanatory power of DfG on GDP is stronger than that of ECI. After both DfG and ECI are
considered, the model explains 58.7 percent of the variance in GDP, which is slightly better
than model 1.

Table 1. Regression results for GDP, DfG and ECI.

Variables Model 1–3 (1996–2019) Model 4–6 (1996–2007) Model 7–9 (2008–2019)

ln GDP ln GDP ln GDP ln GDP ln GDP ln GDP ln GDP ln GDP ln GDP

DfG −18.97 ***1

(−43.95)
−15.04 ***
(−21.29)

−19.78 ***
(−33.74)

−13.65 ***
(−14.34)

−18.48 ***
(−33.05)

−16.88 ***
(−14.34)

ECI 1.26 ***
(34.78)

0.37 ***
(6.95)

1.43 ***
(29.2)

0.58 ***
(7.98)

1.11 ***
(22.73)

0.14 **
(2.16)

Constant 31.94 ***
(221.73)

25.16 ***
(593.36)

30.48 ***
(120.6)

31.75 ***
(163.24)

24.67 ***
(442.62)

29.49 ***
(86.8)

32.22 ***
(171.91)

25.64 ***
(437.45)

31.64 ***
(96.43)

Observations 1440 1440 1440 720 720 720 720 720 720
Adjusted R2 0.573 0.457 0.587 0.623 0.543 0.645 0.603 0.418 0.605

F-Statistics 1931.66 1209.56 1021.59 1138.19 852.59 650.51 1092.18 516.62 551.22
Prob > F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 Note: *** p < 0.01, ** p < 0.05.

Considering that DfG has a higher correlation with GDP than ECI since the global
financial crisis of 2008, we have also divided the whole time period into two, one from
the year 1996 to 2007, the other from 2008 to 2019. The results are shown in the columns
4–6 and 7–9 of Table 1, for the models 1–3 explained earlier. By comparing the results of
regression models for these two groups, we find: (1) in both time periods DfG has a stronger
explanatory power on the variance of GDP than ECI, (2) the explanatory power of DfG and
ECI coombined on the variance of GDP in first group is stronger that that of the second
group. It is worth noting that ECI does not significantly improve the explanatory power of
the model on the variance of GDP in these three scenarios of regression models, especially
in the period after the global financial crisis of 2008. Therefore, DfG better explains the
variance in GDP than ECI.
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We have also performed a panel VAR analysis. LLC test indicates that the three
variables with one period lag and trend are stationary. This allows us to estimate the
coefficients of the system described by Equation (9) after the individual effects removed.
Robustness test shows that the PVAR model is reasonable, as shown in Figure 7. Table 2
shows the results of the model with three variables, from the columns of which we find
that the impact of ln GDP with one period lag on ln GDP, DfG and ECI are significant for
all three different panel VARs, the impact of DfG with one period lag on DfG and ECI
are significant, and the impact of ECI with one period lag on DfG and ECI are significant.
However, impacts of DfG and ECI with one period lag on ln GDP are not significant. On
the other hand, impact of DfG with one period lag on DfG is positive but negative on ECI,
while the impacts of ECI with one period lag on both DfG and ECI are positive.

Table 2. Main results of a three-variables panel VAR.

Response of
Response to

ln GDP(t−1) DfG(t−1) ECI(t−1)

ln GDP(t)
0.961 ***1

(130.16)
−0.313
(−1.40)

0.027
(0.6)

DfG(t)
−0.008 ***

(−7.96)
0.734 ***
(24.23)

0.027 ***
(4.41)

ECI(t)
0.292 ***
(15.10)

−4.864 ***
(−8.31)

0.874 ***
(7.43)

Observations 1440
N countries 60

1 Note: *** p < 0.01.

Figure 7. Robustness test of Panel VAR.

Finally, we have examined the statistical causality among the three variables based on
PVAR by using panel Granger causality Wald test. The results are shown in Table 3. We
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observe that the ln GDP is not the Granger cause of DfG and ECI at the 5% level, while the
DfG and ECI are the Granger cause of ln GDP at the 1% level. This result is as anticipated.

Table 3. Granger causality Wald tests for Panel VAR.

Hypothesis chi2 df Prob > chi2

ln GDP does not Granger cause DfG 1.971 1 0.160
ln GDP does not Granger cause ECI 0.365 1 0.546
DfG does not Granger cause ln GDP 63.338 1 0.000 ***1

DfG does not Granger cause ECI 19.434 1 0.000 ***
ECI does not Granger cause ln GDP 227.91 1 0.000 ***
ECI does not Granger cause DfG 69.104 1 0.000 ***

1 Note: *** p < 0.01.

4. Discussion

Understanding the difference in economic development among countries or regions
is a long-standing issue in economics. A crucial perspective to shed light on the issue is
to evaluate competitiveness of a country in international trade as characterized by the
RCA index. Although it is desirable to have a normally distributed RCA, empirical studies
have often found the opposite. This discrepancy has stimulated a lot of researchers to
develop alternative indices of the RCA index so that their distributions would be closer to
Gaussian distributions. Yet, those efforts are not very successful. This calls for a deeper
understanding of the significance of a normally distributed RCA index.

To gain insights into this issue, we have defined a quantity, DfG, based on the KS test,
which quantifies the deviation of the distribution of a country’s RCA index from normality.
We have found that the variations of DfG are characterized by spatiotemporal heterogeneity
and regional spatial agglomeration. The spatiotemporal heterogeneity of the DfG refers to
the significant differences in many countries’ DfG and their dynamic evolution. Regional
spatial agglomeration of the DfG refers to that countries with smaller DfG are mainly
concentrated in North America (represented by USA), Western Europe (represented by
Germany), and Eastern Asia (represented by China, Japan and South Korea). Interestingly,
these three areas are very consistent with the description of “The world seems to have
three interconnected production hubs for the extensive trade in parts and components” in
the “Global Value Chain Development Report 2017—Measuring and Analyzing the Impact
of GVCs on Economic Development”. It suggests that the DfG has some connections
with the development of GVCs. On the other hand, countries with larger DfG are mainly
concentrated in Africa, South America, Western and Southern Asia.

The pattern of DfG’s spatial variation suggests that the DfG can act as a good indicator
of a country’s economic performance. This is indeed so, as DfG is found to be strongly
negatively related with both the logarithm of GDP and the ECI. Therefore, the closer
the distribution of a country’s RCA index to a normal distribution, the higher degree of
economic complexity and better economic performance of the country. This highlights
the optimality of a country’s export when its RCA index follows a normal distribution,
and provides a new perspective to understand the difference in economic development
among countries or regions. Furthermore, we have found that the correlation coefficients
between DfG and the logarithm of GDP are persistently larger than those between ECI
and the logarithm of GDP after the 2008 global financial crisis. This is further corroborated
by regression analysis which shows that DfG better explains the variance in GDP than
ECI. Further Granger causality analysis shows that DfG and ECI are the Granger cause of
ln GDP, but not the vice versa. It is worth emphasizing that Gaussianity is not a cause, it is
more a consequence indicating economic development.

The last feature, that DfG is more strongly correlated with GDP than ECI, suggests
an interesting way to improve characterization of economic complexity of a country. For
this purpose, we need to first understand the meaning of the correlation between ECI and
the logarithm of GDP. This is due to the strong correlation between export and GDP—ECI
amounts to retaining only products with RCA equal to or greater than 1 and approximating
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the amount of export by counting the number of products with RCA ≥ 1. Our observation
that after the 2008 global financial crisis, the correlation between DfG and GDP is stronger
than that between ECI and GDP, can at least be partially attributed to the enhancement of
the global participation in production chains, or simply, greater participation in global value
chains (GVCs). Therefore, simply focusing on RCA ≥ 1, which has been used in designing
ECI and its variants, is no longer sufficient. In other words, information contained in
products with RCA < 1 can no longer be simply discarded. Therefore, in future, it would
be extremely interesting to develop a new economic complexity index by using DfG alone,
or by combining DfG and ECI (or its variants).
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Abstract: How (in)formal should the classic expression describing risk as the product of hazard,
exposure, and vulnerability be considered? What would be the most complete way to describe
the process of risk mitigation? These are the questions we try to answer here, using a formal,
mathematically sound yet abstract description of hazard, exposure, vulnerability, and risk. We
highlight the elements that can be affected for the purpose of mitigation and show how this can
improve the quantitative assessment of the procedural aspects of risk mitigation, both long- and
short-term, down to the timescale of emergency response.

Keywords: risk; vulnerability; exposure; hazard; mitigation

1. Introduction

The groundwork for a clarifying definition of the concepts of risk and hazard, and
their relation, was first carried out in an international setting in [1], wherein risk is defined
as the possibility of loss (whose type and cause are further specified by attributes, such as
seismic risk for the chance of loss caused by earthquakes), and (natural) hazard is defined as
«the state of risk due to the possibility of occurrence of a» (natural) «disaster». The document also
includes a brief section concerning protection and insurance, arguably the first mention of
the need of a systematic approach to risk mitigation.

Risk Management in Formulas

The current commonly (at least in the field of natural hazards) accepted informal
expression of risk as the product of hazard, exposure (or value), and vulnerability is due
to [2]:

Risk = Hazard × Exposure × Vulnerability (1)

where Hazard indicates the probability of occurrence of the event (e.g., lava flow inundation,
earthquake, etc.), Exposure is a quantification of (the value of) the people, systems, and
property potentially subject to the hazardous phenomenon (in fact, Ref. [2] explicitly
uses the term Value rather than Exposure), and Vulnerability is a quantification of the
effective relative impact of the event, expressed as a percentage, with V = 1 indicating
total loss (100%) and V = 0 indicating total resilience. Contextually, the author also
presents some key elements for risk management (in the context of volcanic hazard, but
of general applicability), such as land-use planning (“zoning”) to reduce exposure, and
preparedness (including monitoring, early warning systems and response planning) to
reduce vulnerability.

We note that Equation (1) is essentially qualitative in nature, rather than quantitative,
as pointed out e.g., by [3]. Other functional relationships are available in the literature,
especially in engineering contexts. For example, Ref. [4], and more recently [5], prefer an
even more informal

Risk = Uncertainty + Damage. (2)
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When relating risk to hazard, Ref. [4] provides a different, but still informal relationship:

Risk =
Hazard

Safeguards
(3)

that provides an explicit indication of the possibility of intervention to reduce risk. This
is in contrast to [2] whose formula (1) provides no explicit mention of the possible quan-
tification of mitigation efforts, even though the paper presents several approaches to risk
management.

In the field of natural hazards, an extension of (1) that includes an explicit dependency
on mitigation is given by [3]:

Risk = Hazard × Exposure × (Vulnerability − Risk mitigation efforts), (4)

and more recently in [6] that provides a different formulation for mitigated risk as:

Risk =
Hazard × Exposure × Vulnerability

Mitigation measures
. (5)

Equations (4) and (5) are also intended to be informal and qualitative rather than
quantitative, although, like (1), they can be used in a more quantitative sense (see also
Section 2.4). For example, (5) could be used to compute an a posteriori value for the efficiency
of the given mitigation measures as M = RU/RM, where M represents the efficiency of the
mitigation measures, RU the unmitigated risk, and RM the mitigated risk.

Arguably, (4) and (5) illustrate a philosophical difference in the approach to risk
mitigation: while [3] focuses exclusively on reducing vulnerability, [6] applies mitigation to
risk as a whole, and it is thus closer to the arguments brought forth in [2], which include
the exposure-related land-use planning as a risk management feature. In relation to the
other formulas seen so far, it may also be considered a more detailed version of (3), and
a more general version of (4), even though the latter is not clear, due to the different choice
of mathematical operators used to indicate the influence of mitigation measures.

Considering their qualitative, informal nature, the functional difference between (4)
and (5) is actually largely inessential. It is only when aiming at a more rigorous and quantita-
tive assessment of risk and its mitigation that the specifics of the mathematical formulation
become relevant—an aspect that so far has received more attention in engineering [4,5,7,8]
than in natural hazards [9–11].

In engineering, this quantifying effort is required to manage the multi-objective prob-
lem of minimizing both the risk and the costs associated with the mitigation [8]. In this
sense, risk takes the form of an expected loss of value in a strictly probabilistic sense,
and may be more in general treated not as a single value, but as a formal collection of
all the elements that contribute to its assessment. For example, Ref. [4] defines risk as
a set of triplets that describe all of the known possible, mutually exclusive scenarios, their
probability, and their outcomes; no single value is associated with risk.

In an effort to try and bridge the gap between the more qualitative formulation of
risk (1) presented by [2] and common in natural hazards, and the more formal approaches
to the quantification of risk and its mitigation common in engineering, we present here
a detailed mathematical approach to the quantification of risk assessment and mitigation.

While the description will be kept as abstract and generic as possible, much of it can be
seen simply as a formalization of common practices [11,12]. In addition, our formalism will
make an effort to bring out the explicit dependency of risk (and its components) on several
variables, highlighting the distinction between decision variables (i.e., quantities that can
be influenced by decision-makers and other stakeholders) and other input variables [8],
which will be crucial to our discussion about the quantitative approach to risk mitigation.
The focus will be specifically on (1) and will not directly touch on the mathematical aspects
of hazard and risk assessment (including details about modeling and quantification) that
have been extensively discussed in the literature [3,9–11].
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2. Formalizing Risk

To formalize the risk assessment Equation (1), we must first define hazard, exposure,
vulnerability, and risk in a mathematically rigorous sense, while preserving the spirit and,
as far as possible, the actual functional relationship of (1).

To this end, consider a two-dimensional set Ω ⊂ R
2 that represents our area of study

in some appropriate reference system, e.g., a two-dimensional section of the Earth surface
with a specific choice of coordinate system. such as, for example, EPSG:32633 (WGS-84
spheroid with UTM projection, zone 33 north) to study Mt Etna [13] and references within,
or EPSG:32740 (WGS-84 spheroid with UTM projection, zone 40 south) for Piton de la
Fournaise [14].

(Our formalization is actually independent from the dimensionality of the problem:
we could just as well consider Ω ⊂ R

3 and reason in three dimensions, e.g., for the risk as-
sociated with hazards in industrial complexes, taking into account the three-dimensionality
of the distribution of people and other exposed elements. Time as a parameter could be
included in a similar fashion.)

2.1. Hazard

Assume for simplicity that we are looking at the case of a single hazard expressed as
the probability of occurrence of a dangerous event hitting a specific area, with no intensity
information. Formally, this translates to a pointwise hazard probability density function
h : Ω → [0, 1] such that, for any area of interest A ⊆ Ω, the probability of the hazard affecting
the area A is

H(A) =
∫

A
h(x, y)dxdy.

Hazard may depend on the location (coordinates) directly, or implicitly through some
other spatial property that can be affected by human action (e.g., many geophysical flows
may be affected by building ditches and barriers).

We can make this dependency explicitly by writing h : T × Ω → [0, 1], where T is
a family of functions T defined in Ω and with values in some appropriate codomain DT .
As a practical example, T might be a mathematical description of the topography of Ω,
and h(T, x, y) is the pointwise hazard associated with a geophysical flow whose behavior
depends on the given topography. In this case, we would have DT = R, i.e., the set of real
numbers describing the pointwise altitude a.s.l. of the area of study.

Note that T may have “long range” effects, in the sense that a change in the value
of T at some point (x0, y0) may affect the hazard in points (x, y) �= (x0, y0): for example,
building an embankment is a local alteration of the topography that can reduce hazard in
all points downstream of the structure. For this reason, h must depend explicitly on T as a
function, rather than simply as h(x, y) = h(T(x, y), x, y).

In general, man-made structures have an influence on hazard even if that is not their
intent. For example, buildings and roads can influence geophysical flows, and coastal/river
structures can influence flooding hazard. While the influence of such structures could be
incorporated in T, to simplify notation, we will separate this into an additional dependency
of hazard on some B ∈ B that will in turn depend on exposure-related elements that will
be presented momentarily.

2.2. Exposure

In a similar fashion to hazard, we can define a pointwise exposure e : Ω → [0,+∞] such
that, for any area of interest A ⊆ Ω, its exposure value is defined as

E(A) =
∫

A
e(x, y)dxdy.

In general, however, exposure does not depend directly on the coordinates themselves,
but rather on the distribution of elements at risk, such as population, land use, presence
of buildings or infrastructure, etc. As carried out with hazard, it is thus better to write
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e : P ×Ω → [0,+∞[, where P is the family of functions P (defined in Ω with an appropriate
codomain DP ) that describe mathematically the distribution of the key exposed elements. It
should be assumed that the elements of P have some kind of constraints (e.g., if P represents
population distribution, we can assume that the total population P =

∫
Ω P(x, y)dxdy is

independent of the choice of P ∈ P).
Moreover, as noted before, the choice of P can have an influence on hazard too, inas-

much as the associated infrastructure impacts the evolution of the hazardous phenomenon.
For a given P ∈ P , we can thus define a set B(P) of functions B in Ω that represents
the man-made structures supporting the exposed element distribution P and affecting
the hazard.

Obviously, exposure itself depends on these elements too. The full function signature
for e and h is thus h : T × H(P)× Ω → [0, 1], e : P ×H(P)× Ω → [0,+∞[. Then, the
hazard H and the exposed value E can be computed respectively as

H(A, T, P, B) =
∫

A
h(T, P, B, x, y)dxdy, E(A, P, B) =

∫
A

e(P, B, x, y)dxdy (6)

with A ⊆ Ω the area, T ∈ T any natural or man-made elements that influences hazard, but
not exposure, P ∈ P the distribution of exposed elements with no impact on hazard, and
B ∈ B(P) the distribution of P-dependent exposed elements that influence hazard.

2.3. Vulnerability

As implemented for hazard and exposure, the pointwise vulnerability can also be defined
as a function v : Ω → [0, 1]. Vulnerability, though, does not depend only on the coordinates,
but also on the resilience of the individual exposed elements, as well as on their interactions
with the other exposed elements.

Consider the example of seismic hazard: the vulnerability of a building depends on
the ground properties (sand vs. rock) of the location where it was built, on the resilience of
the building to the shaking, but also on the presence of other surrounding buildings that
could affect it by pounding due to their oscillation during an earthquake [15]. Finally, the
vulnerability may also depend on the same environmental factors that also affect hazard
(e.g., a rampart may reduce the vulnerability of a building, and also divert a geophysical
flow, affecting the hazard).

If we denote by Q(P, B) the family of functions that describe the resilience of the
individual exposed elements described by P ∈ P and B ∈ B(P), then v depends both on P
directly, but also through B ∈ B(P), and through some Q ∈ Q(P, B), making the signature
of the vulnerability function

v : P × B(P)×Q(P ,B(P))× Ω → [0, 1].

2.4. Risk

With all the components of risk defined, the pointwise risk can be defined as the formally
correct application of (1):

r(T, P, B, Q, x, y) = h(T, P, B, x, y) · e(P, B, x, y) · v(P, B, Q, x, y) (7)

where T ∈ T , P ∈ P , B ∈ B(P) are defined as in (6), and Q ∈ Q(P, B) is the resilience of
the individual exposed element.

The risk associated with a specific area A ⊆ Ω can then be obtained by integration:

R(A, T, P, B, Q) =
∫

A
r(T, P, B, Q, x, y)dxdy =

=
∫

A
h(T, P, B, x, y)e(P, B, x, y)v(P, B, Q, x, y)dxdy,

(8)

and the total risk over the entire domain is thus R(Ω, T, P, B, Q).
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The relationship between the input variables and hazard, exposure, vulnerability, and
risk is illustrated in Figure 1.

Risk
(value loss expectation)

Hazard
(probability of something

dangerous happening)

Exposure
(total value)

Vulnerability
(what percentage of value

would be lost?)

T
(environmental properties affecting hazard)

(e.g.: topography)

P
(primary elements at risk)

(e.g. population)

B
(elements at risk that also affect hazard)

(e.g. buildings)

Q
(resilience of the elements at risk)

Figure 1. The functional dependencies between risk, vulnerability, exposure, hazard, and their
respective input variables. Arrows point towards the dependent (i.e., X → Y indicates that Y
depends on X).

We observe that (7) matches (1), as intended, and [2] reasoning can be applied to
our definition of risk on each subset of Ω that has a (spatially) uniform hazard, exposure
and vulnerability, making (1) a zero-order (piecewise constant) approximation of the more
complete (8). Equation (8) on the other hand can also be interpreted as describing risk as the
expected (loss of) value for the random variable e · v with probability density h, in line with
the approach used to quantify hazard in engineering [8]. Indeed, (8) is already frequently
used in its discrete form (and without explicit mention of T, P, B, Q) in the literature (see,
e.g., [11,12]).

3. Formalizing Risk Mitigation

When discussing risk mitigation, we should consider the h, e, v (and a fortiori r) func-
tions to be fixed: they are the (mathematical or numerical) models that describe how to
compute the hazard, exposure, and vulnerability (and risk) given the appropriate input data.
For example, the values of h may be obtained using deterministic physical-mathematical
models of the phenomenon, and e may be computed from well-established criteria that
assign value to human resources present in the area.

Given the unchanging nature of h, e, v, to mitigate the risk, we must operate on the
input data to these functions. Thus, while Equation (8) for risk may not seem particularly
innovative, the explicitation of the dependency on the choice of T, P, B, Q in their respective
sets is essential for the formalization of risk mitigation: these are the model inputs on which
decision-makers have influence, i.e., the decision variables [8].

To see how the choice of these functions maps to risk mitigation efforts, consider, for
example, that to reduce risk, we could strengthen the buildings to make them less vulnera-
ble to earthquakes [16], which corresponds to choosing a different Q, raise the river banks to
reduce flooding hazard [17] (resulting in a different T), and displace population [18–20] or
reconsider land-use patterns [21] so that high-exposure elements are moved to low-hazard
areas (equivalent to a different choice of P, with a possible indirect effect on B and Q).

More formally, assume we have a given T0 ∈ T , P0 ∈ P , B0 ∈ B(P0), Q0 ∈ Q(P0, B0)
and a corresponding (pointwise) risk r(T0, P0, B0, Q0, x, y) and total risk R(Ω, T0, P0, B0, Q0) =∫

Ω r(T0, P0, B0, Q0, x, y)dxdy. To mitigate risk, we need to find T1 ∈ T , P1 ∈ P , B1 ∈ B(P1),
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Q1 ∈ Q(P1, B1) such that the total risk R(Ω, T1, P1, B1, Q1) =
∫

Ω r(T1, P1, B1, Q1, x, y)dxdy
satisfies:

R(Ω, T1, P1, B1, Q1) < R(Ω, T0, P0, B0, Q0).

In practice, the function quartet C0 = (T0, P0, B0, Q0) is a functional representation of
the current situation, and the function quartet C1 = (T1, P1, B1, Q1) would be the functional
representation of a distribution of resources that leads to a lower overall risk than the
current situation.

3.1. Mitigation as a Minimization Process

From a mathematical perspective, risk mitigation can be considered a minimization
process: given the set C of all possible configurations

C = {(T, P, B, Q) : T ∈ T , P ∈ P , B ∈ B(P), Q ∈ Q(P, B)},

we might be interested in finding, for example, the lowest risk conceivable in the region

inf
C∈C

R(Ω, C),

and whether or not this can actually be achieved, i.e., if there exists C̄ ∈ C such that
R(Ω, C̄) = infC∈C R(Ω, C) (note that, in this case, the infimum is an actual minimum in the
mathematical sense). This can be important to determine the optimal land-use planning
in a “virgin” territory, but also to determine what can be expected “at best” by any risk
mitigation process.

When given an initial configuration C0 ∈ C, risk mitigation would imply studying the
subset of configurations with lower risk:

C<0 = {C ∈ C : R(Ω, C) < R(Ω, C0)}

and possibly look for some C ∈ C<0 that is “optimal” in some mathematical sense (possibly
in relation to C0 itself, as we shall see momentarily).

3.2. Cost Functions

In practice, risk mitigation has a cost: levees must be raised, ditches must be dug,
buildings must be reinforced, and infrastructure needs to be changed to accommodate for
the redistribution of population, etc.

Mathematically, this can be taken into account by associating a cost function κ to each
pair of configurations C0, C1, with κ(C0, C1) ≥ 0 modeling the cost of migration from
configuration C0 to configuration C1.

In risk mitigation, it is therefore in general appropriate to look for new configurations
such that the cost of migration from the previous to the new configuration is less than the
difference in risk, i.e., for configurations in the set

Cκ
<0 = {C ∈ C : R(Ω, C) < R(Ω, C0) + κ(C0, C)}

for some cost function κ. This is a way to express mathematically the idea that the cost of
reducing risk should not be higher than the value saved by reducing the risk.

In this case, one could consider the optimality of a lower risk configuration C ∈ Cκ
<0 for

example as the “most bang for the buck”, i.e., a configuration that minimizes both R(Ω, ·)
and κ(C0, ·). This translates to a multi-objective optimization problem and the study of
Pareto-optimal configurations [8,17].

The previous formulation is formally complete if the cost of migration from C0 to
C is unique. This, however, is not the case in general: for example, the same change in
single-building resilience (from Q0 to Q) may be achieved with different engineering efforts,
each with a different cost.

352



Appl. Sci. 2023, 13, 265

One possible approach to simplify this is to consider as κ(C0, C) the minimum cost
necessary to enact the change in configuration (or at least the infimum of the costs, if the
minimum does not exist). This is sufficient to make the cost function unique but may
result in unrealistic results in the estimation of Cκ

<0, since, in practice, the costs will have
a probability of being higher than the estimated lower bound κ, possibly resulting in a risk
mitigation process that is in practice more expensive than the expected savings in value loss.

A more complete way to approach the multiplicity of the cost function for each
pair of configurations is to take inspiration from homotopies. Mathematically, we define
a transition from configuration C0 to configuration C1 as a function MC0,C1 : [0, 1] → C such
that MC0,C1(0) = C0 and MC0,C1(1) = C1. The mitigation cost is then associated not with
the endpoints of the transition C0, C1, but with the specific transition, i.e., not κ(C0, C1), but
κ(MC0,C1).

If we indicate by M(C0, C1) the set of possible transitions from C0 to C1, risk mitigation
as an optimization problem translates then to the problem of finding C ∈ C such that there
exists MC0,C ∈ M(C0, C) such that R(Ω, C) < R(Ω, C0) + κ(MC0,C). Of course, while this
description is more accurate and complete, it significantly increases the search space of
the problem.

3.3. Transitions and Emergency Response

By ensuring that MC0,C1(t) ∈ C ∀t ∈ [0, 1], we are acknowledging the fact that each
intermediate stage of the transition is a configuration in and on itself, potentially with its
own associated risk assessment. While this may not seem to be particularly relevant for
long-term risk assessment (unless the material time to complete the transition is comparable
with the expected occurrence timescale of the hazardous events), the significance of this
formulation becomes evident when considering its application to emergency responses.

Consider a small-scale example such as a single building and its fire hazard. During
an emergency (one or more fires have started), the response might include an evacuation
plan that, in our formulation, maps to a transition from an initial configuration C0 (in
which people are distributed e.g., to their habitual workplaces within the building) to a new
configuration C1 in which no people are left in the building. The transition itself will involve,
at every instant in time, a new distribution of people in the building, along the established
evacuation routes. However, the choice of the evacuation routes (i.e., the choice of transition
MC0,C1 ) has an impact on the inherent risk associated with the transition itself, due to the
different distribution of people along them at each moment during the evacuation.

Note also that, in such a case, the pointwise risk function r itself would not be fixed,
so a more sophisticated formulation that takes this into account would be necessary to
complete the mathematical formulation necessary for the design of the emergency response.

4. Discussion

The assessment of risk involves determining the probability of a hazard occurring
and estimating the consequences through the quantification of exposure and vulnerability,
while mitigation refers to any action aiming at reducing the risk, and includes prevention,
preparedness, and response. Prevention is focused on a conscientious land-use planning
in order to reduce exposure. Preparedness includes all strategies to better understand the
hazardous phenomenon in order to limit its impact, like the development of monitoring
and early warning systems. Response consists of the design of actions to contain the threat
and for the possible evacuation, reducing vulnerability.

The formalization of risk assessment introduced here does not invalidate the more
informal approaches normally adopted for natural hazards, but extends them in such
a way that the informal approach can be formally recognized as a numerical approximation
stemming from epistemic limits [22] or the need to compromise between accuracy and
computational complexity.

For example, the digital elevation and surface models used as input to numerical fluid
dynamics computational models typically employed in hazard and risk assessment for
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geophysical flows (such as floods [23], landslides [24], pyroclastic density currents [25],
or lava flows [26]) are piece-wise constant approximations of the reality, whose higher or
lower horizontal resolution and vertical accuracy can influence the models’ output used in
hazard assessment [27]. Hazard maps for these phenomena are typically assembled from
a large number of such simulations: the choice of the combinations of initial conditions,
source location, geometry, etc. provide a discretized approximation of all the possible
scenarios that may impact the region of interest [28] whose combination is a numerical
approximation of the integral form (8).

We expect that this kind of insight may be useful in the selection of the representative
scenarios for the given problem space, with an eye on well-established numerical integra-
tion schemes that may provide higher accuracy or lower computational loads, such as the
Clenshaw–Curtis [29] or Gauss–Kronrod [30] quadrature formulas rather than the simpler
rectangle formula typically adopted when choosing scenarios on a regular distributed grid.

The main benefit of the formalization proposed here, however, is in the more refined
functional dependency proposed between the components of risk and the underlying
decision variables on which policy makers should act to improve prevention, preparedness,
and response.

The classification of these variables (environmental properties, elements at risk without
direct influence on hazard, elements at risk with an influence on hazard, and resilience
of the elements at risk) can provide insights on the extent to which each of them impacts
the final risk assessment, and thus guide the decision-making process in risk management
and mitigation.

For example, the category described by the family B of at-risk elements with an impact
on hazard (such as buildings and roads in the case of lava flows hazard) presents the
unique property of influencing risk assessment through all three of its components (hazard,
exposure, and vulnerability), giving it a potentially higher priority over variables in other
categories. This is particularly important in land-use and zoning plans (prevention), for
which policies should focus not only on prioritizing construction in low-hazard areas,
but also on favoring designs with higher resilience (preparedness), as well as ensuring
that the associated infrastructure does not amplify hazard itself in the areas of interest
(notoriously, for example, roads can become a preferential course for geophysical flows,
directing them towards densely populated areas that would otherwise be less threatened
by these hazardous phenomena).

Such policies must of course take into account a cost–benefit analysis. While these may
be considered statically in the planning stages, risk management for existing distributions
of elements (population, infrastructure, etc) must be considered in a dynamic sense. For
the scientific community, this implies not only that no risk mitigation result should be
considered complete without an indication of the practical means by which the mitigating
results may be achieved, including an associated estimate of the possible costs, but also
that the design of strategies to minimize such costs should be considered valuable results
in their own right.

As an example, in the response to the hazard associated with geophysical flows, this
means that the optimality in the design of barriers (or other diversion mechanisms) and
their placement should take into account not only the effectiveness of the obstruction/
diversion per se, but also the costs of construction and deployment. More importantly, it also
means that additional research opportunities can be found in the reduction of such costs,
for example by devising deployment strategies that minimize both storage and transport
(a classic application of domination problems from graph theory).

For decision makers, three action points should thus be encouraged, to help the sci-
entific community in providing more effective results: (i) advertise the costs of current
strategies for risk management and mitigation; (ii) minimize administrative costs of cur-
rent and future strategies; and (iii) foster interdisciplinary collaboration between natural
sciences, engineering, and mathematics to maximize the usefulness of research products.

354



Appl. Sci. 2023, 13, 265

5. Conclusions

The informal expression commonly used for risk assessment in the context of natural
hazards can be formalized in a way that exposes more clearly the relation between the
fundamental building blocks of hazard, exposure, and vulnerability, while still reducing to
the informal expression with the appropriate simplifications. For the sake of brevity, we
have shown here the formalization for the case of a single risk with no intensity information,
but the same approach can be used by including intensity and multiple interacting risks,
at the cost of an even higher complexity in the functional dependencies between the
components of the final formulation.

While the variables contributing to hazard, exposure, and vulnerability have been
presented here in the most abstract and general form, any expert in the field will be able
to match easily the data and models they operate with, and the corresponding sets and
functions discussed in this perspective. This correspondence will help identify the decision
variables («what can be acted upon to decrease risk?») and their weight in the formulation
(«how effective will it be to act on this variable to reduce risk?»). The actual extent to which the
mathematical formulation presented here can be used depends then on the accuracy and
completeness of the data and information available.

A key novelty of our perspective is the choice to view risk mitigation not only (or
primarily) in terms of its final effect (the scaling or reduction factor previously discussed in
the literature), but as a dynamic process, whose duration and costs have a distinct influence
on the final results. While this increases the complexity of evaluation of risk mitigation
measures, it shifts the attention towards a more realistic, and thus hopefully more useful,
approach, where answering the question «how do we get there?» is of equal, if not higher,
importance as «where do we want to get?»
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Abstract: Mankind has long been fascinated by emergence in complex systems. With the rapidly
accumulating big data in almost every branch of science, engineering, and society, a golden age for
the study of complex systems and emergence has arisen. Among the many values of big data are
to detect changes in system dynamics and to help science to extend its reach, and most desirably,
to possibly uncover new fundamental laws. Unfortunately, these goals are hard to achieve using
black-box machine-learning based approaches for big data analysis. Especially, when systems
are not functioning properly, their dynamics must be highly nonlinear, and as long as abnormal
behaviors occur rarely, relevant data for abnormal behaviors cannot be expected to be abundant
enough to be adequately tackled by machine-learning based approaches. To better cope with these
situations, we advocate to synergistically use mainstream machine learning based approaches and
multiscale approaches from complexity science. The latter are very useful for finding key parameters
characterizing the evolution of a dynamical system, including malfunctioning of the system. One
of the many uses of such parameters is to design simpler but more accurate unsupervised machine
learning schemes. To illustrate the ideas, we will first provide a tutorial introduction to complex
systems and emergence, then we present two multiscale approaches. One is based on adaptive
filtering, which is excellent at trend analysis, noise reduction, and (multi)fractal analysis. The
other originates from chaos theory and can unify the major complexity measures that have been
developed in recent decades. To make the ideas and methods better accessed by a wider audience,
the paper is designed as a tutorial survey, emphasizing the connections among the different concepts
from complexity science. Many original discussions, arguments, and results pertinent to real-world
applications are also presented so that readers can be best stimulated to apply and further develop the
ideas and methods covered in the article to solve their own problems. This article is purported both as
a tutorial and a survey. It can be used as course material, including summer extensive training courses.
When the material is used for teaching purposes, it will be beneficial to motivate students to have
hands-on experiences with the many methods discussed in the paper. Instructors as well as readers
interested in the computer analysis programs are welcome to contact the corresponding author.

Keywords: complexity; emergence; chaos; fractal; power-law; multiscale analysis; social complexity

1. Introduction

The ever increasing amount of big data in science, engineering, and society, includ-
ing meteorological, hydrological, ecological, environmental, as well as various kinds of
biomedical, manufacturing, e-commerce, and government management data, has fueled
enormous optimism among researchers, entrepreneurs, government officials, the media,
and the general public [1,2]. It is now hoped that by recording and analyzing the errors
of all the components of a sophisticated machine, one can quickly diagnose and then
fix its malfunctioning. When one is sick, one hopes that in the near future, with all the
increasingly detailed data about oneself, including genomic, cellular, clinical, psychological,
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and environmental data, one may promptly get optimized treatment. One also hopes to
identify the most promising stocks by collecting and analyzing all the relevant economic
data and then investing on them.

Such optimism is not entirely unfounded, as big data indeed has brought some
pleasant surprises to science and society. For example, a good online shopping system
can quickly and fairly accurately infer what an online shopper is looking for by analyzing
the shopper’s online behavior in real time. By analyzing the tweets about major natural
disasters, key information of disasters can be accurately obtained [3]. Google Flu Trends
did an impressive job in predicting the 2008 influenza [4].

While the big data showcase does not stop at the above successful examples, it is
important that one is not carried away by those successes. In fact, many more not so
successful cases also exist. For example, right after 2008, Google Flu Trends over-predicted
influenza outbreaks, and by 2012, the error was by as much as a factor of two [5], which
then prompted Google to give up the predictor. The box office price of the film “Golden
Times”, which was first released in China during the National Holiday, 1 October 2014,
was only slightly more than 40 million, while Baidu, the leading Chinese web services
company, predicted it to be about 200–230 million. The poor prediction by Baidu made a
reviewer of the film to lament that big data may not be dependable [6]. Of course, we have
to add the failed prediction of the Trump presidency in 2016 by many predictors, whose
implications to the Americas, and even the world’s politics, are almost unfathomable.

Among the most important values of big data analysis are to detect changes in system
dynamics (e.g., detect and understand abnormal behaviors ) and to help science to extend
its reach (and most desirably, to possibly uncover new fundamental laws). This includes
timely diagnosis and treatment of various kinds of diseases in health care, proper predic-
tion of regime changes in weather and climate patterns, timely forewarning of natural
disasters, and timely detection and fixing of malfunctioning of various kinds of devices,
infrastructure, and software in the field of operation and maintenance [7–10], among many
others. Understandably, abnormal behaviors cannot be expected to occur frequently, and
thus the relevant data may not be so abundant that direct application of machine-learning
based approaches will always be very rewarding. In those situations, the systems often gen-
erate data with complex characteristics including long-range spatial–temporal correlations,
extreme variations (sometimes caused by small disturbances), time-varying mean and
variance, and multiscale analysis (i.e., different behavior depending on the scales at which
the data are examined). Such situations have been increasingly manifesting themselves
in science, engineering, and society. To adequately cope with these situations, it is often
beneficial to resort to complexity science to analyze the relevant data. In fact, when dealing
with such highly challenging situations, many analyses using machine-learning based
approaches may be considered pre-processing of the data or the first step that can facilitate
further application of complexity-based approaches, or as post-processing of the features
obtained through multiscale analysis. An excellent article along this line (more precisely,
study of segmental organization of the human genome by combining complexity with
machine learning approaches) has recently been reported by Karakatsanis et al. [11]. In
short, the complex behaviors in nature, science, engineering, and society must be infinite.
To help one to peek into the infinity of the complex behaviors, going beyond statistical
analysis and machine-learning by resorting to the type of mathematics that embodies an
element of infinity will often be beneficial.

At this point, it is important to pause for a moment to discuss a peculiar phenomenon:
while many consider complexity science to be very useful, some others doubt its relevance
to reality. Why is this so? The basic reason is that in complexity research, conceptual
thinking, simulational study, and applications have not been well connected. For example,
Science magazine dedicated the April 1999 issue to Complex Systems. A number of leading
experts in their respective fields, including chemistry, physics, economics, ecology, and
biology, expressed their views on the relevance/importance of complexity science in their
fields. While the special issue is influential in making some concepts of complex systems
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known to a wider research community and even the general public, it does little in teaching
readers how to solve real-world problems. This may have contributed to the waning of
enthusiasm in complexity science research in the subsequent years, as most readers cannot
see how complexity science can help solve their problems. Fortunately, the tide appears
to have been reversed (please see recent reviews on complexity theory and leadership
practice [12] and health [13]).

The purpose of this article is to convey how the many concepts in complexity science
can be effectively applied to help one formulate stimulating problems pertinent to the
data and the underlying system. We will particularly focus on multiscale approaches.
They are the key to find scaling laws from the data. With the scaling laws, we can then
find defining parameters/properties of the data and eliminate spurious causal relations
in the data. The latter can help to shed some light on a new generation of AI, which is
based on correlation/causality rather than pure probabilistic thinking [14]. To better serve
our goal, we will discuss various kinds of applications right after a concept/method is
introduced. Our goal here is to fully arouse readers’ interest in the materials covered, and
to equip them with a set of widely applicable concepts and methods to help solve their
own interesting problems.

2. Basics of Complex Systems and Emergence

2.1. Complex Systems and Emergence: Working Definitions

To better understand which systems can be considered complex, we first explain
how complexity is quantified. There are two major types of measures. One is called
Deterministic complexity, which increases with the degree of randomness. See Figure 1
(left). Widely used measures in this category include Shannon entropy [15], Kolmogorov–
Sinai (KS) entropy [16,17], Kolmogorov–Chaitin complexity [18–20], and the Lempel–Ziv
(LZ) complexity [21]. The other is called Structural complexity. Here, the measure attains a
maximal value for an intermediate level of randomness. See Figure 1 (right).

Figure 1. Deterministic vs. structural complexity.

Let us now examine the main features of a complex system. It is often thought that a
complex system must consist of many interconnecting components or parts. The individual
components together with their dynamics could be quite simple. The system as a whole,
however, must exhibit complex dynamics. Note that with this view, a pendulum with
chaotic behavior is no longer considered a complex system. In addition, note that some
researchers (e.g., Kastens et al. [22]) advocate to assign a complex system with many more
quantifiable features, such as feedback loops, multiple inputs and multiple outputs, non-
Gaussian distributions of the outputs, nonlinear interactions, multiple stable states, fractal
and chaotic behaviors, self-organized criticality, hierarchy, and so on. Our view is that
it is extremely rare for a single system to simultaneously possess so many distinguished
properties at the same time. Therefore, simpler definitions that give more room and
freedom to think and work could be more beneficial.

Complex systems often defy pure statistical analysis. To illustrate the idea, let us
discuss an author (JB)’s personal experience. JB worked at Guangxi University in Nanning
for a few years. The campus was full of natural wonders, with flowers blossoming and
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many kinds of tropical and subtropical fruits dangling on trees all year long. Thus, JB and
many of his friends truly enjoyed the campus. Approximately 100,000 people, including
University employees and students, lived on campus. JB used to buy vegetables and meat
at a farmer’s market in the east campus of the University. Although the farmer’s market
was a bit shabby, it was in a convenient location and was visited by a lot of customers
everyday. In the market, there was a pork meat seller who normally would sell out all
the meat within 2.5 h before 11 am in the morning. Around October 2017, the market was
relocated to a new place about 7 min walk from the original site. Surprisingly, the number
of customers to the market dropped considerably. As a result, the pork meat seller would
still be selling meat around 1–2 pm. After that, the seller had to take the meat to some
fast food restaurants, as otherwise the pork, not refrigerated, would become spoiled and
smelly. Surely, quite a few fruit and vegetable sellers eventually gave up. Such dramatic
drop in customer number is very difficult to predict with statistical models, however
sophisticated they are. One can readily see that to truly understand the phenomenon,
one has to systematically analyze the dynamics of the customer behavior by considering
diverse factors such as the variety, cost, and freshness of food; convenience of the market;
competitors of the market; and customer psychology.

Next, let us consider emergence in complex systems. Emergence is a bulk property
of the system involving many of the interacting components of the system [23,24]. As a
result, its scale usually is much larger than that of the individual component. Outstanding
examples of emergence include the spiral galaxy [25], the great red spot of Jupiter [26], hur-
ricanes, tornadoes, phase transitions and critical phenomena [27], bird flocking [28,29], fish
schooling [30–33], sand dunes [34], mass parades or protests, and bursts of anger (where
many neurons in certain regions of the brain fire synchronously). Less frequently men-
tioned examples of emergence that are of tremendous significance to our society include
the many innovations in technology, including Internet-enabled platform economy, where
large numbers of sellers and buyers interact and transact through the platform. Among the
important and fascinating questions concerning such platform-enabled emergent behaviors
are to identify the conditions under which such services will become attractive and widely
adopted, and to quantify the generic statistical properties underlying such services.

Often it is thought that for a system to exhibit an emergent behavior, it must have a
hierarchical structure. This thinking is, however, not quite consistent with the fact that
simple models with local interaction rules may simulate certain emergent behaviors quite
well, including bird flocking and fish schooling [28–33].

We now consider Complex giant systems, a notion that has been widely discussed in
many fields in China, including physics, mathematics, philosophy, and humanities. As fluid
motions including turbulence are considered not to belong to such systems, social systems
become the prototypical model here. While a big social system is certainly a giant system,
as it contains so many individuals and their interactions, it is not necessarily a complex
system. For example, in an autocratic state where governance is strictly hierarchical, from
top to bottom, and all means of feedback, such as election, parade protests, and so on, are
prohibited, the social dynamics of a specific layer are only directionally connected to its
nearest upper and lower layers (driven and driving, respectively). This is the consequence
of lacking a persistent negative feedback loop in the society. As a result, the complexities
of such societies cannot be considered very high, as those societies do not possess well-
developed dynamics that have to be enabled by feedback loops. In particular, they lack
many emergent behaviors that a democratic society has, such as parade protests instigated
by explosions in public opinion.

In the study of complex systems, different researchers may have different emphasis [35,36].
One school focuses on the mathematics and mechanics of complex systems. Here, one
is mainly concerned about rigorous mathematical analysis of the system under study,
most desirably starting from fundamental governing equations of the system, and using
mechanics (quantum, classical, and statistical) to analyze the system. While in principle
a living organism (e.g., the human body) may be modeled by a large set of differential
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equations with a lot of controlling parameters, with the values of the parameters indicating
healthy or diseased states, this may not be achieved in the near future. To better exploit
the unprecedented opportunities provided by the explosion of data in all areas of science,
technology, and society, in this article we adopt a data-driven approach to study complex
systems. Among the many techniques to analyze data is distribution analysis. As the
power law is a distribution with many interesting properties that are not shared by most
commonly used distributions in conventional statistical analysis, in the next subsection we
will discuss the power law and the related heavy-tailed distributions.

2.2. Power Law and Heavy-Tailed Distributions

In contrast to Gaussian, exponential, and other thin-tailed distributions that have a
well-defined scale, a power law distribution does not have a scale. It has been observed in
various kinds of physical, biological, technological, and and social systems. Well-known
examples include the distribution of word frequency, web hits, citations of scientific papers,
telephone calls, copies of books sold, diameter of moon craters, intensity of solar flares,
intensity of wars, magnitude of earthquakes, wealth of the richest people, and population
of cities [37].

A power law distribution can be expressed by its probability density function (PDF) [38]

f (x) ∼ x−α−1, x → ∞, (1)

or equivalently by the complementary cumulative distribution function (CCDF) [38]

P[X ≥ x] ∼ x−α, x → ∞. (2)

Notice here the emphasis that x → ∞. An interesting property of the power law distribution
is that for a given α, its moments with order higher than α do not exist. Therefore, when
0 < α < 2, the variance and all moments higher than the second order do not exist, and
when 0 < α ≤ 1, even the mean is infinite. When the power law relation extends to the
entire range of the allowable x, we have the Pareto distribution [39]:

P[X ≥ x] =
( b

x

)α
, x ≥ b > 0, α > 0, (3)

Here, α is the shape parameter, and b the location parameter. In the discrete case, the
Pareto distribution is called the Zipf distribution, which provides an excellent description
between the frequency of any word in a corpus of natural language and its rank in the
frequency table.

Somewhat related to the Zipf distribution is another distribution called Benford’s
law [40], which is about the probability of occurrence of leading digits d ∈ {1, 2, · · · , 9},

P(d) = log10(d + 1)− log10(d) = log10

(
1 +

1
d

)
(4)

A good mechanism for explaining the uneven distributions stipulated by Benford’s law
has been proposed in [41].

Benford’s law has been used for evaluating possible fraud in accounting data [42],
legal status [43], election data [44–46], macroeconomic data [47], price data [48], etc. From
Equation (4), we observe that beyond the small digits, the probability approximately
approaches the Zipf distribution with α = 1,

P(d) = log10

(
1 +

1
d

)
∼ d−1/ ln(10), d = 3, 4, · · · , 9 (5)

2.2.1. Pareto Principle or the 80/20 Rule

The 80/20 rule or the Pareto principle was first put foreword by the Italian economist
Vilfredo Pareto in 1896: approximately 80% of the land in Italy was owned by 20% of the

361



Appl. Sci. 2021, 11, 5736

population. The rule later more generally applies, as approximately 80% of the wealth in a
society is owned by 20% of the population. It can be derived from the Pareto distribution
with a specific parameter α. To see this, we can demonstrate as follows.

Suppose in a society the number of people with wealth at least x follows a power law:

N(X ≥ x) = Ax−α (6)

where A is some coefficient. If the minimal wealth of a person is x0, then the total number
of people in the society can be denoted as N(X ≥ xo), and

N(X ≥ x0) = Ax−α
0 (7)

Their ratio gives the percentage of rich people with wealth at least x and is equal to

( x
x0

)−α
(8)

The proability density function for a person to have wealth of x is

f (x) = αx−α−1 (9)

Thus, the society’s total wealth is
∫ ∞

x0

αx−α−1xdx (10)

and the total wealth of rich people with at least wealth x is given by
∫ ∞

x
αx−α−1xdx (11)

Note these two integrals are from x0 to ∞ and x to ∞, respectively. The ratio between
the latter and the former is given by

( x
x0

)1−α
(12)

Solving for α by letting the ratios given by Equations (8) and (12) to be 0.2 and 0.8,
respectively, we find

α = ln 5/ ln 4 ≈ 1.16 (13)

As a non-wealthy person might not be in a good mood or even become cynical when
hearing about the 80/20 rule, it is good to be reminded of one of two insights offered by
Will Durant and Ariel Durant, the famed authors of the prominent history book The Story
of Civilization: “For in modern states the men who can manage men manage the men who
can manage only things; and the men who can manage money manage all [49]. . . . As
everywhere, the majority of abilities was contained in a minority of men, and led to a
concentration of wealth” [50] The lesson here is that whatever one does, if one does not
want to be one of the 80% of the people, then one cannot be a follower; instead, one has
to strive to do new things, as only in those situations, can one have 80% rewards with
20% efforts.

2.2.2. Simulation and Parameter Estimation

To simulate a Pareto distributed random variable U, we can associate U with an
outcome of a random experiment. The same outcome may also be represented by the
value of another random variable X. The probability of an event of the experiment is then
either dFU(u) = fU(u)du or dFX(x) = fX(x)dx, where FU(u) and FX(x) are the cumulative
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distribution functions (CDFs) for the U and X, while fU(u) and fX(x) are the PDFs. Then
we have ∫ X

a
dFX(x) =

∫ U

0
du. (14)

Since FX(x) is monotonically nondecreasing, its inverse function exists. We then have

X = F−1
X (U). (15)

Now suppose U is a uniform [0, 1] random variable, while X is a Pareto random
variable, then

X = bU− 1
α . (16)

The most important parameter of the Pareto distribution is the exponent α. To estimate
it, we only need to notice that ln P[X ≥ x] vs. ln x is a linear function, with the slope being
−α. When estimating α from a finite set of data points, it is important to first take the
logarithm of x, then estimate the CCDF for ln x, and finally check if the logarithm of CCDF
has a linear relation with ln x. If one straightforwardly estimates a PDF or CCDF for
the original data, then take log-log of both axes to estimate α, one will often get a very
inaccurate or even wrong estimation. The reason is many of the small intervals used for
counting the number of data points x falling within them will be empty.

2.2.3. Reasons Why the Power Law Is Favored in Modeling

Two reasons make the power law extremely important in complexity science. One
reason is that it embodies the notion of self-similarity, and thus is the natural mathematical
tool for describing fractal phenomena. The other reason is that it often signifies great risk,
due to infinite variance or even mean. To understand the first reason, imagine a large room
with a lot of balls flying around. See Figure 2.

Figure 2. Pareto-distributed balls, where α = 1.8.

Assume the size of the balls follows a power law distribution,

p(r) ∼ r−α. (17)

When we observe the balls with our naked eyes, we normally will only pay more
attention to the balls of certain size ranges—large balls will block our vision, and very
small balls cannot be seen. Now assume that our eyes are comfortable with the scales r0,
2r0, r0/2, etc. Our perception is determined by the relevant abundance or the ratio of the
balls of sizes 2r0, r0, and r0/2:

p(2r0)/p(r0) = p(r0)/p(r0/2) = 2−α. (18)
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It is independent of r0. Now suppose we view the balls through a microscope with
a magnifying power of 100, so now our eyes will be focusing on the balls with scales
2r0/100, r0/100, r0/200, etc. The ratio of the balls on those scales will again be independent
of the scale r0/100. A perception independent of the scale is the essence of self-similarity.

The second reason that the power law is associated with higher risks is easier to
understand, since a power law distribution has infinite variance when 0 < α < 2 and even
infinite mean when 0 < α ≤ 1. Here, on one hand, one has to have some awe with the
power law, as otherwise the cost could be tremendous. For example, during financial crises
or economic downturns, the loss of the listed companies follows a power law distribution
that is even heavier than the distribution of the gains of all profitable companies [51,52].
As further examples, the size of forest fires and volcanic eruptions also follow power
law distributions (see Figures 3 and 4), which has obvious implications for fire fighting
or observation of volcanoes—going too close to the sites could easily lead to casualties.
However, on the other hand, one also has to be mindful that having infinite variance
or mean is not always associated with the severity of natural disasters. An important
counterexample is flooding, as it has been found that stream flow of rivers in dry seasons
(especially in desert areas) is better described by power law distributions, while that in
wet seasons is better described by log-normal distributions [53]. In deserts, surely flooding
does not constitute a major risk.

Figure 3. Complementary cumulative distribution function (CCDF) for the forest fires in USA and
China, where the size of a fire is measured by its area A. The data for USA are the sizes of individual
fires from 1997 to 2018, while those for China are the total annual size of forest fires in the 30 provinces
from 1998 to 2017.

Figure 4. Complementary cumulative distribution function (CCDF) for the products of volcanic
eruptions in the Holocene: (a) tephra volume (km3) and dense rock equivalent (DRE) (km3), and
(b) volcanic sulfate (data were from [54]).
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2.2.4. Mechanisms for Power Laws

The prevalence of power laws calls for development of models to explain the mecha-
nism. Various models have been proposed, including Tsallis non-extensive statistics [55–57].
For a systematic discussion, we refer to Chapter 11 of [38]. Here, we note two of them,
which appear to be relevant to many different scenarios and thus may better stimulate
readers to readily find mechanisms when they find power laws from their data. One model
is related to spatial heterogeneity and resource allocation (or availability). It is provided by
the model that superposition of exponential distributions with different parameters can
give rise to power law distributions. The other reflects the underlying local dynamics of
the problem to some degree, and thus is in some sense more thought-provoking. The most
well-known example of this class is perhaps the scale-free power law network model [58].
Another example is related to social segregation and crimes in a society: distributions of
the ratio between sex offenders and the total population in the states of Ohio and New
York in the USA follow power laws, as shown in Figure 5 [59]. While intuitively this must
be driven by crimes (more concretely, sexual offenses) and instigated by laws preventing
crimes, so far, however, a concrete model is still lacking. Such a model is surely worth
developing in the future.

Figure 5. Distribution for the ratio between sex offenders and the total population in (a) Ohio and
(b) New York (adapted from [59]).

2.3. Essentials of Chaos Theory

Many readers can easily recall observing a sinusoidal signal with an oscilloscope.
Assume we are examining some production line through monitoring of some signal. An
aperiodic, highly irregular time series pops up. Is the signal simply some kind of noise?
Very unlikely, since our system is deterministic. Can a seemingly random signal come from
a deterministic system which can be described by only a few variables instead of a random
system with infinite numbers of degrees of freedom? Yes, a chaotic system can do that! Not
only so, many universal behaviors behind chaos have been uncovered. These findings have
fundamental, far-reaching implications in science and engineering, and thus chaos theory,
relativity, and quantum mechanics are considered the three most revolutionary scientific
theories of the twentieth century.

To facilitate understanding of the essentials of chaos theory, in this section, we first ex-
plain the notion of phase space and transformation, then we present the basic properties of
chaos. To satisfy curious minds, we will also give a flavor of analytical thinking. Finally, we
explain how to reconstruct a proper phase space from a single variable (scalar time series)
and estimate the few basic metrics (called invariants) that characterize a chaotic system.

2.3.1. Phase Space and Transformation

Phase space is the arena for the evolution of a dynamical system to unfold. It is
spanned by all the variables needed to fully characterize the evolution of the system. To
help one to better understand the idea, let us start from a system characterized by only
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two state variables, X1 and X2. Monitoring the system often amounts to examining the
waveforms of X1(t) and X2(t). One may instead try to examine the trajectory defined
by (X1(t), X2(t)), where t now is treated as an implicit parameter. The space spanned by
X1 and X2 is the phase space (or state space) we are discussing. They could be position
and velocity, for example. Employing phase space facilitates one to study the dynamics
of a complicated system with a geometrical viewpoint. For some dynamical systems,
irrespective of initial conditions, the trajectory eventually approaches a single point; this
is called a globally stable fixed point solution. Of course, the situation could be more
complicated. For example, the trajectory may converge to a closed loop, again irrespective
of where the trajectory starts. This is called a globally stable limit cycle. The discrete counter
part of a limit cycle is a periodic motion with certain period (say N): the corresponding
attractor consists of N points, and the trajectory amounts to hopping among the N points
with a definite order.

To be more familiar with the concept of phase space, it is useful to examine certain
experience in daily life. To illustrate the idea, suppose we were going to a meeting by a
taxi. On our way, there was a traffic jam, and the taxi got stuck. Afraid of being late, we
decided to call the organizer. How would we describe our situation? Usually, we would
tell the organizer where we got stuck and how quickly or slowly the taxi was moving.
In other words, we actually have been using the concept of phase space as part of our
daily language.

Although the concept of phase space is among the most basic in dynamical systems
theory, its usefulness in geographical science has yet to be seriously explored [60]. To
accelerate the coming of a time that phase space becomes as basic in geographical science
as in complexity science, it is helpful to discuss two potential applications of phase space
in geographical science. One application is top-down, that is, to systematically think
about how many independent variables are needed to fully characterize an interesting and
important problem in geographical science, and how each variable can be measured. The
other application is bottom-up. It is easiest to illustrate the idea by using some variables in
the World Value Survey (WVS, accessed on 17 April 2021, http://www.worldvaluessurvey.
org/wvs.jsp) as an example. WVS is an interesting project that explores values and beliefs of
people around the globe, how the values and beliefs evolve with time, and what social and
political implications they may have. Since 1981, researchers have conducted representative
national surveys in almost 100 countries. During the survey, a lot of variables have been
deduced. We show here that phase space offers a convenient geometrical way to visualize
the data and identify co-variations of the variables. For this purpose, we choose a variable
that gives three levels of religious participation for people in the nations surveyed. The
other variable we choose is happiness, which is given in four levels. How are the two
variables related? How different are people in different countries in terms of these two
variables? To gain insights into these interesting questions, we can form a phase space
spanned by these two variables. The format of the survey data determines that people
surveyed in a nation will belong to one of the 12 different categories. To fully utilize
the notion of space, we can associate each category with a box. Instead of putting every
person belonging to that category at one single point (e.g., the center of the box), we can
generate two uniformly distributed random variables as the coordinate of the person in
the corresponding box. Please see Figure 6. With such a visualization, one can immediately
see the abundance of each category. When WVS data of different waves (times) are used,
one can then examine variation of the percentage of people in each category over time
for a nation, compare among different nations, deduce functional relationships between
these two variables, and classify nations in the world into different clusters. Note Figure 6
may be called phase space ensemble based visualization, where an ensemble amounts to a
participant in the survey.
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Figure 6. Phase space diagram of religious participation vs. happiness for the USA based on wave 7 of the World Value
Survey Data.

Next, let us consider transformations in phase space. A good way to grasp the idea is
to imagine the following situation: on a very weedy day, a little boy went outside with a
sheet of paper in his hand. He grabbed a handful of sand and put it on the paper. Then
he released the paper in the air. How would the sand be swept across the sky? One could
even think that originally the boy had arranged the sand to resemble the face of a person.
How would the face be twisted by the wind? To make this discussion more concrete, we
can consider how a unit circle is transformed by the Henon map [61]:

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn, (19)

where a = 1.4, b = 0.3. Figure 7 shows the successive (from left to right and top to bottom)
images of the unit circle after n = 1, · · · , 5 iterations. Note that the fifth image is basically
the Henon attractor one can find in textbooks, journal papers, or certain web sites. It is
usually obtained by choosing an arbitrary initial condition and iterate the Henon map long
enough. If the trajectory does not diverge, then after removing the transient points (which
are the first few points here), the remaining trajectory (not connected by lines) will be very
similar to the fifth image shown here. In our ensemble scenario, we observe that just after
one iteration, the unit circle is already changed to a very different shape, and by the fourth
iteration, the shape of the image is already very similar to the Henon attractor. By now,
one could easily understand that the Henon attractor can either be readily obtained from
an arbitrarily shaped phase space region (discarding initial conditions which lead to the
divergence of the iterations) or by iterating a single arbitrary initial condition many times.
The equivalence of the two approaches, one based on the evolution of ensembles in the
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phase space, the other based on long-time iterations, is a clear manifestation of the ergodic
property of the Henon map (and more generally, chaotic systems).

Figure 7. Successive transformation of a unit circle by the Henon map. The unit circle is represented
by 36,000 points with equal arc spacing. These points are then taken as initial conditions for the
Henon map. Successive (i = 1, 2, . . . , 5) images of the unit circle (discarding initial conditions which
lead to divergence of the iterations) are shown from left to right and top to bottom in the figure.

To enhance our understanding of the materials discussed so far, let us visually observe
how chaos manifests itself in the chaotic Lorenz system:

dx/dt = −16(x − y),
dy/dt = −xz + 45.92x − y,
dz/dt = xy − 4z.

(20)

For this purpose, let us arbitrarily choose an initial condition, (−17.3432, −24.5966,
40.1096), perturb it 2500 times using standard Gaussian random variables with very small
variance, and monitor the evolution of all those points. These initial conditions are shown
in Figure 8 as a magenta block centered at our chosen initial condition. After 2 units of
time, these initial conditions spread to the points labeled as red in the Figure. After another
2 units of time, the red points further evolve to the points labeled as green. Two more
units of time later, the green points become the blue points. By that time, the shape of the
points already resembles the chaotic Lorenz attractor we usually see in books, papers, and
on the Internet.
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Figure 8. Evolution of point clouds in the chaotic Lorenz system: magenta, red, green, and blue
correspond to t = 0, 2, 4, 6, respectively.

2.3.2. Defining Properties of Chaotic Systems

The most important property of chaos is sensitive dependence on initial conditions.
It means that a very small difference in the initial condition may lead to a completely
different trajectory. To appreciate this property, one may imagine a butterfly flapping its
wings sometime on a day in the Amazon rain forest. This contributes to a minor change in
the global air currents. If the motion on that day is chaotic, then sunny weather in some
city, say Ney York, could have been replaced by a rainy weather not long after the flapping
of the butterfly’s wings. One may contrast this feature with a the traditional view, largely
drawn from the study of linear systems, that small disturbances only produce proportional
effects. Under the latter scenario, in order for the motion of the system to be random, the
number of degrees of freedom has to be infinite.

Being the most important property of chaos, sensitive dependence on initial conditions
has to be quantified. This is achieved by equating this property with an exponential
divergence of nearby trajectories in the phase space. Let d(0) be the small distance between
two arbitrary trajectories at time 0, and let d(t) be the distance between them at time t.
Then, for true low-dimensional deterministic chaos, we have

d(t) ∼ d(0)eλ1t (21)

where λ1 is called the largest positive Lyapunov exponent. This property of sensitive
dependence on initial conditions of chaos can be conveniently illustrated by the chaotic
Logistic map:

xn+1 = μxn(1 − xn), (22)

where μ = 4. We can generate, for example, 100 initial conditions by using uniformly
distributed random numbers, and iterate the Logistic map to get 100 trajectories. We
then perturb each of the initial conditions by a small error of 10−4 and regenerate the
100 trajectories. The evolution of the errors between the original and the perturbed tra-
jectories is shown in Figure 9. Clearly we observe that the logarithm of the errors first
increases with time linearly to about a time of n = 25, then is saturated. Linear growth in a
logarithmic scale amounts to exponential growth. By visual inspection, we can identify
that λ1 here is close to 0.7 (more precisely, ln 2, which will be explained shortly). That
errors very soon saturate is due to the fact that x defined by the logistic map is in the unit
internal, as is the absolute value of the errors.
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Figure 9. Error growth in the logistic map.

The largest positive Lyapunov exponent for the Henon map and the chaotic Lorenz
system we discussed in Section 2.3.1 can also be conveniently computed based on time
series data. This will be discussed shortly.

The trajectories of a chaotic attractor are bounded in the phase space. This is another
fundamental property of the chaotic attractor. The ceaseless stretching due to exponential
divergence of nearby trajectories, and folding from time to time due to boundedness of the
attractor, make the chaotic attractor a fractal, characterized by

N(ε) ∼ ε−D, ε → 0 , (23)

where N(ε) represents the (minimal) number of boxes, with linear length not larger than ε,
needed to completely cover the attractor in the phase space. D is called the box-counting
dimension of the attractor. Typically, it is a nonintegral number. For the chaotic Henon and
Lorenz attractor, D is 1.2 and 2.05, respectively.

2.3.3. A Taste of Analysis

In order to better understand the key concept of chaotic dynamics, the sensitive
dependence on initial conditions, let us engage in some analytic analysis. In practice, if one
can identify from the problem a transformation similar to the following map, then one can
be more than excited,

xn+1 = 2xn mod 1, (24)

This is a map on the unit interval, where x is positive, and mod 1 means that only the
fractional part of 2xn is retained as xn+1. The map can also be written as

xn+1 =

{
2xn, 0 ≤ xn < 1/2
2xn − 1, 1/2 ≤ xn < 1,

(25)

This map in fact acts as a Bernoulli shift [62], or binary shift, since if we represent an
initial condition x0 in binary form

x0 = 0.a1a2a3 · · · =
∞

∑
j=1

2−jaj, (26)

then
x1 = 0.a2a3a4 · · · ,

x2 = 0.a3a4a5 · · · ,

and so on, where each of the digits aj is either 1 or 0. Now it is clear that when x0 is a
rational number, the trajectory is periodic. In fact, we can easily find cycles of any length.
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For example, if x0 is a 3-bit repeating sequence, such as x0 = 0.001001001 · · · , then the
trajectory is periodic with period 3. Since there are infinitely more irrational numbers than
rational numbers in [0, 1), an arbitrary initial condition x0 will be an irrational number
with probability 1, and will almost surely generate an aperiodic, chaotic trajectory. Since
after each iteration the map shifts one bit, a digit that is initially very unimportant, say
the 80th digit (corresponding to 2−80 ≈ 10−24), becomes the first and the most important
digit after 80 iterations. This is a vivid example that a small change in the initial condition
makes a profound change in xn. Clearly, the largest Lyapunov exponent λ1 here is ln 2.

Next, let us re-consider the logistic map with μ = 4. If we make a transformation,

xn = sin2(2πyn) (27)

then the logistic map becomes the Bernoulli shift map discussed above. Therefore, the largest
Lyapunov exponent λ1 for the logistic map with μ = 4 is also ln 2, as we already mentioned.

Now that we have gained some understanding by considering simple model systems,
we can discuss how to characterize general chaotic systems. For a chaotic dynamical
system with dimensions higher than 1, first we need to realize that exponential divergence
can occur in more than one direction, and possibly in many directions. That means we
have multiple positive Lyapunov exponents. We denote them by λ+, among them, the
largest one is usually denoted as λ1. How are these Lyapunov exponents related to
the rate of creation of new information, or in other words, loss of prior knowledge, in
the system? To find the answer, we may partition the phase space into boxes of size ε,
compute the probability pi that the trajectory visits box i, and finally calculate the Shannon
entropy I = −∑ pi ln pi. For many systems, when ε → 0, information increases with time
linearly [63]

I(ε, t) = I0 + Kt (28)

Here, I0 is the initial entropy, and K is the celebrated Kolmogorov–Sinai (K-S)
entropy [16,17]. Now let us consider the situation that all the initial conditions of the
system are confined in a small region in the phase space. In this case, the initial probability
in the chosen small region is 1, and 0 in all other regions. Therefore, I0 = 0. For a chaotic
system, because of the exponential divergence, the number of phase space regions visited
by the system after a time of T is N ∝ e(∑ λ+)T , where λ+ are the positive Lyapunov expo-
nents we have already explained. If all these regions are visited by the trajectories with
equal probability, then pi(T) ∼ 1/N, and the information function becomes

I(T) = −
N

∑
i=1

pi(T) ln pi(T) = (∑ λ+)T (29)

We thus have K = ∑ λ+. In general, if these phase space regions are not visited equally
likely, then

K ≤ ∑ λ+ (30)

Grassberger and Procaccia suggest that equality usually holds [64].

2.3.4. Bifurcations, Routes to Chaos, and Universality

In practice, whenever one has a dynamical system model described by discrete maps
or differential equations, then the first thing one needs to consider is if the model has
a unique fixed point solution, and if yes, if the solution is locally or globally stable. If
the model contains some controlling parameter(s), then one also has to consider if the
qualitative feature of the solution changes with the parameter(s), and if yes, find out what
kind of changes they are. One can also think if any features of the system are shared by
systems in other fields. The last point is the universality issue. These considerations make
it clear that studies of bifurcations, routes to chaos, and universality are of fundamental
importance to the study of dynamical systems.
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Fixed point solutions are one of the the limiting behaviors of dynamical systems. It
turns out the limiting behaviors of dynamical systems are very rich. In order of increas-
ing complexity, they are fixed points, limit cycles, torus, chaos, turbulence, and random
motions [38]. Fixed points correspond to motions without any change; limit cycles cor-
respond to periodic motions. We have already mentioned these two in the beginning of
this section. Torus corresponds to quasi-periodic motions, i.e., the motion is characterized
by two or more independent frequencies. Periodic and quasi-periodic motions may be
associated with crystals and quasi-crystals, finding of the latter won Professor Daniel
Shechtman a Nobel Prize in Chemistry in 2011. Fixed points, limit cycles, and torus all
belong to regular motions.

Since chaotic and regular motions appear almost everywhere, we should ask if a
chaotic motion may arise from a regular motion, and vice versa. Interestingly, the answer
can be found by studying bifurcations and routes to chaos in dynamical systems. Here, it
is critical to realize that the qualitative behaviors of the dynamics of a system may change
when one or more controlling parameters are changed. The parameter values that cause
such qualitative changes are called bifurcation points.

To better understand the notion of transitioning from one state to another, let us
briefly consider the anti-globalization movement. As often reported in the media, anti-
globalization activities are often accompanied with grandeur and truly praiseworthy ideals
such as better democratic representation, advancement of human rights, fair trade, and
sustainable development. However, this is only part of the story. The more fundamental
cause of the anti-globalization movement is the flipping of power ranking among the par-
ticipating countries—a country afraid of losing competitive edges or even being demoted
to a lower position in the power ranking would attribute that to unfair trade, infringement
of intellectual property rights, etc. While these concerns are not entirely unfounded, one
has to realize that reward to countries participating in economic globalization cannot be
linearly proportional to their ranking. As a result, rearrangement of the power ranking
surely will occur. Here, the basic parameter controlling the transition from globalization
to anti-globalization is associated with the rearrangement of the (relative) power ranking
among the participating countries.

To understand bifurcations, let us analyze the logistic map described by Equation (22)
again. Let us set μ = 2 and iterate the map starting with an initial condition x0 = 0.3. With
simple calculations, we can easily find that xn soon equals 0.5 after a few iterations. If we
choose x0 = 0.5, then x1 = x2 = · · · = 0.5. This means that 0.5 is a stable, fixed-point
solution. While it is easy to prove this statement rigorously [38], here, let us resort to
simulations: For any μ, where μ ∈ [2, 4], we choose an arbitrary initial value of x0, and
iterate Equation (22). After discarding the initial iterations so that the solution of the map
has stabilized, we retain a large number (say, 100) of the value of the iterations, and form
a scatter plot of those values with μ. When the map has a globally attracting fixed-point
solution, then the recorded values of xn will all become the same since the transients have
been discarded. In this situation, one only observes a single point with the horizontal axis
being the chosen μ and the vertical axis being the converged value of xn. For a periodic
solution with period m, one can observe m distinct points on the vertical axis. When the
motion becomes chaotic, one observes on the vertical axis as many distinct points as one
records (100 in our example). Figure 10a shows the bifurcation diagram for the logistic
map—the interesting structure is the celebrated period-doubling bifurcation to chaos.
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Figure 10. Bifurcation diagram for the logistic map; (b) is an enlargement of the little rectangular box
indicated by the arrow in (a).

Figure 10a embodies more structures than one could comprehend by a simple glance.
For example, if one enlarges Figure 10a the small rectangular region containing the period-3
window, then one obtains Figure 10b. We have again observed a period-doubling route to
chaos! (To truly understanding the presentations here, it is beneficial for readers new to
chaos theory to write a simple program to reproduce Figure 10a,b).

Having been observed in many diverse fields, period-doubling bifurcation to chaos is
one of the most studied and most celebrated routes to chaos [65]. To better comprehend
this universality, it is worth noting that it also underlies the bifurcations in the Henon map
(see Figure 11) and the Lorenz system. In fact, the notion of universality can be quantified
for the period-doubling bifurcation to chaos, through the Feigenbaum constant defined by

δ = lim
k→∞

μk − μk−1
μk+1 − μk

= 4.669201 · · · . (31)

Other routes to chaos also exist. They include the well-known quasi-periodicity
route [66] and the intermittency route [67]. The former refers to when a controlling param-
eter is changed, the motion of the system changes from a periodic motion with one basic
frequency, a quasi-periodic motion with two or more basic frequencies, to chaotic motions.
This route has been observed in many mechanical and physical systems, including fluid
systems. A bit surprisingly, this route has also manifested itself in the Internet transport
dynamics (concretely, a variable amounting to the round-trip time of a message transmit-
ting through the Internet can change from periodic and quasi-periodic motion to chaos
when the congestion level increases [68]). The third classic route to chaos, intermittency,
refers to the behavior that the motion of the system alters between smooth and chaotic
modes, again when a controlling parameter is changed. This route to chaos is very relevant
to many nonstationary phenomena in nature, including river flow dynamics, which are
very different in wet and dry seasons.
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Figure 11. Bifurcation diagram for the Henon map.

2.3.5. Chaotic Time Series Analysis

In this big data era, data of all kinds, including time series data, have been accu-
mulating explosively. Many techniques developed in the context of chaotic time series
analysis will be of tremendous value for the analysis of all kinds of complex time series data
whenever linear approaches are not sufficient. Below, we explain briefly but systematically
all the main components of chaotic time series analysis.

A. Optimal embedding

Often, a complicated dynamical system described by d�U/dt = f (�U) lives in a high-
dimensional phase space, where �U is a vector. In many situations, we may only be able to
access a single variable, say x, instead of many components of �U. In the simplest case, x is
just a component of �U, say U1. In general, x may be a function of �U. From x(t), how much
can we deduce the behavior of the dynamical system? The answer is a lot can be learned
from x, thanks to the Takens embedding theorem. The basic procedure is to construct
vectors according to the following equation [69–71],

Vi = [x(i), x(i + L), ..., x(i + (m − 1)L)], (32)

where m is the embedding dimension and L the delay time. More explicitly, we have

V1 = [x(t1), x(t1 + τ), x(t1 + 2τ), ..., x(t1 + (m − 1)τ],

V2 = [x(t2), x(t2 + τ), x(t2 + 2τ), ..., x(t2 + (m − 1)τ],
...

Vj = [x(tj), x(tj + τ), x(tj + 2τ), ..., x(tj + (m − 1)τ], (33)
...

where ti+1 − ti = Δt and τ = LΔt. We thus obtain a discrete dynamical system (i.e., a map),

Vn+1 = M(Vn). (34)

If the original dynamical system has an attractor with a boxing counting dimension D
defined by Equation (23), then so long as m > 2D, topologically the dynamics of the original
system described by d�U/dt = f (�U) are equivalent to that described by Equation (34). In
this case, the procedure using the delay coordinates is called an embedding. In proving this
theorem, two properties of differential equations play key roles: (1) for any initial condition,
a set of ODEs has a unique solution, and this ensures that trajectories corresponding to
different initial conditions in the phase space do not intersect in the phase space; (2) a
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trajectory corresponding to a specific initial condition does not self-intersect in the phase
space; when m is sufficiently large, self-intersection will be fully eliminated.

In practical applications, m and L have to be determined according to some optimiza-
tion procedure. To appreciate the issue, let us consider the harmonic oscillator described
below, which is among the simplest dynamical systems:

d2x
dt2 = −ωx. (35)

Of course, we can also write it as

dx
dt

= y,
dy
dt

= −ωx, (36)

The general solution is

x(t) = A cos(ωt + φ0), y(t) = A sin(ωt + φ0). (37)

Here, the phase space is a 2D plane with coordinates x and y. Now consider the case
that we can only measure x(t). Using the embedding procedure with m = 2, we obtain
V(t) = [x(t), x(t + τ)]. Figure 12 shows embeddings with τ = T/40, T/8, T/4, where
T = 2π/ω is the period of the oscillation. When τ = T/4, the difference between the
two components, x(t) and x(t + τ), in terms of angle is π/2. With this angle difference, the
cosine function becomes the sine function. That is, x(t + τ) becomes y(t)). Therefore, the
reconstructed dynamical system is the same as the original one. In this simple example, the
minimal embedding dimension m is 2, and the optimal delay time L is 1/4 of the period.
The consequence of using this optimal delay time is that the motion in the reconstructed
phase plane is the most uniform—the phase velocity is the same everywhere in the case of
Figure 12c, but not in those of Figure 12a,b.

Figure 12. Embedding of the harmonic oscillator.

Since the 1980s, a number of excellent methods have been proposed to optimally
determine m and τ. Below we describe two approaches, which have been extensively
tested and are very systematic.

(1) False nearest-neighbor method: This is a geometrical method. Consider the situation
in which an m0-dimensional delay reconstruction is embedded but an (m0 − 1)-
dimensional reconstruction is not. Passing from m0 − 1 to m0, self-intersection in the
reconstructed trajectory is eliminated. This feature can be quantified by the sharp
decrease in the number of nearest neighbors when m is increased from m0 − 1 to m0.
Therefore, the optimal value of m is m0. More precisely, for each reconstructed vector
V(m)

i = [x(ti), x(ti + τ), x(ti + 2τ), · · · , x(ti + (m − 1)τ)], its nearest neighbor V(m)
j is

found (to ensure unambiguity, here the superscript (m) is used to emphasize that this
is an m-dimensional reconstruction). If m is not large enough, then V(m)

j may be a

false neighbor of V(m)
i (something like both the north and south poles are mapped

to the center of the equator, or multiple different objects have the same shadow). If
embedding can be achieved by increasing m by 1, then the embedding vectors become
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V(m+1)
i = [x(ti), x(ti + τ), x(ti + 2τ), · · · , x(ti + (m − 1)τ, x(ti + mτ)] = [V(m)

i , x(ti +

mτ)] and V(m+1)
j = [V(m)

j , x(tj + mτ)], and they will no longer be close neighbors.
Instead, they will be far apart. The criterion for optimal embedding is then

R f =
|x(ti + mτ)− x(tj + mτ)|

||V(m)
i − V(m)

j ||
> RT , (38)

where RT is a heuristic threshold value. Abarbanel [72] recommends RT = 15.
After m is determined, τ can be obtained by minimizing R f .
While this method is intuitively appealing, it should be pointed out that it works less
effectively in the noisy case. Partly, this is because nearest neighbors may not be well
defined when data have noise.

(2) Time-dependent exponent curves: This is a dynamical method developed by Gao
and Zheng [73,74]. The basic idea is that false neighbors will fly apart rapidly if we
follow them on the trajectory. Denote the reconstructed trajectory by V(m)

1 , V(m)
2 , · · · .

If V(m)
i and V(m)

j are false neighbors, then it is unlikely that points V(m)
i+k , V(m)

j+k , where
k is the evolution time, will remain close neighbors. That is, the distance between
V(m)

i+k and V(m)
j+k will be much larger than that between V(m)

i and V(m)
j if the delay

reconstruction is not an embedding. The metric recommended by Gao and Zheng is

Λ(m, L, k) =

〈
ln

(
‖Vi+k − Vj+k‖
‖Vi − Vj‖

)〉
. (39)

Here, for simplicity, the superscript (m) in the reconstructed vectors is no longer
indicated. The angle brackets denote the average of all possible (Vi, Vj) pairs satisfying
the condition

εi ≤ ‖Vi − Vj‖ ≤ εi + Δεi, i = 1, 2, 3, · · · , (40)

where εi and Δεi are more or less arbitrarily chosen small distances. Geometrically
speaking, Equation (40) defines a shell, with εi being the diameter of the shell and Δεi
the thickness of the shell. When εk = 0, the shell becomes a ball; in particular, if the
embedding dimension m is 2, then the ball is a circle. Note that the computation is
carried out for a series of shells, i = 1, 2, 3, · · · , and Δεi may depend on the index i.
With this approach, the effect of noise can be greatly suppressed.

As a rule of thumb, Gao and Zheng find that for a fixed small k, the minimal m is
such that when further increasing m, Λ(m, L, k) no longer decreases significantly. After m
is determined, L can be chosen by minimizing Λ(m, L, k).

Now that we have determined an optimal embedding, we can discuss how to esti-
mate the largest positive Lyapunov exponent, dimension, and Kolmogorov entropy of
chaotic attractors.

B. Estimation of the largest positive Lyapunov exponent

A number of algorithms for estimating the Lyapunov exponents have been developed.
A classic method is Wolf et al.’s algorithm [75]. The basic idea is to select a fiducial trajectory
and monitor how the deviation from it grows with time. Let the distance between the two
trajectories at time ti and ti+1 be d′i and di+1. The rate of the exponential divergence over
this time period is given by

ln(di+1/d′i)
ti+1 − ti

.

To ensure exponential divergence, the distance between the two trajectories has to be
always small. Therefore, when di+1 exceeds a certain chosen threshold value, something
has to be done: a new point in the direction of the vector of di+1 is used so that d′i+1 is very
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small compared to the size of the attractor. This procedure is called normalization. After n
repetitions of the procedure, we obtain

λ1 =
n−1

∑
i=1

[
ti+1 − ti

∑n−1
i=1 (ti+1 − ti)

][
ln(di+1/d′i)

ti+1 − ti

]
=

∑n−1
i=1 ln(di+1/d′i)

tn − t1
. (41)

Note the normalization procedure is where the novelty of the algorithm lies. The
necessity of this step can be best understood by resorting to Figure 9: The computation
from ti to ti+1 amounts to one curve in Figure 9—when error saturates, a new round of
computation has to begin; renormalization along the direction of the latest vector ensures
that the evaluation of the largest positive Lyapunov exponent is along the most unstable
dynamics of the data. This is especially important for high-dimensional cases, where there
are multiple unstable directions (and therefore multiple positive Lyapunov exponents).

Unfortunately, the Wolf’s algorithm suffers from two serious problems. One is that it
does not and cannot tell how to determine a threshold value suitable for the normalization
procedure. The other is even more serious: it assumes but does not test exponential
divergence. As a consequence of the second problem, a positive λ1 could arise from any
type of noisy data, including independent identically distributed (IID) random variables,
as long as all the distances used in the computation are small. Therefore, the approach can
often interpret a noisy process as a chaotic motion. To see why this is so, consider the case
that d′i is small. At the next time, di+1 usually will be larger than d′i. This may be called
that evolution would move d′i to the most probable spacing. In the case of fully random
sequence and without embedding, this “evolution” will be completed in just one time step;
when embedding is used, embedding vectors automatically incorporate correlations, and
this “evolution” will be completed in m time steps, where m is the embedding dimension.
In both situations, di+1, being in the middle step evolving from d′i, typically will be larger
than d′i; consequently, a quantity computed using Equation (41) will be positive.

While a positive λ1 is more likely to be produced by Wolf’s algorithm, it should also be
noted that certain implementations of the algorithm, such as that based on neural networks,
may have to choose an initial spacing of d′i larger than the most probable spacing, so that the
computation can return a nonempty result—this is more so when noise is stronger. In that
case, λ1 estimated will be negative, enticing one to interpret the data under investigation
to be non-chaotic when the data contain more noise. Of course, this interpretation is also
incorrect since, in principle, entropy for noisy systems is infinite, but not negative (for more
details on this issue, we refer to [76]).

To overcome the problems with Wolf’s algorithm, a number of methods have been pro-
posed. One algorithm is independently developed by Rosenstein et al. [77] and Kantz [78].
Another algorithm is developed by Gao and Zheng [73,74,79], published at about the same
time. We first describe the former.

With the method of Rosenstein et al. [77] and Kantz [78], one first chooses a reference
point and finds its ε-neighbors Vj. One then follows the evolution of all these points and
computes an average distance after a certain time. Finally, one chooses many reference
points and takes another average. Following the notation of Equation (39), these steps can
be described by

Λ(k) =
〈

ln
〈
‖Vi+k − Vj+k‖

〉
average over j

〉
average over i

, (42)

where Vi is a reference point and Vj are neighbors to Vi, satisfying the condition ‖Vi − Vj‖ < ε.
If Λ(k) ∼ k for a certain intermediate range of k, then the slope is the largest Lyapunov
exponent. This is the most fundamental part of the algorithm: it explicitly tests whether
the dynamics of the data possess exponential divergence or not.

While in principle this method can distinguish chaos from noise, with finite noisy
data it may not function as desired. One of the major reasons is that in order for the
average over j to be well defined, ε has to be small. In fact, sometimes the ε-neighborhood
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of Vi is replaced by the nearest neighbor of Vi. For this reason, the method cannot handle
short, noisy time series well.

Gao and Zheng’s algorithm [73,74,79] contains three basic ingredients:
Equations (39) and (40), and the condition

|i − j| > w. (43)

Equation (39) plays the same role as but is simpler than Equation (42), since it elim-
inates the necessity of performing two rounds of averages. More important are the con-
ditions specified by two Inequalities (40) and (43). The condition specifying the series
of shells makes the method a direct test for deterministic chaos, which will be explained
momentarily. The condition specified by Inequality (43) ensures that tangential motions
corresponding to the condition that Vi and Vj follow each other along the orbit are re-
moved. Tangential motions contribute a Lyapunov exponent of zero and, hence, severely
underestimate the positive Lyapunov exponent. An example is exhibited in Figure 13. We
find that when w = 1, the slope of the curve severely underestimates the largest positive
Lyapunov exponent, while w = 54 solves the problem. In practice, w can be chosen to
be larger than one orbital time, when orbital times are defined in the dynamical system
(Lorenz and Rossler attractor are such systems). If an orbital time cannot be defined, it can
be more or less arbitrarily set to be a large integer if the dataset is not too small.

Figure 13. Λ(k) vs. k curves for the Lorenz system. When w = 1, the slope of the curve severely
underestimates the largest Lyapunov exponent. When w is increased to 54, the slope correctly
estimates the largest Lyapunov exponent (reproduced from [74]).

To see how the condition specifying the series of shells gives rise to a direct test for
deterministic chaos, we can compare the behavior of the time-dependent exponent curves
for truly chaotic data and independent, identically distributed random variables. The
basic results are illustrated in Figure 14. We observe that for true chaotic signals, the
time-dependent exponent curves from different shells not only grow linearly for some
intermediate range of the evolution time k, but form a common envelope. As one expects,
the slope of the common envelope gives an accurate estimation of the largest positive
Lyapunov exponent. Such a common envelope does not exist for IID random variables. In
fact, the behavior of the IID random variables vividly illustrates the problems with Wolf’s
algorithm: Λ(k)/kδt amounts to the largest positive Lyapunov exponent; the very fact that
it critically depends on k and the size of the shells is a clear manifestation that the data
under study are random.
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Figure 14. Time-dependent exponent curves for the chaotic Lorenz data (left) and IID ran-
dom variables (right), where the curves, from bottom up, correspond to shells (2−(i+1)/2, 2−i/2),
1 = 1, 2, · · · , 9) (adapted from [74]).

As one can anticipate, when a chaotic signal is contaminated by noise, the common
envelope will gradually disappear with an increasing amount of noise. In general, this is
true for both measurement noise and dynamical noise, where measurement noise is the
noise superimposed onto a signal during a measurement process, while dynamical noise is
a noise that actively participates in the dynamics of the system (i.e., appears in the basic
equation(s) of the dynamical system). When a system dynamic is oscillatory and character-
ized by a limit cycle, with dynamical noise, in certain situations, a stochastic oscillator will
arise, with the frequency of the oscillation still close to that of the original limit cycle, but
the amplitude differs from that of the original limit cycle considerably. In a phase space, it is
characterized by a diffused limit cycle. An example is shown in Figure 15 (left) for essential
tremor [80]. Such behavior has also been observed for Parkinsonian tremor [80], fluid
dynamics in wakes behind circular cylinders in low Reynolds numbers and semiconductor
lasers [81,82], and atomic force microscopy [83]. As chemical reactions are often oscillatory,
one can also anticipate that stochastic oscillations are abundant in chemical reactions. Are
stochastic oscillators also characterized by exponential divergence in the phase space, just
as true chaos? Often, this is not the case. Instead, they are characterized by diffusional
processes characterized by

ln ‖Vi+k − Vj+k‖ = ln ‖Vi − Vj‖+ Λ(k) ∼ ln kα (44)

where the parameter α signifies what kind of diffusion the dynamic executes: the dynamic
is called sub-diffusion, normal diffusion, and super-diffusion when 0 < α < 1/2, α ≈ 1/2,
and 1/2 < α, respectively. In the case of tremors, the dynamics basically are normal
diffusions [80]. Typical Λ(k) curves for normal diffusions are of the shape shown in
Figure 15 (right), which are also true for the fluid dynamics in wakes behind circular
cylinders in low Reynolds numbers [81,82]. Other types of diffusions, although rarer, are
also possible. We will return to this issue later when we consider chaos communications.

Figure 15. 2D phase diagram for essential tremor data (left) and time-dependent exponent curves
(right), where the curves, from bottom up, correspond to shells (2−(i+1)/2, 2−i/2, 1 = 1, 2, · · · , 9)
(adapted from [80]).
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C. Estimation of fractal dimension and Kolmogorov entropy

There is an elegant algorithm, the Grassberger–Procaccia algorithm [64,84], that takes
care of both. To fully understand the algorithm, we first extend the box-counting dimension
defined in Equation (23). Recall that when we defined the box-counting or capacity
dimension of a chaotic attractor, we partitioned the phase space where the attractor locates
into many small regions called cells or boxes of linear size ε, and we counted the number
of non-empty cells or boxes. We can monitor the non-empty boxes more precisely by
counting how many points of the attractor have fallen into each of them. We can then
assign a probability pi to the ith cell that is not empty. The simplest way to compute pi is
by using ni/N, where ni is the number of points that fall within the ith cell, and N is the
total number of points. Then

Dq =
1

q − 1
lim
ε→0

(
log ∑n

i=1 pq
i

log ε

)
, (45)

where n is the total number of nonempty cells, and q is real. Generally speaking, Dq is a
nonincreasing function of q. D0 is the very box-counting or capacity dimension we have
already discussed, since ∑n

i=1 pq
i = n. D1 gives the information dimension DI ,

DI = lim
ε→0

∑n
i=1 pi log pi

log ε
. (46)

Typically, DI is equivalent to the pointwise dimension α defined as

p(l) ∼ lα, l → 0, (47)

where p(l) is the measure (i.e., probability) for the trajectory to fall within a neighborhood
of size l centered at a reference point. D2 is called the correlation dimension. It is what the
Grassberger–Procaccia algorithm calculates. It involves computing the correlation integral

C(ε) = lim
N→∞

1
N2

N

∑
i,j=1

H(ε − ||Vi − Vj||), (48)

where Vi and Vj are the embedding vectors, H(y) is the Heaviside function, which is 1 if
y ≥ 0 and 0 if y < 0. N is the number of points randomly chosen from the reconstructed
vectors. The term involving the Heaviside function amounts to counting the number of
points falling within a cell of radius ε that is centered around Vi. Therefore, C(ε) estimates
the average fraction of points within a distance of ε. One then checks the following
scaling behavior:

C(ε) ∼ εD2 , as ε → 0. (49)

When calculating the correlation integral, one may compute pairwise distances, ex-
cluding points Vi and Vj that are too close in time (i.e., i and j are too close). A rule of
thumb suggested by Theiler [85] is to remove the decorrelation time, which is equivalent
to Inequality (43). This issue is best understood dynamically [74]: when Vi and Vj are close
in time, they may be on the same orbit. The dimension corresponding to such tangential
motion is 1, while the Lyapunov exponent is 0. Without removing them, the correlation
dimension will be underestimated.

Next we consider entropy. First, let us precisely define the KS entropy. To be general,
we consider a high dimensional dynamical system with F degrees of freedom. We partition
the F-dimensional phase space into boxes of size εF. Assume the system has an attractor in
the phase space. Let us focus on a transient-free trajectory �x(t). Concretely, let us monitor
the the state of the system at times τ, 2τ, 3τ, · · · . Let p(i1, i2, · · · , id) be the joint probability
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that the trajectory is in box i1 at time τ, in box i2 at time 2τ, · · · , and in box id at time dτ.
The KS entropy is then

K = − lim
τ→0

lim
ε→0

lim
d→∞

1
dτ ∑

i1,··· ,id

p(i1, · · · , id) ln p(i1, · · · , id) . (50)

where K characterizes the rate of creation of entropy. To see this, we can start from the
block entropy:

Hd(ε, τ) = − ∑
i1,··· ,id

p(i1, · · · , id) ln p(i1, · · · , id). (51)

It is on the order of dτK. The difference between Hd+1(ε, τ) and Hd(ε, τ) gives the rate:

hd(ε, τ) =
1
τ
[Hd+1(ε, τ)− Hd(ε, τ)]. (52)

Let
h(ε, τ) = lim

d→∞
hd(ε, τ). (53)

Taking proper limits in Equation (53), we obtain the KS entropy:

K = lim
τ→0

lim
ε→0

h(ε, τ) = lim
τ→0

lim
ε→0

lim
d→∞

1
τ
[Hd+1(ε, τ)− Hd(ε, τ)]. (54)

The KS entropy can be generalized to the order-q Renyi entropies:

Kq = − lim
τ→0

lim
ε→0

lim
d→∞

1
dτ

1
q − 1

ln ∑
i1,··· ,id

pq(i1, · · · , id). (55)

When q → 1, Kq → K. Like the correlation dimension, the correlation entropy K2 can
be computed by the Grassberger–Procaccia algorithm by the following equation:

Cm(ε) ∼ εD2 e−mτK2 , (56)

where τ = Lδt is the actual delay time. The above equation can also be expressed as

K2 = lim
τ→0

lim
ε→0

lim
m→∞

1
τ
[ln Cm(ε)− ln Cm+1(ε)]. (57)

Although the above equations involve taking limits, in practice, data are of finite
length, and one really looks for power-law scaling behaviors between Cm(ε) and ε when
m is changed. When power law relations hold, in log-log scale, one should observe a
series of curves, which are straight over a significant range of ε, and the curves for smaller
embedding dimension m lie above those for larger m. In certain applications, one may just
fix ε to some small value ε∗, say 10% or 15% of the standard deviation of the original time
series, then compute K2(ε

∗). This K2(ε
∗) is called sample entropy, which has been widely

used in various kinds of physiological data analyses. Sample entropy can also be computed
for filtered data. When the filter is simply the moving average, which is the simplest ever
known, the resulting series of entropies corresponding to different parameters for the
moving average is called multiscale entropy. For more details, we refer to [86].

Before ending this subsection, we note a simple but very interesting and useful
technique for testing nonlinearity. It is called the surrogate data approach [87,88]. The basic
idea is to examine whether the original time series is distinctly different from a random
time series sharing some basic properties of the original time series, such as the distribution
or the power-spectral density. In the former case, the random time series can be readily
obtained by simply shuffling the original time series. In the latter case, one can randomize
the phase of the Fourier transform of the original time series and take the inverse transform.
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2.3.6. Chaos-Based Communications and Effect of Noise on Dynamical Systems

Among the most promising applications of chaos theory is the exploitation of the
short-term deterministic and long-term unpredictable aspects of chaotic behavior for the de-
velopment of chaos-based communication systems. The actual research in this area goes in
two directions. One, started in the early 1990s, is chaos-based secure communications [89].
The other, which is more recent, is to use chaos to rapidly generate random bits in physical
devices, for a range of applications in cryptography and secure communication [90–99].
The potential of each direction is dictated by the role of noise played in the corresponding
dynamical systems, which we will explain here.

In chaos-based secure communications, the most extensively studied is the scheme ex-
ploiting synchronization of chaos in two similar and coupled nonlinear systems [100–111].
The unpredictable behavior of chaos provides a means of security since chaotic signals
are hard to decode by a third party (called an eavesdropper). The chaotic signal is used
as a carrier to mask a message in the time or frequency domain. The synchronization
of a chaotic receiver with the chaotic emitter is then used to retrieve the message. In
mathematical notation,

• an emitter generates a chaotic signal x(t),
• a message signal s(t) is superimposed onto x(t),
• the signal r(t) = x(t) + s(t) + n(t) is sent to the receiver through the communication

channel,
• a receiver is synchronized to the emitter so that y(t) = x(t),
• signal s(t) is retrieved at the receiver by taking the difference between r(t) and y(t).

Secure chaos communication was first realized in nonlinear electronic circuits [89]. In
order to provide higher-speed encryption and be compatible with optical communication
networks [112], later efforts have been focused on optical systems. Among the many optical
systems studied in the field, the study of chaotic semiconductor diode lasers has been
most fruitful. This type of laser, which is the preferred light source in telecommunications,
has been an ideal test bed for many fundamental problems in nonlinear dynamics. The
state-of-the art cryptosystems using diode lasers are now able to transmit Gb/s messages
through a commercial fiber network of size 100 km [113].

The success of secure chaos communications depends on the realization of synchro-
nization in two chaotic systems. While synchronization of periodic oscillators has been
well-known since Huygens offered a mechanism in the seventeenth century, synchro-
nization of chaotic systems was quite a surprise initially, since most researchers thought
the exponential divergence in chaotic systems would prevent two chaotic systems from
synchronizing. Amazingly, chaos synchronization can be proven analytically and demon-
strated in laboratory experiments. To see the idea, let us consider two diffusively coupled
dynamical systems,

x′ = F(x) + α(y − x)x′ = F(x) + α(y − x)

y′ = F(y) + α(x − y)y′ = F(y) + α(x − y) (58)

Here, x and y are both vectors, x′ = F(x) is a chaotic system, and α is the parameter
that couples the system x and y. An invariant subspace of the coupled system is given by
x(t) = y(t). If this subspace is locally attractive, then the two systems can synchronize
perfectly. The role of α > 0 is to suppress the divergence between the x and the y systems:
in general, the larger the α, the easier the synchronization. To find the critical α, let us
focus on v = x − y. Assuming v to be small, we can then use Taylor series expansion.
Further assuming that higher order nonlinearities can be neglected, we obtain a linear
differential equation

v′ = DF(x(t))v − 2αv (59)
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Here, DF(x(t)) is the Jacobian of the vector field along the solution. When α = 0,
we have

u′ = DF(x(t))u, (60)

since the dynamics are chaotic, we have

‖u(t)‖ ≤ ‖u(0)‖eλ1t, (61)

where λ1 denotes the largest positive Lyapunov exponent of the isolated system.
Now letting

v = ue−2αt, (62)

we obtain
‖v(t)‖ ≤ ‖u(0)‖e(−2α+λ1)t (63)

therefore, the critical coupling strength is

αc = λ1/2. (64)

In general, when α > αc, and higher-order nonlinear terms in the Taylor series expan-
sion can indeed be ignored, then the coupled system will exhibit complete synchronization.
In building chaotic secure communication systems, the coupling is usually unidirectional,
and the two systems are called drive and response (or master and slave) systems—in the
example discussed here, if the term α(y − x) is dropped in the x system, then the x system
is the drive system, and the y system is the response system.

To better understand the potential of chaotic secure communications, it is important
to examine the effect of noise on dynamical systems. There are two types of noise, one
is measurement noise. In chaotic secure communications, the channel noise is a type of
measurement noise. The other type of noise is dynamical noise. It is in the equations
governing the dynamics of the system. The channel noise becomes part of the dynamical
noise for the response system (which can have additional dynamical noise sources). For
two chaotic systems to synchronize, dynamical noise in the response system has to be
small. This means the signal s(t) has to be small compared with the chaotic signal x(t).
As a consequence, power consumption in chaotic secure communications is larger than
traditional communication systems. This may be considered a cost for achieving better
security.

Although in most situations noise is detrimental in chaotic secure communications,
there are a few fortunate situations where noise is beneficial. This is enabled by an inter-
esting phenomenon, the noise-induced chaos. The existence of the phenomenon can be
demonstrated via a driven nonlinear oscillator [114], or the noisy logistic map [115], or other
systems [116,117]. A mechanism for the phenomenon has also been developed [82,118].
The phenomenon is still a hot topic today, see for example [119,120].

Here we explain the basic properties of and the mechanism for noise-induced chaos
via the noisy logistic map:

xn+1 = μxn(1 − xn) + Pn, 0 < xn < 1, (65)

Here, μ is the bifurcation parameter, and Pn is a zero-mean Gaussian random variable
with standard deviation σ. When Pn = 0, the map generates periodic orbits with periods
8, 6, 5, and 3 at parameter values μ = 3.55, 3.63, 3.74, and 3.83, respectively. The period-8
motion at μ = 3.55 is on the main 2n cascade, and the period-3 motion at μ = 3.83 is on
the period(3)-doubling cascade (see Figure 10). For the case of μ = 3.55, with a fairly large
noise of σ = 0.01, the noisy trajectory is still very similar to the clean period-8 trajectory,
as one can clearly see from Figure 16a. The case of μ = 3.74 is very different. With σ
as small as 0.0003, the noisy trajectory is already completely different from the original
clean period-5 trajectory, as shown in Figure 16b. In fact, this noisy trajectory is chaotic,
as shown by the time-dependent exponent curves shown in Figure 17c. In contrast, the
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noisy dynamics at μ = 3.55 are definitely not chaotic, as shown by Figure 17a. The noisy
dynamics at μ = 3.63 and 3.83 are also chaos-like, though not as well defined as at μ = 3.74.
The mechanism for noise-induced chaos can be found by examining how a small amount
of noise affects the dynamics. In general, the noisy dynamics when noise is very small is a
diffusion characterized by Equation (44). The normal diffusion with α ≈ 0.5 corresponds to
Brownian motions around the periodic orbit (or limit cycle), which is clear from Figure 16a.
The case of super diffusion with α > 0.5 is the very condition for noise-induced chaos
to occur. This is shown in Figure 18 and can be readily understood as follows: chaos,
which amounts to exponential divergence, can be more easily approached through larger α,
especially when α is larger than 1, for a tiny amount of noise.

Figure 16. Clean (open triangles) and noisy (filled circles) trajectories for (a) μ = 3.55 and (b) μ = 3.74
(reproduced from [118]).
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Figure 17. Time-dependent exponent curves for the noisy Logistic map: (a) μ = 3.55 and σ = 0.01; (b)
μ = 3.63 and σ = 0.005; (c) μ = 3.74 and σ = 0.002; and (d) μ = 3.83 and σ = 0.005. Six curves, from
the bottom up, correspond to shells (2−(i+1)/2, 2−i/2) with i = 7, 8, 9, 10, 11, and 12 (reproduced
from [118]).

Figure 18. Logarithmic displacement curves illustrating the mechanism for noise-induced chaos.
Each group actually consists of three curves, corresponding to shells (2−(i+1)/2, 2−i/2) with i = 12, 13,
and 14. They basically collapse on each other. The parameters for the four groups are (a) μ = 3.74 and
σ = 0.0003; (b) μ = 3.83 and σ = 0.001; (c) μ = 3.63 and σ = 0.0003; and (d) μ = 3.55 and σ = 0.0005.
To separate these four groups (a–d) of curves from each other, they are shifted by 2, 1, −0.5, and
−0.2 units, respectively, where a positive number indicates shifting upward, and a negative number
indicates shifting downward. All four groups of curves are well modeled by ln kα with α = 1.5, 1.0,
1.0, and 0.25 (reproduced from [118]).
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Let us now come back to chaotic secure communications. Although noise-induced
chaos can help with chaos synchronization, and thus chaos communication, the noise level
has to be small. Otherwise, chaotic systems will desynchronize, and we will not be able to
have any kind of communication at all [82].

In the beginning of this subsection, we have mentioned that recently there is a strong
interest in using chaos to rapidly generate random bits in physical devices, for use in
cryptography and secure communication. For this purpose, noise is always beneficial. The
key here is to test whether a generated sequence of 0’s and 1’s is truly random. The usual
tests for randomness, such as the widely used Statistical Test Suite for random number
generator of NIST SP 800-22, basically test whether the distributions of 0’s and 1’s in the
entire and the sub-sequences, as well as recurrences of certain patterns, are consistent with
certain random distributions. The degree of divergence of nearby trajectories characterized
by the time-dependent exponent curves offer additional information [109]. This is best
understood by referring to Figure 17: the noise-induced chaos at μ = 3.74 and 3.83 is more
suitable to be used as fast physical random bit generator than at μ = 3.63. The normal
diffusion-like process at μ = 3.55 will not pass the randomness test of NIST SP 800-22 since
the dynamics are periodic-like.

Finally, as a side comment, we note that the pioneering works on chaos synchroniza-
tion [100–111] are not cited evenly. Rather, some were only cited a few times, while the
largest citation goes to [100], which is over 12,000 times. To better appreciate this somewhat
astonishing behavior, we have listed these works in the reference not chronologically, but
in descending order of the citations. The actual number of citations is shown in Figure 19,
where the rank k from 1 to 12 denote references from [100–111]. Interestingly, the number of
citations decays exponentially. This is in stark contrast with the behavior of the large-scale
citation network mentioned earlier, which is a power law. This simple analysis has an
interesting implication to using citation as a critical measure of the significance of scientific
works. The analysis presented here clearly suggests that such a practice should not be
taken too seriously, at least not taking citation as the sole measure of the significance of
scientific works. In addition, there is an interesting lesson here: to enhance citations of
one’s work, it is important to get further involvement in the later development of a subject,
after producing some pioneering work. For example, Dr. Pecora and Carrol have been
actively involved in fostering the development of chaotic secure communications. Finally,
there is an interesting question from this simple analysis: Can we develop a model to
reconcile the exponential decay of citation to pioneering works with general power law
decay of citations?

Figure 19. Number of citations of pioneering papers on chaos synchronization (data collected in
March 2019).
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2.4. Basics of Random Fractal Theory

In practice, many problems contain random elements. Random fractal theory is of
crucial importance for finding structures and regularities in the random data, especially
when the data involve a wide range of spatial and/or temporal scales (i.e., cover a long
period of time or a wide extent of space).

Chaos and fractal theories are often discussed together and thought to be the same
thing. This is a harmful perception because the part of fractal theory that is most useful for
signal processing is the random fractal theory, whose foundation is fundamentally different
from that of chaos theory. Chaos theory mainly studies irregular behaviors in nonlinear
dynamical systems with only a few degrees of freedom. Here, noise or intrinsic randomness
only has a minor role. Random fractal theory concerns systems that are inherently random.
When equating chaos theory with fractal theory, one then will fail to fully understand the
differences in the mathematics of the two theories, and fail to fully appreciate important
issues such as distinguishing chaos from noise—a newcomer tackling the issue would
think it sufficient to distinguish chaos from simple white noise. Unfortunately, this is not
the case. Only if we can distinguish chaos from all known models of random processes can
we say we can distinguish chaos from noise.

Below, we first discuss the basics of fractal theory, then we focus on random fractal
theory. We will resume discussion of distinguishing chaos from noise in Section 2.5.

2.4.1. Introduction to Fractal Theory

Euclidean geometry studies simple shapes, including lines, planes, triangles, squares,
cones, spheres, and so on. All these shapes are regular. Every one has seen clouds,
mountains, and other complex shapes in nature. How well can those complex shapes be
modeled by circles, spheres, cones, or other regular shapes? Very badly! When thinking
along this line, Mandelbrot has created a new field, the fractal geometry [121].

Let us first try to understand fractal intuitively. The key here is self-similarity, which
means that part of an object, when magnified, is similar to the whole. More concretely,
whether we magnify the object by 10 times or 100 times, we always observe similar objects.

When discussing power laws, we have emphasized that a power law embodies self-
similarity (please see Figure 2). Therefore, power law relations are natural mathematical
tools to characterize fractals. When plotted in double-logarithmic scale, power laws become
linear relations. To better appreciate the significance of power laws, imagine hiking on a
mountain trail. Unlike many manmade trails with hundreds of stairs in the mountains of
China, we assume the trail we are walking up is wild and irregular. How can we measure
the distance we have walked? Let us measure the total distance by our step size. Denote it
by ε. Note ε could be different for different hikers—one who rides a horse has a huge step
size, while a little baby surely only has a tiny step size. The distance we have walked up
is then

L = N(ε) · ε, (66)

where N(ε) is the number of intervals walked. Amazingly, N(ε) scales with ε as a power
law, just as described by Equation (23), where 1 < D < 2 is not an integer. Such a
nonintegral D is the celebrated fractal dimension of the hiking trail.

What is the meaning of a nonintegral D? To find the answer, we start from the
measurement of certain length, area, or volume. The basics of calculus teach us that we
can measure a curve, a surface area, or a volume using very small intervals, squares, or
cubes by properly covering the object we are interested to measure. Take the unit length,
unit area, or unit volume as the unit of measurement, with linear size ε. Now suppose
we measure the length of a straight line with length 1. What is the minimal number of
intervals of length ε needed to fully cover this unit length? We need at least N(ε) ∼ ε−1

intervals. Extending to 2D and 3D, when covering an area or volume by boxes with linear
length ε, we need at least N(ε) ∼ ε−2 squares to cover the area, and N(ε) ∼ ε−3 cubes to
cover the volume. The D in N(ε) ∼ ε−D here is called the topological dimension, which
is 1 for a line, 2 for an area, and 3 for a volume. For M isolated points, the scaling law
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becomes N(ε) = Mε−D, with D = 0. Therefore, the topological dimension D for isolated
points is zero. We thus see that when we call a point, a line, an area, and a volume 0 − D,
1 − D, 2 − D, and 3 − D objects, we are talking about their topological dimensions.

We can now discuss the consequence of 1 < D < 2 for an irregular mountain trail.
Combining Equations (23) and (66), we have

L = ε1−D, (67)

Therefore, when ε becomes smaller, L becomes larger. In fact, when ε → 0, L → ∞.
This property was actually first found by Lewis Richardson, a mathematician, meteo-
rologist, and pacifist who devoted himself in his later years to the study of the causes
of wars and ways to prevent them. However, we have to wait for Mandelbrot to find
the quantitative power law relation described by Equation (23), to create the new field
of fractal.

With Equation (67), we can actually deduce more by using some concrete numbers.
For example, let us take D = 1.25, and imagine a race between a hare and a tortoise. Taking
into account the physical difference between a hare and a tortoise, it it reasonable to assume
that the step size of the hare is 16 times that of the tortoise. Then we have

Lhare =
1
2

Ltortoise (68)

The tortoise has to crawl twice the distance that the hare runs! Based on this simple
calculation, we now understand when we walk along a wild trail, get tired, slow down, we
are actually shrinking our step sizes, so we will be walking out a longer trail!

Next, we consider the Cantor set, one of the prototypical fractal objects, so that we can
appreciate the concept of fractal dimension better.

The standard Cantor set is obtained by first partitioning a line segment into three
equal parts and deleting the middle one. This step is then repeated, deleting the middle
third of each remaining segment iteratively. See Figure 20a. Note that such a process
can be related to the iteration of a nonlinear discrete map. The removed middle thirds
can be related to the intervals that make the map diverge to infinity, while the remaining
structures are linked to the invariant points of the map. At the limiting stage, n → ∞, the
Cantor set consists of infinitely many isolated points. Consistent with isolated point(s)
having dimension 0, the topological dimension here is 0. The length of the total segments
removed is

1
3
+ 2 ×

(1
3

)2
+ 4 ×

(1
3

)3
+ · · · = 1

2
× 2

3
+

1
2
×
(2

3

)2
+

1
2
×
(2

3

)3
+ · · · = 1 (69)

Therefore, the entire unit interval has been removed! Is the fractal dimension here the
same as the topological dimension, which is 0?

To find out, let us focus on stage n. One needs N(ε) = 2n boxes of length ε = ( 1
3 )

n to
cover the set. Hence, the fractal dimension for the Cantor set is

D = − ln N(ε)/ ln ε = ln 2/ ln 3. (70)

It is not zero!
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Figure 20. Standard Cantor set (a) and its variants (b–d). See the text for details.

The fractal dimension of the Cantor set can also be computed by employing the self-
similar feature. Denote the number of intervals needed to cover the Cantor set at a certain
stage with scale ε by N(ε). When the scale is reduced by 3, N(ε/3) is doubled. Since
N(ε/3)/N(ε) = 3D = 2, one immediately gets D = ln 2/ ln 3.

To better transit to random fractals, we note that the standard Cantor set can be made
random. One way is to divide each interval into three equal parts and randomly delete one
of them (see Figure 20b). An alternative way of obtaining a random Cantor set is to delete
a middle interval of random length at each stage (Figure 20c). Clearly, case (b) also has
dimension D = ln 2/ ln 3. When certain regulation is imposed on the length distribution
for the subintervals in case (c), the fractal dimension can also be readily computed. One
way of imposing such a regulation is to require that the ratio of the subinterval and its
immediate parent interval follows some distribution that is stage-independent. Such a
regulation is essentially a multifractal construction, which we will discuss soon.

The above discussion suggests that two different geometrical fractals may have the
same fractal dimension. To further appreciate this point, we have shown in Figure 20d
a different type of regular Cantor set. It is obtained by retaining four equally spaced
segments whose length is 1/9th of the preceding segment. Denote the number of segments
at a certain stage with length scale ε by N(ε). When the scale is reduced by 9, N(ε/9) is
quadrupled. Here, D is again ln 2/ ln 3, since N(ε/9)/N(ε) = 9D = 4.

Based on the above discussions, one can readily realize that fractal curves and surfaces
are more space filling. This property is beneficial in biological evolution. As a result, fractal
forms are abundant in biology. Instead of giving actual examples here, we will refer readers
to reference [122] for a menagerie of fractal forms in living things. This more space-filling
property of fractals has also been exploited to design fractal antennas by maximizing the
effective length or perimeter of the material that receives or transmits electromagnetic
radiation. Fractal antennas are excellent for wideband and multiband applications [123].
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2.4.2. Overview of Random Fractal Theory

Gaussian white noise is the most extensively studied noise in engineering. In complex
systems, however, the temporal or spatial fluctuations often cannot be modeled by Gaussian
white noise. Rather, they are characterized by a power law decaying spectrum in the
frequency domain, denoted as 1/ f α noise [38]. Its dimensionality cannot be reduced by
popular methods such as principle component analysis [124]. Interesting examples of
such processes include genetics [125–129], human cognition [130] and coordination [131],
posture [132], vision [133,134], physiological signals [80,135–143], neuronal firing [144,145],
urban traffic [146], tree rings [147], global terrorism [148], human response to natural
and social phenomena [149], foreign exchange rate [76], and the distribution of prime
numbers [150].

Basic Definitions and Equations

Denote a covariance stationary stochastic process as X = {Xt : t = 0, 1, 2, . . . }. Its
mean is μ, variance is σ2, and autocorrelation function r(k), k ≥ 0 has the following form

r(k) ∼ k2H−2, as k → ∞, (71)

where H is a parameter called the Hurst exponent. It is in the unit interval, 0 < H < 1. The
exponent α for the spectra of the process, 1/ f α, is related to H by a simple equation,

α = 2H − 1. (72)

When 0 < H < 1/2, the process is said to have anti-persistent correlations; when
H = 1/2, the process is memoryless or only has short memory, when 1/2 < H < 1, the
process is said to have persistent long-range correlations. In this case, it is easy to prove
∑k r(k) = ∞. This is why the process is said to have long-range correlation [38].

Let us now smooth the process X to obtain a time series X(m) = {X(m)
t : t = 1, 2, 3, . . . },

m = 1, 2, 3, . . . , where

X(m)
t = (Xtm−m+1 + · · ·+ Xtm)/m, t ≥ 1 . (73)

The smoothing is carried out in a non-overlapping fashion; therefore, the length of
{X(m)

t } is the largest integer that is not larger than N/m, where N is the length of {Xt}. Is

there a relation between the variance of X(m)
t , which is denoted by Vm = var(X(m)), and

that of the original process, which is denoted by σ2? It is given by

var(X(m)) = σ2m2H−2 (74)

Equation (74) is often called the variance–time relation. It is fundamental and can help
us understand the “little smoothing” phenomenon: when H = 0.5, var(X(m)) = 10−2σ2

when m = 100. When H = 0.75, for var(X(m)) to drop as much, m has to be 10,000.
However, if H = 0.25, then var(X(m)) ≈ 10−2σ2 when m ≈ 23. Therefore, when H
increases to 1, smoothing has little effect in reducing the variance of the process.

As we have mentioned, the power spectral density (PSD) for X is

SX( f ) ∼ f−α = f−(2H−1). (75)

The integration of the X process, called the random walk process,

yk =
k

∑
i=1

(Xi − X), (76)
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where X is the mean of X, has a PSD

SY( f ) ∼ f−α−2 = f−(2H+1). (77)

It is easy to see that the following relation is equivalent to Equation (74)〈
|y(i + m)− y(i)|2

〉
∼ m2H , (78)

where the angle brackets denote averaging over i. Equation (78) is often called fluctuation
analysis (FA). The superiority of Equation (78) over Equation (74) is that it can be readily
generalized to a multifractal formulation.

The Fractional Brownian Motion (fBm) Process

The fBm process is the prototypical random walk model for 1/ f α process [121]. It is a
zero-mean Gaussian process, with stationary increments and variance

E[(BH(t))2] = t2H (79)

and covariance:
E[BH(s)BH(t)] =

1
2
{s2H + t2H − |s − t|2H} (80)

where H is the Hurst parameter. The increment process of the fBm, Xi = BH((i + 1)Δt)−
BH(iΔt), i ≥ 1, where Δt amounts to a sampling time, is called the fractional Gaussian
noise (fGn). It is a zero-mean stationary Gaussian time series, with autocorrelation function:

γ(k) = E(XiXi+k)/E(X2
i ) =

1
2

{
(k + 1)2H − 2k2H + |k − 1|2H

}
, k ≥ 0 (81)

Note γ(k) is independent of Δt. In particular, γ(1) = 1
2

(
22H − 2

)
. It is positive when

1/2 < H < 1, and negative when 0 < H < 1/2. When k → ∞, γ(k) ∼ k2H−2, and we
reproduce Equation (71).

Structure Function Based Multifractal Analysis

Since the Hurst parameter H is the defining parameter of random fractals, it is certainly
of critical importance to estimate H. To facilitate estimation of H, it is most convenient
to use the random walk process y, defined by Equation (76), and consider the following
multifractal formulation:

F(q)(m) = 〈|y(i + m)− y(i)|q〉1/q ∼ mH(q), (82)

where q is real-valued. The average is taken over all possible pairs of (y(i + m), y(i)). Note
that q > 0 highlights large absolute value of |y(i + m)− y(i)|, while q < 0 highlights small
absolute value of |y(i + m)− y(i)| (to understand better, it is beneficial to take q = 10 and
maxi|y(i + m)− y(i)| = 100, and q = −10 and mini|y(i + m)− y(i)| = 1/100). H(q) is a
non-decreasing function of q. When H(q) is a constant, the process is called a monofractal;
otherwise, it is a multifractal.

Note that when q = 2, Equation (82) reduces to Equation (78), the FA, and H(2) = H.
It can be readily proven that FA is equivalent to many other methods for estimating H,
including the variance–time relation, the Fano factor analysis, and a few others [38,151]
(the H value estimated by the R/S statistic is equivalent to H(1)). While all these methods
are important, they have a limitation in that the largest H estimated by them is 1. Many pro-
cesses, including auto-regressive processes, ON/OFF models, Levy walks, and processes
with trends, have H > 1 on some time scale range. To accurately estimate those exponents,
one has to use other methods, such as detrended fluctuation analysis (DFA) [152] and
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wavelet multi-resolution analysis [153]. In Section 3, we will present an improvement of
DFA, adaptive fractal analysis (AFA) [149,154–157].

Singular Measure Based Multifractal Analysis

There is an alternative multifractal formalism to the structure-function based tech-
nique. It is based on probabilities and the thermodynamic formulation. The basic idea is to
consider the scaling behaviors for the qth moments of the measure μ [38,153]:

Z(q, ε) =
N(ε)

∑
i=1

μ
q
i (ε) ∼ ετ(q), ε → 0 (83)

where N(ε) is the minimal number of boxes of linear size ε that are used to cover the
support of the measure μ. The spectrum of the generalized dimensions Dq is defined by

Dq =
τ(q)
q − 1

, (84)

Comparing with our discussions on the Dq spectrum for chaotic systems, we readily see
that D0 is the capacity (or box-counting) dimension, and D1 is the information dimension.
Just as the H(q) spectrum, D(q) is a non-decreasing function of q. When D(q) is constant
in q, the measure is called monofractal; otherwise, it is called multifractal.

There is another interesting way to characterize the properties of the measure. It is by
the singular spectrum f (α), where α is called the pointwise dimension. The basic equation
connecting the two characterizations is the Legendre transform,

q = d f (α)/dα, τ(q) = qα − f (α). (85)

Combining Equations (84) and (85), we have

Dq =
1

q − 1
[qα(q)− f (α(q))]. (86)

We thus see that Dq and f (α) provide the same amount of information.

The Random Cascade Model

In the study of multifractals, it is important to have a constructive model. This
is provided by the random cascade model. It is among the most powerful models to
understand the intermittency phenomenon of turbulence [158–162]. Here, we will use the
notations developed for modeling Internet traffic and geophysical data [38,163–165] to
present the model.

Consider a unit mass unevenly distributed on a unit interval. Let us divide the unit
interval into two parts: call them the left and the right segments. By doing so, we have also
partitioned the mass into two fractions, r and 1− r, which are on the left and right segments
correspondingly. In general, the multiplier r is a random variable, having a probability
density function (PDF) P(r), 0 ≤ r ≤ 1. Always with this rule we can further partition each
new subinterval and the weight attached to it into two parts, ad infinitum. Figure 21 shows
the procedure schematically. To facilitate mathematical analysis, the multiplier r has been
rewritten as rij, where i indicates the stage number and j indicates the positions of a weight
on that stage (we only use odd numbers, leaving even numbers for 1 − rij). For many types
of data analysis, it is important to explicitly introduce the notion of scale. This is provided
by the interval length, which is 2−i at stage i. Assuming bilateral symmetry, then we
have to require that P(r) is symmetric about r = 1/2. Let P(r) have successive moments
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μ1, μ2, · · · . Hence, rij and 1 − rij both have marginal distribution P(r). The weights at the
stage N, {wn, n = 1, ..., 2N}, can be expressed as

wn = u1u2 · · · uN , (87)

where ul , l = 1, · · · , N, are either rij or 1 − rij. Thus, {ui, i ≥ 1} are IID random variables all
having PDF P(r).

Figure 21. Schematic showing how a multiplicative multifractal is constructed.

The cascade model has many interesting properties. We list a few here:

• The weights at stage N are log-normally distributed. To see this, one can take loga-
rithm on both sides of Equation (87), then the multiplication becomes summation, and
one can use the central limit theorem.

• We can readily derive that

τ(q) = − ln(2μq)/ ln 2. (88)

• We can also derive that

H(q) ∼ −1
q

ln μq/ ln 2, (89)

and
τ(q) = qH(q)− 1. (90)

We now illustrate Equations (88) and (89) using an example, the random binomial
model, whose P(r) is

P(r) = [δ(r − p) + δ(r − (1 − p))]/2 (91)

where δ denotes the Dirac function. Therefore, P(r = p) = P(r = 1 − p) = 1/2. Here, the
qth moment μq = [pq + (1 − p)q]/2. We thus find

τ(q) = − ln[pq + (1 − p)q]/ ln 2 (92)

and
H(q) =

1
q
{1 − ln[pq + (1 − p)q]/ ln 2} (93)

Clearly, H(q) is a non-decreasing function of q. Without loss of generality, we may
take p ≤ 1//2. When q → −∞, H converges to its tight upper bound of − ln p/ ln 2 > 1.
When q → ∞, H converges to its tight lower bound of − ln(1 − p)/ ln 2 < 1.
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In the cascade model, many different functional shapes for P(r) can be used [163,164],
and the model can simulate a random function with very high accuracy. Two examples are
shown in Figure 22 for sea-clutter amplitude data [38,166]. The model can also be readily
generalized to the high-dimensional case. The case for 2D is shown in Figure 23.

Figure 22. Sea clutter amplitude data: (a) is the original data without target, (b) is the original data
with a primary target, and (c,d) are the modeled data.

Figure 23. Construction of 2D multiplicative multifractals: (a) schematic rule, (b) an example.

2.5. Going from Distinguishing Chaos from Noise to Fully Understanding the System Dynamics

A long-standing problem in time series analysis, which is still of interest today, is to
distinguish chaos from noise. This problem naturally arises when one wishes to understand
whether certain complex behaviors in physics, finance, life sciences, ecology, and other
fields, are of deterministic origin, or genuinely random. An unambiguous answer to the
question can greatly help one to choose a proper model to study the behavior one wishes to
understand. For a long time, however, when one computes a nonintegral fractal dimension,
or a positive largest Lyapunov exponent, or a finite Kolmogorov entropy from a time series,
one would think the time series is chaotic. In many applications, many researchers are
still assuming so! Is this a sound assumption? Unfortunately, it is not. As one can expect,
the most convincing counter-example would be the one that a genuinely random time
series is interpreted as deterministic chaos by this assumption. It turns out that all 1/ f α

random processes can be proven to have non-integral fractal dimensions of 1/H [38], and
finite Kolmogorov entropies [167,168], and thus may be misclassified as chaos. Because
of this problem, it is desirable that whenever one studies chaos in observational data,
one explicitly tests whether the data truly have the signature of chaos, the exponential
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divergence. In Section 4, we will discuss the scale-dependent Lyapunov exponent (SDLE),
which generalizes the notion of the Lyapunov exponent. We will see there that SDLE can
readily solve the problem.

Nowadays, efforts are still being made to develop innovative methods to distinguish
chaos from noise. In our view, it is more important to find the defining parameters of
the complex time series that one studies. In particular, one has to ask: If the time series
is truly chaotic, what is the exponential growth rate? If the time series is random, what
type of randomness is it? Only if we can unambiguously answer these fundamental
questions can we truly understand the system under study. Clearly, this is more than
simply trying to distinguish chaos from noise. In doing so, one will find that chaos and
random fractals may both play significant roles in one’s problem: chaos and random
fractal may be manifested on different scales. This is the essence of multiscale phenomena:
signals may exhibit different quantifiable features on different scales. Therefore, to best
characterize a complex system, we need to use a number of tools synergistically. With this
rationale, another fundamental question arises: what are the relations among the different
complexity measures?

We have already introduced a number of different complexity measures, including the
largest positive Lyapunov exponent, fractal dimension, generalized dimension spectrum,
Kolmogorov–Sinai entropy, correlation dimension, correlation entropy, sample entropy, and
multiscale entropy. Before discussing the connections among these complexity measures,
we explain a few more measures, including the Lempel-Ziv (LZ) and the Kolmogorov–
Chaitin complexity.

The LZ complexity is asymptotically equivalent to the Shannon entropy. The algorithm
for computing the LZ complexity can be efficiently implemented and executed, and thus
the LZ complexity and its many derivatives have found wide applications—the value of
the LZ complexity of a numerical, text, or image file may be equated to the size of their
compressed files using the commonly used compression schemes. To compute the LZ
complexity for a time series, it is important to consider the effect of the finite length of the
data. For more details, we refer to [169].

The Kolmogorov–Chaitin complexity is also called descriptive complexity, Kolmogorov
complexity, algorithmic complexity, algorithmic entropy, and program-size complexity. It
is a key measure in algorithmic information theory. The Kolmogorov–Chaitin complexity
of a string of numbers or a text file is the length of the shortest computer program that
generates the the string of numbers or the text file. Therefore, it measures the computational
resources needed for specifying an object. To make the above discussions concrete, one can
think of a completely random string. It is impossible to compress the string into a program
with length shorter than the length of the string itself; the simplest program is to just read
out the string. Although the lower bound for the Kolmogorov–Chaitin complexity of an
object is difficult to obtain [20], the upper bound is easy to get, which are just the Shannon
entropy or the LZ complexity. For dynamical systems and Markov information sources,
this upper bound can almost surely be achieved [170].

Next, we explain a widely used entropy measure, the approximate entropy. The
approximate entropy amounts to taking q = 1 in Equation (55) at a fixed scale ε and two
small embedding dimensions (say m0 and m0 + 1) instead of taking the limits of limε→0
and limm→∞. While it is closely related to the sample entropy, it is not as effective as the
sample entropy in resolving the scaling behavior. This is part of the reason that multiscale
entropy is built op top of the sample entropy. For more details, we refer to [171].

Finally, we explain the permutation entropy (PE) [172]. Due to its simplicity, it has
found numerous applications in time series analysis. Here, we describe PE following the
notations of [173].

We start from an m-dimensional embedding vector, Xi = [x(i), x(i + L), · · · ,
x(i + (m − 1)L)]. Let us sort the elements of the vector in ascending order, [x(i + (j1 −
1)L) ≤ x(i + (j2 − 1)L) ≤ · · · ≤ x(i + (jm − 1)L]. When an equality occurs, e.g.,
x(i + (ji1 − 1)L) = x(i + (ji2 − 1)L), we choose their natural order, i.e., if ji1 < ji2, then
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x(i + (ji1 − 1)L) ≤ x(i + (ji2 − 1)L). This way, the vector Xi is mapped onto a sequence
of numbers, (j1, j2, · · · , jm). Permutating it, we see that there are a total of m! distinct
combinations of (j1, j2, · · · , jm). Each permutation can be considered as an m-dimensional
symbol. Therefore, the reconstructed trajectory in the m-dimensional space is mapped to
a m-dimensional symbol sequence. Let P1, P2, · · · , PK be the probability for the K ≤ m!
distinct symbols. The PE, denoted by Ep, for the time series {x(i), i = 1, 2, · · · } is defined as

Ep(m) = −
K

∑
j=1

Pj ln Pj. (94)

The maximum of EP(m) is ln(m!) when Pj = 1/(m!). It is convenient to normalize it
to obtain

0 ≤ Ep = Ep(m)/ ln(m!) ≤ 1. (95)

Ep essentially measures the randomness of the time series under study: with the
passing of time, if data measured from a system become more regular, then Ep of the
corresponding data becomes smaller. This statement suggests that if one wishes to detect
dynamical changes in a system, one can partition a time series into short windows, compute
PE for each window, and examine how PE changes with the window [173].

The construction of PE may be considered a generalization of symbolic dynamics of
dynamical systems for finite data, recalling that the essence of symbolic dynamics is to
map a trajectory in certain space to a few subspaces, such as a trajectory defined in the
unit interval [0 1] to two sub-intervals, [0 1/2) and [1/2 1]. The usefulness of symbolic
dynamics is a strong hint that PE is often very useful for analyzing complex time series.

While the connections among some of the complexity measures discussed here are
obvious, a more comprehensive answer also exists. This, however, has to wait until we
introduce a new complexity measure, SDLE, in Section 4.

3. Adaptive Detrending, Denoising, Multiscale Decomposition, and Fractal Analysis

Observational data may manifest both ordered and disordered behavior. To fully
characterize a complex signal, it is desirable to synergistically use chaos and random
fractal theory [38]. However, this goal is not easy to achieve, since a measured data set
often contains noise and may also be nonstationary. This makes detecting chaos very
difficult. On the other hand, many phenomena contain a rhythmic activity, such as diurnal
cycle. This makes fractal analysis difficult since the essence of a fractal is scale-free. To
tackle these problems, frequency-domain filtering and wavelet analysis have been widely
used to filter away the undesired features in the data. With the rapid accumulation of
complex data in all branches of science and engineering, it is important to have better
approaches to solve these problems. In this section, we discuss an adaptive algorithm,
which has a number of interesting properties: (1) it can accurately determine a trend
in the signal; depending on the purpose of applications, one may treat the trend and
associated nonstationarities as noise, and remove them, or retain them, as the signals
one wishes to further study (such as the global warming trend); (2) it is more superior
in reducing noise in the signals than linear filters, wavelet methods, and chaos-based
methods; (3) it can conveniently decompose a complex signal into many functions of
different frequency; (4) it is excellent in obtaining fractal properties from the data, especially
when the data contain a strong and nonlinear trend. The method has been successfully
applied to study traffic flow [146,174], various kinds of geophysical data including soil
temperature, soil moisture, air temperature, and wind speed [175–178], tree rings [147],
variation of electricity consumption with time [179], single neuron firing [145], clinical scalp
EEG [180], ngram usage [149], quantum modeling of exciton diffusion in light harvesting
systems [181], sentiments in novels [182,183], newspaper advertisements [184], textual
cultural heritage [185], and global terrorism [148]. The method will be very useful for
analyzing various kinds of geophysical time series that have been rapidly accumulating
in recent years. Here, we will only present the key elements of the method; a concrete
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example of combining this method with a machine-learning method (random forest) for
distinguishing epileptiform discharges from normal electroencephalograms can be found
in Li et al. [180].

3.1. Adaptive Detrending, Denoising, and Multiscale Decomposition

The method is based on adaptive filtering [149,155,156,186]. It works this way: first we
partition a time series into many segments. Let the length of each segment be w = 2n + 1
points, and neighboring segments overlap by n + 1 points. As we will see later, using
segments with length containing odd number of sample points ensures symmetry. This
operation also introduces a time scale w+1

2 τ = (n + 1)τ, where τ is the sampling time. For
each segment, whose sample points represent a small portion of the curve we are studying,
we assume the curve can be approximated by its Taylor series expansion very well. This
suggests us to fit the segment by a polynomial of order M. Minimizing the error, the
obtained polynomial fitting becomes the best local fitting. Here, an important parameter is
the polynomial order M. When M = 0, the fitting is piece-wise constant. When M = 1,
the fitting is locally linear (not necessarily also globally linear). Let y(i)(l1), y(i+1)(l2),
l1, l2 = 1, · · · , 2n + 1 be the fitted polynomial for the i-th and (i + 1)-th segments. The
fitting for the overlapped part of the two adjacent segments can be obtained by properly
combining these two polynomials:

y(c)(l) = w1y(i)(l + n) + w2y(i+1)(l), l = 1, 2, · · · , n + 1 (96)

The two weights, w1 =
(
1 − l−1

n
)
, w2 = l−1

n , can be written as (1 − dj/n), j = 1, 2,
where dj are the distances of the point from the centers of the two fitted polynomials.
Therefore, the weights decrease linearly with the distance from the center of the segment.
The weighting ensures symmetry. The scheme ensures that the overall fitted curve is con-
tinuous everywhere, has the right- or left-derivatives at the boundary, and is differentiable
at non-boundary points.

The adaptive filter can readily determine any kind of trend from the data. An example
for determining the trend from the global annual sea surface temperature (SST) data is
shown in Figure 24a, where the blue straight line is the global linear fit, the black curve
is the global second-order polynomial fit, and the red curve is the adaptive trend with a
window size about the half of the total data length. It is amazing that with such a large
window size, not only the global warming trend but also the local brief cooling periods
are clearly shown. In fact, the residual noise (i.e., the difference between the fitting and
the original data) shown in Figure 24b with these fits is comparable to that obtained by
empirical mode decomposition (EMD) [187]. Since EMD involves dyadic decomposition,
while the window size used by the adaptive method is continuous, the adaptive filtering is
more flexible and can be accurate.

Figure 24. Analysis of the annual sea surface temperature (SST) data: (a) the original data and trend signals of different
resolutions, (b) the residual signals.
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Note that whether the trend is considered noise or the desired signal depends on one’s
purpose. When the trend is considered noise, the approach is a high-pass filter. When the
trend signal is considered the desired signal, then the approach is a low-pass filter. We
can also take two window sizes and determine two trend signals. If we take the difference
between them, then the approach becomes a band-pass filter. More generally, if we use
a series of window sizes, w1 = 2n1 + 1 < w2 = 2n2 + 1 < w3 = 2n3 + 1 < · · · and get
the corresponding trend signals. The difference between the two trend signals of window
sizes wi = 2ni + 1 and wj = 2nj + 1 is called a band-limited signal, with cutoff frequencies
1/(niτ) and 1/(njτ), where τ is the sampling time. These signals are called intrinsically
band limited functions (IBFs) [154]. For an interesting application of the scheme (removing
an ECG component from an EEG measurement for the study of apnea), we refer to [156].

The adaptive filter discussed here is more effective than linear filters, the wavelet
method, and chaos-based approaches in reducing noise [155,156]. To see this, we have
shown a comparison of these methods in Figure 25 for reducing measurement noise in the
chaotic Lorenz system. The residual noise, characterized by the root-mean-square error
(RMSE), is the smallest for the adaptive filter [154].

Figure 25. Denoising of the chaotic Lorenz signal: (a) phase diagrams constructed from the the clean and the noisy signal,
which are marked as green and red, respectively; (b) the filtered signal obtained by a chaos-based approach; (c) the filtered
signal obtained by the adaptive algorithm; and (d) the filtered signal obtained by a wavelet method.

To better appreciate the above discussed properties of the filter, let us consider a
power load time series measured at a power plant in Guilin during a long time period
(from 1 January 2005 to 29 April 2010). Guilin is a very well-known tourism city, with the
saying “Guilin’s landscape is the most uniquely beautiful in the world”. Power load time
series may be equated to electricity consumption in a city. Interesting questions one can
ask include whether electricity consumption may be correlated with climate variations.
The raw load time series from Guilin is shown in Figure 26a as the blue curve. Here, the
sampling time is 15 min. We observe that the data are very irregular and non-stationary,
reflecting that the city’s businesses and population must have been changing a lot during
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the period the data were collected. The trend signal for the raw data is shown in Figure 26a
as the red curve; it is obtained by using a window size of 699 sample points. The order
of the polynomial used for fitting is 2 (if the raw signal is very spiky, then higher-order
polynomials are recommended).

To facilitate further discussion, we denote the raw data by x(t), and the trend signal
by trend(t). Then we have

xdetrended = x(t)− trend(t) (97)

In order to see the details of xdetrended, Figure 26b shows a small segment of it as the
blue curve. We observe a diurnal cycle in the data. This is reasonable since electricity
consumption in daytime and during night has to be quite different. The signal does not
have a fixed amplitude though, as it is still quite noisy. This noise, which is high frequency,
can also be removed by applying the adaptive filter again, with a small window size. The
trend thus determined will better represent the diurnal cycle. It is a band-pass signal. An
example of this signal is shown in Figure 26b as the red curve, where we used a window size
of 9 and a polynomial of order 2. From this signal, we can construct a phase diagram with
delayed coordinates. This is shown in Figure 26c. A limit cycle-like structure does emerge.

We can further analyze the oscillatory feature of the trend signal by computing power-
spectral density (PSD) from the data. The result is shown Figure 26d, where the blue, red,
and green curves are for the raw, detrended, and the band-passed signals, respectively.
The PSD curves show very sharp spectral peaks at frequency of 1 day−1 and its harmonics.
Note the blue curves are basically covered by the other two colors, except at the very low
frequency (i.e., close to 0 Hz). This is due to the red trend signal shown in Figure 26a.

Figure 26. Electricity consumption analysis: (a) raw data (blue) and the trend signal (red);
(b) enlargement of the high-frequency load data showing the diurnal cycle (blue) and its filtered
band-pass data (red); (c) 2D phase diagrams constructed from the data shown in (b); (d) PSD for the
raw, detrended, and denoised data, which are marked by blue, red, and green, respectively.
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3.2. Adaptive Fractal Analysis (AFA)

In the past three decades, many efforts have been made to estimate H, the most im-
portant parameter for random fractals. As a result, many excellent methods for estimating
H have been proposed. Among them is the celebrated detrended fluctuation analysis
(DFA) [151,152]. It works as follows: To analyze a time series, x1, x2, x3, · · · , one first
determines its mean x, then constructs a random walk process using Equation (76). By
doing so, one has assumed that the data are like a noise process. One then partitions the
random walk into non-overlapping segments of length l (therefore, the number of distinct
segments is not larger than N/l, where N is the length of the time series). One furthers
determines the local trend in each segment by using the best linear or polynomial fitting.
This procedure is schematically shown in Figure 27, where a short EEG signal is used as
an example. Finally, one obtains the difference between the original “walk” and the local
trend. Denote it by u(n). H is then estimated by

Fd(l) =
〈 l

∑
i=1

ul(i)2
〉1/2

∼ lH (98)

where the angle brackets is a short-hand notation for averages over all the segments.

Figure 27. Schematic of DFA.

Although DFA is very good in many applications, when a signal has a strong nonlinear
trend, such as an oscillatory component or a rhythmic activity, there may exist large
discontinuities in adjacent segments of DFA (see Figure 27). These discontinuities can
cause big problems. This problem can be readily solved by the adaptive fractal analysis
(AFA) [149,154,157]. The difference with DFA is that we now have a globally, not only
continuous but also almost everywhere, differentiable trend [155,156]. Denote it by v(i).
The difference between the original random walk process u(i) and v(i) can be used to
accurately estimate H. The formula is given by [154]

F(w) =
[ 1

N

N

∑
i=1

(u(i)− v(i))2
]1/2

∼ wH . (99)

Generalizing to a multifractal analysis, we obtain:

F(q)(w) =
[ 1

N

N

∑
i=1

|u(i)− v(i)|q
]1/q

∼ wH(q) (100)
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where q is a real number. Just as we have discussed earlier, positive q values highlight large
values in |u(i)− v(i)|, and negative q values highlight small values in |u(i)− v(i)|.

Equation (99) can readily be extended to long-range cross-correlation analysis [188]
between two series: x(i), i = 1 · · · , n and y(i), i = 1 · · · , n. Denote their trend sig-
nals corresponding to window size w by trend_x(w)(i), i = 1 · · · , n and trend_y(w)(i),
i = 1 · · · , n, respectively. Then we have

Fxy(w) =
[ 1

N

N

∑
i=1

(x(i)− trend_x(w)(i))× (y(i)− trend_y(w)(i))
]1/2

∼ wHxy . (101)

Following the generalization from Equations (99)–(100), Equation (101) can also be
readily extended to multifractal analysis.

Let us now examine the fractal behavior of the power load data of Figure 26a using
AFA. To cope with the nonstationary of the data, we partition the data into short windows,
then we estimate H for each window. Recalling that the data are sampled 96 times a day,
we choose the window size to be one month, containing 96 × 30 = 2880 sample points.
To improve the resolution of the variation of H, the adjacent windows overlap by half of
the window length. Figure 28a shows an example of the scaling analysis using AFA, for
an arbitrarily window. The curve is linear for scale up to w = 27 sample points. It is a
little longer than a day. H can be estimated as the slope of the linear portion of the curve.
The temporal variation of H is plotted in Figure 28b as the red curve. Interestingly, it has
a seasonal variation. To check whether this variation may be correlated with the yearly
temperature variation, we have also shown in Figure 28b a curve in black reflecting the
temperature variation. To facilitate comparison of the two variables, H and the temperature
T, in the same plot, T is transformed to T′ according to the following equation,

T′ = T/100 + 0.5. (102)

Interestingly, the local maxima of the H(t) curve correspond to the seasonal minima
of the curve for the temperature. This suggests that the power load data are characterized
by stronger, persistent, long-range correlations during winter.

Figure 28. Cont.
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Figure 28. AFA of power load data: (a) an example of log2 F(w) vs. log2 w for the load data of
an arbitrarily chosen day, (b) temporal variation of the Hurst parameter (red) and the rescaled
temperature (black).

4. Multiscale Analysis with the Scale-Dependent Lyapunov Exponent (SDLE)

SDLE is developed for better distinguishing chaos from noise and for better char-
acterizing complex data, especially through obtaining the defining parameters of the
data [38,189]. SDLE is closely related to two other methods, the time-dependent exponent
curves [73,74,79,81] and the finite size Lyapunov exponent [190–192]. SDLE was first intro-
duced in [38,189], and has been further developed in [193,194] and applied to characterize
EEG [143], HRV [195,196], financial time series [76], Earth’s geodynamo [197], precipitation
dynamics [198], sea clutter [199], THz imagery [200], and evaluate randomness [99]. As
with the presentation of AFA, here, we will only present the key elements of the method; a
concrete example of combining this method with a machine-learning approach (random
forest) for distinguishing epileptiform discharges from normal electroencephalograms can
be found in Li et al. [201].

SDLE is based on the evolution of vectors in a high-dimensional phase space. If
initially the data are a time series, then one needs to obtain a suitable phase space using
delay coordinates, as explained before. If the original data are a scalar random process,
then the main advantage of the embedding procedure is to obtain a self-similar vector
process from the original self-affine process. This is because x and t have different units and
therefore have to be scaled differently in order for them to look “alike”. All the components
of a vector are of the same nature, and therefore can be stretched or shrunk with the same
fashion. Consequentially, whenever a truly random time series is analyzed, the specific
value of the embedding dimension m is not important. Often ensuring m > 1 is sufficient.
After a phase space is obtained, one can examine the evolution of an ensemble of trajectories.
Denote the initial distance between two nearby trajectories by ε0. We further denote their
average distance at time t by εt, and that at t + Δt by εt+Δt. A schematic showing how a
small distance between two nearby trajectories grows with time is shown in Figure 29.
With this setting, we can examine the relation between εt and εt+Δt, where Δt is assumed
to be small. When Δt → 0, we have,

εt+Δt = εteλ(εt)Δt, (103)

where λ(εt) is the SDLE given by

λ(εt) =
ln εt+Δt − ln εt

Δt
. (104)
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Equivalently, we can write,
dεt

dt
= λ(εt)εt. (105)

Figure 29. A schematic showing how a small distance between two nearby trajectories grows
with time.

Now that we have introduced SDLE, we can better understand the classic algorithm
for computing the largest Lyapunov exponent λ1 discussed earlier [75]. That algorithm
assumes εt ∼ ε0eλ1t and then through averaging estimates λ1 by (ln εt − ln ε0)/t. This
assumption may not even hold for true chaotic signals. This is reminded in the detail of the
schematic plot shown in Figure 29 —εt+δt may be smaller than εt. As already mentioned, a
fundamental difficulty with this assumption is that for any type of noise, when ε0 is small
(which is the case when nearest neighbors are used), λ1 can always be positive, leading to
misinterpreting noise as chaos. The reason is simple: εt will rapidly converge to the most
probable distance between the constructed vectors, and thus will almost be surely larger
than ε0. However, when we define SDLE using Equation (103), we have not made any
assumptions, except Δt being small (usually taken to be the sampling time interval). As we
will see, chaos is characterized by a constant λ(ε) over a range of ε.

In the computation of SDLE, we first examine which embedding vectors defined by
Equation (32) fall within the series of shells defined by Equation (40). Then, the evolution of
those vector pairs (Vi, Vj) can be monitored, and their average behavior of divergence (not
necessarily exponential) can be computed. So far as exponential or power law divergence
are concerned, we can exchange the order of taking the logarithm and averaging. Then,
Equation (104) becomes

λ(εt) =

〈
ln ‖Vi+t+Δt − Vj+t+Δt‖ − ln ‖Vi+t − Vj+t‖

〉
Δt

(106)

where t and Δt are measured in terms of the sampling time, and the average, denoted
by the angle brackets, is over all indices i, j with their corresponding vectors satisfying
Equation (40).

The program for computing SDLE is explained in detail in [202], and can be obtained
from the authors. The major scaling laws of SDLE that are most relevant for analyzing
complex data are summarized below [189]:

• For deterministic chaos,
λ(ε) ∼ constant, (107)

Amazingly, this property can even be observed in finite high-dimensional data, includ-
ing the Lorenz’96 system, which has dimensions close to 30 [193], and in turbulent
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isotropic fluid with an integral scale Reynolds number reaching 6200 [203]. In such
systems, estimation of dimensions is infeasible.

• As observational data are always contaminated by noise, it is important to have a
scaling law for noisy chaos and noise-induced chaos [82,118]. The law reads

λ(ε) ∼ −γ ln ε, (108)

The law pertains to small scales, and γ > 0 controls the speed of information loss.
• For 1/ f 2H+1 processes,

λ(ε) ∼ Hε−1/H . (109)

• For α-stable Levy processes,

λ(ε) ∼ 1
α

ε−α. (110)

• For stochastic oscillations, both scaling laws λ(ε) ∼ −γ ln ε and λ(ε) ∼ Hε−1/H can
be observed when different embedding parameters are used.

• When the dynamics of a system are very complicated, one or more of the above scaling
laws may manifest themselves on different ε ranges.

It is now clear that with the help of these scaling laws, distinguishing chaos from noise
can be readily solved. More importantly, we can now understand very well the nature of
each type of behavior of the data by obtaining the defining parameters for that behavior.

To illustrate how SDLE characterizes chaotic features and the effect of noise, let
us briefly discuss Boolean chaos in a ring oscillator. Boolean chaos normally refers to
the continuous time dynamics of a system of interconnected digital gates whose output
updates are not regulated by an external clock. Recently, an alternative Boolean architecture
for generating chaotic oscillations was proposed by Blakely et al. [204]. See Figure 30.
Three typical kinds of waveforms for the variable v3 are shown in Figure 31. The chaotic
behaviors of the oscillations can be aptly characterized by SDLE, as shown in Figure 32—the
Figure actually has shown more than chaos: the chaotic behavior is best defined for the
variable v1, and the effect of noise is most clearly visible for the variable v3. The reason is
straightforward: in this series circuit, the noise at the third gate is the largest.

Among the many properties of SDLE, two make it unique. One is its skill of dealing
with nonstationarity, including detecting intermittent chaos from models as well as obser-
vational data [155,195]. To understand intermittency, it is useful to consider the evolution
of river flow dynamics over 1 year. With some thinking, one can readily realize that the
time period may be divided into two periods, wet and dry, where the wet season may be
associated with frequent rain and snow melting, and the dry sea may be largely associated
with no or little rain, and constant evaporation. The river flow dynamics must be very
different in these two periods. Since standard methods for detecting chaos assume the
existence of a single chaotic attractor, those methods are ill positioned to unambiguously
determine whether river flow dynamics are chaotic or not. To illustrate how intermittent
chaos can be detected by SDLE, Figure 33 shows an example of the Umpgua river in
Oregon. The exponential divergence is evidently shown by the linear ln ε(t) vs. t curve for
t going from about 20 days to about 100–150 days. Consequentially, there are well-defined
plateaus of SDLE, i.e., a constant SDLE, shown in Figure 33a2 (the blue curves). It is also
interesting to note the scaling law of Equation (108) on small scales. This is caused by the
faster-than-exponential growth of small distances in the initial period (less than 20 days),
and it is mainly due to stochasticity, i.e., randomly driven by snow melting, rain, etc.,
besides measurement noise. The chaotic and the noisy dynamics depicted in Figure 33
can be improved by using the adaptive algorithm discussed earlier. The results using the
filtered data are shown in Figure 33 as the red curves.
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Figure 30. (a) A three inverter ring oscillator. (b) A ring oscillator driven by an external periodic
signal. The resistor-capacitor stages may represent either discrete components or the finite bandwidth
of non-ideal inverters.

Figure 31. Typical oscillations displayed by an experimentally implemented ring oscillator. (a) Self
oscillations occur with the input held constant above the threshold. (b) Slow driving produces
periodic bursts of self oscillation. (c) Faster driving produces an irregular oscillation.
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Figure 32. SDLE calculated from the experimental time series of v1 (blue), v2 (green), and v3 (red).

Figure 33. Intermittent chaos in the Umpqua river. Shown in (a1,a2) are the error growth curves and SDLE curves,
respectively. The blue curves are for the original data, while the red curves are for the filtered data. The embedding
parameters used in the computation are m = 6, L = 3. Three different shells specified by Equation (40) are used. These
curves collapse on each other, except when t is small. This highlights that the computational results are essentially
independent of the initial shells chosen.

The other unique property of SDLE is that it provides a unified framework to under-
stand other complexity measures. Concretely, the values of other complexity measures can
be inferred from the values of SDLE at specific scales. This statement is best appreciated
by using signals with phase-transition-like changes (or regime changes). Because of this,
let us use electroencephalography (EEG) data with epileptic seizures. A typical result is
illustrated in Figure 34, where we observe that the temporal variations of the Lyapunov
exponent, the correlation dimension, the correlation entropy, and the Hurst parameter
are similar to the values of SDLE either on smaller or on larger scales. In fact, the list of
the complexity measures can be expanded to include the permutation entropy, the LZ
complexity, and the energy of the EEG waves such as α, β, δ, θ. For the details, we refer
to [38]. While here these connections are illustrated using EEG data, the issue is relevant to
many other situations, including paleoclimatological data and fMRI data analysis. This
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property highly suggests that SDLE can serve as a basis for unifying commonly used
complexity measures.

Figure 34. Epileptic seizure detection from continuous EEG data of a patient, illustrating that SDLE
can serve as a basis to unify commonly used complexity measures. Shown in the figure are the
temporal variations of (a) λsmall−ε, (b) λlarge−ε, (c) the LE, (d) the K2 entropy, (e) the D2, and (f) the
Hurst parameter. Seizure occurrence times were determined by clinical experts and were indicated
here as the vertical dashed lines.

5. Toward a Theory of Social Complexity

World civilization continues to progress. Yet, difficulties and suffering befall the world
from time to time. While many difficulties and sufferings are from nature, some are inflicted
by mankind itself. The major problems facing humanity are constantly changing over time.
Modern problems that confound humans include: How can we avoid the chain collapse
of the stock markets? How soon will the American politics, which was so divided during
Trump’s presidency, be back to “normal”? Will the COVID-19 virus completely disappear?
Why do some terrorist organizations use suicide bombers, and others do not? While there
are many more similarly important current issues, there are also fundamental problems of
a different nature that span the long river of time: How have the major problems of each
era evolved into these problems today? Are there similarities in major issues in different
eras? Is there a unified theory to understand the evolution of history? With the Internet
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and social media generating unprecedented amounts of data related to individual and
group behaviors, these and many other major issues can finally be hoped to be addressed
by computational means.

Computational social science was born out of the big data of the Internet and social
media [205] and will continue to be the biggest beneficiary of big data. Indeed, many
fascinating studies on the detailed behaviors of individuals and their interactions have been
published. Now it is time to seriously ponder how to develop a theory of social complexity
with lasting value. Natural science has been making every effort to pushing its frontiers to
the largest and the smallest scales. In social science, the smallest scale is individuals, and the
largest are countries and regions consisting of a number of countries. To make social science
truly a science, the country-wide scale has to be focused on. Therefore, a significant portion
of the theory of social complexity has to be centered on the quantification of evolution of
political processes of countries and international relations. Realizing this, one can be sure
that complexity science will definitely play a fundamental role in social science that is not
rivaled by black-box machine-learning based approaches, since machine-learning cannot
be 100% correct, and the cost inflicted by any mistake in forming important policies could
be enormous. This is completely different from e-commerce, as errors or mistakes there,
although still costly, could be remedied. Here, we focus on the scaling law governing the
complexity of world-wide political evolution.

Major data for demographic research include data from the web, social media, cell
phone and credit card usage, digitized historical data, and massive media reports data,
including printed newspapers. While all of them are useful for studying individual
behavior and human interactions, the last, the massive media reports data, are most
appropriate for the purpose of studying the complexity of world-wide political evolution
since every aspect of social interactions has been more or less covered by news reports.
Fortunately, such data are available now. It is called the Global Database of Events,
Language, and Tone (GDELT). It is a new initiative based on terabytes of information to
construct a catalog of all major human societal activity across all countries of the world,
containing more than 650 million unique events across all countries, during the period from
1979 to the present. GDELT events are drawn from a wide array of news media, both in
English and non-English, from across the world, ranging from international to local sources
in nearly every country. Each event has a number of attributes, including two actors, such
as USA and China, coordinates of geolocation, time of the event, average tone of the report,
and most importantly, a value called Goldstein-scale intensity [206], which measures the
degree of cooperation or conflicts between the two actors. Altogether, there are 20 classes
of events, where each class also consists of a few to a few dozen independent events,
yielding a total of 290 independent events. This strategy separates GDELT from all other
keyword-based analyses, and mathematically speaking is more desirable, as working with
independent events is fully consistent with the probability axiom system of Kolmogorov.

GDELT was produced by the TABARI automated coding software (http://eventdata.
psu.edu/software.dir/tabari.html) using the CAMEO event and actor coding system [207].
TABARI works with dictionaries of a very large set of verb phrases (>15,000 phrases) and
noun phrases (>40,000 phrases) in combination with shallow parsing of English language
sentences to identify grammatical structures such as subject-verb-object, compound subjects
and objects, and compound sentences. CAMEO is an update of earlier (1960s) event coding
taxonomies, with changes introduced by automated coding and new behaviors, such
as suicide bombings. CAMEO provides a detailed and systematic taxonomy for coding
contemporary political actors, including international, supranational, transnational, and
internal actors. An earlier version of this system recently was successfully employed in the
DARPA ICEWS project [208] to code 25 gigabytes of Asian news reports involving more
than 6.7 million stories, which provided the key input for forecasting models with accuracy,
sensitivity, and specificity all exceeding DARPA’s pre-set criteria. The data are updated
every 15 min and are open access at http://gdelt.utdallas.edu; tools for working with the
data are discussed both on that web site and at http://gdeltblog.wordpress.com.
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Political processes have a number of important attributes, such as large momen-
tum, lack of predictability, and apparently similar patterns across history. While the
last attribute may entice one to model historical processes using periodic models (e.g.,
cliodynamics [209,210]), to accommodate all the attributes of political/historical processes,
one has to go way beyond modeling by cyclic processes. We surmise that random fractal
theory [38] may offer an interesting means to quantify political processes. Our finding
based on Googlebook’s Ngram data that social phenomena and human response to natural
phenomena possess different kinds of long-range correlations [149] further motivates us
to employ the key concept from random fractal theory [38], the Hurst parameter H, to
determine whether political processes may possess long-range correlations and, if yes, to
understand their consequences.

As we have mentioned, one of the most important attributes of the political events
data is the Goldstein scale [206], which characterizes the degree of conflict or cooperation
between the two actors of the event. As on each single day, for each country, there are many
events. Therefore, one can readily compute the daily average of the Goldstein scale for the
country. This daily average changes with time, i.e., it is a time series. Therefore, we can
analyze this time series by computing the Hurst parameter using the most robust method,
the adaptive fractal analysis introduced earlier. More concretely, we can partition the daily
average Goldstein scale time series into small segments, compute H for each segment, and
examine the variation of H with time. By overlapping adjacent segments by 1 month, the
temporal resolution of the H curve is 1 month. Four examples of the variation of H with
time are shown in Figure 35, for USA, China, Turkey, and Indonesia. In fact, in each subplot,
two curves are plotted. The blue curve has a temporal resolution of 1 month, while the
red one has a temporal resolution of 1 year. To better understand these curves, we focus
on the red curves. First, we observe that all curves lie between 0.5 and 1, meaning that all
political processes are characterized by long-range correlations. Second, we observe that
the variation of H(t) is different for different countries. In fact, this variation is dictated by
the major political events that occurred in the respective countries. In the case of USA, for
example, there are three large decreases in H(t). The last two can be easily associated with
the two Iraq wars. The most interesting is the first sharp drop in H(t) that occurred around
1987. This suggests that the cold war between the USA and former Soviet Union also had
greatly strained the US. In the case of China, local maxima and minima of the H(t) curve
correspond to changes of national leaders very well (concretely, one local maximum is at
1997, when DENG Xiaoping died, and JIANG Zemin took over the leadership; two local
mimina are at 2002 and 2012, when HU Jintao took over the power from JIANG, and when
XI Jinping took over the power from HU, respectively). This is also observed for many
other countries. In general, H(t) will increase when policies in a country are enhanced
and will decrease when internal/external conditions change such that many policies of a
country have to be modified or replaced by new ones. Therefore, the temporal variation of
H(t) parsimoniously and accurately summarizes the evolution of the political processes
(and hence history) of a country.

There is an important implication of the above understanding to the overseas infras-
tructure investment. This is a key issue that has to be seriously considered by China in
the implementation of the Belt and Road Initiative, and by any other countries who wish
to make infrastructure investments overseas. The necessary condition for the smooth
implementation of a project is that the duration of the construction of the project is shorter
than half of the average cycle of policy changes in a targeted country. To understand this,
consider construction of high-speed rail as an example. We can now understand why
the Ankara-Istanbul line, even though constructed for 11 years, from 2003 to 2014, was
successfully completed. It was in an increasing H(t) episode. Such long episodes are rare
among all the countries in the world though. In contrast, the H(t) curve for Indonesia
varies with a much higher frequency. Indeed, there is a strong anti-China sentiment in
Indonesia partly induced by the construction of a high-speed rail there.
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Figure 35. Long-range correlations (or inertia) of political processes in four countries: (a) USA, (b)
China, (c) Turkey, and (d) Indonesia. The blue curve has a temporal resolution of 1 month, while the
red one has a temporal resolution of 1 year.

6. Concluding Remarks and Future Directions

With the rapidly approaching 5G era, and 6G also on the horizon, the rapidly accumu-
lating big data in science, engineering, and society will soon become enormously bigger.
No one can afford not to grasp such an unprecedented opportunity. While computer
scientists are diligently developing more powerful database management and machine-
learning approaches, it is time to go to the next phase. This next phase has to start from
deeply studying the dynamics of all the dynamical processes that have been captured by
the big data and the mechanisms of how the human brain works. So far as data analysis
is concerned, we can easily envision that mainstream machine-learning and complexity
science based approaches will not only complement but also interact with each other in-
creasingly tightly in future. To help accelerate this marriage, we advocate to synergistically
use mainstream machine learning based approaches and multiscale approaches from com-
plexity science. Concretely, we have discussed two multiscale approaches. One is based on
adaptive filtering. It can accurately determine arbitrary trends from any kind of complex

410



Appl. Sci. 2021, 11, 5736

data, reduce noise from data, and estimate the Hurst parameter and multifractal spectrum
for complex time series. The other originates from chaos theory and can unify the major
complexity measures that have been used today. They are especially useful in obtaining
key parameters characterizing a dynamical system and thus can be used to help design
better unsupervised machine learning schemes. To help readers better understand these
techniques, the article is written both as a tutorial and a survey. It can be used as a course
material, including summer extensive training course—in fact, the material presented here
has been shaped by a few summer extensive training courses conducted by one of the
authors (J. Gao). When the material is used for teaching purposes, it will be beneficial
to motivate students to have hands-on experiences with the many methods discussed in
the paper. Instructors as well as readers interested in the computer programs (mostly in
matlab) for the analysis are welcome to contact the corresponding author.

While various applications of the concepts and methods presented in the paper are
discussed, to further stimulate readers to think and apply the methodology, we formulate
a number of theoretically or practically important questions to end the paper:

• In Section 2.3.5, we find that citations to the original works on chaos synchronization
decay exponentially. We also know that the general citation of scientific works decay
as a power law. Can a model be developed that not only reconciles this marked
difference but also finds a causal connection between them?

• We have observed in Figure 3 that the distribution of forest fires in USA and China is
very different. It is known that casualties in fire fighting are much bigger in China
than in the USA. Can the information in the distribution of forest fires be used to
design better fire fighting strategies so that casualty and property loss can be both
minimized?

• What is the fundamental difference between nation states with and without negative
feedbacks?

• Which kinds of data are better in modeling the fundamental dynamics of cultural
changes, the sparse data from poll/survey or massive real-time data streams acquired
through sensors, mobile platforms, and the Internet?

• Will chaos theory in the strict mathematical sense be relevant to social emergent
behaviors such as popular uprising? For this purpose, reading some fascinating
descriptions from Victor Hugo’s Les Miserables (Penguin Classics, Translated and with
an introduction by Norman Denny) could be stimulating:
“Nothing is more remarkable than the first stir of a popular uprising. Everything,
everywhere happens at once. It was foreseen but is unprepared for; it springs up from
pavements, falls from the clouds, looks in one place like an ordered campaign and in
another like a spontaneous outburst. A chance-comer may place himself at the head
of a section of a crowd and lead it where he chooses. This first phase is filled with
terror mingled with a sort of terrible gaiety ...”
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