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Advances in the Monitoring, Diagnosis and Optimisation of Water Systems
Reprinted from: Sensors 2023, 23, 3256, doi:10.3390/s23063256 . . . . . . . . . . . . . . . . . . . . 1

Ildeberto Santos-Ruiz, Francisco-Ronay López-Estrada, Vicenç Puig,
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Editorial

Advances in the Monitoring, Diagnosis and Optimisation of
Water Systems

Miquel Àngel Cugueró-Escofet 1,* and Vicenç Puig 1,2

1 Advanced Control Systems (SAC) Research Group, Polytechnic University of Catalonia (UPC-Barcelo-naTech),
Terrassa Campus, Gaia Research Bldg, Rambla Sant Nebridi, 22, 08222 Terrassa, Spain

2 Institut de Robòtica i Informàtica Industrial (CSIC-UPC), 46 Llorens i Artigas Street, 08028 Barcelona, Spain
* Correspondence: miquel.angel.cuguero@upc.edu

In the context of global climate change, with the increasing frequency and severity of
extreme events—such as draughts and floods—which will likely make water demand more
uncertain and jeopardise its availability, those in charge of water system management face
new operational challenges because of increasing resource scarcity, intensive energy require-
ments, growing populations (especially in urban areas), costly and ageing infrastructures,
increasingly stringent regulations, and rising attention towards the environmental impact
of water use. The shift from a linear to a circular economy and the need for a transition
to a low-carbon production system represents an opportunity to address these emerging
challenges related to water, energy, and the efficient use of resources. These challenges
impel network managers to improve their methods and techniques for the monitoring,
diagnosis, prognosis, supervision, and optimisation of the performance of water-related
systems to adhere to the current sustainability agenda.

In this context, the increasing number of advanced installed sensors—and the corre-
sponding increase in available data—allow for the implementation of Industry 4.0 (I4.0)
techniques, which are strongly focused on interconnectivity, automation, artificial intelli-
gence (AI), and real-time data acquisition, and will facilitate the development of intelligent
tools to tackle such challenges. Within this framework, the successful implementation
of I4.0 techniques in water-cycle-management facilities may prompt a breakthrough in
improving the processes involved, drastically increasing their performance.

In this Special Issue, a selection of these techniques applied to the integral water
cycle—i.e., water distribution and water sanitation—is introduced to address different cur-
rent water-management challenges. These challenges may be classified as water-quantity
challenges and water-quality challenges. On the water-distribution side, these challenges
may include fault detection—namely, leak localisation—in water-distribution networks
(WDNs), e.g., in [1], where a process prior to the actual leak localisation—i.e., sensor
placement—is carried out using information-theory simulation-based methodology; or
in [2], where a new data-driven method for leak location considering pressure measure-
ments and network topological information is presented; or in [3], where simultaneous leak
detection and isolation is applied to real data. All these methodologies contribute to reduc-
ing water loss due to leaks, which may account for up to 65% of the total water depending
on the network [3] and, hence, impact water-quantity-management challenges. WDNs
are also the focus in [4], where a challenge from the water-quality side—particularly, the
water-disinfection process in water distribution—is addressed, providing a water-quality
model by an online chlorine-decay-model calibration method, which has a strong impact on
human health, since its correct concentration is paramount to ensure safe water disinfection.

Work presented in [5–8] discusses the water-sanitation side. In this field, there is a
growing interest in the adaptation and use of technologies related to the circular economy
which promote environmental sustainability, where resource recovery is a key issue for
industrial and environmental processes and involves a wide spectrum of study possibilities.

Sensors 2023, 23, 3256. https://doi.org/10.3390/s23063256 https://www.mdpi.com/journal/sensors
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In water sanitation, wastewater treatment plants (WWTPs) offer a wide range of possibil-
ities for resource recovery, mainly related to sludge-treatment processes such as biogas
generation via the substrate codigestion process, which can be an alternative source for
thermal and electrical energy production. This potential for biogas generation could be-
come a source of renewable natural gas, which has specific composition requirements that
demand high-tech sensors to assure its quality no matter its origin. Due to their potential
for resource recovery and the further implications in the water–food–energy nexus, WWTPs
have been a research focus in different areas of expertise: from modelling and engineering
design to process dynamics, simulation, and integration. This line of work is introduced
in [6], where resource recovery—namely biogas in the latter reference—is optimised by a
centralised codigestion method considering real data from a WWTP network. Different
nature-inspired optimisation algorithms are compared in the performance of this task,
providing potential dramatic improvement when compared with actual nonoptimised
operation. The improved operation of WWTP is also sought in [5,7] by means of improving
the controllers involved in the operation of certain key processes of the WWTP, e.g., the
aeration process of biological reactors. Classic proportional-integral (PI) controllers have
been traditionally considered as the control strategy for such processes; however, improved
performance may be achieved with more complex structures and techniques, e.g., model
predictive-control (MPC) schemes or artificial neural network (ANN) approaches. In [5],
an economic MPC (EMPC) considering a linear parameter-varying (LPV) model is pro-
posed to control dissolved oxygen concentration in the WWTP biological reactors. Since
the MPC technique requires a model of the process involved for its control, in the latter
reference, a reduced model of the complex nonlinear plant is represented in a quasilinear
parameter-varying (qLPV) form to reduce the computational burden—enabling the real-
time operation—and applied in a real facility. This model, however, may be not available
or may be difficult to obtain since the processes involved in the WWTP include nonlin-
ear relations. ANN schemes may provide an alternative to this issue since they are well
suited to deal with such processes. In this line of work, [7] considers transfer-learning (TL)
methods to train ANN nets supporting control operations in WWTPs, and compares this
approach with traditional control schemes, providing improved control performance while
reducing control-design complexity and time invested in the ANN training process, which
can be considerably time-demanding. Last but not least, in this Special Issue collection,
a soft-sensing approach to predict key performance indicators (KPIs) in water-quality
monitoring and control of WWTPs—such as effluent biochemical oxygen demand (BOD)
or ammonia nitrogen (NH3-N)—is presented in [8]. Water-quality KPIs in WWTPs are
traditionally subject to nonautomated lab-based offline monitoring approaches. Instead,
in the latter reference, a method to perform accurate predictions of these KPIs, aiming for
online operation, is introduced.

Further work in this area is included in the Special Issue, e.g., in [9], where remote
sensing (RS) image-based time series are considered to obtain mass balances and esti-
mate the unfiltered volumes in topographic depressions which are seasonally filled with
water in a real area; or in [10], where a soil-moisture monitoring technique in precision
agriculture—which is becoming key to providing food sustainably in the context of world’s
increasing population and natural resource scarcity—is provided using a low-cost wireless
sensor network in order to help farmers optimise the irrigation process, and is tested in
a real plot of land. Finally, a comprehensive review of AI and computer-vision meth-
ods for intelligent water monitoring—namely, water-body extraction and water-quality
monitoring—using RS techniques is presented in [11], discussing the main challenges of
using AI and RS for water-information extraction, as well as pointing out research priori-
ties in this area. Hence, all the contributions in this Special Issue have an impact on the
advances in the monitoring, diagnosis, and optimisation of water systems and, overall,
cover a wide and complete sector of knowledge within this area.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Pressure Sensor Placement for Leak Localization in Water
Distribution Networks Using Information Theory

Ildeberto Santos-Ruiz 1, Francisco-Ronay López-Estrada 1,*, Vicenç Puig 2, Guillermo Valencia-Palomo 3 and

Héctor-Ricardo Hernández 1
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hector.hl@tuxtla.tecnm.mx (H.-R.H.)
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Abstract: This paper presents a method for optimal pressure sensor placement in water distribution
networks using information theory. The criterion for selecting the network nodes where to place the
pressure sensors was that they provide the most useful information for locating leaks in the network.
Considering that the node pressures measured by the sensors can be correlated (mutual information),
a subset of sensor nodes in the network was chosen. The relevance of information was maximized,
and information redundancy was minimized simultaneously. The selection of the nodes where to
place the sensors was performed on datasets of pressure changes caused by multiple leak scenarios,
which were synthetically generated by simulation using the EPANET software application. In order
to select the optimal subset of nodes, the candidate nodes were ranked using a heuristic algorithm
with quadratic computational cost, which made it time-efficient compared to other sensor placement
algorithms. The sensor placement algorithm was implemented in MATLAB and tested on the Hanoi
network. It was verified by exhaustive analysis that the selected nodes were the best combination to
place the sensors and detect leaks.

Keywords: sensor placement; pressure monitoring; information theory; leak localization; water
distribution network

1. Introduction

Finding a suitable sensor placement is a fundamental problem for monitoring water
distribution networks (WDNs) because it is impossible to install sensors at each point of
the geographic area covered by the distribution system. A WDN comprises hundreds of
nodes; however, only a few sensors can be installed in certain carefully selected nodes.
Then, the main question is how to select the optimal sensor placement. Finding an answer
to this problem is not trivial because the selected nodes must capture the most relevant
information to estimate hydraulic variables at non-measured points and provide essential
information for different supervision algorithms, e.g., for leak localization [1,2]. Often there
are pressure and flow instruments at the supplying nodes of a WDN and in some cases at
critical points (e.g., at the minimum pressure node). However, these measurements are not
sufficient for an accurate leak localization, so additional sensors must be installed at other
sites [3]. A practical solution is to install more pressure sensors, because they are cheaper
and easier to install and maintain than flow sensors. In addition, node pressures are more
sensitive to leaks than flow rates, which is why many localization algorithms are based
primarily on pressure measurements. The problem of sensor placement is closely related
to other WDN management problems, such as the state estimation of the network [4–6],

Sensors 2022, 22, 443. https://doi.org/10.3390/s22020443 https://www.mdpi.com/journal/sensors5
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model calibration [7,8], water quality monitoring such as detection of contaminants and
cyberattacks [9–15], among others. Nevertheless, the present work focuses on the context
of leak detection and localization as discussed in [16,17]. Regarding techniques for optimal
sensor placement for leak/burst detection and localization in water distribution systems,
a comprehensive review can be found at [18].

In a mathematical/computational context, the placement of pressure sensors is a
mixed-integer programming problem. In this problem, for a network with N nodes, a sensor
placement consists of a selection [s1, s2, . . . , sN ] where si are binary decision variables such
that si = 1 indicates that a sensor will be placed on the i-th node, whereas si = 0 indicates
that no sensor will be placed on that node.

Combinatorial analysis shows that there are 2N − 1 possible sensor placements when
non-empty subsets with any number of sensors are considered. If the number of sensors
is previously set to a fixed number S, then the number of possible sensor placements is
reduced to (N

S ), which is still a very large number. Therefore, in medium-sized and large
networks, it is not feasible to check all possible combinations. For example, in a network
containing 500 nodes the number of different placements for 10 sensors is (500

10 ) ≈ 2.5 × 1020.
That is why it is important to find an optimal placement method without analyzing all the
possible combinations.

Usually, sensor placement focused on leak localization is addressed with an optimiza-
tion approach from synthetic pressure data obtained by simulation. Some authors have
focused on minimizing the number of undetectable leaks [19,20], whereas others reduce the
error in the leak location [16,21]. In [22], a min-max optimization algorithm that considers
the isolation of the leaks from their signatures obtained through simulation is proposed.
In [23], a multi-objective approach to mitigate errors both in the detection and localization
of leaks, considering minimum night flow conditions, is presented. Regarding the optimiza-
tion of the objective function, two approaches are usually used: deterministic methods (e.g.,
branch and bound [24]) and metaheuristic methods, (e.g., genetic algorithms [25–27] and
particle swarm optimization [28]). Deterministic approaches guarantee an optimal solution,
but the computation time increases exponentially with the number of nodes and possible
leak scenarios. On the other hand, metaheuristic methods search for a near-optimal solution
that only guarantees optimality when the number of candidate solutions evaluated (named
“population size”) tends to infinity. Furthermore, optimization-based sensor placement
methods are linked to a specific leak localization method because the objective function
is expressed in terms of a localization error or isolation index for that method [16,28,29].
Based on this, a sensor placement method may be optimal for one specific leak localization
method but not as good for others. Furthermore, the method should be independent of
the leak localization method since it is not feasible to change it for every method. Thus,
an improved leak localization method could be proposed based on an ensemble of different
machine learning algorithms using the information provided by the sensors.

The huge computing time in networks with hundreds and thousands of nodes using
optimization-based methods and the high dependence on the selected leak localization
method has motivated the present work. In this new proposal, it is not considered how spe-
cific leak localization methods will use the information provided by the sensors, but rather
that the sensor placement method only focuses on the sensors capturing as much informa-
tion related to the leaks as possible. The proposed method consists of a heuristic algorithm
to select the subset of nodes where to place the sensors, seeking to maximize the relevance
of the information captured by the sensors while minimizing the redundancy between the
pressures in the selected nodes. Both metrics, relevance and redundancy, are defined in
terms of information theory.

An important contribution of this work is the reduction in computing time for sensor
placement, compared to methods based on metaheuristic optimization. Another relevant
contribution is the nondependence of the sensor placement on the leak localization method
used, which allows the use of the same sensor placement with different localization meth-
ods. Some aspects not yet covered in this work are the possible heterogeneity of the sensors

6



Sensors 2022, 22, 443

(e.g., different errors and measurement ranges) and the influence of the measurement noise
in the optimal placement, but they are considered as future work.

The rest of the document is organized as follows: in Section 2, the concepts of redun-
dancy and relevance is presented in terms of mutual information, and the information
quotient used as the basis of the method is also defined. In Section 3, the proposed method
is formally described and some guidelines for its implementation are given. In Section 4,
the results of the proposed method applied to a simplified version of the Hanoi network
(case study) are presented. Finally, in Section 5, the conclusions are presented and future
related works are proposed.

2. Information Theory Fundamentals

In Shannon’s information theory (IT), the self-information of a random variable is
defined according to the unexpectedness of its values [30]. Thus, the information contained
in a constant random variable is zero. Mathematically, if an event E has probability P, its
information content is defined by:

I(E) def
= − logb(P), (1)

where the unit of measure of I is defined by the base of the logarithm, b, which is called
“bit” if b = 2 . In a discrete random variable X with probability function p(x) = Pr(X = x),
the self-information for obtaining x as a result when measuring X is given by:

I(x) = − logb(p(x)) = logb(1/p(x)). (2)

To quantify the average information that a random variable contains, considering all
its possible values, the entropy is used:

H(X)
def
= E(I(x)) = ∑

x
−p(x) logb(p(x)), (3)

which is the expected value of the information contained in the measurements of X, that is,
the sum of the self-information of each of its possible values weighted by its probability
of occurrence.

The mutual information of two random variables, sometimes called “information
gain”, measures the amount of information obtained from one of the random variables
by observing the other one. For example, in a practical application of WDN monitoring,
the mutual information between two node pressures would indicate how much information
about the pressure at one node is gained by knowing the pressure at the other one. In prob-
abilistic terms, the mutual information determines how different the joint distribution of
(X, Y) is from the product of the marginal distributions of X and Y.

For two discrete variables X and Y, defined over the space X ×Y , the mutual infor-
mation is computed as the double sum:

I(X, Y) = ∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
, (4)

where p(x, y) = Pr(X = x, Y = y) is the joint probability function of X and Y, whereas
p(x) and p(y) are the marginal probability functions of X and Y, respectively. The mutual
information (4) is derived from the entropy and the conditional probability by the follow-
ing equivalences:

I(X, Y) ≡ H(X)− H(X | Y) ≡ H(Y)− H(Y | X). (5)

Furthermore, I(X, X) = H(X), I(X, Y) = I(Y, X) and I(X, Y) ≥ 0, where I(X, Y) = 0
iff X and Y are independent.
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For continuous random variables, the summations in (4) are replaced by integrals and
the probability functions by probability densities:

I(X, Y) =
∫
Y

∫
X

p(x, y) log
p(x, y)

p(x)p(y)
dx dy. (6)

Due to the difficulty in modeling the probability densities and subsequently evaluating
the double integrals in (6), a simplification to calculate the mutual information in continuous
variables is to discretize the variables with n bits, so that the domain of each variable is
reduced to 2n bins. For example, to compute the mutual information of two node pressures
in a hydraulic network, the span of the pressure variables [Pmin, Pmax] must be divided into
a discrete 8-bit grid (256 different values) and then (4) is applied.

3. Sensor Placement Method

The proposed sensor placement method is based on a dataset of node pressures that
collects typical variations due to leaks of different sizes in all network nodes. The pressure
dataset is obtained from simulations with the hydraulic model of the network in [31]. Each
pressure data point is labeled with a “leak class” (the node where the leak occurs) so that
the proposed method can be classified as supervised.

In the context of machine learning, the placement of pressure sensors is a feature
selection stage. To select the features (the subset of nodes where the sensors will be placed),
an algorithm is proposed that seeks to maximize the relevance of the selected features (node
pressures) for the response variable (leaky node), while each of them avoids capturing
information already contributed by the others, that is, minimizing redundancy.

The following definitions of relevance and redundancy, proposed in [32], are used as a
basis for defining the methodology:

Definition 1 (Relevance). A metric of the relevance of the subset of node pressures S for the
response variable y (leak node), is given by

Rel(S) def
=

1
S ∑

x∈S
I(x, y), (7)

where x is any feature in S , and S = |S| is the number of features in S (the cardinality).

Definition 2 (Redundancy). A metric for information redundancy in a feature subset S is
given by:

Red(S) def
=

1
S2 ∑

x,x′∈S
I(x, x′), (8)

where x and x′ are any features in S .

To apply the above definitions to compute a pressure sensor placement, first, a dataset
of node pressures is built covering different scenarios that consider leaks of different
magnitude in all nodes of the network. Through simulation with the hydraulic model of
the network, a series of samples of the node pressures is obtained, one sample for each
different leakage scenarios. In this way, if M different leakage scenarios are simulated in a
network containing N nodes, the result of the simulation is a collection of N M-dimensional
vectors, x and x′ in (7) and (8), corresponding to the N candidate nodes (initially, it is
assumed that all nodes are potential sensing nodes). In addition, an output vector, y in (7),
is generated containing integer labels to indicate the leaky node corresponding to each
simulated scenario.

The exhaustive search for the optimal subset of sensors, S , requires testing the 2N − 1
different combinations, which would require an impractical computation time in networks
with many nodes. Therefore, the use of the method proposed in [32] was considered to
rank the node pressures through an iterative forward scheme that only requires O(NS)
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computations. In fact, with this proposal, it is possible to rank all the node pressures in
order of importance with a computational cost of O(N2).

Next, a heuristic algorithm is proposed, which orders the node pressures according to
their importance to explain the different leak classes (leaky nodes). The first node pressures
in the output list correspond to the nodes with the highest importance for explaining
the leak positions according to the information contained in the dataset. The sequential
selection of nodes starts from an empty subset and, at each iteration, adds the best-ranked
node among those that are still available to be selected. At each iteration, the relevance
of each available feature (node pressure) with respect to the output (leaky node) and its
redundancy with respect to the variables that have been previously selected is evaluated
using the following equations, adapted from (7) and (8):

Rely(x) = I(x, y), (9)

RedS (x) =
1
S ∑

x′∈ S
I(x, x′). (10)

Since maximizing relevance and simultaneously minimizing redundancy represents
a multiobjective problem, a combined relevance/redundancy index (RRI) is defined that
increases with increasing relevance and also with decreasing redundancy, so the problem is
expressed as a single objective to be maximized:

RRI = Rely(x)/ RedS (x). (11)

The complete node ranking process is formally expressed in Algorithm 1. When the
process finishes, the nodes where to place the sensors are taken from the first positions
in the list S . If it is not necessary to obtain the complete ranking of the nodes, but only
to know the best-ranked positions, the process may stop prematurely when the subset S
already contains the number of sensors to be placed.

Algorithm 1: Node ranking based on information theory.
Data: Set with all node pressures, A. The nodes in A will be placed in the ordered

list S according to their importance (relevance/redundancy). During the
process, S̃ denotes the elements of A not yet added in S .

Result: Set with ordered node pressures, S .
Initialization:
S ← [

arg max
x∈A

Rely(x)
]

repeat

if ∃x ∈ S̃ , Rely(x) 	= 0, RedS (x) = 0 then
S ← [ S , arg max

x∈S̃ , RedS (x)=0

Rely(x)
]

else
break

end

until ∀x ∈ S̃ , RedS (x) 	= 0
repeat

S ← [ S , arg max
x∈S̃ , Rely(x) 	=0

Rely(x)/ RedS (x)
]

until ∀x ∈ S̃ , Rely(x) = 0
S ← [ S , S̃ ]
The number of sensors to place for leak localization purposes is determined by the

equipment available in most cases. The minimum number of sensors for a successful
leak localization method will depend on how that method uses the available information,
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the measurement noise, as well as the quality, resolution and calibration of the sensors.
If there are enough resources to intensively instrument the network, it must be taken into
account that increasing the number of sensors does not always lead to better performance
in locating leaks. To determine how many sensors should be placed, it is suggested to
start from the ranking obtained by Algorithm 1, and run a marginal analysis with the leak
localization method to be used. Starting from one sensor (the best ranked), the number of
sensors is progressively increased and the leak localization performance is evaluated for
each new set of sensors until adding a new sensor no longer represents a significant benefit
for locating leaks.

It should be noted that Algorithm 1 does not take into account the geographical
distribution of the nodes, since relevance and redundancy depend only on the mutual
information between node pressures. This means that the network topology is what
determines the amount of mutual information rather than the distance between sensors
(i.e., two sensors can be geographically very close but have little mutual information).

4. Results and Discussion

Algorithm 1 was implemented in MATLAB and tested on the Hanoi network [33].
The model of the Hanoi network is composed of one reservoir, 31 consumer nodes, and
34 pipes, as shown in Figure 1. Due to its reduced topology, this network has been used as
a standarized benchmark in different works [21,27,34].

In order to build the pressure dataset, leaks of different magnitude were simulated at
each junction node using the EPANET 2 simulation program [35] through the EPANET/
MATLAB Toolkit [36]. The procedure to generate the dataset using EPANET, the training
and the predictive use of classifiers in locating leaks have been described in [37]. The dataset
generated by simulation for this work considered leaks at all junction nodes with flow
rates from 50 L/s. In order to simulate leaks at a node, the demand assigned to that node
in the EPANET hydraulic model was modified by increasing this demand by an amount
equal to the flow of the simulated leak. Because the Hanoi network contains few nodes,
the optimality of the sensor placement calculated by Algorithm 1 was exhaustively verified.

Figure 1. The Hanoi network.

To assess the optimality of the sensor placement obtained from Algorithm 1, leak
localization tests were carried out using two machine learning methods that used the
pressures in the selected nodes as features (input variables). The methods used were
the k-nearest neighbors (k-NN) and quadratic discriminant analysis (QDA). These leak
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localization methods are based on classifiers that recognize directional patterns in pressure
residuals using supervised learning techniques, as described in [38].

Through the marginal analysis, suggested at the end of Section 3, it was determined
that S = 3 is an adequate number of sensors in the Hanoi network, because the addi-
tion of the fourth sensor does not produce a statistically significant improvement (with
0.95 confidence level) in leak location (considering that measurement noise may possibly
increase the minimum number of sensors, but this discussion has been considered as future
work). Because the Hanoi network contains few nodes, it was possible to comprehen-
sively analyze all 4495 possible combinations of three sensor nodes. For each triplet of
nodes (three-sensor placement), 50 leak localization tests were carried out with flow rates
qleak = 1, 2, . . . , 50 L/s at each node of the network. Finally, the overall performance of
both methods was evaluated for each candidate triplet using the classification accuracy
(Acc) and the average topological distance (ATD) as performance metrics, as defined in [39].
The Acc is the fraction of exactly located leaks considering all leak scenarios in the test
dataset, where Acc = 1 means that all leaks were correctly located, whereas Acc = 0 means
that no leaks were correctly located. The ATD is a measure of how far from the true leaky
node the classifier locates the leak, counting the number of separation links between the
true leaky node and the estimated leaky node, averaged across all scenarios in the test
dataset. Therefore, the best sensor placements are the ones that lead to the highest Acc
values and the lowest ATD values.

The results in Table 1 show that the node triplet {12, 21, 28} computed by Algorithm 1
is among the best ranked, since it presents the highest accuracy and the lowest average
topological distance.

Table 1. Better positions to place three sensors in the Hanoi network, obtained by exhaustive analysis.
The shaded selection is the one obtained by Algorithm 1.

Rank Nodes
Location Method

k-NN QDA

1 {12, 21, 28} 0.9974 0.9948
1 {12, 21, 27} 0.9974 0.9948
1 {12, 21, 31} 0.9974 0.9948
2 {7, 12, 21} 0.9961 0.9936
2 {12, 17, 21} 0.9961 0.9936
3 {3, 12, 21} 0.9961 0.9923
3 {4, 12, 21} 0.9961 0.9923
3 {6, 12, 21} 0.9961 0.9923
3 {5, 12, 21} 0.9961 0.9923

(a) Metric: classification accuracy

Rank Nodes
Location Method

k-NN QDA

1 {12,21,28} 0.0026 0.0052
1 {12, 21, 27} 0.0026 0.0052
1 {12, 21, 31} 0.0026 0.0052
2 {12, 13, 21} 0.0065 0.0065
3 {7, 12, 21} 0.0065 0.0090
3 {12, 17, 21} 0.0065 0.0090
4 {3, 12, 21} 0.0039 0.0129
4 {4, 12, 21} 0.0039 0.0129
5 {6, 12, 21} 0.0065 0.0129

(b) Metric: average topological distance

Figure 2 shows the geographic location of the three-sensor placement obtained consid-
ering the three nodes best ranked by Algorithm 1. Figure 3 shows the complete ranking
considering the 31 nodes of the network.
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Figure 2. Computed three-sensor placement in the Hanoi network.

Figure 3. Node ranking in the Hanoi network.

Table 2 shows the sensor placements obtained for two, three and four sensors in the
Hanoi network, and they are compared with the results obtained by metaheuristic methods
reported in the literature [28]. The nodes selected by these methods are quite similar and
produce very close results in terms of accuracy in locating leaks based on the pressures
of the selected nodes. However, there is an important difference in the computation time
of the IT-based method (Algorithm 1) compared with the metaheuristic methods. On a
personal computer with an Intel 64-bit processor and 8 GB of RAM, the computation time
for the IT-based method was around one second with the synthetic data from the Hanoi
network, whereas it was 24 min for the genetic algorithm (it may be larger, depending on
the initial population size) and about one hour for the exhaustive analysis.
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Table 2. Optimal three-sensor placement in the Hanoi network using different methods.

S IT a GA b PSO c SE d

2 {12, 28} {12, 21} {12, 21} {12, 21}
3 {12, 21, 28} {12, 21, 27} {12, 14, 21} {12, 21, 29}
4 {12, 21, 26, 28} {1, 12, 21, 29} {1, 12, 21, 24} {1, 12, 21, 29}

a Algorithm 1. b Genetic algorithm, reported in [28]. c Particle swarm optimization, reported in [28]. d Semi-
exhaustive search, reported in [28].

Further tests were made on larger networks, e.g., in some midsize sectors of the
Madrid network. Figure 4 shows a 10-sensor placement obtained using Algorithm 1 in
a sector of the Madrid network containing one reservoir, 312 junction nodes and around
14 km of pipes. In this case, optimality was not exhaustively tested due to the vast number
of possible placements to compare. However, it was found that the average accuracy in
leak localization with sensor placements obtained by Algorithm 1 was at least better than
that obtained with an existing placement (previously obtained by a genetic algorithm) for
different leak scenarios.

Figure 4. The optimal 10-sensor placement in a sector of the Madrid network.

Figures 2 and 4 show that the computed sensor placements do not show geometric
regularity (i.e., the sensors do not appear equally spaced), since geometric or spatial
criteria are not used to distribute the sensors in the network. However, regardless of
geometric irregularity, leak location tests with these placements demonstrated that pressure
measurements at these nodes provided the most useful information for discerning between
different leak scenarios. In fact, when the placement of sensors obtained by Algorithm 1 is
compared with the results reported by other authors using metaheuristics, sometimes very
close performances can be found even though the sensors are distributed in different nodes,
because the proposed algorithm does not optimize the position of each sensor individually
but the entire set of sensors. This can be explained with an informal analogy: two soccer
teams can achieve similar performances using different players.

Although, as noted above, there may be different sensor placements that lead to a
good performance in locating leaks, the one obtained by Algorithm 1 has the advantage of
being calculated in less time than the methods based on metaheuristics and that it is not
linked to a specific leak location method, so changing the leak location method does not
imply changing the location of the sensors, which would be impractical.

5. Conclusions

This paper has presented a technique for finding optimal sensor placements from
information theory using a sequential forward selection, maximizing the relevance and
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minimizing the redundancy of the selected node subset. The proposed technique is compu-
tationally less expensive than other methods reported in the literature because the proposed
technique operates directly on the values of node pressures without performing calcula-
tions for leak localization in the implementation of the algorithm. The optimality of the
sensor placement obtained with the proposed method was extensively tested by simulation
with the Hanoi network. It was found that the selection of nodes where to place sensors
using information theory produced the best combination of pressure variables to locate
leaks using different machine learning methods.

An implicit assumption in the proposed algorithms is that all network nodes have
the same availability to place the sensors. However, in practice, some specific nodes
may have placement priority over others; for example, critical nodes (points of minimum
pressure) and nodes that supply essential services (e.g., hospitals) could be monitored as a
priority. It may also occur that some nodes already have a sensor installed and that previous
partial placement must be held, or that the conditions in a node are physically adverse
and instrumentation is avoided. These circumstances warrant adjustments to the proposed
sensor placement algorithm that may lead to future work. Another possible working
line is the combination of heterogeneous sensors where different sensing specifications
are included (e.g., different precision) or where the sensors measure different physical
magnitudes (e.g., sensor placements combining pressure and flow sensors).
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Abstract: This article presents a new data-driven method for locating leaks in water distribution
networks (WDNs). It is triggered after a leak has been detected in the WDN. The proposed approach
is based on the use of inlet pressure and flow measurements, other pressure measurements available
at some selected inner nodes of the WDN, and the topological information of the network. A
reduced-order model structure is used to calculate non-leak pressure estimations at sensed inner
nodes. Residuals are generated using the comparison between these estimations and leak pressure
measurements. In a leak scenario, it is possible to determine the relative incidence of a leak in a
node by using the network topology and what it means to correlate the probable leaking nodes
with the available residual information. Topological information and residual information can be
integrated into a likelihood index used to determine the most probable leak node in the WDN at a
given instant k or, through applying the Bayes’ rule, in a time horizon. The likelihood index is based
on a new incidence factor that considers the most probable path of water from reservoirs to pressure
sensors and potential leak nodes. In addition, a pressure sensor validation method based on pressure
residuals that allows the detection of sensor faults is proposed.

Keywords: water distribution networks; leak localization; data-driven

1. Introduction

Water distribution networks are complex systems that are difficult to manage and
monitor with extreme importance nowadays. The detection and location of leaks have
become crucial for water distribution because when there are bursts or leaks, this can gen-
erate not only economic losses but also an environmental issue and represents a potential
risk to public health with contaminated water [1]. Another concern is the scarcity of water
that can occur in 2025, which may affect half the world’s population that will not have
access to safe and accessible water for their basic needs [2]. However, with all these risks,
currently, this infrastructure does not perform satisfactorily in practice. According to [3],
a global volume of water loss called Non-Revenue Water (NRW) has been calculated at
346 million cubic meters per day or 126 billion cubic meters per year.

The infrastructure in a medium-sized city can have pipes that span hundreds of kilo-
meters connected to hundreds of nodes (pipe junctions or customers that connect to the
network). Therefore, several factors can generate water loss during transport between
the treatment plants and the reservoir for consumers, usually attributed to several causes,
including leaks, measurement errors, and theft. Water loss can be divided into two terms,
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“real losses” and “apparent losses”. Apparent losses are constituted by badly read measure-
ments, data handling errors, and illegal water tapping. In contrast, the real losses comprise
leakage from all system parts and overflow at storage tanks. Real losses are divided into
“background leakage” made up of small undetectable and into detectable leaks relevant for
detection as they represent significant losses for the water distribution company.

Effective leak management is vital for all of the factors mentioned above to save
financial resources and water. The methods of leak localization can be classified into two
categories: Hardware-based system and Software-based.

The Hardware-based utilizes hardware sensors to detect a leak directly and help the
localization of the leak. As there are various types of sensors and instruments available,
they can be further subclassified as: acoustic [4,5] and non-acoustic detection methods [6].

Software-based methods generally rely on an algorithm or model for detecting leaks.
Unlike hardware-based methods, these methods do not seek to locate the leak point accu-
rately but minimize possible leakage areas. Since these methods are based on information,
such as the pressure of the pipe network, flow data, and so forth, they work well on any
type of pipe. These methods can be divided into physical modeling methods and data-
driven methods. The physical modeling methods or model-based methods identify the leak
using a numerical model and compare the results with the field data, for example, Ref. [7]
which uses pressure sensitivity analysis, Ref. [8] uses leak signature space, Ref. [9] analyzes
the sensitivity matrix and residuals, and [10] uses pressure and flow measurements to
perform leakage detection through model-invalidation. On the other hand, data-driven
methods analyze the monitoring data, combining tools such as artificial intelligence (e.g.,
classifiers [11–14] or artificial neural networks [15,16]). Thus, it is possible to identify poten-
tial areas of the leak based on certain rules or principles without resorting to the simulation
of the physical model results [17]. However, these methods need, in general, an important
number of non-leak and leak data scenarios in the training process to obtain reasonable
results. As an exhaustive amount of leak scenarios are not available in general, a hydraulic
simulator can be used to generate leak data. This work deals with the problem of leak
localization and it is assumed that it is available a leak detection method that determines if
a leak is present or not in the WDN. In particular, a non-numerical localization method,
focused on a data-driven approach, is proposed.

Like other recent works [18,19], it requires only topological information of the net-
work and historical data without leakage of the available measurements. In this work,
the topological information provides the most probable paths for extra flows produced by
leaks. A new incidence factor from every combination of nodes and sensors is computed
with this information. Every incidence factor determines how a leak in a particular node
affects a specific pressure sensor. On the other hand, historical data are used to calculate
non-leak pressure estimations at sensed inner nodes. Residuals are generated using the
comparison between these estimations and leak pressure measurements. Incidence factors
are integrated with residuals in likelihood indexes to give the most probable leak node in a
leak scenario. In addition, pressure residuals are used to detect sensor faults by means of a
novel sensor validation algorithm.

The remainder of this paper is organized as follows: Section 2 presents the theory of
graphs applied to WDN and explains the structure of the reduced-order model used in
this work. The developed leak localization has been elaborated in Section 3. In Section 4 a
sensor validation method that allows the detection of pressure sensor faults is presented.
Section 5 introduces the case studies of Hanoi and Modena’s WDNs. Section 6 presents the
conclusions and future scope of the research work.

2. Water Distribution Networks

2.1. Preliminaries

A water distribution network is composed of m pipes, n internal consumer nodes and
can be described by a directed graph G = {V , E}, [20], with V = {v1, . . . , vn} is the set of
vertices that represent connections between the components of the network, additionally
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the last {vn−nI+1, . . ., vn}, represent the vertices of the system’s input, nI being the number
of the inlets, with nI ≥ 1. The elements of the set E = {e1, . . . , em} are the edges, which
represent the m pipes in the network.

The graph G can be represented by the incidence matrix H = [hij], in which the
elements hij are defined as:

hij =

⎧⎪⎪⎨⎪⎪⎩
−1 if the jth edge is entering ith vertex.
0 if the jth edge is not connected to

the ith vertex.
1 if the jth edge is leaving ith vertex.

The direction of the edge represents a reference direction for the flow in the corre-
sponding pipe. The incidence matrix is composed of H ∈ {−1, 0, 1}n×m with each row
corresponding to a node and column corresponding to a pipe.

The WDN must fulfill mass conservation law, which expresses the conservation of
mass in each vertex, described by:

H · q = d, (1)

where d ∈ Rn is the vector of nodal demands, with di > 0 when the flow is into the node
i, and q ∈ Rm is the vector of flows in the edges. By virtue of the mass conservation, it is
possible to have only n − 1 independent nodal demand, ∑n

i=1 di = 0, therefore the supply
flow must equal the end-user demands as there is no storage in the network.

Let p be the vector of absolute pressures at the nodes and Δp be the vector of differen-
tial pressures across the pipes, both in meters of water column [mwc], then the energy law
for water networks gives:

Δp = HTp = f (q)− HTh, (2)

where p ∈ Rn, and f : Rm → Rm, f (q) = ( f1(q1), . . . , fm(qm)). The function f j(·) de-
scribes the flow dependent pressure drop due to the hydraulic resistance in the jth edge.
The relationship between pipe flow and energy loss caused by friction in individual pipes
can be computed using the Hazen–Williams formula [21] for expression f j(·):

f j(qj) =
10.7 · Lj

ρ1.852
j · D4.87

j
· q1.852

j , (3)

where Lj is the length of the pipe and Dj is the diameter of the pipe, both in meters [m], qj

is the pipe flow in m3/s and ρj is the pipe roughness coefficient.
The term HTh is the pressure drop across the pipes due to the difference in geodesic

level (i.e., elevation) in meters [m] between the ends of the pipes with h ∈ Rn the vector of
geodesic levels at each vertex.

2.2. Structure of the Reduced Order Model

The reduced-order network model is used in this paper to calculate the nominal
pressure at the measured internal nodes. The model uses the pressure dependence of the
network’s internal nodes with the pressure and flow measurements of the inlets. The details
of the model derivation can be found in [22,23].

A network can be divided into nodes connected with reservoirs (the inlets nodes)
and internal nodes that compose the system. To facilitate the explanation in this work,
the information regarding inlet nodes will be represented by (r) superscript and those
of the internal nodes, which will be expressed by the (in) superscript. In particular,
vector p(in) will contain pressure node values p1, . . ., pn−nI and p(r) inlet pressure values
pn+1−nI , . . ., pn.

The network needs to fulfill some conditions for using the reduced model proposed:

19



Sensors 2021, 21, 7551

Condition 1: corresponds to the demands of the internal nodes of the system, where
Equation (1) can be defined as:

d(k) = −v(k)σ(k), (4)

where σ(k) denotes the total inlet flow into the network at time instant k, the vector v(k)
defines the distribution of the total demand in the internal nodes at every time k, with the
property ∑n

i vi(k) = 1. Notice that if all consumers are residential, all nodes demand have
the same consumption profile, in consequence, the v(k) will be constant v(k) = v.

Condition 2: is a particularly case when the vector p(r) of control inputs fulfill the
following case,

p(r)(k) + h(r) = κ(k)1, (5)

for some κ ∈ R, which is the total head at the inlets in [mwc] and where 1 denote the vector
consisting of ones. In [23], there is a discussion on this definition’s feasibility where the
controllers should satisfy this premise at least in networks with the low total consumption.

If these two conditions are fulfilled, the pressure at the ith internal node can be
expressed by:

p(in)i (k) = αiσ
2(k) +

nI

∑
j=1

βij(k)p(r)j (k), (6)

where αi is parameter dependent on the network topology and the distribution of demands
in the network, and βij is dependent on the network topology with j = 1, . . ., nI . The total
inlet flow σ is typically well-known since inlet flows are measured. αi is a parameter
dependent on the network topology and the distribution of demands in the network,
and βij is dependent on the network topology with j = 1, . . ., nI . The total inlet flow σ is
typically well-known since inlet flows are measured.

Some methods of identifying parameters can be used to identify parameters αi and βij

since model (6) of p(in)i is linear [24], using the measures of σ, p(r) and p(in)i with nodes that
contain pressure sensors that will be denoted as psi ∀i = 1, . . ., ns in the following, where
ns is the number of sensors installed in the inner nodes.

Once inner pressure model (6) has been calibrated, the accuracy of the model can be
assessed by applying the computation of the model error or pressure residual defined by:

rsi = p̂si (c)− psi (c), ∀i = 1, . . ., ns, (7)

where c denotes the boundary conditions (heads and inflows in inlets) necessary to com-
pute pressure estimation by means of (6). For example, minimum and maximum resid-
ual bounds σi and σ̄i, considering the available data, can be computed for every sensor
i = 1, . . ., ns to obtain an idea of the accuracy of model (6). Sensor noises and error models
can produce residual errors. If big values of residual bounds are obtained, improvements
in model (6) should be considered. For example, the assumption that all the nodes have the
same consumption profile can lead to a big error in some networks. In this case, the error
could be decreased if model (6) is calibrated only using data from the same hour but on
different days. It would be assumed that different users can have different profiles at a
given hour, but a particular user will have the same profile at a particular hour for all
the different days. This possible improvement will imply the calibration of 24 different
models (6) (one for each hour) and will require more historical data to obtain good accuracy.
Another method to obtain an estimation of the pressure in inner nodes p̂si (c) is to use
historical data directly as a lookup table, as was proposed in [18]. That is, given particular
operating conditions, c provides the inner pressures from historical data that had the closest
operating conditions ĉ to c. Residuals (7) considering leak pressure measurements will be
used in the leak localization, as will be explained in detail in the next section.
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3. Leak Localization

The location of the leak on the WDN is typically divided into two steps: leak detection
and leak localization [25]. The focus in this work is the leak localization assuming that the
detection has already been effectuated. In addition, it is assumed that the leaks can only
happen in the nodes of the network (as considered in [7,26], or [8]), making the number
of nodes equal to the number of potential leaks. The nodes correspond to water users,
pipe junctions, and other structures such as hydrants. However, if the number of nodes
will not provide a representative discretization of the network, some artificial nodes could
be considered.

In this Section, two leak localization methods will be proposed. The first one will
only use available measurements, and its diagnosis will point to one of the inner pressure
sensors installed in the WDN. Therefore, the detected leak should be in an area around this
sensor (cluster). The second method will combine the information of the first method with
the topological information: characteristics of the pipes and connections between the nodes
of the WDN, in a likelihood index that will allow the leak localization at the node level.

3.1. Leak Localization at Cluster Level

As stated before, the proposed leak localization is applied after the leak detection.
In addition to inlet pressure and flow sensors, it is assumed that ns pressure sensors
are installed at different inner nodes. Consider a leak lj acting on the node j of the
network, and the used measurements are assumed to be captured under a leaky situation.
Additionally, admitting leak-free historical data of all the sensors are available. The residual
pressure in internal nodes that contain a sensor, defined in (7), can be computed as:

rsi = p̂si (c)− psi (c
lj), ∀i = 1, . . ., ns, (8)

where p̂si (c) is the pressure estimation considering boundary conditions c in a leak-free
scenario. On the other hand, psi (c

lj) is the pressure value measured by the inner pressure
sensor i under boundary conditions clj (the same heads and inflows in inlets as in c but
with a leak in node j).

Following the ideas in [18], positive residuals can be obtained from the
following transformation:

r̄si = rsi − min(rs1 , . . ., rsns) ∀i = 1, . . ., ns. (9)

Then, as the leak localization can be achieved by determining the residual pressure
component with maximum size (see [22,27]), leak localization can be formulated as:

ĵ = arg max
i∈{1,...,ns}

{r̄si}. (10)

Notice that the result of the leak localization method (10) is one of the ns pressure
sensor locations.

Then, the leak localization results in ĵ point not only to sensor location sj but also to
the nodes that produce a higher incidence for this sensor than the other sensors (cluster j).

3.2. Leak Localization at Node Level

Considering the Hazen–Willians Equation (3) for every pipe (edge ez) a resistance Rz
can be defined:

Rz =
10.7 · Lz

ρ1.852
z · D4.87

z
. (11)
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Among the multiple pipe paths that can connect every pair of nodes ij, a path Pmin
ij

with a minimum total resistance Rij can be computed by means of :

Pmin
ij = arg min

P (k)
ij ∈Pij

∑
ez∈P (k)

ij

Rz, (12)

where Pij = {P (r)
ij , . . . ,P (e)

ij } denotes the set of paths connecting nodes i and j.

On the other hand, the minimum path from the nI inlets to a node j , Imin
j , can be

obtained by applying the computation of the minimum paths from the nI inlets to node j
by means of (12) and determine which is the one with the minimum resistance among the
nI paths.

When a leak is produced in node j, Imin
j is the most probable path for the extra

flow produced by the leak. So the effect of a leak in node j to sensor si depends on the
intersection of the paths from inlets to node j and the node where the sensor is located si:
Imin

j and Imin
si

. To quantify the degree of incidence of the leak to the sensor, an incidence
factor gj,si is defined as:

gj,si = Rc
j,si

ḡj,si , (13)

where Rc
j,si

is the resistance of the path defined by Imin
j ∩ Imin

si
, the superscript c refers to

the common path between node and sensors, and ḡj,si is a normalization factor that takes
into account the inverse of the resistance from the node j to the different sensors:

ḡj,si =

⎧⎪⎨⎪⎩
1

Rj,si
∑ns

l=1
1

Rj,si

if j 	= si

1 if j = si.

The ns incidence factors associated to a leak in node j, gj,si i = 1, . . ., ns can
be normalized:

λj,si =
gj,si

∑ns
l=1 gj,sl

, (14)

where coefficient λj,si determines the relative incidence of a leak in node j to sensor si
regarding all the ns sensors and the need to fulfill:

ns

∑
i=1

λj,si = 1 ∀j = 1, . . . , n − nI . (15)

For every node j = 1, . . ., n − nI , the most sensitive sensor to a leak in this node can be
computed as:

ĵ = arg max
i∈{1,...,ns}

{λj,si}. (16)

The ns clusters used in the leak localization defined in (10) can be computed using the
set of nodes that provide the same value of ĵ. The following equation is the definition of
the cluster associated with the sensed node l:

Cl = {vj ∈ V| arg max
i∈1,...,ns

{λj,si} = l}, (17)

where l = 1, . . ., ns. The topological information of λj,si and the measurement information
of residuals r̄si can be integrated in a parameter θj defined as:

θj =
1
θ̄

ns

∑
i=1

λj,si r̄si (18)
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where θ̄ is a normalization factor. Then, θj can be interpreted as a likelihood index, and the
leak localization at cluster level defined in (10) can be formulated at node level as:

ĵ = arg max
j∈{1,...,n−nI}

{θj}. (19)

In order to improve the performance of the leak localization method, the information
of the residuals at different time instants k can be taken into account applying the Bayes’
rule as:

Pj(k) =
Pj(k − 1)θj(k)

∑n−nI
l=1 Pl(k − 1)θl(k)

, (20)

where Pj(k − 1) is the prior probability whose initial value Pj(k − 1) has to be determined
(for example Pj(0) = 1/(n − nI)). Then, the leak node localization can be estimated by
using posterior leak probabilities by:

ĵ(k) = arg max
j∈{1,...,n−nI}

{Pj(k)}. (21)

4. Sensor Validation

When a leak is not detected by the leak detection method, anomalous values of
pressure residuals rsi (k) i = 1, . . ., ns defined in (7) can be used to detect sensor faults.
In the same operating conditions, the historical data of inner pressure sensors (leak-free
data or data for a particular leak scenario) can be used first to calibrate a pressure estimation
model as described in Section 2.2. Secondly, to determine residual bounds σi and σ̄i that
allows the implementation of pressure sensor fault detection through checking:{

rsi (k) ∈
[
σi, σ̄i

] ⇒ No Fault (φi(k) = 0)
rsi (k) /∈ [

σi, σ̄i
] ⇒ Fault in sensor si (φi(k) = 1).

(22)

The accuracy of this fault detection method depends on the length of residual bounds
σi and σ̄i and, therefore, on the accuracy of pressure estimation (6). In order to increase the
accuracy of the fault detection method, spatial residuals [28] between pressure residuals (7)
can be computed

Srsi ,sj(k) = rsi (k)− rsj(k) ∀i = 1, . . ., ns − 1 and j = i + 1, . . ., ns. (23)

In the same way as the pressure residuals, spatial residual bounds εi,j and ε̄i,j can be
computed using leak-free data, and the fault detection can be implemented as follows:⎧⎨⎩Srsi ,sj(k) ∈

[
εi,j, ε̄i,j

]
⇒ No Fault(Φi,j(k) = 0)

Srsi ,sj(k) /∈
[
εi,j, ε̄i,j

]
⇒ Fault(Φi,j(k) = 1).

(24)

As model errors will affect in a similar way as close pressure sensors, it is expected
that some spatial residual bounds will be smaller than pressure residual bounds. Therefore,
fault detection defined by (24) will be more sensitive to pressure sensor faults than the one
defined by (22). The accuracy of the sensor fault detection can be increased by means of
average computing residuals in a time window leading to smaller residual bounds.

Once a residual has been violated, that is, at least one of the sensor faulty signals φi(k)
i = 1, . . ., ns or spatial faulty signals Φi,j(k) i = 1, . . ., ns − 1 and j = i + 1, . . ., ns is
equal to one, the sensor fault isolation can be implemented in two stages as described in
Algorithm 1:
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Algorithm 1 Sensor validation search for sensor fault

Stage 1: In the case of the activation of one or more sensor faulty signals φi(k) i = 1, . . ., ns, as these

signals are uniquely related to sensors si i = 1, . . ., ns, the isolation is trivial and faulty sensors

must be discarded for future leak localization, and the number of available healthy sensors ns

should be updated.

Stage 2: Only considers Spatial faulty signals Φi,j(k) of the ns non-faulty sensors from Stage1.

As these fault signals are potentially affected by two possible sensor faults si and sj, the fault

isolation can be implemented iteratively by the following steps:

1: for i ← 1, ns − 1 do

2: for j ← i + 1, ns do

3: if Φi,j(k) == 1 then

4:

ı̂ = arg max
i∈{1,...,ns}

{
ns−1

∑
j=i+1

Φi,j(k) +
i−1

∑
j=1

Φj,i(k)}. (25)

5: Discard sensor sı̂, eliminate faulty signals related to this sensors, update ns.

6: end if

7: end for

8: end for

In the case that two or more sensors obtain the same cost function in (25) and less than
the maximum possible value ns − 1, the computation of (25) should be performed in a time
window until new Spatial faulty signals are activated.

5. Case Study

5.1. Hanoi WDN

The Network used for the case study is a reduced city’s network model from Hanoi’s
WDN (Vietnam). It is composed of one inlet (reservoir), 34 pipes, and 31 nodes, represented
by Figure 1.
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Figure 1. Simplified Hanoi topological WDN.
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To analyze the performance of the proposed approach, data with different conditions
have been generated artificially using the EPANET hydraulic simulator [29]. In order
to consider realistic scenarios, some uncertainty has been added to the data [30]: the
magnitude of the leak is random with a range of 25 to 75 [l/s], that is, between 1% and
2.5% of the average inlet flow of the WDN. Furthermore, white noise has been combined
to emulate the noise present in real measurements, and uncertainty of 10% (uniform
distribution) was added in the nominal demand value.

The daily water consumption pattern used for the calibration of Equation (6) is shown
in Figure 2, having four days of operation.

The sample rate is 10 min, but average hourly measurements are calculated to reduce
uncertainties on the diagnostic stage.
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Figure 2. Flow consumption.

Results

The evaluation of the performance of the proposed leak localization method at node
level defined in Equation (21) will be analyzed utilizing Average Topological Distance
(ATD) [11]. The ATD represents the node’s distance between the node predicted as leaking
and the actual node with the leak. To calculate the ATD, it is first necessary to create a
matrix containing the minimum topological distance (in nodes or meters), A ∈ Rn−nI×n−nI .

Finally, the confusion matrix Γi,j(n − nI × n − nI) defined in [18] and depicted in
Table 1 is used to assess the performance of Equation (21). The rows of this matrix cor-
respond to the leak scenario and the columns to where the leak is located (l̂) by the leak
localization method.

Table 1. Confusion matrix Γ.

l̂1 · · · l̂i · · · l̂n−nI

l1 Γ1,1 · · · Γ1,i · · · Γ1,n−nI
...

...
...

...
...

...
li Γi,1 · · · Γi,i · · · Γi,n−nI
...

...
...

...
...

...
ln−nI Γn−nI ,1 · · · Γn−nI ,i · · · Γn−nI ,n−nI
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Considering the confusion matrix Γ, the ATD can be computed as follows:

ATD =
∑n−nI

i=1 ∑n−nI
j=1 Γi,j Ai,j

∑n−nI
i=1 ∑n−nI

j=1 Γi,j
. (26)

Four cases have been considered with different quantities of sensors in the network to
analyze how this affects the final result. Table 2 presents the distribution of the selected
nodes to contain a sensor. As seen in [31], the positioning of the sensors produces different
results. As this work did not discuss the adequate sensors’ arrangement, they were chosen
to consider an improvement in the results regarding the number of sensors.

Table 2. Nodes with sensors.

Case Nodes with Sensors

1 12, 17, 23, 29

2 6, 12, 17, 23, 29, 21

3 6, 12, 15, 17, 23, 21, 27, 30

4 6, 9, 12, 15, 17, 24, 21, 22, 28, 29, 31

Using the inlet flow data and non-leak historical pressure measurements of the selected
sensors, the βi and the αi with i = 1, . . ., 31 in (6) have been identified (notice that nI = 1).
With these parameters, the pressure estimations under a non-leak condition in the network
can be calculated considering inlet measurements using Equation (6) and posteriorly
applied to calculate the residuals (9) with measured pressures in leak scenarios. In addition,
non-leak pressure measurements and estimations are used to generate fault-free pressure
residuals rsi (k) and bounds σi, σ̄i i = 1, . . ., ns, as well as spatial residuals Srsi ,sj(k) and
bounds εi,j, ε̄i,j ∀i = 1, . . ., ns − 1 and j = i + 1, . . ., ns.

For every sensor configuration, normalized incidence factors (14) have been computed
with topological information: node connections and pipe characteristics (length, diameter,
and roughness). Figure 3 has the objective of comparing the information of the incidence
of single leaks to pressure sensors obtained by a hydraulic model with the one obtained
by means of topological information. The nodes selected to have sensors are the ones
defined in the first case in Table 2. In particular, Figure 3c shows the clustering that groups
the nodes that produce the highest effect in a specific pressure sensor. Nodes in yellow
define the cluster of nodes where a leak produces a maximum pressure deviation from
the non-leak scenario in the sensor installed in node 12, and the same is true for nodes
in violet, red and green regarding pressure sensors in nodes 17, 23, and 29, respectively.
Finally, nodes in black are nodes that produce a similar variation of pressure (difference
of variation less than 0.1 [mwc]) in at least two different pressure sensors. In order to
obtain this information, a hydraulic model to compute the difference of non-leak and leak
pressures in all the nodes for the different leaks is required. On the other hand, Figure 3a
shows the clustering that takes into account the shortest weighted pipe length (hydraulic
distance), that is, the sum of (Lz/D4.87

z ) for all edge ez in the path to the sensors, being the
smallest one used to define the most resemblance to the sensor, used in Ref. [18]. Finally,
the clustering depicted in Figure 3b is defined by Equation (17), which is based on the
common resistance path explained in Section 3. These two last clusters that only require
topological information could be used in the leak localization method at the cluster level
defined in Equation (10). It is important to emphasize that the clustering based on the
resistance common path, proposed in this paper and depicted in Figure 3b, resembles the
clustering based on the actual leak effect in the network (given by the model) depicted
in Figure 3c much more than the clustering based in the hydraulic distance depicted
in Figure 3a. Therefore, the clustering proposed in this paper provides more accurate
information for leak localization purposes than that based on the hydraulic distance. For
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example, as shown in Figure 3c, when a leak is present in nodes 3, 4, 5, 6, 7, 8 or 9, the sensor
most affected by the leak is the sensor in node 12. This information is the same as the one
provided by the clustering depicted in Figure 3b and is computed only with topological
information. However, using the clustering of Figure 3a based on the hydraulic distance
between nodes and sensors, the closest sensor to these nodes is the sensor in node 17.
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Figure 3. The ns clustering generated with the aspects: (a) shortest weighted pipe length, (b) The resis-
tance takes into account the common path Rc

j,si
; (c) is the maximum residual. Nodes in yellow, violet,

red and green define the cluster related to sensor installed in node 12, 17, 23, and 29, respectively.

Figure 4 shows the correlation analyses of the relative incidence index λj,si defined in
Equation (14) for all the nodes j = 1, . . ., 31 depicted in every subplot for every sensor si
i = 1, . . ., 4. As this index is normalized, its values are in the range [0,1). The nodes with
the higher index (more brown color) are those that produce a higher effect in the pressure
sensor si.

Figure 5a displays the evolution of the ATD (in nodes) obtained by the leak localization
method based on the Kriging spatial interpolation methodology presented in [18] with the
time horizon (in hours) used recursively by the Bayes’ rule in (20). Four different sensor
configurations are considered with 4, 6, 8, and 10 sensors placed optimally in order to
maximize the performance of the leak localization proposed [18]. The performance can
be compared with the one obtained by the new leak localization method proposed in this
paper at node level defined in Equation (19) with the same dataset and the same sensor
configurations as in [18], depicted in Figure 5b and with the sensor configurations shown
in Table 2, depicted in Figure 5c.

Figure 5a shows that the leak detection performance of the Kriging method improves
significantly from four to eight sensors and more moderately compared to ten sensors,
still having a good result, even with noise data managing to reach an ATD equal to
2.5 node. When compared to the newly proposed leak localization method, as can be
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seen in Figure 5b,c, the new leak localization method always outperforms the Krigring
method, even in the case of using the sensor configurations proposed in [18] that were
computed to optimize the performance of the Kriging method. Figure 5c shows that the
sensor configurations proposed in [18] are not optimal for the proposed method but the
performance can be improved by changing the sensor configurations, in this case manually.
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Figure 4. Relative incidence index λj,si for all the nodes (j = 1, . . ., 31), corresponding to: (a) 1st sensor (i = 1), (b) 2nd senor
(i = 2), (c) 3rd sensor (i = 3), and (d) 4th sensor (i = 4).

In order to illustrate the performance of the proposed sensor validation method, Case
1 (four sensors) will be considered. The four-sensor residuals computed by Equation (7)
have been considered in a time window of 24 h using leak-free data leading to upper
residual bounds equal to:

[σ̄1, σ̄2, σ̄3, σ̄4] = [0.11, 0.06, 0.09, 0.11]

and the lower residual bounds equal to:

[σ1, σ2, σ3, σ4] = [−0.14,−0.10,−0.10,−0.08].

In the same way, the six spatial residuals defined by (23) have been computed in the
same conditions as sensor residuals leading to spatial residual bounds:

[ε̄1,2, ε̄1,3, ε̄1,4, ε̄2,3, ε̄2,4, ε̄3,4] = [0.06, 0.07, 0.08, 0.04, 0.05, 0.03]

and [
ε1,2, ε1,3, ε1,4, ε2,3, ε2,4, ε3,4

]
= [−0.04,−0.06,−0.08,−0.06,−0.09,−0.03].
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Figures 6 and 7 depict the evolution of sensor and spatial residuals with their respec-
tive residual bounds in a fault scenario of sensor 1 that corresponds to the pressure sensor
in node 12. The fault is a drift of 0.1 [mcw] that starts on the 5th day. As shown in Figure 6,
by applying (22) to sensor residuals it is impossible to detect the fault until the end of the
day 9 (i.e., 4 days later) when residual sensor 1 violates the bounds. However, by applying
(24) to spatial residuals it is possible to detect the fault in 10 h: Srs1,s2 violates its bounds in
10 h, and Srs1,s3 , Srs1,s4 violate their bounds in 16 h and 22 h, respectively.
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Figure 5. Evolution of the ATD between the methods: (a) using the Kriging interpolation method
presented in [18], (b) using the new leak localization method with the same sensor configurations as
in [18] and (c) using the new localization method with sensor configurations of Table 2.

5.2. Modena WDN

The second case study selected to test the performance is the reduced model of the
real water distribution network of the Italian city Modena. This large-scale network
is comprised of 268 junctions (nodes) connected through 317 pipes and served by four
reservoirs. There are no pumps in the network since it is entirely gravity-fed [32,33].

The EPANET hydraulic simulator was used to generate artificial data to analyze the per-
formance of the proposed method. The following simulation conditions were considered:

• The leak scenario consists of data samples collected every 10 min and filtered to hourly
values to reduce the uncertainty in the data;

• The uncertainty of demand is considered by introducing the uncertainty of 10 [%]
(normal distribution) of the nominal demand value. In addition, white noise is deemed
to emulate the noise in the measurements;

• The leak size is randomly selected with a range of 3 to 6 [l/s], representing 1% to 2.5%
of the network consumption.
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Figure 6. Graph of the filtered residual with a fault in sensor number 1 (a) 1st sensor, (b) 2nd senor,
(c) 3rd sensor, and (d) 4th sensor.
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The sensor bias, sensor drift, and abrupt sensor failure of sensor faults were proposed
to analyze the sensor validation method. The sensor bias fault was simulated as a step
change, and the drift fault was given as a time-varying ramp signal. In both cases, the fault
magnitude was randomly chosen with a range of 0.1 to 0.2 [mwc]. The last fault was
simulated by turning the sensor output to zero.

Results

As applied in the previous case study, the Average Topological Distance (ATD) was
used to assess the performance of the proposed leak localization method at the node level
defined in (19). Two scenarios have been considered with five and ten pressure sensors that
are presented in Figure 8a,b respectively. As emphasized in the last section, performance
in the leak localization task is highly dependent on the number of sensors installed in the
network [34–36].

Figure 9 shows the result of ATD evolution as defined in (26) applied with Bayes’
posterior time reasoning (20) to represent the leak location performance of the proposed
method. This figure shows that the leak localization performance reached an ATD of 8
and 5.5 nodes with 5 and 10 inner pressure sensors installed in the network respectively.
Considering that the proposed leak localization method only requires topological informa-
tion and non-leak historical data in available measurements, the obtained performance is
reasonably good.

On the other hand, a total of 6000 scenarios were simulated with 10 days each to
evaluate the sensor validation method for the five sensor configurations depicted in
Figure 8a. Thus, 1000 scenarios were generated for each sensor with sensor bias, sensor
drift, and abrupt sensor failure applied randomly, and the remainder 1000 without faults.

To calculate the residual and spatial residuals bounds, a 6-month leak-free scenario
was generated. The five sensor residuals computed by Equation (8) considering the time
window of 24 h and increasing 24% observed bounds. Leading to upper residual bounds
equal to:

[σ̄1, σ̄2, σ̄3, σ̄4, σ̄5] = [0.10, 0.06, 0.04, 0.01, 0.04]

and to lower residual bounds equal to:

[σ1, σ2, σ3, σ4, σ5] = [−0.08,−0.05,−0.03,−0.01,−0.06].

Following, the ten spatial residuals defined by (23) were computed in the same
conditions as sensor residuals leading to spatial residual bounds:

[ε̄1,2, ε̄1,3, ε̄1,4, ε̄1,5, ε̄2,3, ε̄2,4, ε̄2,5, ε̄3,4, ε̄3,5, ε̄4,5] =
[0.07, 0.08, 0.08, 0.10, 0.06, 0.05, 0.06, 0.03, 0.06, 0.05]

and
[ε1,2, ε1,3, ε1,4, ε1,5, ε2,3, ε2,4, ε2,5, ε3,4, ε3,5, ε4,5] =

[−0.07,−0.09,−0.08,−0.09,−0.05,−0.04,−0.06,−0.03,−0.04,−0.04].

For this study, the evaluation metric applied was classification accuracy. To this pur-
pose, the confusion matrix was used, which presents the classification accuracy and the
misclassification error, and the horizontal axis of the confusion matrix describes the pre-
dicted labels of samples, while the longitudinal axis depicts the true labels of samples.
The right side shows the percentages of correctly and incorrectly classified observations for
each true class.

31



Sensors 2021, 21, 7551

Figure 8. Configuration of pressure sensors in Modena WDN: (a) 5 sensors, (b) 10 sensors.
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Figure 9. Evolution of the ATD.

Figure 10 illustrates the result for the confusion matrix for all scenarios generated,
and depicts that the accuracy of detecting faults in the sensor is very high, where the
lowest accuracy is presented in fault sensor number five with an accuracy of 95.4% and
the highest in fault sensor number three with 100% accuracy. Regarding the accuracy of
the scenario with no-fault, eight of the 1000 fault free scenarios presented one false alarm
among the 240 samples of the scenario; therefore providing an average interval between
false detections of 240,000/8 = 30,000 h.
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6. Conclusions

A new data-driven method for leak localization in WDN based on historical non-leak
data and the topological information of the network is proposed. The proposed method is
triggered when a leak is detected, and it is based on the evaluation of residuals generated by
leak pressure measurements in some inner nodes and the estimation of leak-free pressures
in these nodes utilizing a reduced-order model and historical data. Topological information
is used to compute a new incidence factor that considers the most probable path of water
from reservoirs to pressure sensors and potential leak nodes. The proposed incidence
factor combined with residual information generates a likelihood index that allows leak
localization at the node level. In addition, a sensor validation method based on the sensor
pressure residuals, which is able to detect and isolate pressure sensor faults, is proposed.

The proposed method’s general performance for leak location and sensor validation
is evaluated in reduced models of the Hanoi and Modena water distribution networks.
The results of the leak localization are compared to another technique published with
satisfactory results. Future works can be developed to improve the leak localization and
sensor validation performances, with a study of an algorithm to automatically determine
the optimal sensors required to maximize the leak localization performance.
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Abstract: This paper addresses the two simultaneous leak diagnosis problem in pipelines based
on a state vector reconstruction as a strategy to improve water shortages in large cities by only
considering the availability of the flow rate and pressure head measurements at both ends of the
pipeline. The proposed algorithm considers the parameters of both leaks as new state variables
with constant dynamics, which results in an extended state representation. By applying a suitable
persistent input, an invertible mapping in x can be obtained as a function of the input and output,
including their time derivatives of the third-order. The state vector can then be reconstructed by
means of an algebraic-like observer through the computation of time derivatives using a Numerical
Differentiation with Annihilatorsconsidering its inherent noise rejection properties. Experimental
results showed that leak parameters were reconstructed with accuracy using a test bed plant built at
Cinvestav Guadalajara.

Keywords: fault diagnosis; pipelines; multiple leaks; numerical differentiation; experimental results

1. Introduction

In recent decades, climate change and the overuse of natural water resources have
caused water scarcity in big cities. Furthermore, water distribution systems operators
(WDSOs) are facing major water losses as high as 65% due to pipeline leaks caused by lack
of maintenance, illegal intrusion, or accidents.

According to a study performed by the Organisation for Economic Co-operation
(OECD), entitled Water Governance in Cities [1], aging water networks have a negative
impact in terms of efficiency. One of the consequences is water loss from pipeline leaks.
On average, water loss in the surveyed cities (in the referred report) was 21% in 2016.
However, for Mexican cities, water loss was more than 40% (Chihuahua, Mexico City, San
Luis Potosi) or even up to 65% (Tuxtla), see Figure 1.

On the other hand, to satisfy the current demand, government policies are focused
on bringing more water from far away places instead of solving water losses due to leaks.
This means that the amount of water lost is currently considered in the water budget.
Interestingly, the amount of water needed to meet the demand in deficit is very similar to
what is lost through leaks. In other words, it could be possible to satisfy the current water
demand by minimizing the water losses due to leaks without the need for bringing more
water from far away places.

Sensors 2021, 21, 8035. https://doi.org/10.3390/s21238035 https://www.mdpi.com/journal/sensors
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Figure 1. Proportion of water loss in surveyed cities (leakage rate).

The implementation of leak detection and isolation (LDI) systems has demonstrated
a reduction in water losses in pipelines. LDI systems are algorithms that perform the
following tasks: detection and localization of one or several leaks in a pipeline system.
Thus, once a leak is identified, the repair technicians can fix the leak and avoid the water
loss. Many works that address the LDI problem for one leak have been reported [2–6].
For instance, in [2], a leak isolation methodology using a fitting loss coefficient calibration is
presented on the basis of two stages: in the first stage, the equivalent straight length (ESL) is
fixed by a model-based observer designed as an extended Kalman filter (EKF); in the second
stage, an algebraic observer is started with the ESL value fixed by the previous observer.
Finally, the estimated leak position is recovered in original coordinates since the observer
deals with ESL coordinates. Authors in [3] presented a methodology for leak detection
and isolation in pipelines based on data fusion using two approaches: a steady-state
estimation and an EKF. Authors concluded that the solution of the LDI problem improves
significantly when a steady-state estimation is incorporated to the estimation provided
by the EKF. In other words, the solution provided by the EKF is less accurate by itself.
In [4], authors propose a bank of observers together with a Genetic Algorithm (GA), which
is exploited to minimize the integration of the square observation error. The minimum
integral observation error is reached in the observer where the estimated leak parameters
match the real values. Experimental results evidence an accurate leak position estimation in
a test bed pilot plant. In [5], a combined artificial neural network (ANN) for leak diagnosis
in pipelines is presented. The ANN scheme estimates the location and friction factor based
on measurement data. An average error of 0.629% was obtained for leak location in the
experiments. More recently, in [6], a new approach for solving the LDI problem in pipelines
is introduced on the basis of a Kalman filter for linear parameter varying (LPV) systems.
The off-line computation of the filter gain allows the computational effort to be reduced
and the authors claim that the LPV design outperforms the classical EKF design in terms of
parameter-estimation accuracy.

On the other hand, the multi-leak case study has also been considered from two
different perspectives: (i) for sequential leaks (non-concurrent case) [7–9] and (ii) for the
simultaneous leak problem (concurrent case) [10].

In [7], a model adaptation strategy is proposed to isolate non-concurrent multiple
leaks based on extended Kalman filters. Experimental results show the potential of this
approach by allowing to monitor each new leak, no matter where it appears. Following this
direction, a scheme is proposed in [8] for detecting and locating multiple sequential leaks
based on a combination of an adaptive observer to identify the hydraulic gradient in real
time and a leak location observer to estimate the leak position and its outflow. Experimental
results of a pilot pipeline showed a satisfactory estimation in spite of operational changes
and leaks. More recently, in [9], a pressure distribution analysis is proposed to diagnose
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the location of leaks via an experimental study and computational fluid dynamics (CFD)
simulation. Multiple flow rate testing is conducted to detect the locations of two leaks.

In the same way, a more complex case of the multi-leak problem is when two or more
leaks occur at the same time, also known as the concurrent case. In [10], the orthogonal
collocation method (OCM) is used to obtain an approximate solution of the water hammer
equations (WHE). An estimator is then designed based on the spatially-discretized model
to detect multiple leaks by identifying their positions and leak coefficients by applying a
persistent input [11]. The results are presented via simulation.

Regarding the one leak problem, state observer-based techniques have been proposed
and successfully evaluated since the observer convergence is guaranteed, even by applying
constant inputs. This is because the structure of underlying state-space representation
fulfills a uniform observability condition (which is independent of the input) [12]. Con-
versely, when two or more leaks occur simultaneously, such an observability condition is
no longer satisfied and the observability depends on the input. Particularly in steady state,
the output obtained by two or more leaks is equivalent to the one obtained by a single
virtual leak, which is known as indistinguishability [11].

1.1. Problem Statement

• In a real pipeline system, several leaks can occur and usually they are not fixed as they
appear; this means that the leak problem becomes a challenging multi-leak problem
known as the simultaneous leak case. In addition, this situation worsens when water
management companies frequently lack flow rate and pressure head records of the
leak events.

• Therefore, a methodology to address the simultaneous leak case is proposed on
the basis of an input–output numerical differentiation-based strategy by applying a
persistent input in the sense of [11].

1.2. Methods

• By considering a state-space representation of a pipeline with two leaks in which
the leak parameters are considered as new state variables with constant dynamics,
the extended state can be reconstructed via its expression in terms of input, output,
and the corresponding time derivatives.

• A persistent input is experimentally generated via a frequency variation of the pump
driver that produces a sine-like pressure signal. This persistent input allows the
parameters of each leak to be reconstructed. This approach could be extended to a
more general case of simultaneous leaks if the applied input is regularly persistent,
such that the observability condition is guaranteed [11]. However, this approach could
also be limited to physical constraints since a persistent input might cause additional
leaks due to the flow transient effect that it produces.

Hereinafter, the paper is organized as follows: In Section 2, a mathematical model
is derived from the well-known water hammer equations and the two simultaneous leak
problem is stated. State vector reconstruction based on injection of input–output time
derivatives is presented in Section 3. Experimental results are presented in Section 4
by using databases from a pilot plant built at Cinvestav Guadalajara. Finally, several
conclusions and future perspectives are given in Section 5.

2. Preliminaries

2.1. Pipeline Mathematical Model
2.1.1. Governing Equations

The transient fluid through a pipeline can be described by conservation mass and mo-
mentum equations known as water hammer equations, which are a couple of quasi-linear
hyperbolic partial differential equations (PDE). Generally, PDE are derived considering
the following assumptions: the fluid is slightly compressible, the duct wall is slightly
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deformable, and the convective velocity changes are negligible. The cross section and the
fluid density are assumed to be constant [13]:
Momentum Equation

∂Q(z, t)
∂t

+ gA
∂H(z, t)

∂z
+ μQ(z, t)|Q(z, t)| = 0 (1)

Continuity Equation
∂H(z, t)

∂t
+

b2

gA
∂Q(z, t)

∂z
= 0 (2)

Here, Q stands for the flow rate [m3/s]; H is the pressure head [m]; z is the length
coordinate [m]; t is the time coordinate [s]; g is the gravity acceleration [m/s2]; A is the
cross-section area [m2]; b is the pressure wave speed in the fluid [m/s]; μ = τ/2φA, where
φ is the inner diameter [m] and τ is the friction factor. The dynamics in Equations (1) and (2)
are fully defined by related pairs of initial and boundary conditions.

2.1.2. Finite Difference Approximation

For the purpose of obtaining a finite dimensional model from (1) and (2), the partial
differential equations are discretized with respect to the spatial variable z, as in [14,15],
by using the following approximations:

Section i :

{
∂H(zi ,t)

∂z � Hi+1−Hi
Δzi

∀i = 1, · · · , n
∂Q(zi−1,t)

∂z � Qi−Qi−1
Δzi−1

∀i = 2, · · · , n
(3)

where index i stands for the variable discretized in (1) and (2) at section i. To solve the
LDI problem for two simultaneous leaks, Equations (1) and (2) admit a simple spatial
discretization as shown in Figure 2, where sections are defined according to the two
leakage positions:

Q1
Q2

Q3

Ql1
Ql2

H1
H2

H3
H4

Δz10
Δz2z1

Δz3z2
L

Section 1 Section 2 Section 3

Figure 2. Discretization of the pipeline with two arbitrarily located leaks.

Here, Ql1,2 represent the leaking flows that can be modeled as:

Ql1,2 = λ1,2
√

H2,3 (4)

where, λ1,2 is a constant that depends on the orifice size and the discharge coefficient,
and H2,3 is the head pressure at the leak point.

Thus, assuming a lumped-parameter model for the flow equations and considering
that the pressure head and flow rate measurements are available at both ends of the pipeline
via sensors, a low order dynamical representation of the system with two leaks can be
written using approximation (3) in Equations (1) and (2), as follows:
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⎡⎢⎢⎢⎢⎣
Q̇1
Ḣ2
Q̇2
Ḣ3
Q̇3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−gA
Δz1

(H2 − H1)− τ
2φA Q1|Q1|

−b2
2

gAΔz1

(
Q2 − Q1 + λ1

√
H2

)
−gA
Δz2

(H3 − H2)− τ
2φA Q2|Q2|

−b2
2

gAΔz2

(
Q3 − Q2 + λ2

√
H3

)
−gA
Δz3

(H4 − H3)− τ
2φA Q3|Q3|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Notice that, due to mass conservation, Ql1,2 must satisfy the next relation:

Ql1,2 = Qb1,2 − Qa1,2 (6)

where Qb1,2 and Qa1,2 are the flows in an infinitesimal length before and after the leak,
respectively.

2.1.3. Pipeline Equivalent Straight Length

It is worth pointing out that the mathematical model (5) assumes a straight pipe. This
is not a loss of generality because even if the pipe is not straight, it is possible to obtain
an equivalent straight length (ESL) of the pipe. The ESL is the straight length of a virtual
pipe (with the same parameters as the original duct) that would give rise to the same
pressure drop as the real pipeline. Such an equivalence is calculated by considering losses
due to each “non-straight element” (i.e., fitting) in accordance with the Darcy–Weisbach
formula [2,16,17]:

le =
φ

τ
K (7)

where, le means the equivalent straight length of a specific fitting, K is the so-called loss
coefficient parameter, which is normally provided by the pipe manufacturer, and τ is the
friction coefficient. Thus, the total ESL of the pipe, Le, can be calculated as follows:

Le = Lr +
φ

τ

n f

∑
i=0

Ki (8)

where Lr stands for the sum of all pipeline straight length elements, Ki is the fitting loss
coefficient for the i-th fitting, and n f the number of the pipeline fittings.

2.1.4. Friction Model

The friction factor (τ in Equation (1)) represents the loss of pressure of a fluid due to
the interactions between the fluid and the internal surface roughness of the pipe. Thus,
such a friction factor is a function of the Reynolds number, Re, and the pipe’s roughness,
ε [18,19].

In many practical cases, τ is deemed to be a constant value, which is commonly
taken from the Moody chart; nevertheless, in pipes with a relative roughness usually less
than 1 × 10−3 m, the zone where the friction factor is almost constant (i.e., the complete
turbulence zone), is difficult to reach. Consequently, when the LDI scheme is applied to a
plastic pipe, it is preferable to obtain a more accurate friction value by using a formula or
an algorithm to estimate such value. In this work, the authors propose the use of the well
know Swamee–Jain equation to directly calculate the coefficient of friction:

τi(Qi) =
0.25[

log10

(
ε

3.7φ + 5.74
Re0.9

i

)]2 (9)

where subscript i denotes the section number of the pipeline (see Figure 2). The Reynolds
number is, in turn, function of the flow rate, Qi, as follows:
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Rei =
Qiφ

νA
(10)

where, ν is the kinematic viscosity of the water. Notice that, due to leak occurrence, the flow
rate is different in each pipeline section (see Figure 2), causing a significant deviation of
the friction factor value (since the working plastic pipe area is commonly in the transition
zone). Therefore, it is important to introduce Equations (9) and (10) in the mathematical
model to calculate, at any sampling time, the friction coefficient due to the flow variations
in each i-th section.

2.2. Two Simultaneous Leak Problem Statement

In this work, the two simultaneous leak case is considered, i.e., a couple of leaks
can appear in a pipeline at locations: z1 ∈ (0, L) and z2 ∈ (0, L), with z2 > z1. Thus,
the problem is reduced to the size estimation of the pipe sections: Δz1 (Δz1 = z1) and Δz2
(Δz2 = z2 − z1), see Figure 2.

Now, Equation (5) can be written in compact form as follows:

ζ̇ = ξ(ζ) + ρ(ζ)γ
Ψ = ϑ(ζ)

(11)

where ζ = [ζ1 ζ2 ζ3 ζ4 ζ5]
T = [Q1 H2 Q2 H3 Q3]

T ∈ R5 is the state vector, γ = [Hin Hout]T ∈
R2 is the input vector, and Ψ = [Qin Qout]T ∈ R2 is the output vector for some functions ξ,
ρ, and ϑ.

The leak diagnosis problem for two simultaneous leaks appearing in a pipeline
can then amount to the estimation of parameters Δz1, Δz2, λ1, and λ2 in (5). Let us
consider those parameters as new state variables with constant dynamics [11], that is:
if θ = [z1 z2 λ1 λ2]

T then θ̇ = 0. This results in an extended state: x = [ζ θ]T =
[Q1 H2 Q2 H3 Q3 Δz1 Δz2 λ1 λ2]

T =: [x1 x2 x3 x4 x5 x6 x7 x8 x9]
T ∈ R9. Then, con-

sidering an unidirectional flow given by Qi|Qi| = Q2
i , the extended state representation

of (11) can take a form as follows:

ẋ = f (x, u)
y = h(x)

(12)

where u .
= [H1 H4]

T .
= [u1 u2]

T , and f , g are differentiable vector fields with the follow-
ing structure:

f (x, u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− gA
x6
(x2 − u1)− μ1(x1)x2

1

− b2

Agx6
(x3 − x1 + x7

√
x2)

− gA
x8
(x4 − x2)− μ2(x3)x2

3

− b2

Agx8
(x5 − x3 + x9

√
x4)

− gA
L−x6−x8

(u2 − x4)− μ3(x5)x2
5

O4×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h(x) =
[

y1(x)
y2(x)

]
=

[
Q1
Q3

]
=

[
x1
x5

]
(13)

where O4×1 is the 4 × 1 zero matrix, μi =
τi

2φA is computed as in Equation (9), and τ1,2,3 are
functions of x1, x3, and x5, respectively.

3. State Vector Reconstruction Based on Input–Output Numerical Differentiation

3.1. Observability Discussion

For the one leak case, the so-called observability rank condition is satisfied, and such
a property does not depend on the inputs [12]. However, in the case of two simultaneous
leaks (or even more), this is no longer true, since the states are not distinguishable by
applying constant inputs, and thus a persistent input is required [11].
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In fact, to reconstruct the actual state vector x of (12), one can compute time derivatives
of the output as functions of state variables as well as input and its time derivatives (using
Equation (13)), such that an invertible map with respect to the full state vector x is obtained
by applying an appropriate input. More precisely, by considering the two simultaneous leak
case described by (12), we have two input variables and two output variables, from which
input–output time derivative vectors can be generally defined up to orders p, p′ for the
input and q, q′ for the output, as:

U(p,p′)(t) :=
[
u1 u̇1 · · · u(p)

1 u2 u̇2 · · · u(p′)
2

]T
(14)

and
Y(q,q′)(t) :=

[
y1 ẏ1 · · · y(q)1 y2 ẏ2 · · · y(q

′)
2

]T
(15)

Clearly, from (13), the output time derivatives depend on the state and input time
derivatives, so that we can get:

Y(q,q′)(t) = Γ
(

x, U(p,p′)

)
(16)

for some p, p′, given q, q′.
On this basis, observability somehow means that this relationship is invertible and

that it is possible to find elements among the components of Γ defining an invertible map
with respect to x [20,21]. Specifically, if such an inverted map exists, and the input–output
and the corresponding time derivatives are known, then, it is possible to compute each
independent state in (16) as follows:

x = Γ−1
(

U(p,p′), Y(q,q′)

)
(17)

Notice that, in general, it can be of interest to avoid or limit time derivatives of the
input, but assuming that they are available or can be estimated in the same way as time
derivatives of y is enough for our present application.

It should be noted that for this LDI problem, it is even enough to obtain an expression
by only relating the input, output, and their time derivatives with leak parameters. We
will propose this in Section 3.3, with a similar procedure as elimination (which, conversely
to realization, consists of deriving an externally equivalent representation not containing
the state [22]). We will even see how to recover the full state vector. However, let us first
discuss the way to obtain input–output time derivatives.

3.2. Numerical Differentiation with Annihilators

The LDI scheme proposed in this work is based on Equation (17), that is, the injection
of the inputs, outputs, and their time derivatives. Although there are multiple algorithms
to numerically compute a time derivative, here we use a numerical differentiation with an-
nihilators [23] due to its inherent noise rejection properties. Hereinafter, a brief explanation
of such an algorithm is given, which is proposed for the first time in this paper, and it is
described by Equation (25).

Let γm(t) denote the m-th order derivative of a smooth signal γ(t) defined on an
interval I ⊂ R+. The signal γ(t) could represent a measurement variable corrupted by
some noise, whose derivatives are not directly available.

Ignoring the noise for a moment, let γ(t) be an analytical function on I . So, with-
out any loss of generality, it is possible to consider the truncated Taylor expansion at
t = 0:

γ(t) =
m

∑
i=0

ai
ti

i!
+O(tm) (18)
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where ai = diγ(t)
dti

∣∣∣
t=0

. This implies that γ(t) can be approximated by the polynomial

pm(t) = ∑m
i=0 ai

ti

i! .
In this way, the i-th order time derivative estimation of γ(t) can be tackled as a

parameter estimation problem for pm(t). Using the method described in [23], it is possible
to calculate each ai (i = 0, . . . , m) independently, reducing in this manner the sensitivity to
noise and numerical computation errors which often appear in simultaneous estimation
methods. Moreover, the independent calculation allows the use of higher order polynomials
without the calculation of all their coefficients. The algorithm is described as follows (a
complete explanation is given in [23]):

• Let pm(t) be the m-th order polynomial approximation of γ(t),

pm =
a0

0!
+

a1

1!
t +

a2

2!
t2 + . . . +

am

m!
tm (19)

• Transforming Equation (19) into Laplace domain yields:

Pm =
a0

s
+

a1

s2 +
a2

s3 t2 + . . . +
am

sm+1 (20)

• In order to calculate the i-th time derivative approximation, ai, it is necessary to first
annihilate every ax (x > i) in (20), using the next operator:[

m−i

∏
l=0

d
ds

]
· sm+1 (21)

• Then, to annihilate every ax (x < i), the following operator is subsequently applied to
Equation (20): [

i

∏
h=0

d
ds

]
· s−1 (22)

• Finally, the resulting equation (after applying Equations (20)–(22)) is:

(−1)i(m − i)!i!ais−(i+1) =

i

∑
h=0

m−1+h

∑
l=0

(−1)i−h
(

i
h

)(
m − i + h

l

)
(i − h)!(m + 1)!
(i + 1 − h + l)!

sl dl Pm(s)
dsl

(23)

• Now, multiplying both sides of the above equation by s−(m+1) yields a polynomial
taking the following form:

cm

si+m+2 ai =
1
s

dmPm(s)
dsm +

cm−1

s2
dm−1Pm(s)

dsm−1 + . . . +
c0

sm+1 Pm(s) (24)

• Using the Cauchy rule for iterated integrals, the time domain expression for ai in
Equation (24) yields:

ai =
(m + i + 1)!
cmTm+i+1

∫ T

0

[
tm +

cm−1

1!
(T − t)tm−1 + . . . +

c0

m!
(T − t)m

]
p(t) · dt (25)

It should be noted that each constant cj, j = {0, 1, . . . , m}, is obtained from Equation (23),
and T represents a moving window of length T for the integrals. A short time window is
sufficient to obtain accurate estimations. In addition, the iterated integrals work as low pass
filters that provide a smoother form of highly fluctuating noises. Therefore, no previous
knowledge on the statistical properties of the noise is required to filter it out.

44



Sensors 2021, 21, 8035

3.3. Extended State Vector Reconstruction

The purpose of this section is to provide a synthesis of the proposed LDI scheme.
In this sense, the method is based on the study of the structure of the input–output
differential equation; thus, the problem is solved by exploiting the observability property of
the system (13). First, a set of equations describing each state just as a function of the inputs,
outputs, and the corresponding time derivatives is derived. Then, taking advantage of the
filtering characteristic of the numerical differentiation exposed in Section 3.2, the input–
output time derivatives are computed. Thus, the leak positions and magnitudes can be
calculated by a pair of algebraic equations. In the next step, the algorithm used to derive
this set of equations is described.

It is easy to check that the observability rank condition for the system (12) is satisfied
(for the finite number of input–output time derivatives), only by applying a persistent
input. More precisely, it is also easy to see that for an input of the form Ap sin (ωt) . This
wave form is easy to achieve by a variable frequency drive, a commonly installed device in
a pumping station.

The rank condition of (12) is fulfilled with p = 3, p′ = 2, q = 4, and q′ = 3 for
Equations (14) and (15). Thus, the output derivatives as well as the inverse mapping can
be computed as follows (perhaps the major difficulty of the algorithm is to obtain the
inverse mapping due to the complexity of the resulting equation):

First, by construction of Equation (13), the state variables x1 and x5 are taken directly
from the measurements:

x1 = y1 (26)

x5 = y2 (27)

Now, the following step is to take the time derivatives of Equations (26) and (27),
by using (13) and replacing x1, x5 by outputs according to (26) and (27) solving the resulting
equation for x2 and x4, respectively, yields expressions without x1 and x5:

x2 = Φ1(x6, u1, y1, ẏ1) (28)

x4 = Φ2(x6, x8, u2, y2, ẏ2) (29)

In the same way, the third step is to compute the derivative of Equation (28), substitute
x1, x5, x2, and x4 according to (26), (27), (28), and (29), respectively. Solving this equation
for x3, yields an expression without x1, x5, x2, x4:

x3 = Φ3(x6, x7, u1, u̇1, y1, . . . , y(2)1 ) (30)

Following the same steps, now for (29) and (30), it is possible to find an expression for
x7 and x9 free of x1, x2, x3, x4, and x5:

x7 = Φ4(x6, x8, u1, . . . , u(2)
1 , u2, y1, . . . , y(3)1 , y2, ẏ2, ) (31)

x9 = Φ5(x6, x8, u1, . . . , u(2)
1 , u2, u̇2, y1, . . . , y(3)1 , y2, . . . , y(2)2 ) (32)

The final step is to apply the same methodology for Equations (31) and (32), but now
for solving for the states x6 and x8. In this way, it is feasible to obtain an expression of x6
and x8 just as a function depending on the input and output, and their time derivatives:

x6 = Φ6(u1, . . . , u(3)
1 , u2, u̇2, y1, . . . , y(4)1 , y2, . . . , y(3)2 ) (33)

x8 = Φ7(u1, . . . , u(3)
1 , u2, .., u(2)

2 , y1, . . . , y(4)1 , y2 . . . , y(3)2 ) (34)

At this point, we are able to recover the whole state with the acknowledgement of the
input and output time derivatives calculated through Equation (25); this is achieved by
first obtaining x6 and x8 (leak positions) from Equations (33) and (34). Once x6 and x8 are
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obtained, leak magnitudes, x7 and x9, can be computed by using (31) and (32). The rest of
the state can then be recovered going backwards through Equations (30)–(28) .

4. Experimental Results

In this section, experimental results are presented to evaluate the proposed LDI
methodology. The experiments are performed using several databases from the pilot plant
located at Cinvestav Guadalajara. A couple of different two simultaneous leak scenarios
were emulated by opening different electrovalves located along the pilot plant. A general
description of the pipeline prototype is presented below with a detailed description of
each experiment.

4.1. Pilot Pipeline Description

The layout of the pilot pressurized water pipe of Cinvestav Guadalajara, which is
68.2 [m] long (between sensors) with an internal diameter of 6.271 × 10−2 [m], thickness
1.27× 10−2 [m], friction coefficient 1.66× 10−2, pressure wave speed 358 [m/s], and gravity
acceleration 9.81 [m/s2], is shown in Figure 3. The line is instrumented with two water-flow
(FT) and pressure-head (PT) sensors at the inlet and outlet of the pipe. To emulate the
leak, three control valves at position 16.8, 33.3, and 49.8 [m] are installed together with a
electronic-based actuator to practically set any opening of the valve.

Valve n◦3

Valve n◦1 Valve n◦2

FTPT

FTPT

4.
2

m
4.

2
m

16.8 m 12.3 m

18.4 m 12.3 m

Figure 3. Schematic diagram of the pipeline’s prototype.

The prototype is manufactured with a plastic material known as polypropylene
copolymer random, for which technical characteristics can be found in [24]. It is integrated
with a store tank of 7.5 × 10−1 [m3], a hydraulic pump of 5 HP, and a variable-frequency
driver (VFD) which controls the pressure in the system through the rotational speed of the
pump motor (more details about the pipeline prototype can be found in [25]).

To ensure the application of a persistent input, experiments with operation point
variations are carried out by the pump variation via the VFD (specifically, a change in
the form of Ap sin (ωt), where ω stands for the angular frequency induced via the VFD).
Table 1 summarizes the pipeline’s main parameters.
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Table 1. Pipeline’s main parameters.

Parameter Symbol Value Units

Pipeline length Lr 68.2 [m]

Upstream to valve n◦1 z1 16.8 [m]

Upstream to valve n◦2 z2 33.3 [m]

Upstream to valve n◦3 z3 49.8 [m]

Internal diameter φ 6.271 × 10−2 [m]

Pipe roughness ε 7 × 10−6 [m]

Friction factor τ 1.66 × 10−2 [dimensionless]

Pressure wave speed b 358 [m/s]

Gravity acceleration g 9.8 [m/s2]

4.2. LDI Results

Hereinafter, two off-line examples of the LDI scheme are displayed. Both results were
carried out by taking data from the pipeline prototype previously described. The experi-
ment was performed as follows: Pump 1 is started in a steady state operation during the
first 65 [s] approximately. After that, it begins to operate in some unsteady state, namely
a sine-like pressure signal is introduced, just exactly like a persistent input in the sense
of [11]. This sine signal was experimentally obtained by setting up the pump controller as
follows:

VFD(t) = 60[Hz], ∀t ≤ 65[s]
VFD(t) = 50 + 5sin(2.7313t)[Hz], ∀t > 65[s]

(35)

At t ≈ 60 [s], two leaks were induced simultaneously at the opening of the control
valves in the pilot plant.

The leak position estimations were undertaken by the injection of the inputs and
outputs for which a low pass filter was previously applied (u1, u2, y1, and y2 in (13)),
and the corresponding derivatives together with Equations (33) and (34), respectively.

Then, the leak magnitudes were also estimated by using Equations (31) and (32). It is
possible to recover the whole state going backwards using Equations (30)–(28). As stated
earlier, the time derivatives were computed using the methodology discussed in Section 3.2.

4.2.1. Experiment 1: Leaks Induced in Valves n◦1 and n◦3

The first experiment consists of simultaneously inducing two leaks in valve n◦1 and
valve n◦3 (see Figure 3). The algorithm starts once the leak is detected. This initial detection
is obtained when a deviation between the upstream and downstream flow is detected
|Qin − Qout| > δ, where δ is a constant threshold defined by the designer (normally related
to the signal-noise ratio): here δ = 1 × 10−4 [m3/s]. Immediately afterwards, a sinusoidal
wave form as (35) is applied to ensure enough observability of the model (13) via persistent
inputs (see Section 3.1). Once the sinusoidal steady state has been reached, the LDI scheme
starts. Figure 4 shows the time evolution of the pressure head at the inlet and outlet of the
pipe (system input, Hin = u1 and Hout = u2). As it can be seen, the LDI algorithm begins
close to 65 [s].
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Hin�

Hout�

Figure 4. Pressure heads Hin and Hout.

Following with the same idea, Figure 5 shows the inlet and outlet flows (system output
Qin = y1 and Qout = y2). It is clear that, due to the physical nature of the leak phenomena,
the inlet flow is separated from the outlet flow:

Qin
�

Qout
�

Figure 5. Flow rates Qin and Qout.

Now, once the input and output time derivatives have been computed with Equations (25),
(33), and (34), then they are used to reconstruct the leak positions. For clarity, just one signal
cycle (Tin = 20 s), as seen in Figure 6, is enough to correctly locate the two leaks, despite signal
noise. To quantify the accuracy of the leak position estimation, a Mean Absolute Error index is
applied. For the first leak, the estimation accuracy is 96.62% (with respect to the whole pipeline
length), whereas the second leak localization accuracy is 96.33%. As Figure 6 shows, one cycle
has demonstrated to be enough to isolate the leak well despite signal noise.
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z2�

z1�

ẑ2�

ẑ1�

Figure 6. Estimation of leak positions.

Similarly, once the leak positions are obtained, it is possible to reconstruct the leak
magnitudes using Equations (31) and (32). The corresponding results are shown in Figure 7,
where estimated magnitudes are set around 1.3 × 10−4 [m5/2/s] and 0.95 × 10−4 [m5/2/s],
respectively. The outflow computed by using Equation (4) for each leak is consistent with
the total outflow.

λ̂1�

λ̂2�

Figure 7. Estimation of leak magnitudes.

Notice that for the LDI problem, the estimation of the leak parameters of both leaks is
enough, but, as mentioned before, it is also possible to recover the remaining states of (13),
going backwards from Equations (30) and (28).

4.2.2. Experiment 2: Leaks Induced in Valve n◦1 and n◦2

To better illustrate the effectiveness of the method, a second experiment is exposed.
The experiment setup was exactly the same as in Section 4.2.1 except that two leaks are
now induced in valve n◦1 and valve n◦2 (see Figure 3). Figure 8 shows the time evolution
of the pressure head at upstream and downstream, respectively. In the same way as
before, the LDI algorithm starts when a flow deviation exceeds a predefined threshold, δ,
(|Qin − Qout| > δ).
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Hin�
Hout�

Figure 8. Pressure heads Hin and Hout (2nd experiment).

Figure 9 shows the corresponding flow rate evolution at upstream and downstream.
As stated above, due to the physical nature of the leak phenomena, the inlet flow is
separated from the outlet flow.

Qin �

Qout�

Figure 9. Flow rate Qin and Qout (2nd experiment).

As performed above, once the algorithm starts, the input and output time deriva-
tives are computed following the algorithm explained in Section 3.2. Subsequently,
Equations (33) and (34) are used to obtain the leak positions. The results are presented in
Figure 10. As before, the leak positions are well estimated despite signal noise in just one
signal cycle (Tin = 20 s). Here, the MAE yields an estimation accuracy for the first leak of
95.01%, while the second leak position presents an estimation accuracy of 97.94%.
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z2�

z1�

ẑ2�

ẑ1�

Figure 10. Estimation of leak positions (2nd experiment).

Continuing with the algorithm, the leak magnitudes are computed with Equations (31)
and (32). These results are shown in Figure 11.

λ̂1�

λ̂2�

Figure 11. Estimation of leak magnitudes (2nd experiment).

5. Conclusions

The simultaneous leak detection and isolation problem is currently an open and
challenging problem. Even though extensive research in the field is currently in progress,
to the best of our knowledge, only simulation results have been reported until now. One of
the reasons is that the distinguishability of two (or more) simultaneous leaks depends on
the input.

In this work, an LDI methodology for the two simultaneous leak detection and isola-
tion has been proposed based on an algebraic observer that uses the injection, the inputs
and outputs of the system, and the corresponding time derivatives, by applying an ap-
propriate input. The time derivatives are computed using Numerical Differentiation with
Annihilators and the approach has been successfully applied to real data. This method-
ology could be extended to more general cases of simultaneous leaks in real operational
conditions, such as the case of the SIAPA aqueduct in Guadalajara, Mexico.
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Abstract: The quality of the drinking water distributed through the networks has become the
main concern of most operators. This work focuses on one of the most important variables of
the drinking water distribution networks (WDN) that use disinfection, chlorine. This powerful
disinfectant must be dosed carefully in order to reduce disinfection byproducts (DBPs). The literature
demonstrates researchers’ interest in modelling chlorine decay and using several different approaches.
Nevertheless, the full-scale application of these models is far from being a reality in the supervision
of water distribution networks. This paper combines the use of validated chlorine prediction models
with an intensive study of a large amount of data and its influence on the model’s parameters. These
parameters are estimated and validated using data coming from the Supervisory Control and Data
Acquisition (SCADA) software, a full-scale water distribution system, and using off-line analytics.
The result is a powerful methodology for calibrating a chlorine decay model on-line which coherently
evolves over time along with the significant variables that influence it.

Keywords: chlorine; water distribution networks; modelling; supervision; decay model

1. Introduction

Disinfection is one of the most important steps in water treatment, as it must ensure the
microbiological safety of the water generated, not only after treatment, but also throughout
the transport process to the consumption point. Many countries use chlorine-based chem-
icals (sodium hypochlorite, chlorine dioxide, chloramines, etc.) to achieve this objective,
as they guarantee the degree of residual disinfection potential that is required by their
laws [1]. If required, booster disinfection stations are installed at different points in the
network. Their need and best location can be optimized using models and tools based
on estimates of the chlorine concentration. Chlorine concentration is precisely one of the
most relevant parameters to consider for the water distribution network (WDN) quality
management. Although chlorine ensures the absence of pathogens, it is the main cause of
the formation of disinfection byproducts (DBPs) [2]. Most of these compounds are toxic or
carcinogenic for human health and need to be controlled to ensure drinking water safety [3].
Thus, European legislation limits the concentration of some DBPs in drinking water [4].

Nowadays, given the lack of reliable and applicable models for predicting chlorine
behavior, disinfection management is not optimal in most WDNs, since it is based on
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a point-specific control as opposed to the consideration of the whole network [5]. There
are often dark points where the chlorine level may be too low, along with over-chlorination
at other points (particularly in summer), with a subsequent increase in both operating costs
and DBP concentrations.

The absence of robust models for predicting chlorine behavior in WDNs is funda-
mentally due to two aspects: (1) the complexity of modelling the hydraulics of the WDNs
and (2) the need for on-line quality data. Although authors report good results in chlorine
prediction in full-scale networks in some studies [6], the predictions become less accurate
when the environmental conditions or the water composition change from those of the
calibration. Such a situation is very common in WDNs fed with treated surface water.

Regarding the first aspect, WDNs are highly meshed and complex systems, the be-
havior of which is difficult to predict. The introduction of flow, level and pressure sensors,
and automated metering readers (AMR) for consumption has recently increased the model
accuracy [7,8]. Thus, the intense use of a large amount of hydraulic data together with
hydraulic models and numerical simulators allow prediction of residence time, which is
one of the main parameters needed for successful water quality prediction.

Regarding the second aspect, it is mandatory to obtain information on water quality
in the effluent of the drinking water treatment plant and the relevant points in the WDNs
in order to predict the behavior of chlorine. Several studies [6,9] base their decay models
on parameters that are easily measured on-line, such as temperature, pH, redox potential,
conductivity, turbidity, and chlorine concentration. Nevertheless, the calibration and
maintenance of these models for their on-line use is seldom performed.

Common models for chlorine modelling in WDNs are first-order linear differential
equations [10] such as:

dC
dt

= Kb·Cα (1)

where Kb is a constant that contains the different parameters and physicochemical phenom-
ena that may affect chlorine decay, such as natural organic matter, inorganic compounds, or
temperature [6]. More sophisticated models have also been studied, including second-order
models [11].

Furthermore, knowing the effect of the parameters influencing chlorine decay is also
important, as this will, in turn, allow the prediction of such decay and, in some cases, the
application of corrective measures to reduce its effect.

Equations of different complexity have been used to model the effect of some of these
parameters. One of the most influencing and studied parameters is temperature, which is
usually based on Arrhenius’s model [12] or other power models. Liu et al. [13] took pH
and temperature into account in their models, thus differentiating the effect of HOCl and
OCl species on pH. Similarly, Arevalo, in his doctoral dissertation [14], used a model that
considered temperature and UV254 as an indication of organic matter. In this case, two
decay constants were used, one related to chlorine decay on bulk water and one related to
chlorine decay on water close to pipe wall.

Hassan et al. [15] studied the specific case of organic matter adsorbed onto goethite,
which is the predominant iron oxide in pipe deposits, in order to see how effectively
the presence of organic matter increased the decay rate. Their main conclusions were:
(i) an increase in temperature causes an increase in the decay constant and therefore in the
decay rate, (ii) the pH has not been seen to greatly affect decay, (iii) a higher initial chlorine
concentration leads to a lower decay rate, (iv) a higher organic matter concentration, in gen-
eral dissolved organic matter (DOC), causes an increase in the rate of decay, (v) an increase
in the velocity of the water flow through the pipe causes an increase in the rate of decay,
and (vi) the concentration of ammonium, nitrites, iron, and manganese seems to affect the
rate of decay, causing its increase.

Chlorine decay first-order equations can also be used in software like EPANET, which
has sufficient power to simulate and predict the concentration of chlorine in the network.
EPANET is a public domain software for WDN modelling developed by the United States
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Environmental Protection Agency (US EPA). This software can perform transient simula-
tions of hydraulic behavior and water quality in pressurized pipe networks. In order to
properly model water quality and its time evolution at consumer points, it is mandatory
to have a reliable hydraulic model of the WDN. However, like any simulation software,
EPANET depends on the availability and application of continuous data into robust models.
The default built-in models have fixed calibration parameters that are not easily extrapo-
lated in most real cases. The approach some authors take to overcome these barriers is to
modify and recalibrate the default models included in the EPANET database based on the
real system data to be modelled [16].

Another important aspect when modelling chemical reactions in pipes is the different
behavior in wall and in bulk water. In the literature, bulk reactions are usually considered
first-order and wall reactions are considered zero-order. Values for the bulk reaction coeffi-
cient are usually obtained using laboratory measurements [17]. Nevertheless, changing
water characteristics in the network requires updating the model. There are a few ap-
proaches for the quality model calibration. This calibration requires a validated hydraulic
model and water quality data. This is often carried out in a well-monitored part of the
network and then generalized to the whole network [18,19].

This paper focuses on the chlorine decay process and variables that affect it, the
models for concentration prediction, and their application within WDNs in a specific
case-study. First, an on-line calibration procedure, with available data from the transport
network, is adapted to the full-scale system and performed over a long period so that the
evolution of the decay parameters can be studied. This model is used to predict the chlorine
concentration in the distribution network and validated with discrete monitoring data.
The dependence of chlorine decay on the relevant variables is also studied. Finally, this
dependence is compared with the evolution of the parameters estimated using the on-line
calibration method. The aim is to illustrate how the intense use of models and available
data can provide a better understanding of the behavior of chlorine in a WDN and, thus,
be used to support decision-making to improve water quality.

2. Materials and Methods

2.1. Case Study Network

The case study in this work is a WDN in Catalonia (Spain) (see location in Figure 1)
managed by Aigües de Manresa, who provided the network configuration information and
hydraulic and water quality data for a period of 14 months (2017–2018). The water supplied
comes from the Llobregat River and goes through a prechlorination step with sodium
hypochlorite (Apliclor Water Solutions S.L., Sant Martí Sesgueioles, Spain) or chlorine diox-
ide generated using sodium chlorite (Apliclor Water Solutions S.L., Sant Martí Sesgueioles,
Spain) and hydrochloric acid (Apliclor Water Solutions S.L., Sant Martí Sesgueioles, Spain)
(depending on the season), a sand filtration process, and a final disinfection step with
sodium hypochlorite.

Two parts of the network were used in this study: the transport network and the
district metered area (DMA). The transport network (Figure 2) consists of two water
storage tanks (T1 and T2) equipped with sensors for chlorine concentration (input of T1
(Cl1) and output of T2 (Cl2)), flowmeters (outflows from the tanks, Q1 and Q2), and water
level (H1 and H2). Water flows from T1 to T2 through a 6859 m main. T2 is a boosting station
with known sodium hypochlorite (Apliclor Water Solutions S.L., Sant Martí Sesgueioles,
Spain) addition. The geometry of the tanks (volume) and pipes (length and diameter) are
known. Water from T2 is distributed to the rest of the network (through Q2) of the DMA.

The DMA corresponds to a residential area. The hydraulic model includes 572 nodes
and 610 pipes with a total length of 31 km, providing water to 300 consumers. Water flows
by gravity. There are two quality-sampling points where the chlorine concentration is
measured weekly. Figure 3 presents the model of this DMA visualized in EPANET. The
input tank (corresponding to T2 in Figure 2) and the two sampling points are highlighted
(S1 and S2).
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Figure 1. Study site location, a network in Catalonia supplied by the Llobregat River.

Figure 2. Outline of the network section used for the on-line calibration.

Figure 3. DMA network model in EPANET.

2.2. On-Line Calibration

A very well parametrized system in terms of hydraulics and chlorine concentration (at
least at two points) is required to calibrate the chlorine decay constant of a WDN. As in this
study, the transport network often fulfils this condition. Therefore, the network used for
on-line calibration in this study was the transport network shown in Figure 2. The objective
was to find the decay constants for the model that best explained the chlorine concentration
measured at the output of T2.

The chosen model was a first-order model. Higher-order models could be used
with no fundamental changes in the methodology. Equation (2) shows that the chlorine
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concentration (Cl2) at the outflow of T2 depends on the input chlorine concentration (Cl1)
and the residence time in the system (t). The solution of Equation (1) is as follows:

Cl2 = Cl1·e−Kb ·t (2)

where Kb is the decay constant and α is considered as 1.
This dependence is defined by the decay constant Kb, which was calibrated on-line

using the measurements available so that it was adapted throughout the year to the
different water characteristics and environmental conditions. Estimations were performed
on a weekly basis, since some information was only available at this frequency (chlorine
dosing in T2).

The residence time (RT) in T1 was calculated from the hydraulic information available
using (3). The weekly mean residence time at tank T1 and the pipe was calculated using
the flowmeter data (Q1) and the volume of this subsystem.

RT1 =
V1 + Vpipe

Q1
(3)

In order to estimate the mean water volume in T1, the level data of the tank (H1) and
the geometric information was used. The residence time in T2 was calculated using the
mean values of the volume obtained from the level data (H2) and the mean values of the
tank effluent (Q2), as shown in (4):

RT2 =
V2

Q2
(4)

The chlorine concentration increase due to rechlorination (Cladded) was calculated
using the added volume of chlorine divided by the mean volume of water treated:

Cladded =
ΔVCl ·143∫

Q2
(5)

where ΔVCl is the volume in liters of the concentrated chlorine added weekly to the network
and 143 is the concentration of the added chlorine in g/L (value obtained from the conver-
sion of the 15% NaClO to reactive chlorine, see Section S1 in the Supplementary Material).

Finally, a decay Kb constant was calculated which explained the chlorine concentration
Cl2 at the outflow of T2 given the residence time calculated using (6)

Cl2 = Cl1·e−Kb(RT1+RRT2) + Cladded·e−KbRTT2 (6)

where Cl2 was considered equal to 0.6 ppm, which is the set point of the chlorine control sys-
tem in the boosting station. The algorithm for Kb calibration is shown in the Supplementary
Material (Section S2).

The first order decay model is the most used in the water industry. Its decay constant
includes all the dependencies related to environmental and water characteristics. Thus,
the continuous updating of this constant is the guarantee of its reliability. The limitation
of this methodology is the information required. Hydraulic information, that allows the
determination of the residence time, must be available. Multiple chlorine concentration
measurements and the exact volume of added chlorine between these measurements are
also mandatory data.

2.3. Chlorine Decay Calibration and Validation

The chlorine decay first-order model validation for the transport network was carried
out using available the on-line data of the chlorine concentration in the output of T2 consid-
ering the residence time in this tank. The data used covered the period from February 2017
to April 2018. The chlorine decay model was also validated for its use in the distribution
network in the section where chlorine concentration is monitored.
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Applying the calibrated decay model directly to the distribution network produced
poor results. This was expected, due to the difference between the transport network and
the distribution network regarding pipe size, materials, age, etc. To adjust the model, the
available data period was divided into two sets: one for training the new distribution
quality model and the remaining data for validation. There were 35 samples available in S1
and 11 samples in S2. Thus, the first 21 samples in S1 were used for the training and the
remaining ones for the validation. The algorithm used for this calibration is shown in the
Supplementary Material (Section S3).

2.4. Parametrised Chlorine Decay Model

The decay constant, determined from the available on-line data, evolved clearly
throughout 2017. The question arose if this could be due to the effect of the available vari-
ables such as temperature, the initial chlorine concentration, the cumulative precipitation,
and the turbidity at the drinking water treatment plant or not.

This suggested the idea of analyzing the variables that influence chlorine decay in
order to generate an empirical model based on the available independent variables. The
availability of considerable data (temporal and spatial) implies dealing with large amounts
of data, multiple variables, and experimental noise, which hinders the direct extraction of
valuable information.

Principal component analysis (PCA) is a multivariate statistical technique that allows
the description of the data according to the variance [20]. This method transforms data in
noncorrelated new variables by linear transformation, decreasing the data dimensions. New
data description is more condensed and can describe patterns that are hard to identify in
multivariable datasets. PCA has already been used to determine the physical and chemical
parameters influencing chlorine decay [21]. Therefore, for being a powerful, reliable, and
globally accepted tool when dealing with big data, PCA was selected to extract the main
trends, patterns, and correlations among the variables (dimensions) [11].

Based on the PCA results, the chlorine decay constant was modelled using the available
variables and a potential multiparametric model (7).

Kb = K·Parameter1a·Parameter2b·Parameter3c· . . . (7)

Specifically, a power model (8) and an Arrhenius model (9) [12] where calibrated using
experimental data (temperature in 2017) and Kb obtained from the on-line calibration using
the least square error fitting method implemented in the “Solver” function in Excel.

Kb = Kpower· Ta (8)

Kb = A·exp(−Ea/RT) (9)

where, Kpower, a, and A are constants, Ea is the activation energy (Jmol−1), R is the universal
gas constant, and T is the temperature. Finally, the parametrized chlorine decay model was
compared with that obtained in the on-line calibration to assess its coherence throughout
the year.

3. Results and Discussion

3.1. On-Line Calibration

The decay constants Kb obtained are presented in Figure 4. In the upper graphic, the
weekly evolution between February 2017 and April 2018, can be observed. A different icon
was used for the data of each trimester to clearly identify the season of the year. In the
lower graphic obtained, Kb are grouped by month to observe how this parameter evolves
throughout the year (some months include estimations of both years). It seems clear that
there may be a seasonal variation related to temperature.
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Figure 4. Up: Mean Kb calculated weekly indicating the season of the year (by trimester). Down:
Data of mean Kb grouped by month.

3.2. Chlorine Decay Validation

The calibrated model was applied to the peak episodes observed at the output of T2
due to the rechlorination and mixing effect. The dataset used in this validation was not used
for the estimation. The dataset for calibration consisted of the mean values corresponding
to the stationary state. Figure 5 shows the chlorine concentration data and the model
prediction. It can be observed how this high-frequency dynamic is adjusted with the model
obtained with the mean values. For this prediction, Kb evolves weekly.

Figure 5. Chlorine decay model validation at the output of T2. Up: data from January 2017. Down:
data from March 2017. Due to high frequency of sampling measurement, data appears like a thick line.
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For the distribution network simulation, a relation between the transport Kb, estimated
by on-line calibration, with the distribution Kb

* was obtained by adjusting the concentration
in the training set of chlorine sampling. This relation was applied to the entire period and
the predicted concentration was compared with the measurements for the validation set of
samples. A total of 40 days were simulated. The decay constant for both the bulk and wall
were fitted using the first 21 samples of the chlorine concentration in S1. These are the first
samples of upper graphic in Figure 6.

Figure 6. Simulation results for the two sampling points (S1 and S2) compared with
experimental samplings.

The result was that both decay constants minimize the error when the original Kb
obtained in the transport system was divided by 2, as if the calibrated effect was distributed
in the two phenomena (K*

b,bulk = K*
b,wall = Kb/2). The results obtained are compared

with the available experimental data in Figure 6. The mean absolute percentage error was
16% for S1 (including calibration and validation samples) while it was 17% using only
validation samples. Therefore, not significantly different deviations were obtained for the
calibration and the validation steps. Graphically, the fit may seem poor; however, the
concentration is lower in S2 than in S1 both in prediction and measurements, and the mean
values in both sampling points are coherent between the prediction and measurements.
One aspect that may justify part of the mismatching is that the exact hour of the day of the
manual measurements was not available and, therefore, each experimental data may not
be in its exact position. This difficulty could be overcome with on-line chlorine sensors
instead of manual analysis. Figure 7 presents the measured chlorine concentration at the
source (T2) and the chlorine prediction in the two sampling points (S1 and S2). The chlorine
concentration decreases with the residence time, since the concentration in S2 is lower than
in S1, and both are lower than in T2.

Finally, Figure 8 shows the network nodes colored by their chlorine concentration:
green, black, or red, depending on whether their concentration is too low, acceptable, or too
high, respectively. In fact, no red points exist in this area and period. Such a representation
is very useful in order for the network operator to make decisions. Nodes in this figure
correspond to those in Figure 3 and are presented with north at the top.
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Figure 7. Measured chlorine concentration at the source (T2) and prediction at the two sampling
points (S1 and S2).

Figure 8. Distribution of network nodes with low concentration (<0.4 ppm, green), acceptable
concentration (0.4 ppm > chlorine < 1 ppm, black), and excessive concentration (>1 ppm, red).

Results from the PCA applied to the decay constant (K_Cl_decay) determined in the
distribution network and other data available (temperature as Tavg_C, initial chlorine
concentration as Initial_Cl, cumulative precipitation as Cumulative_Prec, and turbidity at
the drinking water treatment plant) are shown in Figure 9.
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Figure 9. Variables for the two main dimensions of the PCA.

In this case, dimension one was related to the temperature, and dimension two was
related to the initial chlorine concentration. Therefore, the decay constant was closely
related to the temperature. Figure 10 shows the variables that had the most influence on
dimension five, which were again the temperature and the chlorine decay, demonstrating
the clear strong relation of the temperature on the decay constant.

Figure 10. Contribution of variables to dimension 5. Variables with contributions below the dotted
line are considered not significant for that dimension.

Thus, it was concluded that the variable that had a higher effect on the decay constant
was temperature. It was observed that the variables turbidity, precipitation, and initial
chlorine did not excessively improve the fit between the decay constants of the model
and the decay constants obtained. Therefore, only the temperature was used, since the
effort required to obtain values for the rest of the parameters did not compensate the
improvement of the model adjustment.

Experimental data from 2017 and Kb obtained with the on-line calibration were
used to calibrate the parameters of the two equations, an Arrhenius model (8) and
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a power model (9), to predict the temperature effect on the decay constant. The following
Equations (10) and (11) show the results obtained.

Kb = 5.477·10−8·T1.524
(

s−1
)

(10)

Kb = 3950·exp(−49873/RT)
(

s−1
)

(11)

The fit obtained using the Arrhenius model and the power model were similar, al-
though the Arrhenius one was slightly better. The Arrhenius model also determines the
activation energy (J/mol), which is the minimum energy that the system needs for the reac-
tion to take place. The ratio Ea/R obtained in this study was 5999 K, which is in accordance
with other authors. For example, Courtis et al. [22] estimated 5388 K and 6701 K for two
different water distribution systems, Powell et al. [23] obtained a range between 7500 and
9600 K, and Hua et al. [12] obtained a range between 8203 and 8727 K, depending on the
type of water. The variability of the values for this ratio suggests that this is a water-specific
parameter that might depend significantly on the natural organic matter composition [24].

Figure 11 shows the fit of the two models to data from 2017, and Figure 12 their
forecast for the first days of 2018. In these figures, K Chlorine is the chlorine decay constant
determined previously, K power the constant determined following the potential model,
and K Arrhenius the constant obtained from the Arrhenius model. As it can be seen,
the Arrhenius model provides good predictions while using only the temperature as
an input parameter.

Figure 11. Chlorine decay constant fitting to temperature dependent models using data from 2017.
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Figure 12. Chlorine decay constant forecast for the first days of 2018.

4. Conclusions

The literature review shows that only the simplest models of chlorine decay are applied
to water distribution networks where the hydraulic behavior is complex enough. Even
so, these models are seldom used due to the lack of proper calibration. In this paper, the
performance of a decay model was evaluated when the parameters were calibrated using
state-of-the-art techniques.

The calibration was first carried out in the transport network, where the on-line data
allowed an on-line calibration. The relation between the decay constant in the transport
and distribution networks used analytical data and, thus, it could not be done on-line.

The prediction error in the validation data was 17% and quite similar to the error
obtained for the training set (16%), which meant that there was no overfitting. The decay
constant obtained changed during the year following the assumed dependence of the
chlorine decay on the temperature. This result suggested the possibility of using available
data for predicting this decay constant.

The principal component analysis determined that the temperature was the parameter
with higher effect on the decay of chlorine. The chlorine decay constant was obtained using
temperature as an independent variable. The obtained constants were compared with the
data-driven model obtained in the on-line calibration, showing a high correlation. While
the dominant dependence on the temperature is not a novelty, it is important to ensure this
unique dependency, as it guarantees that other characteristics of the water source will not
be relevant. This has been studied throughout one year, and the results obtained by both
models are coherent.

This procedure could also be applied to other quality parameters, such as disinfection
byproduct concentrations, which are currently under investigation by the authors. The
variables analyzed for chlorine decay estimation are being studied for the trihalomethanes
formation prediction.

The final aim of this study is to increase knowledge within the network in order to
enable decision-making processes regarding chlorine dosing (quantity and frequency) both
in the disinfection process and the boosting stations, in addition to identifying whether
other control systems are required to ensure the continuous good quality of supplied water
to the final user at a minimum cost.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22155578/s1, Table S1: Pseudocode to estimate the decay chlorine
constant; Table S2: Pseudocode to estimate the chlorine decay constant in the distribution network.
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Abstract: This work proposes an economic model predictive control (EMPC) strategy in the linear
parameter varying (LPV) framework for the control of dissolved oxygen concentrations in the aerated
reactors of a wastewater treatment plant (WWTP). A reduced model of the complex nonlinear plant
is represented in a quasi-linear parameter varying (qLPV) form to reduce computational burden,
enabling the real-time operation. To facilitate the formulation of the time-varying parameters which
are functions of system states, as well as for feedback control purposes, a moving horizon estimator
(MHE) that uses the qLPV WWTP model is proposed. The control strategy is investigated and
evaluated based on the ASM1 simulation benchmark for performance assessment. The obtained
results applying the EMPC strategy for the control of the aeration system in the WWTP of Girona
(Spain) show its effectiveness.

Keywords: economic model predictive control; linear parameter varying modelling; wastewater
treatment process

1. Introduction

Biological wastewater treatment plants (WWTPs) are complex nonlinear systems with
large variations in their flow rates and feed concentrations. These plants have to be operated
continuously taking care of strict environmental regulations. Thus, the use of advanced
control strategies becomes necessary to make them more efficient.

The most widely used biological wastewater treatment is the activated sludge process
(ASP). In the ASP, microorganisms are mixed with wastewater. The pollutants of the
wastewater constitute the nutrient of the microorganisms. As the organisms feed on the
organic pollutants in the wastewater, the pollutants are converted to more organisms,
biomass, and some by-products. Following an adequate amount of treatment time, the
mixture of microorganisms and wastewater, the mixed liquor flows from the aeration tank
to a clarifier or settler where the sludge is separated from the treated water. Some of the
settled sludge is continuously recirculated from the clarifier to the aeration tank to ensure
the maintenance of adequate amounts of microorganisms in this tank. The microorganisms
are again mixed with incoming wastewater where they are reactivated to consume organic
nutrients. There are five major groups of microorganisms generally found in the aeration
basin of the activated sludge process: (i) aerobic bacteria responsible for removing the
organic nutrients, (ii) protozoa to remove and digest dispersed bacteria and suspended
particles, (iii) metazoa to dominate longer age systems and clarify effluent, (iv) filamentous
bacteria or bulking sludge, which are present when operating conditions change, (v) algae
and fungi, which are photosynthetic organisms that are present with pH changes and
older sludge.

Sensors 2022, 22, 6008. https://doi.org/10.3390/s22166008 https://www.mdpi.com/journal/sensors
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The majority of the culture is mixed and reused with inlet wastewater to keep high
reaction rates and sludge age characteristics. In particular, nitrogen is eliminated as follows:
First, ammonium is oxidized producing nitrate under nitrification in the aerobic step.
The nitrate that is produced is then converted into nitrogen gas by means of denitrification
in the anoxic step. Thus, the control of aeration is very important because a low amount of
dissolved oxygen can cause the biomass death. On the other hand, an excess of dissolved
oxygen could cause the sludge to settle insufficiently. Moreover, because 60% to 80% of the
global energy consumption is due to aeration and the operating costs of a WWTP [1], an
excessive aeration is not desirable regarding economic efficiency.

The models that are usually considered for characterizing the WWTP processes are
the ones developed by the International Association on Water Quality (IAWQ) known as
Activated Sludge Models (ASMs) [2].

In this paper, optimal economic operation of the aeration system is considered to
improve the efficiency and reliability of an ASP with intermittent aeration, which is used
for the removal of nitrogen from domestic wastewater. The objective of the control is
to design an aeration strategy (air-on and air-off periods) which minimizes the energy
dissipated by the aeration system, with adherence to the limits of the effluent requirements
and the operating constraints. The implementation of optimal operation strategies is
therefore interesting because WWTPs face the challenge of treating water properly albeit
ensuring the minimization of operational costs. This has been the driving force for the
active research in the development of advanced control techniques and hierarchical control
schemes to improve the operation of the WWTPs, see for example [3,4].

Model predictive control (MPC) has been the most successful advanced control ap-
proach applied to control WWTPs. This is due to the fact that MPC controllers allow in a
straightforward manner the different operational requirements, the multivariate nature
of the control problem (that could even include delay) and directly handling constraints
on the control inputs, system outputs and/or internal states [5]. It can also include dis-
turbance prediction, allowing to anticipate the appropriate control actions (feedforward)
to achieve optimal performance according to defined criteria in the cost function, which
can include different quality criteria and operational costs. Adjusting the MPC control
strategy is carried out by suitable manipulating prioritization of different objectives of the
performance index that could also include the use of soft constraints. In this way, MPC has
become an attractive control strategy for a considerable number of WWTP applications in
the last few years. Some examples of MPC control of WWTP can be found in [6,7]. In [6], a
benchmarking of different hierarchical control structures for WWTPs that combines static
and dynamic real-time optimization (RTO) and nonlinear model predictive control (NMPC)
is presented. In [8], a procedure to find the best controlled variables in an economic sense
for the activated sludge process in a wastewater treatment plant, despite the large load
disturbances, is introduced.

Classical MPC formulation considers pre-established set points, and the objective
functions related with error and energy effort have quadratic forms [5]. However, the
determination of optimal and reachable reference set points in real time is not an easy task
because of the existence of disturbances, set-point changes, time-varying parameters and
model uncertainties, among others. This constitutes one of the main limitations of classical
MPC. To remedy this issue, real-time optimizers (RTO) or steady-state target optimizers
(SSTO) are used to pre-compute the reference set- points at a supervisory layer in the
control hierarchy. Then, these pre-computed set points are sent to the lower layer, where a
classical MPC behaves as a regulatory controller, forcing the process to follow the desired
set points. However, in spite of the use of an RTO, not reachable trajectories might be
generated because of the appearance of unexpected disturbances or set points variations,
among others. Moreover, there is a delay between the different layers, because the lower
layer receives the reference set points determined from the upper layer before its execution.
These problems can be avoided by using economic MPC (EMPC) that optimizes process
performance directly (e.g., by means of economic objective functions), eliminating the need
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of generating reachable reference set points [9]. The first results of the application of EMPC
to DO concentration control in WWTPs have been presented in a previous work from
the authors [10] considering the nonlinear model of the plant. However, this leads to a
nonlinear optimization problem.

Alternatively, this paper proposes an EMPC strategy using the linear parameter-
varying (LPV) framework to optimize the effluent quality and minimize the operational
cost of a WWTP under operating and physical constraints. The objective is to minimize
the energy used by the aeration system with the control of the dissolved oxygen (DO)
concentrations in the aerated reactors and maintain the effluent concentration under the
required limits. The proposed approach is based on real-time dynamic optimization
methods. Optimization in MPC with nonlinear models presents a non-convex problem
which is computationally demanding, especially when dealing with large-scale plants with
complex dynamics such as the WWTP. Thus, the LPV framework allows the embedding
of these nonlinearities in scheduling variables, which are functions of system states (i.e.,
qLPV). This allows obtaining a pseudo-linear model which is linear in state space but
nonlinear in the parameter space and deriving a less demanding convex MPC optimization
problem, since convex quadratic optimization tools can be applied. The stability and
recursive feasibility of MPC with LPV models has been studied (see [11] for a review of the
recent results). The application of dynamic optimization methods requires a sufficiently
accurate mathematical model describing the wastewater treatment process. The present
work uses the Activated Sludge Model No. 2 (ASM2) [12]. To illustrate the proposed
approach a WWTP located in Girona (Spain) is considered as a case study.

In Section 2, the WWTP is described and modeled using a reduced ASM2 model,
which is then represented in a qLPV form. The proposed EMPC strategy is introduced and
described in Section 3, while the proposed MHE approach is presented in Section 4. The
results are presented in Section 5, with simulation scenarios obtained from the application
of the EMPC strategy on the Girona WWTP. Finally, some conclusions are given in Section 6.

2. WWTP Description and Modeling

2.1. WWTP Description

The Girona WWTP is a biological treatment plant designed to treat the wastewater
generated by 200,000 inhabitant equivalents with a medium daily inflow of 35,000 m3/d.
The processes of the plant can be divided into two main treatment lines: water and sludge
(see Figure 1). The water line is separated into three phases: pre-treatment, primary
treatment and secondary treatment. The secondary treatment is designed to convert
biodegradable, organic wastewater constituents and certain inorganic fractions into new
cell mass and by-products. The plant uses an activated sludge system and has three
lines composed of three main reactors that are divided into various compartments and
three clarifiers. Each line is made of two anoxic reactors located at the beginning, three
aerated tanks and an anoxic tank followed by an aerated one. With this configuration, the
plant can nitrify and denitrify with great efficiency. The anoxic and aerobic tanks have
volumes of 1335, 4554, 1929, and 1929 m3 for anoxic and 1929, 1276, and 1409 m3 for aerobic,
respectively. Oxygen is supplied to aerated tanks by the aeration system, which delivers air
to each of the aeration tanks. The wastewater and activated sludge are separated into three
parallel secondary settlers. The volume of each secondary settler is approximately 5024 m3.
The activated sludge is internally recirculated from the last aerobic zone to the anoxic tank
(210% of influent waste). Additionally, the wastewater is recirculated from the secondary
settlers to the anoxic tank (45 to 100% of influent waste).

Figure 2 shows a standard WWTP technological layout. The wastewater flow enters
into the biological part after the mechanical treatment. The nutrient removal takes place
in the activated sludge reactor through the biological treatment. The first zone in this
treatment is anaerobic, where phosphorus is released. The mixed liquor internal recir-
culation originates from the anoxic zone. The denitrification occurs in the second zone.
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The activated sludge returned from the clarifiers bottom, and the internal recirculation
from the aerobic zones end is directed toward the anoxic zone.

2.2. WWTP Modeling

The Benchmark Simulation Model (BSM1), developed within the framework of COST
Actions 624 and 682 [2], has been adapted to represent the Girona WWTP (see Figure 1).

Figure 1. Girona Wastewater Treatment Plant.

The Activated Sludge Model No. 1 (ASM1) describes the biological phenomena that
takes place in the biological reactors, and it is supposed that no biological reactions take
place in the settlers. Due to the complexity of the nonlinear model describing the different
complex processes in the plant, various reduced models have been proposed in the litera-
ture [13–15] to aid in the online implementation of certain modern control schemes (e.g.,
MPC), which would have otherwise presented ill-conditioned or stiff numerical problems
due to slow and fast dynamic interactions. In [15,16], one can see some successful imple-
mentations using reduced WWTP models in various areas of control applied to WWTPs.
The reduced model as suggested in [14], which primarily involves certain simplification cri-
teria for a reduced order of the rigorous high dimensional WWTP model, has been adapted
to conditions representing the Girona WWTP. This basically involves the derivation of
the reactor model based on mass balances of the wastewater species, which are generally
expressed as follows:

Accumulation = In f low − Out f low + Reaction

Validation of the reduced model considering data from the ASM1 and the reduced
model has been undertaken in [14]. In simplifying the complex model, a systematic
reduction process of the high-dimensional model considers some assumptions, with the
principal conditions given as follows:

• The soluble (SS) and particulate (XS) organic compounds are aggregated as a single
variable XCOD, the chemical oxigen demand (COD).

• Through reduction by time scale from the theory of singular pertubation, the slow
dynamics of the variables XI , XBH and XBA together with the soluble inert organic
compounds (SI) are excluded.

• Finally, simplification of complicated kinetic process, assumption of no alkalinity and
separation of aerobic and anoxic conditions are considered.

Under these conditions, the resultant state variables of the reduced model are there-
fore the chemical oxygen demand (XCOD), the dissolved oxygen concentration, (SO), het-
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erotrophic biomass, XBH , ammonia concentration (SNH), nitrate concentration (SNO) and
autotrophic biomass (XBA). The control of oxygen concentration (S0) in the aerobic tanks is
via the manipulation of the control input, the oxygen transfer coefficient KLa(t).

The states and input vectors are thus given as:

x(t) =
[

XCOD(t), SO(t), XBH(t), SNH(t), SNO(t), XBA(t)
]T

u(t) = KLa(t)

The WWTP process is therefore described by the following dynamic equations of the
reduced model:

ẊCOD(t) =
1

Yh

[
θ1(t) + θ2(t)

]
+

(
1 − fp

)(
θ4(t) + θ5(t)

)
+ ϑ1(t), (1)

ṠO(t) =
Yh − 1

Yh
θ1(t) +

Ya − 4.57
Ya

θ3(t) + ϑ2(t), (2)

ṠNH(t) = −ixb

[
θ1(t) + θ2(t)

]
−
[

ixb +
1

Ya

]
θ3(t) +

(
ixb − fpixp

)[
θ4(t) + θ5(t)

]
+ ϑ3(t), (3)

ṠNO(t) =
Yh − 1
2.86Yh

θ2(t) +
1

Ya
θ3(t) + ϑ4(t), (4)

ẊBH(t) = θ1(t) + θ2(t)− θ4(t) + ϑ5(t), (5)

ẊBA(t) = θ3(t)− θ5(t) + ϑ6(t). (6)

where

θ1(t) = μh
XCOD(t)

KCOD + XCOD(t)
SO(t)

KOH + SO(t)
XBH(t)

θ2(t) = μhηNOg
XCOD(t)

KCOD + XCOD(t)
SNO(t)

KNO + SNO(t)
KOH

KOH + SO(t)
XBH(t)

θ3(t) = μa
SNH(t)

KNH,A + SNH(t)
SO(t)

KO,A + SO(t)
XBA(t)

θ4(t) = bHXBH(t)

θ5(t) = bAXBA(t)

With the flow rate given as Qin(t), Vo as the volume of the aerobic tank and considering
that S0in(t), SNOin(t), XBAin(t) are equal to zero. ϑ1(t), ϑ2(t), · · · , ϑ6(t) are given as follows:

ϑ1(t) =
Qin(t)

Vo

[
XCODin(t)− XCOD(t)

]
ϑ2(t) =

Qin(t)
Vo

[
− SO(t)

]
+ KLa(t)

[
SOsat − SO(t)

]
ϑ3(t) =

Qin(t)
Vo

[
SNHin(t)− SNH(t)

]
ϑ4(t) =

Qin(t)
Vo

[
− SNO(t)

]
ϑ5(t) =

Qin(t)
Vo

[
XBHin(t)−

fw(1 + fr)

fr + fw
XBH(t)

]
ϑ6(t) =

Qin(t)
Vo

[
XBA(t)− fw(1 + fr)

fr + fw
XBA(t)

]
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where YH , YA, fr, fw, bh, bA, ixb, and fp are the stoichiometric parameters and μh, KCOD,
KOH , μa, KNH,A, and KO,A are the kinetic parameters.

Figure 2. Layout of Girona WWTP.

2.3. LPV Representation of the WWTP

For ease of computational burden, the nonlinear reduced model is represented in a
LPV form which involves the embedding of nonlinearities in varying parameters, resulting
in a linear representation in state space. This procedure offers benefits when applied to
MPC over its nonlinear MPC [15] and linear MPC [17] counterparts as applied on the
WWTP by providing a faster run time and the avoidance of numerical problems with
respect to the former and the ability to operate in a wide range of operating points with
regard to the latter. The nonlinear model in this case is defined by linear systems at each
time instance based on some time-varying parameters σ(t) ∈ Rnσ , with an assumption that
the parameters σ(t) are not known a priori but can be measured or estimated online [18].
The dynamic behavior of the LPV model is therefore described as:

ẋ(t) = A(σ(t))x(t) + B(σ(t))u(t) (7)

y(t) = C(σ(t))x(t) + D(σ(t))u(t) (8)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the states and inputs, respectively, with y(t) ∈ R
ny as

the measured signals. A(σ(t)), B(σ(t)), C(σ(t)) and D(σ(t)) are time-varying matrices of
appropriate dimensions that are affine in σ(t) ∈ Rnσ . In the quasi LPV case, the scheduling
parameters are dependent on measured signals, ys(t) ∈ Rk ⊂ y(t) ∈ R

ny , such that

σ(t) = f (ys(t))

where f : Rk �→ Rnσ is a continuous mapping [19]. With observed states and exogenous
inputs (w(t)), nonlinearities involving the system states can be “hidden” in the varying
parameters, σ(t, ys(t), w(t)).

Therefore, from the generic nonlinear form

ẋ(t) = f (x(t), u(t), w(t))

y(t) = g(x(t), u(t))
(9)

a linear quadruple (A(σ(t, ys(t), w(t))), B(σ(t, ys(t), w(t))), C(σ(t, ys(t), w(t))), and
D(σ(t, ys(t), w(t))) estimate is formulated and incorporated into the EMPC for a con-
vex optimization problem. In the following, the function σ(t, ys(t), w(t))) will simply
be represented as σ(t). The choice of scheduling parameters considering the origin of
nonlinearities in the reduced model (1) are
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σ1(t) = Qin(t), σ2(t) =
XCOD(t)

KCOD + XCOD(t)
XBH(t)

KOH + SO(t)
,

σ3(t) =
XCOD(t)

KCOD + XCOD(t)
SNO(t)

KNO + SNO(t)
KOH

KOH + SO(t)
,

σ4(t) =
1

KOA + SO(t)
SNH(t)

KNH + SNH(t)
XBH(t), σ5(t) = SO(t).

The dynamic LPV model is thus given as:

ẋ = A(σ(t))x(t) + B(σ(t))u(t) + Ew(t). (10)

with the time-varying matrices, A(σ(t)), B(σ(t)), and time-invariant disturbance matrix
E as:

A(σ(t)) =

⎡⎢⎢⎢⎢⎢⎢⎣

a11(t) 0 0 0 a15(t) a16
0 a22(t) 0 0 a25(t) 0
0 a32(t) 0 0 a35(t) a36
0 a42(t) 0 0 a45(t) 0
0 0 0 0 a55(t) 0
0 a62(t) 0 0 0 a66(t)

⎤⎥⎥⎥⎥⎥⎥⎦,

B(σ(t)) =

⎡⎢⎢⎢⎢⎢⎢⎣

0
b12(t)

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ and E = 1
VO

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

where

a11(t) =
σ1(t)

Vo
, a15(t) = −μh

Yh
σ2(t) +

(
1 − fp

)
bh −

μhηNOg

Yh
σ3(t), a16 =

(
1 − fp

)
ba,

a22(t) = −σ1(t)
VO

− 4.57 − Ya

Ya
μaσ4(t), a25(t) =

Yh − 1
Yh

μhσ2(t)

a32(t) = −
(

ixb +
1

Ya

)
μaσ4(t), a35(t) =

(
ixb − fpixp

)
bh − ixbμhσ2(t)− (ixbμhσ3(t)),

a36 =
(
ixb − fpixb

)
ba, a42(t) =

1
Ya

μaσ4(t), a45(t) =
Yh − 1
2.86Yh

μhηNOgσ3(t),

a55(t) = μhσ2(t)− bh −
(

σ1(t)
VO

− fw(1 + fr)

fr + fw

)
− ba, a62(t) = μaσ4(t),

a66(t) =
σ1(t)
VO

(
− fw(1 + fr)

fr + fw
− 1 − ba

)
, b12(t) = Ssat − σ5(t).

The input concentrations are

w(t) =
[
Qin(t)XCODin(t) Qin(t)SNHin(t) Qin(t)XBHin(t)

]T .

Remark 1. In this work, it is assumed that all the concentrations are measured online, but it must
be noted that in practice, not all the concentrations, such as, e.g., XCODin can be measured.

3. EMPC of a WWTP

3.1. Operational Goals

The immediate control goal of a WWTP is to meet water quality levels established
by regulators while operating efficiently by reducing operational cost. As discussed in the
introduction, predictive control techniques may be used to compute strategies which achieve
this goal while at the same time optimizing the system performance in terms of different
operational indices. To achieve this objective, the control of dissolved oxygen concentration
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as well as nitrates within certain limits is necessary. The MPC presents the advantage of
being a non-conservative control strategy, such that in periods of low influents, with a
minimal level of pollutants, the effluent quality can be achieved by regulating the levels of
S0 and SNO below the stipulated reference point to avoid waste of energy. Subsequently,
during periods of high influents levels, it is then important to meet the predefined set
points to reduce pollutants, avoiding the violation of the standard effluent quality set by
authorities [15]. In this work, a PI-EMPC control strategy is employed: PI designed by
authors of the BSM1 for the regulation of SNO and a designed EMPC for the control of SO in
the aeration tank. In the proposed LPV EMPC, the following objectives are then considered:

• Economic costs. The main economic costs associated with WWTP are primarily due to
treatment and electricity costs. Water through the WWTP involves important electricity
costs in pumping stations in charge of internal and external water recirculations as well
as aeration in the aerobic tanks. In our case, only the aeration energy is considered with
an objective of minimizing the cost associated with supply of oxygen for controlled
culture growth. The performance index is described as follows

Jeco(k) =
Sosat

1800
VoKLa(k)

[kwh
day

]
. (11)

• DO concentration control. In order to control the So within some bounds in the EMPC
during the aeration process, slack variables are introduced in the optimization problem,
which seek to penalize the dissolved oxygen states, such that they are maintained in
a range to maintain effluent quality. Selecting slack variables, (λ+ > 0 and λ− > 0),
additional terms of soft constraints (see (16c) and (16d)) and a quadratic objective index
are introduced with xsp as the selected DO concentration value. The introduction
of the slack variables ensures that the DO concentration varies within a boundary
around xsp aided by the appropriate selection of weights in the objective function.
The performance index is thus given as

Jλ(k) = ‖λ(k)‖2
2, (12)

where λ(k) =
[

λ−(k), λ+(k))
]T

.

• Smooth set points for equipment conservation. The operation of WWTP and main
valves and pumps usually requires smooth flow set-point variations. To obtain such a
smoothing effect, the proposed MPC controller includes a third term in the objective
function to penalize the control signal variation between consecutive time intervals.
This term is expressed as

Jsmo(k) = Δu(k)TWuΔu(k). (13)

Therefore, the performance function J considering the aforementioned control objec-
tives has the form

J = w1

Hp−1

∑
k=0

Jeco(k)+w2

Hp−1

∑
k=0

Jsmo(k) + w3

Hp

∑
k=1

Jλ(k). (14)

3.2. Control Strategy Computation

The control strategy is determined by the computation of an optimal sequence of
control actions for a prediction horizon, Hp.

ũk = (u( k|j))Hp−1
j=0 =

(
u( k|0), u( k|1), · · · , u( k|Hp−1)

)
. (15)

We solve at each time instance k, the following optimal control problem with initial
state obtained from measurements (or state estimation) of the dynamics WWTP model and
prediction in the MPC loop with the qLPV plant model (10),
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min
ũk

J(ũk, k) (16a)

subject to

x(i + 1|k) = A(σ(k))x(i|k) + B(σ(k))u(i|k) + Ew(i|k) i = 0, · · · , Hp − 1, (16b)

xso (i|k) >= xsp + λ+(i|k), i = 1, · · · , Hp, (16c)

xso (i|k) <= xsp − λ−(i|k), i = 1, · · · , Hp, (16d)

u(i|k) ∈ U i = 0, · · · , Hp − 1, (16e)

x(i|k) ∈ X i = 1, · · · , Hp, (16f)

y(i|k) ∈ Y j = 0, · · · , Hp, (16g)

λ+(i|k), λ−(i|k) >= 0 (16h)

where xso is the dynamic state representing the soluble oxygen. (16c–f) are described by the
box constraints:

U =
{

u ∈ Rnu |umin ≤ u ≤ umax},
X =

{
x ∈ Rnx |xmin ≤ x ≤ xmax},

Y =
{

y ∈ R
ny |ymin ≤ y ≤ ymax}.

(17)

which are determined from the maximum residual concentrations imposed in order to cope
with the European Union effluent standards on chemical oxygen demand COD, suspended
solids SS and total nitrogen TN :

COD � CODmax = 125 gm−3,

SS � SSmax = 35 gm−3,

TN � TNmax = 10 gm−3.

The first control action of the sequence u( k|0) is applied to the WWTP plant to obtain
the system measurements and/or MHE estimated states, which are then used in the
succeeding optimization problem, resulting in a recursive procedure. Not all the state
variables are measured as stated earlier; the moving horizon estimator (MHE), which is the
dual of the MPC controller, estimates the unmeasurable states.

4. Moving Horizon Estimation

Since some states cannot be measured online in the operation of the WWTP, a design
of an estimator, in our case the MHE, is necessary for the prediction of system outputs,
bearing in mind that apart from purposes of feedback control, the quasi-LPV formulation
relies on information of the system states for the model construction. By solving a con-
strained optimization problem, the MHE utilizes a limited N-prediction horizon of past
measurements through an error minimization scheme aided by information of the system
model in a prediction window to estimate the system states. The optimization problem is
therefore set up with the discretized plant model as:

min
{x̂(i|k)}0

i=−N

(
x̂(−N|k)− xo

)T
Po

(
x̂(−N|k)− xo

)
+

k

∑
i=−N

(
ε(i|)TQε(i|k) + s(i|k)T Rs(i|k)

)
s.t. x̂(i + 1|k) = A(σ(i|k))x̂(i|k) + B(σ(i|k))u(i|k) + Ew(i|k) + ε(i|k) i = −N, · · · ,−1,

y(i|k) = Cx(i|k) + s(i|k),
x̂k ∈ X .

(18)
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where R = RT ∈ R
ny×ny > 0, Q = QT ∈ Rnx×nx ≥ 0 and Po = PT

o ∈ Rnx×nx ≥ 0
are the weighting matrices that are defined according to uncertainty levels induced re-
spectively by the noise, disturbance and unknown initial conditions (xo). X bounds the
estimated states. At every iteration, N sets of control inputs, {u(i|k)}−1

i=−N ∈ Rnu×N ,
measurements {y(i|k)}−1

i=−N ∈ R
ny×N and N sets of LPV matrices {Ai}−1

i=−N ∈ R(nx×nx)N ,
{Bi}−1

i=−N ∈ R(nx×nu)N are taken as inputs into the optimization problem to predict the state
sequence {x̂(i|k)}0

i=−N ∈ Rnx×(N+1) by solving the dynamical optimization problem (18).
The last element of the sequence {x̂(i|k)}0

i=−N is subsequently chosen as the estimated
states, the measurements and inputs are then discarded, and the procedure is repeated.
The ammonia concentration (SNH), nitrate concentration (SNO) and the soluble oxygen
(So) are supposedly measurable; therefore, the MHE is designed for the estimation of
[XCOD, XBH , XBA]

T as shown in Figures 3–5 .
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Figure 3. MHE estimate of oxygen demand concentration (XCOD) for 7 days.
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Figure 4. MHE estimate of heterotrophic biomass (XBH) for 7 days.
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Figure 5. MHE estimate of autotrophic biomass (XBA) for 7 days.

5. Simulation Results

5.1. LPV EMPC Implementation Details

To illustrate LPV EMPC approach presented in this paper, the Girona WWTP case
study presented in Section 2 is used. The constituents of the influent wastewater of Girona
WWTP varies during the day between the following bounds :

• Qin (between 10,000–35,000 m3/d);
• COD (between 400–650 mg/L);
• DBO (175–225 mg/L); and
• Nitrogen (between 40–65 mg/L).

The inflow of Girona WWTP is shown in Figure 6.
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Figure 6. WWTP inflow.

77



Sensors 2022, 22, 6008

With a quasi-linear approximation of the nonlinear WWTP via the LPV representa-
tion, the constrained optimization problem (16) is solved using quadratic programming
formulation using the CPLEX® solver in MATLAB® on an Intel Core i7, 8 GB of RAM PC.
A sampling time of 15 min and a prediction horizon of 6 h is chosen for simulation. The
process is simulated for 7 days in a Simulink environment representing the dynamics of
the Girona WWTP, as shown in Figure 1.

Using the weights wi associated with the multiobjective EMPC cost function, (14) is
tuned using the procedure as performed in [20,21] with the aim of maintaining the quality
of the exit water at some levels within the current regulations regardless of the entry at a
minimum cost.

Some control scenarios are selected to show different behaviors of the proposed scheme
by altering Xsp and manipulating weights wi, ideally to illustrate the different actions of
aeration corresponding to different dissolved oxygen requirements for a quality effluent.

5.2. First Scenario

The first scenario consists of controlling the dissolved oxygen concentration in the
exit of the biological treatment plant between the bounds (1.5, 2.5). Figure 7 shows the
dynamics of the DO concentration (above) and its corresponding aeration energy (below).
The operation of the aeration, as stated in the preceding section, corresponds to the variation
of the influents during the day; therefore, the DO concentration varies between the defined
bounds in relation to the amount of pollutants at each time instance in the influents, which
can be inferred from Figure 6.
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Figure 7. (Above): DO concentraton variation. (Below): Aeration flow for Scenario 1.

5.3. Second Scenario

The second scenario also consists of controlling the DO concentration between the
ranges of 0.5 to 1.2 mg/L with minimum aeration energy consumption.

From Figure 8, a similar behavior of oxygen in the tanks as in the first scenario is
realized with an expected less aeration energy, as less DO is required for treatment. The
nitrates in the exit of the WWTP (Figure 9) range approximately between 5 and 7 mg/L.
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Figure 8. (Above): DO concentration variation and (Below): Aeration flow for Scenario 2.
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Figure 9. Nitrate concentration variation.

6. Conclusions

In this paper, an LPV EMPC strategy for the control of dissolved oxygen concentration
in the aerated reactors of a WWTP is proposed and applied to the Girona (Spain) case
study. The proposed approach combines two improvements with respect to the existing
approaches in the literature: First, differently from standard tracking MPC, the proposed
EMPC strategy optimizes the economic performance of the plant instead of following some
pre-established set points. Second, a reduced model of the WWTP is represented in a
quasi-LPV form allowing the real-time implementation of the controller thanks to the use
of quadratic programming optimization tools. If otherwise, the nonlinear model plant
was used, nonlinear programming algorithms are required that usually prevent the real-
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time implementation because of the large computational time. Moreover, an LPV moving
horizon state estimation scheme has also been proposed that allows the implementation of
the LPV EMPC with the available sensors in the WWTP. The effectiveness of the proposed
scheme has been illustrated in the considered case study with two scenarios aiming at
keeping the DO within some bounds.

As future work, real testing in the WWTP plant will be conducted to further validate
the performance of the proposed solution. Another issue to take into consideration is the
application of the proposed methodology for aerobic conditions maintenance in sewer
networks [22].
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Abstract: Anaerobic digestion (AnD) is a process that allows the conversion of organic waste into a
source of energy such as biogas, introducing sustainability and circular economy in waste treatment.
AnD is an intricate process because of multiple parameters involved, and its complexity increases
when the wastes are from different types of generators. In this case, a key point to achieve good
performance is optimisation methods. Currently, many tools have been developed to optimise a
single AnD plant. However, the study of a network of AnD plants and multiple waste generators,
all in different locations, remains unexplored. This novel approach requires the use of optimisation
methodologies with the capacity to deal with a highly complex combinatorial problem. This paper
proposes and compares the use of three evolutionary algorithms: ant colony optimisation (ACO),
genetic algorithm (GA) and particle swarm optimisation (PSO), which are especially suited for this
type of application. The algorithms successfully solve the problem, using an objective function that
includes terms related to quality and logistics. Their application to a real case study in Catalonia
(Spain) shows their usefulness (ACO and GA to achieve maximum biogas production and PSO for
safer operation conditions) for AnD facilities.

Keywords: anaerobic co-digestion; ant colony optimisation; particle swarm optimisation; genetic
algorithms; waste management; circular economy

1. Introduction

In the context of global climate change with rising and more extreme events—such
as droughts and floods—which will likely provide growing uncertainty to water demand
and jeopardise the availability of specific resources, there is a growing interest in the
adaptation and use of technologies related to the circular economy that promote environ-
mental sustainability. In this framework, resource recovery is a key issue for industrial
and environmental processes and shows a wide spectrum of study possibilities. In water
sanitation, wastewater treatment plants (WWTPs) offer a wide range of possibilities for
resource recovery, mainly related to sludge treatment processes [1–7] as biogas generation
via the substrate co-digestion process, which can be an alternative source for thermal and
electrical energy production [8–14]. This potential for biogas generation could be translated
as well to a source of renewable natural gas, which has specific composition requirements
that demand high-tech sensors to assure its quality no matter its origin, as those developed
in [15,16]. Due to their potential for resource recovery and the further implications in
the water–food–energy nexus, WWTPs have been a research focus from different areas of
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expertise: from modelling and engineering design [17–24] to process dynamics, simulation
and integration [25–28].

Anaerobic digestion (AnD), a complex process involved in biogas production, has
a delicate balance of substrate composition. The optimal performance requires avoiding
process inhibition and maximising biogas generation. The optimal balance may be achieved
with the correct mixture of available substrates, but this task is challenging and difficult
to achieve manually due to the high combinatorial possibilities and changing availability
of substrates of heterogeneous nature. The complexity increases when the process is co-
digestion, with the addition of residual substrates produced by agro-food and similar
industries, each with its own dynamics of substrate generation and composition [29–32].
Additionally, not all WWTPs have an anaerobic digester. Therefore, optimisation also
requires logistical challenges to process a maximum volume of the available substrates in
a certain geographical area and its travel logistics (of sludge and co-substrates) from its
origin to the destination digester.

Hence, dealing with such complexity is a former step to tackle optimal co-digestion
in a complex network composed of many substrate sources—including WWTPs without
AnD processes and industrial producers—and several co-substrate receptors. These will
be located in different geographical places. As a result, the logistics of substrates will be
affected by the geographical distance between actors involved and the restrictions related
to the receptors.

Optimisation of the individual digester feed requires optimal blending of different
co-substrates in order to fulfil the volumetric and compositional requirements of the
anaerobic procedure. This problem can be understood as a multidimensional knapsack
problem (MKP) [33–35]. The MKP is an NP-hard problem [36] and has been widely studied
in the literature. To solve this type of problem, the use of combinatorial optimisation
metaheuristics is proposed in [37,38], mainly when a high number of restrictions are
presented [39].

Many tools have been developed to this end, either focused on modelling, control of
the optimum co-substrate blending, or system operation, as shown in [37,39–43]. In [37,40],
identification and modelling of critical parameters are performed; in [39] control schemes
based on the composition qualities are developed; and in [42,43], optimised control strate-
gies are implemented according to blend composition. In [41], logistics are also included to
optimise the performance of a single anaerobic digester with co-digestion strategies.

However, in real-world installations, most of these systems are managed and super-
vised not in a single fashion but in a network fashion. Thus, proper system management
requires simultaneous consideration of the entire AnD network to select which combination
is the best for each digester to maximise the potential of the overall infrastructure. Besides,
literature on this matter is relatively scarce due to its ad-hoc nature. There is literature
related to optimised placement of new AnD plants, such as in [44], but it lacks optimisation
of the operational part involved in the feeding of the anaerobic digesters. Very specific
works can be found about optimisation of supply chain networks in the field of waste val-
orisation, such as in [45], where an integrated geographical information system (GIS)-based
optimisation is performed, but it requires highly detailed and tailored data, so its implemen-
tation becomes time-consuming and highly dependent on data availability; furthermore,
it does not tackle process optimisation regarding waste processing facilities. Regarding
logistics, other works can be found for path planning optimisation such as in [46], where
truck routes are traced based on GIS-oriented algorithms, or in [47], where a smart waste
bin prototype is developed for sensor-based waste classification. As it can be seen, there
is a gap in the literature regarding network optimisation of existing waste management
facilities (such as AnD plants) that would include both logistics (i.e., minimising route
impact and length) and quality (i.e., improving process performance) optimisation. This
is a necessary gap to fulfil, since, as stated before, AnD networks are currently managed
in an ad-hoc, manual fashion by the practitioners, which is dramatically time-consuming
and needs highly qualified personnel. Although there are currently different approaches
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that could help overcoming specific parts of this challenge (i.e., those observed in [44–47]),
none of them can currently successfully accomplish the overall task.

The approach presented in this study continues the work introduced in [48] where the
optimisation problem of blending in anaerobic co-digestion (AnCD) is handled by an ant
colony optimisation (ACO) algorithm in a synthetic case study with realistic conditions,
simulating a centralised AnD single-stage reactor that received feed once a day. In [41],
the work is extended while considering the quality, social and travel logistics of the co-
substrates, analysing its importance to the overall optimisation. In addition, ACO has
been implemented in real-world waste sector case studies, e.g., [48,49]. Here, the work is
extended to a similar real-world case study considering multiple receptors in the geograph-
ical area of the Besòs River basin (Catalonia, Spain). The data used correspond to the real
operation conditions of this area. For these conditions, the authors have also evaluated the
results obtained using different optimisation approaches such as ACO, genetic algorithms
(GA) and particle swarm optimisation (PSO).

ACO, GA and PSO algorithms were selected as convenient approaches to tackle a
problem of the nature stated here after reviewing applications of similar nature in the
literature. In [50], a review of nature-inspired algorithms is performed, including GA, ACO
and PSO—among others—for AnD modelling and optimisation, showing how in the field
of AnD, PSO obtains better performance in substrate feed optimisation for agricultural
biogas plants than other evolutionary methods. For example, in [51] genetic algorithms
are used to minimize the environmental impact caused by mine water. The main draw-
back for PSO pointed out in [50] is premature convergence, since particles may become
trapped in local optima or suffer stagnation, but this may be solved by a partial restart
of the process introducing new particles in the search space. In [52], ACO and GA are
applied to optimise the route of waste collection vehicles for municipal waste collection
and transportation—the highest cost of the entire waste management system—with similar
performance attained by both algorithms; however, only the problem of travel logistics
is considered, not the blending of municipal waste. Ref. [53] proposes a nonlinear model
predictive control strategy using the MATLAB BioOptim toolbox, developed by the same
authors, for optimal control of substrate feed to AnD operation of an agricultural biogas
plant, with a graphical user interface (GUI) integrating a fitness function including differ-
ent operating constraints and parameters such as pH, solids or methane concentration,
and using evolutionary optimisers such as PSO, covariance matrix adaptation evolution
strategy (CMAES). Alternatively, they propose differential evolution (DE), which achieved
better performance with PSO but without considering the substrate travel logistics in the
optimisation. Ref. [54] presents a prediction and optimisation method using a multi-layer
perceptron artificial neural network (ANN) and PSO for the maximisation of biogas genera-
tion in a real wastewater treatment facility. A similar approach is presented in [55], where
modelling and optimisation of biogas production with mixed substrates are obtained with
a combination of ANN and GA methods.

Additionally, ref. [55] and references therein point out how stochastic global optimi-
sation algorithms (SGOAs), such as PSO, the ACO, and GA, among others, are consid-
ered efficient alternatives in the design of optimal production media and optimal process
operating conditions in fermentation research and can significantly reduce the process
development time. Regarding the comparison of the optimisation algorithms selected here
solving combinatorial optimisation (CO) problems, in [56], ACO and GA are compared,
both achieving good performance but with GA exhibiting slightly better performance than
ACO. In the latter reference, it is also mentioned how trimming of specific parameters for
both optimisers—e.g., number of iterations, evaporation coefficient and number of ants
for ACO, or chromosome population, crossover and mutation probabilities for GA—is
required to achieve good performance in both cases. In [57], relationships between GA
and ACO-type algorithms are detailed, presenting their similitudes and showing how they
use similar principles to succeed in CO problems with globally convex structure of its
solution space. Overall, SGOAs such as ACO, GA or PSO have shown good performance
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in the type of applications presented and hence demonstrated suitability for non-convex
nonlinear multidimensional optimisation problems, as presented here. Optimal blending
for AnCD is considered, e.g., in [40,55], but to the knowledge of the authors, the optimisa-
tion of such blending combined with the travel logistics of co-substrates in a centralised
multi-receptor co-digestion strategy has not yet been studied. Additionally, a comparison
between different suitable optimisation algorithms for such applications, i.e., ACO, GA
and PSO, is presented.

The application of optimisation strategies in AnD allows a significant enhancement of
co-digestion strategies [30] maximising biogas production and minimising associated risks
to each AnD operation (e.g., overdosing or acidification). In this work, the performance
of each optimisation approach considered is evaluated on a real case study in the area of
the Besòs River basin in Catalonia, including a network of substrate generators and three
anaerobic digesters. Hence, the objective of this study is to develop a tool that is able to
optimise the centralised digestion process of an AnD network with multiple waste sources
and waste receptors by means of three evolutionary optimisation algorithms—namely,
ACO, GA and PSO. Such a tool is tested in a real case study to further analyse and compare
the performance of each algorithm in the overall AnD network optimisation.

2. Material and Methods

2.1. Optimisation Algorithms Considered

The optimisation algorithms presented here fall within the set of SGOA, concretely in
the subset of evolutionary algorithms (EA) for GA—which use mechanisms inspired by
biological evolution, e.g., mutation or recombination to achieve the goal of optimisation—
and in the subset of swarm intelligence methods for ACO and PSO based on the collective
behaviour of self-organised decentralised systems, respectively. SGOA algorithms have
been widely used to solve NP-hard combinatorial optimisation problems, such as that
presented in this study, which deterministic optimisation methods fail to handle due to
their complexity.

Regarding each proposal, ACO is a metaheuristic approach that has been shown to
be effective in solving a variety of NP-hard problems [58]. The algorithm is based on
simulation of the behaviour of real ants in their search for food. When ants find food,
they leave a pheromone trail on their path. Then, new ants follow that trail. In this way,
an increasing number of ants are concentrated in places where there is food. In a similar
way, the virtual ants construct a solution moving through the graph that represents the
search space of solutions. Their paths are guided by a probabilistic state transition rule,
which is based on pheromone trails and specific heuristic information. The algorithmic
procedure is iterative. At each iteration, the pheromone trails are updated by applying an
evaporation coefficient (when the value selected is not part of a feasible solution). To avoid
rapid stagnation of the solution, the ACO algorithms can use several strategies [59], such
as that related to the limitation of the pheromone trails between maximum and minimum
values. Max–Min Ant System [60] uses this procedure.

The GA is a metaheuristic approach also used in combinatorial optimisation problems.
It is based on the mechanics of natural selection and natural genetics. GA applications cover
a range of combinatorial optimisations, e.g., hydraulic model calibration [61], performance
of photovoltaic systems under variable atmospheric conditions [62], and sensor placement
for leak detection in water distribution networks [39,63]. The GA is based on three main
parameters: selection, crossover and mutation. The population matrix is randomly gen-
erated and consists of the design variables, and the best variables are selected according
to their fitness value. From these solutions, new solutions are produced via the crossover
operator [64]. The mutation operator is finally employed to avoid the algorithm converging
to local optima (i.e., to maintain the genetic diversity).

The GA cycle is repeated through a number of generations until a stopping criterion is
met. It is worth noting that elitism is not generally considered an operator in the canonical
GA. However, it is deemed a robust and effective operator because it leads the optimisation
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procedure towards the optimal solution. Accordingly, this operator stops the best solutions
from being mutated. In this way, the best solutions of each generation would pass to
the next, unaltered. Over the course of the algorithm and through a sufficient number of
generations, the traits of these solutions would transfer to their offspring, increasing the
chance of producing new solutions whose fitness function values might be better than their
parents [64]. Some drawbacks of GAs are noted in [61], e.g., achieving a global optimum
for large and complex systems is not guaranteed, which is also a drawback for ACO. In [57],
the relation between GAs and ACO is noted.

PSO is a recently developed EA that includes features such as easy implementation for
solving practical problems, high accuracy and fast convergence of the solution as some of
its main advantages [65,66]. While similarities exist in the iterative nature of PSO and GAs,
conversely, in PSO, there are no, e.g., “crossover” or “mutation” operations. Instead, PSO
is based on a population of candidate solutions, defined as particles. The set of particles
composes a swarm, where each individual flows through the parameter space. The flow of
such particles is defined by trajectories, which are driven by the best performance of the
particle and the neighbouring particles in the parameter space. The initialization of particle
swarm is random. The initial solution of each particle represents an alternative solution;
that is, each particle has its own initial position and speed and is randomly distributed
in each position of the feasible solution space to be searched. Therefore, the initialization
of the particle swarm represents the preparation of the particle swarm search. Its size is
determined by its speed and position, and the particle update is based on the comparison
of the fitness values between each search particle and its neighbouring search particles
to determine the necessity of updating a particle. The updated particle adjusts its speed
and position according to the particle’s new flight path model, which is based on the best
results achieved by its neighbouring particles. These conditions yield different optimal
experiences for different particle subgroups, which dynamically evolve according to the
current position of particles, the particle current velocities, the distance between each
particle of the subgroup and its best position and the distance between each particle of the
subgroup and the best position of the whole subgroup.

The PSO algorithm does not need cross-mutation or other genetically inspired op-
erations, so the algorithm has fewer parameters and is still high efficiency [65]. These
properties are suitable for both engineering applications and scientific research, and a
significant number of research results have been produced in recent years [67]. For exam-
ple, in [68], PSO is applied for function optimisation regarding eco-economics modelling
and assessment; in [69], it is used as part of fuzzy systems developed to optimise fuel
consumption of hybrid vehicles; and in [70], PSO is used to train neural network models
and perform real-time optimisation.

2.2. Centralised Co-Digestion as an Optimisation Problem

Mathematical optimisation involves the selection of one solution amongst a set, accord-
ing to some criterion and constraints (that is, the optimisation problem). This optimisation
problem can be stated as:

min
x∈X

f (x) subject to g(x), (1)

where f (x) is the objective or cost function, X is a feasible region and g(x) are the constraints
that have to hold to find a minimiser x* of f (x) such that f (x∗) = minx∈X f (x). ACO, GA
and PSO introduced in Section 2.1 are algorithms aimed at finding the optimal solution
of the optimisation problem posed in (1)—i.e., minimise the objective function f (·) subject
to the set of constraints g(x) that apply—which here consists of the selection of the best
substrates and volumes according to a set of restrictions related to the operation of the
anaerobic digester. In addition, the cost function allows quantifying each alternative
potential solution according to (1), involving the calculation of a value or “cost” associated
with each alternative considered to find the optimal solution.

The problem statement is similar to that presented in [41], although the number of
waste receptors increases from one to three, thus making necessary a reformulation of
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the optimisation problem involved. Specifically, it is required to increase the dimensions
of all data vectors that define each generator-receptor interaction and their subsequent
calculations. In addition, matrix operations are repeated per new dimension (i.e., waste
receptor) added.

This optimisation problem, which can be understood as a MKP and is of combinatorial
nature, can be represented as a matching problem. It is defined with a graph G = (N, E) that
summarises all the possible combinations. The graph consists of N vertices (or nodes) and
E edges or pairs of vertices. Specifically, for the case of AnD optimisation, a bipartite graph
can be used to represent the posed optimisation problem to differentiate between the set of
waste generators (N1), containing W nodes, and the set of waste receptors (N2), containing
R nodes. For the specific optimisation problem, all W nodes are connected to each R node,
thus resulting in a total of W·R = E edges. Figure 1 shows a generic representation of the
defined matching problem applied to AnD co-digestion optimisation.

Figure 1. Generic representation of the posed matching problem.

A set of substrate generators w ∈ {1, . . . , N} is considered. The volume of each sub-
strate Vw can be selected as a contribution to any of the AnD systems. The binary decision
variable ys

w allows generating array volumetric possibilities (Vs
w, with s ∈ {0 . . . , lw} that

are determined as a multiple of a number (e.g., 1000 by default) such that 1000lw = Vw.
The selection of each volumetric possibility is determined by the corresponding value of
the binary decision variable, ys

w, where y ∈ {0, 1}, with ys
w = 0 when the corresponding

volumetric configuration is not selected, and ys
w = 1 when it is selected. Note that for each

waste generator w, there are lw different volumetric configurations in ys
w, but only one is

selected at a time, i.e., ∑lw
s=1 ys

w = 1 ∀w ∈ {1 . . . , N}.
To normalise the objective function, selected volumes Vs

w are divided by the maximum
volume from their corresponding waste generator (Vw). This approach provides values of
the cost function between 0 and 1, where the closest to 1 the better the solution. However,
note that the ACO algorithm looks for a maximum of the objective function, while GA and
PSO look for a minimum. This behaviour is considered using the constant K ∈ {−1, 1},
which depends on the algorithm considered: for the ACO algorithm K = 1 and for the
GA and PSO algorithms K = −1. Hence, cost index B would take positive values between
0 and 1 for ACO and negative values between 0 and −1 for GA and PSO. Instead, the
absolute value is taken for all three algorithms.

Fc
w (c = 1, . . . , 3) and Tw are the set of dimensionless coefficients corresponding to the

substrate characterisation and the quality term
(

∑3
c=1 Fc

w

)
ρq, already used and explained

previously in [41,46] and defined as shown in Figure 2.
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Figure 2. (A) F1
w, (B) F2

w, (C) F3
w and (D) Tw equations used for dimensionless coefficient calculation.

F1
w is a coefficient related to the potential biogas production, measured as a function of

the Chemical Oxygen Demand (COD) content. F2
w indicates the ratio of COD/TN (where

TN refers to Total Nitrogen), a useful measure to prevent situations of acidification and
other undesired reactions of the AnD process, as long as it is maintained around the range
of 20–60. F3

w is linked to the alkalinity (Alk) concentration, and it is associated with a
restriction ranging from 2500 to 6000 mg CaCO3/L integrated within all optimisation
algorithms. Tw is a coefficient of the utmost importance since it describes the toxicity level
of all waste fluxes, which should be kept at the lowest level possible (specifically below
2.1 mg Pb/L).

The N different substrate generators are located at different distances (dw) from each
anaerobic digester. The conveyance of the selected volumes implies a travel distance dw (in
km) with an economic cost xw (in €/km) and a social impact Iw = 1, . . . , 3 (dimensionless).
The higher the value of Iw, the higher the social impact of the related route (e.g., proximity
to sensitive areas due to pollution, traffic density, or pedestrian presence). Since each route
is different for each generator, different values are assigned to approach the logistic impact
of the corresponding waste generator, so a value for Iw is assigned for each sludge/substrate
generator depending on its route to the ST.

The coefficient weight ρq (dimensionless) is related to the quality term
(

∑3
c=1 Fc

w

)
ρq,

and the coefficient ρx (dimensionless) is the coefficient that weights the logistics term
ρx

Xwdw Iw
. Each weight is given a value of 0.5 to provide a balance between the quality and

logistics terms in the optimisation. Selected volumes of each substrate to each receptor
contribute to the input to the AnD network, and the aforementioned parameters constitute
the objective or cost function f (x).

Additionally, the optimisation problem presented considers a set of restrictions g(x)
related to each of the total inputs to each of the receptor systems, based on those presented
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in [41,48]. The first restriction is the sum of accepted substrates ∑N
w=1 ∑lw

s=0 ys
wVs

w must not
exceed the maximum acceptable volume V for each AnD system. Moreover, the COD/TN
ratio, related to the dimensionless coefficient F2

w, must be kept within the range
[
C2

min, C2
max

]
.

The alkalinity concentration, related to the dimensionless coefficient F3
w, must also be kept

within the range
[
C3

min, C3
max

]
. The toxicity level, related to Tw, does not require restriction

since the corresponding coefficient Tw is considered to be restrictive enough, as shown in
Figure 2.

In addition, an estimation of the produced biogas is made assuming a conversion
factor of 0.268 m3 biogas/kg COD. Finally, note that the cost function presented in this
work is adapted from [41,48], where the ACO algorithm was used for waste management
optimisation in a similar fashion but limited to one AnD receptor.

The objective function f (x) for the presented optimisation problem is as follows in (2).
However, note that the performance comparison of the ACO, GA and PSO algorithms
is not conducted directly on the value of the optimised objective function, B′, but on its
absolute value, B, as shown in (3).

B′ = K
{

∑N
w=1∑lw

s=0ys
w

Vs
w

Vw
Tw

[(
∑3

c=1Fc
w

)
ρq +

ρx

Xwdw Iw

]}
(2)

B =
∣∣B′∣∣ (3)

3. Results

3.1. Case Study

The case study includes a network of 19 organic waste generators and three organic
waste receptors. These 22 locations (i.e., 19 generators and 3 receptors) are part of the
wastewater treatment system managed by Consorci Besòs Tordera (CBT), a public local
water administration composed of 64 municipalities in four different regions of Catalonia
(Spain) with a population of approximately 470,000 inhabitants. This case study and its
anaerobic network system were also considered in [41]. Figure 3 shows the corresponding
bipartite graph of the case study.

Figure 3. Bipartite graph of the case study.

The three organic waste receptors (R1–R3, or nodes 1–3 of Figure 3) refer to three
separate WWTPs that produce their own sewage sludge, but that also have available AnD
technology. Due to oversized design, which is a usual practice in WWTP design [71], these
AnD systems in R1–R3 have available capacity. This free excess capacity can be used to
accept wastes from external sources, such as the undigested sewage sludge of W1–W12 or
the industrial substrates from C1–C7.

The 19 waste generators consist of 12 WWTPs that produce undigested sewage sludge
(W1–W12, or nodes 4–15 of Figure 3) and seven industrial substrate generators (C1–C7,
or nodes 16–22 of Figure 3), which were considered suitable sources of organic waste for
the AnD network under study. Each of these locations is a separate and independent
system that must manage its own waste produced as best as possible. Additionally, seven
industrial substrate generators have been previously verified as feasible substrates for AnD
by CBT technical services.
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3.2. Simulation Methodology

The algorithms used in this work have been implemented in the MATLAB environ-
ment. Simulations were performed with a Lenovo ThinkPad (Lenovo Group, Ltd., Girona,
Spain) L14 Gen1-20U10016SP ×64 using the OS Microsoft Windows 10 Pro and an In-
tel(R) Core(TM) i7-10510U CPU processor (1.80 GHz, 2304 MHz) consisting of four main
processors and eight logic processors.

The main optimisation parameters of both GA and PSO algorithms were trimmed in
an attempt to select the most suitable array to provide reliable results. Accordingly, the
same procedure was already performed for the ACO algorithm to determine the values of
its corresponding optimisation parameters in [48], where the same optimisation parameters
are used in this work.

For the ACO algorithm, an initial population of 100 individuals (or ants) and 500 itera-
tions per repetition is set, and the values used for the algorithm optimisation parameters
are α = 1, β = 2 and ρ = 0.98, each corresponding to the importance assigned to the
pheromone trail, the importance assigned to the heuristic information and the persistence
degree or pheromone evaporation, as explained in [38,58,60]. For GA, the initial population
is set to 100, the total number of iterations (or generations) is set to 500, the crossover
fraction is set to 0.8 and the fraction of elite children is set to 5% of the corresponding total
children. For PSO, the initial population was set to 100, the total number of iterations was
set to 500, cognitive attraction was set to 0.8 and the social attraction factor is set to 1.25.
Tables 1 and 2 summarise trimming tests for GA and PSO, respectively, where the best
results are obtained for higher values of objective index B.

Table 1. Summary of trimming tests for the GA.

Tested Parameters Best Index (B) Time(s)

Crossover Fraction
0.2 0.0274 525.73
0.5 0.0295 574.46
0.8 0.0304 537.98

Elite Count
0.05 0.0309 541.48
0.15 0.0300 536.15
0.3 0.0291 554.83

Table 2. Summary of trimming tests for PSO.

Tested Parameters Best Index (B) Time(s)

Cognitive Attraction
0.2 0.0293 82.86
0.5 0.0304 62.93
0.8 0.0322 57.26

Social Attraction
1.05 0.0301 55.78
1.25 0.0329 74.98
1.95 0.0308 63.45

For the sake of performance comparison, some parameters were fixed for the three
algorithms. The fixed parameters are the number of independent simulations (set to 10, the
best result is selected), the population (set to 100 individuals), and the maximum number
of iterations (set to 500). With these constraints on algorithm trimming, a performance
comparison of ACO, GA and PSO was conducted.

The comparison of ACO, GA and PSO performances is based on the value of the
fitness function, execution time and an array of technical variables related to the total
expected performance of the optimised AnD network: total daily biogas production (in
Nm3), average organic load (in kg of COD per m3 of volume of the digestion system and
day), average carbon to nitrogen ratio (C/N), and average alkalinity (in mg of CaCO3).
All algorithms are tested with data from a real case study as the main simulation scenario.
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However, other synthetic scenarios are tested to further compare the performance of each
algorithm under different scenario conditions.

In the approach presented here, simulated scenarios are based on the waste generator
data in Table 3, alongside route distance and receptor system characterisation. For all the
19 waste generators (i.e., the 12 WWTPs without AnD and the seven substrate generators),
the addition to the AnD network is optimised. For each of the three AnD systems (i.e.,
receptors R1, R2 and R3), different volume constraints have been determined, according to
operational data and assuming a limit to the hydraulic retention time of 20 days (below
that retention time, AnD efficiency is expected to greatly decrease).

Table 3. Waste generator dataset, including distance between waste generators and receptors and
characterisation of each receptor of the case study (Baseline Scenario or Scenario 0).

Waste
Generator ID

Vw
(L by Day)

COD
(mg/L) C/N

Alk
(mg/L)

Tw
(mg/L)

R1 R2 R3
Distance to

R1 (km)
Distance to

R2 (km)
Distance to

R3 (km)

W1 27,600 19,900 17.8 4300 1.55 5.3 20.5 9.5
W2 47,000 16,900 20.6 3200 1.36 35.9 33.9 45.7
W3 46,300 18,600 19.4 10,100 1.42 21.8 16.6 28.9
W4 20,200 23,400 15.6 3400 1.38 30.4 43.2 19.7
W5 38,400 21,100 17.9 4500 1.35 19.7 24.7 12.4
W6 34,400 18,800 14.0 3800 1.61 14.8 19.9 15.9
W7 13,800 22,600 15.3 2700 1.57 32.1 44.9 18.4
W8 4400 22,100 15.2 1800 2.30 26.5 31.6 27.7
W9 10,800 21,700 15.1 5300 0.93 20.3 33.1 8.8

W10 9500 20,400 15.5 2500 1.28 30 24.8 37.1
W11 17,000 23,300 14.8 7800 0.98 36.9 31.7 44
W12 6500 20,100 16.5 3100 1.40 20.5 33.3 8.7
C1 9000 667,400 42.5 250 0.01 15.9 11.1 23
C2 9000 497,400 461.8 330 0.01 7 12 17.9
C3 9000 155,900 3118.1 60 0.02 27.9 40.7 17.2
C4 9000 459,100 274.1 660 0.10 16.2 11.1 22.9
C5 9000 657,200 2330.6 630 0.01 52.8 65.6 43.8
C6 9000 266,200 2832.4 20 0.01 56.1 33 21
C7 9000 262,100 32,768.4 110 0.01 36.7 24.1 66.4

Maximum
Volume (L/day) 122,000 146,000 111,000

COD (mg/L) 18,600 19,100 18,200
C/N 19.1 20.3 18.4

Alk (mg/L) 3100 2900 3400
Tw (mg/L) 1.41 1.68 1.53

Each simulation for ACO, GA and PSO is repeated 10 times since these algorithms
have probabilistic, iterative-based search methods. The best solution among these runs
is selected for further analysis, although the average fitness function is also registered
for discussion.

The data obtained for ACO, GA and PSO (each comprising 10 repetitions of the
corresponding algorithm) are compared for every simulated scenario. The baseline scenario
(i.e., Scenario 0) corresponds to the real case study, as described in Table 3. Additional
synthetic Scenarios 1–4 are simulated, and their corresponding data are created from
alterations of the baseline scenario, as described in Table 4.
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Table 4. Synthetic scenarios created from original Scenario 0 in Table 3. Description of data alter-
ation procedure.

ID Description

Baseline (Scenario 0) scenario Scenario based on data form real case study (see Table 3)
Scenario 1 High COD (×10 COD concentration)

Scenario 2a Linear modification of distances: ×10 distances

Scenario 2b Nonlinear modification of distances: square root of
original distance

Scenario 3 High volumes (×3 volumes)

Scenario 4 C/N variations (increase of W1–W12 C/N ratio to the
50–60 range)

While for Scenarios 1 and 2 any modification is viable, for Scenario 3, an increase in
volume involves a significant increase in execution time. This is because the optimisation
problem works around combinations of fixed volumes, and an increase in volume would
involve a higher number of possible combinations for the algorithms to consider (i.e., an
increase in the search space), hence the expected increase in execution time. Thus, volume
modification for Scenario 3 was limited to a triple increase in the baseline scenario volume.
Alternatively, for Scenario 4, the C/N ratios were modified while being kept below 60 to
facilitate the algorithms in finding a viable solution. This measure was adopted because
the C/N ratio was the most limiting optimisation parameter in previous applications of
a similar optimisation problem in [41]. Scenario 2 was designed with both linear and
nonlinear distance modifications (Scenarios 2a and 2b, respectively) to discuss the effect of
distance distribution, as pointed out in [41]. Note that trimming tests were carried out only
for GA and PSO using the baseline scenario, assuming that trimmed parameters would
suffice for simulation of other synthetic scenarios similar to the baseline scenario.

The optimisation results are presented as a sequence of contributions from all the
generators to each anaerobic digester. This optimised contribution sequence can be con-
sidered a suggested logistic plan for the co-substrate distribution as follows: once enough
substrate has been produced and stocked on a waste generator, a truck of 20 metric tonnes
capacity would be fully loaded with substrate from the corresponding waste generator,
disregarding the truck waiting time before starting each route; once fully loaded, the truck
is assumed to travel to the waste receptor without further stops (assuming it always follows
the same route). As long as the cycle of supply routes of all involved waste generators
is completed within the AnD retention time of 20 days, the properties of the resulting
blending should not vary significantly, especially considering that every waste receptor
would have a receiving system for these external organic substrates, where they would be
stored and blended before being added to the AnD system. The specific start and finish time
for each route along the day have not been considered; this does not affect the optimisation,
although it has been noted that it has considerable impact on real-world implementation.

3.3. Algorithm Performance Comparison and Scenario Analysis

The simulation results for each scenario are shown in Table 5. For every scenario
and for ACO, GA and PSO, this table shows the best cost index (B) achieved, elapsed
optimisation time, and additional parameters related to the performance of the AnD
systems: total biogas production, average organic load, average carbon/nitrogen ratio and
average alkalinity.

In the baseline scenario, ACO and GA show higher biogas production than PSO (23%
and 30% higher, respectively). However, they show a slightly lower B index achieved
(4% and 11% lower). This result indicates that although one of the main goals of AnD
optimisation involves maximising biogas production, it is not all that matters because
there are other parameters also subjected to optimisation. PSO appears to find a solution
with lower biogas production but better optimises other quality parameters, such as the
C/N ratio and alkalinity. However, it is remarkable that out of the three algorithms, ACO
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and GA find a “similar solution” (prioritising high biogas production), and PSO fins a
significantly different solution (prioritising other quality-related parameters).

Table 5. Summary of algorithm performance. The best value B is highlighted. Scenario 2a feasible
results (*) are associated with a poor solution, so no direct comparison is conducted.

Scenario Baseline Scenario Scenario 1

Optimisation Method ACO GA PSO ACO GA PSO

Best Index (B) 0.0336 0.0313 0.0349 0.0330 0.0328 0.0211
Time (seconds) 595.46 325.37 90.20 1825.34 1035.53 221.74

Total Biogas Production (Nm3/d) 25,657 27,133 20,852 114,870 198,284 102,927
Avg Organic Load (kg COD/m3·d) 2.32 2.59 2.09 9.67 17.46 9.73
Avg C/N ratio
(limited below 60) 50.5 56.1 46.4 24.1 54 32.4

Avg Alkalinity (g CaCO3/m3) 3079 3141 3245 3183 3193 3282

Scenario Scenario 2a Scenario 2b

Optimisation Method ACO GA PSO ACO GA PSO

Best Index (B) - 0.0001 * 0.0001 * 0.0287 0.0333 0.0319
Time (seconds) - 62 60 669.56 193 63.61

Total Biogas Production (Nm3/d) - 14,278 12,325 17,468 25,404 19,237
Avg Organic Load (kg COD/m3·d) - 1.6 1.4 1.69 2.5 2.24
Avg C/N ratio
(limited below 60) - 45.9 32.8 23.4 55.2 32.4

Avg Alkalinity (g CaCO3/m3) - 3298 3319 3338 3174 3221

Scenario Scenario 3 Scenario 4

Optimisation Method ACO GA PSO ACO GA PSO

Best Index (B) 0.0077 0.0324 0.0300 0.0339 0.0319 0.0354
Time (seconds) 671.03 548.46 68.10 1824.94 350.89 86.47

Total Biogas Production (Nm3/d) 17,224 33,657 35,395 20,770 23,326 19,524
Avg Organic Load (kg COD/m3·d) 1.70 2.79 2.92 2.02 2.23 1.90
Avg C/N ratio
(limited below 60) 19.1 26.3 32.9 35.9 56.4 37.8

Avg Alkalinity (g CaCO3/m3)
(limited above 2500)

2985 3020 3233 3217 3199 3272

In Scenario 1, the COD concentration was increased tenfold. This was done to com-
pare the efficiency of algorithms to optimise substrates with high organic loads, which
is especially meaningful for maximisation of biogas production. For this scenario, ACO
and GA have better performance, according to the best index B achieved. As a natural
consequence of substantial COD increases, biogas production also dramatically increases.
However, PSO is unable to achieve a competitive solution in relation to both ACO and GA
within this scenario and the baseline scenario, respectively.

In Scenario 2a, a tenfold lineal increase in the geographical distances between facilities
was conducted. This scenario allows comparing how well each algorithm can handle
situations where most substrates have long distances. For this scenario, ACO is unable
to find a feasible solution. On the other hand, GA and PSO find a solution, but the
corresponding biogas production is far lower than that obtained in the baseline scenario
(48% and 41% lower biogas production for GA and PSO, respectively).

Alternatively, Scenario 2b shows the optimisation results when nonlinearly modifying
geographical distances between facilities by the square root of the original distances. This
modification allows understanding which algorithm would be more favoured by a more
equally distributed geographic location of plants. All the algorithms tested are able to find
a feasible solution, showing that GA has the best performance (both in terms of best B and
biogas production). On the other hand, ACO shows the worst best index B achieved.
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Scenario 3 was modified by a threefold increase in available volume from all sources.
The presented modification allows studying the performance of each algorithm when
the total number of possible solutions is much greater. ACO shows noticeably poor
performance, below the best index B achieved by ACO in former scenarios. Although
GA shows better performance than PSO in terms of the best index B achieved, biogas
production appears similar to that in other scenarios.

In Scenario 4, an increase in the C/N ratio for waste generators W1–W12 was con-
ducted. This modification would test the ability of each algorithm when one of the re-
strictions (i.e., C/N ratio) requires more adjustments. In this case, PSO shows the best
index B achieved, although it presents the lowest biogas production. Similar to the baseline
scenario, ACO shows slightly better performance than GA in terms of the best B achieved,
but GA still has slightly better biogas production.

Geographical distance modification was performed with two alternative scenarios.
Scenario 2a includes a lineal modification of the distance matrix (tenfold), and Scenario 2b
considers a distance modified by the square root of the original distance. The relative loca-
tions of all involved waste generators and receptors in the case study are shown in Figure 4.
For the baseline scenario, waste generators are homogeneously geographically distributed,
but receptors are located in a relatively small area—i.e., the geographical distance difference
of each receptor from the emitters might be negligible by the optimisation—which may be
interpreted as a single receptor with higher volume capacity, caused by the geographical
overlapping of waste receptors, or the “big dot” effect. The linear modification of geo-
graphical distances in Scenario 2a does not alter this relative distribution, but the nonlinear
modification in Scenario 2b does so, avoiding this “big dot” effect by dispersing Receptors
A, B, and C in the geographical space. It is important to note that for Scenario 2a, ACO was
unable to find a viable solution, and both GA and PSO achieved a relatively poor solution
compared to the corresponding solutions for the baseline scenario.

Figure 4. Map of waste generators and waste receptors R1–R3 for Baseline Scenario (A), Scenario
2a (B) and Scenario 2b (C). Distance is expressed as longitudinal distance (X-axis) and latitudinal
distance (Y-axis) with respect to the R1 plant.

Figure 5 shows the resulting blending profile for the baseline scenario and Scenario
2b. For the baseline scenario, PSO tends to balance the blending of substrates with a low
organic load content—i.e., from W1–W12—and selects noticeably lower amounts of high
organic load substrates—i.e., from C1–C7— than ACO or GA. This observed behaviour is
similar between the three waste receptors A, B and C. On the other hand, ACO and GA
tend towards selective blending, showing similar preferences for both receptors B and C.
For receptor A, the GA algorithm tends towards slightly more homogeneous blending.
In any case, both ACO and GA include more substrates of high organic load—i.e., from
C1–C7—except for receptor C.

For Scenario 2b, the ACO blending profiles are similar to those obtained in the baseline
scenario—showing a certain tendency to include particular waste generators, —although
varying the substrates that the algorithm selects. The GA blending profiles obtained in
Scenario 2b are the most affected by geographical distance distortion. GA appears to
balance the blending of substrates from all waste generators, much like PSO for both
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scenarios 2a and 2b. Additionally, the GA blending profile for Scenario 2b accounts for
more industrial, high organic load wastes—i.e., from C1–C7—than the PSO blending profile,
which remains relatively similar between the baseline scenario and Scenario 2b.

Figure 5. Blending profiles for every waste receptor and ACO, GA and PSO algorithms for the
baseline scenario (left) and Scenario 2b (right).

4. Discussion

Simulations with the optimisation algorithms ACO, GA and PSO were performed,
showing successful optimisation results in almost all scenarios. Data from a real case study
were used to carry simulations of centralised anaerobic co-digestion blending. As detailed
in Section 3, these datasets are composed of 19 organic waste generators and three organic
waste receptors within the context of a sanitation network in an area of high industrial
activity in Catalonia. This case study composes the baseline scenario. In that previous work,
the potential impacts of optimising AnD with wastes from external sources were already
demonstrated, bearing up to 77% cost savings regarding waste management. Different
modifications were made to this dataset to compare the performance of the ACO, GA, and
PSO algorithms under different conditions to assess the performance of each optimisation
algorithm in relevant situations. Regarding the optimisation problem, the C/N ratio is the
dominant restriction, as was previously seen in [41]. This is the reason why this parameter
is included in the discussion of the results, together with biogas production.

For the baseline scenario as seen in Table 5, PSO shows the best index B achieved
but also the lowest biogas production. However, PSO also shows the lowest C/N ratio,
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which might play a role in achieving the best solution, compensating for the lack of biogas
produced. If biogas production is increased by the design of a particular setup, this could
be trimmed by the corresponding weight in the objective function B as a trade-off among
the different parameters involved. The results obtained have been considered convenient
for the installation under study and improved dramatically performance obtained in the
baseline scenario [41]. However, both ACO and GA generally show higher amounts of
biogas production, but their best index B values achieved are below that of PSO, and their
C/N ratios are above 50.

As shown in Figure 5, ACO and GA show similar behaviours for the baseline scenario,
prioritising specific substrates. A first hypothesis suggests that prioritised substrates would
be those with higher COD since they would allow higher biogas production. On the other
hand, PSO shows a different strategy blending more available substrates and tends to
exclude industrial substrates. This trend may point to PSO performing a conservative
strategy where it is avoided in all cost situations where the operation of the AnD would
be put at risk. Therefore, the general trend is that ACO and GA solve the presented
optimisation problem by maximising biogas production and pushing restrictions to the
limit, while PSO tends to balance biogas maximisation and the C/N ratio trade-off. In
addition, note that PSO has the shortest execution times and ACO the largest, which is
observed for all scenarios, indicating PSO to be more computationally efficient, where even
here, the execution time is not a drawback for real implementation with the values obtained.

The similarities between ACO and GA and the differences between those and PSO
could be partially explained by the nature of these algorithms. Both ACO and GA tend to
explore the search space of solutions around the borders, thus increasing the number of non-
feasible solutions but also increasing the chances of finding a “rare” solution with a higher
best index [72,73]. Thus, these algorithms appear to be based on relatively independent
behaviour between particles so that each one can explore separate areas of the border
search space and be able to find different non-redundant solutions. On the other hand,
PSO algorithm exploration of the search space is based on dependent behaviour between
neighbouring particles, which does not encourage particles to explore the limits of the
search space. Instead, it promotes the exploration of other mid-term areas between the
centre and the borders of the search space. This could help explain why the PSO algorithm
attains solutions within shorter execution times but also with generally lower biogas
production. Hence, PSO would tend to be a conservative strategy where instead of selecting
the most promising solution, single ant or particle, it would prioritise a consensus between
the best neighbourhoods.

As detailed in Section 3, Scenario 1 is modified by increasing the organic load of
all substrates tenfold. Thus, the dominant condition, in this case, is that organic waste
valorisation is fostered, leading to higher biogas production. As observed in Table 5, ACO
and GA show better performance than PSO in this scenario, but GA is more efficient since
its attained biogas production is noticeably higher than that achieved with ACO.

Additionally, as detailed in Section 3, Scenarios 2a and 2b include a geographical
location modification of the involved facilities. As observed in Figure 4, the relative
distances between waste generators and receptors (R1, R2, R3) are not modified by lineal
modification of the distance when the map plot of the baseline scenario is compared to that
of Scenario 2a. However, nonlinear modification of geographical distances in Scenario 2b
leads to a different map plot, where waste receptors are more dispersed between them in
relation to waste generators (Figure 4). The effect of this distortion of distances is that waste
receptors are more separated, thus avoiding geographical overlapping of waste receptors,
or the “big dot” effect, i.e., assimilating closer plants as a single centralised plant from a
geographical perspective.

Hence, Scenario 2a is modified by tenfold increasing the geographical distances be-
tween waste generators and receptors, making geographical distance a dominant condition
for optimisation. In this case, ACO is unable to find a solution, and both GA and PSO
show extremely poor performance when compared with the baseline scenario, as shown in
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Table 5. The linear modification of distances of Scenario 2a shows the performance of each
algorithm under the pressure of cases with high geographical distances. This pressure case
of Scenario 2a was especially relevant to test because it can significantly impact the logistics
processes. On the other hand, Scenario 2b presents a different trend due to the nonlinear
modification of distances. As detailed in Table 5, GA shows the best performance, and PSO
shows better performance than ACO even in terms of biogas production.

As observed in Figure 5, ACO and PSO maintain similar blending profiles, while
GA and PSO also exhibit similar blending profiles, but including GA results in a greater
volume of industrial substrates. This shared behaviour between GA and PSO is exclusive to
Scenario 2b, but it might indicate that GA behaves similarly to PSO in this case. However,
from the operational point of view, GA solutions involve major risks since they tend to
include more industrial substrate than PSO solutions.

In Scenario 3, a threefold increase in the volume of all waste generated was performed.
First, this result implies that the search space—i.e., the total number of combinations and
possible solutions—drastically increases. In this case, Table 5 confirms a similar trend
observed for previous scenarios, where GA obtained the best performance and ACO the
worst. Again, this finding is consistent with the observation that the ACO algorithm
attains weaker performance than GA and PSO for this particular case and that GA and PSO
attain similar performance in this study, although GA appears to generally provide better
performance than PSO.

Finally, Scenario 4 was composed of increasing the C/N ratio of W1–W12 substrates.
These substrates originally conformed to sewage sludge with a low nitrogen load, but in
Scenario 4, the drastic increase in the C/N content of sewage sludge was the dominant
condition to be tested. Table 5 also presents a summary of the results for Scenario 4, where
PSO shows the best performance and GA the worst. The main observation is that the PSO
algorithm is more able than the GA to manage situations with high nitrogen loads or major
restrictions, while the GA has more potential to maximise biogas production. However,
it is more sensitive to high nitrogen loads because it reduces available space to acquire
industrial wastes with both high organic loads and high nitrogen loads.

The developed algorithms have successfully optimised the AnD network of the case
study, and their performances have been tested under different conditions (i.e., Scenarios 1–4).
Simultaneous logistics and quality optimisation of a network of existing waste management
facilities is a gap in the current state of the art due to its ad-hoc nature and its interdis-
ciplinarity: there are specialized works for logistics optimisation such as in [45,46], but
they do not include process optimisation. The present study implements this logistic
optimisation by minimising a cost function designed to this end. The reason for choosing
this approach is also based on the need for professionals who manage the AnD network
considered here to have a decision support tool capable of integrating logistics and pro-
cess performance optimisation. And, in addition, to have the ability to handle changing
operation conditions and scenarios, as it actually happens in real facilities.

It is also worth noting that it exists a variety of sensors for the determination of
physical-chemical parameters that could complement the sensor network considered in this
case study, such as a variation of the ones presented in [47]. These sensors could provide
additional insight, especially if combined with GIS and process optimisation, and also
facilitate the real-time implementation of the presented approach. Additionally, they could
also be used as control mechanisms for those cases where ACO and GA optimisation is
applied, since attained optimised outcomes pushed quality restrictions of the AnD process
close to their thresholds. However, there is a trade-off between information (i.e., data
gathered from new sensors) and resources (e.g., implementation, maintenance) which has
to be taken into account when considering new sensors.

Overall, this study presents a step forward towards the integrated optimisation of
AnD networks, making an innovative attempt to couple logistics and quality optimisation
of the centralised digestion process of a real AnD network.
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5. Conclusions

In this study, three approaches were developed for the simultaneous optimisation
of multiple AnD systems based on ACO, GA and PSO. These methods were applied to
a case study based on real data from an AnD network in the area of the Besòs River
basin in Catalonia. The performance of each optimisation approach was evaluated. All
the approaches successfully optimised biogas production for simulated scenarios while
preserving some practical restrictions in optimisation.

For the baseline scenario, ACO and GA allowed maximum biogas production by
placing restrictions on the limits of safe operations. On the other hand, PSO solved the
optimisation problem with a more conservative strategy where biogas production is lower
than that in ACO or GA solutions, in favour of the best AnD operation conditions (i.e., by
adjusting the C/N ratio and alkalinity).

In those cases with high opportunities for biogas production (i.e., Scenario 1), GA and
ACO would perform the best due to their capabilities of maximising biogas production over
that of PSO. GA would perform as the best optimisation algorithm both for cases where
distances are significantly different amongst them (i.e., Scenario 2b) and for cases where
higher volumes should be handled (i.e., Scenario 3), presumably due to GA’s computational
potential. Finally, for those cases where other quality-related parameters are restrictions
(i.e., Scenario 4), PSO would be the best performing algorithm.

The present study shows an innovative contribution to optimize the performance of
centralized AnD systems, combining logistical and quality parameters. To the authors’
knowledge, this optimization has not yet been addressed in the literature for an AnD
network. In addition, the framework has proven its effectiveness in minimizing the total
distance travelled to transport the waste and maximizing biogas production. At the
same time, the physical-chemical parameters of the process have been kept within their
operational limits.

Further work may include methodologies to improve social impact factor quantifica-
tion in the optimisation, which might allow better characterisation of the logistic impact
of each substrate generator. Additionally, the development of logistic route simulations
would be required to enhance real-world distribution planning considering daytime, travel
frequency, dynamic waste production-consumption coupled with stocking problems and
other time-related issues key to logistic planning.
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Abbreviations

WWTPs wastewater treatment plants
AnD anaerobic digestion
MKP multidimensional knapsack problem
AnCD anaerobic co-digestion
ACO Ant colony optimisation
GA Genetic algorithm
PSO Particle swarm optimisation
GUI graphical user interface
CMAES covariance matrix adaptation evolution strategy
DE differential evolution
ANN perceptron artificial neural network
SGOAs how stochastic global optimisation algorithms
CO combinatorial optimisation
EA evolutionary algorithms
COD Chemical Oxygen Demand
TN Total Nitrogen
C/N Carbon to Nitrogen ratio
CBT Consorci Besòs Tordera
GIS geographical information system
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Abstract: In the last decade, industrial environments have been experiencing a change in their control
processes. It is more frequent that control strategies adopt Artificial Neural Networks (ANNs) to
support control operations, or even as the main control structure. Thus, control structures can be
directly obtained from input and output measurements without requiring a huge knowledge of the
processes under control. However, ANNs have to be designed, implemented, and trained, which
can become complex and time-demanding processes. This can be alleviated by means of Transfer
Learning (TL) methodologies, where the knowledge obtained from a unique ANN is transferred
to the remaining nets reducing the ANN design time. From the control viewpoint, the first ANN
can be easily obtained and then transferred to the remaining control loops. In this manuscript,
the application of TL methodologies to design and implement the control loops of a Wastewater
Treatment Plant (WWTP) is analysed. Results show that the adoption of this TL-based methodology
allows the development of new control loops without requiring a huge knowledge of the processes
under control. Besides, a wide improvement in terms of the control performance with respect to
conventional control structures is also obtained. For instance, results have shown that less oscillations
in the tracking of desired set-points are produced by achieving improvements in the Integrated
Absolute Error and Integrated Square Error which go from 40.17% to 94.29% and from 34.27% to
99.71%, respectively.

Keywords: control design; industrial control; transfer learning; WWTP

1. Introduction

Industrial environments are characterised by running complex and repetitive pro-
cesses which are sometimes maintained over time. In that sense, control systems are
adopted in order to ensure that these processes perform correctly [1]. Most of the times, the
development of control strategies can become a complex and time-demanding task since a
deep knowledge of the process under control is required. However, the incursion of the
Industry 4.0 paradigm and Artificial Neural Network (ANNs) applications are changing
the way we control and manage industrial environments. Their main aim is to provide the
industries with solutions mainly based on measurements obtained from their systems [2].
Some of these solutions go from basic forecasting systems to more complex solutions, like
predictive maintenance ([3], Chapter 9). However, one of the sectors where Industry 4.0 and
ANNs are making the point corresponds to the industrial control ([3], Chapter 5). There,
ANNs have been adopted for a wide range of tasks, such as the design of soft-sensors or
the detection of malfunctions [4–6]. Not only this, but the industrial control domain is
experiencing a change in its tendency: ANNs are used more and more as the main control
structures than conventional controllers.

Sensors 2021, 21, 6315. https://doi.org/10.3390/s21186315 https://www.mdpi.com/journal/sensors
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One of the industrial sectors where this tendency is observed corresponds to the
Wastewater Treatment Plants (WWTPs), which are characterised by running very complex
processes where individual operations and actions can change the whole operation of the
plant [7]. For that reason, a huge number of control loops are required in order to ensure
that each individual operation is correctly performed. Proportional Integral (PI) controllers
have mostly been considered as the default and basic controller strategy able to ensure
correct WWTP behaviour [8]. However, a complete reduction of the pollutants present
in the residual waters cannot be ensured. For that reason, more complex structures have
been proposed in order to improve the control performance. Fuzzy and Model Predictive
Controllers (MPCs) have been adopted in [9] as the main control strategy to avoid the
effluent violations of a WWTP plant, whereas in [10], a hierarchical structure with fuzzy
and MPC controllers has also been proposed to determine the control actuation, taking
into account the weather and a variable set-point. In this case, the set-point adopted by the
MPC controllers is determined by the fuzzy controller whose objective is to maintain the
ammonium in the fifth reactor tank of a WWTP at a desired value (please observe Figure 1
to see the distribution of the tanks of a general-purpose WWTP). The problem observed
with this kind of structure lies in the fact that they require a model which replicates
the relationships between input and output measurements. Besides, most of the time,
these relationships consist of non-linear relations which are difficult and tedious to model.
This is where ANNs come in, since they are algorithms offering good performance when
dealing with these kinds of relationships ([11], Chapter 6). The first approach consists
of the adoption of ANNs as elements whose predictions are adopted by conventional
control structures. For instance, the solution proposed in [10] has been improved in [12],
where Long Short-Term Memory (LSTM) cells have been adopted to predict the WWTP
effluent concentrations and determine when and which controller has to actuate. In other
cases, neural networks have been considered to directly determine the optimal set-point
values adopted by conventional controllers [13] or to implement a Reinforcement Learning
(RL) module performing the same task [14]. Moreover, in the last few years, ANNs
have been directly considered as the control strategy. In [15], neural networks have been
considered to implement an Internal Model Controller (IMC) devoted to managing certain
concentrations required in the pollutant reduction tasks performed in the WWTP. This also
entails that the control actuation can be decoupled from the physical specifications of the
environment [16,17].

+

+

-

-

Figure 1. Benchmark Simulation Model No. 1 layout. Qo, Qa, Qr, Qe, and Qw are the influent,
internal recycle, the external recycle, the effluent, and the wastage flow rates, respectively. Dotted
lines correspond to control signals (measured concentrations, desired set-points and actuation
signals), while solid lines correspond to process media.

The incursion of ANNs in the industrial control domain presents its own drawbacks
that have to be taken into account [18]. The most important one consists in the fact that
ANNs have to be designed and trained with amounts of data. This training process is

104



Sensors 2021, 21, 6315

devoted to determining the different hyperparameters of the ANNs, such as the numbers
of hidden layers, neurons, learning rates, or even the topology of networks. This has to
be performed for each ANN considered, either to complement a conventional controller
(PI, MPC, Fuzzy), or to act as the controller as such. Besides, this training process can last
hours or even days with regard to the network structure, the hyperparameters, and the
amount of data, accordingly [19]. For that reason, transfer learning (TL) methods have
been considered to alleviate these tasks.

TL was adopted from image classification tasks, where they were considered to obtain
a good image classifier from predesigned and pretrained structures in a source domain [20].
Then, these pretrained structures were retrained with images of the target domain in what
is called a fine-tuning process ([21], Chapter 6). In terms of industrial environments, TL was
adopted in the design process of soft-sensors, where they are firstly designed and trained in
a source domain where a huge number of measurements are available. TL techniques have
been adopted mainly to design and implement soft-sensors in those harsh environments,
showing a lack of measurements. In [22], TL techniques were considered to design a
soft-sensor which would be deployed over a sulphur recovery unit. The problem there
is that this environment shows a severe problem of data scarcity; therefore, a traditional
ANN training process cannot be performed. To alleviate this, the authors proposed the
adoption of TL to design and implement the soft-sensor in an environment without data
scarcity problems (the source domain). Then, the obtained soft-sensor was transferred into
the environment with the scarcity problem (the target domain) and fine-tuned to adapt its
behaviour to this environment [22]. In our case, we propose the adoption of the Transfer
Learning-based Control design approach to implement and design the complete control
strategy of a general-purpose WWTP. The main idea is to substitute all the PI controllers by
LSTM-based PI controllers, where only one is implemented while the others are obtained
from transferred versions. The main point here is that instead of training and designing
as many LSTM-based PIs as PI controllers, we will implement only a unique LSTM-based
structure which will then be transferred into the remaining control loops. In that way,
the design of the control loops can be eased at the same time its complexity is reduced.
Now, efforts will be focused on designing a unique controller, which will be based on data
instead of designing and tuning as many controllers as control loops. In this work, only
two control loops have been designed and implemented following this approach. Thus, the
benefit of this control approach is not as widely explored as it could be in a scenario where
there exists multiple control loops, like in the petrochemical industry [4,23]. However, it
has to be taken into account that this approach is mainly based on the adoption of ANNs,
which are trained with amounts of data coming from the control loops. Therefore, data
have to be accessible in order to adopt this approach; otherwise, the ANNs will not be
properly trained, and consequently, the control loops will not act as they should.

This approach has firstly been conducted in [24], where a LSTM-based PI structure has
been trained with data from a unique control loop and then transferred into the remaining
control loop of a WWTP environment. Notwithstanding this, the structure proposed in [24]
considers a unique LSTM cell which requires a total amount of 4 h of WWTP measurements
in order to achieve a good control approach. Besides, neither the design of the LSTM-based
PI, nor its fine-tuning process is carried out. Therefore, the control performance of the
LSTM-based PI can be improved if it is fine-tuned with measurements coming from the
target domain, that is, the control loop where the LSTM-based PI is transferred. For that
reason, in this manuscript we will continue the work started in [24]. Here, we propose the
fine-tuning process and we also analyse the benefits and losses of implementing the LSTM-
based PI with data coming from different control loops. Moreover, a new LSTM-based PI
structure able to manage the WWTP control loops without requiring 4 h of measurements
will be proposed at the same time the control performance will be improved by means
of the fine-tuning of this LSTM-based PI controller. Results will show that among all the
LSTM-based PI, there exists one able to perform well in the different control loops. Thereby,
the fine-tuning process of this LSTM-based controller and its control performance will also

105



Sensors 2021, 21, 6315

be analysed in this work. Besides, the speed-up of the design and implementation process
will be explored and analysed in this manuscript as a function of the amount of time
required to train the LSTM-based structures. The application where it is tested is specific,
but the proposed design approach can be adopted in any kind of industrial environment
where measurements are available. In summary, a TL-based design approach is proposed
to implement the complete control strategy of a WWTP. The main contributions of this
work can be summed up as:

• Conventional PI controllers will be substituted by LSTM-based structures able to
improve the conventional controller performance.

• The required knowledge of the process under control will be reduced, since the LSTM-
based structures only require input and output measurements of the conventional
controllers. Besides, these measurements are easily obtained from a well-known
WWTP digital framework: the Benchmark Simulation Model No. 1 [25].

• The design and implementation process of the LSTM-based structures will be sped up,
since only a LSTM-based structure will be implemented from scratch. The remaining
ones will be obtained through TL approaches.

• A fine-tuning process will be carried out to ensure that the control performance of the
control loop is improved with respect to the conventional WWTP controller.

The structure of the manuscript is as follows. The work presented here is introduced
in Section 1. The materials and methods adopted in this work are presented in Section 2,
especially the Benchmark Simulation Model No. 1 (BSM1), a digital framework which
models a general-purpose WWTP. In addition, the LSTM cells, as well as the TL principles
are explained in this section. Then, the main contribution of this work, that is, the adoption
of TL methods to design and implement the controllers of WWTP control loops are defined
and explained in Section 3. The results of the exploratory analyses carried out are reflected
in Section 4, while Section 5 concludes the paper.

2. Materials and Methods

2.1. Benchmark Simulation Model No. 1

The Transfer Learning-based Control Design approach proposed here is tested over
the Benchmark Simulation Model No. 1 (BSM1). The BSM1 plant is a fictitious WWTP
designed by using the engineering principles of an activated sludge process. It characterizes
a medium-scale and general-purpose WWTP plant whose main objective is to reduce the
nitrogen-derived pollutant products present in residual urban waters [25]. Besides, one
of the major aims of BSM1 is to implement a digital framework where different control
strategies can be designed and tested before being applied in the real environment. Thus,
BSM1 is able to offer generality, easy comparison, and replicability of results in terms of
the different control strategies devoted to maintaining certain pollutant components under
certain levels or limits [8].

In such a context, BSM1 implements the Activated Sludge Model No. 1 (ASM1) which
corresponds to a set of mathematical expressions describing the non-linear and highly
complex biological and biochemical processes carried out inside the WWTP plant [26].
These processes mainly consist of the denitrification and nitrification processes where
the nitrate and ammonia components are transformed into nitrogen and its derivate
products [27]. Notwithstanding this, there are other Activated Sludge Models whose main
aim is not only to model the processes carried out to reduce the nitrogen-derived pollutants,
but also the phosphorus-derived ones. This is the case for the Activated Sludge Models
No. 2, 2d, and 3 [28], which require some updates in the BSM1 framework in order to
either consider the phosphorus removal processes like in the phosphorus removal BSM1
framework (BSM1-P), or the sludge treatment, like in the Benchmark Simulation Model
No. 2 (BSM2) [29,30]. Nevertheless, the study of these behaviours, as well as the layout of
these benchmarks is out of the scope of this work.
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2.1.1. BSM1 Layout

The BSM1 layout consists of a set of five reactor tanks and a settler placed just before
spilling the clean water into the receiving waters (see Figure 1). The five reactor tanks,
where the biological and biochemical processes described in the ASM1 model are carried
out, are characterised by their aerated conditions: the first two are anoxic tanks (working
with a lack of oxygen), whereas the last three work under aerated conditions [8]. They
have a total volume of 6000 m3 , 1000 m3 for each anoxic tank and 1333 m3 for each aerated
tank. The settler has a total volume of 6000 m3. Thus, the total volume of BSM1 equals to
12,000 m3. Besides, the BSM1 framework has been designed to process an average influent
flow rate equal to 18,446 m3/d and an average biodegradable chemical oxygen demand
(COD) of 300 g/m3. This entails that the BSM1 retention time is equivalent to 14.4 h on
average [8,31].

The influent data for municipal WWTP consists of time-series data of the flow and
concentrations of the water quality parameters. These influent flow rates depend on many
factors: the size of the catchment, the type of the sewer system, and the number of person
equivalents, among others. For instance, influent profiles for a WWTP of 100,000 PE are
available in [32]. They include dry, rainy, and stormy weather conditions. Besides, these
are the usual ones considered when working with BSM1, and therefore the ones considered
in the presented work. More information about the BSM1 influent flow and concentrations
can be obtained in the BSM1 specifications [8]. Among these 15 variables, the ones of
interest in this work are the ones related to the BSM1 default control strategies:

• Nitrate and nitrite nitrogen (NO) control loop: control loop in charge of controlling the
nitrate and nitrite nitrogen concentration present in the second reactor tank (SNO,2).

• Dissolved oxygen (DO) control loop: control loop in charge of managing the dissolved
oxygen present in the fifth reactor tank (SO,5).

In the case of the NO control loop, a proportional integral (PI) controller is proposed
to manage the internal recycle flow rate (Qa) in order to ensure that the SNO,2 concentration
is maintained at the default set-point (1 mg/L). The DO control loop considers another
PI structure whose main aim is to maintain the SO,5 concentration at the default set-point
of 2 mg/L. This is performed by means of varying the oxygen transfer coefficient of the
fifth reactor tank (KLa,5) accordingly to the measured SO,5. In that sense, it is worth noting
that the two default PI controllers provided in the BSM1 framework have already been
tuned, that is, the proportional gain and the integral time parameters are predefined by
the BSM1 designers. The control performance of these PI configurations is provided as a
start and a baseline with which a new control structure can be compared. Moreover, we
have considered the default control strategies, that is, their parameters have been left as
the initial configuration proposed by the BSM1 designers.

2.1.2. BSM1 Simulation and Evaluation Protocols

As previously stated, BSM1 has been widely considered as a general-purpose WWTP
digital framework offering generality, easy replication, and comparison between different
control strategies. In order to ensure a fair comparison in the control performance, BSM1
considers two kind of simulations: (i) a simulation where no variations are produced in the
influent, and (ii) a simulation where daily influent and weather variations are produced.
In that sense, four influent profiles considering 14 days of influent measurements are
provided [25]:

• Constant influent: Influent profile showing constant influent concentrations and flow
rates during 14 days.

• Dry influent: Influent profile showing daily variations of the influent concentrations
and without any perturbation induced by weather changes.

• Rainy influent: Influent profile showing daily variations of the influent concentrations.
Two large rainy perturbations are considered during days 9 and 10.
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• Stormy influent: Influent profile showing daily variations of the influent concentrations.
Two short but intense stormy perturbations are produced at days 8 and 11.

Thus, the kind of simulation is set accordingly to the influent profile considered in the
simulation. However, the BSM1 model has to be previously initialised before performing
the simulations. The initialisation process mainly consists in the stabilization of the BSM1
reactor tanks by means of simulating a total amount of 100 days of constant influent ([8],
Section 3). Once the model is stabilised, one can perform the desired simulation. From the
14 days simulated, only the last seven days of the simulation, that is, day 7 to day 14 are
considered in the performance computation ([8], Section 6). It is also worth noting that
only dry, rainy, and stormy influent profiles are considered in this work.

BSM1 also considers its own performance metrics which ease the comparison process
among control strategies. They can be divided into two main categories: the environmental
metrics and the control ones. The environmental metrics are those showing the improve-
ments achieved in terms of the pollutant reduction when a control strategy is considered
instead of another one. Among the different metrics, the two most widely adopted ones
are the Overall Cost Index (OCI) and the Effluent Quality Index (EQI). OCI is related to
the costs generated in the pollutant reduction process, while the EQI can be understood as
a metric telling how clean the water is [8,30]. Nevertheless, we will focus on the control
metrics which do not have either an environmental nor a pollutant flavour. In our case, we
are going to consider the Integrated Absolute (IAE ) and Integrated Squared Errors (ISE)
between the measured variables and their corresponding set-points:

IAE =
∫ t=14th day

t=7th day
|r(t)− y(t)| dt (1)

ISE =
∫ t=14th day

t=7th day
(r(t)− y(t))2 dt, (2)

where r(t) corresponds to the desired set-point, and y(t) to the measured concentra-
tion. In this case, y(t) = {SNO,2(t), SO,5(t)}. Notice that only the control metrics are
considered due to the fact that this work is mainly focused on the adoption of transfer
learning approaches and ANNs to ease and speed up the design and implementation of
the control strategies.

2.2. Long Short-Term Memory Cells

The ANN-based PI controller adopted in this work is mainly based on Long Short-
Term Memory (LSTM) cells. They correspond to a type of gated networks which are
characterised by their good performance when dealing with time-series signals ([11],
Chapter 10). This is possible thanks to the gates that each LSTM cell implements: (i) three
sigmoid activation layers, the input gate (i(t)), the forget gate (f(t)), and the output gate
(o(t)), and (ii) one hyperbolic tangent layer, the state gate (c̃(t)) (see Figure 2).

Figure 2. LSTM cell internal structure.

108



Sensors 2021, 21, 6315

In terms of data, the LSTM cell considers the input data (x(t)) and the output data
(h(t)) vectors. Accordingly to them, the forget gate determines the amount of the cell state
information that has to be deleted:

f(t) = σ(W f · x(t) + U f · h(t − 1) + b f (t)). (3)

Then, the input and state gates determine the new information to be stored in the
cell state:

i(t) = σ(Wi · x(t) + Ui · h(t − 1) + bi(t)) (4)

c̃(t) = tanh(Wc · x(t) + Uc · h(t − 1) + bc(t)) (5)

c(t) = f(t) ◦ c(t − 1) + i(t) ◦ c̃(t). (6)

Finally, the output data of the LSTM cell is computed as a function of the input and
previous output, as well as the outcome of the output gate:

o(t) = σ(Wo · x(t) + Uo · h(t − 1) + bo(t)) (7)

h(t) = o(t) ◦ tanh(c(t)). (8)

Notice that Wx and Ux are the weights of the different gates modifying the input and
output data vectors, respectively. bx are the biases of the different gates. Finally, ◦ is the
Hadamard product between two matrices. σ and tanh are the sigmoid and hyperbolic
tangent activation functions, respectively. If more information about LSTM cells and their
behaviour is required, readers are referred to ([11], Section 10.10).

2.3. Transfer Learning

The main contributions of this work are mainly focused on the adoption of Transfer
Learning (TL) techniques to ease and speed up the control design in industrial environ-
ments, especially in the WWTPs. In that sense, TL consists of transferring the knowledge
obtained in the training process of an ANN structure into another one. For instance, TL
techniques have been widely adopted in the design and implementation of image classifiers
among others [20]. One clear example is shown in ([21], Chapter 6), where the Inception
model, a general-purpose image classifier, is adopted to develop a dog breed classifier.
This new classifier is implemented with the Inception classifier without the last layer plus
three new convolutional layers connected to the output of the penultimate Inception layer.
Therefore, the dog breed classification performance will be derived from the Inception
classification one and a new retraining process where a new set of dog breed pictures is
considered ([21], Chapter 6). This shows that TL techniques can be considered as techniques
which not only obtain ANN models performing well from a source model, but also speed
up their designing process since the knowledge of the source model is shared with the new
ones ([21], Chapter 4).

In that sense, TL techniques can be categorised into three classes as a function of the
data availability in the source and target domains or scenarios ([21] Chapter 4, [22]):

• Inductive Transfer Learning: In inductive transfer learning, the source and target
domains do not show data scarcity problems. Therefore, the transfer model can be
designed and firstly trained in the source domain and then fine-tuned in the target
domain in order to adapt its behaviour to its final application.

• Transductive Transfer Learning: Transductive transfer learning is characterised by the
necessity of retraining the transferred model every time a new set of labelled data is
available in the target domain. This is motivated by the fact that at the first moment,
the target domain has no labelled data.

• Unsupervised Transfer Learning: Unsupervised transfer learning is characterised
by the fact that there is no available data neither in the source domain, nor in the
target one. Thus, this technique is mainly focused on solving unsupervised tasks like
dimensionality reduction.
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In our case, we are faced with an Inductive Transfer Learning task, since the source
and target domains do not show a data scarcity problem. Here, the source domain consists
in the SO,5 control loop (DO control loop) or the SNO,2 control loop (NO control loop)
depending on the base ANN-based controller being implemented. In that sense, if the DO
control loop is considered as the source domain, the NO control loop will be considered as
the target domain and vice versa.

2.4. Modelling

Three different tools have been considered in this work to implement and test the
proposed Transfer Learning-based Control Design approach. They correspond to Simulink
and Python. Simulink was adopted due to the fact that the BSM1 model is completely
deployed over this simulator. Simulink version 10.1 running over Matlab R2020b was
considered. Moreover, all the ANNs involved in the proposed approach are also deployed
over the BSM1 model in order to test their behaviour. Thus, they are also implemented in
Simulink. In that sense, the ANNs, and especially the LSTM cells have been designed and
trained by adopting Python 3.6 with three open-source libraries and a NVIDIA GeForce
RTX 2080 Titan GPU memory, which is considered to speed up the LSTM training process:

• NumPy (1.18.1) [33]: library providing a huge amount of tools and operations involv-
ing vectors and matrices.

• Scikit-Learn (0.22.1) [34]: library providing most of the functions considered in data
preprocessing, cross-validation, and evaluation processes.

• Tensorflow (1.14.0) [35]: library providing lots of ANN structures and techniques. It
also implements the Keras API, which offers predefined ANN structures, optimizers,
cost functions, or training algorithms. Therefore, nearly any ANN structure can be
designed by means of concatenating different predefined Keras structures.

3. TL-Based Control Design

As it has been stated, one of the problems in industrial control is related to the
conception and design of the control loop. Most of the times, the design of the controllers
can become a tedious and time-consuming process since one has to determine the topology
of the controller to be used, as well as the plant or process it is going to manage. In that
sense, ANNs have arisen as a possible solution able to alleviate this. They only require pairs
of input and output data of the process to be controlled [15]. However, this has its own
drawbacks: ANNs have to be correctly trained and designed if a good control performance
is required. This can become a time-demanding and computationally expensive process if
there are a lot of control loops to design.

For that reason and to alleviate this issue, we propose in this work the TL-based
Control Design approach, which is focused on designing and implementing the control
strategies of a general purpose WWTP. In this case, the TL-based Control Design approach
consists in two stages: (i) the LSTM-based controller, where the design and training of an
ANN-based controller is carried out, and (ii) the Control Knowledge Transfer approach,
where the transfer of the controller knowledge into the different industrial control loops
is performed. The first stage is mainly based on designing an ANN able to manage the
signals considered in the control of the industrial process. To achieve this, the proposed
ANN-based controller predicts the corresponding actuation signal accordingly to its input
measurements, that is, the measured value and its set-point. In our case, the signals
involved in the control loops correspond to either the SO,5 or the SNO,2 concentrations, and
their respective actuation signals, the KLa,5 or Qa. Besides, the ANN-based controller will
be implemented with LSTM cells due to their good performance when dealing with time-
series signals, such as the ones obtained from the BSM1 framework. ([11] Section 10.10, [8]).
The second stage is mainly focused on transferring the knowledge of the proposed LSTM-
based controller into the other control loops. In this case, the LSTM-based controller is
considered as the baseline strategy to be transferred (see Figure 3). Thus, the objective
is to design only a LSTM-based controller instead of as many LSTM-based structures
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as control loops present in the WWTP. Then, its knowledge will be transferred into the
remaining loops.

It is also important to notice that this transfer approach can be adopted in any indus-
trial scenario. However, there is a requirement that has to be fulfilled; the TL-based Control
Design can only be applied among control loops sharing the same control objective. This is
motivated by the fact that the ANN-based structure trained in the source control loop will
learn how to generate an actuation signal from the controlled ones with the objective of per-
forming certain tasks, for instance, the tracking of a given set-point. Then, the knowledge
of this ANN-based structure will be transferred into the target one, which should have the
same objective. Otherwise, the target structure would generate actuation signals which do
not fulfil the control objective. In the case of this work, the control objective is clear, where
both the DO and the NO control loops are designed to track the given set-points regardless
of the fact that the involved signals show different values and dynamics [8,25].

Figure 3. Graphical description of the TL-based Control Design approach. Notice that DO refers to the Dissolved Oxygen
(SO,5) control loop, whilst NO refers to the nitrate and nitrite (SNO,2) control loop.

Once the knowledge of the LSTM-based control structure is transferred, the control
performance of the LSTM-based controller can be adjusted through a fine-tuning process
which consists in a retraining of the LSTM-based structure. However, this fine-tuning
process is different from the usual fine-tuning processes performed in the usual applications
of transfer learning, that is, the development of image classifiers. There, the data considered
to carry out the fine-tuning process consist in a set of new images where the labels are
intrinsically obtained from the same images. Taking up the dog breed classifier, the TL
fine-tuning process is performed to the Inception structure with images of different dog
breeds where the labels are obviously clear. When talking about industrial processes,
the situation completely changes. The new measurements have to be obtained from the
control loop where the LSTM-based controller is going to be transferred. In addition,
the knowledge about how to control this loop has to also be obtained. For that reason,
the data required to perform the fine-tuning processes have to be obtained by means of
simulating the behaviour of the industrial process when an existing and conventional
controller is applied. If not, the LSTM-based controller will not be able to offer a good
control performance.

In this manuscript, two LSTM-based controllers will replicate the behaviour of the
default WWTP PIs since they are the ones present in the BSM1 digital framework [8]. This
is motivated by the fact that the LSTM-based PI controller can be obtained with data from
the DO control loop (DO LSTM-based PI) and then transferred into the NO control loop, or
it can be designed considering measurements from the NO control loop (NO LSTM-based
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PI) and then transferred into the DO loop. From these two controllers, the one offering the
best control performance in both control loops will be fine-tuned.

3.1. LSTM-Based PI

As it has been previously stated, the controller proposed in the TL-based Control
Design approach consists in a LSTM-based controller which will act as a PI controller man-
aging either the SO,5, or the SNO,2 concentrations. Hence, two LSTM-based PI candidates
are proposed since there exists two control loops, the DO and the NO control loop. For that
reason, we will analyse the control performance of each one in order to determine which
LSTM-based PI will be transferred and fine-tuned. The first LSTM-based PI controller
corresponds to the DO LSTM-based PI, which is derived from the PI managing the SO,5
concentration, while the second one corresponds to the NO LSTM-based PI. It is derived
from measurements of the default PI managing the SNO,2. Before designing and training
the two LSTM-based PIs, one can guess which one will offer the best control performance.
If the control performance of the default PI controllers is taken into account (see Figure 4),
one can observe that the best PI corresponds to the one managing the SO,5, since it is able
to maintain the SO concentration at the desired value (2 mg/L). On the other hand, the
PI managing the SNO,2 is not able to maintain the desired set-point. Thereby, the control
performance of the LSTM-based ones will be similar to the default PI controller from which
the data were obtained. In other words, the better the conventional controller performance,
the better the LSTM-based one.

(a) SNO,2 Default PI control (b) SO,5 Default PI control

Figure 4. Control performance when the default PI controllers are adopted. Notice that the worst performance is offered by
the SNO,2 default PI controller.

The DO LSTM-based PI and the NO LSTM-based PI structures are obtained by means
of a grid search method where different LSTM-based structures are trained with the same
set of measurements. The efforts of the grid search are focused on determining the number
of LSTM cells, feedforward layers, and hidden neurons per layer of the LSTM-based
structure. Then, the LSTM structure offering the best prediction performance without
committing overfitting is the one considered as the main structure in which the LSTM-
based PI is based on. In that sense, the grid search is performed instead of finding the
parameters characterising the PI controller, that is, the integral time and the proportional
gain [36]. This means that a deep knowledge of the process under control is not required.
Only pairs of input and output measurements of the existing default PI controllers are
needed. To obtain them, a complete year of randomly distributed weather profiles has
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been simulated in order to achieve a good control performance regardless of the weather
conditions. From all the available measurements, the input and output measurements
of the LSTM-based PI controller will be determined accordingly to the control loop they
will manage:

• DO Control loop: the measurements involved in the DO control loop are the dissolved
oxygen (SO,5), its desired set-point (SO,5set−point ), and the oxygen transfer coefficient of
the fifth reactor tank of the WWTP (KLa,5).

• NO Control loop: the measurements involved in the NO control loop are the ni-
trate and nitrite nitrogen (SNO,2), its desired set-point (SNO,2set−point ) and the internal
recirculation flow of the WWTP (Qa).

These measurements are the ones considered to carry out the grid search method
devoted to determining the LSTM-based PI structures. Each one of these measurements is
split into three different sets: 70% of the measurements to train the different LSTM-based
net configurations, 15% to validate them, and the remaining 15% to test the structures. The
grid search process has been carried out adopting the Adam optimizer ([11], Sections 6.5
and 8.5.3) and a total amount of 500 epochs. The initial learning rate value has been set to
1 × 10−3, however, it is reduced along the process. In addition, LSTM nets are also known
to suffer overfitting problems, where they memorise the input and output measurements
instead of deriving a model from them ([11], Chapter 7). To avoid this problem, the L2
parameter regularisation technique and early stopping method are considered. The L2
parameter regularisation consists in the addition of extra penalty to the weights of the
corresponding layer ([11], Section 7.1.1). This extra penalty is known as the weight decay
parameter, which in this case has been set to 5 × 10−4. On the other hand, early stopping
acts as a technique which stops the training process when the validation performance
changes its tendency with respect to the training one ([11], Section 7.8). Here, the important
point corresponds to the early patience, which determines the amount of epochs that this
change of tendency is allowed. In this work, we consider an early patience of five epochs,
understanding an epoch as a complete pass over the training dataset ([37], Chapter 2).
Both LSTM-based controllers consider the same LSTM-based structure (see Figure 5) which
mainly consists in two LSTM cells devoted to extracting and obtaining information from the
time correlation between measurements and two feedforward layers which will transform
this information into the desired output. Moreover, each structure considers Normalisation
and Denormalisation stages in charge of normalising the input measurements towards
zero mean and unity variance, and to take them into its natural range, respectively. These
two stages are needed since the range of the measurements involved in the control loops
are quite different: the mean of the measurements involved in the DO control loop equal to
1.9752 and 144.68 for the SO,5 and the KLa,5, respectively. In the case of the NO loop, the
mean values of the variables involved in the control are equal to 0.9937 and 2.1802× 104 for
the SNO,2 and Qa measurements. As a summary, the DO LSTM-based and NO LSTM-based
structures are as follows:

• DO LSTM-based PI

– Input measurements: the dissolved oxygen in the fifth reactor tank (SO,5(t)) and
its desired set-point (SO,5set−point(t)). Besides, the DO LSTM-based net considers
the Nonlinear Autoregressive Exogenous principle (NARX) where the output
predicted by the net will be considered as an extra input. This extra input
provides the LSTM-based structure with information about its performance in
the prediction process [38], thus it will be able to correct its predictions as a
function of this extra input. In this case, the extra input corresponds to the
previously computed actuator signal (KLa,5(t − 1)).

– Normalisation Stage: stage devoted to normalising the input measurements
towards zero mean and unity variance.
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– LSTM-based Net: main part of the LSTM-based Controller. It consists of two
LSTM cells with 100 and 50 hidden neurons and two feed forward layers with 50
and 25 hidden neurons, respectively.

– Denormalisation Stage: stage devoted to denormalising the actuation signal (DO
LSTM-based Net output) towards its real range of values.

– Output: the actuation signal which corresponds to the oxygen transfer coefficient
of the fifth reactor tank (KLa,5(t)).

• NO LSTM-based PI

– Input measurements: the nitrate and nitrite nitrogen in the second reactor tank
(SNO,2(t)) and its desired set-point (SNO,2set−point(t)). As it happens with the DO
LSTM-based PI, the NO LSTM-based controller also considers the NARX princi-
ple. In this case, the extra input corresponds to the previously computed actuator
signal (Qa(t − 1)).

– Normalisation Stage: stage devoted to normalising the input measurements
towards zero mean and unity variance.

– LSTM-based Net: main part of the LSTM-based Controller. It consists of two
LSTM cells with 100 and 50 hidden neurons and two feed forward layers with 50
and 25 hidden neurons, respectively.

– Denormalisation Stage: stage devoted to denormalising the actuation signal (DO
LSTM-based Net output) towards its real range of values.

– Output: the actuation signal which corresponds to the WWTP internal recircula-
tion flow rate (Qa(t)).

Figure 5. LSTM-based net considered in the LSTM-based Controller. l corresponds to the number of inputs, which in this
case is set to three measurements: the measured concentration of interest, SO,5(t) or SNO,2, its set-point, SO,5set−point (t) or
SNO,2set−point (t), and the actuation variable, KLa,5(t − 1) or Qa(t − 1).

The prediction performance of both structures has been computed in terms of the
difference between the predicted actuation variables and the expected ones (remember
that the DO LSTM-based PI predicts the KLa,5), whereas the NO one predicts the Qa. Five
metrics are adopted, the Root Mean Squared Error (RMSE), the Mean Absolute Error
(MAE), the Mean Average Percentage Error (MAPE) the determination coefficient (R2), and
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the training time [39]. The RMSE and the MAE tell us how the prediction errors are, that
is, if the predictions are close to the expected measurements or not. However, they are
absolute metrics in terms of how they do not tell us how big or small these errors are. For
that reason, we consider the MAPE, which compares the errors with respect to the expected
value. R2 is considered to determine the correlation between the predicted and expected
measurements. Finally, the training time is considered to determine the amount of time
to train unique network. Notice that all the prediction metrics are computed considering
normalised values, with the exception of the MAPE in order to avoid divisions by zero and
the training time. In that sense, the results show that the proposed LSTM-based structures
are able to offer a good prediction performance (see Table 1) since both structures yield
low RMSE, MAE and MAPE values at the same time they offer a R2 nearly equal to 1.
Therefore, it is corroborated that these structures can be used to implement PI controllers
which are mainly based on data.

Table 1. Prediction performance of the DO LSTM-based PI and the NO LSTM-based PI.

LSTM-Based Prediction Performance

RMSE MAE MAPE R2 Training Time

DO LSTM-based PI 0.026 mg/L 0.018 mg/L 1.347% 0.999 69.91 s
NO LSTM-based PI 0.048 mg/L 0.037 mg/L 6.26% 0.997 98.60 s

3.2. Control Knowledge Transfer Approach

The Control Knowledge Transfer approach corresponds to the stage of the TL-based
Control Design devoted to transferring the knowledge of the LSTM-based PI structures
of one WWTP control loop into the other. The adoption of this stage is motivated by the
fact that we looked for the ease and speed-up of the controller design and implementation
process, respectively.

In this manuscript, three different TL approaches are considered to achieve the transfer
of the control knowledge between control loops. Two of them are considered to determine
which controller, the DO or the NO LSTM-based PI, has to be transferred and then fine-
tuned. The third approach mainly consists in the adoption of the controller showing the
best performance in the source and target domains and its fine-tuning to adapt its behaviour
to the dynamics of the target domain, the control loop where it has been transferred. As a
summary, the three considered control approaches are:

• Transfer Learning from DO to NO
The DO LSTM-based PI structure is transferred directly from the DO to the NO control
loop. Here, it is important to notice that the structure is not fine-tuned, that is, the
LSTM-based PI controller has been trained to manage the SO,5 concentration. Besides,
only the normalisation and denormalisation stages are adapted to the NO control
loop measurements.

• Transfer Learning from NO to DO
The NO LSTM-based PI structure is directly transferred from the NO to the DO control
loop without performing any change, neither in its structure, nor in its weights and
biases. Thus, the knowledge on how to manage SNO,2 concentration is transferred
into the DO control loop. The unique change performed in this transfer approach
corresponds to the normalisation and denormalisation stages. They have been adapted
to normalise and denormalise the measurements coming from the NO control loop
instead of the DO control loop. Following this, the NO LSTM-based PI will be at
least equal to the default PI managing the SNO,2 concentration, that is, the NO control
loop PI. If Figure 4 is taken into account, one can assure that the NO LSTM-based PI
controller will not offer such a good control performance as the DO LSTM-based PI
derived from the DO control loop.

• LSTM-based controller Fine-tuning & Transfer
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This transfer approach is the most important one since it corresponds to the transfer
method performing a fine-tuning process and therefore, adapting the behaviour of the
transferred controller to the target domain dynamics. In other words, in this transfer
learning approach the LSTM-based controller yielding the best control performance
between the Transfer Learning from DO to NO and the Transfer Learning from NO
to DO will be considered as the candidate to be fine-tuned. Results in Section 4
show that the best control performance is offered by the DO LSTM-based PI. For
that reason, this is the LSTM-based controller considered in the fine-tuning process.
Nevertheless, this choice can be done at the very beginning if the performance offered
by the conventional PI structures is considered (see Figure 4).
In terms of the three TL classes, the LSTM-based controller Fine-tuning and Transfer
approach consists in an inductive transfer learning task: data from the source domain,
the DO control loop, is considered to firstly obtain the DO LSTM-based PI structure.
Then it is fine-tuned (retrained) with data coming from the PI controlling the target
domain, the NO control loop. In other words, the default SNO,2 controller whose
performance is observed in Figure 4a has been considered to perform the fine-tuning
process of the DO LSTM-based PI controller. Thus, the obtained controller, the fine-
tuned DO LSTM-based PI (FTDO LSTM-based PI) will know how to correctly manage
the desired variable, but adapted to the NO control loop. This clearly shows that
an existing controller managing the target control loop is compulsory to obtain the
measurements considered in the fine-tuning process. This differs from traditional and
conventional TL applications, where labelled data are available.
The main point here is that in the fine-tuning process not all the layers of the DO
LSTM-based PI controller will be retrained with measurements of the target domain:
the weights of the two LSTM cells are blocked whilst the weights and biases of the two
feedforward layers (see Figure 5) are modified in the fine-tuning process. The LSTM
cells are the ones that are blocked since they are the layers gathering the information
about the time-dependence between measurements. The feedforward layers mainly
take this information to adapt the output of the controller to the desired control loop.
For that reason, these are the layers which will be retrained just to adapt the outcomes
of the LSTM layers to the new domain.
The measurements of the target domain are again obtained by performing a whole-
year simulation of the BSM1 behaviour when the three weather profiles, dry, rainy,
and stormy, are randomly distributed. The weights and biases of the two retrained
feedforward layers are obtained considering the same training parameters as in the
case of the DO LSTM-based PI training process: initial learning rate equals to 1× 10−3,
the weight decay equals to 5 × 10−4 and the early patience is set to 5 epochs.

4. Results

4.1. TL-Based Control Design Results

The performance of the TL-based Control Design approach is determined by means
of analysing the control performance of each one of the proposed TL approaches: (i) the
Transfer Learning from DO to NO, (ii) the Transfer Learning from NO to DO, and (iii) the
LSTM-based controller Fine-tuning and Transfer. In that sense, the two first results will
determine which controller, the DO LSTM-based PI or the NO LSTM-based PI, is perform-
ing better in both control loops when no fine-tuning process is carried out. Finally, the
one performing better is fine-tuned and its control performance is computed in the last TL
approach. Results will show which is the best option not only to obtain a complete and
good control approach mainly based on data, but also to speed-up the design process of
the complete WWTP control strategy.

The control performance has been computed in terms of fix and variable set-points in
order to determine if the TL-based Control Design approach is suitable for both types of
set-points. Fix set-points are considered since the default control strategy considers them in
order to assure that the nitrification and denitrification processes, the ones performing the
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pollutant reduction task, are correctly performed [8,27]. They have been set to 2 mg/L and
1 mg/L for the SO,5 and SNO,2 control loops, respectively. Notwithstanding, variable set-
points are the ones of most interest since most of the times the set-points are computed by
means of other control strategies or are varied in order to optimise the pollutant reduction
process [10,14,40,41]. In this case, the variable DO set-point has been computed accordingly
to the Fuzzy Logic adopted in [10], where the Fuzzy controller is considered to determine
the SO,5 set-point generating the lower SNH,5. Moreover, the three different BSM1 weather
profiles have also been simulated to determine if the control design approach can be
considered regardless of the weather conditions.

4.2. Transfer Learning from DO to NO

The first computed control performance corresponds to the situation where the DO
LSTM-based PI is obtained with data from the DO control loop. Then, it is transferred into
the NO control loop without performing any fine-tuning process. Results are shown in
Table 2, where the first important effect that one can notice is that the control performance
in the DO control loop, that is, in the management of SO,5, is even better than the control
offered by the default PI. This effect is motivated by two situations: (i) the fact that the
DO LSTM-based PI has been trained through the simulation of the control strategy when
random variations in the set-point are provided, and (ii) the NARX principle which pro-
vides the LSTM-based structure with information about the previous predicted outcomes.
Thus, the LSTM-based structure has learnt how to correct variations present either in the
set-point, or in the measured concentration.

Table 2. Control performance when the DO LSTM-based PI derived from the DO control loop is transferred into the NO
control loop.

Transfer Learning from DO to NO Control Loop

Fix Set-point

Dry Weather Rainy Weather Stormy Weather

Structure IAE ISE IAE ISE IAE ISE

PI—SO,5 0.148 0.007 0.143 0.007 0.158 0.007
DO LSTM-based PI—SO,5 0.006 9.98 × 10−6 0.006 1.12 × 10−5 0.006 1.29 × 10−5

PI—SNO,2 1.594 0.691 1.922 0.951 1.874 0.977
DO LSTM-based PI—SNO,2 1.008 0.290 1.401 0.578 1.033 0.357

Variable Set-point

PI—SO,5 0.185 0.016 0.155 0.014 0.206 0.020
DO LSTM-based PI—SO,5 0.013 2.34 × 10−4 0.016 4.48 × 10−4 0.016 4.05 × 10−4

PI—SNO,2 1.792 0.858 2.132 1.089 1.884 0.989
DO LSTM-based PI—SNO,2 1.271 0.503 1.672 0.758 1.358 0.593

In terms of the IAE and ISE metrics, one can observe that they are improved with
respect to the default PI control performance when a fixed set-point is considered. In
addition, these improvements are achieved regardless of the weather profile. In other
words, the IAE and ISE values were improved by around a 95.98% and a 99.84% in
average with respect to the default PI controller, respectively. For instance, the highest IAE
improvement is achieved when the stormy influent profile is simulated. The IAE offered by
the default SO,5 PI controller is equivalent to 0.158, while it is reduced until 0.006 when the
DO LSTM-based PI is considered. This entails that the difference between the measured
and the SO,5 controller is minimal. In terms of the ISE, the highest improvement is obtained
when the dry weather is simulated. The achieved improvement equals to 99.86% with
respect to the default PI controller. Notwithstanding, this improvement equals to 99.84%
and 99.82% when the rainy and stormy weathers are considered, respectively. These results

117



Sensors 2021, 21, 6315

show that the DO LSTM-based PI is able to be highly improved when a fixed set-point is
considered. However, the important results are the ones obtained when a variable set-point
is considered, since it corresponds to the most frequently adopted set-point topology.

In such a context, the same effect is observed when a SO,5 variable set-point is consid-
ered. In this case, the average improvement in terms of the IAE and ISE equals to 91.67%
for the IAE and a 97.77% for the ISE. Now, the highest improvement is achieved when
the dry weather is considered: the IAE and the ISE are improved by 92.97% and 98.54%
with respect to the default PI controller performance. This is motivated by the fact that
rainy and stormy influents are derived from the dry weather where the rainy and stormy
episodes are included. For that reason, the LSTM-based structure has more often observed
the effects of the PI controlling the SO,5 when dry episodes are observed rather than stormy
or rainy ones. In addition, the control performance clearly shows that the DO LSTM-based
PI controller can be adopted as the main controller in the DO control loop (see Figure 6). As
it is observed, the output of the controller is much closer to the given set-point of 2 mg/L
than the default PI output.

Figure 6. Control performance for the DO control loop when the LSTM-based PI is considered.

However, the most important point is to determine the control performance of the
NO control loop, since in this case the DO LSTM-based PI is directly transferred into
the NO control loop. The changes performed in the control structure correspond to the
normalisation and denormalisation stages, which have been adapted to the range of values
involved in the control of SNO,2. Results show that the control performance of the DO
LSTM-based PI controller can be improved by, on average, 33.07% and 42.94% in the case
of the IAE and the ISE, respectively, when it is managing the SNO,2 and considering a fixed
set-point. For instance, the highest improvement with respect to the default PI structure
is achieved when the stormy weather is considered. The IAE and ISE obtained in such
a situation equal to 1.033 and 0.357, respectively, which in percentage values equal to an
improvement of a 44.88% and a 63.46% for the IAE and ISE respectively. At the same time,
this represents a reduction of the IAE and ISE improvement of 51.32 and 36.36 percentage
points with respect to the improvement achieved when the DO LSTM-based PI is managing
the SO,5. This is clearly motivated by the fact that the DO LSTM-based PI is designed to
offer its best performance when managing the DO control loop. When a SO,5 variable
set-point is chosen, one can observe that the average improvements in the NO control loop
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and in terms of the IAE and ISE are equal to 26.19% and 37.27%, respectively, being the dry
weather the one showing the highest improvement (see Figure 7). The IAE values go from
1.792 to 1.271 while the ISE values go from 0.858 to 0.503, respectively.

Figure 7. Control performance for the NO control loop when the LSTM-based PI derived from the
DO control loop is transferred into it.

These results show that the DO LSTM-based PI controller is able to improve the
default PI controllers performance. For that reason, it is considered as a candidate to be
fine-tuned in order to adapt its behaviour to the SNO,2 control management and therefore,
achieve a better improvement in the management of this loop.

4.3. Transfer Learning from NO to DO

Before performing the fine-tuning process, the control performance of the NO LSTM-
based PI is also computed to determine its behaviour when managing the NO control loop
(its source domain) and its performance when managing the DO loop (its target domain).
Results are shown in Table 3 where at first sight it is clearly observed that the IAE and
ISE metrics are improved with respect to the default SNO,2 PI controller. When a SO,5 fix
set-point is considered, the NO control loop IAE is improved in average a 24.32% while
the corresponding ISE is improved around a 39.03% in average. Both with respect to the
default NO control loop PI controller. The ISE improvement shows that the proposed NO
LSTM-based PI controller, which has been derived from the NO control loop, is able to
reduce the highest errors between the measured SNO,2 and its set-point, with respect to
the default PI controller. However, the control performance can be still improved since
the improvement achieved in terms of the IAE error is still low. For instance, the best
improvement is observed when the stormy weather is considered. There, the obtained IAE
goes from 1.874 to 1.360, whereas the ISE goes from 0.977 to 0.543. These values represent
an improvement around a 27.43% and a 44.42% when the obtained IAE and ISE values are
compared to the default PI control metrics. In terms of the SO,5 control performance, the
transferred NO LSTM-based PI shows that the IAE performance is degraded instead of
improved. For instance, when the NO LSTM-based PI is adopted, the IAE is increased from
0.148 to 0.158 when the dry weather is considered. This effect is motivated by the fact that
the default PI of the NO control loop is not offering such a good control performance as
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the default PI of the DO control loop. Thus, the control performance will not be improved
if data from the NO control loop is obtained to derived the NO LSTM-based PI and then
transfer it into the DO control loop.

Table 3. Control performance when the NO LSTM-based PI derived from the NO control loop is
transferred into the DO control loop.

Transfer Learning from NO to DO Control Loop

Fix Set-point

Dry Weather Rainy Weather Stormy Weather

Structure IAE ISE IAE ISE IAE ISE

PI—SNO,2 1.594 0.691 1.922 0.951 1.874 0.977
NO LSTM-based PI—SNO,2 1.302 0.486 1.399 0.542 1.360 0.543

PI—SO,5 0.148 0.007 0.143 0.007 0.158 0.007
NO LSTM-based PI—SO,5 0.158 0.004 0.146 0.004 0.160 0.004

Variable Set-point

PI—SNO,2 1.792 0.858 2.132 1.089 1.884 0.989
NO LSTM-based PI—SNO,2 1.266 0.464 1.574 0.662 1.372 0.557

PI—SO,5 0.185 0.016 0.155 0.014 0.206 0.020
NO LSTM-based PI—SO,5 0.288 0.030 0.239 0.022 0.385 0.049

Visually, one can observe that the SNO,2 control performance is slightly improved
with respect to the default PI (see Figure 8). The peaks of SNO,2 concentration are reduced,
however, the desired set-point is not achieved. In terms of the SO,5, the control performance
is even slightly degraded with respect to the default PI controller. As it can be observed, the
measured SO,5 does not show variations as the default PI controller, however, there exists
an offset which produces the IAE increment. For that reason, the ISE metric in terms of the
SO,5 is still reduced, it now equals to 0.004 in average instead of 0.007. Notice that the ISE
tells if there exists a huge difference between the measured and the desired concentration,
whereas the IAE tells if the difference is maintained over time.

When a variable set-point is considered, one can observe that the control performance
is only improved in terms of the NO control loop. The IAE and ISE metrics are improved
in averages with respect to the default PI controller of 27.56% and 42.94%, respectively. In
terms of the DO control loop performance, results show that transferring the NO LSTM-
based PI controller derived from the NO loop into the DO loop is not an option, since all
the control metrics are degraded. For instance, the IAE and ISE metrics are nearly doubled
with respect to the default PI controller when the stormy weather profile is simulated.
These results entail that the NO LSTM-based PI cannot be considered as a candidate to
be fine-tuned since it does not improve the control performance of target domain at the
same time that the improvement achieved in the source domain is much lower than the
one achieved by the DO LSTM-based PI. In addition, this also corroborates one of the
main ideas stated before: the better the conventional control performance, the better the
LSTM-based one. For that reason, the DO LSTM-based PI is the one considered to perform
the fine-tuning process. It is important to notice that the initial training of both structures,
the DO LSTM-based PI and the NO LSTM-based PI is not compulsory. In Figure 4b it is
clearly observed that the control loop offering the best performance corresponds to the PI
managing the DO control loop. Hence, the DO LSTM-based PI can be initially adopted
to be trained. Then, it will be transferred into the NO control loop and fined-tuned. As a
consequence, there is no need to train or even implement the NO LSTM-based PI.

120



Sensors 2021, 21, 6315

Figure 8. Control performance for the NO and DO control loops when the stormy weather is
considered. The LSTM-based PI managing the DO control loop is derived from the NO control loop
and transferred into the DO one.

4.4. LSTM-Based Controller Fine-Tuning & Transfer

Once the control performance of the DO and NO LSTM-based PI controllers is com-
puted one can clearly observe that the DO LSTM-based PI is the controller offering the
best control performance in both control loops. For that reason, the fine-tuning of the
DO LSTM-based PI controller is proposed. To perform this tasks, data coming from the
default SNO,2 PI controller is considered. In that sense, information about how to control
and manage the SNO,2 concentration is provided to the DO LSTM-based PI. Thus, the
fine-tuned version of the controller, the FTDO LSTM-based PI, should be able to improve a
better control performance in terms of the SNO,2 managing process.

Now, the prediction performance of the FTDO LSTM-based PI equals to a RMSE of
0.095 mg/L, a MAE of 0.067 mg/L, a MAPE of 6.24% and a R2 of 0.991. Its training time
equals to 20.27 s. At first sight one can observe that prediction performance is degraded
with respect to the DO and NO LSTM-based PI controllers. However, this degradation is
motivated by the fact that the proposed FTDO LSTM-based PI controller has learnt how to
correctly manage the SO,5 and SNO,2 concentration instead of a unique one. In addition,
the training time in this occasion equals to 20.27 s, which means that the time spent in the
fine-tuning process is largely reduced with respect to training the LSTM-based structure
from scratch. This effect is motivated by the information already present in the LSTM
structure, that is, the weights and biases of the blocked LSTM cells. This corroborates that
TL techniques can be adopted to simplify and speed up the control design process. Let’s
suppose that instead of transferring the knowledge of the DO LSTM-based PI into the NO
control loop and performing a fine-tuning process, we decide to control each loop with
its corresponding LSTM-based PI structure. The amount of time devoted to training the
networks correspond to 69.91 and 98.60 s for the DO and NO control loops, respectively.
This equals to a total time of 168.51 s only in terms of the training time. Although this time
is affordable, if the DO LSTM-based PI is transferred into the NO control loop, only 69.91 s
plus the time spent in the fine-tuning process, no more than 21 s is required. Thus, the
total amount of time invested in the design process equals to 90.18 s, which represents a
reduction of 78.33 s with respect to training two individual nets. Therefore, the reduction of
the training time is clearly observed. In addition, it is important to notice that the WWTP
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we are dealing with only considers two control loops. However, this reduction of time will
be higher in these situations where the number of control loops to design is larger. In that
sense, an estimation of the training time reduction can be performed. If we suppose that
the training time of the baseline LSTM-based PIs (from scratch) correspond to tbaseline and
that the time spent in the fine-tuning process on average equals to t f t, the reduction of time
(Δt) provided by our approach can be computed as:

Δt = N · tbaseline − [tbaseline + (N − 1) · t f t] = (N − 1)[tbaseline − t f t], (9)

where t f t � tbaseline. N equals to the number of control loops where the baseline LSTM-
based PI is the transfer. As it is observed, the higher the number of control loops to design,
the higher the reduction of time and the higher the benefit of the proposed methodology.
Not only this, but this methodology can also be applied in those situations where the
control of a new WWTP scenario has to be designed. In such a context, the new control
structure can be derived by transferring the knowledge of the control structure of an
already controlled WWTP. This would involve an even higher reduction of the complexity
and time required in the development of the control strategy. All these facts motivate us to
consider the TL methods in the design of the WWTP control loops.

In terms of the control performance, results of the FTDO LSTM-based PI control are
shown in Table 4, where the IAE and ISE values are computed for different weather profiles
and set-points. It is worth noticing that the SNO,2 is now managed by the fine-tuned
and transferred DO LSTM-based PI, that is, the FTDO LSTM-based PI, whereas the SO,5
concentration is managed by the DO LSTM-based PI.

Table 4. Control performance when the DO LSTM-based PI derived from the DO control loop is transferred into the NO
control loop. Then, the NO controller is fine-tuned with data from the default PI controller managing the SNO,2.

LSTM-Based Controller Fine-Tuning & Transfer

Fix Set-point

Dry Weather Rainy Weather Stormy Weather

Structure IAE ISE IAE ISE IAE ISE

PI—SO,5 0.143 0.007 0.143 0.007 0.158 0.007
DO LSTM-based PI—SO,5 0.004 5.12 × 10−6 0.008 2.43 × 10−5 0.006 1.76 × 10−5

PI—SNO,2 1.594 0.691 1.922 0.951 1.874 0.977
FTDO LSTM-based PI—SNO,2 0.091 0.002 1.150 0.625 0.357 0.151

Variable Set-point

PI—SO,5 0.185 0.016 0.155 0.014 0.206 0.020
DO LSTM-based PI—SO,5 0.013 1.99 × 10−4 0.017 3.91 × 10−4 0.017 3.72 × 10−4

PI—SNO,2 1.792 0.858 2.132 1.089 1.884 0.989
FTDO LSTM-based PI—SNO,2 0.129 0.004 0.643 0.261 0.324 0.122

When a fixed set-point is considered, one can observe that the control performance
is hugely improved not only in terms of the SO,5, but also in terms of the SNO,2. The
improvement of the DO control loop with respect to the default PI controller is translated
into an average reduction of the IAE around a 95.94% and an average reduction in the ISE
around a 99.78%. Thereby, this is translated in a better tracking process of the SO,5 and
consequently, a better management of this concentration. In terms of the NO control loop,
one can observe that the IAE and ISE are hugely improved as well. However, there is an
exception with the rainy weather. In this case, the SNO,2 IAE and ISE are only improved
a 40.17% and a 34.27%, respectively. This is motivated by the fact that the rainy weather
profile shows two large perturbation during days 9 and 11. Besides, the fine-tuning process
is performed with measurements obtained from the SNO,2 default PI controller when a
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whole year of randomly distributed weathers is simulated. Thus, this entails that most of
the knowledge provided to the DO LSTM-based PI consists in the control actuations to
manage the SNO,2 concentration when the dry weather is considered (remember that rainy
and stormy weathers are equal to the dry weather with the exception of the two rainy and
the two stormy episodes). On average, the NO control loop IAE and ISE are reduced by
73.47% and 72.84% with respect to the default SNO,2 PI control performance. The greatest
improvement is observed when the dry weather is considered. The IAE is reduced from
1.594 to 0.091, whereas the ISE is decreased from 0.691 to 0.002 (see Figure 9). In the case of
the rainy weather, the reduction of the IAE and ISE is lower, the IAE changes from 1.922
to 1.150 and the ISE from 0.951 to 0.625. Nevertheless, this IAE value corresponds to the
lowest NO control loop IAE value of the three TL approaches considered in this work.

Figure 9. Control performance for the NO and DO control loops when a SO,5 fix set-point and dry
weather are considered. The LSTM-based PI managing the NO loop is transferred from the DO
control loop and fined-tuned with data from the NO control loop.

Results of the control performance when a variable set-point is considered show the
same tendency as the fix set-point ones. The IAE and ISE metrics have been improved for
all the weather profiles. Again, the most important results are the ones corresponding to
the NO control loop, which is the controller whose control performance improvement is
sought with the fine-tuning process. In that sense, the best improvement is now observed
when the dry weather is simulated. The IAE has been decreased from 1.792 to 0.129, which
equals to an improvement of 92.80%. In terms of the ISE, it is decreased from 0.858 to
0.004, which represent an improvement of a 99.53%. It is important to notice that the
lowest control performance is obtained when the rainy weather is considered, the IAE
deceases from 2.132 to 0.643 while the ISE is reduced from 1.089 to 0.261. Although these
improvements are not so high as the ones achieved with the dry weather, they are still
much better than the performance obtained when the fine-tuning process is not carried
out. For instance, the IAE has been improved a 69.84% whilst the ISE has been improved a
76.03%. The IAE improvement represents an increase of 48.26 and 42.63 percentage points
with respect to the improvements achieved in the Transfer Learning from DO to NO and
from NO to DO. In terms of the ISE, these increments equal to 45.64 and 36.82 percentage
points, respectively. Visually, we can observe in Figure 10 that the SNO,2 desired value of
1 mg/L is obtained at the same time the SO,5 variable set-point is correctly tracked. In
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addition, the rainy episodes are plotted to show that the FTDO LSTM-based PI controller
requires some more knowledge to finally learn how to manage these events.

Figure 10. Control performance for the NO and DO control loops when a SO,5 variable set-point and
rainy weathers are considered. The LSTM-based PI managing the NO loop is transferred from the
DO control loop and fined-tuned with data from the NO control loop.

As a summary, the control performance is improved in all terms regardless of the
set-point topology and the weather profiles. This entail that the best option to design or
improve a control strategy of an industrial plant, and especially a WWTP, is to obtain a first
baseline controller, the DO LSTM-based PI, and then transfer its knowledge to the rest of
control loops. The main point is to design the baseline controller with data coming from the
controller performing better. In our case, this controller corresponds to the SO,5 default PI
controller. Then, the obtained DO LSTM-based PI is transferred into the remaining control
loops and fine-tuned with data coming from controllers actuating in the target domain.
Moreover, this approach entail that control loops can be designed without requiring a
high knowledge of the different processes carried out in the plant. Only input and output
measurements of a control strategy performing well are required. The rest of the control
loops will be derived from the implemented one. Thus, the higher the number of control
loops, the higher the benefit offered with this design approach. In our case, this benefit
is not widely exploded since we have only transferred the LSTM-based PI between two
control loops. However, this approach can be adopted in other scenarios where the number
of control loops is largely higher than the ones managed here. In that sense, the benefit of
this approach should be much higher than the one observed here.

Finally, the results observed in this manuscript motivates us to open a new research
line where the transfer learning approach presented here is considered as the initial process
of a reinforcement learning based control design. Then, instead of performing the fine-
tuning process with measurement coming from a conventional control approach, it could
be performed following a reinforcement leaning process. In that sense, the controller would
be fine-tuned over time, adapting its output to the incoming measurements.

5. Conclusions

In this work, we presented a new industrial control design process which involves
the application of LSTM-based neural networks and transfer learning approaches. The
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main purpose was to design and implement the control loops managing a general-purpose
WWTP. The application is specific; however, the design approach can be adopted in any
kind of industrial environment. The main idea is that TL techniques allow us to derive new
control strategies from a baseline one without performing a deep tuning process of each
control structure. This reduces the control design complexity, as well as the time invested
in the training process of each data-based control structure. Thus, the higher the number of
control loops, the higher the improvement achieved.

In our case, the proposed control design approach consists in two main processes:
(i) the design of a neural network-based controller with data obtained from an existing
control loop and (ii) the transfer of the controller knowledge into the remaining loops.
To achieve that, three different design approaches were proposed, two of them mainly
consisting in the design of the LSTM-based controller with data from a control loop and
then transferring it to the others without retraining the net structure. In that sense, we
considered the development of the LSTM-based PI controller either with measurements
from the SO,5 control loop or from the SNO,2 one, both from a general-purpose WWTP.
The third option considers the development of the LSTM-based PI with data from the
SO,5 control loop and the fine-tuning of its transferred version. Results show that there
exists a trade-off between deriving the LSTM-based PI with measurement from the SNO,2
or the SO,5 control loops. If the LSTM-based PI controller is derived with measurements
from the SO,5 control loop, one can observe that the SO,5 control performance is highly
improved with respect to the default PI controller regardless of the weather influent and
the considered set-point. In addition, the SNO,2 control performance experiences a slight
improvement as well. On the other hand, the NO control performance experienced an
improvement at expense of degrading the SO,5 control performance when the LSTM-based
PI transferred into the DO control loop is implemented with measurements from the NO
control loop. To solve this trade-off, we considered the third option, where the LSTM-based
PI derived from the SO,5 control loop was adopted and transferred into the DO control
loop. Its transferred version was fine-tuned with measurements coming from the default
PI controller managing the SNO,2 control loop.

Results show that a high improvement is achieved in the SO,5 control loop as well
as in the SNO,2 one. Besides, the lowest IAE and ISE improvements in terms of the SNO,2
when compared to the default SNO,2 PI controller equalled to 69.84% and 76.03% for the
IAE and ISE, respectively, which are even higher improvements than in the cases where the
fine-tuning process is not considered. This clearly shows that designing a LSTM-based PI
in a control loop, transferring it to another different one, and then performing a fine-tuning
process is the best option if a high level of improvement of the control performance is
sought. Besides, this also entails a speed-up and a complexity reduction of the control
design process since only the design and training of one control loop has to be performed.
Again, the higher the number of control loops to design, the higher the benefit obtained
following this design approach.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
ASM1 Activated Sludge Model N.1
BSM1 Benchmark Simulation Model No. 1
BSM1-P Benchmark Simulation Model No. 1 with Phosphorus processing
BSM2 Benchmark Simulation Model No. 2
bx Biases of the xth hidden layer
DO Dissolved Oxygen in the fifth reactor tank (SO,5) control loop
DO LSTM-based PI LSTM-based PI controller trained with data from the SO,5 control loop
FTDO LSTM-based PI DO LSTM-based PI fine-tuned with data from the SNO,2 control loop
IAE Integrated Absolute Error
ISE Integrated Squared Error
KLa,x Oxygen Transfer Coefficient of the xth reactor tank measured in day−1

LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Average Percentage Error
MLP Multilayer Perceptron
MPC Model Predictive Controller
NO Nitrate and nitrite nitrogen in the second reactor tank (SNO,2) control loop
NO LSTM-based PI LSTM-based PI controller trained with data from the SNO,2 control loop
PI Proportional Integral controller
PID Proportional Integral Derivative controller
Q0 Influent flow rate
Qa Internal recirculation flow rate
Qr External recirculation flow rate
R2 Determination coefficient
RMSE Root Mean Squared Error
SNO,x Nitrate and nitrite nitrogen in the xth reactor tank measured in mg/L
SNH,x Ammonium concentration in the xth reactor tank measured in mg/L
SO,x Dissolved oxygen concentration in the xth reactor tank measured in mg/L
TL Transfer Learning
Ux Weights affecting the previous output data of the xth hidden layer
WWTP Wastewater Treatment Plant
Wx Weights affecting the input data of the xth hidden layer
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Abstract: This paper proposes a novel interval prediction method for effluent water quality indicators
(including biochemical oxygen demand (BOD) and ammonia nitrogen (NH3-N)), which are key
performance indices in the water quality monitoring and control of a wastewater treatment plant.
Firstly, the effluent data regarding BOD/NH3-N and their necessary auxiliary variables are collected.
After some basic data pre-processing techniques, the key indicators with high correlation degrees
of BOD and NH3-N are analyzed and selected based on a gray correlation analysis algorithm.
Next, an improved IBES-LSSVM algorithm is designed to predict the BOD/NH3-N effluent data
of a wastewater treatment plant. This algorithm relies on an improved bald eagle search (IBES)
optimization algorithm that is used to find the optimal parameters of least squares support vector
machine (LSSVM). Then, an interval estimation method is used to analyze the uncertainty of the
optimized LSSVM model. Finally, the experimental results demonstrate that the proposed approach
can obtain high prediction accuracy, with reduced computational time and an easy calculation
process, in predicting effluent water quality parameters compared with other existing algorithms.

Keywords: water quality monitoring; data pre-processing; improved IBES-LSSVM algorithm;
interval prediction method

1. Introduction

Nowadays, freshwater is considered one of the most critical resources for humans,
since it can ensure the availability of an acceptable quantity of water for livelihoods, health,
ecosystems and production. Hence, freshwater plays a key role in poverty and disease
burden reduction, economic growth and environmental sustainability [1,2]. This fact has
long been acknowledged all over the world. However, due to industrial pollution, rapid
population growth and farmland sewage caused by the extensive use of chemical fertilizers,
pesticides and herbicides, the shortage of freshwater sources is a serious and challenging
issue [3,4].

Wastewater treatment is one key technology to potentially provide additional water
supplies, and it is very important for the functioning of the economy and society. Wastew-
ater treatment has been attracting a lot of attention, since it can not only remove organic
wastes to reduce the environmental burden, but also offer the advantage of producing a
renewable source of water [5,6]. Wastewater treatment is a very complex process with a
variety of physical and biochemical reactions since it presents nonlinear dynamic behavior,
time delay and uncertainty [7]. In wastewater treatment plant processes, effluent water
quality monitoring is an important task that involves measuring the evolution of the quality
parameters in time.

Note that most traditional methods of measuring these quality indicators for wastew-
ater treatment processes are based on manual lab-based monitoring approaches, with
manual sample collection, long-time transportation and biological/microbial testing in a
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laboratory, which is cumbersome and time-consuming. Usually, the testing equipment is
very expensive and cannot be used online. In addition, since the process of wastewater
treatment is complex, some control strategies are necessary and required to be deployed
to guarantee that effluent quality indicators behave normally. In recent decades, water
quality monitoring has been evolving to the latest wireless sensor networks [8], such that
most of the important indicators of effluent water (pressure, pH, level and so on) can be
measured by their corresponding sensors online. However, there are still some parameters
that cannot be measured quickly due to high costs and the limitations of sensors, such
as BOD and NH3-N. Usually, the concentration of the BOD/NH3-N effluent associated
with a wastewater treatment process is an important factor to measure the water quality
since the discharge of a large amount of NH3-N and BOD wastewater will lead to water
eutrophication, which can affect human health. In China’s “Pollutant Discharge Standard
for Urban Wastewater Treatment Plants (GB18918-2002)”, the Class A standard stipulates
that the maximum discharge for NH3-N is 5 mg/L, while for BOD, it is 10 mg/L. Thus,
measuring these effluent quality indicators with high accuracy is an important issue.

Researchers have focused on soft-sensing methods to predict these effluent quality
indicators and the prediction task is addressed combining data analytics and water quality
control. Soft-sensing methods aim to find some certain relationships between easy-to-
measure variables and difficult-to-measure variables in the sewage treatment process.
Then, a suitable model is established based on these relationships, and difficult-to-measure
variables can be predicted based on the soft-sensing models.

Machine learning approaches are usually considered a subset of artificial intelligence.
They focus on some statistical models and algorithms to extract patterns from data so
that useful inferences can be used to predict new data. Recently, with the development of
machine learning, artificial neural network (ANN), support vector machine (SVM), decision
tree, random forest, ensemble learning and many other methods have been researched
in depth and have a wide range of applications, including text processing, computer
vision, healthcare, finance and robotics. They can also be used for socio-economic and
environmental studies [9–12]. In [12], the impacts of flood protection in Bangladesh were
evaluated by machine learning methods. In [13], a gray model and ANN method were
investigated to predict suspended matter and chemical oxygen demand in the wastewater
treatment process. Cong et al. proposed a mixed soft sensor model based on a wavelet
neural network and adaptive weighted fusion for the online prediction of effluent COD [14].
M. Hamada carried out the assessment of a wastewater treatment plant’s performance
based on ANN and a multiple linear regression method [15]. M. Zeinolabedini et al. proved
that applying various parent wavelet functions to the neural network structure can improve
the accuracy of predicting the wastewater sludge volume [16]. A. K. Kadam et al. used
ANN and multiple linear regression to model and predict water quality parameters in river
basins [17]. S. Heddam et al. investigated a generalized regression neural network model
to predict the BOD of effluent in wastewater treatment plants [18]. Tan et al. predicted
the first weighting from the working face roof in a coal mine based on a GA-BP neural
network [19]. V. Nourani et al. proved that the prediction ability of a neural network
ensemble is more reliable [20].

Compared with the ANN method, SVM is another important prediction technique,
which can effectively solve the problem of high-dimensional data model construction
under the condition of limited samples, and has strong generalization ability. Hence,
many scholars have carried out a lot of research on SVM-based prediction. Cheng et al.
proposed a variety of kernel single-class SVMs to monitor and predict the intake conditions
of wastewater treatment plants [21]. Han et al. developed a neural network model for
predicting the sludge volume index based on information transfer strength and adaptive
second-order algorithms [22]. Wu et al. proposed an adaptive multi-output soft sensor
model for monitoring wastewater treatment and made several simulation comparisons to
prove the superiority of the algorithm [23]. K. Lotfi et al. used a linear–nonlinear hybrid
method to predict the effluent index of a wastewater treatment plant, which improves the
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prediction ability of the single method [24]. Han et al. proposed a data-based predictive
control strategy and proved its superiority through several simulations [25]. In [26], the
total solid content of a wastewater treatment plant was predicted by an SVM model, which
can enhance performance and durability.

Although SVM is a small-sample learning method and has been widely used to solve
the wastewater prediction problem, the calculation process is multifarious, which is difficult
to implement for large-scale training samples [27]. To overcome these disadvantages, the
least-squares support vector machine (LSSVM) has been proposed. LSSVM improves the
performance of the SVM algorithm by solving linear programming rather than quadratic
programming. In this way, the calculation process can be reduced and the computation
speed greatly improved [28]. Zhang et al. proposed an improved LSSVM model based on
SVM to predict river flow [29]. Fei Luo et al. integrated the Gustafson-Kessel algorithm and
least-squares support vector machine for line prediction of [30]. D. S. Manu et al. combined
SVM and an adaptive neuro-fuzzy reasoning system model to predict the effluent nitrogen
content of wastewater treatment plants [31]. Liu et al. investigated the online prediction of
effluent COD in an anaerobic wastewater treatment system based on principal component
analysis and the LSSVM algorithm [32].

Note that there are some unknown parameters in the kernel functions of LSSVM that
need to be selected in advance. Generally, these parameters are determined according to
experience, which may be time-consuming, and it is difficult to find the optimal parameters.
Nowadays, swarm intelligence optimization algorithms are researched extensively, since
the optimal solution can be found by swarm intelligence to perform a collaborative search
mechanism. The results of the combination of swarm intelligence optimization algorithms
and machine learning methods can be found in a large number of references. In [33],
a hybrid model of particle swarm optimization (PSO) and support vector machine is
proposed to predict the turbidity and pH value of sand filtered water in irrigation systems.
Han et al. use an adaptive PSO algorithm to design self-organizing radial basis function
neural networks to improve the accuracy and save time [34]. Chen et al. study the artificial
bee colony optimization back-propagation network to predict the water quality of a water
diversion project [35]. Fan et al. use the LSSVM model to improve the performance of
predicting the safety factor of a circular slope [36]. Mahdi Shariati et al. use the gray
wolf algorithm to optimize ELM model parameters to predict the compressive strength of
partially replaced cement concrete [37]. However, to the best of the authors’ knowledge,
these swarm intelligence methods may fall into local optima and do not find the global
optimal solutions.

Most of the above-mentioned methods only focus on point prediction, without pro-
viding information regarding accuracy. The prediction results have strong uncertainty
that affects the decision-making process, increasing the risk of not making good decisions.
Prediction interval (PI) is a standard tool for quantifying prediction uncertainty. PI not
only provides the range where the target value is most likely to exist, but also indicates its
accuracy. Yao et al. combined the mean variance estimation (MVE) method with a recur-
rent neural network to measure the uncertainty in prediction [38]. Yuan et al. combined
beta distribution with the PSO-LSTM model to obtain the wind power prediction interval
with high reliability and a narrow interval width, so as to provide decision support for
the safe and stable operation of power systems [39]. Liao et al. combined the bootstrap
method with the long and short memory network to realize the uncertain prediction of the
remaining service life of the machine [40]. Marin et al. obtained the prediction interval of
power consumption by combining the delta method with a fuzzy prediction model [41].
Sun et al. constructed a high-quality prediction interval based on the two-step method of
dual ELM and applied it to the scheduling of a gas system [42]. In recent years, a direct
interval prediction method called upper and lower bound estimation (LUBE) has been
proposed. The main idea of this method is to directly construct the upper and lower bounds
of PI by optimizing the coefficients of the neural network according to the interval quality
evaluation index. This approach can provide good performance and does not consider
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strict data distribution assumptions, such that it can provide more information about the
prediction results, which motivates the work of this paper.

The main objective of this paper is to obtain a soft-sensor-based interval prediction
method with high prediction accuracy and less computational time to predict the effluent
water quality parameters, which is significant for water quality monitoring and control. Aim-
ing at the online prediction of BOD/NH3-N effluent in a wastewater treatment plant within
a smart data-driven framework, the main contributions of this paper are the following:

• Data pre-processing methods, i.e., abnormal data elimination and normalization,
are taken into consideration after the data and their related auxiliary variables are
collected. Then, some key factors of the wasterwater quality indicators are selected
based on the gray correlation analysis algorithm.

• In order to improve the prediction accuracy of BOD/NH3-N effluent, a novel IBES-
LSSVM algorithm is proposed, in which an improved bald eagle search (IBES) opti-
mization algorithm is used to find the optimal parameters of the least-squares support
vector machine (LSSVM). The superiority of the proposed method is verified by com-
paring it with the existing soft-sensing models (such as GWO, WOA, PSO, SSA) using
some benchmark functions and providing higher prediction accuracy.

• In order to estimate the uncertainty of the model prediction results and make better
decisions, after obtaining the point prediction results, the interval prediction bounds of
effluent quality are also generated. Compared with some existing soft-sensing models,
the proposed interval prediction method can obtain a more accurate prediction range.

The structure of this paper is as follows: In Section 2, the problem description is given,
including the real data collection, data pre-processing and gray-correlation-analysis-based
data selection. Section 3 describes the model uncertainty analysis by using the proposed
IBES-LSSVM algorithm and LUBE algorithm. In Section 4, the simulation examples are
depicted, demonstrating the effectiveness of the proposed method based on the BOD and
NH3-N data. Section 5 draws the main conclusions of this paper.

2. Problem Description

In this paper, a soft-sensing-based method is investigated to analyze and predict the
water quality indicators, including three main aspects: data collection, data pre-processing
and data interval prediction. The main steps of the approach presented in this paper are
shown in Figure 1.

Under a smart data-driven framework, in order to predict water quality tendencies and
analyze the mechanisms behind the considered data sources, enough relevant experimental
data in real time must be collected based on the prediction quality indicators. Most collected
data may present several issues, such as data sparsity and data synchronization, among
others. After the data are collected, they must be pre-processed in advance by applying
several procedures, such as data cleaning, abnormal data elimination or normalization.
Then, correlation analysis from different dimensions of water quality indicators should be
considered to extract the relations between these auxiliary variables and find the key factors.

2.1. Data Collection

Due to the complexity of the wastewater treatment process and the large number
of parameters that need to be set, it is necessary to determine the characteristic variables
related to the water quality to be determined as auxiliary variables. The data that can
evaluate the quality or impact of water quality in wastewater treatment plants are mainly
divided into the following four categories [43]:

• Physical data: Physical properties are the ones that must be monitored throughout
the treatment process, including total suspended solids, temperature, conductivity,
transparency, total dissolved solids, etc.
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• Chemical data: Chemical water quality indices of the national comprehensive dis-
charge standard for water pollutants, including: pH, biochemical oxygen demand,
biochemical oxygen consumption, heavy metals, nitrates, etc.

• Biological data: Biomarkers include a variety of microorganisms in the water, such as
mayflies, E. coli, etc.

• Environmental data: Environmental data cover the whole process of water supply,
including indexes of weather, hydrology, soil or ecology.

Figure 1. Main steps of the proposed approach.

This paper focuses on a real wastewater treatment plant in Beijing, China, from August
2014 to September 2014 [7,44]. Two data sets are collected first, which are used to predict
the BOD/NH3-N effluent, separately. (1) BOD data set: containing 360 batches of data with
23 variables (including the BOD effluent parameters)—the detailed information is shown in
Table 1; (2) NH3-N data set: including 10 characteristic variables related to NH3-N effluent
parameters, as shown in Table 2.

2.2. Elimination of Abnormal Data

Data collected from wastewater treatment plants can contain erroneous values because
of improper instrument operation, human or environmental interference and other factors.
As a result, we need to analyze the collected data first, and eliminate some abnormal or
meaningless data.

In this paper, we use the 3σ criterion to handle the abnormal data of the two collected
data sets. The sample data are denoted as x1, x2, · · · , xn. ηi is used to represent the data
residual error. Then, the standard deviation is calculated as follows:

σ =

√√√√√ n
∑

i=1
ηi

2

n − 1
(1)

ηi = xi − x̄ (2)
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where n represents the number of elements in the data set, and x̄ is the data average.
If the residual error of particular data sample xi satisfies

|ηi| > 3σ (3)

this means that it corresponds to an abnormal sample and needs to be eliminated. Other-
wise, xi is accepted.

Table 1. Effluent BOD data set.

Number Auxiliary Variable

01 Influent pH (IPH)
02 Effluent pH (EPH)
03 Influent SS (mg/L)
04 Effluent SS (ESS) (mg/L)
05 Influent BOD (IBOD) (mg/L)
06 Influent COD (ICOD) (mg/L)
07 Effluent COD (ECOD) (mg/L)
08 Sludge settling ratio of biochemical tank (mg/L)
09 MLSS in biochemical tank (MLSS) (mg/L)
10 Biochemical pool Do (mg/L)
11 Influent oil (IOil) (mg/L)
12 Effluent oil (EOil) (mg/L)
13 Influent NH3-N (INH3-N) (mg/L)
14 Effluent NH3-N (mg/L)
15 Influent Chroma (IC) (d)
16 Effluent Chroma (EC) (d)
17 Influent TN (IT) (mg/L)
18 Effluent TN (mg/L)
19 Influent phosphate concentration (IPC) (mg/L)
20 Effluent phosphate concentration (mg/L)
21 Inlet water temperature (◦C)
22 Outlet water temperature (◦C)
23 Effluent BOD (EBOD) (mg/L)

Table 2. Effluent NH3-N data set.

Number Auxiliary Variable

01 Effluent TP (mg/L)
02 Influent TP (ITP) (mg/L)
03 Temperature (T) (◦C)
04 Anaerobic terminal ORP (ATORP) (mv)
05 Aerobic front end DO (mg/L)
06 Aerobic terminal DO (mg/L)
07 Total suspended solids TTS (TTS) (mg/L)
08 Effluent PH (EPH)
09 Effluent ORP (EORP) (mL)
10 Effluent nitrate (EN) (mg/L)
11 Effluent NH3-N (ENH3-N) (mg/L)

2.3. Data Normalization

Different variables often have different dimensions and dimensional units. In order to
eliminate the dimensional influence between indicators, it is necessary to normalize the
data to achieve uniformity among the different data indicators. There are four classes of
normalization methods, i.e., rescaling, mean normalization, standardization and scaling to
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unit length. In this paper, the rescaling method is selected. The normalization formula is
as follows:

x̃i =
xi − xi min

xi max − xi min
(4)

where xi is any value of a variable; xi min and xi max are, respectively, the minimum and
maximum value of the variable.

After this kind of normalization, all the values of the data are set in the range of [0, 1].

2.4. Correlation Degree Analysis

Since different characteristic variables will have different influences on the predicted
variables, to obtain a soft-sensing model with a simpler structure, it is necessary to choose
the quality indicators with high correlations. Selecting ḿ auxiliary variables from m
variable, it has ḿ < m. In practice, the larger m is, the smaller ḿ is compared to m.

In this paper, the gray relational degree analysis method is investigated to select the
characteristic variables of BOD and NH3-N effluents. Gray relational degree analysis is a
multi-factor statistical method, which describes the strength of the relationship between
various factors according to the gray relational degree. This method looks for the inconsis-
tency between quantitative results and quantitative analysis in the traditional mathematical
statistics method and reduces the amount of calculation.

The gray correlation coefficient is formulated as follows:

β =
∣∣x0(k)− xj(k)

∣∣ (5)

μj(k) =
min

j
min

k
β + ρ · max

j
max

k
β

β + ρ · max
j

max
k

β
(6)

where j means the j-th variable, k is the k-th iteration, x0(k) is the output variable, xj(k) is
the input variable, μj is the gray correlation coefficient and ρ is the resolution coefficient. If
ρ is smaller, the difference between correlation coefficients is larger, and the distinguishing
ability is stronger.

Then, the gray correlation degree can be calculated as follows:

γj =
1
n

n

∑
k=1

μj(k) (7)

where n is the number of variables.
If the gray correlation degree is larger, this means that the corresponding variable

has a higher correlation with the effluent quality indicators. Then, according to the gray
correlation degree, the characteristic variables are sorted from front to back. Usually, a
threshold is determined in advance as h̄, and then the key indicators can be selected as the
input of the soft-sensing model if

γj > h̄ (8)

is satisfied.

3. Methodology

In this section, a novel IBES-LSSVM method is proposed to find the optimal kernel
function parameters of the LSSVM in Figure 2.
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Figure 2. Flow chart of IBES-LSSVM model.

3.1. LSSVM Algorithm

The theory of LSSVM was first proposed by Suykens in 1994. LSSVM is a kernel
learning machine following the principle of structural risk minimization and is suitable for
analyzing the issue of sample classification and regression estimation [45].

In LSSVM theory, firstly, the sample data are mapped to higher dimensions through
nonlinear changes, and linear functions are used for fitting in this high-dimensional fea-
ture space:

y(x) = w · φ(x) + b (9)

where y(x) is the output variable, x is the input variables, and w and b are weight and bias
terms, respectively.

The optimization objectives of the LSSVM regression algorithm can be formulated as

minJ(w, ξi) =
1
2

wTw +
C
2

n

∑
i=1

ξ2
i

s.t. (10)

yi = w · φ(x) + b + ξi, i = 1, 2, · · · , n

where C is the regularization coefficient, ξi is the relaxation variable, and
n
∑

i=1
ξ2

i is the

experience risk.
By means of Lagrange multipliers αi, (10) can be expressed as:
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L(w, b, ξi, αi) =
1
2

wTw +
C
2

N

∑
i=1

ξ2
i

−
n

∑
i=1

αi[w · φ(x) + b + ξi−yi]

(11)

According to Karush–Kuhn–Tucker (KKT) optimization conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂b

= 0 ⇒
n

∑
i=1

αi = 0

∂L
∂w

= 0 ⇒ w =
n

∑
i=1

αiφ(xi)

∂L
∂ξi

= 0 ⇒ αi = Cξi

∂L
∂a

= 0 ⇒ w · φ(xi) + b + ξi − yi

(12)

By defining kernel functions, the optimization problem (11) can be transformed into a
linear solution issue:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 1
1 K(x1,x1)+1

C · · · K(x1, xn)
...

...
...

1 K(xn, x1) · · · K(xn ,xn)+1
C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
α1
...

αn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
y1
...

yn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

where K(x, xi) is the kernel function.
The Lagrange multiplier and its parameters can be obtained from (13). Therefore, the

output of LSSVM can be obtained:

ŷ(x) =
n

∑
i=1

αiK(x, xi) + b (14)

For LSSVM, there are many different types of kernel functions, such as linear function,
polynomial kernel function, radial basis function (RBF), sigmoid kernel function, etc.
Different kernel functions will produce difference types of LSSVM. In this paper, we select
RBF as the kernel function of the model:

K(x, xi) = exp(−‖x − xi‖2

2σ2 ) (15)

where σ is the variance of RBF.
Through the aforementioned analysis, LSSVM has two tunable parameters (regular-

ization coefficient C and variance of radial basis kernel function σ with RBF), which are
important and need to be determined. To obtain the optimal two parameters, the next step
is to use an improved PSO algorithm to optimize them.

3.2. IBES-LSSVM Algorithm

The BES algorithm is an optimization algorithm that simulates the hunting strategy of
vultures when looking for fish. It can obtain a single optimal solution through multiple
iterations and finally obtain the overall optimal solution, such that the position of the
optimal solution corresponds to the optimal parameter value.

BES hunting is divided into three stages. In the first stage (selection space), the eagle
selects the space with the largest prey number. In the second stage (spatial search), the
eagle moves in the selected space to find the prey. In the third stage (dive), the eagle swings
from the best position determined in the second stage and determines the best hunting.
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In the selection stage, firstly, this paper optimizes the initial prey position and adopts
the tent chaos strategy, which has the advantages of simple structure and strong ergodicity.
Then, the linear decreasing method is used to improve the control parameters of the vulture
iterative update position. The optimal model parameters of the model can be found that
improve the quality of the fitting. The tent chaotic mapping function is described as:

Pi+1 =

{
Pi/λ, Pi ∈ [0, λ)

(1 − Pi)/(1 − λ), Pi ∈ [λ, 1]
(16)

where λ is [0, 1].
Then, the vultures hunt for food. The formula is:

Pnew ,i = Pbest + R1 · C1 · (Pmean − Pi) (17)

where R1 is a parameter controlling the position change, and C1 is a random number
between (0, 1). Pbest is the current optimal location. Pmean is the average distribution
location of vultures after the previous search. Pi is the location of the i-th vulture.

In the search phase, vultures search for prey in the selected search space and move in dif-
ferent directions in the spiral space to speed up the search. The best position for subduction is:

Pi, new = Pi + b(i) · (Pi − Pi+1) + a(i) · (Pi − Pmean) (18)

where:

a(i) =
ar(i)

max(|ar|) (19)

b(i) =
br(i)

max(|br|) (20)

ar(i) = r(i) · sin[(θ(i))] (21)

br(i) = r(i) · cos[(θ(i))] (22)

r(i) = θ(i) + R2 · C3 (23)

θ(i) = π · ω · C2 (24)

ω = (1 − i
imax

)2 · (ωmax − ωmin) + ωmin (25)

where θ(i) and r(i) are the polar angle and polar diameter of the spiral equation, respec-
tively. ω and R2 are the parameters controlling the spiral trajectory. C2 and C3 are a
random number within (0, 1). The a(i) and b(i) represent the position of the vulture in
polar coordinates, and the values are (−1, 1).

During the dive phase, vultures swing from the best position in the search space to
their target prey. All points also move towards the best point according to

Pi, new = C4 · Pbest + a1(i) · (Pi − R3 · Pman)

+ b1(i) · (Pi − R4 · Pbest)
(26)

where:

a1(i) =
ar(i)

max(|ar|) (27)

b1(i) =
br(i)

max(|br|) (28)

ar(i) = r(i) · sinh[(θ(i))] (29)

br(i) = r(i) · cosh[(θ(i))] (30)

r(i) = θ(i) (31)
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θ(i) = π · ω · C5 (32)

where R3 and R4 represent the moving speed of the vulture to the optimal point. C4 and
C5 are random numbers within (0, 1).

3.3. Interval Prediction

The traditional point prediction cannot deal with the uncertainty in the operation of the
system. In order to obtain the numerical estimation and its reliability, the practical application
requires the calculation of the prediction interval. Interval prediction indicates the estimation
interval of the range of predicted values in a certain confidence interval. Therefore, the
prediction interval is composed of the upper and lower line of prediction, which provides its
accuracy within a certain confidence level. Assuming that the confidence level is (1 − μ)%,
l and u are the lower and upper limits, respectively, when P(l < y < u) = 1 − μ%, and PI
can be expressed as [l, u]. For a given confidence interval, the smaller the range of prediction
interval, the smaller the uncertainty of prediction and the higher the accuracy.

The evaluation indexes of interval prediction are as follows [46].
PICP: The ratio of the real value to the upper and lower bounds of the prediction interval

PICP =
1
n

n

∑
i=1

ci (33)

If the predicted value is within the [li, ui] range, ci is 1. Otherwise, ci is 0. If all
predicted values are included in the prediction interval, PICP = 100%. n is the number
of prediction points. In theory, PICP � (1 − μ)%; otherwise, PI is invalid or unreliable.
When comparing the PIs by the model, the other indexes should be as small as possible
under the condition that the PICP is as close to the confidence level as possible.

PINAW: The narrow PI has more information and practical value than the wide PI
according to

PINAW =
1

nR

n

∑
i=1

(ui − li) (34)

where R is the range of predicted values, respectively.
PINRW: Represents the standard square root width of the predicted interval. The

expression is:

PINRW =
1
R

√
1
n

n

∑
i=1

(ui − li)
2 (35)

CWC: In practical application, it is often hoped that a narrow prediction interval width
can still be obtained under the condition of high prediction probability, i.e., the prediction
interval range probability and interval width will conflict. Therefore, the comprehensive
index CWC is proposed:

CWC = PINAW
(

1 + �(PICP) · e−τ·(PICP−(1−μ))
)

(36)

where τ and μ are constants.
When working with training data, the set �(PICP) is 1. In addition, in data verification,

�(PICP) is a step function:

� =

{
0 PICP ≥ 1 − μ

1 PICP < 1 − μ
(37)

LUBE is a method based on neural networks to directly calculate the lower and upper
bound of the prediction interval. Assuming that the two node values of the output layer of the
neural network are the upper and lower limits of the interval, respectively, all the predicted
values are included in this range at the confidence level (1 − μ)%. The training purpose of a
neural network is to minimize the objective function CWC. In this way, the probability and
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width of the prediction interval are considered at the same time, and the advantages and
disadvantages of the prediction interval PI can be comprehensively evaluated.

The flow-chart of the proposed IBES-LSSVM algorithm is shown in Figure 2, which
mainly includes the procedure presented in Algorithm 1.

Algorithm 1 LUBE interval prediction based on IBES-LSSVM model.

Input: Measured data of wasterwater treatment plant.
Output: Prediction interval of BOD/NH3-N effluent.
Step 1: Abnormal data elimination, normalization of the data according to

Equations (1)–(4).
Step 2: Analyzing and selecting the key indicators with high correlation degree by

Equations (5)–(8).
Step 3: The bald eagle population is initialized by tent chaos strategy based on

Equation (16).
Step 4: Local optimal solution.
1: for all Xi do:
2: for all Xi do:
3: Obtain predicted value by means of Equations (9)–(15), (17).
4: end for
5: Using confidence, mean, standard deviation and other parameters, the prediction

interval is obtained according to norminv() formula.
6: Evaluate interval fitness by means of Equations (33)–(37).
7: end for
8: Obtain the local optimal solution.
Step 5 : Global optimal solution.
1: While t ≤ iter do:
2: for all Xi do:
3: Update parameter X, C, σ by using Equations (18)–(25).
4: Obtain different predictions by using Equations (9)–(15).
5: end for
6: Using confidence, mean, standard deviation and other parameters, the prediction

interval is obtained according to norminv() formula.
7: Judge and update by Equations (33)–(37).
8: for all Xi do:
9: Update parameter X, C, σ by using Equations (26)–(32).
10: Obtain different predictions by using Equations (9)–(15).
11: Using confidence, mean, standard deviation and other parameters, the prediction

interval is obtained according to norminv() formula.
12: Judge and update by means of Equations (33)–(37).
13: end for
14: t = t + 1
15: end while
16: Obtain the global optimal solution.
Step 6: Return the global optimal prediction interval.
Step 7: Output C, σ, fitness and other index values by using Equations (33)–(37), (38)–(41).

4. Simulation Results

In this section, the data sets of BOD/NH3-N effluents are collected from a wastewater
treatment plant in Beijing and are used to verify the effectiveness of the proposed approach.

The following evaluation indices of several certainty point predictions are evaluated
as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (38)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (39)
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MAE =
1
n

n

∑
i=1

|ŷi − yi| (40)

R2 = 1 − ∑n
i=1(ŷ − yi)

2

∑n
i=1(ŷ − ȳ)2 =

∑n
i=1(yi − ȳ)2

∑n
i=1(ŷ − ȳ)2 (41)

4.1. Experiment of Benchmark Functions

The proposed approach is based on the six functions listed in Table 3 with the corre-
sponding ranges and parameters. The range is the boundary of the function search space.

In order to verify the superiority of the proposed approach, it is compared with
the WOA, GWO, PSO and SSA algorithms. Statistical results are presented in Table 4.
Moreover, the iteration process is depicted in Figures 3–8. From the results, we can see that
the convergence rate of IBES is better than that of the other algorithms and the proposed
IBES method is able to provide competitive results on the benchmark functions.

Table 3. Benchmark functions.

Function Range Parameters

F1 F(x) = −∑10
i=1

[
(X − ai)(X − ai)

T + ci
]−1

[1, 10] dim = 4 popsize = 100 iteration = 300
F2 F(x) = −∑7

i=1
[
(X − ai)(X − ai)

T + ci
]−1

[1, 10] dim = 4 popsize = 100 iteration = 300
F3 F(x) = −∑5

i=1
[
(X − ai)(X − ai)

T + ci
]−1

[1, 10] dim = 4 popsize = 100 iteration = 300
F4 F(x) = −∑4

i=1 ci exp
(
−∑6

j=1 aij(xj − pij)
2
)

[0, 1] dim = 6 popsize = 100 iteration = 200

F5 F(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij(xj − pij)
2
)

[1, 3] dim = 3 popsize = 100 iteration = 120

F6 F(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
[−65, 65] dim = 2 popsize = 100 iteration = 180

Table 4. Simulation results of algorithms.

GWO PSO WOA SSA IBES Theoretical Value

F1 −10.5364 −105364 −10.5364 −10.5364 −10.5364 −10
F2 −10.4042 −10.4029 −10.4029 −10.4029 −10.4029 −10
F3 −10.1561 −10.1532 −10.1576 −10.1532 −10.1532 −10
F4 −3.3220 −3.3311 −3.3231 −3.3220 −3.3220 −3
F5 −3.8628 −3.8628 −3.8627 −3.8628 −3.8628 −3
F6 0.9980 0.9980 0.9980 2.9821 0.9980 1

Figure 3. The result of F1.
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Figure 4. The result of F2.

Figure 5. The result of F3.

Figure 6. The result of F4.
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Figure 7. The result of F5.

Figure 8. The result of F6.

4.2. Experiment of BOD Data

BOD is one of the most important effluent quality indexes and can reflect the water
pollution situation [7]. First, the key auxiliary variables are selected for the BOD effluent
data set by calculating the gray correlation degree based on (7). The threshold of the gray
correlation degree is chosen as 0.8. Hence, 14 auxiliary variables (as shown in Table 5)
are selected as the soft measurement model inputs. Including the output effluent BOD,
there are 15 key indicators; the detailed information is shown in Figure 9. Moreover, the
description of each datum is given in Figure 10.

In this paper, the BOD effluent data set has 365 sets of data; among them, 335 sets
of data are randomly selected as training samples, and the remaining 30 sets of data
are treated as the prediction samples. In order to demonstrate the superiority of the
proposed IBES-LSSVM method, it is compared with some existing results, i.e., CNN, LSTM,
ELMAN, WOA-LSSVM, GWO-LSSVM, PSO-LSSVM and SSA-LSSVM. In the experiments,
the initialization conditions are set as: iter is 50, n = 30, ωmax = 10, ωmin = 0, R1 = 1.8,
R2 = 1, R3 = 1.5, R4 = 1.5.
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Figure 9. Auxiliary variables of BOD.

Figure 10. Original data of BOD.

Table 5. Data after processing.

Number of Coefficient Auxiliary Variable Correlation

1 Influent BOD 0.9179
2 Effluent COD 0.9151
3 Influent TN 0.9119
4 Effluent pH 0.8878
5 Influent NH3-N 0.8826
6 Influent pH 0.8716
7 Influent COD 0.8676
8 Influent Chroma 0.8669
9 Influent oil 0.8562

10 Effluent SS 0.8556
11 Effluent oil 0.8519
12 Effluent Chroma 0.8415
13 Influent phosphate 0.8397
14 MLSS in biochemical tank 0.8037

From Tables 6 and 7 and Figures 11–13, we can see that, compared with the existing
CNN model, LSTM model, ELMAN model, WOA-LSSVM model, GWO-LSSVM model,
PSO-LSSVM model and SSA-LSSVM model, the prediction accuracy of the proposed
method is better, demonstrating its effectiveness.
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(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 11. 99% of BOD.

(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 12. 95% of BOD.

145



Sensors 2022, 22, 422

(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 13. 90% of BOD.

Table 6. Predictive index of BOD.

Model MSE RMSE MAE R2

CNN 0.0847 0.1500 0.1115 0.9503
LSTM 0.1310 0.2985 0.2330 0.8132

ELMAN 0.2425 0.3120 0.2523 0.7849
GWO-LSSVM 0.0659 0.0217 0.0182 0.9889
WOA-LSSVM 0.0711 0.1831 0.1521 0.9693
PSO-LSSVM 0.0587 0.1049 0.0851 0.9757
SSA-LSSVM 0.0726 0.2371 0.1707 0.9758

IBES-LSSVM 0.0201 0.0104 0.0103 0.9911

Table 7. PI of BOD.

μ = 90% μ = 95% μ = 99%

PICP PINRW CWC PINAW Time PICP PINRW CWC PINAW Time PICP PINRW CWC PINAW Time

CNN 0.9298 0.2731 0.2731 0.2348 41.489 0.9617 0.3848 0.3848 0.3325 42.940 0.9911 0.2841 0.2841 0.2413 46.076
LSTM 0.9124 0.3632 0.3632 0.3112 27.486 0.9609 0.3796 0.3796 0.3254 27.731 0.9913 0.3554 0.3554 0.3020 27.821

ELMAN 0.9073 0.2978 0.2978 0.2474 316.316 0.9549 0.2573 0.2573 0.2202 241.446 0.9909 0.2571 0.2571 0.2132 90.582
WOA-LSSVM 0.9104 0.2663 0.2663 0.2325 1.686 0.9633 0.2697 0.2697 0.2346 1.873 0.9909 0.2673 0.2673 0.2245 1.654
GWO-LSSVM 0.9099 0.2557 0.2557 0.2241 1.396 0.9587 0.2668 0.2668 0.2355 1.389 0.9911 0.2689 0.2689 0.2254 2.012
PSO-LSSVM 0.9111 0.2519 0.2519 0.2198 1.029 0.9544 0.2596 0.2596 0.2155 0.967 0.9908 0.2773 0.2773 0.2277 0.963
SSA-LSSVM 0.9072 0.2901 0.2901 0.2543 1.428 0.9563 0.3178 0.3178 0.2613 1.410 0.9907 0.2961 0.2691 0.2245 1.599

IBES-LSSVM 0.9053 0.2468 0.2468 0.2007 1.406 0.9531 0.2569 0.2569 0.2064 1.432 0.9907 0.2569 0.2569 0.2111 1.207

4.3. Experiment of NH3-N Data

In this experiment, the NH3-N effluent data set is considered, which has been de-
scribed in [44]. First, the gray correlation degree is calculated from (7), and the results are
presented in Figure 14. In addition, each selected auxiliary datum of the NH3-N data set is
shown in Figure 15.
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Figure 14. Auxiliary variables of NH3-N.

Figure 15. Original data of NH3-N.

In this example, the threshold of the gray correlation degree is also chosen as 0.8; hence,
7 auxiliary variables (as shown in Table 8) are selected as the soft measurement model
input. The experimental data of effluent NH3-N used in this paper are from a sewage
treatment plant in Beijing. In total, 237 sets of data were obtained, including 200 sets of
data that were randomly selected as training samples, and the remaining 37 sets of data
were treated as the prediction samples.
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Table 8. Data after processing.

Number of Coefficient Auxiliary Variable Correlation

1 Influent TP 0.8730
2 Anaerobic terminal ORP 0.8726
3 Effluent PH 0.8693
4 Temperature 0.8659
5 Total suspended solids TTS 0.8525
6 Effluent ORP 0.8257
7 Effluent nitrate 0.8143

In order to demonstrate the superiority of the proposed BES-LSSVM method, it is
compared with some existing approaches, i.e., CNN, LSTM, ELMAN, WOA-LSSVM, GWO-
LSSVM, PSO-LSSVM and SSA-LSSVM. In the experiments, the parameters are set as
follows: iter is 50, n = 30, ωmax = 10, ωmin = 0, R1 = 1.8, R2 = 1.2, R3 = 1.8, R4 = 1.8.

From Tables 9 and 10 and Figures 16–18, we can see that, compared with the existing
CNN model, LSTM model, ELMAN model, WOA-LSSVM model, GWO-LSSVM model,
PSO-LSSVM model and SSA-LSSVM model, the prediction accuracy of the proposed
method is the best, demonstrating its effectiveness.

Table 9. PI of NH3-N.

μ = 90% μ = 95% μ = 99%

PICP PINRW CWC PINAW Time PICP PINRW CWC PINAW Time PICP PINRW CWC PINAW Time

CNN 0.9231 0.53951 0.53951 0.50111 29.991 0.9619 0.49776 0.49776 0.46854 32.446 0.9919 0.52063 0.52063 0.48445 31.703
LSTM 0.9182 0.49437 0.49437 0.44235 22.176 0.9588 0.42320 0.42320 0.37824 22.637 0.9921 0.53185 0.53185 0.50111 21.272

ELMAN 0.9066 0.38637 0.38637 0.34255 6.661 0.9580 0.37625 0.37625 0.32142 3.175 0.9912 0.42032 0.42032 0.38764 3.120
WOA-LSSVM 0.9197 0.49711 0.49711 0.45739 1.547 0.9581 0.46106 0.46106 0.42131 1.711 0.9913 0.47562 0.47562 0.41121 1.584
GWO-LSSVM 0.9227 0.51067 0.51067 0.46174 1.346 0.9601 0.51117 0.51117 0.47894 1.166 0.9913 0.51776 0.51776 0.45669 1.163
PSO-LSSVM 0.9241 0.48209 0.48209 0.45394 0.959 0.9604 0.47815 0.47815 0.42756 0.797 0.9917 0.49209 0.49209 0.46401 0.801
SSA-LSSVM 0.9112 0.40579 0.40579 0.35752 1.363 0.9574 0.38947 0.38947 0.34556 1.184 0.9909 0.38777 0.38777 0.36454 1.142

IBES-LSSVM 0.9037 0.34531 0.34531 0.30989 1.354 0.9556 0.34906 0.34906 0.31128 1.181 0.9907 0.34677 0.34677 0.31001 1.366

(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 16. 99% of NH3-N.
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(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 17. 95% of NH3-N.

(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 18. 90% of NH3-N.

Table 10. Predictive index of NH3-N.

Model MSE RMSE MAE R2

CNN 0.1874 0.1711 0.1450 0.8932
LSTM 0.1138 0.2131 0.1663 0.7666

ELMAN 0.0954 0.1846 0.1564 0.7872
GWO-LSSVM 0.0997 0.0895 0.0628 0.7280
WOA-LSSVM 0.1929 0.2371 0.1709 0.8959
PSO-LSSVM 0.1312 0.1722 0.1247 0.8922
SSA-LSSVM 0.1196 0.1958 0.2037 0.8117

IBES-LSSVM 0.0917 0.0645 0.0450 0.8967
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5. Conclusions

This paper investigates an improved IBES-LSSVM algorithm to predict the effluent
water quality indicators of a wastewater treatment plant, in which an improved BES
method is proposed to find the optimal LSSVM parameters. To deal with the uncertainties
of the data, the prediction interval is generated within a certain confidence level, which
could provide the upper and lower bounds of the prediction results. Compared with other
existing methods, the proposed approach demonstrates high prediction accuracy, with
reduced computational time and an easy calculation process, in predicting effluent water
quality parameters. Note that the proposed results can only predict the water quality
indicators, but this is not the end work for a wastewater treatment plant process. The
application of this work to reliable decision-making and the generation of a suitable control
strategy will be our future work.
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Abstract: In semi-arid ecoregions of temperate zones, focused snowmelt water infiltration in topo-
graphic depressions is a key, but imperfectly understood, groundwater recharge mechanism. Routine
monitoring is precluded by the abundance of depressions. We have used remote-sensing data to
construct mass balances and estimate volumes of temporary ponds in the Tambov area of Russia.
First, small water bodies were automatically recognized in each of a time series of high-resolution
Planet Labs images taken in April and May 2021 by object-oriented supervised classification. A
training set of water pixels defined in one of the latest images using a small unmanned aerial vehicle
enabled high-confidence predictions of water pixels in the earlier images (Cohen’s K = 0.99). A
digital elevation model was used to estimate the ponds’ water volumes, which decreased with
time following a negative exponential equation. The power of the exponent did not systematically
depend on the pond size. With adjustment for estimates of daily Penman evaporation, function-based
interpolation of the water bodies’ areas and volumes allowed calculation of daily infiltration into the
depression beds. The infiltration was maximal (5–40 mm/day) at onset of spring and decreased with
time during the study period. Use of the spatially variable infiltration rates improved steady-state
shallow groundwater simulations.

Keywords: closed depressions; temporary water bodies; remote sensing; infiltration

1. Introduction

Shallow groundwater is present in many semi-arid landscapes across the world either
intermittently or permanently, depending on the lithological profile, topography, and water
balance. Unlike in wetter environments with diffuse groundwater recharge, recharge in
these environments is primarily focused (local) in areas of excess water input [1]. In such
environments, where moisture deficits in upland soils are high, groundwater recharge will
only occur if there is sufficient infiltration of converging flow to overcome the deficits. One
mechanism involved is a localized recharge process that routes surface water runoff within
the landscape to topographically low areas (depressions), allowing infiltration of water
through ephemeral seasonal ponds [2–4]. Moreover, depression-focused recharge driven by
snowmelt is a major annual hydrological event in cold semi-arid regions such as the Pothole
Prairie Region of North America. In recent decades, there has been an accelerated increase
in process understanding of the contributions of prairie potholes to surface runoff [5,6] and
depression-focused groundwater recharge [3] in this part of North America. The knowledge
has been acquired through studies involving conceptual and mathematical modeling of
hydrological processes of surface flows [5–7], subsurface flows and combinations of the
two [8,9], applications of isotopic and environmental tracers [3], digital elevation model
(DEM)-based delineations of depressions and their watersheds [10–14], assessments of
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hydrologic connectivity [6,10,15–17], and remote sensing with high and intermediate
resolution [18,19]. Studies in various catchments have shown that both horizontal and
vertical connectivity in pothole hydrological systems are very site-specific and no model
can be applied to a new system without validation.

In Russia, areas rich in pothole-like systems of depressions (“zapadiny”) in interfluves
of forest-steppe catchments cover a larger region than in North America, extending across
much of European Russia and into Siberia. However, after an initial period of intensive
hydrological research in the 1960s to the 1980s there was very little study of depression-
focused groundwater recharge despite advances in GIS-facilitated simulation and remote
sensing. Moreover, there is increasing societal need for such studies to enhance the un-
derstanding of key landscape functions related to water storage or movement, e.g., water
capacitance, carbon sequestration, and both nutrient retention and cycling [17,20] and
precision agricultural management. With some justification, early studies noted similarities
between prairie potholes and forest-steppe zapadiny. However, before applying tools
developed in North American research to Russian systems, there is a need for quantitative
evaluation of concepts that emerged in earlier local studies.

One of the key hypotheses developed during the 1960s is that the major source of
recharge for shallow groundwater in areas such as the Oka-Don Lowland of the Tambov
region in European Russia is depression-focused infiltration during snowmelt [21]. In a
very recent study an indirect method was used to calibrate the groundwater recharge to
hydraulic conductivity ratio for application in an analytical steady-state solution of the 2D
shallow groundwater flow equation using soil redoximorphic features of typical classified
catenas of the Samovetc catchment in this lowland [22]. In the cited study, the same
recharge rate was prescribed for all points along a topographical transect. In contrast, in the
study presented here, the spatial variability of depression-focused groundwater recharge
along the transect was studied in a field campaign in spring 2021 during, immediately after
snowmelt, and several weeks later.

There is no single method for classifying remote-sensing data for the ponds’ retrieval.
The methods and materials used vary greatly depending on the region of study, season
of the year, image resolution or type of the pond. In terms of wavelengths used in the
electromagnetic spectrum, they are visible (RGB), near infrared (NIR), shortwave infrared
(SWIR) and thermal infrared (TIR) [23,24]. In addition to optical methods, data from
RADAR and LIDAR are also used [25]. Methods for extraction of small water bodies are
divided into four groups. The first group is the threshold methods, the essence of which is
the discretization of individual spectral channels or spectral indicators based on expert or
experimental threshold values [26,27]. The second group of methods are statistical methods,
such as those using multivariate regression or discriminant analysis. Classification methods
(the third group) are a matrix of combinations of different methods—this is a pixel or object-
oriented approach, classifications with or without training, various classification machines;
for example: a random forest or support vector machine, neural algorithms [28–32]. There
are also various special techniques (group four) such as entropy-based computer vision
techniques [33].

In this work, remote-sensing data were used to construct a mass balance and estimate
volumes of ephemeral ponds by object-oriented supervised classification of high-resolution
Planet Labs images of the Tambov area acquired from April to May 2021. The data acquired
on dynamic changes in delineated ponds, in combination with a DEM, observations using
an unmanned aerial vehicle (UAV), a widely accepted method for calculating evaporation,
and visual hydrological observations were used to estimate infiltration volumes and rates
through the depression bottoms and account for their spatial and temporal variability.
Considering that groundwater recharge from the depressions’ bottom is very area-focused
and occurs episodically during the snowmelt, the process is not usually accounted for in
the regional-scale evaluation of the groundwater resources in Tambov region. To include
the impacts of spatial heterogeneity and dynamic fluctuation the depression-focused
infiltration may be modeled numerically [8]. To examine the early hypothesis [21] on a
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critical role of depressions in ground-water recharge in a forest-steppe region through
the simplified approach for estimating recharge, this paper aims: (1) to determine the
variations of the pond recession and infiltration rate in time and between the depressions
due to systematic (vertically-varying hydraulic conductivity) and random factors (presence
of clogging or frozen layers, pond- surface drainage network connection); (2) to determine
the role of such spatial variations through numerical analysis of shallow groundwater
model for the simplified 2D case; and (3) to determine a method for calculating the volume
of recharge through depression in other catchments both with and without the requirement
of numerical modeling and data assimilation. The result allowed identification of the
volume of intercepted water during snowmelt and calculation of the rate of water recession
and infiltration rates in closed depressions for the first time for the study region. Use of
the horizontal variation in parameters obtained along the studied transect substantially
improved results of the shallow ground water model developed in the cited study [22].

2. Materials and Methods

Remote-sensing data were used to construct a mass balance and estimate volumes
of ephemeral ponds by object-oriented supervised classification of high-resolution Planet
Labs images of the Tambov area acquired from April to May 2021. The data acquired on
dynamic changes in delineated ponds, in combination with a DEM, observations using an
unmanned aerial vehicle (UAV), a widely accepted method for calculating evaporation,
and visual hydrological observations were used to estimate infiltration volumes and rates
through the depression bottoms and account for their spatial and temporal variability.
The acquired time series of changes in the volume of nine temporary ponds enabled
parametrization with a negative exponential curve. A time series of the infiltration rate,
calculated from the water balance, was used to estimate the total amount accumulated
during the event, and both the initial (maximum) and saturated (minimum) infiltration
rates per unit area.

2.1. Study Area

The study area covers approximately 560 ha in the center of the Oka-Don lowland
(52◦37′ N, 40◦2′ E) in the Petrovsky district of the Tambov region, Russia (Figure 1). The
lowland is the largest in the forest-steppe biome. With elevation ranging from 120 to 180 m
above sea level, on average it is 100 m lower than adjacent territories. The lowland has a
semi-arid climate with long winters, pronounced spring snowmelt events and relatively
dry summers with an annual precipitation to potential evapotranspiration ratio of 0.8.
According to data recorded at a meteorological station 10 km north of the study site,
during the period 2005–2020 the annual temperature was 6.9 ◦C, and average monthly
temperatures in January and July were −8.6 ◦C and 21.0 ◦C, respectively [34]. Mean annual
precipitation during this period amounted to 550 mm (of which 113 mm fell during periods
with sub-zero temperatures), and the mean snow height before onset of snowmelt was
320 mm, very similar to the recorded historical climatic norm for 1961–1990 (290 mm).

The soils are mainly chernozems and the area is mainly used for cultivating crops
(typically wheat, corn, sunflower, soy, sugar beet), despite hindrance by water shortages.
Clay and loamy deposits, generally 5–15 m (but sometimes up to 40 m) thick, with boulders
of glacial origin, underlie a layer of loess-like loam with thickness ranging from 2 m in the
lower parts of slopes to 30 m in the interfluve. The upper layer is porous and can both
accumulate and retain moisture, while the glacial clays and loams form a local aquiclude
for infiltrated surface waters. Shallow groundwater above this aquiclude is permanent and
forms a continuous layer in the focal catchment. Evidence of stagnic condition in topsoil is
restricted to the presence of albic material in the lower part of the humus horizon in grey
gleysols in the depression bottom. There is clear evidence of gleyic conditions in the soil
morphology (Fe-Mn concretions, Fe masses, pore lining, reduced matrix) in the catchment
and continuous presence of water saturation below 2–3 m depth in the poorly drained soils
and 1 m depth in the waterlogged soils. The latter was confirmed by a few cases of drilling
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in different years and seasons (the WTD is consistently highest after the springflood) and
automated measurements in 2019 (a year with extremely low snow accumulation). Physical
properties of the surface loams have contributed to development of closed depressions of
multifactorial genesis, which are widely spread throughout the Oka-Don lowland. These
depressions delay the runoff of surface waters into rivers [21] and transfer surface runoff
to groundwater, thereby replenishing the groundwater and moistening the surrounding
soil. The closed depressions are filled with water in the spring when the snow melts. Snow
located in the catchment area of each basin melts and replenishes it, usually in mid-March
to early April. At the end of spring, surface water only remains in small parts of the
depressions, and in summer they usually dry up completely, in contrast to the closed
depressions of the Pothole Prairie Region. Monitoring the dynamics of water volume and
its filtration enables estimation of amounts of valuable additional moisture entering the
soil in this semi-arid region.

Figure 1. The study area. (a) Location of the study area in the forest-steppe biome of Eurasia. (b) Location of the study area
in the catchment of the Matyr River-Oka-Don Lowland (SRTM). (c) Digital elevation model (DEM) of the interfluve of the
Samovets brook; the studied territory of the depressions is marked with a rectangle. (d) Unmanned aerial vehicle (UAV)
DEM of the study area, the numbers indicate numbers of closed depressions filled with pond water in the spring of 2021
(for details, see Table 2).
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2.2. Input Data

Water dynamics in a closed depression in spring 2021 was tracked and modeled using
the following three types of data (Figure 2): ultra-high resolution (25 cm) digital terrain
and elevation models obtained using a small UAV—DJI Mavic 2 Pro, orthophotomaps of
terrain in the visible range with a ultra-high resolution (25 cm) from UAV, orthophotomaps
of high resolution (3 m) in the visible range from the sensors of the RapidEye and SkySat
mini-satellites of the Planet Labs system [25]. Precipitation data were obtained from the
nearest weather station with daily resolution. Evaporation data from the water surface was
obtained using Penman’s equation and meteorological input from the same station.

Figure 2. Sources of spatial data. (a) High-resolution DEM obtained photogrammetrically with colors indicating heights.
(b) Planet Labs’ digital images of terrain in the visible spectrum with 3 m resolution. (c) High-resolution digital image
obtained using the UAV in the visible spectral range.

In this study we used stereophotogrammetry, i.e., estimation of three-dimensional
coordinates of points on an object from two or more photographic images taken from
different positions by the small UAV. In this article, we used a standard method for
constructing a digital terrain model using a small UAV with an accuracy of 0.03 m (hereafter,
the UAV DEM).

For this, we used the Mavic 2 Pro routing app (DroneDeploy.com). Geolocation
markers were located on the ground, and their positions were determined using the
STONEX GNSS system (flight altitude, 150 m; image overlap, 75%). We processed the
data using Agisoft Metashape and created a dense point cloud to generate a digital terrain
model. We manually filtered points associated with agroforestry areas within the fields
in ArcGis Pro using the field mask and the vegetation mask. The masks were obtained
by manual decoding the UAV materials. Orthophoto maps generated from free satellite
photos obtained via Bing were used to identify trees. Points related to heights of the trees
were removed. A digital model of the territory with 25 cm resolution was created from the
remaining point cloud using the kriging interpolation tool in ArcMap. An orthomosaic
was created in Agisoft Metashape and exported with 25 cm resolution.

A time series of high-resolution visible orthomosaics (with 1–3 m resolution) at times
when there was no cloud cover, from the beginning of spring snowmelt to the drying up of
temporary water bodies in early summer were downloaded from Planet Labs Inc. Images
of the scenes were downloaded when there was no cloud cover, from the beginning of
spring snowmelt to the drying up of temporary water bodies in early summer.
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2.2.1. Delineation of Water Bodies

Orthophotomaps generated using an UAV allow correct interpretation of water sur-
faces, as they can be visually inspected to delineate water/dry surface boundaries accu-
rately. Orthomosaic maps from Planet Labs have lower resolution and higher atmospheric
noise. Therefore, we used the Interactive Supervised Classification tool in the ArcGIS
Pro desktop application to delineate water bodies in them. For this we created a water
feature training set from the ultra-high resolution orthomosaic, and used it to enable au-
tomatic recognition of water bodies in the Planet Labs orthomosaics via object-oriented
supervised classification, as implemented in the ArcGis Pro raster classification tool [35]. It
is well established that object-oriented classification is superior to pixel-based classifica-
tion for high-resolution images [36], and it has been previously used to delineate similar
depression-shaped natural systems [37,38].

The classification involved the following steps. First, the analyzed raster layer was
constrained by a field cadastral border [39] buffered 15 m on each side to prevent inclusion
of objects rather than a bare soil surface without water (e.g., an agricultural field with
no vegetation in early spring) and surfaces that may be flooded with water. Masking
was applied to avoid possible classification errors by excluding unnecessary objects (trees,
roads, buildings, etc.). The second step was imaging segmentation, based on a mean shift
procedure, by criteria of the minimum segment size expressed in pixels [40,41] implemented
in ArcGIS Pro, to merge adjacent pixels of relative homogeneity—preferentially based on
spectral (color) characteristics—into image objects. Unitless segmentation scale parameters
determining the average size of objects governing the degree of homogeneity allowed for
pixel merging was set to 10 on the RGB scale. The third step was creation of a training
set. As summer approaches, ponds in the depressions always shrink (Figure 3). Thus,
water surfaces present on the date of a UAV flight were always present on the preceding
dates, and three training samples were created for groups of dates before each UAV
survey (Figure 3). Each training sample contained two categories: water and soil surface.
Finally, the random forest (RF) method [42,43] and support vector machine (SVM) [44]
for supervised classification of segmented images was applied, yielding a binary (water–
not water) raster. The testing set from the next UAV survey was used to validate the
resulting binary models. This enabled identification of the water surface areas in each
period. However, in the classified images, the boundary of the ponds does not have a
constant height relative to the DEM of the UAV. To avoid this unnatural variation of height
the classified raster was transformed into a vector containing only water polygons. Along
the outer boundary of the water polygon, the DEM values of the UAV were sampled with
a frequency of 25 centimeters. The median was calculated from the extracted values. The
contour was then drawn for the second time, now in accordance with the average value
on the UAV DEM, thus, the outer boundaries of the ponds were forced to have a constant
height value. The described procedure allowed us to avoid misclassification of the Planet
Labs mixed pixels due to relatively low resolution as we operated with the vector area,
not the raster area. For the comparison purely pixel-based classification was also made.
The DEM and water polygons vector were used to calculate the volume of water in each
depression on the days the images were taken. We used the Surface-Volume tool from
ArcGIS Pro to calculate the area and volume between the surface and the reference plane
(Polygon Volume (3D Analyst). This provided the water content in each depression in
cubic meters on each of the days.

The maximum surface water area of a depression corresponds to the volume of water
up to its overflow point, defined here as the minimum value of the height in the UAV DEM
along its drainage basin vector boundary [45]. The watershed boundary was defined by the
Basin tool in ArcGis based on the raster of the flow direction, derived from the UAV DEM
using the “Direction of flow” tool in ArcGis Pro. The water layer (mm) in the catchment
area of each depression required for its maximum volume is equal to its total maximum
volume of water divided by its entire catchment area.
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Figure 3. Schematic illustration of the water surface classification method. The arrow at the bottom indicates the general
trend of depressions drying (from left to right) in spring. The green dashed lines around the blue areas show the extent of
the water as photographed by the UAV on the control dates (22 April, 15 May and 2 June). The gray color indicates the
water surface resulting from object-oriented image classification trained on a subset of points from the later control surveys
by the UAV. Three time intervals were used for the training. The green shading at the end is the area searched for a water
mirror surface by the UAV on a day when the pond had already disappeared (light red fill).

2.2.2. Evaporation

Results of a previous comparison suggest that all of three conventional methods for
estimating evapotranspiration from water-filled and vegetated depressions have acceptable
applicability for estimating evaporation from open water [46]. The most convenient of
these methods, the classical form of the Penman equation [47,48], was used in this study to
estimate potential evaporation:

EPEN =
Δ

Δ + γ

Rn

λ

γ

γ + Δ
6.43EA

λ
, (1a)

Here: EPEN is potential (open water) evaporation (mm/d); Rn is net radiation at the
surface (MJ/m2/d); Δ is the slope of the saturation vapor pressure curve (kPa/C); γ is
a psychrometric coefficient (kPa/◦C); λ is the latent heat of vaporization (MJ/kg); and
EA is the drying power of the air, which can be found using the following Dalton-type
formulation:

EA = f (U)D = (1 + 0.536U)(es − ea) (1b)

Here: f (U) is a wind function with linear coefficients for the original Penman equation
(1948, 1963); u is the wind speed at 2 m height (m/s), D = (es − ea) is vapor pressure deficit
(kPa); eS is saturation vapor pressure (kPa); and ea is actual vapor pressure (kPa).

Open-water evaporation was computed from readily available data as previously
described [49] and implemented in the Evaplib Python library [50]. Input data for this
were air temperature (T, ◦C), solar radiation (RS, MJ/m2/d), relative humidity (RH, %),
and wind velocity (u, m/s).
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In the absence of actinometric measurements of net radiation at the surface, this was
calculated from amounts of cloud cover recorded at the weather station and a previous
regional calibration [51].

Ra =
24(60)

π
Gscdr(ωs sin(φ) sin(δ) + cos(φ) cos(δ) sin(ωs)) (2a)

Here: Ra is extraterrestrial radiation (MJ/m2/day**), Gsc is the solar constant
(0.0820 MJ/m2/min), dr is the inverse of the relative distance between the Earth and
Sun, ωs is the sunset hour angle (rad), φ is latitude (rad), and δ is solar declination (rad).

dr = 1 + 0.033 cos
(

2π

365
J
)

(2b)

where J is the day of the year; δ = 0.409 sin
( 2π

365 J − 1.39
)
;

ωs = arccos(− tan(φ) tan(δ)) ; N =
24
π

ωs

Solar radiation, Rs, can be calculated from the amount of cloud:

Rs = (as + bs(1 − N))Ra (3)

where N is the amount of cloud (ranging from 0 for clear sky to 1 for full cloud cover),
while as and bs are Angstrom values, and without regional calibration values of 0.25 and
0.50, respectively, are recommended [52].

Net longwave radiation (Rnl) can be estimated from the air temperature, actual va-
por pressure, and solar radiation. Net longwave radiation is expressed by the Stefan–
Boltzmann law:

Rnl = σ

⎛⎝ T
max2

44
min

(0.34 − 0.14
√

ea)

(
1.35

Rs

Rso
− 0.35

)⎞⎠ (4)

where Tmax is daily maximum air temperature (K), Tmin is daily minimum air temperature
(K), and Rso is clear-sky radiation (MJ/m2/day) according to:

Rso = (as + bs)Ra (5)

We applied a constant albedo of 7% (0.07) for water surfaces in the calculations, based
on the latitude and published mean reference values [51].

Rn = (1 − α)Rs − Rnl (6)

We calculated daily evaporation values. Input data for Equations (1a), (1b) and (4) and
daily precipitation were obtained from the nearest meteorological station (at Lipetsk city).

2.2.3. Water Balance and Groundwater Model Recalibration

Infiltration rates (mm/day) were calculated from the daily water balance equation:

F = 1000·[−ΔV − At(EPEN − P)]/At (7)

where −ΔV is the daily rate of reduction in pond volume (m3), At is the current pond area
(m2), and P is the daily precipitation (mm/d).

The volume of a pond on a given Julian day (dayT) was derived from the volume on
the first Julian day in a series (dayF) and the following negative exponential equation:

V = a·e−c·(dayT−dayF) (8)
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The scaling coefficient a and the power of the exponent c (the pond’s approximate
initial volume and decay rate, respectively) were obtained by the least square method,
which has given a fit with R2 > 0.9 for each of studied lakes (Table 2, Figure 4d). The
estimated volume on each day was used to calculate the rate of reduction in pond volume
in Equation (7) with a daily time step.

Figure 4. Temporal dynamics of selected ponds in the depressions. (a) Positions of Ponds 4 and 2 in
a UAV photo image. (b,c) Groundwater levels in basins of the ponds on indicated dates based on the
classification of images (highlighted in color by day). (d) Water volumes in the basins of ponds 4
and 2 on indicated dates (points) and negative exponential fits derived by Equation (8) (lines). Pond
numbering as in Figure 1 and Table 2.

A limitation of the method lies in the choice of the first day of infiltration, because it is
impossible to determine the water boundary in depressions when they are covered with
snow. Water infiltrates the soil when the temperature is already above 0 degrees Celsius,
but classification of images with partial snow cover is problematic. Thus, the first Planet
Labs image that was subjected to classification was the first when there was no snow cover
according to the nearest (Lipetsk) weather station.
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A 2D profile of the steady-state shallow water table depth was obtained by the ana-
lytical form of continuity equation with calibration based on soil redoximorphic features.
In [22] the hypothesized relationship between archived morphological properties (redox-
imorphic features as indicators of gleyic conditions) of soils and a current hydrological
process indicator (WTD) were established based on the expert knowledge of soil types,
WTD co-occurrence, then verified under a hillslope flow continuity constraint expressed
mathematically as a steady-state solution with two free parameters: hydraulic conductivity
and recharge rate. Here the input horizontal transect of groundwater recharge rate was
taken as a time integral of Equation (7). Spatially, it varied along the transect according to
positions of the depressions in the landscape. Infiltration into the soil is not equal to the
groundwater recharge rate, so relative values in the [0, 1] interval were used to describe
the variability along the transect while the formal calibration of the absolute values of
recharge rate to hydraulic conductivity (N/k) was preserved in the method. Time-averaged
infiltration was calculated based on the volume of water that infiltrated in closed depres-
sions. We established 10 regular topographic profiles representing the generalized transect,
3 km long and crossing the interfluve along the main slope with regularly (5 m) spaced
points. At each standard point, the value of the water layer (mm) was extracted, which
was filtered out in a closed depression. The 10 topographic lines were combined into a
single profile by averaging values corresponding to the order of the points of the water
layer. The regular placement of topographic profiles and sampling points was intended to
optimize the two-dimensional characterization of additional moisture infiltration along the
studied transect.

3. Results

The proposed combination of object-oriented image classification based on a time
series of Planet Labs images and an orthomosaic derived from UAV surveys to verify
the satellite data enabled highly accurate identification of the water mirrors of closed
depressions during their drying (Cohen’s kappa = 0.99). Moreover, high-precision digital
terrain models obtained using UAVs can be used to calculate volumes of water in closed
depressions.

We compared different methods of pond extraction for the scene on 9 April 2021, when
the reference UAV image was obtained. Two supervised pixel-based classification methods
were compared: random forest (RF) and support vector machines (SVM) providing results
as a raster. Then the ponds boundaries were brought to a constant median value of the
DEM to obtain vector pond polygons (also both from RF and SVM classification). Root
mean square error (RMSE) and mean absolute percentage error (MAPE) of pond volume
and area were the lowest for the vector approach and notably higher for raster approach
(Table 1). SVM and RF errors were almost the same within the vector approach (Table 1),
and it was decided to use RF as the most common in such studies. Contrary to [52], the
novel way to vectorize the polygons based on idea of flat pond mirror with constant height
brought a very notable increase in the quality of area and volume estimate.

Table 1. Root mean square error (RMSE) and mean absolute percentage error (MAPE) of the area
and volume with true value taken from ultra-high resolution UAV estimate of ponds’ boundaries.
Random forest (RF) and support vector machine (SVM) methods are compared for the pixel-based
(raster) and median DEM height-based (vector) delineation of the image taken on 9 April 2021.

Errors of Area Estimate Errors of Volume Estimate

RMSE, m2 MAPE, % RMSE, m3 MAPE, %

RF vector 7.8 1.4 2.5 5.9
RF raster 43.2 3.1 16.0 21.9

SVM vector 8.7 1.6 2.1 5.1
SVM raster 44.9 3.6 16.3 22.2
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Results obtained using the described procedure show that the drainage process of
the focal depressions follows an exponential equation (Figure 4, Table 2), with coefficients
(Table 2) that presumably depend on various factors (e.g., the depressions’ source rocks
and filtration areas), but we found no systematic quantitative relationships between the
coefficients and considered parameters.

Table 2. Derived characteristics of the ponds during the decreasing volume phase after snowmelt from the maximum
(starting day) to zero (final day). Coefficients a and c are from Equation (8) and R2 is the coefficient of determination for the
negative exponential fit of the lake volume by the least square method.

Pond
No.

1.

Maximum
Volume,

m3

Maximum
Area,

m2

Coefficient
a

Coefficient
c R2

Total
Infiltration,

m3

Initial
Infiltration
Rate, m3/d

Soil
Refill

Capacity,
mm/dd 2

ksat
mm/d

Total
Evaporation,

m3

Total
Precipitation,

m3

1 640 6123 604 0.11 0.91 475 47 54 3 320 155
2 647 4275 645 0.29 1.00 594 153 163 3 113 59
3 173 1756 173 0.38 0.98 167 50 172 12 18 12
4 66 1283 67 0.23 0.95 56 10 53 4 24 14
5 416 3546 428 0.19 0.94 366 64 103 6 103 54
6 16 540 16 0.53 1.00 14 5 37 1 6 4
7 103 978 104 0.28 1.00 92 23 113 2 24 13
8 36 543 37 0.34 0.97 34 9 93 4 7 5
9 12 295 13 0.19 0.99 9 1 34 2 7 4

1 The numbering follows Figure 1. 2 dd—melt water peak event duration (days).

During the initial phase the rate of pond recession is much higher than later in the
season (Figure 5 top). Notably less water is evaporated than infiltrates (Figure 5, middle
and bottom), so the depression-focused replenishment of the groundwater is consistent
with the previously mentioned hypothesis that the major source of recharge for shallow
groundwater in the study area (and similar areas) is depression-focused infiltration during
snowmelt [21]. There are two phases of infiltration—fast and slow (Figure 5, bottom).
Measurements during the fast phase enable estimation of the unsaturated soil’s refill rate
and capacity (Table 2). During the slow phase the change in infiltration rate from day to
day is much smaller. The saturated hydraulic conductivity decreases strongly with depth
under a depression [8], reflecting the effects of the decreasing frequency of fractures with
depth, and the flow is presumably limited by the lowest layer with the smallest frequency.
Thus, the infiltration rate estimated during the slow phase provides an approximation of
the hydraulic conductivity (Table 2), corresponding to the maximum possible flux out of
the soil column.

Overflow can occur from any closed depression (Figure 6). The probability of spillage
depends on multiple factors, including elevations of the lowest point in the catchment area
and the depression’s overflow point. In 2018, water reached the overflow point in almost
all the depressions considered here (Figure 6). Thus, the initial volumes (a coefficients)
obtained for the nine studied ponds can be used in speculation regarding the effects of the
landscape morphometry and meltwater input on initial volumes of ponds after snowmelt.

The results also indicate that the hypothesis of a quantitative linear relationship
between the volume of water accumulated in a depression and the catchment area of the
basin is only partly correct. The water volumes do not appear to be linearly related to
the depressions’ catchment, because the amount of water in a depression depends on the
catchment area and maximum volume that can be stored in it. Excess water will flow
through the overflow point without replenishing the water table. Limits of the possible
volume and layer of water intercepted by the focal depressions, which limit their ability
to converge surface runoff into underground flows, were identified. The maximal layer
depends on the catchment area of the depression and height of its overflow (Figure 6, right).

The water layer filling closed depressions during snowmelt in the forest-steppe zone
is highly dynamic. From 2005 to 2021, the snowmelt water layer (snow water equivalent,
SWE), reconstructed from the statistically corrected snow height and snow density data
series, varied from 50 to 300 mm. The derived snowmelt water layer during this period
has a binomial distribution with two maxima, at 50 and 200 mm SWE. Analysis of the
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meteorological data showed that closed depressions did not overflow during snowmelt in
60% of cases, on average, from 2005 to 2021. This corroborates the finding that in most cases
closed depressions intercept the surface runoff and transfer it to groundwater. Frequencies
of overflow were lowest for Ponds 2 and 4 (around 10%) and highest for Pond 9 (90%).

Figure 5. Rate of recession of the indicated ponds’ water levels (a), daily evaporation rate (b) and
infiltration rates of the ponds estimated from the mass balance (bottom panel) expressed in mm of
the water layer (c). The numbering of the ponds in the color legend follows Figure 1 and Table 2.
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Figure 6. (a) Boundaries of the maximum potential filling of closed depressions (up to their overflow heights) shown
in white in a Planet Labs image from 4 April 2018, with color shading and magenta contours, and the maximum pond
boundaries in 2021 from 6 April 2021 (green contours). In 2018, the investigated closed depressions were overflowing.
(b) Shades of blue indicating the layers of water (in mm) that must enter the depressions from their catchment areas to
completely fill them.

Figure 7 illustrates the simulations of the shallow groundwater level for cases with the
recharge rate either constant or spatially varied along the transect. The parameter N/k was
restricted by the requirement for correspondence between the simulated WTD and range
of WTD for soils of each type from expert knowledge (Table 2 in [22]) in distance intervals
across the catena’s whole toposequence. For example, if very poorly drained soils (under
depression bed) are present in M unit intervals, those in which WTD > 3 m (too deep)
were counted with 0 weight and the others with 1 weight. The same procedure was then
applied for each of the intervals with the other soil types, then the sums were added for all
groups and scaled to the total number of unit intervals in the catena toposequence to obtain
the accuracy in percent. Simulation of WTD was successful for the generalized transect
in terms of correspondence between the simulated WTD and ranges of WTD obtained
from the indirect soil indicators (redoximorphic features) and expert knowledge both in
the cases of constant and spatially variable recharge. However, the required accuracy
threshold was set at 97%, and was met for the spatially variable recharge. A significantly
lower threshold (80%) was satisfied for the constant recharge case. Therefore, the method
to estimate depression-focused infiltration proposed here can make the shape of the water
table profile more realistic.
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Figure 7. Cross-section of the catena with water table depth (WTD, blue and red lines) adjusted
to correspond to soil group [22]. The yellow and black lines indicate the position of the bedrock
and DEM profile, respectively. The blue and red lines respectively indicate WTD obtained with
infiltration along the transects estimated from the depressions’ positions and specific infiltration rates
(as indicated by the blue bars and right y axis) and constant infiltration along the transect.

4. Discussion

The word steppe is usually associated with the Russian plains, but the northern
part of this ecoregion has notable similarity to North American prairies. The lithological
and geomorphological similarity of the Tambov region to the Saskatchewan and Alberta
provinces in Canada enables direct comparison of the depression-focused infiltration into
their soils through temporal ponds that are very similar in size distribution and shape. The
recession rate of the ponds after snowmelt obtained in this study is similar to that derived
from an artificial flooding experiment in the C24 depression, northwest of Calgary, Alberta,
Canada, in 2004 [8]. As in the cited study [8] and another previous investigation [4], we
found that evaporation accounts for a much smaller proportion of the pond water balance
loss term than infiltration into the soil. The pre-event pore space available for filling with
infiltration water was not directly measured in this study. However, data from a depression
monitoring site in the study region in the years 2003–2005 show a spread of 30–400 mm of
water deficit to saturation. An assumption underlying our two-stage infiltration conceptual
model is that pores of the soils below the bottom of a pond are all filled to saturation
during the first stage down to the shallow groundwater depth (approximately 2 m). Thus,
the inflow is restricted by the bottleneck hydraulic conductivity below this point, which
is an order of magnitude lower than in the upper soil layers [8] and also by the gradual
rise of the water table when two fronts of water are jointing. The soil refill amount of 34
to 172 mm recorded in Table 2 fits well into this range. There is also similarity with the
refill amount (148 mm) obtained in the cited Canadian study [8]. A strength of our study
is that the infiltration rate was estimated for nine ponds, not just one pond such as the
well-studied experimental pond C24. The variation (four-fold) in infiltration between those
ponds (Table 2) could not be explained by the pond size or topographical settings. Thus,
it is not sufficient to apply infiltration data from one pond to other ponds as this leads to
large errors. The differences are likely due to diverse factors, inter alia physical properties

166



Sensors 2021, 21, 7403

of the soil associated with their lithological and textural characteristics, the thawing rate
and ice content, abundance of root channels and other pathways for preferential flow.
We conclude that there is no straightforward analytical way to characterize this spatial
variability, but use of data obtained by the methods proposed here in conjunction with
appropriate hydrological models and high-resolution satellite images is highly promising.

Here, we used the steady-state continuity equation in kinematic wave form parame-
terized using expert knowledge of the links between typical water table depth (WTD) and
redoximorphic features of soils with different hydromorphy degrees [22]. In this simulation,
we were able to account for variation in infiltration rates in the catena using real data on
depressions’ positions within the transect. However, calibration was still necessary because
the infiltration and recharge are split in time by unsaturated zone processes. In future
research, we plan to develop a model conceptually similar to the VSMB Depression-Upland
System (VSMB-DUS) model [8] using data acquired in investigations of the surface water–
groundwater interaction in individual depressions and their catchments. The planned
model will be based on the watershed hydrological WASA-SED model [53], which already
discretizes focal watersheds into hierarchical levels (sub basins, land units, terrestrial com-
ponents, soil-vegetation components). Land units are representative catenas and terrestrial
components can be easily supplemented with depressions and uplands providing surface
flow to them by an already incorporated horizontal flow mechanism. For the terrestrial
components prescribed as depressions, the temporally varying fluxes obtained by the
method developed here will be used as upper boundary conditions. Collection of field data
is planned to obtain saturated hydraulic conductivity values for the vertical levels besides
the bottom soil layer. Groundwater depth measurements will provide calibration for the
drainage rates from the deepest soil layer and validation for the dynamic version of the
WASA-SED shallow groundwater flow sub-model. In this manner, groundwater recharge
will fully account for the spatial variability of depression density, such as prevailing areas
of numerous depressions at the water divide.

In this study, we derived the saturated hydraulic conductivity, not for a single point,
but aggregated for the area of depressions. Most grid data used represent points, but
landscape-level data are essential inputs for a hydrological model. A hypothesis under
test is that soil hydraulic properties are related to landscape position and topography [54].
If so, elucidation of these relationships could greatly enhance pedotransfer functions for
estimating saturated hydraulic conductivities at the level of land units and terrestrial
components, not just points. Our study, based on remote sensing, provides an example
of such derivation because the hydraulic conductivity is based on the depressions’ water
balance accounting for their positions in the landscape.

A limitation of this study lies in the assumption that all snowmelt runoff from the
upland was routed to the depressions before the initial day of the study, and water volume
within each depression exceeding its maximum storage capacity overflowed directly into
surface runoff with no contribution to infiltration into the soil. However, it is widely
acknowledged that depressions tend to form fill-spill networks, where overflow from one
depression feeds an adjacent depression [5,6]. This process can be modeled [6,10,15–17],
but studies of fill-spill processes have primarily focused on effects of depression storage
on surface flow to streams rather than depression-focused groundwater recharge. Visual
observations during the hydrological phase after the most active snowmelt showed no
signs of connectivity between depressions at our study site, but that was typical for the
active snowmelt phase itself of about a week duration. We justify the restriction of our
approach with the hypothesis that non-stationary volumes of the depression ponds when
snow is still present contribute little to total infiltration, partly due to the frozen state of
the soil.

5. Conclusions

Estimation of infiltration through ponds is an important step toward the challenging
goal to estimate depression-focused recharge of groundwater, and thus evaluate this
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important resource, in the forest-steppe zone of Russia. Using high-resolution Planet Labs
images and widely evaluated tools for object-based image recognition, we have developed
a relatively simple method to reconstruct a time series of infiltration into the soil under
ponds and estimate landscape-scale saturated hydraulic conductivity. The simulation
of the steady-state groundwater profile for the topographical transect fed with data on
relative water supplies through depressions along the transect was more consistent with
observations (based on soil redoximorphic indicators of water level) than the simulation
fed with a uniform recharge function. Further development is needed to assimilate the data
generated with consideration of the spatial variability of pond infiltration into a process-
based model of groundwater recharge that accounts for interactions between depressions
and their catchments.
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Abstract: The use of precision agriculture is becoming more and more necessary to provide food for
the world’s growing population, as well as to reduce environmental impact and enhance the usage of
limited natural resources. One of the main drawbacks that hinder the use of precision agriculture is
the cost of technological immersion in the sector. For farmers, it is necessary to provide low-cost and
robust systems as well as reliability. Toward this end, this paper presents a wireless sensor network
of low-cost sensor nodes for soil moisture that can help farmers optimize the irrigation processes in
precision agriculture. Each wireless node is composed of four soil moisture sensors that are able to
measure the moisture at different depths. Each sensor is composed of two coils wound onto a plastic
pipe. The sensor operation is based on mutual induction between coils that allow monitoring the
percentage of water content in the soil. Several prototypes with different features have been tested.
The prototype that has offered better results has a winding ratio of 1:2 with 15 and 30 spires working
at 93 kHz. We also have developed a specific communication protocol to improve the performance of
the whole system. Finally, the wireless network was tested, in a real, cultivated plot of citrus trees, in
terms of coverage and received signal strength indicator (RSSI) to check losses due to vegetation.

Keywords: electromagnetic induction; soil moisture; precision agriculture; low cost; water manage-
ment; Internet of Things (IoT); wireless sensor network

1. Introduction

Given the basic need to provide food to the world’s population, it is necessary to
introduce technology to the agriculture sector to reduce the environmental impact caused
by the crops and to increase the conservation of natural resources, among others [1].
Efficient Irrigation is one of the essential factors to increase the development of sustainable
agriculture, especially in arid and semi-arid regions where there are the greatest limitations.
Irrigation methods can be classified into three generic categories; these are (1) gravity
irrigation, (2) sprinkler irrigation, and (3) drip irrigation. The gravity irrigation system is
the oldest method and the least efficient for the conservation of natural resources. However,
in order to determine the specific irrigation needs of crops, sensing devices must be
deployed to obtain data such as soil moisture.

Precision agriculture is a concept that appeared in the USA in the 1980s. It is a
management strategy that allows making decisions to improve farming productivity and
to achieve more sustainable activity. It is based on the management of crops by observing,
measuring, and acting against the variability of the many factors that affect them. Using
Internet of Things (IoT) solutions, the soil where the crops are planted can be monitored
to make decisions and perform more effective irrigation. These solutions may include
not only the electronic devices deployed in the fields but also the use of vehicles such as
drones to support the network [2] and to manage the use of pesticides on the crops [3,4].
However, in crop monitoring tasks, especially in those where fruit trees are grown, it is
important to be able to control soil moisture levels accurately. For the correct progress
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of a fruit tree, it is necessary to ensure that the roots have the right levels of moisture.
High humidity levels can facilitate the proliferation of fungi in the roots and leaves, thus
affecting production. However, an extremely low soil moisture level can provoke the soil
to crack. causing broken roots and the tree to die. This fact negatively affects the growth of
plants and consequently their production.

One of the main drawbacks that hinder the use of precision agriculture is the cost
of the sensors and the utilized technology. For farmers that want to use technology on a
massive scale, it is necessary to provide low-cost systems to make easier deployments.

The available commercial sensors for soil monitoring use different methods to assess
the water content of the soil. The most relevant existing methods for obtaining moisture
values from the soil [5] are the gravimetric method, tensiometric method, neutronic method,
gamma-ray attenuation method, dielectric method, Wenner or resistive method, and light
method infrared [6]. Generally, when low-cost sensors are used to measure soil moisture,
conductivity-based sensors are based on the use of two electrodes [1]. These types of
sensors have two fundamental disadvantages, lack of reliability, and durability. On the one
hand, depending on the type of soil and its salt content, the conductivity measurement
can vary even when the amount of water in the soil is maintained. On the other hand, the
electrodes must be in contact with the ground, and consequently, they can suffer rapid
deterioration. Inductive sensors are also employed to measure soil moisture. However,
they do not integrate the system into a sensor node to be able to read the parameters.

The network design is an important aspect to consider as well. Usually, fields are
located in remote areas. These areas may not have access to the internet infrastructure and
the power grid. Therefore, PA systems should include a form of energy harvesting such
as solar panels, and some characteristics of these networks should be considered when
designing the deployment of sensing devices [7]. Wireless communications are a good
solution because it eliminates the cost and hindrance of deploying cabled networks on
extensive areas where machinery is utilized. However, the foliage of the crops affects the
quality of the signal, resulting in reduced coverage between the devices. It is therefore
necessary to determine the optimal deployment design for the area of interest according to
the type of crop, and size of the field. Furthermore, the available protocols may not provide
all the functionalities desired for a particular crop and the resources available for the area.

In this paper, we present a group-based wireless sensor network to efficiently irrigate
cultivated lands. The network is composed of both actuators and sensor nodes that will
collect data from the soil and will activate different irrigation systems as a function of the
plot needs. Additionally, we design a new soil moisture sensor able to measure the amount
of water content in the root ball of a tree. The design includes the sensor and the power
circuit required to generate the bi-phase signals to power the coils. The paper presents
the design of the operation algorithm and the message exchange for efficient use of water.
Finally, the entire system is tested in a real environment to check the correct operation in
terms of soil moisture measurements and network performance.

The rest of the paper is structured as follows. Section 2 presents some previous and
related works where soil moisture systems are developed. Section 3 presents an overall
description of our proposed sensor as well as the features of the different coils used to
develop our soil moisture sensor and the experimental tests performed with the coils.
This section also includes the power circuit in charge of generating the required signals
as well as the integration of both the sensor and the power circuit with an ESP32 module.
Section 4 explains the network operation algorithm and message exchange between nodes.
In Section 5, the tests performed in a real environment are shown. Section 6 explains the
conclusion and future works.

2. Related Work

In this section, we summarize some previous works related to our proposal. The gap
in current solutions for soil moisture monitoring is also identified.
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Authors such as Ojha et al. [8] present a study where they analyze the wireless sensor
network (WSN) implementations for various agricultural applications. We will look at
surveys such as the one presented by Garcia et al. [1], aimed at summarizing the current
state of the art regarding smart irrigation systems and schemes for Internet of Things (IoT)
irrigation monitoring. This survey includes the review of more than 100 scientific works.
Other authors, such as Susha Lekshmi et al. [9], present a review of techniques employed
for soil moisture measurement. The authors highlight the limitations of the techniques
and the influence of soil parameters. Tumanski [10] describes the use of a coil to develop
sensors. The work compares, summarizes, and analyzes coil design methods and frequency
properties of the coil as well as the use of coil sensor applications such as magnetic antennas.
Jawad et al. [11] describe applications of WSNs in agricultural research, and classify and
compare wireless communication protocols, the taxonomy of energy efficiency, and energy
harvesting techniques for WSNs used in agricultural monitoring systems. They also explore
the challenges and limitations of WSNs in agriculture, highlighting energy reduction and
agricultural management techniques for long-term monitoring. Hamami et al. [12] present
a review of the application of WSNs in the field of irrigation. Mekonnen et al. [13] present a
review of the application of different machine learning algorithms in the analysis of sensor
data observed using WSNs in agriculture. In addition, they analyze a case study on a smart
farm prototype, based on IoT data, as an integrated food, energy, and water (FEW) system.
Nabi et al. [14] present a comparative study of different studies to provide a deeper insight
into these implemented systems. They also present a study of apple disease prognostic
systems, highlighting their key characteristics and drawbacks. The result of their study can
be used to select appropriate technologies to build a WSN-based system, optimized for
precision apple cultivation, which will help farmers avoid the ravages caused by disease
outbreaks.

Kabashi et al. [15] present a framework to design WSNs for agricultural monitoring
in developing regions, taking into account the particularities of said environments. They
propose new solutions and research ideas for sensor network design, including zone-based
joint topology control and power scheduling mechanism, multi-sink architecture with
complementary routing associated with backlink/storage, and a task scheduling approach
with parameter, energy, and environment recognition. Authors such as Kassim et al. [16]
present WSNs as the best way to solve agricultural problems related to optimization of
agricultural resources, decision support, and land monitoring in order to perform those
functions in real time. They explain in detail the hardware architecture, network archi-
tecture, and software process control of the precision irrigation system. García et al. [7]
study different WSN deployment configurations for a soil monitoring PA system, to iden-
tify the effects of the rural environment on the signal and to identify the key aspects to
consider when designing a PA wireless network. The PA system is described, providing
the architecture, the node design, and the algorithm that determines the irrigation require-
ments. The results of their testbed show high variability in densely vegetated areas. These
results are analyzed to determine the theoretical maximum coverage for acceptable signal
quality for each of the studied configurations. Furthermore, there are aspects of the rural
environment and the deployment that affect the signal. Zervopoulos et al. [17] present
the design and deployment of a WSN capable of facilitating the sensing aspects of smart
and precision agriculture applications. They describe a simple synchronization scheme,
which was installed in an olive grove, to provide time-correlated measurements using the
receiving node’s clock as a reference. The obtained results indicate the general effectiveness
of the system, although they appreciate a difference in the time correlation of the acquired
measurements. Bayrakdar [18] investigated an intelligent insect pest detection technique
with underground wireless sensor nodes for precision agriculture using a mathematical
simulation model. To evaluate performance, he examined the received signal strength
and path loss parameters. He observed the need for transmission of signals with different
transmission powers for depth-based communication in wireless underground sensor
networks.
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Other authors study the application of WSNs to monitor specific crops. Khedo et al. [19]
describe the implementation of the PotatoSense application, for precision agriculture with
WSNs, to monitor a potato plantation field in Mauritius. They employ different energy
efficiency algorithms, to ensure that the life of the system is prolonged. Additionally, they
have developed a monitoring application to process the data obtained from the simulated
WSN. Rasooli et al. [20] propose using WSNs and IoT to help increase wheat and saffron
production in Afghanistan in the future. Using both techniques, they predict the control
of the condition and growth of the crop as well as the ability to check soil, temperature,
humidity, and other environmental parameters.

Some authors propose the observation of parameters utilizing WSNs in greenhouses.
Chaudhary et al. [21] propose and discuss the use of the programmable system on chip
technology (PSoC) as part of the WSN to monitor and control various greenhouse param-
eters. Srbinovska et al. [22] propose a WSN architecture for vegetable greenhouses, in
order to achieve scientific cultivation and reduce management costs from the aspect of
environmental monitoring. They have designed a practical and low-cost greenhouse moni-
toring system based on wireless sensor network technology to monitor key environmental
parameters such as temperature, humidity, and lighting.

There are authors also studying energy savings in WSNs used in monitoring agricul-
ture. Hamouda et al. [23] study the problem of selecting the sampling interval, for precision
agriculture using WSNs, due to the energy limitation that appears when deploying sen-
sors in WSNs. They propose a Variable Sampling Interval Precision Agriculture (VSI-PA)
system to measure and monitor agricultural parameters for appropriate agricultural ac-
tivities, such as water irrigation. Compared to other fixed sampling interval schemes,
the proposed VSI-PA system provides a significant improvement in energy consumption,
while maintaining a small variation in soil moisture, regardless of soil temperature values.
Qureshi et al. [24] propose Gateway Clustering Energy-Efficient Centroid (GCEEC)-based
routing protocol, where a cluster head is selected from the centroid position and gateway
nodes are selected from each cluster. The results obtained, after evaluating the proposed
protocol in comparison to last-generation protocols, indicated a better performance of the
proposed protocol, and provided a more feasible WSN-based monitoring for temperature,
humidity, and lighting in the agricultural sector.

Table 1 summarizes different previous studies, carried out by other authors, regarding
the use of WSNs in soil monitoring for agriculture.

Table 1. Previous studies regarding the use of WSNs in soil monitoring for agriculture.

Types References

Surveys of WSN Implementations for Agriculture. [1,8–14]
Frameworks, Studies, Designs and Deployments for WSN. [7,15–18]

WSNs for the Monitoring of Specific Crops. [19,20]
WSNs in Greenhouses. [21,22]
Energy Savings Studies. [23,24]

Regarding the available sensors for soil monitoring, there are works, such as [25],
that study farmed podzolic soils since these types of soils are under-represented in the
relevant literature. In the study, the authors established the relationship between apparent
electrical conductivity (ECa) and soil moisture content (SMC). The authors also evaluated
the estimated SMC with ECa measurements obtained with two electromagnetic (EMI)
induction sensors. The authors concluded that ECa measurements obtained through multi-
coil or multi-frequency sensors had the potential to be successfully used for field-scale SMC
mapping. Others, such as [26], designed and manufactured an integrated passive wireless
sensor to monitor the moisture in the sand. The sensor was made of a printed spiral
inductor embedded within the sand and it contained an inductive-capacitive (LC) resonant
circuit. The authors measured the level of internal moisture by monitoring the resonance
frequency using a sensing coil. Kizito et al. [27] presented a study where ECH20 sensors
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were used to measure soil moisture content, bulk electrical conductivity, and temperature
for a range of soils, across a range of measurement frequencies between 5 and 150 MHz.
The authors affirmed that the measurements carried out on soil were accurate enough to
work at 70 MHz. Finally, Nor et al. [28] discussed the development of a low-cost sensor
array based on planar electromagnetic sensors to determine the contamination levels of
nitrate and sulfate in water sources. The authors proposed three types of sensors: parallel,
star, and delta. According to their experiments, the star sensor array was the one with the
highest sensitivity.

After analyzing the exhibited works and many others not included in this paper, we
can conclude that our work improves the existing systems. In either very few or no cases in
the other works reviewed do the authors present complete or easily integrable systems in
commercial nodes, such as Arduino or similar, and many of them use working frequencies
that are too high (on the MHz scale). This fact makes it difficult to develop a simple and
inexpensive signal generator circuit. Our proposal aims to take a step beyond the current
state of the art, proposing a complete system, consisting of a sensor based on coils whose
working frequency is around 93 kHz, and a power circuit that can be easily integrated into
commercial modules for the development of a more complex wireless sensor network to
monitor a large-scale crop.

3. Network Nodes Description

This section describes the proposed system and the different parts that comprise our
proposed system. Additionally, it presents the features of the different coils used to develop
our soil moisture sensor as well as the experimental tests performed to determine the
best prototype.

3.1. Overall System Description

When trying to develop complete monitoring systems for precision agriculture, it is
important to take into account different aspects. On the one hand, agriculture is an essential
activity for the survival and development of society; this fact is evidenced by the amount of
global- and regional-scale agricultural monitoring systems [29] to assess the crop growing
conditions, crop status, and agro-climatic conditions that may have an impact on global
production of any type of crop. Some examples are Group on Earth Observations Global
Agricultural Monitoring Initiative (GEOGLAM) [30] or CropWatch [31], among others.

On the other hand, it is necessary to know the kind of crop wanted to be developed in
order to design adapted methods for monitoring activity. Considering the crop to monitor
and the location of the plot, the network should use a specific wireless communication
technology. Currently, it is possible to use cellular technologies by paying for subscrip-
tions to a service or by using low-power technologies such as ZigBee, LoRa, LoRaWAN,
Bluetooth BLE, or Sixfox, among others; most of these services do not require payment for
using their communication network infrastructure [32]. However, the wireless technology
par excellence for developing wireless sensors networks continues to be Wi-Fi. Although
its energy consumption is still high, it allows transmitting any type of content without the
bandwidth limitations that other technologies present. In addition, it is a widely studied
standard so it is easy to develop new optimized protocols. Therefore, by making a good
design of a power system based on renewable energies, it is possible to use Wi-Fi to develop
a Wi-Fi-based agriculture monitoring network with very interesting properties.

In the end, the completion of the design of the system led to precisely defining the type
of parameter to be monitored since this fact will indicate the type of sampling, and analysis
we should do. After that, the data interpretation and the scoring curves will help us to
define the correct operation of our actuator network system. Lastly, the correct processing
of collected data will help us to know the soil health and its characteristics for determining
if these are optimal for our crop.

Therefore, considering these previous issues, we propose the development of a group-
based wireless sensor network for soil moisture monitoring in precision agriculture. The
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network is composed of a set of nodes with different roles and functions. Some nodes
are able to collect data from the environment, particularly data from soil moisture and
other parameters required to ensure the correct progress of a tree (See Figure 1). The
rest of the nodes have actuators to control the activity of ditch gates and drip irrigation
elements. So, we will have 3 different sets of nodes that will communicate between
them. Additionally, sensor nodes will provide data to the actuator nodes performing the
required computation and decision making in the edge. Edge computing is recommended
in scenarios where nodes present in the network are able to analyze the data and take
decisions. Edge computing enables data produced by Internet of Things (IoT) devices to
be processed closer to where it was created rather than being sent over long journeys to
reach data centers and computing clouds. One of the fundamental advantages of this type
of computing is that it allows analyzing important data in near real time [33]. In citrus
groves, it is common to distribute them by forming rows of trees separated at a distance of
approximately 6 m, being able to opt for a denser plantation, with a minimum separation
of 4.5 m. The minimum depth that a citrus tree usually reaches is 45 cm. Considering
these facts and taking into account that a field can have different extensions, different
topologies of sensor nodes can be created. An important aspect is to ensure complete
coverage between nodes to guarantee stable communication. A distributed ad-hoc network
is optimal for this kind of scenario.

Figure 1. Proposed group-based network.

One of the main characteristic aspects of this proposal is its hierarchical structure by
layers where each layer has a series of nodes that, if necessary, could change their role.
That is, all sensor nodes and actuator nodes are wireless devices with the ability to act
as a packet relay. In a hypothetical situation where a node falls, communications can be
rerouted by other nodes of the same layer. If there is a fall of several nodes and one of them
is isolated but active, it could use nodes of the upper or lower layer as an alternative way
to carry out communications. However, these nodes would only forward the packet to
nodes of the isolated node’s layer.

To deal with the failure of a sensor or actuator node, it is convenient to establish an
alarm system, based on keep-alive messages. It is a task periodically scheduled, once per
day. It is possible to work with a large periodicity because the irrigation tasks of a field are
not considered a critical task. If there is a node or several nodes not responding to these
requests, the system will consider a node is down.

Additionally, developing a low-cost system was required to measure the moisture in
the soil depths. This system consists of four coil-based sensor elements equally distributed
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along 60 cm. The coils are connected to a processor module in charge of collecting the
data and wirelessly share them with the rest of the nodes of its group. Finally, and
considering the values of moistures collected by the sensor nodes, the actuator nodes will
enable/disable the ditch gates or the drip irrigation.

When talking about moisture or soil humidity, we refer to the amount of water the
soil contains. A gravimetric analysis method gives the relative comparison between the
mass of dry soil and the mass of watered soil (which will always be higher). The moisture
given in percentage is the result of dividing the difference between these two values by the
mass of dry soil. If there is no difference, moisture will be 0%. In the opposite case, when
the watered soil mass doubles the dry one, the moisture level will be 100%.

The development of our coil-based soil moisture sensor is based on the principle of
electromagnetic induction of the coils and how it varies as a function of the type of core the
coil has inside [34–36].

The soil moisture sensor is composed of two solenoid coils wound on the same PVC
pipe support. Coil 1 receives the sinusoidal signal generated by the power circuit based
on the integrated ICM7555. Coil 1 induces a current on Coil 2 which is largely affected by
the content of the coil core since the magnetic field is affected by the type of soil and water
content inside it. Finally, this current is measured, collected, and stored with an electronic
module. In our case, a module ESP32 DevKIT [37] with an integrated Wi-Fi interface has
been chosen. Figure 2 shows the diagram of the proposed soil moisture sensor.

Figure 2. Diagram of proposed soil moisture sensor base on coils.

Since this kind of module usually presents one or two analog inputs to collect data,
we also propose the use of an analog multiplexor of four inputs which can be controlled by
using two digital outputs. With this, our system will be able to take measurements from
the four soil moisture sensors.

3.2. Soil Moisture Sensor Based on Coils

As we mentioned before, it is possible to develop soil moisture sensors based on
several principles and chemical processes. However, we want to use a method based on
physical principles such as the variation of electromagnetic flow as a function of the nature
of the coil core.

In a coil distribution such as the one shown in Figure 3, coil 1 generates a magnetic field
that affects coil 2. This effect is known as mutual inductance and refers to the electromotive
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force (EMF) in a coil due to the change of current in another coil attached. The induced
EMF in a coil is described by Faraday’s law and its direction is always opposite to the
change in the magnetic field produced in it by the coupled coil (Lenz’s law). The EMF in
coil 1 (left) is due to its own inductance L.

Figure 3. Principle of operation for our developed sensor.

The induced EMF in coil 2, generated by the changes of current I1, can be expressed
as (see Equation (1)):

em f2 = −N2 A
ΔB
Δt

= −M
ΔI1

Δt
(1)

where N2 is the number of spires of coil 2, M the coefficient of mutual self-induction, A is
the cross-sectional area of the coil, ΔB

Δt the variation of the magnetic field as a function of the
time, and ΔI1

Δt the variation of current in coil 1 as a function of time. Mutual inductance (M)
can be defined as the ratio between the electromagnetic force (EMF) generated in coil 2,
and the changes in current in coil 1 that causes that EMF. Likewise, M is highly affected
by the characteristics of the medium that surrounds the coils, usually expressed by its
magnetic permeability.

Since it is difficult to measure the value of the magnetic permeability of the earth
core as a function of the moisture level, two theoretical approximations of the air core are
introduced [38]. Based on Equation (2) (which presents the coil inductance), we can state
Equation (3) where l is the length of the coil and r is the radius to the center of the coil of
the innermost layer of the conductor while R is the radio for the outermost layer.

L =
ΦN

I
=

μN2 A
l

=
μ0μr N2πr2

l
(H) (2)

Llayer =
N2r2

2.54(9r + 10l)
(μH) (3)

where L is the inductance of our coil (in H), Φ is the magnetic flow (in Wb), N represents
the number of turns (dimensionless), l is the length of the coil (in m), r expresses the radius
of the inner coil’s layer (in m), R is the radius of the outer coil’s layer (in m), A is the area of
the coil’s surface (in m2), μ0 is the magnetic permeability (free space) (H/m) and finally,
μr is the relative magnetic permeability (medium) (dimensionless).

This approximation allows estimating the components of the circuit for an air core,
which would be similar to those obtained with a large amount of pure water; so this value
will vary depending on the type of soil, its composition, and the level of soil moisture
presented by the soil that contains coil. The resonance peak of our coils can be calculated
by Equation (4).

fr =
1

2π

√
1

LCd
− R2

S
L2 ≈ 1

2π
√

LCd
(Hz) (4)
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where fr is resonance frequency (in Hz), Cd is coil’s parasite capacity (in F), L is the coil’s
inductance (in H) and, Rs is the coil’s resistance (in Ω).

We should take into account that the primary coil and secondary coil will have different
resonance frequencies because the secondary coil has a different number of coils. However,
our sensor only intends to detect changes in the induced current due to the presence of a
changeable medium and, finally, we want to relate this value of current with the amount of
water content in the soil.

Equations from (1) to (3) are theoretical approaches to explain how important it is
to know the relationship between the physical and electrical characteristics of the coil.
Equations (1)–(3) explain how the coil inductance, and hence mutual inductance, depend
on its geometry (length, radius, and the number of turns) for single-layer coils. Equation (4)
helps us to design a resonant circuit to obtain the maximum power transfer. It is highly
important to consider the appearance of a possible parasite capacity due to coil geometry
and working frequency.

We previously performed several tests with different combinations of coils, varying
the number of spires, the ratio of spires between coils, and the diameter [39]. In these
previous works, we performed many experiments with combinations of spires and the best
results were determined for a ratio of 1:2 with a medium value of spires and larger diameter.
For a fixed diameter, if we reduced the number of spires, the working frequency increased
for a fixed number of spires; if we increased the coil diameter, the working frequency
decreased. Additionally, developing a simple and cheap electronic system to generate the
signals was required. For such a system, it is highly recommended to have a sensor that
requires the lowest working frequency. Therefore, we chose to set some parameters such as
the type of copper and number of spires, we only varied the diameter of coils.

In developing our coils, 0.6 mm enameled copper wire was used. The process entails
winding copper wire along a cylinder, forming two solenoids. The distance between the
primary coil and the secondary coil is five mm. Figure 4 shows the developed coils with a
single layer of spires. Table 2 shows the physical features of each prototype.

   
(a) (b) (c) 

Figure 4. Coils used in our developed sensor: (a) P1, coil of 50 mm;(b) P2, coil of 32 mm; (c) P3, coil
of 20 mm.

Table 2. Prototypes to measure soil moisture.

Prototype Caliber N◦ Layers N◦ Spires 1st Coil N◦ Spires 2nd Coil N:n Diameter

P1 (Figure 4a) 0.6 mm 1 15 30 1:2 50 mm
P2 (Figure 4b) 0.6 mm 1 15 30 1:2 32 mm
P3 (Figure 4c) 0.6 mm 1 15 30 1:2 20 mm

The procedure to perform these tests with the coils consists of introducing each model
into a container filled with dry and compacted soil to observe the behavior of the output
voltage as a function of the amount of water. Therefore, for the same moisture level, a
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frequency sweep will be carried out to find the frequency that shows a peak in the induced
voltage. This value will be the sought-out resonance frequency. After that, the linearity
of each model will be analyzed. For each test, 4000 g of soil is used, with increments of
250 mL of water, for each moisture level up to 1000 mL of water. When water is added
to the soil, the sample is reposed for an hour to obtain a homogeneous sample inside the
coil. Specifically, five levels of content of water in soil will be measured: 0%, 6.25%, 15.5%,
18.75%, and 25% (see Table 3). For this type of soil, 25% of the content of water in soil
implies a land completely flooded. Measurements have been taken at 25 ◦C.

Table 3. Samples used during the tests.

Sample Mass of Dry Soil (g) Mass of Wet Soil (g) Mass of Water (g) % Volumetric Water Content

1 4000 4000 0 0
2 4000 4250 250 6.25
3 4000 4500 500 12.5
4 4000 4750 750 18.75
5 4000 5000 1000 25

In order to determine in which type of soil our sensor can be used, we endeavored
to determine which one presents the biggest linearity. The idea of this concept is that an
increase in the percentage of moisture is equivalent to an increase in output voltage without
instabilities.

3.3. Experimental Results with the Developed Coils

This subsection presents the test performed to determine the most suitable prototype
selected to develop the system, followed by the testing of the selected coil with different
types of soils and different levels of moisture.

Considering the types of soil, we can conclude that soils are usually made up of
different proportions of sand, silt, and clay. Each of them has morphological characteristics:

• Sandy soils, coarse texture (sand and clay sand).
• Silty soils, moderately coarse texture (sandy clay and fine sandy clay), medium texture

(very fine sandy clay, silt, silt loam, and sediments), and moderately fine texture (clay
silt, clay sand loam, and sand loam soil silty).

• Clay soils, fine texture (sandy clay, silty clay, and clay).

In order to perform our tests, we have selected three different types of soils, i.e., sand
from the beach, soil from cultivated land, and commercial universal substrate.

The sand on the beaches is formed by sediments from rocks and other marine debris
such as shells, corals, animals, algae, and even sand that travels through the rivers until
flowing into the sea. Due to the erosion of water and wind, due to rain and waves, or
temperature differences, the grain size of the sand tends to be reduced.

The soil from cultivated land is usually made up of an organic fraction, organic matter
more or less degraded into humus and humic and fulvic acids. These elements provide
the fertile part of the earth. The rest of the soil is considered as physical support. Some
farmlands have a high degree of clay which also intervenes in ion exchange and water
retention, facilitating the release of fertile elements according to the needs of the plants.

The raw materials used in the manufacture of a commercial universal substrate are
usually blonde peat from sphagnum moss, coconut fiber, compost, perlite, organic fertilizer,
mineral fertilizer, algae extract, etc. In addition, this type of soil usually contains a high
level of aeration.

Performing the measurements entails three identically constructed sensors simultane-
ously placed in three samples of each soil. The results shown in our graphs are the average
value of the three measurements collected, which in all cases were identical.

In order to perform the test, the primary coil is powered by using a wave of 7 Vpp
with positive and negative values. For example, it is possible to use sine or square waves,
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such as the one shown in Figure 5. In Figure 5, we can see, in blue, the signal used to power
the primary coil while the result of the induced current is shown in yellow.

 

Figure 5. Example of generated and obtained signals.

Figure 6 shows the preliminary results obtained with the 3 coils. Figure 6 shows the
value of the resonance frequency and the maximum voltage value.

Figure 6. Resonance frequency obtained for each prototype.

Table 4 shows the resonance frequency values (in kHz) of the developed prototypes
and the maximum voltage value (in mV) obtained in the induced coil.

Table 4. Prototypes to measure soil moisture.

Prototype Working Frequency (kHz) Maximum Voltage (mV)

1 93 1820
2 146 1570
3 216 680

After analyzing the results obtained in Figure 7, we can conclude that the prototype
that gives the best results is Prototype 1, with a working frequency of 93 kHz and a
maximum output voltage of 1.82 V.
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Figure 7. Behavior for prototype 1 in several types of soils.

Once the most suitable sensor for further development has been determined, this
sensor is tested on different types of soil to determine its versatility. In all cases, we will
look for the maximum linearity in the sensor response.

As we can see in the previous figure, the selected model has a linear behavior for all
three cases up to a humidity degree of 18.75%, i.e., a total volume of water of 750 mL for
4000 g of sand.

Another important aspect to highlight is that the behavior of the sensor for a universal
substrate is inverse to the behavior shown in the case of beach sand or cultivated soil. This
aspect should be considered when the results are processed in a real environment.

3.4. Power Circuit Design

Locating the resonance frequencies for the selected prototype of coil systems requires
a power supply and excitation circuit able to generate an alternating signal. To do this, a
555 series oscillator integrated circuit [40] will be used. A series of components will be used
to obtain the desired output signal with a resonance frequency of 93 kHz. Our circuit is
based on the ICM7555 [41]. According to the manufacturers’ specifications, this integrated
circuit can generate signals up to 3 MHz. Figure 8 shows the schema of our entire circuit.
This kind of integrated circuit has been conceived to be customized regarding the duty
cycle of signal and the required frequency. In this case, we can use R2 and C1 to change the
working frequency while C3, C4, and R1 are used to control the ripple signal and its form.
Modifying C4 and R1, it is possible to obtain both a sine wave and square signal, such as
the one shown in Figure 9.

To directly read a value of voltage proportional to the amount of water content in the
soil, we include a Graetz bridge or double wave rectifier bridge followed by an RC filter
that has been connected to the terminals of the secondary coil.

Figure 8. Enhanced power circuit schematic.
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Figure 9. Example of signal obtained in Output 1.

3.5. Comparision and Discussion with Existing Published Systems

We have compared our sensor model with existing and commercial soil moisture
sensors. Table 5 shows this analysis. It is important to consider that this table only contains
the price of the sensor, with exception of references [42–45] which include an electronic
module. In the rest of the cases, a microprocessor module must be included similar to the
one used in this paper that can cost approximately $10–$15.

Table 5. Comparison of soil moisture sensors with our proposal.

Ref. Model Sensitivity Power Size Cost

[42] RK520-02 Soil Moisture Sensor,
Temperature Probe & EC Sensor 0–100% 5 VDC, 12–24

VDC 136 × 45 mm $58.00–$72.00

[43] S-Soil MT-02A ±3% (0–53%)
±5% (53–100%) 3.6–30 VDC 149 × 45 mm $79.00

[44] S-Temp&VWC&EC-02A ±2% (0–50%)
±3% (50–100%) 3.6–30 VDC 149 × 45 mm $99.00

[45] SenseCAP Wireless Soil Moisture &
Temperature Sensor

±2% (0–50%);
±3% (50–100%) 3.6 V 149 × 45 mm $219.00

[46] Sensor YL-69 0–95% 3.3–5 VCD 60 × 30 mm $2.65

[47] Keyes Brick Soil Moisture Sensor
Module - 3.3–5V VDC 63 × 22 × 8 mm $1.34

[48] KeeYees - 3.3–5 VDC 3.858 × 0.906
mm $7.99

[49] Seeed Studio Grove—Capacitive
Moisture Sensor—101020614 - 3.3–5 V - $5.95

[50] Grove—Soil Moisture Sensor 0–95% 3.3–5 V 60 × 20 × 6.35
mm $2.99

[51] Seeed Studio Moisture
Sensor—101020008 - 3.3 V CC y 5

VDC - $3.99

[52] SEN0308 0–57% 3.3–5.5 VDC 175 × 30 mm $15.51
[52] MSE020SMS - 3.3V–12 VDC - $5.80

- Our proposal - 9 V 50 m × 30 m $2.15

It is evident that our proposed sensor, based on 2 coils, is one of the models that
presents the lowest prices. The price includes the pipe and wire, because it can be added to
any electronic platform to gather the data.

When this type of system is designed and developed, it is extremely important to
consider practical implementation problems and challenges.

One of the main problems in the outdoors is how to protect the electronics from
adverse conditions. A waterproof protection is highly recommended to protect the dif-
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ferent devices since the places where the devices are deployed can be highly changeable.
Additionally, the time during which the sensor nodes should work and the exposure to
environmental temperature and humidity can cause some variations in the measurements.
This issue should be controlled since a wrong reading would cause anomalous values
and consequently wrong behavior. To shore up this problem, it is possible to use artificial
intelligence and redundancy mechanisms.

Furthermore, there is another important issue regarding manufacturing techniques
of certain sensors and probes. In several cases, they are manufactured with copper. An
improvement in the system implementation could be the replacement of these sensors
for ones protected with the process of gold plating which help to combat the corrosion
of probes.

Coverage estimations do not usually match practical experimentation because the
emulation of environmental conditions is difficult. For this reason, we highly recommend
performing practical experiments and test benching, as presented in this paper.

4. Network Protocol Design and System Procedure

This section presents the network protocol used in our topology. In addition, it also
presents the algorithm designed to collect data from sensors and control the different
actuators as well as the messages exchanged between devices and the algorithm designed
for the system procedure.

As we presented before, our network is composed of three different types of nodes,
which can be classified as sensor nodes and actuator nodes. Additionally, we consider an
additional node that is placed in the engine to provide water to the plot. This node will
be in charge of starting the process of monitoring the entire network. Sensor nodes collect
data from the soil and provide the required warning alarms to the actuators for enabling
or disabling the irrigation systems. Figure 10 shows the diagram of our entire network
deployed in the plot.

Figure 10. Diagram of our entire network in the plot.

In order to obtain high performance, we have developed a specific network protocol.
This section presents the message exchange between devices, the fields of the messages
exchanged between devices, and the algorithm designed for the system procedure.
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The designed network is a distributed network made of sensor nodes (each one has
one or several physical moisture sensors), and one or several actuators which activate the
engine, for the drip irrigation system and/or the ditch gates, depending on the case.

Then the number of nodes (see Equation (5)) of the whole system (N) is:

N = ns + na (5)

where ns is the number of sensor nodes and na is the number of actuator nodes.
Our network will use Ad Hoc On-Demand Distance Vector Routing (AODV) since it

is one of the ad hoc routing protocols that presents the best performance [53].

4.1. Algorithm of the System

In order to determine when the irrigation process should be carried out, we need to
collect the data from the different ns which are placed and identified by zones (i). For
each zone, we defined the maximum number of nodes comprised in the zone as counter.
Carrying out this automation process of irrigation requires the design of an operation
algorithm. Figure 11 shows the operation algorithm of our soil moisture monitoring system.

 

Figure 11. Operation algorithm.

As commonly done in agriculture, there are periodic planned irrigations that should
be performed. In this case, the system of drip irrigation elements is enabled and it covers
the entire extension of trees. If an alarm is registered from a sensor, the system will request
the data from all nodes of that zone. If the number of nodes that register the need for
water is higher than 5, the system will enable the ditch gate of this zone. Even if only
some sensors warn about the need for water, the system will enable the drip irrigation
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elements of this zone. The rest of the zones in the plot will be analyzed to check if it is
required to proceed with irrigation. The different orders will be sent to the sink node by
the nearest node of that area to the sink node which will be in charge of enabling/disabling
the irrigations systems.

Finally, if the plot does not require any action, the system will remain in idle mode
waiting for new information.

4.2. Message Flow between Nodes

Finally, in order to send the required actions to the correct actuator nodes, it is impor-
tant to design the message exchange between nodes. In this sense, we should consider
three different situations (see Figure 12). Firstly, the most frequent situation is the one in
which the plot does not require any type of irrigation. In this case, if the sensor nodes do
not send any message in the next 30 min, the system will consider that no irrigation is
required (1).

Figure 12. Message exchange between nodes.
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The second situation (2) is when there is a global need for water in a zone of the plot.
In this case, the sensor head node will wait 30 min for messages from sensor nodes. If more
than 5 messages are received, the system will consider that global irrigation for this zone is
required. Then, the sensor head node will send a message to the actuator node in charge of
enabling the gates. After that, this node will inform the sink node to enable the engine to
provide water to the ditch.

The third situation (3) will be done when there is a partial need for water in a zone
of the plot. In this case, the sensor head node will wait 30 min for messages from sensor
nodes. If less than 5 messages are received, the system will consider that partial irrigation
for this zone is required. Then, the sensor head node will send a message to the actuator
node in charge of enabling the drip irrigation element of the affected trees. After that, this
actuator node will signal the sink node to enable the system of drip irrigation.

To make easier the process of forwarding messages from sensor nodes to actuator
nodes or sink nodes, it is possible to use any node present in the network. In this sense,
a node can receive several packets but if it is not the destination of this message, the
node will relay the message without processing it. When the sensor nodes of a zone
are communicating, an intragroup routing protocol will be utilized. When the message
exchange is performed between sensor nodes and actuator nodes or between actuator
nodes for ditch gates and actuator nodes for drip irrigation elements, these nodes will use
an intergroup routing protocol [54].

5. Experimental Results in a Practical Deployment

In this section, the results obtained in the deployments on orange groves are presented.
In order to perform the test, we have used several ESP32 DevKit nodes placed at different
heights. This will allow us to study the coverage of the nodes at different heights, so it
will be kept as a recommendation for practical deployments. The different deployment
strategies that were tested are presented in Figure 13. As can be seen, different configu-
rations of emitter height and receiver height were tested. The emitters were deployed at
heights of 0.5 m, 1 m, 1.5 m, and 2 m. The receivers were placed at 0 m for the on-ground
deployment, 0.5 m for the near-ground deployment, and 1.5 m for the above-ground
deployment. The emitter and receiver were separated for each test. The trees are spaced
in four-meter intervals and the field is located in an area with a Mediterranean climate.
The foliage of the trees affects the wireless communication among the devices. Testing
different configurations of transmitter and receiver provides us with the knowledge to
design the best deployment for optimal communication with this type of crop. The tests
were performed with sunny weather and temperatures of 20 ◦C. The measurement carried
out is the received signal strength indicator (RSSI) at different measuring points. The Esp32
DevKit nodes were encapsulated on a protective box.

The results for the emitter at a height of 0.5 m and the receiver at different deployment
configurations are presented in Figure 14. The positions of the trees are indicated by the
bold orange numbers on the X-axis. As can be seen, the overall higher RSSI values consid-
ering multiple trees along the tested distance were obtained for the near-ground position
of the receiver. This configuration of the receiver is also the most stable. Moreover, some
small fluctuations occurred for tree number 1 and tree number 4. However, the foliage in
the space between trees 2 to 4 presented a higher density, which lead to higher fluctuations.
One of the reasons for these fluctuations may be the multipath effect. Thus, avoiding node
deployments in areas of high foliage density is best to obtain more stable signals.
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Figure 13. Testbed.

Figure 14. Emitter at height of 0.5 m.

For the case of the emitter deployed at a height of 1 m, the results are presented in
Figure 15. As it can be seen, the near-ground receiver is the one with the best results. In
this case, the signal quality is reduced between trees 2 and 4. However, for the near-ground
receiver, the signal presents some recovery after the area with high foliage density. The
above-ground deployment presents similar results for the area with high foliage density
but worse signal quality for the rest of the measurement points. Lastly, the on-ground
receiver deployment presents the worst results.
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Figure 15. Emitter at height of 1 m.

Figure 16 presents the results for the emitter height of 1.5 m. The near-ground deploy-
ment has the highest signal quality values at almost all measuring points. As can be seen, it
experiences some fluctuations between trees 2 and 3. However, even with the fluctuations,
the signal quality is better than that of the other configurations. The next best option is the
above-ground receiver. In this case, the signal is more stable while remaining below the
quality levels of the near-ground receiver. Lastly, the on-ground deployment presented
the worst results and the highest fluctuations. Another final aspect to consider is that the
average signal quality for this emitter height was lower than the signal quality obtained
for lower emitter heights.

Figure 16. Emitter at height of 1.5 m.

Lastly, the results for the emitter height of 2 m are presented in Figure 17. This
emitter height obtains the worst signal quality results compared to all the emitter heights.
Regarding the receiver height, in this case as well, the near-ground deployment obtained
the best results. However, as shown in the figure, all receiver configurations present similar
results, while the results for this emitter height present the least fluctuations. As in the
other cases, the on-ground configuration was the worst option.
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Figure 17. Emitter at height of 2 m.

Considering the results for all the emitter heights, we can conclude that in the case
of orange groves, emitter heights of 0.5 and 1 m present the best signal quality and the
near-ground receiver deployment is the best option for all emitter heights. Therefore, near-
ground configurations are the optimal deployment style for both emitters and receivers.

The coverage results obtained from the tests performed on the orange groves have
been utilized to obtain a heuristic signal attenuation model for all emitter heights as
specified in [7]. The outlier values were discarded to perform this model. Equations (6)–(9)
show the model for emitter heights of 0.5 m, 1 m, 1.5 m, and 2 m respectively.

P0,5 m = −7.182 ln d(m)− 45.276 (6)

P1 m = −7.69 ln d(m)− 44.194 (7)

P1,5 m = −9.545 ln d(m)− 44.475 (8)

P2 m = −10.34 ln d(m)− 43.493 (9)

Furthermore, the model, confidence intervals, and prediction intervals are presented
in Figure 15, where the dots represent the values obtained from the tests on the fields.
As can be seen, the model reflects that the configurations of emitter heights of 0.5 m and
1 m (See Figure 18a,b) present better signal quality. Lastly, Figure 18c shows the graphic
representation for the case of the emitter height at 1.5 m and Figure 18d presents the results
for the emitter height of 2 m.

Considering the results for all the emitter heights, we can conclude that for the case of
orange groves, emitter heights of 0.5 and 1 m present the best signal quality and the near-
ground receiver deployment was the best option for all emitter heights. Therefore, near-
ground configurations are the optimal deployment style for both emitters and receivers.
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Figure 18. Heuristic model for (a) emitter at height of 0.5 m, (b) emitter at height of 1 m, (c) emitter at height of 1.5 m, and
(d) emitter at height of 2 m.

6. Conclusions and Future Work

Estimating the amount of water needed to irrigate a crop is essential to carry out
efficient use of a scarce resources such as water. The introduction of technology in the
agricultural sector is also important to improve the sustainability and competitiveness of
the sector. For this reason, this paper has presented the prototype of a low-cost sensor
based on coils for measuring soil moisture. For this, three prototypes composed of two
coils with different characteristics have been presented. These coils have been tested to
analyze their behavior based on the humidity level of the soil. After the observed results,
it has been concluded that the sensor that has had the best performance is prototype 1
working at 93 kHz. Additionally, a power circuit based on the ICM7555 has been designed
to be able to generate the biphase signal to power the soil moisture sensor. This sensor
is able to measure the percentage of water content in the soil at the desired depth. This
fact helps us to ensure the correct irrigation of the root ball. The sensor and power supply
circuit is connected to an ESP32 module for reading and storing humidity measurements.
The entire system has been tested with real samples for the extraction of its mathematical
behavior model. The results show that our sensor demonstrates that by using these models
we can achieve accuracies close to 95%.

Additionally, the network performance has been tested in a real, cultivated plot.
According to the results, and after modeling mathematically the results of the network
coverage, we can conclude that for the case of orange groves, the best results are obtained
when the emitter is placed at 0.5 and 1 m and the receiver is placed near the ground.

191



Sensors 2021, 21, 7243

So, near-ground configurations are the optimal deployment style for both emitters and
receivers.

In future work, we would like to perform more practical experiments with more
models of coils and different kinds of soils to design a more versatile sensor capable of
working with several sorts of soils without changing the sensor. It will also study the
possibility of including a system to automatically adapt the working frequency to the type
of soil. Because in our practical experiments we have included only the measurements
of signal amplitude, it could be interesting to measure the quadrature component and
phase of the obtained signal and trying to relate these parameters with changes of pH of
water. We also want to include other sensors in a multi-parametric node to place in the crop
field [55,56] to enhance the efficiency of water management in precision agriculture [57].
In this sense, we want to check if soil temperature has some effect over the soil moisture
measurements and, if required, over obtaining the soil moisture values compensated with
temperature. Finally, as the last step, we will study the most appropriate enclosures to
protect our entire system.
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Abstract: Water features (e.g., water quantity and water quality) are one of the most important envi-
ronmental factors essential to improving climate-change resilience. Remote sensing (RS) technologies
empowered by artificial intelligence (AI) have become one of the most demanded strategies to au-
tomating water information extraction and thus intelligent monitoring. In this article, we provide
a systematic review of the literature that incorporates artificial intelligence and computer vision
methods in the water resources sector with a focus on intelligent water body extraction and water
quality detection and monitoring through remote sensing. Based on this review, the main challenges
of leveraging AI and RS for intelligent water information extraction are discussed, and research
priorities are identified. An interactive web application designed to allow readers to intuitively and
dynamically review the relevant literature was also developed.

Keywords: surface water; water body detection; surface water extraction; water quality moni-
toring; remote sensing; artificial intelligence; computer vision; machine learning; deep learning;
convolutional neural networks

1. Introduction and Motivation

Water is fundamentally necessary to all forms of life, and it is also the primary medium
through which climate change impacts Earth’s ecosystem and thus the livelihood and
wellbeing of societies [1]. While water covers about 71% of the Earth’s surface, only
approximately 3% of the Earth’s water bodies are freshwater [2]. Climate change will
bring unique challenges to these water bodies. Many rivers and streams are heavily
dependent on winter snowpack, which is declining with rising temperatures and changing
precipitation patterns [3]. Sea level rise is also impacting the continued quality and quantity
of water supplies [4]. Both the quantity and the quality of freshwater systems are critical
environmental features essential to increasing resilience in the face of climate change [5,6].
Resilience is defined here as the capacity of a system to absorb disturbance and still retain
its basic function and structure [7]. Climate change will bring new disturbances in many
forms, including increased pollution from wildfires, saltwater intrusion, and deteriorated
water quantity resulting from prolonged drought [1,8]. It is critical that we gather, ideally
automatically, as much information as possible about freshwater bodies and how they
function in order to increase our capacity to respond to a changing climate. Rockström [5,6]
and his colleagues conceptualize freshwater use and biogeochemical flows that threaten
the integrity of freshwater (via pollution) as two of seven variables key to overall Earth
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system function. Each of these variables, they argue, can be thought of as having “planetary
boundary”, a threshold that should not be crossed if we are to maintain the Earth in its
current system state [5]. In this sense, the integrity and functioning of freshwater systems
are essential not only in the local scale in which they provide critical ecosystem services;
they also create a “safe operating space” for humanity as a whole, as we seek to achieve
global solutions to the larger environmental challenges we face with climate change and
associated stressors [6].

Responding to climate change challenge impacts on water resources requires adap-
tation strategies at the local, regional, national, and global scales. Countries are urged to
improve their water resources management systems and to identify and implement “no
regrets” strategies in order to be resilient to climate change [1]. The changing spatial and
temporal patterns of surface water are important, in both practical and scientific terms, for
water resources management, biodiversity, emergency response, and climate change [9].
More specifically, automated monitoring of water bodies is critical for adapting to climate
change, water resources, ecosystem services, and the hydrological cycle, as well as for
urban hydrology, which can facilitate timely flood protection planning and water quality
control for public safety and health [10–12]. Accurate water quality monitoring is essential
for developing sustainable water resource management strategies and ensuring the health
of communities, ecosystems, and economies [13]. However, current knowledge of water
quality is often disconnected in time and space across different measurement techniques
and platforms that may fail to capture dynamic ecosystem changes. This disconnection
indicates an inefficiency and redundancy in research and monitoring activities. A major
challenge for water resource management is how to integrate multiple sources of water
quality data and indices into usable and actionable information of environmental, social,
economic, and infrastructural value [13,14].

Geospatial big data are leading to transformative changes in science (with the advent
of data-driven and community science) and in society (with the potential to support the
economy, public health, and other advances). Artificial intelligence (AI), especially its
branches machine learning (ML), deep learning (DL), and computer vision (CV), are central
to leveraging geospatial big data for applications in both domains. Remote sensing (RS)
is the single largest source of geospatial big data and has increased dramatically in terms
of both spatial and temporal resolution. This poses serious challenges for effective and
efficient processing and analysis [15]. Meanwhile, recent advances in DL and CV have
significantly improved research in RS and geosciences [16–18]. These advances, if integrated
in creative and appropriate ways, host potential to enable the automated identification and
monitoring of large-scale water bodies and water quality effectively and efficiently.

In this article, we argue specifically that bridging research into extracting important
water information (e.g., water body extent, water quality) from RS imagery will provide
an important computational foundation for the development of smart, RS-enabled water
resource management systems. We review a range of recent developments in the relevant
fields that can be leveraged to support intelligent automation of water body extraction
and water quality detection and monitoring through RS imagery. An accompanying
interactive web application allows our readers to intuitively track scholars and publications
covered in this review (the web app tool URL and its brief demo video link are provided in
Appendix A).

1.1. Selection Criterion for Reviewed Papers and Brief Graphic Summary

In the literature review process, we performed a systematic search on Google Scholar
with the keywords and search strategy detailed in Table 1. In addition, our search was
restricted to research articles published in English and in peer-reviewed journals or confer-
ence proceedings. For water body detection, we combined the water body keywords with
some combination of the general keywords. The process for finding publications related
to water quality was the same, only with the water quality keywords list. Beyond the
keywords listed in this table, references (those cited in the papers we reviewed) cited by
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the keyword-identified papers were also retained. A total of 90 papers relevant to the topic
of water body and/or water quality from RS imagery using AI/ML/DL/CV algorithms
were identified. A total number of 56 highly relevant articles were identified by applying
the following exclusion criteria: (1) papers related to plastic pollution and sewage/water
treatment plants, (2) precipitation forecasting or groundwater detection (as it is not intuitive
to detect groundwater from RS imagery), and (3) general land use classification. Figure 1
shows the spatial distribution and a simple statistics summary of the papers covered in this
review, where (d) shows the number of published papers by year in the reviewed topics
from 2011 to early 2022.

Table 1. Keywords used for article search.

Keyword Category Search Strategy

General keywords 1

“remote sensing” OR “satellite data” OR “UAV” AND
“computer vision” OR

“machine learning” OR “deep learning” OR “neural
networks” OR “AI”

Water body “water body” AND “detection” OR “extraction”

Water quality “water quality” AND “sensing” OR “monitoring”
1 A list of general keywords were combined with either the category of water body or water quality, respectively,
to perform our search.

 
(a) 

 
(b) (c) 

Figure 1. Cont.
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(d) 

Figure 1. Geospatial distribution and simple statistics of the reviewed papers. Note that a freely
accessible interactive version of the charts can be accessed via our web app tool (the web app tool
URL and its brief demo video are provided in Appendix A). We can easily see that the major countries
are China and the United States and that the number of published papers by year (2011 to 2021) has
dramatically increased since 2018 and 2019. (a) Spatial distribution of reviewed papers based on the
first author’s institution location. (b) Topic distribution (water body, water quality, both). (c) Country
distribution. (d) Number of published papers by year from 2011 to 2021 on the relevant topics.

1.2. Roadmap

Here, we provide a roadmap for the rest of the paper. Section 2 outlines the scope of this
review and our intended audience. Section 3 is the core of the paper, focused on identifying
important and recent developments and their implications to water body detection and
water quality monitoring from RS imagery through the leverage of AI/ML/DL/CV. Here,
we highlight recent advances in several subfields of AI that water domains and RS can
leverage. Specifically, we provide general characteristics of the reviewed studies using
word clouds (Section 3.1). We then examine and appraise key components of influential
work in water body detection (Section 3.2) and water quality monitoring (Section 3.3).
Section 4 starts with a brief summary (Section 4.1), followed with a discussion of key
technical challenges (Section 4.2) and opportunities (Section 4.3). The paper concludes
in Section 5.

To allow our readers to intuitively and dynamically review the relevant literature, we
have developed a free-of-charge interactive web app tool (the web app URL and its brief
demo video are provided in Appendix A). To provide background for readers (particularly
those from water resources and RS) who are new to AI/ML/DL/CV, we introduce essential
ML terms in Appendix B. As evaluation metrics are essential for measuring the performance
of AI/ML/DL/CV models, we also provide an introduction to a set of commonly used
evaluation metrics in Appendix C. In addition, as there are plenty of acronyms in this paper,
we provide a full list of abbreviations right before the appendices.

2. Audience and Scope

It is important to know where water is and how its extent and quality are changing
over time in a quick and accurate manner. Water quality is a key issue in water supply,
agriculture, human and animal health, and many other areas [19]. Impaired water quality
can be caused by natural disasters, but the most common cause is anthropogenic pollution.
Pollutants, excessive nutrients from fertilizers, and sediment (e.g., from soil erosion) are
carried into local lakes and rivers via runoff from urban or agricultural areas [19,20]. The
quality of water varies from places and from time to time [19]. Affected surface waters are
present in RS imagery and can be identified with the help of computational techniques
such as ML. To make near real-time intelligent water body detection and water quality monitoring
possible, we need to first detect extent of water bodies from RS imagery, from which volume can be
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computed, and then recognize their corresponding water quality, eventually linking the two to allow
water quality monitoring.

Environmental nonprofits, government agencies, and water managers need access to
this type of integrated spatial–time series of water body and water quality information
to see how local water resources are changing and plan for future drought conditions.
Collective detection and monitoring of water bodies and their associated water quality
has applications for human health, as well as to private-sector industries including timber,
agriculture, recreation, and tourism. Public policy planners need to be better informed as
they make environmental preservation and restoration decisions based on changing water
availability, and with this data we can be better equipped to monitor water quality that can
quickly change due to floods, hurricanes, or human-caused pollution, and yet, to date, water
body detection and water quality monitoring research has been historically separate and does not
focus enough on producing intuitive, operational products.

Building on the long-term interest in ML and CV within the RS community, the main
goals of this review paper are to (1) survey recent advances in water body detection and
water quality monitoring from RS data using AI to identify commonly cited challenges
in order to provide suggestions for new research directions, and (2) move towards au-
tomated, synoptic water quantity and quality monitoring to inform more robust water
resource management.

This systematic review is relevant to multiple research domains, including, but not
limited to RS, geographic information science, computer science, data science, information
science, geoscience, hydrology, and water resource management. This paper does not
attempt to review the application of RS to water resources and hydrology more generally;
for recent reviews of these topics, see [13,21–24]. A survey of DL applications in hydrology
and water resources can be found in [25]; a survey of AI in the water domain can be found
in [26]; and a survey of water quality applications using satellite data solely focused on ML
can be found in [27]. This review focuses on investigating recent AI methods, including
its branches ML, DL, and CV, for water information extraction (specifically water body
detection and/or water quality monitoring) from RS imagery. Our review has a narrowed
scope in water resources and hydrological research, but a wider and deeper scope in
terms of AI methods and metrics used to assess models in both water body detection and
water quality research. By integrating both domains, we hope to develop a basis for effective
computational frameworks for intelligent water monitoring systems using RS and AI.

3. The State of the Art: Advances in Intelligent Waterbody Information Extraction

3.1. General Characteristics of the Reviewed Studies

Note that we only included and reviewed the papers that use both RS and AI/ML/DL/CV
for water body and/or water quality detection (that is, the number of papers cited in our
reference section is much larger than the number of papers we review in this Section 3). A word
cloud visualization of the titles, abstracts, and keywords of the reviewed 56 papers are provided
in Figure 2, where the top figure indicates the word cloud for all reviewed papers. The bottom
left word cloud is for reviewed water body papers, and the bottom right for reviewed water
quality papers.

As we can see from the word cloud for both water body extraction and water quality
(see the top word cloud in Figure 2), “remote sensing”, “deep learning”, “prediction”,
“classification”, “extraction”, “machine learning”, “water body”, “water quality”, and
“convolutional neural network” are prominent concepts and words captured by the word
cloud. Our focus is on studies that use RS for water body extraction and water quality
monitoring, so many of the keywords are to be expected. However, it is perhaps surprising
to see DL featured so prominently given that the shift from ML to DL models is a relatively
recent phenomenon.
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Figure 2. Word cloud visualization of all the reviewed papers (top), water body papers (bottom left),
and water quality papers (bottom right). Note that the word clouds are generated from paper titles,
abstracts, and keywords. The word clouds provide an informative (general and specific) focus of
each set of the papers. For example, both water body and water quality papers share the focus on
RS, DL, and neural networks (NN). We can also see that water body extraction tasks tend to focus
on the use of convolutional neural networks (CNN), whereas for water quality modeling the use of
long short-term memory (LSTM) networks is more prevalent. We can also see that there are specific,
unique keywords for water quality, such as “turbidity”, “chl”, and “algal bloom”.

When we separate the keyword word clouds (see the bottom two word clouds in
Figure 2), this trend becomes clearer. Deep learning is much more common in water body
extraction, whereas in the word cloud for water quality monitoring, “neural network” and
“machine learning” are about the same size. Additionally, in the water body extraction
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word cloud, “remote sensing” is featured much more heavily than it is in the water quality
extraction literature. In our review, the water quality papers often involved other types of
data, including in situ sensors or smaller RS devices (not satellites), whereas the water body
extraction literature is dominated by RS imagery. This is related to the scale of projects in
the two domains: water body extraction is usually undertaken across large spatial scales,
whereas the water quality monitoring literature is still focused on smaller, often individual,
bodies of water. This points to a future research direction in the water quality literature
that we touch on in our review paper: we need to scale up water quality estimation using
RS imagery by matching it with ground-truth water quality measurements.

Tables 2 and 3 provide a brief summary of the methods used for water body detection
and water quality monitoring, elaborated in Sections 3.2 and 3.3, respectively. The general
characteristics summarized by machines (i.e., the word clouds in Figure 2) align with the
literature; convolutional neural network (CNN) models are indeed applied much more
frequently for water body detection, and long short-term memory (LSTM) models are often
used for water quality monitoring. The evaluation metrics used in the reviewed articles
were also summarized and are provided in Tables 2 and 3 (a brief explanation of each
metric is in Appendix C).

Table 2. Studies targeting water body detection from RS imagery using AI (note that it is ordered
chronologically to show trends in data type and model usage; see the Abbreviations for a list of
the acronyms).

Reference Method Model Comparison RS Data Type Evaluation Metrics

Li et al. (2011) [28] DNN NDWI Landsat TM coherence

Yang et al. (2015) [29] AE DNN, SVM Landsat ETM+ accuracy

Huang et al. (2015) [30] ELM DT, LORSAL, RF, SVM, TB GeoEye-1, WorldView-2 Kappa, F-score

Isikdogan et al. (2017) [31] CNN MDWI, MLP Landsat F1-score, CE, OE, precision, recall

Yu et al. (2017) [32] CNN–LR hybrid ANN, CNN, SVM Landsat ETM+ accuracy

Jiang et al. (2018) [10] MLP MLC, NDWI Landsat-8 OLI Kappa, OA

Chen et al. (2018) [33] CNN CNN, NDWI, SVM GaoFen-2, Zi Yuan-3 ECE, EOA, EOE, OA, PA, UA

Miao et al. (2018) [34] CNN DNN Google Earth imagery OA

Acharya et al. (2019) [35] SVM ANN, DT, GMB, NB, NDWI, RF,
RPART Landsat-8 OLI Kappa, OA

Feng et al. (2019) [36] CNN–CRF hybrid CNN, CV-method GaoFen-2, WorldView-2 Kappa, PCC, precision

Li et al. (2019) [37] CNN CNN, NDWI, SVM GaoFen-2 F1-score

Li et al. (2019) [38] CNN–CRF hybrid CNN, NDWI GaoFen-1 IoU, pixel accuracy, recall

Meng et al. (2019) [39] CNN–SVM hybrid CNN, SVM GaoFen-2 accuracy, MA, UA

Isikdogan et al. (2020) [40] CNN CNN, MLP, MNDWI Landsat-8 F1-score, precision, recall

Song et al. (2020) [41] CNN CART, KNN, RF, SVM GaoFen-2, WorldView-3 IoU, precision, recall

Yang et al. (2020) [42] CNN CNN GaoFen-2 IoU

Wang et al. (2020) [43] CNN CNN, NDWI GaoFen-1 F1-score, mIoU, precision, recall

O’Neil et al. (2020) [44] CNN DEM, NDVI, RF LiDAR DEMs, NAIP precision, recall

Chen et al. (2020) [45] CNN NDWI, SVM GaoFen-1, GaoFen-2, Zi
Yuan-3 BOA, Kappa, OA

Dang and Li (2021) [46] CNN CNN GaoFen-2, GID mIoU, FWIoU, OA

Yuan et al. (2021) [47] CNN CNN, MNDWI, NDMI, NDWI Sentinel-2 accuracy, mIoU

Tambe et al. (2021) [48] CNN CNN Landsat-8 OLI CA, F1-score, GA, IoU, precision,
recall

Yu et al. (2021) [49] CNN CNN GaoFen-2, Landsat-7 F1-score, OA, precision, recall

Li et al. (2021) [50] CNN CNN, CV-method, SVM UAV Kappa, F-score, OA, precision
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Table 2. Cont.

Reference Method Model Comparison RS Data Type Evaluation Metrics

Zhang et al. (2021) [51] CNN CNN, MLC, NDWI, SVM GaoFen-2 IoU, Kappa, pixel accuracy

Li et al. (2021) [52] CNN CNN, NDWI, SVM GaoFen-2, GaoFen-6,
Sentinel-2, Zi Yuan-3 F1-score, IoU, OA

Su et al. (2021) [53] CNN CNN Landsat-8, Sentinel-2A IoU, pixel accuracy, recall

Ovakoglou et al. (2021) [54] KMeans

fuzzy-rules classification,
Haralick’s textural features of

dissimilarity, Otsu
valley-emphasis

Sentinel-1 Kappa, OA, precision, recall

Table 3. Studies targeting water quality monitoring from RS imagery using AI (where “/” means
none. Note that it is ordered chronologically to show trends in data type and model usage) (See the
Abbreviations for a full list of the acronyms).

Reference Method Model Comparison RS Data Type Evaluation Metrics

Chebud et al. (2012) [55] DNN / Landsat TM RMSE, R2

Wang et al. (2017) [56] SVR index methods spectroradiometer, water
samples RMSE, RPD, R2

Lee and Lee (2018) [57] LSTM DNN, RNN water quality time series RMSE

Wang et al. (2019) [58] LSTM / water quality time series accuracy, cross-correlation

Pu et al. (2019) [59] CNN RF, SVM Landsat-8 accuracy

Liu et al. (2019) [60] LSTM ARIMA, SVM IoT data MSE

Chowdury et al. (2019) [61] MLP / IoT data threshold value

Hafeez et al. (2019) [62] DNN CB, RF, SVR Landsat accuracy, relative variable
importance

Li et al. (2019) [63] RNN–DS hybrid GRU, LSTM, SRN, SVR water quality time series MAE, MAPE, RMSE

Randrianiaina et al. (2019) [64] DNN / Landsat-8 RMSE, R2

Yu et al. (2020) [65] LSTM / water quality time series MAE, RMSE

Zou et al. (2020) [66] LSTM DNN, GRU, LSTM meteorological time series,
water quality time series MAE

Peterson et al. (2020) [67] ELR MLR, SVR Landsat-8, Sentinel-2 MAPE, RMSE, R2

Hanson et al. (2020) [68] LSTM / water quality time series auto-correlation, MK statistics,
RMSE

Barzegar et al. (2020) [69] CNN–LSTM
hybrid CNN, LSTM water quality data from

multiprobe sensor
MAE, NSEC, Percentage of

Bias, RMSE, Wilmott’s index

Aldhyani et al. (2020) [70] LSTM ANN, DNN, KNN, NB,
SVM water quality time series

accuracy, F-score, MSE,
precision, R, sensitivity,

specificity

Li et al. (2021) [71] RF SVM Sentinel-2 MSI RMSE, RPD, R2, Z-score

Sharma et al. (2021) [72] CNN CNN UAV camera precision, recall

Cui et al. (2021) [73] CNN KNN, index method, RF,
SVM Landsat-8, Sentinel-2 RPD, RMSE, R2

Zhao et al. (2021) [74] DNN RBFNN Landsat-8, water quality
time series MAE, MSE, R2

Arias-Rodriguez et al. (2021) [75] ELM LR, SVR Landsat-8, Sentinel-2 MSI,
Sentinel-3 OLI MAE, MSE, RMSE, R2

Kravitz et al. (2021) [76] DNN KNN, RF, XGBoost Landsat 8 OLI, Sentinel-2
MSI MAPE, RMSE, RMSLE 1

Sun et al. (2021) [77] DNN GPR, RF proximal hyperspectral
imager, water samples accuracy, MRE, RMSE, R2

1 The authors use the abbreviation RMSELE for RMSLE in their paper (this might be a typographical error).
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3.2. Recent Advances in Water Body Detection Using AI

From our systematic review (including Table 2), we provide a brief summary here
about the recent advances in water body detection based on AI. (1) The most common
satellite platforms were Landsat, GaoFen, Zi Yuan, WorldView, and Sentinel, although
there were some manually annotated datasets. The use of UAVs and DEMs were noted
but were not as common. (2) Precision, recall, overall accuracy (OA), F1-score, kappa,
and intersection over union (IoU) are the most popular evaluation metrics for water body
detection since it is mainly a classification task. (3) Convolutional neural networks (CNNs)
are normally compared to normalized difference water index (NDWI) or another index-
based method, some form of “shallow” ML model (e.g., random forest (RF), support
vector machine (SVM)), or other CNN architectures). Below, we provide a more detailed
review of the methods used for water body detection. As Table 2 and word clouds (see
Figure 2) indicate, the dominant methods used in water body detection with AI are CNNs
(Section 3.2.1). Beyond CNN-based methods, there are other methods including CNN
hybrids (Section 3.2.2), artificial neural networks (ANN), multilayer perceptrons (MLP),
dense neural networks (DNN), other DL methods (Section 3.2.3), and “shallow” ML based
methods (Section 3.2.4).

3.2.1. CNN-Based Water Body Detection

CNN-based models are the dominant methods for water body detection, but each of
them have addressed different challenges posed in water body detection from RS imagery.
Based on our review, we identify the following five groups of use cases: (1) Addressing
limitations of index-based methods; (2) sharpening blurred boundaries caused by CNNs;
(3) Addressing spatial and spectral resolution challenges, which covers those methods that
are able to recognize water body across scales, at multiple resolutions, from very high-
resolution imagery, and/or integrating bands beyond RGB channels to use for CNN model
training; (4) Robust detection of small/slender/irregular-shaped water bodies; (5) Others.

1. Addressing limitations of index-based methods:

Index methods (e.g., NDWI) are rule-based and fail to take advantage of context
information. CNNs can overcome this, although they often blur boundaries in segmentation
tasks because of the convolution operation [34]. A DenseNet was used in [43] for water
feature extraction and the authors compared its performance with NDWI and several
popular CNN architectures. While NDWI methods are quick, they are not as accurate as
CNNs. The authors showed that DenseNet performed the best at distinguishing water
from shadows and clouds. However, the authors argue that clouds often occlude optical
imagery, so one way to improve their method is to combine it with microwave RS imagery.

The authors in [31] pointed out that index methods require careful calibration and that
indices differ from place to place. They also suffer from false positives (from snow, ice, rock,
shadows, etc.) and vary in different weather conditions (e.g., clouds). To overcome those
limitations of index-based methods, the authors of [31] developed DeepWaterMap, which
can classify water with high accuracy, even distinguishing it from snow, ice, shadow, and
clouds. DeepWaterMap is able to classify land classes that are often misclassified as water
(or vice versa); thus, it minimizes false positives during the classification process. Most
importantly, the DeepWaterMap model also works across different terrains and in different
weather conditions, although it is still affected by clouds. The same authors released a
second version of the model, DeepWaterMap v2, in [40]. The major improvement from v1
is that the new version allows users to input large RS scenes without the need for tiling,
and the authors made their network run efficiently with constant memory at inference time.
This model should theoretically work across different sensor platforms as long as they have
the visible, near-infrared, and shortwave infrared 1 and 2 bands, but will still sometimes
classify clouds as water.

2. Sharpening blurred boundaries caused by CNNs:
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CNN-based methods can overcome the limitations of index-based methods, as reported
above in group (1) [34], but they often blur boundaries in segmentation tasks because of the
convolution operation. To sharpen water body detection boundaries, in [34], a restricted
receptive field deconvolution network (RRF DeconvNet) and a new loss function called edges
weighting loss were proposed. However, the authors needed to retrain the entire network
(which is very computationally expensive) instead of using transfer learning (TL).

Apart from blurring pixel boundaries, CNNs generally require many training parame-
ters and very large training datasets to be successful. A novel convolution–inception block
in a network, called W-Net, was proposed in [48], to extract water bodies from RS imagery.
W-Net is able to train on fewer images compared with other CNN models and still extract
water bodies accurately, and the authors pointed out that less computations are necessary
due to use of inception layers. W-Net outperformed other CNN architectures, although
the authors still needed to go through the time- and labor-intensive process of creating a
dataset of manually annotating images.

3. Addressing resolution and band related challenges

High-resolution optical RS imagery allows for much finer detail in surface water
body extraction. However, clouds and their shadows are often present in optical RS
images [78]. The shadows (e.g., cloud shadows and building shadows) and water bodies
share a very similar appearance in optical RS images. Therefore, water body extraction is
not an easy task in the optical high-resolution RS images due to the limited spectral ranges
(including blue, green, red, and near-infrared bands) and the complexity of low-albedo
objects (cloud shadows, vegetation, and building shadows). Higher spatial resolution
imagery often comes at the cost of less spectral channels and thus makes it difficult to
extract features from complex scenes. To address this problem, a dense local feature
compression (DLFC) was proposed [52] to extract bodies of water from RS imagery, and
their DLFC outperformed other state-of-the-art (SOTA) CNNs, as well as an SVM and
NDWI thresholding. Their results demonstrated that the DLFC is good at extracting slender
water bodies and distinguishing water bodies from building shadows using multisensor
data from multiple RS platforms.

TL and data augmentation (see Appendix B) are used in [37] to extract water bodies
from satellite imagery. The authors showed that a CNN can outperform NDWI and an SVM
in water body detection when the input data is very high resolution. There are tradeoffs,
however, and the authors reported that the difficulty of hyperparameter tuning is one
downside to using a CNN. A water body extraction NN, named WBE-NN, was proposed
in [45] to extract water bodies from multispectral imagery at multiple resolutions while
distinguishing water from shadows, and performed much better than NDWI, an SVM,
and several CNN architectures. A self-attention capsule feature pyramid network (SA-
CapsFPN) was proposed in [49] to extract water bodies from satellite imagery of different
resolutions. SA-CapsFPN is able to recognize bodies of water across scales and different
shapes and colors, as well as in varying surface and environmental conditions, although it
is still entirely dependent on optical imagery as input to the CNN.

The novel MSResNet proposed in [46] learned from a large dataset of unlabeled RS
imagery. MSResNet, in addition to being able to extract water bodies in an unsupervised
manner, is able to recognize water bodies at multiple resolutions and of varying shapes.
However, their network cannot distinguish water bodies from farms and barren areas. In
addition, the CNN-based model name FYOLOv3, proposed in [51], is able to detect tidal
flats at different resolutions. However, it does depend on a manually selected similarity
threshold that introduces some subjectivity.

RGB band imagery is the primary focus in substantial research for water body ex-
traction, but many more bands are available in RS imagery. A multichannel water body
detection network (MC-WBDN) was created in [47], which fused the infrared and RGB
channels and used them as input data for their CNN architecture. They demonstrated that
when multispectral data is used, model performance for water body detection is increased
and the model is more robust to lighting conditions. The proposed model MC-WBDN is
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much more accurate than index-based methods such as NDWI, modified NDWI (MNDWI),
and normalized difference moisture index (NDMI). MC-WBDN also outperforms other
SOTA architectures such as U-Net and DeepLabV3+ for water body detection tasks. How-
ever, this method still relies on preprocessing data to make sure each input image is the
same shape and free of clouds.

4. Robust detection of small/slender/irregular-shaped water bodies

Small water bodies are hard to extract from RS imagery. In [33], the authors designed
a CNN (named SAPCNN), which is able to extract high-level features of water bodies
from input data in a complex urban background. NDWI and SVMs cannot distinguish
between water and shadows and their architecture’s performance partly relies on visual
inspection. Ref. [53] utilized a modified DeepLabv3+ architecture to extract bodies of water
at different scales. Their focus is on extracting water bodies in urban RS images. Their
network performed well on small bodies of water, but the model has problems identifying
many of them because they were not properly annotated.

Mask-region-based CNNs (R-CNNs) have demonstrated success in detecting small
and irregular shape water bodies. Song et al. (2020) [41] employed an R-CNN for water
body detection from RS imagery, and their model outperforms many traditional ML models
in identifying small water bodies and bodies of water with differing shapes. However, it is
still difficult to deploy a trained NN model into a usable, production-ready form for water
mapping applications. The authors reported that using NN output to create and update a
vector map of water resources for stakeholders is challenging.

Yang et al. (2020) [42] also used a mask R-CNN to automate water body extraction.
The authors argued that this allows them to avoid manual feature extraction in complex RS
imagery. They segmented small water bodies and bodies of water with irregular shapes,
although their methods suffer from poor IoU accuracy. This is primarily due to a small
training set, for which DL models are ill-suited, and resulted in their models having
problems identifying multiple bodies of water in RS images.

A self-attention capsule feature pyramid network (SA-CapsFPN) was proposed in [49]
to extract water bodies from satellite imagery. SA-CapsFPN is able to recognize bodies of
water across scales and different shapes and colors, as well as utilizing different information
channels. The novel MSResNet proposed in [46], learnt from unlabeled large RS imagery, is
also able to recognize water bodies at multiple resolutions and of varying shapes; however,
their network cannot distinguish water bodies from farms and barren areas.

A dense local feature compression (DLFC) was proposed in [52] to extract bodies of
water from RS imagery, and their DLFC outperformed other SOTA CNNs, as well as an
SVM and an NDWI. Their results demonstrated that the DLFC is good at extracting slender
water bodies and distinguishing water bodies from building shadows using multisensor
data from multiple RS platforms.

5. Others

Extracting water bodies from RS imagery quickly and reliably is still a difficult task.
Based on U-Net, [50] developed a new model called SU-Net to distinguish between water
bodies, shadows, and mixed scenes. However, the authors only focused on water body
extraction in urban areas and only used RGB information during the extraction process.
While SU-Net performed better than an SVM and classic U-Net, it suffered when extracting
water bodies from RS imagery with high reflectivity or that contained aquatic plants.

Wetlands are important ecosystems because they can keep flooding at bay and store
carbon; however, they are threatened by development, climate change, and pollution. For
the task of identifying wetlands, [44] combined RS imagery with hydrological properties
derived from digital elevation models (DEMs) to identify wetlands. They showed that
an RF performs as well as a CNN, although both models had issues distinguishing roads
and trees from wetlands. This is perhaps due to their small training set. To improve
performance, the authors argued that larger datasets with finer labels should be created for
wetland detection.
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Substantial water body detection work has focused on water bodies in urban and
inland settings. Very few focus on tidal flat extraction, where sediment levels are high
and the boundary of the water body itself is blurry. A CNN model called FYOLOv3 was
proposed in [51], where the authors compared their model to NDWI, an SVM, a maximum
likelihood classifier, U-Net, and YOLOv3. FYOLOv3 performed the best and is able to detect
tidal flats at different resolutions; however, it depends on a manually-selected similarity
threshold during the training process, which is a source of subjectivity.

Large sets of unlabeled water body data are available and easy to acquire, and semantic
segmentation networks cannot recognize different water body shapes. A recent, very novel
encoder–decoder CNN architecture named MSResNet, proposed in [46], is able to overcome
those limitations. MSResNet is able to learn from unlabeled data and can also recognize
water bodies of varying shapes and at multiple resolutions. However, even though their
network outperforms other SOTA architectures without supervised training, their network
has some issues categorizing water bodies, farms, and barren areas.

3.2.2. CNN Hybrid-Based Water Body Detection

CNNs are the SOTA models in water body extraction tasks (detailed in Section 3.2.1
above); however, their output and decisions for why they make the predictions that they
do are largely a black box. Recent studies have integrated CNNs with some ML models.
Interpretability was improved by using a CNN and SVM in parallel to classify wetland
water bodies [39]. Wetlands are difficult/complex to identify in high-resolution satellite
imagery with any single ML model. Hybrid models have shown promise in a process called
decision fusion. Here, the authors pick a decision fusion threshold value by performing
cross-validation on the CNN to see when it is sure or not. They then use this threshold
value for the decision fusion predictions (e.g., when the CNN is not that sure, they defer
to the SVM). However, the authors did not explain why they used an SVM and not some
other ML model. The classifier used in [32] combines a CNN with a logistic regression (LR)
model to extract water bodies. The authors emphasized that traditional ML methods for
water body extraction need multispectral data and rely on lots of prior knowledge. Thus,
those ML-based methods would not generalize well to different tasks. The authors also
argue that single-band threshold methods are subjective. Their results demonstrated that
the hybrid CNN-LR model works better than an SVM, an ANN, and other CNNs. However,
their method requires segmented RS images as input.

How to accurately extract water bodies from RS images, while continuously updating
the surface water maps, is an active research question. Index methods and active contour
models are popular methods for water body detection tasks but are sensitive to subjective
threshold values and starting conditions. Deep U-Net model was proposed to be used
with a conditional random field (CRF) and regional restriction to categorize water versus
non-water in satellite images [36], while reducing the blurring of edges that often occurs
from CNNs for image segmentation. Although this network is highly accurate, it takes a
lot of data and computation power to train. Training ML models at a single scale in single
channels can cause errors when generalizing to other scales or types of RS data. Multiscale
RS imagery was used with DeepLabV3+ and a CRF for water body segmentation [38]. This
approach works well for training models on data from different scales, and they concluded
that CNNs and CRFs together extract more accurate water boundaries at both large and
small scales than CNNs alone.

3.2.3. ANN, MLP, DNN, and Other DL-Based Methods for Water Body Detection

An NN architecture called a local excitatory globally inhibitory oscillator network
(LEGION) is used in [28], where the authors compared the results of LEGION trained
on NDWI and spectral information, respectively. In addition, they employed object-wise
classification, instead of pixel-based classification used in most other work. The authors
reported that the network is very computationally expensive.
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Different methods of water body extraction work (or do not work) in different ar-
eas/terrain types. Each needs subjective thresholds and/or hand-crafted features. In addition,
generating large sets of labeled data is difficult and expensive, as high-dimension RS data is
difficult to analyze. Objects such as shadows, clouds, and buildings are hard to distinguish
from water bodies. In [29], the authors used an autoencoder for unsupervised training and
concluded that their results are more accurate than for an SVM and traditional NN.

Huang et al., 2015 [30] pointed out that not many people have focused on water
body detection in urban settings. This is a problem because water bodies often look
similar to shadows due to buildings at certain times of the day in optical imagery. The
authors employed an extreme learning machine (ELM), an SVM, a tree bagger (TB), and
an RF to detect water bodies. The authors reported that the RF and TB performed much
better than the SVM and ELM. However, their method depends on optical imagery with
subjective thresholds set through trial and error. Specifically, their method depends on
subjective threshold values in NDWI, normalized difference vegetation index (NDVI), and
morphological shadow index (MSI).

Ref. [10] compared MLP, NDWI, and a maximum likelihood model for water body
classification and showed that MLP performed the best. However, the maximum likelihood
model could not recognize small bodies of water and thin rivers, whereas NDWI was not
able to distinguish seawater from land. The MLP could identify small bodies of water
better, but the analysis depended on visual assessment.

3.2.4. “Shallow” ML-Based Water Body Detection

Although most of the recent methods for water body detection used DL and/or deeper
neural networks (Sections 3.2.1–3.2.3), a few studies used only “shallow” ML methods (e.g.,
RF and SVM). In [35], the authors used band methods (where slope, NDVI, and NDWI
were added as three secondary bands to integrate extra information into ML training), and
then applied an SVM, a decision tree (DT), and an RF to analyze multiband RS data for
water body extraction in the Himalayas. However, while their models worked well for flat
and hilly terrain, they had to parse out high elevations and snow in this method (which
involves extra preprocessing and limits when/where their method can work with optical
data). The authors ran different experiments to analyze which input bands (NDWI vs.
individual input bands from Landsat data) worked the best but could only compare results
visually. The authors concluded that adding single secondary bands is better than adding
multiple in most ML algorithms except for NNs.

Sentinel-1 data and four different ML models (K-nearest neighbors classifier (KNN),
fuzzy-rules classification, Haralick’s textural features of dissimilarity, Otsu valley-emphasis)
were employed to classify water bodies in [54]. It involved many different ML methods
in tandem (i.e., the output of one ML model was fed into other processing steps), which
complicates interpretability. This method did not have very high accuracy and did not
work well in flooded regions, near buildings, and in the presence of aquatic vegetation.
However, it was an important attempt to use synthetic aperture radar (SAR) data, which is
rare in water body detection literature.

3.3. Recent Advances in Water Quality Monitoring Using AI

From Table 3, we identify the following trends in the use of AI for water quality
monitoring research: (1) Water quality monitoring differs from water body detection in
that it is formulated as both a classification and a regression task. Because of this, recurrent
neural networks (RNNs), long short-term memory (LSTMs), and gated recurrent units
(GRUs) are much more prevalent in the water quality literature. (2) Accuracy, precision,
and recall are common metrics, as are some variations of mean squared error (MSE) and
R2. (3) It is important to note that while water body detection papers describe integrating
multiple data sources into one analysis, this practice is much more common in water quality
monitoring research. This primarily takes the form of trying to match up water quality
parameters from time series data or water samples to optical satellite RS imagery. In water
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quality monitoring, it is much more common to utilize Internet of Things (IoT) sensors,
smaller probes such as unmanned aerial vehicle (UAVs) and stationary hyperspectral
imagers, as well as government and private water quality time series data. (4) Some studies
do not compare their model to any other models (detailed in Table 3), making it difficult to
fully assess their methodologies.

Below, we provide a more detailed review of the methods used for water quality
detection and monitoring. As our manual investigation (see Table 3) and machine summary
(word cloud, see Figure 1) indicate, the dominant methods used in water quality detection
with AI are LSTMs (Section 3.3.1) and ANNs, MLPs, DNNs, and other DL methods
(Section 3.3.5). Beyond LSTM and ANN-based methods, there are other methods including
LSTM hybrids (Section 3.3.2), CNN-based methods (Section 3.3.3), and “shallow” ML-based
methods (Section 3.3.4).

3.3.1. LSTM-Based Water Quality Detection and Monitoring

Algal blooms cause serious harm to human and animal health and can damage both
environments and economies. Various factors lead to algal blooms and gathering the data
necessary to predict them is time- and cost-intensive. ML models can provide advanced
warning for these events by taking into account time series data of basic water quality
parameters. A linear regression model was compared with an MLP, an RNN, and an LSTM
to predict harmful algae blooms in dammed pools from several rivers [57]. While the LSTM
model was the most accurate overall, for several of the dammed pools that the authors
tested, a least-squares regression model outperformed the LSTM. This casts doubt as to
how the LSTM model generalizes and if it is worth the added complexity.

Water pollution is becoming an increasing problem because of rapid rates of devel-
opment and urbanization. Large amounts of water quality parameters can be taken via
IoT sensors, and DL techniques are well suited to finding patterns in the large quantity of
data. An LSTM was used to predict future values of different water quality parameters [60].
Most importantly, the authors only used single-dimensional inputs and outputs (i.e., a 1D
time series of dissolved oxygen as an input to predict dissolved oxygen at some time in the
future). While the results were good, the authors noted that the architecture would benefit
from training on multiple time series at the same time. The authors reported that long-term
predictions on the order of 6 months into the future did not work well. Beyond monitoring
water for different levels of pollutants, it is also important to find the sources of pollutants
when they are identified. Cross-correlation was used to map pollutants to different water
quality parameters [58]. They then used an LSTM to match pollutants to nearby polluting
industries using the highly correlated water quality parameters.

Similar to LSTMs, RNNs have been demonstrated to be accurate for times series
prediction but are also often criticized for being difficult to interpret. Meanwhile, process-
based ecological models, although deterministic, fail to capture patterns at longer time
scales. A process-based model was integrated with an RNN to better align predictions of
phosphorus levels in lakes to eliminate outlier predictions. Constraining NN output with
physics-based models better aligns their predictions with ecological principles [68].

Rapid development has led to decreased water quality. In [70], water quality parame-
ters can be used to both classify the current water quality index and predict future water
quality index states. However, the authors separately compared DL models for water
quality prediction and ML models for water quality classification, making the methods
not directly comparable. A nonlinear autoregressive neural network (NARNET), a type of
ANN, performed better than an LSTM at predicting the water quality index, while an SVM
performed better than other traditional ML models for classification.

3.3.2. LSTM Hybrids Water Quality Detection and Monitoring

To further improve model performance, a few recent studies have integrated other
models with LSTMs. Water scarcity and drought are increasingly significant environmental
challenges. Increased development is leading to worsening water pollution. Predicting the
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water quality from time series data is essential, but traditional ML models fail to capture
long-term temporal patterns. This causes them to make false predictions in water quality
monitoring applications. An RNN–Dempster–Shafer (RNN–DS) evidence theory hybrid
model was used to make sense of multiple input time series of different time scales [63].
While evidence theory did make the predictions more stable, longer-term predictions did
not work very well, even with the improvements to the model. The authors pointed out
one possible reason might have been not taking spatial correlations between water quality
parameters into account.

Economic development and urban growth have posed water quality issues. Wavelet
domain threshold denoising (WDTD) and wavelet mean fusion (WMF) were used to
analyze the output of LSTM predictions for multiple water quality parameters [65]. While
multiple wavelet basis functions were used to analyze predictions, the LSTM was not
compared to any other models in this analysis. The authors noted that not having enough
observations was a limitation while training their LSTM model.

Mangrove wetlands provide habitats for many different types of animal species in
addition to preventing coastal erosion. More recent research has focused on monitoring the
water quality in these environments to assess the health of coastal ecosystems. Using water
quality and meteorological time series data, three different submodels were used for each
water quality parameter at different time intervals and fused their output predictions [66].
The authors tested this setup with a DNN, a gated recurrent unit (GRU), and an LSTM
model. While the LSTM performed the best, the authors reported that the model is not very
reusable or user-friendly.

Collecting and analyzing water samples is expensive, time-consuming, and labor-
intensive. Thus, many researchers choose to use sensors to remotely monitor water quality
parameters, but the number of parameters they can record are often limited. Ref. [69] used a
submerged multiprobe sensor to monitor several important water quality parameters over
the course of 1 year. They found that a CNN–LSTM model performs better than standalone
DL models and traditional ML methods for predicting water quality parameter values;
however, the authors did not use a validation set during NN training and the hybrid model
was able to quickly learn the training and testing set data distributions.

3.3.3. CNN-Based Water Quality Detection and Monitoring

CNNs are the dominant architecture for water body detection (Sections 3.3.1 and 3.3.2)
but are not used as widely for water quality. Here, we review two very interesting but
effective CNN-based methods. In situ water quality measurements work really well but
are very expensive. In addition, things such as total nitrogen and phosphorus, biological
oxygen demand, and dissolved oxygen are hard to measure from satellites because they
have weak optical properties. A CNN was used in [59] and showed that TL beats out
traditional ML models when classifying water quality from RS imagery. However, their
dataset was very small, and their focus was narrow (specifically, only two lakes in China,
no rivers or coastal waters covered). Water bodies are often polluted, or their quality
is affected from far away and thus it is difficult to identify and report on water quality.
Methods for estimating water quality at scale are essential. Turbidity can be a proxy for
total suspended solids (TSS) and suspended sediment concentration (SSC), so [72] used
image detection and then applied edge detectors to UAV images of water. They employed
CNNs to detect changes in water color and utilized this to approximate quality. They
showed that image-based turbidity detection is as accurate as actual turbidity meters, but
more importantly represents a very promising method for monitoring water quality at
greater spatial scales.

3.3.4. “Shallow” ML-Based Water Quality Detection and Monitoring

Remote water bodies are hard to monitor for water quality. A simple NN architecture
was designed to estimate several water quality parameters (i.e., chlorophyll-a, turbidity,
phosphorus) both before and after an ecosystem restoration project during both the dry
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and wet seasons [55]. Importantly, their predictions, using seven different input bands for
training the NN, were very close to the actual values.

Finding what data to input into an ML model for water quality monitoring is neither
easy nor straightforward. Different indices are sensitive to different areas and varying
weather and lighting conditions. To address this problem, [71] first correlated water quality
parameters to different RS bands. These correlations were then used to test four ML models
and their ability to predict a water quality index. Their R2 statistics were not high, though.

3.3.5. ANN, MLP, DNN, and Other DL-Based Methods for Water Quality Detection and
Monitoring

Climate change is making droughts and water shortages increasingly worse in arid
regions. It is thus important to develop methods and systems for intelligent and efficient
monitoring of the water resources in those regions. A water quality index for arid regions
was proposed in [56] and attempted to find which bands and spectral indices are related
to that water quality index. In situ water quality sampling is labor- and cost-intensive
and often suffers from low temporal resolution. As bodies of water around the world are
changing rapidly due to global warming, it is more important than ever to model their
spatial variation through time. A point-centered regression CNN (PSRCNN) was used
in [73] to analyze lake reflectance data to model water transparency. The authors concluded
that their model outperformed different band ratios and traditional ML models (KNN, RF,
SVM), although at the cost of generalization. The PSRCNN did not make stable predictions
due to too little data.

There is currently not enough paired RS imagery and in situ water measurement to
meaningfully create robust water quality monitoring applications. The generation of a
synthetic dataset of atmospheric reflectances and its suitability for water quality monitoring
were investigated in [76]. The synthetic dataset is physics-based and attempts to capture the
natural variability in inland water reflectances and chlorophyll-a concentrations. An ANN
outperforms several traditional ML models (KNN, RF, XGBoost) in predicting actual water
quality parameter values when trained on the synthetic dataset, although only the ANN
is validated against unseen data. Still, synthetic data generation is a promising research
direction for water body and water quality detection. Without RS imagery, many water
quality monitoring programs will suffer from lack of spatial coverage due to labor, time, and
cost constraints. Yet while RS is a useful tool for monitoring water quality parameters, it
has not been meaningfully integrated into operational water quality monitoring programs.
Existing water quality time series data were used in [75] and assessed the effectiveness of
multiple RS data platforms and ML models in estimating various water quality parameters.
The authors showed that some sensors are poorly correlated with water quality parameters,
while others are more suitable for water quality monitoring tasks. They concluded that
more research needs to be carried out for assessing the suitability of paired RS imagery and
in situ field data.

Current water quality monitoring systems are labor-, time-, and cost-intensive to
operate. IoT sensors can monitor water quality parameters in near real time, allowing
for much more data to be recorded with much higher temporal resolution. A wireless
sensor network made up in part of IoT sensors was used in [61], and used an MLP to
classify water quality as either good or bad. The authors utilized the MLP predictions to
notify water quality managers via SMS if the water quality drops below a certain threshold
value. However, because of the cost to deploy and run the network, the authors were
not able to include additional water quality parameters from more types of bodies of
water other than rivers. Water quality monitoring data collection is expensive and time
consuming, and there are usually tradeoffs between spatial and temporal resolution when
implementing data collection programs. In addition, several key water quality parameters
(pH, turbidity, temperature) can be estimated directly from optical and infrared RS imagery.
Randrianianina et al. [64] used RS imagery and DNNs to model water quality parameters
directly, after which they extend their analysis to map the distributions of water quality
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parameters to an entire lake, but they only focused on one lake and did not test their
methods on other bodies of water.

As bodies of water are exposed to increased nutrient loads, harmful algal blooms can
occur, leading to eutrophication. This process can create dead zones that would kill wildlife
and lead to negative economic impacts. Thus, it is important to monitor chlorophyll-a levels
in water bodies and predict algal blooms before they happen. Zhao et al. [74] attempted to
address this need by comparing DL models to traditional ML and curve-fitting methods
to predict chlorophyll-a levels using time series measurements paired with RS imagery.
The authors did not have much data as they limited the data collection process to one lake.
Thus, the DL models did not perform well. Additionally, the ML models used in this paper
needed more data and computing than simpler models in order to perform well.

It is often difficult to monitor inland water bodies for quality because of low signal-to-
noise ratios and limitations in resolution. A proximal hyperspectral imager was used in [77]
with high spectral and temporal time series data for continuous water quality observations.
The authors found that index-based methods of water quality detection were difficult to
calibrate as thresholding values are subjective, while ML and DL models performed much
better. However, the authors show that their models do not generalize well to other water
bodies with different water quality parameter distributions.

Anthropogenic activities have currently threatened largely coastal ecosystems. Coastal
ecosystems are complex bodies of water but monitoring them is very important. The
performance of an ANN was compared to traditional ML models in [62] for predicting
various water quality parameters. In some cases, traditional ML methods outperform the
ANN. More importantly, the authors conducted an analysis of relative variable importance
to show which sets of input data helped the ML models to learn the most. While the relative
variable importance analysis is critically important, the authors only test their method in
cloud-free RS imagery, limiting its utility. Additionally, while biophysical and chemical
water quality parameters were analyzed, little work was carried out with bio-optical data
due to issues with data availability.

While recent advances in RS capabilities for water quality detection are substantial
in the literature, few papers have collected and synthesized the resources available to
researchers. In a paper reviewing recent trends in RS imagery, cloud computing, and ML
methods, [67] used time series data from hundreds of water quality parameters and water
samples and combined them with proximal imagery, hyperspectral imagery, and two sets
of data from different satellite data platforms. They showed that DNNs outperform many
other traditional processing and ML techniques for assessing water quality. The authors
conclude that anomaly detection using multisensor data is the most promising method
for algal bloom detection. As is sometimes the case in the water body detection and water
quality monitoring literature, the authors did not have a third holdout set (necessary for
DL projects so that the data is not memorized).

4. Challenges and Opportunities

In this section, we first provide a brief summary and discussion of the key themes and
overall insights (Section 4.1) derived from reviewing the range of research discussed above.
In Section 4.2, we provide and discuss some of the major challenges we identified through
our systematic survey. Specifically, those challenges shared in both domains are detailed in
Section 4.2.1, those specific only to water body extraction in Section 4.2.2, and those specific
to water quality monitoring in Section 4.2.3. Finally, we discuss possible research directions
and related opportunities for water body detection and water quality monitoring using RS
and AI in Section 4.3.

4.1. Summary and Discussion

After introducing the essential terms in AI and RS (Appendix B) and commonly used
evaluation metrics in ML and DL for classification, regression, and segmentation tasks
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(Appendix C), we reviewed recent and influential research for water body detection and
water quality monitoring using RS and AI (Section 3).

While the research investigated in Section 3 has demonstrated the power of using
RS and AI to detect water bodies and monitor water quality, very few studies thus far
performed integrative research of water body and water quality using the power of RS and
AI. In addition, most existing RS and AI-based work on water bodies and water quality
repeat the same (or very similar) methods in a different research location or on a different
(usually small) dataset. However, real intelligent water resource management applications
will require serious development that goes beyond this type of research. Before operational
applications can be deployed, AI models (especially DL models) need to be trained on
large and representative benchmark datasets with a focus on making models generalizable
and interpretable.

We noticed that most work does not include hardware specifications (e.g., what
CPU/GPU the authors used to run their models) and/or processing time. To make models
comparable and for the sake of replicability and reproducibility, it is essential to report
such information. This is even true for index-based methods and more traditional ML
models so that researchers can fully evaluate the trade-offs between runtime, accuracy, and
ease of implementation. We hope our review will provide a useful guide to make future
research more replicable and reproducible. From our interactive web app (the web app
tool URL and its brief demo video link are provided in Appendix A), we also noticed that
while most papers have an open access PDF/HTML version of their manuscripts, a sizable
portion of manuscripts (16 out of 56 of reviewed articles) do not. We suggest authors
provide an open access version (e.g., posting the proofreading version after acceptance
to ResearchGate/arXiv) in order to increase the visibility of their research and thus to
accelerate the advancement of scientific knowledge.

4.2. Identified Major Challenges

Below, we provide the most commonly posed challenges for water body and water
quality research in the literature we reviewed. Those challenges shared in both domains
are outlined in Section 4.2.1 and those specific to each domain are detailed in Sections 4.2.2
and 4.2.3, respectively. Here are some specific issues to water body detection and water
quality monitoring.

4.2.1. Shared Common Challenges in Both Domains

A summary of the shared common challenges and identified problems in water body
extraction and water quality monitoring using RS and AI are provided below.

• Methods for water body detection and water quality monitoring need to be able to
work quickly and reliably on large spatial and temporal scales, and yet high-resolution
RS imagery is very complex. Index methods rely on subjective threshold values that
can change over time and space depending on weather conditions. Shallow ML models
are more accurate, but do not work at scale. DL models are complex, require very large
datasets to train on, and are very computationally expensive; also, the hyperparameter
tuning process is very tedious and difficult.

• It is difficult to know exactly what data to feed to ML and DL models, and it is
difficult to know what to make of the output predictions. This often requires integra-
tive expertise and/or interdisciplinary collaboration of RS, hydrology, biology, and
CV/ML expertise.

• NNs generally perform the best in water quality and water body detection tasks
but are often the least stable models (i.e., they do not generalize well). This is not
surprising, as the datasets used in RS problem settings are often not large enough
to allow NN models (too many parameters compared with shallow ML models) to
overcome overfitting (see Appendix B). Table 4 summarizes the relatively few existing
datasets we identified through our systematic review.
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• Both domains over-rely on optical RS imagery, and thus clouds and shadows are a persis-
tent problem and heavily skew the results towards working only in cloud-free conditions.

Table 4. Existing datasets for waterbody extraction and water quality monitoring.

Datasets Source Category Link to the Dataset Notes

DeepWaterMap v2 [40] Water body
https://github.com/isikdogan/

deepwatermap, accessed on
15 December 2021

>1 TB of Landsat-7 imagery
paired with Global Inland Water

dataset labels.

2020 GaoFen
Challenge / Water body

https://github.com/
AICyberTeam/2020Gaofen, accessed

on 15 December 2021

Dataset containing both 2500
optical and 1200 SAR satellite

images with pixel level labels for
water body segmentation.

GID-15 [79] Water body
https:

//captain-whu.github.io/GID15/,
accessed on 15 December 2021

150 pixel-level annotated
GaoFen-2 images for semantic

segmentation tasks.

LandCover.ai [80] Water body https://landcover.ai/, accessed on
15 December 2021

A dataset from 2015–2018 of
10,674 annotated tiles of RGB

imagery with labeled
water bodies.

SEN12MS [81] Water body
https:

//mediatum.ub.tum.de/1474000,
accessed on 15 December 2021

A curated dataset of 180, 662
georeferenced multispectral

Sentinel-1 and -2 imagery with
MODIS land cover labels.

AquaSat [82] Water quality
https://github.com/

GlobalHydrologyLab/AquaSat,
accessed on 15 December 2021

600,000 data matchups between
satellite imagery and water
quality measurements from

1984–2019.

Forel–Ule Index [83] Water quality
https://doi.org/10.6084/m9

.figshare.13014299, accessed on
15 December 2021

151 data matchups between
satellite imagery and water
quality measurements from

2000–2018.

4.2.2. Additional Challenges in Water Body Extraction

The specific challenges and problems identified for water body extraction are summa-
rized below.

• The majority of reviewed research focused on inland bodies of water, where only a
few papers discussed applications for coastal waters (not including oceans). Moreover,
many papers focus solely on only one type of water body, for example, only on lakes
or rivers in a specific area. As a result, water bodies from different landscapes (e.g.,
inland, coastal tidal flats, urban, wetlands) are difficult to recognize with one unified
method (i.e., methods do not generalize). The same applies to water bodies of different
colors, especially when distinguishing them from rock, ice, snow, clouds, and shadows.

• There are very few benchmark datasets. In contrast, there are huge volumes of
unlabeled data not being fully leveraged.

• CNNs blur output boundaries during the segmentation process.

4.2.3. Additional Challenges in Water Quality Monitoring

The specific challenges and problems identified for water quality monitoring are
summarized below.

• Collecting in situ water quality data is very time- and labor-intensive and financially
expensive; also, it often does not have adequate temporal or spatial resolution.

• RS imagery and existing corresponding field samples are often not stored together.
Allowing water quality researchers to easily retrieve and locate two or more sources
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of data at the same location is critical, as computational methods require such data to
verify their model performance in order to generalize to new water bodies.

• Remote water bodies are difficult to monitor.
• Urbanization, pollution, and drought are having serious effects on the economy,

wildlife, and human health as they deteriorate water quality.
• Ecosystems are complex and their nutrient and pollution budgets are not well understood.
• Some studies do not use a training, validation, and testing set for DL projects (all

three are necessary) or do not use nearly enough data to achieve good results with
DL models.

4.3. Research Directions and Opportunities

Here, we provide five research directions, each along with its promising opportunities,
from our investigation and based on the posed challenges discussed in Section 4.2 above.

4.3.1. Urgent Need of Large and Comprehensive Benchmark Datasets

Large representative, balanced, and open-access benchmark datasets are critical for
any domain to let AI meaningfully shine [84–86]. In computer science, especially for its
branches CV and DL, there are very comprehensive, large, and open-source databases (e.g.,
ImageNet [87] for image classification tasks, and Microsoft COCO [88] for object detection
and segmentation tasks). The availability of big and open-source image repositories has
dramatically boosted recent advances in novel and robust algorithms in DL and CV, as
computer science researchers do not need to worry about collecting datasets. Instead, they
can focus on developing new algorithms and/or methods.

In our systematic review, we identified an urgent need for more curated, labeled
datasets for intelligent water body extraction and water quality monitoring. We found
some of the few available open-source datasets with water body boundary labels through
our literature review, but also sought out additional datasets. We identified datasets that
were not used in our literature review but contain water body labels, or datasets that were
used for water body detection or water quality monitoring that did not use ML/DL/CV
but would be useful for benchmarking tasks. Our search results are summarized in Table 4
above. Below, we list a few opportunities in this direction.

(1) More public data and code: currently, most authors do not share their code and/or datasets.
See the two quoted pieces below from [25]: (a) “Lack of deep learning-ready datasets
within the water field [ . . . ] The main problem caused by this absence of many datasets is
that the research community does not build upon previous work in terms of constructing
better neural network architectures and moving the state of art to the next iteration [ . . . ]”;
(b) “[ . . . ] many papers are published that achieve the same task with almost identical
methods but different data.”. Part of this issue is a replication crisis in the water body
detection and water quality monitoring literature, but it stems more broadly from the lack
of public codebases and datasets.

(2) Some promising ways to generate large datasets of good quality

• AI/ML/DL models need large datasets with good quality to guarantee meaningful
(unbiased and generalize well) good to great performance, thus work on obtaining
large but better subsets of data. Quality > quantity is critical and in urgent demand.
See one piece of such evidence reported in [44], “[ . . . ] site-specific models improved
as more training data was sampled from the area to be mapped, with the best models
created from the maximum training datasets studied: [ . . . ] However, performance
did not improve consistently for sites at the intermediate training data thresholds.
This outcome exemplifies that model improvement is an issue of not only increasing
the quantity of training data, but also the quality”.

• Generating synthetic data as in [76] (detailed in the second paragraph in Section 3.3.5).
• Downloading RS images from Google Earth Engine (GEE) and annotating accordingly,

or, even better, developing user-friendly interactive interfaces with GEE as a backend
to directly allow researchers (or even citizen science volunteers) to contribute to the
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annotation of RS imagery available on GEE. To our knowledge, no RS datasets for
water body detection and water quality monitoring are downloaded from GEE and
then annotated, let alone interfaces for directly annotating RS imagery on GEE.

• Obtaining RS imagery from Google Earth (GE) manually or with the help of code
scripts, then annotating accordingly (see [34,42,49] for examples). For instance, the
following two datasets generated and used in [34,49] are both from GE, but are not
shared publicly.

� “The first dataset was collected from the Google Earth service using the BIGEMAP
software (http://www.bigemap.com, accessed on 15 December 2021). We named
it as the GE-Water dataset. The GE-Water dataset contains 9000 images cov-
ering water bodies of different types, varying shapes and sizes, and diverse
surface and environmental conditions all around the world. These images were
mainly captured by the QuickBird and Land remote-sensing satellite (Landsat)
7 systems.” [49].

� “We constructed a new water-body data set of visible spectrum Google Earth
images, which consists of RGB pan-sharpened images of a 0.5 m resolution, no
infrared bands, or digital elevation models are provided. All images are taken
from Suzhou and Wuhan, China, with rural areas as primary. The positive
annotations include lakes, reservoirs, rivers, ponds, paddies, and ditches, while
all other pixels are treated as negative. These images were then divided into
patches with no overlap, which provided us with 9000 images [ . . . ]” [34].

4.3.2. Generalization

It is important to be able to obtain a good accuracy score when training an ML/DL
model, but perhaps more important is that model’s ability to generalize to unseen data. The
ultimate goal of ML/DL is to develop predictive models through finding statistical patterns
in a training set which then generalize well to new, previously unseen data outside the
training set [89]. Ideally, this is achieved by training on large and representative datasets
that capture nearly all variations in the data actual distribution of values [86,89]. A model’s
ability to generalize is critical to the success of a model. An ML/DL model with good
generalization capability will have the best trade-off between underfitting and overfitting
so that a trained model obtains the best performance (See “Generalization, overfitting,
underfitting and regularization” entry in Appendix B for details). Below, we outline a few
ways to make AI systems more generalizable for water body detection and water quality
monitoring tasks.

(1) Create robust AI methods for tiny water body detection. Depending on resolution,
tiny water bodies such as ponds or small lakes in desert cities are difficult to identify yet
may play a more critical role than we think.

(2) Develop NN architectures and comprehensive datasets (see Section 4.3.1) that are
able to recognize water bodies not just from

• One type of body of water (e.g., ponds, lakes, rivers);
• One color (e.g., different levels of sediment, aquatic vegetation and algae, nutrients,

pollutants);
• One size: Water bodies present in RS imagery come with different sizes (large and

small water bodies) and various shapes. Many studies reported that it is not an easy
task to correctly classify small water bodies and/or water bodies with different shapes.

• One environment setting (e.g., desert, urban, inland, coastal).

(3) Utilize data from multiple sources to train ML/DL models. From our comprehen-
sive investigation, most of the current AI methods are only able to deal with water quality
and/or water body detection data from one specific type of RS imagery. This should be im-
proved and indicates a promising new research direction. Specifically, it will be important
to focus on using data from multiple data platforms or resolutions, from varying weather
conditions, and regions which have different ecosystem and terrain types. We humans
can recognize water bodies in different RS imagery with different weather conditions. We
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expect that machines should be able to mimic humans to perform this task well if we have
robust AI algorithms and comprehensive datasets. See some example research below:

• Extraction of water bodies at multiple resolutions and scales using CNNs [49,53];
• Evaluation of CNN performance on multisensor data from multiple RS platforms [52];
• Integration of data from multiple sources (e.g., SAR, UAV, smaller sensors, water

quality time series);
• Data fusion of Landsat-8 and Sentinel-2 RS imagery for water quality estimation [67].

“Virtual constellation” learning introduced in [67] could be a future direction for
both water body detection and water quality estimation. A virtual constellation is
constructed by using multiple RS platforms to “shorten” the revisit time and improve
the spatial coverage of individual satellites. This entails fusing data sources from
separate RS platforms with potentially different resolutions.

(4) Propose new frameworks for improving generalizability. Generalization is one
of the fundamental unsolved problems in DL. The goal of a generalization theory in
supervised learning is to understand when and why trained ML/DL models have small
test errors [90]. The recently proposed deep bootstrap framework [90] provides a new lens
for understanding generalization in DL. This new framework has the potential to advance
our understanding of water domain research empowered by RS and AI by highlighting
important design choices when processing RS imagery with DL.

4.3.3. Addressing Interpretability

DL has achieved significant advances with great performance in many tasks in a
variety of domains, including some water domain tasks (detailed in Section 3). In the
literature we reviewed for this paper, DL models have produced results comparable to,
and in some scenarios even superior to, human experts. Improving predictive accuracy is
important; however, improving the interpretability of ML/DL models is more important,
especially through visualization techniques of ML/DL model output for later analysis by
humans [18]. Interpretability is one of the primary weaknesses of DL techniques and raises
wide concerns and attention in DL [91]. Due to the overparameterized and black-box nature
of DL models, it is often difficult to understand the prediction results of DL models [92,93].
Understanding and explaining their black-box behaviors remains challenging due to their
hierarchical, nonlinear nature. The lack of interpretability raises major concerns across
several domains; for example, in high-stakes prediction applications, such as autonomous
driving, healthcare, and financial services [94], the trust of DL models is critical. While
many interpretation tools (e.g., image perturbation and occlusion [95], visualizing NN
activation weights and class activation mapping [96,97] or attention mechanisms [98,99],
feature inversion [100], local interpretable model-agnostic explanations or “LIME” [101])
have been proposed to interpret how DL models make decisions, either from a scientific
perspective or a social angle, explaining the behaviors of DL models is still in progress [92].
For water domains, we list some specific potential opportunities in terms of interpretability
we identified below.

• More ablation studies are needed (see Appendix B for an introduction) to investigate
the role of each DL component in terms of model performance contribution and
ultimately which component(s) control the model performance.

• Exploring the output of hidden layers to obtain some information to help investigate
whether the model works as expected.

• Hybrid models for analyzing NN output and improving an NN’s decision-making process
through post-processing, for example, CNN–LR hybrids [32], CNN–CRF hybrids [36,38],
CNN–SVM hybrids [39], RNN–DS hybrids [63], and CNN-LSTM hybrids [69].

• More research needs to be carried out on analyzing the importance of input data to
output predictions. See examples in [62,75], each detailed below.

� The authors in [62] systematically analyzed relative variable importance to
show which sets of input data contributed to the ML models’ performance. See
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the quoted text below: “Relative variable importance was also conducted to
investigate the consistency between in situ reflectance data and satellite data,
and results show that both datasets are similar. The red band (wavelength
≈ 0.665 μm) and the product of red and green band (wavelength ≈ 0.560 μm)
were influential inputs in both reflectance data sets for estimating SS and
turbidity, and the ratio between red and blue band (wavelength ≈ 0.490 μm) as
well as the ratio between infrared (wavelength ≈ 0.865 μm) and blue band and
green band proved to be more useful for the estimation of Chl-a concentration,
due to their sensitivity to high turbidity in the coastal waters”.

� The authors in [75] utilized existing water quality time series data and assessed
the effectiveness of multiple RS data platforms and ML models in estimating
various water quality parameters. One of their interesting findings is that some
sensors are poorly correlated with water quality parameters, while others are
more suitable for water quality monitoring tasks. They suggested that more re-
search needs to be carried out for assessing the suitability of paired RS imagery
and in situ field data. See the quoted text below: “[ . . . ] assess the efficacy of
available sensors to complement the often limited field measurements from
such programs and build models that support monitoring tasks [ . . . ] We
observed that OLCI Level-2 Products are poorly correlated with the RNMCA
data and it is not feasible to rely only on them to support monitoring operations.
However, OLCI atmospherically corrected data is useful to develop accurate
models using an ELM, particularly for Turbidity (R2 = 0.7).” (RNMCA is the
acronym for the Mexican national water quality monitoring system).

• Water quality monitoring will benefit from more research exploring how well a certain
ML/DL model contributes to which water quality parameter(s). See an example
in [67], where the authors investigated how well DNNs could predict certain water
quality parameters.

• Physics-constrained or process-based ML/DL predictions as demonstrated in [68,69].
• The need for automatic and visually-based model evaluation metrics that are better

than current visual assessment as an evaluation metric. For example, automatic
assessment of how DL methods are performing in large and complex RS imagery
(e.g., specifically, Bayesian DL, and Gaussian DL/ML for uncertainty measurement
and visualization).

4.3.4. Ease of Use

As emphasized in [13,14], one of the major current challenges for water resource
management is the integration of water quality data and indices from multiple sources into
usable and meaningful insights for actionable management decisions. Geovisualization,
also known as geographic visualization, uses the visual representations of geospatial data
and the use of cartographic techniques to facilitate thinking, understanding, knowledge
construction, and decision support about human and physical environments at geographic
scales of measurement [102,103]. Geovisualization is widely utilized in different domains
(e.g., public health [104], crisis management [105,106], environmental analysis [107–109],
and climate change strategies [110]) for the exploration and analysis of spatiotemporal
data. To the best of our knowledge, very little research has leveraged geovisualization
in this way for water resources management. The only piece of work similar to this we
noticed is in [111], where a web interface powered by GEE allows their expert system,
combined with visual analytics, to be run on any Landsat 5, 7, or 8 imagery to draw bound-
aries for water bodies. Geovisualization through interactive web applications provides a
promising solution to the posed challenge of integrating water quality data and indices
from multiple sources [112–115]. We provide a few suggested research opportunities in
this direction below.

• Simply applying (or with minor modifications) existing AI/ML/CV/DL algorithms/
methods to RS big data imagery-based problems is still very far away from producing
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real-world applications that meet water management professionals’ and policymakers’
needs. As echoed in [13], “[ . . . ] realizing the full application potential of emerging
technologies requires solutions for merging various measurement techniques and
platforms into useful information for actionable management decisions, requiring
effective communication between data providers and water resource managers” [116].
Much more multidisciplinary and integrative collaboration in terms of depth and
breadth are in high demand. Those scholars and practitioners who have an interdisci-
plinary background will play a major role in this in-depth and in-breadth integration.
For example, researchers who have expertise in RS but also know how to utilize AI,
through collaboration with domain expertise such as water resources management
officers, will significantly advance this research direction. Intuitive interactive web
apps that are powered by both geovisualization and AI/ML/DL/CV will definitely
make interdisciplinary collaboration much more seamless and thus easier.

� Interactive web portal empowered by geovisualization for integration of vari-
ous water quality data sources. As noted in [117], it is natural and intuitive in
many studies to use “space” as the organizing paradigm.

� More smart and responsive water management systems through the develop-
ment of interactive web apps/libraries that integrate ML/DL backends and
intuitive, user-friendly front ends are needed. Such systems would allow collab-
oration between technical experts and domain experts, including stakeholders,
and even community volunteers, from anywhere at any time.

� This requires very close collaboration and thus very integrative research from re-
searchers in many domains (e.g., computer science, cognitive science, informatics,
RS, and water-related sub-domains). We reinforce that geovisualization will be
the ideal tool to make the collaboration smooth, productive, and insightful.

� There is one recent work [118] that takes a small step in this direction, but much
more work and efforts are in demand.

• Resource hubs for standardized AI/ML/DL/CV models and easy-to-follow and
understandable tutorials for how to use them are needed.

• More data “matchups” as demonstrated in [82,83]. When more in situ measurements come
in, they should be matched up and stored with satellite data for easy calibration studies.

4.3.5. Shifting Focus

From our investigation, it is clear that with enough annotated data and allocated
computing, DL models are more accurate than traditional ML models, which are in turn
more accurate than index-based methods for water body detection and water quality
monitoring tasks. Increasing the accuracy of models by fractions of a percent should be
given much less focus and attention moving forward. Water body detection methods are
unlikely to improve upon the high rates of accuracy already reported in the literature
without very high-resolution, very large, labeled datasets or the use of UAVs to detect
small water bodies. Instead, we suggest that future research should focus more on reducing
model parameters and making model training less computationally expensive in terms
of time (e.g., designing neural networks to use constant memory at inference time [40], or
by using TL [37,59]). Below, we outline some additional potential research directions we
identified through our systematic review.

• As noted in Section 4.3.1, the lack of large benchmark datasets is a bottleneck in water
body detection and water quality monitoring research utilizing RS imagery and AI.
The dominant methods in both water domains are supervised learning, which often
requires very large, labeled datasets to train on, thus, there is a clear, urgent need for
semi-supervised and unsupervised learning methods [15].

� Unsupervised learning methods are able to learn from big sets of unlabeled data,
as demonstrated in [29,46].
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� Semi-supervised learning methods are able to learn from limited good-quality
labeled samples. DL models do not require feature engineering, and they are
also much better at discovering intricate patterns hidden in big data. How-
ever, pure supervised DL is impractical in some situations, such as those for
which the labeling tasks require domain knowledge from experts. Very few
domain experts have the time and are willing to label very large sets of RS
images [84]. An active learning-enabled DL approach that uses a visualization
interface and methods to iteratively collect modest amounts of input from
domain experts and uses that input to refine the DL classifiers [84] provides
a promising direction to produce well-performing DL models with limited
good-quality datasets.

• From our systematic review, we can easily see that current work on water body
extraction and water quality monitoring using AI and RS are, in general, carried out
separately. We call for a closer integration of water body detection and water quality
monitoring research and more attention focusing on handling massive datasets that
may include information in a variety of formats, of varying quality, and from diverse
sources. This integration is critical as it will provide the essential foundation for
developing real, intelligent water monitoring systems using RS and AI capable of
producing insights used for actionable decision making.

• GEE + AI: as noted in [18], GEE is a good solution to address computational costs
and overcome technical challenges of processing RS big data. However, online DL
functionality is still not supported on GEE. To the best of our knowledge, the only
piece of research integration of the Google AI platform with GEE is performed in [119];
however, as the authors reported, “data migration and computational demands are
among the main present constraints in deploying these technologies in an operational
setting”. Thus, the ideal solution is to develop DL models directly on the GEE platform.

• Most current ML/DL-based RS research focuses on borrowing or slightly improving
ML/DL/CV models from computer science [79,120]. Compared with natural scene
images, RS data are multiresolution, multitemporal, multispectral, multiview, and
multitarget [15]. Slight modifications of ML/DL/CV models simply cannot cope with
the special challenges posed in RS big data. New ML/DL models specialized for RS
big data are thus urgently needed [15,18]. We hope our review will draw the attention
of researchers who have a multidisciplinary background to this issue. Looking deep
into the mechanisms of RS and land surface processes, studying the characteristics of
RS imagery would guide the design of specialized ML/DL models for RS big data and
thus further improve RS applications using AI in breadth and depth [15].

5. Conclusions

Building intelligent and synoptic water monitoring systems requires automation of
water body extent detection using RS imagery, from which volume can be computed,
and also automation of their corresponding water quality, eventually linking the two to
allow synoptic water quality monitoring. Yet, to date, water body detection and water
quality monitoring research has been historically separate. Our systematic investigation
indicates the following trends: deep learning is much more commonly used in water
body detection, the dominant data source of which is RS imagery, whereas water quality
literature often involves other types of data sources (e.g., in situ sensors, smaller RS devices
that are not satellites). The trends relate to the scale of projects in the two domains: water
body extraction is usually undertaken across large spatial scales, whereas the water quality
monitoring literature is still only focused on smaller, often individual, bodies of water. This
points to one of the future research directions in the water quality literature that we touch
on above in Section 4.3; that is, we need to scale up water quality estimation using RS
imagery through matching it with ground-truth water quality measurements.

Overall, based on the systematic review above, we contend that RS integrated with
AI/ML/DL/CV methods, along with geovisualization, have great potential to provide
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smart and intelligent support for water resources monitoring and management. Thus, this
integration has considerable potential to address major scientific and societal challenges,
such as climate change and natural hazards risk management.
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Abbreviations

The following abbreviations (in alphabetical order) are used in this manuscript:

AE Autoencoder
AI Artificial Intelligence
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BOA Boundary Overall Accuracy
CA Class Accuracy
CART Classification and Regression Trees
CB Cubist Regression
CE Commission Error
CNN Convolutional Neural Network
COCO Common Objects in Context
CPU Central Processing Unit
CRF Conditional Random Field
CV Computer Vision
DL Deep Learning
DNN Dense Neural Network
DS Dempster–Shafer Evidence Theory
DT Decision Tree
DEM Digital Elevation Model
ECE Edge Commission Error
ELM Extreme Learning Machine
ELR Extreme Learning Regression
ESA European Space Agency
EOE Edge Omission Error
EOA Edge Overall Accuracy
FN False Negative
FP False Positive
FWIoU Frequency Weighted Intersection over Union
GA Global Accuracy
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GAN Generative Adversarial Network
GBM Gradient Boosted Machine
GE Google Earth
GEE Google Earth Engine
GPR Gaussian Process Regression
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
IoT Internet of Things
IoU Intersection over Union
Kappa Kappa Coefficient
KNN K-Nearest Neighbors Classifier
LORSAL Logistic Regression via Variable Splitting and Augmented Lagrangian
LSTM Long Short-Term Memory
MA Mapping Accuracy
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
mIoU Mean Intersection over Union
MK Mann–Kendall
ML Machine Learning
MLC Maximum-Likelihood Classifier
MLP Multilayer Perceptron
MLR Multiple Linear Regression
MNDWI Modified Normalized Difference Water Index
MPC Microsoft Planetary Computer
MRE Mean Relative Error
MSE Mean Squared Error
MSI Morphological Shadow Index
NB Naive Bayes Classifier
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near-Infrared
NN Neural Network
NSEC Nash–Sutcliffe Efficiency Coefficient
OA Overall Accuracy
OE Omission Error
PA Producer’s Accuracy
PCC Percent Classified Correctly
RBFNN Radial Basis Function Neural Network
R-CNN Region Based Convolutional Neural Network
RF Random Forests
RMSE Root Mean Squared Error
RMSLE Root Mean Squared Log Error (referred to in Table 3 as RMSELE by the authors)
RNN Recurrent Neural Network
RPART Recursive Partitioning And Regression Trees
RPD Relative Percent Difference
RS Remote Sensing
SAR Synthetic Aperture Radar
SRN Simple Recurrent Network (same abbreviation given for Elman Neural Network)
SOTA State-of-the-Art
SVM Support Vector Machine
SVR Support Vector Regression
SWIR Short Wave Infrared
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TB Tree Bagger
TL Transfer Learning
TN True Negative
TP True Positive
VHR Very High Resolution
UA User’s Accuracy
UAV Unmanned Aerial Vehicle

Appendix A. The Accompanying Interactive Web App Tool for the Literature of

Intelligent Water Information Extraction Using AI

In Section 1.1, we provided a brief map and graphic summary of the papers covered
in this review. To allow readers to obtain more useful and dynamic information and
insights from the papers reviewed, we have developed an interactive web app. Through
the web app, readers can keep track of the major researchers and access an up-to-date list
of publications in the reviewed topics. Updated publications are accessible through (1) a
researcher’s public academic profile on Google Scholar or ResearchGate (see Figure A1a for
an example), and (2) a continuously updated citations count of the papers that we reviewed
in this paper (see Figure A1b for an example: the cited by as of 10 November 2021 is 47,
which is when we first entered the data in our data file when we reviewed the paper, and
then before this paper submission, when we clicked on the cited by URL, the page shows
that the up-to-date citation number is 49). The web app can be accessed publicly, free of
charge at

• Web app tool: https://geoair-lab.github.io/WaterFeatureAI-WebApp/index.html,
accessed on 28 February 2022.

• Brief web app demo video (about 6 min duration): the video link is accessible at the
web app page.

(a) 

Figure A1. Cont.
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(b) 

Figure A1. Our highly interactive web app (accessible publicly at: https://geoair-lab.github.io/
WaterFeatureAI-WebApp/index.html, accessed on 5 December 2021) provides the track of scholars
and publications with just a few clicks. See an example on the pop-up. Our readers can access (1) a
direct link to the PDF file of the paper (note that if there is no free, publicly available version of the
paper, we link directly to the journal page of the paper so our readers can obtain the paper if their
institution purchases the journal database), (2) the scholar profile (Google Scholar/ResearchGate
URL) of the first author, and (3) “Cited by” Google Scholar page. (a) Water body and quality AI
literature map pop-up. (b) “Cited by” Google Scholar page corresponding to the paper shown in (a).

Appendix B. Essential AI/ML/DL/CV Terms

In this appendix, we provide brief definitions to some essential terms (ordered
alphabetically) in ML/DL/RS in our review. For readability, we group some related
concepts together.

Ablation Studies: In AI, particularly in ML and DL, ablation is the removal of a
component of an AI system. Ablation studies are crucial for AI, especially for DL research.
An ablation study investigates the performance of an AI system by removing certain
components to understand the contribution of the component to the overall system. The
term is analogous to ablation in biology (removal of components of an organism). Note that
ablation studies require that the systems exhibit graceful degradation (i.e., they continue to
function even when certain components are missing or degraded). The motivation was that,
while individual components are engineered, the contribution of an individual component
to the overall system performance is not clear; removing components allows this analysis.
Simpler is better: if we can obtain the same performance with two models, we prefer the
simpler one.

Convolution, kernel (i.e., filter), and feature map [121–123]:
Convolutional layers are the major building blocks in CNNs. A convolution is the

simple application of a filter (i.e., kernel) to an input that results in an activation. Repeated
application of the same filter to an input results in a map of activations called a feature
map, indicating the locations and strength of a detected feature in an input (e.g., an image).
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Convolution: Convolution is one of the most important operations in signal and image
processing. Convolution is a mathematical operation to merge two sets of information.
Convolution provides a way of multiplying together two arrays of numbers, generally of
different sizes, but of the same dimensionality, to produce a third array of numbers of the
same dimensionality. This can be used in image processing to implement operators whose
output pixel values are simple linear combinations of certain input pixel values.

A convolutional filter (i.e., kernel) is a weight matrix (vector for one-dimensional
and cube for three-dimensional data) which operates through a sliding window on input
data. The convolution is performed by determining the value of a central pixel through
adding the weighted pixel values of all its neighbors together. Specifically, it is carried
out by sliding the kernel over the input image, generally starting at the top left corner,
so as to move the kernel through all the positions where the kernel fits entirely within
the boundaries of the input image. Each kernel position corresponds to a single output
pixel, the value of which is calculated by multiplying together the kernel value and the
underlying image pixel value for each of the cells in the kernel, and then adding all these
numbers together. The output is a new modified filtered image. Convolution is a general
purpose filter effect for images. Depending on the kernel structure, the operation enhances
some features of the input data (e.g., blurring, sharpening, and edge detection).

In the context of a CNN, a convolution is a linear operation that involves the mul-
tiplication of a set of weights with the input. Given that the technique was designed for
two-dimensional input, the multiplication is performed between an array of input data and
a two-dimensional array of weights (i.e., a filter or a kernel). Technically, note that in CNNs,
although it is referred to as a “convolution” operation, it is actually a “cross-correlation”.
That is, in CNNs, the filter is not flipped as is required in typical image convolutions; except
for this flip, both operations are identical.

Kernel (i.e., filter): A kernel is a small matrix used in image convolution, which
slides over the input image from left to right and top to bottom. Differently sized kernels,
which contain different patterns of numbers, produce different results through convolution
operation. The size of a kernel is arbitrary, but 3 × 3 or 5 × 5 is often used. Think of a filter
similar to a membrane that allows only the desired qualities of the input to pass through it.

Feature map: The feature maps of a CNN capture the application result of the filters
to an input image (i.e., at each layer, the feature map is the output of that layer). Think of it
as (higher level) representations of the input. The feature map(s) is/are the output image(s)
of each convolutional layer(s). The resultant number of feature maps equals the number
of filters.

Data augmentation (DA) [124]:
ML (especially DL) model performance often improves with an increase in the amount

of data. The common case in most ML/DL applications, especially in image classification
tasks, is that obtaining new training data is not easy. Thus, we need to make good use of the
existing (relatively small) training set. DA is one technique to expand the training dataset
from existing training data in order to improve the performance and generalizability of
DL models. DA enriches (i.e., “augments”) the training data by creating new examples
through random transformation of existing ones. This way, we artificially boost the size
of the training set, reducing overfitting. Thus, to some extent, DA can also be viewed as a
regularization technique.

Image DA is perhaps the most well-known type of DA and involves creating trans-
formed versions of images in the training dataset that belong to the same class as the
original image. The ultimate goal is to expand the training dataset with new, plausible
examples (i.e., variations of the training set images that are most likely to be seen by DL
models). For example, a horizontal flip of a bike photo may make sense, because the photo
could be taken from the left or right. A vertical flip of a bike image does not make sense
and would probably not be appropriate as the model is very unlikely to see a picture of an
upside down bike. Transformations for image DA include a range of operations from the
field of image manipulation (e.g., rotation, shifting, resizing, flipping, zooming, exposure
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adjustment, contrast change, and much more). This way, a lot of new samples can be
generated from a single training example.

Note that image DA is typically only applied to the training dataset, and NOT to the
validation or test dataset. This is different from data preparation such as image resizing and
pixel scaling; those must be performed consistently across all datasets that interact with the
model. The choice of the specific DA techniques used for a training dataset must be chosen
carefully and within the context of the training dataset and knowledge of the problem
domain. It can be useful to experiment with DA methods in isolation and in concert to see
if they result in a measurable improvement to model performance, perhaps with a small
prototype dataset, model, and training run.

DeepLabV3+ [125]: DeepLabV3 was firstly proposed to enable deep CNNs to seg-
ment features in images at multiple scales. ResNet-50 and ResNet-101, two variations on the
popular residual network (ResNet) architecture, are the tested backbones for DeepLabV3.
Through the use of residual blocks, atrous convolution, and a spatial pyramid pooling
module, the authors showed that their new architecture achieved comparable perfor-
mance to other SOTA models in image segmentation tasks without the need for further
post-processing. The authors further improved DeepLabV3 and named the new version
DeepLabV3+ [126], which combines atrous spatial pyramid pooling modules with an
encoder–decoder module. This further improved the performance of DeepLabV3 while
sharpening predicted feature boundaries. The DeepLabV3+ architecture is very popular in
the water body extraction literature.

Generative adversarial network (GAN): GAN is a class of unsupervised DL frame-
works in which two neural networks compete with each other. One network, the generator,
tries to create synthetic or false images which fool the discriminator network. The discrim-
inator, in turn, attempts to discern which images coming from the generator are actual
vs. synthetic images [127]. GANs use a cooperative zero-sum game framework to learn.
Among many variants of GAN, cycleGAN [128] is a technique for training unsupervised
image translation models using the GAN architecture and unpaired collections of images
from two different domains. CycleGAN has been demonstrated on a wide range of applica-
tions, including season translation, object transfiguration, style transfer, and generating
photos from paintings.

Generalization, overfitting, underfitting and regularization (referenced [123,129,130]):

The prediction results of an ML/DL model sit somewhere between (a) low-bias,
low-variance, (b) low-bias, high-variance, (c) high-bias, low-variance, and (d) high-bias,
high-variance. A low-biased, high-variance model is called overfit and a high-biased,
low-variance model is called underfit. A trained model achieves the best performance,
through generalization, when the best trade-off between underfitting and overfitting is
found. Learning with good accuracy is good, but generalization is what matters most.
A good model is supposed to have both low bias and low variance. Overfitting and
underfitting should both be avoided, where regularization may help.

Generalization: In ML/DL, generalization refers to the ability of a trained ML/DL
model to react to new (i.e., previously unseen) data, drawn from the same distribution as
the training data used to create the model. That is, after being trained on a training set, an
ML/DL model can digest new data and make accurate predictions. The generalizability of
an ML/DL model is central to the success of that model.

Overfitting vs. underfitting: Variance and bias are two important terms in ML. Vari-
ance refers to the variety of predicted values made by an ML model (target function). Bias
means the distance of the predictions from the actual (true) target values. A high-biased
model means its prediction values (average) are far from the actual values. In addition,
high-variance prediction means the prediction values are highly varied.

If an ML/DL model has been trained too well on training data, it will be unable to
generalize. It will make inaccurate predictions when given new data, making the model
useless even though it is able to make accurate predictions for the training data. This is
called overfitting. Underfitting happens when a model has not been trained enough on the
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data. Underfitting models are not useful either, as they are not capable of making accurate
predictions, even with the training data.

Low error rates and a high variance are good indicators of overfitting. To avoid
overfitting, part of the training dataset is typically set aside as the “test set” to check
whether a trained model is overfitting. If the training data has a low error rate and the
test data has a high error rate, it signals overfitting. An overfit model would have very
low training error on seen training data but very high error from unseen datasets (e.g.,
testing dataset and new datasets beyond training and testing data). This is because the
model maps the training set perfectly and any deviation from the training set would result
in errors. An underfit model has high training error in training data and testing error in
testing data and thus in new unseen data. This is because the model cannot generalize the
training data correctly. Thus, the model will have a very high training error.

Regularization (also known as shrinkage): When an ML/DL model becomes too
complex, it is most likely to suffer from overfitting. To avoid overfitting, regularization is a
collection of methods to constrain and make an ML/DL model simpler and less flexible.
Specifically, regularization methods are used to avoid high variance (i.e., bias/underfitting)
and overfitting and thus to increase generalization. Intuitively, it follows that the function
the model represents is simpler, less unsteady. Thus, predictions are smoother, and overfit-
ting is less likely. Certain approaches are applied to different ML algorithms, for example,
pruning for DT, dropout techniques for NN, and adding a penalty parameter to the cost
function in regression.

Google Earth (GE): GE is a computer software, formerly known as Keyhole Earth-
Viewer, that renders a 3D representation of Earth based primarily on satellite imagery. It
has a web version at https://earth.google.com/web/, accessed on 2 January 2022. Since
GE version 4.3, Google fully integrated Street View into Google Earth. Street View displays
360◦ panoramic street-level photos of select cities and their surroundings. The photos were
taken by cameras mounted on automobiles, can be viewed at different scales and from
many angles, and are navigable by arrow icons imposed on them.

Google Earth Engine (GEE) and Microsoft Planetary Computer (MPC):

GEE and MPC share similar goals (e.g., cloud storage and computing support for geospa-
tial datasets), but have their own primary focus. For example, GEE is the pioneer in the area of
RS cloud computing (launched in 2010, has 495 datasets in total as of 22 December 2021), and
MPC, launched in 2020 (contains 17 datasets in total as of 22 December 2021), with a primary
focus on climate change and sustainable environmental studies.

GEE [131,132]: GEE is a cloud-based platform for planetary-scale geospatial analysis,
launched in 2010 by Google. GEE combines a multipetabyte catalog of satellite imagery
and geospatial datasets with planetary-scale analysis capabilities. Scientists, researchers,
and developers use GEE to detect changes, map trends, and quantify differences on the
Earth’s surface. GEE brings Google’s massive computational capabilities to bear a variety of
high-impact societal problems (e.g., deforestation, drought, disaster, disease, food security,
water management, climate monitoring, and environmental protection). GEE has been
available for commercial use from 2021 and remains free for academic and research use.

MPC [133,134]: The world lacks comprehensive, global environmental data. Microsoft
Chief Environmental Officer (CEO), Dr. Lucas Joppa, imagines an international database
that would provide the world with “information about every tree, every species, all of our
natural resources”. Microsoft President Brad Smith further emphasized that “it should be
as easy for anyone in the world to search the state of the planet as it is to search the internet
for driving directions or dining options”, and Microsoft believes technology and AI is the
key to get there, in hopes that this information will allow people to “come together and
solve some of the greatest environmental and sustainability challenges we face today”.

To support sustainability decision-making with the power of cloud computing and
AI, similar to GEE, since December 2020, Microsoft is using ML and computing power
to aggregate global environmental data (contributed by individuals around the world
coupled with machinery placed in water, space, land, and air environments) into a planetary
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computer for a sustainable future. MPC, described as a “global portfolio of applications
connecting trillions of data points”, is designed to use AI to synthesize environmental data
into practical information regarding the Earth’s current ecosystems. For the first time, there
will be a concise and comprehensive compendium of international ecosystem data. Not only
will this allow for essential environmental information to be readily available to individuals
across the world, but the planetary computer will predict future environmental trends
through ML. In short, MPC integrates a multipetabyte catalog of global environmental
data with APIs, a flexible scientific computing environment that allows people to answer
global questions about that data, and applications that place those answers in the hands of
conservation stakeholders.

Image classification: The concept of image classification in RS and ML/DL settings
has different meanings. In RS research, the image classification is at pixel level (this is what
semantic segmentation does in CV, ML, and DL settings; see the concept definition below).
In contrast, in an ML and DL setting, image classification does not refer to assigning each
individual pixel to a class (e.g., vegetation, water), but rather to assign the entire image to a
specific class (e.g., flooded vs. not flooded) [135].

Instance segmentation: Unlike semantic segmentation, instance segmentation identi-
fies each object instance of each pixel for every known object within an image. Thus, labels
are instance-aware. Instance segmentation is essential to tasks such as counting the number
of objects and reasoning about occlusion.

Normalized difference moisture index (NDMI) [136,137]: Normalized difference
moisture index (NDMI) is a satellite-derived index from the near-infrared (NIR) and short
wave infrared (SWIR) channels of RS imagery (note that some literature used NDMI
interchangeably with NDWI; check the NDWI entry in this Appendix B for clarification).

NDMI is sensitive to the moisture levels in vegetation, and thus used to determine
vegetation water content. It can be used to monitor droughts as well as monitor fuel
levels in fire-prone areas. NDMI uses NIR and SWIR bands to create a ratio designed to
mitigate illumination and atmospheric effects. It is calculated as a ratio between the NIR
and SWIR values from RS imagery, see the formula below. For example, in Landsat 4–7,
NDMI = (Band 4 − Band 5)/(Band 4 + Band 5). In Landsat 8, NDMI = (Band 5 − Band
6)/(Band 5 + Band 6). Delivered NDMI is a single band image. Similar to NDVI, NDMI
values are between −1 and 1.

NDMI = (NIR − SWIR)/(NIR + SWIR)

Normalized difference vegetation index (NDVI) [138]: NDVI is a pixel-wise math-
ematical calculation rendered on an image. It is an indicator of plant health, calculated
by comparing the values of absorption and reflection of red and near-infrared (NIR) light.
A single NDVI value can be determined for every pixel in an image, ranging from an
individual leaf to a 500-acre wheat field, depending on the RS imagery resolution.

NDVI = (NIR − Red)/(NIR + Red)

NDVI values always fall between −1 and 1. Values between −1 and 0 indicate dead
plants, or inorganic objects (e.g., water surfaces, manmade structures such as houses,
stones/rocks, roads, clouds, snow). Bare soil usually falls within 0.1–0.2 range; and plants
will always have positive values between 0.2 and 1 (1 being the healthiest plants). Healthy,
dense vegetation canopy should be above 0.5, and sparse vegetation will most likely fall
within 0.2 to 0.5. However, it is only a rule of thumb and we should always take into
account the season, type of plant, and regional peculiarities to meaningfully interpret
NDVI values.

Normalized difference water index (NDWI) and modified NDWI (MNDWI) [139–141]:
The NDWI is an RS-based indicator sensitive to the change in the water content of leaves or
water content in water bodies (detailed below). There are two versions of NDWI.
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One was defined to monitor changes in water content of leaves, using near-infrared
(NIR) and short-wave infrared (SWIR) wavelengths, proposed by Gao in 1996 [139] (to
avoid confusion of the two versions of NDWI, this version is also called NDMI, see NDMI
entry in this Appendix B).

NDWI = (NIR − SWIR)/(NIR + SWIR)

The other version of NDWI, proposed by McFeeters in 1996, was defined to monitor
changes related to water content in water bodies, using green and NIR wavelengths [140].
The calculation formula is given below. It is obvious that the NDWI in the papers we
reviewed in this article is the version of water content in water bodies. Modification of
normalized difference water index (MNDWI) was proposed [141] for improved detection
of open water by replacing NIR spectral band with SWIR.

NDWI = (Green − NIR)/(Green + NIR)

PyTorch [142]: PyTorch is an open-source deep learning framework developed and
maintained by Facebook Artificial Intelligence Research (FAIR). At its core, PyTorch is a
mathematical library that performs efficient computation and automatic differentiation
on graph-based models. Achieving this directly is challenging, although thankfully, the
modern PyTorch API provides classes and methods that allow you to easily develop a suite
of deep learning models.

Random forest (RF): It is an ML (particularly, ensemble learning) algorithm that can
be used for both continuous (regression) and categorical (classification) tasks [143]. RF is
widely accepted as an efficient ensemble approach for land cover classification using RS
data. It handles imbalanced data, missing values, and outliers well [144].

Semantic segmentation: In contrast to instance segmentation, semantic segmentation
aims to predict categorical labels for each pixel for every known object within an image,
without differentiating object instances [145]. Thus, its labels are class-aware.

Support vector machine (SVM): SVM is a (supervised) machine learning algorithm
that provides solutions for both classification and regression problems. The support-vector
clustering [146] algorithm applies the statistics of support vectors (developed in the support
vector machine algorithm) to categorize unlabeled data and is one of the most widely used
clustering algorithms in many applications.

TensorFlow: TensorFlow is an open-source deep learning framework developed and
maintained by Google. Although using TensorFlow directly can be challenging, the modern
tf.keras API brings the simplicity and ease of use of Keras to the TensorFlow project.

Transfer learning (TL): TL is one powerful technique that makes learning in (deep) ML
transferable. TL was initially proposed in [147] and recently received considerable attention
due to recent significant advances in DL [123,148–152]. Inspired by humans’ capabilities
to transfer knowledge across domains (e.g., the knowledge gained while learning violin
can be helpful to learn piano faster), TL aims to leverage learned knowledge from a related
domain to achieve a desirable learning performance with minimized number of labeled
samples in a target domain [151]. The main idea behind TL is that it is more efficient to
take a DL model trained on an (unrelated) massive image dataset (e.g., ImageNet [87]) in
one domain, and transfer its knowledge to a smaller dataset in another domain instead of
training a DL classifier from scratch [153], as there are universal, low-level features shared
between images for different problems.

U-Net: CNNs gave decent results in easier image segmentation problems but have not
made any good progress on complex ones. This is where UNet comes in. UNet was first
designed especially for medical image segmentation in [154]. It demonstrated such good
results that it was used in many other fields afterwards. UNet is an improved architecture
developed for biomedical image segmentation [154]. The UNet architecture stems from a
fully convolutional network (FCN) first proposed by Long and Shelhamer in [155] and its
architecture was modified and extended to work with fewer training images and to yield
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more precise segmentations. The architecture of UNet resembles a “U”, which justifies
its name.

The UNet architecture includes three sections: the contraction, the bottleneck, and the
expansion section. The bottommost layer mediates between the contraction layer and the
expansion layer. The number of expansion blocks is the same as the number of contraction
blocks. Most importantly, UNet uses a novel loss weighting scheme for each pixel such
that there is a higher weight at the border of segmented objects. Specifically, all pixel-wise
softmax applied on the resultant image is followed by a cross-entropy loss function. Each
pixel is classified into one of the classes. The idea is that even in segmentation, every
pixel has to lie in some predefined category. Thus, a segmentation problem was converted
into a multiclass classification and it performed very well compared to the traditional
loss functions.

Appendix C. Common Evaluation Metrics in AI/ML/DL/CV Classification and

Regression, and Segmentation Tasks

Many evaluation criteria have been proposed and are frequently used to assess the
performance of AI/ML/DL/CV models. No single evaluation metric can tell a full story of a
trained model. To better select appropriate evaluation metrics for certain domain problems
and tasks, in this appendix, we provide brief definitions to some commonly used evaluation
metrics (ordered alphabetically; referenced [123,129,130,156,157]) in AI/ML/DL/CV for
classification, regression, and segmentation tasks in our review (i.e., those listed in the
field of “Evaluation metrics” in Tables 2 and 3). For readability, we group some related
metrics together. In the following formulas, TP refers to true positive, FP to false positive,
FN to false negative, and TN to true negative. TP samples are those that are in the positive
category and are correctly predicted as positive. FPs are not annotated as the positive
category but are incorrectly predicted as positive. TNs are correctly predicted as negative,
while FNs are predicted as negative when they are actually labeled as positive.

Accuracy, overall accuracy (OA), commission error (CE), omission error (OE), pro-

ducer’s accuracy (PA), user’s accuracy (UA), and pixel accuracy (PixA) [31,156,158–161]:
To better understand the metrics in this group, let us use the same confusion matrix

shown below in Figure A2 to calculate the accuracy metrics in this group. Confusion
matrix, also called error matrix, is a table that allows us to visualize the performance of a
classification algorithm by comparing the predicted value of the target variable with its
actual value [162].

 

Figure A2. Example confusion matrix. The classified data indicate the ML/DL model predicted
results and the reference data refer to the actual manually annotated data (image source: [161]).
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(Average) Accuracy: Classification accuracy is the number of correct predictions made
as a ratio of all predictions made. Accuracy with a binary classifier is measured as the
following:

Accuracy (for binary classifier) = (TP + TN)/(TP + TN + FP + FN)

Note, however, that (average) accuracy for a multiclass classifier is calculated as the
average of each accuracy per category (i.e., sum of accuracy for each category/number
of categories) (see the definition and examples of binary classification and multiclass
classification in Appendix A4 in [84]). For the example confusion matrix shown in Figure A2
(it is a multiclass classification problem), the (average) accuracy is calculated as follows:

(average) accuracy = (21/27 + 31/37 + 22/31)/3 = 77.5%

Accuracy is perhaps the most common evaluation metric for classification problems,
and it is also the most misused. It is really only meaningful and appropriate when there are
an equal number of observations in each category and that all predictions and prediction
errors are equally important, which is often not the case. Accuracy alone cannot tell a full
meaningful story of the ML/DL models, especially when a dataset encounters a severe data
imbalance problem (detailed in [86]); other metrics, such as F-score, need to tell whether an
ML/DL is not suffering from overfitting when the trained model has very high accuracy.

OA: It essentially tells us out of all of the samples what proportion were classified
correctly. OA is usually expressed as a percent, with 100% accuracy being a perfect
classification where all samples were classified correctly. OA is the easiest to calculate and
understand but ultimately only provides very basic accuracy information. OA is formally
defined as follows, where N is the number of total samples. OA calculation from the
example confusion matrix in Figure A2 is (21 + 31+ 22)/95 = 74/95 = 77.9%

OA = Number of correctly classified samples/N = (TP + TN)/N

OE [31]: Errors of omission refer to samples that were left out (or omitted, as its name
implies) from the correct category in the classified results. An example of OE is when pixels
of a certain thing (such as maple trees), are not classified as maple trees.

OE is sometimes also referred to as a type II error (false negative). An OE in one
category will be counted as a CE in another category. OEs are calculated by reviewing
the reference sites for incorrect classifications. In the example confusion matrix shown in
Figure A2, this is carried out by going down the columns for each category and adding
together the incorrect classifications and dividing them by the total number of samples for
each category. A separate OE is generally calculated for each category, as this will allow us
to evaluate the classification accuracy and error for each category. OE is the inverse of the
PA (i.e., OE = 1 − PA).

OE example based on the confusion matrix shown in Figure A2:
Water: Incorrectly classified reference sites: 5 + 7 = 12. Total # of reference sites = 33.

OE = 12/33 = 36%

Forest: Incorrectly classified reference sites: 6 + 2 = 8. Total # of reference sites = 39.

OE = 8/39 = 20%

Urban: Incorrectly classified reference sites: 0 + 1 = 1. Total # of reference sites = 23.

OE = 1/23 = 4%

CE [31]: Errors of commission are in relation to the classified results. An example of
an CE is when a pixel predicts the presence of a feature (such as trees) and, in reality, it is
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absent (no trees are actually present). CE is sometimes also referred to as a type I error (false
positive). CEs are calculated by reviewing the classified sites for incorrect classifications.
This is performed by going across the rows for each class and adding together the incorrect
classifications and dividing them by the total number of classified sites for each class. CE
is the inverse of the UA (i.e., CE = 1 − UA). This makes sense and is easy to interpret, as
when the predicted results are very reliable (with high UA score), the classification error
would be low.

CE example based on the confusion matrix shown in Figure A2:
Water: Incorrectly classified sites: 6 + 0 = 6. Total # of classified sites = 27.

CE = 6/27 = 22%

Forest: Incorrectly classified sites: 5 + 1 = 6. Total # of classified sites = 37.

CE = 6/37 = 16%

Urban: Incorrectly classified sites: 7 + 2 = 9. Total # of classified sites = 31.

CE = 9/31 = 29%

PA: Similar to UA, PA is category-level-based accuracy. PA is the accuracy from the
point of view of the “producer”. PA tells us how often real features in the ground truth
are correctly shown in the classified results, or the probability that a certain ground truth
category is classified as such. PA is formally defined as the following and is complement of
the omission error (OE). PA = 100% − OE.

PA = Number of correctly classified reference samples for a particular category/Number of
samples from reference (i.e., annotated) data for that category = 1 − omission error

PA example based on the example confusion matrix in Figure A2:
PA for water category = Correctly classified reference sites for water category/Total #

of reference sites for water category = 21/33 = 64%.
PA for forest category = Correctly classified reference sites for forest category/Total #

of reference sites for water category = 31/39 = 80%.
PA for urban category = Correctly classified reference sites for urban category/Total #

of reference sites for uran category = 22/23 = 96%.
UA: Similar to PA, UA is category-level-based accuracy. UA is the accuracy from

the point of view of a “user”, not the “producer”. UA essentially tells us how often the
classified category will actually align with the ground truth. This is referred to as reliability
(memory tip: users often care about reliability). The UA is a complement of the commission
error (i.e., UA = 100% − Commission Error). UA is defined as the following:

UA = Number of correctly classified samples for a particular category/Number of
samples classified (i.e., predicted) to that category = 1 − commission error.

UA example based on the example confusion matrix in Figure A2:

UA for water category = Correctly classified sites for water category/Total # of
classified sites for water category = 21/27 = 78%.

UA for forest category = Correctly classified sites for forest category/Total # of
classified sites for water category = 31/37 = 84%.

UA for urban category = Correctly classified sites for urban category/Total # of
classified sites for uran category = 22/31 = 70%.

PixA [158]: Pixel accuracy is perhaps the easiest to understand metric conceptually. It
is the percent of pixels in the image that are classified correctly. It is the simplest metric,
simply computing a ratio between the amount of properly classified pixels and the total
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number of pixels. See the PixA calculation formula below, where N represents the total
number of pixels in the assessment image, which equals TP + TN + FP + FN. TP denotes
the number of target-pixels that were correctly detected, FN denotes the number of water
body pixels not classified, FP is the number of nontarget pixels classified, and TN is the
number of nontarget pixels classified as nontarget pixels. This metric can sometimes
provide misleading results when the category representation is small within the image, as
the measure will be biased in mainly reporting how well the classifier identifies negative
category (i.e., where the category we care about, such as the water body category, is
not present).

PixA = (TP + TN)/N

Edge overall accuracy (EOA), edge commission error (ECE), and edge omission error [33]:
The authors in [33] defined a few evaluation metrics for water edge pixel extraction

accuracy. See the following steps for how these metrics are computed.

1. Manually draw the boundary of water body.
2. Apply morphological expansion to the water body boundary from step (1) to create a

buffer zone, which is centered on the boundary line (radius = three pixels).
3. Finally, the pixels in the buffer area are judged.

Let the total number of pixels in the buffer area be M, the number of correctly classified
pixels be MR, the number of missing pixels be MO, and the number of false alarm pixels be
MC. EOA, EOE, and ECE are defined as below:

EOA = MR/M × 100%

EOE = Mo/M × 100%

ECE = Mc/M × 100%

Intersection over union (IoU), mean intersection over union (mIoU), and frequency

weighted intersection over union (FWIoU):

In the formal definitions below, TP, TN, FP, and FN are the number of true positive,
true negative, false positive, and false negative samples, respectively.

IoU [163,164]: It is the most popular and simple evaluation metric for object detection
and image segmentation used to measure the overlap between any two shapes such as two
bounding boxes or masks (e.g., ground-truth and predicted bounding boxes). Values of
IoU lie between 0 and 1, where 0 means two boxes do not intersect and 1 indicates two
boxes completely overlap. If the prediction is completely correct, IoU = 1. The lower the
IoU, the worse the prediction.

mIoU [43]: It is a common evaluation metric for semantic image segmentation, which
first computes the IOU for each semantic class and then computes the average over classes.
The formula is given below.

mIoU = TP/(TP + FP + FN)

FWIoU [46,158]: It is an improvement over mIoU. As its name implies, it weights
each class importance depending on their appearance frequency. The formal definition of
FWIoU is given below, where n is the number of categories.

FWIoU =
1

n + 1 ∑n
i=0

(
TPi

TPi + TNi + FNi
× TPi + FNi

TPi + FPi + TNi + FNi

)
Kappa statistic [156,159,165–172]:
Kappa (aka Cohen’s kappa) statistic, a statistic that is frequently used to measure

inter-annotator reliability (i.e., agreement) and also intra-annotator reliability for qualitative
(i.e., categorical) items, is a very useful, but underutilized, metric. The importance of rater
reliability is important because it represents the extent to which the data collected in a study
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are correct representations of measured variables. Note that this measure is to compare
labeling by different human annotators, not a classifier versus a ground truth.

Cohen’s kappa statistic is a very good measure that can handle both multiclass and
imbalanced class problems very well. In ML, for a multiclass classification problem (see
Appendix A4.2 in [84] for the definition and other types of classification tasks), measures
such as accuracy, precision, or recall do not provide the complete picture of the performance
of a classifier. In addition, for imbalanced class problems (see section II.D Imbalanced
data in [86] for details about data imbalance), measures such as accuracy are misleading,
so measures such as precision and recall are used. There are different ways to combine
the two, such as the F-measure, but the F-measure does not have a very good intuitive
explanation, other than it being the harmonic mean of precision and recall.

The kappa statistic can be calculated by the following formula, where Pr(a) represents
the actual observed agreement, and Pr(e) represents expected (i.e., estimated) chance
agreement). Thus, Pr(a) = OA.

Kappa Statistic = (Pr(a) − Pr(e))/(1 − Pr(e))

Note that the sample size consists of the number of observations made across which
raters are compared. Cohen specifically discussed two raters in his papers. The kappa is
based on the chi-square table, and the Pr(e) is obtained through the following formula [166],
where: cm1, cm2, rm1, rm2 represent column 1 marginal, column 2 marginal, row 1 marginal,
row 2 marginal, respectively, and n represents the number of observations (not the number
of raters).

Expected (Chance) Agreement =

(
cm1×rm1

n

)
+
(

cm2×rm2

n

)
n

Similar to most correlation statistics, the kappa score can range from −1 to +1. Scores
above 0.8 are generally considered good agreement; zero or lower mean no agreement
(practically random labels). According to the scheme of [165], a value of <0 indicates no
agreement, 0–0.20 is slight, 0.21–0.40 is fair, 0.41–0.60 is moderate, 0.61–0.80 is substantial,
and 0.81–1 is almost perfect agreement.

Kappa is one of the most commonly used statistics to test interrater reliability, but it has
limitations. Judgments about what level of kappa should be acceptable for health research
are questioned. Cohen’s suggested interpretation may be too lenient for health-related
studies because it implies that a score as low as 0.41 might be acceptable [166]. Additional
measures have been proposed to make use of the kappa framework.

For example, in [159], the authors advocate against the use of kappa and proposed
the alternative measures of quantity and allocation disagreement. Quantity disagreement
(QD) is the disagreement between the classification and reference data resulting from a
difference in proportion of categories. Allocation disagreement (AD) assesses a difference
in the spatial location of categories. The two measures (i.e., QD and AD) sum to overall
error (i.e., 1–OA).

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) [123,
129,130,173]:

MAE: also called mean absolute deviation, MAE finds the average of the absolute
differences between actual and predicted values. It gives an idea of how wrong the
predictions were. MAE measure gives an idea of the magnitude of the error, but no idea of
the direction (e.g., over- or underpredicting). MAE is defined as below [174], where yi is
the actual true value, and ŷi is the predicted value. MAE value lies between 0 to ∞. Small
value indicates a better model, and a value of 0 indicates no error, or perfect predictions.

MAE =
1
N ∑N

i=1|yi − ŷi|

MAE is more robust to the outliers than MSE, as it is not sensitive to outliers. MAE
treats larger and small errors equally. The main reason is that in MSE, through squaring
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the errors, the outliers, which usually have higher errors than other samples, obtain more
attention and dominance in the final error and thus impact the model parameters. In
addition, there is an intuitive maximum likelihood (MLE) interpretation behind MSE and
MAE metrics. If we assume a linear dependence between features and targets, then MSE
and MAE correspond to the MLE on the model parameters by assuming Gaussian and
Laplace priors on the model errors, respectively.

MAPE [175]: MAPE, also known as mean absolute percentage deviation (MAPD), is
the mean or average of the absolute percentage errors of forecasts. Error is defined as actual
value (i.e., observed value) minus the forecasted value. Percentage errors are summed
without regard to sign to compute MAPE. It is the most common measure used to forecast
error and works best if there are no extremes to the data (and no zeros). Because absolute
percentage errors are used, it avoids the problem of canceling positive and negative errors.
The formula is given below, where M is mean absolute percentage error, n is number of
times the summation iteration happens, At is the actual value, and Ft is the forecast value.
The smaller the MAPE, the better the forecast.

M =
1
n ∑n

t=1

∣∣∣∣At − Ft

At

∣∣∣∣
Precision, recall, sensitivity, specificity, and F-score [156]:
Each measure in this group is a set-based measure [176]. The values of those measures

are all from 0 to 1, with the best value at 1 and the worst score at 0.
Precision: The precision is mathematically defined by the following formula. Precision

attempts to answer the question What proportion of positive identifications was actually
correct? Precision refers to the proportion of the samples that is correctly classified amongst
the samples predicted to be positive and is equivalent to user’s accuracy (UA) for the
positive category, which is also equivalent to 1 − commission error.

Precision = TP/(TP + FP)

Recall (also called sensitivity or true positive rate): it refers to the proportion of the
reference data for the positive category that is correctly classified and is equivalent to
producer’s accuracy (also equivalent to 1 − omission error) for the positive category. It
is calculated by the following formula. Recall attempts to answer the following question:
What proportion of actual positives was identified correctly?

Recall = TP/(TP + FN)

Specificity (also called true negative rate): it refers to the proportion of negative
samples that is correctly predicted and is equivalent to the producer’s accuracy (PA) for the
negative category [177].

Specificity = TN/(TN + FP)

F-score (also called F1-score, F measure): Depending on the application domain, we
may need to give a higher priority to recall or precision, but there are many applications
where both recall and precision are important. Thus, it is natural to think of a way to
combine these two metrics into a single one. One popular metric that combines precision
and recall is called F1-score. The F1-score can be interpreted as a weighted harmonic mean
of the precision and recall and is formally defined as below. There is always a trade-off
between precision and recall of a model; if making the precision too high, we would see a
drop in the recall rate, and vice versa.

F1-score = (2 × Precision × Recall)/(Precision + Recall)
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The generalized version of F-score is defined as follows. F1-score is a special case of
F_β when β = 1.

Fβ =
(

1 + β2
)
× precision × recall

β2 × precision + recall

R2, mean squared error (MSE), root mean squared error (RMSE), and root mean

squared logarithmic error (RMSLE) [123,129,130,173]:
R2 is based on correlation between actual and predicted value; MAE is based on

absolute value of error; MSE and RMSE are both based on square of error.
R2: R-squared, also known as the coefficient of determination, is a value between 0

and 1 that measures how well a regression line fits the data (i.e., indication of the goodness
of fit of a set of predictions to the actual values in a regression model). The value range of
R2 lies between 0 and 1 for no-fit and perfect fit, respectively. R2 is not sensitive to outliers.

The R-squared formula compares our fitted regression line to a baseline model. This
baseline model is considered the “worst” model. The baseline model is a flat line that
predicts that every value of y will be the mean value of y. R-squared checks to see if our
fitted regression line will predict y better than the mean.

R2 = 1 − SSRES
SSTOT

= 1 − ∑i(yi − ŷi)
2

∑i(yi − y)2

SSRES refers to the residual sum of squared errors of the regression model; yi is the
actual value, and ŷi is the predicted value through the regression model. For example, if
the actual y value was 58 but we had predicted it would be 47 then the residual squared
error would be 121 and we would add that to the rest of the residual squared errors for
the model.

SSTOT is the total sum of squared errors. This compares the actual y values to the
baseline model (i.e., the mean). We square the difference between all the actual y values
and the mean y and add them together.

MSE: MSE is perhaps the most popular metric used for regression problems. It
essentially finds the mean (i.e., average) of the square of the difference (i.e., squared error)
between actual and estimated values. Similar to MAE, MSE provides a gross idea of the
magnitude of error. Let us assume we have a regression model that predicts the price of
houses in the Boston area and let us say for each house we also have the actual price the
house was sold for. The MSE can be calculated as the following, where N is the number of
samples, yi is the actual house price, and ŷi is the predicted value through the regression
model. MSE value lies between 0 to ∞. Small value indicates a better model. Sensitive to
outliers, it punishes larger errors more. MSE incorporates both the variance and the bias of
the predicting model.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2

MSE measures how far the data are from the model’s predicted values, whereas R2

measures how far the data are from the model’s predicted values compared to how far the
data are from the mean. The difference between how far the data are from the model’s
predicted values and how far the data are from the mean is the improvement in prediction
from the regression model.

RMSE: very straightforward, RMSE is the square root of MSE. Sometimes people use
RMSE to have a metric with scale as the target values. Taking the house pricing prediction
example, RMSE essentially shows what is the average deviation in your model predicted
house prices from the target values (the prices the houses are sold for). Similar to MSE,
RMSE value lies between 0 to ∞, with a small value indicating a better model. Similar to
MSE, RMSE is sensitive to outliers and punishes larger errors more. The value of RMSE
is always greater than or equal to MAE (RMSE >= MAE). The greater difference between
them indicates greater variance in individual errors in the sample.
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RMSLE: both RMSE and RMSLE are the techniques to find out the difference between
the actual values and the predicted values by an ML/DL model. RMSLE is the root mean
squared error of the log-transformed predicted and log-transformed actual values. RMSLE
is formally defined as follows, where X denotes the predicted value and Y denotes the
actual value, and n is the number of samples. Note that RMSLE adds 1 to both actual and
predicted values before taking the natural logarithm to avoid taking the natural log of
possible 0 (zero) values.

RMLSE =

√
1
n ∑n

i=1(log(xi + 1)− log( yi + 1))2

RMSLE is very robust to outliers. When we compare the formula of the RMSE and
RMSLE, the only difference is the log function. Basically, what changes is the variance
measured. This small difference makes RMSLE much more robust to outliers than RMSE. In
RMSE, outliers can explode the error term to a very high value, but in RMLSE, the outliers
are drastically scaled down, therefore nullifying their effect.

RMSLE is often used when we do not want to penalize huge differences in the pre-
dicted and the actual values when both predicted and true values are huge numbers. (1) If
both predicted and actual values are small: RMSE and RMSLE is same. (2) If either pre-
dicted or the actual value is big: RMSE > RMSLE. (3) If both predicted and actual values
are big: RMSE > RMSLE (RMSLE becomes almost negligible).
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