
mdpi.com/journal/sensors

Special Issue Reprint

Recognition Robotics

Edited by 

José María Martínez-Otzeta



Recognition Robotics





Recognition Robotics

Editor
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Editorial

Editorial for the Special Issue Recognition Robotics

José María Martínez-Otzeta

Department of Computer Science and Artificial Intelligence, University of the Basque Country,
20018 Donostia-San Sebastián, Spain; josemaria.martinezo@ehu.eus

Perception of the environment is an essential skill for robotic applications that interact
with their surroundings. Alongside perception often comes the ability to recognize objects,
people, or dynamic situations. This skill is of paramount importance in many use cases,
from industrial to social robotics. Robots that can accurately perceive and understand their
environment are critical for tasks like manufacturing, delivery, healthcare, and assisting
humans in homes or public spaces. Object recognition enables robots to identify items,
tools, and obstacles in their vicinity. This allows industrial robots to select the right parts
or manipulators, logistics robots to handle packages, and autonomous vehicles to avoid
collisions. Activity recognition allows robots to interpret human motions and behavior.
This facilitates safe and intuitive collaboration in shared workspaces. It also permits
service robots to determine user intents and respond appropriately. Person recognition
provides robots the means to identify individuals. This capability supports applications
like personalized assistance, healthcare monitoring, and security surveillance. Altogether,
these skills comprise the fundamental building blocks for robots to operate adaptively in
the real world.

This Special Issue “Recognition Robotics” of Sensors seeks to explore new research
proposals on this increasingly important topic. The fifteen accepted papers in this issue
cover human–robot collaboration [1], person re-identification [2,3], human–robot interac-
tions [4,5], visual servoing [6], cooperative mapping [7], semantic segmentation [8,9], object
classification [10], multi-object tracking [11], robot path planning [12], embedded deep
learning [13], activity recognition [14], and robust model fitting [15]. These works present
novel techniques using tools such as fuzzy logic, deep learning, computer vision, ultrasonic
sensing, spline optimization, and more to advance robot capabilities in real-world condi-
tions. The research aims to overcome challenges in uncertainty, limited data, computational
constraints, and complexity across various application domains. In summary, this Special
Issue provides a sampling of the latest innovations and progress in enabling robots that can
effectively perceive, learn, plan, manipulate, and collaborate in unstructured environments
through advances in recognition capabilities.

In [1], Yalçinkaya et al. introduce a Fuzzy State-Long Short-Term Memory (FS-LSTM)
approach for human–robot collaboration in dynamic fields like agriculture and construc-
tion. These tasks are time-consuming and risky for humans, making robotic assistance
valuable. The method handles the ambiguity in human behavior by fuzzifying sensory data
and employing a combined activity recognition system using state machines and LSTM.
Experimental validation showed that FS-LSTM outperforms traditional LSTM in accuracy
and computational efficiency.

In [2], Casao et al. introduce an unsupervised method for person re-identification, ca-
pable of automatically adding new identities to an adaptive gallery in open-world settings.
The system compares current models to new unlabeled data and uses information theory to
keep compact representative models. Experimental results, including comparisons to other
unsupervised and semi-supervised methods, validate the effectiveness of their approach.

The authors of [3] propose a lightweight deep metric learning technique for reliable
person re-identification, aimed at robot tracking. This method addresses challenges like
clothing and pose changes by employing a novel attention mechanism. This focuses on
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specific body parts, retains global context, and enables cross-representations for robust
identification. The experimental results show up to 80.73% and 64.44% top-rank accuracy,
outperforming existing methods. The authors suggest that integrating this metric improves
tracking reliability in dynamic environments.

In [4], Błażejowska et al. explore the impact of emotional feedback from the Miro-E
robot on high school students during a programming education session. The robot moni-
tored students’ emotions via facial expression analysis and provided affective feedback like
verbal praise and tail wagging. Compared to a control group with neutral robot responses,
the emotional feedback positively impacted engagement, particularly for students with
little prior programming experience. However, it also slightly reduced the robot’s likeabil-
ity, hinting at an uncanny valley effect. Due to a small sample size, the study focused on
qualitative insights.

In [5], Marques-Villarroya et al. introduce a robotic perception architecture that
employs bio-inspired endogenous attention to improve human–robot interactions. The ar-
chitecture uses multisensory inputs and ranks stimuli based on their relevance to the robot’s
tasks, particularly emphasizing human presence and actions. By doing so, it optimizes
the robot’s focus and behavior, leading to more efficient interactions. Implemented on the
Robot Operating System (ROS), the architecture demonstrates strong real-time performance
and extensibility. The authors argue that this bio-inspired approach enhances the robot’s
responsiveness while reducing complexity.

In [6], Marchionna et al. demonstrate how a low-cost, six-axis robotic arm, e.Do,
can play Jenga using instance segmentation and visual servoing. The system employs an
affordable RGB-D camera and force sensor. A customized deep learning model is trained to
identify each Jenga block, enabling precise visual tracking during manipulation. The force
sensor helps decide if a block can be safely removed. Testing shows up to 14 consecutive
successful block extractions before the tower collapses. The authors note that Jenga serves
as a complex benchmark, driving advancements in multi-step reasoning, integrated sensory
perception, and high-precision control.

The authors of [7] propose a decentralized framework for collaborative 3D mapping
using mobile robots with LiDAR sensors in large-scale outdoor settings such as agriculture
and disaster response. The real-time method allows robots to share and merge locally
scanned submaps into a global map, even with limited communication bandwidth. A
conditional peer-to-peer strategy is used for sharing map data over different distances.
Experiments in a real-world solar power plant confirm the approach’s efficiency and
reliability for multi-robot mapping of extensive outdoor areas.

In [8], Pinkovich et al. address the challenge of autonomously selecting safe landing
sites for delivery drones in dense urban areas. Their multi-resolution technique captures
visual data at varying altitudes, enabling both wide exploration and high-resolution sensing.
A semantic segmentation deep neural network processes this data, updating probability
distributions for each ground patch’s landing suitability. When a location’s confidence
exceeds a threshold, it is selected as viable. The authors find the method effectively balances
the trade-off between exploration and resolution in constrained urban environments.

Lee et al. introduce in [9] an “Extract-Append” data augmentation technique to
boost the accuracy of models detecting wild animals in agricultural fields. The method
uses semantic segmentation to isolate animal shapes from sample images and combines
them with new backgrounds to enrich the training dataset. Testing shows at least a 2.2%
improvement in mean Average Precision over traditional methods, and the technique
enables ongoing flexible data augmentation.

The authors of [10] present vision-based methods for automated recycling of used
electronic components such as capacitors and voltage regulators. Using a custom object
detection algorithm, they identify key areas in cluttered workspaces and compare three
classification techniques: SNNs, SVMs, and CNNs. After hyperparameter tuning, CNNs
prove to be the most accurate with a 98.1% success rate, making them the preferred method
for reliable automated recycling.
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Paper [11] proposes the use of deep neural networks to detect illegal garbage dumping
in urban areas. They combine OpenPose for human pose estimation, YOLO for garbage
bag classification, and DeepSORT for object tracking. The system measures the distance
between a person’s wrist and the garbage bag to determine illegal dumping. Experimental
results show their method offers higher accuracy and lower false alarms compared to other
approaches, making it effective for automated monitoring against unlawful waste disposal.

In the research presented by Rykała et al. [12], a path-planning method is developed
for an unmanned ground vehicle (UGV) to follow a human guide using ultra-wideband
(UWB) technology. They use smoothing splines to reconstruct the guide’s path from
periodic distance measurements. The approach is computationally efficient and can handle
missing data, making it suitable for real-time applications.

The authors of [13] provide a comprehensive evaluation of how well state-of-the-art
deep learning object detection models perform on embedded electronics. They assess
multiple architectures and quantization techniques to make the models more efficient for
embedded and robotics applications. The paper outlines the entire process from model
conversion to deployment and performance measurement on embedded devices. It offers
guidelines for choosing the right hardware and optimization strategies, and discusses the
various factors that influence performance in real-time robotics systems.

In [14], Strazdas et al. introduce RoSA, a framework that facilitates human–robot
interactions using speech and gestures. Running on ROS, the system incorporates speech
recognition, face identification, and pose estimation. A user study revealed that RoSA’s
usability was on par with a human-controlled setup, suggesting it offers a natural inter-
action experience. The authors highlight the value of multi-sensory integration for more
human-like and flexible robot interactions.

The authors of [15] review the RANSAC algorithm’s applications in robotics, focusing
on shape detection and feature matching. They explore various enhancements to RANSAC
that improve its speed, accuracy, and robustness. The survey also discusses trade-offs
between computational cost and performance, highlights recent robotics applications, and
provides a list of open-source RANSAC libraries. The survey offers robotics researchers
and developers an extensive reference on the state of the art in RANSAC techniques.

In summary, the fifteen papers in this Special Issue on “Recognition Robotics” demon-
strate the tremendous progress being made in enabling robots to effectively perceive,
understand, plan, and interact in the real world. However, significant challenges remain
before these innovative techniques can be reliably deployed in unconstrained environments.
Testing novel algorithms in controlled simulations or lab settings with simplified assump-
tions can be deceptively promising, because applying recognition capabilities on physical
robotic platforms in complex dynamic scenarios reveals many subtleties. Interactive testing
is critical to expose limitations around uncertainty, variability, and computational con-
straints. Moving innovations out of the lab or controlled scenarios requires addressing edge
cases and graceful failure modes, and therefore there is still substantial effort needed to
robustly handle the diversity and unpredictability of the real world. Nevertheless, the field
continues steadily on an exciting path towards enabling robot assistants and coworkers
that can perceive, learn, reason, and collaborate at a human level. These capabilities will
lead to transformative applications, and the works presented in this Special Issue provide
an inspiring snapshot of the road ahead.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: This study presents a novel approach to cope with the human behaviour uncertainty during
Human-Robot Collaboration (HRC) in dynamic and unstructured environments, such as agriculture,
forestry, and construction. These challenging tasks, which often require excessive time, labour
and are hazardous for humans, provide ample room for improvement through collaboration with
robots. However, the integration of humans in-the-loop raises open challenges due to the uncertainty
that comes with the ambiguous nature of human behaviour. Such uncertainty makes it difficult
to represent high-level human behaviour based on low-level sensory input data. The proposed
Fuzzy State-Long Short-Term Memory (FS-LSTM) approach addresses this challenge by fuzzifying
ambiguous sensory data and developing a combined activity recognition and sequence modelling
system using state machines and the LSTM deep learning method. The evaluation process compares
the traditional LSTM approach with raw sensory data inputs, a Fuzzy-LSTM approach with fuzzified
inputs, and the proposed FS-LSTM approach. The results show that the use of fuzzified inputs
significantly improves accuracy compared to traditional LSTM, and, while the fuzzy state machine
approach provides similar results than the fuzzy one, it offers the added benefits of ensuring feasible
transitions between activities with improved computational efficiency.

Keywords: human activity recognition and modelling; deep learning; human-robot collaboration;
fuzzy logic; finite state machine; long short—term memory

1. Introduction

1.1. Importance of Human Activity Recognition for Human-Robot Collaboration

For years, robots and humans have been separated in different workspaces, whether
it be industrial or field applications. The reason for this separation is primarily for safety.
Even though robots have been designed for specific tasks, in most cases, they are not aware
of the environment and surrounding dynamic agents. As a result, these robots are often
placed in cages or in a completely separate environment from human operators [1]. This
separation has resulted in issues, such as low adaptability in different environments, costly
setup, and limited flexibility, which do not align with the ideals of Industry 4.0, which
demands fast production and efficiency.

To address these demands, Human-Robot Collaboration (HRC) has become a major
trend in robotics in recent years. The goal is to improve efficiency and productivity by
combining the benefits of humans’ critical thinking and empathy, with robots’ physical
robustness in demanding and often dangerous conditions [2]. The idea is for humans
and robots to work together towards a common goal. Research has demonstrated that

Sensors 2023, 23, 3388. https://doi.org/10.3390/s23073388 https://www.mdpi.com/journal/sensors
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interaction and collaboration between humans and robots are crucial factors in achieving
ergonomic systems and enhancing the quality and efficiency of the production process [3].

Collaborative robots, also known as “co-bots”, have become increasingly prevalent
in industrial settings in recent years. However, they have also been utilized in a variety
of other domains. For example, in the healthcare field, researchers are developing robotic
walkers [4], wheelchairs [5], and elderly care robots [6]. Collaborative robots have the
potential to assist humans in heavy and dangerous tasks as well, such as construction and
search-and-rescue [7]. They can also be used in a range of industries and even in smart
home applications. These robots can come in various forms, such as manipulators [8] and
fully humanoid robots [2].

However, incorporating humans into the process presents many challenges, primarily
due to the unpredictable nature of human behaviour. This can lead to difficulties with
robots adaptability and robustness in changing and uncertain situations and environments.
In HRC systems, robots are expected to understand human activities and intentions and, at
times, even predict future human behaviour in order to efficiently achieve the shared goal.
This can be a difficult task due to the inherent uncertainty of human behaviour.

Significant research has been dedicated to understanding human behaviour patterns
through Human Activity Recognition (HAR), which involves analysing various sensor data
to identify and detect simple and complex human activities. HAR has been applied not only
to domains related to human daily life, such as healthcare, smart home applications, and
elderly assistance [9], but also in robotics solutions where HRC is foreseen, being critical
for the robot to have awareness of human actions. Traditional machine learning methods,
such as Bayesian networks [10], random forest [11] and support vector machines [12]
have been used to understand human behaviours. In addition to understanding human
behaviour, some researchers have focused on predicting the most likely sequence of human
actions. Probabilistic methods, such as Hidden Markov Models (HMM) [13] have been
proposed to understand and predict human activities. Finite State Machines (FSM) have
also been used as a tool to model dynamic changes over time and, when combined with
fuzzy logic, to even handle uncertainty from sensor data through the use of linguistic
variables [14]. Recently, deep learning has emerged as a new trend, as it has the ability to
learn and identify complex patterns among large datasets. The major difference between
deep learning and the previously described approaches is that it offers multiple hidden
layers that are capable of feature extraction and transformation, thus significantly reducing
the workload of human designers and developers. As a result, deep learning has been used
in various other domains as well, such as image classification [15], speech recognition [16]
and so on, and several deep learning algorithms, such as convolutional neural networks
(CNNs) [17] and recurrent neural networks (RNNs) [18], have been key to improve the
accuracy and robustness of HAR systems.

While these methods have shown promise, dealing with human uncertainty remains a
challenge. One of the main difficulties is the high variability of human behaviour across
different contexts, as well as the noise in the sensor data, which makes it difficult to
generalize from training data. This uncertainty problem has a negative impact on trust and
safety, which are critical measurements for any HRC system [19]: if the robot is unable to
understand or anticipate human intention, this may lead it to make wrong decisions and
even cause accidents and injuries, which will affect both acceptability and trustworthiness.
Several authors point out to a panoply of solutions to eliminate uncertainty by extracting
more information and rapid processing. However, there is no clear plan established for
a constrained computing system, as robots and other facilitators of HRC (e.g., wearable
technologies) often have. Given the complexity and addressed challenges associated with
uncertainty in human behaviours, further research is still required to fully understand and
address this problem.
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1.2. Research Question and Objectives

This paper proposes a HAR framework capable of coping with uncertainty in human
behaviours, resulting in positive improvements in trust and safety for HRC tasks. To this
end, this paper presents three key incremental developments:

i Enhance Long Short-Term Memory (LSTM) networks by incorporating fuzzy logic to
model human uncertainty (Fuzzy-LSTM), building upon the work of [20]: the goal
is to improve the performance of LSTM networks by incorporating fuzzy logic to
model human uncertainty. In this method, features are extracted from sensor data,
which may be uncertain due to the ambiguity of human behaviour or noise in the
sensors. These features are then fuzzified using Tilt and Motion linguistic variables.
This fuzzification step allows the model to handle uncertain data, making it more
robust. The fuzzified features are then used as input to the LSTM network during
training. The goal of this approach is to improve the accuracy of the LSTM network in
handling uncertain sensor data.

ii Further extend Fuzzy-LSTM representing the sequence of activities through finite-
state machines (FSM), thus leading to the Fuzzy State LSTM (FS-LSTM): the goal of
this method is to enhance the predictability of human activity sequences by combining
the strengths of FSM and fuzzy logic in an LSTM-based model. In this approach,
an LSTM network is trained for each state within the FSM. The output of the LSTM
network is then used to determine the possible transitions between states.

iii Estimate human uncertainty by aggregating predicted scores of the LSTM into a
crisp output through defuzzification: this proposed method aims to estimate the
uncertainty of the LSTM classifier’s predictions by converting the classification scores
into a crisp value through defuzzification. The classification scores are first converted
into a fuzzy set to represent the degree of uncertainty in the predictions. Then, the
fuzzy set is transformed into a crisp value to indicate the certainty of the classifier’s
predictions. This process allows for quantifying the uncertainty of the predictions,
which is not only used within the FS-LSTM method to accept or reject transitions
between states, but can also be useful in our future work in HRC, where certainty
is important.

In addition to these three main contributions, a benchmark is presented to further
investigate the impact of the proposed architecture, which compares the traditional LSTM
and the incrementally developed novel architecture.

1.3. Organization of the Article

This article is structured as follows: In Section 2, a comprehensive review of relevant
literature is provided. Section 3 outlines the use case and data collection through the
developed simulator and a preliminary experimental study on generating synthetic data.
The proposed method, including feature fuzzification and FSM learning with LSTM, is
described in Section 4. At last, the results from the experimental studies are discussed in
Section 5, followed by a description of future work and conclusions in Section 6.

2. Literature Review

HAR has gained significant attention for its ability to detect and identify human
activities from sensor data [21]. The importance of HAR lies in its ability to handle the
uncertainty that arises from the variability in human behaviour and ambiguity in activities.
In robotics, understanding human behaviour and adapting accordingly is crucial for natural
and safe interaction and collaboration with humans [22]. This literature review will examine
the uncertainty problem in HAR and the methodologies used to address it, as well as the
challenges and open research questions in the field.

Human uncertainty poses a significant challenge in HRC from various perspectives.
One major aspect is the complex sequential decision-making required in dynamic envi-
ronments during collaborative tasks, as discussed by Osman in her study [23] on complex
dynamic control tasks. These tasks often require multiple decisions that have to accommo-
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date many elements of the system to achieve a desired goal, which implies that there is a
high degree of uncertainty introduced by humans regarding how they will behave in these
changing conditions and environments. This makes it a difficult task for robots to predict
and adapt. In addition to the dynamic nature of the environment and the complexity of
collaborative tasks, the variability of human physical and cognitive abilities also contributes
to their uncertainty. Human factors, such as fatigue, learning ability, and attentiveness can
significantly impact a worker’s efficiency and accuracy and even cause errors or safety
issues in HRC systems [24]. This is aligned with the work of Vuckovic et al. [25], that
highlighted the importance of human subjectiveness in creating uncertainty in human be-
haviours. According to the authors, individuals judge a stimulus and adapt their decisions
accordingly to their judgments. This implies that human subjectivity has an important role
in introducing uncertainty in human behaviours, as it leads them to perceive and react to
situations differently based on their own experiences. Another important aspect in which
uncertainty plays a role is in building trust between humans and robots in collaborative
tasks. Trust is a crucial element in HRC, as it allows humans to rely on robots to safely
perform tasks together. According to Law and Scheutz [26], understanding human needs
and intentions, and effectively responding to them, is key to building trust.

Other researchers have emphasized the significant impact of human uncertainty on
proactive planning for HRC. According to Kwon et al. [27], proactive planning involves a
robot’s ability to adapt to a dynamic environment by handling uncertainty. The authors
note that the nature of the dynamic environment is not only affected by the robot’s actions
but also by human activities, which have complex temporal relationships. The uncertainty
in these activities must be considered during planning as they are not easily predictable
due to the robot’s limited observation of the environment and the humans. Therefore,
understanding and addressing uncertainty in collaborative tasks is essential for efficient
planning in HRC.

Based on the literature reviewed, it is well understood that uncertainty introduced by
humans poses a significant challenge in Human-Robot Collaboration (HRC). Therefore, a
significant amount of research has been conducted in this field with the aim of mitigating
the negative effects of uncertainty. These solutions mostly focus on the efficient and effective
inference of human behaviour as a means of addressing uncertainty within the HRC context.
One approach is the use of multimodal systems that combine different sensor types, such
as video cameras, wearables, and even ambient sensors, such as infrared motion detectors.
Video cameras are popular for HRC tasks, but they raise privacy concerns [28]. On the
other hand, wearable sensors, such as inertial measurement units (IMUs), are widely used
to cope with privacy and security concerns, but they also come with many challenges,
such as limited representativeness of similar activities. Despite these challenges, wearable
sensors are the most commonly used set of sensors in human activity monitoring. In [29],
the authors proposed to use wearable sensors, such as accelerometers and gyroscopes
worn at different positions on the human body, to capture activity data that are sampled
at regular intervals to be used in HAR. Another study has been designing appropriate
methodologies, such as utilizing data from individual accelerometers at the waist, which
can identify basic daily activities, such as running, walking and lying down [30]. These
works reported acceptable accuracy results for basic daily activities. However, they could
not show good accuracy for more complex activities, such as transitions, e.g., standing up
or sitting down. As said before, a way of improving such results would generally imply
using a larger combination of sensors, although attaching many sensors to the human body
is unfeasible and inconvenient for people’s daily activities.

HAR is often treated as a pattern recognition problem, and many works have initially
adopted machine learning techniques to recognize activities. Support Vector Machine
(SVM) [31] and Hidden Markov Model (HMM) [32] classifiers are among the most com-
monly used methods for activity recognition. For example, Azim et al. [33] used an
SVM classifier with trajectory features for activity classification and achieved an overall
accuracy of 94.90% for the KTH online database and 95.36% for the Weizmann dataset
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(http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html (accessed on 2
February 2023)). Kellokumpu et al. [34] used HMM and affine invariant descriptors, achiev-
ing an overall accuracy of 83.00%. While these works rely on offline data, Yamato et al. [35]
used real-time sequential images and mesh features along with HMM, achieving a 90%
accuracy. However, these traditional machine learning methods often rely on carefully
designed and heuristic feature extraction methods, such as time-frequency transformation,
statistical approaches, and symbolic representation. They lack a universal or systematic
approach for effectively distinguishing human activities, and they are prone to overfitting
and may perform poorly on unseen data [36].

To overcome these drawbacks, ensemble classifiers have been proposed, which involve
training multiple models and combining their predictions to make a final decision. The
aim of ensemble classifiers is to improve the performance of the model by combining the
strengths of multiple models and mitigating their weaknesses [37]. Random forest is a
popular ensemble classifier that is computationally efficient and commonly used in various
domains, such as text and image classification. Random forest works by training multiple
decision trees and combining their predictions through a voting procedure. This method
is effective in addressing overfitting issues and has been shown to enhance accuracy by
combining the outcome of each different classifier [38].

Both traditional machine learning and ensemble classifiers methods for feature ex-
traction in HAR heavily rely on human experience and domain knowledge. However,
these may not be effective for more general environments and may result in a lower chance
of building an efficient recognition system. Additionally, the features learned by these
methods are shallow, such as statistical information, and can only be used for low-level
activity identification, such as walking or running, making it hard to detect high-level or
context-aware activities, such as cooking. In contrast, in real-life scenarios, activity data
comes in a stream and requires robust online learning from static data, which is a limitation
of many of these traditional methods [39]. Deep learning methods, on the other hand, have
been successful in learning complex activities due to their ability to learn features directly
from the raw data hierarchically by performing nonlinear transformations. The layer-by-
layer structure of deep models allows learning from simple to abstract features. Advances
in computer resources have made it possible to use deep models to learn features from
complex data from single or multimodal sensory systems. It is worth highlighting that deep
neural networks can be detached and flexibly composed into a unified network, allowing
for the integration of various deep learning techniques, such as deep transfer learning, deep
active learning, and deep attention mechanism. This enables the integration of various
effective solutions that can improve the performance of the recognition system [36].

Popular deep learning techniques include deep neural networks (DNN), convolutional
neural networks (CNN), recurrent neural networks (RNN), and long short-term memory
(LSTM) networks [28]. DNN are a type of Artificial Neural Network (ANN) that are char-
acterized by a larger number of hidden layers. In contrast to traditional ANN, which often
have only a few hidden layers, DNN can learn from large datasets more effectively. Ham-
merla et al. [40] adopted a five-hidden-layer DNN to perform automatic feature learning
and classification. Vepakomma et al. [41] fed extracted hand-engineered features obtained
from the sensors into a DNN model. CNNs are a type of neural network that exploit
three key concepts: sparse interactions, parameter sharing, and equivariant representations.
CNN have presented successful results in HAR application by utilizing local dependency,
which refers to the nearby signals in a time-series that are most likely correlated. CNN also
have shown the ability to handle variations in pace or frequency [39]. Several studies, such
as [42,43] have employed one-dimensional (1D) on the individual univariate time-series
signals for temporal feature extraction. Conventional 1D CNN have a fixed kernel size,
which limits their ability to discover signal fluctuations over different temporal ranges. To
address this, Lee et al. [17] combined multiple CNN structures of different kernel sizes to
obtain the temporal features from different time scales. Nevertheless, this approach would
demand more computational resources as well. Various deep learning methods have been
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applied to temporal information including RNN. While traditional RNN cells suffer from
vanishing gradient problems, LSTM, as a specific type of RNN, overcomes this issue. A
sliding window is generally used to divide the raw data into individual pieces, which
are then used to feed LSTM. In a typical LSTM-based temporal feature extraction, it is
essential to carefully tune the hyper-parameters, such as the length and moving step of the
sliding window. Some researchers adopted The Bidirectional LSTM (Bi-LSTM) structure for
extracting temporal dynamics from both forward and backward directions in HAR [44]. On
the other hand, Guan and Plötz have combined multiple LSTM networks in an ensemble
approach and obtained superior results [45].

Another trend in HAR is combining different deep learning approaches by developing
hybrid models to exploit their different aspects. For instance, Ordóñez and Roggen have
combined CNN and LSTM for both local and global temporal feature extraction [46]. The
idea is to exploit CNN’s ability to capture the spatial relationship, while LSTM can extract
the temporal relationship. According to the reported results, CNN combined with LSTM
outperforms CNN combined with dense layers. Differently, in [47], the authors presented a
hybrid model for HAR which first identifies the abstract activity by using random forest
to classify it as static and moving. For static activities the authors have used SVM, while
for moving activities they have adopted 1D CNN. Even though the overall accuracy of the
system was 97.71%, their system was evaluated over a dataset and has not been tested in
real environments and/or in runtime.

Despite these models having shown significant accuracy in HAR, the uncertainty
of the activities remains a challenge due to several reasons, such as noise in sensors and
human factors. Several studies adopted different methodologies to investigate the degree of
certainty, or uncertainty, of a given performed activity. One of the methods adopted was a
dynamic Bayesian mixture model (DBMM), which is a type of ensemble probabilistic model
that combines the likelihood of multiple classifiers into a single form by attaching different
weights to each classifier. DBMM uses an uncertainty measure, such as the posterior
probability, as a confidence level, which is updated during the online classification [48].
Therefore, the classifier with the highest confidence level is the outcome of the classification
process. In [49], the authors presented an architecture that recognises seven different
actions performed by athletes using a single-channel electromyography (EMG) combined
with positional data obtained by benchmarking ANN, LSTM and DBMM. According to
the results, ANN and LSTM models were not the most reliable choice to identify these
actions due to the low number of trials in the dataset. On the other hand, DBMM led to
better results, with 96.47% accuracy and 80.54% F1-score. Similarly, in [50], human daily
activities were recognized by using DBMM. The authors proposed a set of spatio-temporal
features, including geometrical, energy-based and domain frequency features to represent
the different daily activities which were then fed into DBMM. The overall classification
performance for DBMM and LSTM, in terms of precision and recall, was 86.63% and
85.01%, respectively.

Other studies have explored fuzzy-based architectures in HAR, which allows for the
incorporation of uncertainty in the decision-making process. While traditional probabilistic
models represent the likelihood of an event using crisp values, fuzzy-based models use
fuzzy membership values to represent the degree of partial truth by providing semantic
expressiveness through the use of linguistic variables to handle uncertain data. Karthigasri
and Sornam [20] fuzzified the input features to be used in a fuzzy FSM (FFSM), which
is a methodology used to model dynamic sequences of events. The reported results of
the approach outperformed decision trees, K-nearest neighbors, SVM, Gaussian naïve
Bayes and quadratic discriminant analysis. Mohmed et al. [14] proposed a HAR architec-
ture using data obtained from low-level sensory devices by enhancing FFSM with deep
learning methods, namely LSTM and CNN. While both models have shown high scores
of accuracy, the CNN-FFSM model showed more robust and reliable performance when
applied to a larger dataset, while LSTM-FFSM outperformed CNN-FFSM for simple sce-
narios with a short period of a dataset. Despite the paper presenting promising results for
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HAR, the methodology is presented in a high-level manner, lacking relevant technical and
scientific details, which makes it impossible for the reader to understand and fully asses
its reproducibility.

In conclusion, the literature reviewed in this study highlights the importance for robots
to understand human activities and cope with uncertainty in HRC applications. To this
end, a variety of studies have been conducted in this field to understand human behaviour
by exploring HAR architectures. However, it is clear that there is still a need for further
research in this area in order to not only measure human uncertainty during collaborative
tasks with robots in runtime, as well as to use such knowledge to adapt accordingly.

3. Use Case and Data Collection

3.1. Use Case: The FEROX Project

FEROX https://ferox.fbk.eu/ (accessed on 10 February 2023) is a project that aims
to support workers collecting wild berries and mushrooms in wild and remote areas of
Nordic countries by using robotic technologies. One of the key aspects of the project is its
focus on HRC by deploying unmanned aerial vehicles (UAV) to monitor and assist groups
of workers during field operations. This improves workers safety in remote environments,
where access to help or assistance may be limited. The expected end results will be an
increased worker trust in collaborating with robots, leading to larger number of berries
harvested, higher quality berries for consumers, more efficient picking times, new level of
worker safety in remote environments, and reduced worker exhaustion levels. Figure 1
depicts a view of the work field of the FEROX Project.

To achieve its aim, the FEROX project is exploring the use of wearable technology
to infer the needs and states of the workers. One possible solution is to use a wearable
device with integrated IMU (i.e., accelerometer, gyroscope and magnetometer) that can
enable the identification of different activities, such as walking, running, sitting, collecting,
and loading berries. Additionally, data from a global navigation satellite system (GNSS)
(e.g., from the worker smartphone) can be used to infer activities performed over distance,
such as driving a vehicle. It is foreseen that the combination of these two commonly
adopted cheap devices would allow for more accurate and real-time monitoring of the
workers’ activities and needs, enabling the project to better support and assist them.

Figure 1. A view on the work field of the FEROX Project.

Figure 2 illustrates the conceptual overview of the architecture aimed to be imple-
mented in the FEROX Project. As stated above, human workers are equipped with wear-
ables and other technologies, which feed the herein proposed FS-LSTM architecture to
assess their behaviors and the associated uncertainty for a high-level decision-making
system. The system may integrate human physiological and kinematic data to identify
human activities, such as (1) human locomotive activities, including idle and walking;
(2) human work-related activities, such as berry picking; (3) potential detection of human
injury, combining physiological data, such as heart rate, in the future; and (4) a multi-UAV
system that provides assistance to the human workers based on the output of the high-level
decision-making system, which takes into account the human state defined by FS-LSTM.
The next phase of the study will focus on developing the high-level decision-making system
to explore the areas, track human location, and assist with loading the collected berries to
the collection point (see Section 6).
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Figure 2. An overview of the use case scenario.

3.2. Data Collection: FEROX Simulator and Synthetic Data

In recent years, the performance of HAR systems has seen significant advancement
due to the use of deep learning techniques. However, the acquisition and labelling of
large datasets for training and evaluating these methods can be time-consuming and costly.
To address these limitations, one solution is to use synthetic datasets that do not require
manual labelling or expensive hardware for data capturing [51]. This approach has several
advantages, such as producing labelled data without human input, being beneficial in
fields where data acquisition is costly, such as field robotics [52].

As a preliminary study, we present a simulator that generates automatically labelled
synthetic data by simulating a human character with a chest-worn virtual IMU and smart-
phone GNSS sensors. The first goal of this study is to develop a simulation environment
that can produce synthetic human motion data to feed a HAR system capable of recognizing
different locomotive actions. The focus of this research is on developing a system that can
be trained using only synthetic labelled data, and then tested and evaluated with real data
to justify its reliability for further studies.

3.2.1. FEROX Simulator Development and Virtual Sensor Modelling

We have developed the simulator using the Unity (https://unity.com/ (accessed on 10
February 2023)) game engine with the ultimate goal of creating a game-like environment for
HRC. To achieve this, we initially focused on setting up the forestry scenario by using the
Unity Terrain High-Definition Render Pipeline (https://assetstore.unity.com/packages/
3d/environments/unity-terrain-hdrp-demo-scene-213198 (accessed on 10 February 2023))
and the avatar using the Mixamo library (https://www.mixamo.com/ (accessed on 10
February 2023)), contemplating simple actions, such as idle, walking, running, sitting,
falling down and getting up as shown in Figure 3. We also implemented work-related
actions, such as collecting and loading berries, driving a vehicle, etc. To generate the
animations, we used a keyframe-based method that models connected virtual human body
joints in a sequence of frames.
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To establish communication between the different agents in the simulation and the
developed framework, we integrated the ROS TCP Connector (https://github.com/Unity-
Technologies/ROS-TCP-Connector (accessed on 10 February 2023)) to set up a TCP connec-
tion between Unity and the widely popular Robot Operating System (ROS) framework [53].
This allows us to generate C# classes to serialize and deserialize ROS messages, specifically
the synthetic data obtained by the virtual IMU and GNSS sensors. The GNSS coordi-
nate data is published at a rate of 5 Hz to the ROS network as a sensor_msgs/NavSatFix
standard message. The synthetic IMU data is published at 50 Hz to the ROS network as
a sensor_msgs/Imu standard message that stores the data over. Additionally, we also
publish the current activity (label) being performed at 50 Hz to the ROS network under the
message type std_msgs/String. All these three types of messages include a timestamp,
which ensures that the activity labels can be synchronized with a given GNSS and IMU
data stream.

a) Idle b) Sit

c) Fall Down

d) Get Up

Figure 3. The avatar performs locomotive actions.

In this study, we implemented a virtual model of the RION AH200C IMU sensor
(http://en.rion-tech.net/products_detail/productId=158.html, (accessed on 10 February
2023)) which integrates an accelerometer, a gyroscope and a magnetometer, thus combining
them and providing readings of linear acceleration, angular velocity and orientation. It
is possible to place a virtual sensor in any desired position, as long as it is attached to a
human joint. In our case, the virtual IMU sensor was placed on the chest of the avatar, as it
is shown with a blue mark in Figure 3. The linear acceleration was calculated by taking
into account the discrete derivative of the velocity with respect to the time as shown in
Equation (1):

a(tn) = K
(

v(tn)− v(tn−1)

Ts

)
(1)

where a, K, v, and T stands for the linear acceleration, gain factor, velocity and time of the
cycle, respectively. More particularly, we captured the position of the virtual IMU attached
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to the chest joint of the avatar and calculated its second discrete derivative every 20 ms
on its own frame. In order to do that, we made use of the parent-child concept of Unity,
which relies on a hierarchical structure between transform frames (position and rotation),
as the pose of the child changes accordingly to the pose of the parent. The position of the
child is applied from the current position of the avatar’s chest. The rotation of the parent is
adopted from the current rotation of the avatar’s chest, while the position of the parent is
adopted from the avatar’s chest position in the previous frame as illustrated in the Figure 4
in which the transparent human figure represents the virtual IMU position of the previous
cycle. This concept allows us to obtain the position of the virtual IMU in its local frame.

World Frame

The position of the Parent 
of the Virtual Imu

The position of the  Virtual
Imu as the child

Hierarchical
Window

Parent Object

Child Object (Imu)

Figure 4. The parent-child relationship is adopted to obtain the position data in virtual IMU’s
local frame.

It is noteworthy that, due to the successive discrete derivative, the linear acceleration
is greatly affected by noise, which is not observable in the data retrieved from the real
IMU sensor. Therefore, we have applied a linear interpolation followed by smoothing the
data using an exponential smoothing algorithm commonly employed in time-series data to
remove high-frequency noises, as in Equation (2), where xt is the data sequence, st is the
output of the exponential smoothing algorithm, t is time and α is the smoothing factor:

st = xt, t = 0

st = αxt + (1 − α)st−1, t > 0 and 0 < α ≤ 1
(2)

Additionally, and because real-world accelerometers are generally affected by gravita-
tional acceleration, we have calculated the gravity vector in the local frame of the sensor by
making use of the Unity physics engine.

In order to have the orientation information, we extracted the virtual sensor’s rotation
in quaternions. Quaternions provide a convenient mathematical notation for representing
the orientation of objects in space, being represented with complex numbers in the following
form as shown in Equation (3), where qx, qy, qz are the vector units and qw is the scalar
unit. Then, similarly to acceleration, we applied smoothing algorithm to smooth the
quaternion data.

q = qx + qy + qz + qw (3)

At last, to obtain the angular velocity, we made use of the orientation described above,
converting quaternions to Euler angles, and applying the related discrete derivative at
every 20 ms, as represented in Equation (4), where ω, θ, and t represent angular velocity,
rotation angle in radians, and time, respectively.

ω =
Δθ

Δt
(4)
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In line with the approach taken to model the virtual IMU, a similar methodology was
adopted to model GNSS data. Specifically, a smartphone positioning system was utilized
as a reference for modelling GNSS data. To simulate the GNSS data, the avatar’s position
in space was leveraged and converted into longitudinal and latitudinal coordinates using
the GpsConverter package (https://github.com/MichaelTaylor3D/UnityGPSConverter
(accessed on 10 February 2023)). It should be noted that the smartphone GNSS data
had already undergone filtering, thus negating the need for additional data smoothing
techniques [54].

While the data generated closely matches its real counterpart, real sensors are often
affected by noise. Preliminary tests using the data generated from the aforementioned
approach led to the overfitting of the models. The real IMU and GNSS sensors have noise
characteristics due to some calibration errors or environmental noise that affects the sensor
readings. Therefore, in order to make the synthetic data more realistic, a Gaussian Noise
was injected on both sensors, more specifically affecting the longitude, latitude, linear
acceleration and angular velocity variables. Noise was not added to quaternion data as
the data provided by the real IMU sensor already comes from Extended Kalman Filter,
which leads to a noiseless signal [55]. To add variability to the virtual IMU sensor data,
the velocity and sequence of movements in the virtual avatar were adjusted in runtime.
Different velocity levels can result in different patterns in the sensor data, while different
sequences of activities can affect the overall variability of the data.

3.2.2. Data Preparation

To justify the reliability of the synthetic data, we conducted a preliminary study by
using MatLab to deploy the sequence classifier for training and testing, benefiting from
both Deep Learning Toolbox (https://www.mathworks.com/products/deep-learning.html
(accessed on 10 February 2023)) (for sequence data classification) and ROS Toolbox (https:
//www.mathworks.com/products/ros.html (accessed on 10 February 2023)) (for seemless
communication with the ROS master).

We have started by building our own dataset, containing the synthetic data obtained
by the virtual IMU and GNSS sensors, as well as the real data obtained by the real RION
AH200C IMU sensor and GNSS data of a smartphone. At this stage, the dataset included
data from only four activities (Sit, Fall Down, Get Up and Idle) with automatic labelling
being performed for the synthetic data as described in the previous section, and manual
labeling being performed for the real data, which would be required to not only assess
the feasibility of the virtual IMU and GNSS models, but also to validate and evaluate
the classifier.

We have implemented a method for synchronizing the timestamps of IMU and GNSS
sensors. For each timestamp of the label data, the closest GNSS and IMU timestamps are
found. The GNSS data is associated with the IMU and label data over a short time of
10 timestamps. Then the GNSS route involving longitude (φ) and latitude (λ) has been
converted to Cartesian x and y coordinates.

Taking into account the use of a single IMU and GNSS, be it virtual or real, we have
considered a feature vector s(t) that includes linear acceleration (ax, ay, az), angular velocity
(ωx, ωy, ωz), quaternion (qx, qy, qz, qw), x and y being represented as follows:

s(t) =
[

ax ay az ωx ωy ωz qx qy qz qw x y
]

(5)

To tackle this classification problem, we adopted a Long Short-Term Memory (LSTM)
network, which is known to be state-of-the-art supervised method for sequence data
classification. As previously stated, LSTM is an improved type of recursive neural network
and, instead of having a single neural network layer, it has four interacting layers, namely,
cell state layer, input gate layer, forget gate layer and output gate layer. This enables
it with the ability to “remember” information for a certain period, enabling learning-
term dependencies [49]. Further detailed information on LSTM structure can be found in
Section 4.2.
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3.2.3. Synthetic Data Validation

We conducted a preliminary experiment to investigate if the synthetic data is as
adequate as the real data. For real-world experiments, we have used a smartphone and the
RION AH200C IMU sensor in a chest-worn sensor setup. For both real-world and virtual
experiments, we have recorded 192 activities as 48 samples of each action, for up to 3 s,
at 5 Hz and 50 Hz, respectively for GNSS and IMU data. We also created the categorical
array that holds the labels corresponding to these actions. The LSTM network was trained
with the synthetic data and subsequently tested with the real data. The adaptive moment
estimation optimizer was adopted, with a maximum epoch of 200.

The results of these experiments are presented in Figure 5 with the confusion matrix
depicting the accuracy of the experiment including the performance of each activity. A
result of 84.9% indicates that although the model performs with acceptable accuracy, several
Sit and Get Up actions were incorrectly classified as Idle. While the initial findings indicate
that the model trained using synthetic data can accurately classify the four specified
activities when presented with real-world data, the upcoming sections will delve deeper
into the evaluation of HAR using synthetic data across a wider range of activities. Within
the context of the FEROX project, and to propose a more encompassing architecture, more
complex activities will be included, such as forestry-work-related ones. Therefore, due to
the simulator feasibility for generating data, the next sections encompass data collection
from 13 different activities and, likewise, a novel approach for HAR under uncertainty.

Figure 5. The confusion matrix of the LSTM network.

4. Fuzzy State Long-Short Term Memory (FS-LSTM)

The proposed FS-LSTM framework for HAR under uncertainty is presented in Figure 6.
The framework is comprised of five blocks, labeled A, B, C, D, and E. Block A is responsible
for collecting human-related data through multimodal sensors, hereby assessed using a
chest-worn IMU and a GNSS smartphone positioning system. Block B processes the IMU
and GNSS data, including linear acceleration, angular velocity, orientation from the IMU
sensor, as well as longitude and latitude from the GNSS, which are published at 50 Hz and
5 Hz, respectively and as previously described in Section 3. This data is then transformed
into linguistic labels for Motion and Tilt through a fuzzification process in Block C, as
further described in Section 4.1. These fuzzified Motion and Tilt features serve as inputs
for both Block D and E. In Block D, the fuzzified feature set is used as input in LSTM
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state machine learning, where multiple networks are trained for each state to be executed
during runtime, including a recovery state called Lost. This process is further detailed
in Section 4.2. In Block E, uncertainty is managed through defuzzification in a closed-
loop. The fuzzified inputs are used in the classification network, which was established
in the previous iteration, and the generated classification score is first fuzzified and then
defuzzified into a crisp value to determine whether to progress to the next state or remain
in the current one. The details of this process will be further explained in Section 4.3.
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Figure 6. The diagram of the proposed architecture.

4.1. Fuzzification of Features

This section presents the design of the feature fuzzification process for converting IMU
and GNSS data into linguistic variables that will serve as inputs in the proposed FS-LSTM
model. This stage is marked as C block in Figure 6.

17



Sensors 2023, 23, 3388

Fuzzy logic allows computer systems to mimic the human-like thinking and make
decisions under uncertain and imprecise information. For instance, the subjective and
ambitious statement “the food is good” is enough for a person to decide how much to
tip. This way of handling uncertainty is important when the reliable exact information is
not available.

The numeric data collected by the FEROX simulator, as described in Section 3, includes
linear acceleration (ax, ay, az), angular velocity (ωx, ωy, ωz), and quaternion (qx, qy, qz,
qw), as well as the x and y coordinates. The process of fuzzification involves converting
these crisp numerical data from sensors (either synthetic or real) into linguistic variables
for use in the proposed FS-LSTM model. In particular, we have selected Motion and Tilt
variables for fuzzification. We obtained velocity information as crisp data inputs for Motion
and y-axis Euler angle (or pitch) for Tilt. To calculate the velocity, we benefit from the
synchronized GNSS and IMU data (previously addressed in Section 3) to first generate a
smooth 2D Cartesian position, x and y. The initial velocity is calculated as the derivative of
the position:

Vx0(t) =
x(t)− x(t − 1)

δt
,

Vy0(t) =
y(t)− y(t − 1)

δt

(6)

At each time step, we then calculate the velocity along the x and y axis as:

Vx(t) = Vx0(t) + ax(t) ∗ t,

Vy(t) = Vy0(t) + ay(t) ∗ t
(7)

where t is the elapsed time and ax and ay are the linear acceleration measurements along
x and y axis, respectively, obtained after applying a rotation to the linear acceleration
measurements provided by the IMU, so as to align the body frame with the world frame.
Finally, V is calculated as the magnitude of the velocity vector:

V(t) =
√

Vx(t)2 + Vy(t)2 (8)

To quantify Tilt, the y-axis Euler angle θ (pitch), which represents the tilt of the chest
forward or backward was calculated. The extracted quaternion values were converted to
Euler angles in degrees following the principle presented in Equation (9):

φ = atan2(2(qwqx + qyqz), 1 − 2(q2
x + q2

y))

θ = arcsin(2(qwqy − qzqx))

ψ = atan2(2(qwqz + qxqy), 1 − 2(q2
y + q2

z))

(9)

The calculated V and θ are inputs utilized in the fuzzification process. In particular,
V is mapped into five linguistic labels for Motion, while pitch (θ) is translated into five
linguistic labels for Tilt. The numerical data for both Motion and Tilt were mapped into
five linguistic variables by Gaussian membership function using MatLab’s Fuzzy Logic
Toolbox as follows:

SU(t) =
{

Motion → {S, L, M, H, E
}

Tilt → {MLB, LB, ST, LF, ELF
} (10)

where S, L, M, H and E represent the linguistic variables Stopped, Low, Medium, High,
and Extreme for Motion, respectively, while MLB, LB, ST, LF and ELF represent Medium
Lean Back, Lean Back, Straight, Lean Front, and Extremely Lean Front, for Tilt, respectively.
SU(t) represents the feature vector which then is used as input for the FS-LSTM method.

In Figure 7, the five linguistic variables for Motion and Tilt are displayed, alongside
an activity sequence in which the human is first idle, then walks, then becomes idle again,
and finally opens the bag and collects some berries.
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Inputs

Fuzzified Features

Ground Truth 

Figure 7. Motion and Tilt plotting along an activity sequence.

The activity sequence in this short period is represented as: Idle, Walk, Idle, Open Bag,
and Collect, which are shown in the figure in the ground truth section. Additionally, the
figure shows the precise numerical values of the Velocity (V) and pitch (θ) as the inputs
for Motion and Tilt, respectively. It can be seen from the figure that the chosen linguistic
variables effectively depict the activities. For instance, one can easily recognize when the
human is walking by noticing that the Motion value falls between Low and Medium. The
Open Bag and Collect activities also showcase distinct characteristics, such as leaning back
while opening the bag and leaning forward while collecting berries. Thus, these activities
and their fuzzified representations are clearly illustrated and may be used as features to the
HAR architecture.

19



Sensors 2023, 23, 3388

4.2. State Machine Learning

This section presents the modelling of human activity by exploring the transitions
between different activity states. These states may involve specific activity sequences or
individual activities. As an example, the use case discussed in Section 3 is depicted through
a state diagram in Block E of Figure 6. This particular use case models the sequential
activities of a human picker, including locomotive movements (such as Idle, Walk, Run),
berry collection and loading, and vehicle driving. The flow is represented by 14 states
(with the recovery state Lost) and includes states that occur in a sequential manner, such as
sitting and driving a car, and transitions that occur between these states, such as Sit Down
to Sit, Sit to Stand Up or Enter Car to Drive. There are also states that lead to multiple
possibilities, such as the Idle state, which can transition to activities such as Open Bag,
Walk, Run, Enter Car, or Sit Down.

The state transitions in a given process are modelled individually through the use of
LSTM networks. As previously mentioned, LSTM is capable of extracting hidden patterns
from long-term sequential data by handling gradient exploding or vanishing gradients
problems [56]. In more detail, the internal structure of an LSTM network consists of
multiple gates, including input gate it, forget gate ft, and output gate ot, that control the
flow of information towards the final output. The input gate updates the information,
while the forget gate processes information from both the input gate it and the previous
state Ct−1, selectively removing information from the current state Ct when necessary. The
output gate forwards the final output to the next LSTM unit and retains the output value
for subsequent sequence predictions. The recurrent unit, on the other hand, estimates the
state of the previous cell Ct−1 and the current input xt using a tanh activation function. The
value of ht can then be calculated as the scalar product of the output gate ot and the tanh of
the Ct. The ultimate output is obtained by passing ht to a softmax classifier [57].

Each LSTM network within the proposed HAR architecture is designed to receive
sequential data as input (fuzzy features addressed in the previous section) and generate
output predictions for only the feasible transition states. The objective of this approach is
to ensure that there are no impossible transitions between states. For example, in a use case
where the activities include Sit Down and Stand Up, or Collect and Load, it is possible that
similar characteristics may result in an incorrect transition from one activity to the other.
However, these transitions should not occur according to the expert-designed state flow,
hereby represented as an FSM. The aim of this modelling approach is to guarantee that the
predicted next state will be one of the possible states, providing important information for
decision-making in an HRC system. Moreover, the number of possible classes significantly
affects the size of the model, and a larger number of possible classes leads to a more complex
model structure. Such a complex model demands additional computational resources,
which would result in a longer runtime execution [58]. For instance, a Sit Down LSTM
network with a reduced number of possible classes, such as Sit Down (remains in the same
state) and Sit (moves to only the next possible state), is more efficient when compared to
an LSTM network trained with all 13 possible activities, particularly when many of the
outputs are unlikely to be the actual state.

The implementation of the LSTM layer in MatLab was carried out using the Deep
Learning Toolbox. For the purpose of predicting the subsequent activity sequence, a
sequence-to-sequence classification approach was employed. Each LSTM network corre-
sponding to a specific state was trained using the same sequential input data. The input
vector SU(t) comprises ten features, including the fuzzified values for Motion and Tilt, as
described in Section 4.1 and depicted in Equation (11):

SU(t) =
[

S L M H E MLB LB ST LF ELF
]

(11)
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where,
S = Stopped MLB = Medium Lean Back
L = Low LB = Lean Back
M = Medium ST = Straight
H = High LF = Lean Front
E = Extreme ELF = Extreme Lean Front

(12)

It is noteworthy, however, that each state-based LSTM network output sets differ,
with each output set corresponding to a specific state, including the potential transitions,
and including the possibility of remaining in the same state, as it is shown in Figure 8.
Any non-feasible state names are labelled as Lost. The Lost network, which uses the same
sequential input data and an output dataset of all states, serves as a recovery mechanism,
being only activated when such class is output by the previous LSTM network.

Idle Walk Sit 
Down Sit Stand 

UpIdle Idle Open
Bag Collect

Input Data 

Sequential Labels

Idle Walk Sit 
Down Lost LostIdle Idle Open

Bag Lost

XTrain

YTrain

Idle State Network
Training Dataset

Lost Lost Sit 
Down Sit LostLost Lost Lost Lost

XTrain

YTrain

Sit Down State Network
Training Dataset

Lost Lost Lost Lost LostLost Lost Open
Bag Collect

XTrain

YTrain

Open Bag State Network
Training Dataset

Training DataSet 
For Each State Network

Figure 8. LSTM training datasets.
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The data generated in this study have been made publicly available (https://gitlab.
ingeniarius.pt/ingeniarius_public/ferox/hrc-ferox.git (accessed on 22 February 2023)).
The dataset includes the following features, as shown in Equation (13): ts is the timestamp,
s(t) is the feature vector containing the raw sensor data shown in Equation (5), sU(t) is the
feature vector containing the fuzzified sensor data shown in Equation (11), and G is the
ground truth of activities presented as a string array where each element represents the
activity label at a specific timestamp.[

ts s(t) SU(t) G
]

(13)

G = [“Idle”, “Idle”, “Sit”, . . . , “Close Bag”] (14)

4.3. Coping with the Uncertainty through Defuzzification

The trained network models described in the preceding section are employed in a
closed-loop architecture to predict the subsequent state, as depicted in Block E of Figure 6.
The fuzzified outputs generated by Block C serve as inputs to the trained network model
associated with the current state, which is referred to as the Lost network in the first iteration
and is updated in subsequent iterations in accordance with the flow of the architecture.

The proposed architecture makes use of network model classification scores as poste-
rior probabilities based on the fuzzified input set. These probabilities are calculated based
on Bayes’ Theorem:

P̂(B | A) =
P(A | B)P(B)

∑R
j=1 P(A | j)P(j)

(15)

where P̂(B | A) is the posterior probability that an observation A of given class B, P(A | B)
is the conditional probability of A given class B, P(B) is the prior probability for class B
and R is the number of classes in the response variable [59]. The classification scores are
represented as an z-by-R matrix, where z is the number of observations in the data and R
is the number of unique classes. The matrix indicates the probability of each observation
belonging to a specific class, with the predicted class being determined by the class with
the highest score.

FS-LSTM falls on the assumption that state network models may struggle to make
confident predictions if the highest score is low or if the scores are similar across classes,
leading to a certain level of uncertainty. Yet, it uses such level of uncertainty to still
generate a prediction based on the class with the highest score. It is therefore important to
consider the level of confidence in the prediction and interpret the scores before making
any decisions based on the model’s output. The uncertainty in the scores is evaluated using
the fuzzy logic system.

Hence, similar as carried out for Motion and Tilt fuzzy variables, classification scores
are used for the fuzzification to produce fuzzy linguistic labels for Uncertainty as Low,
Medium, and High. The triangular fuzzifier is used to determine the degree of membership
for each value. Unlike Motion and Tilt fuzzy variables, however, inference is followed
by adopting a set of rules designed for each state, which are then later utilized to assess
the uncertainty in the classification scores generated by the current state network. An
example of fuzzy rules is presented for the Close Bag state. The uncertainty is assessed in
the classification scores generated for the possible transition outputs of the Idle, Close Bag,
and Lost recovery state by implementing these rules:

1. IF Idle is Low and Close Bag is Low and Lost is Low THEN Uncertainty is High
2. IF Idle is Medium and Close Bag is Medium and Lost is Medium THEN Uncertainty

is High
3. IF Idle is High and Close Bag is High and Lost is High THEN Uncertainty is High
4. IF Idle is High and Close Bag is Low and Lost is Low THEN Uncertainty is Low
5. IF Idle is Low and Close Bag is High and Lost is Low THEN Uncertainty is Low
6. IF Idle is Low and Close Bag is Low and Lost is High THEN Uncertainty is Low
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7. IF Idle is High and Close Bag is not Low and Lost is not Low THEN Uncertainty
is High

8. IF Idle is not Low and Close Bag is High and Lost is not Low THEN Uncertainty
is High

9. IF Idle is not Low and Close Bag is not Low and Lost is High THEN Uncertainty
is High

In the fuzzy inference, the rules are applied to the fuzzified inputs to calculate the
degree of fulfilment for each rule through aggregation. The following step is defuzzification,
which transforms the fuzzy outputs into crisp outputs by using the fuzzy sets and their
corresponding membership degrees. The result of the aggregation is converted into a
crisp output value through the centroid method. The output of this system expresses the
uncertainty as a crisp value between 0 and 1. This crisp value coming from the fuzzy
logic system is then used to assess the confidence level of each network model before
determining the next state. This is performed by comparing it to an experimentally-defined
threshold. If the crisp value of uncertainty generated through defuzzification is lower than
the threshold, this implies the model is confident in the prediction and the classification
is carried out based on the highest score, which is identified as the next state. This state
could be a different state or remain unchanged. The network model that corresponds to
the predicted state is then selected for use in the next iteration. If the level of uncertainty
exceeds the established threshold, the system remains in the same state. In this case, the
next iteration performs the classification utilizing the current network model. This iterative
process continues in accordance with the closed-loop architecture until the model reaches a
sufficient level of confidence in its prediction.

Figure 9 shows a small section of the timeline of activity recognition handling the
uncertainty. Between 62 and 65 samples, the model experiences low confidence in its
predictions as the uncertainty is above the threshold and remains in the same state for
subsequent selections. At sample 184, the model erroneously classifies the data as Walk
while the ground truth remains Run. While it may seem like a premature classification, it
could be a coincidence since transitions from Run to Walk are possible. However, at sample
185, it is observed that the Walk state network model lacks certainty in the classification,
causing it to remain in the Walk state. The uncertainty level drops below the threshold once
the ground truth and the predicted classes align at sample 186.

Figure 9. Accessing uncertainty in the activity recognition.
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5. Results and Discussion

5.1. Benchmark of Activity Recognition Performance

In this section, we present the results of our experimental study designed to evaluate
the effectiveness of the proposed approach. We used a training dataset consisting of
13 different activities (Idle, Walk, Run, Sit Down, Sit, Stand Up, Exit Car, Drive, Enter
Car, Open Bag, Collect, Load, Close Bag) as depicted in Figure 6 block E. The training
dataset was collected over a period of 17.85 min and includes 539 activities, with a total of
53,553 samples of virtual IMU data and 5355 samples of virtual GNSS data. The testing
dataset consists of 168 activities and comprises 21,188 samples of virtual IMU data and
2118 samples of virtual GNSS data, spanning a total duration of 7.06 min. In this section,
the number of hidden layers was set to 64 for all LSTM networks considered.

We have benchmarked three different methodologies:
(a) Traditional LSTM: a LSTM model that was trained using raw sensor input, similar

to what has been presented in Section 3, though with all 13 states instead of four.
(b) Fuzzy LSTM: a LSTM model that was trained with the fuzzified features described

in Section 4.1 and outputs all 13 states.
(c) FS-LSTM: the multiple LSTM models that were trained for each state, using fuzzi-

fied features, and each model only outputs the feasible states, as per presented in Figure 6
and described in the previous Section 4.

For the Traditional LSTM model, the input feature vector s(t) is the one previously
presented in Equation (5), consisting of linear acceleration values (ax, ay, az), angular
velocity values (ωx, ωy, ωz), quaternion values (qx, qy, qz, qw), and the x and y Cartesian
coordinates. The input vector for both the Fuzzy LSTM and FS-LSTM models, SU(t),
includes the five linguistic labels previously described in Section 4.1 for each of the extracted
Motion and Tilt variables (Equation (11)).

The results of the three methodologies are presented in Figure 10 as confusion matrices,
which depict the outcomes of (i) Traditional LSTM; (ii) Fuzzy-LSTM; and (iii) FS-LSTM. The
rows represent the target classes, while the columns represent the output classes. Superior
classification accuracy results are identified in bold. The results indicate that utilizing solely
raw sensor data leads to a significantly low accuracy of 23.2%. Conversely, by utilizing
fuzzified inputs, the Fuzzy-LSTM approach markedly enhances the accuracy to 93.2%.
This demonstrates how a fuzzy logic system handles data ambiguity and achieves correct
classification, where the Traditional LSTM method frequently falls short. The proposed
FS-LSTM methodology achieved an accuracy of 90.9%. This result was obtained by treating
samples classified as Lost as unchanged. This approach ensures that the system waits
until it recovers from the Lost state, which runs the same model as the Fuzzy-LSTM
approach (with 13 state outputs), before transmitting the predicted output to a higher-level
decision-making system to ensure the correctness of the transmitted output.

Although the overall accuracy does not show a significant difference from the Fuzzy-
LSTM, being even slightly inferior in terms of accuracy, the FS-LSTM prevents transitions
that should not occur from happening. This might result in slightly superior performance
on Sit Down-Sit-Stand Up transitional states when compared to Fuzzy-LSTM. This not
only avoids passing incorrect information to the higher-level management system but also
improves the probability of predicting the next state. Figure 11 illustrates this prevention
of wrong transitions more clearly for one of the many sequences generated by the afore-
mentioned models. In the figure, a sequence of activities is given with their ground truth in
the blue dotted line and predicted outputs with the straight black line obtained through
Traditional LSTM (top), Fuzzy-LSTM (middle), and FS-LSTM (bottom). Once again, it is
shown that Traditional LSTM is unable to classify activities correctly, alternating between
Walk and Idle in this sequence. For the Fuzzy-LSTM, around sample 150, the predicted
class is Enter Car, while the ground truth class is Idle. In contrast, in the same sample
in FS-LSTM, the classification of the current network model (Idle state network) is either
correct, or the uncertainty is high, and the system remains unchanged in Idle. This prevents
the system from making infeasible transitions to Enter Car, which would break the sequence
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of predicted activities. Fuzzy-LSTM, however, makes infeasible transitions multiple times,
such as in sample 665, where it transitions from Idle to Close Bag, which should never
happen. FS-LSTM handles such infeasible transitions through uncertainty defuzzification
and the state machine approach generally well. As it is described earlier, FS-LSTM handles
misclassifications via recovery of the Lost state. In the confusion matrix Figure 10, the Lost
classified outputs are not shown as they were treated as unchanged states. However, in
practice, when the network is unable to classify a sample in any of the possible transitions,
the decision-making moves to the Lost state. For instance, in the sample around 956 marked
with a red circle, the system is in the Lost state. This occurred because the Idle network
predicted Enter Car instead of Sit Down, which was feasible but wrong. The Enter Car
state network model was unable to classify the samples in any feasible transitions, and the
system went to the Lost state before recovering to the Sit Down state.

In comparison, while Fuzzy-LSTM mostly performs poorly in the presented time win-
dow, it still achieves overall accurate classification, as demonstrated by the corresponding
confusion matrix. However, it is important to note that Fuzzy-LSTM should be regarded as
a sequence of activity flow prediction rather than individual sample prediction, underscor-
ing the superiority of FS-LSTM. Furthermore, FS-LSTM is expected to achieve the same
level of accuracy, of even higher, under constrained resources, since the multiple LSTM
networks it encompasses are expected to not require the same number of hidden layers
given the reduced number of outputs foreseen by each. This is further explored in the
next section.

Figure 10. The confusion matrix of Traditional LSTM, Fuzzy-LSTM and FS-LSTM. Superior classifica-
tion accuracy results are identified in bold.
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Figure 11. The benchmark of three predicted output sequences via Traditional LSTM, Fuzzy-LSTM
and FS-LSTM. The Lost state is marked with the red circle.

5.2. Benchmark of Efficiency

In this section, we evaluate the classification performance of the proposed FS-LSTM
compared to Fuzzy-LSTM from the perspective of GPU resource efficiency. In the previous
section, both models were trained with 64 hidden layers, and while Fuzzy-LSTM classified
13 states, FS-LSTM only used this complex network in the Lost state. To better understand
the impact of this difference on computer resources, we monitored GPU utilization and
power consumption during the classification runtime process for a period of 25 minutes.
Our experiments were conducted using an NVIDIA GeForce GTX 1050. The benchmark
chart for both models is presented in Figures 12 and 13.

Figure 12. The benchmark of GPU utilization during testing. Fuzzy-LSTM and FS-LSTM networks
trained with 32 layers (denoted with *), and a hybrid version of FS-LSTM (denoted with **).
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Figure 13. The benchmark of power consumption during testing. Fuzzy-LSTM and FS-LSTM
networks trained with 32 layers (denoted with *), and a hybrid version of FS-LSTM (denoted with **).

As shown in the last two rows of columns from Figure 12, despite both methods
performing with high accuracy, Fuzzy-LSTM (represented by the dark blue bars) relies
more heavily on GPU resources than the FS-LSTM approach (represented by the light
blue bars). This is a critical consideration in any long-term outdoor application where
computer resources are constrained. While in the last two rows of columns from Figure 13
the power consumption did not show any significant difference between these methods
over a short-term test, high GPU load is a critical consideration in any long-term outdoor
application where computer resources are constrained. A high GPU load indicates that
the GPU is being heavily utilized to complete the classification task, which can cause the
GPU to generate more heat and consume more power, ultimately affecting the overall
performance and energy efficiency of the system over an extended period.

A question may arise as to whether reducing the number of hidden layers in both
models can reduce its complexity, then leading to better efficiency, while still maintaining
the desired accuracy. To answer this, we extended the benchmark study to five different
combinations: both Fuzzy-LSTM and FS-LSTM networks trained with 32 layers (denoted
with *), and a hybrid version of FS-LSTM (denoted with **) trained with 32 layers, except
for the Lost network, which was trained with 64 layers. As shown in Figures 12 and 13,
reducing the number of layers significantly decreases GPU utilization and power con-
sumption. Table 1 further compares the mean and standard deviations of GPU utilization
and power consumption, demonstrating that a smaller model size with fewer output and
hidden layers leads to significantly higher efficiency. However, reducing the number of
hidden layers sacrifices accuracy, as shown in the confusion matrix in Figure 14.
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Figure 14. The confusion matrix of Fuzzy-LSTM* (i), FS-LSTM* (ii) and FS-LSTM** (iii). Superior
classification accuracy results are identified in bold.

These conclusions are not new, though what can be seen is that Fuzzy-LSTM* (i) and
FS-LSTM* (ii), show a decrease in accuracy of 74.7% and 76.0%, with FS-LSTM slightly
dethroning Fuzzy-LSTM under a lower number of resources (32 hidden layers instead of
64 hidden layers), while still requiring less GPU utilization. Furthermore, while the FS-
LSTM 64 hidden layer Lost network (with 32 hidden layers for all other states), FS-LSTM**
(iii), presents a similar GPU utilization and power consumption than the Fuzzy-LSTM
with a 32 hidden layer (Fuzzy-LSTM*), its accuracy rises to 81.7% (versus the 74.7% of
Fuzzy-LSTM*). While this is not an outstanding result, it can be a useful compromise
between model size, performance, and energy efficiency in certain applications. One
such application is covered by the FEROX Project, where the system is expected to run on
smaller portable devices, such as smartphones and wearables. In such scenarios, an efficient
utilization of computing resources becomes crucial, and the FS-LSTM model may offer a
viable solution without significantly reducing the human activity recognition accuracy.

Table 1. The mean ± standard deviation of GPU utilization and power consumption. Fuzzy-LSTM
and FS-LSTM networks trained with 32 layers (denoted with *), and a hybrid version of FS-LSTM
(denoted with **).

Mean ± SD Fuzzy-LSTM FS-LSTM Fuzzy-LSTM * FS-LSTM * FS-LSTM **

GPU
Utilization 44.55 ± 9.85 35.21 ± 9.57 28.05 ± 9.56 25.58 ± 9.46 27.54 ± 10.16

Power Con-
sumption 29.25 ± 2.04 28.14 ± 1.91 24.66 ± 0.89 24.25 ± 0.89 24.70 ± 1.34
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5.3. Discussion

As described in Section 1.2, this paper presented three key incremental developments,
which have been successfully achieved and summarized as it follows:

i Enhance Long Short-Term Memory (LSTM) networks by incorporating fuzzy logic
to model human uncertainty (Fuzzy-LSTM): the objective of this research was to
enhance the accuracy of LSTM networks by incorporating fuzzy logic to model human
uncertainty. Even though the preliminary results, as shown in Figure 5, depicted an
accuracy of 84.9% for recognizing four activities, such accuracy dropped to 23.3%
when trying to recognize 13 different activities. By utilizing fuzzified Motion and Tilt
features, the Fuzzy-LSTM model was capable to effectively handle uncertain data.
The initial results of the study showed that Fuzzy-LSTM improved the accuracy of
activity recognition by a significant margin, achieving 93.2% accuracy compared to
the traditional LSTM model using raw sensor data.

ii Extend the Fuzzy-LSTM approach by incorporating finite-state machines (FSM) to
model activity sequences, resulting in the Fuzzy State LSTM (FS-LSTM) model: the
primary objective of this research was to improve the predictability of human activity
sequences by identifying possible transitions between states. While Fuzzy-LSTM
achieved 93.2% accuracy under unconstrained GPU resources, approximately 3%
more than FS-LSTM, it often resulted in infeasible transitions. However, when using
constrained resources such as embedded systems or limited GPU resources, the
FS-LSTM showed superior performance compared to Fuzzy-LSTM. As shown in
Figure 14, FS-LSTM has a trade-off between accuracy and computational resources,
but it offers significant benefits for long-term real-time outdoor applications.

iii Develop a defuzzification-based method to estimate human uncertainty by aggregat-
ing predicted scores of the LSTM model: this proposed approach aimed to estimate the
uncertainty associated with the LSTM classifier’s predictions through defuzzification.
By waiting until the prediction became certain, the system could achieve an accuracy
of 90.0%. This development is crucial to prevent the system from making wrong
transitions between states before the model becomes certain, thereby improving the
overall performance of the system. Although this study did not show the direct impact
of this issue, it could significantly affect the high-level decision-making process for
robots, where the system needs to consider the current human state. Any infeasible
transitions could compromise the performance of the system, causing trust and safety
issues.

This study presents a few drawbacks and limitations that should be taken into con-
sideration. Firstly, the results were obtained using only synthetic data. Although the
preliminary results (Figure 5) show that models trained with such data are transferable
to real-world data, this may still not accurately reflect real-world scenarios or domains
without further modification and customization. Therefore, caution should be exercised
when applying the proposed approach to other contexts. Furthermore, while synthetic data
provides advantages such as low-cost data generation and easy labelling, it may not fully
capture the complexity and variability of real-world data. Thus, a further study is needed
to ensure the generation of data with the same characteristics as real data when using a
different type of sensor. Additionally, in a real-world setup, the sensor placement and
other aspects of the experimental setup may need to be adjusted to account for different
environmental conditions and potential interferences.

6. Conclusions and Future Work

This study presents an architecture for human activity recognition and modelling
intended for use in human-robot collaboration in field applications. The approach em-
ploys multiple LSTM networks, each trained to recognize feasible states within an FSM
architecture. The FSM architecture is further enhanced with fuzzy logic to determine the
uncertainty level of the classification made by the LSTM, thereby preventing unfeasible
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activity transitions in high-level decision-making systems. The proposed approach is com-
pared to a traditional LSTM model trained on raw sensory data and a Fuzzy-LSTM model
that used fuzzified sensory data as inputs to train a single LSTM network.

The proposed approach achieves high accuracy, with a rate of 90.9%, while efficiently
utilizing computer resources. The system’s performance is evaluated using synthetic
data generated from a berry collection use case developed in a simulator. Future work
will involve assessing the system’s performance using real-world data within the FEROX
project, as well as optimizing the developed work to operate on a small platform such as
a smartphone.

As a continuation of this work, the next step will involve developing a high-level
decision-making system that utilizes the human state predicted by the proposed FS-LSTM,
as well as its associated uncertainty, to make informed decisions for each agent in a multi-
robot and multi-human system. The decision-making system will be developed based on
explicit and implicit relationships between agents, building upon the presented study’s
understanding of human activity.
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Abstract: Person re-identification, or simply re-id, is the task of identifying again a person who has
been seen in the past by a perception system. Multiple robotic applications, such as tracking or
navigate-and-seek, use re-identification systems to perform their tasks. To solve the re-id problem,
a common practice consists in using a gallery with relevant information about the people already
observed. The construction of this gallery is a costly process, typically performed offline and only
once because of the problems associated with labeling and storing new data as they arrive in the
system. The resulting galleries from this process are static and do not acquire new knowledge from
the scene, which is a limitation of the current re-id systems to work for open-world applications.
Different from previous work, we overcome this limitation by presenting an unsupervised approach
to automatically identify new people and incrementally build a gallery for open-world re-id that
adapts prior knowledge with new information on a continuous basis. Our approach performs a
comparison between the current person models and new unlabeled data to dynamically expand the
gallery with new identities. We process the incoming information to maintain a small representative
model of each person by exploiting concepts of information theory. The uncertainty and diversity
of the new samples are analyzed to define which ones should be incorporated into the gallery.
Experimental evaluation in challenging benchmarks includes an ablation study of the proposed
framework, the assessment of different data selection algorithms that demonstrate the benefits of
our approach, and a comparative analysis of the obtained results with other unsupervised and
semi-supervised re-id methods.

Keywords: person recognition; open-world recognition; incremental clustering

1. Introduction

Person re-identification, or simply re-id, addresses the problem of matching people
across non-overlapping views in a multi-camera system [1,2]. Solutions to this prob-
lem benefit many robotic applications where people are involved, such as tracking [3,4],
navigation [5] or searching [6,7]. An extensive number of studies have focused on obtaining
the best feature representation in supervised close-world scenarios (e.g., [8–11]) where
the problem is narrowed to seek a query person from an existing pool of labeled people
images, generally called gallery. While they obtain high performance in commonly used
benchmarks, from the viewpoint of practical re-id systems, people identity annotation to
obtain sufficient ground truth data could be extremely inefficient [12]. Hence, there is a
tendency in the research community to address other alternatives and still open problems
in re-identification, such as unsupervised [13–15], domain adaptation [16–18] or open-set
in open-world [19–21]. The vast majority of these works use a static and preset gallery in
their development that restrains the dynamic nature of the open-world, where raw data
from camera systems collect new people, detection errors, or junk data. In order to solve
problems related to open-world recognition, the system needs to deal with unknown classes
but also be able to incrementally self-adapt by acquiring new knowledge [22,23]. Therefore,
an open-world re-identification system should automatically evolve its gallery, be able to
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identify new identities and update known people’s data. To the best of our knowledge,
existing approaches in person re-identification have not yet considered this fundamental
problem of building a self-adaptive gallery. Thus, the lack of methods that address this
problem motivates our research to propose a re-identification framework that focuses on
the applicability of re-id approaches in open-world settings without any human assistance.

This work presents a novel framework for person re-identification focusing on a
self-adaptive gallery that evolves over time in an unsupervised fashion. The presented
framework is able to dynamically expand to identify new individuals and build their
appearance models with representative information. Figure 1 gives an overview of the
differences between a labeled and static gallery traditionally used and our proposed
adaptive gallery. Unlike the static gallery, we start with an empty gallery and update its
structure as new samples arrive (unlabeled person images) to acquire new knowledge. The
samples that provide the most representative appearance description of each person are
selected to be included in the gallery. This selection is fully unsupervised and assembled
using concepts of active learning techniques. Specifically, we analyze the uncertainty and
diversity of each sample to evaluate its informativeness, keeping only those that present a
good balance between low uncertainty and high diversity (less likely to be failures but not
redundant with the rest). The main contributions of this work are: (1) A novel approach
to build a self-adaptive gallery for person re-identification in open-world scenarios. The
appearance model of each person is kept small and representative by selecting those
samples that are most representative using information theory concepts. (2) A thorough
evaluation of the posed problem. We include a metric based on the standard precision and
recall to evaluate the quality of the gallery structure. This metric provides an intuition of
the final quality of the gallery structure when the problem is complex and identifying the
total number of classes is highly challenging.

Figure 1. Simplified comparison between a large static gallery, traditionally used, and our small
self-adaptive gallery. Both have a set of images representing each identity (ID0, ID1, . . . ), i.e., each
person. The traditional gallery is the same for every person query that arrives at different times (ti,
t f ). However, because the adaptive gallery is being built and updated as new data arrives, we can
appreciate a more comprehensive gallery for later times (ti < tn < t f ).

The experiments section provides a detailed analysis of the main parameters defined
in the method, along with a comparison of different data selection algorithms commonly
used in incremental settings. A comparison with other unsupervised and semi-supervised
re-id methods is also discussed.

The rest of the paper is organized as follows. Section 2 details the related
work. Section 3 describes the problem addressed, along with the main stages of the
proposed framework. Section 4 presents a complete evaluation of the presented method
on two challenging benchmarks. The first subsection analyzes the influence of the key
parameter defined in the algorithm. Then, a comparison of different data selection methods
demonstrates the benefits of our approach, and a discussion compares the proposed method
with traditional approaches to re-identification. Finally, Section 5 concludes the work.
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2. Related Work

The problem of person re-identification has been widely studied through time, as
shown in [24]. Early works defined the problem as tracking [25], then moved to image-
based classification [26] and video-based classification [27]. With the success of deep learn-
ing, works have shifted from hand-crafted descriptors [28] to deep learning methods [29].
The next step in person re-identification research was the shift from close-world (complete
known classes and correctly annotated data) to open-world (multiple modalities, limited
and noisy annotations, an undefined number of people, etc.) and has raised interesting
new research challenges [22] relating the problem to other fields.

2.1. Unsupervised and Semi-Supervised Re-Id Methods

Several works attempt to tackle the re-id problem by building the re-id models in an
unsupervised or semi-supervised manner. For example, Panda et al. [30] present a method
to add a new camera to a multi-camera re-id system using unsupervised transfer learning
from the knowledge obtained on the other cameras. Unsupervised algorithms typically
focus on modeling the spatiotemporal information to match the people images between
them [14,31], generate new data from unlabeled samples [32,33], or reduce the error in
hard pseudo-labels using softer adaptable pseudo-labels [15]. Semi-supervised methods
leverage the available annotated information by gradually refining the descriptors with
the unlabeled data most similar to the labeled one [34] or by generating virtual samples
based on the annotated data [35]. Different from these, we propose a method that focuses
on creating a gallery that incrementally adds new unsupervised data, and we do not retrain
the feature descriptors.

2.2. Incremental Person Re-Id

Incremental person re-identification has been approached from two main perspectives.
First, the incremental adaptation of the learned model as new data arrives at the system [36].
This perspective trains the model in the same domain as the queries that will be analyzed
later and uses a human in the loop to label the most representative data for the model
adaptation through active learning techniques. Second, instead of adapting the feature
representation, the goal is to perform a re-ranking in the gallery as new queries are matched
with the labeled images [37]. Both perspectives use a static large gallery that ensures a
match for the query person.

2.3. Gallery Construction

The construction of the gallery is based on the principle that instances of the same class
are close in the feature space. This problem is often solved using clustering algorithms [31],
which have been studied thoroughly in the literature [38,39] and applied in many fields.
Close to our approach, DeCann et al. [40] present a work that updates the reference database
(gallery) if the new data is not similar to any user by adding new users. However, they
focus on different multi-modal information (face and finger) and an unlimited amount of
data stored. To deal with the gallery construction problem in incremental scenarios, the
available system resources should be taken into account since storing all the information
received in a limitless fashion is not feasible. Therefore, the imposition of a bounded
memory is commonly applied in many of these approaches [41,42]. Some works address
the dynamical expansion of the classes aided by the labeling of the novel samples [43,44],
while others also consider receiving new instances of already known classes, facing the
challenges related to the update of existing class models [45,46]. They perform the update
of each class model using a scoring system and controlling the size limit of each class by
merging the most similar elements. This scenario is the most similar to our approach, but
different from these existing works, our approach updates the model by analyzing not
only the diversity of the samples but also the global uncertainty of the gallery. The result
sought by combining both properties, obtaining a more varied model, is similar to that
of prior work [47], which selects data with different levels of uncertainty from a set of
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labeled images. Different from all these methods, our approach deals with incremental and
unlabeled information in an open-world scenario.

3. Method

This section describes in detail the addressed problem, the method overview, and the
main stages of the proposed system.

3.1. Problem Description

We define the gallery as a set of classes, C = {C1, . . . , CN}, where each class, Ci ∈ C, rep-
resents one person. Each class is represented by a set of at most m features Ci = { f 1

i , . . . , f m
i }

with f j
i the jth feature of the class, respectively. The features are extracted from sample

images, named samples for simplicity, and comprise an appearance descriptor, obtained
from a generic re-id neural network, xj

i , and the skeleton joints visible in the sample, sj
i ,

f j
i = (xj

i , sj
i). Specifically in this work, we select the re-identification Osnet model [9] to

extract the appearance descriptors, and the OpenPose network [48] to obtain the skele-
ton joints.

The problem is to devise a method able to incrementally create the gallery from an
empty initialization as new samples arrive in the system, considering an unknown (possibly
unlimited) number of classes, N.

3.2. Method Overview

The overall idea of the proposed method is represented in Figure 2. First, whenever a
new sample is acquired, the associated feature, fq, is obtained. Then, the method performs
a classification by computing the class probability distribution of the new sample through
a similarity evaluation. Based on the confidence of the classification, the system decides
whether to conduct a dynamic expansion or not. Samples with high confidence enter
the gallery, while samples with low confidence are sent to the unknown data manager
for further analysis. The set of unknown data is periodically clustered to generate new
potential classes that are compared with the existing ones to identify and initialize new
classes. Finally, since there is a limit in the memory budget of m features per class, the
gallery optimization handles the efficient use of memory resources by deciding the relevant
data to keep.

Figure 2. Self-adaptive gallery construction method overview. The person bounding box undergoes
a pre-processing where the sample features are obtained with existing deep neural network encoders.
Then, the proposed method analyzes the features obtained to decide which ones are used to adapt
and evolve the gallery with the new information.
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3.3. Classification Process
3.3.1. Initialization Stage

In the initial phase of the gallery construction, the low number of classes initialized
does not allow to work properly with probability distributions in the general regime.
Therefore, the proposed system runs a short initialization stage. In order to perform this
initialization, following the incremental setup, a set of candidate-classes, B = {B1, . . . ,Bk},
is defined, where the first candidate-class is created with the arrival of the first sample
B1 = { f 1

1 }. Then, the similarity of incoming samples is evaluated by computing the cosine
similarity between xq and those appearance descriptors already included in B. If the
maximum cosine similarity is greater than a threshold, ε, the sample is included in the
corresponding candidate-class set; otherwise, a new candidate-class is initialized. As soon
as a candidate-class reaches a minimum size of l, it becomes a person-class, i.e., a real class,
belonging to the gallery C = {C1}. Once the gallery reaches a minimum number of person-
classes, Q, the proposed decision-making based on the class probabilistic distribution of
the samples is run as detailed next.

3.3.2. General Regime

Once the gallery is initialized, the system evaluates the similarity of each new sample
with the current gallery to obtain a probability distribution over the set of existing classes.
This is accomplished using the softmax operator

p(xq ∈ Ci) ≡ pi(xq) =
exp(x̄�i xq/υ)

∑N
j=1 exp(x̄�j xq/υ)

, (1)

where υ is a temperature parameter that controls the softness of probability distribution
over classes [31], xq is the normalized appearance descriptor of the new sample, and x̄i
is the weighted centroid of Ci. Working with normalized vectors, the product of both
descriptors, x̄�i xq, is equivalent to the cosine similarity between them. In this work, the
weighted centroid x̄i is defined as

x̄i =
∑m

j=1 rj
i x

j
i

∑m
j=1 rj

i

, (2)

rj
i = sj

i/sT being the ratio of joints visible in the person image bounding box with sj
i

the number of detected joints and sT the total number of joints in a complete skeleton.
Weighting the samples according to the number of joints favors the selection of samples
with more body parts shown.

In a similar fashion to existing techniques for incremental learning [23,49], a threshold
is used to control the dynamic expansion of the classes identified in the current gallery.
More concretely, a simple and intuitive condition is used to measure the classification
confidence of xq through its class probability distribution,

max
i

pi(xq)

max
j �=i

pj(xq)
≥ τ, (3)

where τ is the expansion threshold. Samples whose probability distribution does not
comply with the condition (3) are considered doubtful and go into the pool of unknown
data. Conversely, if the confidence of the classification obtained with (1) is higher or equal
than τ, the pseudo-label assigned to the sample corresponds to the class with maximum
probability, i∗ = arg max

i
pi(xq), and will be considered to be part of its representation

model, Ci∗ .
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3.4. Unknown Data Manager

Samples that do not satisfy the classification confidence criteria (3) are defined as
unknown. The role of the Unknown Data Manager is to identify new identities as well as
to recover samples that could not be previously classified with enough certainty. To avoid
the initialization of new classes with sets of poorly-explained features, i.e., images showing
only one arm or one leg, all the unknown samples first undergo a quality filter to ensure
that the appearance descriptors represent at least half of a person, formally r ≥ 0.5, r being
the ratio of joints.

The identification of new classes is tackled through the periodic clustering of the
unknown data. In open-world scenarios, the number of classes is unbounded, making
the use of clustering methods such as K-Means unfeasible. Thus, to partition the set
of unknown data, we use a DBSCAN algorithm [50] based on sample density and can
deal with noisy information. The resulting clusters that reach the minimum size of l are
compared with the current classes in the gallery to check whether they belong to an existing
class or represent a new one. Following the analysis performed in [31] on criteria methods
to decide which pair of clusters to merge, the minimum distance criterion is used to verify
if a potential new class, Cw, shares identity with any of the existing in the gallery. The
minimum distance criterion takes the shortest distance between samples from the new
cluster, Cw, and all elements of the gallery, C,

D(Cw, C) = min
Ci∈C

(
min

xj∈Ci ,x∈Cw

(
1 − x�xj

))
. (4)

Since the computational cost of this process is considerably high, we compute an
approximation limiting the number of existing classes that are compared with Cw from the
set N to a subset of k. To select which classes are analyzed, for each x ∈ Cw, we compute
the k-Nearest centroids of the gallery and then select the k most frequent classes among
all of them. Using only these classes in the first minimum of (4), the computational cost
remains constant with the size of the gallery.

Finally, if the approximated minimum distance is higher than α, the cluster Cw is
initialized in the gallery as a new class. Otherwise, the new cluster and the class with the
closest sample represent the same identity and are merged, complying with the memory
budget by means of the gallery optimization process.

3.5. Gallery Optimization

Our approach performs an intelligent decision-making process with the goal of storing
representative features of each existing class and making efficient use of memory resources.
In order to address this goal, we use two metrics that describe the relationship of each
appearance descriptor with those in the same class and with all the rest.

The first metric is the intra-class diversity of the samples. For a descriptor, x, that
belongs to class Ci, we define its diversity through the minimum cosine distance among all
the other descriptors that belong to the same class,

Di(x) = min
xj∈Ci\x

(
1 − xTxj

)
. (5)

The diversity of the whole class is then defined as the minimum diversity among all
of its features,

D(Ci) = min
xj ,xk∈Ci ,xj �=xk

(
1 − xT

j xk

)
. (6)

This metric is useful to identify redundant information, i.e., similar samples within
a class. Leveraging this information, when a new sample is classified and assigned to an
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existing class of the gallery, Ci, it is only added to the representation model of the class if its
diversity is greater than the current diversity of the class,

Di(xq) ≥ D(Ci). (7)

The second metric is the uncertainty of the sample with respect to the whole gallery,
which is measured through Shannon’s entropy by

H(x) = −
N

∑
i=1

pi(x) log(pi(x)), (8)

where N is the number of classes at the moment in the gallery, and pi(x) is the probability
described in (1). High entropy values stand for appearance descriptors that can be easily
confused with those of other classes. In contrast, a feature with low entropy indicates high
confidence in belonging to a certain class. Therefore, this metric provides an intuition of the
relative distance between the feature and the rest of the classes of the gallery (inter-class).

The dependency on all the classes in (8), together with the constant evolution of
the class centroids required for (1), makes the computation of this metric very heavy. For
efficient computation, we keep a matrix for each class, Ri, with the cosine similarity between
its samples, xj

i , and all the weighted centroids of the gallery,

Ri =

⎡⎢⎢⎢⎢⎢⎣
x̄�1 x1

i x̄�2 x1
i · · · x̄�N x1

i
x̄�1 x2

i x̄�2 x2
i · · · x̄�N x2

i
...

...
. . .

...
x̄�1 xm

i x̄�2 xm
i · · · x̄�N xm

i

⎤⎥⎥⎥⎥⎥⎦, (9)

as well as a list of the classes that have changed since the last gallery optimization of Ci
was performed. This list is used to update only the columns associated with classes with
changes, noting that the other distances have not changed and can be reused. Note that the
Ri matrix is the changing element of (1) since υ is a constant value. Once we compute the
update of the probability distribution of the samples belonging to Ci, obtaining entropy
with (8) is straightforward.

When the memory budget of a class is exceeded, because of a merge caused by the
Unknown Data Manager or the insertion of a new sample, an optimization process using
both metrics is run to decide which sample to drop. In particular, the sample to drop is

x∗ = arg max
x∈Ci

(
γ

H(x)
log(1/N)

− (1 − γ)Di(x)
)

, (10)

where γ ∈ [0, 1] is a parameter to weigh the relevance of the uncertainty and the diversity
terms. The logarithm, log(1/N), normalizes the entropy to a value between zero and one,
equivalent to the diversity. The proposed optimization function seeks a balance between
how much a given feature mixes the different classes (entropy) and how distinctive it is
with respect to the rest of the features of the same class (diversity).

Figure 3 shows a simplified example with two clusters, C1 and C2, where C1 has
exceeded its size constraint m = 3, and two examples of the final appearance models
obtained with the proposed process. Note the balance between uncertainty and diversity
even though the two identities look very similar.
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Figure 3. Gallery optimization. Upper area: example simplified where C1 exceeds the memory budget
and the gallery optimization selects the feature with the maximum cost to be dropped, x4. Lower
area: visual sample of two appearance models from similar identities that are correctly separated in
the DukeMTMC-VideoReID dataset. The yellow edge corresponds to identity 86 and the orange edge
to identity 194, both ground truth identities.

4. Experiments

This section analyzes the influence of the main parameters defined in the system, the
algorithm selected to model the person’s appearance and compares the performance of the
proposed framework with other unsupervised and semi-supervised re-id approaches.

4.1. Experimental Setup

The evaluation is performed with two public benchmarks, MARS [51] and DukeMTMC-
VideoReID [34]. In both of them, we use the official test set, which is split into the query set
and the gallery set.

Two experiments are performed in this section. First, the analysis of the gallery
construction process assesses the key aspects of our approach. The second experiment,
query re-identification, runs a conventional evaluation for re-id methods in order to com-
pare the proposed framework with other unsupervised and semi-supervised approaches.
For both experiments, the settings for our approach configuration are: similarity thresh-
old in the initialization stage ε = 0.9, temperature parameter in the softness operator
υ = 0.1, the k-Nearest centroids with k = 3 used by the Unknown Data Manager, dis-
tance threshold to initialize a new cluster α = 0.1, gallery size to run the probabilistic
decision making Q = 20, the re-identification network used in cross-domain is an OsNet
model [9] trained with the MSMT17 Benchmark [52], and the OpenPose network [48] is
used to obtain the skeleton joints. The setup for both experiments is detailed next.

4.1.1. Gallery Construction

The gallery set from both datasets is used to evaluate the self-adaptive gallery construc-
tion process. As in traditional incremental settings, the tracklets are randomly shuffled,
and then, the images from each tracklet are provided one by one to simulate an incremental
input to the self-adaptive gallery.

In order to evaluate the global performance of the proposed approach, we consider
the following three metrics based on the classic precision, recall, and F1 score:

• Gallery Structure: The perfect gallery structure has one (and only one) class per
ground truth identity (GT-ID). This GT-ID is set for each class with the mode of all
the sample identities present at the class initialization. In order to evaluate the quality
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of the final gallery structure, we compute the precision (P), recall (R), and F1 score

metrics as

P =
TP

TP + FP
, R =

TP
TP + FN

and F1 =
2 · (P · R)

P + R
, (11)

where we define the false negatives (FN) as those GT-ID not associated with any class,
i.e., identities not found, the true positives (TP) as all GT-IDs associated with at least
one class, i.e., identities found, and the false positives (FP) as the additional classes
with the same GT-ID associated, i.e, two classes associated to the same GT-ID count as
one FP and one TP.

• Class Precision: This metric assesses the precision of the samples that enter the gallery
over time. The true positives (TP) are the samples whose identity matches the GT-ID
of the class they have been assigned, and the false positives (FP) are the samples that
do not.

• Sample Classification F1: This metric evaluates the pseudo-label assigned to every
sample that arrives to the system. Considering that the gallery structure often has
redundancy due to the unsupervised nature of the system, we deem a limited number
of redundant classes for each identity. In particular, for a given GT-ID, we only
consider the K classes with the highest number of samples associated with them,
discarding the rest. The true positives (TP) are the samples that match the GT-ID with
the assigned class. The false positives (FP) are the samples with mismatching GT-IDs,
and the false negatives (FN) are samples classified as unknown or assigned to the
discarded classes.

4.1.2. Query Re-Identification

In order to compare the proposed framework with other unsupervised and semi-
supervised approaches, we use the query set to evaluate the gallery obtained at the end
of the gallery construction process. Thus, the query set is matched with the limited size
gallery created in the previous experiment, which remains static during this evaluation.
The conventional evaluation for re-identification [9] is performed including the Rank-1

and Rank-5 metrics.

4.2. Gallery Construction: Parameter Evaluation

We first study the effect of the three key parameters for the gallery construction
process: (1) the weight used in Equation (10) to balance the influence of the uncertainty
and the diversity, γ, (2) the expansion threshold, τ, in Equation (3), and (3) the minimum
size required to initialize a class, l, used during the initialization stage and the clustering
process, along with the memory budget per identity, m, defined in Section 3.1. In this
evaluation, we use K = 4 for the sample classification F1. The goal of this analysis is to
choose the parameters that yield balanced galleries based on the defined metrics.

The results of the analysis are shown in Figure 4. The influence of each parameter at
the end of the process is analyzed in Figure 4a–c, where it can be seen that the trend of the
quality gallery structure F1 is inverse to the tendency of the class precision and the sample
classification F1.

Figure 4a shows the effect of weighting the uncertainty and diversity with γ, fixing
all the other parameters to τ = 2, l = 20 and m = 50. The increase in γ favors the selection
of samples with low entropy but less diverse ones in the appearance models. The balance
between uncertainty and diversity in the gallery is attained at γ = 0.6.

The expansion threshold, τ, is analyzed in Figure 4b. We keep l = 20, m = 50, and
from the former analysis, γ is set to 0.6. When this parameter increases, more samples are
sent to the Unknown Data Manager, resulting in the initialization of more classes. The
trade-off between the metrics analyzed is accomplished at τ = 2.
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Figure 4. Parameter evaluation in the gallery construction process using the MARS dataset: (a) effect
of the weight assigned to uncertainty and diversity (γ); (b) influence of the expansion threshold (τ);
(c) effect of the minimum size to create a class and the memory budget (l/m).

Finally, the influence of the minimum size to create a class, l, and the memory budget

per identity, m, is evaluated in Figure 4c. The rest of the parameters are set to γ = 0.6,
τ = 2. The increase in the gallery structure F1 is caused by the reduction in the initialization,
leading to fewer redundant classes. This implies greater confidence in the classification of
the samples as m increases. Therefore, the selected memory budget configuration is the one
that generates the highest gallery structure F1, l = 20 and m = 50, the influence being not
highly significant in the other metrics analyzed.

Figure 5 shows the evolution over time of the metrics with the final parameters set,
γ = 0.6, τ = 2, l = 20, and m = 50. Since it is an evaluation over time, in this particular
case we consider K = ∞ for the sample classification F1. All the metrics settle after processing
20% of the samples. Then, it can be fairly assumed that the method’s behavior is stable
beyond that stage.

Figure 5. Evolution over time of the metrics with the final parameters set in the gallery construction
process using the MARS dataset .

4.3. Gallery Construction: Data Selection Method Comparison

Following the analysis from the previous section, this experiment sets γ = 0.6, τ = 2,
l = 20, and m = 50. We study different gallery optimization processes that decide which
sample to remove from the appearance model when the memory budget is exceeded. The
compared techniques are algorithms used in incremental clustering works that have to
deal with memory budget requirements. They are evaluated at the end of the gallery
construction process. The first method is uniform sampling (Uniform) which saves a
new feature for every U = 5 instance. When the size limit is exceeded, the oldest data
is dropped to save a newer one. Another typical process is random decision-making
(Random) which removes a random index when the memory reaches its budget. Regarding
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more sophisticated methods, we compare the two closest approaches in the literature,
the method proposed in [45], called Incremental Object Model (IOM), and the ExStream
method [46]. In both cases, we use the implementation provided by the authors to evaluate
the effect of the data dropped in the gallery in our overall method. Moreover, due to
the influence on the final results of the data arrival order in incremental setups, three
different iterations are run (i.e., three different random data arrival orders). To make a fair
comparison, all five methods use the same features extracted from OsNet [9].

First, a comprehensive analysis of the final quality of the gallery structure is performed.
The number of classes created per GT-ID and the gallery structure metrics are shown in
Figure 6a,b, respectively. The results in Figure 6a indicate that the ExStream and the Uni-
form algorithms create a high number of redundant classes in the gallery. This means that
the appearance models resulting from these methods are significantly less representative,
leading to more uncertain classifications. Thus, they send a high number of samples to
the unknown pool and create new classes for already existing identities. The proposed
optimization process (Ours) creates only one class for the same number of GT-IDs as IOM
while identifying more people in the scene, which is represented by a smaller number
of GT-IDs with 0 classes created. Then, derived from this analysis and verified in the F1
results on Figure 6b, the methods which provide a gallery structure of better quality are
IOM, Random, and Ours, being Ours the one that identifies the most people in the scene
among them, as measured with the gallery structure recall.

Second, Figure 6c shows the analysis of varying K in the sample classification F1,
and Figure 6d shows the class precision results. As expected, the sample classification F1
improves in all algorithms with the increment of K. Comparing the methods that generate
a gallery with a suitable structure, i.e., IOM, Random, and Ours, the results shown in
Figure 6c,d demonstrate that the proposed gallery optimization process (Ours) outperforms
IOM and Random in both metrics. Our approach is able to create more reliable people mod-
els without losing diversity, thus enhancing the classification of the samples. The ExStream
and Uniform methods obtain high values in these metrics because of the large number of
redundant classes, limiting in practice the actual ability to re-identify known people.

As a summary of the experiment, our algorithm is the one that maintains the best
balance between having a good gallery structure and providing good classification metrics
of the individual samples with it. The rest of the methods either generate galleries with
worse quality structure, i.e., ExStream and Uniform, or obtain worse class precision and
sample classification F1 results, i.e., IOM and Random.

4.4. Gallery Construction: Final Results

A detailed evaluation on MARS and DukeMTMC-VideoReID is provided using the
same hyperparameter values from the previous section for both benchmarks.

Table 1 shows the final results of the complete self-adaptive gallery construction
approach on both datasets. In the gallery structure analysis, the table includes the number
of GT-IDs, classes created and the gallery structure F1, the precision, and the recall. The
larger number of people in DukeMTMC-VideoReID makes it more challenging to identify
most of them, causing lower recall metrics than in the MARS dataset, i.e., the 80.06% of
the people have been correctly identified in DukeMTMC-VideoReID against the 89.43% in
MARS (gallery structure recall). In terms of class precision, note that the proposed framework
obtains similar and consistent results for both datasets, 76.69% in MARS and 80.1% in
DukeMTMC-VideoReID. Thus, the method creates robust appearance models, being able to
correctly distinguish the people in the scene, which in turn helps in the sample classification
obtaining precision results of 72%.
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Figure 6. Data selection method comparison with the MARS dataset. We analyze (a) the number of
classes created (x-axis) per GT-ID in the dataset (y-axis) showing the number of GT-ID with more
than one class associated or those GT-ID that have not been correctly found, i.e., 0 classes associated;
(b) gallery structure metrics: F1, precision, and recall; (c) sample classification F1 analyzing the influence
of varying K; (d) class precision.

Table 1. Detailed results of the proposed framework on the MARS and DukeMTMC-VideoReID
datasets. The results show the mean and the standard deviation of the three iterations performed,
mean (±std).

Metrics
Dataset

MARS DukeMTMC-VideoReID

Gallery Structure
Total IDs (GT) 620 1110
Classes Created 1147.6 (±2.5) 1337.33 (±16)
F1 62.67 (±0.19) 72.62 (±0.26)
Precision 48.24 (±0.12) 66.45 (±0.51)
Recall 89.43 (±0.4) 80.06 (±0.47)

Class Precision 76.9 (±0.36) 80.1 (±0.60)

Sample Classification
F1 69.4 (±0.86) 62.6 (±0.87)
Precision 72.23 (±0.12) 72.43 (±1.12)
Recall 66.8 (±1.69) 55.21 (±0.69)

Finally, Figure 7 includes samples of the gallery for one identity per dataset at three
different times during their construction, showing in each row the person model at different
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times. The left identity includes an example of corruption that the gallery can suffer
remarked by a discontinuous red line.

In both cases, the third row shows how our resulting gallery presents high variability
of samples, resulting in a representative model for each identity. More detailed qualitative
results of the proposed self-adaptive gallery can be seen in the Supplementary Material,
where the identification of new classes and the evolution of the people’s appearance models
are shown.

Figure 7. Visualization of the evolution of appearance models in the gallery. Each row corresponds
to gallery samples at a certain time. The different colors represent the time stamp of the samples
included in the gallery (best viewed in color).

4.5. Query Re-Identification

This final experiment performs the traditional evaluation of person re-id, i.e., obtains
the expectation that the true match is found within the first R ranks [53]. However, instead
of matching the query set with a completely labeled gallery, the query set is matched with
the resulting gallery from the gallery construction process. In this experiment, the gallery
remains static. The proposed method obtains its results in an incremental unsupervised
cross-domain setting (IUCD). Table 2 shows the results of this experiment, including the
setting in which the different methods operate. Our offline baseline is the Full-gallery
method, which has the whole gallery available and manually labeled using the same
descriptors as our approach. This method is our upper bound result in the cross-domain
setting. Moreover, due to the unsupervised component of our approach, we present the
results of unsupervised and semi-supervised systems that perform offline training in
the same domain as the query set. The unsupervised methods that included BUC [31],
softened sim [15] and GLC+ [32] do not use any labeled data in the whole process (None).
Concerning the semi-supervised approaches, they use one tracklet labeled per identity
(OneEx). Note that we are the only algorithm working on the incremental unsupervised
cross-domain (IUCD) setting, while the rest perform the entire process offline. Thus,
although Table 2 is not a fair or direct comparison for our approach, we believe that it
is interesting to see how close the proposed approach results are with respect to existing
methods, despite the much more challenging and realistic scenario of our approach. The
resulting values for our approach are the average and the standard deviation for the three
random iterations performed previously, i.e., mean (±std). Besides, since the proposed
gallery deals with memory requirements, the percentage of the gallery size used with
respect to the total (GS) is shown. In this case, the standard deviation is not included, but
we remark that it is lower than 0.01 in all cases.
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Table 2. Comparison with re-id approaches in DukeMTMC-VideoReID and MARS query set.

Method Setting
DukeMTMC-VideoReID MARS

GS (%) Rank-1 Rank-5 GS (%) Rank-1 Rank-5

Full-gallery Cross-
Domain 100 63.2 72 100 66.4 73.3

EUG [34] OneEx 100 72.7 84.1 100 62.67 74.94
SCLU [54] OneEx 100 72.7 85 100 63.74 78.44

BUC [31] Unsp.
(None) 100 76.2 88.3 100 57.9 72.3

Softened Sim [15] Unsp.
(None) 100 76.4 88.7 100 62.7 77.2

GLC+ [32] Unsp.
(None) 100 80.9 91.5 100 66.5 78.7

Ours IUCD 18.4 59.5
(±1.2)

69.1
(±1.04) 8.1 60.1

(±0.78)
69.8

(±0.38)

The DukeMTMC-VideoREID results show the impact of the different goals sought.
In our case, the correct identification of the 1110 people that compose the gallery is a
really challenging task, where some of the queries analyzed in this evaluation do not have
corresponding models in the gallery. In contrast, the methods that focus on improving the
feature representation obtain better results than in the MARS dataset due to the lack of
distractors in the gallery. Regarding the MARS dataset, which is closer to an open-world
scenario, the results with our approach are close to the unsupervised or semi-supervised
approaches using two orders of magnitude less in the amount of data stored in the gallery.
Finally, considering the difference between the Full-gallery baseline and our approach, we
see how the proposed approach achieves comparable performance despite a much smaller
(one or two orders of magnitude less) and unsupervised built gallery.

5. Conclusions

This work has presented a novel framework to address the problem of person re-id in
open-world able to detect new identities and update the model about existing identities
in the system. To deploy and evaluate intelligent systems in open-world settings, it is
essential to be able to bridge certain gaps, such as lack of supervised data or lack of
computational resources. In particular, the proposed approach shows how to build a
self-adaptive gallery for person re-identification in a fully unsupervised fashion, while
managing limited memory resources. Low supervision and resource requirements are key
to robotics applications in the real world, so our self-adaptive gallery can boost robotic tasks
that involve people in real-world applications, such as information gathering or searching.
The main limitations of the presented work are those inherent to the re-identification
systems, concerning long-term person re-id when there is a change of clothing or strong
appearance changes in the people being monitored. In this situation, our system is likely
to start a new class under the assumption that a new identity has appeared on the scene.
Future steps to improve this aspect may include re-identification models focused on long-
term robustness. In the short-term person re-identification problem, our framework can
identify more than 80% of the people presented in the challenging scenarios evaluated
by comparing the new unlabeled data and the existing classes in the gallery. The existing
classes in the gallery are modeled with an optimization process that selects the most
representative information to represent each class, balancing the uncertainty (inter-class)
and the diversity (intra-class) of the samples. The experiments carried out demonstrate that
the proposed optimization process returns a class precision of about 80% while encouraging
the variability inside the classes, generating well-balanced and more structured galleries
than those of the similar existing methods analyzed. The high class precision maintained over
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time aids the continuous person re-id by obtaining an F1 sample classification of 62.6% and
69.4% in the Mars and Duke datasets, respectively. Compared to existing re-id algorithms,
our method obtains similar results to the fully labeled galleries storing one or two orders of
magnitude less data.
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Abstract: In recent years, there have been many approaches to using robots to teach computer
programming. In intelligent tutoring systems and computer-aided learning, there is also some
research to show that affective feedback to the student increases learning efficiency. However, a few
studies on the role of incorporating an emotional personality in the robot in robot-assisted learning
have found different results. To explore this issue further, we conducted a pilot study to investigate
the effect of positive verbal encouragement and non-verbal emotive behaviour of the Miro-E robot
during a robot-assisted programming session. The participants were tasked to program the robot’s
behaviour. In the experimental group, the robot monitored the participants’ emotional state via their
facial expressions, and provided affective feedback to the participants after completing each task. In
the control group, the robot responded in a neutral way. The participants filled out a questionnaire
before and after the programming session. The results show a positive reaction of the participants
to the robot and the exercise. Though the number of participants was small, as the experiment was
conducted during the pandemic, a qualitative analysis of the data was carried out. We found that
the greatest affective outcome of the session was for students who had little experience or interest in
programming before. We also found that the affective expressions of the robot had a negative impact
on its likeability, revealing vestiges of the uncanny valley effect.

Keywords: human–robot interaction; programming education; social robots; Miro-E; emotion
recognition; affective computing

1. Introduction

There is a long history of using robots to teach computer programming to children
and college students [1–5]. A robot is a tangible, physical device that can be programmed
to make different movements, and display different behaviours. This makes robots more
interesting to novice programmers compared to writing “Hello World” on a display.

In using a robot as a vehicle to teach programming, one critical factor is what kind
of personality should be given to the robot to make it more effective. Previous research
on intelligent tutoring systems has demonstrated that an affective interface yields better
learning outcomes [6]. However, for a robot tutor, the results are mixed. Some studies have
found that endowing a robot with an emotional personality is effective [7,8], but others
were not able to find any significant effect [9,10].

To explore this issue further, we conducted a pilot study where a dog-like robot (Miro-
E) was used to teach programming to children (11–15 yrs) under two different conditions:
a neutral-personality condition and an emotional-feedback condition. In the emotional-
feedback condition, the robot sensed the emotional state of the students through their facial
expressions, and gave encouragement through verbal and non-verbal modalities. The
verbal feedback took the form of praising the student, and non-verbal feedback included
wagging the tail, moving the head, and wiggling the ears. Throughout the experiment, we
monitored the emotional state of the students through their facial expressions.

Sensors 2023, 23, 1181. https://doi.org/10.3390/s23031181 https://www.mdpi.com/journal/sensors
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This study was conducted during the pandemic, so the number of participants was
small. However, we carried out a qualitative analysis of our observations, which is re-
ported here.

This paper is organised as follows. In Section 2 we review the related research.
Section 3 presents our experimental design, followed by the details of the experiment
in Section 4. The results and discussion are presented in Sections 5 and 6, respectively,
followed by the conclusions in Section 7.

2. Related Work

2.1. Robots in Education

Over the years, there have been many attempts at using robots for educational pur-
poses. For example, in an older study [7], a robot was used to teach an artificial language to
primary-school students. The robot was designed to offer two levels of social behaviours—
neutral and supportive. Participants who studied with the supportive robot achieved
significantly higher results and reported higher motivation levels.

In an earlier survey [3], it was observed that 74% of the reviewed studies found support
for robots as an effective teaching tool. A later survey [5] reported that the introduction of
robotics in the curriculum increases children’s interest in engineering, and allows children
to engage in interactive and engaging learning experiences.

Sharma et al. [11], while studying how collaboration and engagement affect children’s
attitudes towards programming, asked the children to manipulate digital robots (avatars)
as a priming activity before starting programming exercises. Van den Berghe et al. [12]
directly compared how robots as opposed to avatars affected children’s cooperation while
learning programming, and found robots to be more effective than avatars.

According to a meta-analysis of studies on the efficacy of social robots in education [13],
robot tutors are not at the same level as human tutors: students show lower learning out-
comes when directly comparing studying with a robot versus a human tutor. However,
there are some benefits of robots over humans in education. It is more economically viable
to provide devices to each student than one-on-one tutoring with a human teacher. Tech-
nology also allows the curriculum to be customised to the learning pace of each student.

Robots have an advantage over screen-based educational applications, because they
increase cognitive learning gains [14] and elicit more social engagement from students [15],
compared to screen educational content. The use of robots also appears to be effective
for interactive courses where technology is the subject of the course. In this case, the
robots engage students in critical and computational thinking, problem solving, and
collaboration [16–19]. Moreover, the use of robots is motivating for both the student and
the teacher designing the course [20,21].

In particular, when it comes to teaching programming, physical devices have an
advantage that the student can see the effect of executing an algorithm. Devices such as
micro:bit [22] and robots [19,23] have been found to be effective.

As robots do not yet have the capability to be general all-round teachers and perform
better than humans, many studies choose to compare two different robot behaviours
with each other, instead of measuring one robot behaviour against a human tutor. For
example, one could compare a socially supportive behaviour that engages in a social
dialogue with a neutral behaviour that focuses on a plain knowledge transfer [7]. Or, one
could compare the tutor condition—a robot that is focused on guiding a learner in solving
increasingly complex problems in a scaffolding fashion—with the peer-like behaviour to
support engagement [7,8]. This is the approach adapted in our study.

2.2. The Role of Affective Feedback

Affective feedback is known to have a major impact when a human is the teacher or
the trainer [24,25]. In computer-based tutoring systems, affective feedback is also found to
be effective [6].
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In human–robot interaction, however, incorporating an emotional personality into the
robot has yielded mixed results. For instance, Saerbeck et al. [7] found that incorporating
a life-like social personality in a virtual actor increases the learning efficiency of students.
Zaga et al. [8] compared the effect of two different social personalities of a robot—a peer and
a tutor—and found the peer personality to be more effective. However, Konijn & Hoorn [10]
used the humanoid robot NAO to teach primary-school children the multiplication table.
Their study compared a robot using neutral language (providing feedback with only
variations of ‘correct’ and ‘incorrect’) to a more social and encouraging robot. Techniques
used to create social interaction included addressing the participant by name, having the
robot follow their gaze, and using encouraging gestures and language (such as ’well done’,
’fantastic’). The results showed no significant difference between the two groups when
comparing across all participants. Students with below-average test scores performed
worse with social robot tutoring than with a neutral robot. Similarly, another study [9] did
not find benefits of social behaviours of the robot for a lesson on prime numbers.

One reason for this effect might be that social behaviours from a robot can distract
from the lesson and increase cognitive load. It could also be that students are surprised or
unsettled by robots showing such behaviours. Studies showing a lack of benefit from social
behaviours in a robot [10,26] have compared the cognitive outcomes, measuring differences
in test scores. In our study, we chose to focus on qualitative feedback from the participants
to assess the effect of affective feedback on learning.

2.3. Emotion Recognition

Knowing the emotional state of a student is important from the point of view of
teaching. Having the ability to recognise if a student is bored, frustrated, excited, or in any
other emotional state is a valuable skill for every teacher. For example, if a student is bored,
it could be an indicator that they have lost focus or that they may already be familiar with a
particular topic and are ready to move on [27]. Another example could be when a student
is frustrated, which most probably means that they are experiencing some difficulties with
the learning material.

There are several aspects of emotions and many available techniques for measuring
them [28]. One key issue is the dimensions of emotions, and the literature [29] provides the
following list: (1) arousal—whether an emotion turns on, activates an action, or inhibits it;
(2) value—whether an emotion has positive or negative value for a person; (3) intensity—
whether the strength with which the emotion is perceived is low or high; (4) duration—time
duration of a given emotion; (5) frequency of occurrence—how often does a given emotion
occur; (6) time dimension—whether the emotion is retrospective (e.g., relief), real (e.g.,
pleasure), or prospective (e.g., hope). Another factor is the set of basic emotions in terms of
which all other emotions can be expressed. The Plutchik model [30] provides one such set
of basic emotions.

Tools for measuring emotions can be divided into three groups: (1) psychological,
mainly subjective, and retrospective reporting of one’s own emotional states (e.g., via
verbal reports, questionnaires); (2) physiological objective tests that measure physiologi-
cal responses using sensors (e.g., electrocardiogram (ECG), electroencephalogram (EEG),
galvanic skin response (GSR)); and (3) behavioural objective measures based on bodily
manifestations (e.g., facial expression, voice prosody, body posture) [31].

A commonly used emotion recognition technique is based on the set of emotions pro-
posed by Paul Ekman [32,33], and it has been used successfully in educational tests [34,35].
It is a discrete model with six basic emotions: anger, disgust, fear, happiness, sadness, and
surprise. Later on, the list was expanded to include emotions of contempt, guilt, embar-
rassment, relief, or satisfaction. However, the original model is often used, especially for
automated emotion recognition [36], as it is based on a relatively small set of well-defined
and easily distinguishable states.

The Ekman model can be used in automated techniques for detecting emotions, which
in practice consist of detecting emotions from changes in a facial micro-expression (a facial
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expression that only lasts for a short moment). Detecting emotion from a micro-expression
is not without its drawbacks, such as the ability to assess only basic emotions or the
fact that it does not always work for all respondents. However, thanks to information
technology (IT) solutions, it is a quick and relatively simple method used to evaluate
emotions in changing conditions. Though emotions can be recognised from facial images
using automated techniques, some sort of an image and pattern recognition algorithm
has to be involved. Creating any image recognition algorithm manually can be difficult
and error prone. In recent years, the most popular approach to this is to use machine
learning [37–39].

Dimensional models present a different approach to classifying emotions. As opposed
to discrete models, where emotions are defined as distinct states, in dimensional models all
emotional states are described by two or more dimensions. Thus, emotional states form
a spectrum rather than separate groups. The dimensions used to describe emotions are
usually based on intensity and whether the emotion is positive or negative. One of the
dimensional models was proposed by James Russell [40]. It is known as the circumplex
model of emotions [40]. It is a two-dimensional model where the dimensions are valence
(whether the emotion is positive or negative) and arousal (the level of activation, e.g., calm
vs. excited). Placing valence on the horizontal axis and arousal on the vertical axis, all
emotions are placed in the circular space defined by these two dimensions [41]. This is the
model used in our study.

3. Study Design

The main objective of this research was to study how the emotional response of
the robot affects the learning process and the emotional attitude of the student. More
specifically, our aim was to address whether the process of learning can be more effective
when assisted by an AI that can engage emotionally with the student by managing the
difficulty of the task based on the emotional feedback and by providing encouraging verbal
feedback. Consequently, the hypothesis of our study was that participants who receive
encouragement and emotional support from an empathetic robot will be more engaged in
the lessons, will be less frustrated by failures, and will have a higher interest in continuing
their development in the field of computer science.

To validate this hypothesis, we conducted a study where children (11–15 yrs) were
asked to complete the task of programming a robot while interacting with it. A Miro-E
robot was used in the study; this is described below.

3.1. The Miro-E Robot

Miro-E is a small robot developed by Consequential Robotics (Figure 1), and has
animal-like features. It is designed to look like a hybrid of different pet animals. It has an
articulated head with ears and eyes, haptic sensors in the head and the body that react to
touch, and a microphone to detect sound. The eyes, ears, tail, and head can be moved to
express affective states. The robot’s behaviour can be programmed using a block interface
based on the Blockly library. By combining sensor readings with conditional logic, one
can create programs so that the robot reacts when touched or when it hears a clap. The
programming interface also allows for running separate scripts on the robot in parallel: this
feature is used so that the robot can run programs written by the participants during the
study while running reaction scripts to provide affective feedback at the same time.

The reaction scripts were written in Python (URL: https://www.python.org/ accessed
on 4 January 2023), using the Rospy library (URL: http://wiki.ros.org/rospy accessed on 4
January 2023) and the Miro Interface modules to control the hardware. The script files were
uploaded to the robot’s memory, and were executed on demand by running them with a
Python interpreter from the command line via secure shell protocol (SSH).
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Figure 1. Miro-E robot.

The study participants used MiroCode (URL: https://www.miro-e.com/mirocode
accessed on 4 January 2023) (Figure 2) to program the robot. MiroCode is a visual interface
that uses a block representation of the robot’s actions. A program is created by chaining
together blocks that describe sequential actions of the robot. This web application was
created by Consequential Robotics specifically for teaching programming using Google’s
open-source library Blockly (URL: https://developers.google.com/blockly accessed on 4
January 2023).

Figure 2. An example program written in MiroCode’s visual interface.

Robot capabilities are divided into separate modules grouped by themes (motion,
time sequence, sensors, etc.). The programming interface is friendly to beginners as it
requires little knowledge of syntax, and each block explains the action taken by the robot.
The blocks can be executed in a sequence or in a loop. The cloud version of MiroCode,
MiroCloud, was used in this study.
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3.2. Emotion Recognition Module

The emotion recognition module implemented for this study was divided into two
modules running in parallel. The first module was a standalone client-side application
that is responsible for collecting facial images from the laptop camera and generating their
valence and arousal values. The second module was a server-side application responsible
for storage, managing the collected data, and computing end results. The architecture is
shown in Figure 3.

Figure 3. Architecture diagram. Please refer to the text for an explanation of the acronyms.

The client-side module ran on the open-source software library Keras (Keras library
accessed on 15 December 2022; URL: https://keras.io/about/) with trained models for
valence and arousal. The video was captured from the laptop camera and the frames
were continuously fed into the model, which returned the valence and arousal values for
each frame. These values were sent to the server-side application via the http protocol. It
prepared the records and saved them in the database for further calculations. The server-
side application ran on Amazon Web Services (AWS) (cloud computing with AWS accessed
on 15 December 2022; URL: https://aws.amazon.com/what-is-aws/). A single Amazon
Elastic Compute Cloud (EC2) (Amazon EC2 accessed on 15 December 2022; URL: https://
aws.amazon.com/ec2/) instance served as the host for a Python application implemented in
the Flask (Flask accessed on 15 December 2022; URL: https://palletsprojects.com/p/flask/)
framework. It exposed a set of REST services (What is REST, accessed on 15 December
2022; URL: https://restfulapi.net/) which were being called by the client-side application
(emotion recognition application). An instance of the AWS Relational Database Service
(RDS) (Amazon Relational Database Service (RDS) accessed on 15 December 2022; URL:
https://aws.amazon.com/rds/) was hosted in the cloud, and was used to store all the data
collected through the experiment in the open-source database system PostgreSQL (URL:
https://www.postgresql.org/ accessed on 15 December 2022).

The server-side application also returned the results for a given time-frame. Times-
tamps were taken when a student started and ended solving a given task. These were
attached to the request sent to the server-side application, which retrieved all the data
during this time period to compute the end result according to the algorithm explained in
Section 3.2.2.
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3.2.1. Training the Emotion Recognition Model

For recognising emotions from facial images, a machine learning model was trained
using AffectNet, which is currently the largest facial expression data set, with each im-
age annotated with a categorical label, and its valence and arousal values based on the
circumplex model [42].

The AffectNet data set contains more than one million images, of which 440,000 were
annotated manually, and the rest were annotated automatically. We observed that these
images are distributed unevenly across the valence and arousal spectrum: most of the
images covered a small range of valence and arousal values, and there were few images
with very high or very low valence and arousal values. Such an uneven distribution of data
is not ideal for training.

To address this problem, we divided the entire range of values (from −1.0 to 1.0)
into small intervals (in steps of 0.01, so −1.00 to −0.99, −0.99 to −0.98, and so on) and
considered how many images fell in each interval. With trial and error, we found that by
taking at most 400 images from each interval (when an interval had less than 400 images,
we took all of them), we could create a more uniform distribution across the entire spectrum,
and still have a large enough dataset to train the model. This procedure was performed
once across the valence spectrum and once across the arousal spectrum.

To address the problem that the images were of different resolutions, we scaled all the
images down to 200 × 200 pixels. As the Xception network is designed for images of size
299 × 299 pixels, the first input layer had to be readjusted to work with different image
sizes. As a separate data set had to be used for training the valence model and the arousal
model, all the operations mentioned before had to be repeated twice, once for each model.
This resulted in two final data sets that could be used during training, one for valence and
the other for arousal.

A random split was performed to divide the data sets into training and validation
categories: 80% were assigned to the training data set and the remaining 20% to the
validation data set.

The parameter values used for the network were as follows. The network used was
an Xception pre-trained on the ImageNet data set (ImageNet accessed on 15 December
2022; URL: https://www.image-net.org/). The batch size was set to 32 images. The loss
function used during training was mean absolute error (MAE) [43]. The Paperspace (About
Paperspace Gradient, accessed on 15 December 2022; URL: https://docs.paperspace.com/
gradient/) platform was used to provide more computing capacity. Training occurred on
a single Free GPU + instance (Instance Types available in the Free Tier, accessed on 15
December 2022; URL: https://docs.paperspace.com/gradient/more/instance-types/free-
instances#instancetypes-available-in-the-free-tier) equipped with 8 CPUs, 30 GB RAM,
and a Quadro M4000 GPU. The value loss achieved after training was 0.244 for the valence
model and 0.258 for the arousal model. Considering that the values for both parameters
have a range from −1.0 to 1.0, this translates into a 12.2% error rate for the valence model
and 12.9% for the arousal model.

3.2.2. Emotion Computing Algorithm

An algorithm was created to aggregate valence and arousal values over time into one
of the three categories, positive, negative, or neutral. These aggregated values were used
by the experiment control system to control the task flow.

Only measurements taken while solving a particular task were considered. We as-
sumed that the participants would have a neutral facial expression most of the time. A
high-pass filter was used to filter out measurements of low significance. Euclidean distance
was used for filtering as follows:√

valence2 × arousal2 ≥ 0.3 (1)
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Different threshold values were tried, and in the end, 0.3 was chosen as a good
compromise between filtering out noise and not filtering too much. This allowed most of
the unimportant measurements to be filtered out.

Weights were used to give more significance to the measurements taken at the end of
the task, as they would be related to the participant finding the final solution. A hyperbolic
tangent function was used to calculate the weights as follows:

weight(t) = tanh(rel_time(t)× π) (2)

where rel_time is a function to compute the relative time of the measurement compared to
the entire duration of the task execution. The relative time was calculated using the formula:

rel_time(t) =
t − tmin

tmax − tmin
(3)

where tmin and tmax are the start and end times of task execution.
After computing the weights for every measurement taken for a particular task, the

final result was computed as follows.

result =
∑m_size

i=1 mi × weight(ti)

∑m_size
j=1 weight(tj)

(4)

where m_size is the size of the measurement set, mi is a particular measurement value, and
ti is the measurement time.

This formula was applied to the valence and arousal measurements separately, and
the calculated values were used to determine the final outcome depending on where the
results fell in the circumplex model. A visualisation of this is shown in Figure 4.

Figure 4. Visualisation of the valence-arousal plane for the final result calculation.

3.3. Experimental Set-Up

The main activity in this study was for the participants to solve programming tasks
to control the Miro-E robot in a MiroCode environment. While they were engaged in this
task, their emotional states were analysed from their facial images (taken by the laptop
camera). Based on these emotional states, the robot provided appropriate affective feedback
in both verbal and non-verbal modalities. The feedback could be praising the participant
for completing a task successfully, or congratulating them on finishing a tricky task. Non-
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verbal feedback included wagging the tail, moving the head, and wiggling the ears. The
robot then presented the next task to the participant.

The system also decided whether the participant should skip some tasks. If the
participant completed the current task in a short time (less than the preset threshold), and
the emotion recognition module found that the participant had a positive reaction, then the
system would skip over the next task.

For the control group, the Miro-E robot was only a vehicle for the programming tasks
(it only performed the actions programmed by the participant): it took no actions of its
own. The robot announced the next task in a neutral manner: ’Start Task 3’.

All participants were also asked to fill out a pre-test questionnaire to assess their
previous programming experience, and a post-test questionnaire to gather information
about their experience during the study. Data collected from the questionnaires were used
to determine the impact of affective feedback provided to participants in the experimen-
tal group.

4. Experiment

4.1. Participants

The experiment was conducted in the period June–July 2021. Because of the COVID-19
pandemic, it was difficult to find participants, but we managed to recruit nine participants
(3F, 6M; 11–15 yrs) to take part in the activity of learning to program a robot. All participants
had sufficient English knowledge to allow them to use the robot’s interface. English profi-
ciency was determined from the participant’s self-declaration—the call for participation
mentioned that English would be required. Moreover, all the participants had attended
several years of primary school with mandatory English lessons. Four participants were
placed in the control group and five in the experimental group.

4.2. Coding Tasks

The participants were given the task of writing programs to control the Miro-E Robot.
A set of ten programming tasks were prepared, which were expected to take about 40 min
to complete. The tasks were progressively more difficult, with later tasks building on earlier
tasks, and with each section of the worksheet introducing new concepts or block modules.

The first task in each section was to open an example program that had been saved on
the laptop, read the code, and explain what it does to the researcher. Then, the participant
was asked to run the program on the robot and observe if their predictions were correct.
This familiarised the participant with what the blocks in the program did, and provided
context for the next task.

The second task in each section was a coding exercise. The participant was given a
desired behaviour of the robot (for example, to make Miro-E walk in a square), and was
asked to write a program to make Miro-E behave in that way. The participants were asked
to do this independently: the researcher helped (if needed) only with language difficulties.

The final section, Functions, did not have a given outcome of the task, but introduced
the concept of functions as reusable blocks of code that are defined once, but then they can
be called from different places in the program. The example code contained three function
slots that participants could complete as they wanted using the knowledge gained from
the previous sections. The objective of this task was for the participants to understand how
a function code is triggered from the main program.

4.3. Procedure

Informed consent was obtained from the legal guardian of each participant after
explaining to them the following aspects of the study:

• The video of facial expressions from the laptop camera is used for emotion-recognition.
• No identifying information of the participants is disclosed in the study.
• Data from the participants are used anonymously and in aggregate.
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Before starting with the programming tasks, each participant was asked to fill out a
pre-test questionnaire containing the following questions (items 3 and 4 used a five-point
Likert scale):

1. Participant identification number.
2. Grade in school.
3. General interest in programming (1: ‘no interest’; 5: ‘great interest’).
4. Previous coding experience (1: ‘no experience’; 5: ‘much experience’).
5. Familiar programming environments.

Then, the participant was asked to sit at a large table with a laptop that showed the
MiroCode interface, with the Miro-E robot on an adjacent table. Throughout the study,
a researcher sat next to the participant to explain the experiment, help with language
problems, and provide input to the system when starting or finishing a task.

The experiment was started with the researcher showing the participant the worksheet
with tasks, and explaining the structure and the goal of each section. The participant was
then given a tour of the MiroCode interface: where to find blocks, how to run the code on
the robot, and how to open example programs. Participants were encouraged to explore
solutions even when they were not sure about their correctness. Finally, the researcher told
the participant to feel free to ask any questions about the language or meaning of certain
blocks during the experiment.

The participant then started the first task. When the participant started a task, the
researcher entered this into the system. The participant then completed the task, usually
running several versions of their code on the Miro-E robot before succeeding. In tasks that
involved moving the robot, the researcher positioned the robot next to the participant, or in
a location where the robot could complete the movement without encountering an obstacle.

When the participant completed a task, the researcher entered the task-end response
into the system using a mobile device.

This procedure was repeated until all the tasks were completed. The procedure was the
same for both the experimental and the control groups, with the only difference being that
(as explained above in Section 3.3) for the experimental group, Miro-E provided affective
feedback, and the progression of tasks depended on the participant’s affective state while
completing the tasks.

After the participant finished all the tasks, they were asked to complete the following
post-test questionnaire (items (1)–(4) used a five-point Likert scale):

1. Rate Miro-E’s behaviour (1: ‘unpleasant/rude’; 5: ’pleasant/nice’).
2. Rate your enjoyment of the session (1: ‘didn’t like it at all’; 5: ’liked it a lot’).
3. Rate your general interest in programming (1: ‘no interest’; 5: ‘great interest’).
4. Would you be interested in another session with Miro? (1: ‘no interest’; 5: ‘great

interest’).
5. Did any task make you feel frustrated?
6. If yes, which task(s)?
7. Did any task make you feel accomplished?
8. If yes, which task(s)?

5. Results

As this study was conducted during the COVID-19 pandemic, the groups were rela-
tively small: four participants were in the control group and five were in the experimental
group. Nonetheless, we analysed the affective outcomes: the feelings of the participants
towards the Miro-E robot, towards the experiment, and towards programming in general.
The results of the post-test questionnaire are summarised in Table 1.

All the participants finished all the given tasks—no one stopped the experiment before
it ended. For one participant in the control group, all the data could not be recorded due
to a technical difficulty, so this participant was excluded from the analysis. None of the
participants reported feeling frustrated by any of the tasks.
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Table 1. Average responses to the survey.

Question Total Control Experimental

Miro-E likeability 4.78 5 4.6
Session enjoyment 4.44 4.25 4.6
Programming experience 2.22 1.75 2.6
Interest in programming (pre-test) 3.77 3.75 3.8
Interest in programming (post-test) 4.11 4 4.2

Six participants (4 from the experimental group, 2 from the control group) reported
that a task made them feel accomplished or happy. One participant from the experimental
group reported that task one, moving the robot, affected her or him in this way. Five
participants (3 from the experimental group, 2 from the control group) pointed to task 10 as
making them feel accomplished.

The aggregate (over the participants) of the data collected by the emotion recognition
module is shown as heat maps in Figures 5 and 6. These heat maps can be interpreted
qualitatively by comparing a segment of the obtained valence/arousal predictions to the
ground truth values. Therefore, the heat map illustrates, in the 2-D valence and arousal
space, the histograms of the ground truth labels of the test set and the corresponding
predictions of the trained model. We can see that the heat points are mostly in the mid-
dle because the measurements were mostly neutral or shifted towards negative valence
and arousal.

Figure 5. Heatmap showing the valence and arousal for the control group participants.
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Figure 6. Heatmap showing the valence and arousal for the experimental group participants.

6. Discussion

The results of the survey show that all the participants rated Miro-E’s behaviour as
friendly: on a five-point Likert scale with a range from “unpleasant, unfriendly” to “nice,
friendly”, the average response was 4.8. In the control group, where the Miro-E robot
exhibited only neutral behaviour and language, all the participants responded with a 5.
The average in the experimental group was 4.6 (with two participants rating Miro-E’s
friendliness at a 4). This suggests that the robot’s attempts at friendliness had a negative
impact on its likeability. One participant in particular seemed visibly surprised, and moved
away from the robot when starting the script for completing a task. This could be due to
the uncanny valley effect [44].

These responses show that the Miro-E robot is perceived as friendly by itself, even
when no additional behaviour to support this is programmed. This is by the design of
the manufacturer, as the robot is aimed at younger children, and looks like a pet animal.
Moreover, the tasks the participants were performing made the robot appear more friendly.
The participants themselves were in charge of programming the robot and used its emotive
features in their programs—making the robot wag its tail and wink in response to being
touched. This kind of social behaviour did not trigger the same surprise reaction, as it was
expected and programmed by the participant.

Another question asked in the survey related to the participants’ enjoyment of the
programming session and whether they would like to take part in another session with
the Miro-E robot. The average for the control group was 4.25, and for the experimental
group was 4.6. Thus, fewer participants from the experimental group expressed an interest
in a future lesson with Miro-E. One reason for this could be that prior experience with
programming was higher in the experimental group compared to the control group, and
for participants having more prior experience with programming, the tasks seemed easy,
so they were not so interested in another session with Miro-E.

The aggregated heat maps of valence and arousal for participants in the control and
the experimental groups (Figures 5 and 6) show that the participants in the control group
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experienced higher overall valence and arousal values, while the experimental group’s heat
map is concentrated mostly in the neutral region.

This suggests that the control group experienced more positive emotions compared to
the experimental group. However, this could also mean that emotion recognition based
on computer vision and facial micro-expressions was not very effective. In future, we
need to incorporate other measures that are indicative of attention and interest besides the
emotional state of the user.

The results from the survey conflict with the results of the valence and arousal graphs.
This may be due to the courtesy bias, as the participants were rating the study while the
researchers were in the room. Moreover, it is hard to ascertain satisfaction with the robot-
based learning session by just comparing the results of the pretest and post-test surveys,
especially as the emotional state of the participants was changing during the session.

Nonetheless, these results can be explained as follows. The survey results show
considerable interest and satisfaction with the robot-assisted learning. However, the
emotional recognition based on facial expressions suggest that a robotic assistant does not
trigger a strong emotional state. This can also be interpreted positively in that the robot
assistant does not distract from the required task.

The affective outcome of the study was measured by asking the participants about
their interest in programming before and after the session (on a five-point Likert scale) with
the robot. This showed an overall increase of 0.34 for the entire group: the increase was 0.25
for the control group and 0.4 for the experimental group. It should be noted that most of
the participants did not change their answer (from pretest to post-test), but the participants
with a low pre-test interest in programming showed an increase in the post-test.

In response to the question about which task made them feel most accomplished, most
participants chose the last task. This was also confirmed by a graph of valence and arousal
for one of the participants, as shown in Figure 7. This could be due to the recency bias,
or because the last task was a free-form task where the participants could implement a
behaviour of their own choosing.

Figure 7. Graphs of valence and arousal over time.

65



Sensors 2023, 23, 1181

Figure 7 shows that the valence increased towards the end of the study. Peaks in the
arousal value were more frequent in the later part of the session. In the free-form task 10,
the participants were most interested in using emotive features of the robot—wagging the
tail, closing eyes, and moving ears. This suggests that the participants preferred to program
social behaviours in a robot.

The emotion recognition module worked well when the facial expression clearly
indicated a strong emotion like happy, angry, or sad. However, with micro-expressions,
the changes in valence and arousal were very small and could be considered as noise. It
was observed that the participants’ faces were mostly neutral during the experiment, and
their facial expressions barely changed regardless of whether they were doing well with
the tasks or were facing difficulties.

7. Conclusions

The goal of this research was to study how affective feedback by an educational robot
impacts learning outcomes; for example, in our particular case, does it lead to more interest
in programming and computer science?

Our experimental data suggest that the Miro-E robot was perceived as friendly and
likeable. However, we did not find a significant impact of the affective feedback of the
robot on the participants—most of the differences can be attributed to other factors, such as
programming experience or interest.

We did not find a strong positive or negative correlation of the robot’s behaviour to the
participants’ responses. Previous studies in this area also report conflicting outcomes [7,9,45],
suggesting that the link between social behaviour from robots and better outcomes for students
is not so straightforward.

Our results show that the greatest affective outcome of the session was for students
who had little experience or interest in programming before. This suggests that to maximise
the impact of robot-assisted learning, it should be introduced early on. We also found that
the affective expressions of the robot had a negative impact on its likeability.

7.1. Limitations

The sample size of nine participants was too small to draw statistical conclusions.
The feedback given by the robot was short and simple. This might have not been

enough to generate observable effects, as most of the time the robot acted the same in both
the experimental and the control groups.

As the study involved only one forty-minute session, the participants did not have
much time to become confident with the robot’s programming interface.

Having a more uniform level of programming experience among the participants
would have allowed creating tasks that were not too easy or too difficult for any participant,
thereby eliminating one source of variations in the responses.

Participants were assigned to the experimental and the control groups before filling
out the pre-test survey. Two participants with the most programming experience were
placed in the experimental group. Due to the small sample size, the groups ended up with
an unbalanced skill level and this difference had a visible effect on the answers.

7.2. Future Research

A study involving more participants over several sessions would answer the ques-
tions posed in this study with higher confidence. Future research could explore whether
students who are learning programming with a robot would benefit more from the robot
exhibiting social behaviours on its own, or from programming the robot to behave in social
ways. Comparing a friendly-looking robot like Miro-E with a less inherently friendly-
looking robot could give insight into how much the appearance of the robot influences its
effectiveness as an educational tool.
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Another issue for the future research is to study the potential drawbacks of affective
feedback. It has been shown that too much emotional engagement from the robot can be
a disadvantage and can lead to an increased cognitive load on the participant and worse
outcomes [46]. Ethicists also argue that too much emotionality can lead to false relation-
ships [47], or that the emotionality of robots is simply false [48]. These considerations must
be taken into account when designing an affective educational robot.
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Abstract: Recently, person-following robots have been increasingly used in many real-world ap-
plications, and they require robust and accurate person identification for tracking. Recent works
proposed to use re-identification metrics for identification of the target person; however, these metrics
suffer due to poor generalization, and due to impostors in nonlinear multi-modal world. This work
learns a domain generic person re-identification to resolve real-world challenges and to identify the
target person undergoing appearance changes when moving across different indoor and outdoor
environments or domains. Our generic metric takes advantage of novel attention mechanism to
learn deep cross-representations to address pose, viewpoint, and illumination variations, as well
as jointly tackling impostors and style variations the target person randomly undergoes in various
indoor and outdoor domains; thus, our generic metric attains higher recognition accuracy of target
person identification in complex multi-modal open-set world, and attains 80.73% and 64.44% Rank-1
identification in multi-modal close-set PRID and VIPeR domains, respectively.

Keywords: person re-identification; impostor resisting metric; multi-modal re-identification metric;
lightweight domain generic metric; part-wise attention learning

1. Introduction

With the advent of deep learning, human–robot interaction (HCI) is increasing rapidly
in many applications. A robot following a person is one such application [1,2], where the
person-following robots assist humans in elderly assistance and healthcare, work as service
robots in industrial use, and also serve as autonomous carts in shopping malls.

Clearly, for all the applications above, it is required to track the person, and for tracking
the person, the fundamental step is to first accurately identify the target person P1 shown
in Figure 1, and then robustly track the target P1 in real-world. However, the dynamic
real world is highly nonlinear and multimodal where the appearance of target person P1
shown in Figure 1 drastically varies from indoor home environment or domain to outdoor
domain, such as walking across Road1, Road2, and Road3 in Figure 1, as well as across
different outdoor domains, such as shopping mall or airport due to continually varying
styles, illumination, poses, and viewpoints. In Figure 1, it can also be noted that the real
world is also crowded where the target person P1 is also either occluded by other persons,
say occluded by distractor D1 at time t2 on walking across Road1, or is also occluded by
impostor I1 at time t4. Thus, in the real world in Figure 1, due to occlusion and nearby
impostors, tracking the target person P1 is a very difficult task, hence, state-of-the-art
trackers [3–6] could lose the tracking of target person P1, and either wrongly start following
distractor D1 at time t4, or wrongly start following an impostor person I1 at time t5, as
shown in red rectangles in Figure 1. The real target person P1 is walking on Road1 at time
t4, and on Road4 at time t5, respectively. Therefore, robustly tracking the target person P1
in the nonlinear open world is still an unsolved problem, and it requires a robust target
person identification in real time to reliably follow the person P1 in the real world.
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71



Sensors 2023, 23, 813

Figure 1. Person-follow robot scenario in outdoor world. The Mobile Roboplatform is Distracted in
the Real Multi-Modal Open-Set World During Tracking Target P1.

In past, several works have addressed target person tracking and following. These
past works use Laser Range Finder (LRF) [7,8], stereo camera [9], and RGB-D sensors [10] to
track and follow the person. These trackers [7–10] have successfully addressed the person
following problem, but these methods still get distracted in nonlinear and noisy outdoor
environments due to occlusion, whereas these methods also lack the ability to reliably
discriminate the target against similar-looking distractors in the outdoor world. Recently,
deep visual trackers [11] have also learned to overcome the problem of reliably tracking
the person in noisy environments; however, these deep visual trackers have still lacking to
specifically address the target person identification problem during tracking and following.
Visual trackers [11] are thereby still prone to impostors, and appearance changes the target
person P1 undergoing in different nonlinear indoor and outdoor environments or domains.

Therefore, to overcome these shortcomings in visual trackers [11], recently, reidenti-
fication metrics have been learned and integrated with visual trackers [12] to follow the
target person [1,2]. These reidentification metrics are learned by matching color-histograms
and gait features [1,13], as well as extracting deep CNN features to learn deep similarity
metrics [2,3,14–16]. However, the reidentification metrics in the present works [2,3,14–16]
are all learned assuming the naïve world, i.e., it is assumed that the outside world is
close-set, unimodal (it is assumed the robot only uses RGB sensor), and the target person
P1 appearance remains unchanged across moving different domains. Due to these naïve
assumptions, not only do the generalization capabilities of the learned reidentification
metrics suffer largely in tracking the target in the outside world, but these metrics also
get distracted due to the impostors observed across complex scenes and across nonlinear
domains during tracking target P1, as shown in Figure 1. In Figure 1, at times t3 and t4
when the actual target P1 is completely occluded by distractor D1 and impostor I1 or if
target P1 is completely moved out from the perception of mobile roboplatform in Figure 1,
then the mobile roboplatform wrongly identifies a distractor D1 or impostor I1 as target
and starts tracking the distractor D1 or impostor I3 at time t4 and t5, respectively.

Consequently, it is clear that to robustly track the target person P1 across different
nonlinear indoor and outdoor environments, improvement of the trackers and integration
of robust yet generic reidentification metrics in tracking are needed. The learned robust
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and generic reidentification metric, thus, identifies the target person in each consecutive
image frame and thereby improves the tracking of the target while largely preventing the
tracker to wrongly follow the distractors or impostors. Therefore, in our work, we have
learned a lightweight domain generic reidentification metric, referred as MG, for following
the target in outside world. Furthermore, a lightweight novel part-attention learning
method is also proposed to accurately identify the target P1 across different nonlinear
domains, as well as to further improve the tracker to reliably track the target P1. The
purpose of the lightweight metric is to run the metric on the compact robotic platform,
while domain generic metric is learned to tackle (i) the appearance and style changes of
target P1 across different domains, (ii) to tackle impostors of P1 in the scenes, and (iii) to
reliably recapture the target person P1 again using the novel attention features, if target P1
is lost due to occlusion or completely moved out from the robot perception during tracking.
The generalization capability of the learned reidentification metric in our work is further
improved in a way that our domain generic metric MG is learned under realistic open-
set scenarios, i.e., it is assumed that the appearance of the target person P1 varies when
P1 moves across different indoor and outdoor environments. Then, the novel proposed
attention module extracts the attention features from each single body part of the target
person P1 to learn the deep cross-representations among the different images of the target
person P1 undergoing appearance changes due to varying styles and modals. Therefore,
the learned cross-representations are used to jointly address the pose and occlusion and
also used to reject the large number of impostors during identifying the target in outside
world, consequently largely improving the tracking of the target in outdoor world. In last,
our contributions are:

• A robust vision-based target reidentification metric is proposed for target tracking.
Compared to previous reidentification metrics proposed to target tracking, our reiden-
tification metric is cross-modal and can address the style changes across large number
of varying environments.

• Our reidentification learns part attention features, and unlike past works, the attention
features are more stable to style changes and more robust against impostors. This
is because the attention maps in our work are learned locally for each individual
part, while during attention learning, it also uses global contextual and semantic
information of the individual part. The global contextual provide useful relations
among parts, while semantic information provides structural cues.

• Furthermore, the proposed reidentification uses the cross-representation module to
jointly address pose and viewpoint changes and learns discriminative cross-view
representations to tackle a large number of impostors in the open-set world.

• Finally, the learned metric is learned for the purpose of target tracking; therefore, it is
designed with a lightweight backbone, while it is generic to help tracking the target in
different nonlinear environments.

2. Related Work

The aim of our work is to learn a reidentification metric to integrate with tracking.
Therefore, in this section, we review the recent works learning the reidentification metric
for target tracking. Furthermore, in this section, we also review the recent works learning
the reidentification metric for target tracking on mobile robots, and in the last, we also
review the state-of-the-art related work in person reidentification that learns robust person
identification metrics. In the beginning, we first cover the present works learning the
reidentification metric for the visual tracking purpose.

2.1. Reidentification Metrics in Visual Tracking

Here, we cover the related work that learns reidentification metric for visual tracking
purpose. However, the most of the learned models are used for offline tracking purpose.
In [17], Neeti et.al. learned a LSTM-based CNN tracker using person reidentification
module. They have learned spatiotemporal features of the person for reidentification;
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however, during training, it is assumed that the real world is close-set and unimodal, and
hence, the model performance could be challenged when deployed in the multimodal
open-set world.

In another work in [18], tracking with person reidentification is learned, where the
learned tracker tracks the target person in traffic scenes. Similarly, in [19], the authors
follow the tracking-by-detection method, where the CNN-based feature matching is used
to identify the target person in consecutive frames, and thus, the tracking of the target
is done. The frameworks in [18,19] are simple, but these works require fine-tuning the
reidentification metric every time for for every unseen domain, and thus have low general-
ization. Other works including [20,21] solve tracking in the multicamera network for smart
city applications. [Edge Video] focuses to learn a lightweight reidentification metric to
implement target tracking on edge devices, while Ref. [21] solves the problem of retracking
the target after occlusion. Ref. [21] uses reidentification metric to reidentify the target when
the target is recaptured again after the occlusion. Even [20,21] have good performance,
however, ignored to solve reidentification problem in multimodal open-set world.

Furthermore, Ref. [22] also addressed the problem of target tracking in large scale sce-
nario and proposed to learn an unsupervised reidentification metric for this purpose. The
authors believed for the large-scale scenario that unsupervised reidentification requires no
label of identities for training, and thus perform better than supervised metrics. Although
the above works [17–22] used the learned reidentification metric for visual tracking, the
methods are not intended for tracking the target on mobile robots. In order to track the
target on mobile robots, lightweight and efficient reidentifications are needed; therefore, in
the next subsection, we cover the recent works that specifically learn the reidentification
metrics for tracking the target in real time and on mobile robots.

2.2. Reidentification Metrics for Visual Tracking on Mobile Robots

Here, we cover the recent state-of-the-art works learning reidentification metric for
person identification and tracking for mobile robots. In [1] height, gait, and appearance
features are used to learn an online person classifier to identify the target person to follow,
while, Ref. [23] uses human pose estimation to detect the person indoors and then identify
the target person using an appearance-features-based reidentification metric to follow.
In addition, both [24] and [25] also use the appearance-features-based reidentification
metric to detect and track the target person in the indoor environment. Although the
method from [1,23–25] tracks well indoors, it lacks the ability to handle nonlinear style and
appearance variations that the target person undergoes in outdoor world, and it is largely
distracted due to impostors in the outdoor environment.

On the other hand, Ref. [15] also uses convolutional channel features to first identify
the target person and then follow the identified target person using the mobile robot.
Both [15] and [26] first use laser range finder to track the person position, then Ref. [15]
learns the convolutional-channel-features-based classifier to verify the target to follow,
whereas Ref. [26] uses monocular camera to perform appearance matching. In another
work [2], an online person classifier is also learned to track the target person, but in the
robot coordinate space. The authors believed tracking the person in robot coordinate space
is more accurate than tracking in the real-world space. The methods [1,2,15] follow the
person in both indoor and outdoor environments; however, the learned person classifiers
in their works are not generic, while their works also fail to address resisting the impostors
in the outdoor world.

Furthermore, some works have used depth sensing to track the position of target.
Both [27] and [28] use kinect depth sensor to track the person position. The robot tracks the
person, however, in the crowded environment; due to distractors, the accuracy of tracking
is largely challenged in the outdoor setting due to the sensitivity of the Kinect sensor.

In other works, authors, e.g., those of [14], propose to track the target person using the
Kalman filter. Once the bounding box of target person predicted, the state of Kalman filter
is updated by identifying the target bounding box, and the target is then followed. In [3],
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another problem of tracking the target in uniform crowd environment is solved. Their
method depends on accurate face identification because the target and other persons all
have similar appearances in the scene. Even the method performs well, but the method
has still not addressed generalization problem across all outdoor environments, as well as
Ref. [14] can be distracted due to impostors, whereas Ref. [3] can be distracted in crowded
environment due to poor depth sensing.

In addition, there are a few works in reidentification-based person tracking on mobile
robots aim to track the person for social and virtual game environments. In [29], both
depth and laser range finder sensors are used to track the person position, however,
only in the indoor environment, whereas Ref. [30] track and follow the person for the
virtual game environment. Even their methods can track the target, but their methods
are optimal for close-set scenarios, whereas the real-world scenario is multimodal and
open-set. Now, covering the recent works in reidentification-based person tracking on
mobile robots, we now further explore the state-of-the-art metrics learned for real-world
person reidentification and are covered in detail in the subsection below.

2.3. State-of-the-Art Reidentification Metrics
2.3.1. Deep Metrics

Deep metric learning for Person ReID has been extensively studied in past works,
e.g., [31,32]. These metrics, though, aim to address pose, viewpoint, occlusion, and
misalignment of parts to attain high similarity; however, they underperform against
unseen domains.

2.3.2. Domain Adaptation Metrics

To improve poor generalization, the authors of a few works proposed unsupervised
domain adaptation (UDA) [33,34]. UDA adapts the learned ReID metric from labeled
source domains to unlabeled target domain, but it is still time-consuming due to collecting
data and fine-tuning the metric for each new unseen target domain.

2.3.3. Domain Generalizable Metrics

Therefore, recently, domain generalizable metrics have gained a great amount of
attention in ReID [35–38]. Domain generic metrics are learned once and then directly
applied for identification on previously unseen domains; however, existing metrics still
ignore that the real world is multimodal and open-set, where the same person is seen
in several different styles and modals. Therefore, it is desired that the generic metric
in the real world (i) matches different Probe and Gallery images of the same person in
different modals and styles and (ii) jointly addresses pose, viewpoint, and displacement of
parts across views, while (iii) is also robust against impostors in open-world, and (iv) is
lightweight, thus it can run on devices in the real world.

3. Methodology

In this work, our aim is to learn person reidentification metric to identify the target
person and to integrate the learned reidentification metric with pretrained state of the art
visual tracker to track the target; therefore, in this section, we will cover the details of
learning the cross-modal domain generic open-set person reidentification metric and will
describe its complete framework as shown below in Figure 2. In Figure 2, first realistic
training data from open-set multi-modal world is generated, as shown in Figure 2a. In
Figure 2a, a large number of images of N different person identities, say person P1, P2, and
PN , as shown in Figure 2a, are taken from DT different source/camera domains.

Then, in the next step, a large number of images of each person identity are generated
in different random poses. The purpose of generating images in different random poses
for each different identity is to augment the training images of each person identity in
different poses to learn its pose invariant features for identification. Next, in Figure 2a,
taking all the original images of N persons and their generated images in random poses, we
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now randomly transfer different images of different persons into different random styles.
This is done because in the real world, when tracking the person in the outdoor world, it
could move across several different environments, and in each different environment, it
could undergo nonlinear style variations; thus, in order to identify the target person in
different environments and in different styles, it is needed to learn a style robust person
reidentification metric, and therefore, the images of a person are generated in multiple
styles to train the reidentification metric in such a way that it could match all the images of
the same person in all the different random styles. Finally, in the real world, it is also needed
to obtain a cross-modal reidentification metric because it is possible that different mobile
robot platforms use different imaging sensors, such as RGB and IR cameras. Therefore, in
Figure 2a, to learn a cross-modal reidentification metric, our work takes different original
images of N persons and takes their generated images in random poses and in random
styles to randomly transform these different training images into different modals, say RGB,
Grayscale, and Sketch modals. In our work, RGB images are transformed into Grayscale
and Sketch modals due to the reason that in the real world, it is not necessary to always
use an RGB sensor on a mobile robot; already, a large number of works have used IR
modality [12]. However, a large number of public reidentification datasets have no IR
images; therefore, we opted to transform RGB images into grayscale images. Sketch images
are also generated to further improve the feature extraction power of the learned metric
as well as to help in improving the cross-modality matching. After getting the realistic
training data, a lightweight deep CNN backbone is then used to extract the features from
the training images, as shown in Figure 2b. This deep CNN feature extraction backbone
is designed using efficient residual module as shown in Figure 2b and is described in
detail in Section 3.2.1. Furthermore, the feature extraction backbone also uses a novel
part-attention module, as shown in Figure 2b, to extract the subtle features of the different
individual parts. The details of novel part attention module are covered in Section 3.2.2.
Next, using the learned attention features of different individual parts, our work learns
cross-representations using the cross-representation learning module as shown in Figure 2b.
The purpose of cross-representation learning is to minimize both the style and modality
differences across cross-view features, which then feed to fully connected layers to learn the
complex feature relationships to finally predict the similarity between the pair of images,
as shown in Figure 2c.

Figure 2. Framework of domain generic metric MG. (a) Real Open-world Training
Data. (b) Lightweight Features Extractor with Novel Attention and Cross-Representation.
(c) Similarity Learning.

Now, below in Section 3.1, we will cover the details of generating training data in the
complex nonlinear multimodal open-set world.

3.1. Multimodal Open-World Training Data

Here, we describe the details of generating training data in nonlinear multimodal
open-set world. The real world is nonlinear, multimodal, and open-set where a person
can be seen across several different domains in different styles and can also experiences
pose, viewpoint, and parts displacement. Therefore, to train a robust metric for the real
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world, it is first needed to obtain realistic world data for training. For this purpose, first, N
number of different persons are randomly chosen from DT source domains, as shown in
Figure 2a. In order to generate realistic open-world training data, in the first step, as shown
in Figure 2a, images in random poses are generated for each person. Taking the image I1
of person P1 seen in domain D1, as shown in Figure 2a, a new image instance I3 for P1 in
random pose θp is generated as:

I3 = θ
(

I1, θp
)
, (1)

here θ is pose generation model [39]. Now, Equation (??) is used to generate images in
random poses for all the N IDs in training data (in our work, images are generated in 8
random poses), and a few generated images for ID1 are shown below in Figure 3. Getting
images for all the N persons in random poses, our work now generates images in varying
styles for all N IDs. In Figure 2a, two instances I4 and I5 for ID P1 are generated in the
styles of domain D3 and D5, respectively, as:

[I4, I5] = G
([

wGD3
, wGD5

]
, I3

)
, (2)

here wGD3
and wGD5

are the parameters of translation model G [33] for domains D3 and D5,
respectively, and I3 is the input image. In Equation (??), the purpose of generating images
for P1 in varying styles [33,34] is to exploit the diverse and varying styles images of P1 to
learn its style generic representation; thus, the learned generic metric could distinguish
P1 seen in any random style in the open world. Hence, our work generates images of P1
(i) in varying styles in different disjoint views of the same domain D1 [34], (ii) in varying
styles across random Re-ID domains [33], e.g., in styles of domains D3 and D5 as shown
in Figure 2a, and in varying styles of random detection and recognition datasets, such as
Imagenet [40]. Images in varying styles and poses are obtained for N persons; however, the
real world is actually multimodal. Therefore, Grayscale image I6 and Sketch image I8 in
Figure 2a for IDs P1 and P4 are respectively generated as:

I6 = ϕ(I1),
I8 = φ(I7),

(3)

here, function ϕ and φ convert RGB images I1 and I7 of P1 and P4 into Grayscale and
Sketch modals, respectively. Now, in the next Section 3.2, we now describe the details of
learning person features using the proposed novel part attention module.

Figure 3. A Few Generated images of ID1 During training. Images are Generated using Pose Model
θ [39].

3.2. Novel Part-Attention Feature Learning

Now, using the generated cross-modal open-world training data, here, in this section,
we cover the details of features extraction and novel part attention module. In the first, as
shown in Figure 2b, person features are extracted with efficient lightweight CNN backbone
and then, as shown in Figure 2c, the similarity between extracted pair of part attention
features are learned. However, before covering the learning of features extraction, in our
methodology, we first cover the details and design process of lightweight CNN backbone
shown in Figure 2b below in Section 3.2.1.
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3.2.1. Lightweight Backbone Design

Unlike [35–38], efficient residual module [40] is designed in Figure 4 to build a
lightweight CNN backbone for learning cross-representations as shown in Figure 2b and
learning the similarity between pair of learned features as shown in Figure 2c. Lightweight
backbone as shown in Figure 2b is a Siamese network with 10-layers (details of layers
are listed in Table 1), but for simplicity, only one stream is shown in Figure 2b. Each
Convolution layer in Figure 2b is then realized with efficient residual module, where all
convolutions are implemented as mixed depthwise separable convolutions [41] following
Wider ResNet [42] strategy, i.e., the number of filters in each successive convolution layer
are increased 2×times than previous convolution layer, thereby improving the features
representation power with minimal computational cost. In addition, channel shuffle and
channel split [43] are also used in efficient residual module in Figure 4 to enable information
mixing across different filters and layers, thus further increasing diversity in features. After
every convolution layer in Figure 4, Batch Normalization (BN) and ELU activation function
are used for faster network convergence. Realizing the lightweight CNN backbone in
Figure 2b, then, deep cross-representations are learned for each individual part of a person
complimented with novel part-attention learning mechanism, as shown in Figure 2b.

Figure 4. Our Efficient Residual Module Design.

Table 1. Detail of each layer, here, DW: Depthwise and MDW: Mixed-Depthwise. All different
convolutions in MDW are 1-layer.

Layer Name Output Size 10-Layer

conv1 112 × 112 7 × 7 (DW-Conv.), 64, stride 2

conv2_x 56 × 56
3 × 3, Max Pool, stride 2
3 × 3 (DW-Conv.), 128

conv3_x 28 × 28
[

3 × 3,5 × 5(MDW − Conv.),256
3 × 3,5 × 5,7 × 7(MDW − Conv.),256

]
× 1

conv4_x 14 × 14
[

3 × 3,5 × 5(MDW − Conv.),512
3 × 3,5 × 5,7 × 7(MDW − Conv.),512

]
× 1

conv5_x 7 × 7
[

3 × 3,5 × 5(MDW − Conv.),1024
3 × 3,5 × 5,7 × 7(MDW − Conv.),1024

]
× 1

1 × 1 Global Average Pool, 512-d FC1, 256-d FC2,
Softmax

FLOPs 1.1 ×109
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3.2.2. Novel Part Attention Cross-Representations

Attention learning has been proved promising in Re-ID; however, methods from
past works [35,44,45] learn attention globally for the whole body as shown in Figure 5a,
and thereby, certain valuable and unique features from different individual parts are
loss. Therefore, we argue to learn attention features for each individual part, as shown in
Figure 5b, to prevent from loss, as well as, highlight the unique cues of different parts.

Figure 5. (a) Global channel attention [44,45]. (b) Our part-wise channel attention.

Novel Channel Attention for Individual Parts: Taking input features F∈RC×H×W ,
where C is the number of filters, while, H × W are feature spatial dimensions, channel
attention for each individual part is then learned by horizontally dividing all the C filters
into six spatial bands, as shown in Figure 6a, because each spatial band carries features
of different part, as shown in Figure 5b, therefore, learning the attention for different
corresponding bands, consequently, learns the attention weights for different corresponding
parts. Hence, each single channel is partitioned into six horizontal bands, then the channel
attention weight for each single band from each single channel is learned, but before the
attention weight is learned it is first needed to capture the spatial, structural, and semantic
relations of each band with its C neighboring bands, as shown in Figure 6b. Thus, similar
to [44] relationships r and r′ between bands x1 and y1, and between bands x1 and z1 are
learned as:

r(x1,y1)
= ϑc( fx1)·μc

(
fy1

)
, (4)

here, fx1 and fy1 are features of x1 and y1 with dimensions R1× H
6 ×W

6 , and the value r(x1,y1)

computed as dot product between embedding functions ϑc and μc [44]. Embedding func-
tions ϑc and μc are implemented by first flattening features fx1 and fy1 , then, apply 1 × 1
convolution followed by BN and ELU activation. Now, using Equation (??), all the C
relations of band x1 with all the C neighboring bands are then obtained to form the relation
vector r1 for x1 as: r1=

[
rc(x1,:)

]
c=1,...,C

. Relation vector r1 is then embed with features fx1 as:

f ′x1
= [poolAv(νc( fx1)), poolMx(νc( fx1)), vc(r1)]. (5)

here poolAv and poolMx are global average and max pooling operations. Embedding
function νc first flattens features fx1 , then, both νc and vc are implemented as 1 × 1 Conv
followed by BN and ELU activation. Now, features f ′x1

are used to learn channel attention
weight acx1

, shown in Figure 6c, for band x1 as:

acx1
= Sigmoid

(
W2ELU

(
W1 f ′x1

))
), (6)

here, W1 and W2 are 1 × 1 Conv followed by BN. Now using Equations (4)–(6), first, all
the six weights acx1

, acx2
, acx3

, acx4
, acx5

, and acx6
, shown in Figure 6c, for all the six bands

in Channel-1 are computed, then, similarly, all the six weights for all the six bands in all
the C channels are computed. Now, computing all the six weights for all the C channels,
the six weights of each channel, e.g., Channel-1 weights shown in Figure 6c are taken and
then each weight of each corresponding band is broadcasted similar to [45] over the spatial
dimensions of each corresponding band to finally obtain channel attention a′c∈RH×W for
Channel-1. Following this, the channel attention a′c for all the C channels are then obtained,
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and finally, the attention maps for all C channels are concatenated together to form matrix
Ac as: Ac =

[
a′c′
]

c′=1....C. Channel Attention features are now computed as:

Fac = F ⊗ Ac, (7)

here ⊗ denotes elementwise multiplication [45] between weights Ac and features F.

Figure 6. Novel channel attention learning for individual parts. (a) Dividing C channels into six
bands; (b) Learning relations among bands; (c) Channel attention weight a’c.

Novel Spatial Part Attention Features: Unlike past [35,44,45], our work learns spatial
attention for pixel (i,j) for every 8 filters, i.e., weight ask for every 8 filters as shown in
Figure 7. This is done to improve spatial attention while preventing the loss of vital
patterns that are largely diminish when spatial attention for pixel (i,j) is learned globally
over all the C filters, e.g., as(i,j) = −1 in Figure 7. Now, every time taking 8 filters, e.g., filters
c = 1 to c = 8 in Figure 7, spatial attention ask for pixel (i,j) is learned by first learning the
relations of pixel (i,j) with all the (H × W)-1 pixels in the corresponding 8 filters as:

rk,l = ϑs( fk)·μs( fl), (8)

here fk and fl are 8-dimension feature vectors of pixels (i,j) and (i′,j′) as shown in Figure 7,
while, rk,l is the leaned relation, and embedding functions ϑs and μs are implemented as
1 × 1 spatial convolution followed by BN and ELU activation. Now, Equation (8) is used to
learn all the H × W relations of vector fk of pixel (i,j) to form the relation vector rk as: rk=
[rr′ ]r′=1,...,H×W , then, vector rk embed with vector fk to form feature f ′k as:

f ′k = [poolAv(νs( fk)), poolMx(νs( fk)), vs(rk)]. (9)

here, in Equation (9), embedding functions νs and vs are learned as 1 × 1 Conv followed by
BN and ELU activation. Now, the attention ask for pixel position (i,j) is learned as:

ask = Sigmoid
(
W2ELU

(
W1 f ′k

))
), (10)

here W1 and W2 are 1 × 1 Conv followed by BN. Now, Equations (8)–(10) are first used
to learn the spatial weights ask for pixel (i,j) for every 8 filters, as shown in Figure 7, and
then, similarly, Equations (8)–(10) are also used to learn the spatial weights ask for all the
H × W pixels in every 8 filters. Getting the spatial weights ask for all the H × W pixels in
all the C filters, first, the learned corresponding H × W weights for every corresponding
8 filters are broadcasted [45]over the spatial dimensions H × W, and then the attention
maps asg∈R8×H×W (here g = 1 to C/8) for every corresponding 8 filters are obtained. These
attentions maps are then concatenated together to form spatial attention weights matrix As
for all C filters as: As∈RC×H×W . Then, finally, spatial attention features Fas∈RC×H×W are
obtained as:

Fas = Fac ⊗ As. (11)
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Figure 7. Novel Spatial Attention Learning for Individual Parts.

3.3. Multi-Modal Open-Set Generic Metric

Using the attention features of each single part, cross-representation module [46]
shown in Figure 2b now learns the cross-representations for pair of features fq1 and fq2 as:

g(q1, q2) = CRM
(

fq1 , fq2

)
. (12)

here, cross-representation module CRM in Equation (12) not only learns the complex
nonlinear relationships between features fq1 and fq2 to minimize the existing domain, style,
and modality gaps in different environments between positive pair (q1, q2), but, at the
same time also addresses the pose, viewpoint, and spatial miss-alignment across views.
For the given quadruplet q1, q2, q3, q4, all the cross-representations g(q1, q2), g(q1, q3),
and g(q2, q4) are learned using Equation (12), and the representations are then sent to
fully-connected layers FC1 and FC2 shown in Figure 2c with 2-dimension softmax classifier
to learn similarity between (q1, q2). The learned similarity value is then used to compute
the quadruplet loss [47] Lquad as:

Lquad =
N

∑
n=1

[
g(q1, q2)

2 − g(q1, q3)
2 + α1

]
+

N

∑
n=1

[
g(q1, q2)

2 − g(q2, q4)
2 + α2

]
,

(13)

here, N are total number of quadruplets, α1 = 1 and α2 = 0.3 are the margin values used,
while q3 and q4 are the impostors of q1 and q2, and randomly seen in any domain in any
style and modality, respectively.

4. Experiments and Analysis

4.1. Datasets and Data Augmentation

For training metric MG Market1501, DukeMTMC-reID, CUHK03, and CUHK02 are
used as training source domains, while MG is comprehensively evaluated using domains
VIPeR, PRID, GRID, and i-LIDS. For cross-modal evaluation, SYSU-MM01dataset used the
following settings in [48]. In addition, random cropping, horizontal flipping, random rota-
tion, color jittering, random contrast, brightness, and label smoothing regularization [49]
are used in training to prevent MG from overfitting.

4.2. Implementation Details

Lightweight CNN backbone in Figure 2b is trained from scratch with randomly
initialized weights [50] for 600 epochs on single 16G NVIDIA RTX 2080 Ti GPU. The during-
training image resolution is 224 × 224, with the Adam optimizer used with initial learning
rate 8 ×10−5, mini-batch size 64, and weight decay 5 ×10−4. All of the code was written
in Pytorch.

4.3. Evaluation Metrics and Protocols

Unlike [35–38], MG is comprehensively evaluated in challenging multimodal, multi-
style, close-set, and open-set scenarios. Cumulative Matching Characteristics (CMC) at
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Rank-1 and mean average precision (mAP) are the metrics used for all close-set experiments,
while for all open-set experiments, true target rate (TTR) is measured against false target
rate (FTR) [51] as a performance metric. All results obtained after averaging over 10 trials.

4.3.1. Naïve Close-Set Scenario

Unlike [35–38], in this scenario, MG is evaluated in two different and difficult settings,
in setting#1 and setting#2. In both settings, Probe/Gallery images splits are: VIPeR:
316/316; PRID: 100/649; GRID: 125/900; i-LIDS: 60/60, respectively. Here, VIPeR: 316/316
means there are 316 person identities in test Query view, and similarly, there 316 same
person identities in the test Gallery view. In setting#1, matches of Queries observed in a
corresponding domain, e.g., observed in CUHK-03 domain, are found from the Gallery
view of the corresponding CUHK-03 domain only. Below in Figure 8, the testing scenario
of setting#1 is shown.

Figure 8. In Setting#1 it can be seen the matches of all Queries exist in the Gallery View, while the
match for each person Seen in VIPeR domain is found from the Gallery of VIPeR domain domain.

On contrary, as shown in Figure 9, the matches of Queries in setting#2 are found from
a joint Gallery containing Gallery images from all the test domains, i.e., VIPeR, PRID, GRID,
and i-LIDS. Thus, in setting#2, MG is tested in more realistic and challenging scenario to
find the matches of given Query by resisting large number of impostors from different
outdoor environments. Identification results of MG in Setting#1 are summarized in Table 2,
where MG attains 80.73%, 64.44%, and 88.99% Rank-1 identification on PRID, VIPeR, and
i-LIDS, respectively.

Figure 9. In Setting#2 the match for given Query image, the match for Query from GRID domain is
found from the joint Gallery, where the Gallery contains images from all test domains, i.e., GRID,
CUHK-03, and 3DPes.
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Table 2. Results on Naïve Close-Set Setting#1.

Methods
Target:PRID Target:GRID Target:VIPeR Target:i-LIDS

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

CBAM [45] 47.52 53.89 33.07 39.17 45.80 51.87 75.08 81.0
HLGAT [52] 48.74 56.84 35.22 43.94 48.96 58.03 79.67 82.64
RAGA [44] 50.69 60.47 37.79 45.51 49.03 58.33 83.91 85.2
SRN [35] 52.1 66.5 40.2 47.7 52.9 61.3 84.1 89.9

D.Norm [36] 60.4 - 41.1 - 53.9 - 74.8 -
MoE [38] 57.7 67.3 46.8 54.2 56.6 64.6 85.0 90.2
Meta [37] 74.2 81.0 48.4 57.9 59.9 68.6 81.3 87.0

Our MG 80.73 86.91 55.07 61.23 64.44 75.1 88.99 91.0

Clearly, metric MG attains higher recognition than [35–38,44,52]; it is because MG
learns cross-representations among different indoor and outdoor images of a person com-
plimented with part-attention learning, where learned part-attention pays large focus on
unique features from each different part, thus, MG jointly minimizes pose, viewpoint, and
spatial displacement of parts, as well as jointly addresses style, modality, and domain gaps
to resist large number of impostors in outdoor world.

Furthermore, in setting#2, though, setting#2 is difficult than setting#1, but MG still
surmounts the challenges in setting#2, and in Table 3, MG retrieves 77.89%, 52.64%, 61.92%,
and 86.23% matches of the Queries at Rank-1 from the joint Gallery for test domains PRID,
GRID, VIPeR, and i-LIDS, respectively. These results clearly reveal MG can inherently
tackle pose, viewpoint, style, and modality transforms across both nonlinear indoor and
outdoor environments, while, complemented with the part-attention mechanism, MG also
learns cross-representations in a way to jointly address occlusion and misalignment of
parts; therefore, in Figure 10d, MG declines the large number of impostors and improves
the identification accuracy from Rank = 5 in Figure 10a to Rank = 1.

Table 3. Results on Naïve Close-Set Setting#2.

Methods
Target:PRID Target:GRID Target:VIPeR Target:i-LIDS

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

CBAM [45] 39.42 51.33 25.21 37.99 32.61 44.04 69.24 73.0
HLGAT [52] 43.95 50.07 28.77 39.5 37.66 49.72 70.77 76.95
RAGA [44] 44.49 50.1 30.92 40.32 38.55 51.79 72.14 78.63
SRN [35] 47.85 51.72 34.87 43.67 44.99 52.05 72.1 78.41

D.Norm [36] 53.70 60.1 37.22 44.33 49.54 54.41 71.04 80.03
MoE [38] 51.51 63.91 39.35 47.69 48.74 57.0 79.0 83.1
Meta [37] 70.82 78.07 42.61 50.95 51.74 59.97 79.68 84.78

Our MG 77.89 84.78 52.64 58.85 61.92 73.08 86.23 90.0

Figure 10. Retrieval results obtained in close-set setting#2 using different training data. (a) Training
data only contains original image samples with no data augmentation; (b) Training data contains
original image samples, and image samples are generated in different random poses too; (c) Training
data contains original image samples, and image samples are generated in different random poses
and in different random styles too; (d) Training data contains original image samples, and image
samples are also generated in different random poses and styles, as well as, part-wise attention is
learned to improve features power.
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4.3.2. Challenging Close-Set Scenario

The joint Gallery in setting#2 is very challenging; however, the target person being
followed by robot when moving across different outdoor environments could undergo style,
illumination, pose, and viewpoint changes in the real world. Therefore, to obtain a robust
reidentification metric, MG is tested in the real-world environment where Probe-Gallery
pairs could be seen in different modals [53] and in different styles [35]. The real-world
testing scenario for Challenging Close-Set is shown below in Figure 11.

Figure 11. In the Challenging Close-Set Scenario, the Query image, the image of GRID domain
could be seen in the RGB modalily (or different style), whereas its match in Gallery view has
Grayscale modality.

Therefore, during testing in the Challenging Close-Set Scenario, images in Query and
in joint Gallery views are randomly transformed into different modals and styles, then, MG
finds the matches from joint multimodal multistyle Gallery, and the results are given in
Table 4.

Table 4. Results on Challenging Close-Set Scenario.

Methods
Target:PRID Target:GRID Target:VIPeR Target:i-LIDS

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

CBAM [45] 30.98 40.88 21.8 28.4 25.74 32.37 58.37 62.66
D.Norm [36] 31.49 42.41 23.54 30.68 27.73 35.20 60.56 69.03
RAGA [44] 34.93 42.99 24.12 32.34 32.64 37.85 64.05 73.08

HLGAT [52] 36.79 43.35 24.31 33.14 35.25 46.39 65.43 76.33
SRN [35] 40.23 49.43 25.06 34.84 38.98 50.27 70.47 76.23
MoE [38] 45.12 53.33 28.49 37.19 44.46 57.96 75.64 80.27
Meta [37] 62.85 71.33 30.94 39.0 44.05 57.37 71.01 79.95

Our MG 75.04 82.19 49.38 57.83 60.17 71.93 84.04 88.13

In Table 4 MG attains 3.47% drop at Rank-1 accuracy than close-set setting#2. There-
fore, the reasons for this drop are analyzed in retrieval results in Figure 12. In Figure 12a,b,
it is evident that MG is robust against style changes and impostors and finds matches
at Rank = 2; however, in Figure 12c MG lags in cross-modal matching due to impostors.
Clearly, color images dominate intensity images, thus, to improve the multimodal recogni-
tion capability of metric MG in the outdoor environment, it is needed to optimally represent
each person in RGB, Grayscale, and Sketch modals during training; hence, MG can resist a
large number of multimodal impostors in outdoor environment.
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Figure 12. Retrieval results obtained in challenging close-set scenario. (a) Finding the match in Gallery
view where the correct Gallery image has same style and modality with Query image; (b) Finding the
match in Gallery view where the correct Gallery image has different style, but, same modality with
Query image; (c) Finding the match in Gallery view where the correct Gallery image has different
style, and different modality with Query image; (d) Finding the match in Gallery view where all the
images in Gallery view has different style, and different modality with Query image.

Therefore, to find the optimal representation of persons in different modals, our work
performed different experiments, and the results are shown in Figure 13. In Figure 13, for
domains VIPeR and GRID, it is observed that MG declines a large number of impostors
when a number of images for a large number of training persons have representation ratio
1:1:3 for Grayscale (G.Sc.) vs. Sketch (Sk.) vs. RGB modals. Therefore, MG is retrained with
the representation ratio 1:1:3 to regain the performance, and in Figure 12d, MG successfully
declines impostors to find match at Rank = 3.

Figure 13. Rank-1 Result Comparison for Different Representation Ratios on VIPeR & GRID for
(a) G.Sc. vs. RGB (b) Sk. vs. RGB.

4.3.3. Open-World Scenario

This is the scenario where the target person P1 in the real world moves out from the
robot perception, and thus the robot losses the target person. While there is no target
person in the robot perception, it is required that the robot following the person has robust
reidentification capability to resist both impostors in the open world and at the same time
has inherent discriminating ability to reidentify the real target person as soon as the target
person is recaptured into the robot perception. Therefore, our work also evaluates metric
MG in the realistic open world. In Figure 14, we have shown the high-level overview of
this scenario.

However, unlike [51], for the open-world testing in our work, randomly, 48 person
IDs from each testing domain, i.e., from VIPeR, PRID, GRID, and i-LIDS domains are
chosen to form the realistic world joint open-set Gallery, then MG finds the matches for
target Query images from the joint open-set Gallery, and the results are given in Table 5.
In Table 5, MG in the open world optimizes the part-attention weights in a way to learn
cross-representations to simultaneously decline a large number of impostors in the open
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world and also discriminates difficult nontarget Queries to attain 68.02%, 56.09%, and
76.57% Rank-1 identification at FTR 0.1% on PRID, VIPER, and i-LIDS, respectively.

Figure 14. Open-World Scenario where it is not necessary that all the Queries have match in Gallery
view. Thus, the metric MG needs to be robust against unknown persons seen in the open world while
the target is moved out of perception.

Table 5. Results on Open-World Re-ID.

Methods
Target:PRID Target:GRID Target:VIPeR Target:i-LIDS

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

CBAM [45] 26.95 51.00 18.43 34.26 23.48 44.38 41.07 68.98
APN [51] 28.63 53.29 19.34 36.60 24.80 46.21 43.32 70.87

RAGA [44] 31.05 55.74 19.92 38.34 27.42 49.49 45.82 73.03
HLGAT [52] 32.98 57.06 20.27 40.97 28.14 51.64 47.12 75.55

SRN [35] 37.34 60.49 23.13 44.17 30.43 53.42 50.38 77.00
MoE [38] 43.01 65.09 26.36 47.15 33.01 56.10 52.18 80.67
Meta [37] 45.70 65.39 28.43 49.68 32.11 55.27 51.35 80.29

Our MG 68.02 80.86 41.3 54.4 56.09 78.1 76.57 86.42

Furthermore, in Figure 15, attention maps and the corresponding rise in Rank-1
identification accuracy are analyzed. In Figure 15b, it is revealed that MG exploits part-
attention module and learns cross-representations that declines large number of impostors
and nontarget Queries in the open world; thus, Rank-1 accuracy at FTR 0.1% rises to 41.3%
from 35.87% in Figure 15a.

Figure 15. Rank-1 Result Comparison on VIPeR & GRID for (a) G.Sc. vs. RGB (b) Sk. vs. RGB.

4.3.4. Challenging Open-World Scenario

Though, metric MG is evaluated in the open world; however, open-set Gallery in real-
world is far more challenging where Probe-Gallery pairs can be seen in different modals
and styles. In Figure 16, this complex scenario is shown visually.
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Figure 16. In the Challenging Open-World Scenario, the Query image can be seen in different
domains, styles, or modalities, while the match is needed to be found from any other random domain,
e.g., the CUHK-02 domain, while the matching image has a style or modality different from that of
the Query image.

Therefore, images in Query and in joint Gallery are randomly transformed into differ-
ent modals and styles during testing, then MG finds the matches from the joint multimodal
multistyle open-set Gallery, and the results are summarized in Table 6.

Table 6. Results on Challenging Open-World Re-ID.

Methods
Target:PRID Target:GRID Target:VIPeR Target:i-LIDS

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

CBAM [45] 19.34 38.27 10.66 20.03 17.58 33.71 28.0 52.14
APN [51] 21.01 47.75 12.12 25.34 18.97 36.40 32.31 59.86

RAGA [44] 22.65 49.38 12.23 25.96 19.72 38.04 34.54 60.43
HLGAT [52] 23.54 51.03 14.18 28.81 21.17 40.47 36.84 64.46

SRN [35] 26.09 54.80 16.83 34.34 23.24 43.22 39.13 68.08
MoE [38] 29.37 59.0 19.04 38.71 25.79 48.35 42.86 71.53
Meta [37] 32.45 60.07 21.22 40.48 25.35 47.98 42.24 71.22

Our MG 65.11 80.34 37.51 51.77 52.08 76.9 76.04 86.0

MG, in contrast to [35,37,38,44], is an open-set metric with inherent ability to match
cross-modal and cross-style Probe-Gallery pairs in the nonlinear outdoor environment,
while the MG also simultaneously rejects large number of impostors; therefore, in Table 6MG
attains 65.11%, 37.51%, 52.08%, and 76.04% Rank-1 identification at FTR 0.1% on PRID,
GRID, VIPeR, and i-LIDS datasets, respectively.

Furthermore, in Figure 17, attention maps and in Figure 18 retrieval results are ana-
lyzed in the open-world. Our attention maps in Figure 17 are more focused on individual
parts and do not discard unique valuable cues from different filters, therefore, our attention
maps are more robust against interenvironment and intraenvironment style and modal-
ity transforms than SRN [35]and RAGA [44]. Consequently, MG successfully identifies
cross-modal pair (Q1,G1), and cross-style pairs (Q1,G2) and (Q2,G2) at Rank=3, Rank=1,
and Rank=1, respectively, in Figure 18; there exists large number of impostors in Gallery
in scenario#1, scenario#2, and scenario#3, whereas [35,37,38] inherently lack matching
cross-modal and cross-style images. In scenario#4 MG, it also matches cross-style pair
(Q2,G3) at Rank=2; even the G3 is seen in COCO domain style, where underlying nonlinear
transforms and impostors in COCO domain affect the retrieval results.
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Figure 17. Comparison of Our Part Attention Maps with SRN [35] and RAGA [44].

Figure 18. Retrieval results of Our MG, SRN [35], Meta [37], and MoE [38] in real-world scenarios.
Green Rectangles contain correct matches.

4.3.5. Cross-Modal Scenario

Our MG is also evaluated against RGB-Infrared matching on SYSU-MM01 dataset. MG
compared to [48,54] is trained in real multi-modal open-world to tackle complex nonlinear
transforms and can resist large number of impostors; thus, in Table 7, MG attains 64.93%
and 72.58% Rank-1 identification on All-search and Indoor-Search, respectively.

Table 7. Cross-Modal Comparison on SYSU-MM01.

Methods

SYSU-MM01

All-Search Indoor-Search

R = 1 R = 10 mAP R = 1 R = 10 mAP

Hi-CMD [53] 34.94 77.58 35.94 - - -
GECNet [48] 53.37 89.86 51.83 60.60 94.29 62.89
cm-SSFT [54] 61.6 89.2 63.2 70.5 94.9 72.6

Our MG 64.93 92.31 66.04 72.58 94.89 72.98
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4.3.6. Computational Complexity

To run MG in the real world, all convolutions are implemented as mixed depthwise
separable convolutions [41]. The computation burden for depthwise separable convolution
is K × K × M × H × W + M × N × H × W, whereas the computation burden for standard
convolutions are K × K × M × N × H × W. If kernel size K × K is 3 × 3, and feature map
dimensions H × W are 56 × 56, then, the cost of depthwise separable convolution is 3 × 3
× 256 × 56 × 56 + 256 × 256 × 56 × 56 = 212,746,240 multiplications, while the cost for
standard convolutions are 3 × 3 × 56 × 56 × 256 × 256 = 1849,688,064 multiplications.
Clearly, depthwise separable convolution lowers the computation cost by 88%, and thus
MG is realized on smart embedded camera Hi3516DV300.

4.3.7. Computation Time

Running time of metric MG for different image sizes for one forward pass on Hi3516DV300
are given in Table 8, where for image size 224 × 224 MG takes 29.4ms to process one single
pass and obtain similarity.

Table 8. Computation Time for Different Image Sizes.

Image Size Time/Image (ms) Device Platform

324 × 324 52 Hi3516DV300

256 × 256 38.4 Hi3516DV300

224 × 224 29.4 Hi3516DV300

4.4. Reidentification-Based Tracking Experiments

To evaluate the learned generic metric MG in the person tracking applications, our
work performed several experiments in outdoor to track target. In Figure 19, the complete
framework is shown where the learned reidentification metric MG is integrated with
pretrained CNN tracker [4].

Figure 19. System Overview of Person-Following Robot in Our Work.

The input in Figure 19 is RGB image with LiDAR data, where the RGB image is first
sent to Yolov5 detector [55] to obtain the bounding boxes. Reidentification module with the
tracker in the next step in Figure 19 then takes the detected bounding boxes and identifies
the target using the generic metric MG and sends the identified box to the pretrained
tracker [4] as the input dynamic template of the person to be tracked. To perform the
identification of target, Re-ID metric MG in our work uses prestored features of the target
person. Finally, using the tracker prediction box and LiDAR data, the real-world position
of the target is then updated. Motion control in last uses the updated position to generate
the actuation signals for the robocar.

4.4.1. Experiment Setup and Testing Scenarios

All the experiments in our work are conducted in outdoor, where the person is tracked
in different environments, while undergoing illumination and background variations.

In Figure 20, it can be seen the person is tracked in three challenging and complex
outdoor environments, which are referred to as Scenario#1 (Seq#1), Scenario#2 (Seq#2), and

89



Sensors 2023, 23, 813

Scenario#3 (Seq#3). In each of these scenarios, the person is tracked for 115 s, 115 s, and
120 s, respectively, while the person in three different scenarios experiences crowding and
occlusion with distractors (distractors in our work are the person occluding the target but
are the not the impostors of target) and impostors in the scenes, and at several occasions, the
person also completely moved out of the perception of mobile roboplatform. The mobile
roboplatform visual system consists of RGB camera and LiDAR sensors, both are mounted
on top of roboplatform, as shown in Figure 21.

Figure 20. Person-following roboplatform in outdoor world. (a) Following the target in black clothing
on Road-1; (b) Following the target in crowded and occluded scenario on Road-2; (c) Continue
following the target on Road-3 in varying pose; (d) Continue following the target on Road-3 even
even there are distractor and impostor.

Figure 21. Robocar Robotic Platform mounted with Senors in Outside World.

Mounted RGB sensor take images with resolution 1080P with 30 frames per second.
Furthermore, the depth and RGB data both are processed with on board CPU i7 8700k on
the roboplatform, where the memory size is 16G.

4.4.2. Evaluation Metrics and Comparison

To make fair evaluation and comparison with other state-of-the-art works, our work
uses four standard metrics [2] for quantitative evaluation. These metrics both evaluate rei-
dentification performance and tracking success and are defined as: Correctly Identified and
Tracked (CT): meaning the person is correctly identified and tracked successfully, Correctly
Loss (CL): meaning it is correctly identified the person is not in the scene (either moved out
or completely occluded) and thus successfully loss, Wrongly Identified and Tracked (WT):
meaning the identification metric wrongly identified the impostor or distractor, and the
tracker wrongly tracks the distractor or impostor, and the last metric is Wrongly Loss (WL):
meaning the identification metric assumes there is no target in the scene; however, there is
target present in the scene, and the tracker wrongly loss tracking.

4.4.3. Results and Analysis

Our work compares the performance with three state-of-the-art trackers, which are
STARK [4], DiMP [5], and ATOM [6]. Table 9 below summarizes the results for tracking
in all the three scenarios and presents the tracking results for STARK [4], DiMP [5], and
ATOM [6], as well as results of our model for the evaluation metrics CT, CL, WT, and WL
with the total tracking time in seconds and the percentage of identified and tracked frames
in the given Seq#1, Seq#2, and Seq#3.
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Table 9. Person Reidentification Results for Tracking in the Outdoor World.

Methods

DiMP [5] ATOM [6] STARK [4] Ours
Time
(Sec)

Frames
(%)

Time
(Sec)

Frames
(%)

Time
(Sec)

Frames
(%)

Time
(Sec)

Frames
(%)

Seq. #1

CT 52 45.2 57 49.57 62 53.91 80 69.6
CL 20 17.39 17 14.78 16 13.92 25 21.74
WT 13 11.29 15 13.05 13 11.31 6 5.21
WL 30 26.09 26 22.61 24 20.87 4 3.48

Seq. #2

CT 31 26.96 44 38.26 56 48.69 73 63.48
CL 17 14.78 10 8.69 12 10.43 25 21.74
WT 22 19.13 19 16.52 15 13.04 8 6.96
WL 45 39.13 42 27.83 32 26.08 9 7.82

Seq. #3

CT 28 24.35 38 33.04 40 34.78 69 60.02
CL 14 12.17 8 6.95 10 8.69 29 25.22
WT 26 22.61 23 20 20 17.39 12 10.43
WL 52 45.22 51 44.35 50 43.48 9 7.83

Results in Seq#1: In Table 9 in Seq#1, our work Correctly Tracked (CT) the target
person in 69.6% of total frames, whereas original STARK [4] with no identification module
Correctly Tracked (CT) target person in 53.91% of total frames. This shows that tracking
when complemented with reidentification module can largely improve the target tracking
in different nonlinear scenes.

Furthermore, in Figure 22, visual comparison is shown, where it can be seen that
when there are no distractors in the frames frame#90 and frame#146, then the identification
of target and its tracking is easier; however, when the target is occluded with object in
frame#155 in Figure 22, then a few trackers including STARK [4], DiMP [5], and ATOM [6]
start tracking distractors. The reason is obvious: STARK [4], DiMP [5], and ATOM [6]
all lack the identification ability to distinguish between target and distractor. In addition,
when the target is completely moved out of the perception, such as in frames frame#164,
frame#165, and frame#222 in Figure 22, then these trackers still continue wrongly tracking
either distractors in frame#164 and in frame#165 or impostors in frame#222 since there are
no reidentification model to verify if the detected person is a real target or impostor. In last,
in Seq#1, it is also evaluated that how the model performs under the scenarios when the
person is completely occluded with impostor, such as in frames frame#767 and frame#779.
In Figure 22, in frame#767 and frame#779, it can be seen that our model with reidentification
metric can successfully identify the person and thereby successfully update the dynamic
image template of target to improve tracking, and in last, using both detected bounding box
and LiDAR data it can robustly track the person during occlusion. In contrast, in Figure 22,
when the person is occluded in frame#767 and frame#779, then DiMP [5] and ATOM [6]
wrongly start tracking the impostor in frames frame#767 and frame#779.

Figure 22. Person-Following Tests in Scenario#1 (seq#1), where the Target moves out of Robocar
perception and faces crowding and distractions.
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Results in Seq#2: In Table 9 in Seq#2, our work Correctly Tracked (CT) the target
person in 63.48% of total frames, whereas original STARK [4] with no identification module
Correctly Tracked (CT) target person in 48.69% of total frames.

The results are lower than in Seq#1 because Seq#2 is more challenging than Seq#1,
where in Seq#2 person moves in a varying illumination environment, while the background
noise also affect reidentification, as shown in Figure 23. Furthermore, in Figure 23, the
person is also occluded by distractor and impostor in the scene. In Seq#2 in frame#151
and frame#186, our reidentification metric MG can identify the target successfully in the
presence of impostor while other trackers DiMP [5] and ATOM [6] follow impostor person.
Furthermore, in frame#191 in Figure 23, when both impostor and target are seen in the
scene, the target is occluded by both impostor and distractor; then, in such a scenario,
still our identification metric MG can address both occlusion and illumination variation
to identify the target and thereby improve its tracking. Similarly, in other complex scenes,
when target is completely moved out of perception in frame#211 in Figure 23 and when the
target is occluded by both impostor and distractor in frame#606 in Figure 23, then, in both
scenes, our reidentification metric MG helps tracker to not follow impostor, and the mobile
roboplatform stops and wait for the target to reappear and identified.

Figure 23. Person-Following Tests in Scenario#2 (seq#2), where the Target moves in varying illumi-
nation environment, and is occluded with impostors and distractors, while, Target also moves out
of perception.

Results in Seq#3: In Table 9 in Seq#3, our work Correctly Tracked (CT) the target
person in 60.02% of total frames, whereas original STARK [4] with no identification module
Correctly Tracked (CT) target person in 34.78% of total frames. Seq#3 is far more chal-
lenging than Seq#2 and Seq#1, where in Seq#3 the person simultaneously undergoes pose
and viewpoint changes, illumination and background variations, as well as, distracted
and occluded by distractors and impostors, as shown in Figure 24. However, still, our
reidentification metric MG successfully identified and tracked the person in 60.02% of total
frames, compared to the state of art STARK [4], DiMP [5] and ATOM [6]. This is mainly
due to the correct identification of the target, which helps the tracking. In Figure 24, in
frame#174 in Seq#3, the target person undergoing varying posture, while impostors are
in the seen; however, still the learned generic metric MG discriminates the target well.
Furthermore, in frame#282 and frame#286 in Figure 24, when the target is fully occluded
by distractor, while an impostor is nearby, still MG successfully discriminates the impostor,
whereas DiMP [5] and ATOM [6] track the impostors. In addition, in frame#293 in Figure 24,
when the target reappears after full occlusion, then both our model and STARK [4] track
the target well; however, STARK [4] has a little higher localization error in tracking than
our model.

Last, in Figure 24 in frames frame#354 and frame#362, the target again occluded by
impostor, while, also undergo illumination variations. Though, the situation is challenging,
but the metric MG is trained to address both illumination variations and style variations,
and it is resistant against impostors; therefore, MG continues identifying the person in
consecutive frames, i.e., in frame#354, frame#362, and in frame#373.
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Figure 24. Person-Following Tests in Scenario#3 (seq#3), where the Target moves in varying illumina-
tion environment, while the Target is completely occluded with impostors and distractors, and also
suffers due to changing backgrounds.

5. Conclusions & Future Directions

This work learns lightweight domain generic metric in the multimodal open world for
person-following robots to address the practical world challenges face by person-following
robots including nonlinear pose, viewpoint, style, and multimodal transforms, and a novel
part-attention module is proposed to learn attention weighted cross-representations to
address displacement and occlusion of parts. Thereby, the learned generic metric can resist
large number of impostors and nontarget queries in the open world, while the learned
metric is also lightweight and can run on robotic platform. Furthermore, future research
will focus to improve the learned domain generic reidentification metric to solve multiscale
and night reidentification problems for person-following robots.
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Abstract: The game of Jenga is a benchmark used for developing innovative manipulation solutions
for complex tasks. Indeed, it encourages the study of novel robotics methods to successfully extract
blocks from a tower. A Jenga game involves many traits of complex industrial and surgical manipula-
tion tasks, requiring a multi-step strategy, the combination of visual and tactile data, and the highly
precise motion of a robotic arm to perform a single block extraction. In this work, we propose a
novel, cost-effective architecture for playing Jenga with e.Do, a 6DOF anthropomorphic manipulator
manufactured by Comau, a standard depth camera, and an inexpensive monodirectional force sensor.
Our solution focuses on a visual-based control strategy to accurately align the end-effector with the
desired block, enabling block extraction by pushing. To this aim, we trained an instance segmentation
deep learning model on a synthetic custom dataset to segment each piece of the Jenga tower, allowing
for visual tracking of the desired block’s pose during the motion of the manipulator. We integrated
the visual-based strategy with a 1D force sensor to detect whether the block could be safely removed
by identifying a force threshold value. Our experimentation shows that our low-cost solution allows
e.DO to precisely reach removable blocks and perform up to 14 consecutive extractions in a row.

Keywords: Jenga; robotic arm; deep instance segmentation; visual servoing; sensor fusion

1. Introduction

In recent years, visual-based control strategies have successfully spread in a wide vari-
ety of robotics contexts [1]. Nowadays, advances in computer vision for robotic perception
are strictly tied to deep learning (DL). DL has been used in many robotics applications
where objects must be detected [2] or segmented [3] to address manipulation tasks, demon-
strating competitive advantages compared to classic image processing algorithms in terms
of accuracy and robustness. For instance, relevant works in the precision agriculture field
have been proposed in recent years to support autonomous navigation [4,5], harvesting [6],
and spraying [7]. Intelligent DL-based behaviors are also desired for visual-based robotic
surgery to detect and segment instruments [8,9], and in many industrial robotic tasks [10,11].
Nonetheless, to fill the gap between robot and human perception, multisensory approaches
have recently been studied and evolved in novel robotic platforms, combining visual data
with vocal interfaces [12,13], or tactile sensors [14–16].

The game of Jenga is a perfect example of a challenging benchmark for robotic per-
ception and control. In recent years, researchers have tackled the game with disparate
platforms and approaches, adopting sophisticated manipulators [17,18] and complex con-
trol systems [19,20]. The contribution to an effective robotic solution for Jenga goes beyond
the fascinating dynamics of this popular game. Indeed, it can support the evolution of
cutting-edge visual and multisensory control strategies for complex real-world tasks requir-
ing human-level precision. The case of Jenga is not isolated in the historical advancement
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of artificial intelligence (AI), where games are often used as a common benchmark for
newly proposed learning algorithms [21–23]. The complexity of a round of Jenga resides in
two different factors: first, it requires a multi-step policy to select a feasible block in the
tower, approach it, and finalize its extraction. Second, all of these steps are based on the
combination of real-time visual and tactile data processing and the highly precise motion of
the end-effector for a single block extraction. According to this, it can be surely compared
to real-world industrial [11], surgical [24], and agricultural [25,26] manipulation tasks.

This work presents a cost-effective system to play Jenga with the educational robotic
manipulator—e.DO by Comau and a custom pushing finger as an end-effector. Our
proposed solution is based on the combination of visual and tactile perception to handle
the human-level complexity and the high precision required by the task. In particular,
compared to previous attempts to play Jenga with a manipulator, we adopted a single
RGB-D camera and a basic 1D force sensor as complementary hardware to the robot arm,
considerably reducing the cost and complexity of the solution. An illustrative sequence of
frames depicting our robotic system in action is shown in Figure 1. Overall, our perception
and control system is composed of the following:

• A DL-based instance segmentation model fine-tuned on a custom Jenga tower dataset
realized in simulation, which effectively allows the system to segment and select
single blocks;

• An eye-in-hand visual control strategy that carefully handles the block extraction;
• A 1D force sensor to correctly evaluate the removability of a specific block.

Figure 1. Our proposed solution in action: from left to right in the sequence, the e.DO robot selects a
block to extract in the tower, adopting a visual-based control to approach it. Then, it starts pushing
for the block extraction if it detects a low reaction force.

Our extensive experimentation validates all the sub-components of the proposed
system. First, we study the force reaction on the 1D sensor and obtain a threshold-based
decision policy to classify the extraction of the block as feasible or not. Then, we provide
details on the training and testing of the instance segmentation model, comparing results
obtained on simulated and real-world images. Moreover, we test our visual perception
pipeline composed of segmentation and pose estimation of a group of blocks, measuring
the tracking time during several runs. The adopted visual servoing control strategy is tested
on the two major behavioral features of interest: precision, in terms of distance between the
point of contact and the center of the block, and efficiency, estimated as the time required
to align the end-effector to a block. Finally, we evaluate the overall performance of our
solution by counting consecutive successful block extractions.

The paper is organized as follows. In Section 2, related works are presented in three
subsections, discussing previous attempts to play Jenga with a manipulator and the state-of-
the-art of deep instance segmentation, visual servoing, and a multisensory control strategy
in robotics applications. Section 3 illustrates the overall strategy adopted to tackle the Jenga
game and all the specific components of our solution. Finally, in Section 4, we present
and discuss all the conducted experiments and the obtained results. Section 5 draws some
conclusions and potential suggestions for future works.
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2. Related Works

In this section, we first describe previous studies aimed at playing Jenga with a robot.
Then we introduce the computer vision task of instance segmentation and its state-of-
the-art and report similar works adopting visual servoing and multisensory control in
robotic applications.

2.1. Playing Jenga with a Robot

Jenga is a common benchmark for robotic systems, allowing for a direct comparison
of methods, experiments, and results. So far, few works have proposed a complete visual-
based robotic system to play the game autonomously. At the same time, several studies
focus on a partial aspect of the game with a specific solution.

Recently and most notably, Fazeli et al. [19] delved into the details of the manipulation
and artificial intelligence capabilities needed to learn Jenga by sight and touch, achieving
20 consecutive block extractions; their system is made up of an end-effector that can push
and pick blocks, a long-reach 6DOF industrial robot arm, an expensive 6-axis force sensor,
and a fixed camera. The method is focused on learning from multisensory fusion and is
compared to state-of-the-art learning paradigms with simulation and experiments, resulting
in high performance and fast convergence. Their approach adheres to all the rules of Jenga
with a tower in standard conditions and considers both block removal and placement on
top of the tower. However, the hierarchical control strategy they adopt to carefully push
the block during the extraction strongly relies on the use of an expensive 6-axis force sensor
and a professional industrial arm, drastically increasing the overall cost of the solution.

Kroger et al. [17], who adopt similar expensive hardware, achieved 29 extractions
with a 6DOF industrial robot arm, a 6-axis force sensor, a 6-axis acceleration sensor, a laser
distance sensor, and two static CCD cameras. The authors develop a modular control
system based on a generic number of sensors with a primitive manipulation programming
interface to play a standard Jenga game, manually recoloring the blocks to help the vision
system. Both reaction force and tower-perturbed movements seen from cameras provide
extraction feedback when a block is randomly chosen to be extracted. Pose estimation from
cameras is refined with a laser distance profiler before gripping the block, which is then
placed on top with force feedback.

Wang et al. [27] propose a simpler system to leverage inexpensive vision and ma-
nipulation hardware to develop a strategic planner based only on visual feedback. They
achieve up to five consecutive extractions. The limitations of using classical computer
vision with two CMOS cameras and a 5-DOF pioneer short-reach robotic arm without
force measurements led the authors to choose a quite different and simplified Jenga setup
compared to the real one. Target blocks were partially pre-pulled and distanced one from
the other, and the tower had half the levels.

A two-fingers, anthropomorphic, 7-DOF industrial robot arm is used in [18]. An eye-in-
hand omnidirectional camera detects the tower configuration, and a block is chosen using
a stability criterion. The block is grasped by the robot hand, which mounts a 6-axis force
sensor on each fingertip. The Jenga setup is not standard, as the tower has only 10 layers.
However, the system can detect and place blocks on the top of the tower, presenting a
pretty high autonomy level.

A fine-grained kinematic analysis of the physics behind weight, friction interactions,
and stability of the Jenga tower is studied in [28], both during and after the extraction. With
a 6DOF manipulator, a custom gripper, and a 6-axis force sensor, they compare the real
forces with the modeled ones and achieve 14 consecutive extractions before breaking the
tower. No vision or pose estimation system is used, so a human operator must provide
poses and manually rotate the tower.

Differently, Yoshikawa et al. [20] investigated a reinforcement learning approach, using
a deep Q-Network and a 6DOF manipulator to correctly push a block without a priori
knowledge of the kinematics and stability of the tower. The work is done in simulation on
an ideal Jenga tower. Negative rewards are extrapolated from how humans play the game,
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such as pushing in the wrong direction and touching other blocks. The result is a policy for
precise movement.

Similar to most related studies, our solution uses a force sensor to detect push failures
and empirically check the removability of blocks. On the other hand, our perception
system presents several novelties: a block identification approach based on an instance
segmentation neural network, an eye-in-hand camera configuration, and a visual servoing
control for the manipulator.

2.2. Deep Learning for Object Recognition

During the last few years, deep learning [29] has achieved state-of-the-art performance
on various computer vision tasks. Different methods can be used to extract knowledge from
visual data and give them a semantic interpretation. The literature refers to classification
as the task of assigning a descriptive label to the whole image. Several approaches have
been proposed to solve this problem, introducing architectural methodologies, such as
convolutions [30], residual connections [31], feature [32], and space attention [33], or the
more recent transformer-based architecture with self-attention [34,35].

Suppose a more fine-grained semantic description is needed. In that case, the object
detection task has the objective of localizing instances that belong to target classes with the
regression of bounding boxes. This detection allows the system to understand the scene
hierarchically depicted in the image, assign multiple labels, and spatially identify the objects
in the image reference frame. Popular methodologies for object detection [36–39] have
focused on efficient and real-time execution to be used on continuous streams of images.

On the other hand, the semantic segmentation task aims at assigning a semantic label
at the pixel level by predicting masks that identify the portion of the image belonging to a
certain class. Classical approaches to this task are based on fully convolutional networks
organized in an encoder–decoder fashion [40,41], which adopt successive downsampling
and upsampling operations to predict labels at the pixel level. The main difference between
semantic segmentation and object detection is that the former does not identify single
instances but only regions that depict objects of the target classes.

Instance segmentation aims to localize single instances by predicting masks. This
approach allows the most precise interpretation of the input image since it avoids coarse
bounding box localization by identifying masks at a pixel level. Several methods have been
proposed in the literature to solve this task. mask-RCNN [42] extends an object detection
method called faster R-CNN [43] and is based on a two-stage approach that first proposes
possible regions of interest (ROI) and predicts segmentation masks and classes in the second
stage. Other approaches are based on one-stage architectures [44,45] and are inherently
faster than two-stage methods. Other approaches solve a semantic segmentation task and
then perform instance discrimination with boundary detection [46], clustering [47], or
embedding learning [48]. Recently proposed YOLACT [49] and YOLACT++ [50] focus on a
real-time approach to instance segmentation that extends an object detection approach with
mask proposals. The combination of mask proposals and bounding boxes gives pixel-level
instance localization. In this work, we adopted this approach due to its computational
efficiency and ability to detect many near objects, typical of Jenga block segmentation.

2.3. Visual Servoing in Robotics

Industrial robotic tasks, such as assembly, welding, and painting represent standard
scenarios where manipulators execute repeatable point-to-point motion by using off-line
trajectories [51]. However, the variability and disturbances of different environments may
affect the estimation of the target pose and lead to a degradation of task accuracy. Moreover,
there are better strategies than this open-loop control technique for motion-based objects
due to the target position and orientation variations.
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Visual-based control strategies recently emerged as valid candidates for real-time
trajectory computation and correction. In particular, visual servoing was introduced in
1979 [52] and refers to closed-loop systems where visual measurements are fed back into
the controller to enhance task precision. Several works have proposed this approach
for robotics applications in medical [53], agricultural [54], and aerospace contexts. The
ability to move a robotic arm flexibly in high-precision surgery operations [55–57] confirms
the potential of this technique in complex scenarios where small errors can compromise
human health.

Visual servoing taxonomy distinguishes two approaches [58] according to the type
of tracker used to generate visual features. Image-based visual servoing reconstructs the
relative pose of the target in the manipulator reference frame using the camera field of view.
This approach is widely used in agriculture applications [59,60], where occlusions of the
camera can lead to poor visual feature extraction.

On the other hand, position-based visual servoing leverages a priori geometrical
information on the object to derive the corresponding visual features. Recently, hybrid
schemes have tried combining the two techniques and leveraging 2D and 3D visual features.
In [61], an aerial vehicle with a robotic arm presents a hybrid visual servoing scheme to plug
a bar into a fixed base. In this case, a marker detector provides the pose information of the
object to be grasped, narrowing the possible field of use. Indeed, the robustness of tracking
algorithms remains a central problem for visual-based control. Recently, in [62], the authors
proposed a novel approach that uses augmented reality (AR) to generate 3D model-based
tracking or 3D model-free tracking techniques to enhance the system’s robustness.

3. Methodology

In this section, we frame the Jenga game and translate the rules of the game into a
methodological set of requirements for the robotic system. First, a player’s final goal is
safely removing blocks from the tower. In the original game setting, a player has to place
each extracted block at the top of the tower to validate its round and continue with a
new block extraction. In our robotic experimental setting, we remove this rule and aim
to extract as many blocks as possible from the tower without reallocation. This choice is
mainly related to the limited workspace of the e.DO manipulator, designed for educational
purposes, since it cannot reach the fallen blocks behind the tower. Moreover, our custom
end-effector, similar to a human finger, cannot perform grasping and instead extracts blocks
by pushing. As the first practical task, a Jenga player should be able to select one of the
blocks of the tower to be extracted. To this end, each block of the tower is identified in
our system using an instance segmentation deep neural network. Moreover, we define a
heuristic block selection policy based on the idea that extracting multiple blocks from the
same tower level is not recommended. Moreover, as better detailed in Section 3.2, blocks at
different tower layers present diverse frictions and effects on the tower’s configuration.

Therefore, our solution is based on the following assumptions:

• The identification and pose estimation of each block of the tower is the first step to
selecting a suitable piece and approaching it;

• A removable block cannot be identified only by visual analysis: the integration of a
tactile perception system is needed;

• A sufficiently precise alignment between the end-effector and the center of a target
block allows the arm to extract it successfully by simply pushing.

A complete illustrative schematic of the system proposed to play Jenga is depicted
in Figure 2.
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Figure 2. Block diagram of the proposed system architecture for Jenga: after tower identification, an
RGB image of the tower is first used to extract the segmentation masks of each block with the deep
instance segmentation neural network. A block selection policy chooses the block to extract while
considering blocks that have already been tried. The selected block is precisely approached by the
end-effector adopting a visual-based control strategy. Finally, the end-effector pushes the block, and
an inexpensive 1D force sensor verifies its removability to stop or approve the extraction attempt.

3.1. Deep Instance Segmentation and Pose Estimation

The proposed methodology’s first step relies on identifying the blocks present in the
tower by visual analysis. We adopt a deep learning-based method to perform instance
segmentation. The necessity of using a deep learning approach is caused by the fact
that wooden blocks do not have easily-distinguishable features while having predictable
positions in the camera frame instead. In this setup, the vision system can benefit from
the ability of neural networks to generalize to different light conditions and points of view.
Moreover, training the model on an exhaustive dataset can make it robust towards missing
blocks and tower misplacement during the game. Among different approaches for image
semantic analysis, instance segmentation aims at detecting all the objects of interest in an
image at the pixel level. Given an input image of the tower, the model should output a set
of possible Jenga block candidates, together with their respective pixel masks. Instance
segmentation can therefore be seen as a combination of an object detection task with a mask
prediction task. By translating the position of the blocks from the image reference frame to
the robot reference frame, it is possible to achieve block localization.

Model Architecture

We select the YOLACT++ [50] architecture to implement the instance segmentation
algorithm. This architecture has been chosen for its computational speed, capability to
handle occlusion, and efficiency in detecting a high number of tightly packed same-class
objects. The model is based on a ResNet-50 [31] + FPN [63] feature extraction backbone
followed by two branches, one dealing with object detection and the other with mask
prototype production. The detection branch outputs a set of anchor predictors a as possible
Jenga block candidates. Each anchor prediction consists of the class confidence c, four
bounding box regressors, and k mask coefficients. These mask coefficients are used to
weigh the mask prototypes produced by the second branch. Both branches are based on
convolutional layers applied to the features extracted by the common backbone.

The two branches are finally followed by a mask assembly block, which combines the
masks with the coefficients predicted by each anchor to reach the final instances prediction.
At inference time, anchor predictions are thresholded with a certain value tc on their
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confidence c score to produce the actual output. Moreover, as in standard object detection
algorithms [36,37], an NMS (non-maximum suppression) method is applied to remove
redundant predictions.

3.2. Block Selection Policy

Our solution defines a heuristic block selection policy based on physical and empirical
considerations. Visual information cannot provide sufficient information to determine the
status of a block. The imperceptible tolerances of each block cause minuscule variations
in pressure that prevent visual-based systems from understanding which blocks are truly
removable. The blocks in the higher layers are easier to extract, i.e., they can be pushed
out of the tower by applying a smaller force. However, pushing from a decentralized
contact point contributes to the formation of torques on the block that causes asymmetry
in the tower. This effect is amplified on upper layers due to lower friction forces and may
affect the stability of either adjacent blocks or the tower itself. Instead, the friction force
increases for blocks located at lower levels, making the extraction harder and risking the
Jenga tower falling.

Such considerations imply the need for a policy to select the block to extract. However,
the policy must also consider the physical dimensions of our 6DOF anthropomorphic
manipulator. Indeed, during the extraction primitive, the robot has to be parallel to the
block, which implies a loss of DOFs. These orientation constraints restrict the robot’s
workspace, so the manipulator can only reach a limited range of tower levels. In order to
overcome these issues, the policy divides the entire tower into two subspaces according
to the robot’s workspace. In particular, the subspaces correspond to the upper and lower
levels, each with a predetermined number of tower levels. By convention, the numeration
of tower levels carries in ascending order, where one corresponds to the lowest level. In
addition to this vertical division, the policy is also initialized with the block direction
for each level. Indeed, two possible tower orientations have a relative rotation of 90 deg
between the two. The pose estimation described in Section 3.3, applied by the convention on
the top, provides the reference to infer the actual orientation of the tower and all its levels.

As human players usually do, we initially adopt a random policy that selects the
Jenga pieces in one of the subspaces. Then, the manipulator approaches the chosen block
and starts pushing. At this point, force sensor data are collected to evaluate the block’s
status according to the adopted force threshold, as explained in Section 3.5. After each
trial, a memory list updates the information on extracted and tested blocks. More in detail,
a memory buffer stores the information about the blocks: the status (present, tested, or
extracted), the threshold force to apply, and the current number of extraction attempts. In
addition, it also keeps track of additional layers as the game goes on. Only one piece per
level can be extracted as a further safety measure.

The policy repeats the process until all levels contained in the subspace are tested.
After that, the system changes the subspace to test additional levels until the tower col-
lapses. More in detail, selecting the higher layers as the starting subspace leads to three
subspaces in total, with extra layers being included in the final subspace. Alternatively,
if the process begins by extracting blocks from the lower layers, there will be only two
subspaces, with extra layers being included in the high subspace. Figure 3 provides a
minimal representation of the policy strategy. Except for the pick-and-place operation, the
game implementation does not neglect any official rule.
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Figure 3. High-level input-output diagram describing the logic flow of the policy used to select the
next block to extract from the Jenga tower. The layers of the tower are numbered from the 1st to
the nth starting from the bottom, as shown in the schematic on the left. The policy starts to extract
the blocks from one of the two subspaces of the tower, randomly chosen. It proceeds until all levels
contained in the subspace are tested, to finally switch to the other subspace trying to avoid the tower
to collapse.

3.3. Block Pose Estimation

Predicted block masks are the input of a post-processing unit implemented using
OpenCV. It estimates the position and orientation of the desired block to be extracted with
respect to the camera. This information is the first requirement to approach the block’s
face starting the manipulator’s tracking and visual servo control. The pose estimation
is performed with an intrinsic calibrated camera through the Perspective n Points (PnP)
algorithm optimized for planar points [64]. PnP is applied to the four corners of the
front face of the target block, separately identified from the others thanks to the predicted
segmentation mask, and paired with the known dimensions of the block. To increase the
robustness of the tracking algorithm and the overall precision of the visual control of the
manipulator, corners of nearby blocks are also considered (if present). Adjacent blocks
may have diverse mask shapes: smaller for occluded front-facing blocks and larger for
side-facing ones. Hence, two different sets of points are considered to estimate their poses.
Side-facing blocks can provide a significant advantage in the subsequent tracking phase,
offering a more stable visual reference during the motion of the end-effector.

Therefore, the PnP algorithm provides an initial estimate of the 6DoF pose of the group
of blocks (target and adjacent blocks) using segmentation mask corners to initialize the
model-based tracker.

3.4. Tracking and Visual Servoing

The geometric dimensions of a standard piece of Jenga (25 × 15 × 75 mm) require
precise movements to perform extraction successfully. Considering such dimensions and
the width of the custom fingertip (i.e., 11 mm), it can be shown that the maximum position
error from the center of the block must be smaller than 7 mm. Therefore, the maneuver of the
end-effector requires accurate trajectory planning to approach a block precisely. Standard
point-to-point planning and online control [65] can be considered valid methodologies.
However, these control schemes adopt an open-loop control system which requires high
precision on pose estimation and tiny mechanical tolerances to reach the desired point
with a small error. On the other hand, visual servoing is a closed-loop control strategy that
exploits visual measurements to correct the pose of the end-effector with respect to the
target in real time. Continuous visual feedback is used to correct the end-effector trajectory
and to align the relative pose of the camera with the target block. For this reason, visual
servoing is a competitive and flexible strategy to accurately approach the desired object (in
this case, the Jenga block to extract).
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In this regard, a robust tracking algorithm is a fundamental and challenging compo-
nent of visual servoing control, which is required to guarantee smooth trajectories and allow
a faster convergence to the target. As described in the previous sections, the segmentation
masks are used to estimate the position and orientation of the desired block. At this stage,
the tracking system receives both the initial pose estimation and the segmentation masks
and combines them with a 3D model of a Jenga block. Therefore, it detects the target to
establish a continuous mapping of the 6DOF pose of the Jenga block in the camera field of
view. Specifically, the adopted stereo model-based tracking method ViSP [66] combines
several visual features, such as moving edges, key points, and depth information, to im-
prove stability and robustness. The ViSP tracker requires the 3D model of a generic block
to project its geometry into the image space and generate the visual features accordingly.

However, as mentioned in the previous Section 3.3, the tracking performance is only
partially reliable if only the visible face of the desired block is used (Figure 4). For this
reason, the tracking algorithm does not rely only on the visual information of the single
block to extract, but it integrates adjacent blocks in a unique group model. As already
discussed in the previous Section 3.3, this choice leads to more robust tracking thanks to
the higher number of visual features extracted, especially from side-facing blocks.

Figure 4. The initial pose estimation of the target block obtained by exploiting the segmented mask is
shown on the left. The group model composed of multiple blocks to increase the robustness of the
tracker is shown on the right.

Moreover, the visual features of the group of blocks of interest are collected from
different perspectives before the tracking is started. This acquisition phase enables recovery
tracking in case of sudden movements by exploiting the acquired pairings and re-initializing
the block pose.

Our approach adopts the eye-in-hand visual-servo configuration, whose extrinsic
camera parameters are estimated based on the end-effector design. Thus, we indicate with
s = (x, y, log(Z/Z∗), θu) the visual features constructed for the 2 1/2-D visual servoing
tasks, where (x, y) are the coordinates of the target in the camera reference frame, Z and Z∗
are the current and desired depth of the point, respectively, and θu is a 6 × 1 vector that
identifies the rotation angles (expressed in the axis–angle convention) that the camera has

to follow. Moreover, we refer to L̂+
s as the approximation of the interaction matrix and to es

as the tracking error of the visual features, s, defined as es = s − s′, where s′ denotes the
desired visual features.

The 6 × 1 vector v represents the linear and angular camera velocities that are com-
puted through the following control law:

v = −λL̂+
s es (1)

Hence, the above regulation control law defines the linear and angular velocities the camera
has to follow to reach the target. Using forward kinematics, the vector v ∈ R

6×1 is converted
into the task space and executed through a motion rate controller using inverse differential
kinematics. The overall closed-loop system runs at about 9 Hz on the laptop i7-8750H CPU.
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To further optimize the smoothness of the trajectory, we consider fixed constraints on the
maximum joint velocities that the controller can predict. In Section 4, we show that the
visual servoing pipeline we adopted increases the overall accuracy and robustness of the
Jenga extraction system.

3.5. Tactile Perception

Tactile perception is a fundamental aspect of a human Jenga player since identifying
potential removable blocks is not possible via visual analysis only. According to this,
we decide to incorporate a low-cost 1D force sensor in our system, which only provides
information about the perpendicular reaction force between the end-effector and the target
block. Hence, while previous works adopted a 6D force sensor to adjust the direction of the
end-effector while pushing [19], we take advantage of our visual-based control strategy
and guarantee considerably good precision by simply pushing the block forward. The
one-dimensional force sensor is mounted directly on the fingertip of the end-effector, as
shown in Figure 5, and provides a digital output with a full-scale force span of 5 N. The
sensor is activated when an interaction between the fingertip and the block occurs. The
block can be either stuck or free to move, so the push primitive uses the reaction force
to derive a binary block classification. The closed loop explained in Section 3.4 reads the
measurements at 9 Hz while the Arduino microcontroller sends them at 20 Hz.

Arduino
microcontroller

Camera

Force
sensor

Figure 5. The manipulator has a human finger-inspired end-effector, which mounts a simple 1D force
sensor on its tip. The force sensor controlled by an Arduino Nano board reveals the status of a block
(removable or not) once it is approached and pushed. An eye-in-hand camera configuration enables
the visual control pipeline to align the fingertip with the Jenga piece accurately.

A challenging aspect of the game is that the more push attempts are performed, the
more unstable the tower becomes, as extracted blocks or rotations perturb its structure due
to pushes and retractions. Therefore, two thresholds detect immobile or moving blocks in
thr1 = 0.32 N and thr2 = 0.18 N. Such values are determined by combining theoretical [28]
and empirical results, better depicted in Section 4.1. The threshold changes to a smaller
conservative value in the second phase of the game when all the higher levels have been
tested. Our choice can be defined as conservative, as it safeguards the stability of the tower
rather than seeking more competitive performance.

4. Experiments

The experimental setup includes the anthropomorphic educational manipulator, e.DO
manufactured by Comau, a depth camera Intel RealSense D435i, a MicroForce FMA piezore-
sistive force sensor (5 N full scale, 12-bit resolution for 0.002 N sensitivity), an Arduino
Nano 33 BLE, and 3D printed components such as a rotating base, an end-effector design
extension, and camera support. The software runs on a single computer with an i7-8750H
CPU and 16 GB of RAM. Thus, one of our goals is to investigate and prove the effectiveness
of state-of-the-art with low-cost equipment. Visual control adopts an eye-in-hand configu-
ration with camera support, while the small force sensor is placed on top of the end-effector
extension connected to the Arduino Nano.
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4.1. Reaction Force Threshold

In this section, we first describe the experiments carried out to define the static force
threshold used to check the removability of blocks. The real Jenga blocks present small
differences in dimensions, generating a diverse pattern of friction forces in the tower each
time it is rearranged for a new game. Although [28] tried to provide a rigorous mathematical
formulation of friction forces in the tower, we prefer an experimental approach to identify
the correct threshold values to detect whether or not the robot push affects the stability of
the tower.

The measurements are taken with a complete tower configuration during the block
extraction, starting the data collection of force reaction from when the contact between the
block and end-effector starts and the force sensor detects a non-zero value. The experiment
is run multiple times on different tower levels, mixing the blocks’ disposition each time to
test random friction conditions. The plot in Figure 6 shows the force profile of 15 blocks
located at different tower positions over time.

Figure 6. Reaction force measured over time during pushes for several blocks located in different
layers and tower positions. The threshold force value of 0.32 N is also plotted to distinguish moving
blocks in red from constrained ones in blue.

The choice of the threshold force values is not trivial, as it affects the system’s ability
to classify the block’s removability state. By setting higher threshold values, more blocks
can be classified as false positives, i.e., they are perceived as free to move, whereas they
cannot be safely extracted. On the other hand, imposing lower threshold values affects
system performance leading the system to avoid feasible block extractions.

As depicted in Figure 6, the initial threshold value is set to 0.32 N, making the system
more likely to detect false positives than false negatives. In addition, this is reflected
in a more aggressive strategy at the beginning of the game, enhancing performance at
the cost of tower stability. After attempting to remove half of the levels, the threshold is
reduced to preserve tower stability. In fact, after removing a certain number of blocks,
the tower becomes increasingly unstable, and the friction forces change according to the
position of the extracted blocks. Due to the static friction force, the superposition of these
effects increases the probability of disrupting the tower as soon as the contact between the
fingerprint and block occurs. Therefore, mechanics and empirical observations led us to
lower the threshold value to 0.18 N. In general, the measurements are in the same range as
the results obtained by the more extensive analysis of [18,19,28], with forces between 0 N
and 1 N and thresholds ≥0.2 N.
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4.2. Instance Segmentation Experiments

In this section, we report the method and the details of the procedure to train the instance
segmentation model with a carefully devised synthetic dataset, as well as the results obtained
by experimental validation. The experimentation aims to assess the quality of the deep
learning model and its generalization to the real pictures of our experimental environment.

4.2.1. Training Setup

The training of the instance segmentation model is entirely performed on a synthetic
dataset crafted from a 3D model of the Jenga tower. Using the 3D modeling software
Blender and its Python APIs through BlenderProc [67], hundreds of photorealistic and
varied images of the tower are produced with automatic pixel-perfect annotations. This
approach makes it fast and easy to obtain hundreds of samples without manually labeling
real images. The training and validation datasets are composed of 800 and 80 images of size
640 × 480, respectively, rendered from a Blender synthetic scene composed of 48 cuboids
arranged in a tower of 16 levels. We apply 12 different wood materials to the faces of these
blocks to simulate the possible colors and wood line patterns with a realistic look. Each
scene is loaded with blocks, a virtual camera, and a point light source. We design the
following levels of scene randomization:

• The materials are randomly sampled and assigned to all 48 cuboids to change their look;
• A total of 6 to 24 cuboids are randomly displaced along their x and z axes by a distance

between −4 mm and 4 mm;
• A point light source is positioned by randomly sampling a height of 0.1 ÷ 0.5 m

spanning a circular arc of 60 deg centered on the tower with a random radius between
0.4 and 0.7 m;

• A total of 2 to 9 random blocks are removed from the tower to create holes;
• Camera position is sampled on a circular arc of 20 deg with a height between 0.05 and

0.2 m and a radius between 0.25 to 0.45 m.

The camera is placed to capture two faces of the tower at the same time. For each
configuration, 10 samples are acquired with the full tower and 10 with random missing
blocks. The procedure is repeated for each random scene obtaining a diverse and complete
dataset with different light conditions, block displacements, missing blocks, camera angles,
and views of the experimental conditions. The scene’s background is then filled with black,
white, or gray. The render time for all the 880 images was 4 hours on an i7-9700K CPU. The
test set is composed of 20 real manually-annotated pictures from our experimental setup
for a total of around 800 segmented tower blocks. The images are taken in slightly different
light conditions and camera positions.

The input 640 × 480 images are rescaled to 550 × 550 to be compatible with network
input requirements. We adopt a ResNet-50 backbone with pre-trained weights on ImageNet.
We perform 8000 training iterations (69 epochs) with a batch size of 8, SGD optimizer with
a momentum of 0.9, and a weight decay of 5 × 10−4. The initial learning rate of 10−3 is
scaled down by a factor of 10 at iterations 5000, 6000, and 7000. We consider a positive
intersection-over-union (IoU) value of 0.5 during training. The training is performed on a
Tesla K80 GPU with Cuda 11.2.

4.2.2. Instance Segmentation Results

As the main metric to assess the quality of the instance segmentation, we adopt the
widely used average precision at different values of intersection-over-union (APIoU). A
predicted mask is considered a true positive (TP) if it has an IoU with the ground-truth
mask over the given threshold. AP is then computed as the area under the curve of the
precision–recall plot obtained varying the confidence threshold tc.

Table 1 reports the AP results at different IoU values, both on the synthetic test set
and the real manually-annotated dataset. As expected, increasing the IoU threshold results
in a performance drop due to the stricter requirements asked of the model. Generally, we
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observe a certain drop in performance when considering the real-world dataset, mainly
due to border effects caused by approximate hand-made annotations and a decreased recall
caused by the high number of instances in a single image. However, since a high recall is
not required to perform block selection and tracking effectively, we state that the obtained
real-world generalization is good enough for the target application. Visual comparison of a
synthetic and a real image is reported in Figure 7a,b.

Table 1. Mask AP results at different values of IoU for the Jenga blocks instance segmentation model
on both the synthetic and the real manually-annotated test datasets.

Dataset AP50 AP80 AP90 Mean

Synth 90.08 87.76 63.2 78.37
Real 75.98 53.40 11.53 53.09

(a) Synthetic Dataset (AP = 69.9% for 80% IoU) (b) Real Images (AP = 88.1% for 80% IoU)
Figure 7. Segmentation masks on simulated (a) and real (b) images. From left to right: source image,
ground truth, and predicted masks.

4.3. Tracking Robustness

This experiment tests the robustness of the stereo model-based tracker in two different
configurations to assess its ability to keep track of the object’s pose during movements.
In particular, we compare our experimental visual set up with the basic functionalities of
the ViSP library [66]. The main difference lies in constructing the 3D block model and the
tracker initialization method. A CAD model of the single block takes only into account the
target piece and requires the user to initialize the model manually. Instead, our tracking
system merges different pieces around the target block according to the tower arrangement
described in Section 3.4. For this test, we exploit a rotating base to automatically turn the
Jenga tower around its vertical axis by 45 deg clockwise or counterclockwise at a constant
speed. This rotation brings one of the faces perpendicularly to the camera axis, thus keeping
the target block always in the field of view.

While the tower rotates, spanning the whole angle range, we test the tracker to follow
the block moving in the images. We measure the projection error eproj as the difference
between the tracker’s estimated rotation of the block and the actual rotation of the rotating
base. Fixing the maximum acceptable error errthr = 25 deg, the failure condition is reached
when eproj < ethr. For each run, we report the percentage of the total time (60 s) for which
the tracker follows the block without failures, including the target block’s tower level. Since
this test’s ultimate goal is to highlight the tracker’s robustness, we keep the same threshold
value used in the game. The trials are performed with two different angular velocities,
ω1 = 2.5 deg /s and ω2 = 8.3 deg /s for the same target.

The results in Table 2 suggest that ViSP [66] is a scalable library that can be further
optimized according to the requirements of our task. Our tracking system not only overrides
the point-to-point manual initialization leveraging the segmentation mask prediction, but
it also significantly improves the tracking robustness up to 7.5 times.
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Table 2. Largest tracking time comparison between the 3D CAD models generated as a single block
model and our pattern-based multi-block model.

Level Vel [deg /s] Single [%] Group [%]

5 ω1 36.9 100
5 ω2 17.0 100
6 ω1 13.1 100
6 ω2 8.0 100
8 ω1 28.9 100
8 ω2 10.6 100
9 ω1 19.4 100
9 ω2 29.5 100
10 ω1 18.4 100
10 ω2 8.1 100
11 ω1 24.7 100
11 ω2 14.8 100

4.4. Visual Servo Convergence and Accuracy

The visual servo control law is tested, in terms of time and spatial error, by bringing
the end-effector to the computed goal. To this end, the tracking system estimates the
block’s pose (i.e., position and orientation) to extract the visual features and compute the
6 × 1 velocity vector in the camera reference frame. Such velocities are then converted
in the end-effector’s reference frame through the extrinsic parameters, estimated on our
custom fingertip’s design. Then, the linear and angular velocities are translated into joint
velocities and actuated accordingly.

4.4.1. Timing Convergence

The experiment begins with the robot in a default pose at the same height as the
tower’s first level. Then, a timer starts and automatically stops when the end-effector
reaches the desired pose with a fixed tolerance on the visual servo error magnitude as
tolerance = 0.00002. This test is repeated for each tower level regardless of the block
configuration. In Figure 8, we report the distribution of convergence time at different tower
levels. The average convergence time is roughly constant among levels, while we observe a
high variance between different observations. This is caused by the fact that most of the
convergence time is spent reaching the desired orientation rather than the desired position.
The oscillations in the tracker estimate are higher when the camera is close to the tower, and
the 3D block model degenerates to a plane face. The tracker is set to tolerate up to 25 deg
of mean reprojection error before failing, so the robot performs many corrections to the
orientation, using all its joints to follow the oscillations. This sometimes generates longer
convergence times. However, time is not a primary constraint in Jenga, so it is acceptable
to trade convergence speed for more precise end-effector alignment.

Figure 8. Mean and standard deviation of convergence times for blocks on the same level, where the
black line is the mean, and the dispersion of the values is shown. Circles show isolated events, in
which tracker’s oscillations caused longer convergence times of the robot pose.
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4.4.2. Spatial Accuracy

The second part of the test aims to assess the manipulator’s accuracy in pushing blocks.
It consists in manually stopping the robot as soon as the end-effector reaches the target and
measuring the distance between the contact point and the center of the block. Defining errx
and erry as horizontal and vertical errors, we perform a statistical analysis of the system
precision. The results depicted in Figure 9 are obtained from 21 trials on different blocks.
The results demonstrate the accuracy and repeatability of our system, as a mean error below
0.2 mm and a standard deviation below 1 mm are compatible with the accuracy defined in
Section 3.4. Moreover, it is worth noting that the mean value for both axes is close to zero,
which indicates the deep focus on estimating the extrinsic camera-to-robot and intrinsic
pixel-to-mm parameters. The differences between the two axes mainly depend on the
manipulator’s dexterity and its mechanical tolerances.

Figure 9. Mean and standard deviation of the distance between the contact point of the end-effector
and the center of the selected block.

4.5. Consecutive Block Extractions

Finally, the different modules are integrated, and tests of the architecture are performed
on the full system. The experiment includes 18 trials following the semi-automatic loop
explained in Section 3.2. The goal is to extract as many blocks as possible without breaking
the tower.

In order to properly validate our results, the chosen metric considers both correctly
extracted blocks and correctly classified immobile blocks. Hence, an attempt is labeled as
successful in one of the following cases:

1. A mobile block is correctly pushed without perturbing the stability of the tower;
2. The binary classification model correctly identifies the block as immobile, and the arm

retracts without causing the tower to fall.

After each attempt, the policy updates the block status obtained from visual and tactile
measurements during the extraction process. In particular, force sensor data are used
to detect the block status, while visual measurements provide feedback on the result of
the extraction primitive. The latter integrates pose estimation information and the direct
kinematics of the manipulator in order to verify the complete extraction of the block from
the tower. The minimization of the angular tracking error in the visual servo law allows
positioning the end-effector as parallel as possible to the block by pushing it out of the
tower (1) along the z-axis of the block. The robotic arm then retreats the long finger back
along the same axis. This open-loop push primitive runs synchronously to the force sensor
at a frequency of 20 Hz to eventually abort the execution if high reaction force values are
detected. If the manipulator successfully extracts the block, the policy updates the memory
buffer with the current block status and verifies the presence of other removable blocks in
the subspace in order to start a new attempt. Conversely, in the case of immobile blocks,
the manipulator pursues to extract the remaining blocks of the same layer. In this scenario,
the policy removes the block from the list of removable blocks for future extractions.
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In our setup, the operator has three interactions that make the game semi-autonomous:
changing the tower’s position to allow the robot to switch from higher to lower layers (or
vice versa), placing the extracted blocks on top to form a new level, and aborting extractions
when failures occur.

Minor failures do not stop the game, as they do not cause the tower to collapse. The
operator can abort an attempt when the system fails for reasons unrelated to the extraction.
In this case, the loop continues on the next iteration, and the policy is not updated. Possible
minor failures are:

• The robot reaches a singularity position when the target block level is at the edge of
the workspace;

• The tracking is lost as either the tower is in bad light conditions or the target block lies
outside the field of view;

• The initial pose estimation is not precise enough because the segmentation model
does not detect all the corners of the block correctly.

To minimize these failures and prevent the perturbation of the tower’s stability, we
make some conservative choices. Different force thresholds are assigned depending on
the game’s phase, i.e., which subspace of blocks is currently tackled. This way, the policy
addresses the first subspace with an aggressive force threshold of 0.32 N. After all the first
subspace levels have been tested, the policy addresses the second subspace with a cautious
threshold of 0.18 N. The effect of adding the extracted blocks on top is twofold: their weight
contributes to changing the friction between the blocks and shifting the center of gravity of
the tower. Furthermore, each new level is considered in the policy for additional attempts.
This way, we obtain a minimum of 42 attempts (3 per level) and 14 block extractions (1 per
level), plus 3 additional attempts and 1 extraction for every newly formed level.

The results are reported in Figure 10 with details on the distribution of complete
extractions, unmovable blocks correctly classified, and attempts ended with an error.
Experiments show that 80% of the extraction attempts are successful. More specifically, 45%
of the attempts lead to extracting the block correctly, while 35% of them find an unmovable
block. The errors (20%) are mainly caused by the system losing the tracked block or by an
imprecise initial pose estimation. Each time an error occurs, the current extraction attempt
is aborted, and a new one is started.

Figure 10. The plot on the left illustrates the average number of extracted blocks (green), the blocks
correctly classified as unmovable (orange), and errors among 18 trials (red). On the right, the statistical
distribution of the outcomes is plotted. Our system can perform successful extraction or correctly
identify unmovable blocks in 80% of the attempts. The highest score achieved is 14 extracted blocks,
accumulating more error in the long game, while the lowest score is only 2 extractions (white circles).

Each experiment ends when the tower falls. In our experiments, the fall occurred after
13.8 correct attempts on average (7.5 correct extractions and 6.3 detected unmovable blocks,
respectively). In most experiments, the fall was caused by the increasing instability of the
tower after multiple extractions. However, a few experiments ended earlier because of poor
tracker performance in providing the position and orientation during the push movement
or incorrect detection of mobile blocks (two experiments ended after only 5 extraction
attempts). The highest registered score counts 14 successful extractions and 11 detected
unmovable blocks. The results are comparable to those of [28], which scored 14 consecutive
extractions using a 6-axis force sensor while being much higher than the 5 extractions
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of [27], which also had inexpensive equipment. The score is far behind both the 20 and 29
of, respectively [19], more extensive architecture and artificial intelligence, and [17], more
complex hardware and simpler Jenga game setup.

5. Conclusions

In this paper, we propose a complete system to play the challenging game of Jenga
with cost-efficient robotic hardware. The contribution of this work goes beyond the Jenga
game, proposing an advanced, adaptable solution for accurate manipulator control in
delicate robotic tasks. We demonstrate that a visual-based approach for perception and
control can provide the robot with significant benefits in terms of scene understanding and
control accuracy.

Differently from previous works, the main components of our system are a deep
instance segmentation neural network used to identify each block of the Jenga tower and a
visual tracking and control pipeline to continuously adjust the pose of the end-effector as
it approaches the block. A low-cost 1D force sensor is integrated into the system to check
the removability of the target block, drastically reducing the cost and complexity of the
overall system. Our extensive experimentation shows the remarkable performance of each
fundamental component of the solution. After examining the accuracy and stability of the
perception and control units, we evaluate the whole system by playing Jenga and reaching
a maximum of 14 successive block extractions. Future works may see the advancement of
the reasoning capability of the robot: reinforcement learning agents can be investigated to
optimize the planning policy for the game. Moreover, a visual-based sensorimotor agent
could eventually replace the controller by directly mapping segmented and depth images
to velocity commands for the end-effector.
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Abstract: Teams of mobile robots can be employed in many outdoor applications, such as precision
agriculture, search and rescue, and industrial inspection, allowing an efficient and robust exploration
of large areas and enhancing the operators’ situational awareness. In this context, this paper describes
an active and decentralized framework for the collaborative 3D mapping of large outdoor areas
using a team of mobile ground robots under limited communication range and bandwidth. A
real-time method is proposed that allows the sharing and registration of individual local maps,
obtained from 3D LiDAR measurements, to build a global representation of the environment. A
conditional peer-to-peer communication strategy is used to share information over long-range and
short-range distances while considering the bandwidth constraints. Results from both real-world and
simulated experiments, executed in an actual solar power plant and in its digital twin representation,
demonstrate the reliability and efficiency of the proposed decentralized framework for such large
outdoor operations.

Keywords: scene reconstruction; cooperative mapping; point cloud registration; multi-robot system;
3D mapping; communication constraint

1. Introduction

The use of outdoor mobile robots for real-world applications, such as search and
rescue [1,2], logistics [3], agriculture [4], industrial inspection [5], surveillance and mainte-
nance [6,7], have increased rapidly over the past several years. This is due to the capabilities
of mobile robots to assist humans in dangerous, repetitive or time-consuming tasks. A
successful robot navigation for such applications relies primarily on three aspects: mapping,
localization, and trajectory planning. Robotic mapping generates a map by deciphering the
spatial information of the environment acquired through the robot’s sensors. Commonly,
mapping is carried out first to understand the environment and enhance the subsequent
localization and motion planning tasks. However, for many applications, mapping must
be executed frequently to continuously acquire a complete situational awareness and to
support reasoning and decision making in dynamic environments.

Many outdoor robotic automation applications, such as solar farm inspection and
maintenance [8–10], disaster response [11–13], agriculture [14] and city re-planning [15,16]
need to cover very large areas of 1–40 acres. Traversing such expansive environments with
a single mobile robot is very time-consuming or even impractical. In addition, conventional
localization methods based only on GPS, odometry and IMU are not always reliable for such
long-range operations. The uneven, rough, and unstructured nature of rural environments,
such as in solar farms and disaster-struck regions, introduce additional localization errors.
In such scenarios, a multi-robot system can be a suitable alternative to obtain full coverage
of the area and execute tasks in a collaborative manner, resulting in a more complete and
time-efficient solution. In regards to mapping, a multi-robot system can rapidly explore the
environment in parallel and from different angles, to generate more accurate maps in less
time [17] and to enhance the localization accuracy in challenging environments.

In general, a multi-robot mapping framework will require three main elements:
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1. A mission-planning unit to coordinate robots to explore the environment.
2. A communication policy to share the map generated by each robot.
3. A matching and merging method to integrate individual maps into a global map.

In practice, mapping large outdoor 3D environments with a team of mobile robots is
challenging due to the communication limitations and the high volume of sensor data that
need to be shared and processed. High-capacity wireless communication routers commonly
available to robots, such as Wi-Fi modules, typically have a limited range of about 90 m or
less in open outdoor environments. On the other hand, long-range wireless devices, such as
the Xbee-Pro RF module, can provide a large coverage of up to several kilometers but have a
very limited bandwidth of about 200 kbs, which is not suitable for sharing high volumes of
sensor data. Furthermore, the employment of 4G mobile technologies is not always possible
due to the lack of coverage in many rural areas or in disaster-response scenarios. Hence, it
is essential to consider such communication constraints while developing a multi-agent
mapping algorithm.

In this work, we present an online, fully distributed and active framework for a team
of mobile ground robots, equipped with 3D LiDAR sensors, for mapping and situational
awareness in large outdoor environments. We develop our solution specifically for the
application of inspection and surveillance of large multi megawatt solar plants, while
considering the strict communication constraints that exist in terms of range and bandwidth
in the commonly available wireless technologies. However, the proposed framework can
be applied to many other outdoor exploration problems, such as search and rescue or
precision agriculture. The outline of the paper is as follows: Section 2 provides the literature
review on 3D mapping and localization methods and discusses the various techniques and
limitations of multi-agent cooperative mapping and point cloud registration. The proposed
distributed multi-agent framework is discussed in Section 3. The experiments and results
are presented in Section 4. Finally, Section 5 concludes the findings and pitches possible
improvements to the proposed method.

2. Literature Review

Over the past decade, 3D sensors have emerged as revolutionary data acquisition devices.
In robotics, 3D sensory information has been used for mapping, localization, obstacle avoid-
ance, and scene recognition. Omnidirectional LiDARs [18–21], RGBD cameras [22–25], and
uni-directional LiDARs [26–28] have found applications in the field. Three-dimensional sensor-
based algorithms, such as LOAM [18,19,21], have become the norm for an out-of-the-box
simultaneous localization and mapping algorithm. However, the computational complexity
of 3D algorithms and the size of 3D sensor data make it challenging to achieve scalability.
Due to these reasons, SLAM (simultaneous localization and mapping) algorithms [29–31] are
not commonly preferred with 3D sensors, especially in large areas [32,33]. Methods of point
cloud compression [34] and low-cost registration [35,36] are promising endeavors but require
prior training. The considerable size of 3D data further imposes constraints on a decentral-
ized multi-agent mapping system, making it challenging to share observations continuously.
Hence, it is essential to transfer only the required features.

Point clouds represent rigid body data structures, typically generated from LiDAR
sensors. The process of aligning two point clouds is called point cloud registration. The
process results in a rigid body transformation matrix that aligns one point cloud in the
frame of another. The registration techniques [37] are categorized into local and global
registration. Global registration [38–41] is ideal when the initial transformation estimate
has yet to be discovered, and is perfect when the point clouds are acquired from spa-
tially distant frames of references. When the initial transformation is known, a quick
refinement can be acquired from a local registration technique. Local registration tech-
niques, such as iterative closest point (ICP) [42,43], normal distribution transform [44],
point-to-plane [45–47], color-based [48,49] or class-based methods [50,51], can be compu-
tationally expensive if the initial transformation is inaccurate. For multi-agent systems,
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where each agent has a different frame of reference, global point cloud alignment is refined
by a local point cloud registration technique.

A multi-robot system relies on a consistent network for the exchange of observations
and data. If the system is not centralized, the agents rely on peer-to-peer networking.
However, these networks can be classified into two subcategories: long-range and short-
range networks. Long-range networks, such as low power wide area (LPWA) [52,53]
and long-term evolution machine type communication (LTE-M) [54] provide networking
solutions for large areas. The rural area coverage analysis [55] for sigfox (30 km at 12 kbps),
lora (15 km at 290 bps–50 kbps), LTE-M (10 km at 200 kbps–1 Mbps) showcases the
constraints imposed on the data size. The Xbee-PRO RF modules [56] are commonly used
for outdoor robot applications allowing a long-range radio-frequency (RF) transmission
that can go up to several kilometers, with a limited bandwidth of (200 kbps). Short-range
communication, such as Wi-Fi (100 m at 15 Mbps), are ideal for the transfer of large size data.
Thus, for a distributed multi-agent mapping system, relying on peer-to-peer 3D sensory
information transfer, covering a wide area (≥1 km2) requires both short- and long-range
communication systems.

Multi-agent SLAM poses many different challenges, such as inter-agent cooperation
and communication [57], distributed sensor fusion [58] and collaborative planning [59].
These challenges are further enhanced when the sensors share large information packets,
such as 3D data [58]. These challenges can be relaxed in a centralized system, assisted
with short-range communication devices with high bandwidth [60,61]; however, this is
not a realistic solution for large outdoor applications. In a communication-constrained
environment [57,62–65], prior planning [66] to meet and share information can relieve stress
on communication channels. However, these periodic communications can be challenging
to realize when the area to be covered exceeds 1 km2, especially considering the overall
energy expended.

The major contribution of this article is an end-to-end active distributed homogeneous
framework for the large-scale 3D mapping of environments. We incorporate a global
peer-to-peer small bandwidth long-range network along with a short-range peer-to-peer
network to allow a framework that can go beyond the range limits of a Wi-Fi network.
The proposed approach generates a global map in each agent’s frame and helps to localize
agents within this map. Conditionally, the framework heavily filters point clouds to enable
long-range transmission, which is then used for localization and mapping. This conditional
approach ensures that only the necessary communication bandwidth and computation are
used. This relative localization can also be used for improving path planning, exploration,
and mapping. The framework is developed, to tackle the communication constraints,
imposed in large-area mapping.

3. Methodology

A set of Na agents, R, is tasked to explore and map the environment. Each agent, Ri
(∀Ri ∈ R), is equipped with a 3D LiDAR sensor, a GPS receiver, an IMU, and an odometer
sensor. The LiDAR sensor has a maximum range of Lmax. Considering possible GPS drifts,
odometer slippage, and electromagnetic interference, each agent has an instance of an
extended Kalman filter (EKF) to fuse the sensory information from GPS, IMU and odometer
and obtain a more reliable estimate of the global localization Gi in the geographic coordinate
system. An instance of the LiDAR odometry and mapping (LOAM) [18] is used on each
agent to locally map the surrounding environment from the Ri perspective and to locate
the agent within the map. This egocentric LOAM localization is represented in the form of
an odometry message Oi, in the sub-map Mi, of agent Ri. Each agent is equipped with a
short-range and a long-range wireless transceiver. The short-range transceiver is a Wi-Fi
module that allows the peer-to-peer transfer of large map data, which is only activated
when two agents are within distance Cmax of each other. The long-range transceiver is an
RF module that can ensure long-range transfer of very small quantities of data, which is
used only to share odometry, GPS or heavily down-sampled 3D data.
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Figure 1 portrays an instance of the proposed fast decentralized multi-agent active
mapping framework, executed on agent Ri. A separate instance of the framework is
executed on each agent of R. This ensures an active decentralized framework for multi-
agent 3D mapping. The framework has two modules: a continuous update module and
a conditional update module. The continuous update module is executed with every
new sensory update. In this module, an instance of LOAM generates the egocentric
odometry Oi and the map Mi. Added to this, an instance of extended Kalman filter fuses
the sensory data from GPS, IMU and odometry to output the global localization estimate,
Gi. A ball tree generator, as explained in Section 3.1, generates a global ball tree Bi that
keeps track of Oi and Gi throughout time and at specified distance intervals. Whenever
a new tree node is added, it is also shared with all other agents using the long-range
transmitter. Minimal proximity search, detailed in Section 3.2, is used to compute the
proximity of an incoming tree node from an agent Rj with all nodes of the ball tree Bi.
The conditional update module is executed when the result of the minimal proximity
search is true.

Figure 1. Proposed framework deployed in agent Ri.

Conditional update module consists of several computationally intensive processes.
Spherized point cloud registration, in Section 3.3, describes down-sampling, segmentation
and nearest-neighbor sampling of the Mi, to generate a spherized map Ms

i. Ms
i, which

is considerably reduced in size but abundant in features, is then transmitted using the
long-range transmitter to the respective agent Rj, for point cloud registration. The resultant
transformation is then used for merging the complete maps once the agents are close
enough to transfer the complete maps via the short-range transceiver.

3.1. Global Ball Tree Generator

A ball tree is a binary tree data structure, that is used for data partitioning to ensure
fast data query [67]. When an agent, Ri, is initialized, a ball-tree, Bi, is instantiated with
Gi(t = 0) as the root node. The node n of Bi is represented as Bi(n) and the latest node
added is Bi(end). The pair-wise distance used for constructing Bi is the Haversine distance.
The Haversine distance represents the angular distance between two points on the surface
of a sphere. Ball trees with Haversine distance are shown to result in fast nearest-neighbor
look-up for GPS datasets [68,69]. A node Bi(n), inserted at time instant T, consists of the
Gi(t = T) and is tagged with the corresponding LOAM-odometry message Oi(t = T). The
framework continuously monitors the LOAM-odometry Oi and iteratively calculates the
distance between the current odometry Oi(t = T) with that of the last node Bi(end). If
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this distance is greater than a predefined value, Dthresh, a new node is added to Bi, with
Gi(t = T) and Oi(t = T).

The process, called global ball-tree generator, is described in Algorithm 1, which is
continuously run by each agent in R. Each node of the ball-tree has a global localization
estimate Gi, which is mapped with the corresponding LOAM-odometry message stored
at that time instant. These pair-wise data are essential to link the egocentric localization
of Ri with the global frame. Alternatively, we could georeference the point cloud, for
each iteration of LOAM, which requires an accurate initial global localization estimate [70]
and would be computationally costly [71,72]. The intermittent method proposed in this
work eases the computational complexity. It also alleviates the dependence on a single
initial estimate.

Algorithm 1 Global ball-tree generator for agent Ri.

Input: Gi(t), Oi(t), Dthresh, Bi

Initialize Bi = ADD-NODE(Gi(t = 0), Oi(t = 0))

while mapping do
Odom(Current) = Oi(t = T)
Odom(Last − Node) = Bi(end) → O
if ‖Odom(Current) − Odom(Last − Node)‖2 ≤ Dthresh then

Bi = ADD-NODE(Gi(t = T), Oi(t = T), Bi)
end if

end while

procedure ADD-NODE(G, O, B=Balltree())
B.push(G)
B(end) → O
return B

end procedure

3.2. Minimal Proximity Search

In a communication-constrained environment, it is essential to ensure that the band-
width is used for the most vital transmissions. The process explained in this section queries
for possible spatial overlaps in the global frame. Minimal proximity search transmits every
new node added to the ball tree Bi(end) and compares it with the ball trees of other agents
in R for proximity within the global frame.

Every new node added to Bi of agent Ri is shared over the long-range transmitter,
with the remaining agents. The minimal bandwidth required to transfer the node
Bi(end) makes it ideal for a communication-constrained environment. With no loss of
generality, an agent Rj(∈ R, ∀i �= j) has its own instance of LOAM, EKF and global
ball-tree generator, resulting in its own sub-map Mj, egocentric odometry Oj, global
localization estimate Gj, and global ball-tree Bj. Agent Rj processes the incoming node
information from Ri by carrying out a nearest-neighbor search in Bj. If the global
localization estimate Gj entry of the resultant nearest-neighbor node, Bj(Neighbour), is
within a certain threshold(ri), of Bi(end), the node Bj(Neighbour) is shared with Ri. This
is depicted in Algorithm 2.
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Algorithm 2 Minimal proximity search by Rj.

Input: Bi(end), Bj, rij

while mapping do
Neighbor=Bj.NearestNeighborSearch(Bi(end).G)
if Neighbor.distance ≤ rij then

return Bj(Neighbor)
end if

end while

In an effort to minimize the effect of GPS drifts, the distance threshold, ri, is a bounded
dynamic distance threshold. Equation (1) ensures that ri is bounded within predefined
values (rmin,rmax) and proportional to the uncertainty Ci

ek f of the agent Ri EKF estimate.

ri =

⎧⎪⎪⎨⎪⎪⎩
rmax if Ci

ek f · ri ≥ rmax

rmin if Ci
ek f · ri ≤ rmin

Ci
ek f · ri else

(1)

3.3. Spherized Point Cloud Registration

There exists a transformation, Tij, that aligns Mj with Mi of agents Rj and Ri. This
transformation can be achieved by registering the map Mj with the map Mi. However,
the sizes of Mi and Mj are rapidly increasing as the Ri and Rj individually explore and
map the environment, from their perspective. Sharing such large data over a long-range
bandwidth-limited communication channel will lead to a high network latency and data
loss. Hence, this section describes a strategy to only share small sampled subsets of the
maps, and only for the regions that are expected to have sufficient overlapping features
for registration.

With no loss in generality, let us assume that for two agents, Ri and Rj, the minimal
proximity search was successful. A successful minimal proximity search (Section 3.2) gives
an assurance that, at two different time instances, the Ri and Rj are spatially close, in
the global frame. The minimal proxy search results in two nodes, nodei and nodej, of Bi
and Bj, that are globally close: Bi(nodei).O and Bj(nodej).O gives the egocentric odometry
measurement of Ri and Rj. For lucidity, we will refer to Bi(nodei).O and Bj(nodej).O as Li
and Lj, respectively.

A Euclidean ball, of radius ro, is generated in both Mi and Mj, centered at Li and Lj,
respectively. This method of filtering is hereby referred to as spherization. The points
within the sphere are sampled and used for point cloud registration. Since they represent a
fraction of the overall map, the size is considerably reduced. Added to this, the sampled
map, Ms

i and Ms
j , have features that are bound to overlap. This is because the sampled

map was generated when the agents were spatially close in the global frame. Since point
clouds can be considered a rigid body of particles [73], we can conclude that the Tij that
successfully aligns Ms

i with Ms
j also aligns Mi with Mj.

Spherized maps are transmitted over the long-range transmitter to the respective
agents. For a seamless transmission on the constrained bandwidth channel, the spherized
maps have to be less than 25 kilobytes. Thus, spherization is preceded by downsampling,
ground-plane removal and outlier removal to bring down the overall size of the point
cloud to the prerequisite limit. Each agent generates the spherized maps in its own frame
of reference. These frames of reference will be separated by several meters, which is
not ideal for a local point cloud registration algorithm. We use a global registration
algorithm to align these two spherized point clouds roughly. The transformation matrix
acquired from the global registration technique is then used to initialize the local point cloud
registration. Local point cloud registration helps in refining the initial rough alignment.
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The local point cloud registration results in the transformation, Tij, and the RMSE, Eij, of
all inlier correspondences.

The RMSE [45], in the context of point cloud registration, refers to the root mean square
value between the corresponding points of the two point clouds. For Nc correspondences,
between Ms

i and Ms
j , the RMSE for transformation, Tij, can be calculated by Equation (2). ci

and cj refer to all the correspondences in Ms
i and Ms

j , respectively. The transformation, Tij,
that minimizes Eij, across all executions of Algorithm 3 is chosen for the full map alignment.

RMSE =

√
∑Nc

n=1 ‖Ms
j (c

n
g)− Tij ∗ Ms

j (c
n
m)‖2

Nc
(2)

In the proposed implementation, the global registration is carried out using RANSAC
(random sample consensus) [74]. The FPFH (fast point feature histograms) feature [75],
a 33-dimensional vector that encapsulates the local geometric property, for each point, is
calculated. RANSAC searches for these features to make a fast and approximate alignment.
For local registration, we are aware that the process can be further enhanced by sharing
only the features [76,77] rather than the entire point clouds and subsequently using feature-
based registration methods [45,50,51]. We could also implement a semantic mapping
technique [20,21] for acquiring a segmented map before spherization. However, we
use point-to-plane ICP [46] to keep the overall complexity and tunable parameters to
a minimum.

Algorithm 3 Spherized point cloud registration in agent Ri.

Input: Mi, Ms
j, Bi, rs

ij

if Minimal-Proximity-Search(Bi(end), Bj, rs
ij) is True then

Ms
i = Spherization(Mi,Bi(end).O,rs

ij)
Long-range-transmission(Ms

i) -> Rj
Tij = Global-Point-Cloud-Registration(Ms

i,Ms
j)

Tij,Eij,Cij = Local-Point-Cloud-Registration(Ms
i,Ms

j)
if Eij<Eu

ij then
Eu

ij=Eij
Tu

ij=Tij
return Tu

ij
end if

end if

procedure SPHERIZATION(M, O, r)
M = Outlier-Removal(Ground-Plane-Removal(Downsample(M)))
Neighbors = M.NearestNeighborSearch(centre = O,radius = r)
Ms = M(Neighbors)
return Ms

end procedure

4. Experiments and Results

4.1. Real World Experiments

We carried out our experiments with two Jackal robots (shown in Figure 2a) (named J1
and J2), from Clearpath Robotics, on an actual solar farm (total area approximately 1 km2,
depicted in Figure 3a). The two robots were equipped with a Velodyne Puck (VLP-16)
sensor that has 16 layers of infra-red (IR) lasers, a horizontal field of view of 360◦, a vertical
field of view of 30◦ and a speed of up to 300,000 data points per second. A Pixhawk 2.1 cube
IMU and a Here+ GPS receiver were also added to each robot.
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(a) (b)
Figure 2. Real-world experimental setup. (a) Clearpath Jackal. (b) Path taken.

(a) (b) (c)
Figure 3. Experimental setup: Solar farm, corresponding 3D map of solar farm obtained from
LOAM [18] and digital twin. (a) Aerial view. (b) 3D point cloud. (c) Digital Twin.

The global path of the robots are planned beforehand to explore the regions of interest,
through visiting a set of predefined GPS waypoints. The plans also include some time
instances where the robots are within communication range for the sharing of map infor-
mation between agents. The global paths taken by the robots are presented in Figure 2b,
along with the area in which the agents were within short-range communication distance
and the region that had a successful minimal proximity search outcome. The values of
(rmax, rmin) were set to (20 m, 30 m). Figure 4 represents the various stages of the framework
during the experiment. Each agent’s LOAM initialization (shown in Figure 4a,d) creates an
ego-centric frame of reference. Once the successful minimal proximity search is achieved,
the down-sampled point cloud spheres are shared between both agents. These are then
registered in the respective frames of reference, as portrayed in Figure 4b,e. Finally, when
the agents are close enough for short-range communication, the latest maps generated by
J1 and J2 are shared and aligned, as depicted in Figure 4c,f.

4.2. Simulated Experiments

The simulations were carried out on a digital twin world (a 3D Gazebo model) of
the actual solar farm used in the real-world experiments, as shown in Figure 3a. The
simulated environment had a total area of about 1 km2. The digital twin was purely used
for simulation purposes, to further test the collaborative 3D scene reconstruction framework
with multiple agents, and was not linked to real-time sensory data from the actual solar
farm. The complete ground truth point cloud was acquired by converting the 3D Gazebo
mesh model (depicted in Figure 5b) to a 3D point cloud model (depicted in Figure 5c).
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(a) (b) (c)

(d) (e) (f)
Figure 4. Real-world experiment—the various phases of the proposed method for agent J1 (above)
and J2 (below). The blue and red points correspond to the point clouds generated by J1 and J2,
respectively. (a,d) LOAM initialization; (b,e) minimal proximity search was successful, an agent
receives a spherized down-sampled map from the other agent and registers this in its own map;
(c,f) each agent receives the full map from the other agent, as they are within short communication
range. The agent aligns the incoming map with its own map using the transformation acquired from
the spherized registration.

(a) (b) (c)
Figure 5. (a) Way points utilized for navigation, (b) 3D mesh of the digital twin, (c) 3D point cloud
generated from the 3D mesh.

We initially performed a brief parameter analysis to select the values for maximum
LiDAR ranges, Lmax. Figure 6 details three maps, generated with three different Lmax
values, by an agent following the same path in between the solar panels of the digital twin
world (Figure 3c). We can note that for Lmax = 20 m (in Figure 6a), LOAM is unable to
properly find the correspondences that are further away. Due to this, the reconstructed
panels are incorrectly curved. This issue is not seen for Lmax = 40 m (in Figure 6b) and
Lmax = 80 m (in Figure 6c). In an effort to keep the computational load to a minimum, Lmax
was selected as 40 m for the experiments.
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(a) (b) (c)
Figure 6. Maps, from the same viewpoint, generated with varying maximum LiDAR ranges, Lmax.
(a) Lmax = 20 m. (b) Lmax = 40 m. (c) Lmax = 80 m.

To validate the robustness of the proposed algorithm to 3D-laser errors, we induced
a Gaussian error in the simulated VLP-16 sensor. The red circles in Figure 7 map the
correspondences between the ground truth and the 3D map generated by a single agent.
It can be noted that, owing to LiDAR errors, there is a clear mismatch in the generated
map. The resultant incorrect 3D reconstruction is evident in the encircled areas. Such
reconstruction errors, across each mapping agent, is bound to make the eventual point
cloud registration prone to errors. However, the cooperative framework was shown to be
robust against such individual reconstruction errors and could still merge multiple maps
with a good accuracy.

Figure 7. The effect of erroneous LiDAR measurements. The red circles represent the expected
correspondences between the generated map and the ground truth. (Left): The LOAM-mapping
result of an agent. (Right): The ground-truth 3D model.

We averaged the results over 15 simulations of varying number of UGVs (Na = 2
to 5 agents). For comparing the robustness of the proposed method to the noise in the
LiDAR data and resultant LOAM mapping, we executed the experiments with different
LiDAR rates, f of 10 hz and 5 hz. Mapping at a lower laser frequency, for the same agent
speed, is relatively more error prone. Similar to the real-world experiment, navigation
is carried out in between predefined waypoints, shown in Figure 5a. These waypoints
are grouped as rows and divided uniformly amongst Na. The selected path covered all
possible communication conditions and allowed validation of the end-to-end functionality
of the proposed framework. For Na = 3, the distribution of agents and the path taken by
each agent can be seen in Figure 8b. Each color in the point cloud, shown in Figure 8a,
represents the sub-map obtained by a single agent. Note that, the ground plane was
removed for ease of visualization. The errors in individual LOAM-maps can be evidently
seen as artifacts in Figure 8a. The framework is robust to these errors and is able to merge
the maps irrespectively.
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(a) (b)
Figure 8. The results of an isolated iteration of simulated experiments with Na = 3. (a) Merged map.
(b) Path taken.

For performance analysis of the 3D scene reconstructions, we register the resultant
merged map (Mm) from the simulated UGVs against the ground truth 3D model (Mg). This
point cloud registration results in a transformation matrix, Tmg, and a set of corresponding
points, cg and cm, in Mg and Mm, respectively.

4.2.1. RMSE Analysis

Figure 9a plots the minimum–maximum–mean RMSE values for various number of
agents. We can note that there is a decline in the overall RMSE values with the increase in
the number of agents, Na. The mapping error, infused by the LiDAR noise, accumulates
over time. This is spread across the number of agents involved and thus the overall decline
in RMSE is expected, provided the map merging is accurate. This decline in RMSE implies
a successful fusion of each agent’s map.
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Figure 9. RMSE and fitness plots for varying number of agents Na across different rates. (a) RMSE.
(b) Fitness.

4.2.2. Fitness Analysis

Fitness( F ) property of a point cloud registration gives us the overlapping area of the
two point clouds. For our scenario, where the target point cloud, Mg has Ng points, F is
given by Equation (3).

F =
Nc

Ng
(3)
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Since Mg is constant throughout the analysis, a high fitness score implies an increase in
the number of correspondences. In Figure 9b, we can note that with the increase in Na, there
is a steady increase in F , (and thereby Nc), implying that the merged point clouds have
more point-to-point correspondences with the Mg. This can be attributed to the successful
blending of the map of each agent.

4.2.3. Covariance Analysis

The Fischer information matrix, I , that is acquired as a result of the point cloud registra-
tion of Mg on Mm, characterizes the confidence in the registration process. The inverse [78]
of I gives the covariance matrix, C, of the point cloud registration
process [74,79,80]. C gives us the uncertainties involved in the 6 degrees of freedom.
We utilize the determinant of C for our analysis of the overall uncertainty. Figure 10a
showcases the healthy decline in the value of the determinant of C. This implies that the
point cloud registration is more confident in its result, with the increase in Na. The reduced
covariance or the increased confidence is the result of successful map merges.

The results depicted in Figures 9 and 10 further showcase the robustness of the
proposed algorithm. The behavior exhibited by the agents at f = 10 hz is the similar to
that of f = 5 hz. In other words, the agents showcase a decline in RMSE and det(C) and
an increase in F with the increase in Na. Though there is a performance degradation in
f = 5 hz with respect to f = 10 hz, this is expected, owing to the increased mapping error
from LOAM.
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Figure 10. Uncertainty and time plots for varying number of agents Na. (a) det(C). (b) Time taken.

4.2.4. Time Analysis

Trivially, the time taken to map the whole map should decline linearly with Na. For all
runs of the simulation, the homogeneous agents have the same set of waypoints to visit.
Figure 10b showcases the time taken to complete the whole map. Mapping is deemed to
be complete when all agents have completed Algorithm 3, with Eu ≤ 0.4. This threshold
gives us a reliable transformation in between maps of different agents. As is evident in
Figure 10b, there is an expected decline in time taken; however, this is not linear. This is
because of the time taken to achieve a successful spherized registration with low Eu.

4.2.5. Density

The density, at a point(p) in a point cloud, is the number of points around p, within a
sphere of radius, rd. The density at point p, D(p), is given by Equation (4). Density can be
roughly considered analogous to the resolution of an image. Thus, a denser point cloud is
a more detailed point cloud.

D(p) =
Number of points within sphere(centre=p,radius=rd)

4
3 π · (rd)3

(4)
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For analysis, we average the density of every point in the merged point cloud [81].
The spherical radius rd is chosen as 1 m. The results are shown in Figure 11a. We can
see a healthy increase in the average density with Na. This is attributed to the increased
overlapping areas. The overlapping areas have unique points from different agents during
the merging of individual point clouds. This in-turn increases the number of points per
unit area. Added to this, though trivial, it is evident that the density is higher at f = 10 hz
than f = 5 hz. This is due to the increase rate of the LiDAR data acquisition. Figure 11b
depicts the surface density distribution across each point in the point cloud, generated with
3 agents (represented in Figure 8a). Figure 11c depicts the histogram of surface density
of Figure 11b. We can note that higher surface density is rare and achievable primarily in
areas of overlap.
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Figure 11. (a) The variation of mean density of merged map over Na across different rates, (b) the
surface density distribution across the point cloud in Figure 8a, (c) The histogram of surface density
distribution for the point cloud in Figure 8a.

5. Conclusions and Future Work

This article proposes an active, distributed, homogeneous multi-agent mapping and
localization framework. The distributed framework enables conditional long-range and
short-range peer-to-peer communication for small and large data. The proposed method
is tested on a real-world solar farm with two UGVs and its digital twin with multiple
agents. The results showcase the robustness of the proposed algorithm to independent
mapping errors. However, we acknowledge that using direct point cloud registration in
the framework can be error-prone, with increased LiDAR errors. Additionally, a spherized
registration is robust to global localization errors up to a few meters. Thus, noisy EKF
estimates, due to large GPS or magnetic interference, might lead to incorrect map merges.
For future work, we aim to extend the framework to a heterogeneous team of agents
with a heterogeneous set of sensors. We also plan to incorporate an optimal waypoint
planning module, considering the constraints in communication and each agent’s battery
life. Currently, we are conducting an in-depth parameter study to understand and optimize
the framework.

Author Contributions: Conceptualization, J.L., M.B. and P.U.L.; methodology, J.L., M.B. and P.U.L.;
software, J.L.; validation, J.L.; formal analysis, J.L., M.B. and P.U.L.; investigation, J.L., M.B. and
P.U.L.; resources, J.L., M.B. and P.U.L.; data curation, J.L., M.B. and P.U.L.; writing—original draft
preparation, J.L., M.B. and P.U.L.; writing—review and editing, J.L., M.B. and P.U.L.; visualization,
J.L.; supervision, M.B. and P.U.L.; project administration, M.B. and P.U.L.; funding acquisition, J.L.,
M.B. and P.U.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a doctoral grant from Fundação para a Ciência e a Tec-
nologia (FCT) UI/BD/153758/2022 and ISR/LARSyS Strategic Funding through the FCT project
UIDB/50009/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

129



Sensors 2023, 23, 375

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

EKF Extended Kalman Filter
EMI Electromagnetic Interference
LOAM Lidar Odometry and Mapping in Real Time
IMU Inertial Measurement Unit

References

1. Basiri, M.; Gonçalves, J.; Rosa, J.; Bettencourt, R.; Vale, A.; Lima, P. A multipurpose mobile manipulator for autonomous
firefighting and construction of outdoor structures. Field Robot 2021, 1, 102–126. [CrossRef]

2. Karma, S.; Zorba, E.; Pallis, G.; Statheropoulos, G.; Balta, I.; Mikedi, K.; Vamvakari, J.; Pappa, A.; Chalaris, M.; Xanthopoulos, G.;
et al. Use of unmanned vehicles in search and rescue operations in forest fires: Advantages and limitations observed in a field
trial. Int. J. Disaster Risk Reduct. 2015, 13, 307–312. [CrossRef]

3. Limosani, R.; Esposito, R.; Manzi, A.; Teti, G.; Cavallo, F.; Dario, P. Robotic delivery service in combined outdoor–indoor
environments: technical analysis and user evaluation. Robot. Auton. Syst. 2018, 103, 56–67. [CrossRef]

4. Åstrand, B.; Baerveldt, A.J. An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robot.
2002, 13, 21–35. [CrossRef]

5. Lu, S.; Zhang, Y.; Su, J. Mobile robot for power substation inspection: A survey. IEEE/CAA J. Autom. Sin. 2017, 4, 830–847.
[CrossRef]

6. Capezio, F.; Sgorbissa, A.; Zaccaria, R. GPS-based localization for a surveillance UGV in outdoor areas. In Proceedings of the
Fifth International Workshop on Robot Motion and Control, Dymaczewo, Poland, 23–25 June 2005; pp. 157–162.

7. Montambault, S.; Pouliot, N. Design and validation of a mobile robot for power line inspection and maintenance. In Proceedings
of the 6th International Conference on Field and Service Robotics-FSR 2007, Chamonix Mont-Blanc, France, 6–12 July 2007;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 495–504.
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Abstract: This paper considers the problem of finding a landing spot for a drone in a dense urban
environment. The conflicting requirements of fast exploration and high resolution are solved using
a multi-resolution approach, by which visual information is collected by the drone at decreasing
altitudes so that the spatial resolution of the acquired images increases monotonically. A probability
distribution is used to capture the uncertainty of the decision process for each terrain patch. The
distributions are updated as information from different altitudes is collected. When the confidence
level for one of the patches becomes larger than a prespecified threshold, suitability for landing is
declared. One of the main building blocks of the approach is a semantic segmentation algorithm
that attaches probabilities to each pixel of a single view. The decision algorithm combines these
probabilities with a priori data and previous measurements to obtain the best estimates. Feasibility is
illustrated by presenting several examples generated by a realistic closed-loop simulator.

Keywords: unmanned aerial vehicles; search theory; perception; semantic segmentation

1. Introduction

Unlike conventional aircraft that takeoff and land on designated and controlled areas
outside city limits, future commercial drones are expected to operate smoothly in crowded
urban environments. Consequently, the well-defined zones delimited for landing, takeoff
and safe flight will be replaced by dynamic and opportunistic areas within cities. To deal
with this challenge, future delivery and transportation drones must be able to solve the
“last-mile” problem (this refers to the last part in the delivery process of a product, namely,
the section of transport from the last distribution center to the end customer), and find a
place for landing with the following characteristics:

1. Relatively close to the intended destination. These places cannot be limited to prede-
termined areas like heliports, sports fields, or similar places.

2. Appropriate for the drone’s size and weight.
3. Appropriate for landing under harsh (or relatively harsh) flight conditions compatible

with the drone’s flying capabilities.
4. Pose no safety concerns to itself, other vehicles, or living beings in the environment.

This paper describes a multi-resolution probabilistic approach to search for a landing
place in a dense urban environment such as the one illustrated in Figure 1. In this context,
multi-resolution is achieved by iteratively decreasing the altitude from which the visual
sensor observes the urban environment, hence generating a sequence of images with
monotonically increasing spatial resolution. Notice that the purpose is not to generate
super-resolution images but rather to improve the level of confidence of the exploration.
The result is probabilistic in the sense that confidence levels of different regions of the
urban scenario are computed based on a priori knowledge and the result of observations.
Somewhat related ideas for the different problem of performing an energy-efficient close
inspection in an agricultural field were recently considered in [1].
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Figure 1. Simulated urban environment in which the drone attempts to land.

2. Related Work

Although to the best of the author’s knowledge the problem considered in this paper
is new, the probabilistic viewpoint provides connections with extensive existing litera-
ture, including search theory and Bayes-based decision-making. For example, Ref. [2]
provides a survey on the usage of Bayesian networks usage for intelligent autonomous
vehicle decision-making with no focus on specific missions. Similarly, Ref. [3] describes
spacecraft autonomy challenges for future space missions, in which real-time autonomous
decision-making and human-robotic cooperation must be considered. In a related au-
tonomous spacecraft mission, Ref. [4] studies the selection of an appropriate landing site
for an autonomous spacecraft on an exploration mission. The problem is formulated so
that three main variables are defined on which to select the landing site: terrain safety,
engineering factors (spacecraft’s descending trajectory, velocity, and available fuel), and
the site preselected by using the available a priori information. The approach was tested
using a dynamics and spacecraft simulator for entry, descent, and landing.

The problem considered here is also somewhat related to forced landing. This is because
a UAV may need to decide the most suitable forced landing sites autonomously, usually
from a list of known candidates [5]. In that work, references were made to the specifications
for a forced landing system laid out in a NASA technical report essentially consisting
of three main criteria: risk to the civilian population, reachability, and probability of a
safe landing. The emphasis is on public safety, where human life and property are more
important than the UAV airframe and payload. Specifications were included in a multi-
criteria decision-making (MCDM) Bayesian network. See [6] for an application of the
model to a real-life example. The initial design for UAVs’ autonomous decision systems for
selecting emergency landing sites in a vehicle fault scenario are also considered in [6]. The
overall design consists of two main components: preplanning and real-time optimization.
In the preplanning component, the system uses offline information, such as geographical
and population data, to generate landing loss maps over the operating environment. In the
real-time component, onboard sensor data are used to update a probabilistic risk assessment
for potential landing areas.

Another related field of interest is search and rescue, a challenging task, as it usually
involves a large variety of scenarios that require a high level of autonomy and versatile
decision-making capabilities. A formal framework casting the search problem as a decision
between hypotheses using current knowledge was introduced in [7]. The search task
was defined as follows: given a detector model (i.e., detection error probabilities for false
alarms and missed detections) and the prior belief that the target exists in the search region,
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determine the evolution of the belief that the target is present in the search region as a
function of the observations made until time t. The belief evolution is computed via a
recursive Bayesian expression that provides a compact and efficient way to update the
belief function at every time step as the searcher observes a sequence of unexplored and/or
previously visited cells in the search region. After generating a method for computing
the belief evolution for a sequence of imperfect observations, the authors investigated the
search control policy/strategy. In the context of an area search problem, [1] investigated
the uncertainty associated with a typical search problem to answer a crucial question: how
many image frames would be required by a camera onboard a vehicle to classify a target as
“detected” or “undetected” with uncertain prior information on the target’s existence. The
paper presents a formulation incorporating uncertainty using beta distributions to create
robust search actions. As shown below, these ideas are highly related to our approach.

Finally, ideas somewhat related to the ones considered here were used to pose a path-
planning algorithm for performing an energy-efficient close inspection on selected areas in
agricultural fields [8].

3. Problem Formulation

Suppose a drone needs to find a landing place in an urban area A. For simplicity,
consider A to be planar, with an attached coordinate system {W} such that A lies on the
x − y plane, measuring the altitude along the z-direction. Buildings and other constructions
are modeled as occupied volumes over A. For example, the area considered in this paper
will be 1 km by 1 km square. The drone can fly at different altitudes h while collecting
measurements using a monocular camera and a visual sensor with range capabilities.
Examples of the latter are an RGB-D sensor, a Lidar, or a couple of stereo cameras. Let Ah
be the plane parallel to A at an altitude h onto which A’s relevant characteristics can be
mapped. For instance, a no-fly zone U in A (e.g., the base of a building) will be mapped
onto the corresponding subset Uh in Ah (at least if h is smaller than the corresponding
building’s altitude).

The mechanical structure of the drone, the size of its propellers, and the flying con-
ditions (e.g., wind) constrain the minimum dimensions of the landing site on which the
drone can safely land. Conservatively, A will be divided into a grid of identical cells cij, so
that ∪ijcij = A, and each cij is in principle a landing site candidate. Note that this division
is in-line with search theory (see, e.g., [9]) but stems from a different motivation: it is not
a unit area being explored but the smallest area of interest. As discussed next, this will
impact our development in several ways.

The images taken by a camera on the drone at time instant t will be a function of the
pose pt and the camera’s field-of-view. Note that the camera’s orientation can differ from
the drone’s by a relative rotation between the two. Assuming that the FOV is fixed and
known, let It(h) be the camera’s image at time t and Ft(h) be the camera’s corresponding
footprint, namely the 3D structure mapped onto the image plane. At the time t, the drone
will have a unique pose pt, but the dependence on the altitude is specifically considered in
the notation; this is because the altitude scales the resolution and the footprint: for smaller
h, one obtains a better resolution at the cost of a smaller footprint. The structure Ft(h) is
built on a collection of cells Ct(h) =

⋃
{j,k}∈{Jt(h),Kt(h)} cij ⊂ A.

Without additional constraints, the drone could fly over A at a relatively low altitude
hmin, searching for an appropriate cell cij on which to land. However, at this altitude, the
camera’s footprint Ct(hmin) will include a relatively small number of cells cij and hence the
drone would spend a potentially prohibitive amount of time/energy exploring the whole A.
On the other hand, the altitude can be selected to be the maximum allowable by regulations,
say hmax, resulting in as large as possible footprints. In an extreme case, Ct(hmax) = A.
This maximizes the area subtended by a single image and minimizes the exploration time,
but will give rise to an image resolution that cannot guarantee the safety of landing, i.e., it
will not resolve relatively small obstacles. The trade-off between altitude and resolution is
solved in this work by considering a multi-resolution approach: the exploration will start at
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high altitude, say h1, looking for the largest possible subset of A that appears to be feasible
for landing, say L1. Subsequently, the drone will reduce its altitude to h2 and re-explore
L1 with the higher resolution resulting from h2 < h1. This process results in a sequence
of A ⊃ L1 ⊃ · · · ⊃ LN that will eventually converge to a collection of one or more safe
landing places.

Figures 1–3 illustrate this scenario.

Figure 2. The area of interest A, the plane Ah at an altitude h, and the mapping of an obstacle Uh.

Figure 3. The plane at a given altitude is divided into small cells.

3.1. A Probabilistic Model

In classical search theory [9], finding a target is often formulated as a decision problem
by defining a set of binary variables:

Hij
.
=

{
1 if cij has a target
0 otherwise

(1)
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This can be extended to the case of interest by defining:

Hij
.
=

{
1 if cij is appropriate for landing
0 otherwise

(2)

In the presence of uncertainty, each cell is likely to be suitable for landing with some
probability Kij referred to as the fitness for landing. Clearly, if a cell is appropriate for landing,
then Kij = 1, and if it is not, then Kij = 0. In real-world scenarios, prior knowledge about
the fitness for landing can be based on using types of maps or 3D models that can be
imprecise or outdated. Consequently, uncertainty in Kij needs to be incorporated into the
model. Probably the simplest way to model the decision problem would be to introduce
a binary distribution and say that the probability of Kij = 1 is p and Kij = 0 is 1 − p.
However, as observed by [1], this model fails to capture the uncertainty of the information,
and instead, it is preferable to use a beta distribution for describing the prior knowledge
together with its underlying uncertainty. Note that the beta distribution and the binomial
and Bernoulli distributions form a conjugate pair, so that if a Bernoulli distribution can
model the sensor, then the observation of new data changes only the parameters of the
prior. At the same time, the conjugacy property ensures that the posterior is in the same
class (i.e., beta). This is critical when propagating the belief in the fitness for landing in
a Bayesian framework. Using these models simplifies the decision problem into a binary
outcome as defined in Equation (2).

The beta distribution is defined as,

Pr
(
Kij|α, β

)
=

Γ(α + β)

Γ(α)Γ(β)
Kα−1

ij (1 − Kij)
β−1 (3)

where 0 < Kij < 1 and Γ(α) is the gamma function defined as,

Γ(α) =
∫ ∞

0
xα−1e−x dx (4)

When α is an integer, Γ(α) = (α − 1)!. The parameters α and β can be considered
prior “successes” and “failures”. The beta distribution is somewhat similar to the binomial
distribution. The main difference is that the random variable is Hij and the parameter is
Kij in the binomial distribution, whereas the random variable is Kij and the parameters are
α and β in the beta distribution.

Bayes theorem is often used in search theory [1,7,9] to update the aggregated belief
(e.g., posterior distribution), which is proportional to the likelihood function times the
prior distribution:

Pr
(

Kij

∣∣∣SN
ij , α, β

)
∝ Pr

(
SN

ij
∣∣, Kij

)
Pr
(
Kij|α, β

)
(5)

Here, SN
ij = ∑N

n=1 Hn
ij is the number of successes in N Bernoulli trials. Pr

(
Kij

∣∣∣SN
ij , α, β

)
is

the posterior distribution for Kij given the number of successes. Pr
(

SN
ij

∣∣Kij

)
is the likelihood

function and Pr
(
Kij|α, β

)
is the prior distribution for Kij. In [7], the likelihood distribution

is given by a binomial distribution series of N observations:

Pr
(

SN
ij
∣∣Kij

)
=

(
SN

ij
N

)
K

SN
ij

ij (1 − Kij)
N−SN

ij (6)

Note that the underlying assumption is that the Bernoulli distribution provides an
appropriate statistical model for the sensor used. This assumption is more or less natural
when considering a series of noisy images. In our case, simple image processing algo-
rithms are replaced by a more complex meta-sensor: fitness is computed by a semantic
segmentation algorithm that associates for each pixel on a given image the suitability for
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landing on the corresponding cell on the ground. An appropriate model for this process is
discussed next.

3.2. A Correlated Detection Model

The probability framework is motivated by the sensors’ limitations for establishing
whether a given cell is appropriate for landing. As mentioned above, the main limitations
are the camera resolution, the environmental conditions limiting visibility, and possibly
scene dynamics. The probability estimated by a sensor that a given cell is appropriate for
landing may vary according to altitude, with lower altitudes having higher confidence
levels (up to a certain point depending on the sensor).

In [1], the authors assumed independent Bernoulli trials when detecting a target in
recurrent visits. Independent trials are acceptable when the condition of the experiment
does not change. However, in this research, our multi-resolution approach implies that
when observing cell cij at different altitude levels, one cannot assume uncorrelated mea-
surements between different levels. At each level, the experiment’s condition changes (e.g.,
different resolution), and if a landing place exists, then it is expected that the rate of success
will depend on previous trials and will increase when the level of details increases while
descending toward cell cij.

Generalizing the binomial distribution typically involves modifying either the assump-
tion of constant “success” probability and/or the assumption of independence between
trials in the underlying Bernoulli process. The approach to generalizing the binomial distri-
bution in this research follows the generalized Bernoulli distribution (GBD) model [10] by
relaxing the assumption of independence between trials. The GBD model was further con-
sidered in statistics literature [11–14]) aiming to obtain its central limit theorems, including
the strong law of large numbers and the law of the iterated logarithm for partial sums.

Consider a Bernoulli process {Hn
ij, n ≥ 1} in which the random variables Hn

ij are
correlated so that the success probability for the trial conditional on all the previous trials
depends on the total number of successes achieved to that point. More precisely, for some
0 < Kij < 1,

Pr
(
Hn+1

ij

∣∣∣Fn
ij

)
= (1 − θn

ij)Kij + θn
ij

Sn
ij

n
(7)

where 0 ≤ θn
ij ≤ 1 are dependence parameters, SN

ij = ∑N
n=1 Hn

ij for N ≥ 1 and

FN
ij = σ(H1

ij, · · · , HN
ij ). If H1

ij has a Bernoulli distribution with parameter Kij, it follows

that H1
ij, H2

ij, · · · are identically distributed Bernoulli random variables.
By replacing the binomial distribution in Equation (5) with the GBD at each altitude hn,

the aggregated belief that a cell cij is suitable for landing given the number of successes will
be proportional to the product of the prior distribution and the altitude correlation-based
distribution.

4. Testing Environment

To develop and test the probability multiple-resolution approach, a simulation en-
vironment was created using AirSim [15], a drone and car simulator built on the Unreal
Engine [16]. AirSim is an open-source, cross-platform simulator for physically and visually
realistic simulations. It is developed as an Unreal plugin that can be integrated into any
Unreal environment. Within AirSim, a drone can be controlled using a Python/C++ API;
for our project’s requirements, the drone can be configured similarly to a real drone in terms
of dynamics, sensor data, and computer interface. The drone can be flown in the simulation
environment from one waypoint to another while acquiring data from the sensors defined
in the platform. The simulator computes images taken by a downwards-facing camera and
a GPS/inertial navigation system for the current configuration.
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The simulator has two primary purposes:

1. To test the overall multi-resolution approach as the unit under test (UUT). The simula-
tor functions as the hardware in the loop (HIL) tester’s data generator in this mode.
The data generated by the simulator are streamed into the drone’s mission compute,
and the system processes the data and computes the next coordinate to which the
drone flies. Note that in this case, the simulator drives the real-time functioning of the
closed-loop system.

2. To generate offline data for the search algorithm. As mentioned above, the drone
can be flown using the API around the map at different scenarios and heights while
generating data at predetermined rates. Typical data consist of RGB images, seg-
mented images, and inertial navigation data, forming a probabilistic model analysis
and validation data set.

The 3D model used in the simulator was the Brushify Urban Buildings Pack [17],
purchased from the Unreal marketplace. Figures 4 and 5 show a simple example of RGB
and corresponding segmentation images for the cameras simulated on the drone. The
images highlight the observation that objects that occupy a cell are hardly detectable from
a high altitude (e.g., a phone booth), while when descending, the gathered information
allows the algorithm to detect these objects and decide that the drone cannot land in these
specific cells.

Figure 4. High-altitude urban scene captured with a downward-looking camera. On the left is a
simulated image. On the right is the corresponding segmented scene.

Figure 5. Low-altitude urban scene captured with a downward-looking camera. On the left is a
simulated image. On the right is the corresponding segmented scene.

5. Analysis and Preliminary Results

Obtaining prior knowledge about the urban scene is necessary for a probability model.
For this purpose, a labeled 3D digital surface model (DSM) was generated by the simulation
using a 2 × 2 [m] cell resolution.

The DSM, shown in Figure 6, allows for choosing the parameters of the prior distribu-
tion for each cell given the label of that cell. The labels chosen to be represented with initial
probabilities were such that they were visible from a high altitude and may be considered
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appropriate for landing or not when descending. Figure 7 shows the beta distribution’s
parameters for each label. These parameters were chosen to give some knowledge on
an appropriate (or not) place to land. Still, there is sufficient uncertainty in the prior’s
belief to allow some degree of freedom to change the values and the new belief with
new observations.

Figure 6. Top view of the digital surface model with chosen labels.

Figure 7. Prior beta distribution for chosen labels.
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The α and β parameters in Equation (3) are stored for each cell cij in a 2D model of the
urban scene, as illustrated in Figure 8. To determine if cell cij contains a place to land, the
probability Pr(Kij > κ) is calculated:

Pr(Kij > κ) =
∫ 1

κ
Pr(Kij) dK (8)

For instance, Figure 9 shows the prior belief that a landing place exists for Pr(Kij > 0.5).
Only sidewalks are somewhat appropriate for landing, even for κ = 0.5, and the belief
can easily be changed when new observations are obtained. Notice that cells in both
Figures 8 and 9 contain values for α, β, and prior probabilities.

Figure 8. Prior α and β parameters for each cell in the urban scene.

Figure 9. Prior landing probability for κ = 0.5.

The downwards-looking camera mounted on the drone provides color images that
need to be converted into information on how suitable each cell is for landing. Clearly,
this relation may be highly complex. In recent years, deep neural networks have shown
to be successful in various computer-vision applications, including the type of semantic
segmentation problems relevant to our purpose. Consequently, we chose to employ the
semantic segmentation network BiSeNet [18], which fuses two information paths: context

143



Sensors 2022, 22, 9807

path and spatial path. The context allows information from distant pixels to affect a pixel’s
classification at the cost of reduced spatial resolution. In contrast, the spatial path maintains
fine details by limiting the number of down-sampling operations. This net also provides a
reasonable compromise between segmentation accuracy and compute requirements.

Other network architectures, potentially more complex and accurate, are currently
under investigation, including DeepLabV3+ [19] (a state-of-the-art convolutional net that
combines an atrous spatial pyramid with an encoder–decoder structure) and Segformer [20]
(a relatively efficient transformer-based segmentation model). Preliminary results when
using these semantic segmentation architectures on real-life data are discussed in a forth-
coming paper currently under review.

BiSeNet was trained and validated on images taken by the camera while flying in the
urban environment at different altitudes. The model uses the labels in the digital surface
model in Figure 6 for training. During inference, the model predicts probability scores
(summing to 1) for the different categories using captured images. Each category is also
assigned an a priori weight representing how suitable this category is for landing (e.g.,
weight[sidewalk] = 0.8 and weight[building] = 0). We take a weighted average of the
categories’ probabilities using the predefined weights to obtain a final score pmn for each
image pixel. pmn, which can vary between 0 to 1, which describes the probability that a
landing site exists based on the observed data. Using the 6-DOF of the drone, the image
footprint, i.e., pixels coordinates projected on the ground, was transformed to a world
coordinate system to be associated with each cell cij in the grid. The outcome of a Bernoulli
trial for success or failure is given by counting Np, the number of pixels associated with cell
cij that pass pmn > 0.5 and are relative to Npc, the total number of pixels associated with cij.
If the relative amount is greater than 0.99, then cij holds a successful trial.

Np =
Npc

∑
m,n∈i,j

{pmn > 0.5} (9)

Hij
.
=

⎧⎨⎩ 1,
Np

Npc
> 0.99

0, otherwise
(10)

5.1. A Single-Altitude Bayesian Update

The Bayesian update was tested for several flight scenarios. Suppose now that the
drone flies and takes images at a constant altitude and that the semantic segmentation
network analyzes images. Each cell cij belonging to an image footprint is associated
with the corresponding projected pixels, and a Bernoulli trial is performed according to
Equation (10). The trial is performed on each cell only once to prevent added correlation
effects at that altitude. The outcome of the single trial is added to the α and β values
previously selected as the prior (shown in Figures 7 and 8) and then integrated numerically
according to Equation (8). Figures 10 and 11 show the updating stage at different time
instances and altitudes.

5.2. An Altitude-Based Bernoulli Trial Distribution

In order to study the GBD model, an experiment with Bernoulli trials at different
altitudes was performed. Several objects are placed on the ground at different locations
around the urban scene. The experiment was planned so that a single object was se-
lected for the drone to descend upon at different locations. At each location, images are
taken as input for the semantic segmentation network. On each output of the network,
a Bernoulli trial is performed on a single cell according to Equation (10), so that at each
altitude that an image is taken, there is a single success or failure output on a given cell cij.
Figures 12 and 13 show the input and output at selected altitudes in a single location. A
phone booth was selected for the drone to descend upon. There are 31 locations around the
urban scene with the phone booth placed on the sidewalk. A cell in the world coordinate
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system was selected at each location so that the phone booth occupies partially or the entire
cell. The expected outcome is that the phone booth would be partially detected at high
altitudes, and the selected cell would be detected as fit for landing. In contrast, more details
will be detected when descending, and the cell will be detected as unfit for landing.

Figure 10. Bernoulli trial update: each cell is updated only once.

Figure 11. Bernoulli trial update: each cell is updated only once.

Figure 12. Semantic segmentation input: telephone booth partially occupies the cell.
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Figure 13. Semantic segmentation output: telephone booth partially occupies the cell.

Figure 14 shows the histogram for the 31 locations with altitude-based trials. We can
see that the aforementioned expected behavior is indeed observed under approximately
160 m. Peculiarly, above this altitude, the success frequency diminishes markedly. This may
be explained by the fact that there were no images from these altitudes in the training set,
making the net’s prediction unreliable. It should be noted that even in lower altitudes, its
prediction can be noisy for various reasons, mainly because the training set is not diverse
enough. We expect that more diversity in the training set will yield greater reliability of the
net, which in turn, will result in a better fit for the model.

Figure 14. An altitude-based Bernoulli trial histogram.

6. Conclusions and Further Work

This paper has presented a multi-resolution probabilistic approach to finding an
appropriate landing site for drones in a dense urban environment. The approach uses a
priori data (e.g., a map or a DSM) to estimate the fitness for landing probability distribution
for each cell on which the environment is divided. Distribution and not probabilities are
used in an attempt to model the uncertainty of the data. Subsequently, the data collected
by a visual sensor and processed by a semantic segmentation neural net are used to update
the distribution using Bayesian networks. In order to do that, the probability of success
is factored into the results obtained by the net. Images are captured at different altitudes
in an attempt to solve the trade-off between image quality, including spatial resolution,
context, and others. After presenting theoretical aspects, the simulation environment in
which the approach was developed and tested is detailed, and the experiments conducted
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for validation are described. The overall approach is shown to produce the desired results,
at least for the simulation environment in which it was tested.

Further work is currently underway in three main directions. Firstly, we would like to
establish some success criteria for the procedure. For instance, we would like to develop
bounds to enable more accurate ways of analyzing our results. Secondly, we would like to
generate more realistic images on which semantic segmentation can be trained and tested.
Lastly, we would like to test the approach on actual data and conduct a flight test to achieve
real-life validation.
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Abstract: Economic and environmental sustainability is becoming increasingly important in today’s
world. Electronic waste (e-waste) is on the rise and options to reuse parts should be explored. Hence,
this paper presents the development of vision-based methods for the detection and classification
of used electronics parts. In particular, the problem of classifying commonly used and relatively
expensive electronic project parts such as capacitors, potentiometers, and voltage regulator ICs is
investigated. A multiple object workspace scenario with an overhead camera is investigated. A
customized object detection algorithm determines regions of interest and extracts data for classifi-
cation. Three classification methods are explored: (a) shallow neural networks (SNNs), (b) support
vector machines (SVMs), and (c) deep learning with convolutional neural networks (CNNs). All
three methods utilize 30 × 30-pixel grayscale image inputs. Shallow neural networks achieved the
lowest overall accuracy of 85.6%. The SVM implementation produced its best results using a cubic
kernel and principal component analysis (PCA) with 20 features. An overall accuracy of 95.2% was
achieved with this setting. The deep learning CNN model has three convolution layers, two pooling
layers, one fully connected layer, softmax, and a classification layer. The convolution layer filter size
was set to four and adjusting the number of filters produced little variation in accuracy. An overall
accuracy of 98.1% was achieved with the CNN model.

Keywords: vision system; object detection; object classification; shallow neural networks (SNNs);
support vector machines (SVMs); deep learning; convolutional neural networks (CNNs)

1. Introduction

One of the key principles of a circular economy [1] is the elimination of waste and
pollution. This facilitates a robust system that is beneficial for businesses, humans, and the
environment. Recycling and reusing products should be emphasized in every part of the
economy. In educational environments where resourcing can be constrained, equipment
and consumables used in projects can be recycled or reused [2].

Higher education institutions that provide training for engineers often place high
emphasis on practical activities and assessments. Courses in fields such as electrical and
electronic engineering often rely on hardware components such as resistors, capacitors,
inductors, voltage regulators, and diodes for project work. As an example, students
are required to construct an electrotechnology product in the Electrical and Electronics
Applications course at Waikato Institute of Technology [3]. The construction could be on a
printed circuit board (PCB), Veroboard, or breadboard. After project work, the constructed
PCBs are left in storage or thrown away (Figure 1). Used components are often discarded
instead of being reused. In the circular economy concept, components on these circuit
boards could be removed as part of soldering practice lessons. Since sorting parts manually
is mundane, this could be achieved using an intelligent automated sorting system. Thus,
this research proposes that a vision-based system be used to detect and classify parts.

Sensors 2022, 22, 9079. https://doi.org/10.3390/s22239079 https://www.mdpi.com/journal/sensors
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Figure 1. Circuit boards discarded after project work.

According to Mathworks [4], identifying objects in images or videos is a computer
vision technique known as object recognition. A variety of artificial intelligence methods
can be used for object recognition. Techniques in machine learning and deep learning have
become popular recently [5–7]. Object detection is similar to object recognition but varies
in execution. In objection detection, instances of objects are identified and also located in
an image. This enables many objects to be located and identified in an image.

Machine learning [8] is a sub-class of artificial intelligence and deep learning [9] is
a sub-class of machine learning. Traditional machine learning approaches have intercon-
nected steps such as segmentation, feature extraction and classification. Conventional
traditional machine learning classification methods for object recognition include shallow
neural networks (SNNs) and support vector machines (SVMs) [10,11]. Deep learning
primarily utilizes deep neural networks that consist of multiple hidden layers. Feature
extraction and classification is learned by the deep neural network. This provides superior
flexibility because the framework can be re-trained using a custom dataset for transfer
learning. Deep learning can also achieve better classification than traditional machine
learning. However, it achieves this at the expense of requiring high-end computing power,
larger training datasets, and longer training time. A comparison of traditional machine
learning and deep learning applied to image recognition showed an increase in accuracy of
less than 5% [12].

A common application of vision-based detection of electronic components is inspecting
the integrity and quality of PCBs [13–15]. Image classification techniques based on deep
neural networks have been used to detect integrated circuit (IC) components and verify
their correct placement on the finished PCB product in [13]. Verification is similar to
classification and a best accuracy of 92.31% was achieved. Machine learning is used to
inspect components prior to assembly in [14]. The purpose of prior inspection is to reduce
the number of defective components mounted and reduce falsely rejected components.
Scale-invariant feature transform (SIFT) parameters are extracted from raw images and
used with an artificial neural network (ANN) or an SVM for classification. Classification
accuracies of up to approximately 97% were achieved. Tiny surface mount electronic
components on PCBs are recognized using machine learning and deep learning in [15].
Machine learning with SVM+ principal component analysis (PCA) achieved an overall true
positive rate (TPR) of 93.29%. The TPR was further improved to 99.999% with the deep
learning-based Faster SqueezeNet.

Some recent methods to classify loose electrical and electronic components are based
on deep learning models [16–18]. In [16], a customized CNN architecture is developed
to classify three types of components: resistors, diodes, and capacitors. The developed
system’s performance is benchmarked against pre-trained AlexNet, GoogleNet, ShuffleNet,
and SqueezeNet deep learning architectures. While the accuracy of the pre-trained models
ranged from 92.95% to 96.67%, the proposed CNN model achieved 98.99% accuracy. Post-
training evaluation in a real-world setting was not conducted. In [17] and [18], variations
of the ‘you only look once’ (YOLO) deep learning model [19] are utilized. The speed
and accuracy of real-time object detection makes YOLO a popular choice. It is capable
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of directly outputting the position and category of an object through its neural network.
Four electronic components (three types of capacitors and an inductor) are classified using
YOLO-V3 and Mobilenet in [18]. A mean average precision (mAP) of 0.9521 was achieved.
The YOLOv4-tiny network is combined with a multiscale attention module (MAM) and
used to classify twenty types of electronic components in [17]. This improves the accuracy
of the original algorithm from 93.74% to 98.6%. A potential deep learning model for
detecting and classifying parts is Faster R-CNN [20]. However, the drawback of using
Faster R-CNN for classifying electronic parts is explained in [13]. It achieves very poor
results and according to the authors Faster R-CNN is not designed for small, relatively
featureless objects such as ICs.

A non-deep learning based machine learning method for classifying electrical and
electronic parts is presented in [21]. In this implementation, a K nearest neighbor (KNN)
classification algorithm is used to classify capacitors, diodes, resistors, and transistors.
Classification is performed based on physical appearances such as length, width, number
of legs, shape (roundness of objects), and correlation of input images with standard database
images. Full results and analysis are not presented, and accuracy is not quantified. While
KNNs are simple and easy to implement, they can become significantly slower as the
volume of data increases.

Recently, weakly supervised learning (WSL) has become popular in the computer
vision community. A survey of various methods for object localization and detection is pro-
vided in [22]. An advantage of WSL is that it can perform object localization and detection
at image level speeds of conventional fully supervised learning tasks. Typically, weakly
labelled training images can be input to either machine learning methods (e.g, SVMs), or
off-the-shelf deep models (e.g., AlexNet or R-CNN), or novel deep WSL frameworks. WSL
is applied to video salient object detection in [23]. Co-salient object detection distinguishes
common and salient objects in a group of relevant images. A summarize and search method
that employs dynamic convolution to distinguish salient objects is presented in [24]. The
current literature search did not determine any suitable implementations of WSL and video
salient object detection for sorting electronic parts.

A machine learning method that utilizes an SNN classifier to identify capacitors
within a scene of scattered electronic components is presented in [25]. A feature extraction
algorithm detects objects and converts them to a 20 × 20-pixel grayscale image for the
SNN. An overall accuracy of 82.7% is achieved. This method is further extended to a three
class problem for classifying capacitors, potentiometers, and voltage regulators in [26]. By
increasing the size of the grayscale image to 30 × 30 pixels and correspondingly adjusting
the size of the hidden neuron layer, an overall accuracy of 85.6% is achieved. Capacitor
classification achieves an accuracy of 91.4%.

Unlike the other reviewed methods [25,26], utilize lower resolution grayscale images
for classification. This reduces the complexity of the classifier and requires lower computa-
tional power (processor and memory use). However, the accuracy is also reduced. Hence,
this paper investigates the use of alternative methods based on SVM and CNN to improve
classification using the low-resolution grayscale images.

2. Materials and Methods

2.1. Conceptual Framework

Figure 2 shows a visualization of the object sorting system. An overhead camera
coupled with a Niryo Ned robotic arm [27] is used to detect, classify, and shift objects within
a pre-defined workspace. This workspace has a size of 194 mm horizontally (h, x) by 194 mm
vertically (v, y) and its boundaries are marked by one origin marker, top left (TL), and three
edge markers, top right (TR), bottom left (BL), and bottom right (BR). The Niryo Ned robotic
system has been selected because it features the open-source Robot Operating System (ROS)
platform [28] and supports Matlab integration via the ROS Toolbox [29]. A graphical user
interface (GUI)-based controller has been developed in Matlab to communicate commands
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to the robot and perform image acquisition [30]. Another feature is the relatively low cost
of the hardware which is approximately US $3299 [30].

 

Figure 2. Visualization of object sorting system.

A Logitech HD C270 web camera is mounted in the center of the workspace. It is posi-
tioned at a height of approximately 0.37 m. Using a camera resolution of 960 × 720 pixels,
the four boundary markers are clearly visible near the limits of the camera image at this
height. Figure 3 illustrates a sample camera image at the height of 0.37 m. The camera
height is adjustable since the four boundary markers are also used to automatically calibrate
pixel distances (1), (2). The TL marker is the origin marker and is used to compute pixel and
physical distances in the workspace. It also translates workspace distances to the robot’s
reference frame.

xcal = 194/(0.5(hTR − hTL + hBR − hBL)), (1)

ycal = 194/(0.5(vBL − vTL + vBR − vTR)), (2)

where

xcal is the x-axis calibrated pixel distance scale factor in mm/pixel,
ycal is the y-axis calibrated pixel distance scale factor in mm/pixel.
H and v are horizontal and vertical pixel numbers, respectively.

 
Figure 3. Sample camera image at the height of 0.37 m.

The overall general framework of the vision-based classification system designed in
this paper is illustrated in Figure 4. First, an image of the workspace is captured using the
web camera via Matlab. Following this, the acquired image is processed for object detection.
Bounding boxes are placed around detected objects and the center of the bounding boxes
represents the location (position) of the objects. After determining the bounding boxes,
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the partial image inside each bounding box is considered a region of interest (ROI) for the
classifier and is resized according to the classifier requirements. Once the ROI is resized,
the classifier uses it to match the image to an object class it has been trained to recognize.
The classified object can then be moved by the robotic arm to a target location.

 

Figure 4. General framework of the vision-based classification system.

2.2. Object (Component) Detection

The major parts of the object (component) detection process are highlighted in Figure 5.
Various image processing algorithms are applied to extract ROIs containing unclassified
objects. Figure 6 shows representative images of the various stages of the object detec-
tion process.

To reduce the complexity of the object detection and classification process, grayscale
images are used. Hence, the first part of the process is to convert the RGB color image to
grayscale using the weighted method (3). Following this, edge detection algorithms can
be applied to determine the boundaries (outlines) of objects within images [31]. Of the
available algorithms in Matlab (Sobel, Canny, Prewitt, and Roberts), Canny performed the
best in detecting shape outlines (Figure 6a). Canny uses two thresholds which makes it less
likely to be fooled by noise and more likely to detect true weak edges. The values for the
high and low thresholds are 0.1 and 0.04, respectively.

gray = 0.299R + 0.587G + 0.114B. (3)

The output of the Canny edge detection algorithm is a binary image which is then
dilated to further improve connectivity between the edges. This is achieved by applying
a rectangular structuring element that enlarges the edges of the binary image (Figure 6b).
Edge connectivity is important as the next stage involves flood-filling the binary image to
form filled (solid) shapes representing the detected objects (Figure 6c). After flood-filling,
the binary image is further processed by measuring the properties of the image regions.
The “BoundingBox” property argument returns a set of positions and sizes of the smallest
boxes, i, containing each detected object (Figure 6d) (4). This represents the ROIs. The
green crosses in Figure 6d mark the bounding box centers (BBC) that represent the location
of the objects in the workspace (5) and (6).

BBi = [hoi, voi, hwi, vhi], (4)

where

BBi is the ith bounding box,
hoi is the horizontal pixel number of the top left corner,
voi is the the vertical pixel number of the top left corner,
hwi is the horizontal width in pixels,
vhi is the vertical height in pixels.

BBC(hi,vi) = (hoi + 0.5 × hwi, voi, + 0.5 × vhi), (5)
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BBC(xi,yi) = ((hoi + 0.5 × hwi − hTL) × xcal, (voi,+ 0.5 × vhi − vTL) × ycal). (6)

Figure 5. Main parts of the object detection process (Figures 3 and 6).

  
(a) (b) 

  
(c) (d) 

Figure 6. Sample images of various stages of the object detection process. (a) Canny edge detection
binary image; (b) Binary image dilation; (c) Filled binary image; (d) Grayscale image with bounding
boxes and center point coordinates.

After detecting bounding boxes (ROIs), the size of each bounding box is checked
against an estimated size threshold representing the dimensions of the smallest component
to be detected. This eliminates small boxes that may have been erroneously detected due
to noise or tiny holes in components such as voltage regulators. The pick and place task
assumes that objects are physically separated and do not overlap.

The final stage before input to the component classifier involves standardizing the size
of the ROI images. The ROIs of the grayscale image inside the bounding boxes are rescaled
to 30 × 30 pixels. This has been arbitrarily selected to reduce complexity of the classifier
and represents 900 inputs.

2.3. Component Classification

Component classification determines which class or category the detected component
belongs to. Several methods of doing this are outlined in Section 1. Three techniques
utilized in this research are described below.
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2.3.1. Shallow Neural Network (SNN)

The SNN classifier has 900 inputs, one hidden layer, and three outputs representing the
components (capacitor, potentiometer, and regulator) as shown in Figure 7. It is designed
and implemented using the Neural Pattern Recognition tool (nprtool) in Matlab 2021a.
The classifier is a feedforward neural network that is backpropagation trained using the
scaled conjugate gradient method [32]. The performance function is the Cross-Entropy
method (7) which generates batches of episodes and removes bad episodes in a batch
to train the network on better ones. The tansig function is utilized in the hidden layer
while the softmax function is employed in the output layer. These are the default settings
of the nprtool. The main variable adjusted in the SNN is the number of neurons in the
hidden layer.

J = − 1
M ∑M

m=1 ∑K
i=1 ti

m ln
(

yi
m

)
(7)

where

J is the cost,
M is the number of training data,
K is the number of output classes,
y is the output (contains K values, one for each class).

 

Figure 7. SNN architecture.

2.3.2. Support Vector Machine (SVM) and Principal Component Analysis (PCA)

The SVM classifier also has 900 inputs and three outputs. It is designed using the
Matlab Classification Learner App. Error-correcting output codes (ECOC) [33] are used to
train the classifier which works by solving for a hyperplane that separates two class data
with maximal margin [34]. The support vectors are the points which lie near the separating
hyperplane. The SVM is trained for a 3-class problem on a one vs all approach. Since
the original training data is not linearly separable, four different kernel functions K(xi,x)
(linear (8), quadratic (9), cubic (10), and Gaussian (11)) are applied to the classifier. These
transform the original input space into vectors of a highly dimensional feature space for
the SVM to classify. The general structure of the SVM is shown in Figure 8.

K(xi, x) = (xi.x) (8)

K(xi, x) = (xi.x + 1)2 (9)

K(xi, x) = (xi.x + 1)3, (10)

K(xi, x) = e− ||xi − x||2/2σ2
. (11)
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Figure 8. SVM architecture.

Using 900 predictors in the input space can impair computational time. Hence,
PCA [35] is used to determine the principal components for feature optimization [36,37].
This singular value decomposition reduces the data dimensionality and projects it to a
lower dimensional environment for the SVM. This naturally comes at the expense of accu-
racy. Hence, it is important to compare the SVM + PCA classifier accuracy with the SVM
only classifier.

2.3.3. Convolutional Neural Network (CNN)

Like the SNN, the CNN classifier is also a feedforward neural network with 900 inputs
(30 × 30-pixel image). It can extract features from the two-dimensional image and optimize
parameters using backpropagation. The high performance of CNNs makes them a preferred
deep learning architecture as outlined in Section 1 and in [38]. The basic structure of a CNN
is shown in Figure 9. The hidden layers consist of a series of convolution, rectified linear unit
(ReLU), and pooling layers. In the convolution layer, the image is examined by applying
a filter smaller than the original image to determine its properties. Following this, the
ReLU layer removes negative values from the output of the convolution layer. The pooling
layer reduces the original size of the image by retaining important features and ignoring
unnecessary features in the image. The fully connected (FC) layer converts the matrix
image into a flat vector for the SoftMax function to determine the output classification.

 

Figure 9. Basic structure of a CNN.

The architecture of the proposed CNN inspired by [39] has three convolution layers,
two pooling layers, one fully connected layer, softmax, and an output classification layer
as shown in Figure 10. The filter size for all three convolution layers is set to 4 × 4 with a
stride of 1. A filter size of 3 × 3 is utilized for the two pooling layers and the stride is set
to 3.
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Figure 10. Architecture of the proposed CNN.

3. Results

3.1. Datasets and Configuration

The dataset used in this research consisted of a total of 1734 images extracted via the
object detection process described in Section 2.2. Each class (capacitor, potentiometer, and
regulator) had 578 images. A sample of the dataset images derived from object detection
process is shown in Figure 11. Further details of the dataset are available in [40]. The
dataset was randomly divided into 70% training (1214 images), 15% validation (260 images)
and 15% test (260 images). Five-fold cross-validation was used in the training process.

Figure 11. Sample of 25 images from the database.

A Windows 10 HP ProBook 450 G7 laptop running Matlab 2021a was used to imple-
ment the various classifiers. The hardware configuration had an Intel i7-10510U processor
and 16 GB RAM.

After training the classifiers and testing them on the dataset, the best classifiers
for SNN, SVM, and CNN were put to test in the real world. This was done with new
independent data generated from the evaluation of ten multi-object scenes with a total of
104 objects.

3.2. SNN Classifier Accuracy

The SNN classifier model was tested with a variety of hidden layer neurons ranging
from 10 to 120. When the number of hidden neurons was below 40 (10, 20, or 30) the test
accuracies were all below 90%. Details of the test accuracies when the number of hidden
layer neurons varied between 40 and 120 is shown in Table 1. Good classification is possible
with any of the classifiers with 40, 60, 80, or 100 neurons. The model with 80 hidden
neurons was selected since it had the best overall accuracy. Figure 12 illustrates the test
confusion matrix and the confusion matrix of the real-world test with 104 new objects.
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Table 1. Accuracies of the tested SNN models.

Hidden Neurons Test Accuracy %

40 93.1
60 92.3
80 93.5

100 92.3
120 87.8

  
(a) (b) 

Figure 12. SNN classifiers with 80 hidden neurons confusion matrices. (a) Dataset test; (b) Real world
test with 104 new objects.

3.3. SVM + PCA Classifier Accuracy

In the SVM + PCA classifier experiments, the number of components in PCA was
varied between 10 and 50. Four kernel functions (linear, quadratic, cubic, and medium
Gaussian) were also tested. The results of the various combinations tested are summarized
in Figure 13. The horizontal lines without markers in Figure 13 represent the accuracy of
SVM classifiers using the various kernel functions without PCA. Without PCA, the SVM
classifiers achieved accuracies of 78.2%, 93.9%, 94.9%, and 92.4% with the linear, quadratic,
cubic, and medium Gaussian kernels, respectively. Using PCA with the linear and medium
Gaussian kernels degraded accuracies to below 70%. The quadratic and cubic kernels
achieved low reduction in accuracy when the number of PCA components was between
20 and 30. The SVMs with cubic kernel function were the best overall achieving accuracies
of 94.9% without PCA and 94.6% with 20 component PCA. Figure 14 illustrates the test
confusion matrix and the confusion matrix of the real-world test with 104 new objects for
the SVM classifiers with cubic kernel function. The real-word test achieved the same results
with the SVM and SVM + PCA with 20-component classifiers.

3.4. CNN Classifier Accuracy

The CNN classifier model was tested with a 4 × 4 filter size for all convolution layers
and a 3 × 3 filter size for the pooling layers. The stride in the convolution and pooling
layers was set to one and three, respectively. The number of filters in the convolution layers
was varied as shown in Table 2. Table 3 shows the CNN model training parameters. As
shown in Figure 15, there was little change in overall accuracy when the number of filters
in the convolution layers varied. Hence, Configuration 1 was selected since it has the least
number of filters. Figure 16 illustrates the test confusion matrix and the confusion matrix
of the real-world test with 104 new objects for the CNN classifiers using Configuration 1.
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Figure 13. Comparison of SVM classifier accuracies with various kernels and PCA component numbers.

  
(a) (b) 

 
(c) 

Figure 14. SVM classifiers with cubic kernel function confusion matrices. (a) SVM dataset test;
(b) SVM + PCA with 20 components dataset test; (c) Real world test with 104 new objects.
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Table 2. Filter numbers in convolution layers.

Configuration Number Value [Conv-1 Conv-2 Conv-3]

1 [10 20 40]
2 [12 24 48]
3 [15 30 60]

Table 3. CNN model training parameters.

Parameters Value

Optimize method stochastic gradient descent with momentum
(sgdm)

Initial learning rate 0.02
Maximum epochs 7

Validation frequency 20

Figure 15. CNN classifier accuracy for various convolution filter configurations.

  
(a) (b) 

Figure 16. CNN classifiers with Configuration 1 confusion matrices. (a) Dataset test; (b) Real world
test with 104 new objects.
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4. Discussion

4.1. Overall Comparison of the Three Classifiers

The receiver operating characteristic (ROC) curves for the SNN with 80-hidden neuron
classifier, SVM with cubic kernel and 20 PCA-component classifier, and CNN Configuration
1 classifier are shown in Figure 17. It is clearly visible that the CNN classifier has a
superior ROC curve and performs the best for all object classes. Figure 18 compares the
key performance criteria metrics of the classifiers based on the real-world test with 104 new
objects. The CNN classifier has the best sensitivity and precision across all component
classes. It also achieved the best accuracy of 98.1%. The SVM + PCA classifier can produce
good results which are close to the CNN.

 
(a) (b) 

Cap
Reg
Pot

 
(c) 

Figure 17. ROC curves of the best classifiers. (a) SNN with 80 hidden neurons; (b) SVM + PCA with
20 components; (c) CNN with Configuration 1.

4.2. Comparison with Accuracy of Other Classifiers

The classifiers developed in this paper utilize low-resolution grayscale images. Other
methods reviewed in Section 1 use higher resolution and color images. Therefore, these
other classifiers are inherently more complex and require heavier computational power.
Table 4 compares the CNN classifier presented in this paper with the properties of other
representative deep learning models from Section 1. Model complexity excludes the ReLU
layers for all models. A direct comparison of computation volume and speed is not
possible due to variations such as image resolution and object class numbers. Therefore, an
approximate comparison based on image input size and network complexity is made in
Table 4. The key feature of our method is that it can perform on a standard laptop computer.
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The accuracy level of the developed CNN classifier is comparable with the other methods
despite it using low resolution (30 × 30-pixel) grayscale images. However, the classifiers
developed in [15,17] are capable of detecting a much wider range of electronic components.
The training dataset employed in this research is small but sufficient for the three types of
parts as there is not a large variation in physical properties of the items in each class. This is
validated based on the classification results. The dataset can be expanded to include a larger
variety of project parts if needed. For example, if ceramic and electrolytic capacitors need
to be classified, then a new or expanded dataset can be utilized. The method presented in
this paper is like YOLO as it has the ability to detect and classify electronic components
with a single image of the entire workspace.

(a) 

 
(b) 

Figure 18. Key performance criteria metrics. (a) Sensitivity; (b) Precision.
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Table 4. Comparison of the proposed CNN classifier with other deep learning methods.

Reference Dataset Properties Classes Model Complexity Accuracy

Atik (2022) [16] Color, 227 × 227 × 3
pixels, 5332 images 3 Custom CNN with

13 layers 98.99%

Xu et al. (2020) [15] Color, 112 × 112 × 3
pixels, 40000 images 22 Faster SqueezeNet with

23 layers 99.999% TPR when FPR = 10−6

Huang et al. (2019) [18] Color, 416 × 416 × 3
pixels, 43,160 images 4 YOLO-V3-Mobilenet with

30 layers 95.21% mAP

Guo et al. (2021) [17] Color, 608 × 608 × 3
pixels, 12,000 images 20 YOLOv4-tiny + MAM with

24 layers 98.6% mAP

Proposed CNN classifier Grayscale, 30 × 30
pixels, 1734 images 3 Custom CNN with 7 layers 98.4% test, 98.1% real world

test

5. Conclusions

This paper presented the development of vision-based methods for the detection
and classification of used electronic parts. Three classes of components were considered:
capacitors, potentiometers, and voltage regulator ICs. A customized method for detecting
multiple objects in a workspace and extracting data for classifier input was developed. Low
resolution (30 × 30-pixel) grayscale images are input into the classifiers. This reduces the
complexity of the classifiers and inherently requires lower computational power (processor
and memory use). Three types of classifiers were investigated: SNN, SVM + PCA, and
CNN. After training and testing the classifiers on the dataset, the best classifiers were put
to test in the real world. As expected, the SNN classifier achieved lowest overall accuracy
(93.5% in dataset and 85.6% in real word). This was followed by the SVM + PCA classifier
with 20 components (94.6% in dataset and 95.2% in real world). The best accuracy was
achieved with the CNN classifier (98.4% in dataset and 98.1% in real world). The accuracy
of the CNN classifier is comparable to other relevant deep learning models.

Future work will involve extending this detection and classification method to other
electronic parts. This will require increasing the dataset size for each component. The
size of the input image to the classifier is currently limited by the resolution of the cam-
era (960 × 720 pixels). In addition to this, the pick and place of objects detected via the
developed object detection algorithm is being implemented.
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Abstract: Economic and social progress in the Republic of Korea resulted in an increased standard of
living, which subsequently produced more waste. The Korean government implemented a volume-
based trash disposal system that may modify waste disposal characteristics to handle vast volumes of
waste efficiently. However, the inconvenience of having to purchase standard garbage bags on one’s
own led to passive participation by citizens and instances of illegally dumping waste in non-standard
plastic bags. As a result, there is a need for the development of automatic detection and reporting of
illegal acts of garbage dumping. To achieve this, we suggest a system for tracking unlawful rubbish
disposal that is based on deep neural networks. The proposed monitoring approach obtains the
articulation points (joints) of a dumper through OpenPose and identifies the type of garbage bag
through the object detection model, You Only Look Once (YOLO), to determine the distance of
the dumper’s wrist to the garbage bag and decide whether it is illegal dumping. Additionally, we
introduced a method of tracking the IDs issued to the waste bags using the multi-object tracking
(MOT) model to reduce the false detection of illegal dumping. To evaluate the efficacy of the proposed
illegal dumping monitoring system, we compared it with the other systems based on behavior
recognition. As a result, it was validated that the suggested approach had a higher degree of accuracy
and a lower percentage of false alarms, making it useful for a variety of upcoming applications.

Keywords: waste disposal; object detection; multi-object tracking; articular point; garbage bag

1. Introduction

Economic and social progress in the Republic of Korea resulted in an enhanced stan-
dard of living, which subsequently led to enormous amounts of waste from enriching
consumer goods. A significant societal issue is created by this rise in garbage levels, which
also harms the environment [1]. Additionally, used-up household items, garbage, and
construction waste produce foul odors and pollutants, ruining the urban landscape and
threatening citizens’ health. To address this issue and develop a clean, garbage-less en-
vironment, the government implemented a volume-rate waste disposal system in 1995.
The new program has a pricing model that enables people to bear a volume-rate cost from
their garbage to voluntarily reduce waste and maximize the separate disposal of recyclable
items, in contrast to the existing program that imposed incremental fees based on the sizes
of houses or the rate of property tax [2].

Waste eligible for volume-rate disposal corresponds to municipal waste generated by
households and small enterprises. Standardized volume-based bags must be purchased
to dispose of waste. As a motivation for minimizing a pollutant’s effect on health and the
environment and an economic incentive to improve optimal waste disposal and increase
knowledge of the citizens, the volume-based garbage disposal system aims to convey a need
for the reduction of illegal garbage dumping and the cooperation and participation [3]. The
method can lessen the burden and cost associated with gathering, moving, and processing
waste. However, regular instances of illegal rubbish dumping are caused by the bother of
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having to purchase conventional garbage bags on one’s own and the challenging process of
handling enormous waste. The uncovered cases of illegal garbage dumping in Seoul went
from 99,098 in 2014 to 128,144 in 2020, revealing a year-on-year increase, and it is one of the
numerous social problems that must be overcome [4]. Notable in particular are the rising
instances of unlawful rubbish disposal in non-standard bags, such as white disposable
delivery plastic bags or black disposable plastic bags, as more take-out food deliveries take
place. Such illicit dumping is steadily increasing in the absence of aggressive prosecution,
necessitating different measures.

Watchpersons or government officials patrol to find illegal dumping situations occa-
sionally, but such efforts need a larger labor force in wide areas. The recently installed
closed-circuit television (CCTV) in locations with a concentration of unlawful dumping
contains video recordings. However, the lack of manpower to conduct ongoing surveil-
lance or analyze every single film makes it difficult to bring charges for illegal dumping [5].
Another comparable technique employs CCTV and human body identification sensors to
send out an audio warning to onlookers to promote awareness, but the alert does not reveal
illegal dumping; it causes noise disturbances due to the frequent pointless broadcasts.
This approach may temporarily frighten illegal dumpers psychologically but has limited
impacts in ending illegal dumping. Figure 1 depicts the illegal dumping monitoring system
that is now in use with the CCTV and audio broadcasts as being surrounded by various
forms of unlawfully placed rubbish. This demonstrates the limitations of the current illegal
dumping monitoring system despite significant initial investment in the system.

Figure 1. Limitations of the current illegal dumping monitoring system.

Recently proposed methods combine deep-learning object detection technology widely
in use with camera-based monitoring to monitor illegal dumping. The new approach can
address the limitations of the existing methods requiring significant manpower and have
the benefit of reducing unnecessary noise by enhancing false alarm rates. Min and Lee [6]
proposed a way of catching illegal garbage dumping using a deep neural network trained
on the joints of persons that are collected by image processing. By separating dumping
postures from the other non-dumping postures, their system determines whether dumping
is legal or illegal. Bae et al. [7] used the real-time object detection model, You Only Look
Once (YOLO), to learn about the illegal dumping operation itself and to create zones for
observation and non-observation in order to lower the system’s false alert rate. The trained
model detects an act of dumping and then identifies it as illegal only when the coordinates
of the activities are within the observation zone. Jeong et al. [8] used the Gaussian Mixture
Model to examine object changes that are based on histogram differences. Their suggested
approach is based on the idea that at the point of dumping, there is a divide between the
dumper and the trash. Kim et al. [9] proposed a system that detects illegal dumping using
probabilistic analysis of the object trajectory.

As a result, several techniques exist to track unlawful dumping using object detection
and video analysis technologies based on convolutional neural networks (CNNs), as
well as detecting sensors. Nevertheless, Refs. [6,7] consider an act of dumping as illegal
when a non-dumping posture is similar to a dumping posture, even in the absence of
garbage in hand, thus raising frequent false alarms. Therefore, Refs. [7,9] designated
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an observation zone for illegal dumping. As a result, their system cannot detect illegal
dumping when it occurs outside of the surveillance zone and is susceptible to numerous
missed detections. Therefore, Refs. [6–9] merely identifies characteristic changes of a
dumper or only differentiates standard or non-standard garbage bags, which may raise
a false alarm even when garbage is in a standard bag, all of which are issues still to be
addressed. As a result, a more comprehensive monitoring system for unlawful dumping is
required, one that goes beyond the dumping acts itself or isolated, small surveillance zones.

This study suggests a strategy of augmented illegal dumping monitoring (AIDM) that
determines the distance between the dumper’s wrist and the garbage bag. To estimate
the dumper’s wrist joint, Single Person Pose Estimation, which is a method for estimating
spatial dependence combinations between body parts, is required and is largely divided
into a tree-structured graphical model [10,11] and a non-tree model [12,13]. Afterward,
CNN was applied to increase the reliability of joint estimation [14,15]. However, when two
people are detected on one screen, the precise joint of each person cannot be extracted, so
research on Multi-Person Pose Estimation [16,17] has been actively conducted. Among
them, the OpenPose [18] model has been used in many fields and introduced in this study
because it extracts joint points at a relatively high speed, and the amount of computation
does not increase significantly even if the number of people increases.

The proposed method uses the OpenPose model [18] that can determine the articula-
tion points of a person to extract the wrist joint and then uses the YOLO method [19] to
classify four types of garbage bags. Additionally, to reduce errors from the unwarranted
calculation of the distance of the wrist joint to the already dumped garbage bag or the
issue of not identifying the same garbage due to the change in frames, we implement a
Simple Online Realtime Tracking with A Deep Association Metric (DeepSORT) [20] that
can keep track of multiple objects for tracking the garbage bag identifiers (IDs). We suggest
an algorithm that can identify illegal dumping by keeping track of garbage bags that
have already been dumped and those that are still to be dumped separately and deciding
when the distance between the dumper’s wrist and the bag of trash is more than a certain
threshold. The test findings demonstrate that our method of determining illegal dumping
based on the distance of the actual dumper’s wrist to the garbage bag has better efficacy
than other recently published methods that are based on behavior recognition or dumping
zone designation. This research has the following contributions:

• With improved detection performance, the proposed monitoring system for illegal
dumping can reduce noises caused by unnecessary audio guidance due to the inaccu-
racies of the existing illegal dumping broadcasting system;

• Using the object detection model, YOLO can differentiate the standard bags that are
legal for garbage dumping and the other non-standard bags. Also, the proposed
technique can minimize errors of falsely recognizing dumping-like behavior as illegal
dumping through OpenPose, which can extract the articulation points;

• Our suggested method tracks the objects throughout the entire video without the
use of specifically designated observation zones to evaluate whether illegal dumping
happened;

• By introducing the object tracking model DeepSORT, we give IDs to already dumped
garbage and garbage held in a dumper’s hand and track the objects to detect illegal
dumping, thus lowering the missed detection rate.

In this Section, we discussed the need for an illegal dumping monitoring system and
the goal of the study. In Section 2, we introduce the components of our illegal dumping
monitoring system. In Section 3, we describe the design process of the proposed system. In
Section 4, we describe the experimental conditions, testing, and results for the evaluation of
the proposed system’s performance. In the last section, Section 5, we conclude our research.

2. Materials and Methods

The monitoring system for illegal dumping that is presently in operation cannot decide
on a dumping act itself for the illegality, and thus the impact is not as high as expected
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concerning the investment for the system implementation. Additionally, the systems
that were recently designed using research on illicit dumping practices as the subject are
highly susceptible to the probability of mistakenly associating suspicious behavior with
unlawful dumping. As a result, we propose an improved monitoring system that identifies
illegal dumping by classifying the types of garbage bags and estimating the distance of
the dumper’s wrist to the garbage bag, as shown schematically in Figure 2. The object
detector recognizes and classifies the rubbish bag while concurrently extracting a person’s
joints from the input image. The object detector then begins tracking the garbage-classified
object. Then, it continuously calculates the distance of the extracted wrist joint to the object
detected as the non-standard bag. The dumping is considered unlawful if the distance
exceeds a certain level.

Figure 2. Schematic diagram of the proposed monitoring system for illegal dumping.

2.1. Articular Point Extraction

Deep-learning-based posture estimation is done in two ways: the top-down technique
for first finding an area with a person in it and then determining the posture in the area,
and the bottom-up method for estimating the posture from the characteristic points of a
human body without finding a person. To predict the joints, we employed the bottom-up
OpenPose model in this study. Fast joint extraction is possible with OpenPose, and if
more individuals are added, the calculation volume does not considerably rise, making it
appropriate for crowded areas [21].

Based on a CNN, OpenPose infers characteristic points as joints and delineates them
and uses VGGNet to enhance learning efficacy by extracting features of a wider area with
fewer parameters. VGGNet creates a feature map F, which goes through a multilayered
convolution branch α to create a confidence map γ representing the positions of the joints
and goes through another branch β to create an affinity field δ indicating associations
(location and direction) between body parts. The model first trains δ to obtain optimal δ
predictions, which are then used to train γ. δt and γt in the tth step are iterated by the
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respective branch βt up to the TA step, and then iterated by the branch αt up to the TA + TB
Step, as summarized below [22]:

δt = βt
(

F, δt−1
)

, 2 ≤ t ≤ TA (1)

γt = αt
(

F, δTA , γt−1
)

, TA < t ≤ TA + TB (2)

δ and γ obtained in each step are used to match a person’s arms and legs. The points
finally determined as the person’s arms and legs are connected to extract the joints of the
body. OpenPose learns through a loss function f composed of an objective function f t

δ for
the joint associations and another objective function f t

γ for the locations of the articular
points. The object functions are as follows:

f t
δ = ∑V

v=1 ∑P W(P)‖δt
v(P)− δ∗v (P)‖2

2 (3)

f t
γ = ∑R

r=1 ∑P W(P)‖γt
r(P)− γ∗

r (P)‖2
2 (4)

where δ∗v is the ground truth (GT) of the affinity field and γ∗
r is the GT of the confidence

map; R is the number of confidence maps corresponding to the number of the joints, and V
is the number of the two joints connected; W is a binary mask for the GT and set as zero (0)
when the pixel P has no GT for the joint to avoid adverse effect on true positive predictions.
The loss function f is the sum of δ losses incurred from the first step to TA step and the sum
of γ losses incurred from TA + 1 step to TA + TB step, as shown below:

f = ∑TA
t=1 f t

δ + ∑TA+TB
t=TA+1 f t

γ (5)

Finally, the model outputs γ that contains the location of the articular point. If γ has
multiple similar peak values around the articular point, the non-maximum suppression [23]
is used to identify the highest peak value at the articular point.

2.2. Object Detection

One of the areas of study in computer vision is object detection technology, which is
employed to automatically operate and adjust particular devices. The detection involves
classification and localization. In classification, a single object in the image is classified
with class probabilities, and localization is a process of determining the location of the
object. Object detection methods are largely divided into two-stage detectors and one-stage
detectors. The two-stage detector conducts the localization and classification sequentially
to obtain the results. In the first stage, the area where an object is likely to present is inferred
quickly through the regional proposal. In the second stage, the classification identifies
the type of object. The major models include Regions with CNN (R-CNN) [24], Fast R-
CNN [25], Faster R-CNN [26], and Mask R-CNN [27]. The two-stage detectors generally
have higher accuracy but slow speed.

Unlike the two-stage detector, which performs two processes sequentially, the one-
stage detector produces results faster by conducting localization and classification concur-
rently. The main models include YOLO [19] and Single Shot Multibox Detector (SSD) [28].
YOLO, in particular, significantly enhances the speed of two-stage detectors and can es-
timate the class probability and the bounding box simultaneously, making it frequently
utilized in real-time processing. Furthermore, the training process traverses the full image,
learning not just the characteristics of individual objects but also the overall context of the
image, resulting in exceptional performance when extending to additional locations. The
following steps are taken during the training [19,29,30]:

After dividing the input image into S× S grid areas, its characteristics are extracted us-
ing the convolutional layer, and the prediction tensor is created through the fully connected
layer. Each grid cell is represented by the B number of the bounding boxes, each of which
has the corresponding confidence score (CS). The bounding box has information about
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(x, y, w, h, CS), with (x, y) being the centroid coordinates of the bounding box and (w, h)
being its width and height. CS is the probability of the object being within the bounding
box and shows whether the class is correctly predicted, as shown below:

CS = Pr(Obj)× IoUGT
PB (6)

where Pr(Obj) is the probability of the object being within the bounding box; IoUGT
PB , the

intersection over the union (IoU), shows the extent to which GT matches the box (PB)
determined by the model and corresponds to the overlapping area of the actual value and
the predicted value, as shown below:

IoUGT
PB =

PB ∩ GT
PB ∪ GT

(7)

The conditional probability PClass indicating which class multiple objects included in
the bounding box belong to and the Class-specific Confidence Score (CCS) indicating the
probability that the object is contained within the bounding box area, and it matches with
the actual value of the classified object are expressed as follows:

PClass = Pr(Classi|Obj) (8)

CCS = CS × PClass = Pr(Class)× IoUGT
PB (9)

As shown above, the bounding box with the highest CCS is finally chosen as the
bounding box for the given object among the B number of the bounding boxes predicted.

2.3. Object Tracking

Multi-object tracking (MOT) [31–33] is a technique for tracking the locations of nu-
merous objects in a video in real time. It first assigns a unique identifier (ID) to each
identified object to track its movement by comparing the previous frame and the current
frame. Major MOT methods include Simple Online and Realtime Tracking (SORT) [34]
and DeepSORT [20]. SORT is a tracking method to analyze only the degree of similarity of
the association between objects using only the information of the objects detected in the
current frame and the previous frame of the image. However, if the item is obstructed by
a barrier during the object tracking, it cannot be identified as the same object indefinitely
and thus obtains a new ID that differs from the ID previously assigned. Furthermore, the
movement of multiple objects instead of one causes frequent ID-switching, which hinders
smooth tracking [20,35].

As an extension of SORT, DeepSORT has object detection, the Kalman filter-based
estimation as well as the matching cascade that uses a deep-learning feature Re-ID, and
thus addresses the drawbacks of SORT, that is, unstable to occlusion or ID-switching [20].
The Kalman filter is used to update the identified object by estimating its location in the
future frame using information from the previous frame. Then, to match the identified
object, DeepSORT utilizes the Mahalanobis distance, which gives an object’s location based
on the movement effective for short-term prediction, and the cosine distance that uses
the object’s appearance for the long-term signaling block followed by the recovery of its
identity. We determine the Cost Matrix DCM as the weighted mean of the Mahalanobis
distance DMA and the cosine distance DCos for the calculation of the similarity matrix.

DCM = ρ × DMA + (1 − ρ)× DCos (10)

where ρ is a hyperparameter used to control the matrix impact; when the camera motion
is large, it is set ρ = 0, using DCos only. Then, the IoU matching is performed on the
tracks and detections that are not related. The IoU matching process uses three states to
obtain information about continuous tracking: matched tracks for objects being tracked
continuously, unmatched detections for designating a recently appeared object as the final
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object, and unmatched tracks for designating an object’s temporary status when the tracked
object cannot be found, and the tracking cannot continue.

3. Proposed Architecture Design

In this section, we describe the detailed procedure for designing the proposed mon-
itoring system that detects illegal dumping based on the distance between the potential
dumper’s wrist joints found using OpenPose and the garbage bag location obtained through
YOLO and DeepSORT. The block diagram in Figure 3 shows the system schematically.

Figure 3. Block diagram of the proposed illegal dumping monitoring system.

3.1. Extraction of the Articular Points of the Wrist Using OpenPose

The articular points of the person’s wrist are retrieved from the video I(t) of a possible
dumper walking into the observation zone while holding the trash. To accomplish this,
we input the given image to VGG-19 in OpenPose to generate a feature map, which is
then used to generate a confidence map γ for displaying the locations of the joints and
an affinity field δ for demonstrating the correlation between the body parts. As we detect
illegal dumping based on the point in time when a part of the extracted joints separates
from the garbage, in the case of the finger closest to the trash, the next closest wrist joint is
selected because the joint coordinates cannot be extracted when the finger is often obscured
by other objects. As a result, of the 18 joint coordinates that are retrieved, we only use
the elbow and shoulder that are connected to the wrist, and we disregard the remaining
12 coordinates that are beyond the area of interest. The three joints of the shoulder, elbow,
and wrist are displayed on the screen in a state where the left arm and the right arm are
separated. Then, the joint coordinates of the left wrist WL and the joint coordinates of the
right wrist WR are finally estimated.

3.2. Tracking the Garbage Bag Using YOLO and DeepSORT

To identify the garbage bag held by the potential dumper, we employ the real-time
object detection model YOLO to obtain the bounding box (x, y, w, h) of the garbage bag as
the identified object. Then, from the bounding box, we extract the top centroid T(t1, t2),
which can be expressed as t1 = x + w

2 , t2 = y. Furthermore, to identify illegal dumping in
real time, we employ DeepSORT to determine whether the object in the previous frame
I(t − 1) and the object in the current frame I(t) are the same. Here, the Kalman filter, the
matching cascade, and the IoU matching [20] are conducted recursively to determine the
similarity between each object. Using three states, the matched tracks for the objects being
tracked continuously, the unmatched detections for designating a newly discovered object
as the final object, and the unmatched tracks for designating a temporary status to the object

173



Sensors 2022, 22, 8819

when the tracked object is not found and the tracking cannot continue, the IoU matching
finally defines an ID to the object. Here, the ID contains the types of detected objects
and the order (Class name, Class number) that the objects are detected. This enables the
continuous recognition of the same garbage bag even when it is occluded by other obstacles.
Moreover, it is possible to suppress the ID switching that may occur due to the movement
of multiple garbage bags instead of one garbage bag. Accordingly, even if the detected
garbage bag is dumped, it can be made to have the same ID, making a judgment on illegal
dumping possible.

3.3. Discriminator for the Determination of Illegal Dumping

As described above, to determine the illegality of the garbage bag held by the po-
tential dumper, we compute the Euclidean distance between the wrist joint coordinates
WL(wL,1, wL,2) and WR(wR,1, wR,2) obtained from OpenPose and the top centroid T(t1, t2)
of the bounding box obtained from YOLO, as shown below:

dL(T, WL) =
√
(t1 − wL,1)

2 + (t2 − wL,2)
2 (11)

dR(T, WR) =
√
(t1 − wR,1)

2 + (t2 − wR,2)
2 (12)

As the final step, we check if the dL or dR that are calculated per frame exceeds the
pre-defined threshold Th to evaluate whether the garbage bag being tracked is dumped
illegally. When dL and dR are below the threshold, we set the object ID to 1 to indicate that
the potential dumper has the garbage bag. The ID remains 1 while every frame is examined
until the point of garbage bag dumping. By contrast, for the garbage bags that are dumped
already, dL and dR both surpass the threshold. As a result, we set the object ID to zero (0)
to indicate that the garbage bag is not held by the dumper. Thus, immediately after the
garbage bag is dumped, that is, when dL or dR > Th, a judgment is made that the object is
dumped, the ID changes from 1 to 0, and the alarm goes off. Furthermore, as the already
dumped garbage bags are detected and set to 0, they are not falsely identified as those
being held by the dumper even when the dumper’s wrist gets close to the garbage bag.

4. Experimental Results

To assess the performance of the proposed illegal dumping monitoring method, we
took into account eight scenarios that were similar to actual instances of illegal dumping,
including garbage dumping by one hand, dumping by both hands, garbage dumping
without bending the waist, and dumping yet to have occurred with the garbage in the
dumper’s hand. We then gathered the data for these cases. Furthermore, to determine the
performance against the existing garbage dumping monitoring techniques, we included
the approach [7] that learns the dumping postures to decide on illegal dumping and the
method, Post+det, that learns the dumping postures as well as the garbage bags. There
were a total of eight situations included in the performance test.

4.1. Experimental Environment

The proposed illegal garbage dumping monitoring system was implemented by
NVIDIA GeForce GTX 1060 Ti and Intel Core i7-8700 CPU. To train YOLOv4 for real-time
object detection, we collected illegal dumping films for each situation using a Logitech
C920 PRO HD. The dataset includes videos of the simulation of actual illegal dumping
scenes, with 30 videos of about 10 s for each scenario.

Commonly dumped garbage includes black plastic bags, white plastic bags, and paper
bags containing general garbage, as well as volume-based bags that are recommended to
be used. We selected four types of bags that are dumped the most, as shown in Figure 4a,
to simulate actual dumping scenes under the environment in Figure 4b. We labeled the
black plastic bag trashBLK, the white plastic bag trashWHT, the paper bag trashPBG, and
the standard bag trashAUT. For the YOLOv4 training, we utilized a total of 12,891 images,
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with the image size set to 608 × 608, the batch size to 8, and the maximum number of
batch learning to 15,000. There may be several items in a single photograph. There are
13,186, 16,147, 15,611 and 11,711 trashBLK, trashWHT, trashPBG, and trashAUT in all of
the photos, respectively.

(a) (b)
Figure 4. The environment for the collection of illegal dumping data and scenario-based evaluation;
(a) standard and non-standard garbage bags used in the training and the evaluation; (b) data
collection environment.

4.2. Evaluation of Object Detection Performance

We used the average precision (AP) as a performance indicator for assessing the
performance of the object detection model YOLOv4, which is trained on the different types
of collected garbage bags. To denote the model’s performance as a single numerical value,
we utilized the precision-recall curve and the accuracy to evaluate the confidence of the
object identified by the model. Precision is the rate of the correctly detected objects among
the detected objects, recall is the rate of the detected objects among all the objects that
should be detected, and accuracy is the rate of the correctly detected objects among all the
objects, as demonstrated below [6]:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

Accuracy =
TP + TN

TP + FP + FN + TN
(15)

where the True Positive (TP) means the object that should be identified is correctly detected,
the False Positive (FP) means the object that should not be detected is wrongly detected,
the False Negative (FN) means the object that should be detected is not detected, and the
True Negative (TN) means the object that should not be detected is not detected. Seven
hundred and ninety-eight images were used to determine object detection, and the results
are shown in Table 1.
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Table 1. Performance of identifying the four types of garbage bags using YOLOv4.

Class ID Object AP TP FP

0 trashBLK 99.77% 685 36
1 trashWHT 99.53% 706 7
2 trashPBG 98.96% 823 7
3 trashAUT 99.24% 712 8

As illustrated in the table, when the IoU is 0.5, the detection performance indicator,
AP, for each class is mostly above 99%, while the average indicator, meanAP (mAP), for all
classes is 99.38%, indicating that the model can classify all four objects with high accuracy.
However, trashBLK indicates a lower precision than the other types of garbage bags due to
the occasional false recognition of a person’s black hair or shoes.

4.3. Evaluation of the Illegal Dumping Monitoring Performance

The data gathered for the evaluation has a total of four types of garbage bags previously
described. As shown in Figure 5, we developed eight different dumping scenarios, S1
through S8, which are comparable to real garbage dumps.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Eight types of scenarios (S1~S8) for the performance evaluation of the illegal dumping
monitoring system; (a) S1—a bending posture with no garbage bag; (b) S2—a dumping scenario with
the non-standard bag in one hand; (c) S3—a dumping position with the non-standard garbage bags
on both hands; (d) S4—a dumping posture with the legal standard garbage bag in hand; (e) S5—a
dumping scenario with legal standard garbage bags in both hands; (f) S6—a dumping posture with
the standard bag in one hand and the non-standard bag in the other hand; (g) S7—a dumping posture
without bending the waist with the non-standard bags in both hands; and (h) S8—a bending position
without dumping with the non-standard bag.

The proposed AIDM determines illegal dumping based on the distance (dL, dR)
between the wrist joints of a dumper and the detected object, not the dumping posture. To
achieve this, we established a threshold (Th) to 90 cm, taking into account the installation
angle and the distance between the camera and the visible object. To verify the utility of the
proposed method, we performed a comparison against the existing monitoring techniques:
the technique [7] that determines whether illegal dumping has occurred solely based on a
dumping posture with the body bent forward, and the technique, Post+det, that monitors
illicit dumping through the detection of garbage and dumping postures. The test results
are reported in Table 2 in terms of the reliability of the determination of illegality at the site
of dumping using the scenarios S1 to S8.

As can be seen from the comparison, [7] recorded a lower accuracy in the scenarios S1,
S4, S5, and S7 because it determines whether dumping is legal by learning the shapes of the
dumpers rather than the garbage bags, in contrast to the Post+det and the ADIM, which can
identify the standard bags that can be legally dumped. Furthermore, the Post+det appears
to demonstrate a higher detection performance overall than [7]. However, it occasionally
failed to detect suspicious dumping actions, leading to lower accuracy in scenarios S2,
S3, and S6. Particularly for S7, it failed to detect anything since the garbage dumping
occurred without bending the body. In contrast, the proposed model demonstrated at least
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93% accuracy in identifying illegal dumping in all the scenarios, demonstrating that it is a
stable illegal dumping monitoring system. On the whole, the average accuracy of [7], the
Post+det, and the AIDM for detecting illegal dumping are 0.43, 0.63, and 0.97, respectively.
Therefore, it can be said that the proposed AIDM has a more robust and improved detection
performance than the existing method.

Table 2. Performance comparison of dumping monitoring models per scenario.

Test Scenario

Dumping Monitoring Model

[7] Post+det Proposed AIDM

TP TN FP FN Acc. TP TN FP FN Acc. TP TN FP FN Acc.

S1 0 1 29 0 0.03 0 30 0 0 1.00 0 30 0 0 1.00
S2 25 0 0 5 0.83 17 0 0 13 0.57 28 0 0 2 0.93
S3 28 0 0 2 0.93 7 0 0 23 0.23 30 0 0 0 1.00
S4 0 7 23 0 0.23 0 28 2 0 0.93 0 30 0 0 1.00
S5 0 1 29 0 0.03 0 25 5 0 0.83 0 30 0 0 1.00
S6 28 0 0 2 0.93 17 0 0 13 0.57 29 0 0 1 0.97
S7 2 0 0 28 0.07 0 0 0 30 0.00 29 0 0 1 0.97
S8 0 12 18 0 0.40 0 28 2 0 0.93 0 28 2 0 0.93

Average Acc. 0.43 0.63 0.97

Figure 6 shows the test results for scenario S4, where a legal volume-based waste bag
is thrown on one hand. From top to bottom, the results are taken from each time point of
T/4-, T/2-, 3T/4-, and T-seconds. At T/4 ∼ T/2 s, the dumper is shown walking with the
garbage in hand to the designated dumping site. In Figure 6a, there is no change since the
dumper has to bend his body for the dumping to be detected as such. In Figure 6b, the
system found the legal standard bag trashAUT, and in Figure 6c, it concurrently located the
person’s joints and detected trashAUT. The dumper dropped the trash bag at the 3T/4-s
point. [7] detected the dumping posture only and not the type of garbage bag, identifying
it as illegal and indicating the red alarm. On the other hand, the Post+det and the AIDM
can differentiate the standard bag, showing the green alarm after detecting the dumping
action and deeming it legal. The T-second mark is the moment right before the dumper
departs the site after dumping the garbage. The alarm was no longer displayed in [7] and
the Post+det for garbage dumping as the dumper stopped bending their body, whereas the
AIDM kept the green alarm as the garbage bag discarded by the dumper had a unique ID.

Figure 7 additionally demonstrates the test results for scenario S7, where the dumper
dumps the non-standard garbage bags without bending their body. Similar to the above
instances, at T/4 ∼ T/2 s, [7] did not identify anything, while the Post+det detected three
types of garbage bags, trashBLK, trashWHT, and trashPBG. The AIDM found the person’s
articular points and, like the Post+det, detected all three types of garbage bags. At the
3T/4-second mark, in which the garbage is dumped, [7] the Post+det failed to detect a
dumping action as the dumper did not bend his body. On the other hand, the AIDM
identified the non-standard garbage bag and determined that the distance from the wrist to
the bag was above the threshold, thus deeming it unlawful and showing the red alarm.
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(a) (b) (c)

Figure 6. Illustrations of the outcomes from the monitoring models for the disposal of the legal
standard garbage bag in one hand; (a) [7], (b) Post+det, and (c) Proposed AIDM.
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(a) (b) (c)

Figure 7. Examples of the findings from the monitoring models for rubbish disposal without body
bending; (a) [7], (b) Post+det, and (c) Proposed AIDM.
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5. Conclusions

The government of the Republic of Korea has implemented a volume-based waste
disposal system that can change the disposal features to efficiently handle massive amounts
of waste. However, illegal dumping often occurs as people dump garbage in disposable
black plastic bags or white plastic bags used for food deliveries. Recently, methods have
been implemented in areas where illegal garbage dumping occurs to control such behavior
by installing closed-circuit television (CCTV) and the transmission of audio warnings using
human body detection sensors. Nevertheless, the effect is limited. As a result, numerous
actions are necessary since unlawful dumping is constantly growing in the absence of
strict prosecution. Therefore, this study suggested a deep neural network-based illegal
dumping monitoring technique that can determine the distance between the dumper’s
wrist and the garbage bag. The proposed technique retrieves the articular points of a
dumper using OpenPose and identifies the type of garbage bag through the object detection
model YOLO. Furthermore, to reduce false detection of illegal dumping, we introduced a
method of tracking the IDs issued to the waste bags using the MOT model. The test results
demonstrate that our approach of determining illegal dumping based on the distance of
the actual dumper’s wrist to the garbage bag has better performance than other recently
published methods based on behavior recognition or dumping zone designation. We expect
the proposed method to be widely utilized in the future.
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Abstract: Unmanned ground vehicles (UGVs) are technically complex machines to operate in difficult
or dangerous environmental conditions. In recent years, there has been an increase in research on so
called “following vehicles”. The said concept introduces a guide—an object that sets the route the
platform should follow. Afterwards, the role of the UGV is to reproduce the mentioned path. The
article is based on the field test results of an outdoor localization subsystem using ultra-wideband
technology. It focuses on determining the guide’s route using a smoothing spline for constructing
a UGV’s path planning subsystem, which is one of the stages for implementing a “follow-me” system.
It has been shown that the use of a smoothing spline, due to the implemented mathematical model,
allows for recreating the guide’s path in the event of data decay lasting up to a several seconds.
The innovation of this article originates from influencing studies on the smoothing parameter of the
estimation errors of the guide’s location.

Keywords: UGV; ultra-wideband; UWB; smoothing spline; nonparametric regression; path planning;
follow-me; smoothing parameter

1. Introduction

The term unmanned ground vehicles (UGVs) refers to robots that can travel on land
without human operators [1]. In some cases, UGVs can operate autonomously, while in
others, operators can control them remotely [2]. In the so called “follow-me” mode, the
operator does not have to manually control the platform. This mode allows the vehicle to
follow the route set by the guide [3]. Navigating UGVs in “follow-me” mode requires the
precise location of the guide to be determined. Guides are responsible for creating paths
for UGVs, as mentioned earlier. Maintaining a set distance from the guide and keeping
the platform’s heading are the most important aspects of this mode [4]. UGVs should
be able to follow the guide in a smooth motion, but if there is an emergency, the guide
may stop during movement [5]. It is possible to implement these functionalities using
the components of the “follow-me” system, including the guide’s observation subsystem,
the path planning subsystem, and the control subsystem [6]. “Follow-me” systems can be
divided, inter alia, because of the mode of interaction and degree of autonomy [3]. Mode of
interaction refers to the way that the platform interacts with the guide and it can be explicit
or implicit. If a human does not directly command the platform, the mentioned mode is
explicit. On the other hand, in the case of the degree of autonomy, the most common variant
is partial autonomy. Fully autonomous systems use multiple technologies simultaneously
and are extremely expensive. The use of “follow-me” systems in dangerous terrain means
that the UGV relies heavily on the guide’s movement (implicit mode of interaction and
partial autonomy). The platform also does not have to follow the guide in real-time, if it is
not necessary in a given situation. To do this, the guide moves first, marking a certain path,
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then stops and waits for the UGV to reach it. In this case, determining the exact location of
the guide is crucial.

Knowing the guide’s location is the basis of the “follow-me” system, and this task
is performed within the guide’s observation subsystem [7]. This article is based on the
field test results of an outdoor localization subsystem based on ultra-wideband (UWB)
technology [8] constituting one of the elements of the “follow-me” system. In order to
locate objects using UWB technology, very short data packets are sent wirelessly with
a very low power spectral density using the radio energy scattering technique (time of
flight). It provides the bandwidth needed to transfer the required amounts of data [9,10].

The mentioned outdoor localization subsystem consists of a total of five UWB modules.
Four of them (receivers) were deployed on an existing UGV, while the fifth module (trans-
mitter) was attached to the guide as a part of the developed subsystem. The described sub-
system estimates the relative operator’s position based on distance measurements [11,12].
Various technologies are used in commercial “follow-me” system solutions, including
UWB [13,14]. Because the main task of the platform in the above-mentioned cases is to keep
following the guide (not necessarily along the path indicated by him), a smaller number of
receivers is used (usually two), which results in a lower accuracy of the guide’s localization.

Using the guide’s location subsystem, the UGV’s desired route is determined based on
the above premise. In the path planning subsystem, successfully calculated guide positions
are used to create a route [15,16]. Finally, the planning subsystem aims to provide input
signals to the control systems that facilitate the execution of the planned path [17].

The problem of determining the route of a guide’s movement requires solving the prob-
lem of fitting a continuous function to a discrete set of the guide’s locations. The numerical
methods used in solving the data fitting problem are interpolation and approximation [18].
Interpolation is rarely used in relation to data from experimental measurements because
of the presence of disturbances in devices (the interpolation function must pass through
the given points) [19]. Approximation, in turn, allows for smoothing and simplifying the
course of the analyzed data sets [20]. In addition, this method can be used for large data
sets as opposed to interpolation.

The approximation is the problem of describing a data set using approximating
functions f(x). When using the approximation methods, a certain set of base functions
is assumed, from which the approximating function is defined and the method of its
use is determined. The most frequently used form of approximating functions is the so-
called general polynomials. The approximation task consists of finding the coefficient
values of the generalized polynomial so that the approximating function minimizes the
adopted criterion, e.g., the sum of the squared differences. The concept of approximation
is also closely related to the concept of regression, which is a solution to the problem of
point approximation for a data set, but its final result is, apart from the sought function
coefficients, also a function model. Regression allows for determining the symbolic form
of the function, which, meeting the adopted criteria, reflects the individual values of the
dependent variable for the previously defined set of independent variable values [18,21].

Regression can be divided into two main types: parametric and non-parametric [22].
Some sources also distinguish semiparametric methods, which are rarely used [22]. Men-
tioned regression models are chosen according to the prior knowledge of the functional
form and the random error distribution. The most important criterion, however, is the
knowledge of the functional form. If it is known, parametric regression will be able to fit
the data. The parametric approach requires knowledge of a mathematical model, which
can be simple (e.g., linear regression), and its parameters are assumed directly [23]. Because
the guide can move in any direction, marking the platform’s path, it is impossible to make
any assumptions about its route. Therefore, the application of the parametric regression
approach in the analyzed case becomes very difficult to implement.

There are also non-parametric regression methods in which the form of the model
is not clearly defined and their parameters are not taken directly [24,25]. Nonparamet-
ric regression methods, including Kernel regression [26,27], LOWESS (locally weighted
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scatterplot smoothing) [22], and smoothing spline [28–31], have an extensive form of
a mathematical model. Nonparametric regression models are much more flexible and
computationally complex compared with parametric models. In addition, they avoid
erroneous fitting results when the wrong model is used. The result of the application of the
above-mentioned methods is not a mathematical relationship; therefore, the mentioned
results are also difficult to export [22].

To determine the guide’s route, the desired method should be characterized by
a moderate computational complexity, have the ability to parametrically shape the smooth-
ing of the coordinates of the guide’s location, and be able to estimate the missing coordinates
based on the present values.

Kernel regression smoothing is a technique that uses kernel functions as a weigh-
ing function for developing a non-parametric regression model. It can be applied to
high-dimensional data sets and it can be used for fitting the data without making any dis-
tributional assumptions about it. It is more flexible than other non-parametric approaches,
but it does not have any direct smoothing parameter [32,33]. In turn, the LOWESS method
is based on the simplicity of linear least squares regression, which makes it highly exposed
to the effects of outliers in the data set [34]. Similar to the mentioned Kernel regression
method, LOWESS does not have a direct smoothing parameter. Additionally, the Kernel
method is much more computationally complex than the LOWESS method.

However, the only analyzed non-parametric method that meets the mentioned cri-
teria is a smoothing spline. Among other methods of non-parametric regression, it is
distinguished by a lower computational complexity and the presence of a direct parameter
smoothing the given waveform. Moreover, it is not exposed to the effects of outliers in
the data set. Therefore, a smoothing spline was chosen as the method for calculating the
guide’s route.

Researchers have focussed on the study of path planning algorithms of autonomous
robots (which can also work under the “follow-me” system) using various modern methods,
including smoothing splines [35]. No studies were found on the use of the smoothing
spline method in the context of planning the movement of the UGV (or robot in general) as
part of the “follow-me” system, hence the article is an innovation in the field. Moreover, no
studies were found on the influence of the smoothing parameter on the estimation on the
guide’s path.

The aim of the article is to determine the route of the guide using a smoothing spline
based on the designated locations using UWB technology. In order to generate a smoothing
spline, it is necessary to specify a value for the smoothing parameter. Because of this,
it is necessary to conduct research on the influence of the aforementioned parameter on
the estimation of the guide’s route and select a value that meets the selected evaluation
criterion, e.g., minimization of the sum of errors.

2. Materials and Methods

A smoothing spline (so-called polynomial spline or polynomial smoothing curve) is
a k-th degree piecewise polynomial that has k−1 continuous derivatives. The mentioned
curve is most often used to approximate a data set of points with cubic polynomials
(3rd order, two continuous derivatives). The advantage of using the mentioned curve is
the possibility of reaching a compromise between two opposing aims:

• fitting the value of the dependent variable to the set of independent variable values,
• smoothing the course of the value of the dependent variable (minimizing the curvature

of the trajectory and its acceleration) [22].

In order to describe the mathematical model of a polynomial curve, the first step is to
define the vectors of the dependent variables q and the independent variables t:

q =
[
q0, q1, q2, . . . , qn

]T (1)

t = [t0, t1, t2, . . . , tn]
T (2)
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Then, the parameters of the aforementioned curve s(t) are obtained by minimizing the
dependence S:

S = λ
n

∑
k=1

[s(tk)− qk(tk)]
2 + (1 − λ)

∫ tn

t0

..
s(t)2dt (3)

where λ ∈ [0, 1]—the so-called smoothing parameter, si(ti) = [s1(t1), . . . , sn(tn)]
T—smoothing

spline function parameters [22].
The curve parameters are determined for each node, while the nature of its estimation

is determined by the smoothing parameter λ, which takes values in the range of [0, 1].
In extreme cases, when λ = 0, a linear approximation is obtained using the least squares
method, and for λ = 1, interpolation using a cubic polynomial is obtained. Thus, when λ

tends to zero, the smoothing effect of the course is maximized, while when λ tends to 1, the
fidelity of the mapping of the set of points is maximized [36].

2.1. Determination of the Value of the Smoothing Parameter

The present article is a direct extension of the research carried out in [8]. Moreover,
the results of the mentioned research form the basis of the article.

A Decawave TREK1000 evaluation kit [37], which consists of five UWB modules, was
used in the research. The developed system consists of five modules: four receivers called
anchors and a transmitter called a tag, carrying out continuous distance measurements
with a frequency of 10 Hz. UWB modules were placed on the UGV (anchors) and the guide
(tag). The accuracy of a single anchor–tag measurement is approximately 10 cm using the
two-way ranging time-of-flight (TOF) technique. The UWB system provides information
about the distance from the individual anchors to the tag.

For the research, it was assumed that the human guide moves along seven rectilin-
ear paths inclined at an angle of 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦, respectively, to
the x-axis of the xy coordinate system in the area satisfying the following inequalities:
−10 m < x < 10 m and 0 m < y < 20 m (Figure 1).

Figure 1. Guide paths 1−7 with the adopted xy coordinate system [6].

Next, guide paths no. 1–7 (Figure 1) were recreated with the assumption that the UGV
remains stationary. Moreover, the guide was supposed to turn 180 around its axis after
reaching the turning point and then return along the same track to the starting point. The
arrangement of the anchors on the UGV is shown in Figure 2 (spatial configuration of the
anchors for the correct operation of the location subsystem).
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Figure 2. Configuration of UWB modules on a UGV.

During the movement, the guide carried a specially made frame with the necessary
equipment (mobile location kit): a UWB tag, a GPS module, and a power supply system
(Figure 3).

Figure 3. Mobile UWB guide location kit.

In order to determine the location errors of the results obtained with the UWB technol-
ogy, SwiftNav DURO satellite receivers operating in the RTK mode were used (error: 1 cm
horizontally and 1.5 cm vertically) [38].
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The starting point of the article is the final results of research on the described location
system based on UWB technology using the nonlinear programming (NLP) method based
on the Levenberg–Marquardt (LM) algorithm [8]. The mentioned results (Figure 4) are the
basis for the further determination of the guide’s path.

 

Figure 4. The results of the guide’s location for routes no. 1−7 using UWB technology along with the
reference positions obtained using the GNSS module. Own elaboration based on [8].

In order to calculate the guide’s route, first, the smoothing parameter value should
be specified. Then, after determining said parameter, it becomes possible to implement
a polynomial curve for the results of the experimental research of the location subsystem.

The following values were adopted to evaluate the obtained results:

• total error

ec(t) =
√

ex(t)
2 + ey(t)

2 (4)

where ex(t) is the error of mapping the guide’s location on the x-axis of the coordinate
system at time t, ey(t) is the error of mapping the guide’s location on the y-axis of the
coordinate system at time t.

• quality indicator

Q = ∑ ec(t) (5)

• mean value of the quality indicator

Qav =
∑ ec(t)

l
(6)

where l is the number of distance measurements [6].
Most often, the value of the smoothing parameter is determined using the follow-

ing relationship:

λp =
1

1 + p3

6

(7)

where p is the average spacing of data points [36].
The smoothing parameter calculated according to dependence 7 (p = 0.1) is approx-

imately λp = 0.99. Such a high value indicates the maximization of data fidelity, which,
due to the presence of disturbances resulting in localization errors, is not always the most
recommended solution. Therefore, the influence of the smoothing parameter on the guide’s
route estimation is determined in the article. In order to achieve the above-mentioned
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purpose and to select the final value of the smoothing parameter smoothing splines
were calculated for the smoothing parameters λ ∈ [0.05; 0.1; 0.15, . . . , 0.95] and routes
no. 1–7 (Figure 4). Then, for each value of the smoothing parameter, the quality indicator
Q and finally the average value of quality indicator Qav were determined. Additionally,
for each case, the mean square value of the acceleration aRMS (the second derivative of
the dependent variable) was also determined. Based on the minimization of the average
quality indicator, the final value of the smoothing parameter was selected. The knowledge
of a chosen smoothing parameter made it possible to determine the estimation of guide
routes no. 1–7 using a smoothing spline. Matlab/Simulink software with the Curve Fitting
Toolbox was used in the research.

2.2. The Influence of the Smoothing Parameter on the Guide’s Path Estimation

The results of the research on the influence of the smoothing parameter on the values
of the Q quality indicator and the average square acceleration values for guide routes
no. 1–7 are shown in Figures 5–11. Figure 12 shows the values of the average quality
indicator and the mean square root acceleration values for all of the considered results.

The values of certain quality indicators Q (Figures 5–11) obtain values ranging from
about 79 m (traffic path no. 2) to about 375 m (traffic path no. 3). Determination of the
average value of the quality indicator Qav allows for generalizing the obtained results
and for determining the final value of the smoothing parameter minimizing the indicator,
which is the sum of the total errors (dependence 5). On the other hand, the courses of the
mean square values of acceleration aRMS for all of the considered paths (Figures 5–11) show
an increasing trend obtaining the minimum quality indicator Q for the value of λ = 0.05 and
the maximum for the value of λ = 0.95.

The Qav indicator obtained the minimum value for the smoothing parameter
λ = 0.15 (Figure 12), which was adopted in the further part of the research as the
smoothing parameter of the smoothing spline.

 

Figure 5. The values of the quality indicator Q and the mean square value of acceleration aRMS for
the smoothing parameters in the case of path no. 1 [6].
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Figure 6. The values of the quality indicator Q and the mean square value of acceleration aRMS for
the smoothing parameters in the case of path no. 2 [6].

 

Figure 7. The values of the quality indicator Q and the mean square value of acceleration aRMS for
the smoothing parameters in the case of path no. 3 [6].
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Figure 8. The values of the quality indicator Q and the mean square value of acceleration aRMS for
the smoothing parameters in the case of path no. 4 [6].

 

Figure 9. The values of the quality indicator Q and the mean square value of acceleration aRMS for
the smoothing parameters in the case of path no. 5 [6].
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Figure 10. The values of the quality indicator Q and the mean square value of acceleration aRMS for
the smoothing parameters in the case of path no. 6 [6].

 

Figure 11. The values of the quality indicator Q and the mean square value of acceleration aRMS for
the smoothing parameters in the case of path no. 7 [6].
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Figure 12. The values of the average quality indicator Q and the average mean square value of
acceleration aRMS for the smoothing parameters in the case of paths no. 1–7 [6].

3. Results

After determining the value of the smoothing parameter λ (λ = 0.15), the guide’s
route for paths 1–7 (Figure 1) was determined using a smoothing spline. Figures 13a–19a
show the x(t) and y(t) coordinates of the guide’s location along with their estimates for the
considered cases. Errors in determining the guide’s route using the mentioned method are
shown graphically in Figures 13b–19b. Moreover, Figures 13c–19c show the guide’s location
along with the estimation of its route with the use of a smoothing spline concerning all of
the analyzed paths.

The courses of the estimated coordinates of the guide’s position at x(t), y(t) are pre-
sented as a function dependent of time in Figures 13a–19a, while in Figures 13c–19c they
are presented as a function independent of time in the form of y(t) = f(x(t)). In turn, location
errors on the x and y axes of the xy coordinate system and the total errors are shown in
Figures 13b–19b. In all of the cases, the decay of signals can be noticed (Figures 13a–19a),
which increases the total errors of the estimated path. Basic descriptive statistics of the total
errors for all of the considered paths are shown in Figure 20.

The error values do not exceed the following values: minimum 0.07 m, mean 0.57 m,
RMS 0.76 m, and maximum 2.03 m (Figure 20). The largest decay of location signals is
noticeable in the case of path no. 3 (decay lasting approx. 10 s, Figure 15a), and it translates
into the above-mentioned maximum values of the total errors (Figures 15b and 20). How-
ever, even in this case, the estimated trajectory retains the shape of the reference trajectory
(Figure 15c).
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(a) 

(b) 

 
(c) 

Figure 13. Results for the estimation of guide path no. 1 with the use of the smoothing spline: (a) the
course of the guide’s location coordinates x(t), y(t) with their continuous estimates, (b) the course of
the estimated location errors ex(t), ey(t), ec(t), (c) guide’s location along with the path estimation [6].
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(a) 

(b) 

 
(c) 

Figure 14. Results for the estimation of guide path no. 2 with the use of the smoothing spline: (a) the
course of the guide’s location coordinates x(t), y(t) with their continuous estimates, (b) the course of
the estimated location errors ex(t), ey(t), ec(t), (c) guide’s location along with the path estimation [6].
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(a) 

(b) 

 
(c) 

Figure 15. Results for the estimation of guide path no. 3 with the use of the smoothing spline: (a) the
course of the guide’s location coordinates x(t), y(t) with their continuous estimates, (b) the course of
the estimated location errors ex(t), ey(t), ec(t), (c) guide’s location along with the path estimation [6].

196



Sensors 2022, 22, 8334

(a) 

 
(b) 

 
(c) 

Figure 16. Results for the estimation of guide path no. 4 with the use of the smoothing spline: (a) the
course of the guide’s location coordinates x(t), y(t) with their continuous estimates, (b) the course of
the estimated location errors ex(t), ey(t), ec(t), (c) guide’s location along with the path estimation [6].
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(a) 

 
(b) 

 
(c) 

Figure 17. Results for the estimation of guide path no. 5 with the use of the smoothing spline: (a) the
course of the guide’s location coordinates x(t), y(t) with their continuous estimates, (b) the course of
the estimated location errors ex(t), ey(t), ec(t), (c) guide’s location along with the path estimation [6].
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(a) 

 
(b) 

 
(c) 

Figure 18. Results for the estimation of guide path no. 6 with the use of smoothing spline: (a) the
course of the guide’s location coordinates x(t), y(t) with their continuous estimates, (b) the course of
the estimated location errors ex(t), ey(t), ec(t), (c) guide’s location along with the path estimation [6].
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(a) 

 
(b) 

 
(c) 

Figure 19. Results for the estimation of guide’s path no. 7 with the use of smoothing spline: (a) the
course of the guide’s location coordinates x(t), y(t) with their continuous estimates, (b) the course of
the estimated location errors ex(t), ey(t), ec(t), (c) guide’s location along with the path estimation [6].
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Figure 20. Basic descriptive statistics: minimum, mean, root mean square, and maximum of total
errors for paths no. 1–7.

4. Conclusions

The method of determining the guide’s route using a smoothing spline was discussed
in the article. In the context of the “follow-me” systems, there has been no systematic study
of the application of the smoothing spline method for planning the movement of the UGV,
so the article represents an innovation in the field.

The influence of the smoothing parameter on the estimation of the guide’s route was
also determined in the article. In addition, no studies were found that examined the impact
of the described parameter on path estimation.

As a result of the implemented mathematical model, it has been shown that the
smoothing spline can recreate the path of the guide after a 10 s period of decay of the
guide’s localization results. The occurrence of the aforementioned guide’s location decays
increased the total errors for estimating the guide’s route.

The value of the smoothing parameter affects the guide’s route estimation. The choice
of the final value of the smoothing parameter requires additional experimental studies. The
dependence existing in the literature [36] that allows for automatically determining the
value of the smoothing parameter for any data is not universal and it is only a preliminary
estimate of the parameter value. It always has to be adapted to the application under
consideration.

The value of the smoothing parameter also affects the estimation of the linear accelera-
tion of the guide. An increase in the value of the smoothing parameter increases the mean
square value of the linear acceleration of the guide.
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Abstract: Owing to the continuous increase in the damage to farms due to wild animals’ destruc-
tion of crops in South Korea, various methods have been proposed to resolve these issues, such as
installing electric fences and using warning lamps or ultrasonic waves. Recently, new methods have
been attempted by applying deep learning-based object-detection techniques to a robot. However,
for effective training of a deep learning-based object-detection model, overfitting or biased training
should be avoided; furthermore, a huge number of datasets are required. In particular, establishing a
training dataset for specific wild animals requires considerable time and labor. Therefore, this study
proposes an Extract–Append data augmentation method where specific objects are extracted from a
limited number of images via semantic segmentation and corresponding objects are appended to
numerous arbitrary background images. Thus, the study aimed to improve the model’s detection per-
formance by generating a rich dataset on wild animals with various background images, particularly
images of water deer and wild boar, which are currently causing the most problematic social issues.
The comparison between the object detector trained using the proposed Extract–Append technique
and that trained using the existing data augmentation techniques showed that the mean Average
Precision (mAP) improved by ≥2.2%. Moreover, further improvement in detection performance of
the deep learning-based object-detection model can be expected as the proposed technique can solve
the issue of the lack of specific data that are difficult to obtain.

Keywords: object detection; surveillance; semantic segmentation; data augmentation

1. Introduction

Damage to crops due to attacks by wild animals is one of the primary reasons for
a reduction in crop yield. As with indiscriminate logging and the expansion of urban
environments, including roads and buildings, incidents of crop attacks by wild animals
have increased as they have lost their habitats. According to the Ministry of Environment
in South Korea, the amount of damage to crops by wild animals between 2014 and 2018
was ~57 billion KRW, which is 11.4 billion KRW annually; the damage by wild boars
and water deer is the largest [1]. Water deer are listed as endangered in the International
Union for Conservation of Nature Red List of Threatened Species. Wild boars usually
inhabit deep mountains and areas with broad-leaved trees, but during the mating season or
preparation for winter, they often come down to urban areas in search of food. Particularly,
the ecosystems near urban areas do not have the predators of wild boar; therefore, their
population increases. There are several incidents where water deer and wild boars, having
had a huge increase in population, destroy crops and appear in residential areas, causing
damage to people’s life or properties [1] (Figure 1).
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(a)                                        (b) 

Figure 1. Examples of the threats and damage by wild animals: (a) appearance of wild animals in
urban areas; (b) destruction of crops by wild animals.

To mitigate such damages, farms have attempted to dispel animals by installing electri-
cal fences or using sound and light via warning lamps and explosive ultrasound. However,
electrical fences may lead to casualties and, if damaged, may cause high maintenance costs.
Additionally, warning lamps or explosive ultrasound can become less effective in the future
as animals get accustomed to them. Recently, methods that prevent the invasion of wild
animals have been proposed, which use robots equipped with deep learning-based object-
detection technology to detect wild animals and use LEDs and alarms only when they
detect objects in real-time monitoring [2]. However, deep learning-based object-detection
technology requires sufficient data to train the deep learning model. Currently, training
data are collected either by directly taking pictures of objects, extracting images from
video recordings, or web crawling. However, there are certain limitations humans have in
acquiring images of wild animals, such as access challenges, leading to challenges in model
training. Overfitting can also be an issue while training a model in such a case [3–7].

To overcome the aforementioned data-collection issues, a large amount of training
data can be generated via data augmentation [8,9]. Data augmentation is a technique
that increases the amount of limited data artificially by increasing the number of images
through applying different types of transformation to an original image. Although various
data augmentation techniques have been proposed, there are still many limitations in
performing data augmentation with a limited amount of data. Therefore, this study
proposes an Extract–Append data augmentation method where only the objects of interest,
specifically wild boars and water deer, are extracted from a minimal number of images
via semantic segmentation, and corresponding objects are appended automatically to
numerous background images. Masks, the shapes of the objects to be extracted from
the segmentation network, are acquired, and the segmented objects are produced by
the binarization and synthesis process. Later, the augmented training data are acquired
from the inverse binarization and the synthesis of various background images. This study
compared and evaluated the object-detection performance of the proposed and existing data
augmentation methods to verify the usefulness of the proposed method. The contribution
of this study is as follows:

1. It proposes the Extract–Append data augmentation method, which automatically gen-
erates a large amount of diverse data by extracting the masks of the objects of interest
from segmentation and synthesizing them with countless arbitrary backgrounds.

2. It enables the synthesis of the object with various backgrounds without losing the original
object shape by suggesting a data-processing method, which synthesizes the extracted
object with the background image after creating a space so that the extracted object shape
can be maintained as accurately as possible on the arbitrary background image.

3. It provides a method that could extract the mask of an object to facilitate additional
training automatically, even if new background images were acquired later based on
the previously trained model on a specific object.

The rest of the article comprises the following sections: in Section 2, the related
research on data augmentation is described; in Section 3, the proposed Extract–Append
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data augmentation technique is explained; in Section 4, the test process and results are
presented; and, finally, in Section 5, the present study is concluded.

2. Related Works

Generally, data augmentation uses spatial-level transformation and pixel-level trans-
formation. The former involves applying spatial changes to an object. For example, it
includes flipping, rotating, and cropping [10–13]. In contrast, the latter involves pixel-level
image transformation and includes contrast, which adjusts the ratio of contrast in an image,
and the addition of random noise to increase the adaptability of the data under various en-
vironments [14,15]. Other methods have been proposed, including cutout, which removes a
part of the image by randomly masking it with squares [16], or mixup [17], which generates
new data by mixing up two images by a certain ratio. However, if data augmentation is
performed with a minimum number of images, only the images with limited backgrounds
(environments) are produced, which makes it difficult to expect an improvement in the
performance of the detection model, and in this case, data augmentation via cutout or
mixup can instead play the role of noise [18,19].

Various data augmentation methods have been proposed to resolve these issues. D.
Yorioka et al. [20] attempted to solve the lack of data by generating a significant number
of fake images based on GAN; however, GAN training requires tremendous time, and it
is difficult to train a GAN model effectively with a minimal number of data. V. Olsson
et al. [21] proposed ClassMix, which increased the amount of data by synthesizing the
backgrounds and objects extracted from the segmentation. However, this requires training
of objects and environments, and in synthesizing the extracted objects and environments,
some information can be lost. S. Bang et al. [22] proposed a method to extract the objects in
an image by masking and generating backgrounds from the masked space via GAN; however,
under the condition where only a limited number of data could be used, the GAN-based
background-generation process may result in distorted backgrounds and a long training
time. G. Ghiasi et al. [23] suggested a method that arbitrarily selects two images and, after
random scaling, attaches the object to another image. However, even this method cannot
overcome the issue of diversity if a small number of images limits it, and it cannot avoid the
degradation of image resolution during the random scaling process. Table 1 summarizes the
strengths and weaknesses of existing and proposed augmentation techniques.

Table 1. Comparison of the strengths and weaknesses of existing and proposed augmentation
techniques.

Augmentation
Method

Strengths Weaknesses

Conventional

- We can create additional images by changing the
direction and angle of the object based on the
acquired image.

- We can obtain additional images by adjusting
the contrast ratio of the acquired image or
adding noise to the image.

- Because it is augmented using only the
collected images, there is a limit to the
diversity of the object’s environment.

- Regardless of the object, every pixel within the
image may be transformed, changing the
object’s unique characteristics.

Proposed

- Objects in the collected image can be combined
with various random backgrounds to create an
unlimited variety of data.

- The mask for the object is extracted through
segmentation and combined with a random
background, so it is very unlikely to act as
noise.

- The object’s mask quality is determined by its
segmentation performance.

- There is a slight sense of heterogeneity because
the object is pasted on a random background
after extraction.
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3. Methodology

The existing data augmentation techniques can enable augmentation only for acquired
image data. Therefore, they are limited in diversity and in the number of images that can be
augmented. This study proposes the Extract–Append technique that can generate a large
amount of diverse data by extracting objects using masks obtained through segmentation
and synthesizing them with arbitrary backgrounds to solve these problems. The acquired
limited image produces the mask of an object through a segmentation network. Subse-
quently, the binarization process transforms it into a binary mask, which is synthesized
with an input image to extract the concerned object. The binary mask is again transformed
into a mask to secure a space in the object’s shape, which is to be added to an arbitrary
background through the inverse binarization process. Synthesis of the transformed mask
and the new background image produces a background image with an object-shaped
space, and then it is added to the extracted object to create a new image. The augmented
image data are used in training the detection network. Figure 2 gives an overview of the
object-detection system, including the proposed Extract–Append technique.

Figure 2. Block diagram of the object-detection system, including the proposed Extract–Append technique.

3.1. Semantic Segmentation

One of the most important application areas in image processing is segmentation,
which categorizes and classifies images into similar regions in terms of semantic or cognitive
perspectives. Here, semantic segmentation is a technique that can discern objects not by
simple boundaries but by semantic regions and aims to classify objects by determining
what each object signifies in an image that contains various objects, including cars, people,
animals, and trees. When classifying an object, all pixels are grouped and categorized
according to similar colors; through this classification, the mask of an object is extracted.
To extract a more accurate mask for an object, manual photoshopping or GrabCut could
be used; however, the study considered semantic segmentation to automatically extract
the mask of specific objects universally. Generally, semantic segmentation is in an encoder–
decoder structure. The encoder gradually performs downsampling to reduce the amount of
calculation based on the size of an input image and improve the calculation speed to extract
and compress the features of the object information to be extracted. However, the decoder
performs upsampling to recover the lost spatial information due to reducing the spatial
dimension in the encoder, and gradually attempts to recover clear object boundaries. In this
way, semantic segmentation extracts the mask containing the object’s information [24–26].

3.2. Extract–Append for Data Augmentation

The proposed Extract–Append data augmentation process is summarized in Algo-
rithm 1, in which the shape of an object is extracted using the mask of the said extracted
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object once the segmentation network training is completed, and the object is appended to
various arbitrary backgrounds.

Algorithm 1. Extract–Append Algorithm

Require: Pretrained semantic segmentation model Φ

Input: Input image containing an object Iobj, Background image Iback
Output: Create new image Aobj

1: MS ← Φ
(

Iobj

)
� Extract the mask of an object

2: M̂S =

{
1, object

0, background
← Binarization of MS

3: for each iteration do
4: Eobj ← Iobj

⊙
M̂S � Extract an object from Iobj

5: Cback ← Iobj
⊙ ∣∣1 − M̂S

∣∣ � Making room for object insertion in Iback
6: Aobj ← Eobj + Cback
7: end for

From the image Iobj, acquired from web crawling and video frames that include the
concerned object, the RGB 3-channel mask MS of the object is extracted via the segmentation
network Φ. This is transformed into a 1-channel binary mask M̂S that has either a 0 or 1
value via the binarization process, and the object Eobj extracted by using this mask can be
derived as in the following equation:

Eobj = Iobj
⊙

M̂S (1)

Here,
⊙

refers to a dot product. In other words, since the object has a value of 1 in
the binary mask, the dot product of the binary mask and the input image results in a black
background, and only the object retains its original color. In this way, the object is solely
extracted. Later, to synthesize the extracted object with an arbitrary background Iback, an
inversion of the binary mask is again performed so that the background is 1 and the object
is 0. The dot product of the transformed mask and an arbitrary background results in an
arbitrary background Cback that has a value of 0 in the space of the object’s shape to be
appended, as shown in the following equation:

Cback = Iback
⊙ ∣∣∣1 − M̂S

∣∣∣ (2)

If Eobj with only object information is added to this, a new image Aobj, which is an
arbitrary background with the appended object, is created.

Aobj = Eobj + Cback (3)

A detailed block diagram of the proposed Extract–Append data augmentation process
is illustrated in Figure 3.
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Figure 3. Block diagram of the proposed Extract–Append data augmentation process.

3.3. Object Detection

A large amount of augmented data generated by the proposed technique are used in
the deep learning-based object-detection model for the surveillance of wild animals—the
ultimate aim of this study. The detection model allowed for real-time processing and
considered the You Only Look Once (YOLO) network, a one-stage detection method that
performs classification and localization simultaneously. YOLO categorizes the input image
into grids of S × S size, and each grid cell estimates B number of bounding boxes and the
bounding box’s confidence score (CS). Here, a bounding box has five pieces of information
(x, y, w, h, and C). x and y are the box’s central coordinates, corresponding to the boundary
of the grid cell, and w and h also refer to the width and height, corresponding to the grid
cell. Finally, C refers to the probability that the bounding box is included in a specific object.
CS is the multiplication of the probability that the bounding box is included in the object
PRobj and the Intersection over Union (IoU), the width of the overlapping region between
the estimated and real values, and refers to the degree of confidence that an object exists
within the bounding box as shown below.

CS = PRobj × IoU (4)

Each grid cell estimates the CS of N number of classes, and Conditional Class Prob-
ability (CCP)—which is the probability that if an object exists in a cell, it will be the k st
class—is defined as shown below.

CCP = PR(Class(k)|Object) (5)

Therefore, the class-specific CS (CCS), which refers to how identical the probability
that a specific object exists in each bounding box is to the actual value, can be summarized
as below. The bounding box with the highest CCS among B number of bounding boxes
that each grid cell estimated for an object is determined to be the bounding box for the said
object [27].

CSS = PRobj × IoU × CCP (6)
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4. Experimental Results

To realize a model for monitoring wild animals, such as water deer and wild boars,
through the proposed data augmentation structure, the mask of objects should be first
extracted, and to this end, the study used the segmentation model DeepLabv3+ [24]. The
study trained the object-detection model using augmented data after embodying an Extract–
Append processor based on the extracted mask of the object and attempted to validate the
usefulness of the proposed method by evaluating the model’s detection performance. As a
model for evaluating the object-detection performance, the study considered YOLOV4-tiny,
and the training was performed with a NVIDIA RTX 3060 and Intel Core i7-1200F CPU. The
reason for choosing YOLOV4-tiny among the various YOLO models is because it allows for
an easy realization of an onboard embedded system and real-time processing. Its processing
speed is relatively much faster than more recent models while its performance is slightly
poor. A high-performance computer needs to be used to realize object detection using
YOLOv4 in an actual farm, but this is unrealistic to carry out. In contrast, YOLOV4-tiny
can allow for real-time object recognition on an embedded single board computer, such as
Jetson Nano.

The resolution of the input images was 416 × 416, and to compare the performance
of the proposed Extract–Append technique with the existing data augmentation-based
object-detection performance, the study categorized the dataset used in training into five
types. Dataset D1 used in the evaluation test was created assuming that only 60 images per
class were acquired by the image extraction from the videos or web crawling of wild boars
and water deer, according to the aim of augmenting the data with a minimal number of
images acquired limitedly. Dataset D2 was created with 480 images per class by adding the
data transformed from D1 via spatial-level transformation. Augmentation by spatial-level
transformation is one of the most widely used data augmentation techniques, and thus,
it was included in all dataset constructions, except for D1. Dataset D3 was created with
540 images per class by image-contrast augmentation, one of the pixel-level transformation
techniques. Cut-and-paste augmentation was used to create Dataset D4, with 1080 images
per class, which is similar to the Extract–Append technique proposed in this study. Finally,
Dataset D5 was created with 1480 images per class by Extract–Append augmentation, which
conveniently allows for synthesizing objects with unlimited, arbitrary background images.
The object-detection performance evaluation via the proposed data augmentation used
100 images per class. Figure 4 shows examples of the results from the data augmentation
technique used in the training of the object-detection model.

 
(a) (b) (c) (d) (e) 

Figure 4. Example of water deer and wild boar images transformed by data augmentation: (a) original
image (D1); (b) spatial-level transformation (D2); (c) pixel-level transformation (D3); (d) cut-and-paste
(D4); (e) Extract–Append (D5).

211



Sensors 2022, 22, 7383

The evaluation index for validating the performance of the model used the mean
Average Precision (mAP), with Precision and Recall defined as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Here, TP refers to True Positive, meaning that an object that needs to be detected was
detected; FP refers to False Positive, meaning that an object that should not be detected was
detected; FN refers to False Negative, meaning that an object that should not be detected
was not detected; Precision, meaning accuracy, refers to the ratio of the objects detected
by the model that was correctly detected; and Recall, meaning reproduction, refers to the
ratio of the objects that should be detected and were correctly detected by the model. A PR
curve is the cumulation of Precision and Recall from the highest CS, which is a value that
expresses how accurately a model detects an object. The x-axis is Recall, and the y-axis is
Precision. While the PR curve can determine the Precision value by the change in Recall,
it is inconvenient to compare the performance of each technique quantitatively. To solve
this inconvenience, the Average Precision, the area below the PR curve, is used, and the
performance of each technique is evaluated by mAP, which is the Average Precision of each
object if there are multiple objects divided by their numbers.

The study performed an evaluation test by changing IoU to examine the performance
level of the object detector trained with the data generated by the proposed Extract–Append
technique; the result is presented in Table 2. With IoU at 0.3, the performance of the
object detector trained with the proposed D5 improved by 0.6% and 2.6% at minimum
and maximum, respectively, based on mAP compared with that of the object detectors
trained with D1 to D4. In addition, even if IoU increased to 0.5, the object detector trained
with D5 showed a higher performance of 0.8% and 3.7% at minimum and maximum,
respectively, than the object detectors trained with D1 to D4. Furthermore, when IoU is 0.7,
the performance of the object detector based on the proposed technique improved by up to
34.8%, showing a 2.1% higher improvement from the object detector trained with D4, which
is similar to the Extract–Append approach. It should be noted here that since D2 augments
only a limited number of images, it is restricted in the number of images to be augmented
as it faces the issue of the diversity of data. As discussed earlier, D3 can rather degrade
the performance of an object detector as it adds noise to the limited number of images,
thus showing the smallest performance improvement among all the data augmentation
techniques used in the evaluation test. D4 extracts objects from existing images and fills
the extracted space with RGB, similar to the background, using GAN. However, at this
point, GAN takes a long time to be trained, and, as shown in Figure 4d, noise is added to
the generated image, leading to limited performance improvement. Furthermore, it uses
the existing background again; thus, as in D2 discussed above, it is limited with respect to
the diversity of data. In contrast, the proposed D5 uses semantic segmentation to extract
and synthesize an object to an arbitrary, intact background image. Therefore, the training
time is much shorter than the method based on GAN, and since the synthesis uses various
arbitrary background images, it can solve the data diversity issue. Furthermore, there is no
limitation in the number of data to be augmented, resulting in a better performance of the
object detector than the one trained with D1 to D4.

Figure 5 illustrates the examples of the results of the object-detection model trained
with data augmented by each technique, with the IoU at 0.7. The blue box in the figure is
the result where the model identified the object correctly, the red color indicates that the
model incorrectly identified the object as another object, and the white color shows the
ground-truth.
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Table 2. Comparison of the object-detection performance by data augmentation techniques.

Data

Data Augmentation

Class AP0.3 AP0.5 AP0.7 mAP0.3 mAP0.5 mAP0.7
Spatial-

Lev.
Trans.

Pixel-
Lev.

Trans.

Cut-
Paste

Extract-
Append

D1 WaterDeer
WildBoar

93.0
93.9

91.7
93.0

51.3
63.8 93.9 92.4 57.8

D2 O WaterDeer
WildBoar

95.8
93.7

95.5
93.7

89.4
88.7 94.8 94.4 89.0

D3 O O WaterDeer
WildBoar

93.6
93.5

93.4
92.6

65.1
71.6 93.5 93.0 68.3

D4 O O WaterDeer
WildBoar

97.0
94.8

96.9
93.7

92.1
88.9 95.5 95.3 90.5

D5 O O WaterDeer
WildBoar

97.2
95.1

97.2
95.1

94.3
91.0 96.1 96.1 92.6

 
(a) (b) (c) (d) (e) 

Figure 5. Example of water deer and wild boar detection results by data augmentation techniques:
(a) data augmentation not applied (D1); (b) spatial-level transformation (D2); (c) pixel-level transfor-
mation (D3); (d) cut-and-paste (D4); (e) Extract–Append (D5).
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5. Conclusions

An unbiased, diverse, and significant amount of data is necessary when training
a deep learning-based object-detection model. Notably, building a training dataset for
specific objects requires considerable time and labor, and generally, this is resolved through
data augmentation. However, existing data augmentation techniques rely on spatial- or
pixel-level transformation of images, which is limited in augmenting data based on a
minimal number of images, resulting in a degraded model performance and the problem
of diversity of training images. Therefore, this study proposed an Extract–Append data
augmentation technique to resolve the issue of a lack of specific data and promote the
performance improvement of a deep learning-based object-detection model. The proposed
data augmentation technique extracts only specific objects through semantic segmentation,
generates a diverse and vast amount of augmented training data from synthesis with
varying arbitrary background images, and synthesizes the data without changing the shape
of the extracted objects. The study conducted a performance comparison test between the
object detector based on the proposed Extract–Append technique and the others based on
the existing data augmentation techniques, which demonstrated that the object detector
trained with the proposed approach showed a detection performance improvement of up
to 34.8%. In addition, compared to the cut-and-paste technique, the proposed technique
improved the detection performance by 2.1%. Following these results, it is anticipated that
the proposed data augmentation technique can solve the issues of lack of data and diversity
to enhance the performance of various deep learning-based rare object-detection models. In
the future, we will conduct additional training on other rare objects besides water deer and
wild boars. We aim to generalize the proposed data augmentation technique by synthesiz-
ing these objects with various background images. Furthermore, we will also continue to
complement the mask-extraction technique, which lacks data in the segmentation process.
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Abstract: A robust perception system is crucial for natural human–robot interaction. An essential
capability of these systems is to provide a rich representation of the robot’s environment, typically
using multiple sensory sources. Moreover, this information allows the robot to react to both external
stimuli and user responses. The novel contribution of this paper is the development of a perception
architecture, which was based on the bio-inspired concept of endogenous attention being integrated
into a real social robot. In this paper, the architecture is defined at a theoretical level to provide
insights into the underlying bio-inspired mechanisms and at a practical level to integrate and test the
architecture within the complete architecture of a robot. We also defined mechanisms to establish
the most salient stimulus for the detection or task in question. Furthermore, the attention-based
architecture uses information from the robot’s decision-making system to produce user responses
and robot decisions. Finally, this paper also presents the preliminary test results from the integration
of this architecture into a real social robot.

Keywords: perception; social robots; bio-inspired attention; human–robot interaction

1. Introduction

In human–robot interaction (HRI), it is essential to select the most relevant stimuli to
achieve a natural experience. In some cases, this interaction encounters constraints from
the perception capabilities of the robot, especially considering the computational resources
that are needed by state-of-the-art perception techniques, such as those that are based
on deep learning. Therefore, to create an agile interaction with a high level of detail, a
compromise is required regarding the number of detectors that can run simultaneously, in
most cases. Detectors are associated with the number of stimuli and the quality and delay
of the detections. Consequently, mechanisms that select the most salient stimuli should
play an essential role in HRI; however, these selection mechanisms are often omitted. These
mechanisms are similar to those in animals and are related to a key concept: attention.

There are different definitions of the term attention. Talsma et al. defined it as a
multisensory cognitive function that allows humans and animals to continuously and
dynamically select a particular stimulus from all of the available information in their envi-
ronment [1]. Similarly, Broadbent characterised attention as the selective filtering of input
stimuli to make the amount of data to be processed more manageable [2]. The common
concept is that attention is a mechanism for selecting the most relevant stimulus in the
environment. This selection means that some detectors (e.g., selectors that are associated
with specific tasks) can be active only when required and can otherwise be idle or run with
fewer resources when the interaction does not require them.

Typically, attention is a multisensory process, although vision is the most studied
modality. According to Stein et al., the multisensory response occurs when inputs from
different modalities (i.e., sight, touch and hearing) elicit a single response [3]. This result is
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usually amplified when the inputs appear in the same space and are synchronised in time,
meaning that single-sensor stimuli are weaker.

Another interesting concept is the focus of attention (FOA). The FOA is the stimulus
that was selected by the attentional mechanism and is then processed in detail. Information
from regions outside of the FOA is either stored in the short-term memory or, in most cases,
ignored, which causes a phenomenon called change blindness in the peripheral areas [4].
This event improves perceptual efficiency by only processing the most relevant information
from the environment and allowing an increased processing and resolution load to be
focused on the FOA and not on stimuli within the periphery [1].

When selecting the most relevant stimulus in a scene, we have to consider that humans
detect objects within a visual location better when we know some of the characteristics
beforehand (colour, movement, etc.). This type of known information is called the perceptual
set [5]. According to Rosenbaum et al., the response time to stimuli is shorter when the
user knows what kind of movement to expect in advance. This information is known as
the motor set [6]. The perceptual and motor sets together comprise the attentional set, which
is defined as the representations that are involved in selecting the relevant stimuli and
responses to perform a task correctly.

The selection of the FOA can be either endogenous or exogenous. Endogenous attention,
also called top-down or voluntary attention, is goal-driven and directed towards events
or stimuli that are consciously selected by the individual [7]. This attention can optimise
performance according to the task demands and may be maintained at a location for
extended periods. In contrast, exogenous attention, also called bottom-up or involuntary
attention, is driven by the importance of the stimuli and is an adaptive tool that enables
the detection and processing of salient events that appear outside of the FOA. Exogenous
attention can be understood as a momentary interruption of endogenous attention or
the reorientation of attention towards a different stimulus. According to Corbetta et al.,
involuntary attention mechanisms, although primarily stimulus-driven, are modulated
by goal-directed influences through attentional groups as they impose task completion as
the priority measure [8]. Therefore, most attention-grabbing stimuli are related to the task
at hand [9]. To ensure that a social robot can handle multiple stimuli while focusing on
its current task, a multisensory endogenous attention-based system is necessary to filter
out irrelevant stimuli. In addition, these systems allow for better resource management
because they give priority to the detectors that are associated with the current task.

The main contribution of this work is the definition and development of a novel
perception architecture that integrates bio-inspired concepts from biological attention and
focuses on endogenous components. Our multisensory architecture sorts the detected
stimuli in order of importance, considering the tasks that are performed by a social robot
and focusing on HRI since the architecture is proposed for use in a social robot. We extend
the existing endogenous attention systems by integrating stimuli from different modalities
(vision, sound and touch) into a single system. In addition, we introduce concepts such as
sustained and punctual attention to prioritise HRI and achieve natural interactions. Finally,
we tested our system using different applications of a real robotic platform and achieved
competitive responses in real time.

The rest of this article is structured as follows. Section 2 offers a selection of the
most relevant works within the field of attention and studies the main mechanisms that
govern these processes. Artificial attention models are also explored to consider their
advantages and limitations and the most common types of sensory sources. Section 3
introduces the robotic platform that was employed in this study and the integration of our
software architecture. Section 4 presents the main contribution of this work: the bio-inspired
perception architecture that was based on endogenous attention. Section 5 introduces the
experimental methodology that was followed to assess the proposed architecture. Section 6
presents the main results, which are organised into three case studies, and Section 7 analyses
these results and explores the limitations of the system in its current state. Finally, the main
conclusions that were drawn from this work are presented in Section 8.
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2. Background

The selection of predominant stimuli is an innate mechanism in the animal world that
offers significant advantages for survival, for example, hearing sounds that indicate danger
or particular patterns in the environment [10]. Attention is, therefore, a multisensory
process that involves many sources of information. Animals complement visual clues with
those from other senses, such as hearing, smell or touch. The following sections review the
mechanisms that drive the attention processes in living organisms, focusing on those that
are related to endogenous attention.

2.1. Natural Attention Models

Several studies have highlighted the different mechanisms that underlie the attention
process. For example, when selecting the most relevant features of a scene, one of the most
influential human attention theories is feature integration theory [11]. This theory suggests
that our perception of the environment occurs in two phases: an early stage (pre-attention),
in which the individual features of an object (colour, shape, motion, etc.) are processed,
and a late phase, which focuses on finding the FOA by fusing those particular features into
a single conjunction of properties (i.e., an object). The Simon effect measures the response
time to visual stimuli and demonstrates that the position of a stimulus is directly related
to our ability to react to it [12]. Herbranson explored the hierarchical components within
attention mechanisms, through which users can shift from focusing on a specific feature to
a global analysis of the situation [10].

In some cases, humans can divide attention and allow different relevant stimuli to be
focused on simultaneously, although accuracy is reduced compared to analysing features
separately. For example, Cherry et al. studied the cocktail party effect phenomenon using
a listening-based task [13]. Participants listened to two conversations at the same time.
Punctual attention allowed them to focus on one of the two conversations while filtering out
the other, so this type of attention allows the ability to focus a specific stimulus or activity
in the presence of other distracting stimuli. In this experiment, the authors demonstrated
that it was impossible to focus on both conversations simultaneously. This phenomenon
also occurs with visual stimuli [14].

Endogenous attention voluntarily processes task-related stimuli and features within
the environment. In the literature, works such as [15–17] have divided this attention
mechanism into sustained attention and punctual attention (which is also referred to as
selective attention in the literature). Sohlberg et al. defined sustained attention as the ability
to maintain a consistent behavioural response during continuous or repetitive activity
and punctual attention as the ability to maintain a cognitive set that requires the activation
and inhibition of responses, depending on the discrimination of stimuli. Fisher described
sustained attention as the ability to maintain sensitivity to incoming stimuli over time and
selective attention as the ability to process part of the sensory input while excluding others.

Shulman et al. showed that these processes occur in specific regions of the brain [18].
For example, areas that are sensitive to movement react poorly to changes in colour.
Therefore, we can establish a parallelism between certain regions in the brain that are
specialised for certain detection tasks and detectors in software that tend to process a single
kind of stimuli or detections of the same nature (e.g., an object detector is specialised for
that kind of stimuli and is blind to movement). A change in task also usually causes a
modification in the neural response. For example, changing from sorting numbers (odd
and even) to sorting letters (vowels and consonants) produces a momentary decrease in
the performance of the second task, which is known as change cost [19].

2.2. Artificial Attention Models

Over the years, there has been an increase in interest around the design of artificial
attention models. These models select the most relevant parts of the environment and filter
out irrelevant information to enable the faster processing of the important stimuli [20,21].
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The field of robotics has significantly benefited from these systems as they have
allowed robots to become more autonomous. Therefore, mechanisms that are capable of
selecting relevant and helpful information are essential for robotics applications, especially
when processing high-resolution and high-frequency sensory information, such as images.

Computational attention models usually process the different stimuli in the environ-
ment according to the task that is to be performed [22]. These models can react to a stimulus
or task in a manner that is comparable to humans or other animals. The processing in such
models can be divided into three phases [23]:

• Orientation selects where or what feature to focus on next (for example, in a white
room with a red dot on a wall, that dot would be the relevant stimuli);

• Selection establishes how to focus on the feature (for example, the system chooses
whether to pay attention to auditory or visual stimuli);

• Amplification decides how to process the selected stimulus, which is different from
how it processes non-relevant features (for example, when we see a red dot in a white
room, amplification selects the best method to analyse that object but in the rest of the
room, object recognition may not be used).

Over recent years, there have been many examples of artificial attention systems in the
literature, which have mainly focused on vision. Along this line, Meibodi et al. [24] presented
an attention model that uses exogenous attention, endogenous information and memory to
complete the attention process. Another example is the work of Zhu et al. [25], who predicted
the head and eye movements of their participants using attention studies. In that work, they
incorporated concepts such as visual uncertainty and balance to achieve good results in their
predictions. Another example that is worth mentioning is the work that was developed by
Yang et al. [26], who presented an inverse reinforcement learning model to predict the next
endogenous focus of attention in humans. Along the same line, Fang et al. [27] revised the
role of top-down modelling in salient object detection and designed a novel densely nested
top-down flow (DNTDF)-based framework. They compared their results to other datasets
to verify the correctness of their model. Finally, Adeli et al. [28] proposed an attention
system that was based on using neural networks to predict the next focus of attention in real
scenarios. They used bio-inspired concepts, such as the ventral, frontal and visual areas of
the human brain.

Endogenous Attention Models

The literature offers different approaches for endogenous models; although in most
cases, these are descriptive and are not supported by concrete developments [23]. This
has been caused by a lack of generality in the algorithms. For example, it is crucial to
evaluate the placement of an object within a room to understand the relevance of that object
for a given task. Therefore, generic object recognition algorithms are not valid for these
models [29]. Nevertheless, we can find approaches that implement attention models, such
as the work of Wang and Shen [30], and use exogenous information to predict endogenous
FOAs in complex situations. Another important concept is feature-based attention. This
allows for the precise location of the property of interest in time, e.g., identifying upward
movements when the task is to control a lifting movement [31]. In these models, the effects
of endogenous knowledge indicate how exogenous stimuli should be processed.

Theses endogenous feature-based attention models emerged first [32,33]. Soon after,
architectures such as the guided search theory [34] and the feature gate model [35] appeared.
These architectures attempt to answer how feature gains should be adapted to achieve
optimal task performance. All of these models have a supervised learning phase to compute
property gains using manually labelled examples [36]. A common characteristic of all of
the works that have been presented in this section is that they tend to output a region in the
selected space (or image) as the following FOA. Based on these models, Beuter et al. [37]
proposed fusing the exogenous and endogenous information within an image to determine
the most salient areas in order to control a robot’s navigation. In the same way, Yu et al. [38]
presented an artificial visual attention manager that uses the features of an object to guide
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the perception of the robot to the next FOA, according to the current task, context and
learned knowledge.

A more recent example that uses probabilistic reasoning and inference tools is the
model that was proposed by Borji and Itti [39]. This work introduced an architecture for
modelling endogenous visual attention that was based on reasoning in a task-dependent
manner. Their model analyses the semantic values of objects within a scene and tracks the
user’s eye movements, then combines both with a probabilistic approach to predict the
next object that is needed by the user to perform their task.

The works that have been presented in this section use endogenous attention as a
complement to exogenous information and place more importance on salient stimuli that
are related to the task that is to be performed. However, to the extent of our knowledge,
no work in the literature has proposed a purely endogenous architecture that reacts in
real time. Moreover, works on attention management that is applied to robotics are scarce
and they have usually focused on mobile robots that need attention to navigate correctly.
In contrast, this paper presents an endogenous attention manager for social robots that
prioritises natural human–robot interaction over other stimuli and real-time reactions. This
system analyses stimuli from different sources (sight, sound and touch) to decide which is
the most relevant stimulus, taking into account all of the information in the environment
(not just visual information as in the literature). This feature allows the robot to interact
with its environment and perform more complex tasks that include multimodal detectors.

3. The Robotic Platform

To test our approach, we used the social robot Mini, which utilises the perception
architecture that was presented in Salichs et al. [40]. Mini was developed at Robotic-
sLab and is a desktop robot that is 59 cm tall and can share its emotional state through
expressive eyes, an LED heartbeat, cheeks and the movement of its arms, head and
base. The aim of this robot is to assist and entertain older adults who suffer from mild
cognitive problems. In terms of the robot’s hardware, Mini has LEDs in its heart and
cheeks, a VU meter as a mouth and two OLED screens that serve as eyes. Between
the head and the body, Mini has a neck with two degrees of freedom that allows head
movements in the vertical and horizontal axes. It also has two arms with one degree
of freedom and a base, which are all controlled by servomotors. These elements allow
Mini to achieve a natural vivacity. Mini also includes capacitive sensors to detect tac-
tile stimuli and an external tablet to enhance its interaction with users by displaying
multimedia content, such as videos, images or buttons, for games and exercises. The
base holds a computer that has an Arduino microcontroller and a small battery for safe
shutdown. Finally, the robot has an RGB-D camera at its base (Realsense D435i cam-
era: https://www.intelrealsense.com/depth-camera-d435i/ (accessed on 10 July 2022), see
Figure 1). For particular skills (e.g., to play tangram), we installed a USB fisheye camera (US-
BFHD04H 1080P H.264 camera: http://www.elpcctv.com/elp-free-driver-1080p-full-hd-
h264-usb-webcam-camera-module-for-car-bus-plane-video-surveillance-p-350.html (ac-
cessed on 10 July 2022)) with a 180◦ field of view, which provided images with a resolution
of 1080p at 30 frames per second, on the robot’s chest. That camera focused on the table
between the robot and the user to see the game pieces.
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Figure 1. The social robot Mini.

3.1. The Software Architecture

The robot’s software architecture is divided into blocks, as shown in Figure 2. Our
work focused on the attention manager and detectors that run the robot. The detector
and actuator blocks are directly connected to the physical devices of the robot and acquire
information from the sensors or by commanding the actuators, respectively.

ACTUATORS
DETECTOR 1

DETECTOR 2

DETECTOR 3

DETECTOR 4

DETECTOR N

HRI SYSTEM

ATTENTION 
MANAGER

DMS SYSTEM

SKILL 1 SKILL 2 SKILL N

SKILLS

DETECTORS

… …

Figure 2. A general overview of the main software components of the Mini architecture and the
connections between them. This work added the attention manager block, which communicated
with the HRI and DMS systems and the robot’s skills.
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The skills correspond to the main functionalities of the robot and each skill uses
perceptual information to achieve its goal. The skills also use HRI capabilities to generate
dialogues and interact with the user. The robot integrates various categories of skills,
such as the following:

• Games contains all of the games that Mini can play, such as bingo, akinator [41],
tangram [42] and quiz games, which were chosen to stimulate elderly people following
the recommendations of doctors or psychologists;

• Multimedia includes all of the multimedia capabilities that the robot can use (e.g.,
showing pictures or videos, playing music, audiobooks or movies and telling jokes);

• Information contains the information that the robot can provide, such as the news or
weather [43], as well as an introduction for itself and instructions on how to interact
with it;

• Cognitive stimulation incorporates all of the cognitive stimulation exercises (e.g.,
memory, attention, planning and comprehension exercises);

• General contains the essential communication elements for the user and the robot,
such as reminders or relevant information data;

• Sleep includes the robot’s configuration to simulate sleep (i.e., eyes closed and a
neutral position of the arms, base and head).

The human–robot interaction (HRI) system manages the dialogue between the user and
the robot. This part of the architecture processes and analyses perceptual information
to decide whether it is relevant to the interaction; for example, when a skill needs the
robot to provide information or the robot is waiting for an answer from the user. The
robot only communicates with the user using voice or the menus on the tablet, but it also
uses visual cues on the tablet and different gestures to improve communication. Finally,
the decision-making system (DMS) controls the activation and deactivation of the robot’s
functionalities. This component uses the robot’s internal information (e.g., motivation)
and environment information (e.g., the user requesting a specific skill) to proactively decide
the robot’s next action.

To test the operation of the attention manager, we explored three case studies. In the
first case study, we used a multimedia skill, specifically the telling jokes skill (Section 5.2).
Next, we tested a cognitive stimulation skill, specifically a memory game that is based on
recognising famous monuments around the world (Section 5.3). Finally, we tested a game
skill, specifically the tangram game, by adding vision detectors to the attention manager
(Section 5.4).

4. The Attention Manager

This paper proposes a bio-inspired endogenous artificial attention manager for social
robots. We took inspiration from psychological and neuroscientific works that considered
how human attention works within social interactions. It is important to note that the main
purpose of social robots is to provide human–robot interaction as naturally as possible.
To identify the requirements for developing this bio-inspired system, we studied how
endogenous attention works in biological systems and its application to HRI, which led us
to choose the following specifications for the attention manager:

• To decide on the optimal FOA considering the available stimuli and the current task;
• To process information from multiple sensory modalities (e.g., vision, touch and sound);
• To respond in real time, avoiding lengthy processing and response times;
• To select the correct FOA to achieve natural human–robot interaction;
• To include a voluntary attention process that detects the relevant information for a

goal in a sustained manner;
• To include a mechanism that allows the robot to focus on a stimulus punctually, even

when it is not the most salient stimulus, in a sustained manner;
• To take into account the current task of the robot (i.e., the system needs to communicate

with the DMS to know what task the robot is currently performing and its next action
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and then, with this information, the system can sort the stimuli according to their
relevance to the task);

• To filter out irrelevant stimuli for the current task;
• To consider scalability and modularity (i.e., allow the inclusion of new sources

of information);
• To manage resources efficiently (i.e., inhibit or disable detectors depending on the task).

According to these requirements, we developed the architecture of the bio-inspired
endogenous attention manager, as shown in Figure 3. In the following sections, we explain
each of the blocks that make up the proposed architecture in more detail.

Figure 3. A schematic diagram of the endogenous attention manager.

4.1. The Detectors

The detectors lie at the base of the architecture. They are responsible for extracting
information from the robot’s environment and generating a rich representation. To optimise
the computational load of the robot, the architecture can activate the detectors only when
they are necessary.

According to their modality, we classified the detectors into visual, auditory and
tactile. This modality is related to how the attention manager analyses the specific relative
importance of each stimulus, as explained in Section 4.2. Additionally, the detectors could
be organised by type: interaction, endogenous and mixed.

• Mini uses interaction detectors to achieve bidirectional communication with the user.
In our case, the robot had two types of interaction detectors: automatic speech recogni-
tion (ASR) [44] for voice communication and the tablet [45], which the user used
for tactile feedback. As explained in Section 3.1, the HRI manager controls the
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robot’s dialogue. Therefore, it handles both the questions that are asked by the
robot and the answers that are given by the user. The attention manager receives
the user’s answers from the detectors and through which channel they were pro-
duced using the information from this software module (see [46] for more details
on how the HRI manager works in the Mini). The interaction detections are then
positioned in the space around the robot. In the case of the tablet, we assumed
that the device was always in a fixed place in front of the robot. When the robot
uses the ASR, the attention manager tries to locate the user’s face to select it as
the FOA. Our architecture integrated face detection and localisation system called
face-detection-retail-004, which relies on Squeezenet and an SSD network (face detec-
tor network: https://docs.openvinotoolkit.org/latest/_models_intel_face_detection_
retail_0004_description_face_detection_retail_0004.html (accessed on 10 July 2022)).
This detector worked well with a frontal view of the user’s face, achieving an average
accuracy of 83%. For each detection, the algorithm provides a unique user ID, the
confidence level for the predicted class and the coordinates of the upper left and the
lower right corners of the face’s bounding box.
The attention manager uses this information to fix the FOA in the centre of the
detection box when the robot has to pay attention to the user (for example, when the
robot is talking or waiting for an answer from the user).
In contrast, when the user is not sitting in front of the robot, the attention manager
uses the Mini’s omnidirectional microphone to locate the direction of the user’s voice.
For this, the architecture uses the Open embeddeD audition System (ODAS) library
because it allows for the 3D localisation, tracking, separation and filtering of sound
sources [47].
Additionally, when the robot is waiting for a voice response from the user and it does
not detect anybody, the attention manager tries to find the direction of the sound to
locate the user, even when the user is behind the robot. Conversely, when the face
detection system finds a user, the system prioritises the face over the voice stimuli.

• Endogenous detectors are specifically developed to provide information for a certain
skill. Therefore, the robot only activates these sensors when it needs them to perform
the relevant skill.
The attention manager fully controls the activation and deactivation of these detectors.
Focusing on a specific skill that was used in the case studies, the tangram game skill
integrates three endogenous vision-based detectors: the first is in charge of detecting
the play zone, the second is responsible for performing the calibration that is necessary
to play correctly and the third is used to recognise and locate the game pieces. We
assumed that the game board was in a fixed position between the user and the robot to
place these stimuli. This assumption meant that all of the detectors that were operating
in the playing area had the same FOA, which was the centre of the board.

• Mixed detectors can detect endogenous and exogenous information in the environment.
For example, considering the face detector, when the robot is idle and a person
enters the room, the face that is detected captures the robot’s attention exogenously.
In contrast, when the robot is waiting for a user response during a game, the user’s
face captures the robot’s attention endogenously. These two behaviours result in the
detector being considered as a mixed detector. These detectors are always active,
but the attention manager only uses their data when they are required for the current
skill. Apart from the face detector, the Mini system uses other three mixed detectors:
the first detects tactile interactions, the second locates the user’s face and the third
recognises the direction of sound. To detect and identify tactile events, the robot uses
an algorithm that is capable of detecting touch in three areas (the belly and the left
and right arms) using capacitive sensors. When the attention manager detects a tactile
event, the attention focuses on the relative position of the sensor that was activated
with respect to the centre of the robot.
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4.2. Updating Detector Information

Endogenous attention is a voluntary process; therefore, it is directed by the task that
the robot is performing. To add this feature into the attention manager, the system needs to
communicate with the DMS that is in charge of deciding which task the robot performs
at a given time. In our case, the DMS informed the attention manager when there was a
change in the robot’s skill and whether the change involved the activation of a new ability
or the deactivation of the current skill. This communication has to be asynchronous and the
architecture needs to adapt quickly to the requirements of the new skill. When the robot
initiates a new skill, the attention manager uses the skill detectors database (see the Skills
Detectors Database in Figure 3) to load the associated information, such as the detectors that
are associated with that skill and their relative importance (weight) in terms of attention.

As stated at the beginning of Section 4, the architecture has to process information from
different sensory modalities. Our robot could react to different visual, auditive and tactile
stimuli and each sensory modality had a relative importance that depended on the task
that the robot was performing and whether the stimulus was relevant to the HRI. However,
these modalities do not represent the same information. In our case, the stimuli were
different, so we did not need a fusion step to merge information from different sensors that
were detecting similar stimuli at the same location.

Visual stimuli were associated with the task itself and were not used by the HRI mech-
anisms. For example, when the robot played tangram, the detector returned the position of
the pieces on the playing area. Equation (1) characterised the weight or importance of this
type of detector:

ωvision =

{
1.0, i f nvision detectors > 0
0.0, otherwise

(1)

Voice interaction was also considered. For example, when the robot asked a question
and waited for an answer. Considering the importance of HRI for these robots, sound stim-
uli were more critical than visual stimuli and, therefore, had a higher relative importance
value (see Equation (2)):

ωaudio =

{
2.0, i f naudio detectors > 0
0.0, otherwise

(2)

In our robot, tactile stimuli were considered as an interruption to the task. For example,
when the robot told a joke, the user could touch its belly to stop the activity. Similarly,
when the robot was playing the tangram game, the user could touch its arm to request a
hint. Since different studies have demonstrated that humans pay more attention to tactile
stimuli, the attention manager placed more importance on these detections. Equation (3)
defined the weight of this type of stimuli:

ωtactile =

{
3.0, i f ntactile detectors > 0
0.0, otherwise

(3)

This system not only focuses on events that continuously appeared over time (sus-
tained attention), but it also reacts to punctual stimuli at specific times (punctual attention).
In this last case, a stimulus may not be as salient as the sustained a priori stimuli, but to
calculate their relevance, the temporal factor has to also be considered. This mechanism is
especially useful when the robot maintains a dialogue with the user via different channels
(e.g., voice or tablet). In these cases, sustained attention tends to pay attention to the
user’s face, but the system must correct this issue to allow for variations between all of the
possible stimuli. For this reason, the attention manager introduces a correction factor to the
sustained and selective stimuli to modify their weights at each time step. This correction
factor multiplies the relative importance of a specific stimulus by a factor of three. This way,
the robot is able to focus its attention on the response channel with the correction factor.
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The attention manager communicates with the HRI system, which controls the dia-
logues, and informs the general architecture about which input method the user selected to
respond (see the upper right box in Figure 3).

In the current version of the attention manager, we assumed that the stimuli that
could trigger punctual attention just came from the interaction detectors, specifically the
automatic speech recognition and the tablet detector. Equation (4) shows how the system
calculated the final importance of the interaction detectors:(

ωFinalASR
ωFinalTablet

)
=

(
ωASR
ωTablet

)
∗
(

ωSA1 0.0
0.0 ωSA2

)
(4)

where ωASR and ωTablet are the a priori weight of the detectors at each time step and ωSA1
and ωSA2 are the correction factors that corresponded to punctual attention for the two de-
tectors (the ωSA1 and ωSA2 values were always either 1.0 or 3.0, depending on the detector’s
attention type (sustained or punctual); for example, when the detector produced punctual
attention because the user interacted with the robot using that channel, the correction factor
was 3, in the other cases, the value was 1).

4.3. Creation of the Ego-Spheric Representation

The system requires the integration of stimuli from different sensory sources. In human
attention, the brain performs a sensory integration process that allows us to perceive infor-
mation coherently [1]. Our architecture integrates this process and enables the generation
of a unique representation for all endogenous stimuli.

In our work, we used an ego-spheric representation to achieve multisensory aggre-
gation. We took inspiration from the work of Bodiroza et al. [48] and the representation
allowed the rendering of any stimuli around the robot, not only those in front of the camera.
The sphere represented a multimodal egocentric map, in which the system recreated the
areas of the salient stimuli that were located by the robot. In the ego-spheric representation,
the robot’s centre corresponded to the sphere’s centre and the system showed the salient
data as small spheres around the Mini. The size of each small sphere in the representation
depended on the importance of that stimulus. Moreover, the position of each stimulus was
relative to the centre of the robot. Equation (5) was used to calculate the final saliency map,
where ω is the relative importance depending on the sensory modality that was tuned-up
(as shown in Section 4.2), F is the required detector, d is the total modalities and c is the
final combined map:

ct =
d

∑
j=1

ωjt · Fjt (5)

where ct = is the final combined map in instant t

j ε {1, 2, ..., number o f detectors activated}
ωjt = is the relative importance

Fjt = is the needed detector

d = is the total modalities

The classical approach of saliency maps is to only represent the stimuli in front of the
camera and to not take depth into account [23]. Therefore, they usually only include visual
stimuli. However, in our work, we included multisensory information in the representation
that could appear at any place around the robot, including tactile, auditive and visual
stimuli. In the Figure 4, the yellow mark represents the centre of the robot and the pink
sphere is the space around it. Note that the green dot is bigger than the others, meaning
that the stimulus was more significant than the others.
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In our architecture, the most salient stimulus is not the only output. Instead, the en-
dogenous attention processing generates a sorted list that includes all of the stimuli that
exceed the salience threshold.

Figure 4. An example of an ego-spheric representation with simultaneous tactile (green circle),
auditive (red circle) and visual (blue circle) stimuli.

5. Methodology

In Section 3.1, we explained that the Mini can perform a wide range of skills. In this
section, we describe how the attention manager works and how it exchanges information
with the other software architecture blocks using three realistic case studies. The first case
study involved the system performing an entertainment skill: joke telling. The second
case study evaluated the attention manager when performing a cognitive stimulation skill,
more precisely a memory and attention exercise that consisted of recognising famous world
monuments. Finally, the third case study showed how the system works when performing
a game skill: the tangram game. For each of these skills, we describe how the different
blocks of the software architecture communicated during the execution of the skill and the
response of the endogenous attention manager. We focused on where the robot placed the
FOA and the differences between its sustained and punctual attention. Table 1 summarises
the case studies that are presented in this work. It indicates the type of skill, the objective
of the test and the types of detectors that were involved. The objectives were cumulative,
i.e., in case study 2, we aimed to meet the goals of case study 1 as well as those of case
study 2.

Table 1. A summary of the three case studies that are presented in this work.

Skill Goal Detectors Involved

Case Study 1 Entertainment

- System responds to multiple acti-
vated detectors
- System responds to sustained or
punctual attention
- Communication with other soft-
ware blocks
- Sorted list according to salience as
the output

- Interaction detectors
- Mixed detectors

Case Study 2 Cognitive
Stimulation

- System responds to changes in com-
munication channels

- Interaction detectors
- Mixed detectors

Case Study 3 Game - System responds to stimuli from
different sensory modalities

- Interaction detectors
- Mixed detectors
- Endogenous detectors
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5.1. Experimental Setup

In the case studies, the user sat in front of the robot (see Figure 5). In this case,
four kinds of sensors provided the information about the robot’s environment: an om-
nidirectional microphone ReSpeaker Mic Array v2.0 (ReSpeaker Mic Array v2.0: https:
//wiki.seeedstudio.com/ReSpeaker_Mic_Array_v2.0/ (accessed on 10 July 2022)), an RGB-
D camera (Realsense D435i: https://www.intelrealsense.com/depth-camera-d435i/ (ac-
cessed on 10 July 2022)), three capacitive touch sensors that were placed on the arms and
belly of the robot and a tablet (Samsung Galaxy Tab A: https://www.samsung.com/es/
tablets/galaxy-tab-a/galaxy-tab-a-10-1-inch-white-32gb-lte-sm-t585nzwephe/ (accessed
on 10 July 2022)), which was placed between the robot and the user.

As well as from the sensors, the robot integrated a GPU USB Intel Neural Compute Stick
(Intel NCS2: https://ark.intel.com/content/www/us/en/ark/products/140109/intel-
neural-compute-stick-2.html (accessed on 10 July 2022)) to extend the robot’s processing
capabilities. Finally, the third case study included additional accessories for the skill,
such as a play zone, which was also placed between the robot and the user, and a set of
tangram pieces. All of the software modules were connected using ROS [49] and the system
operated at 3 fps for visual stimuli, which still allowed the robot to have a human-like
reaction time [50] while controlling the computational load.

To test the functioning of the system, the research team performed ten repetitions of
each case study and the times that are presented in Section 6 are those that were obtained
in the last repetition. In addition, the system was stressed by performing the different skills
consecutively and triggering all of the possible options in each skill that was selected for
the case studies. The average interaction time was 80.3 s in case study 1, 269.1 s in case
study 2 and 148.7 s in case study 3.

Touch
Sensors

User

Omnidirectional
Microphone

RGB
Camera
View

Tablet

Playzone

Figure 5. An illustration of the environmental setup of the case studies. We used the same colour
coding as that in the 3D representation of the environment (blue for the camera, green for the touch
sensors and red for the speaker).

5.2. Case Study 1: Attention during an Entertainment Skill

In this case study, we used an entertainment skill that tells jokes to the user [43]. The user
could choose the type and subject of the jokes. The execution was divided into two states.
The first state was selection of the skill, for which we assumed that the robot was initially
awake and wanted to interact with the user. Then, the robot asked the user what they
wanted to do using different communication channels (voice and the tablet). The user
answered using one of these channels. After the selection, the joke telling skill initiated and
the robot told three jokes to the user using voice communication.
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In this case, we checked the system response when several detectors were active
simultaneously and the different results that were obtained depending on whether the
attention was sustained or punctual. Another important aspect was the communication
between our system and the other software blocks within the robot (the HRI system, DMS
and skills). Finally, the case study also checked the correct functioning of the output stimuli
list, which was sorted according to salience. Section 6.1 shows the step-by-step operation
of the Mini software and the behaviour of the attention manager during the case study
in detail.

5.3. Case Study 2: Attention during a Cognitive Stimulation Skill

This case study involved a cognitive stimulation exercise that was based on memory
and attention [51]. During the exercise, the Mini displayed a well-known monument,
such as the Eiffel Tower or the Coliseum, and asked the user for their relative city, giving
three choices.

As in the previous case study, there were two stages. The first stage consisted of the
selection of the skill. To test a different set of inputs, in this case, the user asked the robot
for the exercise directly by saying “I want to play to the monuments game”.

In the second part of the case study, we evaluated the operation of the attention man-
ager while the user was completing the stimulation exercise. During the execution, the
Mini requested information using its text-to-speech functionality and activated the ASR as
the default communication channel. However, when the ASR detected a communication
problem (recognition failure or no response from the user), the Mini continued the commu-
nication using the tablet as the input. The game had seven different questions and for the
first three, the attention manager received the user voice as the input, while for the last four
questions, it acquired information from the tablet.

In this case study, we tested the attention manager with a more complex skill and in
a dynamic setting, in which we intended to check that robot produced the correct output
when interacting with the user and when changing communication channels. Section 6.2
presents the results from the communication between the software modules in the Mini
and the attention manager output during the exercise.

5.4. Case Study 3: Attention during a Game

In this case, the user played the tangram game and the robot controlled the game
development and helped the user by providing hints. In this case, the robot used an
additional camera. This device focused on the table between the robot and the user to
detect the play zone of the game, in which the user could freely move and place the tangram
pieces (see Figure 5). To simplify the case study, this case did not include the selection state
as it was similar to those of the previous case studies. During the game, the robot used
endogenous detectors that were explicitly developed for this skill, such as the play zone
detector, calibration detector or tangram piece detector, as described in [42]. Furthermore,
the robot also included touch detection to provide hints to the user. Finally, the robot asked
the user questions using the different communication channels (voice and the tablet) during
the game.

For this skill, the robot used multiple kinds of detectors as it needed endogenous,
interaction and mixed detectors to function correctly for the game. Therefore, in this case
study, we tested the system attention output in a complex scenario using stimuli from
different sensory modalities (sight, sound and touch). Section 6.3 details the connections
between the different software blocks and the output of the endogenous attention manager.

6. Results

This section presents the results that were obtained by the complete endogenous
attention manager in the different types of robot activities. Based on the attention manager
specifications that were described in Section 4, the obtained results helped to verify that
the attention manager satisfied the following requirements:
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1. Able to identify the most salient stimulus for a given task;
2. Able to handle multimodal stimuli (visual, auditory and tactile);
3. Real-time responses;
4. Able to select the most relevant information to achieve natural human–robot interaction;
5. Able to react to sustained and punctual attention;
6. The correct management of the activation and deactivation of detectors to reduce

computational load.

6.1. Case Study 1: Attention during an Entertainment Skill

In this case study, we considered that the user wanted to interact with the robot
and that they wanted to listen to short, robot-related jokes. Figure 6 shows a sequence
diagram with the messages that were exchanged among the different Mini software mod-
ules during the execution of the joke telling skill. Additionally, Figure 7 summarises the
results of this case study, showing the relative importance of each detector during sustained
attention and punctual attention.
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Figure 6. A sequence diagram of the connections between the different software blocks in the Mini
during the execution of the joke telling skill. The blue boxes in the attention manager row display
sustained attention from the detectors. The blue dots show the punctual attention that was produced
by the user’s responses.
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Figure 7. The relative importance of the detectors during sustained and punctual attention in case
study 1. The orange, yellow and green lines show the sustained attention of the ASR, the user’s face
and the tablet, respectively. The red dots display the punctual attention that was detected during the
case study.

This case study consisted of two parts: the selection state and the jokes state. Initially,
the robot was awake and initiated the interaction by asking the user what they wanted
to do (at t = 0 s). This question caused the attention manager to activate the available
communication channels, initiating the tablet and ASR detectors. At this point, the system
paid attention to the user’s face and the tablet in a sustained manner.

As explained in Section 4.1, when the robot expected a voice response, it also tried to
locate the face of the closest user, assuming that this user was the person who responded.
Furthermore, using the weights that were discussed in Section 4.2, the attention manager
placed more importance to the user’s face, despite both detectors being active.

After a few seconds, the user answered using the tablet; therefore, there was a punctual
change in the attention manager to place more importance on the device for a few seconds
(see the blue point in Figure 6 and the red point in Figure 7 at t = 13 s). Next, the robot
prompted three more questions (from t = 14 s to t = 16 s, from t = 17 s to t = 19 s and
from t = 20 s to t = 28 s in Figure 6) to select which entertainment skill the user wanted
and which topic they liked jokes about. The output of the attention manager for these three
questions was identical to that described for the first question: the user answered using
the tablet.

Once the user selected the skill, the case study continued in the jokes state (at t = 29 s).
This state described the behaviour of the system during the execution of the joke telling
skill. This skill was the simplest among the three case studies since the robot only interacted
with the user through voice. Note that when the robot was talking, the sustained attention
manager located the user’s face to look at this point when the Mini was talking to achieve
a natural interaction. Therefore, the Mini paid attention to the user’s face while telling
each joke and in the goodbye message (from t = 28 s to t = 35 s, from t = 38 s to t = 57 s,
from t = 59 s to t = 67 s and from t = 68 s to t = 77 s in Figure 7).

6.2. Case Study 2: Attention during a Cognitive Stimulation Skill

In this case study, we considered that the user wanted to perform a specific cognitive
stimulation exercise: the monuments game. In this game, the robot displayed pictures
of famous monuments on the tablet and asked the user for their relative city, giving
three possible answers. This exercise had seven different questions and during the case
study, the user answered the first three questions using voice. During the fourth question,
a communication error appeared and forced a change of communication channel and the
user responded to the last four questions using the tablet.
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The Figure 8 shows a sequence diagram with the messages that were passing among
the different Mini software modules during the case study. Complementarily, Figure 9
summarises the results of this test, showing the relative importance of each detector
during sustained attention and the points at which there was a punctual change in the
robot’s attention.
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Figure 8. A sequence diagram of the connections between the different software blocks in the Mini
during the execution of the cognitive stimulation exercise.

As in case study 1, this case study was divided into two parts: the selection state
and the exercise state. The robot was initially awake and started the interaction by asking
the user what they wanted to do (at t = 0 s). In this case, the user selected a cognitive
stimulation exercise using voice (at t = 11 s in Figure 9). The behaviour during this first
part of the case study (selection state) was similar to that in case study 1. When the robot
asked a question, the attention manager activated the communication channels to receive
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the user’s answer (ASR and tablet). Despite having both detectors active, the sustained
attention placed more importance on the user’s face due to the weights that were discussed
previously. In this case, since the user answered using the voice, the most relevant stimulus
for the attention manager corresponded to the punctual attention (see the red point in
Figure 9).

Selection 
state Exercise state

Figure 9. The relative importance of the detectors during sustained and punctual attention in case
study 2. The orange, yellow and green lines show the sustained attention of the ASR, the user’s face
and the tablet, respectively. The red dots display the punctual attention that was detected during the
case study. The user’s answers produced the first three dots using ASR, while the tablet responses
produced the last four dots.

Once the user selected the skill (at t = 20 s in Figure 8), the robot briefly introduced
the exercise and explained what the user had to do. During this speech, the attention
manager activated the face detector to pay attention to the user (from t = 22 s to t = 44 s
in Figure 9). Then, the Mini asked for the Eiffel Tower’s location, giving different options
for the answer (Paris, Berlin or Rome). In this case, the user could reply using ASR, so the
attention manager activated this channel (at t = 45 s) and the user responded after a few
seconds (at t = 65 s).

As this was a correct answer, the robot responded with positive feedback for the user.
During this interaction, the attention manager activated the face detector again because the
user was the most salient stimuli (from t = 66 s to t = 76 s in Figure 8). The game continued
in this way for two more questions (from t = 77 s to t = 90 s and from t = 100 s to t = 123 s
in Figure 9). Next, the robot asked where the Alhambra is, so the attention manager
again activated the ASR (at t = 133 s in Figure 8). When a user does not answer within a
predetermined time or the speech recognition fails, the detector reports a communication
error between the robot and the user. In this case, the robot prompted the user to use the
tablet to respond (at t = 207 s in Figure 8). As in the previous case, the attention manager
activated the face detector to look at the user while talking. Then, the robot repeated the
question; However, in this case, it displayed the options on the tablet so that the user could
answer. At this point, the attention manager activated the tablet’s detector (from t = 218 s
to t = 229 s in Figure 9) and waited for the user’s response (see the red point in Figure 9 at
t = 229 s). Finally, when the robot received the answer, the attention manager activated
the face detector again to provide the feedback to the user (from t = 230 s to t = 240 s in
Figure 8).

In summary, the exercise had seven questions and the user used voice to answer the
first three (see the red points in Figure 9 at t = 65 s, t = 90 s and t = 123 s). During the
fourth question, we simulated a communication problem with the ASR (from t = 133 s
to t = 205 s) and the user responded using the tablet (see the red point at t = 229 s in
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Figure 9). The user also answered the last three questions using the tablet (see the red
points at t = 250 s and t = 269 s in Figure 9).

6.3. Case Study 3: Attention during a Game

This case study tested the operation of the attention manager when a user played the
tangram game with the robot. In this case, the user played with a physical tangram and the
robot controlled the development of the game using computer vision to detect the play zone
and pieces and helped the user when they needed help. This last case was the most complex
of the three case studies, as it included seven detectors and more complex interactions.
As in the previous cases, Figure 10 shows a sequence diagram describing the messages
that were passed among the different Mini software blocks during the execution of the
game and Figure 11 presents the relative importance of each detector during sustained and
punctual attention.

In this case study, we omitted the game selection phase to focus on how the FOA
evolved during a complex game. The dynamics of this discarded phase were identical to
those of the previous case studies. Therefore, the robot started the interaction by welcoming
the user to the game. During the welcome message, the attention manager activated the
face detector because the robot was talking to the user, so the most salient stimulus was the
user’s face (t = 0 s to t = 9 s in Figure 11). Next, the robot explored the area in front of it
to find the play zone (t = 10 s to t = 14 s in Figure 10). When the robot could not see the
play zone, the Mini informed the user that the game could not start. The next step involved
a calibration to enhance the tangram detector accuracy; hence, the robot provided some
instructions to the user (t = 15 s to t = 35 s in Figure 11).

During this time, the robot focused its attention on the user’s face. Before starting
the calibration process, the robot asked the user to confirm that they had followed the
instructions (at t = 38 s in Figure 11). In the same way as in the cognitive stimulation case
study, when the user did not respond or the speech recognition failed (see the red point in
Figure 11 at t = 90 s), the Mini repeated the question but displayed the options on the tablet
(at t = 91 s in Figure 10). Due to the change in the communication channel, the attention
manager deactivated the ASR and activated the tablet detector. When the user responded
(see the red point in the Figure 11 at t = 103 s), the skill started the calibration process (at
t = 113 s in Figure 11). The attention manager activated the calibration detector and waited
until the calibration process was successful (at t = 114 s in Figure 10). As with the play
zone detection, when the robot could not perform the calibration, the Mini informed the
user that it could not play at that moment and ended the game.

Once the calibration was completed, the robot was ready to play and provided in-
structions to the user on how to play the game (at t = 115 s in Figure 11). At that moment,
the attention manager activated the face detector and a few seconds later (at t = 132 s in
Figure 11), it activated the detector that recognises tangram pieces. Although two sustained
attention detectors were active simultaneously (face and tangram pieces), there was no
punctual attention in this case, so the robot always paid more attention to the user’s face
than to the board due to the preset weights (ωaudio = 2.0 and ωvision = 1.0). When the
Mini finished giving the instructions, the attention manager deactivated the face detector
(at t = 136 s in Figure 11) and the robot started paying more attention to the pieces on
the board.

Additionally, during the tangram game, the user could touch the robot at any time
to ask for a hint. In this case study, that occurred at t = 143 s in Figure 10. At this point,
the attention manager deactivated the tangram pieces detector and activated the face
detector to look at the user while giving a clue (at t = 144 s in Figure 11). When the robot
finished the clue, it switched its attention from the user to the game pieces (at t = 157 in
Figure 11).

235



Sensors 2022, 22, 5248

User Tablet
Attention
Manager

HRI +
DMS

Exercises
SkillASR

Robot

Let’s play
Tangram game

Face Time

Yes (with
noise)

Update detectors Skill finished

PlayzoneTouch Calibration Tangram
Pieces

StartUpdate
detectors

t=0s

Fa
ce

Activation

Deactivation

t=1sRobot Talking

t=9sRobot finishs
talk

End initial speech

Initial speech

Pl
ay

zo
ne

Activation

Playzone OK

t=10sFind playzone

t=14s
Playzone OK

Fa
ce

Activation

Deactivation

t=15sRobot Talking

t=35sRobot finishs
talk

End calibration
Instructions

Calibration
Instructions

t=38s

AS
R

Activation

ASR response
Deactivation Communication error

Robot Ask (ASR)

No response

No response

Please, place onlye the
green triangle on the

playzone

Have you placed 
the green triangle?

Have you placed 
the green triangle?

Tablet response Ta
bl

et
Activation

Deactivation Tablet Response

Robot Ask 
(Tablet)

No

Yes

t=90s

t=91s

t=103s

Ca
lib

ra
tio

n

Activation

Calibration OK

t=113sCalibrate system

t=114s
Calibration OK

Fa
ce

Activation

Deactivation

t=115sRobot Talking

t=136sRobot finishs
talk

End Instructions

Instructions

Fa
ce

+ 
pi

ec
es

Pi
ec

es

Activation Pieces detector
t=132s

Robot touchedUser touches the robot Robot touched t=143s

Fa
ce

Activation

Deactivation

t=144sRobot Talking

t=156sRobot finishs
talk

End of hint

Say a hint

Activation Pieces detector
t=157s

SAME PROCESS UNTIL THE END OF THE GAME

Puntual attention detected

De
te

ct
or

Sustained endogenous attention

Transition to Selection state

Figure 10. A sequence diagram of the connections between the different software blocks in the Mini
during the execution of the tangram game.
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Time (s)

Figure 11. The relative importance of the detectors during sustained and punctual attention in case
study 3. The lines show the sustained attention of the different detectors that were used during the
case study. The red dots show the punctual attention that was detected. The first dot was produced
by the user’s response via ASR and the second dot was produced by the user’s response via the tablet.

7. Discussion

In this study, we tested whether an endogenous attention system allowed our robot to
identify the most salient task-related stimulus, regardless of the modality (sight, sound or
touch), in real time. In addition, we verified whether the robot could prioritise interaction-
related stimuli to achieve the most natural HRI possible using bio-inspired techniques, such
as sustained and punctual attention. Finally, enabling the robot to manage the activation
and deactivation of the detectors was a priority to reduce the computational load and
produce the correct functioning of the robot. We tested these requirements in three different
scenarios, all of which proved satisfactory results.

In the first two case studies, we tested the system’s ability to identify the most salient
stimulus to perform the given task during the selection stage. In this part of the case study,
two possible stimuli stood out in a sustained way: the ASR and the tablet. In the first
case study, although the ASR was more salient in a sustained way, the tablet was more
relevant when the user answered the questions using the tablet and not using their voice.
We tested whether the proposed attention system could identify the most relevant stimulus
when there was more than one possible task-related stimulus in the environment and
whether it could react correctly to sustained and punctual attention. Moreover, in these
two case studies, we also checked that the robot could correctly control the activation and
deactivation of the detectors, both in the selection phase and in the execution of the skill
itself. This reduced the computational load of the system and ensured the correct function
of our social robot.

On the other hand, in case study 2, we verified that the system could adapt to a change
in communication channel due to an error in the voice recognition system. This adaptation
showed the system’s adaptability in real time as this change did not cause any delays in the
attention system’s response and there were no additional problems due to the error during
the interaction.

Focusing on case study 3, it is instantly noticeable that this case study was more
complex than the previous cases. Firstly, we tested how the system reacted to stimuli from
three sensory modalities (sight, sound and touch). The results from this case study showed
that the robot had an excellent adaptation to the different sensory modalities and that their
detection and localisation did not cause any delays in the system. Furthermore, in this
case, we also verified whether the system could prioritise the stimuli that were necessary
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for the interaction over the stimuli that were related to the task itself. This prioritisation
allowed the robot to interact with the user in the most natural way possible as it prioritised
human–robot interaction.

During the development of the tests, we researched other endogenous attention models
in the literature to compare to our system. However, we did not find any multimodal
implementations that could allow this comparison. Furthermore, many of the models that
have been presented in the literature are not purely endogenous, but rather use exogenous
information to guide endogenous attention. Another problem was the lack of multimodal
attention systems, including visual, auditory and tactile stimuli. Therefore, we focused on
performing different tests on our system to check that it was working correctly.

Despite the advantages of the proposed system, there were also some limitations.
Firstly, the integration of detectors for the stimuli of different modalities allowed us to
make the robot capable of performing more complex tasks that included visual, auditable
and tactile stimuli. However, the system was unable to analyse whether stimuli from
different sensory modalities belonged to the same stimulus (e.g., detecting a person and
their associated voice at the same time). We hope to explore this in future work by including
a fusion level that merges stimuli from different modalities and relates them to each other.

On the other hand, although the results that were obtained in the case studies were
satisfactory, using preset weights for the relative importance of each sensory modality did
not allow the robot to adapt to its task. Furthermore, these preset values meant that the
robot always reacted in the same way when performing a task, which could lead to errors
on certain occasions. Therefore, in future work, we hope to include a machine learning
level that directly adjusts these weights using deep learning techniques. This automatic
learning would take into account past experiences and current activity so we could able to
customise the system to the user that it interacts with and the robot’s tasks.

Finally, the case studies allowed us to check the correct functioning of the system
during different skills. The research team conducted the tests in 2021. Unfortunately,
due to the current COVID-19 situation, we could not test this system with elderly people.
Moreover, although the implementation phase is complete, the system needs to be validated
in a controlled environment before long-term testing with real users. Despite this, we hope
to perform tests with the target population to check the correct functioning of the system.
In addition, we plan to carry out long-term tests that would allow us to check that the
system responds correctly in stressful situations.

8. Conclusions

This work presented a bio-inspired endogenous attention architecture for social robots.
The architecture aims to detect the most relevant stimulus in a given environment and
consider the necessary adaptions for the robot’s behaviour in order to complete the current
task. Moreover, the system’s reaction time aims to be similar to that of a human for the
same process. Therefore, the model aims to work in real time. The system also considers
stimuli from various sensory modalities. The ego-spheric representation provides a 3D
view of the stimuli within the robot’s environment.

Our experimental results showed that our system met the requirements that were set
out in Section 4. Firstly, we developed a communication process with the DMS that allowed
the robot to know the current task at all times. Moreover, as the results show, the adaptation
of the attention manager was fast and always less than one second, thus avoiding possible
bottlenecks that could be produced by our architecture. In the same way, the attention
manager could process information from different sensory modalities, including visual,
auditory and tactile detectors. We added a detector block to the software that allows for
the individual preprocessing of environment information and works in parallel to avoid
delays in the system.

The results also indicated that the system could work with both sustained and punctual
attention in the three case studies. The system correctly sorted the stimuli according to
salience using the preset weights and modified them when there was a punctual stimulus.
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In addition, with the previously fixed relative importance values, the attention manager
selected the most important stimuli for a more natural human–robot interaction in a
sustained way.

A machine learning level would dynamically adjust these weights in future work by
considering past experiences and current activity. Moreover, a fusion level would merge
the stimuli from different modalities to allow the robot to understand the relationships
between the detections. Finally, we also hope to perform long-term tests with elderly
people to check the functioning of the system and its adaptation to a stressful environment.

A critical architecture requirement was real-time responses. The case studies demon-
strated that the stimulus localisation and saliency classification worked in less than one
second in all cases.

As for the system’s modularity, we verified that the architecture also satisfied this
requirement using different algorithms. In the first two case studies, the system only
used interaction detectors, while in the last case study, we added endogenous and mixed
detectors and we achieved the correct output in all cases. These results also demonstrated
that the system could activate and deactivate the detectors when necessary, thus efficiently
managing its resources.
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Abstract: Object detection is an essential capability for performing complex tasks in robotic applica-
tions. Today, deep learning (DL) approaches are the basis of state-of-the-art solutions in computer
vision, where they provide very high accuracy albeit with high computational costs. Due to the
physical limitations of robotic platforms, embedded devices are not as powerful as desktop comput-
ers, and adjustments have to be made to deep learning models before transferring them to robotic
applications. This work benchmarks deep learning object detection models in embedded devices.
Furthermore, some hardware selection guidelines are included, together with a description of the
most relevant features of the two boards selected for this benchmark. Embedded electronic devices
integrate a powerful AI co-processor to accelerate DL applications. To take advantage of these
co-processors, models must be converted to a specific embedded runtime format. Five quantization
levels applied to a collection of DL models are considered; two of them allow the execution of models
in the embedded general-purpose CPU and are used as the baseline to assess the improvements
obtained when running the same models with the three remaining quantization levels in the AI
co-processors. The benchmark procedure is explained in detail, and a comprehensive analysis of the
collected data is presented. Finally, the feasibility and challenges of the implementation of embedded
object detection applications are discussed.

Keywords: object detection; embedded devices; deep learning; benchmarking

1. Introduction

Deep Learning (DL) is a sub-field of Machine Learning (ML) based on the computation
of multi-layer Artificial Neural Networks (ANN), also known as Deep Neural Networks
(DNN) in reference to the presence of multiple internal processing layers. One of the
applications where DL is proving most successful is computer vision, where impressive
levels of performance are being achieved. This work discusses object detection technology,
which is defined as a computer vision technique that enumerates the objects presented in
an image and classifies each of the detected objects, assigning a confidence or probability
of existence while locating them and squaring their position in the image. In the traditional
computer vision approach, object detection algorithms were based on handcrafted sets of
features explicitly programmed by the authors. However, an object may present a diversity
of morphological appearances and could be deformed, present a large variety of shapes
and/or be immersed in scenes with very different illumination levels and backgrounds.
Furthermore, objects may be partially occluded by other objects, making it almost impos-
sible to extract robust features manually. DL, on the other hand, uses a huge amount of
detection examples and trains a DNN to automatically infer the appropriate detection
features. This strategy has proven to be highly successful.

Sensors 2022, 22, 4205. https://doi.org/10.3390/s22114205 https://www.mdpi.com/journal/sensors
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Even if DL is a computationally intensive task, modern embedded hardware devices
are powerful enough to execute some of the most successful models. In addition, hardware
manufacturers have developed powerful AI (Artificial Intelligence) co-processors, specifi-
cally designed to execute DL models. These co-processors provide considerable computing
power with high power efficiency. As a result, more and more AI-based applications are
implemented in smart embedded devices [1]. Many techniques have been developed to
improve the deployment of DL models on such devices, starting from simplified training
processes using pre-trained networks and fine-tuning the parameters in a process called
Transfer Learning [2], to many model simplifications and transformations, such as quanti-
zation, model pruning, etc., to squeeze the model onto embedded devices [3]. Note that
even if the models are executed on the embedded devices, all the previous stages in the
DL workflow cited above take place in powerful host computers, usually equipped with
dedicated high performance graphics processing units (GPUs).

Embedded devices are of paramount importance to bring DL capabilities to robotic
applications [4]. To name just a few examples, in [5] the authors present a system that
can detect and track multiple objects from aerial images taken by a flying robot, while
in [6] a 3D-printed robotic arm is brain-controlled via embedded DL from sEMG sensors.
Real-time human detection is an important sub-field of computer vision, of interest in areas
ranging from industrial environments to autonomous driving. For a review of this task
using DL on embedded platforms, the reader is referred to [7].

The goal of this article is to provide a review of the major challenges in the development
of embedded DL applications. The article is divided into two main parts. The first part
presents a detailed analysis of the main elements to be taken into account in any DL
embedded application: Section 2 explains the motivation for the use of embedded hardware
and the most important features to be taken into account when selecting embedded devices.
A description of the devices chosen for this work is also included. In Section 3, ML
framework requirements are evaluated for both embedded hardware devices and host
computers. The embedded hardware libraries are intended to provide a specific runtime
environment for the execution of inference based on DL models in specialized hardware
co-processors. ML host frameworks, on the other hand, are usually powerful software
packages designed to support the whole DL application development workflow. Since
the compatibility of both frameworks is mandatory, only a few options are feasible, so
the selection is, as explained, quite straightforward. Section 4 describes some of the most
successful and modern object detection models available and how they are handled by the
selected ML framework.

The second part of the article carries out a benchmark of embedded hardware plat-
forms based on the ML framework and previously identified models. Each model must
be converted from its original format to an embedded-friendly format. Hardware co-
processors support INT8 arithmetic operations, so model conversion also involves some
kind of model quantization. Five quantization levels are considered for this work, as de-
scribed in Section 5. After conversion, models are deployed in the embedded devices, and
their inference performance is measured and tested. Section 6 describes the benchmark
procedure and analyzes the obtained results. Finally, Section 7 states the conclusions of this
work, and Section 8 enumerates some reflections about future lines of work.

2. AI at the Edge: Intelligent Embedded Systems

Edge computing is a distributed computing architecture where most data processing
is executed by hardware devices close to the source of the data. As opposed to cloud
computing, where large and powerful central facilities receive huge amounts of data
from remotely connected sensors and compute complex and performance-demanding
algorithms, edge computing brings the computation to devices with limited resources.

Related to cloud computing, the Internet of Things (IoT) paradigm, which consists
of physical things equipped with electronic components and ubiquitous intelligence that
allow them to connect, interact and exchange data [8], has contributed to the deployment of
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millions of connected devices in almost any imaginable scenario. Similarly, the Industry 4.0
paradigm has made available multi-sensory data of industrial processes that allow complex
algorithms to control and optimize the performance of industrial plants [9].

The current trend is to move data processing from the cloud to the edge. In particular,
ML algorithms are being increasingly deployed in embedded devices [10]. There are many
reasons why computing at the edge is preferable to computing at the cloud [11]. On the one
hand, the amount of data traffic increases together with the number of deployed devices.
On the other hand, data transmission and processing in remote systems introduces a delay
that in some cases is unacceptable. Additionally, there may be security issues if private
or sensitive information needs to be transmitted from local facilities to an external data
center [12].

In the literature, edge devices are vaguely defined. Even if the premise is always that
the processing is located near the source of the data, this could refer to both a computing
network infrastructure located in the same facilities as sensors or an embedded device
with a tiny micro-controller. In the present work, edge devices are understood to be
embedded devices that usually incorporate sensor data acquisition hardware and are able
to autonomously execute data processing algorithms and make some “smart” decisions.

2.1. Selection of Embedded AI Hardware Devices

The first challenge to benchmarking the performance of a DL model in an embedded
device is to select the appropriate hardware device itself. There are hundreds of hardware
devices that claim to have a design oriented to the execution of ML algorithms. In fact, many
modern micro-controllers are actually able to run a set of ML algorithms [13,14], but since
one of the goals of this work is to deploy machine vision DL algorithms, a powerful enough
device should be selected. On average, the number of operations required to compute
a complete inference from an input image is around some tens of billions of operations
or Giga-Operations (GOPS) [15]. Since a video sequence has around 30 to 60 frames per
second, it is estimated that the minimum computational power an embedded device must
have is around one Tera-Operations per second (TOPS). This requirement rules out most
general-purpose micro-controllers, for example those based on the widely used ARM
CortexM architecture, and also many application processors, including those based on
the ARM CortexA architecture. Even some processors based on the x86 architecture are
not powerful enough. To reach those figures, it is necessary to select a processor with a
specific integrated mathematical co-processor. Due to the great success of DL, modern
embedded hardware devices have begun to integrate powerful AI co-processors to perform
DL computations. There are three main solutions to integrate a DL-oriented co-processor
in embedded hardware: (i) use a general-purpose processor that already integrates a
co-processor in the same semiconductor die; (ii) include a separate Application Specific
Integrated Circuit (ASIC) designed for DL inference together with the general purpose
processor in the embedded hardware design; or (iii) use a programmable logic device
(CPLD or FPGA) to implement custom co-processor hardware [16]. The design of a math
accelerator circuit for DL model inference is outside the scope of this work, and therefore
the third solution is rejected in favor of the first two. Based on these criteria, the embedded
hardware devices selected for this work are described in the next sub-sections.

2.2. NXP i-MX8M-PLUS Application Processor

The first hardware platform selected is the i-MX8M-PLUS processor. It is an NXP
heterogeneous multi-core processor for high-performance applications focused on video pro-
cessing and DL (https://www.nxp.com/products/processors-and-microcontrollers/arm-
processors/i-mx-applications-processors/i-mx-8-processors/i-mx-8m-plus-arm-cortex-a5
3-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS, accessed on 11 July
2021). The embedded System on Chip (SoC) from Variscite shown in Figure 1 and the matching
evaluation kit were used in this work.
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Figure 1. iMX 8M Plus System on Module. Image from https://www.variscite.com/ (accessed on 2
September 2021).

From a DL application development perspective, the most interesting component of
this board is the embedded Neural Processing Unit (NPU) with 2.3 TOPS of computing
power. It is also quite remarkable that the NPU is integrated onto the same die as the general-
purpose processors and shares the high-speed internal memory bus. This architecture helps
speed up the DNN inference as the data interchanged between both computing units
are optimized. The NPU is a Vivante VIP8000 specifically designed for being embedded
in processors of the i-MX family. It works with 8-bit integer data types (INT8) rather
than 32-bit floating-point data (FLOAT32). As will be seen in Section 5, this means that
the DNN needs to be transformed (quantized) before being executed in the NPU. NXP
provides the entire ecosystem of tools to manage the entire workflow pipeline, including
the design, deployment and inference of neural networks. The processor also features
a powerful image-processing pipeline, camera interfaces and a comprehensive set of
communication peripherals.

2.3. Google Coral Dev Board with EdgeTPU Module

The other hardware platform considered in this work is the Coral Dev Board. This is
an evaluation kit for the EdgeTPU AI accelerator module (see Figure 2), an ASIC with a
PCI or high-speed USB communication interface that performs 4 TOPS while drawing 2 W
of power. It also uses INT8 operands, and it is designed to add DNN inference ability to
general-purpose processors.

(a) (b)

Figure 2. (a) EdgeTPU AI accelerator module; (b) Coral Deep Learning embedded hardware with
EdgeTPU AI accelerator module. Images from https://coral.ai/products/dev-board/ (accessed on 2
September 2021).

The Coral Dev board integrates an NXP i-MX8-MINI processor from the i-MX8 family
designed for industrial applications. It is slightly less powerful than the i-MX8M-PLUS,
with fewer image peripherals and interfaces and without the integrated AI co-processor—
that role is played by the EdgeTPU. Note that the two devices selected for this work are
partially compatible, as both use processors from the i-MX8 family. This was, as a matter of

246



Sensors 2022, 22, 4205

fact, one of the reasons they were chosen. However, Google provides its own tool set for
both the EdgeTPU and the i-MX8-MINI SoC, based on a Mendel Linux distribution and
TensorFlow Lite framework.

3. Deep Learning Frameworks

ML’s success and popularity could not be understood without the existence of pow-
erful and, at the same time, user-friendly application development frameworks. Some
technology companies and universities have developed complete ML inference libraries
for their own research purposes that they have ended up making public as open source
software. Many ML algorithms are based on complex and quite cumbersome mathematical
formulations that are not easy to implement. Frameworks simplify the development of
such algorithms by exposing a high-level API to deal with complex calculations. In the case
of DL networks, frameworks allow the implementation of a complete workflow, including
defining the network architecture, training and optimization, model performance testing
and model deployment into the final embedded devices.

There are many frameworks to choose from, and in general there are a lot of resources
available on the web for almost all of them, but some frameworks have gained popularity
among programmers and offer better support for application development. In [17], some
of the most popular DL frameworks are classified by user access statistics to GitHub
repositories. These frameworks demand considerable computing power, and they run
on powerful computers usually complemented with GPUs [18]. Some of the processes
involved in DL applications, such as model training and validation, require a large amount
of memory and computational power. For that reason, they still run on high-end computing
systems, and rarely on embedded devices.

Each framework uses its own model formats and APIs to build and implement DL
applications. If the model is going to run in an embedded device, the framework must be
supported by the embedded software distribution. This in fact determines the selection
of the framework in the host (high-end) computer because the software of the host and
the device must be compatible. To deal with this challenge, a standard interoperability
library called Open Neural Network Exchange (ONNX) (https://onnx.ai/, accessed on
20 July 2021) was designed. Many embedded software distributions support this stan-
dard, allowing the selecting of the host framework without worrying about embedded
device compatibility issues, as shown in Figure 3. Furthermore, this means that, at least
theoretically, any model developed using any ML framework could be deployed into any
embedded device by adequately converting the format of the model. In reality, embedded
software distributions present strong restrictions, even more so if the embedded hardware
integrates design-specific AI co-processors, so interoperability is far from total. A main
issue is that ONNX is not widely supported by all embedded devices, and hardware
manufactures provide specific libraries to deploy DNN in their co-processors that sup-
port a limited, if not unique, model format. For this reason, in the following sections the
frameworks and libraries available in the selected embedded devices are revised.

Figure 3. Interoperability of different frameworks by using ONNX.
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3.1. Yocto Distribution and eIQ Machine Learning Framework for NXP i-MX8M Processors

The Yocto Project (https://www.yoctoproject.org/, accessed on 20 July 2021) is an
open-source collaborative project that helps developers create custom Linux-based systems
regardless of hardware architecture. NXP (the manufacturer of the i-MX8M-PLUS proces-
sor) provides a software release based on the Yocto Project framework. It can be used to
build images for any i-MX8M board.

The compilation process downloads and installs many libraries and packages to create
the binary image of a functional Linux distribution for the board. This binary image contains
all the resources NXP provides to create an embedded ML application. In particular, the eIQ
development environment supports these six run-time environments (inference engines):
ArmNN, TensorFlow Lite, ONNX Runtime, PyTorch, OpenCV and DeepViewTMRT. To fully
exploit the potential of the board, the framework selected must be supported by the internal
NPU processor. Figure 4 shows the supported eIQ inference engines across the i-MX
computing units.

Figure 4. i-MX8 Deep Learning runtime environments supported by embedded computing units.

Pytorch and OpenCV are not supported by the embedded NPU and are directly
discarded. A user guide (https://www.nxp.com/design/software/embedded-software/
i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX, accessed
on 20 July 2021) explains the capabilities of all inference engines. For reasons that will
become apparent in the next subsection, the most suitable runtime environment for this
work is TensorFlow Lite (https://www.TensorFlow.org/lite/guide, accessed on 20 July
2021). As the name suggests, this is a lightweight version of the TensorFlow library for
mobile, IoT and embedded devices. It is a runtime package that provides a way to run
Deep Neural Networks on a specific hardware processor.

3.2. Mendel Linux and TensorFlow Lite in Coral Dev Board

The Coral Dev Board uses a Mendel Linux distribution maintained by Google. Unlike
NXP Linux distributions, Coral Mendel Linux is specifically designed for this evaluation
board kit, so there is no need to configure and compile the kernel or install any software
packages or libraries. Everything is already available in a binary image that can be down-
loaded from https://coral.ai/docs/dev-board/get-started/ (accessed on 20 July 2021).
The Coral Dev Board has a complete runtime ready to deploy DL models on its EdgeTPU
AI co-processor unit. This co-processor was designed by Google to deploy TensorFlow
models in embedded hardware, so the use of TensorFlow and its variant TensorFlow Lite is
mandatory. TensorFlow Lite models must be off-line processed with a specific tool named
“EdgeTPU Compiler” before being deployed in the EdgeTPU AI co-processor.

3.3. Host PC Setup

The host computer is an essential part of the whole development ecosystem. For this
work, a host PC running Ubuntu 18.04 64-bit is used. The ML framework installed in the
host is TensorFlow 2.5.0. The selection was straightforward, as both embedded devices
support the TensorFlow Lite runtime. It comprises many functionalities, but the only
one used in this work is the ability to convert object detection models into “lite” formats
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suitable for embedded systems. The TensorFlow programming interface is mainly written
for Python, and it was decided to use this language to write all the model conversion scripts.

TensorFlow (and TensorFlow Lite) can be integrated with Python and C/C++ applica-
tions. It was decided to use Python to develop all the necessary scripts for the benchmarks
described in this paper.

4. Object Detection Models

Object detection models are specialized ANN architectures designed to solve the
computer vision task of object identification and localization in a digital image. From the
model architecture perspective, object detection models inherit the feature extraction
backbone from classification models. It is common to implement an object detection model
by reusing a classification model such as VGG16, Mobilenet or Resnet, trained on a very
large image dataset. The backbone used in embedded devices must be carefully selected,
as the number of layers in the models varies greatly. Integration of the classification
and localization heads in the model defines two separate solutions: two-stage models
and one-stage models, in reference to the number of functional parts that the model
contains. In the case of two-stage models, the first stage generates region proposals for
object detection, and the second stage computes each proposed region and extracts both
the classification result and the bounding boxes. Compared to one-stage models (which
perform all functions together) two-stage models tend to have higher accuracy, although at
a higher computational cost [19]. One of the first and most representative two-stage
models is R-CNN [20], whose region proposal stage proposes around 2000 regions from
the input image.

One-stage models use a feed-forward architecture in which everything is inferred in a
single pass by applying a single neural network to the entire image. This approach results
in significantly lower accuracy than two-stage detectors, but also higher detection speed.
One of the first one-stage detectors was YOLO [21].

The TensorFlow library is accompanied by auxiliary libraries that complement its func-
tionalities. Of particular interest for DL is the TensorFlow models repository (https://github.
com/TensorFlow/models, accessed on 30 July 2021), also called the TensorFlow model zoo.
This repository contains models for many DL applications, such as natural language processing,
speech recognition and object detection. The model git repository version 2.5.0 was cloned (in
accordance with the TensorFlow version). Inside the “models” directory, the “official” folder in-
cludes the code and models directly maintained by Google. The “research” folder contains some
state-of-the-art technologies maintained by the developers themselves. The “object_detection”
directory inside the “research” folder contains the libraries, code and models that have been
used for hardware benchmarking. A brief explanation and an installation procedure can be
found in https://github.com/TensorFlow/models/blob/master/research/object_detection/g3
doc/tf2.md (accessed on 30 July 2021). The TensorFlow model zoo contains several types of
object detection model architectures, which are described in the following paragraphs.

4.1. CenterNet

CenterNet (https://github.com/xingyizhou/CenterNet, accessed on 15 September
2021) is a one-stage object detection network that infers object position by assigning one
point to every object rather than a square [22]. The size and even the pose of the object are
calculated afterwards using a regression network. This strategy increases the accuracy of
the network while maintaining fast inference time.

4.2. Single Shot Multibox Detection (SSD)

SSD networks [23] are widely used in embedded devices. They were the first one-stage
networks, along with YOLO networks, that achieved accuracy similar to that of two-stage
networks. Combined with the “mobilenet” backbone, it is the most supported network
in TensorFlow Lite, mainly because it was developed by Google Research (among other
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researchers from academia) and it is a lightweight network suitable for deployment in
embedded devices.

SSD networks usually come with a specialized component named a Feature Pyramid
Network (FPN) [24] designed to improve the detection performance with objects at different
scales. Usually object detection networks function quite poorly with very small or very big
objects (in terms of the number of pixels that an object occupies in the image). FPNs solve this
problem, increasing detection accuracy but also increasing processing time.

4.3. EfficientDet

The EfficientDet [25] DNN describes an improved one-stage network architecture that
can be optimized and scaled to obtain a complete family of neural networks. Depending
on the available computing resources and requirements, it is possible to select the most
adequate member of the family. EfficientDet-D0 is the least resource demanding network of
the family, and it should be adequate for embedded devices. The backbone used as feature
extractor is called EfficientNet, hence its name.

4.4. Faster R-CNN

Faster R-CNN [26] is a two-stage object detection network. This architecture incor-
porates a new first-stage region proposal that improves network performance, achieving
inference times comparable to those of single-stage networks while maintaining high accu-
racy. It is the latest of consecutively improved architectures, starting with R-CNN, then
Fast-RCNN and finally Faster-RCNN. Some enhancements are also applied to the Faster
R-CNN architecture to improve both inference speed and result accuracy [27,28].

4.5. Mask R-CNN

Mask R-CNN is an object segmentation model [29]. Object segmentation is a technique
that, instead of detecting the object inside the image, categorizes each individual pixel of
the image as belonging to a particular class. The goal is to obtain all the pixels belonging to
a given class in the image, being able to draw the silhouette and the exact contour of an
object, not only the surrounding square. In this sense, object segmentation can be seen as
an improvement over object detection. Some architecture enhancements are available in
the literature [30].

5. Model Conversion for Embedded Hardware Devices

The Design and Training stages of a DL model are almost always accomplished using a
powerful host computer. The host computer includes an installation of a full ML framework
with a set of packages and libraries to support and facilitate the whole DL application
development workflow. The embedded devices, on the other hand, contain a runtime
environment designed only and specifically to run a DL model inference.

In the TensorFlow environment, a model is described by a computational graph con-
taining both the node connections and the weights or parameters of each node. The model
is usually defined as a code file containing the API function calls necessary to build the
model, for example using Keras API (https://keras.io/getting_started/, accessed on 15
September 2021). The model is built sequentially by adding a series of computational
layers that fully describe the model architecture. However, at this point, the model is
not functional because it does not yet contain the value of the weights, which are com-
puted in the training process. Weights are stored in separated files named checkpoints.
A checkpoint can be stored and reloaded at any time. This allows comparing the per-
formance of different training stages, or retraining some of the model layers to accom-
plish an object detection task different from the one the model was previously trained
for. Once the model is created, it is possible to save the computational graph and the
weights all together in a single file format named “SavedModel” format using a specific
TensorFlow API function call. A brief tutorial on TensorFlow model formats is available in
https://www.TensorFlow.org/tutorials/keras/save_and_load (accessed on 11 July 2021).
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For the TensorFlow Lite runtime environment, models created in TensorFlow must be
converted using a specific library. This process modifies the model format appropriately
to adapt it to run efficiently on the specific AI co-processors. Conversions mainly affect
model weights, input tensors and output tensors. In general, TensorFlow models by default
use floating-point parameters, which are appropriate for high-performance CPUs and
GPUs, but embedded AI accelerators normally are restricted to work with integers only.
Converting from float to integer types is called quantization.

In this work, five different quantization levels are considered based on the Tensor-
Flow Lite optimization guide (https://www.TensorFlow.org/lite/performance/model_
optimization, accessed on 11 July 2021). A brief description of the quantization levels is
presented in Table 1, assigning to each level a numerical value. Note that the TensorFlow
Lite conversion with no quantization has (properly) a quantization level 0. In the rest of this
work, models with quantization levels 0 and 1 will be referred to as CPU models since they
will run entirely on the main processor. In contrast, level 2, 3 and 4 models are intended
to be executed in the specialized AI co-processor and will be referred to as co-processor
models. An important part of this work is to measure the performance advantages of
co-processor models over CPU models when an AI accelerator is available.

Table 1. Model quantization (optimization) levels used in this work.

Level Input Weights Output Description

0 float float float No quantization (all data is FLOAT32)

1 float int8 float Quantization of model weights

3 float int8 float
Quantization of weights and internal variables using a
representative dataset. Input and output layers remain
in FLOAT32

3 int8 int8 float Quantization of input tensor uses the representative
dataset

4 int8 int8 int8 Full integer conversion. All computation is intended to be
done in embedded AI co-processor

5.1. Model Conversion Issues

The model conversion workflow is depicted as a block diagram in Figure 5. Models
downloaded from the TensorFlow model zoo are already trained. The parameters in
the trained checkpoint files are exported into a “SavedModel” file, and afterward model
conversion is applied. Five conversion Python scripts were implemented to obtain the
five corresponding TensorFlow Lite models, one per quantization level. These models
are ready to be deployed in the i-MX8M-PLUS processor, but for the EdgeTPU module
an extra compilation step must be done using a specific compiler developed by Google
named “edgetpu_compiler”. Therefore, after this compilation another five quantized
models are obtained.

There are more than 80 models available In the TensorFlow model zoo (https://github.
com/TensorFlow/models/blob/master/research/object_detection/g3doc/tf2_detection_
zoo.md, accessed on 30 July 2021). Table 2 lists the nine models selected to be used in the
present work. The name of each model describes the architecture, the input tensor size
and the dataset used for training (all models are trained using COCO 2017 dataset). Some
of the models integrate a Feature Pyramid Network (FPN) component, which improves
the detection of objects at different scales in the image. Note that all the object detection
architectures from the TensorFlow model zoo are represented except for Mask R-CNN. This
model is in fact an object segmentation model with very different inference results and
computation requirements, not comparable with the others, and for this reason it was not
included in the benchmark. The justification of the selection of the rest of the models will
become clear in the following subsections. For a given network, a total of ten optimized
embedded “.tflite” models are generated (five for i-MX8M-PLUS and another five for
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EdgeTPU). Considering the nine selected DL models, 90 embedded models were obtained.
However, application of the conversion scripts was not always completed successfully.
In Figure 6, all the issues found when trying to convert checkpoint files to TensorFlow Lite
formats are listed. The next paragraphs explain each of them.

Figure 5. DL model conversion workflow using TensorFlow and TensorFlow Lite.

Table 2. Models used in the hardware benchmark.

No. Model Name

1 ssd_mobilenet_v2_320x320_coco17_tpu-8
2 centernet_mobilenet_v2_fpn_512x512_coco17_od
3 ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8
4 efficientdet_d1_coco17_tpu-32
5 ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8
6 ssd_mobilenet_v1_fpn_640x640_coco17_tpu-8
7 ssd_resnet50_v1_fpn_640x640_coco17_tpu-8
8 ssd_resnet101_v1_fpn_640x640_coco17_tpu-8
9 faster_rcnn_resnet50_v1_640x640_coco17_tpu-8

Figure 6. TensorFlow Lite model conversion issues.
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5.1.1. Unable to Export Checkpoint Files

The simplest way to convert a model is to use a “SavedModel” format from TensorFlow.
It is possible to download any model from the TensorFlow model zoo in “SavedModel” for-
mat and also the training checkpoint files. Once uncompressed, it contains the saved_model
directory with the “.pb” file, together with the checkpoint directory with checkpoint files.
There is also a configuration file “.config” describing the model architecture. Unfortunately,
this default “SavedModel” format is not suitable for conversion to TensorFlow Lite format
because all object detection models have internal operations not supported by TensorFlow
Lite. Instead, the object detection model code library provides a specific Python script
to create a valid “SavedModel” from checkpoint files called “export_tflite_graph_tf2.py”.
However, this script supports neither EfficientDet nor Faster R-CNN network architectures.
This means that approximately one half of the networks in the model zoo are in fact not
suitable for use in embedded devices.

Some alternative model repositories were reviewed to try to overcome this problem,
but the models must indeed fulfill so many constrains to be used with TensorFlow Lite
that in the end only TensorFlow models were valid. A Lite version of “EfficientDet”
model already converted to “.tflite” format was found at https://tfhub.dev/TensorFlow/
efficientdet/lite0/detection/1 (accessed on 15 September 2021). It was also compiled for
EdgeTPU and was included in the benchmark with the name “Efficientdet_lite0_320”.

5.1.2. Experimental CenterNet Model Export

CenterNet models checkpoint export fails when using TensorFlow library versions
older than 2.4.0. Starting with this version, support for these networks was added. However,
the export command requires small modifications compared with the command provided
in the TensorFlow model optimization guide. The specific conversion command should be
consulted in an example Jupyter Notebook at https://github.com/TensorFlow/models/
blob/master/research/object_detection/colab_tutorials/centernet_on_device.ipynb (ac-
cessed on 15 September 2021). In the export command, the model size is also modified
from its original value to 320 × 320. The model name is modified to reflect this change in
the figures herein.

5.1.3. EdgeTPU Compiler Fails

Co-processor models of “ssd_resnet101_v1_640_fpn” could not be compiled to EdgeTPU
format. The compiler does not provide any information about the reasons for this failure.
The network is by far the largest in the benchmark (more than 200 MB), so it is assumed that
it in some way exceeds the capacity of the EdgeTPU module (or of the compiler itself).

5.2. Converted Model Size Analysis

Three files describe each model before the conversion: checkpoint file, original saved
model file and exported saved model file, obtained from the checkpoint file after the
execution of “export_tflite_graph_tf2.py”, as explained above. Figure 7 displays the size of
such files. The size range is from approximately 20 MB to more than 220 MB. The exported
saved model file and the original saved model are similar, with the former slightly bigger
than the last, and the checkpoint file is some MB smaller than the other two, except for
CenterNet network. All other networks have a single-shot detection “SSD” architecture,
and this could explain the difference.

The models are sorted by ascending size of the exported file (gray column in the
figure). There are no TensorFlow files for “EfficientDet” network, so it was positioned in
its corresponding position, attending to quantization level 3. This model order will be
maintained in the rest of the document.
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Figure 7. TensorFlow file sizes for object detection models.

The converted TensorFlow Lite model file sizes are shown in Figure 8 for i-MX8M-
PLUS and in Figure 9 for EdgeTPU. The names of the quantized model files start with
a number indicating the quantization level. The converted model without quantization
(level 0) is smaller than the original model when the model itself is small, but exceeds the
original model size considerably for the largest models. The other converted files present
some kind of optimization. Starting from quantization level 1, model files present a type
conversion of the network weights. Its size is, as expected, four times smaller than the
model without quantization. Level 2, 3 and 4 models are slightly larger than those of level
1 (some hundreds of kilobytes) to include quantization of the inner intermediate layers and
activation functions. There is no significant difference between the converted models for
i-MX8M-PLUS and EdgeTPU devices.

Figure 8. TensorFlow Lite converted file sizes for i-MX8M-PLUS.
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Figure 9. TensorFlow Lite converted file sizes for EdgeTPU.

6. Embedded Hardware Benchmarks

Once the embedded models are created, the next step is to execute them on the em-
bedded hardware devices. To run the inference, a Python script is implemented using
the TensorFlow Lite runtime environment API. Each of the quantized models is slightly
different from the rest, so it is mandatory to write ten different Python scripts to execute
all of them. The benchmark has two parts: (1) verification of the correctness of the model
inference by examination of the obtained results, and (2) measurement of the models com-
putation times. Three computation times are of interest when measuring the performance
of the selected hardware devices:

1. Warm up time. This is the time the devices use to initialize their specific AI co-
processor. Usually, the first inference is used for this initialization in addition to the
inference itself. The device is not functional until the warm-up finishes.

2. Auxiliary (image) processing time. This is the time the CPU needs to access the
image, resize and maybe re-scale it, load it into the input tensor and, after inference,
get results and store a new image with bounding boxes around the detected objects.

3. Model inference time. This accounts for the time used to execute the mathematical
model’s operations, from the input tensor initialization to the access of the output
results. Ideally, all the model operations should belong to the AI co-processor, but actu-
ally, due to limitations in model conversion and model deployment, some operations
are delegated to the general-purpose CPU.

6.1. Model Inference Issues

Many issues were identified during the benchmark test. The following sections
explain each of the errors or malfunctions detected, pointing out which models fall into
each category. Figure 10 collects all of them.

6.1.1. Unable to Execute the Model

In this category two types of issues arise. In the first type, there is no model to be tested
because it was not possible to create it. This is the case for EfficientDet and Faster-RCNN
models, which are not supported by the export script “export_tflite_graph_tf2.py”; the
same applies to the co-processor models for the “SSD_Resnet101” model for EdgeTPU.
The second type of errors affects i-MX8M-PLUS with SSDResnet models that are not
quantized (level 0). They have the biggest size of all models, and in addition, since they
are not deeply optimized, they are executed almost completely in the CPU. This exceeds
the memory or hardware capacity of the i-MX8M-PLUS processor and results in a fatal
execution error.
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Figure 10. Inference issues.

6.1.2. Bad Inference Results

In the case of “SSD_Mobilenet” models, the objects detected by level 4 models have
wrong class and position values. In this optimization level, the output tensor is converted
to INT8 type. The level 3 model with FLOAT32 output tensors behaves correctly, so the
error may be due to the quantization process or even to an internal quantization factor that
is not being taken into account.

Similar behavior is observed in the case of “SSDResnet” co-processor models for
i-MX8M-PLUS. However, in this case, the detection scores are also very low (<10%), indi-
cating that the problem is even worse.

Finally, some models do not detect any objects. This is the case for all co-processor
models for CenterNet in both devices and for “SSDResnet50” models only in the EdgeTPU
module. Figure 11 shows a bad inference output results image.

Figure 11. Bad inference results. Neither object location squares nor object class labels are correct.
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6.1.3. No Inference Time Improvement

The level 2 and 3 models for “SSDMobilenet_V1” in EdgeTPU detect correct object
classes and position, but they present almost the same inference time as the CPU models.
Currently, the EdgeTPU compiler cannot partition the model more than once, so as soon
as an unsupported operation occurs, that operation and everything after it executes on
the CPU, even if supported operations occur later. See https://coral.ai/docs/edgetpu/
models-intro/ (accessed on 15 September 2021) for a more detailed explanation. This could
explain this anomalous behavior.

6.1.4. Input Tensor Value Range

The input tensor value range is not the same for all network models. The “SSD_Mobilenet”
networks present a FLOAT32 range of [−1, 1] and a quantized UINT8 input of [0, 255]. All
the other networks have the same [0, 255] input range for both float and integer models. This
supposes a small modification in the inference script for quantization levels 0, 1 and 2 for
models with float input tensors.

6.1.5. Good Inference Results

It is not difficult to identify an incorrect behavior described in previous paragraphs
because the errors are very evident. However, in general, inference results vary slightly
among models and even among quantization levels. Usually, some models detect some
object in an image that other models do not detect but fail to detect an object in another
image. The detection scores vary from model to model and, because a limit score of 50%
was imposed in the test, the objects near the limit may or may not be detected. Inference
results are measured by visual inspection rather than by using a function that calculates
the possible error. If these results are satisfactory, it is understood that the model is globally
correct. Figure 12 shows good inference results for some test images.

Figure 12. Good inference results.The squares correctly locate object positions and object labels
correctly identify object classes.

6.2. Analysis of the Computation Times

All the benchmark tests were conducted using the same image dataset of twenty
images taken from the COCO set. The inference script loops for each image in the dataset
and stores the computation times. The average values of all computation times are analyzed
in the next sections.
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6.2.1. Warm Up Time Analysis

Warm up times for the i-MX8M-PLUS are displayed in Figure 13. The figure shows
clearly how the warm-up time increases with model size. It is also evident that the co-
processor models present much larger times than the other CPU models. This could be
easily explained by taking into account that the latter are executed completely in the CPU,
so AI co-processor initialization is not necessary, while the former are deployed in the
AI co-processor.

Figure 13. i-MX8M-PLUS warm up times.

The warm-up times vary for co-processor models from approximately 10 s to about
150 s. For small, non-quantized models it is smaller than 10 s, but when model size increases,
the warm-up time is extremely long. In fact, the largest model raises an execution error.
Quantization level 1 presents warm-up times from some seconds to around 25 s. All these
figures represent a considerable amount of time, which must be considered in application
design and development.

In the EdgeTPU module, the warm-up times behave differently than in the i-MX8M-
PLUS (see Figure 14). The warm-up time for co-processor models is nearly the same as that
of any other inference time, showing no significant overhead in EdgeTPU module initial-
ization. For small models, the warm-up time is in the order of hundreds of milliseconds,
making a specific initialization stage unnecessary. However, the EdgeTPU did not behave
well when the model size increased, showing warm-up times of more than 10 s. Indeed,
the largest co-processor models do not run in the EdgeTPU module.

6.2.2. Auxiliary Processing Time Analysis

Auxiliary processing times are fairly homogeneous in all network architectures. For
i-MX8M-PLUS (Figure 15), the values vary between 20 and 40 ms with no correlation with
model size. However, correlation with model quantization level is observed. The models
with float input tensors (levels 0, 1 and 2) present notably larger times than those with
quantized INT8 input tensors. This is more evident in “SSD_Mobilenet” networks. It is
also observed that in the models with a large input size of 640 × 640, the difference is
even bigger. The explanation is straightforward. The “SSD_Mobilenet” models need a
preparatory scale operation (those models have a float [−1, 1] input range) that involves
floating-point operations in the input image. The cost of these operations increases with
the size of the input tensor. The difference ranges form 4–5 ms for 320 × 320 input tensors
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up to 15 ms for sizes of 640 × 640. This time difference is not very high, but, especially in
real time applications, should not be neglected.

Figure 14. EdgeTPU warm up times for large models.

Figure 15. i-MX8M-PLUS auxiliary processing times.

Auxiliary processing times in the EdgeTPU are slightly larger (around 5 ms) than those
in the i-MX8M-PLUS due to the slightly smaller computing power of the Coral Dev general
purpose processor. However, the times behave exactly in the same way as explained above.

6.2.3. i-MX8M-PLUS Inference Time Analysis

The DL model inference time is the most relevant parameter to be analyzed in order to
measure the performance of the embedded hardware and the feasibility of the deployment of
DL object detection applications. Both devices’ inference times are analyzed independently,
starting here with the i-MX8M-PLUS processor, and the results are compared afterwards.
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The inference times for the i-MX8M-PLUS strongly depend on quantization level.
As expected, CPU models have considerably longer inference times than co-processor
models. CPU models’ inference times in Figure 16 range from 500 ms to around 25 s.
The quantization level 0 inference time for “SSD_Mobilent_V1” presents an outlier value ex-
ceeding one minute. This points to even longer inference times for “SSD_Resnet” networks,
but those models do not work on the i-MX8M-PLUS. The co-processor models’ inference
times in Figure 17 range from 20 ms to near 800 ms. Note that the timescale in the figure is
100 times lower than in the previous figure above. The yellow line in the figure represents
the quantization level 3 models’ inference time and is used later to compare results between
hardware devices.

Attending to the inference times, it is clear that “ssd_mobilenet_v2_320” should be
moved to first place, and “ssd_mobilenet_v2_640 × 640” should be move back one position
behind “efficientdet_lite0_320”. This means that the inference times cannot be directly
inferred from model size; rather, network complexity should be taken into account. Sorted
by ascending inference time, “SSD_Mobilenet_V2” is followed by networks with Feature
Pyramid Network (FPN), which introduces computation complexity, and afterward the
models with size 640 × 640 are positioned as expected at the end. It is important to note
that there is no significant difference in the inference times between co-processor models
with different quantization levels.

Figure 16. i-MX8M-PLUS inference time for CPU models.

Note also that even if they appear in the figure above, CenterNet and “SSD_Resnet”
Network do not obtain good inference results. The inference time figures were included
in the benchmark because the CPU models worked properly, and the obtained inference
times are also coherent with model size and complexity.
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Figure 17. i-MX8M-PLUS inference for co-processor models.

6.2.4. EdgeTPU Inference Time Analysis

Inference times for the EdgeTPU module behave nearly in the same way as those of
the i-MX8M-PLUS. The times for CPU models (Figure 18) are considerably longer than
those for co-processor models (Figure 19). However, the CPU models did not present the
anomalous behavior for large models, and all of them were correctly executed on the Coral
Dev Board.

In the case of co-processor models, for large models, there is no time reduction com-
pared with CPU models, and those models are omitted in the inference time analysis.
The yellow line in the Figure 19 belongs to the quantization level 3 models, as was the case
for the i-MX8M-PLUS. The fastest model is, as in the case for the i-MX8M-PLUS proces-
sor, the “ssd_mobilenet_v2_320” model, with inference time below 20 ms. The “eficien-
det_lite0_320” model, with 145 ms inference time, overtakes the “centernet_Mobilenet_320”,
with more than 500 ms, and “ssd_mobilenet_V2_640”, with 650 ms inference time.

Figure 18. EdgeTPU inference time for CPU models.
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Figure 19. EdgeTPU inference time for co-processor models.

6.2.5. i-MX8M-PLUS vs. EdgeTPU Inference Time Comparison

A performance improvement factor is calculated by dividing the inference times of
the quantization level 1 model by the inference time of the corresponding model with
quantization level 3. The improvement factor for the i-MX8M-PLUS processor increases
monotonically with model size, as can be observed in Figure 20. Its value varies from 5 for
smaller models up to more than 30 for the largest model, “ssd_resnet_101_V1”.

For the EdgeTPU module, the performance improvement factor presents a value of
around 4, except for the network “ssd_mobilenet_v2_320”, which obtains a value of 23.
The values are below those of the i-MX8M-PLUS processor, and these results are even
worse taking into account that the inference times for quantized level 1 models in the Coral
Dev board are longer (around 10%) than the corresponding values in the i-MX8M-PLUS
processor due to the computing power differences in the general purpose ARM CPUs of
both devices.

Figure 20. Inference time improvement factor calculated using quantization levels 1 and 3.

In Figure 21, the inference times for quantization level 3 models for both devices are
displayed. In the case of the EdgeTPU, only the first, small models are depicted because the
last three models do not have valid inference times. The i-MX8M-PLUS processor shows
better performance than the EdgeTPU Coral Dev board for the first three models and almost
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the same performance for the next two. Taking into account that the EdgeTPU has 4 TOPS
computing power and the i-MX8M-PLUS has 2.3 TOPS, these results suggest that the
i-MX8M-PLUS processor is more efficient than the EdgeTPU module when deploying and
running DL models.

Figure 21. i-MX8M-PLUS vs. EdgeTPU inference times for quantized level 3 models.

This better performance is confirmed by looking at the behavior of the largest models.
In the i-MX8M-PLUS processor, the inference time is kept under one second, with a
improvement factor of up to 30, while the EdgeTPU module presents times over 10 s
and improvement factors below 2.

7. Conclusions

The first effect related to AI at the edge paradigm is the emergence of many embedded
devices with specialized AI co-processors to execute deep neural network inferences. In this
work, after a detailed review of the available embedded hardware devices, two of them
were selected to demonstrate and evaluate the feasibility of the deployment of DL object
detection models in resource constrained devices: Variscite i-MX8M-PLUS Board and
EdgeTPU Coral Dev Board. Requirements to select a device for this analysis included:
(1) it must belong to an important and reliable manufacturer, and (2) it must offer a strong
development community supporting the tools and applications. The devices selected were
designed by NXP and Google. NXP is one of the most successful industrial processor
manufacturers, and Google could be the most important player in the AI arena. A large
portion of this work was devoted to setting up the hardware devices—understanding what
libraries and packages needed to be installed and the appropriate tools to use. One of
the main goals of the work was to learn and understand the workflow of AI application
development, and it can be concluded that the success of this task depends considerably
on the selection of the development framework.

The AI framework used to develop and deploy DL networks in embedded devices
was TensorFlow, together with TensorFlow Lite. As a first workflow stage, TensorFlow
models need to be converted into TensorFlow Lite format. Even if an easy-to-use tool is
provided by TensorFlow Lite to convert the models, the conversion is not trivial because of
a number of incompatibilities between both frameworks. Many mathematical operations
deeply hidden in the layers of the neural networks are not supported by the Lite version
runtime, and the conversion of many model architectures remains still unsolved.

All four main model architectures for object detection in the TensorFlow model reposi-
tory were considered: “CenterNet", “SSD", “EfficientDet” and “Faster R-CNN”. However,
in the early stages we realized that TensorFlow Lite conversion of some of the models was
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impossible. As a matter of fact, only “SSD” and “CenterNet" architectures are compatible
with the current TensorFlow Lite converter; thus, a set of seven models were finally se-
lected: six “SSD” with different feature extractor backbones and one “CenterNet”. Further,
an “EfficientDet” model already converted to TensorFlow Lite format was added to test as
many architectures as possible.

AI co-processors are very specialized hardware units that only accept eight-bit integers
as operands, so the models must also be quantized. Five quantization levels were defined
in accordance with the capabilities of the TensorFlow Lite library API. After executing
model quantization scripts, 35 models for each device were compiled, plus the 2 already
converted, giving a total of 72 models.

It is not easy to understand the quality of the converted model to guess how the model
should be deployed in the AI co-processor. As a guideline, in the case of the i-MX8M-PLUS,
the inference script returns a list of unsupported operations in the initial execution stage,
while in the case of the EdgeTPU, a log file is created when the TensorFlow Lite model is
compiling, with the number of operations mapped to both the EdgeTPU and the CPU.

The benchmark consisted of executing all the converted models, verifying correct
behavior and measuring the model inference time. Many issues were detected during this
process. Some converted models did not detect the validation image objects the same was
as the original model; others simply did not run in the embedded devices. The number of
models with correct behavior was considerably shortened. Only forty of the initial seventy-
two models provided acceptable results. If only quantized models with representative
datasets are considered, the number decreases to only 16 models, 2 of them belonging to an
“EfficientDet_lite0” network not created by the “standard” workflow. Finally, only the four
“SSD_Mobilenet” frameworks were proven to be valid for embedded devices. Again, the
problems rely on the efficiency and quality of the converted models and the ability of the
embedded runtime to fit the models into specialized hardware.

Both hardware devices, the i-MX8M-PLUS and the EdgeTPU, were able to execute the
quickest object detection models in approximately 20 ms. The auxiliary CPU processing
time spent another 25 ms. The whole inference time supposes nearly 50 ms, or 20 frames
per second. The inference times increased up to 100 ms for more complex network models
and even more to 500–800 ms when input image size increased. Even if the EdgeTPU
claims to have almost double computing power, this benchmark demonstrates that the
i-MX8M-PLUS device performed slightly better in general. The performance improvement
of co-processor models compared with CPU models is about 10 times in the i-MX8M-PLUS
and 5 or even worse in the EdgeTPU.

A few quick calculations were carried out to determine the quality of the AI co-
processor inference time results. The i-MX8M-PLUS processor integrates four ARM Cortex-
A53 cores at 1.8 GHz. Assuming (to obtain a very raw estimate of computing power) that
the cores are able to execute one operation per clock, the maximum theoretical computing
processing power should be around 10 Giga-operations per second (GOPS) for floating-
point operations. Compared to the AI co-processor’s 2.3 TOPS, the theoretical optimal
improvement factor should be in the order of 100. The calculation is based on very imprecise
and simplified assumptions, and the actual number should be lower than the theoretical
number. Even though, the improvement factor of 5 to 15 obtained for most of the small
“SSD_mobilent” networks is quite far from that figures. Once again, the converted model is
not competent to be efficiently executed in the AI co-processor. The models are partitioned
when unsupported operations are found, and many operations are delegated back to the
general purpose CPU, slowing down the total inference performance.

In general, the feeling about the current state of object detection for embedded devices
is that many aspects of performance depend on the efficiency of the software frameworks on
both the host computer and the embedded device, and on their ability to extract maximum
performance from the embedded hardware co-processors. Those libraries are now under
construction and continuous modifications. Nearly every month, NXP releases a new
version of the Yocto framework for the i-MX processor family (at least two new versions
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were released since the first benchmark test was accomplished). Coral also releases new
compiler tools, API libraries and trained models periodically. In the case of TensorFlow
and TensorFlow Lite, even if the libraries were updated many times along the development
of the benchmark, new releases are now available to be downloaded. The repository of
models is updated every day (there are continuous commits to the research repository),
and an official version is released synchronized with every TensorFlow release.

8. Future Work

It should be clear after reading the previous sections that many issues remain open
and unsolved. The present work does not make a quantitative assessment of the (numeri-
cal) performance of the converted models. Performance correctness is decided by visual
inspection of the detected objects and correct object classification. Even if this approach
easily detects catastrophic failures (such as those shown in Figure 11), subtle performance
variations are undetected. A means to measure the error should be included as part of
the inference script. There is a straightforward error computation standard defined by
the COCO dataset, called mean average precision (mAP), specifically defined for object
detection. This error metric is in fact available in TensorFlow, but needs to be implemented
from scratch in embedded devices. It would be interesting to investigate whether different
levels of quantization introduce noticeable errors, or whether certain network architectures
are more sensitive to quantization processes. We plan to carry out a quantitative evaluation
of these aspects in a future paper.

One of the main constraints imposed on the work was the requirement of using
pre-built models from the TensorFlow model zoo. TensorFlow provides the possibility
to implement the model using a flexible API at different levels of abstraction. It would
be illustrative to build the standard object detection models used in this work, or even
other similar ones, and to investigate how those models behave after quantization in the
embedded devices considered here. The final objective should be to learn if there is a way to
optimize model deployment by defining model internal operations and layer connections
using supported operations of the TensorFlow Lite embedded runtime. Furthermore,
additional model sources besides TensorFlow should be investigated. The ONNX model
exchange should allow the import of models from other AI frameworks. The EdgeTPU is
only supported by TensorFlow Lite runtime libraries, but the i-MX8M-PLUS has some other
supported frameworks, such as DeepViewRT, armNN or the previously mentioned ONNX.

Finally, more hardware devices should be considered. The two embedded boards
considered in this work shared many hardware specifications. Both have an NXP i-MX
family processor, integrate an integer tensor processor and rely on TensorFlow Lite libraries
as a runtime. In order to have a more global view of the hardware performance, different
types of embedded devices should be tested. At the beginning of the present work, a third
hardware platform called Jetson Nano was pre-selected to be included in the benchmark.
The Jetson Nano Nvidia AI platform integrates a floating point arithmetic AI co-processor
and uses other specialized libraries called TensorRT. The board was successfully launched,
and some preliminary tests have been performed, but the software framework is quite
different from the one used with the other two boards, and significant work is needed to
implement the inference processes.
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Abstract: This paper presents an implementation of RoSA, a Robot System Assistant, for safe and
intuitive human-machine interaction. The interaction modalities were chosen and previously re-
viewed using a Wizard of Oz study emphasizing a strong propensity for speech and pointing gestures.
Based on these findings, we design and implement a new multi-modal system for contactless human-
machine interaction based on speech, facial, and gesture recognition. We evaluate our proposed
system in an extensive study with multiple subjects to examine the user experience and interaction
efficiency. It reports that our method achieves similar usability scores compared to the entirely human
remote-controlled robot interaction in our Wizard of Oz study. Furthermore, our framework’s imple-
mentation is based on the Robot Operating System (ROS), allowing modularity and extendability for
our multi-device and multi-user method.

Keywords: augmented reality; activity recognition; cooperative systems; facial recognition; gesture
recognition; human-robot interaction; interactive systems; robot control; speech recognition

1. Introduction

Recently, collaborative robotics (cobots) has experienced increasing popularity as it is
targeted to be a more flexible and general task type of robot [1]. Compared to conventional
industrial robots, cobots share their work area with humans and interact directly. This
requires new standards of safety and interaction interfaces. Typically, robots are instructed
by buttons, knobs, joysticks, specific speech, and gestures commands, teaching through
touching and guiding or dedicated teaching panels. Either way, the handling of the robot
requires prior knowledge and is not intuitive for untaught users. Therefore, the interaction
interface must shift to a more human-centered and adaptive relation to enable the use of
cobots in an unconstrained environment with varying tasks and interchanging human
collaboration partners.

There have been multiple promising research approaches tackling flexible Human-
Robot Interaction (HRI) scenarios [2–5], but most of their methods are driven by the
introductions of new techniques instead of focusing on the needs and characteristics of
interaction patterns from a human perspective.

With the aim of a better understanding of human behavior in robotic interaction
scenarios, we carried out an extensive Wizard of Oz (WoZ) study [6] to examine com-
mon communication intuitions of untaught human interaction partners. In addition, we
worked out human key actions to approach human-robot interactions. On this basis, we
conceptualized and implemented a new multi-modal robotic system called “RoSA” (Robot
System Assistant) that tackles the challenge of intuitive and user-centered human-robot
interaction by facilitating multiple input streams such as speech, gesture, face, body, and
object recognition. The use of a wide range of perception capabilities combined with speech
processing ensures a robust scene and interaction state estimation and leads to an efficient
and intuitive human-robot collaborative task performance.

Sensors 2022, 22, 923. https://doi.org/10.3390/s22030923 https://www.mdpi.com/journal/sensors
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In this paper, we tackle the challenge of turning the results from our prior WoZ
study into a fully autonomous robotic systems that can handle interaction with untaught
human partners without external control. First, we derive a concept that enables the
robot visual and acoustic perception of potential human interaction partners and the scene
understanding. We show which features are crucial for perceiving interpretable indications
to derive meaningful instructions for the robot. We continue with an in-depth analysis of
each module and its interplay with the core system and present further implementation
details. Finally, the evaluation of our RoSA system is conducted via a separate study similar
to our previous Wizard of Oz study, but this time with a fully autonomous robotic system.

2. Related Work

In our earlier Wizard of Oz (WoZ) study [6], we reviewed different interaction modali-
ties required for an intuitive HRI. The participants were permitted to use different features
like gestures, speech, mimics, and gaze without any limitations to communicate with a
cobot and execute different tasks like cube stacking. We tricked the subjects into think-
ing they were interacting with a state-of-the-art artificial intelligence controlling a cobot,
whereas in fact, we were remote controlling the cobot based on the participant’s instructions
and a strict set of rules. This principle is commonly called a Wizard of Oz experiment.
Figure 1 shows multiple views of the subjects interacting and giving orders through speech
or gestures.

Figure 1. Previous field study for natural human-robot interaction using the Wizard of Oz method.
A video summary can be found here: https://youtu.be/JL409R7YQa0 (accessed on 18 January 2022).

It was shown that 97% of the 36 subjects used speech and 75% used pointing gestures
to solve the given tasks. Most of the subjects preferred the path planning to be done by
the robot assistance system and did not want to guide the robot directly but give more
complex commands.

In regard to safety, by complying with the standards, ISO 10218-1/2 [7] and ISO/TS
15066 [8] on HRI, the danger to the user is minimized. As Pasinetti et al. [9] have shown,
time-of-flight (ToF) cameras can be used to detect the operator and, in combination with
virtual barriers, slow or stop the robot when safety guidelines are infracted. In addition,
one of our previous implementation of a gadget-less HRI concept Robo-HUD suggests
that a non-contact approach also contributes to a safe HRI [10]. An attention module
based on head posture estimation was introduced to monitor attention, allowing intended
user actions.

It also introduced an Attention Module based on head pose estimation to monitor aware-
ness, enabling the interaction only when intended. This module allows users to switch
between workstations without logging in or out when used in a multi-device scenario.
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Many implementations already exist in this area [11–19]. Magrini et al. [20] pro-
posed a system that ensures human safety in a robotic cell. It is based on the method of
Pasinetti et al., which uses ToF cameras to localize users in real time. In addition, their
system enables gesture recognition for low-level robot control (e.g., start/stop). These
gestures are two-handed gestures that must be clearly shown above the head. This type of
gesture is already built into the Kinect V2 software and is known to be relatively robust.
Additionally, facial recognition can be used to personalize and create a long-term user
experience [21].

Based on these findings and due to the lack of a state-of-the-art implementation of
an intuitive multi-modal overall concept, the Robot System Assistant (RoSA) concept was
created [22].

3. Framework Overview

3.1. Concept

We worked out a concept to assemble all important information streams into synergetic
interplay. The overview can be seen in Figure 2. It consists of seven modules (face,
attention, speech, gesture, robot, scene, and cube) communicating through middleware
to a core unit, the interaction module, which is responsible for the logic and actions of
the system. The modular approach allows an independent development and evaluation
of each necessary component. While the functionality for most of the modules is self-
explanatory, the Scene Module and Cube Module require a more detailed introduction. The
Scene Module is responsible for the data storage from the virtual objects and contains the
constraints, positions, and calibration of the system. In this module, a digital twin of the
scene gets depicted.

The idea of using cubes as an interaction object was carried over from the experimental
design of preceding studies in order to stay consistent and to allow a direct comparison
with the WoZ study. The cube module takes care of the cube logic and their detection.

For scalability purposes and to evaluate a realistic scenario, the modules designed
to be able to run as multiple instances, allowing a multi-device setup. The individual
devices, the middleware, and functions of the mentioned modules are described in detail
in Sections 4 and 5.

Interaction  
module
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Gesture
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id
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ew

ar
e

Scene 

Middleware

Face 

Middleware

Attention Robot

Middleware Middleware

Cube 

M
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Figure 2. Concept: The interaction module connects through middleware to other modules.
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3.2. Features

In the previous studies RoSA was a system that was capable of speech, gesture, face,
body, and attention recognition based on the “wizard”, the operator controlling the robot.
To automate the system and combine the cobot with artificial intelligence, a set of necessary
features was elaborated, which is shown in Table 1.

Table 1. Extracted feature stream.

Stream Feature Description Methods

Face

Face embedding
Facial expression
Face box
Face center
Facial landmark
No. detected faces
Face Id

512 features ∈ [0, 1]
7 features ∈ [0, 1]
4 features for each ∈ (x, y) (in pixels)
1 features for each ∈ (x, y) (in pixels)
5 features for each ∈ (x, y) (in pixels)
1 feature ∈ Z>0
1 feature ∈ Z>0

ArcFace [23]
Residual Masking Network [24]
RetinaFace [25]
post processed
RetinaFace [25]
post processed
post processed (cosine similarity)

Head Head angles 3 features [yaw, pitch, roll] (in degrees) Im2pose [25]

Gaze
Gaze direction
Attention visual

2 features [yaw, pitch] (in degrees)
1 feature ∈ 0, 1

Gaze360 [25]
post processed

Speech

Wakeword
Voice Activity Detection
Speech-to-text
Natural Language Processing

1 feature ∈ 0, 1
1 feature ∈ 0, 1
n features ∈“spoken text”
2 features ∈ [intent, entity]

Piccovoice [26]
Deepspeech [27]
WebRCT [28]
RASA [29]

Distance
3D head position
Face distance

3 features [x, y, z]
1 feature (in meter)

post processing using kinect
post processed

Gesture Hand Pose 4 Features (Open, Closed, Finger, None) Kinect for Windows SDK 2.0

Body Body Joints 26 Features [x, y, z] Kinect for Windows SDK 2.0

Object Cube Location 4 Features (Letter, Color, Bounding Box, Angle) CubeDetector [30]

The detected features are depicted in Figure 3 showing an exemplary situation of a
user interacting with the system.

Figure 3. User pointing at a letter Cube. Multiple detected features are displayed for clarification.
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4. System Setup

4.1. Hardware

We chose a modular structure in the form of so-called workstations (WS) to be capable
of evaluating the system in a multi-device scenario and to simplify the development and
the integration of additional hardware. A WS is mainly characterized by its hardware,
which forms a closed system.

For consistency and comparison purposes, we did not change the hardware used in
the previous studies. As cobot, the UR5e industrial robot equipped with an RG6 gripper
was used. The robot was bolted to a sturdy metal table. A TV, with a ToF (Kinect) camera on
top, was placed behind. A projector, lighting the scene from above, was used to illuminate
the objects and the metal table for visual feedback. The same cubes, as in the previous WoZ
study, were used. We refer to this cube-related setup as workstation 1 (WS1).

The second workstation (WS2) can be used for registration and questionnaires, featur-
ing a smart screen with a touch function and also a ToF (Kinect) camera. Every workstation
utilizes microphones (from Kinect) and speakers (from TVs). The current setup can be seen
in Figure 4.

Figure 4. A schematic overview of the workstations.

4.2. Middleware

The development of a distributed system consisting of heterogeneous devices from
different manufacturers is a non-trivial task that, among other things, must ensure com-
munication between numerous devices. The Robot Operating System (ROS) is used for
communication between the hardware components as well as the individual software
modules. For communication within the Speech Module, the Message Queuing Teleme-
try Transport (MQTT) protocol was implemented. Using ROS as Middleware grants a
direct machine-to-machine communication interface and allows an easy integration of
additional workstations. Each module can be run as an independent node multiple times
on multiple devices.

For communication between modules, a set of custom ROS messages were made: Body,
Joint, Face, RobotAction, CubeAction, and CubeMessage. The code is open source [31].
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5. Modules

5.1. Scene Module

This module creates a virtual scene that contains all virtual objects and their relations,
enabling the interaction and management of the objects. The scene can be an exact or an
abstract representation of the real environment, or it can create an entirely new one.

The Scene Module also includes the calibration of the system’s input and output devices.
Recognition algorithms can then be used to associate real objects in the virtual world. In
the context of HRI, the Scene Module is also used for collision calculations and as a database
for object positions.

The table on which the experimental setup of WS1 is located serves as the basis for
the scene and calibration. This table is provided with threads at regular intervals of 2.5 cm,
which form a grid. This grid allows for calibration between the robot and scene, as well
as proper alignment of the projector. In this case, the calibration is an adjustment and
scaling of the respective coordinate systems in relation to each other. The point where the
projection of the pixel [0,0] meets the table surface serves as the origin of the coordinate
system in the virtual world. This is scaled according to the grid.

All virtual objects are defined by a point that marks their position in the virtual world
in Cartesian coordinates.

5.1.1. Skeleton

In addition to the cubes, the data of the Kinect skeleton is also converted into virtual
objects, consisting of 26 [x,y,z] points. This allows the user to interact with virtual objects
such as security planes or augmented user interfaces.

5.1.2. Spot

The pointing gesture creates a so-called Spot at the point where the line, through the
elbow and wrist of the Kinect skeleton, intersects the surface of the grid. It contains the
position of the intersection point [x,y,0]. To help the stacking of the cubes, the spot jumps
to the nearest grid position. The Spot can be seen in Figure 5.

Selection in Progress

Selected object

Laser pointer

"Spot" moving on grid

Figure 5. Selection in progress: The borders of the grid rectangle around the laser pointer are
narrowing. In the next step, the selection would be moved from Cube A to the new coordinates.
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5.1.3. Visual Feedback

Through monitors or projection, virtual objects can appear in reality. A selected virtual
cube is illuminated with a green rectangle, and a space on the grid is illuminated with a
white rectangular frame. Transformations are applied to the projection so that the projected
objects visually match the real objects. The exact position of the Spot is projected onto the
table like a laser pointer. The process of selecting an object and the projected laser pointer
can also be seen in Figure 5.

5.1.4. User

The user database includes the ID, names, facial features, and session status of the
subjects. WS1 and WS2 can both access this database to address the user by name, or
to retrieve the last session status for the activated subject. This personalized experience
contributes to the intuitiveness of the system.

5.2. Robot Module

The Robot Module is responsible for path planning and managing robot actions. Path
planning is an important feature of a robot assistant. For this task, the definition of start
and end points, from now called Source and Destination, is crucial.

The Robot Module sends commands, so called RobotActions to the robot. The robot can
move to the discrete position in the virtual grid and grasp real objects. For this purpose,
there are four basic operations within the robot program (see Figure 6). These can be
defined as individual modes for programming the cobot. These sub-routines can be called
directly via Real-Time Data Exchange (RTDE)—a protocol developed by Universal Robots
for fast communication with the robot. A thread observes a particular register and jumps
to the corresponding mode called by the Robot Module. When performing the pick or place
operation, the appropriate mode must be specified, as well as the desired coordinates of
the object. If a cube is to be taken or given, only the mode and position of the hand are
necessary. The four basic operations, require only either a Source or Destination (i.e., object
or hand position), since the respective counterpart, logically results itself as an actuation of
the gripper. These operations execute only a single step. The more complex commands like
picking and placing are further explained in Section 5.3.3. In addition to the four basic modes
of interaction with the cubes, there are five more modes that complete the robot program.

• Abort: Motion is aborted;
• Home: Robot goes to initial position;
• Sleep: Robot goes to idling position;
• Toggle gripper: Opens or closes the gripper;
• Greet: Robot performs nodding motion.

To ensure that all commands are registered correctly, the robot changes its state to busy
during an action. When a robot action is finished, the robot changes its mode to Ready and
continues to execute the RobotActions that have queued up.

v

Pick Take Place

v

Give

Figure 6. Basic robot operations: Pick up, take from user, place on table, and give to user.

275



Sensors 2022, 22, 923

5.3. Cubes Module
5.3.1. Physical Cube

The interaction at WS1 is primarily with 5 × 5 × 5 [cm] cubes, that can be positioned
exactly on the 2.5 × 2.5 [cm] grid of the table. The cubes have a letter on each side and are
3D-printed from lightweight and robust Polylactic Acid (PLA), allowing for safe interaction.
The cube model can be downloaded from Thingiverse [32].

Each real cube is represented by a virtual object, which is given the attributes: Letter,
color, and position. The cubes are unique and thus can be identified by one or the combina-
tion of the attributes. In summary, the cube data is stored as an ROS message of type:

CubeMessage { letter [A-Z], color [black/white], position [x,y,z] }.

When a cube is handed over, it is assigned the position [0,0,99] until it is reassigned
a coordinate on the table by an interaction with the robot. If a cube is in the gripper, it is
assigned the coordinates [0,0,-1]. All other possibilities [x,y,z] correspond to a position
on the grid, where x, y, and z take real values.

5.3.2. Cube Detection

For an unconstrained interaction, the robot must be continuously aware of the position
and order of the cubes placed on the desk. A straightforward approach would be the use
a visual tracking method to follow the cube operations and update its current position
accordingly. However, occlusions caused by the robot and cubes that are leaving the field
of vision can heavily harm the tracking state and lead to interaction discontinuities. We
therefore follow the approach of continuous detection and recognition of each cube and
adapt a deep neural network for this purpose.

Figure 7 shows an example image of our cube detector in action. It demonstrates that
even the almost 180° degree rotation of the cube “T” can be detected precisely with a high
confidence (shown as a number next to the letter).

Figure 7. The cube detection in action. It detects also the rotated orientation of the cubes.

As there is no public dataset available that would fit our needs for the cube detection
task, so we generated our own synthetic dataset. We cropped representative cube images
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for each letter and color and randomly placed them on arbitrary image backgrounds.
Additionally, random rotations and scaling as well as different levels of blurring are applied
to further augment the variance of the data. As a result, we received 100,000 randomly
generated training images with corresponding annotation. Beside the ground truth letter
and localization, we also annotated the rotation of the cubes as this information is crucial
for accurate grasping by the robot.

For implementation, we use the Yolov5 networks as a backbone and change the
number of output neurons to the number of letters on the cubes. Instead of regressing the
cubes rotation directly, we found that classifying the angle leads to more stable results.
Therefore, 90 classes are added for each degree of rotation. We used rotated bounding
boxes for calculating the Intersection over Union to further help the network to learn the
rotation. The cube detection network is open source [30].

5.3.3. Cube Logic

The Cube Module is an indispensable additional module that is used to check the
interactions with the cubes, convert them into an RobotAction, and change the virtual cubes
in the scene. Figure 8 shows the build of CubeAction, a ROS Message type consisting of two
CubeMessages describing a source and destination. The task of the Cube Module is to find
the transition from source to destination and convert it to a RobotAction, if the transition is
valid and reasonable according to the Scene Module.

CubeMessage CubeMessage

CubeAction

Valid?

RobotAction

Source Destination

Figure 8. Conversion of CubeAction to RobotAction.

Every CubeAction has a source and destination. If either of the CubeMessages equals the
robot gripper, then this CubeAction corresponds to a basic RobotAction discussed previously
in Section 5.2. It is a single step of the robot moving the cube to or from the gripper.
In the previous WoZ study, the users requested the robot to move the cubes between
positions, disregarding the intermediate steps. Thus, the necessity of complex or combined
instructions became eminent.

Two basic CubeActions can be chained together, if they have the same intermediate
position, i.e., the gripper. Figure 9 depicts this concept.

Valid?

RobotAction(s)

SourceDestination

Gripper

Basic CubeAction Basic CubeAction

Complex CubeAction

Source Destination

Figure 9. CubeAction can be simple or complex, corresponding to multiple RobotActions.
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For the Interaction Module and Speech Module to function correctly and as expected,
it is necessary to consider, identify, and group all possible cube manipulations and their
corresponding RobotActions. Thanks to the complex CubeAction concept, it is possible to list
all possible combinations. Figure 10 shows the four basic robot operations (see Figure 6)
Pick, Take, Place, and Give depicted as either source or destination CubeMessage.

Figure 10. Basic operations Source: {Pick, Take} and Destination: {Place, Give}.

These operations can be combined to form four complex operations, as depicted in
Figure 11. Pick-Place is used to move a cube from one position to another. Take-Place is used
to receive the cube from the user and place it on the table. Pick-Give is used to give a cube
after picking it up. Take-Give action is logically exclusive, since the object does not change
its position from the system’s perspective and thus can be neglected.

a) b)

c) d)
Figure 11. Complex operations: (a) Pick-Place, (b) Take-Place, (c) Pick-Give, and (d) Take-Give.

The source and destination cube may be specified by any combination of the attributes
position, color, and letter. The Cube Module then checks the start and target position by
matching them with the cubes stored in the scene. If no position but color and/or letter was
specified as a start cube, then the corresponding position is retrieved from the scene and
the information is added to the CubeMessage. Contradictory CubeMessages are filtered out.
When a CubeAction is verified, it is converted into one or, in the case of complex operations,
two RobotActions and sent to the Robot Module.
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The four basic operations always include the gripper (position [0,0,-1]) as a source
or destination. An example of a CubeAction for Place, that puts the cube that is currently in
the gripper to position [12,12,1], could look like this:

Src. { letter [], color [], position [0,0,-1] }
Dst. { letter [], color [], position [12,12,1] }.

This message would be then checked by the Scene Module and then converted to a
Robot Action and enqueued by the Robot Module. After the successful movement of the
robot, the Robot Module would report the new position, and the corresponding cube in the
Scene Module would be updated:

CubeMessage { letter "M", color "white", position [12,12,1] }.

All other cube manipulations are executed in the same manner. The remaining chal-
lenge for the Interaction Module is to combine the correct information from the Speech Module
and Gesture Module. A complex Cube Action Pick-Place, for picking a black cube “A” and
placing it on top of cube “B” could look like this:

Src. { letter "A", color "black", position [4,8,1] }
Dst. { letter "B", color [], position [6,10,2] }.

In addition to checking whether a field is already occupied, the fields in the immediate
vicinity are also checked. If these are also occupied, it is possible to place a cube on top
between two cubes, thus stacking a pyramid. If no neighboring cubes are present, a cube
can only be placed directly on another one. Vice versa, whether there is another cube above
the selected one is also checked.

The module is also able to move the cubes back to their initial position. For this
purpose, corresponding Cube Actions are created based on the scene. The order of the
stacked blocks is also taken into account.

5.4. Face Module

The human identification serves both security and personalization of the data pre-
sented. Moreover, face verification is a vital identity authentication technology used in
more and more mobile and embedded applications. Our system benefits from face verifica-
tion to achieve high fidelity and confidence for user authentication and authorization to
control the robot for crucial tasks.

The Face Module is subdivided into two main parts: Face detection and face recognition.
The face detection can detect the location of the face in any input stream (image or video
frames). The output is the bounding box coordinates and facial landmarks of the detected
faces. On the other hand, face recognition is a process that compares multiple faces to
identify which face belongs to the same person. This identification process can be done by
comparing the feature vector of the detected face with the stored face feature vectors.

5.4.1. Detection Part

We used the RetinaFace [25] light-weight model, based on MobileNet-0.25 [33], as
the pre-trained model for face detection, which employs a multi-task learning strategy to
simultaneously predict face score, face box, and five facial landmarks. The network was
pre-trained on a WIDER FACE dataset [34].

5.4.2. Recognition Part

After the detection bounding boxes are obtained, the filtered boxes are fed into the
recognition part. Before the next steps, the Practical Facial Landmark Detector (PFLD) [35]
is used to align the detected faces. The aligned faces are used for both face recognition and
facial expression recognition.
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For face recognition, the deep CNN used was MobileFaceNet [36] which uses less than
1 million parameters and is specifically tailored for high-accuracy real-time face verification
on mobile and embedded devices. This is less accurate than its counterparts, but it is
real-time capable. The network was trained on the refined MS-Celeb-1M dataset using
the loss function Arcface [23]. This loss function produces much better discriminative
features compared to others. The extracted facial features are compared against each other
using cosine similarity. If the faces are similar enough, they are assigned the same ID (see
Figure 12). The IDs in the image section are passed to the Interaction Module along with their
position. Persons who cannot be assigned an ID from the database are assigned the ID −1.

Figure 12. Face detection, face recognition, and facial expression recognition.

5.5. Attention Module

Various features can be used to estimate the user’s intention to interact with the robot
(attention) and the intention breakdown during the interaction (attention breakdown). The
most common features that can be used to estimate engagement and disengagement in HRI
include gaze, head pose, face, posture, speech, and distance [37–41]. Using more features
to estimate user attention could increase the accuracy of the attention algorithm. However,
it will increase the computational cost, which will have a bad impact on the overall system.

The direction of a person’s gaze has a regulative function for the interaction taking
place and allows conclusions to be drawn about the willingness to interact [42]. The
direction of gaze can be recognized by the position of the head but also by the pupils. The
latter gives more precise information about the current visual focus. If no fast or small gaze
changes are required (e.g., when reading) and the object viewed is in the middle range of
the visual angle or the person is further away, the orientation of the head offers a possibility
for approximation [43].

Considering attention in the context of a technical system, a POI can be defined.
If a person turns away too far from the POI, the person likely has no longer potential
engagement. If the camera is in the POI and the user’s head is in the center of the frame, a
deviation in the yaw-pitch-roll angle results from the subject turning away, thus breaking
the engagement. However, when the relative position in the image plane is changed, a
transformation must take place to determine whether that person is looking at the POI.

In our algorithm, we fused the head posse features with the gaze features through
a rule-based classifier to estimate the person’s attention while interacting with the robot.
For the head pose features, we used the img2pose method proposed by Albiero et al. [44].
This method outperforms many current state-of-the-art models in terms of accuracy and
real-time capability. The method does not use the elaborate detected bounding boxes and
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landmarks, but uses a Faster-R-CNN-based model that computes the 6-Degrees of Freedom
pose for all faces in the photo (see Figure 13). The model used, was trained using the
WIDER FACE dataset. For the gaze features, we used the gaze360 method proposed by
Kellnhofer et al. [45]. They uniquely take a multi-frame input (to help resolve single frame
ambiguities) and employs a pinball regression loss for error quantile regression to provide
an estimate of gaze uncertainty. This method is trained on 3D gaze in-the-wild dataset,
which make it robust to diverse physically unconstrained scenes.

Figure 13. Head pose detection.

An algorithm converts the resulting head pose and gaze features into a person-based
visual attention score for each person in the scene. We fused these scores together through
our algorithm for outputting a final score for each person in the scene. If the predefined
threshold of visual attention focus is exceeded, the person is recognized as attentive and
can interact with the robot. If the person turns away, the visual attention focus decreases
over time. If a threshold value is undershot, this person is no longer detected as attentive.

5.6. Gesture Module

The pointing gesture uses the skeletal data of the forearm provided by the Kinect in
combination with the “index finger pointing” gesture (Kinect Lasso gesture). According
to the concept of “Laws of Linear HRI” [12], a line is formed from the two joints, elbow,
and wrist, of the recognized human and the intersection with the plane of the table is
determined, the aforementioned spot.

The lack of direct user feedback can be solved by adding a laser pointer feature
that directly corresponds to the pointing position. This way, the user does not have to
wait for the robot to fulfill the task, as in the case of the original implementation by
Williams et al. [46]. Using the spot, the user is currently pointing at, as real-time feedback,
further helps to increase the overall accuracy of the pointing gesture.

The laser spot responds to the objects stored in the Scene Module and wraps around the
object being pointed at. This feedback is intended to simplify the handling of the gesture.
This concept is shown in Figure 14. If the pointing position is not changed and the gesture
is not canceled, the object will be selected after a given time and highlighted in green by
the projector. If the gesture is held further, the selection is sent to the Interaction Module.
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Figure 14. Pointing gesture: User points to cube [S], which is enveloped by the laser pointer.

The grid given by the virtual positions, from the Scene Module, facilitates selection and
positioning. The circle adapts its shape to the grid when the user dwells on a position. The
virtual object corresponding to the highlighted coordinate can now be used as either the
source or destination. The selection done with the spot is saved in the scene.

5.7. Speech Module

The Speech Module, along with the Gesture Module, is an important part of RoSA, that
directly interacts with the user. As shown by Haeb-Umbach et al. [47], most established
speech assistants consist of the modules shown in Figure 15. The individual components
are explained in more detail below.

           Understanding 

           Natural
Wake Word Speech to Text                    Language Text to Speech

Figure 15. Common structure of speech assistants.

5.7.1. Wake-Word Detection

Piccovoice was used to implement wake word detection. This application provides
an online service for training personalized wake words. Furthermore, Piccovoice has a
lower error rate compared to others [26]. The disadvantage of this implementation is that
the software is only partially open-source and the use of the personalized wake words is
limited to a 30-day license at a time.

5.7.2. Voice Activity Detection (VAD)

Voice Activity Detection (VAD) is intended to prevent loud noises or the like from
being interpreted as speech, e.g., after the system has been woken up by using the wake
word [48]. In addition to activating STT, detection can be used as an abort criterion for the
process. If a pause in speech exceeds a certain period of time, the sentence is terminated.
We utilize a VAD developed by Google as part of the WebRTC project [28], which was
intended to provide new standards for real-time communications with video, voice, and
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generic data support. It uses multiple frequency band features with a pre-trained Gaussian
mixture model classifier.

5.7.3. Speech-to-Text (STT)

For privacy reasons, an offline service based on Mozilla’s Deepspeech [49] is used.
This open-source STT engine uses methods from Baidu’s research [27]. We used Deep-
speech German, a pretrained network by Agarwal et al. [50]. The training data is based on
Common Voice, a project started by Mozilla to collect speech data. It is also an open-source
project that people donate their voice to, reading out sentences or validating audio tran-
scripts. Since incorrect recognition of the STT can lead to difficulties in further processing,
the vocabulary is adapted to that of the Natural Language Understanding (NLU) module.

To improve user experience and system accuracy, we introduced a visual feedback
that displays the recognized spoken words to the user in real time. As suggested by
Schurick et al. [51] this approach can greatly reduce the necessary time for speech input by
a factor of three.

5.7.4. Natural Language Understanding (NLU)

The system uses the open-source RASA solution to extract intent from text provided
by the STT. RASA [29] consists of loosely coupled modules that combine a set of natural
language processing and machine learning libraries into a unified API. It strives to balance
adaptability and usability [52]. Braun et al. [53] show that the performance of Rasa NLU is
compelling compared to several closed-source solutions. The NLU pipeline used consists of
the SpacyNLP with the German language corpus, Tokenizer Featurizer, and EntityExtractor.
First, the text is segmented by the Tokenizer, the Featurizer generates features for entity
extraction and intention classification, and the EntityExtractor extracts information objects.
The DIETClassifier is used to classify the intention. The classified intention and extracted
information objects are sent to the Interaction Module as Cube Action.

Interaction with the robot works using Cube Actions (see Section 5.3.3). These can
be categorized into the already mentioned, four basic and three complex operations. For
each of these commands, there is a voice command. For example, the command “give me
the white block with the letter A” combines the operations pick and give. The Cube Action
passed through ROS looks like this:

Src. { letter "A", color "white" position [] }
Dst. { letter [], color [], position [0,0,99] }.

In addition to voice-only commands, there is also the option of combining voice and
gesture. The user uses the pointing gesture, selects a position and simultaneously specifies
the desired block. “Place the black cube A here”. The CubeAction would look like this:

Src. { letter "A", color "black", position [] }
Dst. { letter "spot", color [], position [] }.

Since the Speech Module has no information about user’s gesture input, the Interaction
Module has to fill in the gaps and update the information using the Gesture Module and
Scene Module.

By combining speech and gestures, ambiguous cases such as this can arise: “Give me
the block”, which can mean handing over a block that has already been grabbed, but also
pick up and hand over the block that is currently pointed to. The CubeAction passed via ROS
nonetheless looks like this:

Src. { letter "spot", color [], position [] }
Dst. { letter [], color [], position [0,0,99] }.

At this point, the Interaction Module must decide according to the Scene Module and
Cube Module which action to perform.
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From the four basic and three more complex operations, explained in Section 5.3.3,
there is a set of 14 possible operations for manipulating the cubes using speech or speech
and gesture combined. Since as many variations of the speech commands as possible are
to be covered (e.g., instead of “cube”, “block”, or “square block”), the file generated from
example sentences for training the NLU comprises 60,000 lines.

5.7.5. Text-to-Speech (TTS)

The Windows Speech Application Programming Interface [54] is used for text to
speech synthesis. This interface allows the user to make speaker variations such as:

• Audio Pitch: Determines the pitch (relative height or depth) of the speech synthesis.
• Include sentence boundary metadata: Determines whether sentence boundary meta-

data is added to a SpeechSynthesisStream object.
• Punctuation silence: Length of silence added after punctuation in SpeechSynthesis

before another utterance begins.
• Speech rate: Sets the tempo, including pauses of the speech synthesis.

An advantage of this TTS system is that it is already integrated into Microsoft operating
systems and is freely accessible since Windows Vista.

5.8. Interaction Module

The Interaction Module is adapted to the framework conditions of the individual
workstations, since they require different user inputs and are to act independently of each
other. At the beginning, the readiness for interaction is evaluated with features from the
Attention Module and Kinect-stream. If a person is attentive, the corresponding workstation
is activated and visual feedback is shown. Users identified by face recognition are signed
in. The user-interface changes accordingly to the currently active user, settings, and last
state of the workstation are restored. Users are signed in as long as they are attentive and
recognized by the system. Identities assigned by the Face Module are applied to the Kinect
skeleton with the largest intersection over union using the bounding box provided. Now,
the user has a workstation bound Active Session until the user logs out (see Figure 16). This
process is active on all workstations.

Screen on

UserLogin

Attentive

User Log outActive Session

Screen off

Attentive

Screen on

Figure 16. Active Session flow diagram.

5.8.1. WS1: Cubes and Cobot

If the WS is activated by the Attention Module, the user is informed via the screen that
the authentication process is running, as long as no ID is available. If the user is still an
unknown person, they will be prompted to register at WS2. Registered users are greeted
with their stored name and a nod (quick up and down motions of the gripper) of the robot.
At the first log-in, RoSA introduces itself to the user and runs through a basic tutorial.
Once an Active Session is started at the workstation, the system can be interacted with.
To issue a voice command, the wake word must be used. This activates the STT and the
screen displays an icon of an earpiece to show the user that the system is now listening.
The transcribed text is shown on the screen. Another icon indicates whether the use of
a pointing gesture is possible. The gesture input is paused when the robot is already in
motion so as to avoid problems with occlusion by the robot. Input via the pointing gesture
results from holding the gesture in one position for a short time. The currently selected
cube is also displayed on the screen.
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5.8.2. WS2: Registration

The interface of WS2 is based on ROS-QT (RQT), a development environment for
visualization. The user is provided with an interface for registration. The data collected
includes a name, preferred hand, and face recording. To record the face, the subject is asked
to look first frontally and then once to the right and once to the left. The recorded data is
stored in the database. Once this process is complete, an Active Session is started and the
first part of the survey can begin. Upon successful completion of the first survey, a brief
tutorial on RoSA and the tasks are presented. The user is prompted to perform the tasks
on WS1. Finally, the second part of the questionnaire can be completed. When using WS2,
the current progress of each user’s survey and tasks is saved. When logging in again, the
display jumps to the last session. The user input comes from touch screen or a keyboard.

6. Experimental Studies

In order to prove the concept and to gather insight about necessary improvements for
the system, a pilot study was conducted in the same manner as the previous WoZ study.
During the study, data were collected from 11 subjects (2 ♀ | 9 ♂) aged between 20 and
34 years. Five of these subjects had already participated in the previous RoSA study. The
procedure of the study is as follows:

• Informed consent;
• WS2: Registration and collection of sociodemographic data;
• WS1: Collaborative tasks with robot;

1. Have RoSA give you a block.
2. Spell a specific word with alternating color of blocks.
3. Build a 3-2-1-Pyramid with black-white-black layers.

• WS2: Questionnaires;
• WS1: Benchmark: Data collection for module assessment.

7. Results

Within the scope of this work, a functional robot system assistant is created. The
system includes eight modules that communicate with each other. The system is activated
by the Attention Module when a user shows enough willingness to interact. The Face
Module allows a personalized user experience. The user is addressed personally and is
shown personalized content. Both the voice and Gesture Modules can be used for intuitive
operation of the robot. With the Cube Module and Scene Module, the system can interact with
its environment. In addition, RoSA provides the user with auditory and visual feedback.
The individual functions are explained to the user in a short tutorial, in the form of a
self-introduction by RoSA, to start a natural dialogue.

7.1. Time

Table 2 summarizes the time needed for the completion of the collaborative tasks.
Time was started as soon as the task was known and the user gave the first command, and
stopped as soon as the task was declared complete by the experimenter.

Table 2. Time needed to accomplish the tasks.

Variables Fastest Slowest Mean

Task 1 00:00:16 00:04:30 00:01:21
Task 2 00:02:51 00:26:36 00:12:56
Task 3 00:02:36 00:36:39 00:11:06

Total 00:06:07 01:07:24 00:25:20

All subjects were able to solve the tasks in collaboration with the robot in under
two hours.
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7.2. Questionnaires

The questionnaires (SUS [55], UMUX [56], PSSUQ [57], and ASQ [58]) were completed
after the experiment. A module-specific questionnaire was then taken to additionally
evaluate each module.

The summary of the user satisfaction questionnaires is presented in Table 3. The
questionnaires were evaluated using the methods described in the literature for each
individual. This mostly consisted of an alternating weighting of the questions, from which
the mean value was calculated. To make the questionnaires comparable with each other,
the scores were normalized by bringing them to the same scoring range of [0–100].

Table 3. Results of usability questionnaires.

Variablen SUS [55] UMUX [56] PSSUQ [57] ASQ [58]

Answer Range 1–5 1–7 1–7, NA 1–7, NA
Score Range 0–100 0–100 1–7 1–7

No. of Questions 10 4 16 3
Normalized Score 72.27 57.57 62.90 64.06

Total Avg. Score: 64.2

7.3. Modules

Users were also asked to rate each module according to their personal satisfaction on
a scale of one, very dissatisfied, to seven, very satisfied (see Figure 17).

very
satisfied

5

4.82

3.45

5.18

5.63

1 2 3 4 5 6 7

Registration

Gesture

Speech

Face

Attention

Module Evaluationvery
dissatisfied

Figure 17. User rating of individual modules.

The test subjects were less satisfied with the Gesture Module and especially with the
Speech Module. This is why we decided to evaluate these modules were tested independently
of each other and outside the experiment to avoid external sources of error. The evaluation
is based on the data that was collected during the benchmark phase at the end of the initial
experiment with the cubes. The benchmark was run after the user had completed the
questionnaires and already rated the system in so as to not bias the test subject.

7.4. Speech Module Evaluation

To evaluate the Speech Module the test subjects were asked to read out sentences
displayed. For example: “Give me the white block with an A”.

The performance of a speech recognition system is measured by the Word Error
Rate (WER):

WER =
S + I + D

N
(1)
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where S is the number of words incorrectly replaced, I represents the number of additional
words inserted, D is the number of words deleted, and N is the number of words correctly
transcribed [59]. During the interaction, it was often the case that RoSA did not understand
or misunderstood the subject. The error rate of the wake word detection was 33%.

The STT worked well overall. However, in some cases, words could not be detected
because they were not part of the previously defined vocabulary. Short words like “yes”
or single letters were often not recognized. Within the benchmark, the STT had a WER of
28.6%. The NLU module had an intent error rate of 27.3% and an entity error rate of 47.7%

7.5. Gesture Module Evaluation

For the evaluation of the pointing gestures, users were asked to point at targets
highlighted on the screen in front of them, without any additional pointing feedback. The
participants were asked to hold the gesture for two seconds. A 13-dot calibration pattern,
as commonly used for eye-trackers, was used.

To estimate the pointing position, an intersection of a line, formed by two joints and
a plane 2.5 m in front of the participant, was used. For each target, the timespan of one
second, or equivalently 30 frames were evaluated and the resulting intersection points
calculated. The spread, or the overall deviation of the positions from the calculated mean
for each target, can be used as an estimation of the pointing quality.

As implied by the Laws of Linear HRI [12], any two joints can be used. The resulting
intersection POIs that were calculated using joint pairs “Elbow Right—Hand Tip Right”
as implemented in the experiment and “Shoulder Right—Hand Tip Right”, an alternative
pointing method using the same skeletal data, can be seen in Figure 18.

The overall mean average of the position deviations is 3.88 cm for Elbow–Hand and
0.66 cm for Shoulder–Hand showing a possible way of decreasing the spread between the
consecutively calculated pointing positions.

(a) Implemented method avg. spread 3.88 cm (b) Possible method avg. spread 0.66 cm

Figure 18. Evaluation of the spread of the resulting Points of Interest (POIs) at a 2.5-m distance.
Calculated mean positions are depicted as red circle crosses.

287



Sensors 2022, 22, 923

8. Discussion

In order to put the user data in perspective, they are compared with those of the WoZ
study (see RoSA study [6]). It is important to note that the WoZ experiment was conducted
under idealized conditions, demonstrating a close to flawless system adapting directly to
the user’s preferred method of interaction.

Almost half of the participants in this study had already taken part in the WoZ study.
Although the operating concepts could be individualized and freely chosen by the users
and thus differed from the current scenario, an influence of the previous study cannot be
ruled out.

Nonetheless, the participants were invited to aid in the discussion and evaluation of
the system. Unfortunately, the sample size is still too small and the group of test subjects
too homogeneous to be able to draw generally valid conclusions. However, qualitative
statements can already be made about the system.

8.1. Efficiency

The system’s efficiency can be assessed by the time needed for the tasks. Table 4
shows the comparison to the WoZ study. It should be noted that during the WoZ study, the
pyramid had to be built twice in the third task. However, across all tasks, the subjects in
the WoZ study were faster.

Table 4. Comparison efficiency.

Variables Task 1 Task 2 Task 3 Total

Results 00:01:21 00:12:56 00:11:06 00:25:20
WoZ study [6] 00:01:46 00:07:57 00:09:52 00:19:35

Deviation 00:00:25 −00:04:59 −00:01:08 −00:05:45

The results in Table 2 show a large variance. The fastest user only needed one-sixth of
the time for each task compared to the average user. Different times are required depending
on the modality used. Since the pointing gesture can only express basic operations, hybrid
or speech-based solution approaches are faster in theory. This is also true for the first task.
The fastest person completed the task, using a voice command, within 16 s.

However, the more complex tasks showed that the error-proneness of the voice assis-
tant caused severe delays. The person who completed the entire experiment the fastest
used pointing gestures exclusively.

As explained earlier, errors occurred more frequently during the execution of the
experiment. These negatively influenced the time needed for a task.

8.2. Usability

These aspects are also reflected in the user experience. The overall user satisfaction of
the system turns out to be “satisfactory”. RoSA, in the current state, has visible deficiencies
in the area of language that should be addressed.

Putting this study in context with the WoZ experiment, we find that the assessment is
consistently unfavorable (see Table 5). This can be attributed to the lack of learning ability,
higher susceptibility to errors, lower range of functions, and lack of personalization.

Table 5. Comparison usability.

Variables SUS [55] UMUX [56] PSSUQ [57] ASQ [58]

Results 72.27 57.57 62.90 64.06
WoZ study [6] 79.24 71.53 73.70 71.60

Deviation 6.97 13.96 10.8 7.54

Avg. deviation: 9.82
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8.3. Modules

The connection of the individual components via middleware has weaknesses. Espe-
cially with large amounts of data such as video or audio data, high latency times can occur
in the system. These lead to errors in modules that operate in a time-critical manner, such
as attention monitoring.

The head pose recognition is insufficient to determine gaze direction and derive the
user’s attention in certain scenarios. In addition to gaze direction, aspects such as proxemics
and linguistic interaction should play a more important role. Drawing on more modalities
increases the system’s robustness against failures such as loss of face detection.

Users were generally satisfied to very satisfied with attention detection. This module,
in isolation, was one of the most robust. However, it is dependent on face recognition.

The face recognition faced problems with lighting conditions, covering of the face, and
significant deviation of the angles. This would sometimes lead to loss of tracking and active
session. The majority of subjects were satisfied with the registration process, while two
subjects were rather dissatisfied. Both subjects had problems with the registration process
because they were logged in as another user even before registration. The registration
process was thus skipped and had to be initiated manually. The described classification
error can be reduced by an improved initial recording of facial features; thus, different faces
can be better differentiated.

As the first module in the speech processing pipeline, robust wake word detection is
important. Experiments have shown that one third of the activations were not detected.
Therefore, Wake-word activation needs to be improved by training on audio data. These
problems might also be caused by the fact that for a system to accept the Wake-word, the
user has to be logged in and attentive. In retrospect, this feature hinders the system’s
intuitiveness, as the use of the Wake-word implies readiness for interaction. The inaccuracy
of the STT is due to the reduction of the vocabulary by the known words. Likewise, the
VAD sometimes causes very short words such as “yes” or single letters to be truncated. The
benchmark results show that the NLU was partially able to compensate for STT errors by
classifying the correct intent. However, due to the fact that the extraction of the entities had
a high error rate and the created Action thus also contained errors, the commands could
not be executed. The speech module is functional, but needs to be revised in its structure
and handling to achieve good to very good results.

All users used the pointing gesture. This was necessary because stacking the pyramid
was not possible using voice commands. However, this may also be due to the low error-
proneness of the module. The support of the pointing gesture by the “laser pointer” was
consistently seen as a relief. Users asked for the specification of two endpoints (start and
end position) as a feature of the pointing gesture. Additionally, it was noted that when
cubes were stacked on top of each other, the selection had to be made using the lowest
position. One user described the laser pointer feedback as “shaky”. This refers to the
pointer jumping back and forth between two grid positions. This user mainly used the
wrist and index finger line for pointing. However, the implemented pointing gesture uses
the elbow and wrist. Thus, the resulting line is inaccurate and leads to a more difficult
selection. This is also shown by the data plots of the pointing gesture, showing that the
pointing estimation using the shoulder leads to far better results. It could be possible to
use an alternative algorithm using multiple joins (head, shoulder, elbow, hand, fingertip)
instead of only two, to further increase the pointing estimation.

For more intuitive interaction, the dialog guidance should be further deepened. Cur-
rently, the system cannot fill in missing information on its own. For example, the dialog
terminates if a command is not understood or only partially understood. Feedback is given
to the user: “I didn’t understand that”. One solution would be for the system to output the
specific error message. More intuitively, the missing information could be rephrased into
a question.
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9. Conclusions and Future Work

The presented implementation of the RoSA system is the first step from a simulated
concept towards a real and functioning system.

The developed system meets the requirements for intuitiveness, which is confirmed
by the study conducted. However, due to the limited number of participants, this study
is only suitable as a pilot study to find errors in the system and optimize it. Furthermore,
it shows how and what kind of data and streams could be gathered in future studies to
further improve the system. The data from the benchmark was used to evaluate the system
in its current state, but could be used to develop and test new methods. For example, the
pointing gesture data could be used for a complex algorithm using multiple joints or for
machine learning. Furthermore, the attention module could be enhanced by adding new
features like body posture and distance.

The next upcoming studies and the updated RoSA system will include mobile robotics
as additional non-stationary workstations to allow a higher adaptability of the system to
real life scenarios and to improve the overall natural communication. For this, the system
will be extended by the mobile robots Tiago (WS3) and Ari (WS4). These were developed
by PAL-Robotics and can be seamlessly integrated through the ROS middleware.

For the future development of natural and collaborative human-robot interaction,
a system is needed that can be further developed in a modular fashion and iteratively
improved through ongoing studies and regular evaluations.

With RoSA, such a system has been created.
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Abstract: Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust esti-
mation method for the parameters of a model contaminated by a sizable percentage of outliers. In
its simplest form, the process starts with a sampling of the minimum data needed to perform an
estimation, followed by an evaluation of its adequacy, and further repetitions of this process until
some stopping criterion is met. Multiple variants have been proposed in which this workflow is
modified, typically tweaking one or several of these steps for improvements in computing time or
the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics,
for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for
estimating the best transformation between different camera views. In this paper, we present a review
of the current state of the art of RANSAC family methods with a special interest in applications
in robotics.

Keywords: RANSAC; feature matching; transformation matrix; shape detection; object recognition;
robotic systems; real time

1. Introduction

The Random Sample Consensus algorithm, commonly known by its acronym RANSAC,
was developed by Fischler and Bolles more than forty years ago as a novel approach to
the robust estimation of the parameters of a model in regression analysis [1]. It addresses
situations where there is a high percentage of outliers in the data, which hinders the
parameter estimation task. While other approaches, such as least squares linear regression,
use all the available data to produce a model which could be later refined, RANSAC creates
several models in sequence, each time choosing, from the available data, a random sample
of the minimum size needed to create a model. After each step in the sequence, the support
of the model is calculated, typically splitting the data into inliers or outliers, the former
are data points whose measure of fitness with respect to the model fall below a certain
threshold, and the latter are those which do not comply with that requirement. For example,
if the task is to estimate the parameters of a plane in a point cloud, RANSAC would sample
three points, the minimum needed to define a plane (provided they are not all collinear
with each other), then would compute the euclidean distance of all the points in the point
cloud to such a plane, and then the percentage of inliers according to some threshold. After
some number of iterations, RANSAC would return the plane with the highest support,
thus the plane with more points close to it.

Several questions and practical issues arise from this simple definition. It is not obvious
at all how to choose a reasonable threshold to discriminate between inliers and outliers, or
how to determine the number of iterations through the process of creating and evaluating a
model. The computational cost could also skyrocket if the whole dataset has to be checked
against the hypothesis model at each iteration. For these reasons, researchers have devised
a number of variations over this vanilla RANSAC trying to address these issues.
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The range of problems for which RANSAC is well-suited is very wide, although in
robotic applications they usually pertain to two big classes: shape detection and feature
matching. Geometric models of simple shapes such as planes, spheres, cylinders, etc., are
well understood and relatively straightforward to implement, while of relevant practical
interest, due to the fact that human-made objects and some natural ones are close to
those shapes. Therefore, the ability to detect these geometric structures in 3D data is of
great importance for environment understanding in indoor or outdoor robotic navigation
and/or mapping. A high-performant feature-matching procedure is also very desirable
for finding the right transformation between different views of a scene. Features are
extracted from several scenes taken from different points of view, and the task is defined as
finding the matrix transformation between images that minimizes the distance between
matching features.

Other machine learning approaches, such as deep neural networks [2,3], while ex-
tremely successful for object detection, can be difficult to fine-tune or interpret. Their main
advantage is that they could be readily applied to problems in which there is no restriction
on the object shapes, but a RANSAC implementation can be more efficient when the shape
is simple enough to be expressed as a model with a few parameters. As a result, the fields
of application of these two kinds of methods are usually different, although it is possible
to apply RANSAC as a preprocessing step before applying deep learning techniques. For
example, a deep learning application for point cloud segmentation could benefit from
RANSAC filtering the floor or the walls of the scene.

Several studies have been carried out on the performance of RANSAC methods. In [4],
the authors classify the RANSAC variants into three types, depending on the intended
improvement over the vanilla version: accuracy of the model, computational speed, and
robustness with respect to the choice of the number of iterations and the threshold value.
They analyze the performance of ten variants on a line fitting synthetic data and on a 2D
homography estimation on real data, comparing also with Least Median of Squares [5]
and projection-based M-estimator [6]. Their results show the existence of a trade-off of
accuracy and robustness over computing time. In [7], the authors present a comparison of
eleven variants on the problem of finding planes in 3D point clouds. Their findings suggest
a trade-off similar to those noticed in [4].

Our goal is to update the list of RANSAC variants with more recent development
and, at the same time, present practical applications that could be of interest to the robotics
practitioner. The reader is also informed of existing open-source software that could be
of interest. Due to the plethora of RANSAC variants developed by the community, it is
impossible to list them all. We tried our best to present the most used, cited, or influential
ones in further developments. Some algorithms that might deserve a mention, such as
RAMOSAC [8] or KALMANSAC [9], were left out, as they were specifically designed
for one application (target tracking in those mentioned above) and lack the generality of
applications of those presented in Section 3.

In this paper, we present a survey of RANSAC-like methods with a focus on shape
detection and image matching for robotic applications. First, we describe the vanilla
RANSAC algorithm in detail, along with several variations that have been devised to try to
address some of its limitations. Then, we review some recent applications, also pointing
out some open-source software that could be of interest to the researchers interested in this
field. Finally, we discuss the current state of the art and present our conclusions.

2. RANSAC

Fischler and Bolles’s Random Sample Consensus (RANSAC) algorithm is a general
parameter estimation method designed to handle data where a high percentage of outliers
is present [1]. RANSAC was created by members of the computer vision community [10],
in contrast to many other popular robust estimating methods also embraced by that
community, as in the case of M-estimators [11] and Least Median of Squares [12].
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It is a resampling method that produces potential solutions by using the fewest
possible observations to estimate the model’s underlying parameters. RANSAC employs
the smallest possible set of observations and then expands this set with consistent data
points, in contrast to typical sampling strategies that use all the available data to generate
an initial solution proposal and then refine the model deleting outliers.

The vanilla RANSAC pseudocode is described in Algorithm 1. The condition that
must meet a point to be an inlier with respect to the model being evaluated is that the
point “fits well”. As the most common applications of RANSAC are related to finding
shapes or matching features between different views, it is usual to refer to the euclidean
distance from a point to the model. However, any other function that measures the
concordance between the model and the point might be used. As it can be observed
in Algorithm 1, the time complexity of the vanilla RANSAC algorithm is linear in the
product of the number of iterations by the number of data points, and therefore it could be
computationally expensive.

Algorithm 1: RANSAC algorithm
nData ← number of data points
nP ← smallest number of points required by the model
nI ← number of iterations
t ← maximum distance (threshold) of a point to the model to be an inlier
bestInliers ← 0;

bestModel ← NULL;
while Not all iterations done do

Draw nP points randomly;
Fit a model M to those points;
nInliers ← 0;
for each point in the data do

d ← distance from the point to the model;
if d < t then

nInliers ← nInliers + 1

if nInliers > bestInliers then

bestInliers ← nInliers;
bestModel ← M

return bestModel

In order to tackle this problem, a very common modification of this algorithm consists
of defining a measure of goodness of a model such that, if in any of the iterations a model
good enough is found, the procedure terminates and returns that model as the solution. For
example, it would be possible to compute the percentage of inliers over the total number of
data points and decide that if a model exceeds some predefined threshold, the model is
suitable for our goal and the search ends.

When it is not clear what could be a criterion for considering a model good enough, or
when all the models are of low quality, but we are interested in the best among them, the
natural question that arises is how to choose the number of iterations. Let us denote the
inlier ratio over the total data points as iRatio. The probability that in a set of nP randomly
chosen points all are inliers is of iRationP, and therefore the probability of this situation
not happening in an iteration is of 1 − iRationP, and in nI iterations of (1 − iRationP)nI . As
we want this probability to be small, nI has to be chosen such that (1 − iRationP)nI < α,
where α might be 0.05 for a probability of 95% of randomly drawing all inlier points in
some iteration. After some algebraic manipulation, we find the following equation:

nI =
log(α)

log(1 − iRationP)
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Unfortunately, the ratio of inlier points is often not known in advance and the use-
fulness of the previous result is limited. In Section 3.2, several approaches focused on
improving the speed of the algorithm are described, empirically showing that it is often
possible to run RANSAC well below its theoretical time complexity. Some authors even
claim constant time model evaluation [13].

2.1. Matching Images

One common problem in computer vision is finding the right correspondences be-
tween features of two images of the same scene taken by different cameras. Epipolar
geometry is the branch of geometry that helps to formalize the relationship between cam-
eras, points in the 3D space, and their projections in the camera views.

In Figure 1, a typical situation is shown where two cameras (or the same camera at
different timestamps) observe a point P located at some distance in the space. The camera
centers are c1 and c2, where the projections of the point P in the image planes are p1 and p2,
respectively. The line connecting the two camera centers is referred to as the baseline, while
the plane defined by c1, c2, and P is the epipolar plane. The intersection points between
the baseline and the two image planes are denoted as the epipoles e1 and e2. The epipolar
lines are defined by the intersection of the epipolar plane with the image planes, and they
intersect the baseline at the epipoles. When the two image planes are parallel, then the
epipoles e1 and e2 are located at infinity.

Figure 1. The general setup of epipolar geometry. The planar region defined by the points P, c1, and
c2 is the epipolar plane. The blue line is the baseline, while the two orange lines are the epipolar lines.

The transformation from one view to the other is given by a homography matrix that
is necessary to estimate. To do so, typically, some algorithm for finding features, such as
SIFT [14], is employed, and then a model fitting procedure is conducted.

2.2. Finding 2D/3D Shapes

Basic geometric shapes are the constituent parts of multiple objects in the environments
in which robots usually perform their tasks. Walls, floors, and ceilings are examples of
planes located in indoor settings. Doors, windows, tables, and stairs are also composed of
planes, while pipes could be an example of cylinders. In urban outdoors, roads, buildings,
or traffic lights also resemble geometric shapes. Even in agricultural areas, the crops
use to be organized in lines or trees could be modeled as conical structures. In Figure 2,
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several objects in a room can be seen, including the walls and columns. There is also
noise in the point cloud, a typical circumstance that could be addressed using RANSAC to
detect shapes.

Figure 2. Visualization of a point cloud of a room.

3. RANSAC Variants

It is difficult to classify the plethora of RANSAC variants for several reasons. First of all,
sometimes, a previously known variant is employed as part of a pipeline with a small tweak
dependent on the specific problem or the rest of the pipeline. Methods that clearly fall into
this category are described in the section corresponding to applications. Secondly, some
methods try to improve the vanilla RANSAC in more than one dimension, for example,
achieving better accuracy while at the same time yielding a lower computational load and
being faster. This paper does not intend to provide an exhaustive catalog of all the existing
variants but to present a state-of-the-art survey of the most commonly used, along with
some applications in the robotic field.

Following the classifications previously made in [4,7], we divide the methods into
four types, depending on which is the main area they intend to improve: accuracy, speed,
robustness, and optimality. As mentioned above, sometimes the distinction is not clear-cut,
but when possible, we followed the previous surveys. When the authors have developed
a method that is specifically designed for a concrete application, and not as a general
estimation method, we present it in the Applications section. A summary of the variants
grouped by areas is presented in Table 1.

Table 1. RANSAC variants grouped by the metric they aim to improve.

Focus on RANSAC Variant

Accuracy

MSAC (M-estimator SAC) [15]
MLESAC (Maximum Likelihood SAC) [16]
MAPSAC (Maximum A Posterior Estimation SAC) [17]
LO-RANSAC (Locally Optimized RANSAC) [18]
QDEGSAC (RANSAC for Quasi-degenerate Data) [19]
Graph-Cut RANSAC [20]
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Table 1. Cont.

Focus on RANSAC Variant

Speed

NAPSAC (N Adjacent Points SAmple Consensus) [21]
Randomized RANSAC with Td,d test [22]
Guided-MLESAC [23]
RANSAC with bail-out test [24]
Randomized RANSAC with Sequential Probability Ratio Test [25]
PROSAC (Progressive Sample Consensus) [26]
GASAC (Genetic Algorithm SAC) [27]
1-point RANSAC [28]
GCSAC (Geometrical Constraint SAmple Consensus) [29]
Latent RANSAC [13]

Robustness

AMLESAC [30]
u-MLESAC [31]
Recursive RANSAC [32]
SC-RANSAC (Spatial Consistency RANSAC) [33]
NG-RANSAC (Neural-Guided RANSAC) [34]
LP-RANSAC (Locality-preserving RANSAC) [35]

Optimality Optimal Randomized RANSAC [36]
Optimal RANSAC [37]

3.1. Accuracy-Focused Variants
3.1.1. MSAC (M-Estimator SAC)

MSAC [15] is the first iteration of a family of RANSAC variants that uses maximum
likelihood estimates for the parameter models. The authors tackle the problem of the
estimation of the trifocal tensor which, given correspondences between points in two
images, determines the position of such points in a third image. Their results show an
increase in accuracy with the downside of degradation of computational performance. They
claim their method could be used for any other problem in computer vision, mentioning
the fundamental matrix estimation task as an example.

3.1.2. MLESAC (Maximum Likelihood SAC)

The RANSAC algorithm looks for the model that maximizes the number of inliers.
MLESAC [16] computes the log-likelihood of the model, taking into account the distribution
of outliers, and uses random sampling to maximize it. The authors show the usefulness of
their approach by deriving the log-likelihood for the problem of estimating the fundamental
matrix in a two-view problem and implementing the algorithm, obtaining good results.

3.1.3. MAPSAC (Maximum A Posterior Estimation SAC)

A Bayesian approach is presented in [17], from the same authors of MSAC and
MLESAC, with the aim of improving over their previous maximum likelihood formulations.
They develop MAPSAC to obtain a robust Maximum A Posterior (MAP) estimate of the
problem of the least square fitting of an arbitrary manifold, and in particular, of lines or
planes. A new method for approximating the posterior probability of a model, called GRIC,
is derived, and it is theoretically and empirically demonstrated that it is more accurate
than AIC [38], BIC [39], and MDL [40] in tasks where a large number of latent variables
is present.

3.1.4. LO-RANSAC (Locally Optimized RANSAC)

In [18], the authors introduce Locally Optimized RANSAC (LO-RANSAC) to address
the empirical observation that the number of samples needed to find an optimal solution
with a given probability is significantly higher than the amount predicted by the theory [41].
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They realize that a commonly held assumption is incorrect: that a model computed from a
sample composed only of inliers has to be consistent with the whole set of inliers.

In spite of the computed model not being optimal, in practice, it is sufficiently close
to the optimal model for a local optimization method to approach or even find it. After
the optimization step, the model covers a greater amount of inliers, and therefore reduces
the number of steps of the RANSAC method, making it approach to its theoretical value.
The optimization strategy guarantees to keep the number of used samples very low, hence,
accordingly, the extra time spent in each step is almost negligible.

Their proposed optimization algorithm consists of the following steps:

1. Define a threshold θ and a number of optimization iterations I.
2. In each step of the RANSAC method, the samples are selected only from the data

points that are consistent with the model created in the previous step.
3. Take all data points with error smaller than I × θ and compute new model parameters

according to a linear algorithm. Reduce I by one and iterate until the threshold is θ.

This local optimization step is only performed when the number of inliers in the
current RANSAC step is greater than the previous maximum. The number of points from a
randomly drawn sample that are consistent with a given model is a random variable with
usually unknown probability density function. As this density function is the same for all
samples with the same discrete cardinality, the probability that the kth sample will be the
best among the already drawn samples is 1

k . Therefore, the average number of samples
which are the best so far is a sequence of n samples:

n

∑
1

1
n
≤
∫ n

1

1
n

dx + 1 = log n + 1

The authors perform experiments on epipolar geometry and homography estimation
and find that the empirical results are close to this theoretical average, while speeding up
the RANSAC procedure by two to three times. The number of inliers of the solution found,
which can be thought as a proxy for its overall quality, is increased in the range of 10–20%.

3.1.5. QDEGSAC (RANSAC for Quasi-Degenerate Data)

Sometimes, when confronted with the problem of computing the fundamental matrix
for image matching coming from different views, the data do not provide enough con-
straints to find a unique solution, but only up to a set of solutions that all of them could
explain the data. To tackle this problem, in [19], QDEGSAC is presented to cope with the
problem of degenerate data. The authors develop a hierarchical RANSAC over the number
of present constraints that do not require problem-dependant tests. They claim results
similar to other approaches that leverage knowledge about the degeneracy source.

3.1.6. Graph-Cut RANSAC

A modification of LO-RANSAC is presented in [20], where the graph-cut algorithm [42]
is applied in the local optimization step to the best model obtained till that moment. The
motivation is to separate inliers and outliers. The authors test its adequacy to several com-
puter vision problems with synthetic and real data and claim it to be more geometrically
accurate and at the same time easy to implement. Additional improvements have been
presented in [43,44], where USAC [45] and MAGSAC++ [46] robust estimators are included
in the algorithm.

3.2. Speed-Focused Variants
3.2.1. NAPSAC (N Adjacent Points SAmple Consensus)

The premise behind NAPSAC [21] is that inliers tend to be closer among them than
with respect to the outliers. Therefore, instead of picking completely random samples
to generate the models, a better strategy could take into account this fact. The authors
suggest taking an initial point randomly and then finding the number of points lying
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within a hypersphere of radius r centered on that point. If the number of points in such
a hypersphere is fewer than the minimal set needed to estimate the parameters of the
model, then fail and choose another initial point; otherwise, select the initial point and
other points uniformly from the set of points inside the hypersphere until the minimal
number needed to estimate the model have been selected. The authors derive optimal
values for the radius of the hypersphere if the inliers are perturbed by Gaussian noise and
the outliers are distributed uniformly in the hypersphere.

3.2.2. Randomized RANSAC with Td,d Test

The hypothesis test step in the RANSAC algorithm is often very costly. If a plane
has to be fitted against a point cloud containing millions of points, the distance to every
point has to be computed to assess the goodness of the hypothesized plane model. To deal
with this issue, in [22], the authors propose an algorithm that only evaluates a fraction of
the data points. They define a Td,d test that is passed if all the d randomly selected data
points are consistent with the hypothesis currently being tested. The optimal value of d is
computed with the following expression

d ≈
ln( ln ε(tM+1)

N(ln δ−ln ε)
)

ln δ
,

where tM is the time necessary to compute the parameters of the model from a sample, δ is
the probability that a data point is consistent with a random model, and ε is the fraction of
outliers in the data. As d has to be an integer, dopt is chosen as the number in {�d�, �d�},
which minimizes the previous expression, provided it is greater than zero. One drawback of
this approach is that an estimation of the fraction of outliers in the original data is needed.

3.2.3. Guided-MLESAC

A limitation of the maximum-likelihood estimation in MLSAC is that it does not
take into account possible knowledge about the prior probabilities of the parameters
of the model to be estimated. In [23], the authors propose guided-MLESAC, where a
good estimation of the prior probabilities is shown to give an order of magnitude speed
improvement in the problem of finding correspondences between features in images taken
from different views. After a theoretical analysis and experiments to compute the priors,
their conclusions are that, with little extra computation, it is possible to leverage quality
measures provided by image matcher software to derive confidence in the validity of
a match and incorporate them as priors. This knowledge can be useful to select more
probable hypotheses and also to compute more accurately the cost of fitting.

3.2.4. RANSAC with Bail-Out Test

In [24], the author, inspired by the randomized RANSAC with Td,d test, describes a
modification of the RANSAC procedure that allows the scoring process to be terminated
earlier, and therefore could save computational time. He first defines a trivial early bail
test, in which a hypothesis is not further checked against the remaining data if its current
score cannot improve the score of the best hypothesis tested so far. Then, he proceeds to
propose a test in which a randomly selected subset of size n is evaluated, and its fraction
of inliers (εn) is computed. If εn is clearly smaller than the best εbest found so far, it is
very unlikely that evaluating the rest of the points would produce a better result than εbest.
In the paper, estimates for the probability of ε improving over εbest when evaluating the
remaining points are derived under the supposition that the number of inliers contained in
a subset of size n follows a hypergeometric distribution. Experiments show a significant
reduction in the number of evaluations with respect to the Td,d test approach.
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3.2.5. Randomized RANSAC with Sequential Probability Ratio Test

For randomized models to work properly, usually an estimate of the fraction of inliers
in the data is needed. In [25], another approach that does not require such knowledge is
presented. The authors base their work on Wald’s theory of sequential decision making [47],
deriving a process to generate a solution with confidence 1 − η, where η is a probability
decided by the user. Wald’s Sequential Probability Test Ratio is based on the likelihood ratio

λi =
i

∏
n=1

p(xn|Hb)

p(xn|Hg)
= λi−1

p(xi|Hb)

p(xi|Hg)
,

where Hg is the hypothesis that the model is good, i.e., computed from a sample composed
only of inliers, and Hb corresponds to the alternative hypothesis that the model is consid-
ered bad. The variable xn is equal to 1 if the n-th data point is consistent with the evaluated
model, and 0 otherwise. The probability p(1|Hg) that a random point is consistent with
a good model is approximately the percentage of inliers in the original data, represented
as ε, and the probability of being coherent with a bad model is modeled as a Bernouilli
distribution with parameter δ = p(1|Hb). Given that the majority of all models tested by
RANSAC are bad in the former sense, δ can be estimated as the average percentage of
consistent data points in rejected models. On the other hand, a lower bound on ε is given
by the size of the largest support for the considered models so far. Experiments show that
this method is from 2.8 to 10 times faster than RANSAC and up to 4 times faster than the
Randomized RANSAC with Td,d test.

3.2.6. PROSAC (Progressive Sample Consensus)

PROSAC [26] establishes a rank of promising data points (and therefore, of promising
hypotheses or models) according to some measure of the quality of the data. As the
hypothesis testing procedure advances, the confidence in the adequacy of the quality scores
decreases, and the sampling strategy is shifting toward the original RANSAC. The more
promising samples are drawn at the earlier stages, but in further steps, data points with
lower quality scores are gradually incorporated until all the original samples have a nonzero
probability of being drawn. The authors employ PROSAC for the task of estimating the
correspondences between features in two images from different camera views. They claim
to achieve significant time savings over RANSAC, in the order of hundreds of times, due
to the fact that good hypotheses are generated early on in the sampling process.

3.2.7. GASAC (Genetic Algorithm SAC)

In [27], the authors propose an approach based on genetic algorithms, where a popula-
tion of sets of parameters evolves to yield a solution. They tackle the problem of finding
the fundamental matrix associated with different views of a scene, but the method can
be adapted to any problem usually solved by RANSAC. The individuals of the genetic
pool are characterized by a chromosome in which the model parameters are encoded and
are subject to the usual crossover and mutation operators. A number of evaluations of an
order of magnitude less than with the usual RANSAC are reported, when tested on several
image-matching problems.

3.2.8. One-Point RANSAC

While multiple works have analyzed the way to reduce the number of data points
against which to test the hypothesized models, some researchers have worked on how to
reduce the number of data points needed to generate a hypothesis. In [28], the authors
propose a method to generate a hypothesis from just a data point by leveraging a priori in-
formation from an extended Kalman filter [48]. Experiments are performed in two scenarios:
the first one is a six-degree-of-freedom motion estimation from a monocular sequence, and
the second one is a robot trajectory estimation combining wheel odometry and monocular
vision. The authors claim results comparable to other visual odometry methods.
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3.2.9. GCSAC (Geometrical Constraint SAmple Consensus)

Geometric constraints could be used to select good samples to generate models that
would be further tested for consistency against the data. In [29], the authors present a
method that searches for such samples following two criteria: the selected samples must be
consistent with the estimated model according to an inlier ratio evaluation and, at the same
time, they must satisfy geometrical constraints of the object we are looking for. Experiments
were performed for cylinder fitting in several datasets, one of them synthetic, the second
one consisting of data obtained in their laboratory, and the third one from public datasets.
Their results demonstrate better accuracy than MLSAC and real-time performance.

3.2.10. Latent RANSAC

An attempt to evaluate a RANSAC-generated model in constant time, independently
of the size of the data set, is presented in [13]. The authors’ insight is that the correct
hypotheses form clusters in the latent parameter domain. From this observation, an
approach similar to the randomized version of the generalized Hough transform [49] can
be applied to find those clusters, claiming that only two votes are necessary to succeed
in the search. The fast localization of the pairs of similar hypotheses is possible thanks to
an adaptation of the random grids search technique [50]. Therefore, the computationally
demanding hypothesis verification stage only takes place after the discovery of a similar
pair of them, and it is shown that this event is very rare when the hypotheses are incorrect.
The authors perform experiments on three different types of problems on both synthetic
and real data: camera localization, 3D rigid alignment, and 2D-homography estimation.
They claim an improvement in speed without degradation in accuracy.

3.3. Robustness-Focused Variants
3.3.1. AMLESAC

A noise-adaptive variant of MLESAC [16] is presented in [30]. It applies the sampling
strategy of MLESAC, and also searches for the model that maximizes the likelihood. The
improvement over it is the simultaneous estimation of the percentage of inliers (γ) and the
standard deviation of the noise affecting the inliers (σ). This is achieved by defining as a
function of γ and σ the log-likelihood of all points under a hypothesis θk and selecting the
values that maximize it. Then, the likelihood of θk using all the data and the previously
estimated values for γ and σ is computed. All the process is repeated M times, where
M was obtained based on a prior estimate of γ, and the hypothesis θ with the highest
likelihood among the θk obtained in each iteration is returned. Then, the model is refined
by applying nonlinear minimization using point-based parameterization [51]. Experiments
on synthetic and real data show that AMLESAC outperforms previous methods for the
pose estimation task without relying on the knowledge of noise parameters.

3.3.2. u-MLESAC

Another method based on MLESAC is u-MLESAC [31]. As in MLESAC, it can be
decomposed into four steps: sampling of the data, estimation of the parameters, estimation
of the variables of the error model, and evaluation of the parameters according to the
maximum likelihood criterion. The novelties of u-MLESAC are the estimation both of the
variance of the error model and of the number of iterations. The variance σ of the error
model is estimated by the expectation–maximization (EM) algorithm [52], and the number
of iterations is computed from the condition that all the sampled data are inliers and within
a desired error tolerance β. The number t of iterations is computed as

t =
log α

log (1 − kmγm)
,
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where m is the number of sampled data points, γ is the inlier ratio, and k = erf( β√
(2)σ

),

with er f as the Gauss error function. Experiments with line fitting tasks showed high
accuracy and robustness in different data distributions.

3.3.3. Recursive RANSAC

The standard RANSAC algorithm assumes that all the data are available at the start of
the estimation process. To tackle the problem of data appearing sequentially, in [32], the
Recursive RANSAC algorithm is presented. The authors point out that, as the recursive
least-squares algorithm (RLS) [53] is the extension of the least-squares method to sequential
data, Recursive RANSAC is the recursive version of RANSAC, with the added capability of
being able to track multiple signals simultaneously. This approach makes use of RANSAC
to estimate models that fit the current observations with previous observations. When
an observation is an inlier to a model, the model is updated by means of recursive least
squares. Experiments with simulated data show that Recursive RANSAC is more accurate
than RLS, Hough transform [54], and batch RANSAC [55] when the task is to estimate the
parameters of a single random line. Another simulation of multiple signals tracking in the
task of geolocating stationary ground objects using aerial sensors shows promising results.

3.3.4. SC-RANSAC (Spatial Consistency RANSAC)

The authors of SC-RANSAC [33] present a robust and efficient method to detect points
that are clearly outliers, with the aim of removing them and therefore increasing the inlier
ratio in the data given to RANSAC. To detect those outliers, the method takes advantage
of spatial relations between corresponding points in two images. This approach can also
be seen as a preprocessing step for other RANSAC variants. Experiments performed over
standard datasets of real images show improvements in computational time and also
in accuracy over other methods such as RANSAC and PROSAC. These advantages are
especially noticeable when the percentage of outliers is high.

3.3.5. NG-RANSAC (Neural-Guided RANSAC)

The field of neural networks permeates every area of machine learning and parameter
estimation nowadays, and RANSAC research is not an exception. NG-RANSAC [34] is
a RANSAC variant that uses prior information to guide the search of model hypotheses,
with the aim of increasing the probability of finding sets with no outliers or very few
of them. In other approaches, the prior information is obtained by heuristic methods
that make use of hand-designed descriptors, built from the domain knowledge of the
researcher. In contrast, NG-RANSAC uses neural networks to navigate through the set of
hypotheses. Self-supervision of the process is achieved using the inlier percentage as part of
the training data, and the addition of a differentiable version of RANSAC allows for further
improvements. Experiments on fundamental matrix estimation, camera relocalization, and
horizon line estimation achieve state-of-the-art results.

3.3.6. LP-RANSAC (Locality-Preserving RANSAC)

In [35], the authors integrate a locality-preserving constraint into the RANSAC work-
flow, with the goal of pruning unreliable hypotheses before the scoring loop and also
guiding nonuniform sampling to generate and score more promising models earlier. Ex-
periments on public datasets yield more accurate and stable solutions than other state-of-
the-art methods, this advantage being more evident when there is a low inlier percentage.
The locality-preserving constraint is derived from the work in [56], which observed that
in two images of the same scene taken under different points of view, the absolute dis-
tance between two feature points may change greatly, but their relative location is much
better preserved due to physical constraints. The guided sampling strategy makes use
of the locality-preserving scores to assign more weight to more promising areas in the
search space.
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3.4. Optimality-Focused Variants
3.4.1. Optimal Randomized RANSAC

In [36], the authors present a randomized version of RANSAC and prove that it
is optimal regarding a probability estimated by the user. The time spent to arrive at a
solution is close to the minimum possible and better than any deterministic strategy. In
fact, the algorithm is the fastest possible, in the average case, among all randomized
algorithms when the proportion of inliers is known in advance. The algorithm is a version
of Randomized RANSAC with SPRT test [25], the improvement being that the optimal
decision threshold for deciding if a model is good or bad is also derived and not left to the
user as a parameter to set up.

3.4.2. Optimal RANSAC

Another algorithm that finds the optimal model in nearly every run in some kinds
of problems is presented in [37]. The authors present an approach with some similarities
to LO-RANSAC [18], as both of them conduct repeated resampling on the set of tentative
inliers performing iterative estimation of the model. The differences are: the optimization
is performed only when the tentative set has more than five inliers, in order to avoid little
promissory sets when there is a low inlier ratio; when a larger set is found when resampling,
the resampling starts again with that set, so the set will grow until the largest set is found
thanks to iterative re-estimation and rescoring; the iteration process continues until the set
no longer changes, which yields a high probability that the found set is optimal; a pruning
step is finally performed with a low tolerance, in order to preserve only the best inliers; the
model is recomputed from the remaining inliers in each iteration. Experiments with line
finding in aerial images show optimal solutions in more than 99.95% of the cases.

4. Applications

RANSAC or any of its variants have been used in many different kinds of applications
as a solution to implement shape detectors or to find the correspondence between features
extracted from images taken from different points of view. In this section, we present some
of the research described in the literature. We organized the applications into three groups:
image matching, shape detection, and hardware acceleration. The first two groups corre-
spond to the two main areas in which RANSAC has been applied in robotic applications,
while in the third one, we present all the implementations that make use of parallelism or
special hardware. As far as the hardware acceleration does not rely on a specific kind of
application, we deemed it appropriate to group them in a dedicated section.

4.1. Image Matching

Finding the correspondence between feature points in two images is a problem of great
interest in the field of robotics, with applications in indoor as well as outdoor environments.
Simultaneous Localization and Mapping (SLAM) is the family of techniques that allow a
mobile robot to build a map of the environment and localize inside it at the same time [57].
To deal with SLAM in dynamic environments, in [58], the authors present a variant of
RANSAC, called multilevel-RANSAC (ML-RANSAC), to classify objects into static or
dynamic. The main advantage of their approach is that it can address both static and
dynamic objects in SLAM and detect and track moving objects without the need of splitting
the problem. The ML-RANSAC method takes as input in time step n the estimated state and
covariance at step n − 1 according to an Extended Kalman Filter, the sensors measurements
at time step n, a threshold value to decide if a detected object is a track of a previous one,
and the maximum number of desired iterations. It is also needed to provide the kinematic
models of the robot, stationary and dynamic objects, as well as the observation model.
ML-RANSAC outputs the estimated state and the number of static and moving objects,
as well as the covariance of all these entities at the time n. Experiments performed in
simulation and with a Pioneer P3-DX robot in an indoor dynamic setting show that this
approach can reliably estimate the robot’s pose while building the map and keeping track
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of moving objects. In [59], the authors present further developments over their previous
work, adding a layer of object detection and classification using machine learning, more
precisely convolutional neural networks (CNN). A CNN is trained to detect doors and
people, and the pipeline is tested in a real environment, yielding promising results.

The problem of removing erroneous or redundant matches in SLAM has also been
tackled with RANSAC. In [60]; the authors present GMS-RANSAC, an algorithm to remove
the mismatches based on oriented fast and rotated brief (ORB) in SLAM [61]. The key
idea behind the grid-based motion statistics (GMS) algorithm [62] is the realization that
adjacent pixels in images taken from different points of view share a similar motion, and
that those relationships can be defined as smoothing constraints and be combined into a
statistical framework to reject erroneous matching. Therefore, good correspondences are
associated with a high number of similar neighbors in a 3D region. The main problem
with this approach is that when there are few points in each 3D grid, the confidence is low
and the number of errors could increase. The addition of RANSAC to the method allows
for more robust results when the dataset is challenging to GMS. Experiments on public
datasets show an average correction rate of 28.81% over the GMS algorithm.

Another problem of interest for robotic applications such as camera calibration, scene
tracking, or robot navigation is the detection of vanishing points in images [63]. Due to per-
spective, lines that are parallel in 3D space appear to converge to a point called a vanishing
point when projected in a 2D space. In [64], the authors propose a new RANSAC variant,
called under-parameterized RANSAC (UPRANSAC) which, combined with the Hough
transform, is able to detect vanishing points in uncalibrated monocular images in real time.
The degrees of freedom of a vanishing point are found first by applying UPRANSAC to
choose a hypothetical inlier and compute a portion of the degrees of freedom and then
executing the voting scheme associated with a 1D Hough transform to find the remaining
degrees of freedom along the extension line of the previously hypothesized inlier. Vanilla
RANSAC selects two edges as a hypothetical pair of inliers and needs both of them to be
right to fit a correct model of vanishing points, while UPRANSAC has a higher likelihood
of finding one inlier and, therefore, is more reliable in this task. Experiments on public
datasets show high accuracy and real-time performance.

Dense alignment between two images is the goal of the work described in [65]. The
authors start from the observation that parametric and nonparametric alignment methods
have different strengths that are complementary to each other. Then, they propose a
two-stage method, where a feature-based parametric coarse alignment is followed by a
nonparametric fine alignment. The coarse alignment is performed by RANSAC estimating
the transformation matrix from deep features, and the fine alignment is learned at the pixel
level in an unsupervised way by a deep neural network that tries to optimize a standard
structural similarity metric between the two given images. The deep features for the coarse
alignment stage are the conv4 layer of a ResNet-50 network, while in the fine alignment
stage, the goal is to find a flow that warps the image source into an image similar to the
target, with that similarity being measured by structural similarity [66]. The authors claim
good results on a range of tasks, including unsupervised optical flow on KITTI [67], dense
correspondence on HPatches [68], and two-view geometry estimation on YFCC100M [69],
among others.

A parallel robot, also called parallel manipulator, or generalized Stewart platform, is a
mechatronics device that supports a single platform using several serial chains controlled
by a computer system [70]. The parallel aspect of the robot is not related to its geometric
appearance but to the fact that several actuators could work in parallel, affecting the plat-
form at the same time. In [71], the authors present a system that employs Harris-SIFT [72]
and RANSAC to detect the pose of a parallel robot with three degrees of freedom which
was developed by them. Harris-SIFT combines the Harris corner detection algorithm
with SIFT, but their results could contain mismatches that are tackled by the RANSAC
step. The RANSAC algorithm is customized for this problem by substituting the pure
random sampling by sampling in separate grids and, also, by performing an efficient model
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validation strategy that can detect invalid models without checking all the input data.
Experiments report that when compared with unmodified RANSAC, the average matching
time decreases by 63.45%, the average matching accuracy increases by 15.66%, and the
average deviation in pose detection decreases in all the coordinate axes.

The robotics subfield of unmanned aerial vehicles (UAVs) can also greatly benefit
from advances in image matching. In [73], the authors propose a method that combines
RANSAC with SURF [74] for the problem of matching images and test it on aerial images
taken from UAVs. As in previously mentioned works, RANSAC is employed to refine
the matches found by another method. In this case, SURF is the method used to detect
features, and the authors find that it compares favorably to using SURF, SIFT, or ORB alone,
although their experimental setup only includes a pair of aerial images. In [75], the authors
present Prior Sampling and Sample Check RANSAC (PSSC-RANSAC), which incorporates
prior knowledge of the sampling goodness coming from three different sources: texture
magnitude, spatial consistency, and feature similarity. This prior sampling should possibly
generate more correct samples. Furthermore, prior information on the collection of sample
subsets is used to check them and rule out incompatible arrangements of subsets, yielding
further improvements in speed. Their experiments on a dataset composed of images
taken from online sources and collected by themselves show improvements over standard
RANSAC and SVH-RANSAC [76]. Target tracking and following from a multirotor UAV is
the subject of the research carried out in [77]. The paper presents an end-to-end architecture
that combines: image acquisition to obtain the data to compute the transformation matrix,
Recursive RANSAC to perform target tracking, a track selection process, and a controller
for the target-following task. The physical setup is composed of a monocular camera, an
inertial measurement unit, an altitude sensor, and an embedded computer, all of them
into a multirotor UAV with a flight control unit. The system works under the assumption
that the target is moving on a surface close to planar and with a velocity approximately
constant. Their results in simulation suggest that the proposed pipeline is effective and
robust to target modeling errors. Another use of the data collected by UAVs is the creation
of digital surface models (DSM). In [78], the authors propose a RANSAC modification
to improve image matching with a special interest in the quality of the photogrammetry
needed to create digital surface models. They enhance RANSAC using an iterative least-
squares-based loop, a similarity termination criterion, and a post-processing step. In the
locally iterative least-squares-based loop, all inliers found in the previous iteration are
used to recompute the model parameters. Then, a least-square solution to improve the
model is applied, and the number of inliers is counted in each step until that number
does not change. The loop stops when a predetermined maximum number of iterations
is achieved, or if the inliers ratio is higher than a good enough threshold. This iterative
least-squares-based loop improves the stability, convergence rate, and number of inliers
of the found solution. Another termination criterion is defined for the RANSAC loop: if
the similarity of the sets of inlier points between two consecutive RANSAC iterations is
greater than 95%, the loop stops, saving running time. Finally, a post-processing step is
performed to remove outliers in the final model. The authors find favorable comparison
with RANSAC over a set of four aerial images taken by themselves.

The next research does not fall into the category of image matching, but it is also of
interest to any application in need of data for training a model. Image augmentation is
the process of generating images similar to those present in a dataset, through several
transformations, often with the aim of providing more training data to machine learning
algorithms [79]. In [80], the authors propose a hybrid RANSAC algorithm to create a
mosaic from several single images. They take images from similar areas and perform
feature matching using RANSAC, using the location of those features to blend the pictures
to create new ones. The authors claim their method is well-suited for aerial photos and
report an increase in image augmentation data compared with other techniques.
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4.2. Shape Detection

One of the key capabilities needed for a robotic system able to interact in an intelligent
way with its environment is the potential to detect and identify objects. This is in itself a vast
field of research, fueled in the last years by the great interest of the big technological actors
and the advent of deep learning. YOLO [81] represented a big leap for object detection
in 2D images, and 3D versions have been proposed [82–84]. Other approaches based on
3D descriptors [85–87] or other deep learning architectures [88–90] have also been the
subject of research. These approaches do not rely on a priori knowledge about the objects
to be recognized, but in human-made objects, it is usual that familiar geometric shapes
are prevalent. Even in nature, flat terrain or water reservoirs can be roughly characterized
as planes.

An example of simple shape detection in nature can be found in [91], where the
authors develop a method for monitoring the water level in a river for a flood warning
system. A UAV records aerial images, and a dense point cloud is obtained from them
using photogrammetric software. They fit the river surface plane using RANSAC, but to
estimate the water level, a time-invariant reference in the scene with a known altitude
is needed. They take a point in the road over a bridge with precise altitude information,
but if this were not available, a recognizable feature in the scene should be used as a
reference, at least to estimate water level change between point clouds taken at different
times. Experiments are performed with data collected on ten separate dates over the
course of a month, with different water levels. Testing different image resolutions, the
authors find that low-resolution images provide a more detailed point cloud due to the
fact that the alignment software detects more matching points. They speculate that this
could be because detailed river flow and tree branch movements with the wind introduce
undesirable noise in the images. A linear regression of the calculated water level against
the reference water level shows R2 = 0.98 for a slope of 0.95 and a standard deviation of
0.37 m. Another application in nature is the detection and delineation of trees presented
in [92]. The LiDAR data are captured in an area of 1796 hectares during the flight of a
Cessna. The models that they use to fit a tree are of a paraboloid, a cone, or another one
that they call a shape-shifter, which is an interpolation between a cone and a paraboloid,
performing filtering of local maxima before executing RANSAC. To compute the height of
each tree, they use Hardy’s multiquadric method [93] to reconstruct the ground surface
beneath the tree canopy. The authors report that their method, when applied to terrain
with a mix of different tree species and is densely populated, yields tree counts similar to
the inventory performed directly on the field. The difference is attributed mainly to small
trees not detected by the LiDAR but that contribute less to the total counts.

Aerial imagery also has applications in urban areas in order to locate spaces of interest.
One of the sources of renewable energy of great interest nowadays is solar energy. To find
suitable places to place solar panels, in [94], the authors are interested in the analysis of the
inclination and plane parameters of the roofs in an urban area. They apply RANSAC to
data obtained from aerial photogrammetry and LIDAR data of three buildings taken by a
UAV at a height of 80 m. The experiment shows that, while LIDAR data are less accurate
than aerial photogrammetry, sometimes trees occlude parts of the roofs, circumstances in
which LIDAR performs better than photogrammetry. The authors point out the importance
of an accurate data source and find that irregular roof shapes are not detected correctly.

Another use case for urban areas is autonomous driving. If a vehicle is going to
successfully navigate through a city, it is of paramount importance to correctly detect the
traffic lanes. In [95], a real-time method for detecting all the lane markers in an image is
presented. After filtering the image using selective oriented Gaussian filters, a RANSAC
line fitting step provides initial guesses to another proposed fast RANSAC algorithm for
fitting Bezier splines. A post-processing step to better localize and extend the spline is
applied, with excellent results at a real-time rate of 50 Hz. In [96], the lane detection process
starts with the application of inverse perspective mapping to change the camera perspective
to a bird’s-eye view. This transforms the problem of detecting lanes into finding parallel
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lines separated by a fixed and given distance. Candidate lanes are found applying the
Hough transform, and the results are further refined with RANSAC. A Kalman filter helps
to remove minor perturbations. Experiments on the streets and highways around Atlanta
in various traffic conditions show that the approach achieves good performance. In [97],
the authors introduce ridgeness, a low-level image descriptor, which assigns high values
along the center lines of the lane markings and low values close to the boundaries in the
longitudinal direction. Then, RANSAC is applied using ridgeness and orientation as input
to find the hyperbolas which correspond to the projection of the actual lane markings.
They claim good results under different driving circumstances and straight and curved
lanes. In [98], the model is refined to detect left and right lanes simultaneously, and extra
information is returned: lane width, lane curvature, vehicle yaw angle, and lateral offset
with respect to the lane medial axis. In [99], the images obtained by the car camera are split
into two areas: a far-field area and a near-field area. In the near-field area, the lanes are
detected by the Hough transform for lines, while in the far-field area, the lanes are observed
as curves and are therefore detected by RANSAC using a hyperbolic model. Experiments
under different driving conditions yield good results. A survey of advances in vision-based
lane detection, covering works in which RANSAC was employed, is presented in [100].

Cable inspection is one of the tasks that autonomous underwater vehicles must per-
form. In [101], Crossline Correction Nonlinear RANSAC (CCNL-RANSAC) is presented to
tackle the problem of detecting objects with a shape similar to a curved line. As underwater
imagery often suffers from blurring, low contrast, nonuniform illumination, and noise, their
approach performs a preprocessing step in order to improve the quality of the acquired im-
ages. Afterward, an adaptive edge detector based on Canny [102] and Otsu’s method [103]
is run, and then CCNL-RANSAC is applied. CCNL-RANSAC integrates a preliminary
inlier estimation module with a nonlinear fitting model and a final crossline correction
procedure to remove false positives that could arise. Experiments with images collected in a
boat tank at a university facility show that the algorithm can detect underwater curved-line
objects with a success rate of 95% to a distance of 21 m.

Plane detection is one of the most usual applications of RANSAC, which is also of
interest for autonomous driving or any navigation in urbanized terrain. When fitting
several planes from point cloud data, it is possible that sometimes a spurious plane that
shares inliers from other legitimate planes is erroneously detected. This is a usual fact
when detecting curbs or ramps in urban scenery. CC-RANSAC [104] addresses this issue by
changing the way that the fitness of a candidate plane is computed: instead of counting the
total number of inliers, it only considers those that lie in the largest connected components.
CC-RANSAC fails if two areas of the scene corresponding to planar surfaces are too close
to each other, because the connected components of the two areas could join together.
NCC-RANSAC [105] overcomes some of the limitations of CC-RANSAC, performing a
check of the normal vectors in the area to find if they are coherent with the fitted plane.
After obtaining a collection of candidate planes, a recursive clustering process is performed
to grow each one of the candidates. The authors validate the robustness of their approach
with a probabilistic model and obtain a very high rate of success. In indoor or outdoor
mobile robotics, ground detection is a common task. In [106], the authors take advantage
of the fact that all the other objects in the scene are always above the ground to define an
asymmetric kernel as the score function for RANSAC. The ground parameter is estimated
by maximum likelihood estimation, where the log-likelihood is modeled as an asymmetric
Gaussian kernel. Experiments show that the proposed model is fast as well as robust.

A general method aimed to improve the plane segmentation process in point clouds is
described in [107]. After downsampling the point cloud using the voxel grid method, the
authors estimate the normal at each point and refine such estimate employing the Mean
Shift algorithm [108]. After that, RANSAC, with the constraints given by the normals, is
applied to find the plane. Experiments with data acquired by the authors show good results
and practical value in industrial settings. In [109], the authors present a Python library for
segmenting assets in an industrial indoor scene. They use RANSAC for plane segmentation
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and then employ parallelism and perpendicularity between the detected planes, along with
the sensor orientation, to find the ground, ceiling, and walls of a room. Other elements in the
scene can also be detected by analyzing further relationships. In [110], pairwise orthogonal
planes are defined as a primitive shape and then detected directly by RANSAC. The
parameters of the shape are a point and two unit orthogonal normals, and they formulate
the problem of refining each candidate model as a nonlinear least-square optimization task,
which is solved by employing the Levenberg–Marquardt algorithm [111]. The candidate
models are generated by RANSAC. Experiments on Stanford 3D large-scale dataset [112]
show that the method is efficient, even for extracting small planes. Moreover, the authors
claim that their approach can also be adapted to deal with other geometry structures.

Building Information Modeling (BIM) is a process that involves the generation and
management of digital information about the physical and functional characteristics of
buildings. As that information is not directly available from structures in which BIM was
not present in the design and building process, it is important to generate BIMs from
existing places in an efficient manner [113]. In [114], the authors present a method to apply
RANSAC iteratively, where each iteration takes as input the inlier set of the previous one,
to automatically extract the height and the layout of a room. They report promising results
in a cloud extracted from the ISPRS dataset [115], although they point out that a limitation
of their model is that it is limited to rooms with polygonal layouts and flat surfaces.

4.3. Hardware Acceleration

Making software run faster is one of the main goals driving the new technology in-
dustry. From the point of view of pure software engineering research into algorithmic
theory, computational gains could be achieved that are to some extent independent of the
underlying hardware. However, advances in hardware also make it possible to leverage the
new capabilities of modern processors and dedicated processing units to achieve running
speeds orders of magnitude above a single CPU. It is possible to write parallel software
somehow independent of the hardware, but this approach has been gradually superseded
by the advent of GPUs and TPUs: dedicated graphical processors and tensor processors,
respectively [116]. GPUs were designed for the acceleration of graphics rendering compu-
tations but now have a prominent place in artificial intelligence research and applications.
TPUs have been specifically designed for tensor operations in deep learning. FPGAs [117]
are programmable hardware that could very efficiently perform a specific task and are
suitable for embedded devices.

Several steps of the RANSAC procedure are very suitable for parallelization. For
example, the generation of hypotheses or the scoring of those hypotheses against the input
data. We suspect that some straightforward implementations do not have enough relevance
for publication as a research article, and that is the reason for the lack of description of
such obvious variations in the literature. However, some articles deserve a mention in
this section.

In [118], the authors directly implement RANSAC in hardware using Verilog, a hard-
ware description language (HDL) that is used to model electronic systems. Their design
implements random sampling by using the multiple-input signature register (MISR) and
the index register. At the same time, the matrix triangularization operation needed by the
forward elimination is implemented by a systolic array [119], which is a piece of hardware
specifically built for fast and efficient implementations of regular algorithms that perform
the same task with different data at different timestamps. The authors report speeds,
in simulated hardware, of 30 frames (1024 × 1024 pixels) per second for computing the
homography between pairs of images.

RANSAC has been implemented in FPGAs. In [120], an implementation for real-time
affine geometry estimation is introduced. The main task chosen to be accelerated was the
fitness scoring function, where the authors claim that the speed-up factor increases with
input data size. Another layer of acceleration was implemented over the iterations of the
full RANSAC workflow, therefore increasing the probability of obtaining good estimation
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results in the same running time. Experiments with video frames extracted from the
Unmanned Aerial Vehicle Database [121] show increases in the speed of about 11.4 times
for 100 data points, the system being able to handle a video stream of 30 fps. In [122],
another FPGA implementation for the same problem is described, with their architecture
able to reject false correspondences between similar images. Three modules are defined:
transformation matrix calculator, inliers count calculator, and RANSAC controller. The
transformation matrix calculator computes the affine transformation parameters from three
samples from the set of feature matches, the inliers count calculator computes the number
of inliers for the current transformation matrix, and the RANSAC controller reads samples
from the array of initial matches and stores them in the array of random samples. The
execution of RANSAC takes a number of clock cycles equal to the number of selected
random samples. The authors report a running time of less than 23 ms for the processing
of 128 initial matches, with a supported video streaming rate of at least 43 fps. Their
architecture has been tested in simulation and on hardware (Altera Cyclone IV). These
same authors later present another FPGA implementation for real-time SIFT [123] matching
and RANSAC to improve over the previous solutions to the problem of identifying the
correct correspondences between feature points between consecutive video frames [124].
The feature descriptors from each frame are stored, and when a new feature is extracted
from the next frame, its descriptor is compared with those corresponding to the previous
frame. If the matching criterion is fulfilled, then the coordinates of the match are stored
in on-chip RAM. A moving window of size 16 is defined in the shift register structure to
store and shift the feature descriptors. This facilitates the fit in the processing pipeline
of the matching procedure, by supporting a standard number of parallel comparisons
between features. Several sets of moving windows are defined concurrently, allowing for
an effective size of 128. Using Altera Cyclone IV again, they achieve a processing rate of
40 fps for VGA resolution (640 × 480).

It is also possible to parallelize RANSAC using APIs that could access to the parallel
capabilities of modern processors or GPUs. In [125], the task of fitting a plane in a 3D
point cloud is implemented in three different paradigms: OpenMP, POSIX threads, and
CUDA. Their goal is to analyze the relative performance of these three approaches over
a collection of point clouds collected by the same authors in an indoor environment. The
point clouds cover different spaces: living room, kitchen, hallway, saloon, room, and
furniture. In addition to three usual metrics in evaluating search strategies (Precision,
Recall, and F-Score), they also report other two standard metrics in parallelism (Runtime
and Speedup). In their study, they find that CUDA over NVidia GPUs is the best option,
with good results in all the metrics. POSIX threads are a better option than OpenMP if the
researcher is willing to program to a low level to profit from the fine control that OpenMP
does not allow for, it being too high-level.

5. Software

Researchers working on RANSAC variants have, sometimes, made their code available
to the community independently, giving rise to a fragmented ecosystem with implementa-
tions in several languages that often lack maintenance. At the same time, popular computer
vision libraries have implemented RANSAC variants for shape detection or image match-
ing. In this section, we present available software that could be of interest to the robotics
practitioner willing to test RANSAC capabilities.

5.1. OpenCV

OpenCV is a library of functions aimed to tackle common tasks in computer vision,
especially focused on real-time performance. The project was started by Intel, and it is now
released under the open-source Apache 2 license. It is cross-platform and offers C++ and
Python APIs. Some operations support GPU accelerations. Robot Operating System (ROS)
(http://wiki.ros.org/ accessed on 23 November 2022) provides an easy way to integrate
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OpenCV calls in ROS developments (http://wiki.ros.org/vision_opencv accessed on 23
November 2022).

The documentation is not very exhaustive, but the calib3d module, which is in charge of
finding the transformation matrix between different points of view, provides several RANSAC-
related implementations (https://docs.opencv.org/4.x/d1/df1/md__build_master-contrib_
docs-lin64_opencv_doc_tutorials_calib3d_usac.html accessed on 23 November 2022).

Choices for the sampling method in the general RANSAC procedure include the
standard sampling of RANSAC, or the alternatives of PROSAC, NAPSAC, or progressive-
NAPSAC [126]. The score method could also be set to the standard of RANSAC, or those
of MSAC, MAGSAC or the least median of squared error distances. A local optimization
step using LO-RANSAC, Graph-Cut RANSAC, or the sigma consensus of MAGSAC++ is
available to the user. Finally, sequential probability ratio test (SPRT) verification evaluates a
model on randomly drawn points using statistical properties obtained from the probability
of a point being inlier, the average number of output models, etc. This could speed up the
process in a significant manner because a bad model could be rejected without computing
the error for every point.

5.2. Point Cloud Library

The Point Cloud Library (PCL) is an open project for 2D and 3D image and point
cloud processing [127]. It is released under the three-clause BSD license, which permits
research and commercial use free of any fees. The authors claim to have implemented
state-of-the-art algorithms in the areas of registration, feature estimation, filtering, surface
reconstruction, segmentation, and model fitting. Some examples of their capabilities that
could be of interest to the robotic community are outlier filtering from noisy point clouds,
scene segmentation, and geometric descriptors computation. It is written in C++ and
has been compiled on Linux, macOS, Windows, and Android. As with OpenCV, ROS
permits integration of PCL in ROS-based software (http://wiki.ros.org/pcl/ accessed on
23 November 2022).

PCL implements several sample consensus methods applied to different models
(https://pointclouds.org/documentation/group__sample__consensus.html accessed on
23 November 2022). It is possible to call the different methods by their corresponding
individual implementation or to create a segmentation of objects and pass the method and
model types as parameters. In Table 2, we show all the available methods along with the
name they receive according to the PCL API. The geometric models, along with the number
of coefficients needed to describe them, are shown in Table 3.

Table 2. List of sample consensus methods available in PCL (as of 1.12.1 version).

API Name Method

SAC_RANSAC RANdom SAmple Consensus
SAC_LMEDS Least Median of Squares
SAC_MSAC M-Estimator SAmple Consensus
SAC_RRANSAC Randomized RANSAC
SAC_MLESAC Maximum LikeLihood Estimation SAmple Consensus
SAC_PROSAC PROgressive SAmple Consensus

The four coefficients of the plane model must be provided in Hessian normal form: nx,
ny, nz, and d, where nx, ny, and nz are the components of the unit normal vector, and d is
the signed distance from the plane to the origin. The sign of d determines the side of the
plane on which the origin is located. If p > 0, the origin is in the half-space determined by
the direction of the normal, and if p < 0, it is in the other half-space. The six coefficients
of the line model are given by a point on the line (p) and the direction of the line (d) as
[px, py, pz, dx, dy, dz]. The 2D circle’s three coefficients are given by its center (c) and radius
(r) as: [cx, cy, r], while the seven coefficients of the 3D circle are given by its center (c), radius
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(r), and normal (n) as [cx, cy, cz, r, nx, ny, nz]. The four coefficients of the sphere are given by
its 3D center (c) and radius (r) as: [cx, cy, cz, r]. In the case of the cylinder model, the seven
coefficients must be given by a point on its axis (p), the axis direction (d), and a radius (r), as
[px, py, pz, dx, dy, dz, r], while for a cone model, its seven coefficients correspond to a point
of its apex (a), the axis direction (d), and the opening angle (o), as: [ax, ay, az, dx, dy, dz, o].
For parallel lines and parallel and perpendicular planes, the extra constraints, in addition
to the model coefficients, are the axis with respect to being parallel or perpendicular and
the maximum angular deviation tolerated. For a normal plane, the surface normals at each
tentative inlier point are computed and have to be parallel to the normal of the tentative
plane, within a maximum specified angular deviation. The normal sphere model adds
additional surface normal constraints. The normal parallel plane restricts the normal plane,
with the constraint that such a normal plane has to be parallel to a given axis. There are
plans to implement a torus model as well as parallel lines.

The PCL maintainers do not plan (as of version 1.12.1) to provide widespread GPU
support due to the difficult integration of NVidia libraries with their CI/CD practices.

Table 3. List of models available in PCL (as of 1.12.1 version).

API Name Model Coefficients Constraints

SACMODEL_PLANE Plane 4 No
SACMODEL_LINE Line 6 No
SACMODEL_CIRCLE2D Circle 3 No
SACMODEL_CIRCLE3D Circle 7 No
SACMODEL_SPHERE Sphere 4 No
SACMODEL_CYLINDER Cylinder 7 No
SACMODEL_CONE Cone 7 No
SACMODEL_PARALLEL_LINE Line 6 Yes
SACMODEL_PERPENDICULAR_PLANE Plane 4 Yes
SACMODEL_NORMAL_PLANE Plane 4 Yes
SACMODEL_NORMAL_SPHERE Sphere 4 Yes
SACMODEL_PARALLEL_PLANE Plane 4 Yes
SACMODEL_NORMAL_PARALLEL_PLANE Plane 4 Yes
SACMODEL_STICK Line 6 Yes

5.3. Other Software

Some of the authors of the variants or applications mentioned so far have provided
a software implementation of their algorithms. In Table 4, there is a list of available
implementations. It is worth noticing that GraphCut-RANSAC has also been implemented
in OpenCV.

Open3D [128] aims to be an alternative to PCL, focusing on making its use easy and
also providing the capability of rapid prototyping. It implements a plane segmentation
function that relies on RANSAC, although it is not very sophisticated in the current version
(0.16), not permitting other geometric models apart from the plane. Open3D is the library
behind indoor3D, the library for processing 3D data from indoor scenes [109]. Another
Python library not mentioned so far is pyRANSAC-3D [129], employed, for example,
in [91]. The characteristics of these libraries, along with those previously presented, are
summarized in Table 5.
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Table 4. Software implementations of RANSAC variants.

RANSAC Variant Language Code

GraphCut-RANSAC [44] C++ https://github.com/danini/graph-cut-ransac accessed on 23 November 2022

GCSAC [29] C++
http://mica.edu.vn/perso/Le-Van-Hung/GCSAC/index.html
accessed on 23 November 2022

Latent RANSAC [13] C++ https://github.com/rlit/LatentRANSAC accessed on 23 November 2022
Optimal RANSAC [37] Matlab https://www.cb.uu.se/~aht/code.html accessed on 23 November 2022
RANSAC-Flow [65] Python (PyTorch) https://github.com/XiSHEN0220/RANSAC-Flow accessed on 23 November 2022

Table 5. Libraries with RANSAC APIs.

Library Language URL

OpenCV [130] C++, Python https://opencv.org/ accessed on 23 November 2022
PCL [127] C++ https://pointclouds.org/ accessed on 23 November 2022
Open3D [128] C++, Python http://www.open3d.org/ accessed on 23 November 2022
pyRANSAC-3D [129] Python https://github.com/leomariga/pyRANSAC-3D/ accessed on 23 November 2022
indoor3D [109] Python https://github.com/rsait/indoor3d accessed on 23 November 2022

6. Discussion and Conclusions

Methods from the RANSAC family have been widely studied and applied to problems
arising in robotic applications. The interested researcher could easily implement a simple
model with open-source software, but even programming a RANSAC variant from scratch
should not be such a daunting task as with other models, as they are comparatively simpler
than, for example, deep learning approaches.

In the literature in general, and in the open source tools in particular, we miss more
general support of parallel implementations. In the deep learning era, GPU acceleration
is widespread, and RANSAC could benefit greatly from these techniques, as the method
iterations or the model score function could be parallelized rather easily.

Plane fitting is the most common shape detection task, likely due to the simplicity of
the geometric model and its ubiquity in human-made structures. While detectors of other
simple geometric shapes, such as spheres, cones, or cylinders have also been implemented
in open-source software, the field could also benefit from research into modeling more
complex shapes.

Other machine learning methods such as deep neural networks are nowadays used in
all kinds of areas due to their unquestionable performance, but RANSAC is conceptually
simpler and easier to implement when the model to recognize is known in advance and
suitable for parameterization. For example, if a robotics application needs to recognize
objects with no shape restriction, deep neural networks would be the default choice, while
if those shapes are known in advance and simple enough to parameterize, RANSAC could
be a good option. RANSAC could also be used as a preprocessing step for filtering the
floor, ceiling, or walls of a point cloud taken indoors, before deep learning takes charge of
segmenting the remaining data.

In contrast with the trial-and-error approach of hyperparameter tuning of deep neural
networks, theoretical results have been achieved of RANSAC parameters depending on
the a priori knowledge of the data distribution. For example, the number of iterations
needed for a given probability of randomly drawing all inlier points in some iteration can
be computed if the ratio of inlier points is known in advance.

In short, the main conclusions could be summarized as:

1. RANSAC is a good alternative to deep learning approaches when the model whose
parameters we want to estimate is known in advance, which is the case, e.g., of shape
matching of simple objects in many robotic applications.

2. Theoretical analysis of the probability of estimating the model parameters is possible, and
this can lead to optimal use of resources in embedded devices or real-time applications.
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3. Open-source implementations of RANSAC variants are available for the robotics community.
4. Research in parallelization and hybrid approaches with deep learning methods could

be promising.
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