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Abstract: In this paper, we investigate the existence of an optimal solution of a functional restricted
to non-linear partial differential equations, which ruled the dynamics of viscous and incompressible
stratified fluids in R3. Additionally, we use the first derivative of the considered functional to
establish the necessary condition of the optimality for the optimal solution.

Keywords: non-linear optimal control; stratified fluids; energy functional; optimal condition;
state variable

1. Introduction

Following the results of the modern calculus of variations, in this article, we study
the optimal solution of an energy functional constraint to a partial differential equations
system, which models the dynamic of an exponential stratified fluid in a three-dimensional
space. To do this, we investigate the existence of solutions of a non-homogenous and
non-linear partial differential system, extending the result obtained in [1], where only a
potential external force was considered. Being more specific, for a Ω ⊂ R3, non-empty,
open, connected, and bounded set, with boundary Σ = ∂Ω × (0, T) that is smooth enough
(at least Lipschitz continuous) and letting ν be the normal vector outside the boundary, we
define Q := Ω × (0, T) as the domain of our model where the motion of the fluid takes
place. Here, T > 0, (0, T) is the time interval and t ∈ (0; T) is the temporal variable.

We are interested in establishing the existence of the solution for the following non-
linear problem in a weaker sense:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y1

∂t
− μΔy1 + y · ∇y1 +

∂p
∂x1

= u1,

∂y2

∂t
− μΔy2 + y · ∇y2 +

∂p
∂x2

= u2,

∂y3

∂t
− μΔy3 + gρ + y · ∇y3 +

∂p
∂x3

= u3,

∂ρ

∂t
− N2

g
y3 = u4,

∂y1

∂x1
+

∂y2

∂x2
+

∂y3

∂x3
= 0,

(1)

where x = (x1, x2, x3) denotes the spatial variable, y = y(x, t) = (y1(x, t), y2(x, t), y3(x, t))
denotes the velocity field of the fluid and u(x, t) = (u1, u2, u3, u4) corresponds to a known
function from L2(Ω). We also have the parameter μ > 0 as the kinematic viscosity, and N
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and g are positive constants. The last equation for the non-linear system is because our
fluid is incompressible, p denotes the scalar field of the dynamic pressure and ρ represents
the dynamic density. For an ideal case, the Equation (1) can be founded in [2,3]. For a
viscous compressible fluid, the system (1) is deduced, for example, in [4].

When we study optimal control problems, we start from a dynamical system that
evolves temporarily in a period time [t0, t f ], described by a state equation of a specific
variable y(t), called a state variable with an initial condition y0. This evolution of the system
depends on a particular function u(t), called a control variable, and what is sought with it
is to influence the evolution of y(t) such that we can optimize (maximize or minimize) a
given functional, which depends on both the state and control variables, called the energy
functional. To be more related to these terms of the theory of optimal control, we can
see [5,6].

The primary motivation of this paper is to minimize an energy functional of the
form J(y, u), which depends on a control variable u and the velocity field y subject to a
state equation that corresponds in our case, to a non-linear system of partial differential
equations given in (1).

The functional that we are going to minimize is defined by:

J =
1
2

∫ T

0
‖(y, ρ)T − yd‖2

L2(Ω) dt +
λ

2

∫ T

0
‖u − ud‖2

L2(Ω) dt,

where yd ∈ L2(Ω)4 is the desired state, ud ∈ L2(Ω)4 is the desired control (or also called
control change) and λ > 0 is a constant. From a mathematical perspective, most of the
control systems involve a set of ordinary differential equations or linear partial differential
equations in their restrictions, see for example [7].

In this case, we consider a non-linear model, which makes this proposal novel and
attractive. On the other hand, there is some progress associated with the Navier–Stokes
systems [5,8]. However, not much seems to be known about works that deal with non-linear
exponential stratified fluids, making our results an open door to consider new parameters
such as salinity, rotation, and temperature in future works.

This paper is distributed in five sections. In Section 1, we introduce and describe the
problem; later, in Section 2, we show the essential background information to understand
the problem. In Section 3, we introduce the weak formulation of the problem. In Section 4,
we study the existence of solutions for the optimal problem, and finally, in Section 5, we
establish the optimal condition.

2. Previous Definitions and Notations

Before starting the study and analysis of our optimal control problem, we introduce
some previous elements and necessary notation to understand the non-linear motion in
the dynamics of viscous and incompressible stratified fluids in R3 that will be considered
this paper.

Let Ω be a domain of the space R3, and let p in R, such that 1 ≤ p ≤ ∞. A function
y : Ω −→ R (or C), is said to belong to Lp(Ω), if y is measurable and the norm

‖y‖Lp(Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
Ω
|y(x)|p dx

)1/p
if 1 ≤ ∞

ess sup
x∈Ω

|y(x)| if p = ∞,

is finite. The spaces Lp(Ω) are Banach spaces (see [9]). Furthermore, in the spaces Lp(Ω)
the Hölder Inequality is fulfilled, which ensures that, for y ∈ Lp(Ω) and v ∈ Lq(Ω) with
1
p
+

1
q
= 1 for 1 ≤ p, q ≤ ∞, it holds:

2
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∫
Ω
|y(x)v(x)|dx ≤ ‖y(x)‖Lp(Ω) · ‖v(x)‖Lq(Ω).

In particular, when we have that p = 2, then L2(Ω) is a Hilbert space with the scalar product

(y, v)2 =
∫

Ω
y(x) · v(x) dx.

It is known that L2(Ω) is one of the essential Hilbert spaces in the mathematical
analysis since they appear very frequently in the study of partial differential equations,
and it is the space where the kinetic energy is automatically well defined. As the variational
form of a mathematical physics problem appears, we cross the Sobolev’s spaces denoted by
Wk,p(Ω), and defined as the set of all functions y(x) ∈ Lp(Ω) that have all the generalized
derivatives up to the order p, which also belongs to Lp(Ω). The associated norm defined
in this space is given by

‖y‖Wk,p(Ω) =

⎛⎝ ∑
|α|≤k

‖Dαy‖p
Lp(Ω)

⎞⎠1/p

,

where Dαy is the weak derivate of order α. We also find other types of Sobolev spaces such
as Wk,p

0 (Ω).
Note that when p = 2, we can simply write Hk(Ω) and Hk

0(Ω) instead of Wk,2(Ω)

and Wk,2
0 (Ω), respectively (see for example [10]). Furthermore remember that when k = 1

and p = 2, we have that the space W1,2(Ω) is better known as H1(Ω), since it is a Hilbert
space, endowed with the scalar product:

(y, v)H1(Ω) =
∫

Ω
y(x) · v(x) dx +

∫
Ω
∇y(x) · ∇v(x) dx for all y, v ∈ H1(Ω),

where

∇y =

(
∂y
∂x1

,
∂y
∂x2

,
∂y
∂x3

)
,

and

∇v =

(
∂v
∂x1

,
∂v
∂x2

,
∂v
∂x3

)
.

The norm induced by the previous scalar product is given by:

‖y‖H1(Ω) =

(
‖y‖2

L2(Ω) +
3

∑
i=k

∥∥∥∥ ∂y
∂xi

∥∥∥∥2

L2(Ω)

)1/2

.

On the other hand, let us denote by D(Ω) the space of functions ϕ : Ω −→ R3

of class C∞(Ω) with compact support and by D′(Ω) the space of distributions on Ω.
Throughout this paper, we will use the standard notations for the Lebesgue and Sobolev
spaces, in particular the norm in L2(Ω) and the scalar product in L2(Ω) will be represented
by ‖ · ‖ and (·, ·) respectively.

Let us define

(u, v) :=
∫

Ω

3

∑
j=1

uj · vj dx, u = (u1, u2, u3), v = (v1, v2, v3) ∈ L2(Ω)3,

((u, v)) :=
∫

Ω

3

∑
j=1

∇uj · ∇vj dx, u = (u1, u2, u3), v = (v1, v2, v3) ∈ H1
0(Ω)3,

3
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and the associated norms are given to from | u |2:= (u, u) and ‖u‖2 := ((u, u)).
Consider the following notation for the solenoidal Banach spaces H and V, which

intrinsically satisfy the condition ∇ · y = 0, and which we can represent as:

H = {y ∈ L2(Ω)3 : ∇ · y = 0 in Ω; γn y = 0 on ∂Ω},

and

V = {y ∈ H1
0(Ω)3 : ∇ · y = 0 in Ω}. (2)

Here, ∇ · y denotes the divergence of y and γn denotes the normal component of the trace

operator, where γn : y 	→ n · y
∣∣∣∣
∂Ω

= 0, here n denotes the external normal to the boundary.

These spaces are used very frequently in equations of the dynamics of the stratified fluids
and are defined as the closure of Θ in L2(Ω)3 and of Θ in H1

0(Ω)3, respectively, where

Θ = {y ∈ D(Ω)3 : ∇ · y = 0 in Ω}.

It is well-known that H and V are Hilbert spaces with the scalar product (·, ·) and ‖ · ‖
respectively. Furthermore,

V ⊂ H ≡ H′ ⊂ V′,

where injections are dense and continuous.
On the other hand, if V is a Banach space with dual space V′, then the duality between

the spaces V and V′ is denoted by 〈·, ·〉V′ ,V and its associated norm in V′ is denoted by
‖ · ‖V′ .

We introduce the following space of functions y whose derivative yt exists as an
abstract function:

Wα([0, T]; X) := {y ∈ L2([0, T]; X) : yt ∈ Lα([0, T]; X′)}, 1 ≤ α ≤ 2,

W(0, T) := W2([0, T]; X).

The spaces defined above are endowed with the following norms:

‖y‖Wα([0,T];X) :=
(
‖y‖2

L2([0,T];X) + ‖yt‖2
Lα([0,T];X′)

)1/2

‖y‖W := ‖y‖W2 ,

are Banach spaces. When X is a Hilbert space, we have that Wα([0, T]; X) is a Hilbert space.
In particular, the space Wα([0, T]; X) is endowed with the following scalar product:

(y, v)Wα([0,T];X) =
∫ T

0
(y(t), v(t)) dt +

∫ T

0
(yt(t), vt(t)) dt.

In this way, we have the following results for 1 ≤ α ≤ 2 (see [10–12]):

Wα([0, T]; X) ↪→ C([0, T]; X) is continuous,

Wα([0, T]; H1(Ω)3) ↪→ L2(Ω)3 is compact,

Wα([0, T]; H1(Ω)3) ↪→ C([0, T]; L2(Ω)3) is compact.

Now, we defined our set of admissible controls, which denoted by Uad, and its elements
are called admissible controls, which satisfy the inequality constraints of our non-linear
system given from:

4
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Uad = {u ∈ L2(QT)
3 : ua,i(x, t) ≤ ui(x, t) ≤ ub,i(x, t) with a.e. on QT for i = 1, 2, 3, 4}. (3)

where the control constraints ua, ub ∈ L2(QT) with

ua,i(x, t) ≤ ub,i(x, t).

Remark 1. Note that our set of admissible controls defined in (3) is a non-empty, convex, and closed
subset in L2(QT)

4.

Now, let us recall the following classic result that we will need later to show the
existence of optimal controls.

Definition 1 ([6]). Let X be a Banach space and let J : X −→ R be a functional. We say that J is
weakly lower semicontinuous, if for any sequence (xn)n∈N ⊂ X such that xn ⇀ x when n −→ ∞
we have that:

J(x) ≤ lim inf
n→∞

J(xn).

Formulation of the Optimal Control Problem Associated with the Non-Linear Model

In this part, we will formulate our optimal control problem associated with the partial
differential equation described by (1). In order to show the existence of solutions of
the non-linear system (1), we represent our model system in a simpler way using the
following notation:

y(x, t) =

⎛⎜⎜⎝
y1
y2
y3
ρ

⎞⎟⎟⎠ =

(
y′
ρ

)
;

∂

∂t

⎛⎜⎜⎝
y1
y2
y3
ρ

⎞⎟⎟⎠ =
∂y
∂t

; (y′ · ∇)y =

⎛⎜⎜⎝
y′ · ∇y1
y′ · ∇y2
y′ · ∇y3

0

⎞⎟⎟⎠ ; μΔy =

⎛⎜⎜⎝
μΔy1
μΔy2
μΔy3

0

⎞⎟⎟⎠,

and

My =

⎛⎜⎜⎜⎜⎝
0
0

gρ

−N2

g
y3

⎞⎟⎟⎟⎟⎠ ; ∇p =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂p
∂x1
∂p
∂x2
∂p
∂x3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
; u =

⎛⎜⎜⎝
u1
u2
u3
u4

⎞⎟⎟⎠.

Then, we can rewrite (1) in more compact form as,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂y
∂t

+ (y′ · ∇)y − μΔy + My +∇p = u, y ∈ Ω ×R,

div (y′) = 0, x ∈ Ω and t ≥ 0,

y(t, ·) = 0 on the boundary of Σ = ∂Ω × (0, T),

y(0, ·) = y0 in Ω.

(4)

In this way, we can introduce our energy functional that we want to minimize, which
depends on the state and the control (y, u) and that we define by:

J(y, u) =
1
2

∫ T

0
‖y − yd‖2

L2(Ω) dt +
λ

2

∫ T

0
‖u − ud‖2

L2(Ω) dt,

5
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where yd ∈ L2(Ω)4 is the desired state, ud ∈ L2(Ω)4 is the desired control (or also called
control change) and λ > 0 is a constant.

Now, we can introduce the functional space given by:

V = {ϕ(x) = (ϕ1, ϕ2, ϕ3, ϕ4) : ϕ ∈ H1
0(Ω)4 : ∇ϕ′ = 0}, (5)

where ∇ · ϕ′ = 0 denotes the divergence of ϕ′ = (ϕ1, ϕ2, ϕ3). The space V endowed with
the inner product and the usual norm of space H1

0(Ω)4, the space of all functions y ∈ H1(Ω)
with null trace:

(y, v)H1
0 (Ω) := ∑

|α|=1
(Dα

xy, Dα
xv)2

and

‖ y ‖H1
0 (Ω)=

√
(y, y)H1

0 (Ω) for all u, v ∈ V.

The space given by (5) will be of great importance to us, since through it we can find the
functions y : [0, T] 	−→ V, which are weak solutions of our non-linear problem given by (4).

On the other hand, our space V is clearly a Banach space with the norm ‖ · ‖H1
0 (Ω). In

this way, it is a Hilbert space. It is also reflexive since V ⊆ H1
0(Ω) is separable.

In summary, we can establish our optimal control problem:{
Minimize J(y, u) =

1
2

∫ T

0
‖y − yd‖2

L2(Ω) dt +
λ

2

∫ T

0
‖u − ud‖2

L2(Ω) dt, (6)

subject to the state equations that establish the dependency between the state variable y
and the control variable u:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y
∂t

+ (y′ · ∇)y − μΔy + My +∇p = u in QT ,

div (y′) = 0, in Q,

y(t, ·) = 0 on the boundary of Σ = ∂Ω × (0, T),

y(0, ·) = y0 in Ω,

u ∈ Uad.

(7)

Here, u ∈ L2(QT) is the control, it is an external force that affects the fluid, (for example
gravity); y0 ∈ V is a divergence-free vector field in R3, the kinematic viscosity μ > 0 and
Uad represents our set of constraints defined as in (3).

The aim of our control problem is to find a solution u ∈ L2(QT), where y is the solution
of (7) associated with u such that it minimizes our energy functional given by (6).

In this paper, we will show the existence of solutions and establish the use of the first
derivative of the energy functional to derive the conditions that the optimal solutions have
to satisfy Equations (6) and (7).

3. Weak Formulation for the Non-Linear Problem

In this section, whenever we refer to space V, we will work with the functional space
defined by (5), we will also identify V∗ as its dual space and (·, ·) and ‖ · ‖ will denote the
scalar product and the usual norm in L2(Ω), respectively.

We are interested in establishing theorems of existence and uniqueness of the solution
for our non-linear problem given by (4), for which we first study the existence of a solution
in a weaker sense.

First of all, suppose there are functions y ∈ C2,1(Ω × (0, T)) and ∇p ∈ C(QT) classical
solutions for our non-linear system of partial differential equations given by (4). Let us
show the weak formulation for our non-linear problem:

6
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Suppose that y is a solution of (4). Then, multiplying the first equation of (4) by v ∈ V,
we obtain the following:

(yt) · v + (y′ · ∇)y · v − (μΔy) · v + (My) · v + (∇p) · v = u · v.

Then, integrating over Ω, we have∫
Ω
(yt) · v dx +

∫
Ω
(y′ · ∇)y · v dx −

∫
Ω
(μΔy) · v dx +

∫
Ω
(My) · v dx +

∫
Ω
(∇p) · v dx =

∫
Ω

u · v dx,

therefore ∫
Ω
(yt) · v dx +

∫
Ω
(y′ · ∇)y · v dx − μ

∫
Ω
(Δy) · v dx +

(8)∫
Ω
(My) · v dx +

∫
Ω
(∇p) · v dx =

∫
Ω

u · v dx,

then, applying Green’s Theorem in the third term of the previous equation, we obtain∫
Ω
(yt) · v dx +

∫
Ω
(y′ · ∇)y · v dx − μ

[∫
∂Ω

∂y
∂η

v dθ −
∫

Ω
∇y · ∇v dx

]
+

+
∫

Ω
(My) · v dx +

∫
Ω
(∇p) · v dx =

∫
Ω

u · v dx,

thus, we have∫
Ω
(yt) · v dx +

∫
Ω
(y′ · ∇)y · v dx − μ

∫
∂Ω

∂y
∂η

v dθ + μ
∫

Ω
∇y · ∇v dx +

+
∫

Ω
(My) · v dx +

∫
Ω
(∇p) · v dx =

∫
Ω

u · v dx,

Keeping in mind the boundary condition y
∣∣∣∣
∂Ω

= 0 and div (y′) = 0, we obtain the

following: ∫
Ω
(yt) · v dx +

∫
Ω
(y′ · ∇)y · v dx − μ

∫
∂Ω

∂y
∂η

v dθ+

+ μ
∫

Ω
∇y · ∇v dx +

∫
Ω
(My) · v dx =

∫
Ω

u · v dx,

then∫
Ω
(yt) · v dx +

∫
Ω
(y′ · ∇)y · v dx + μ

∫
Ω
∇y · ∇v dx +

∫
Ω
(My) · v dx =

∫
Ω

u · v dx. (9)

Now, (9) can be rewritten as

(yt, v)2 + ((y′ · ∇)y, v)2 + μ((∇y,∇v))2 + (My, v)2 = (u, v)2. (10)

Next, we introduce the following bilinear and trilinear form for our weak formulation of the
(10), where a(·, ·) : H1

0(Ω)3 × H1
0(Ω)3 −→ R and b(·, ·, ·) : V×V×V −→ R are defined:

7
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a((y, v)) =
∫

Ω
∇y · ∇v (11)

and

b(y, v, w) := (y′ · ∇v, w)2 =
3

∑
i,j=1

∫
Ω

y′i
∂vj

∂xi
wj dx for all y, v, w ∈ V. (12)

Then, replacing identities (11) and (12) in (10), we obtain the following:

(yt, v)2 + ((y′ · ∇)y, v)2 + μ((∇y,∇v))2 + (My, v)2 = (u, v)2

(yt, v)2 + b(y, y, v) + μa((y, v)) + (My, v)2 = (u, v)2.

In summary, we have

(yt, v)2 + b(y, y, v) + μa((y, v)) + (My, v)2 = (u, v)2. (13)

Equation (13) suggests the following weak formulation for our non-linear system given in
(4), and which we express thus:

For every u ∈ L2([0, T];V′) and y0 ∈ V, we can find a solution y ∈ L2([0, T],V) with
yt ∈ L2([0, T];V′) such that:⎧⎨⎩

d
dt
(y, v)2 + μa((y, v))2 + b(y, y, v) + (My, v)2 = (u, v)2 for all v ∈ V a.e. t ∈ (0, T)

y(0) = y0,
(14)

where the term

b(y, v, w) = (y′ · ∇v, w)2

=
∫

Ω
(y′ · ∇)v · w dx

=
3

∑
i,j=1

∫
Ω

y′i
∂vj

∂xi
wj dx for all y, v, w ∈ V. (15)

corresponds to the non-linear term of our system (4).
We call the expression (14) the variational formulation (or weak) for our non-linear

system given in (4).
On the other hand, let us see some properties with respect to the non-linear operator

defined in (15), which can be found in [8]: For every (y, v, w) ∈ V, we have that:

1. b(y, v, w) = −b(y, w, v) if y · n = 0 on Γ.
2. b(y, v, v) = 0 if y · n = 0 on Γ for all u, v ∈ V.

As a consequence, we have the following lemma.

Lemma 1 ([8,13]). If n = 3, then

| b(y, v, w) |≤

⎧⎪⎨⎪⎩
C | y |1/4 ·‖y‖3/4 · ‖v‖· | w |1/4 ·‖w‖3/4

C‖y‖ · ‖v‖ · ‖w‖ for all y, v, w ∈ V,

(16)

and in particular,

b(y, v, w) ≤ C | y |1/2 ·‖y‖3/2 · ‖v‖ for all y, v ∈ V.

8
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In this way, we can introduce our definition of a weak solution given from (14) as we
will see below.

Existence and Uniqueness of Weak Solutions

Let us introduce the definition of a weak solution.

Definition 2. Given u ∈ L2([0, T];V′) and y0 ∈ V, say that y is a weak solution to the problem
(4) on the interval (0, T) if:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ∈ C([0, T];V),
dy
dt

∈ L2([0, T],V),

(yt(t), v)2 + μa((y(t), v))2 + (My(t), v)2 + b(y(t), y(t), v) = (u(t), v)2

for all v ∈ V a.e. t ∈ (0, T),

y(0) = y0.

(17)

For our purposes, we want to give an equivalent formulation as an equation in
functional spaces. For this, we can introduce a linear and continuous operator A :
L2([0, T];V) −→ L2([0, T];V′) such that for all y, v ∈ L2([0, T];V) we have the following:

〈Ay, v〉L2([0,T];V′),L2([0,T];V) =
∫ T

0
〈Ay(t), v(t)〉V′ ,V dt

=
∫ T

0
(y(t), v(t)) dt

=
∫ T

0
∇y(t) · ∇v(t) dt, (18)

and we define a non-linear operator B : Wα([0, T];V) −→ L2([0, T];V′) such that for all
y ∈ Wα([0, T];V), w ∈ L2([0, T];V) we have

〈B(y), w〉L2([0,T];V′),L2([0,T];V)) =
∫ T

0
〈B(y)(t), w(t)〉V′ ,V dt

=
∫ T

0
b(y(t), y(t), w(t)) dt. (19)

The operator B is a bounded mapping from Wα([0, T];V) to L2([0, T];V′), that is, it holds
‖B(y)‖L2([0,T];V′) ≤ c‖y‖2

Wα([0,T];V) for every y ∈ Wα([0, T];V).
Now, with the above notations, we can establish an equivalent formulation for our

definition (17) in terms of the following functional differential equation.

Definition 3. Let u ∈ L2([0, T];V′) and y0 ∈ V be given. A function y ∈ Wα([0, T];V) is called
a weak solution to the problem (4) on the interval (0, T) if it fulfills:⎧⎪⎨⎪⎩

yt + μAy + B(y) + M(y) = u ∈ L2([0, T];V′),

y(0) = y0 ∈ V.

Denote by A the stokes operator, with domain D(A) = (H2(D))3 ∩ V, defined by
Av = −P(Δv), for all v ∈ D(A), where P is the orthogonal projection that from L2(D)3 to
H and the set

a(y, v) =
∫

Ω
∇y · ∇v dx for all y, v ∈ V,

9
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or equivalently

(Ay, v) = a(y, v) for all y, v ∈ V.

The Stokes operator A is self-attached on H, with A ∈ L(V,V′), where V′ is the dual of V
with the norm denoted by ‖ · ‖V′ and

(Ay, y) = ‖y‖2 for all y ∈ V.

Now, we can also equivalently formulate our control problem given in (6) and (7) using
the operators defined in (18) and (19):{

Minimize J(y, u) =
1
2

∫ T

0
‖y − yd‖2

L2(Ω) dt +
λ

2

∫ T

0
‖u − ud‖2

L2(Ω) dt, (20)

subject to the state equations{
yt + μAy + B(y) + M(y) = u ∈ L2([0, T];V′),

y(0) = y0 ∈ V.
(21)

and the control of restrictions

u ∈ Uad. (22)

In this part, we will see how we can reduce our given energy functional (6). Sometimes
it is convenient to work with the reduced functional since it allows us to better establish
the study on the existence of the optimal values for our optimal control problem given
in (6) and (7).

We can rewrite our optimal control problem as an optimization problem only in terms
of u, as we will see below: we define the control to state mapping denoted by Υ, which
associates an element u ∈ Uad ⊂ L2([0, T]; L2(Ω)4) with an element y ∈ Wα([0, T];V) and
which is the solution of (4).

The control to state mapping for the optimal control problem (6) and (7) is given
as follows:

Υ : L2([0, T]; L2(Ω)4) −→ Wα([0, T];V)

u 	−→ Υ(u) := yu, (23)

where yu is the unique solution of (17).

Remark 2.

1. Note that if we replace y = Υ(u) in our energy functional given in (6), then our functional J
would be expressed in terms of the control variable u, which we will denote by Ψ:

J(u) := J(Υ(u), u) = Ψ(u), (24)

where we have that

Ψ(u) =
1
2

∫ T

0
‖Υ(u)− yd‖2

L2(Ω) dt +
λ

2

∫ T

0
‖u − ud‖2

L2(Ω) dt,

and furthermore, Ψ is minimized on the set

Uad = {u ∈ L2(ΩT) : ua,i(x, t) ≤ ui(x, t) ≤ ub,i(x, t) a.e. on ΩT for i = 1, 2, 3, 4}, (25)

where the term Ψ(u) will be called the reduced energy functional. In our context, Υ is the
non-linear solution mapping associated with (21).

10
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2. The minimization of J subject to the state Equation (21) is equivalent to minimizing Ψ over
all admissible controls.

In order to understand the proof of the following theorem, which is one of the main
results of this work, we give the proof in several stages. The main idea of the proof is the
following. First, we use the Faedo–Galerkin method to find out approximate solutions of (4).
Then, using some auxiliary estimations, we show the convergence of these approximations
to the solution of the model (4).

Theorem 1. For any y0 ∈ V, T > 0 and u ∈ L2([0, T];V′) given, the problem (4) has a unique
weak solution y on the interval (0, T).

Proof. Stage 1: Existence of the approximate solution.
Note that V defined by (5) is a reflexive and separable Hilbert space. Then, by a

classical result of functional analysis, there is an orthonormal and dense subset (zi)i∈N
of V.

Let us considerer the finite dimensional subspace

Zm = span{z1, z2, z3, . . . , zm} ⊆ V, ∀m ∈ N.

Restricting to the space Zm, we solve the system of equations given from (17):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Let us find ym(x, t) =
m

∑
i=1

αim(t)zi(x) such that

(y′m(t), zj) + μ((ym(t), zj)) + b(ym(t), ym(t), zj) + (Mym(t), zj) = 〈u(t), zj〉,
t ∈ [0, T] ; j = 1, 2, 3, . . . , m,

ym(0) = y0m.

(26)

Here, y0m is the orthogonal projection of the initial data y0 ∈ V on the subspace
Vm = span{z1, z2, z3, . . . , zm}.

We can observe that (26) is in fact a Cauchy initial value problem for a non-linear
system of ordinary differential equations. Indeed, in the unknowns αim(t), the system can
be written as

m

∑
i=1

(zi, zj)α
′
im + μ

m

∑
i=1

((zi, zj))αim +
m

∑
i,k=1

b(zi, zk, zj)αimαkm +
m

∑
i=1

(Mzi, zj)αim = 〈u(t), zj〉.

Now, due to the smoothness of the coefficients, we can use a classical result from the theory
of ordinary differential equations, and ensure that there exists a unique classical solution
ym defined on a maximal interval [0, tm] with 0 < tm ≤ T. For the convergence, we need
to show that tm = T for all m. In that way, the interval of existence of solutions will not
change when m goes to infinity. If tm < T, then

lim
t→tm

sup ‖ ym(t) ‖= +∞. (27)

In the following stage, we prove that (ym(t))m∈N is bounded on [0, T] by a constant
independent of t and m. Then, the solution is defined in [0, T] for all m.

Stage 2: Estimates for the approximate solution.
Next, we show that (ym)m∈N is uniformly bounded in L2([0, T];V). Indeed, multiply-

ing equation (26) by αjm(t) and summing from j = 1 to m, we obtain

(y′m(t), ym(t)) + μ((ym(t), ym(t))) + b(ym(t), ym(t), ym(t)) + (Mym(t), ym(t)) = 〈u(t), ym(t)〉.

Using the Cauchy–Schwarz inequality and keeping in mind that b(y(t), y(t), y(t)) = 0 for
almost all t ∈ [0, T], we obtain

11
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1
2

d
dt

| ym(t) |2 +μ ‖ ym(t) ‖2 = 〈u(t), ym(t)〉 − (Mym(t), ym(t))

≤| 〈u(t), ym(t)〉 − (Mym(t), ym(t)) |
≤| u(t), ym(t) | + | Mym(t), ym(t) |
≤‖ u(t) ‖L2([0,T],V′)‖ ym(t) ‖ + | Mym(t) || ym(t) |
≤‖ u(t) ‖L2([0,T],V′)‖ ym(t) ‖ + ‖ M ‖| ym(t) || ym(t) | .

Therefore, we obtain

d
dt

| ym(t) |2 +μ ‖ ym(t) ‖2≤ ‖ u(t) ‖2

2
+

| ym(t) |2
2

+ ‖ M ‖| ym(t) |2 . (28)

The last inequality implies that

d
dt

| ym(t) |2≤| u(t) |2 +c0 | ym(t) |2, c0 = max{1, ‖ M ‖}.

Integrating on both sides of the previous expression and using the Grönwall’s inequality,
we deduce that

| ym(t) |2 − | ym(0) |2 ≤| u |2 t + c0

∫ t

0
| ym(t) |2 dt

| ym(t) |2 ≤| ym(0) |2 + | u |2 t + c0

∫ t

0
| ym(t) |2 dt

| ym(t) |2 ≤
(
| y0 |2 + | u |2 t

)
e
∫ t

0 c0 dt

| ym(t) |2 ≤
(
| y0 |2 + | u |2 t

)
ec0t.

It follows that

sup
t∈[0, tm ]

| ym(t) |2≤
(
| y0 |2 + | u |2 t

)
ec0t. (29)

This tell us, that tm = T for all m. Moreover, (ym)m∈N is uniformly bounded in L∞([0, T]; H).
On other hand, integrating from 0 to T on both sides of Equation (28) and using (29),

we obtain

‖ ym(T) ‖2 +μ
∫ T

0
‖ ym(t) ‖2 dt ≤

(
| y0 |2 + | u |2 T + c0(|y0|2+ | u |2 T)ec0T

)
,

therefore,

μ
∫ T

0
‖ ym(t) ‖2 dt ≤

(
| y0 |2 + | u |2 T + c0(|y0|2+ | u |2 T)ec0T

)
.

Consequently, (ym)m∈N is uniformly bounded in L2([0, T];V).
Stage 3: Estimates for the derivative of approximate solution.
Now, we prove that the derivative y′m(t) is uniformly bounded in L2([0, T];V). Indeed,

multiplying (26) by α′jm(t) and summing from j = 1 to m, we obtain

| y′m(t) |2 +μ((ym(t), y′m(t))) + b(ym(t), ym(t), y′m(t)) + ((Mym(t), y′m(t)) = 〈u(t), y′m(t)〉.

After integrate the last equation, we obtain

12
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∫ t

0
| y′m(t) |2 dt + μ

∫ t

0
((ym(t), y′m(t)) dt +

∫ t

0
((Mym(t), y′m(t))) dt +

+
∫ t

0
b(ym(t), ym(t), y′m(t)) dt =

∫ t

0
〈u(t), y′m(t)〉dt.

Therefore

∫ t

0
| y′m(t) |2 dt + μ

∫ t

0
((ym(t), y′m(t)) dt +

∫ t

0
((Mym(t), y′m(t))) dt

=
∫ t

0
〈u(t), y′m(t)〉dt −

∫ t

0
b(ym(t), ym(t), y′m(t)) dt.

Taking into account the Cauchy’s and Ladyzhenskaya’s inequalities, we have that

∫ t

0
| y′m(t) |2 dt +

μ

2

∫ t

0
((ym(t), y′m(t))) dt +

∫ t

0
((Mym(t), y′m(t))) dt =

=
∫ t

0
〈u(t), y′m(t)〉 dt −

∫ t

0
b(ym(t), y′m(t), ym(t)) dt

≤‖ u(t) ‖2
L2([0,T];V′)‖ y′m(t) ‖L2([0,T];V) +

∫ t

0
| ym(t) |2L4([0,T];V)| ∇y′m(t) | dt

≤ 1
α2 ‖ u(t) ‖2

L2([0,T];V′) +
α2

4
‖ y′m(t) ‖2

L2([0,T];V)

+ c
∫ t

0
| ym(t) |1/2| ∇ym(t) |3/2 ∗ | ∇y′m(t) | dt

≤ 1
α2 ‖ u(t) ‖2

L2([0,T];V′) +
α2

4
‖ y′m(t) ‖2

L2([0,T];V) +c
∫ t

0
| ∇ym(t) || ∇y′m(t) | dt

≤ 1
α2 ‖ u(t) ‖2

L2([0,T];V′) +
α2

4
‖ y′m(t) ‖2

L2([0,T];V)

+c
(∫ t

0
| ∇ym(t) |2 dt

)1/2(∫ t

0
| ∇y′m(t) |2 dt

)1/2

≤ 1
α2 ‖ u(t) ‖2

L2([0,T];V′) +
α2

4
‖ y′m(t) ‖2

L2([0,T];V)

+ c ‖ ym(t) ‖2
L2([0,T];V) +

α2

4
‖ y′m(t) ‖2

L2([0,T];V) .

In summary, we have the following:

2
∫ t

0
| y′m(t) |2 dt + μ

∫ t

0
((ym(t), y′m(t))) dt +

∫ t

0
((Mym(t), y′m(t))) dt

≤ 2
α2 ‖ u(t) ‖2

L2([0,T];V′) + c ‖ ym(t) ‖2
L2([0,T];V) for all t ∈ [0, T].

In this way, due to the fact that ym(t) is uniformly bounded in L∞([0, T];V), it follows that
y′m(t) is uniformly bounded in L2([0, T];V).

Stage 4: Extraction of subsequence and convergence to the solution.
We can extract a subsequence of (ym)m∈N that converges (in an appropriate sense) to

a function y and then go to the limit in the approximate problem given by (26) as follows:
Since (ym)m∈N is uniformly bounded in L2([0, T];V) ∩ L∞([0, T]; H), then there is a

subsequence (which we will denote in the same way) (ym)m∈N such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
ym ⇀ y weak in L2([0, T];V)

ym ⇀ y weak-* in L∞([0, T]; H)

∂ym

∂t
⇀

∂y
∂t

weakly in L2([0, T];V).

(30)
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Now, note that V ↪→ H with dense and continuous injections.
Stage 5: Existence of solutions.
Let us take a function η ∈ D(0, T). In Equation (26), we multiply by η, and integrate

over the interval (0, T). Then we obtain,

−
∫ T

0
(ym(t), η′(t)zj) dt + μ

∫ T

0
((ym(t), η(t)zj)) +

∫ T

0
b(ym(t), ym(t), zjη(t)) dt

+
∫ T

0
((Mym(t), zjη(t))) =

∫ T

0
(u(t), zjη(t)) dt.

Consequently, we have that,

−
∫ T

0
(y(t), η′(t)zj) dt + μ

∫ T

0
((y(t), η(t)zj)) +

∫ T

0
b(y(t), y(t), η(t)zj) dt

+
∫ T

0
((My(t), η(t)zj)) =

∫ T

0
(u(t), η(t)zj) dt,

or equivalently∫ T

0
(y′(t), η(t)zj) dt + μ

∫ T

0
((y(t), η(t)zj)) +

∫ T

0
b(y(t), y(t), η(t)zj) dt

+
∫ T

0
((My(t), η(t)zj)) =

∫ T

0
(u(t), η(t)zj) dt.

This equality is true by linearity and by density for all v ∈ V. Thus, we have that y verifies
the equation given by (17).

Now, let us show that y(0) = y0. Since y is a weak solution of (4), taking η ∈ C∞([0, T])
with η(T) = 0, for all v ∈ V we have that:

−
∫ T

0
(y(t), η′(t)v) dt + μ

∫ T

0
((y(t), η(t)v)) +

∫ T

0
b(y(t), y(t), η(t)v) dt

+
∫ T

0
((My(t), η(t)v)) = (u0, η(0)v) +

∫ T

0
(u(t), η(t)v) dt.

On the other hand,

d
dt

〈y, η(v)〉 = 〈yt, η(v)〉+ 〈y, ηt(v)〉,

we can integrate from 0 a T and we obtain the following:

〈y(t), η(t)(v)〉 − 〈y(0), η(0)〉 =
∫ T

0
[〈yt, η(v)〉+ 〈y, ηt(v)〉] dt

=
∫ T

0
〈yt, η(v)〉 dt +

∫ T

0
〈y, ηt(v)〉 dt.

Therefore, ∫ T

0
〈y, ηt(v)〉 dt = 〈y(t), η(t)(v)〉 − 〈y(0), η(0)〉 −

∫ T

0
〈yt, η(v)〉 dt.

Thus, if η is such that η(T) = 0, it follows:∫ T

0
〈y, ηt(v)〉 dt = −〈y(0), η(0)v〉 −

∫ T

0
〈yt, η(v)〉 dt.

Thus, we obtain that

η(0)(y0 − y(0), v) = 0 for all η ∈ C∞([0, T]), v ∈ V.

14
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Taking η(0) = 1, obtain that y(0) = y0 ∈ V.
Stage 6: Continuity and uniqueness of the weak solution.
Let us show that y : [0, T] 	−→ V is continuous. Indeed, note that the non-linear

operator B(y) is defined by (19), now since yt = u − μAy − B(y), in this way, by the
Lemma (1) it follows that B(y) ∈ L2([0, T];V′) and also u, Ay, My ∈ L2([0, T];V′), there-
fore, yt ∈ L2([0, T];V′), thus y ∈ C([0, T];V).

Now, suppose that there exist two weak solutions y1(t), y2(t) for the equations in the
dynamics of the stratified fluids given by (4), with the initials values y01 , y02 ∈ V. Let us
denote by y(t) = y1(t)− y2(t), then y(t) satisfies yt(t) ∈ L2([0, T];V′), and for every test
function δ, we have the following:

〈yt, δ〉+ μ(∇y,∇δ) + (My, δ) + b(y1, y1, δ)− b(y2, y2, δ) = 0.

In this way, taking δ = y, it follows that:

1
2

d
dt

| y(t) |2 +μ | ∇y(t) |2 + | My(t) |2 +b(y1(t), y1(t), y(t))− b(y2(t), y2(t), y(t)) = 0.

Now, adding and subtracting b(y1(t), y2(t), y(t)) and having in mind that
b(y1(t), y(t), y(t)) = 0, we obtain the following:

d
dt

| y(t) |2 + | My(t) |2 +2μ | ∇y(t) |2 = 2(−b(y1(t), y1(t), y(t)) + b(y2(t), y2(t), y(t)))

= −2b(y(t), y2(t), y(t))

= −2
3

∑
i,j=1

∫
Ω

yi ∂yj
2

∂ti yj dt

≤ 2
3

∑
i,j=1

(∫
Ω
| yi |4 dt

)1/4(∫
Ω
| ∇yj

2 |2 dt
)1/2(∫

Ω
| yj |4 dt

)1/4

≤ 2 | ∇y2(t) |‖ y(t) ‖2
4

≤ 2c | ∇y2(t) | y(t) |1/2| ∇y(t) |3/2

≤ c | y(t) |1/2| ∇y(t) |3/2

≤ c(μ)(| y(t) |1/2)4 + 2μ(| ∇y(t) |3/2)4/3

≤ c | y(t) |2 +2μ | ∇y(t) |2 .

In summary, we have that

d
dt

| y(t) |2 + | My(t) |2 +2μ | ∇y(t) |2≤ c | y(t) |2 +2μ | ∇y(t) |2 .

This implies that

d
dt

| y(t) |2 + | My(t) |2≤ c | y(t) |2 .

Now, since y2(t) ∈ L2([0, T];V), we can apply Gronwall’s Lemma. Using the fact that
y(0) = 0, it follows

| y(t) |2≤ 0 for all t ∈ [0, T],

thus, y1 = y2, as we wanted to prove.

4. Study of the Existence of Solutions for Our Optimal Control Problem

In this section, we will show the existence of optimal controls for our non-linear
system given by (7).
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Let us show that our optimal control problem formulated in (6) and (7) has a solution in
Uad. To prove this fact, we need the following result associated with the non-linear operator.

Lemma 2 ([14]). Assume that yn converges to y in Wα([0, T];V) weakly for 1 ≤ α ≤ 2. Then,
for any v ∈ L2([0, T];V),

〈B(yn), v〉L2([0,T];V′),L2([0,T];V) −→ 〈B(y), v〉L2([0,T];V′),L2([0,T];V) as n −→ ∞.

Now, with the following result, we want to show that our optimal control problem
formulated by (6) and (7) has a solution in Uad.

Theorem 2. The optimal control problem given by (6) and (7) admits an optimal solution u ∈ Uad
with associated state y ∈ Wα([0, T];V) for 1 ≤ α ≤ 2.

Proof. Note that the set of admissible controls defined by (3) is non-empty, convex,
and closed in L2(Ω)4. Then, for every control u ∈ L2(Ω)4, applying Theorem 1, there
is a unique weak solution of the state Equations (20) and (21). Therefore, we have that
J(y, u) ≥ 0 for every admissible pair (y, u).

Hence, there exists the infimum of J over all admissible controls and states that such:

J(yn, un) =
∫

Ω
‖yn − yd‖2 dt + λ

∫
Ω
‖un − ud‖2 dt,

then,

‖un‖2 = ‖(un − ud) + ud‖2

≤ (‖un − ud‖+ ‖ud‖)2

= ‖un − ud‖2 + 2‖ud‖ · ‖un − ud‖+ ‖ud‖2

≤ ‖un − ud‖2 + ‖ud‖2 + ‖un − ud‖2 + ‖ud‖2

= 2‖un − ud‖2 + 2‖ud‖2,

now it follows that

‖un‖L2([0,T];V) < ∞ =⇒
∫ T

0
‖un(x, t)‖2 dt ≤ 2

∫ T

0
‖un − ud‖2 dt + 2‖ud‖2T

≤ J(un, un) + 2‖ud‖2T

< ∞.

In summary, we have that:

0 ≤ J = inf
(y,u) admisible

J(y, u)

< ∞.

On the other hand, there is a sequence (yn, un)n∈N of admissible pairs such that J(yn, un) −→
J as n −→ +∞.

First, we will show that (un)n∈N and (yn)n∈N are bounded sequences in L2(Ω)4 and
Wα([0, T];V), respectively.

From the convergence, we see that the set (J(yn, un))n∈N is bounded, this implies that
the set (un)n∈N is bounded in L2(Ω)4.

Now, we need to show that (yn)n∈N and (ynt)n∈N are bounded in L2([0, T];V). Indeed,{
ynt(t) + μAyn(t) + Myn(t) + B(yn(t)) = un(t) in L2([0, T];V′)

yn(0) = y0 in V.
(31)
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Since yn(t) ∈ L2([0, T];V), we multiply (31) by χ(0, t)yn(t), where χ(0, t) is the characteristic
function on the interval (0, t) and applying the identity b(yn(t), yn(t), yn(t)) = 0, we get∫ t

0
(ynt(t), yn(t)) dt + μ

∫ t

0
‖yn(t)‖2 dt +

∫ t

0
((M(yn(t), yn(t))) dt =

∫ t

0
〈un(t), yn(t)〉 dt, (32)

The right-hand side can be estimated by∣∣∣∣∫ t

0
(un(t), yn(t)) dt

∣∣∣∣ ≤ ∫ t

0
| un(t) | · | yn(t) | dt

≤ C
∫ t

0
‖yn(t)‖· | un(t) | dt (33)

≤ μ

2

∫ t

0
‖yn(t)‖2 dt +

C2

2μ

∫ t

0
| un(t) |2 dt,

where C only depends on Ω.
Then, applying the integration in parts to (32) and (33) implies that:

| yn(t) |2 +μ
∫ t

0
‖yn(t)‖2 dt +

∫ t

0
((M(yn(t), yn(t)))) dt ≤| yn(0) |2 +

C2

μ

∫ t

0
| un(t) |2 dt

≤| y0 |2 +
C2

μ
‖un‖L2(Ω)4 .

Since (un)n∈N is bounded in L2(Ω)4 and (yn)n∈N is bounded in L∞([0, T]; H) and L∞([0, T]; V),
it follows that (yn)n∈N is bounded in L2([0, T]; V).

Now, multiplying (31) by ynt ∈ L2([0, T]; V), we obtain the following:

‖ynt‖2
L2(Ω)4 + μ

∫ T

0
((yn(t), ynt(t))) dt +

∫ T

0
(M(yn(t), ynt(t)) dt +

+
∫ T

0
b(yn(t), yn(t), ynt(t)) dt =

∫ T

0
(un(t), ynt(t)) dt. (34)

Thus

‖ynt‖2
L2(Ω)4 + μ

∫ T

0
((yn(t), ynt(t))) dt +

∫ T

0
(M(yn(t), ynt(t)) dt

=
∫ T

0
(un(t), ynt(t)) dt −

∫ T

0
b(yn(t), yn(t), ynt(t)) dt.

On the side right, we have the following estimate:∣∣∣∣∫ T

0
(un(t), ynt(t)) dt

∣∣∣∣ ≤ ∫ T

0

( | un(t) |2
4

+ | ynt(t) |2
)

dt

=
1
4
‖un‖2

L2(Ω)4 + ‖ynt‖2
L2(Ω)4 .

Note that

μ
∫ T

0
((yn(t), ynt(t))) dt =

μ

2

(
‖yn(T)‖2 − ‖y0‖2

)
.

Then, since (yn)n∈N is bounded in L∞([0, T]; H) and L∞([0, T]; V), it follows that∣∣∣∣∫ T

0
b(yn(t), yn(t), ynt(t)) dt

∣∣∣∣ ≤ C
∫ T

0
| yn(t) |1/2 ·‖yn(t)‖3/2 · ‖ynt(t)‖ dt

≤ C
∫ T

0
‖ynt(t)‖ dt.
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Therefore, from Equation (34), we have

μ

2
‖yn(T)‖2 +

∫ t

0
((M(yn(t), yn(t))) dt + C

∫ T

0
‖ynt(t)‖ dt ≤ μ

2
‖y0‖2 +

1
4
‖un‖2

L2(Ω)4 .

Since (un)n∈N is bounded in L2(Ω)4, we can ensure that (ynt)n∈N is bounded in L2([0, T]; V).
Thus, it follows that (yn)n∈N is bounded in Wα([0, T]; V).

Then, we can extract a subsequence (y′n, u′
n)n∈N converging weakly in the space

Wα([0, T];V)× L2(Ω)4 to some limit (y, u).
Now, let us show that (y, u) is an admissible pair, that is, it satisfies the state equations

given by (21). Indeed, note that the set of admissible controls Uad is non-empty, convex,
and closed in L2(Ω)3, so it is weakly closed. Therefore, u is admissible, that is, u ∈ Uad,
and y is the state associated with u.

Then, let us show that the pair (y, u) satisfies the state equations given by (21), that is,
for every v ∈ L2([0, T];V), we have the following convergences:

〈yn′t, v〉L2([0,T)];V′),L2([0,T];V) −→ 〈yt, v〉L2([0,T)];V′),L2([0,T];V),

〈Ayn′ , v〉L2([0,T)];V′),L2([0,T];V) −→ 〈Ay, v〉L2([0,T)];V′),L2([0,T];V),

〈Ayn′t, v〉L2([0,T)];V′),L2([0,T];V) −→ 〈Ayn′t, v〉L2([0,T)];V′),L2([0,T];V),

〈un′ , v〉L2([0,T)];V′),L2([0,T];V) −→ 〈u, v〉L2([0,T)];V′),L2([0,T];V),

as n′ −→ ∞.
Then, according to Lemma 2, we obtain the convergence of the non-linear term from:

〈B(yn′), v〉L2([0,T)];V′),L2([0,T];V) −→ 〈B(y, v)〉L2([0,T)];V′),L2([0,T];V) as n′ −→ +∞.

Consequently, all the terms in the weak formulation of the state equation converge, and

〈yt + μAy + B(y) + M(y)− u, v〉L2([0,T)];V′),L2([0,T];V) = 0,

is fulfilled for all v ∈ L2([0, T];V).
Moreover, since the imbedding Wα([0, T];V) ↪→ C([0, T];V) is continuous, then the

mapping w 	−→ w(0) is linear and continuous from Wα([0, T];V) to V, hence, we have that
yn(0) converges weakly to y(0).

By the construction of the proof, we have that y0 = yn(0) for all n, hence, it holds
y(0) = y0.

Finally, it remains to show J = J(y, u) = J(v). Remember that our energy functional
is given by (20), therefore we have that J = J(v) is a convex functional. Moreover, J(v) is
continuous on Wα([0, T];V)× L2(Ω)4, thus by Definition 1 we have that J = J(v) is weakly
lower semicontinuous, that is,

J(y, u) ≤ lim inf J(y′n, u′
n) = J.

Now, since (y, u) is an admissible pair, and J is the infimum over all admissible pairs, then
it follows that J = J(y, u).

Thus, we have that (y, u) is a pair of optimal controls.

5. Optimality Condition

In this section, we will show that the optimal solution must satisfy the first-order
necessary optimality condition associated with our optimal control problem given in (6).

We will study the case in which the Gâteaux derivative of the energy functional
vanishes. We obtain a possible candidate solution for our optimal control, that is, if the
Gâteaux derivative of our functional exists, then the optimal solution must satisfy the
first-order necessary condition.
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The first-order necessary condition allows conclusions to be drawn that have to do
with the form and characterization of control problems.

In this part, we will establish the first-order necessary optimization condition asso-
ciated with our optimal control problem given in (6). This condition will be necessary
for local optimization since it is of vital importance in many aspects, that is, from the
first-order necessary conditions, we can establish the candidates to be optimal controls by
numerical approximations in such a way that the approximate solutions allow us to solve
the first-order optimization system at a discrete level and this would be additional work
that could be studied later as future research work.

Now, we can show that the optimal solution must satisfy the first-order necessary
condition associated with our problem given in (20). This is performed directly using the
Gâteaux derivative of our functional Ψ(u). In fact, for every h ∈ L2([0, T]; L2(Ω)4) and for
every α ∈ R, we have that

Ψ(u + αh) ≥ Ψ(u),

due to the very definition of u. In particular, we have that

∀ α > 0,
Ψ(u + αh)− Ψ(u)

α
≥ 0,

and

∀ α < 0,
Ψ(u + αh)− Ψ(u)

α
≤ 0,

which implies that the derivative at the point α ∈ R of the function α 	−→ Ψ(u + αh), is
precisely the Gâteaux derivative of Ψ in the direction of h at the point u vanishes for every
h ∈ L2([0, T]; L2(Ω)4).

Before stating our main result, let us recall the following result:

Theorem 3 ([8]). Let y0 be in V; the mapping u 	−→ yu from L2([0, T]; L2(Ω)4) to Wα([0, T];V),
is Gâteaux differentiable ((Υ′(u)) · h1) in every direction h1 in L2([0, T]; L2(Ω)4). Furthermore,
(Υ′(u)) · h1 = σ(h1) is the solution of the problem given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

dσ

dt
+ μAσ + B

′
(yu) · σ + Mσ = h1 in QT ,

σ ∈ V,

σ(0) = 0 in Ω;

(35)

we also have that σ ∈ L∞(0, T; V))∩ L2(0, T; (H2(Ω))4) and ‖B
′
(yu)σ‖L2(J1(Ω))′ ) ≤ c‖yu‖‖σ‖.

Let us introduce the definition of locally optimal control.

Definition 4 (locally optimal control). A control u ∈ Uad is said to be locally optimal in L2(Ω)3

if there is a constant β > 0 such that

J(y, u) ≤ J(y, u),

holds for all u ∈ Uad with ‖u − u‖L2(Ω)4 ≤ β. Here y and y denote the state of the system
associated with u and u, respectively, that is, y = Υ(u) and y = Υ(u).

The first-order necessary optimization conditions are in many references, but for the
related optimization conditions for optimal control problems with elliptic and parabolic
partial differential equations (see [6,7,9]), they were the main references that helped us a lot,
studying optimal control problems, as well as the study of stratified fluids (see [15–17]).
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Now, let us show our main result of this section and show the first-order necessary
optimization condition for our control problem given in (6).

Theorem 4. Let U be a real Banach space, and let Uad ⊂ L2(Ω)4 be a non-empty, convex,
and closed set in L2(Ω)4 and the functional Ψ : U −→ R be Gâteaux differentiable on Uad. Let
u ∈ Uad be a solution of the problem

min
u∈Uad

Ψ(u). (36)

Then the following optimality condition

Ψ
′
(u)(u − u) � 0 (37)

holds for all u ∈ Uad. If, additionally, u ∈ Uad solves the variational inequality above and Ψ is
convex, then u is the unique solution of (36).

Proof. Let u ∈ Uad arbitrary. Consider a convex linear combination given by:

u(t) = u + t(u − u) (38)

for any t ∈ [0, 1].

Now since Uad is non-empty, convex, and closed in L2(Ω)3, then we have that u(t) =
u + t(u − u) ∈ Uad for all t ∈ [0, 1]. Then, from the optimality of u, we have that

Ψ(u) ≤ Ψ(u(t)) ∀t ∈ [0, 1]. (39)

Then, inserting (38) into (39) we obtain:

Ψ(u) ≤ Ψ(u + t(u − u))

0 ≤ Ψ(u + t(u − u))− Ψ(u),

We can rewrite the last inequality by:

Ψ(u + t(u − u))− Ψ(u) ≥ 0 ∀t ∈ [0, 1],

thus, it follows that

lim
t→0+

Ψ(u + t(u − u))− Ψ(u)
t

≥ 0.

Now, using the fact that Ψ is Gâteaux differentiable on Uad, and taking the limit as t −→ 0,
we obtain

Ψ
′
(u)(u − u) ≥ 0.

On the other hand, let u ∈ Uad be arbitrary and let u ∈ Uad be a solution of Equation (37).
Since Ψ is convex, then we have that:

Ψ(u)− Ψ(u) ≥ Ψ
′
(u)(u − u) ∀u ∈ Uad. (40)

In fact, for all t ∈ [0, 1], it follows

Ψ(u + t(u − u)) ≤ (1 − t)Ψ(u) + tΨ(u),

hence,
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Ψ(u)− Ψ(u) =
(1 − t)Ψ(u) + tΨ(u)− Ψ(u)

t

≥ Ψ(u + t(u − u))− Ψ(u)
t

≥ Ψ
′
(u)(u − u) (t −→ 0+).

Then, from Equations (37) and (40), we obtain that

Ψ(u)− Ψ(u) ≥ Ψ
′
(u)(u − u)

≥ 0 ∀u ∈ Uad.

Therefore, we have that u is an optimal solution.

In order to characterize optimal solutions, we introduce the adjoint problem to the
equations, which describes the non-linear motion in the dynamics of viscous and incom-
pressible stratified fluids in R3.

Theorem 5 (Necessary Condition). Let u be a locally optimal control for (20) with associated
state y = Υ(u). Then there exists a unique solution η ∈ V, which is the weak solution of the
adjoint equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ηt + μAη + B′(y)∗η + Mη = (ŷ − yd) with x ∈ Ω, t > 0,

∇ · η = 0, with x ∈ Ω, t > 0,

η(x, t) = 0, with x ∈ ∂Ω, t > 0,

η(T) = 0 with x ∈ Ω.

(41)

Moreover, the following inequality∫ T

0

∫
(η + λ(u − ud)) · (u − u) dx dt ≥ 0, for all u ∈ Uad ⊂ L2(QT)

3, (42)

is satisfied.

Proof. First of all, let us work with our reduced energy functional Ψ given in (24), which is
given by:

J(u) := J(Υ(u), u) = Ψ(u),

where we have that

Ψ(u) =
1
2

∫ T

0
‖Υ(u)− yd‖2

L2(Ω) dt +
λ

2

∫ T

0
‖u − ud‖2

L2(Ω) dt. (43)

By Banach space optimization principles, we know that the variational inequality

Ψ′(u)(u − u) ≥ 0, for all u ∈ Uad

is a necessary condition for local optimality of u. It remains to compute Ψ′ and to derive
the adjoint system. Let us write Ψ in the form given by (43).

The first derivative Ψ′ at u is characterized by

Ψ′(u)(u − u) =
∫ T

0

∫
Ω
(y − yd) · Υ′(u)(u − u) dx dt +

∫ T

0

∫
Ω

λ(u − ud) · (u − u) dxdt

=
∫ T

0
(y − yd, σ)L2(Ω) dx dt +

∫ T

0
(λ(u − ud), (u − u))L2(Ω) dx dt for all u ∈ Uad,
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where y = Υ(u) and σ = Υ′(u)(u − u) denote the weak solution of the equation given
by (35). Let η be a test function. Now, multiplying by η in the weak formulation of (35) and
integrating over Ω, we obtain

(σt, η) + μA(σ, η) + b(σ, σ, η) + b(σ, σ, η) + (Mσ, η) = (u − u, η), (44)

Now, in the same way we can introduce σ in the weak formulation of the equation given
by (41) and integrate over Ω and we obtain the following

(ηt, σ) + μA(η, σ) + b(η, η, σ) + b(η, η, σ) + (Mη, σ) = (y − yd, σ). (45)

From Equations (44) and (45), it follows that

(u − u, η)L2(Ω) = (y − yd, σ)L2(Ω) = (y − yd, Υ′(u)(u − u))L2(Ω)

= (Υ′(u)∗(y − yd), (u − u))L2(Ω)

= (Υ′(u)∗(Υ(u)− yd), (u − u))L2(Ω).

Thus, we have that

η = (Υ′(u)∗(y − yd)) = (Υ′(u)∗(Υ(u)− yd)).

Therefore, it follows that∫ T

0

∫
(η + λ(u − ud)) · (u − u) dx dt

=
∫ T

0
(η + λ(u − ud), u − u) dx dt ≥ 0, for all u ∈ Uad,

where η is the solution for the system (41).
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Abstract: The aim of this article was to provide analytical and numerical approaches to a one-
dimensional Eyring–Powell flow. First of all, the regularity, existence, and uniqueness of the solutions
were explored making use of a variational weak formulation. Then, the Eyring–Powell equation was
transformed into the travelling wave domain, where analytical solutions were obtained supported by
the geometric perturbation theory. Such analytical solutions were validated with a numerical exercise.
The main finding reported is the existence of a particular travelling wave speed a = 1.212 for which
the analytical solution is close to the actual numerical solution with an accumulative error of <10−3.

Keywords: travelling waves; Eyring–Powell; geometric perturbation; nonlinear reaction–diffusion;
unsteady flow

MSC: 35Q35; 35B65; 76D05

1. Introduction

The Eyring–Powell flow is a type of non-Newtonian fluid of paramount relevance
in industrial areas, manufacturing, and biological technology. Some trivial examples of
non-Newtonian fluids are given by bubbles, boiling, plastic foam processing, columns,
toothpaste, mud, honey, and custard. Non-Newtonian fluids are further classified into
different classes by virtue of their rheological characteristic conditions. The Eyring–Powell
fluid is one such subclass of non-Newtonian fluids with particular features linked with
the kinetic theory of liquids. In their seminal paper, Metzner and Otto [1] considered a
non-Newtonian fluid focused on the relationship between the speed of flow and shear
rate. In 1982, Rajagopal [2] considered the incompressible, unidirectional, and unsteady
conditions of a second-grade fluid to obtain solutions for a flow between two rigid plates in
which one suddenly starts moving. Later on, with the help of Gupta [3], they established
the exact solution for the same kind of fluid between porous plates. These cited seminal
works have attracted the attention of the scientific community, leading to further research
paths with the same topical background in non-Newtonian fluids. Eldabe et al. [4] obtained
results applicable in the field of medicine and the study of blood flow, analysing the effect
of coupling forces on an unstable non-Newtonian flow of MHD between two parallel
fixed porous plates under a uniform external magnetic field. Another study, carried out
by Shao and Lo [5], modelled the hydrodynamics of incompressible particles (SPHs) to
simulate Newtonian and non-Newtonian flows with free surfaces. The authors were able to
verify the proper functioning of the model in problems such as dam breaks in 2D. Another
example of outstanding interest in this regard was the study carried out by Fetecau [6].
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Here, solutions were established for unidirectional transient flows of non-Newtonian fluids
in pipe-like domains.

Under particular rheological properties describing a non-Newtonian fluid, further
applications have been accounted for by the theory of magnetohydrodynamics (MHD).
Akbar [7] established the solution for a flow of a two-dimensional fluid under the effect
of a magnetic field over stretching surfaces. Hina [8] analysed the heat transfer for the
magnetohydrodynamic flow of the Eyring–Powell fluid. Later, Bhatti et al. [9] considered
the same MHD fluid over permeable stretching surfaces. In this direction, other relevant
studies can be considered (refer to [10–15]).

Further relevant topics in applied sciences involving Eyring–Powell fluids can be
mentioned. In [16], the authors analysed the characteristics of the flow of Eyring–Powell
nanofluids through a rotating disk subject to various physical phenomena such as a sliding
flow and a magnetic field together with homogeneous and heterogeneous reactions. To
this end, the proposed equations were solved by a numerical method based on the Runge–
Kutta–Fehlberg method of 4th–5th order. Furthermore, in [17], the authors developed
a computational technique for a three-dimensional Eyring–Powell fluid with activation
energy on a stretched sheet with sliding effects. The resulting nonlinear system of PDEs
was transformed into a nonlinear system of ODEs, and a shooting method was explored
accordingly. The analysis in [18] discussed the flow and heat transfer of the Eyring–Powell
MHD fluid in an infinite circular pipe. The explored solutions of different viscous terms
were calculated numerically with the help of an iterative technique.

Note that in all the previously cited references, attention was mainly set on the numer-
ical schemes in search of particular solutions. Analytical conceptions remain within the
scope of dimensional analysis.

Further analytical approaches can be found in [19], where a homotopy approach
was employed to construct solutions for a boundary layer with natural convection on a
permeable vertical plate with thermal radiation. Afterwards, the differential quadrature
method (DQM) was used to validate solutions for different parametrical cases involving
the local Nusselt number and the local Sherwood number. In [20], the authors used the
ADM-Padé approach to study analytical solutions for the deflection and pull-in instability
of nanocantilever electromechanical switches, showing the remarkable accuracy compared
with the numerical results. The authors claimed the possibility of extending their results
to solve a wide range of instability problems. Furthermore, in [21], the authors studied
a viscoelastic nanofluid with optimisation techniques subject to the proposal of a certain
solution that was progressively optimised. To account for further analytical approaches,
in [22], perturbation solutions were obtained for low-Reynolds–Eyring–Powell flow to
obtain velocity, temperature, concentration, and stream functions.

After having cited some paramount studies involving analytical conceptions, it shall
be noted that in the present study, the intention was to go deeper into the advances of
the theory of PDEs to construct profiles of solutions. Unlike the previously cited studies,
solutions were explored within the theory of travelling waves. Such a theory was firstly
introduced by Kolmogorov, Petrovskii, and Piskunov [23], in combustion theory, and by
Fisher [24], to predict the interaction of genes. The main question, introduced by the
mentioned authors, was related to the search for an appropriate travelling wave speed
for which the analytical travelling wave profile converges to the actual profile (solution of
the actual problem, not converted into the travelling domain). Both the travelling profile
and the actual one were shown to have the same exponential behaviour. This spirit was
kept in our present analysis: indeed, one question to answer is related to the search for an
appropriate travelling wave speed for which the analytically obtained solution converges
to the actual one (obtained by numerical means) with a certain error tolerance. This was
the main target of our analysis, but previously, the regularity, existence, and uniqueness
of the solutions were shown. Later, the geometric perturbation theory was employed to
support the construction of the analytical profiles of the solutions. These obtained profiles
were validated afterwards via a numerical exercise.
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2. Mathematical Model

We consider an incompressible, unsteady, and one-dimensional electrically conducting
Eyring–Powell fluid. Under these assumptions, the velocity field is given by V = (u1(y), 0, 0),
where u1(y) refers to the first velocity component. Note that the proposed problem refers to
an open geometry not shaped by dedicated containers or stretched by boundary conditions.
The continuity and constitutive equations for an Eyring–Powell fluid are generally given
by (refer to [25,26] for an additional discussion on the Eyring–Powell governing equations):

divV = 0, (1)

and:
ρ f

dV

dt
= divA + J × B, (2)

where ρ f refers to the density, J is the current density, B is the magnetic field, which can
be split into B = B0 + b where B0 and b are the imposed and induced magnetic fields,
respectively, and A is given by:

A = −pI + τij, (3)

divB = 0, curlB = μ1j, curlE = −∂B

∂t
(4)

J = σ(E + V × B), (5)

where p is the pressure field, I is the identity tensor, μ1 is the magnetic permeability,
E is the electric field, σ is the electric conductivity, and τij is the shear stress tensor of an
Eyring–Powell fluid [11,13] given by:

τij = μ
∂ui
∂xj

+
1
β

sinh−1

(
1
d1

∂ui
∂xj

)
, (6)

where μ is the dynamic viscosity and β and d1 are characteristic constants of the Powell-

Eyring model. Consider that sinh−1
(

1
d1

∂ui
∂xj

) ∼= 1
d1

∂ui
∂xj

− 1
6

(
1
d1

∂ui
∂xj

)3
,
∣∣∣ 1

d1

∂ui
∂xj

∣∣∣ ≤ 1. The gov-
erning equation, in the absence of an induced magnetic field, can be written as:

∂u1

∂t
= −1

ρ

dP
dx

+

(
v +

1
βd1ρ f

)
∂2u1

∂y2 − 1
2βd3

1ρ f

(
∂u1

∂y

)2 ∂2u1

∂y2 − σB2
0u1

ρ f
. (7)

where v = μ
ρ f

is the kinematic viscosity. After differentiation in (7) with x:

−1
ρ

d2P
dx2 = 0, −1

ρ

dP
dx

= A1.

Using the value of − 1
ρ

dP
dx in (7), we obtain:

∂u1

∂t
= A1 +

(
v +

1
βd1ρ f

)
∂2u1

∂y2 − 1
2βd3

1ρ f

(
∂u1

∂y

)2 ∂2u1

∂y2 − σB2
0u1

ρ f
. (8)

with the following initial condition:

u1(y, 0) = u0(y) ∈ L1
loc(R) ∩ L∞(R). (9)

3. Preliminaries

The proposed Eyring–Powell model in (8) is expressed making use of a weak formula-
tion to support the analysis of the regularity, existence, and uniqueness of the solutions.
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Definition 1. Consider a test function φ2 ∈ C∞(R) defined in (0, T), such that for 0 < τ < t < T,
the following weak formulation of (8) holds:

∫
R

u1(t)φ2(t)dy =
∫
R

u1(τ)φ2(τ)dy +

t∫
τ

∫
R

u1
∂φ2

∂s
dyds

+ A1

t∫
τ

∫
R

φ2dyds +

(
v +

1
βd1ρ f

) t∫
τ

∫
R

u1
∂2φ1

∂y2 dyds

+
1

6βd3
1ρ f

t∫
τ

∫
R

(
∂u1

∂y

)3 ∂φ2

∂y
dyds − σB2

0
ρ f

t∫
τ

∫
R

u1φ2dyds.

In addition, the following definition holds:

Definition 2. Given a finite spatial location r0, admit a ball Br centred in r0 and with radiusr � r0.
In the proximity of the borders ∂Br and for 0 < s < τ < t < T, the following equation is defined:

u1
∂φ2

∂s
+ A1φ2 +

(
v +

1
βd1ρ f

)
u1

∂2φ2

∂y2 +
1

6βd3
1ρ f

(
∂u
∂y

)3 ∂φ2

∂y
− σB2

0
ρ f

u1φ2 = 0, (10)

in Br × (0, T), with the following boundary and initial conditions:

0 <
∂φ2

∂y
= φ2 � 1,

and:
u1(y, 0) = u0(y) ∈ L1

loc(R) ∩ L∞(R).

4. Existence and Uniqueness Analysis

The following theorem aims to show the existence and bounds of the solutions:

Theorem 1. Given u0(y) ∈ L1
loc(R) ∩ L∞(R), then the solution is bounded for all (y, t) ∈

Br × [τ, T) with r � 1.

Proof. Consider a certain value η ∈ R+ such that the following cut-off function is defined
(see [27,28]):

ψη ∈ C∞
0 (y, t), 0 ≤ ψη ≤ 1,

ψη = 1 in Br−η , ψη = 0 in R − Br−η ,

so that: ∣∣∣∣∂ψη

∂η

∣∣∣∣ = Ba

η
,

where Ba is a suitable constant. Multiplying (10) by ψη and integrating in Br × [τ, T), we
obtain:

t∫
τ

∫
Br

u1
∂φ2

∂s
ψηdyds + A1

t∫
τ

∫
Br

φ2ψηdyds +

(
v +

1
βd1ρ f

) t∫
τ

∫
Br

u1
∂2φ2

∂y2 ψηdyds

+
1

6βd3
1ρ f

t∫
τ

∫
Br

(
∂u1

∂y

)3 ∂φ2

∂y
ψηdyds − σB2

0
ρ f

t∫
τ

∫
Br

u1φ2ψηdyds = 0. (11)
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Now, admit an arbitrary m > 1 and some large r0 > 1 [27,28]:

t∫
τ

u1ds ≤
t∫
τ

um
1 ds ≤ D1(τ)r

2m
m−1 .

Considering the spatial variable y close to ∂Br, it can be assumed that y ∼ r. Then, for
m = 2, it holds that:

t∫
τ

u1ds ≤ D1(τ)r4,
t∫
τ

(
∂u1

∂y

)3
ds ≤ 64 D3

1(τ)r
9.

The integral for the diffusion term reads:(
v +

1
βd1ρ f

) t∫
τ

∫
Br

u1
∂2φ2

∂y2 ψηdyds

≤
(

v +
1

βd1ρ f

)∫
Br

D1(τ)r2 ∂2φ2

∂y2 ψηdy

=

(
v +

1
βd1ρ f

)
D1(τ)r2

⎛⎝(∂φ2

∂y
ψη

)
∂Br

−
∫
Br

∂φ2

∂y
∂ψη

∂y
dy

⎞⎠.

As r � 1 and taking φ2 sufficiently small such that ∂φ2
∂y ψη � 1 over ∂Br, the following

holds: (
v +

1
βd1ρ f

) t∫
τ

∫
Br

u1
∂2φ2

∂y2 ψηdyds

= −
(

v +
1

βd1ρ f

)∫
Br

D1(τ)r2 ∂φ2

∂y
∂ψη

∂y
dy

≤
(

v +
1

βd1ρ f

)
D1(τ)

∫
Br

r2 ∂φ2

∂y
Ba

η
dy

=

(
v +

1
βd1ρ f

)
BaD1(τ)

∫
Br

r
∂φ2

∂y
dy,

and:
1

6βd3
1ρ f

t∫
τ

∫
Br

(
∂u1

∂y

)3 ∂φ2

∂y
ψηdyds ≤ 32

3βd3
1ρ f

∫
Br

D3
1(τ)r

9 ∂φ2

∂y
ψηdy.

Now:

1
6βd3

1ρ f

t∫
τ

∫
Br

(
∂u1

∂y

)3 ∂φ2

∂y
ψηdyds ≤ − 32

3βd3
1ρ f

∫
Br

D3
1(τ)r

9φ2
∂ψη

∂y
dy

≤ 32
3βd3

1ρ f

∫
Br

D3
1(τ)r

9φ2
Ba

η
dy

=
32D3

1(τ)

3βd3
1ρ f

∫
Br

r8φ2dy. (12)
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Using the expressions (12) and (12) in (11), the following holds:

t∫
τ

∫
Br

u1
∂φ2

∂s
ψηdyds + A1

t∫
τ

∫
Br

φ2ψηdyds ≤
(

v +
1

βd1ρ f

)
BaD1(τ)

∫
Br

r
∂φ2

∂y
dy

+
32BaD3

1(τ)

3βd3
1ρ f

∫
Br

r8φ2dy +
σB2

0
ρ f

t∫
τ

∫
Br

u1φ2ψηdyds. (13)

Next, consider a test function φ2 of the form:

φ2(r, s) = e−ks
(

1 + r2
)−a

. (14)

We can choose a in such a way that (13) is convergent; therefore:(
v +

1
βd1ρ f

)
BaB1(τ)

∫
Br

r
∂φ2

∂y
dy+

32BaD3
1(τ)

3βd3
1ρ f

∫
Br

r8φ2dy +
σB2

0B1(τ)

ρ f

∫
Br

r2φ2ψηdy

≤ 2a

(
v +

1
βd1ρ f

)
BaB1(τ)

∫
Br

e−ksr−2adr

+
32BaD3

1(τ)

3βd3
1ρ f

∫
Br

r8−2aφ2dr +
σB2

0B1(τ)

ρ f

∫
Br

e−ksr2−2adr.

(15)

For a > 4 and r → ∞, the following holds:(
v +

1
βd1ρ f

)
BaB1(τ)

∫
Br

r
∂φ2

∂y
dy +

σB2
0B1(τ)

ρ f

∫
Br

r2φ2ψηdy ≤ 0. (16)

Putting (16) into (13):

t∫
τ

∫
Br

u1
∂φ2

∂s
ψηdyds + A1

t∫
τ

∫
Br

φ2ψηdyds ≤ 0. (17)

As both integrals are finite in τ < s < t < T, it is possible to conclude the theorem
principles related to the bound of the solutions in R × (0, T).

The next intention is to show the boundness of ∂u1
∂y .

Theorem 2. Given u1(y) as the solution of (8), then ∂u1
∂y is bounded for(y, t) ∈ R × (0, T).

Proof. Multiplying the equation (8) by u1 and using integration by parts:

d
dt

∫
R

|u1|2dy = A1

∫
R

u1dy −
(

v +
1

βd1ρ f

)∫
R

(
∂u1

∂y

)2
dy

+
1

6βd3
1ρ f

∫
R

(
∂u1

∂y

)4
dy − σB2

0
ρ f

∫
R

|u1|2dy,
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which implies that:

∫
R

(
∂u1

∂y

)2
(

1
6βd3

1ρ f

(
∂u1

∂y

)2
−
(

v +
1

βd1ρ f

))
dy =

d
dt

∫
R

|u1|2dy

−A1

∫
R

u1dy − σB2
0

ρ f

∫
R

|u1|2dy.

After integration on both sides:

t∫
0

∫
R

(
∂u1

∂y

)2
(

1
6βd3

1ρ f

(
∂u1

∂y

)2
−
(

v +
1

βd1ρ f

))
dyds =

∫
R

|u1(y, t)|2dy

−
∫
R

|u0(y)|2dy − A1

t∫
0

∫
R

u1dyds − σB2
0

ρ f

t∫
0

∫
R

|u1|2dyds. (18)

From Theorem (1), the right-hand side of (18) is bounded; therefore, we can choose A2
such that:

t∫
0

∫
R

(
∂u1

∂y

)2
(

1
6βd3

1ρ f

(
∂u1

∂y

)2
−
(

v +
1

βd1ρ f

))
dyds ≤ A2, (19)

which permits concluding that ∂u1
∂y is bounded in R × (0, t) where we can admit t = T.

The next intention is to show the uniqueness of the solution.

Theorem 3. Let us admit u1 > 0 as a minimal solution and û1 as a maximal solution for (8) in
R × (0, T), then u1 coincides with the maximal solution û1, i.e., the solution is unique.

Proof. Consider û1 to be the maximal solution of (8) in R × (0, T) given by:

û1(y, 0) = u0(y) + ε, (20)

with ε > 0 arbitrarily small. In addition, let us define the minimal solution:

u1(y, 0) = u0(y).

The maximal and minimal solutions satisfy the following equations:

∂û1

∂t
= A1 +

(
v +

1
βd1ρ f

)
∂2û1

∂y2 − 1
2βd3

1ρ f

(
∂û1

∂y

)2 ∂2û1

∂y2 − σB2
0 û1

ρ f
, (21)

∂u1

∂t
= A1 +

(
v +

1
βd1ρ f

)
∂2u1

∂y2 − 1
2βd3

1ρ f

(
∂u1

∂y

)2 ∂2u1

∂y2 − σB2
0u1

ρ f
. (22)

For every test function φ2 ∈ C∞(R) and upon subtraction, the following expres-
sions hold:
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0 ≤
∫
R

(û1 − u1)φ2(t)dy =

t∫
0

∫
R

(û1 − u1)
∂φ2

∂s
dyds

+

(
v +

1
βd1ρ f

) t∫
0

∫
R

(û1 − u1)
∂2φ2

∂y2 dyds

+
1

6βd3
1ρ f

t∫
0

∫
R

((
∂û1

∂y

)3
−
(

∂u1

∂y

)3
)

∂2φ2

∂y2 dyds − σB2
0

ρ f

t∫
0

∫
R

(û1 − u1)φdyds

≤
t∫
0

∫
R

(û1 − u1)
∂φ2

∂s
dyds +

(
v +

1
βd1ρ f

) t∫
0

∫
R

(û1 − u1)
∂2φ2

∂y2 dyds

+
1

6βd3
1ρ f

t∫
0

∫
R

(
∂û1

∂y
− ∂u1

∂y

)((
∂û1

∂y

)2
+

∂û1

∂y
∂u1

∂y
+

(
∂u1

∂y

)2
)

∂φ2

∂y
dyds

− σB2
0

ρ f

t∫
0

∫
R

(û1 − u1)φdyds

(23)

Based on Theorem 2’s results, we can choose A3 such that A3 = sup{ ∂û1
∂y , ∂u1

∂y }, so that
the following holds:

∫
R

(û1 − u1)φ2(t)dy ≤
t∫
0

∫
R

(û1 − u1)
∂φ2
∂s

dyds +

(
v +

1
βd1ρ f

) t∫
0

∫
R

(û1 − u1)
∂2φ2

∂y2 dyds

+
A3

6βd3
1ρ f

t∫
0

∫
R

(
∂û1
∂y

− ∂u1
∂y

)
∂φ2
∂y

dyds − σB2
0

ρ f

t∫
0

∫
R

(û1 − u1)φdyds

=

t∫
0

∫
R

(û1 − u1)
∂φ2
∂s

dyds +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

) t∫
0

∫
R

(û1 − u1)
∂2φ2

∂y2 dyds (24)

− σB2
0

ρ f

t∫
0

∫
R

(û1 − u1)φdyds. (25)

Now, consider the test function given by:

φ2(|y|, s) = eA4(T−s)
(

1 + |y|2
)−b

, (26)

where A4 and b are constants. Making the differentiation of φ2 with regards to s and y, the
following holds:

∂φ2

∂s
= −A4φ2(|y|, s),

∂2φ2

∂y2 ≤ A5(b)φ2(|y|, s),

then:

(û1 − u1)
∂φ2
∂s

+

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
(û1 − u1)

∂2φ2

∂y2 − σB2
0

ρ f
(û1 − u1)φ2

≤ −A4φ2(û1 − u1) +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)φ2(û1 − u1)−

σB2
0

ρ f
(û1 − u1)φ2

=

(
−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)−

σB2
0

ρ f

)
(û1 − u1)φ2. (27)
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Using (27) in (24), we obtain:

∫
R

(û1 − u1)φ2(t)dy ≤
(
−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)− σB2

0
ρ f

)

×
t∫
0

∫
R

(û1 − u1)φ2dyds ≤
∣∣∣∣∣−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)− σB2

0
ρ f

∣∣∣∣∣
×

t∫
0

∫
R

(û1 − u1)φ2dyds.

(28)

Making the differentiation with regard to t:

d
dt

∫
R

(û1 − u1)φ2(t)dy ≤
∣∣∣∣∣−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)− σB2

0
ρ f

∣∣∣∣∣
×
∫
R

(û1 − u1)φ2(t)dy.
(29)

Now, let us define:
h(t) =

∫
R

(û1 − u1)φ2(t)dy. (30)

Putting (30) into (29), the following holds:

dh
dt

≤
∣∣∣∣∣−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)− σB2

0
ρ f

∣∣∣∣∣h(t), (31)

with:
h(0) = ε → 0.

After solving (31) by standard means, we obtain h(t) = 0, i.e., û1 = u1, which shows
the uniqueness of the solutions, as was intended to be proven.

5. Travelling Waves’ Existence and Regularity

The travelling wave profiles are described as u1(y, t) = k(ζ), where ζ = y − at ∈ R, a
refers to the travelling wave speed and k : R → (0, ∞) belongs to L∞(R).

The equation (8) is transformed into the travelling wave domain as follows:

− ak′(ζ) = A1 +

(
v +

1
βd1ρ f

)
k′′(ζ)− 1

2βd3
1ρ f

(
k′(ζ)

)2k′′(ζ)− σB2
0

ρ f
k(ζ). (32)

with k′(ζ) < 0 in the hypothesis of a purely decreasing travelling wave (this assumption is
further discussed later). Now, let us consider the following new variables:

X = k(ζ), Y = k′(ζ), (33)

such that the following system holds:

X′ = Y,

Y′ =
2βd3

1ρ f

2vβd3
1ρ f + 2d2

1 − Y2

(
−aY − A1 +

σB2
0

ρ f
X

)
. (34)
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To analyse the suggested system in the proximity of the critical point, admit X′ = 0
and Y′ = 0, yielding:

X =
A1ρ f

σB2
0

.

Therefore,
(

A1ρ f

σB2
0

, 0
)

represents the system critical point.

Our intention in the coming sections was to make use of the geometric perturbation
theory to characterise the existing critical point and to explore solution orbits close to such
a critical point.

5.1. Geometric Perturbation Theory

In this section, we use the singular geometric perturbation theory to show the asymp-
totic behaviour of an appropriately defined manifold close to the critical point. Afterwards,
the obtained results are used to derive a dedicated travelling wave profile.

For this purpose, admit the following manifold as:

N0 =

{
X, Y / X′ = Y; Y′ =

2βd3
1ρ f

2vβd3
1ρ f + 2d2

1 − Y2

(
−aY − A1 +

σB2
0

ρ f
X

)}
, (35)

with critical point
(

A1ρ f

σB2
0

, 0
)

. The perturbed manifold Nε close to N0 in the critical point(
A1ρ f

σB2
0

, 0
)

is defined as:

Nε =

{
X, Y / X′ = εY; Y′ = Fε

(
X − A1ρ f

σB2
0

)}
, (36)

where ε denotes a perturbation parameter close to equilibrium (X1, 0) and F is a suitable

constant, which is found after root factorisation. Firstly, admit X3 = X − A1ρ f

σB2
0

. Our

intention was to apply the Fenichel invariant manifold theorem [29] as formulated in [30].
For this purpose, we have to show that N0 is a normally hyperbolic manifold, i.e., the
eigenvalues of N0 in the linearised frame close to the critical point, and transversal to the
tangent space, have non-zero real part. This is shown based on the following equivalent
flow associated with N0 : (

X′
3

Y′

)
=

(
0 ε

Fε 0

)(
X3

Y

)
.

The associated eigenvalues are both real
(
±√

Fε
)

, which shows that N0 is a hyperbolic
manifold. Now, we want to show that the manifold Nε is locally invariant under the
flow (34), so that the manifold N0 can be shown as an asymptotic approach to Nε and vice
versa. On this basis, we consider the functions:

ψ1 = εY,

ψ2 = FεX3,

which are Ci(R × [0, δ)), i > 0, in the proximity of the critical point
(

A1ρ f

σB2
0

, 0
)

. In this case,

δ is determined based on the following flows that are considered to be measurable a.e. in R:∥∥∥ψM0
1 − ψMε

1

∥∥∥ ≤ Fε‖X3‖ ≤ δε.
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Since the solutions are bounded, we conclude that δ = F‖X3‖ is finite; therefore, the
distance between the manifolds holds the normal hyperbolic condition for δ ∈ (0, ∞) and ε

sufficiently small close to the critical point
(

A1ρ f

σB2
0

, 0
)

.

5.2. Travelling Waves’ Profiles

Based on the normal hyperbolic condition shown for the manifold N0 under the
flow (34), asymptotic TW profiles can be obtained. For this purpose, let us consider
firstly (34) such that the following family of trajectories in the phase plane (X, Y) holds:

dY
dX

=
2βd3

1ρ f(
2vβd3

1ρ f + 2d2
1 − Y2

)
Y

(
−aY − A1 +

σB2
0

ρ f
X

)
= H(X, Y). (37)

As H(X, Y) is continuous and is changing the sign character if we take X sufficiently
large and sufficiently small, it is possible to conclude the existence of a critical trajectory of
the form:

−aX′ − A1 +
σB2

0
ρ f

X = 0,

which implies that:

X′ =
σB2

0
aρ f

(
X − A1ρ f

σB2
0

)
. (38)

Solving (38), we obtain:

X =
A1ρ f

σB2
0

+ e
σB2

0
aρ f

ζ
.

After using the value of X, we obtain:

k(ζ) =
A1ρ f

σB2
0

+ e
σB2

0
aρ f

ζ
,

which implies that:

u1(y, t) =
A1ρ f

σB2
0

+ e
σB2

0
aρ f

(y−at)
.

This last expression shows the existence of an exponential profile along the travelling
wave frame. This is not a trivial result for the nonlinear reaction under the Eyring–Powell
fluid.

Note that the solution holds by the symmetry (ζ → −ζ) of travelling wave profiles. It
suffices to admit ζ = y + at, so that:

k(ζ) =
A1ρ f

σB2
0

+ e
− σB2

0
aρ f

ζ
, u1(y, t) =

A1ρ f

σB2
0

+ e
− σB2

0
aρ f

(y+at)
. (39)

Now, it is the aim to show that the defined supporting manifold Nε preserves the
exponential behaviour close to the critical points. For this purpose, the expression (36) is
re-written as:

dY
dX

=
F
Y

(
X − A1ρ f

σB2
0

)
. (40)

After solving (40):

Y = F

(
X − A1ρ f

σB2
0

)
. (41)
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From the expression (36), the equation (41) becomes:

X′ = Fε

(
X − A1ρ f

σB2
0

)
. (42)

After solving (42), we have:

X =
A1ρ f

σB2
0

+ eFεζ . (43)

From (33), the expression (43) becomes:

k(ζ) =
A1ρ f

σB2
0

+ eFεζ , u1(y, t) =
A1ρ f

σB2
0

+ eFε(y−at).

This last expression permits showing the conservation of the exponential profile close
to the critical points defined by the asymptotic manifolds Nε.

6. Numerical Validation Assessments

The aim in this section is to develop a numerical simulation to determine an appropri-
ate travelling wave velocity (a) for which the approximated analytical solution (39) and
the exact one, obtained numerically, in (34) behave similarly. This exercise can be seen as
a validation process of the obtained analytical paths presented in the previous sections.
This validation was explored for certain combinations of the fluid properties. Note that
other combinations do not have an impact on the analytical ending in the exponential kind
of solutions.

The numerical exploration was performed as per the following principles:

• The solver bvp4c in MATLAB was employed. This solver is based on a Runge–Kutta
implicit approach with interpolant extensions [31]. The bvp4c collocation method
requires specifying pseudo-boundary conditions. In this case, the left boundary is
considered positive, k(ζ → −∞) = 1, and the right boundary is given by the null
critical state, k(ζ → ∞) = 0. As the intention was to determine the exact coincidence
along the profiles for which the exponential tail is given, the solutions were translated
into the zero state by the standard vertical translation;

• The integration domain was assumed as (−200, 200), sufficiently large so as to hinder
any potential effect of the pseudo-boundary conditions imposed by the collocation
method involved in the bvp4c solver;

• The domain was split into 100,000 nodes with an absolute error of 10−5 during the
computation;

• An absolute error criterion was considered to stop the exploration criteria. The
travelling wave speed for which both solutions, the numerically exact one and the
analytical approach, were sufficiently close with an absolute error of <10−3, named as
the critical a∗. For this particular speed, The analytical solution in (39) can be regarded
as a valid solution to the problem (34);

• The associated fluid constants in (34) were as one. The travelling wave speed a was
the parameter used in the search for an analytical profile matching the error tolerance.
In addition and with no loss of generality, A1 = 0. Note that this particular selection
of constant values did not impact the ending conclusions, i.e., on the existence of an
analytical exponential profile matching the exact solution for a certain value in the
travelling wave speed.

The results are compiled in Figures 1–3. The existence of a critical travelling wave
speed a∗ = 1.212 for which the analytical solution in (39) is close to the numerically exact
one of (34) with an accumulative error of <10−3 was concluded. This numerical exploration
permits accounting for the validation of the analytical exponential profile obtained.
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Figure 1. a = 0.1 (left), a = 1 (right). The blue line is the exact numerical profile of the set of
Equations (34). The red line is the analytical solution obtained in (39) up to ζ = 5 (beyond such
values, it is required to change the scale). Solutions on the left are provided for a = 1 and solutions
on the right for a = 1.5. For increasing values of the travelling speed, the solutions behave similarly
in their exponential tail.

Figure 2. a = 1.212 (left), a = 1.5 (right). The blue line is the exact numerical profile of the set of
Equations (34). The red line is the analytical solution obtained in (39). The approximated solution
and the exact profile closely match an accumulative error (as the integration of the difference of both
solutions) of < 10−3 for a = 1.212. Solutions on the right are given for a = 1.5. The approximated
solution is above the numerical one.

Figure 3. a = 2 (left), a = 3 (right). The blue line is the exact numerical profile of the set of
Equations (34). The red line is the analytical solution obtained in (39). Solutions on the left are
provided for a = 2 and solutions on the right for a = 3. Note that for increasing values of the
travelling wave speed, both profiles diverge.
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7. Conclusions

The presented analysis in this article permitted accounting for the regularity, existence,
and uniqueness of solutions to an Eyring–Powell fluid flow. Solutions were explored in
the travelling wave domain, and asymptotic approaches were provided making use of
the singular geometric perturbation theory. Afterwards, the obtained analytical solution
was validated for a certain combination of fluid constants and making use of a numerical
exercise. The existence of a travelling wave speed of a = 1.212 for which the analytical
solution is close to the actual numerical solution with an accumulative error of <10−3 was
concluded. The existence of an exponential travelling wave tail together with a certain
minimizing error critical speed constituted the main novelty reported by the present study.
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Abstract: We consider Fourier multiplier systems on Rn with components belonging to the standard
Hörmander class Sm

1,0(R
n), but with limited regularity. Using a notion of parameter-ellipticity with

respect to a subsector Λ ⊂ C (introduced by Denk, Saal, and Seiler) we show the generation of both
C∞ semigroups and analytic semigroups (in a particular case) on the Sobolev spaces Wk

p(R
n,Cq)

with k ∈ N0, 1 ≤ p < ∞ and q ∈ N. For the proofs, we modify and improve a crucial estimate from
Denk, Saal and Seiler, on the inverse matrix of the symbol (see Lemma 2). As examples, we apply the
theory to solve the heat equation, a linear thermoelastic plate equation, a structurally damped plate
equation, and a generalized plate equation, all in the whole space, in the frame of Sobolev spaces.

Keywords: C∞-semigroups; analytic semigroups; Fourier multipliers; Λ-ellipticity

MSC: 35J48; 35S05; 35S30; 47D03; 47D06

1. Introduction

Elliptic systems of partial differential equations were introduced in 1955 by A. Douglis
and L. Nirenberg in [1]. Then, in 1973, R. Kramer formulated and solved in [2] several
Cauchy problems for systems of partial differential equations which are elliptic in the sense
given by Douglis and Nirenberg in [1]. In the same year, A. Koževnikov, in his study in [3]
about spectral asymptotics for elliptic pseudodifferential systems with the structure of
Douglis–Nirenberg, introduced an algebraic condition on the symbol (called the parameter–
ellipticity condition) which permitted him to prove the similarity of the system satisfying
this condition to an almost diagonal system up to a symbol of order −∞, but he did not
consider questions of equation solvability for those operators. In 2009, R. Denk, J. Saal
and J. Seiler considered in [4] pseudodifferential Douglis–Nirenberg systems on Rn with
components belonging to the standard Hörmander class S∗

1,δ(R
n ×Rn), 0 ≤ δ < 1. They

introduced the formulation of parameter–ellipticity with respect to a subsector Λ ⊂ C,
which is motivated by a notion of parameter–ellipticity introduced by Denk, Menniken,
and Volevich in [5] and connected with the so-called Newton polygon associated with the
system. They showed that their formulation of ellipticity is equivalent to the given by
Koževnikov in [3] and that this condition implies the existence of a bounded H∞-calculus
for their pseudodifferential systems in suitable scales of Sobolev spaces with 1 < p < ∞,
hence of Lp-maximal regularity. Furthermore, it is known that the maximal regularity
implies the generation of an analytic semigroup, however the reverse implication is false.

In this paper, we will consider certain Fourier multiplier systems on Rn, similar but
not necessarily with the exact structure of a Douglis–Nirenberg system, with components
belonging to the standard Hörmander class Sm

1,0(R
n), but with limited regularity (see

Definition 2), and using the notion of parameter–ellipticity with respect to a subsector
Λ ⊂ C given in [4], we will establish (in Theorem 1) the generation of C∞ semigroups and
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analytic semigroups (in a particular case) on the Sobolev spaces Wk
p(R

n,Cq) with k ∈ N0 and
1 ≤ p < ∞ giving a direct proof. For this direct proof of our main result we use the approach
based on oscillatory integrals and kernel estimates for them (as in [6]), taking advantage
of the fact that the associated symbols to the pseudodifferential operators are matrices
valued and the entries of these matrices are symbols of order greater than 1/2 and are
independent of the spatial variable. An application to non-autonomous pseudodifferential
Cauchy problems gives the existence and uniqueness of a classical solution (see Theorem 2).
As examples, we apply the theory to solve the heat equation, a linear thermoelastic plate
equation, a structurally damped plate equation, and a generalized plate equation, all in the
whole space, in suitable Sobolev spaces (see Section 5). Other applications of the theory of
semigroups and its generalizations address the control and stablility theory for mechanical
systems or the controllability of fractional evolution equations or inclusions (see [7–14] and
the conclusions in Section 6).

The paper is organized as follows: In Section 2 we present the definition of our system
of Fourier multipliers, which are defined in terms of suitable oscillatory integrals. Follow-
ing [4], we give in Section 3 the notion of Λ ellipticity for this system of Fourier multipliers,
with respect to a sector Λ of the complex plane. In order to allow that the correspondent
estimate in the definition of Λ ellipticity for the characteristic polynomial of the matrix
symbol of our system of Fourier multipliers hold for all values of the symbol variable ξ
in Rn, we consider a perturbation of the system by a constant, following again the ideas
given in [4] (see Remark 2). Section 4 is the core of the paper. There we obtain the main
result of the paper about generation, under suitable hypothesis, of C∞ semigroups and
analytic semigroups for a Sobolev space realization of the perturbed operator associated to
a Λ-elliptic system (Theorem 1). We also present in that section, existence and uniqueness
results for non-autonomous Cauchy problems based on the obtained results about genera-
tion of semigroups (Theorem 2 and corollary 2). In Section 5, as examples and as already
mentioned above, the heat equation, a linear thermoelastic plate equation, a structurally
damped plate equation, and a generalized plate equation are considered. Finally, in the
conclusions in Section 6, we summarize the results obtained in the paper and point out
some possible future scope of this work.

2. Fourier Multiplier Systems

In the following, for n ∈ N, ρn denotes the smallest even integer greater than n,
E represents an arbitary Banach space, L(E) the space of linear and continuous maps of
E into E, S(Rn, E) the Schwartz space of rapidly decreasing functions and C∞

b (Rn, E) the
space of all functions u : Rn → E such that ∂αu is bounded and continuous on Rn for all
α ∈ Nn

0 . Wk
p(R

n, E), for k ∈ N0 and 1 ≤ p ≤ ∞, are the usual Sobolev spaces equipped with
their standard norm and it is well konwn that S(Rn, E) ⊂ C∞

b (Rn, E) ∩ Wk
p(R

n, E) and that
S(Rn, E) is dense in Wk

p(R
n, E) if 1 ≤ p < ∞. Also we will use the following notations

throughout the paper: Dξ j := −i∂ξ j , 〈ξ〉 := (1 + |ξ|2)1/2, 〈ξ, t〉 := (1 + |ξ|2 + |t|2)1/2 and

|ξ, t| := (|ξ|2 + |t|2)1/2, for ξ ∈ Rn and t ∈ R.
For the following definition, see Equation (1) in [6].

Definition 1. Let m ∈ R and ρ ∈ N0.
(a) The symbol class Sm,ρ(Rn,L(E)) := Sm,ρ

1,0 (Rn,L(E)) consists of all functions a : Rn →
L(E) of class Cρ with the property that for each α ∈ Nn

0 with |α| ≤ ρ, there exists a positive
constant Cα such that ∥∥∥∂α

ξ a(ξ)
∥∥∥L(E)

≤ Cα〈ξ〉m−|α| for all ξ ∈ R
n.

(b) In Sm,ρ(Rn,L(E)) we define the norm

‖a‖Sm,ρ := max
|α|≤ρ

sup
ξ∈Rn

〈ξ〉|α|−m
∥∥∥∂α

ξ a(ξ)
∥∥∥L(E)

.
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(c) For a ∈ Sm,ρ(Rn,L(E)) with ρ ≥ ρn, the Fourier multiplier operator a(D) is defined by

[a(D)u](x) := Os−
∫∫

eiξ·ηa(ξ)u(x − η)
d(ξ, η)

(2π)n (1)

for all x ∈ Rn and u ∈ C∞
b (Rn, E), where the symbol Os−

∫∫
stands for oscillatory integrals.

In the case that E = Cq, q ∈ N, we identify L(Cq) with Cq×q, C1×1 with C and we
write Sm,ρ(Rn) instead of Sm,ρ(Rn,C).

Remark 1. (a) The definition and some properties of the oscillatory integrals can be found in [15]
for the scalar case and in [16] (Appendix A) for the vector valued case.

(b) For ρ ≥ ρn, Lemma A.4 and Remark A.5 in [16] imply that the oscillatory integral in (1)
exists. Moreover, due to Lemma A.6 in [16] we have that a(D) ∈ L(C∞

b (Rn, E)).
(c) Fourier multipliers with limited regularity symbols were also studied in [17,18].

Definition 2 (Compare with [4] (Definition 2.3)). The Fourier multipliers system we will
consider in this paper is a q × q-matrix of Fourier multipliers

A(D) =
(
aij(D)

)
1≤i,j≤q

such that
aij ∈ Srij ,ρ(Rn),

where rij ∈ R, ri := rii ≥ 0, for all i, j = 1, ..., q, and ρ ∈ N is such that ρ ≥ ρn.

3. Λ-Elliptic Fourier Multipliers Systems

From now on we fix θ, with 0 < θ < π, and let Λ(θ) denote the closed subsector of
the complex plane C, given by

Λ := Λ(θ) :=
{

reiγ : r ≥ 0, θ ≤ γ ≤ 2π − θ
}

.

For the following definition we refer to [4] (Definition 3.1).

Definition 3. Let A(D) be a Fourier multipliers system (as in Definition 2). We say that A(D)
is Λ-elliptic (or Λ(θ)-elliptic to highlight the angle) , if there exist constants C > 0 and R ≥ 0
such that

|p(ξ; λ)| ≥ C
(〈ξ〉r1 + |λ|) · · · (〈ξ〉rq + |λ|)

for all (ξ, λ) ∈ Rn × Λ with |ξ| ≥ R, where p(ξ; λ) := det(A(ξ)− λ).

Remark 2. Let A(D) be a Λ-elliptic Fourier multipliers system. Due to Lemma 3.4 in [4], there
exists a constant α0 ≥ 0 such that

|det(Aα0(ξ)− λ)| ≥ C(〈ξ〉r1 + |λ|) · · · (〈ξ〉rq + |λ|) ∀ξ ∈ R
n and λ ∈ Λ,

where Aα0(ξ) := A(ξ) + α0, i.e., Aα0(D) is Λ-elliptic with R = 0.

Lemma 1 ([4], Lemma 3.5). Let A(D) be Λ-elliptic and(
gij(ξ; λ)

)
1≤i,j≤q := (Aα0(ξ)− λ)−1.
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Then, ∣∣∣∂α
ξ gij(ξ; λ)

∣∣∣ ≤ Cα

(〈ξ〉ri + |λ|)−1(〈ξ〉rj + |λ|)−1〈ξ〉rij−|α|, (i �= j)∣∣∣∂α
ξ gii(ξ; λ)

∣∣∣ ≤ Cα

(〈ξ〉ri + |λ|)−1〈ξ〉−|α|

for all α ∈ Nn
0 , being the estimates uniform in (ξ, λ) ∈ Rn × Λ.

Following the ideas of the proof of this lemma in [4], we note that the condition
r1 ≥ · · · ≥ rq ≥ 0 given there, is not necessary for the estimates above. However, we get
another crucial estimate under the following additional assumption about the orders of the
symbols in the system:

k

∑
j=1

rijπ(ij)
=

k

∑
j=1

rij (2)

for all subsets of indices {i1, . . . , ik} ⊂ {1, . . . , q} and all bijections π : {i1, . . . , ik} →
{i1, . . . , ik}.

The crucial estimate we mentioned above is given in the following lemma.

Lemma 2. Let A(D) be Λ-elliptic,(
gij(ξ; λ)

)
1≤i,j≤q := (Aα0(ξ)− λ)−1,

and suppose that the assumption (2) holds. Then, for all i = 1, . . . , q, α ∈ Nn
0 with 0 < |α| ≤ ρ,

and (ξ, λ) ∈ Rn × Λ, we have

∣∣∣∂α
ξ gii(ξ; λ)

∣∣∣ ≤ Cα

q

∑
j=1

(〈ξ〉ri + |λ|)−1(〈ξ〉rj + |λ|)−1〈ξ〉rj−|α| (3)

for some constant Cα.

Proof. Let i ∈ {1, . . . , q} be fixed. It should first be noted that

gii(ξ; λ) =
1

det(Aα0(ξ)− λ)
Cof(i,i)

(
Aα0(ξ)− λ

)
,

where Cof(i,i)
(

Aα0(ξ) − λ
)

is the cofactor (i, i) of Aα0(ξ) − λ, that is, the determinant of
the matrix obtained by removing the i-th row and i-th column of this matrix. With the

convention
m
∏
l=k

(· · · )l := 1 if k > m, which we will use from now on in this proof, we have

that Cof(i,i)
(

Aα0(ξ)− λ
)

is a linear combination of terms

( k

∏
l=1

(
ail il + α0 − λ

)) q−1

∏
l=k+1

ailπ(il),

where
{

i1, . . . , iq−1
}
= {1, . . . , q}�{i}, 0 ≤ k ≤ q− 1, and π : {i1, . . . , iq−1} → {i1, . . . , iq−1}

is a bijection which have {i1, . . . , ik} as its set of fixed points. Therefore
{

ik+1, . . . , iq−1
}
={

π(ik+1), . . . , π(iq−1)
}

and, in virtue of assumption (2), it holds

rik+1π(ik+1)
+ · · ·+ riq−1π(iq−1)

= rik+1
+ · · ·+ riq−1 . (4)
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If α ∈ Nn
0 with 0 < |α| ≤ ρ, the Leibniz’ formula implies that ∂α

ξ gii is a linear combina-
tion of terms

∂β
( 1

p0

) ( k

∏
l=1

∂γl (ail il + α0 − λ)
) q−1

∏
l=k+1

∂γl ailπ(il)︸ ︷︷ ︸
=:H

, (5)

where β, γ1, . . . , γq−1 ∈ Nn
0 with β + γ1 + · · · + γq−1 = α, k ∈ {0, 1, . . . , q}, and p0 =

p0(ξ, λ) := det(Aα0(ξ)− λ). Note that the term aii + α0 − λ is not in H (see (5)), and also

we can estimate
∣∣∂γl

(
ail il + α0 − λ

)∣∣ from above by 〈ξ〉ril + |λ| if γl = 0 and by 〈ξ〉ril
−|γl |

if γl �= 0.
If β = 0, then γj �= 0 for some j = 1, . . . , q − 1. Therefore, the term related to

aijij which appears in H is equal to ∂γj aijij , and then, due to the Λ-ellipticity condition
(together with Remark 2) and (4), the expression (5) can be estimated from above by(〈ξ〉ri + |λ|)−1

(
〈ξ〉rij + |λ|

)−1〈ξ〉rij
−|α|

.
In order to consider the case β �= 0, we will prove first that for each α ∈ Nn

0 , 0 < |α| ≤ ρ,
there exists C > 0 such that

|∂α p0(ξ, λ)| ≤ C
( q

∑
j=1

( q

∏
i=1
i �=j

(〈ξ〉ri + |λ|)
)
〈ξ〉rj

)
〈ξ〉−|α| (6)

for all ξ ∈ Rn and λ ∈ Λ. Let Z := {1, . . . , q}. Note that p0 is a linear combination of terms
of the form ( k

∏
l=1

(ail il + α0 − λ)
) q

∏
l=k+1

ail π(il) (k = 0, . . . , q),

where π : Z → Z is a bijection with fixed points i1, . . . , ik, and therefore {ik+1, . . . , iq} =
{π(ik+1), . . . , π(iq)} which, again due to the assumption (2), yields

rik+1π(ik+1)
+ · · ·+ riqπ(iq) = rk+1 + · · ·+ rq. (7)

Indeed, if Pk, k = 0, 1, . . . , q, denotes the set of all bijections π : Z → Z with exactly k
fixed points, then p0 can be written as

p0 =
q−1

∑
k=0

∑
π∈Pk

i1<···<ik
ik+1<···<iq

±
( k

∏
l=1

(ail il + α0 − λ)
) q

∏
l=k+1

ailπ(il),

where in each summand, i1, . . . , ik are the fixed points of π.

If α ∈ Nn
0 , 0 < |α| ≤ ρ, then

∂α p0 =
q−1

∑
k=0

∑
π∈Pk

i1<···<ik
ik+1<···<iq

∑
α1,...,αq∈Nn

0
α1+···αq=α

Cα1...αq

( k

∏
l=1

∂αl (ail il + α0 − λ)
) q

∏
l=k+1

∂αl ailπ(il)︸ ︷︷ ︸
=:Qk

.

Now, ∣∣∂αl (ail il + α0 − λ)
∣∣ ≤ C

{
〈ξ〉ril + |λ|, αl = 0,
〈ξ〉ril 〈ξ〉−|αl |, αl �= 0,

and ∣∣∂αl ail π(il)
∣∣ ≤ C〈ξ〉ril π(il )〈ξ〉−|αl |.
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Since α �= 0, αj �= 0 for some j and, therefore, taking (7) in account, it holds

∣∣Qk
∣∣ ≤ C

( q

∏
l=1
l �=j

(〈ξ〉ril + |λ|))〈ξ〉rij
−|α|

.

Then, we have

∣∣∂α p0
∣∣ ≤ C

q−1

∑
k=0

∑
π∈Pk

q

∑
j=1

( q

∏
l=1
l �=j

(〈ξ〉ril + |λ|))〈ξ〉rij 〈ξ〉−|α|

≤ Ĉ
( q

∑
j=1

( q

∏
i=1
i �=j

(〈ξ〉ri + |λ|)
)
〈ξ〉rj

)
〈ξ〉−|α|,

which shows (6). Thus, we can estimate ∂β(1/p0) for β �= 0. Indeed, if β �= 0 it holds that
(see [19], Lemma 10.4, p. 74)

∂β

(
1
p0

)
=

|β|
∑
k=1

∑
β1,...,βk∈Nn

0�{0}
β1+···+βk=β

Cβ1...βk

(
∂β1 p0

) · · · (∂βk p0
)

p1+k
0

.

Due to (6) and the Λ-ellipticity condition we obtain

∣∣∣∂β
( 1

p0

)∣∣∣ ≤ Cβ

|β|
∑
k=1

∑
β1,...,βk∈Nn

0�{0}
β1+···+βk=β

( q
∑

j=1

( q
∏
i=1
i �=j

(〈ξ〉ri + |λ|))〈ξ〉rj
)k〈ξ〉−|β|

|p0|1+k

≤ Ĉβ

|β|
∑
k=1

( q
∑

j=1

( q
∏
i=1
i �=j

(〈ξ〉ri + |λ|)k
)
〈ξ〉krj

)
〈ξ〉−|β|

q
∏
i=1

(〈ξ〉ri + |λ|)1+k

=
Ĉβ

q
∏
i=1

(〈ξ〉ri + |λ|)
|β|
∑
k=1

q

∑
j=1

〈ξ〉krj〈ξ〉−|β|(〈ξ〉rj + |λ|)k

=
Ĉβ

q
∏
i=1

(〈ξ〉ri + |λ|)
|β|
∑
k=1

q

∑
j=1

( 〈ξ〉rj

〈ξ〉rj + |λ|
)k−1 〈ξ〉rj〈ξ〉−|β|

〈ξ〉rj + |λ|

≤
C∗

β
q

∏
i=1

(〈ξ〉ri + |λ|)
( q

∑
j=1

〈ξ〉rj

〈ξ〉rj + |λ|
)
〈ξ〉−|β|.

Now, since

|H| ≤
( q

∏
l=1
l �=i

(〈ξ〉rl + |λ|))〈ξ〉−|γ1+···+γq−1|,
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if 0 < |β| ≤ ρ, we can estimate (5) from above by

C∗
β

q
∏
i=1

(〈ξ〉ri + |λ|)
( q

∑
j=1

〈ξ〉rj

〈ξ〉rj + |λ|
)( q

∏
l=1
l �=i

(〈ξ〉rl + |λ|))〈ξ〉−|α|

= C∗
β

q

∑
j=1

〈ξ〉rj−|α|(〈ξ〉ri + |λ|)(〈ξ〉rj + |λ|) .

With the estimates from above for (5), in both cases β = 0 and β �= 0, we obtain the
estimate (3) for 0 < |α| ≤ ρ and (ξ, λ) ∈ Rn × Λ.

Under the assumption (2) on the order of the symbols in the system, Lemma 1, esti-
mate (3), and the equivalence

〈ξ〉r + |λ| ∼
〈

ξ, |λ|1/r
〉r

(r ≥ 0),

lead to the following assertion.

Corollary 1. Let A(D) be Λ-elliptic,

bλ(·) := (Aα0(·)− λ)−1 =
(

gij(·; λ)
)

1≤i,j≤q,

and suppose that the assumption (2) holds. Then for each i, j = 1, . . . , q, we have

(bλ(·))ij = gij(·; λ) ∈ S−rji ,ρ(Rn,L(Cq)), ∀λ ∈ Λ

with

|gii(ξ; λ)| ≤ C
〈

ξ, |λ|1/ri
〉−ri

, (i = 1, ..., q)∣∣∣∂α
ξ gii(ξ; λ)

∣∣∣ ≤ Cα

q

∑
j=1

〈
ξ, |λ|1/ri

〉−ri
〈

ξ, |λ|1/rj
〉−rj〈ξ〉rj−|α|, ((i, α) ∈ Z1)∣∣∣∂α

ξ gij(ξ; λ)
∣∣∣ ≤ C

〈
ξ, |λ|1/ri

〉−ri
〈

ξ, |λ|1/rj
〉−rj〈ξ〉rij−|α|, ((i, j, α) ∈ Z2)

for all (ξ, λ) ∈ Rn × Λ, where C is a positive constant independent on α, ξ and λ, Z1 :=
{(i, α) : 1 ≤ i ≤ q, 0 < |α| ≤ ρ}, and Z2 := {(i, j, α) : 1 ≤ i, j ≤ q, i �= j, |α| ≤ ρ}.

4. Generation of Analytic and C∞-Semigroups

In this section, under the assumption (2) on the order of the symbols, we will prove
the main result of this paper (Theorem 1). For that we will need to estimate the norm
‖bλ(D)u‖Wk

p(Rn ,Cq).

Let A(D) be Λ-elliptic with rij > 0, ρ ≥ ρn, and suppose that the assumption (2)
holds. Then, note that rij + rji = ri + rj for i, j = 1, . . . , q. Moreover, let r+ := max

1≤i≤q
{ri},

r− := min
1≤i,j≤q

{rij}, ω ≥ 1 and

Λω := Λ(θ)ω := {λ ∈ Λ = Λ(θ) : |λ| ≥ ω}.

Note that for bλ, as in corollary 1, u ∈ C∞
b (Rn,Cq) ∩ Wk

p(R
n,Cq) and β ∈ Nn

0 , we have
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∂
β
x(bλ(D)u)(x) = Os−

∫∫
eiξ·ηbλ(ξ)(∂

β
x u)(x − η)

d(ξ, η)

(2π)n

= lim
ε↘0

∫
Rn

Kε(η, λ)(∂
β
x u)(x − η)dη (8)

with
Kε(η, λ) :=

∫
Rn

eiξ·ηχε(ξ, η; λ)bλ(ξ)
dξ

(2π)n , (9)

and
χε(ξ, η; λ) := χε(ξ; λ)ψε(η)

for ξ, η ∈ Rn, 0 < ε < 1, where ψ is a function in S(Rn) with ψ(0) = 1, ψε(η) := ψ(εη),
χε(ξ; λ) := ϕε

(
(|ξ|2 + |λ|2/r+)1/2) with ϕε(x) := ϕ(εx) for x ∈ R and ϕ ∈ S(R) satisfies

ϕ(0) = 1.
It was proven in [20] (p. 845) that for α ∈ Nn

0 , there exists a constant Cα > 0 such that
for all ξ ∈ Rn and λ ∈ Λω,∣∣∣∂α

ξ χε(ξ; λ)
∣∣∣ ≤ Cα

(|ξ|2 + |λ|2/r+)−|α|/2
(0 < ε < 1).

Now, due to

ω2/r+ + 1
ω2/r+

(|ξ|2 + |λ|2/r+) ≥ 1
ω2/r+

(
ω2/r+ |ξ|2 + ω2/r+ |λ|2/r+ + |λ|2/r+)

≥ |ξ|2 + |λ|2/r+ + 1,

we have ∣∣∣∂α
ξ χε(ξ; λ)

∣∣∣ ≤ Cα

〈
ξ, |λ|1/r+

〉−|α|
(0 < ε < 1). (10)

We will obtain some estimate for Kε with help of (10) and the following lemma
and remark.

Lemma 3 ([15], Lemma 6.3). Let χ ∈ S(Rn) with χ(0) = 1. Then:
(a) χ(εx) −→

ε↘0
1 uniformly on all compact subset of Rn.

(b) ∂α
xχ(εx) −→

ε↘0
0 uniformly on Rn, if α �= 0.

(c) For all α ∈ Nn
0 , there exists some Cα > 0, independent on 0 < ε < 1, such that

|∂α
xχ(εx)| ≤ Cα〈x〉−(|α|−σ) for all x ∈ R

n and 0 ≤ σ ≤ |α|.

Remark 3. Note that, if
1
2
< r−, then for all

1
2
≤ δ < r−, we obtain

1 < δ + rij ≤ rji + rij = ri + rj (for all i, j),

and 〈
|λ|1/r+ξ, |λ|1/ri

〉−ri ≤ 1(|λ|2/r+ |ξ|2 + |λ|2/ri
)ri/2

≤ 1(|λ|2/r+ |ξ|2 + |λ|2/r+)ri/2

= |λ|−ri/r+〈ξ〉−ri (11)
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for all ξ ∈ Rn and λ ∈ Λω. Moreover, σ :=
r−
r+

∈ (1/2r+, 1] and μ := |λ|1/r+ , with
λ ∈ Λω, satisfies

μ−rij =
1

|λ|rij/r+
≤ 1

|λ|σ for all i, j.

Now, we will establish a key lemma for the generation of analytic semigroup. In the
lemma, σ and μ are as in Remark 3.

Lemma 4. Let 1
2 ≤ δ < min{1, r−} and Kε as in (9). Then:

(a) There exists a constant C > 0 such that for all ε ∈ (0, 1), η ∈ Rn and λ ∈ Λω it holds

(1 + |μη|)|μη|n‖Kε(η, λ)‖L(Cq) ≤
C

|λ|σ μn|μη|δ. (12)

(b) There exists a strongly measurable function K : Rn × Λω → L(Cq) with Kε(η, λ) →
K(η, λ) (ε ↘ 0) pointwise, and the estimate (12) holds with Kε being replaced by K. In consequence
there exists a constant M > 0, independent on λ, such that

‖K(·, λ)‖L1(Rn ,L(Cq)) ≤
M
|λ|σ ∀λ ∈ Λω. (13)

Proof. (a) First, note that with the change ξ 	→ μξ we obtain

Kε(η, λ) = μn
∫
Rn

eiμξ·ηχε(μξ, η; λ)bλ(μξ)
dξ

(2π)n .

Note also that, for α ∈ Nn
0 with 0 < |α| ≤ ρ, it holds∫

Rn

Dα
ξ (χε(μξ, η; λ)bλ(μξ))

dξ

(2π)n = 0.

With this,
∣∣eiμξ·η − 1

∣∣ ≤ 2|μξ|δ|η|δ for all ξ, η ∈ Rn and δ ∈ (0, 1), partial integration,
Leibniz rule, (10), corollary 1, Lemma 3, and Remark 3, we obtain for all α ∈ Nn

0 with

|α| = n + l, l = 0, 1, and
1
2
≤ δ < min{1, r−}, that
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∥∥(μη)αKε(η, λ)
∥∥L(Cq)

=

∥∥∥∥μn
∫
Rn

eiμξ·η Dα
ξ (χε(μξ, η; λ)bλ(μξ))

dξ

(2π)n

∥∥∥∥
L(Cq)

=

∥∥∥∥μn
∫
Rn

(eiμξ·η − 1)ψ(εη)Dα
ξ (χε(μξ; λ)bλ(μξ))

dξ

(2π)n

∥∥∥∥
L(Cq)

≤ μn
∫
Rn

2|μξ|δ|η|δ|ψ(εη)| ∑
γ≤α

Cγα

∣∣Dα−γ
ξ (χε(μξ; λ))

∣∣∥∥∂
γ
ξ (bλ(μξ))

∥∥L(Cq)
dξ

≤ 2μn|μη|δ
∫
Rn

|ξ|δ ∑
γ≤α

Cγαμ|α|Cα−γ〈μξ, μ〉|γ|−|α|∥∥(∂γ
ξ bλ)(μξ)

∥∥L(Cq)
dξ

≤ 2μn|μη|δ
∫
Rn

|ξ|δ ∑
i,j

∑
γ≤α

Cγαμ|α|Cα−γ〈μξ, μ〉|γ|−|α|∣∣(∂γ
ξ gij(ξ; λ))(μξ)

∣∣dξ

≤ Cμn|μη|δ
∫
Rn

|ξ|δ
[ q

∑
i=1

Ĉ0αμ|α|〈μξ, μ〉−|α|〈μξ, |λ|1/ri
〉−ri

+
q

∑
j=1

∑
Z1

Ĉαμ|α|〈μξ, μ〉|γ|−|α|〈μξ〉rj−|γ|〈μξ, |λ|1/ri
〉−ri

〈
μξ, |λ|1/rj

〉−rj

+ ∑
Z2

Ĉγαμ|α|〈μξ, μ〉|γ|−|α|〈μξ〉rij−|γ|〈μξ, |λ|1/ri
〉−ri

〈
μξ, |λ|1/rj

〉−rj
]

dξ

(11)
≤ Cμn|μη|δ

∫
Rn

|ξ|δ
[ q

∑
i=1

Ĉ0αμ|α||μξ, μ|−|α|μ−ri 〈ξ〉−ri

+
q

∑
j=1

∑
Z1

Ĉαμ|α|〈μξ〉rj−|α|μ−ri 〈ξ〉−ri μ−rj〈ξ〉−rj

+ ∑
Z2

Ĉγαμ|α|〈μξ〉rij−|α|μ−ri 〈ξ〉−ri μ−rj〈ξ〉−rj
]

dξ

≤ Cμn|μη|δ
[ 1
|λ|σ

q

∑
i=1

∫
Rn

〈ξ〉−(ri+n+l−δ)dξ

︸ ︷︷ ︸
=:Cil<∞

+
q

∑
i,j=1

∫
Rn

μn+l−ri−rj |ξ|δ〈μξ〉rij−(n+l)〈ξ〉−ri−rj dξ

︸ ︷︷ ︸
=:Iijl

]
.

Let Ω1 := {ξ ∈ Rn : |ξ| < 1}, Ω2 := Rn\Ω1 and

I(k)ijl :=
∫

Ωk

μn+l−ri−rj |ξ|δ〈μξ〉rij−(n+l)〈ξ〉−ri−rj dξ

for k = 1, 2. Since Iijl = I(1)ijl + I(2)ijl , we will estimate I(k)ijl . We consider two cases: Case 1. If
rij ≤ n + l for some i, j, it holds
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I(1)ijl ≤
∫

Ω1

μn+l−ri−rj |ξ|δμrij−(n+l)|ξ|rij−(n+l)dξ

= μ−rji

∫
Ω1

|ξ|δ+rij−(n+l)dξ ≤ C
|λ|σ ,

since
1
2
≤ δ < rij (thus δ + rij > 1). Furthermore,

I(2)ijl ≤
∫

Ω2

μn+l−ri−rj |ξ|δμrij−(n+l)|ξ|rij−(n+l)|ξ|−ri−rj dξ

= μ−rji

∫
Ω2

|ξ|δ−rji−n−ldξ ≤ C
|λ|σ ,

due to δ < rji + l for l = 0, 1. Therefore,

Iijl ≤ Ĉ
|λ|σ (l = 0, 1). (14)

Case 2. Suppose rij > n + l for some i, j. Since μ ≥ 1, then we get

I(1)ijl ≤
∫

Ω1

μn+l−ri−rj |ξ|δ
(

1 + μ2|ξ|2
) rij−(n+l)

2
dξ

≤
∫

Ω1

μn+l−ri−rj |ξ|δ2
rij−n−l

2 μrij−n−ldξ

= 2
rij−n−l

2 μ−rji

∫
Ω1

|ξ|δdξ ≤ C
|λ|σ .

Moreover,

I(2)ijl =
∫

Ω2

μn+l−ri−rj |ξ|δ
(

1 + μ2|ξ|2
) rij−(n+l)

2 〈ξ〉−ri−rj dξ

≤
∫

Ω2

μn+l−ri−rj |ξ|δ|ξ|rij−(n+l)
(

1 + μ2
) rij−(n+l)

2 |ξ|−ri−rj dξ

≤
∫

Ω2

μn+l−ri−rj |ξ|δ−rji−(n+l)2
rij−n−l

2 μrij−n−ldξ

= 2
rij−n−l

2 μ−rji

∫
Ω2

|ξ|δ−rji−n−ldξ ≤ C
|λ|σ .

Thus, (14) holds too. In consequence

∥∥(μη)αKε(η, λ)
∥∥L(Cq) ≤

C
|λ|σ μn|μη|δ
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for all η ∈ Rn, λ ∈ Λω , α ∈ Nn
0 with |α| = n + l, l = 0, 1, ε ∈ (0, 1) and

1
2
≤ δ < min{1, r−}.

Therefore, we have

|μη|n+l‖Kε(η, λ)‖L(Cq) ≤ n
n+l

2 ∑
|α|=n+l

∥∥(μη)αKε(η, λ)
∥∥L(Cq) ≤

C
|λ|σ μn|μη|δ.

Adding these inequalities for l = 0 and l = 1, we obtain the assertion (a).
(b) Let ε, ε′ ∈ (0, 1), η ∈ Rn and λ ∈ Λω. From the proof of (a) we see that

(μη)α(Kε(η, λ)− Kε′(η, λ))

= μn
∫
Rn

(eiμξ·η − 1)Dα
ξ

[
(χε(μξ, η; λ)− χε′(μξ, η; λ))bλ(μξ)

] dξ

(2π)n . (15)

From Lemma 3 we know that Dγ
ξ (χε(μξ, η; λ)− χε′(μξ, η; λ)) −→ 0 (ε, ε′ ↘ 0) for all

γ ∈ Nn
0 and all ξ, η. Therefore the integrand in (15) converges pointwise to zero for ε, ε′ ↘ 0.

Furthermore, in the same way of the proof of part (a) we have that∥∥∥(eiμξ·η − 1)Dα
ξ [(χε(μξ, η; λ)− χε′(μξ, η; λ))bλ(μξ)]

∥∥∥L(Cq)

≤ C|μη|δ
[ 1
|λ|σ

q

∑
i=1

〈ξ〉−(ri+n+l−δ)

+
q

∑
i,j=1

μn+l−ri−rj |ξ|δ〈μξ〉rij−(n+l)〈ξ〉−ri−rj
]
∈ L1

(
R

n
ξ

)
.

Hence, by dominated convergence we get for fixed (η, λ) ∈ (Rn � {0})× Λω that
‖Kε(η, λ)− Kε′(η, λ)‖L(Cq) −→ 0 (ε, ε′ ↘ 0). Therefore there exists a strongly measurable
function K : Rn × Λω → L(Cq) with Kε(η, λ) → K(η, λ) (ε ↘ 0) pointwise a.e. Then,
inequality (12) holds for K(η, λ) instead of Kε(η, λ) and in consequence (13) is true due to

∫
Rn

μn|μη|δ−n

1 + |μη| dη < ∞.

Proposition 1. Let A(D) be Λ-elliptic with ρ ≥ ρn, 1
2 < r− and let bλ(·) := (Aα0(·)− λ)−1

for all λ ∈ Λω. If k ∈ N0 and 1 ≤ p < ∞, then bλ(D) ∈ L
(

Wk
p(R

n,Cq)
)

with

‖bλ(D)‖L(Wk
p(Rn ,Cq)) ≤

M
|λ|σ ∀λ ∈ Λω,

where the constant M > 0 is independent on λ and σ.

Proof. Let β ∈ Nn
0 with |β| ≤ k, λ ∈ Λω, u ∈ C∞

b (Rn,Cq) ∩ Wk
p(R

n,Cq) and x ∈ Rn. Then
(see (8))

∂
β
x(bλ(D)u)(x) = lim

ε↘0

∫
Rn

Kε(η, λ)(∂
β
x u)(x − η)dη (16)

with Kε as in (9). From (16), Lemma 4 and dominated convergence, we get

∂
β
x(bλ(D)u)(x) =

∫
Rn

K(η, λ)(∂
β
x u)(x − η)dη = (K(·, λ) ∗ (∂β

xu))(x),
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where ∗ stands for the standard convolution. Since ∂
β
x u ∈ Lp(Rn,Cq), we have K(·, λ) ∗

(∂
β
x u) ∈ L1(Rn,Cq) and∥∥∥∂

β
x(bλ(D)u)

∥∥∥
Lp(Rn ,Cq)

≤ ‖K(·, λ)‖L1(Rn ,L(Cq))‖∂
β
x u‖Lp(Rn ,Cq)

≤ M
|λ|σ ‖u‖Wk

p(Rn ,Cq)

due to Lemma 4 (b). This implies that

‖bλ(D)u‖Wk
p(Rn ,Cq) ≤

M̃
|λ|σ ‖u‖Wk

p(Rn ,Cq) (17)

for all u ∈ C∞
b (Rn,Cq) ∩ Wk

p(R
n,Cq) and λ ∈ Λω. Because of 1 ≤ p < ∞, S(Rn,Cq) is

dense in Wk
p(R

n,Cq) which gives bλ(D) ∈ L
(

Wk
p(R

n,Cq)
)

and the estimate on its norm.

For k ∈ N0 and 1 ≤ p < ∞, we define the Wk
p(R

n,Cq)-realization Aα0,k of the system
Aα0(D) as the unbounded operator given by

D(Aα0,k) :=
{

u ∈ Wk
p(R

n,Cq) : Aα0(D)u ∈ Wk
p(R

n,Cq)
}

,

Aα0,ku := Aα0(D)u for u ∈ D(Aα0,k).

Now we are able to show the main result of this paper. We recall that ρ ≥ ρn, 1
2 < r−

and σ = r−
r+ ∈ ( 1

2r+ , 1].

Theorem 1. Let A(D) be Λ(θ)-elliptic with 0 < θ < π/2 and ϑ := π − θ. Let k ∈ N0,
1 ≤ p < ∞ and Aα0,k be the Wk

p(R
n,Cq)-realization of Aα0(D). Then, for the resolvent set

ρ(−Aα0,k) of −Aα0,k we have ρ(−Aα0,k) ⊃ Σϑ,ω :=
{

λ ∈ C : |λ| ≥ ω and |arg λ| ≤ ϑ
}

and

‖(λ + Aα0,k
)−1‖L(Wk

p(Rn ,Cq)) ≤
M
|λ|σ (λ ∈ Σϑ,ω). (18)

for some constant M > 0. Therefore, −Aα0,k : Wk
p(R

n,Cq) ⊃ D(Aα0,k) → Wk
p(R

n,Cq) generates
an infinitely differentiable semigroup on Wk

p(R
n,Cq), which is analytic and strongly continuous if

σ = 1 (i.e., r1 = · · · = rq = r−).

Remark 4. The semigroup is given by (e−τAα0,k )τ≥0 with e−0Aα0,k := I and

e−τAα0,k :=
1

2πi

∫
Γ

e−τλ(λI − Aα0,k)
−1dλ (τ > 0),

where Γ : λ = ω + iy, −∞ < y < ∞ stands for a lying in ρ(−Aα0,k) path, and [t 	→ e−τAα0,k ] ∈
C∞((0, ∞);L(Wk

p(R
n,Cq))). See [21, Theorem 3.4, Ch. 1] for a reference. Further results about

differential and analytical properties of semigroups of operators can be found also in [22] and in the
references therein.

Proof of Theorem 1. Because of the density of S(Rn,Cq) in Wk
p(R

n,Cq) and(
Aα0,k − λ̃

)
b

λ̃
(D)u = b

λ̃
(D)

(
Aα0,k − λ̃

)
u = u

for all u ∈ S(Rn,Cq) and λ̃ ∈ Λ(θ)ω, it follows from (17) that Λ(θ)ω ⊂ ρ
(

Aα0,k
)

and

b
λ̃(D) =

(
Aα0,k − λ̃

)−1 in Wk
p(R

n,Cq). Now, if λ ∈ Σϑ,ω , then λ̃ := −λ ∈ Λ(θ)ω . Therefore
we have (

λ + Aα0,k
)
b−λ(D)u = b−λ(D)

(
λ + Aα0,k

)
u = u
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for all u ∈ S(Rn,Cq) and λ ∈ Σϑ,ω. It follows that Σϑ,ω ⊂ ρ
(−Aα0,k

)
and b−λ(D) =(

λ + Aα0,k
)−1 for λ ∈ Σϑ,ω. Then (18) follows from Proposition 1.

The above result on the generation of semigroup in Wk
p(R

n,Cq) allow us to solve
non-autonomous Cauchy problems, based on an abstract result in [23], Chapter IV. For this,
let T > 0 and assume A = {A(t, D) : t ∈ [0, T]} to be a uniformly bounded family of Λ-
elliptic systems. For k ∈ N0 and 1 ≤ p < ∞, we denote by Ak(t) the Wk

p(R
n,Cq)-realization

of A(t, D). Then, we study the Cauchy problem{
∂tu(t) + Ak(t)u(t) = f (t), t ∈ (0, T],
u(0) = u0.

(19)

A function u ∈ C1
(
(0, T], Wk

p(R
n,Cq)

)
∩ C

(
[0, T], Wk

p(R
n,Cq)

)
is called a classical

solution of (19), if u(t) ∈ D(Ak(t)) for all t ∈ (0, T], ∂tu(t) + Ak(t)u(t) = f (t) for all
t ∈ (0, T] and u(0) = u0.

Using Theorem 1 and the abstract result on Cauchy problems given in Theorem 2.5.1
of Chapter IV in [23], we obtain, in the same way to the proof of Theorem 4.3 in [6], the
following result.

Theorem 2. Let A = {A(t, D) : t ∈ [0, T]} be a uniformly bounded family of Λ(θ)-elliptic
systems, 0 < θ < π/2, with symbols

(
aij(t, ξ)

)
1≤i,j≤q for all t ∈ [0, T], such that

[
t 	→ aij(t, ·)

] ∈
Cα([0, T], Srij ,ρ(Rn)) for all i, j = 1, ..., q and some α ∈ (0, 1), with r1 = · · · = rq = r− > 1/2.
Furthermore, suppose that there exists α0 ∈ R such that Aα0(t, D) := A(t, D) + α0 is Λ(θ)-
elliptic, 0 < θ < π/2, with the same constant C and R = 0, for all t ∈ [0, T] (see Definition 3 and
Remark 2). Moreover, let k ∈ N0, 1 ≤ p < ∞ and ε ∈ (0, 1). Then, for every u0 ∈ Wk

p(R
n,Cq)

and f ∈ Cε
(
[0, T], Wk

p(R
n,Cq)

)
, the Cauchy problem

{
∂tv(t) + Aα0,k(t)v(t) = e−α0t f (t), t ∈ (0, T],
v(0) = u0.

(20)

has a unique classical solution, where Aα0,k(t) is the Wk
p(R

n,Cq)-realization of Aα0(t, D).

Corollary 2. Suppose that the same hypothesis from Theorem 2 hold. Then, there exists a unique
classical solution of problem (19).

Proof. First note that Aα0,k(t) = Ak(t) + α0. Now, let v(t), t ∈ [0, T], be the classical
solution of problem (20) and set u(t) := eα0tv(t) for t ∈ [0, T]. Then u is the unique classical
solution of problem (19).

Remark 5. If −Aα0,k(t), t ∈ [0, T], generates only an infinitely differentible semigroup on
Wk

p(R
n,Cq) and, Aα0,k(·)−1 is strongly continuously differentiable on [0, T] and satisfies some

additional conditions, Theorems 4.3, 4.4, and Remark 4.5 in [24] imply the existence and uniqueness
of a strict solution of (20), and therefore of (19), for each u0 ∈ Wk

p(R
n,Cq). Such strict solution is

taken in sense of Definition 1.1 in [24].

Remark 6. (i) With the method used in this paper some better assertions could be obtained, for
instance maximal Lp-regularity or the existence of a H∞-calculus as in [4].

(ii) Using some ideas from [4], one could change the basic space Wk
p(R

n,Cq) by
q

∏
i=1

Wk−li
p (Rn)

for some suitable integers li, i = 1, . . . , q. Thus one could obtain similar result as in Theorem 1, but
under weaker assumption on the structure of the system. This remark will be useful for the analysis,
in a forthcoming paper, of the generalized thermoelastic plate equations with fractional damping.
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5. Examples

In this section, we will consider some examples where we could apply our results. Ini-
tially, as a naive example, we consider the Cauchy problem associated to the n-dimensional
linear heat equation in the whole space. That is{

ut(x, t)− αΔu(x, t) = 0 (x ∈ Rn, t > 0),
u(x, 0) = u0(x) (x ∈ Rn),

(21)

where α > 0 is related to the thermal diffusivity and u(x, t) represents the temperature in
point x at time t. The differential equation in (21) can be written in the form

ut − A(D)u = 0,

where
A(ξ) = −α|ξ|2, ξ ∈ R

n.

Note that in this case r1 = 2 > 1/2 and therefore the condition (2) holds trivially.
Let define

A−(ξ) := −A(ξ).

Now, for all λ ∈ Λ(θ) with 0 < θ < π/2, and all |ξ| ≥ 1√
3
, it can be shown that

|det(λ − A−(ξ))| =
∣∣λ − α|ξ|2∣∣ ≥ M

(〈ξ〉2 + |λ|).
Then A(D) is Λ(θ)-elliptic and we can apply corollary 2 to solve problem (21).

Consider now the thermoelastic plate equations on Rn given by{
vtt + Δ2v + Δθ = 0,
θt − Δθ − Δvt = 0

(22)

together with the initial conditions

v(0, ·) = v0, vt(0, ·) = v1, θ(0, ·) = θ0.

The equations in (22) were derived in [25], where v denotes a mechanical variable
representing the vertical displacement of the plate, while θ denotes a thermal variable
describing the temperature relative to a constant reference temperature θ.

Using the substitution u = (θ, vt,−Δv)�, the system (22) can be written as

ut − A(D)u = 0, (23)

where

A(ξ) :=

⎛⎝ −|ξ|2 −|ξ|2 0
|ξ|2 0 −|ξ|2

0 |ξ|2 0

⎞⎠. (24)

Note that in this case, rij = 2 > 1/2 for all i, j = 1, 2, 3, and assumption (2) holds. Now,
we define

A−(ξ) := −A(ξ) (25)

and consider the determinant of λ − A−(ξ), which is given by:

det(λ − A−(ξ)) = λ3 − |ξ|2λ2 + 2|ξ|4λ − |ξ|6.
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It is easy to see that

det(λ − A−(ξ)) = |ξ|6 p
(

λ

|ξ|2
)

, (26)

where
p(t) = t3 − t2 + 2t − 1.

Since p(0) < 0, p(1) > 0 and p′(t) > 0 for all t ∈ R, there exists a unique real number
α ∈ (0, 1) such that p(α) = 0. Now, since p is a polynomial with real coefficients, there exist
positive constants β and γ, such that

p(t) = (t − λ1)(t − λ2)(t − λ3) (27)

with λ1 = α, λ2 = β+ γi and λ3 = λ2. In particular, we get λ1 + λ2 + λ3 = 1, and therefore
β = 1−α

2 > 0. Hence, according to (26) and (27), it follows that

det(λ − A−(ξ)) =
(

λ − |ξ|2λ1

)(
λ − |ξ|2λ2

)(
λ − |ξ|2λ3

)
. (28)

By inequality (2.7) in [26], there exists π
2 < ϑ0 < π such that∣∣∣λλ−1

j + |ξ|2
∣∣∣ ≥ C(|λ|+ |ξ|2) (j = 1, 2, 3) ∀λ ∈ −Λ(ϑ0) and ξ ∈ R

n, (29)

where −Λ(ϑ0) := {−λ : λ ∈ Λ(ϑ0)}. Hence, for all λ ∈ Λ(ϑ0) and |ξ| ≥ 1√
3
, we have∣∣∣λ − |ξ|2λj

∣∣∣ = |λj|
∣∣∣(−λ)λ−1

j + |ξ|2
∣∣∣

≥ c|λj|(|λ|+ |ξ|2)
≥ C(|λ|+ 〈ξ〉2) (30)

for j = 1, 2, 3. Note that 2r|ξ|r ≥ 〈ξ〉r if |ξ| ≥ 1√
3

and r ≥ 0.

Proposition 2. Let A−(ξ) be defined as in (25). Then A−(D) is Λ(ϑ)-elliptic with 0 < ϑ < π/2.

Proof. This follows from (28)–(30).

Theorem 3. Let T > 0, ε ∈ (0, 1), k ∈ N0, 1 ≤ p < ∞, A(D) be defined by (23) and
(24) and let Ak be the Wk

p
(
Rn,C3)-realization of A(D). Then, for each u0 ∈ Wk

p
(
Rn,C3) and

f ∈ Cε
(
[0, T], Wk

p
(
Rn,C3)) the Cauchy problem{

∂tu(t) + Aku(t) = f (t), t ∈ (0, T],
u(0) = u0.

has a unique classical solution.

Proof. It follows from Proposition 2 and corollary 2.

Now, as a third example, we consider the lineal structurally damped plate equation
on Rn

vtt + Δ2v − ρΔvt = f , (31)

together with initial conditions

v(0, ·) = v0, vt(0, ·) = v1.
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Here, ρ > 0 is a fixed parameter. A description of this equation can be found in [27]
and the references therein.

Using the substitution u = (vt,−Δv)� and F = ( f , 0)T , the Equation (31) can be
written as

ut −A (D)u = F,

where

A (ξ) :=
( −ρ|ξ|2 −|ξ|2

|ξ|2 0

)
.

Note again that rij = 2 > 1/2 for all i, j ∈ {1, 2}, and assumption (2) holds. Now, we
define A−(ξ) := −A (ξ) and consider the determinant of λ −A−(ξ), which is given by

det(λ −A−(ξ)) = λ2 − ρ|ξ|2λ + |ξ|4.

Note that det(λ± − A−(ξ)) = 0 if only if λ± = |ξ|2
(

ρ

2
±
√

ρ2 − 4
2

)
=: |ξ|2z±. If

ξ �= 0, then λ± > 0 for ρ ≥ 2 and λ± ∈ C (with Re z+ > 0 and z− = z+) for 0 < ρ < 2.
Therefore, det(λ −A−(ξ)) =

(
λ − |ξ|2z+

)(
λ − |ξ|2z−

)
and in consequence

|det(λ −A−(ξ))| ≥ C(〈ξ〉2 + |λ|)(〈ξ〉2 + |λ|) ∀λ ∈ Λ(π/2) and |ξ| ≥ 1/
√

3.

In consequence, A−(D) is Λ(θ)-elliptic with 0 < θ < π/2. Using the same arguments
as in the previous example, we have that the Cauchy problem associated with (31) has a
unique classical solution.

As a last example we consider a generalized plate equation in Rn with intermediated
damping. Let α, ρ > 0, β ∈ [0, 1] and L := (−Δ)α. Then the associated symbol of L is
p(ξ) = |ξ|2α, ξ ∈ Rn. The generalized plate equation in Rn with intermediated damping is
given by

utt + Lu + ρLβut = 0 (32)

together with the initial conditions

u(0, ·) = u0, ut(0, ·) = u1. (33)

The generalized thermoelastic plate equation has been introduced in [28], a plate equa-
tion with intermediate damping was studied in [29] and a plate equation with intermediate
rotational force and damping in [30]. For the particular case α = 2, (32) models the equation
of a plate with: (i) frictional damping if β = 0, (ii) structural damping if β = 1/2 and
(iii) Kelvin-Voigt damping if β = 1.

If U :=
(

ut, L1/2u
)

, the equation (32) can equivalently be written as

Ut + Ã(D)U = 0, Ã(ξ) :=
[

ρ|ξ|2αβ |ξ|α
−|ξ|α 0

]
.

Now, let χ(ξ) be an arbitrary 0-excision function and A(ξ) := χ(ξ)Ã(ξ). In the
following we will omit without loss of generality the factor χ(ξ) in the definition of A(ξ)
and we will assume that ρ = 1.

Using the ideas of the proof of Lemma 6.1 in [4] we obtain the following lemma.

Lemma 5. Assume that the parameters α > 0 and β ∈ (0, 1) satisfy the conditions

α >
1
2

∧ 1
4α

< β < 1 − 1
4α

.
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Then, for the the following choice of orders:

r1 = 2αβ, r2 = 2α(1 − β) and r12 = r21 = α,

A(D) is Λ(θ)-elliptic for any 0 < θ < π.

Under the hypotheses of the previous lemma we have that

r+ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2α(1 − β), 0 < β <

1
2

,

α, β =
1
2

,

2αβ.
1
2
< β < 1,

r− =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2αβ, 0 < β <

1
2

,

α, β =
1
2

,

2α(1 − β),
1
2
< β < 1,

and

σ =
r−
r+

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β

1 − β
, 0 < β <

1
2

,

1, β =
1
2

,
1 − β

β
,

1
2
< β < 1.

Consequently, we can apply corollary 2 and Remark 5 to solve problem (32) and (33).

6. Conclusions

In this article, we have proved that the additive inverse of a suitable Sobolev space
realization of a Λ-elliptic Fourier multipliers system (in the sense of the Definition 3)
generates an infinitely differentiable semigroup on such Sobolev space, and that under
certain additional conditions, it generates an analytic semigroup on the same Sobolev space
(see Theorem 1). We emphasize again in these conclusions that the proof of the generation
of semigroups was done directly using an approach based on oscillatory integrals and
non trivial kernel estimates for them. With the results about generation of semigroups
we addressed the analysis of some application problems in Section 5 using well-known
statements for the existence and uniqueness of solutions for abstract evolution equations.
Now, regarding the possible future scope of this work, we recall Remark 6: using techniques
similar to those in this paper, questions about maximal Lp-regularity, the existence of a
H∞-calculus, the improvement of the basic spaces, and the weakening of the assumptions
for the structure of the system of Fourier multipliers, would be addressed in a forthcoming
paper. In the other direction, it is interesting to study assumptions, under which Λ-elliptic
Fourier multipliers systems generate Cosine families of operators in some appropriate
functional or distributional spaces, to consider control problems for fractional evolution
inclusions or equations following ideas from, for example [9,11–14].
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Abstract: We consider in this article the stochastic fractional Zakharov system derived by the mul-
tiplicative Wiener process in the Stratonovich sense. We utilize two distinct methods, the Riccati–
Bernoulli sub-ODE method and Jacobi elliptic function method, to obtain new rational, trigonometric,
hyperbolic, and elliptic stochastic solutions. The acquired solutions are helpful in explaining certain
fascinating physical phenomena due to the importance of the Zakharov system in the theory of
turbulence for plasma waves. In order to show the influence of the multiplicative Wiener process
on the exact solutions of the Zakharov system, we employ the MATLAB tools to plot our figures
to introduce a number of 2D and 3D graphs. We establish that the multiplicative Wiener process
stabilizes the solutions of the Zakharov system around zero.

Keywords: fractional Zakharov system; stochastic Zakharov system; Riccati–Bernoulli sub-ODE
method; Jacobi elliptic function method

MSC: 60H15; 60H10; 35A20; 83C15; 35Q51

1. Introduction

In 1972, Zakharov [1] developed the Zakharov system. It is a group of coupled nonlin-
ear wave equations that explains the interaction of high-frequency Langmuir (dispersive)
and low-frequency ion-acoustic (roughly nondispersive) waves. In one dimension, the
Zakharov system can be authored as

vtt − vxx + (|u|2)xx = 0, (1)

iut + uxx + 2uv = 0,

where v : Ω ×R+ → R denotes the plasma density as determined by its equilibrium value,
and u : Ω ×R+ → C denotes the high-frequency electric field’s envelope. The Zakharov
system is similar to nonlinear Schrödinger equations and significant in plasma turbulence
theory. As a result, the Zakharov system has piqued the interest of many physicists and
mathematicians, and has been extensively studied both theoretically and numerically [2–6].
To solve system problems (1), researchers have used a variety of methods. For example,
Song et al. [7] introduced unbounded wave solutions, kink wave solutions, and periodic
wave solutions by utilizing bifurcation theory method. Wang and Li [8] used the extended F-
expansion method to obtain periodic wave solutions. Javidi et al. [9] applied the variational
iteration technique to obtain solitary wave solutions. Taghizadeh et al. [10] obtained some
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exact solutions using infinite series method. Hong et al. [11] obtained a few new doubly
periodic solutions utilizing the Jacobian elliptic function expansion method.

In recent years, the fractional derivatives are utilized to describe numerous physical
phenomena in engineering applications, signal processing, electromagnetic theory, finance,
physics, mathematical biology, and various scientific studies, see for instance [12–17]. For
instance, the fractional derivative is utilized in control theory, controller tuning, optics,
seismic wave analysis, dynamical system, signal processing, and viscoelasticity.

On the other hand, the benefits of taking random effects into consideration in pre-
dicting, simulating, analyzing and modeling complex phenomena has been extensively
distinguished in biology, engineering, physics, geophysical, chemistry, climate dynamics,
and other fields [18–21]. Stochastic partial differential equations (SPDEs) are suitable mathe-
matical equations for complicated systems subject to noise or random influences. Normally,
random influences can be thought of as a simple estimate of turbulence in fluids. Therefore,
we have to generalize the Zakharov system by taking into account more elements due to
some important effects such as ion nonlinearities and transit-time damping.

To achieve a higher level of qualitative agreement, we consider here the follow-
ing stochastic fractional-space Zakharov system (SFSZS) with multiplicative noise in the
Stratonovich sense:

iut +T
α
xxu + 2uv + iσu ◦Wt = 0, (2)

vtt −T
α
xxv +T

α
xx(|u|2) = 0, (3)

where Tα is the conformable fractional derivative (CFD) [22], W(t) is standard Wiener
process (SWP).

In [23,24], the stochastic dissipative Zakharov system are obtained by utilizing the
global-random attractors provided with normal topology, while in [25], the uniqueness
and existence of solutions of the Zakharov system with stochastic term are obtained by
applying the method of Galerkin approximation.

The novelty of this paper is to construct the exact fractional stochastic solutions of the
SFSZS (2)–(3). This study is the first one to obtain the exact solutions of the SFSZS (2)–(3).
We use two distinct methods including the Jacobi elliptic function and the Riccati–Bernoulli
sub-ODE to achieve a wide range of solutions, including hyperbolic, trigonometric, rational,
and elliptic functions. Besides that, we employ Matlab tools to plot 3D and 2D graphs for
some of the analytical solutions developed in this study to check the effect of the Wiener
process on the solutions of SFSZS (2)–(3).

The following is how the paper is arranged. In Section 2, we define the CFD and
Wiener process and we state some features about them. To obtain the wave equation of
SFSZS (2)–(3), we use a suitable wave transformation in Section 3. In Section 4, we apply two
different methods to construct the exact solutions of SFSZS (2)–(3). In Section 5, we study
the effect of the SWP on the obtained solutions. Finally, we present the paper’s conclusion.

2. Preliminaries

In this section, we introduce some definitions and features for CFD, which are reported
in [22] and SWP.

Definition 1. Assume f : (0, ∞) → R; hence, the CFD of f of order α is defined as

T
α
x f (x) = lim

h→0

f (x + hx1−α)− f (x)
h

.

Theorem 1. Let f , g : (0, ∞) → R be differentiable, and also α differentiable functions; then, the
next rule holds:

T
α
x( f ◦ g)(x) = x1−αg′(x) f ′(g(x)).

Let us state some properties of the CFD:
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1. Tα
x[a f (x) + bg(x)] = aTα

x f (x) + bTα
xg(x), a, b ∈ R,

2. Tα
x[C] = 0, C is a constant,

3. Tα
x[x�] = �x�−α, � ∈ R,

4. Tα
xg(x) = x1−α dg

dx ,

In the next definition, we define standard Wiener process W(t):

Definition 2. stochastic process {W(t)}t≥0 is called a Wiener process if it satisfies

1. W(0) = 0,
2. W(t), t ≥ 0 is continuous function of t,
3. For t1 < t2, W(t1)−W(t2) is independent,
4. W(t2)−W(t1) has a Gaussian distribution with mean 0 and variance t2 − t1.

We know the stochastic integral
∫ t

0 ΘdWmay be interpreted in a variety of ways [26].
The Stratonovich and Itô interpretations of a stochastic integral are widely used. The
stochastic integral is Itô (denoted by

∫ t
0 ΘdW) when it is evaluated at the left-end, while

a Stratonovich stochastic integral (denoted by
∫ t

0 Θ ◦ dW) is one that is calculated at the
midpoint. The next is the relationship between the Stratonovich and Itô integral:∫ t

0
Θ(τ, Zτ)dW(τ) =

∫ t

0
Θ(τ, Zτ) ◦ dW(τ)− 1

2

∫ t

0
Θ(τ, Zτ)

∂Θ(τ, Zτ)

∂z
dτ, (4)

where Θ is supposed to be sufficiently regular and {Zt, t ≥ 0} is a stochastic process.

3. Wave Equation for SFSZS

To acquire the wave equation for the SFSZS (2)–(3), the next wave transformation is
applied:

u(x, t) = ϕ(μ)e(iθ−σW(t)−σ2t), μ = k(
1
α

xα − λt) and θ =
λ

2α
xα + ρt, (5)

where ϕ is a deterministic function and k, λ, ρ are nonzero constants. Plugging Equation (5)
into Equation (2) and using

du
dt

= (−λkϕ′ + iρϕ − σϕWt − 1
2

σ2 ϕ)e(iθ−σW(t)−σ2t),

= (−λkϕ′ + iρϕ − σϕ ◦Wt)e(iθ−σW(t)−σ2t), (6)

T
α
xx = (k2 ϕ′′ + iλkϕ′ − 1

4
λ2 ϕ)e(iθ−σW(t)−σ2t),

where we used (4). We obtain, for the real part,

k2 ϕ′′ − (
1
4

λ2 + ρ)ϕ + 2ϕv = 0. (7)

Now, we suppose
v(x, t) = ψ(μ),

where ψ is real deterministic function, to obtain

vt = −λkψ′, vtt = λ2k2ψ′′, Tα
xxv = k2ψ′′. (8)

Substituting Equation (8) into Equation (3), we attain

(λ2 − 1)ψ′′ + (ϕ2)′′e(−2σW(t)−2σ2t) = 0. (9)
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Taking expectation E(·) on both sides, we have

(λ2 − 1)ψ′′ + (ϕ2)′′e−2σ2t
E(e−2σW(t)) = 0. (10)

Since W(t) is standard Gaussian process; hence, E(e�W(t)) = e
�2
2 t for any real constant �.

Now, Equation (10) has the form

(λ2 − 1)ψ′′ + (ϕ2)′′ = 0, (11)

Integrating Equation (11) twice and putting the constants of integration equal zero yields

(λ2 − 1)ψ + ϕ2 = 0. (12)

Hence, Equation (12) becomes

ψ =
−ϕ2

(λ2 − 1)
. (13)

Putting Equation (13) into Equation (7), we obtain the next wave equation

ϕ′′ − γ1 ϕ3 − γ2 ϕ = 0, (14)

where
γ1 =

2
k2(λ2 − 1)

and γ2 =
1

4k2 (λ
2 + 4ρ). (15)

4. The Analytical Solutions of the SFSZS

To find the solutions of Equation (14), we utilize two different methods: Riccati–
Bernoulli sub-ODE [27] and the Jacobi elliptic function method [28]. Therefore, we acquire
the analytical solutions of the SFSZS (2)–(3).

4.1. Riccati–Bernoulli Sub-ODE Method

Assume the following Riccati–Bernoulli equation:

ϕ′ = �1 ϕ2 + �2 ϕ + �3, (16)

where �1,�2,�3 are undefined constants and ϕ = ϕ(μ).
Differentiating Equation (16) with respect to μ, we obtain

ϕ′′ = 2�1 ϕϕ′ + �2 ϕ′,

and using Equation (16) yields

ϕ′′ = 2�2
1 ϕ3 + 3�1�2 ϕ2 + (2�1�3 + �

2
2)ϕ + �2�3. (17)

Substituting (17) into (14), we have

(2�2
1 − γ1)ϕ3 + 3�1�2 ϕ2 + (2�1�3 + �

2
2 − γ2)ϕ + �2�3 = 0.

Equating each coefficient of ϕi(i = 0, 1, 2, 3) to zero, we achieve the next algebraic equations

�2�3 = 0,

(2�1�3 + �
2
2 − γ2) = 0,

3�1�2 = 0,

2�2
1 − γ1 = 0.

When the above equations are solved, the result is
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�1 = ±
√

1
2

γ1, �2 = 0, �3 =
γ2

2�1
= ± γ2√

2γ1
. (18)

There are numerous solutions to the Riccati–Bernoulli Equation (16) depending on �1
and �3.

First case: If �3
�1

= 0, then Riccati–Bernoulli Equation (16) has the solution

ϕ(μ) =
−1

�1μ + C
.

Hence, the SFSZS (2)–(3) has the analytical solutions

u(x, t) = ϕ(μ)e(iθ−σW(t)−σ2t) =
−1

�1(
k
α xα − kλt) + C

e(iθ−σW(t)−σ2t) , (19)

v(x, t) =
−ϕ2

(λ2 − 1)
=

−1

(λ2 − 1)
(
�1(

k
α xα − kλt) + C

)2 . (20)

Second case: If �3
�1

> 0, then the Riccati–Bernoulli equation (16) has the solution

ϕ(μ) =

√
�3

�1
tan

(√
�3

�1
(�1μ + C)

)
,

or

ϕ(μ) = −
√

�3

�1
cot

(√
�3

�1
(�1μ + C)

)
.

Therefore, SFSZSs (2)–(3) have the following solutions:

u(x, t) = e(iθ−σW(t)−σ2t)

√
�3

�1
tan

(√
�3

�1
(�1(

k
α

xα − kλt) + C)
)

, (21)

v(x, t) =
−�3

(λ2 − 1)�1
tan2

(√
�3

�1
(�1(

k
α

xα − kλt) + C)
)

, (22)

or

u(x, t) = −e(iθ−σW(t)−σ2t)

√
�3

�1
cot

(√
�3

�1
(�1(

k
α

xα − kλt) + C)
)

, (23)

v(x, t) =
−�3

(λ2 − 1)�1
cot2

(√
�3

�1
(�1(

k
α

xα − kλt) + C)
)

, (24)

respectively.

Third case: If �3
�1

< 0 and |ϕ| <
√
− �3

�1
, then Riccati–Bernoulli Equation (16) has

the solution

ϕ(μ) = −
√

−�3

�1
tanh

(√−�3

�1
(�1μ + C)

)
.

Thus, the SFSZS (2)–(3) have the following analytical solutions:

u(x, t) = −e(iθ−σW(t)−σ2t)

√
−�3

�1
tanh

(√−�3

�1
(�1(

k
α

xα − kλt) + C)
)

, (25)

v(x, t) =
−�3

(λ2 − 1)�1
tanh2

(√−�3

�1
(�1(

k
α

xα − kλt) + C)
)

. (26)
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Fourth case: If �3
�1

< 0 and ϕ2 > −�3
�1

, then Riccati–Bernoulli Equation (16) has
the solution

ϕ(μ) = −
√

−�3

�1
coth

(√−�3

�1
(�1μ + C)

)
.

Consequently, the analytical solutions of the SFSZS (2)–(3) are

u(x, t) = −e(iθ−σW(t)−σ2t)

√
−�3

�1
coth

(√
�3

�1
(�1(

k
α

xα − kλt) + C)
)

, (27)

v(x, t) =
−�3

(λ2 − 1)�1
coth2

(√
�3

�1
(�1(

k
α

xα − kλt) + C)
)

, (28)

where �1 and �2 are defined in Equation (18).

4.2. The Jacobi Elliptic Function Method

Assuming that the solutions to Equation (14) are of the form

ϕ(μ) = a + bsn(δμ), (29)

where sn(δμ) = sn(δμ, m), for 0 < m < 1, is the Jacobi elliptic sine function and a, b, δ are
unknown constants. Differentiate Equation (29) two times and we have

ϕ′′(μ) = −(m2 + 1)bδ2sn(δμ) + 2m2bδ2sn3(δμ). (30)

Substituting Equations (29) and (30) into Equation (14), we attain

(2m2bδ2 − γ1b3)sn3(δμ)− 3γ1ab2sn2(δμ)

−[(m2 + 1)bδ2 + 3γ1a2b + γ2b]sn(δμ)− (γ1a3 + aγ2) = 0.

Setting each coefficient of [sn(δμ)]n(n = 0, 1, 2, 3) equal to zero, we attain

γ1a3 + aγ2 = 0,

(m2 + 1)bδ2 + 3γ1a2b + γ2b = 0,

3γ1ab2sn2 = 0,

and
2m2bδ2 − γ1b3 = 0.

Solving the above equations, we have

a = 0, b = ±
√

−2m2γ2

(m2 + 1)γ1
δ2 =

−γ2

(m2 + 1)
.

Hence, the solution of Equation (14), by using (29), has the form

ϕ(μ) = ±
√

−2m2γ2

(m2 + 1)γ1
sn(

−γ2

(m2 + 1)
μ).

Therefore, the analytical solutions of the SFSZS (2)–(3) are

u(x, t) = ±
√

−2m2γ2

(m2 + 1)γ1
sn
(√ −γ2

(m2 + 1)
(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (31)
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v(x, t) =
k2m2γ2

(m2 + 1)
sn2

(√ −γ2

(m2 + 1)
(

k
α

xα − kλt)
)

, (32)

for γ2 < 0 and γ1 > 0. When m → 1, the solutions (31)–(32) transfer into

u(x, t) = ±
√−γ2

γ1
tanh

(√−γ2

2
(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (33)

v(x, t) = − k2γ2

2
tanh2

(√−γ2

2
(

k
α

xα − kλt)
)

. (34)

Analogously, we can replace sn in (29) by cn and dn in order to obtain the solutions of
Equation (14), respectively, as follows:

ϕ(μ) = ±
√

−2m2γ2

(2m2 − 1)γ1
cn(

−γ2

(2m2 − 1)
μ),

and

ϕ(μ) = ±
√

2m2γ2

(2 − m2)γ1
dn(

−γ2

(2 − m2)
μ).

Consequently, the solutions of the SFSZS (2)–(3) have the following forms:

u(x, t) = ±
√

−2m2γ2

(2m2 − 1)γ1
cn
(√ −γ2

(2m2 − 1)
(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (35)

v(x, t) =
k2m2γ2

(2m2 − 1)
cn2

(√ −γ2

(2m2 − 1)
(

k
α

xα − kλt)
)

, (36)

for γ2
(2m2−1) < 0, γ1 > 0, and

u(x, t) = ±
√

−2m2γ2

(2m2 − 1)γ1
dn
(√ −γ2

(2m2 − 1)
(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (37)

v(x, t) =
k2m2γ2

(2 − m2)
dn2

(√ −γ2

(2 − m2)
(

k
α

xα − kλt)
)

, (38)

for γ2 < 0, γ1 > 0, respectively. When m → 1, the solutions (35)–(36) and (37)–(38) transfer into

u(x, t) = ±
√

−2γ2

γ1
sech

(√−γ2(
k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (39)

v(x, t) = k2m2γ2sech2
(√−γ2(

k
α

xα − kλt)
)

, (40)

for γ2 < 0, γ1 > 0.

5. The Influence of Noise on SFSZS Solutions

The influence of the noise on the analytical solution of the SFSZS (2)–(3) is addressed
here. Fix the parameters k = 1, ρ = 1, m = 0.5, and λ = 3. We introduce a number of
simulations for various values of σ (noise intensity) and α (fractional derivative order). We
employ the MATLAB tools to plot our figures. In Figures 1 and 2, if σ = 0, we see that the
surface fluctuates for different values of α:
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σ = 0, α = 1 σ = 0, α = 0.5

Figure 1. 3D graphs of the solution (31).

σ = 0, α = 1 σ = 0, α = 0.5

Figure 2. 3D graphs of the solution (32).

In the following Figures 3–5, we can see that after minor transit patterns, the surface
becomes considerably flattered when noise is included and its strength is increased σ = 1, 2.

σ = 1, α = 1 σ = 2, α = 1

Figure 3. 3D graphs of the solution (31) with α = 1.
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σ = 1, α = 0.5 σ = 2, α = 0.5

Figure 4. 3D graphs of the equation (31) with α = 0.5.

σ = 1, α = 0.5 σ = 2, α = 0.5

σ = 1, α = 0.5 σ = 2, α = 0.5

Figure 5. 3D graphs of the equation (21) with α = 1.

In Figure 6, we introduce 2D plots of the u in (31) with σ = 0, 0.5, 1, 2 and α = 1, which
emphasize the results above.

Figure 6. 2D graphs of the u in (31).

From Figures 1–6, we deduce the following:

1. The surface expands as the fractional order α increases;
2. Multiplicative Wiener process stabilizes the solutions of SFSBE around zero.
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6. Conclusions

In this article, we provided a wide range of exact solutions of the stochastic fractional
Zakharov system (2)–(3). We applied two different methods such as the Riccati–Bernoulli
sub-ODE method and Jacobi elliptic function method to attain rational, trigonometric,
hyperbolic, and elliptic stochastic fractional solutions. Such solutions are critical for com-
prehending certain essential, fundamental, complex phenomena. The solutions obtained
will be extremely useful for further studies such as fiber applications, spatial plasma,
quasi particle theory, coastal water motion, and industrial research. Finally, the effect of
multiplicative Wiener process on the exact solution of Zakharov system (2)–(3) is demon-
strated. In future research, we can address the fractional-time Zakharov system (2)–(3) with
multidimensional multiplicative noise.
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Abstract: In this paper, a numerical scheme based on a general temporal mesh is constructed for a
generalized time-fractional diffusion problem of order α. The main idea involves the generalized
linear interpolation and so we term the numerical scheme the gL1 scheme. The stability and conver-
gence of the numerical scheme are analyzed using the energy method. It is proven that the temporal
convergence order is (2 − α) for a general temporal mesh. Simulation is carried out to verify the
efficiency of the proposed numerical scheme.

Keywords: generalized fractional derivative; time-diffusion problem; generalized linear interpolation;
numerical scheme
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1. Introduction

The fractional model has been shown to be a powerful tool in modeling various
memory process in applications [1,2], such as diffusion process in a porous media. The
essence of this tool lies in fractional derivative (or integral) which is an extension of
integer derivative (or integral). Many well known mathematicians such as Euler, Lagrange,
Liouville, Riemann, Grüwald, Letnikov and Caputo have devoted their efforts to fractional
calculus and have made great contributions to this topic. The extension from integer
derivative (or integral) to fractional derivative (or integral) may not be unique due to the
different techniques applied. To unify the different approaches, Agrawal [3] has proposed
some generalized fractional operators which may unify some well known fractional operators
such as Caputo, Riemann-Louville and Hadamard. The generalized fractional operators
incorporate a scale function z(t) and a weight function w(t). With these two functions,
many equations can be written in a general form and thus can be solved in an elegant way
as shown in [3]. Moreover, by choosing different z(t) and w(t), one can readily obtain the
well known fractional operators.

The generalized fractional operators naturally lead to generalized fractional problems.
As in the fractional situation, the analytical solutions may not be easily derived and hence
the corresponding numerical solutions are both necessary and useful in applications. In
fact, some pioneer works have been done on the numerical treatment of certain generalized
fractional problems [4–10]. In the earlier papers [8–10], the convergence of the numerical
scheme is established using the Lax–Richtmyer theorem but the order of convergence is not
explicitly given. Inspired by [11,12], some generalized weighted shifted Grünwald-Letnikov
(gWSGL) type approximations [4–6] and generalized Alikhanov’s approximation [7] were
recently proposed, which improve the accuracy of previous work. In fact, the convergence
order of these methods are shown to be O(τ2

z ) (or higher) based on a particular choice of
the temporal mesh that closely depends on the scale function z(t). It is noteworthy that
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the higher convergence order comes at the expense of more computations and restrictions
in reality.

In this paper, we shall consider a generalized time-fractional diffusion problem that is
more general than that in [9]. As one of the pioneer numerical treatments for generalized
time-fractional diffusion problems, the authors in [9] first present analytical solution of a
generalized time-fractional problem involving second order spatial derivative. Then, based
on a uniform temporal mesh, they construct a numerical scheme by finite difference method.
The stability of the numerical scheme is investigated via an estimate of the inverse of the
coefficient matrix, and the convergence then follows from the Lax–Richtmyer theorem
without giving explicit convergence order. Different from the work of [9], we aim to
derive a numerical scheme based on a more general temporal mesh than [9] and give the
convergence order of the proposed scheme explicitly using energy method. Our major
contributions in this paper are as follows:

• We consider a problem involving an operator L and propose a numerical scheme
based on a general temporal mesh using generalized linear interpolation.

• We establish the stability and convergence of the proposed scheme, which is based on
a general temporal mesh, via energy method. The analysis in the context of general
temporal mesh is not trivial.

We consider the following generalized time-fractional diffusion equation with weight
function w(t) ≡ 1⎧⎪⎪⎨⎪⎪⎩

C
0 Dα

t;[z(t),1]u(x, t) = Lu(x, t) + f (x, t), (x, t) ∈ (0, 1)× (0, 1)

u(x, 0) = ψ(x), x ∈ [0, 1]

u(0, t) = φ1(t), u(1, t) = φ2(t), t ∈ (0, 1]

(1)

where L is a linear operator defined by

Lu(x, t) = (p(x, t)ux(x, t))x − q(x, t)u(x, t),

with p(x, t) ≥ p0 > 0 and q(x, t) ≥ 0, C
0 Dα

t;[z(t),1]u(x, t)(0 < α < 1) is the generalized
Caputo fractional derivative given by

C
0 Dα

t;[z(t),1]u(x, t) =
1

Γ(1 − α)

∫ t

0

1
[z(t)− z(s)]α

∂u(x, s)
∂s

ds, (2)

and φ1(t), φ2(t), ψ(x), f (x, t) are given functions that are sufficiently smooth. We remark
that (i) a generalized fractional problem of type (1) with any weight function w(t) (not
necessarily 1) can be converted to (1) by a simple formula u(x, t) = w(t)v(x, t) (see [4–7]);
and (ii) the generalized fractional equation considered in [9] is a special case of (1) when
p(x, t) ≡ 1 and q(x, t) ≡ 0.

The plan of the paper is as follows. In Section 2, we shall develop a numerical scheme
for the problem (1) based on a more general temporal mesh than [9]. Then, the stability as
well as the convergence of the proposed numerical scheme will be established rigorously
using energy method in Section 3. In Section 4, we carry out experiments to verify as well as
to demonstrate the efficiency of the proposed numerical scheme. Finally, a brief conclusion
is given in Section 5.

2. Numerical Scheme

In this section, we shall derive a numerical scheme for the problem (1) using the key
idea of generalized linear interpolation. To begin, let

Δ : 0 = t0 < t1 < · · · < tN−1 < tN = 1 and Δ′ : 0 = x0 < x1 < · · · < xM−1 < xM = 1

74



Mathematics 2022, 10, 1219

be any mesh in the temporal dimension and a uniform mesh in the spatial dimension with
step size h = 1

M , respectively. Throughout, assume that the scale function z(t) is a strictly
increasing function. Let Z : t → z(t) be a map from [0, 1] to [z(0), z(1)]. Denote z(tn) = zn.
Moreover, denote by Un

j the exact solution of (1) at (xj, tn), and by un
j an approximation

of Un
j .

Lj,k−1(z(t)) =
z(t)− zk−1
zk − zk−1

uk
j +

z(t)− zk
zk−1 − zk

uk−1
j . (3)

Note that Lj,k−1(z(t)) is a generalized linear polynomial of z(t) and it will be used to
approximate u(xj, t) over the interval [tk−1, tk] in (2). Indeed, we derive the following
approximation scheme at (xj, tn)

C
0 Dα

t;[z(t),1]u(xj, tn) =
1

Γ(2 − α)

n

∑
k=1

∫ tk

tk−1

1
[z(tn)− z(s)]α

∂u(x, s)
∂s

ds

≈ 1
Γ(2 − α)

n

∑
k=1

∫ tk

tk−1

1
[z(tn)− z(s)]α

[
Lj,k−1(z(s))

]′
ds

=
1

Γ(2 − α)

n

∑
k=1

∫ tk

tk−1

1
[z(tn)− z(s)]α

uk
j − uk−1

j

zk − zk−1
z′(s)ds

= μ

[
ω0

z un
j −

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
uk

j − ωn−1
z u0

j

]
:= gL1[u(xj, tn)],

(4)

where μ = 1
Γ(2−α)

and the coefficients

ωn−k−1
z =

(zn − zk)
1−α − (zn − zk+1)

1−α

zk+1 − zk
, 0 ≤ k ≤ n − 1. (5)

We shall call (4) the gL1 approximation of the generalized Caputo fractional derivative.

Remark 1.

(a) Note that (4) is derived for any temporal mesh Δ and this is an extension of [9] which considers
uniform temporal mesh. Moreover, the technique used to obtain (4) involves generalized linear
interpolation whereas in [9] finite difference is used to approximate the derivatives in the
integrand of the fractional derivative.

(b) The Formula (4) is also different from the nonuniform L1 formula in [13] since a scale function
z(t) such that zj �= zi, i �= j is considered.

To proceed further, we shall investigate the accuracy of the gL1 approximation (4) and
the properties of the coefficients ωk

z which are both vital in subsequent analysis. For the
former one, we introduce the following definition.

Definition 1 ([14]). Given the mesh Δ : 0 = t0 < t1 < · · · < tN−1 < tN = 1, denote z(tk) = zk.
The mesh

Δz : z(0) = z0 < z1 < · · · < zN−1 < zN = z(1)

is said to be quasi uniform if
τz,max

τz,min
≤ ρ,

where τz,max = max1≤k≤N |zk − zk−1|, τz,min = min1≤k≤N |zk − zk−1| and ρ > 0 is a constant.

Theorem 1 (gL1 approximation). Assume that for any fixed x = xj, u(xj, Z−1(z)) = g(z) ∈
C2[z(0), z(1)]. Suppose that the mesh Δz : z(0) = z0 < z1 < · · · < zN−1 < zN = z(1) is quasi
uniform. Then, we have for any fixed α ∈ (0, 1),

C
0 Dα

t;[z(t),1]u(xj, tn) = gL1[u(xj, tn)] + O(τ2−α
z,max). (6)
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Proof. From (4) we see that the error term Rn
j satisfies

C
0 Dα

t;[z(t),1]u(xj, tn) = gL1[u(xj, tn)] + Rn
j ,

and

Rn
j =

1
Γ(1 − α)

n

∑
k=1

∫ tk

tk−1

[z(tn)− z(s)]−α

{
∂u(xj, s)

∂s
− [Lj,k−1(z(s))]′

}
ds.

Noting that Lj,k−1(z(tk)) = uk
j = u(xj, tk) and the relation Z−1(z) = t, after applying

integration by parts, we get

Rn
j = − α

Γ(1 − α)

n

∑
k=1

∫ zk

zk−1

(zn − z)−α−1
[
u(xj, Z−1(z))− Lj,k−1(z)

]
dz. (7)

Since u(xj, Z−1(z)) = g(z) ∈ C2[z(0), z(1)], it is well known that

u(xj, Z−1(z))− Lj,k−1(z) = (z − zk−1)(z − zk)
gzz(ξk)

2
, zk−1 < ξk < zk. (8)

Denote Mg = maxz(0)≤z≤z(1) |gzz(z)|. Upon substituting (8) into (7), we find

|Rn
j | ≤ αMg

2Γ(1 − α)

n

∑
k=1

∫ zk

zk−1

(zn − z)−α−1(z − zk−1)(zk − z)dz

=
Mg

2Γ(2 − α)

[
n−1

∑
k=1

∫ zk

zk−1

(zn − z)−α−1(z − zk−1)(zk − z)dz +
∫ zn

zn−1

z − zn−1

(zn − z)α
dz

]

≤ Mg

2Γ(2 − α)

[
n−1

∑
k=1

(zk − zk−1)
2

4

∫ zk

zk−1

(zn − z)−α−1dz +
(zn − zn−1)

2−α

1 − α

]
.

This further gives

|Rn
j | ≤ Mg

2Γ(2 − α)

[
τ2

z,max

4

∫ zn−1

z0

(zn − z)−α−1dz +
τ2−α

z,max

1 − α

]

=
Mg

2Γ(2 − α)

[
τ2

z,max

4α

(
(zn − zn−1)

−α − (zn − z0)
−α
)
+

τ2−α
z,max

1 − α

]

≤ Mg

2Γ(2 − α)

[
τ2

z,max

4α
(zn − zn−1)

−α +
τ2−α

z,max

1 − α

]

≤ Mg

2Γ(2 − α)

[
ρα

4α
+

1
1 − α

]
τ2−α

z,max.

Hence, for any fixed α ∈ (0, 1), we get

|Rn
j | = O(τ2−α

z,max).

This completes the proof.

Remark 2. There is some relation between the commonly used uniform mesh of t and the quasi
uniform mesh of z(t).

(a) For finite intervals of t, say t ∈ [0, 1], in practice the partition of [0, 1] always results in finite
number of subintervals, so we are able to find a constant ρ such that τz,max

τz,min
≤ ρ. Hence, it is

clear that any general mesh of t yields a quasi uniform mesh of z(t). In particular, we can say
that for finite intervals, the commonly used uniform mesh of t is a special case of the quasi
uniform mesh of z(t).
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(b) For infinite intervals of t, in general the uniform mesh of t may not yield the quasi uniform
mesh of z(t). However, if 0 < c < |z′(t)| < C for all t in the infinite interval, then the
uniform mesh of t will give the quasi uniform mesh of z(t), and so we can conclude here that
the uniform mesh of t is a special case of the quasi uniform mesh of z(t).

Our next result gives the properties of the coefficients ωk
z in (5) that is vital in subse-

quent analysis.

Lemma 1. For fixed n, we have

ωn−k−1
z ≥ (1 − α)(zn − zk)

−α > 0, 0 ≤ k ≤ n − 1 (9)

ωn−k−1
z ≥ ωn−k

z , 0 ≤ k ≤ n − 1. (10)

Proof. Let F(z) = (zn − z)1−α. Applying mean value theorem and noting the Definition
(5), we get

F′(ξ) = −(1 − α)(zn − ξ)−α =
F(zk+1)− F(zk)

zk+1 − zk
= −ωn−k−1

z , zk ≤ ξ ≤ zk+1

i.e.,
ωn−k−1

z = (1 − α)(zn − ξ)−α, zk ≤ ξ ≤ zk+1. (11)

Since (zn − ·)−α is an increasing function, (11) immediately leads to (9) and (10).

We are now ready to construct a numerical scheme for the generalized time-fractional
diffusion Equation (1). Discretizing (1) at (xj, tn) and using the approximation (4) together
with finite difference method in the spatial dimension yields⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ

[
ω0

z un
j −

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
uk

j − ωn−1
z u0

j

]
= Λun

j + f n
j , 1 ≤ j ≤ M − 1

u0
j = ψ(xj), 1 ≤ j ≤ M − 1

un
0 = φ1(tn), un

M = φ1(tn), 0 ≤ n ≤ N

(12)

where μ = 1
Γ(2−α)

and Λ is an operator given by

Λun
j = δx(pδxu)n

j − qn
j un

j ,

with
δx(pδxu)n

j =
1
h

(
pn

j+ 1
2
δxun

j+ 1
2
− pn

j− 1
2
δxun

j− 1
2

)
,

pn
j+ 1

2
= p(xj+ 1

2
, tn), qn

j = q(xj, tn) and δxun
j+ 1

2
=
(

un
j+1 − un

j

)
/h. We shall call (12) the gL1

scheme of the generalized time-fractional diffusion Equation (1).

Remark 3. It is easy to verify that the coefficient matrix of the system (12) is strictly diagonally
dominated. Therefore, it is uniquely solvable.

3. Theoretical Results

In this section, we shall analyze the stability as well as the convergence of the numerical
scheme (12). To begin, let Uh = {u = (u0, u1, · · · , uM)|u0 = uM = 0} and for any u, v ∈ Uh,
define

δxuj+ 1
2
=

1
h
(uj+1 − uj), δxuj =

1
h

(
uj+ 1

2
− uj− 1

2

)
, δ2

xuj =
1
h

(
δxuj+ 1

2
− δxuj− 1

2

)
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and

(u, v) = h
M−1

∑
j=1

ujvj, |u|1 =

√√√√h
M−1

∑
j=0

(
δxuj+ 1

2

)2
, ‖u‖∞ = max

1≤j≤M−1
|uj|. (13)

Obviously, ‖ · ‖ =
√
(·, ·) is a norm defined over the space Uh.

Next, we shall present three lemmas that will be used later to establish the stability
and convergence results. The first one gives a relation between |u|1 and ‖u‖∞.

Lemma 2 ([15]). For any u ∈ Uh, we have the inequality ‖u‖∞ ≤ 1
2 |u|1.

The next lemma is from [16] which reveals a relation between |u|1 and ‖u‖.

Lemma 3 (Discrete Poincare inequality [16]). Suppose that u ∈ Uh, then

2
h

sin
(

πh
2

)
‖u‖ ≤ |u|1. (14)

Remark 4. If h < 1 which is the case in our method, from the fact sin
(

π
2 h
) ≥ h, the inequality

(14) yields |u|1 ≥ 2‖u‖ that will be used in subsequent analysis.

The last lemma gives an explicit expression of −(Λu, u).

Lemma 4. For any u ∈ Uh, we have

−(Λu, u) = h
M−1

∑
j=0

pj+ 1
2

(
δxuj+ 1

2

)2
+ h

M−1

∑
j=1

qju2
j .

Proof. Using the definition in (13), it is found that

−(Λu, u) = −h
M−1

∑
j=1

[
δx(pδxu)j − qjuj

]
uj = −h

M−1

∑
j=1

[
δx(pδxu)j

]
uj + h

M−1

∑
j=1

qj(uj)
2

= −
M−1

∑
j=1

(
pj+ 1

2
δxuj+ 1

2
− pj− 1

2
δxuj− 1

2

)
uj + h

M−1

∑
j=1

qj(uj)
2

= −
M−1

∑
j=1

pj+ 1
2
ujδxuj+ 1

2
+

M−1

∑
j=1

pj− 1
2
ujδxuj− 1

2
+ h

M−1

∑
j=1

qj(uj)
2

=
M−1

∑
j=0

pj+ 1
2
(uj+1 − uj)δxuj+ 1

2
+ h

M−1

∑
j=1

qj(uj)
2,

where we have used u0 = uM = 0 in the last equality. The result is immediate from the
above equation.

Remark 5. Since p(x, t) ≥ p0 > 0 and q(x, t) ≥ 0, it is clear from Lemma 4 that −(Λu, u) ≥
p0|u|21 for any u ∈ Uh.

Now, let us present the stability and convergence of the numerical scheme (12). To this
aim, we shall first consider (12) with zero boundary conditions.
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Theorem 2. Let {un
j , 1 ≤ j ≤ M − 1, 1 ≤ n ≤ N} be the solution of the system (12) with zero

boundary conditions. Then, we have

‖un‖2 +
p0

ω0
z μ

|un|21 ≤ E, 1 ≤ n ≤ N (15)

where μ = 1
Γ(2−α)

, ω0
z = (zn − zn−1)

−α, p0 > 0 and

E = ‖u0‖2 +
Γ(1 − α)(z(1)− z(0))α

4p0
max

1≤n≤N
‖ f n‖2.

Proof. Multiplying both sides of the first equation of (12) by −un
j and summing j from 1 to

(M − 1) gives

−μ

[
ω0

z un
j −

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
uk

j − ωn−1
z u0

j

]
= −(Λun, un)− ( f n, un),

which is rearranged to

μω0
z (u

n, un)− (Λun, un) = μ
n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
(uk, un) + μωn−1

z (u0, un) + ( f n, un). (16)

Since we consider zero boundary conditions here, it is obvious that un ∈ Uh. Therefore,
using Remark 5, we get a lower bound for the left side of (16) below

μω0
z(u

n, un)− (Λun, un) ≥ μω0
z‖un‖2 + p0|un|21.

Noting (10) in Lemma 1 and using xy ≤ 1
2 (x2 + y2), an upper bound for the first two

terms on the right side of (16) is found as follows

μ
n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
(uk, un) + μωn−1

z (u0, un)

≤ μ

2

[
n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
(uk, uk) + ωn−1

z (u0, u0)

]
+

μ

2
ω0

z(u
n, un)

=
μ

2

[
n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
‖uk‖2 + ωn−1

z ‖u0‖2

]
+

μ

2
ω0

z‖un‖2.

For the third term on the right side of (16), the Young’s inequality gives the following
upper bound

( f n, un) ≤ ‖ f n‖2

4ε
+ ε‖un‖2, ∀ε > 0.

Upon substituting the above upper and lower bounds into (16), we immediately get

μ

2
ω0

z‖un‖2 + p0|un|21 − ε‖un‖2 ≤ μ

2

[
n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
‖uk‖2 + ωn−1

z ‖u0‖2

]
+

1
4ε

‖ f n‖2. (17)

Next, using Lemma 3 and noting Remark 4, we have |un|1 ≥ 2‖un‖. Then, with
ε = 2p0, the left side of (17) gives the following lower bound

μ

2
ω0

z‖un‖2 + p0|un|21 − ε‖un‖2 ≥ μ

2
ω0

z‖un‖2 +
(

p0 − ε

4

)
|un|21 =

μ

2
ω0

z‖un‖2 +
p0

2
|un|21.

Substituting the above into (17) leads to

ω0
z‖un‖2 +

p0
μ
|un|21 ≤

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
‖uk‖2 + ωn−1

z

(
‖u0‖2 +

1
4p0μωn−1

z
‖ f n‖2

)
. (18)
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Further, from (9) we see that ωn−1
z ≥ (1 − α)(zn − z0)

−α > 0 and hence

1
ωn−1

z
≤ (zn − z0)

α

1 − α
≤ (z(1)− z(0))α

1 − α
.

Using the above inequality and μ = 1
Γ(2−α)

in (18), we find

ω0
z

(
‖un‖2 +

p0

ω0
z μ

|un|21
)
≤

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
‖uk‖2 + ωn−1

z E,

where E is defined in the theorem. Noting (10), the above inequality readily leads to

ω0
z

(
‖un‖2 +

p0

ω0
z μ

|un|21
)
≤

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)[
‖uk‖2 +

p0(zk − zk−1)
α

μ
|uk|21

]
+ωn−1

z E,

or equivalently

ω0
z

[
‖un‖2 +

p0(zn − zn−1)
α

μ
|un|21

]
≤

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)[
‖uk‖2 +

p0(zk − zk−1)
α

μ
|uk|21

]
+ ωn−1

z E.
(19)

Now, we shall show by mathematical induction that

‖un‖2 +
p0(zn − zn−1)

α

μ
|un|21 ≤ E, 1 ≤ n ≤ N. (20)

In fact, let n = 1 in (19) and we get

ω0
z

[
‖u1‖2 +

p0(z1 − z0)
α

μ
|u1|21

]
≤ ω0

z E,

which implies that (20) holds for n = 1. Suppose that (20) is true up to (n − 1). Then, from
(19), we have

ω0
z

[
‖un‖2 +

p0(zn − zn−1)
α

μ
|un|21

]
≤

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)[
‖uk‖2 +

p0(zk − zk−1)
α

μ
|uk|21

]
+ ωn−1

z E

≤
n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
E + ωn−1

z E = ω0
z E,

which immediately gives (20), or equivalently (15). This completes the proof.

Remark 6 (Stability). Using a similar argument as in [4–7], it can readily be deduced from
Theorem 2 that the numerical scheme (12) is robust (or stable) with respect to the initial data ψ(x)
and the non-homogeneous data f (x, t).

We are now ready to establish the convergence of the proposed scheme (12).

Theorem 3 (Convergence). Assume that u(x, Z−1(z)) = ū(x, z) ∈ C4,2([0, 1]× [z(0), z(1)]).
Suppose that the mesh Δz : z(0) = z0 < z1 < · · · < zN−1 < zN = z(1) is quasi uniform. Let
{Un

j = u(xj, tn)} be the exact solution of the problem (1), {un
j } be the numerical solution obtained

from the scheme (12) and en
j = Un

j − un
j be the error at (xj, tn). Then, we have
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‖en‖2 + c(α, z)|en|21 ≤
[
O(τ2−α

z,max + h2)
]2

, 1 ≤ n ≤ N (21)

where c(α, z) = p0
ω0

z μ
.

Proof. Since {Un
j } is the exact solution of (1), it is clear that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ

[
ω0

zUn
j −

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
Uk

j − ωn−1
z U0

j

]
= ΛUn

j + f n
j + Tn

j , 1 ≤ j ≤ M − 1

U0
j = ψ(xj), 1 ≤ j ≤ M − 1

Un
0 = φ1(tn), Un

M = φ1(tn), 0 ≤ n ≤ N

(22)

where Tn
j is the local truncation error of the j-th equation.

Noting (6) in Theorem 1, and using Taylor expansion at x = xj in (22), we find that

Tn
j = O(τ2−α

z,max + h2), 1 ≤ j ≤ M − 1, 1 ≤ n ≤ N. (23)

Next, from (12) and (22) it is obvious that {en
j } is the solution of the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ

[
ω0

z en
j −

n−1

∑
k=1

(
ωn−k−1

z − ωn−k
z

)
ek

j − ωn−1
z e0

j

]
= Λen

j + Tn
j , 1 ≤ j ≤ M − 1

e0
j = 0, 1 ≤ j ≤ M − 1

en
0 = en

M = 0, 0 ≤ n ≤ N.

(24)

Hence, en ∈ Uh. Finally, applying Theorem 2 to (24) and noting e0
j = 0, we obtain for

1 ≤ n ≤ N,

‖en‖2 + c(α, z)|en|21 ≤ Γ(1 − α)(z(1)− z(0))α

4p0
max

1≤n≤N
‖Tn‖2 =

[
O(τ2−α

z,max + h2)
]2

(25)

which completes the proof.

Remark 7. From Theorem 3, it is easily seen that

‖en‖ = O(τ2−α
z,max + h2).

Hence, the temporal convergence order in the norm ‖ · ‖ is (2 − α), which is optimal. On the
other hand, the convergence order in ‖ · ‖∞ is not optimal. In fact, from Lemma 2, (21) and the
properties of quasi uniform mesh, we get

‖en‖∞ ≤ 1
2
|en|1 ≤

√
(zn − zn−1)−α

4p0Γ(2 − α)
O(τ2−α

z,max + h2)

≤
√

τ−α
min,z

4p0Γ(2 − α)
O(τ2−α

z,max + h2) = O(τ
2− 3

2 α
z,max + h2).

Remark 8. Theorem 3 is an extension of the work [9] in the sense that

• the problem (1) involves an operator L and is more general than the problem considered in [9];
• we consider a general temporal mesh which is quasi uniform in terms of the scale function z(t),

in view of Remark 2 this is more general than the uniform temporal mesh considered in [9];
• (21) and Remark 7 give the explicit convergence order of the proposed scheme (12), while

convergence is proven without giving the explicit convergence order in [9].
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4. Numerical Simulation

In this section, we shall use two examples to demonstrate the efficacy of the proposed
numerical scheme (12) and to verify the theoretical result in Remark 7. To be specific,
we shall

• compute errors at t = 1 using

e(N, h) = ‖eN‖(or‖eN‖∞)

as well as the corresponding temporal and spatial convergence orders by

TCO = log2
e(N, h)
e(2N, h)

and SCO = log2
e(N, h)

e(N, h/2)
,

respectively;
• demonstrate that the proposed numerical scheme (12) works well for three types of

temporal meshes, namely

– Uniform: uniform mesh with respect to t;

– Graded: graded mesh [17,18] with tj = Z−1
(
(z(1)− z(0))

(
j

N

)r
+ z(0)

)
,

0 ≤ j ≤ N (let r = 2−α
α in the experiment to get optimal accuracy, refer to [17,18]

for details);
– Uniformz: uniform mesh with respect to z(t).

In view of Remark 2, we note that all the above types of temporal meshes are particular
cases of quasi uniform mesh of z(t).

Clearly, the exact solution is required to compute e(N, h). When the exact solution is
not available (which is commonly encountered in applications), we shall use ‘approximate’
exact solution, which is obtained by the numerical scheme (12) with sufficiently small mesh
sizes (e.g., M = N = 2000 in our experiments), as ‘exact’ solution to compute errors. This
is reasonable as the numerical scheme (12) is convergent.

Example 1 ([6,7,9]). Consider the generalized time-fractional diffusion equation⎧⎪⎪⎨⎪⎪⎩
C
0 Dα

t;[z(t),1]u(x, t) = uxx(x, t) + f (x, t), (x, t) ∈ (0, 1)× (0, 1)

u(x, 0) = sin(πx), x ∈ [0, 1]

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1]

(26)

where 0 < α < 1, z(t) is a strictly increasing scale function and

f (x, t) =
2

Γ(2.15)
(x2 − x)t1.15 + π2 sin(πx)− 2t2.

Note that when z(t) = t and α = 0.85, the exact solution of Equation (26) is

u(x, t) = sin(πx) + x(x − 1)t2.

In this example, p(x, t) ≡ 1 and q(x, t) ≡ 0. Let us start with α = 0.85 and
z(t) = t, t0.5, t2. Applying the numerical scheme (12) with fixed h = 1

512 and varied
N, we compute the errors and temporal convergence orders for three types of temporal
meshes—Uniform, Graded, Uniformz. The results are displayed in Table 1. From the table,
it is easily seen that the experimental temporal convergence orders (≈1.15) are consistent
with the theoretical ones (=2 − α) for various scale functions z(t) and different types of
temporal meshes. It is a pleasant surprise that the numerical performance in terms of
maximum norm is better than the theoretical result in Remark 7.
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Next, we investigate the performance of the proposed numerical scheme for different
values of α and scale functions z(t). Here, we use the uniform mesh of t (Uniform) and
compute ‖eN‖.

• In Table 2, we fix h = 1
512 and let N vary. It is observed that the temporal convergence

order is (2 − α) which is consistent with the theoretical one.
• In Table 3, we fix N = 2000 and let h vary to investigate the spatial convergence.

Obviously, the scheme (12) achieves second order spatial convergence order which is
the same as that stated in Remark 7.

Table 1. (Example 1) Temporal convergence order when α = 0.85, h = 1
512 .

z(t) N
Uniform Mesh Graded Mesh Uniformz Mesh

‖eN‖∞ ‖eN‖ ‖eN‖∞ ‖eN‖ ‖eN‖∞ ‖eN‖
t 16 8.55 × 10−4 - 6.07 × 10−4 - 1.15 × 10−3 - 8.17 × 10−4 - - - - -

32 3.84 × 10−4 1.15 2.73 × 10−4 1.15 5.22 × 10−4 1.14 3.71 × 10−4 1.14 - - - -
64 1.71 × 10−4 1.16 1.22 × 10−4 1.16 2.34 × 10−4 1.16 1.66 × 10−4 1.16 - - - -

128 7.55 × 10−5 1.18 5.36 × 10−5 1.18 1.03 × 10−4 1.18 7.33 × 10−5 1.18 - - - -

t0.5 16 1.86 × 10−3 - 1.32 × 10−3 - 4.87 × 10−3 - 3.46 × 10−3 - 3.61 × 10−3 - 2.56 × 10−3 -
32 8.38 × 10−4 1.15 5.95 × 10−4 1.15 2.27 × 10−3 1.10 1.61 × 10−3 1.10 1.66 × 10−3 1.12 1.18 × 10−3 1.12
64 3.74 × 10−4 1.16 2.66 × 10−4 1.16 1.03 × 10−3 1.13 7.35 × 10−4 1.13 7.51 × 10−4 1.14 5.34 × 10−4 1.14

128 1.65 × 10−4 1.18 1.17 × 10−4 1.18 4.60 × 10−4 1.17 3.27 × 10−4 1.17 3.33 × 10−4 1.17 2.37 × 10−4 1.17

t2 16 2.66 × 10−5 - 1.88 × 10−5 - 1.50 × 10−5 - 1.06 × 10−5 - 5.68 × 10−6 - 4.02 × 10−6 -
32 1.22 × 10−5 1.12 8.66 × 10−6 1.12 6.86 × 10−6 1.12 4.86 × 10−6 1.12 2.49 × 10−6 1.19 1.76 × 10−6 1.19
64 5.52 × 10−6 1.15 3.90 × 10−6 1.15 3.08 × 10−6 1.15 2.18 × 10−6 1.15 1.07 × 10−6 1.23 7.55 × 10−7 1.23

128 2.44 × 10−6 1.18 1.73 × 10−6 1.18 1.36 × 10−6 1.18 9.63 × 10−7 1.18 4.50 × 10−7 1.24 3.19 × 10−7 1.24

Table 2. (Example 1) Temporal convergence order for various α when h = 1
512 .

z(t) N α = 0.2 α = 0.5 α = 0.8

t0.5 8 1.2119 × 10−4 - 6.4821 × 10−4 - 2.3862 × 10−3 -
16 3.6868 × 10−5 1.72 2.3301 × 10−4 1.48 1.0446 × 10−3 1.19
32 1.1124 × 10−5 1.73 8.3262 × 10−5 1.48 4.5475 × 10−4 1.20
64 3.3301 × 10−6 1.74 2.9572 × 10−5 1.49 1.9656 × 10−4 1.21

t2 8 3.6792 × 10−6 - 7.9954 × 10−6 - 2.7299 × 10−5 -
16 1.1025 × 10−6 1.74 2.8681 × 10−6 1.48 1.2814 × 10−5 1.09
32 3.2908 × 10−7 1.74 1.0251 × 10−6 1.48 5.7126 × 10−6 1.17
64 9.7656 × 10−8 1.75 3.6452 × 10−7 1.49 2.4954 × 10−6 1.19

Table 3. (Example 1) Spatial convergence order for various α when N = 2000.

z(t) h α = 0.2 α = 0.5 α = 0.8

t0.5 1
10 5.3034 × 10−3 - 5.5169 × 10−3 - 5.7900 × 10−3 -
1

20 1.3214 × 10−3 2.00 1.3746 × 10−3 2.00 1.4425 × 10−3 2.01
1

40 3.2999 × 10−4 2.00 3.4325 × 10−4 2.00 3.6020 × 10−4 2.00
1

80 8.2382 × 10−5 2.00 8.5692 × 10−5 2.00 8.9924 × 10−5 2.00

t2 1
10 5.2701 × 10−3 - 5.4177 × 10−3 - 5.6052 × 10−3 -
1

20 1.3131 × 10−3 2.00 1.3497 × 10−3 2.01 1.3961 × 10−3 2.01
1

40 3.2791 × 10−4 2.00 3.3704 × 10−4 2.00 3.4862 × 10−4 2.00
1

80 8.1862 × 10−5 2.00 8.4140 × 10−5 2.00 8.7030 × 10−5 2.00
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Our next example is modified from an example in [19] and it involves a general
operator L.

Example 2 ([19]). Consider the generalized time-fractional diffusion equation⎧⎪⎪⎨⎪⎪⎩
C
0 Dα

t;[z(t),1]u(x, t) = Lu + f (x, t), (x, t) ∈ (0, 1)× (0, 1)

u(x, 0) = sin(πx), x ∈ [0, 1]

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1]

(27)

where Lu = ∂x(p(x, t)∂xu)− q(x, t)u,

p(x, t) = 2 − cos(xt), q(x, t) = 1 − sin(xt)

and

f (x, t) =
[

Γ(4 + α)

6
t3 +

2
Γ(3 − α)

t2−α +
(

t3+α + t2 + 1
)(

π2 p(x, t) + q(x, t)
)]

sin(πx)

−π
(

t4+α + t3 + t
)

sin(xt) cos(πx).

When z(t) = t, the exact solution of (27) is

u(x, t) = sin(πx)(t3+α + t2 + 1).

First, consider (27) when α = 0.5. With fixed h = 1
2000 , we shall apply the numerical

scheme (12) and compute the errors ‖eN‖, ‖eN‖∞ and temporal convergence orders. The
results are presented in Table 4, and it is clear that the numerical scheme (12) works
well for different types of temporal meshes as well as for a wide range of problems (i.e.,
different z(t)). The experimental temporal convergence orders in ‖ · ‖ (≈1.5) agree with
the theoretical ones (=2 − α), while once again it is a pleasant surprise that the numerical
performance in terms of maximum norm is better than the theoretical result in Remark 7.

Next, we investigate the temporal convergence and spatial convergence of the nu-
merical scheme (12) for different values of α and scale functions z(t). Here, we use the
uniform mesh of t and compute ‖eN‖. The results are presented in Tables 5 and 6. We
observe that the experimental temporal/spatial convergence orders are consistent with the
theoretical result.

Table 4. (Example 2) Temporal convergence order when α = 0.5, h = 1
2000 .

z(t) N
Uniform Mesh Graded Mesh Uniformz Mesh

‖eN‖∞ ‖eN‖ ‖eN‖∞ ‖eN‖ ‖eN‖∞ ‖eN‖
t 40 7.02 × 10−4 - 4.93 × 10−4 - 3.13 × 10−3 - 2.20 × 10−3 - - - - -

80 2.53 × 10−4 1.47 1.78 × 10−4 1.47 1.18 × 10−3 1.41 8.26 × 10−4 1.41 - - - -
160 8.94 × 10−5 1.50 6.28 × 10−5 1.50 4.27 × 10−4 1.46 3.00 × 10−4 1.46 - - - -
320 3.06 × 10−5 1.55 2.15 × 10−5 1.55 1.49 × 10−4 1.52 1.04 × 10−4 1.52 - - - -

t0.5 40 1.15 × 10−3 - 8.05 × 10−4 - 1.25 × 10−2 - 8.80 × 10−3 - 2.92 × 10−3 - 2.05 × 10−3 -
80 4.12 × 10−4 1.48 2.89 × 10−4 1.48 4.91 × 10−3 1.35 3.45 × 10−3 1.35 1.07 × 10−3 1.44 7.55 × 10−4 1.44

160 1.46 × 10−4 1.50 1.02 × 10−4 1.50 1.83 × 10−3 1.42 1.29 × 10−3 1.42 3.86 × 10−4 1.48 2.71 × 10−4 1.48
320 4.97 × 10−5 1.55 3.49 × 10−5 1.55 6.47 × 10−4 1.50 4.55 × 10−4 1.50 1.33 × 10−4 1.53 9.36 × 10−5 1.53

t2 40 2.56 × 10−4 - 1.80 × 10−4 - 4.48 × 10−4 - 3.15 × 10−4 - 1.03 × 10−4 - 7.22 × 10−5 -
80 9.26 × 10−5 1.47 6.50 × 10−5 1.47 1.64 × 10−4 1.45 1.15 × 10−4 1.45 3.64 × 10−5 1.50 2.55 × 10−5 1.50

160 3.28 × 10−5 1.50 2.31 × 10−5 1.50 5.86 × 10−5 1.48 4.12 × 10−5 1.48 1.27 × 10−5 1.51 8.94 × 10−6 1.51
320 1.12 × 10−5 1.55 7.90 × 10−6 1.55 2.02 × 10−5 1.54 1.42 × 10−5 1.54 4.32 × 10−6 1.56 3.04 × 10−6 1.56
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Table 5. (Example 2) Temporal convergence order for various α when h = 1
2000 .

z(t) N α = 0.2 α = 0.5 α = 0.8

t0.5 10 8.7309 × 10−4 - 5.9471 × 10−3 - 2.5396 × 10−2 -
20 2.7332 × 10−4 1.68 2.2093 × 10−3 1.43 1.1397 × 10−2 1.16
40 8.3985 × 10−5 1.70 8.0538 × 10−4 1.46 5.0256 × 10−3 1.18
80 2.5426 × 10−5 1.72 2.8938 × 10−4 1.48 2.1831 × 10−3 1.20

t2 10 2.0452 × 10−4 - 1.3063 × 10−3 - 5.1492 × 10−3 -
20 6.5603 × 10−5 1.64 4.9048 × 10−4 1.41 2.3170 × 10−3 1.15
40 2.0515 × 10−5 1.68 1.8006 × 10−4 1.45 1.0227 × 10−3 1.18
80 6.2940 × 10−6 1.70 6.5018 × 10−5 1.47 4.4443 × 10−4 1.20

Table 6. (Example 2) Spatial convergence order for various α when N = 2000.

z(t) h α = 0.2 α = 0.5 α = 0.8

t0.5 1
10 1.3899 × 10−2 - 1.3094 × 10−2 - 1.1890 × 10−2 -
1
20 3.4684 × 10−3 2.00 3.2680 × 10−3 2.00 2.9682 × 10−3 2.00
1
40 8.6645 × 10−4 2.00 8.1642 × 10−4 2.00 7.4155 × 10−4 2.00
1
80 2.1633 × 10−4 2.00 2.0384 × 10−4 2.00 1.8515 × 10−4 2.00

t2 1
10 1.4330 × 10−2 - 1.4555 × 10−2 - 1.4952 × 10−2 -
1
20 3.5756 × 10−3 2.00 3.6316 × 10−3 2.00 3.7304 × 10−3 2.00
1
40 8.9322 × 10−4 2.00 9.0719 × 10−4 2.00 9.3187 × 10−4 2.00
1
80 2.2301 × 10−4 2.00 2.2650 × 10−4 2.00 2.3266 × 10−4 2.00

5. Conclusions

In this paper, we derive a numerical scheme based on a general temporal mesh for
the generalized time-fractional diffusion problem. The main idea involves the generalized
linear interpolation. The stability and convergence of the proposed numerical scheme is
established rigorously using energy method. More importantly, it is shown that the global
convergence order is O(τ2−α

z,max + h2) that extends the previous work [9]. For future work,
we plan to investigate (i) the validity of the proposed scheme for nonsmooth data; (ii) high
order methods based on general temporal mesh and spatial mesh for generalized fractional
problems with smooth as well as nonsmooth data. We believe this will make the numerical
scheme more applicable in reality.
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Abstract: In this paper, the numerical solutions of the backward and forward non-homogeneous
wave problems are derived to address the nonlocal boundary conditions. When boundary conditions
are not set on the boundaries, numerical instability occurs, and the solution may have a significant
boundary error. For this reason, it is challenging to solve such nonlinear problems by conventional
numerical methods. First, we derive a nonlocal boundary shape function (NLBSF) from incorporating
the Pascal triangle as free functions; hence, the new, two-parameter Pascal bases are created to
automatically satisfy the specified conditions for the solution. To satisfy the wave equation in
the domain by the collocation method, the solution of the forward nonlocal wave problem can be
quickly obtained with high precision. For the backward nonlocal wave problem, we construct the
corresponding NLBSF and Pascal bases, which exactly implement two final time conditions, a left-
boundary condition and a nonlocal boundary condition; in addition, the numerical method for the
backward nonlocal wave problem under two-side, nonlocal boundary conditions is also developed.
Nine numerical examples, including forward and backward problems, are tested, demonstrating that
this scheme is more effective and stable. Even for boundary conditions with a large noise at final time,
the solution recovered in the entire domain for the backward nonlocal wave problem is accurate and
stable. The accuracy and efficiency of the method are validated by comparing the estimation results
with the existing literature.

Keywords: backward nonlocal wave equation; Pascal bases automatically satisfying specified
conditions; integral boundary condition; nonlocal boundary shape function

MSC: 35L70

1. Introduction

Integral-type, nonlocal boundary conditions (BCs) are an interesting area of a fast-
developing differential equations theory. These problems arise in various fields of physics,
mechanics, biology, biotechnology, etc. Nonlocal BCs may come up when the value of the
solution on the boundary is connected with the values inside the domain. Theoretical and
numerical investigation of this kind of problem is actually valuable, and much attention
is given to it in the scientific literature [1–6]. Different, nonlocal BCs are also discussed in
partial differential equations (PDEs), for example, Dehghan [7] proposed the numerical
solution of several finite difference methods for the one-dimensional, non-classic boundary
value problem. Saadatmandi and Dehghan [8] developed a numerical technique based
on the shifted Legendre tau technique to demonstrate its validity and applicability for
the hyperbolic partial differential equation with an integral condition. Dehghan and
Saadatmandi [9] used the variational iteration method for solving the one-dimensional
wave equation with classical and integral boundary conditions; this method changed the
wave equation with nonlocal BCs into a direct problem. For forward problems, some
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solutions using theory and numerical methods for the nonlocal problems of the 1D wave
equation were studied in [10–12].

As pointed out by Ames and Straughan [13], the backward wave problem has pivotal
applications in optimal control theory and geophysics. The backward wave problem is an
ill-posed problem, which has been studied in [14–20]. Especially when we consider the
backward wave problem under nonlocal boundary conditions, the resulting problem is
highly ill-posed, and the numerical method must be designed specifically to overcome
the ill-posed property of the backward problem. The idea of a nonlocal boundary shape
function (NLBSF) was first developed in [21] to solve the nonlocal, parabolic-type PDE, but
has not yet been applied to hyperbolic-type PDE in the literature. We employ the NLBSF to
resolve the nonlocal wave problem.

In this paper, we subject the wave equation to an unconventional right-boundary
condition which includes an integral term over the spatial domain. In this situation, we
encounter a nonlocal wave problem, the solution to which might suffer a large boundary
error, since the BC is not given on a boundary. For this reason, it is hard to use the
conventional numerical method to tackle this sort of problem. It is important in the field of
numerical simulations of nonlocal wave problems to reduce the boundary error so that the
error in the entire domain can be reduced. To guarantee the fulfilment of the nonlocal BC,
a novel method with the Pascal bases automatically satisfying the specified conditions is
pursued in the paper.

Sequentially, the forward wave problem of a one-dimensional wave equation under a
nonlocal BC on the right-end is described in Section 2, wherein we construct the so-called
NLBSF with the help of the nonlocal shape functions derived. The NLBSF satisfies all the
conditions specified for the forward nonlocal wave problem with a free function involved.
In Section 3, we develop a numerical method with two-parameter Pascal bases to solve the
forward nonlocal wave problem. The bases satisfying all conditions are obtained by taking
the Pascal polynomials for the free function. Four testing examples of the forward nonlocal
wave problem are presented in Section 4, the high accuracy of which can be appreciated. In
Section 5, we develop a numerical method with two-parameter Pascal bases relying on the
Pascal polynomials to solve the backward nonlocal wave problem. The bases satisfying
all the conditions are specified for the backward nonlocal wave problem. Three testing
examples with a large noise being imposed on the final time data of the backward nonlocal
wave problem are exhibited in Section 6, the robustness and high accuracy of which can be
observed. In Section 7, the method of NLBSF is extended to solve the backward nonlocal
wave problem under two-side nonlocal BCs. The conclusions are drawn in Section 8.

2. A Nonlocal Wave Problem

The one-dimensional wave equation is equipped with a nonlocal condition:

utt(x, t)− uxx(x, t) = F(x, t), (x, t) ∈ Ω :=
{
(x, t)

∣∣∣0 < x < l, 0 < t ≤ t f

}
, (1)

u(x, 0) = f (x), ut(x, 0) = g(x), (2)

u(0, t) = p(t),
∫ l

0
u(x, t)dx = q(t), (3)

where f (x) and g(x) are initial conditions, F(x, t) is the given function, q(t) and p(t) are
boundary conditions and the last condition is different from the conventional boundary
condition on the right end. The data f (x), g(x), q(t) and p(t) must satisfy

∫ l

0
f (x)dx = q(0),

∫ l

0
g(x)dx =

.
q(0), (4)

f (0) = p(0), g(0) =
.
p(0), (5)

which are compatibility conditions derived from Equation (3) with t = 0 and Equation (2).
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We first derive two main results to satisfy the specified conditions (2) and (3) and then
use them to solve Equation (1) to Equation (3).

Theorem 1. The function

E0(x, t) = w(x, t)− s1(x)[w(0, t)− p(t)]− s2(x)
[∫ l

0
w(x, t)dx − q(t)

]
, (6)

∀ w(x, t) ∈ C1(Ω) satisfies the conditions in Equation (3), where the nonlocal shape functions

s1(x) = 1 − 2x
l

, s2(x) = 1 − 2x
l2 (7)

are derived from

s1(0) = 1,
∫ l

0
s1(x)dx = 0, s2(0) = 0,

∫ l

0
s2(x)dx = 1. (8)

Proof. Inserting x = 0 into Equation (6) and taking Equation (8) into account generates

E0(0, t) = w(0, t)− s1(0)[w(0, t)− p(t)]− s2(0)
[∫ l

0 w(x, t)dx − q(t)
]

= w(0, t)− [w(0, t)− p(t)] = p(t).
(9)

Then, we prove ∫ l

0
E0(x, t)dx = q(t), (10)

by inserting Equation (6) for E0(x, t),∫ l
0 E0(x, t)dx =

∫ l
0 w(x, t)dx − ∫ l

0 s1(x)dx[w(0, t)− p(t)]

− ∫ l
0 s2(x)dx

[∫ l
0 w(x, t)dx − q(t)

]
,

(11)

which, taking Equation (8) into account, yields

∫ l

0
E0(x, t)dx =

∫ l

0
w(x, t)dx −

[∫ l

0
w(x, t)dx − q(t)

]
= q(t). (12)

Hence, this theorem is proved. �

Notice that the nonlocal shape functions s1(x) and s2(x) were used by Dehghan
and Saadatmandi [9] to transform Equation (1) to Equation (3) into a problem with a
homogeneous boundary condition and a nonlocal condition for a new variable. Here, we
give a different approach.

For E0(x, t), we have the following compatibility conditions:

∫ l

0
E0(x, 0)dx =

∫ l

0
f (x)dx,

∫ l

0
E0

t (x, 0)dx =
∫ l

0
g(x)dx. (13)

It follows from Equation (12) that

∫ l

0
E0(x, 0)dx = q(0),

∫ l

0
E0

t (x, 0)dx =
.
q(0). (14)

Upon comparing them with Equations (4) and (13), they are verified. It follows from
Equations (9) and (5) that

E0(0, 0) = p(0) = f (0), E0
t (0, 0) =

.
p(0) = g(0). (15)
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Now, we prove that there exists a function E(x, t) which satisfies the specified condi-
tions (2) and (3).

Theorem 2. The function

E(x, t) = E0(x, t)−
(

1 − t2
)[

E0(x, 0)− f (x)
]
− t

[
E0

t (x, 0)− g(x)
]

(16)

satisfies the conditions (2) and (3).

Proof. We first prove
E(x, 0) = f (x), Et(x, 0) = g(x). (17)

Inserting t = 0 into Equation (16), we have

E(x, 0) = E0(x, 0)−
[

E0(x, 0)− f (x)
]
= f (x). (18)

Differentiating Equation (16) to t and inserting t = 0, one has

Et(x, 0) =
{

E0
t (x, t) + 2t

[
E0(x, 0)− f (x)

]− [
E0

t (x, 0)− g(x)
]}∣∣

t=0

= E0
t (x, 0)− [

E0
t (x, 0)− g(x)

]
= g(x).

(19)

Then, we prove

E(0, t) = p(t),
∫ l

0
E(x, t)dx = q(t). (20)

Inserting x = 0 into Equation (16) and using Equation (9) and the compatibility
conditions E0(0, 0) = f (0) and E0

t (0, 0) = g(0) in Equation (15) yields

E(0, t) = E0(0, t)−
(

1 − t2
)[

E0(0, 0)− f (0)
]
− t

[
E0

t (0, 0)− g(0)
]
= E0(0, t) = p(t). (21)

It follows from Equation (16) that∫ l
0 E(x, t)dx =

∫ l
0 E0(x, t)dx − (

1 − t2) ∫ l
0

[
E0(x, 0)− f (x)

]
dx

−t
∫ l

0

[
E0

t (x, 0)− g(x)
]
dx,

(22)

which, with the aid of Equations (12) and (13), becomes

∫ l

0
E(x, t)dx =

∫ l

0
E0(x, t)dx = q(t). (23)

Consequently, this theorem is proved. �

3. Numerical Method for Forward Nonlocal Wave Problem

Let
wij(x, t) := xi−jtj−1, i = 1, . . . , j = 1, . . . , i, (24)

be the Pascal triangle in terms of x and t [22]. We can reconstruct wij(x, t) to be the Pascal
bases for u(x, t) in Equation (1) to Equation (3) based on Theorem 2.

Theorem 3. For the Pascal polynomial wij(x, t) and

E0
ij(x, t) = wij(x, t)− s1(x)

[
wij(0, t)− p(t)

]− s2(x)
[

li−j+1

i − j + 1
tj−1 − q(t)

]
, (25)
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the two-parameter functions

Eij(x, t) = E0
ij(x, t)−

(
1 − t2

)[
E0

ij(x, 0)− f (x)
]
− t

[
E0

ij,t(x, 0)− g(x)
]

(26)

are Pascal bases to match Equations (2) and (3).

Proof. In Theorem 2, E(x, t) replaced by Eij(x, t) and E0(x, t) by E0
ij(x, t), inserting wij(x, t)

for w(x, t) into Equation (6) and integrating
∫ l

0 xi−jtj−1dx out, this theorem is proved. �

The two-parameter functions Eij(x, t) in Equation (26) are called the Pascal bases,
which are used to solve the forward nonlocal wave Equation (1) to Equation (3) by

u(x, t) =
m

∑
j=1

j

∑
k=1

ajksjkEjk(x, t), (27)

where ajk are subjected to
m

∑
j=1

j

∑
k=1

ajk = 1, (28)

such that u(x, t) fulfills Equations (2) and (3).
Inserting Equation (27) into Equation (1) and including Equation (28), we determine

ajk by
m

∑
j=1

j

∑
k=1

ajksjk

[
Ejk,tt

(
xi, yj

)− Ejk,xx
(
xi, yj

)]
= F

(
xi, tj

)
, (29)

where n1 and n2 are the grid numbers in the spatial and time direction xi = i(l/n1 + 1),
tj = j

(
t f /n2

)
and N = n1 × n2. Consequently, the N + 1 linear Equations (28) and (29) are

written as a matrix-vector form:
Aa = b, (30)

where A is the coefficient matrix, b is given source term and a is the vector form of ajk. Let
sk be the kth component of the vectorization of sjk which has multiple scales given in [23] by

sk =
R0

‖ ak ‖ , (31)

where ak denotes the kth column of A, and R0 is a characteristic length which can increase
numerical stability and accuracy. Solving the linear system (30), we can obtain ajk and then
u(x, y) is calculated from Equation (27).

4. Examples for Forward Nonlocal Wave Problem

Example 1. Consider the exact solution as follows:

u(x, t) = x2 + 2t − 3x2t − x4 + sin(2πt). (32)

The data F(x, t), f (x), g(x), q(t) and p(t) can be obtained

F(x, t) = utt(x, t)− uxx(x, t) = 12x2 − 2 + 6t − 4π2 sin(2πt), (33)

f (x) = x2 − x4, g(x) = 2 + 2π − 3x2,

p(t) = 2t + sin(2πt), q(t) = l3

3 − l5

5 +
(
2l − l3)t + l sin(2πt).

(34)
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We take l = 1, t f = 1, m = 5, R0 = 0.1 and N = 5 × 5. Figure 1 shows an absolute
maximum error (ME) of u(x, t) with respect to t. When the convergence criteria ε = 10−10,
the total iteration number of the conjugate gradient method (CGM) is 10. Figure 2 displays
ME(u) with respect to x at t f = 1. We can observe that the solution is very accurate with
ME = 1.45 × 10−13. In paper [24], by using the boundary consistent method for the usual
wave equation with the Dirichlet boundary conditions, ME = 2.01 × 10−8 and is much
larger than 1.45 × 10−13. The current solution is much more accurate than that in [24].

Figure 1. For Example 1: ME(u) versus t.

 
Figure 2. For Example 1: ME(u) versus x at t f = 1.

Example 2. In order to further display the accuracy of the presented method we consider the exact
solution as follows:

u(x, t) = exp(x + sin t). (35)

Then, F(x, t), f (x), g(x), q(t) and p(t) can be expressed as follows:

F(x, t) = utt(x, t)− uxx(x, t) =
(

cos2 t − sin t − 1
)

exp(x + sin t). (36)

f (x) = g(x) = ex,

p(t) = exp(sin t), q(t) =
(

el − 1
)

exp(sin t).
(37)

We take l = 1, t f = 1, m = 14, R0 = 0.1 and N = 12 × 12. When the convergence
criteria ε = 10−9, the total iteration number of the CGM is 7200, and ME = 2.93 × 10−8.
Further, when the iteration number is stopped at the 2000 step, the MEs of u(x, t) are
plotted versus t in Figure 3. The ME(u) with respect to x at t f = 1 is shown in Figure 4.
Obviously, the solution is quite accurate with ME = 4.54 × 10−8. When considering the
same setting as above and l = 8, in Figure 5, the solid line displays ME(u) with respect to x,
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where ME = 4.56 × 10−1, and max u(x, t) is 5689.34. Therefore, the solution of this method
is acceptable.

 
Figure 3. For Example 2: ME(u) versus t in the time interval.

Figure 4. For Example 2 with l = 1: ME(u) versus x at t f = 1.

 
Figure 5. For Example 2 with l = 8: ME(u) versus x at t f = 1.

Example 3 . This example is for the linear Klein–Gordon equation:

utt(x, t)− uxx(x, t) + 3u(x, t) = 0, (x, t) ∈ Ω. (38)

We set the exact solution as follows:

u(x, t) = sin(x − 2t). (39)

Then, f (x), g(x), q(t) and p(t) can be expressed as follows:
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f (x) = sin x, g(x) = −2 cos x,

p(t) = − sin 2t, q(t) = cos 2t − cos(l − 2t).
(40)

We take l = 1, t f = 1, m = 11, R0 = 0.1 and N = 20 × 20. When convergence criteria
ε = 10−10, the total iteration number (TIN) of the CGM is 1221, and ME = 7.27 × 10−8.
Further, when the iteration number is at the 1000 step, the MEs of u(x, t) are plotted
versus t and x, as shown in Figures 6 and 7. Obviously, the solution is quite accurate with
ME = 5.06× 10−8. For the different convergence criteria, the convergence results are shown
in Table 1. Hence, this method can quickly obtain solutions without using higher-order
polynomials or strict convergence conditions.

Figure 6. For Example 3: ME(u) versus t in the time interval.

 
Figure 7. For Example 3: ME(u) versus x at t f = 1.

Table 1. The iteration number and ME under the different convergence criteria.

ε TIN ME

10−8 328 1.28 × 10−7

10−10 1221 7.27 × 10−8

10−12 9959 7.33 × 10−8

Example 4. This example is given in [8];

u(x, t) = cos(πx) sin(πt) (41)

is the exact solution.
f (x) = 0, g(x) = π cos(πx),

p(t) = sin(πt), q(t) = 0.
(42)
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Instead of the Pascal polynomials, for this example, we take

wij(x, t) = cos(iπx) sin(jπt), 1 ≤ i, j ≤ m.

We take l = 1, t f = 0.5, m = 5, R0 = 1 and N = 5 × 5. In this case, we use the
Gaussian elimination to solve the linear system. Figure 8 displays the MEs of u(x, t) versus
t, which are highly accurate with ME = 7.77 × 10−16 and are much more accurate than [8].
Figure 9 displays ME(u) with respect to x at t f = 0.5.

 
Figure 8. For Example 4: ME(u) versus t in the time interval.

 
Figure 9. For Example 4: ME(u) versus x at t f = 0.5.

5. Numerical Method for Backward Nonlocal Wave Problem

We consider the backward nonlocal wave problem and replace Equation (2) by the
final time conditions:

u
(

x, t f

)
= h(x), ut

(
x, t f

)
= r(x). (43)

The data h(x), r(x), q(t) and p(t) satisfy

∫ l

0
h(x)dx = q

(
t f

)
,
∫ l

0
r(x)dx =

.
q
(

t f

)
, (44)

h(0) = p
(

t f

)
, r(0) =

.
p
(

t f

)
, (45)

which are available from Equation (3) with t = t f and using Equation (43).
For the backward nonlocal wave problem, Theorem 2 is modified as follows.

Theorem 4. The following NLBSF:

E(x, t) = E0(x, t)−
[

1 +
(

t − t f

)2
][

E0
(

x, t f

)
− h(x)

]
−
(

t − t f

)[
E0

t

(
x, t f

)
− r(x)

]
(46)

satisfies the conditions (43) and (3), where E0(x, t) is still given by Equation (6).
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Proof. Inserting t = t f into Equation (46), we have

E
(

x, t f

)
= E0

(
x, t f

)
−
[

E0
(

x, t f

)
− h(x)

]
= h(x). (47)

Differentiating Equation (46) to t and inserting t = t f , one has

Et

(
x, t f

)
=
{

E0
t (x, t)− 2

(
t − t f

)[
E0
(

x, t f

)
− h(x)

]
−
[

E0
t

(
x, t f

)
− r(x)

]}∣∣∣
t=t f

= E0
t

(
x, t f

)
−
[

E0
t

(
x, t f

)
− r(x)

]
= r(x).

(48)

Next, we prove the compatibility conditions for E0(x, t):

∫ l

0
E0
(

x, t f

)
dx =

∫ l

0
h(x)dx,

∫ l

0
E0

t

(
x, t f

)
dx =

∫ l

0
r(x)dx, (49)

It follows from Equation (12) that

∫ l

0
E0
(

x, t f

)
dx = q

(
t f

)
,
∫ l

0
E0

t

(
x, t f

)
dx =

.
q
(

t f

)
. (50)

Upon comparing them to Equation (44), we can derive Equation (49). Similarly, it
follows from Equations (9) and (45) that

E0
(

0, t f

)
= p

(
t f

)
= h(0), E0

t

(
0, t f

)
=

.
p
(

t f

)
= r(0). (51)

Finally, we prove that E(x, t) satisfies

E(0, t) = p(t),
∫ l

0
E(x, t)dx = q(t). (52)

Inserting x = 0 into Equation (46) and using Equation (9) and the compatibility
conditions E0

(
0, t f

)
= h(0) and E0

t

(
0, t f

)
= r(0) in Equation (51), one has

E(0, t) = E0(0, t)−
[

1 +
(

t − t f

)2
][

E0
(

0, t f

)
− h(0)

]
−
(

t − t f

)[
E0

t

(
0, t f

)
− r(0)

]
= E0(0, t) = p(t).

(53)

From Equation (46) it follows that

∫ l
0 E(x, t)dx =

∫ l
0 E0(x, t)dx −

[
1 +

(
t − t f

)2
] ∫ l

0

[
E0
(

x, t f

)
− h(x)

]
dx

−
(

t − t f

) ∫ l
0

[
E0

t

(
x, t f

)
− r(x)

]
dx,

(54)

which, with the aid of Equations (12) and (49), becomes

∫ l

0
E(x, t)dx =

∫ l

0
E0(x, t)dx = q(t). (55)

The proof is ended. �

Replacing E(x, t) and E0(x, t) in Theorem 4 by Eij(x, t) and E0
ij(x, t), respectively,

Theorem 3 is still applicable for the backward nonlocal wave problem but with
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Eij(x, t) = E0
ij(x, t)−

[
1 +

(
t − t f

)2
][

E0
ij

(
x, t f

)
− h(x)

]
−
(

t − t f

)[
E0

ij,t

(
x, t f

)
− r(x)

]
, (56)

which automatically satisfies the conditions (43) and (3),
To solve the backward nonlocal wave problem in Equations (1), (43) and (3), we take

u(x, t) =
m

∑
j=1

j

∑
k=1

cjksjkEjk(x, t), (57)

where
m

∑
j=1

j

∑
k=1

cjk = 1. (58)

Other procedures are similar to that in Section 3.

6. Numerical Examples for Backward Nonlocal Wave Problem

To test the backward nonlocal wave problem, we add a noise s on

ĥ(x) = h(x) + sR, r̂(x) = r(x) + sR, (59)

where R is a random number. We fix s = 0.1 for all testing examples given below.

Example 5. For Example 1, we consider the final time conditions:

h(x) = x2 +
(

2 − 3x2
)

t f − x4 + sin
(

2πt f

)
, r(x) = 2 − 3x2 + 2π cos

(
2πt f

)
. (60)

If no noise is added, i.e., s = 0 under l = 1, t f = 1, m = 5, R0 = 0.1, TIN = 500 and
N = 10 × 10, u(x, t) is very accurate with ME = 9.14 × 10−13, which is slightly worse than
1.45 × 10−13 for the forward wave problem, as presented in Example 1.

Under l = 1, t f = 1, m = 5, R0 = 0.1, TIN = 500 and N = 5 × 5, the solution is
obtained very quickly. In Figure 10, the dashed line shows the ME of u(x, t) with respect
to x, of which ME = 3.04 × 10−3, where max u(x, t) is 1.9988. Then, we take t f = 10 and
N = 20 × 20, and other parameters remain the same. In Figure 10, the solid line displays
ME(u) with respect to x, where ME = 4.81 × 10−3, and max u(x, t) is 19.98. Hence, the
method can obtain a stable and accurate solution with O

(
10−3) even for the final time with

noise disturbance.

 
Figure 10. For Example 5 of the backward nonlocal wave problem: ME(u) versus x with different
final times.
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Example 6. Then, we consider

h(x) = exp(x + sin t f ), r(x) = cos t f exp(x + sin t f ). (61)

Other data are given in Example 2.

We take l = 2, t f = 3, m = 12, R0 = 0.1, TIN = 2000 and N = 15 × 15. In Figure 11, the
MEs of u(x, t) are plotted versus x. Although under a large noise with s = 0.1, the solution
is with ME = 3.29 × 10−2, where max u(x, t) is 19.13.

 
Figure 11. For Example 6 of the backward nonlocal wave problem: ME(u) versus x in the spatial interval.

Example 7. According to Example 3, we consider the backward nonlocal wave problem for the
linear Klein–Gordon equation with the final time data:

h(x) = sin(x − 2t f ), r(x) = −2 cos
(

x − 2t f

)
. (62)

Under l = 1, t f = 2, m = 15, R0 = 0.1, TIN = 2000 and N = 15 × 15, in Figure 12, the
solid line displays the ME of u(x, t) with respect to x, of which ME = 4.03 × 10−3, and max
u(x, t) is 1. Then, we take t f = 4 and N = 25 × 25, and other parameters remain the same.
In Figure 12, the dashed line shows ME(u) with respect to x, where ME = 2.73 × 10−3.

Figure 12. For Example 7 of the backward nonlocal wave problem of the Klein–Gordon equation:
ME(u) versus x with different final times.

When we extend the domain to l = 3 and t f = 4, ME increases to 8.52× 10−2. However,
we can take R0 = 0.001 and N = 30 × 30 and reduce ME to 6.16 × 10−2. Therefore, it can
be seen that increasing the grid number N and decreasing the characteristic length R0 can
increase the numerical accuracy.
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7. Complex Two-Side Nonlocal BCs

The method presented in Section 5 is easily tailored to account for the backward
nonlocal wave problem under complex two-side, nonlocal BCs:

utt(x, t)− uxx(x, t) = F(x, t), (x, t) ∈ Ω, (63)

u
(

x, t f

)
= h(x), ut

(
x, t f

)
= r(x), (64)

a1u(0, t) + a2ux(0, t) +
∫ l

0
a3(x)u(x, t)dx = p(t), (65)

b1u(l, t) + b2ux(l, t) +
∫ l

0
b3(x)u(x, t)dx = q(t). (66)

The key function E0(x, t) in Theorem 1 is modified to

E0(x, t) = w(x, t)− s1(x)
[

a1w(0, t) + a2wx(0, t) +
∫ l

0 a3(x)w(x, t)dx − p(t)
]

−s2(x)
[
b1w(l, t) + b2wx(l, t) +

∫ l
0 b3(x)w(x, t)dx − q(t)

]
,

(67)

where the nonlocal shape functions are derived from

a1s1(0) + a2s′1(0) +
∫ l

0 a3(x)s1(x)dx = 1,

b1s1(l) + b2s′1(l) +
∫ l

0 b3(x)s1(x)dx = 0,
(68)

a1s2(0) + a2s′2(0) +
∫ l

0 a3(x)s2(x)dx = 0,

b1s2(l) + b2s′2(l) +
∫ l

0 b3(x)s2(x)dx = 1
(69)

.
Inserting Equation (67) and w(x, t) = xi−jtj−1 into Equation (46), we can generate the

Pascal bases

Eij(x, t) = E0(x, t)−
[

1 +
(

t − t f

)2
][

E0
(

x, t f

)
− h(x)

]
−
(

t − t f

)[
E0

t

(
x, t f

)
− r(x)

]
, (70)

E0(x, t) = xi−jtj−1 − s1(x)
[

a1xi−jtj−1
∣∣
x=0 + a2(i − j)xi−j−1tj−1

∣∣
x=0

]
−s1(x)

[∫ l
0 a3(x)xi−jtj−1dx − p(t)

]
−s2(x)

[
b1xi−jtj−1

∣∣
x=l + b2(i − j)xi−j−1tj−1

∣∣
x=l +

∫ l
0 b3(x)xi−jtj−1dx − q(t)

]
.

(71)

Example 8. As an extension of Example 7, we consider the backward nonlocal wave problem for the
linear Klein–Gordon equation with the final time data and two-side nonlocal BCs:

h(x) = sin
(

x − 2t f

)
, r(x) = −2 cos

(
x − 2t f

)
, (72)

u(0, t) + ux(0, t) +
∫ l

0
u(x, t)dx = p(t), u(l, t) +

∫ l

0
xu(x, t)dx = q(t), (73)

where
p(t) = (2 − cos l) cos(2t)− (1 + sin l) sin(2t), (74)

q(t) = sin(l − 2t) + (sin l − l cos l) cos(2t) + (1 − cos l − l sin l) sin(2t). (75)

For this problem, we can derive

s1(x) =
12l + 4l3 − (

12 + 6l2)x
l4 + 4l3 + 12l − 12

, s2(x) =
12(1 + l)x − 12 + 6l2

l4 + 4l3 + 12l − 12
. (76)
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Under l = 4,t f = 1, m = 20,R0 = 1, TIN = 2000 andN = 30 × 30, in Figure 13, the
solid line displays ME(u) with respect to x, of which ME = 2.36 × 10−3. If t f = 2, we obtain
ME = 7.02 × 10−3, the results of which are shown in Figure 13 by a dashed line. As the figure
shows, this method still yields a stable solution even if the computation time increases.

 

Figure 13. For Example 8 of the backward nonlocal wave problem of the Klein–Gordon equation
under two-side nonlocal BCs: ME(u) versus x with different final times.

Example 9 . Let
utt(x, t)− uxx(x, t)− 3u(x, t) = 0, (x, t) ∈ Ω, (77)

h(x) = exp
(

x − 2t f

)
, r(x) = −2 exp

(
x − 2t f

)
, (78)

u(0, t)− ux(0, t) +
∫ l

0
xu(x, t)dx = p(t), ux(l, t) +

∫ l

0
u(x, t)dx = q(t), (79)

where
p(t) = e−2t

(
lel − el + 1

)
, q(t) = e−2t

(
2el − 1

)
, (80)

and u(x, t) = exp(x − 2t) is the exact solution.
For this problem, we can derive

s1(x) =
12 + 6l2 − 12lx

12 + 18l + 6l2 − l3 , s2(x) =
12 − 4l2 + (12 + 6l)x

12 + 18l + 6l2 − l3 . (81)

Under l = 3, m = 10, R0 = 1, TIN = 2000 and N = 20 × 20, in Figure 14, the solid line
displays ME(u) with respect to x for t f = 0.5, of which ME = 3.92 × 10−3, and the dashed line
displays ME(u) with respect to x for t f = 1, of which ME = 4.94 × 10−2. Notice max(u) = 17.76.
When considering m = 20, l = 5 and t f = 1, ME(u) with respect to x is shown in Figure 15, where
ME = 3.292 × 10−1, and max u(x, t) is 124.97. The result shows that the solution of this method
is acceptable. Hence, we successfully apply the NLBSF to resolve the wave problem with two-side
nonlocal BCs, especially for the backward problem in time.

 

Figure 14. For Example 9 of the backward nonlocal wave problem under two-side nonlocal BCs:
ME(u) versus x with different final times.
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Figure 15. For Example 9 of the backward nonlocal wave problem under two-side nonlocal BCs:
ME(u) versus x in the spatial interval.

8. Conclusions

In this paper, the numerical solutions of the backward and forward non-homogeneous
wave problems with nonlocal boundary conditions were developed. When boundary
conditions are not set on the boundaries, the solution may have a large boundary error.
For this reason, it is difficult to solve such nonlinear problems by conventional numerical
methods, especially when addressing the backward nonlocal wave problem. To reduce
the boundary error and increase numerical accuracy by the NLBSF method, we let the
free function be the Pascal triangle and then the solution was a weighted superposition
of the complete Pascal bases. These basis functions automatically satisfy a left-boundary
condition, a nonlocal right-boundary condition and two initial conditions for the forward
nonlocal wave problem or two final time conditions for the backward nonlocal wave
problem. We gave four examples for the forward nonlocal wave problem to support that the
nonlocal wave equation can be solved quickly and accurately. For the backward nonlocal
wave problem with one-side or two-side nonlocal boundary conditions, we recovered
accurate solutions in the entire domain; even a large time span and large noise were taken
into account. From the nine examples, the results demonstrate that the presented method is
more effective and stable than conventional numerical schemes. Hence, it can be concluded
that the proposed method for the forward or backward problems in time is accurate, stable,
effective and robust for addressing boundary conditions with noise level effects.
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Abstract: Singularly perturbed 2D parabolic delay differential equations with the discontinuous
source term and convection coefficient are taken into consideration in this paper. For the time
derivative, we use the fractional implicit Euler method, followed by the fitted finite difference method
with bilinear interpolation for locally one-dimensional problems. The proposed method is shown to
be almost first-order convergent in the spatial direction and first-order convergent in the temporal
direction. Theoretical results are illustrated with numerical examples.
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1. Introduction

Differential equations with small or large parameters can be used to describe a variety
of applied practical problems, including the theory of boundary layers. For example,
the shock waves occurring in gas motions, edge effects when elastic plates deform, etc.
These mathematical problems are very difficult (or even impossible) to solve exactly, so
approximate solutions are necessary. It is possible to obtain an approximation of the
solution through perturbation methods. Basically, these methods aim to solve a simpler
problem (as a first approximation) and systematically improve the approximate solution.

When using finite difference or finite element methods on equally spaced grids and
allowing the perturbation parameter tend to zero, boundary layers produce inaccurate
numerical solutions. The most popular method for overcoming this difficulty is to construct
uniformly valid numerical methods on layers adapted to the mesh. There are several
uniformly valid methods available in the literature, for instance, to cite a few (see Refs. [1,2]
and the references therein). As pointed out in Ref. [3], the direct discretization of the
singularly perturbed 2D parabolic differential equations leads to a pentadiagonal linear
system of equations. This problem is exceedingly complex to solve computationally. We
use the fractional step method in order to reduce the computation cost. At each time level,
the fractional step method leads to the tridiagonal system of algebraic equations. Several
types of research have been conducted recently on the fractional step method, such as
Refs. [4–6] and the references therein.

Singularly perturbed delay differential equations (SPDDEs) are a class of perturbation
problems with at least one delay or deviating argument. This type of problem occurs
frequently in the modelling of various types of physical and biological problems. For
example, the neuronal variability and its theoretical analysis have been modelled as delay
parabolic equations [7,8]. Asymptotic analyses for 1D stationery SPDDEs have been well
studied by Lange and Miura [9]. Several numerical methods for SPDDEs of 1D stationery
problems have been reported in the literature, such as Refs. [10–13] and the reference
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therein. The numerical method for 1D parabolic equations was initiated by Ref. [14] and
it gained the interest of many researchers. Das and Natesan [15] presented computing
techniques for solving 2D time SPDDEs. Ref. [16] presented some applications and
existence results for partial delay differential equations. The modelling of option pricing,
to generalize the celebrated Black–Scholes equation with suitable weight, led to the 2D
parabolic differential equations with space shift [17]. We consider discontinuous convection
and source terms in 2D parabolic SPDDEs in this article, as mentioned in the abstract. This
problem exhibits interior layers at x = dx and y = dy and, due to the presents of the shift
in space, the boundary layers occurs at x = 1 and y = 1. The existence results pertaining
to the parabolic equation with discontinuous coefficients are addressed in Ref. [18]. The
method presented in this article is a combination of the layers adopted technique and linear
interpolations. The interpolation term takes care of the delay arguments. The proposed
method is validated theoretically and numerically to be uniformly convergent in both space
and time by considering some numerical examples.

The constant C is generic positive, that is, it is independent of the perturbation pa-
rameter as well as the discretization parameters N and M throughout the paper. For
convenience, it is assumed that the number of mesh points in the spatial domains Ωx and
Ωy are same, that is, N and the index set IN0 = {1, 2, 3, · · · , N0} for any positive integer
N0. It is conventional to assume for the convection coefficient problem that ε ≤ CN−1 for
practical purposes. Further, to measure the error bounds and derivative bounds, we use
the following norm ‖ψ‖D = supx∈D ‖ψ(x)‖, x = (x, y).

The article is organized as follows: the problem is considered in Section 2. The
fractional implicit Euler method for time derivative and locally 1D problems are presented
in Section 3. In the same section, the stability results and derivative estimates of the locally
one-dimensional problems are presented. Section 4 presents the numerical method for the
considered problem. The discretizations incurred by the errors are estimated in Section 5.
Numerical validations through some test example problems are done in Section 6. Finally,
in Section 7, some concluding remarks are made.

2. Statement of Continuous Problem

Motivated by the works of Refs. [7,17], we consider the following two-dimensional
singularly perturbed parabolic differential equations: We find u such that

Lu :=ut − εΔu +∇u · p̄(x) + q(x)u(x − d, t) = g(x, t), (x, t) ∈ D∗ × (0, T], (1)

u(x, 0) = u0(x), x ∈ D, (2)

u(x, t) = 0, on ∂D× [0, T], (3)

u(x, t) = 0, on [−dx, 0]× [−dy, 1]× [0, T] ∪ [−dx, 1]× [−dy, 0]× [0, T], (4)

where x = (x, y), d = (dx, dy), Ωx = (0, 1) = Ωy, D = Ωx × Ωy, D∗ = Ω∗
x × Ω∗

y,
Ω∗

ν = Ω−
ν ∪ Ω+

ν , Ω−
ν = (0, dν), Ω+

ν = (dν, 1), ν = x, y, the functions u0, q are sufficiently
differentiable and bonded on D, p1, p2, g1, g2 are sufficiently differentiable and bounded
on their respective domains D∗,D∗ × [0, T]. In addition, we assume that,

ux(d−x , y, t) = ux(d+x , y, t), uy(x, d−y , t) = uy(x, d+y , t),

p̄(x) = (p1(x), p2(x))
T , ∇u = (ux, uy),

p+1 ≥ p1(x) ≥ p−1 > 0, x ∈ Ω−
x × Ω∗

y , p+1 ≥ −p1(x) ≥ p−1 > 0, x ∈ Ω+
x × Ω∗

y ,

p+2 ≥ p2(x) ≥ p−2 > 0, x ∈ Ω∗
x × Ω−

y , p+2 ≥ −p2(x) ≥ p−2 > 0, x ∈ Ω∗
x × Ω+

y ,

|p1(d−x , y)− p1(d+x , y)| < ∞, |p2(x, d−y )− p2(x, d+y )| < ∞,

q(x) = q1(x) + q2(x), 0 ≥ q1, q2 ≥ β, g(x, t) = g1(x, t) + g2(x, t).
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Let Lx := −ε ∂2

∂x2 + p1(x)
∂

∂x + q1(x)Id and Ly := −ε ∂2

∂y2 + p2(x)
∂

∂y + q2(x)Id be two
differential operators, Idu(x, t) = u(x − d, t), then the differential operator L defined in (1)
can be written as L := ∂

∂t + Lx + Ly.

3. Time Domain Discretization and Stability Analysis

3.1. Discretization of Time Domain

The time domain [0, T] is discretized uniformly with step length ht = T/M, where
M is a positive integer. Then we have the uniform mesh in the temporal direction ΩM

t =
{tk = k × ht}M

k=0.

3.2. An Alternating Direction Implicit Method

Let us assume that û0(x) = u0(x), x ∈ D. Now, we discretize the IBVP (1)–(3) using
the fractional implicit Euler method and obtain the following semidiscrete scheme on the
time levels n = 0, 1, · · · , M − 1:

let y ∈ Ωy, then ⎧⎪⎪⎨⎪⎪⎩
Dxûn+ 1

2 = ûn + htg1(x, y, tn+1), x ∈ Ω∗
x,

ûn+ 1
2 (0, y) = 0 = ûn+ 1

2 (1, y),

ûn+ 1
2

x (d−x , y) = ûn+ 1
2

x (d+x , y),

(5)

let x ∈ Ωx, then ⎧⎪⎨⎪⎩
Dyûn+1 = ûn+ 1

2 + htg2(x, y, tn+1), y ∈ Ω∗
y

ûn+1(x, 0) = 0 = ûn+1(x, 1),
ûn+1

y (x, d−y ) = ûn+1
y (x, d+y ),

(6)

where ûn(x, y) is the exact solution of u at the time level t = tn, Dx := I + htLx and
Dy := I + htLy.

If the exact solution of the problem (1) is known at t = tn, then we have the following
semi-discrete scheme: let y ∈ Ωy, then⎧⎪⎪⎨⎪⎪⎩

Dxun+ 1
2 = u(x, y, tn) + htg1(x, y, tn+1), x ∈ Ω∗

x,

un+ 1
2 (0, y) = un+ 1

2 (1, y) = 0,

un+ 1
2

x (d−x , y) = un+ 1
2

x (d+x , y),

(7)

let x ∈ Ωx, then ⎧⎪⎨⎪⎩
Dyun+1 = un+ 1

2 + htg2(x, y, tn+1), y ∈ Ω∗
y ,

un+1(x, 0) = un+1(x, 1) = 0,
un+1

y (x, d−y ) = un+1
y (x, d+y ).

(8)

Solving the problem (1)–(4) is more computationally expensive than solving lower-
dimensional problems. As a result, we used the ADI scheme to divide the two-dimensional
problem into two sets of one-dimensional problems in order to decrease the computing
cost and to have an efficient numerical solution.

3.3. Stability Results and Derivative Estimates

This section presents the maximum principles for the above-mentioned locally one
dimensional problems. Further, with regard to the applications of the maximum principle,
we estimate the solution derivative bounds and local and global truncation errors in the
temporal direction.
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The test functions

s(x) =

⎧⎨⎩x + 1, x ∈ [x, dx],

dx
dx − x
1 − dx

+ dx + 1, x ∈ [dx, 1]
and s(y) =

⎧⎪⎨⎪⎩
y + 1, y ∈ [0, dy],

dy
dy − y
1 − dy

+ dy + 1, y ∈ [dy, 1]

are used in the following lemmas and sections.

Lemma 1. Let ψ ∈ C0(Ωx) ∩ C2(Ω∗
x) be a function satisfying ψ(x) ≥ 0, x = 0, 1, Dxψ(x) ≥

0, x ∈ Ω∗
x and ψ′(dx−)− ψ′(dx+) ≥ 0, then ψ(x) ≥ 0, x ∈ Ωx.

Proof. The proof is by construction and similar to Refs. [12,13]. It is shown that Dxs(x) >
0, x �= dx and s′(d−x )− s′(d+x ) ≥ 0. By using the argument given by Ref. [12], Theorem 3.1,
one can prove this lemma.

Similar to the above lemma and using the test function s(y), we can prove the
following lemma.

Lemma 2. Let ψ ∈ C0(Ωy) ∩ C2(Ω∗
y) be a function satisfies ψ(y) ≥ 0, y = 0, 1, Dyψ(y) ≥

0, y ∈ Ω∗
y and ψ′(dy−)− ψ′(dy+) ≥ 0, then ψ(y) ≥ 0, x ∈ Ωy.

One can prove that the solutions of (5) and (6) are stable and unique if they exist.
Further, they are bounded from Lemmas 1 and 2.

Lemma 3. Assume that
∣∣∣∣∂iu

∂ti

∣∣∣∣ ≤ C, 0 ≤ i ≤ 3. Then ‖ en ‖≤ Ch2
t where u(tn) = un(x, y) + en,

u(tn) = u(x, y, tn). In addition, supn≤T/ht
‖En‖∞ ≤ C ht, where the global error En = u(tn)−

ûn.

Proof. The proof is similar to that of Refs. [4,6]. For that, one can express

u(tn−1) = Dx[Dyu(tn)− htg2(x, y, tn)]− htg1(x, y, tn) + O(h2
t )

u(tn−1) = Dx[Dyu(tn)− htg2(x, y, tn)]− htg1(x, y, tn),

DxDyen = O(h2
t ).

First by the application of Lemma 1 then by Lemma 2, we have |en| ≤ Ch2
t . To prove

the second part, consider

En = en + un − ûn,

Dy(un − ûn) = u(n−1)+ 1
2 − û(n−1)+ 1

2 , Dx(u(n−1)+ 1
2 − û(n−1)+ 1

2 ) = En−1,

un − ûn = D−1
y D−1

x En−1,

making use of the arguments given in Ref. [4], we have |En| ≤ Cht, which concludes
the proof.

From the above lemma, we can conclude that the semidiscretization process is uni-
formly convergent of order O(ht). In the rest of the sections it is assumed that, dx = 0.5 = dy.

Let the solution ûn+ 1
2 be decomposed as ûn+ 1

2 = vn+ 1
2 + wn+ 1

2 for obtaining the
sharp bounds on the derivatives. Further, let the decomposition of the regular component
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be vn+ 1
2 = ∑2

k=0 εkvn+ 1
2

k , leading the desired bounds on the derivatives. The functions

vn+ 1
2

k , k = 0, 1, 2, wn+ 1
2 satisfy the following problems:⎧⎪⎨⎪⎩

vn+ 1
2

0 + ht

(
p1(x)

d
dx vn+ 1

2
0 + q1(x)Idvn+ 1

2
0

)
= vn

0 + htg1(tn+1), x ∈ Ω∗
x,

vn+ 1
2

0 (x) = ûn+ 1
2 (x), x ∈ [−dx, 0], vn+ 1

2
0 (1) = ûn+ 1

2 (1),

(9)

⎧⎪⎨⎪⎩
vn+ 1

2
1 + ht

(
p1(x)

d
dx vn+ 1

2
1 + q1(x)Idvn+ 1

2
1

)
= vn

1 + ht
d2

dx2

(
vn+ 1

2
0

)
, x ∈ Ω∗

x,

vn+ 1
2

1 (x) = 0, x ∈ [−dx, 0], vn+ 1
2

1 (1) = 0,

(10)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Dxvn+ 1
2

2 = vn
2 + ht

d2

dx2

(
vn+ 1

2
1

)
, x ∈ Ω∗

x,

vn+ 1
2

2 (x) = 0, x ∈ [−dx, 0], vn+ 1
2

2 (1) = 0,

d
dx vn+ 1

2
2 (d−x ) = d

dx vn+ 1
2

2 (d+x ),

(11)

and the functions vn+ 1
2 and wn+ 1

2 satisfy the following boundary-value problems (BVPs):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dxvn+ 1
2 = vn + htg1(tn+1), x ∈ Ω∗

x,

vn+ 1
2 (x) = ûn+ 1

2 (x), x ∈ [−dx, 0], vn+ 1
2 (1) = ûn+ 1

2 (1),[
vn+ 1

2 (dx)
]
= ∑2

k=0[v
n+ 1

2
k (dx)],

[
d

dx vn+ 1
2 (dx)

]
= ∑1

k=0 εk
[

d
dx vn+ 1

2
k (dx)

]
,

(12)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dxwn+ 1

2 = wn, x ∈ Ω∗
x,

wn+ 1
2 (x) = 0, x ∈ [−dx, 0], wn+ 1

2 (1) = 0,[
wn+ 1

2 (dx)
]
= −

[
vn+ 1

2 (dx)
]
,
[

d
dx wn+ 1

2 (dx)
]
= −

[
d

dx vn+ 1
2 (dx)

]
,

(13)

where the square bracket operation denotes the jump discontinuity [α(ζ)] = α(ζ+)− α(ζ−).
It is assumed that v0 = û0, w0 = 0.

Theorem 1. Let ûn+ 1
2 be the solution of the problem (5) and let k be a nonnegative integer, then

the regular and singular components satisfy the following bounds on the derivatives∥∥∥∥∥dkvn+ 1
2

dxk

∥∥∥∥∥
Ω∗

≤ C(ε−k+2 + 1), 0 ≤ k ≤ 3,

∣∣∣∣∣dkwn+ 1
2 (x)

dxk

∣∣∣∣∣ ≤ Cε−k

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
p−1 (x − dx)

ε

)
, x ∈ Ω−

x , 0 ≤ k ≤ 3,

exp

(
p−1 (dx − x)

ε

)
+ ε exp

(
p−1 (x − 1)

ε

)
, x ∈ Ω+

x .

Proof. We show that by integrating the differential Equations (9)–(11), and using the
argument presented in Refs. [13,19], and Lemma 1, we have ‖vn+ 1

2 ‖ ≤ C. Successive
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differentiation of Equations (9)–(11), we have ‖ dk

dxk vn+ 1
2 ‖ ≤ C(ε2−k + 1). From the Lemma 1,

we see that ûn+ 1
2 and vn+ 1

2 are bounded, hence wn+ 1
2 . Let us assume that |wn+ 1

2 (dx)| ≤ γ.
Now define the barrier functions

φ±(x) = Cγ exp

(
p−1 (x − dx)

ε

)
± wn+ 1

2 , x ∈ Ω−
x .

It is easy to show that φ±(0) ≥ 0, φ±(dx) ≥ 0 and Dxφ±(x) ≥ 0 on Ω−
x . From

the results of Ref. [19], we have |wn+ 1
2 (x)| ≤ C exp

(
p−1 (x − dx)

ε

)
, x ∈ Ω−

x . Using the

following barrier functions

ψ± = Cγ(ε + exp

(
p−1 (dx − x)

ε

)
− ε exp

(
p−1 (x − 1)

ε

)
)± wn+ 1

2 , x ∈ Ω+
x

we prove that |wn+ 1
2 (x)| ≤ C

(
exp

(
p−1 (dx − x)

ε

)
+ ε exp

(
p−1 (x − 1)

ε

))
, x ∈ Ω+

x . Fur-

ther the successive differentiation’s leads the desired results.

In a similar manner, one can decompose ûn+1 as vn+1 + wn+1 = ûn+1 and vn+1, wn+1

satisfy the following BVPs:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dyvn+1 = vn+ 1

2 + htg2(tn+1), y ∈ Ω∗
y ,

vn+1(y) = ûn+1(y), y ∈ [−dy, 0], vn+1(1) = ûn+1(1),[
vn+1(dy)

]
= ∑1

k=0 εk
[
vn+1

k (dy)
]
,
[

d
dy vn+1(dy)

]
= ∑1

k=0 εk
[

d
dy vn+1

k (dy)
]
,

(14)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dywn+1 = wn+ 1

2 , y ∈ Ω∗
y ,

wn+1(y) = 0, y ∈ [−dy, 0], wn+1(1) = 0,[
wn+1(dy)

]
= −[vn+1(dy)

]
,
[

d
dy wn+1(dy)

]
= −

[
d

dy vn+1(dy)
] (15)

and we have the following result.

Theorem 2. Let ûn+1 be the solution to the problem (6), then its regular and singular components
satisfy the following bounds on the derivatives∥∥∥∥∥dkvn+1

dyk

∥∥∥∥∥
Ω∗

≤ C(1 + ε2−k), k = 0, 1, 2, 3,

∣∣∣∣∣dkwn+1(x)
dyk

∣∣∣∣∣ ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε−k exp

(
p−2 (y − dy)

ε

)
, y ∈ Ω−

y , k = 0, 1, 2, 3,

ε−k exp

(
p−2 (dy − y)

ε

)
+ ε−k+1 exp

(
p−2 (y − 1)

ε

)
, y ∈ Ω+

y .

4. Discrete Problem

4.1. Spatial Domain Discretization

From Theorems 1 and 2, we observe that the IBVP (1)–(3) exhibits twin interior layers
along the lines (dx, y), y ∈ Ωy and (x, dy), x ∈ Ωx and weak boundary layers along
x = 1 and y = 1. Let N be the number of mesh points in both spatial x and y directions.
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As the mesh defined in Ref. [13], we define the mesh points in both x and y directions,
which is given in the following: let τ1,x = min{ dx

2 , 2
p−1

ε ln N}, τ2,x = min{ 1−dx
4 , 2

p−1
ε ln N},

τ1,y = min{ dy
2 , 2

p−2
ε ln N} and τ2,y = min{ 1−dy

4 , 2
p−2

ε ln N}. Using the transition parameters

τi,ν, i = 1, 2, ν = x, y, we partitioned the domains Ωx and Ωy as follows:

Ωx = ∪5
i=1Ωi,x, Ω1,x = [0, dx − τ1,x], Ω2,x = [dx − τ1,x, dx], Ω3,x = [dx, dx + τ2,x],

Ω4,x = [dx + τ2,x, 1 − τ2,x], Ω5,x = [1 − τ2,x, 1],

Ωy = ∪5
i=1Ωi,y, Ω1,y = [0, dy − τ1,y], Ω2,y = [dy − τ1,y, dy], Ω3,y = [dy, dy + τ2,y],

Ω4,y = [dy + τ2,y, 1 − τ2,y], Ω5,y = [1 − τ2,y, 1].

On each sub-domains Ωi,x, i = 1, 2, 3, 4, 5, respectively, we place N
4 , N

4 , N
8 , N

4 , N
8 mesh

points with mesh sizes 4(dx−τ1,x)
N , 4τ1,x

N , 8τ2,x
N , 4(1−2τ2,x−dx)

N , 8τ2,x
N . In the same manner the

mesh points in Ωi,y, i = 1, 2, 3, 4, 5 are defined. Now let us denote the mesh sizes to be

hx(i) = xi − xi−1, i ∈ IN and hy(i) = yi − yi−1, i ∈ IN and define the mesh ΩN
x = {xi}i=N

i=0 ,

x0 = 0, xi = xi−1 + hx(i), i ∈ IN and ΩN
y = {yi}i=N

i=0 , y0 = 0, yi = yi−1 + hy(i), i ∈ IN .
The mesh distribution is depicted in the Figure 1.

Figure 1. Mesh points distribution.

4.2. The Finite Difference Schemes

On the meshes ΩN
x and ΩN

y , we define the following finite difference schemes.
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fix y = yj,

DN
x Un+ 1

2
i,j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+ 1
2

i,j + (−εδ2
xUn+ 1

2
i,j + p1i,j D

−
x Un+ 1

2
i,j + q1i,j I

N
d Un+ 1

2
i,j )ht = Un

i,j

+htg1(xi, yj, tn+1), i ∈ I N
2 −1,

D−
x Un+ 1

2
N/2,j = D+

x Un+ 1
2

N/2,j, i = N
2 ,

Un+ 1
2

i,j + (−εδ2
xUn+ 1

2
i,j + p1i,j D

+
x Un+ 1

2
i,j + q1i,j I

N
d Un+ 1

2
i,j )ht = Un

i,j

+htg1(xi, yj, tn+1), i ∈ IN−1 \ I N
2

,

(16)

Un+ 1
2

0,j = ûn+ 1
2 (0, yj); Un+ 1

2
N,j = ûn+ 1

2 (1, yj),

fix x = xi,

DN
y Un+1

i,j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1
i,j + (−εδ2

yUn+1
i,j + p2i,j D

−
y Un+1

i,j + q2i,j I
N
d Un+1

i,j )ht = Un+ 1
2

i,j

+htg2(xi, yj, tn+1), j ∈ I N
2 −1

D−
y Un+1

i,N/2 = D+
y Un+1

i,N/2, j = N
2 ,

Un+1
i,j + (−εδ2

yUn+1
i,j + p2i,j D

+
y Un+1

i,j + q2i,j I
N
d Un+1

i,j )ht = Un+ 1
2

i,j

+htg2(xi, yj, tn+1), j ∈ IN−1 \ I N
2

,

(17)

Un+1
0,j = ûn+1(xi, 0); Un+1

i,N = ûn+1(xi, 1),

where δ2
ζ , D−

ζ and D+
ζ , ζ = x, y are the standard finite difference operators,

IN
d Un+ 1

2
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i ∈ I N
2 −1,

Un+ 1
2

η,ξ lη,x(xi − dx)lξ,y(yj − dy) + Un+ 1
2

η+1,ξ lη+1,x(xi − dx)lξ,y(yj − dy)

+Un+ 1
2

η,ξ+1lη,x(xi − dx)lξ+1,y(yj − dy)

+Un+ 1
2

η+1,ξ+1lη+1,x(xi − dx)lξ+1,y(yj − dy), i ∈ IN−1 \ I N
2

IN
d Un+1

i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j ∈ I N
2 −1,

Un+1
η,ξ lη,x(xi − dx)lξ,y(yj − dy) + Un+1

η+1,ξ lη+1,x(xi − dx)lξ,y(yj − dy)

+Un+1
η,ξ+1lη,x(xi − dx)lξ+1,y(yj − dy)

+Un+1
η+1,ξ+1lη+1,x(xi − dx)lξ+1,y(yj − dy), j ∈ IN−1 \ I N

2
,

lη,x(xi − dx) =
xη+1 − (xi − dx)

hx(η + 1)
, lη+1,x(xi − dx) =

(xi − dx)− xη

hx(η + 1)
,

lξ,y(yj − dy) =
yξ+1 − (yj − dy)

hy(ξ + 1)
, lξ+1,y(yj − dy) =

(yj − dy)− yξ

hy(ξ + 1)
, xη , xη+1, yξ , yξ+1 are

the nodal points such that xi − dx ∈ [xη , xη+1] and yj − dy ∈ [yξ , yξ+1]. The above two
difference operators DN

x and DN
y satisfy the following discrete maximum principles.
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Note: Let us denote the difference operators D∗
x =

{
D−

x , i < N
2 ,

D+
x , i > N

2 ,
and D∗

y =

{
D−

y , j < N
2 ,

D+
y , j > N

2 .
In the following we use the above difference operators. Further, the test functions

s(xi) =

⎧⎨⎩xi + 1, i ≤ N/2,

dx
dx − xi
1 − dx

+ dx + 1, i > N/2,
and s(yj) =

⎧⎪⎨⎪⎩
yj + 1, j ≤ N/2,

dy
dy − yj

1 − dy
+ dy + 1, j > N/2,

are also used.

4.3. Discrete Stability Results

Lemma 4. Let the mesh function be Ψi,j, satisfies Ψ0,j ≥ 0, ΨN,j ≥ 0, DN
x Ψi,j ≥ 0 and [D+

x −
D−

x ]ΨN/2,j ≤ 0, then Ψi,j ≥ 0 for all i.

Proof. Making use of the test mesh function s(xi) and the arguments given in Ref. [13],
Lemma 6.1, the lemma can be proved.

Lemma 5. Let the mesh function be Ψi,j, satisfies Ψi,0 ≥ 0, Ψi,N ≥ 0, DN
y Ψi,j ≥ 0 and [D+

y −
D−

y ]Ψi,N/2 ≤ 0, then Ψi,j ≥ 0 for all j.

Using the above two Lemmas 4 and 5, we can have the following discrete stability
results.

Lemma 6. Let Un+ 1
2

i,j be a numerical solution defined by (16), then

|Un+ 1
2

i,j | ≤ C max

{
|Un+ 1

2
0,j |, |Un+ 1

2
N,j |, sup

i
|DN

x Un+ 1
2

i,j |
}

, for all i.

Lemma 7. Let Un+1
i,j be a numerical solution defined by (17), then

|Un+1
i,j | ≤ C max

{
|Un+1

i,0 |, |Un+1
i,N |, sup

j
|DN

y Un+1
i,j |

}
, for all j.

Remark 1. From Lemmas 6 and 7, we can see that, the numerical solutions defined in (16) and (17)
are stable. Further, by the results of Ref. [20], the matrices associated with the difference schemes
(16) and (17) are M-matrices.

5. Error Computation

Analogous to the continuous solution, the numerical solution is decomposed into
smooth and singular components. The solution Un+ 1

2 is decomposed as Un+ 1
2 = Vn+ 1

2 +

Wn+ 1
2 satisfy the following difference equations:⎧⎪⎨⎪⎩

DN
x Vn+ 1

2
i,j = Vn

i,j + htg1(xi, yj, tn+1), i ∈ IN \ {N, N
2 , 0},

D+
x Vn+ 1

2
N/2,j − D−

x Vn+ 1
2

N/2,j =
[
vn+ 1

2
′
(dx)

]
, Vn+ 1

2
0,j = 0, Vn+ 1

2
N,j = 0,

(18)

⎧⎪⎨⎪⎩
DN

x Wn+ 1
2

i,j = Wn
i,j, i ∈ IN \ {N, N

2 , 0},

D+
x Wn+ 1

2
N/2,j − D−

x Wn+ 1
2

N/2,j = −
[
vn+ 1

2
′
(dx)

]
, Wn+ 1

2
0,j = 0, Wn+ 1

2
N,j = 0.

(19)
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Similarly, the solution Un+1 is decomposed as Un+1 = Vn+1 + Wn+1 and they satisfy
the following difference equations:⎧⎪⎨⎪⎩

DN
y Vn+1

i,j = Vn+ 1
2

i,j + htg2(xi, yj, tn+1), j ∈ IN \ {N, N
2 , 0},

D+
y Vn+1

i,N/2 − D−
y Vn+1

i,N/2 =
[
vn+1′(dy)

]
, Vn+1

i,0 = 0, Vn+1
i,N = 0,

(20)

⎧⎪⎨⎪⎩
DN

y Wn+1
i,j = Wn+ 1

2
i,j , j ∈ IN \ {N, N

2 , 0},

D+
y Wn+1

i,N/2 − D−
y Wn+1

i,N/2 = −
[
vn+1′(dy)

]
, Wn+1

i,0 = 0, Wn+1
i,N = 0.

(21)

Note: The error estimate in each time level is proved in the following way:

Step 1 :First we estimate the absolute difference of U and V;
Step 2 :We estimate the error bound of the regular component, that is |v − V|;
Step 3 :To estimate the error bound of the singular component |w−W| in the entire domain,

first we estimate in the outer region and then using the estimate of |U −V|, we estimate
|w − W| in the inner layer region;

Step 4 :Using the triangle inequality, we estimate the error bound of the numerical solution
in each time level.

Lemma 8. Let U
1
2
i,j and V

1
2

i,j be numerical solutions of (16) and (18), respectively, when n = 0, then

|U
1
2
i,j − V

1
2

i,j | ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N−1, i ∈ I N

4
,

ζ + N−1, i ∈ I 5N
8
\ I N

4
,

N−1, i ∈ IN−1 \ I 5N
8

,

ζ is constant.

Proof. Fix j. Let us consider the mesh function

Ψ±(xi) = C[N−1s(xi) + ψ(xi)]± [U
1
2
i,j − V

1
2

i,j ], ∀i,

where ζ = max N
4 +1≤i,j≤ 5N

8 −1 |U
1
2
i,j − V

1
2

i,j |, and

ψ(xi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
xi − (dx − τ1,x)

τ1,x

)
ζ, i ∈ I N

2
\ I N

4(
1 +

dx − xi
τ2,x

)
ζ, i ∈ I 5N

8 −1 \ I N
2

0, otherwise.
It is easy to show that Ψ±(xi) ≥ 0, i = 0, N, and by the arguments of [13], we have

DN
x Ψ±(xi) = DN

x (CN−1s(xi) + ψ(xi))±DN
x (U

1
2
i,j − V

1
2

i,j) ≥ 0, i �= N
2

,

(D+
x − D−

x )Ψ±(x N
2
) ≤ 0, i =

N
2

.

By the Lemma 4, we have Ψ±(xi) ≥ 0. Hence the proof of the lemma.
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Lemma 9. Let v
1
2 and V

1
2 be two solutions of (12) and (18), respectively, the |v 1

2 (xi, y)− V
1
2

i,y| ≤
CN−1, ∀i.

Proof. Now, we see that

DN
x (v

1
2 (xi, y)− V

1
2

i,y) = DN
x v

1
2 (xi, y)−DN

x V
1
2

i,y = DN
x v

1
2 (xi, y)−Dxv

1
2 (xi, y)

= ht

[
−ε

(
δ2

x −
d2

dx2

)
+ p1i,j

(
D∗

x −
d

dx

)
+ q1i,j [I

N
d − Id]

]
v

1
2 (xi, y),

from the results given in Refs. [2,21,22], we have |DN
x (v

1
2 (xi, y)− V

1
2

i,y)| ≤ ChtN−1. Using
the following barrier function

ψ±(xi) = CN−1s(xi)± (v
1
2 (xi, y)− V

1
2

i,y),

we can see that ψ±(xi) ≥ 0, i = 0, N, DN
x ψ±(xi) ≥ 0 and (D+

x − D−
x )ψ±(x N

2
) ≤ 0. From

the Lemma 4, we have the desired result.

Lemma 10. Let w
1
2 and W

1
2 be the solutions of (13) and (19), respectively, then |w 1

2 (xi, y) −
W

1
2

i,y| ≤ CN−1 ln N, ∀i.

Proof. By the triangle inequality, Theorem 1, Lemmas 8 and 9, we have

|û 1
2 (xi, y)− U

1
2
i,y| ≤ |U

1
2
i,y − V

1
2

i,y|+ |v 1
2 (xi, y)− V

1
2

i,y|+ |û 1
2 (xi, y)− v

1
2 (xi, y)|

≤ CN−1 + C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
p−1 (xi − dx)

ε

)
, i ∈ I N

2
,

ε exp

(
p−1 (xi − 1)

ε

)
+ exp

(
p−1 (dx − xi)

ε

)
, i ∈ IN − I N

2
,

+ C

⎧⎪⎪⎨⎪⎪⎩
N−1, i ∈ I N

4
,

ζ + N−1, i ∈ I 5N
8 −1 \ I N

4
,

N−1, i ∈ IN \ I 5N
8 −1

≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−1, i ∈ I N
4

,

ζ + N−1 + exp

(
p−1 (xi − dx)

ε

)
, i ∈ I N

2
\ I N

4
,

ζ + N−1 + exp

(
p−1 (dx − xi)

ε

)
, i ∈ I 5N

8 −1 \ I N
2

,

N−1, i ∈ IN \ I 5N
8 −1,

where ζ = max N
4 +1≤i,j≤ 5N

8 −1 |U
1
2
i,j − V

1
2

i,j |. Hence |û 1
2 (xi, y)− U

1
2
i,y| ≤ CN−1, i = 0, 1, · · · , N

4 ,

5N
8 , · · · , N. Therefore |w 1

2 (xi, y)− W
1
2

i,y| ≤ CN−1, i = 0, 1, · · · , N
4 , 5N

8 , · · · , N. To prove the
result inside the inner region, we consider the following mesh function

ψ±(xi) = CN−1φ(xi)± (w
1
2 − W

1
2 ), xi ∈ (dx − τ1,x, dx) ∪ (dx, dx + τ2,x) ∩ ΩN

x ,
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where φ(xi) =

⎧⎪⎪⎨⎪⎪⎩
(1 + xi) +

τx
ε2 (xi − (dx − τ1,x)), xi ∈ [dx − τ1,x, dx) ∩ ΩN

x ,(
1 + dx + dx

dx − xi
1 − dx

)
+ τx

ε2 (dx + τ2,x − xi), xi ∈ [dx, dx + τ2,x] ∩ ΩN
x ,

,

τx = min{τ1,x, τ2,x}. Then we have, ψ±(xi) ≥ 0, i = N
4 , 5N

8 . Further |DN
x (w

1
2 − W

1
2 )| ≤

C1htε
−2N−1, i = N

4 + 1, · · · , N
2 − 1, N

2 + 1, · · · , 5N
8 . Now,

DN
x ψ±(xi) = CN−1DN

x φ(xi)±DN
x (w

1
2 − W

1
2 ), xi ∈ (dx − τ1,x, dx) ∪ (dx, dx + τ2,x) ∩ ΩN

x

≥ CN−1

⎧⎪⎨⎪⎩
1 + ht p−1 + τx

ε2 ht p−1 , xi ∈ (dx − τ1,x, dx) ∩ ΩN
x

1 + ht(p−1
dx

1−dx
+ β1) +

τx
ε2 ht(p−1 + β1), xi ∈ (dx, dx + τ2,x) ∩ ΩN

x

∓ C1htε
−2N−1 ≥ 0

for a suitable choice of C > 0. At the point xN/2, we have (D+
x − D−

x )ψ±(xN/2) ≤ 0. From
the Lemma 4, we have |w 1

2 − W
1
2 | ≤ CN−1 ln N, i = N

4 , · · · , 5N
8 . Therefore |w 1

2 (xi, y)−
W

1
2

i,y| ≤ CN−1 ln N, ∀i.

Lemma 11. Let û
1
2 and U

1
2 be the solution of (5) and (16), respectively, then ‖û

1
2 − U

1
2 ‖ ≤

CN−1 ln N.

Proof. The proof follows from the above two lemmas.

Lemma 12. Let v1, w1, û1, V1, W1, and U1 be the solutions of (14), (15), (6), (20), (21), and (17),
respectively, then

‖v1 − V1‖ ≤ CN−1, ‖w1 − W1‖ ≤ CN−1 ln N,

‖û1 − U1‖ ≤ CN−1 ln N.

Proof. We see that, û1(x, 0) = U1
x,0 and û1(x, 1) = U1

x,N .
Similar to the proof of Lemma 8, we can prove the following,

|U1 − V1| ≤ C

⎧⎪⎪⎨⎪⎪⎩
N−1, i, j ∈ I N

4
,

ζ + N−1, i, j ∈ I 5N
8
\ I N

4
,

N−1, i, j ∈ IN−1 \ I 5N
8

ζ = max
N
4 +1≤i,j≤ 5N

8 −1
|U1

i,j − V1
i,j|.

Let v1 and V1 be the solutions of (14) and (20), then similar to Lemma 9, we have

DN
y (v1(x, yj)− V1

x,j) = DN
y v1(x, yj)−DN

y V1
x,j = DN

y v1(x, yj)−Dyv1(x, yj)

= ht

[
−ε

(
δ2

y −
d2

dy2

)
+ p2i,j

(
D∗

y −
d

dy

)
+ q2i,j [I

N
d − Id]

]
v1(x, yj),
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and |DN
y (v1(x, yj)− V1

x,j)| ≤ ChtN−1. Then by a suitable barrier function one can prove

that ‖v1 − V1‖ ≤ CN−1. Similar to the Lemma 11, we estimate ‖w1 − W1‖,

|û1(x, yj)− U1
x,j| ≤ |U1

x,j − V1
x,j|+ |v1(x, yj)− V1

x,j|+ |û1(x, yj)− v(x, yj)|

≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−1, i, j ∈ I N
4

,

ζ + N−1 + exp

(
p−2 (yj − dy)

ε

)
, i, j ∈ I N

2
\ I N

4
,

ζ + N−1 + exp

(
p−2 (dy − yj)

ε

)
, i, j ∈ I 5N

8
\ I N

2
,

N−1, i, j ∈ IN \ I 5N
8

.

Hence |û1(x, yj)− U1
x,j| ≤ CN−1, j = 0, 1, · · · , N

4 , 5N
8 , · · · , N and |w1(x, yj)− W1

x,j| ≤
CN−1, j = 0, 1, · · · , N

4 , 5N
8 , · · · , N. Using the barrier function

ψ±(yj) = CN−1φ(yj)± (w1 − W1), yj ∈ (dy − τ1,y, dy) ∪ (dy, dy + τ2,y) ∩ ΩN
y ,

where φ(yj) =

⎧⎪⎪⎨⎪⎪⎩
(
1 + yj

)
+

τy
ε2 (yj − (dy − τ1,y)), yj ∈ [dy − τ1,y, dy) ∩ ΩN

y ,(
1 + dy + dy

dy − yj

1 − dy

)
+

τy
ε2 (dy + τ2,y − yj), yj ∈ [dy, dy + τ2,y] ∩ ΩN

y ,
,

τy = min{τ1,y, τ2,y} we prove that ‖w1 −W1‖ ≤ CN−1 ln N, j = N
4 + 1, · · · , 5N

8 − 1. Hence
the proof.

Theorem 3. Let ûn+ 1
2 , ûn+1, Un+ 1

2
i,j and Un+1

i,j be the solutions of (5), (6), (16), and (17), respec-
tively, then

‖ûn+ 1
2 − Un+ 1

2 ‖ ≤ CN−1 ln N, and ‖ûn+1 − Un+1‖ ≤ CN−1 ln N.

Proof. We prove the theorem on each time level t = tn. We know that ûn+ 1
2 (0, y)−Un+ 1

2
0,y =

0, ûn+ 1
2 (1, y)− Un+ 1

2
N,y = 0, ûn+1(x, 0)− Un+1

x,0 = 0 and ûn+1(x, 1)− Un+1
x,N = 0.

DN
x (Un+ 1

2 − Vn+ 1
2 ) = DN

x Un+ 1
2 −DN

x Vn+ 1
2 = Un − Vn,

‖DN
x (Un+ 1

2 − Vn+ 1
2 )‖ ≤ C

⎧⎪⎪⎨⎪⎪⎩
N−1, i, j ∈ I N

4
,

ζ + N−1, i, j ∈ I 5N
8
\ I N

4
,

N−1, i, j ∈ IN−1 \ I 5N
8

,

DN
y (Un+1 − Vn+1) = DN

y Un+1 −DN
y Vn+1 = Un+ 1

2 − Vn+ 1
2 ,

‖DN
x (Un+1 − Vn+1)‖ ≤ C

⎧⎪⎪⎨⎪⎪⎩
N−1, i, j ∈ I N

4
,

ζ + N−1, i, j ∈ I 5N
8
\ I N

4
,

N−1, i, j ∈ IN−1 \ I 5N
8

,

ζ = max
n

max
N
4 +1≤i,j≤ 5N

8 −1
|Un

i,j − Vn
i,j|,
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with the successive applications of Lemmas 6 and 7 and the iteration in n, we prove that

‖Uμ − Vμ‖ ≤ C

⎧⎪⎪⎨⎪⎪⎩
N−1, i, j ∈ I N

4
,

ζ + N−1, i, j ∈ I 5N
8
\ I N

4
,

N−1, i, j ∈ IN−1 \ I 5N
8

,

μ = n + 1 & μ = n +
1
2

.

Using the following barrier functions

Ψ±
1 (xi) = CN−1s(xi)± [vn+ 1

2 (xi, yj)− Vn+ 1
2

i,j ], ∀i,

Ψ±
2 (yj) = CN−1s(yj)± [vn+1(xi, yj)− Vn+1

i,j ], ∀j,

and from Lemmas 6 and 7, we can prove that

‖vn+ 1
2 − Vn+ 1

2 ‖ ≤ CN−1, ‖vn+1 − Vn+1‖ ≤ CN−1.

It is observed that |wμ(xi, yj) − Wμ
i,j| ≤ CN−1, μ = n + 1

2 , n + 1, i, j = 0, 1, · · · , N
4 ,

5N
8 , · · · , N. Using the following barrier functions

Φ±
1 (xi) = CN−1φ1(xi)± (wn+ 1

2 − Wn+ 1
2 ), xi ∈ [Ω2,x ∪ Ω3,x] ∩ ΩN

x ,

Φ±
2 (yj) = CN−1φ2(yj)± (wn+1 − Wn+1), yj ∈ [Ω2,y ∪ Ω3,y] ∩ ΩN

y ,

where φ1(xi) =

⎧⎪⎪⎨⎪⎪⎩
(1 + xi) +

τx
ε2 (xi − (dx − τ1,x)), xi ∈ Ω2,x ∩ ΩN

x ,(
1 + dx + dx

dx − xi
1 − dx

)
+ τx

ε2 (dx + τ2,x − xi), xi ∈ Ω3,x ∩ ΩN
x ,

φ2(yj) =

⎧⎪⎪⎨⎪⎪⎩
(
1 + yj

)
+

τy
ε2 (yj − (dy − τ1,y)), yj ∈ Ω2,y ∩ ΩN

y ,(
1 + dy + dy

dy − yj

1 − dy

)
+

τy
ε2 (dy + τ2,y − yj), yj ∈ Ω3,y ∩ ΩN

y ,

τμ = min{τ1,μ, τ2,μ}, μ = x, y we prove that |wμ(xi, yj) − Wμ
i,j| ≤ CN−1, μ = n +

1
2 , n + 1, and i, j = N

4 + 1, · · · , 5N
8 − 1. By the triangle inequality, we have the desired

results.

Theorem 4. Let u(xi, yj, tn) and Un
i,j be the solutions of (1) and (17), then

‖u − U‖ ≤ C(ht + N−1 ln N).

Proof. The error can be obtained from the following

u(xi, yj, tn)− Un
i,j = ûn(xi, yj)− Un

i,j + u(xi, yj, tn)− un(xi, yj) + un(xi, yj)− ûn(xi, yj)

‖u(tn)− Un‖ ≤ ‖un − ûn‖+ ‖ûn − Un‖+ ‖u(tn)− un‖.

From Lemma 3, Theorem 3 and Ref. [6], Theorem 1, we have

‖u(tn)− Un‖ ≤ ‖u(tn)− un‖+ ‖un − ûn‖+ ‖ûn − Un‖ ≤ Cht + CN−1 ln N,

which completes the proof.
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6. Numerical Validation

Two examples are presented in this section to validate the theoretical results presented
in this article. The exact analytical solutions to the test problems are unknown, there-
fore we use the double mesh principle to calculate the maximum point-wise error and
computational order of convergence. For fixed M, we define

EN
ε = max

i,j
| UN

i,j(hx, hy, ht)− UN
i,j(

hx

2
,

hy

2
,

ht

2
) |, 0 ≤ i, j ≤ N

DN
x,y = max

ε
EN

ε , ρN = log2

(
DN

x,y

D2N
x,y

)
,

where UN
i,j(hx, hy, ht) and UN

i,j(
hx
2 , hy

2 , ht
2 ) are the numerical solutions at the node (xi, yj, tn)

with mesh sizes (hx, hy, ht) and ( hx
2 , hy

2 , ht
2 ), respectively, DN

x,y is maximum over ε for fixed N.

Example 1. Consider the 2D parabolic PDE (1) with discontinuous source and convection coeffi-
cients with the following data:

∂u
∂t

− εΔu + p̄(x) · ∇u + q(x)u(x − d, t) = g(x, t), (x, t) ∈ D∗ × (0, T]

p1(x) =

⎧⎨⎩1 + x(1 − x), x ∈ (0, dx), ∀y,

−(1 + x(1 − x)), x ∈ (dx, 1),
p2(x) =

⎧⎨⎩1 + y(1 − y), y ∈ (0, dy), ∀x,

−(1 + x(1 − x)), y ∈ (dy, 1),
,

q1(x) = −0.5 − x(1 − x), q2(x) = −0.5 − y(1 − y), dx = 0.5 = dy,

g1(x, t) =

⎧⎪⎪⎨⎪⎪⎩
−x2y(1 − x)(1 − y)2 exp

(
t2 − xy

1 + x2 + y2

)
, x ∈ (0, dx),

xy(1 − x)2(1 − y)exp
(

t2 − x2y2

1 + x2 − y2

)
, x ∈ (dx, 1),

g2(x, t) =

⎧⎨⎩−x3y2, y ∈ (0, dy),

(1 − x)5√1 − y, y ∈ (dy, 1),
u0 =

xy(1 − x)(1 − y)
1 + x2 + y2 .

Table 1 presents the maximum pointwise error and the order of convergence cor-
responding to Example 1. Figures 2 and 3 depict the numerical solution and pointwise
maximum error of the problem studied in Example 1, respectively.

Table 1. Maximum error and order of convergence for the Example 1 with M = 27.

N Number of Mesh Points in Space Directions

ε ↓ 16 32 64 128 256

10−1 5.5196 × 10−3 3.0933 × 10−3 1.6543 × 10−3 8.5850 × 10−4 4.3790 × 10−4

0.83544 0.90292 0.94632 0.97123 -

10−3 2.1762 × 10−2 1.5092 × 10−2 1.0563 × 10−2 7.6976 × 10−3 5.4021 × 10−3

0.52801 0.51484 0.45650 0.51089 -

10−5 2.2373 × 10−2 1.5657 × 10−2 1.0944 × 10−2 8.0343 × 10−3 5.6554 × 10−3

0.51496 0.51669 0.44586 0.50655 -

10−7 2.2379 × 10−2 1.5663 × 10−2 1.0948× 10−2 8.0378 × 10−3 5.6580 × 10−3

0.51482 0.51668 0.44577 0.50650 -

10−9 2.2379 × 10−2 1.5663 × 10−2 1.0948 × 10−2 8.0378 × 10−3 5.6580 × 10−3

0.51482 0.51668 0.44577 0.50650 -

DN
x,y 2.2379 × 10−2 1.5663 × 10−2 1.0948 × 10−2 8.0378 × 10−3 5.6580 × 10−3

ρN 0.51482 0.51668 0.44577 0.50650 -
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Figure 2. Numerical solution of Example 1 for fixed M = 25, N = 27, ε = 10−5.

Figure 3. Maximum error of Example 1.
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Example 2. Consider the 2D parabolic PDE (1) with discontinuous source and convection coeffi-
cients with the following data:

p1(x) =

⎧⎨⎩1 + x(1 − x) + y2, x ∈ (0, dx), ∀y,

−(1 + x(1 − x) + exp(−y)), x ∈ (dx, 1),
dx = 0.5, dy = 0.25

p2(x) =

⎧⎨⎩1 + y(1 − y) +
√

x, y ∈ (0, dy), ∀x,

−(1 + y(1 − y) + x2), y ∈ (dy, 1),
,

c1(x) = −0.5 − x(1 − x), c2(x) = −0.5 − y2(1 − y),

g1(x, t) =

⎧⎨⎩4txy exp
(
x2 + y2), x ∈ (0, dx),

4t(1 − x)(1 − y), x ∈ (dx, 1),
g2(x, t) =

⎧⎨⎩4xy exp(x2 + y2), y ∈ (0, dy),

4t(1 − x)(1 − y), y ∈ (dy, 1),

u0 =
xy(1 − x)(1 − y)

1 + x2 + y2 .

The maximum pointwise error and the order of convergence corresponding to Example 2
are given in Table 2. Figures 4 and 5 display the numerical solution and pointwise maximum
error of Example 2, respectively.

Figure 4. Numerical solution of Example 2 for fixed M = 25, N = 27, ε = 10−5.
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Figure 5. Maximum error of Example 2.

Table 2. Maximum error and order of convergence for the Example 2 with M = 27.

N Number of Mesh Points in Space Directions

ε ↓ 16 32 64 128 256

10−1 4.6432 × 10−2 2.4055 × 10−2 1.2254 × 10−2 6.1910 × 10−3 3.1182 × 10−3

0.94879 0.97310 0.98498 0.98946 -

10−3 4.3139 × 10−2 2.9874 × 10−2 2.3658 × 10−2 1.8574 × 10−2 1.5132 × 10−2

0.53011 0.33654 0.34909 0.29568 -

10−5 4.4807 × 10−2 3.1372 × 10−2 2.3990 × 10−2 1.8528 × 10−2 1.5113 × 10−2

0.51422 0.38706 0.37270 0.29390 -

10−7 4.4821 × 10−2 3.1389 × 10−2 2.3995 × 10−2 1.8528 × 10−2 1.5113 × 10−2

0.51390 0.38755 0.37302 0.29389 -

10−9 4.4821 × 10−2 3.1389 × 10−2 2.3995 × 10−2 1.8528 × 10−2 1.5113 × 10−2

0.51390 0.38756 0.37302 0.29389 -

DN
x,y 4.6432 × 10−2 3.1389 × 10−2 2.3995 × 10−2 1.8574 × 10−2 1.5132 × 10−2

ρN 0.56483 0.38756 0.36945 0.29568 -

7. Concluding Remarks

This article discusses singularly perturbed 2D parabolic delay differential equations
with discontinuous convection coefficients and source terms. As pointed out in Ref. [3],
the fractional step method results in low-cost computation for 2D problems. Therefore, we
first apply the fractional implicit Euler method for the time derivative. Then the higher
dimensional problem is reduced to lower dimensional problems. In fact, we get 2N system
of uncoupled equations. Each equation is a singularly perturbed differential equation with
a discontinuous convection coefficient and source term. As discussed in Ref. [13], we
discretized the spatial domains Ωμ, μ = x, y in the same manner, such as ΩN

μ , μ = x, y. On
each mesh we apply the difference scheme DN

μ Ui,j, μ = x, y. It is proved that the present
method is of almost first-order convergence in space and time. Figures 2 and 4 represent
the test problems solutions stated in Examples 1 and 2, respectively, we see that, the layers
occurs at the points dx and dy. Tables 1 and 2 present the maximum pointwise errors of
the test example problems. It is also worth noting that when the parameter ε drops, the
maximum pointwise error grows and stabilizes. It is assumed that the number of mesh
points in the time direction is M = 128. From Figures 3 and 5 we see that the maximum
pointwise error decreases as N increases. The present method works for the problems
with any delay arguments of size 0 << dμ ≤ 1, μ = x, y. In Example 1 we assumed that
dx = 0.5 = dy,, whereas in Example 2 we assumed that dx = 0.5, dy = 0.25.
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Abstract: This paper treats a water flow regularization problem by means of local boundary condi-
tions for the two-dimensional viscous shallow water equations. Using an a-priori energy estimate of
the perturbation state and the Faedo–Galerkin method, we build a stabilizing boundary feedback
control law for the volumetric flow in a finite time that is prescribed by the solvability of the associated
Cauchy problem. We iterate the same approach to build by cascade a stabilizing feedback control law
for infinite time. Thanks to a positive arbitrary time-dependent stabilization function, the control law
provides an exponential decay of the energy.

Keywords: shallow water flow; Faedo–Galerkin method; feedback control; PDE’s stabilization

MSC: 76D55; 93D15; 65M60; 93B18

1. Introduction

Regularization of free-surface fluid flows is a problem of practical interest for envi-
ronmental and budgetary purposes in the current situation of climate change that rarefies
fresh water sources worldwide. Depending on the specific application, the regularization
of fluid flows is performed through control methodologies of the Navier–Stokes equations
or a system of partial differential equations derived from them, which describe a particular
setting and/or physical properties. Several mechanisms of controlling fluid flows have
been designed in the recent past, see [1–5].

Control and stabilization of fluid flows governed by the Navier–Stokes equations
have been extensively studied in the literature using various approaches. In the three-
dimensional setting, a local stabilization around an unstable stationary state is performed
in [6] by means of a feedback control law. In [7], the existence of time-points values of
boundary feedback laws is achieved by an optimal control problem to alleviate the high
regularity required for the velocity components. One of the widely adopted approaches
formulates the associate optimal control problem in infinite dimensional spaces, which
gives rise to a Riccati equation [8]. Stabilization of the Navier-Stokes equations from the
boundary or from a portion of the boundary is mainly investigated by means of feedback
control laws. In addition to the series of papers [9–13], the inclusive examination in [14]
lists a number of approaches for control by means of feedback laws. It also discusses the
associated challenges, such as start-control, impulse-control and distributed-control laws,
which have been studied for the Oseen and Navier-Stokes equations. Recently, global
solution as well as an optimality system and a second-order sufficient optimality condition
were obtained for the stationary two-dimensional Stokes equations [15,16], while an optimal
controllability of a stationary two-dimensional non-Newtonian fluid in a pipeline network
is studied in [17].
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When the horizontal length scale of the physical domain is much greater than the
vertical one, the flow movement can be captured by the water height and the horizon-
tal velocity field. In that particular setting of shallow water flows, great advances have
been made in the mechanism of controlling free-surface flow parameters by local bound-
ary conditions, despite the challenges associated with the nonlinearity of the governing
equations, see [18,19] for detailed and comprehensive reviews. Global stability of the
two-dimensional water flow has been achieved in L2-norm [20] using the symmetrization
of the flux matrices, in H2-norm [21], by acting on the tangential velocity. The approach
of tracking the flow energy through the Riemann invariant variables is adopted in [22,23]
in the one-dimensional setting and is explored in [24] for the two-dimensional channel
flow. Besides the provided flexibility in practical experiments, the adding of the viscosity
influence provides regularizing effects in estimating the flow energy, see [25].

In this paper, we address the stabilization of two-dimensional viscous shallow water
around a steady-state, that is, the problem of driving the flow-state variables of viscous
incompressible fluid inside a bounded container to a desired steady state. The control law
acts on the volumetric flow vector along a portion of the boundary. Due to the challenges
inherent in dealing with the nonlinear advection, we alleviate the nonlinearity issues by
processing to the linearization around the steady state for small perturbations of the flow
state. The resulting system of linear partial differential equations is referred to as the
linearized shallow-water model, for which the existence and the uniqueness of solution
is addressed by combining some notions of compactness and an a-priori energy estimate
using the Faedo-Galerkin method. Subsequently, the stabilization of the nonlinear model
around the steady state is rearranged as the stabilization of the linearized model around
zero. In a short time, prescribed by the existence of a solution to the Cauchy problem
associated with the weak formulation in an Hilbertian basis, the control building process
explores only the estimation of the non-viscous energy of the linearized model and relies
on a continuous time-dependent stabilization rate. The global-time stabilization result is
established by cascading over a sequence of intervals.

The content of this paper is organized as follows: Section 2 introduces the equations
governing the flow of a viscous shallow water in a three-dimensional domain with a given
bathymetry. In Section 3, we detail the problem setting: we present the steady-state model,
discuss the linearization, set the notations and the assumptions of the function spaces, and
state the stabilization problem. Section 4 is devoted to the design of the small-time feedback
control law. The main result of the stabilization of the linearized shallow-water model
through the exponential decay of the energy is presented in Section 5. We conclude by
giving some perspective directions of improvement of the presented method in Section 6.

2. 2-D Viscous Shallow-Water Equations

Consider a three-dimensional domain with a non-flat bottom in which a viscous
water flows with a free-surface denoted by Ω, a bounded subset of R2, with boundary
BΩ “ Γ1 Y Γ2. The SWE (shallow-water equations) are a set of partial differential equations
derived by depth integrating the Navier–Stokes equations, see [26–29], with the assumption
that the horizontal length scale of the domain is much greater than the vertical one. In
the absence of Coriolis, frictional, and wind effects, the 2D viscous SWE with a viscosity
coefficient μ in rm2¨s´1s are given by
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$’’’’’’’’’’’’’&
’’’’’’’’’’’’’%

Bt H ` Bx
`

HV1

˘ ` BypHV2q “ 0 in Q,

Bt
`

HV1

˘ ` Bx

´
HV2

1

¯
` gHBxpH ` ηq ` By

`
HV1 V2

˘ “ μ Δ
`

HV1

˘
in Q,

BtpHV2 q ` Bx
`

HV1 V2

˘ ` By

´
HV2

2

¯
` gHBypH ` ηq “ μΔpHV2 q in Q,

`
H, V1 , V2

˘p0, ¨, ¨q “
´

H0, V0
1

, V0
2

¯
p¨, ¨q in Ω,

boundary conditions to be specified,

(1)

where Q “ p0, Tq ˆ Ω, T ą 0 denotes the duration of the study, H the height of the water
column,

`
V1 , V2

˘
the velocity vector with reference to pOx, Oyq, η the bathymetry describing

the bottom elevation, and g is the constant of the acceleration due to the gravity force.
The symbol Bt designates the time derivative while Bx and By are the space derivatives
in the x-direction and y-direction, respectively. The differential operator Δ represents the
diffusion field Δ “ Bxx ` Byy. The triplet

`
H, V1 , V2

˘
varies with pt, x, yq and forms the

solution of (1) while the bathymetry ηpx, yq is independent of the time variable because
there is no sediment transport. For the unidirectional propagation, an alternative approach
to describing the waves at the free surface of shallow water under the influence of gravity is
to consider the Korteweg–de Vries equation, see [30], where notions in differential geometry
help to establish the existence of global solutions, see [31].

The diffusion effects have been modeled in several ways in the literature. It is shown
in [32] that the formulation μHΔVi on the right hand side of (1) is not consistent with
the primitive form of the equations for the energy norm and an energetically consistent
formulation is given therein. This is deeply analyzed through the existence of weak
solutions to the SWE in [33], where, by looking for pV1 , V2q bounded in L2p0, T, H1pΩqq,
H P L8p0, T, L1pΩqq and H log H P L8p0, T, L1pΩqq to induce the dissipation, the term HVi

stands as an obstacle for the existence of solutions. That is why there is a constraint of small
data to guarantee the existence of time-local weak solutions.

For the diffusion formulation μΔpHVi q, as used here on the right hand side of (1), the
existence of weak solutions and its stability are described in [26]. In that case, the diffusion
provides regularizing effects due to an entropic inequality on the height variable H. It is
important to notice that the stability result is restricted to the models where capillarity and
friction are taken into account. For the 1-D model, a clearer result for the existence of weak
global solutions can be elaborated with much less restrictive data [33].

Using the volumetric flow variable vector Q “ pQ1 , Q2 q “ pHV1 , HV2 q, the system (1)
is rewritten for further analysis in the following conservative form:

BtH ` divQ “ 0, in Q,
BtQ ` divFpH, Qq ` gH∇pH ` ηq ´ μΔQ “ 0, in Q,

(2)

where Q “ `
Q1 , Q2

˘J (the superscript J is the transpose operator), the matrix FpH, Qq “
Q ¨ QJ{H, the differential operator ∇ is the gradient field, and div(¨) stands for the di-
vergence operator, div( f ) = ∇ ¨ f for a sufficiently regular vector function. Although the
non-conservative formulation, see [20], is known to provide a better mass conservation
of the volumetric quantity of water, it does not hold across a shock or a hydraulic jump
since velocities do not generate fundamental conservation equations. On the other hand,
the conservative formulation (2) supports front discontinuities such as shock waves at a
fluid’s interface and irregular source terms, and appeals to Riemann solver for numerical
resolution, see [22,23,34,35]. Therefore, the conservative form (2) is well-suited for our
stabilization problem, which we state in the next section.

3. Statement of the Problem

In this section, we lay out the stabilization problem from the linearization around the
steady state to the setting of finding the boundary feedback control law.
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3.1. Steady-State, Linearization

The objective of the stabilization is to bring the variables of the flow to a given steady
state that is the reference state. In practice, this consists of finding a controller (inflows,
outflows) allowing to adjust the flow parameters to keep the flow state variables near this
reference state. We denote the steady state by Ū “ ph̄, q̄1 , q̄2qJ and it is stationary and
given by:

divq̄ “ 0, in Ω,
gh̄∇`

h̄ ` η
˘ ´ 1

h̄Fph̄, q̄q ¨ ∇h̄ ` 1
h̄ p∇q̄q ¨ q̄ ´ μΔq̄ “ 0 in Ω. (3)

The hydrodynamical variable vector pH, Q1 , Q2 q is formed by the equilibrium state
ph̄, q̄1 , q̄2q and a perturbation state denoted by ph, q1 , q2 q. Hence, the linearization consists
of using

Hpt, x, yq “ h̄px, yq ` hpt, x, yq,
Q1 pt, x, yq “ q̄1px, yq ` q1 pt, x, yq,
Q2 pt, x, yq “ q̄2px, yq ` q2 pt, x, yq.

(4)

We proceed to the linearization of the system (2) by replacing the state variables H, Q1 and
Q2 by their above expressions. In addition, we consider the following assumption |h| ! h̄,ˇ̌
q1

ˇ̌ ! ˇ̌
q̄1

ˇ̌
and |q2 | ! |q̄2 | to justify keeping only the first-order terms in the perturbation

state because we neglect higher order terms. We denote by

v̄ “
¨
˝ v̄1

v̄2

˛
‚, α0 “

¨
˝ α1

0

α2
0

˛
‚, A “

¨
˝ β1

0
γ1

0

β2
0

γ2
0

˛
‚, and B “

¨
˝ α1

1
α1

2

α2
1

α2
2

˛
‚,

where the coefficients are given by:

α1
0

“ gBxh̄ ` gBxη, α2
0

“ gByh̄ ` gByη,

β1
0

“ 1
h̄

´
2Bxq̄1 ´ 2v̄1 Bxh̄ ` Byq̄2 ´ v̄2 Byh̄

¯
, β2

0
“ 1

h̄

´
Bxq̄2 ´ v̄2Bxh̄

¯
,

γ1
0

“ 1
h̄

´
Byq̄1 ´ v̄1 Byh̄

¯
, γ2

0
“ 1

h̄

´
2Byq̄2 ´ 2v̄2 Byh̄ ` Bxq̄1 ´ v̄1 Bxh̄

¯
,

α1
1

“ c2 ´ v̄2
1
, α1

2
“ ´v̄1 v̄2 ,

α2
1

“ ´v̄1 v̄2 , α2
2

“ c2 ´ v̄2
2
.

The constant c “
b

gh̄ is the wave speed at the equilibrium. The linearization gives rise to
the model governing the evolution of the residual state. This is the following linearized 2D
shallow-water system

Bth ` divq “ 0 in Q,

Btq ` pdivqqv̄ ` ∇q ¨ v̄ ´ μΔq ` B ¨ ∇h ` A ¨ q ` hα0 “ 0 in Q,

qpt “ 0q “ q0 in Ω, (5)

hpt “ 0q “ h0 in Ω.

With given initial state
`
h0, q0˘, the control problem consists of providing suitable boundary

conditions V “ pV1,V2q on a portion of the boundary, Γ1, so that the state ph, qq converges
in time towards p0, 0, 0q with the assumption that the physical domain is uniformly convex
with a Lipschitz boundary. Note that the advection, in the linearized system (5), runs
with constant flux matrices depending only on the steady state BxFpŪq and ByFpŪq. The
controlled boundary portion Γ1 is defined in the next section.
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3.2. Notations and Function Spaces

Physically, the domain Ω is a regular (it provides the required smoothness for a
Lipschitz boundary) open-bounded subset of R2 with boundary BΩ. We remind the reader
that there is no sediment movement; the bathymetry is, therefore, a time-invariant function,
see Figure 1.

Figure 1. Domain representation.

For the sake of clarity, we specify the following two statements:

(S1) The boundary portion, where the control action is applied, is given by

Γ1 “ �px, yq P BΩ : 2v̄1 nx ` v̄2 ny ă 0 and v̄1 nx ` 2v̄2 ny ă 0
(

.

The boundary portion Γ1 exists (is nonempty) and is included in the boundary portion
given by pv̄1 , v̄2 qJ ¨�n ă 0, where the vector�n “ pnx, nyqJ is the external normal unit
vector at the boundary. The uncontrolled boundary portion Γ2 “ BΩzΓ1.

(S2) The flux variation is bounded at the boundary BΩ. This follows naturally because of
the sub-critical flow regime considered here, and is stated for the sake of clarity. It
means that the limit when px, yq tends to the boundary BΩ of the term }∇q}L2pΩq is
bounded, that is,

max

#
lim

px,yqÑpxb ,ybq
}∇qpx, yq}L2pΩq for pxb, ybq P BΩ

+
is finite.

The regularity of the steady-state ph̄, v̄1 , v̄2 q depends on the nature of the bathymetry η; for
instance, h̄, v̄1 and v̄2 are constant if the bathymetry is constant (flat bottom tomography).
We, therefore, consider a sufficiently regular bathymetry η, such that h̄, v̄1 and v̄2 are
differentiable in Ω: h̄ P H1

0pΩq, v̄1 P H1pΩq and v̄2 P H1pΩq.
For Q “ p0, Tq ˆ Ω, we consider the space L2`0, T; H1pΩq˘. In the same setting, we

introduce also the space L2
´

0, T; H1
Γ1

pΩq
¯

, where the Hilbert space H1
Γ1

pΩq is given by

H1
Γ1

pΩq “
!

u P L2pΩq : ∇u P L2pΩq and u|Γ2
“ 0

)
.

The space H1pΩq and its subspace H1
Γ1

pΩq are equipped with the norm } ¨ }H1pΩq defined
for a function u by }u}2

H1pΩq “ }u}2
L2pΩq ` }∇u}2

L2pΩq. In the rest of this paper, we denote by

W the space given by W “ L2`0, T; H1pΩq˘ ˆ L2
´

0, T; H1
Γ1

pΩq
¯

ˆ L2
´

0, T; H1
Γ1

pΩq
¯

.
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3.3. The Stabilization Problem

With the conditions (4), the task of stabilizing the nonlinear state pH, Q1, Q2 q around
the steady state

`
h̄, q̄1 , q̄2

˘
is reformulated as a stabilization problem of the perturbation

state ph, qq around p0, 0, 0q. The objective is to find suitable local boundary conditions on q
that take the flow-state variables as quickly as possible to the steady-state equilibrium. We
formulate this goal as a stabilization problem in the following way

Bth ` divq “ 0 in Q,

Btq ` pdivqqv̄ ` ∇q ¨ v̄ ´ μΔq ` B ¨ ∇h ` A ¨ q ` hα0 “ 0 in Q,

qpt “ 0q “ q0 in Ω, (6)

hpt “ 0q “ h0 in Ω,

q “ V on p0, 8q ˆ Γ1 ,

q “ 0 on p0, 8q ˆ Γ2 .

Concretely, we look for V such that ph, qq from (6) converges to p0, 0, 0q. In that sequel,
we state the weak formulation associated with (6) that consists in writing (6) as a system
of ordinary differential equations depending only on the variable t by using the Green’s
formula of integration by parts: for all pϕ, φ, ψq P W, find ph, q1 , q2q in W satisfyingż

Ω
ϕBthdΩ ´

ż
Ω

q∇ϕdΩ “ ´
ż

Γ1

ϕq ¨ ndσ, (7)

ż
Ω

Btq1 φ dΩ `
ż

Ω
pdivqv̄1 qφ dΩ ´

ż
Ω

q1 divpφv̄q dΩ ` μ

ż
Ω
∇q1∇φ dΩ ´

ż
Ω

hdivpφB1¨q dΩ

`
ż

Ω
β1

0
q1 φ dΩ `

ż
Ω

γ1
0
q2 φ dΩ `

ż
Ω

hα1
0
φ dΩ

“ ´
ż

Γ1

pq1 φqv̄ ¨ n dσ ` μ

ż
Γ1

p∇q1 ¨ nqφ dσ ´
ż

Γ1

hφpB1¨ ¨ nq dσ, (8)

ż
Ω

Btq2 ψ dΩ `
ż

Ω
pdivqv̄2 qψ dΩ ´

ż
Ω

q2 divpψv̄q dΩ ` μ

ż
Ω
∇q2∇ψ dΩ ´

ż
Ω

hdivpψB2¨q dΩ

`
ż

Ω
β2

0
q1 ψ dΩ `

ż
Ω

γ2
0
q2 ψ dΩ `

ż
Ω

hα2
0
ψ dΩ

“ ´
ż

Γ1

pq2 ψqv̄ ¨ n dσ ` μ

ż
Γ1

p∇q2 .nqψ dσ ´
ż

Γ1

hψpB2¨ ¨ nq dσ. (9)

From now, the weak formulation of the stabilization problem (6) refers to (7)–(9),
which are obtained by integration by parts of (6) multiplied with the test function pϕ, φ, ψq.

4. Preliminary Result: Small-Time Control Design

The stabilization problem (6) is constrained by the existence of a solution. In this
section, we examine the existence of a solution to the dynamical system resulting from the
representation of the weak formulation in an Hilbertian basis and we address the short-time
stabilization problem.

Lemma 1 (Existence of small-time weak solutions). There exists a time T1 such that the
ordinary differential Equations (7)–(9) with the Cauchy condition admit a solution on the time
interval r0, T1s.

The above lemma addresses the existence of local weak solutions. The proof is elabo-
rated in two steps: the first one consists of writing the weak form as a system of differential
equations using a Hilbertian basis of finite dimensions of W. The second step deals with
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the existence of a solution of the resulting system of differential equations thanks to the
Cauchy–Peano theorem, see [36,37].

Proof. The existence of a local weak solution is elaborated using the Cauchy–Peano the-
orem. Let taiuiě1 (respectively, by teiuiě1) denote an Hilbertian basis of the space H1pΩq
(respectively, H1

Γ1
pΩq). We consider a positive integer n such that the finite dimensional

space spantai : 1 ď i ď nu contains the term h0
n of a sequence of functions ph0

nqně1 that
converges toward the initial condition h0 (respectively, spantei : 1 ď i ď nu) containing the
terms q0

1n
and q0

2n
sequences of functions pq0

1n
qně1 and pq0

2n
qně1 converging, respectively, to

q0
1

and q0
2
). For a sufficiently large n, the projection of h, q1 and q2 allows us to write

h «
nÿ

i“1

αi ptqai px, yq, q1 «
nÿ

i“1

βi ptqei px, yq, and q2 «
nÿ

i“1

γi ptqei px, yq,

where pαi ptqq1ďiďn, pβi ptqq1ďiďn and pγi ptqq1ďiďn are, respectively, the unknown coordi-
nates of h, q1 and q2 at time t. Replacing test functions pϕ, φ, ψq by the paj , ej , ej q for the jth

dimension, the weak formulation becomes:

nÿ
i“1

Btαi ptq
ż

Ω
ai ej dΩ ´

nÿ
i“1

βi ptq
ż

Ω
ai Bxej dΩ ´

nÿ
i“1

γi ptq
ż

Ω
gai Byej dΩ “ ´

ż
Γ1

ejV ¨ n dσ,

nÿ
i“1

Btβi ptq
ż

Ω
ei ej dΩ `

nÿ
i“1

βi ptq
ż

Ω
v̄1 ej Bxei dΩ `

nÿ
i“1

γi ptq
ż

Ω
v̄1 ej Byei dΩ

´
nÿ

i“1

βi ptq
ż

Ω
ei divpej v̄qdΩ `

nÿ
i“1

βi ptqμ

ż
Ω
∇ei∇ej dΩ

´
nÿ

i“1

αi ptq
ż

Ω
ai divpej B1¨qdΩ `

nÿ
i“1

βi ptq
ż

Ω
A11 ei ej dΩ

`
nÿ

i“1

γi ptq
ż

Ω
A12 ei ej dΩ `

nÿ
i“1

αi ptq
ż

Ω
α1

0
ai ej dΩ

“ ´
ż

Γ1

pV1 ej qv̄ ¨ ndσ ` μ
nÿ

i“1

βi ptq
ż

Γ1

p∇ei ¨ nqej dσ ´
ż

Γ1

hej

`
B1¨ ¨ n

˘
dσ,

nÿ
i“1

Btγi ptq
ż

Ω
ei ej dΩ `

nÿ
i“1

βi ptq
ż

Ω
v̄2 ej Bxei dΩ `

nÿ
i“1

γi ptq
ż

Ω
v̄2 ej Byei dΩ

´
nÿ

i“1

γi ptq
ż

Ω
ei divpej v̄qdΩ `

nÿ
i“1

γi ptqμ

ż
Ω
∇ei∇ej dΩ

´
nÿ

i“1

αi ptq
ż

Ω
ai divpej B2¨qdΩ `

nÿ
i“1

βi ptq
ż

Ω
A21 ei ej dΩ

`
nÿ

i“1

γi ptq
ż

Ω
A22 ei ej dΩ `

nÿ
i“1

αi ptq
ż

Ω
α2

0ai ej dΩ

“ ´
ż

Γ1

pV2 ej qv̄ ¨ ndσ ` μ
nÿ

i“1

γi ptq
ż

Γ1

p∇ei ¨ nqej dσ ´
ż

Γ1

hej pB2¨ ¨ nqdσ.

Let us introduce the matrices Mk for k “ 1, ¨ ¨ ¨ , 11 as well as the vectors ml for
l “ 1, ¨ ¨ ¨ , 3 as follows
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M1ji “
ż

Ω
ai ej dΩ, M2ji “

ż
Ω

ai Bxej dΩ, M3ji “
ż

Ω
ai Byej dΩ

M4ji “
ż

Ω
ei ej dΩ, M5ji “

ż
Ω

v̄1 ej Bxei dΩ ´
ż

Ω
ei divpej v̄qdΩ ` μ

ż
Ω
∇ei∇ej dΩ `

ż
Ω

A11 ei ej dΩ,

M6ji “
ż

Ω
v̄1 ej Byei dΩ `

ż
Ω

A12 ei ej dΩ, M7ji “ ´
ż

Ω
ei divpej B1¨qdΩ `

ż
Ω

α1
0
ei ej dΩ,

M8ji “
ż

Ω
v̄2 ej Bxei dΩ `

ż
Ω

A21 ei ej dΩ,

M9ji “
ż

Ω
v̄2 ej Byei dΩ ´

ż
Ω

ei divpej v̄qdΩ ` μ

ż
Ω
∇ei∇ej dΩ `

ż
Ω

A22 ei ej dΩ

M10ji “ ´
ż

Ω
ei divpej B2¨qdΩ `

ż
Ω

α2
0
ei ej dΩ, M11ji “ μ

ż
Γ1

p∇ei ¨ nqej dσ,

and

m1j “ ´
ż

Γ1

ej nxdσ, m2j “ ´
ż

Γ1

ej nydσ, m3j “ ´
ż

Γ1

ej v̄ ¨ ndσ,

m4j “ ´
ż

Γ1

hej

`
B1¨ ¨ n

˘
dσ m5j “ ´

ż
Γ1

hej pB2¨ ¨ nqdσ.

We now count the n components; this yields the following system of matrix equations

$’’’’&
’’’’%

M1Btaptq ´ M2bptq ´ M3cptq “ V1 m1 ` V2 m2,

M4Btbptq ` M5bptq ` M6cptq ` M7aptq “ V1 m3 ` M11bptq ` m4,

M4Btcptq ` M8bptq ` M9cptq ` M10aptq “ V2 m3 ` M11cptq ` m5,

where the vectors a, b and c are given by the coordinates of the state variables h, q1 and
q2 , respectively, i.e., a “ pα1 , ¨ ¨ ¨ , αn q, b “ pβ1 , ¨ ¨ ¨ , βn q, and c “ pγ1 , ¨ ¨ ¨ , γn q. To introduce
the matrices:

P1 “
¨
˝ M1 0 0

0 M4 0
0 0 M4

˛
‚, P2 “

¨
˝ 0 M2 M3

M7 M5 M6
M10 M8 M9

˛
‚, and P3 “

¨
˝ 0 0 0

0 M11 0
0 0 M11

˛
‚,

and the vectors

y “
¨
˝ a

b
c

˛
‚, p1 “

¨
˝ m1

m3
0

˛
‚, p2 “

¨
˝ m2

0
m3

˛
‚ and p3 “

¨
˝ 0

m4
m5

˛
‚,

we write the weak form of Equations (7)–(9) together as an ordinary differential equation,
with the initial condition y0 associated with ph0, q0q, in the form

"
y1ptq “ f pt, yq,
ypt “ 0q “ y0,

(10)

where

f pt, yptqq “ ´P´1
1 P2yptq ` P´1

1 P3yptq ` V1 ptqP´1
1 p1 ` V2 ptqP´1

1 p2 ` P´1
1 p3ptq.
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It remains now to prove the continuity of the functional f . For that, we consider the matrix
norm }¨}2 given by:

}M}2 “ sup
ζ

}Mζ}2
}ζ}2

, where }ζ}2 “
gffe nÿ

i

|ζ i|2.

We have

} f }2 “
›››´P´1

1 P2yptq ` P´1
1 P3yptq ` V1 ptqP´1

1 p1 ` V2 ptqP´1
1 p2 ` P´1

1 p3ptq
›››

2

ď
›››´P´1

1 P2yptq
›››

2
`

›››P´1
1 P3yptq

›››
2

`
›››V1 ptqP´1

1 p1

›››
2

`
›››V2 ptqP´1

1 p2

›››
2

`
›››P´1

1 p3ptq
›››

2
.

Yet, we know that›››´P´1
1 P2y

›››
2

“
›››´P´1

1 P2py ´ y0 ` y0q
›››

2

ď
›››´P´1

1 P2py ´ y0q
›››

2
`

›››´P´1
1 P2y0

›››
2

ď
›››´P´1

1 P2

›››
2

`}y ´ y0}2 ` }y0}2
˘
.

Similarly, we bound the quantity
›››´P´1

1 P3y
›››

2
. The terms

›››V1 ptqP´1
1 p1

›››
2

and
›››V2ptqP´1

1 p2

›››
2

contain the control actions pV1 ,V2 q; their majoration follows from the statement (S2). As
the perturbation state for the height is supposed to be small compared to h̄ and given
the definition of the space W, the term

›››P´1
1 p3ptq

›››
2

is bounded. Therefore, there exists a
constant K1 such that

} f }2 ď K1 . (11)

It is clear that }y ´ y0}2 ď Ep0q because the control law acts to decrease the initial total
energy Ep0q. Denoting T1 “ Ep0q{K1 , it yields that f is bounded according to (11). Moreover,
f is continuous because it is a composition of a linear function followed by a translation.
Therefore, the Cauchy–Peano theorem ensures the existence of solutions to (10) in the time
interval r0, T1 s.

The proof below is enough for the infinite dimensional setting in Lemma 1 because
for the drift function f satisfying the Lipschitz condition in the variable y, the Cauchy–
Picard theorem, see [38], transmits the result from the finite dimensional case to an infinite
dimensional case. Yet, the drift f fulfills the Lipschitz condition because of (11) and its
affine structure.

4.1. Energy Estimate

Here, we define and estimate the energy of the perturbation state at a time t P r0, T1s.

Definition 1 (Energy). For t P r0, T1 s, we consider the energy defined as :

Eptq “
››››
b

gh̄h
››››

2

L2pΩq
` ››q1

››2
L2pΩq ` }q2 }2

L2pΩq ` μ

ż t

0
}∇qpτq}2

L2pΩqdτ (12)

“ E1ptq ` μ

ż t

0
}∇qpτq}2

L2pΩqdτ,

where E1ptq is the non-viscous energy and T1 is the time bound given in Lemma 1.
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To establish an estimate on the energy, we replace the test functions pϕ, φ, ψq by pgh̄h, qq
in the variational form (7)–(9), to obtain

1
2

ż
Ω

gh̄Bth2 dΩ ´
ż

Ω
gq ¨ ∇ph̄hq dΩ “ ´

ż
Γ1

gh̄hq ¨ n dσ,

1
2

ż
Ω

Bt
`
q2

1
` q2

2

˘
dΩ ` μ

ż
Ω

}∇q}2
2 dΩ `

ż
Ω

pdivqqv̄ ¨ q dΩ ´
ż

Ω
q1divpq1 v̄q dΩ

´
ż

Ω
q2 divpq2 v̄q dΩ ´

ż
Ω

hdivpB ¨ qq dΩ `
ż

Ω
pA ¨ qq ¨ q dΩ `

ż
Ω

hα0 ¨ q dΩ

“ ´
ż

Γ1

pq2
1

` q2
2
qv̄ ¨ n dσ ` μ

ż
Γ1

pq1∇q1 ` q2∇q2q ¨ n dσ ´
ż

Γ1

hpB ¨ qq ¨ n dσ.

Adding the two equalities yields

1
2

BtE1ptq ` μ

ż
Ω

}∇q}2
2 dΩ “ I1 ` I2 ` I3 ` I4 ´

ż
Γ1

gh̄hq ¨ n dσ ´
ż

Γ1

pq2
1

` q2
2
qv̄ ¨ n dσ

`μ

ż
Γ1

pq1∇q1 ` q2∇q2 q ¨ n dσ ´
ż

Γ1

hpB ¨ qq ¨ n dσ,

where the quantities Ii are given by

I1 “
ż

Ω
gq ¨ ∇ph̄hq dΩ `

ż
Ω

hdivpB ¨ qq dΩ, I2 “ ´
ż

Ω
divqv̄ ¨ q dΩ,

I3 “
ż

Ω
q1 divpq1 v̄q dΩ `

ż
Ω

q2 divpq2 v̄q dΩ, I4 “ ´
ż

Ω
pA ¨ qq ¨ q dΩ ´

ż
Ω

hα0 ¨ q dΩ.

We now investigate how to isolate the nonlinear terms in each Ii with the purpose
of having no derivative terms on the boundary. For that, we apply the Green formula
in an adaptive manner. Afterward, we take the maximum bound over the steady-state
variables, which allows us to obtain a bound estimate for each quantity. For the quantity I1 ,
it comes that

I1 ď max
Ω

´ g
››∇h̄

››?
h̄

¯ ż
Ω

a
h̄}hq}dΩ ` max

Ω

´ v̄2
1?
h̄

¯ ż
Ω

a
h̄
ˇ̌
hBxq1

ˇ̌
dΩ

` max
Ω

´ ˇ̌Bxv̄2
1

ˇ̌
?

h̄

¯ ż
Ω

a
h̄
ˇ̌
hq1

ˇ̌
dΩ ` max

Ω

´ v̄2
2?
h̄

¯ ż
Ω

a
h̄
ˇ̌
hByq2

ˇ̌
dΩ

` max
Ω

´ ˇ̌Byv̄2
2

ˇ̌
?

h̄

¯ ż
Ω

a
h̄|hq2 |dΩ ` max

Ω

´ ˇ̌
v̄1 v̄2

ˇ̌
?

h̄

¯ ż
Ω

a
h̄|hBxq2 |dΩ

` max
Ω

´ ˇ̌Bxpv̄1 v̄2 qˇ̌?
h̄

¯ ż
Ω

a
h̄|hq2 |dΩ ` max

Ω

´ ˇ̌
v̄1 v̄2

ˇ̌
?

h̄

¯ ż
Ω

a
h̄
ˇ̌
hByq1

ˇ̌
dΩ

` max
Ω

´ ˇ̌Bypv̄1 v̄2qˇ̌?
h̄

¯ ż
Ω

a
h̄
ˇ̌
hq1

ˇ̌
dΩ `

ż
BΩ

gh̄hq ¨ n dσ. (13)

Similarly, we bound the quantities I2 , I3 , and I4 as follows

I2 ď 1
2

max
Ω

`ˇ̌Bxv̄1

ˇ̌˘ ż
Ω

q2
1
dΩ ` 1

2
max

Ω

`ˇ̌Byv̄2

ˇ̌˘ ż
Ω

q2
2
dΩ ` max

Ω

`ˇ̌
v̄1

ˇ̌˘ ż
Ω

ˇ̌
q1 Byq2

ˇ̌
dΩ

` max
Ω

`|v̄2 |˘ ż
Ω

ˇ̌
q2Bxq1

ˇ̌
dΩ ´

ż
BΩ

v̄1

2
q2

1
nxdσ ´

ż
BΩ

v̄2

2
q2

2
nydσ, (14)
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I3 ď 1
2

max
Ω

`ˇ̌Bxv̄1

ˇ̌˘ ż
Ω

q2
1
dΩ ` max

Ω
p|Bxv̄2 |q

ż
Ω

ˇ̌
q1 q2

ˇ̌
dΩ ` max

Ω
p|v̄2 |q

ż
Ω

ˇ̌
q1Bxq2

ˇ̌
dΩ

` max
Ω

`ˇ̌Byv̄2

ˇ̌˘ ż
Ω

ˇ̌
q1 q2

ˇ̌
dΩ ` max

Ω

`ˇ̌
v̄1

ˇ̌˘ ż
Ω

ˇ̌
q2 Byq1

ˇ̌
dΩ ` 1

2
max

Ω

`ˇ̌Byv̄2

ˇ̌˘ ż
Ω

q2
2
dΩ

´
ż

BΩ

v̄1

2
q2

1
nxdσ ´

ż
BΩ

v̄2

2
q2

2
nydσ, (15)

and

I4 ď max
Ω

´ˇ̌̌
β1

0

ˇ̌̌¯ ż
Ω

q2
1
dΩ ` max

Ω

´ˇ̌̌
γ1

0
` β2

0

ˇ̌̌¯ ż
Ω

ˇ̌
q1 q2

ˇ̌
dΩ ` max

Ω

´ˇ̌̌
γ2

0

ˇ̌̌¯ ż
Ω

q2
2
dΩ

` max
Ω

˜ˇ̌
α1

0

ˇ̌
?

h̄

¸ż
Ω

a
h̄
ˇ̌
hq1

ˇ̌
dΩ ` max

Ω

˜ˇ̌
α2

0

ˇ̌
?

h̄

¸ż
Ω

a
h̄|hq2 |dΩ. (16)

We now apply the Young inequality to separate the nonlinear terms (in the perturbation
state) for the upper bound of each of the inequalities (13)–(16). That implies the existence
of εi for pi “ 1, ¨ ¨ ¨ , 18q, such that

1
2

BtE1ptq ` μ

ż
Ω

}∇q}2
2dΩ ď Tbord ptq ` Ch

ż
Ω

h̄h2dΩ ` Cq1

ż
Ω

q2
1
dΩ ` Cq2

ż
Ω

q2
2
dΩ

`
´

ε2 max
Ω

` v̄2
1?
h̄

˘ ` ε11 max
Ω

p|v̄2|q
¯ ż

Ω

`Bxq1

˘2dΩ

`
´

ε8 max
Ω

` ˇ̌v̄1 v̄2

ˇ̌
?

h̄

˘ ` ε15 max
Ω

`ˇ̌
v̄1

ˇ̌˘¯ ż
Ω

`Byq1

˘2dΩ

`
´

ε6 max
Ω

` ˇ̌v̄1 v̄2

ˇ̌
?

h̄

˘ ` ε13 max
Ω

p|v̄2 |q
¯ ż

Ω

`Bxq2

˘2dΩ

`
´

ε4 max
Ω

` v̄2
2?
h̄

˘ ` ε10 max
Ω

pˇ̌v̄1

ˇ̌q¯ ż
Ω

`Byq2

˘2dΩ,

where

Ch “ 1
ε1

max
Ω

´ g
››∇h̄

››?
h̄

¯
` 1

ε2
max

Ω

´ v̄2
1?
h̄

¯
` 1

ε3
max

Ω

´ ˇ̌Bxv̄2
1

ˇ̌
?

h̄

¯
` 1

ε4
max

Ω

´ v̄2
2?
h̄

¯
;

` 1
ε5

max
Ω

´ ˇ̌Byv̄2
2

ˇ̌
?

h̄

¯
` 1

ε6
max

Ω

´ ˇ̌
v̄1 v̄2

ˇ̌
?

h̄

¯
` 1

ε7
max

Ω

´ ˇ̌Bxpv̄1 v̄2qˇ̌?
h̄

¯
` 1

ε8
max

Ω

´ ˇ̌
v̄1 v̄2

ˇ̌
?

h̄

¯

` 1
ε9

max
Ω

´ ˇ̌Bypv̄1 v̄2qˇ̌?
h̄

¯
` 1

ε17
max

Ω

˜ˇ̌
α1

0

ˇ̌
?

h̄

¸
` 1

ε18
max

Ω

˜ˇ̌
α2

0

ˇ̌
?

h̄

¸
,

Cq1 “ ε1 max
Ω

´ g
››∇h̄

››?
h̄

¯
` ε3 max

Ω

´ ˇ̌Bxv̄2
1

ˇ̌
?

h̄

¯
` ε9 max

Ω

´ ˇ̌Bypv̄1 v̄2 qˇ̌?
h̄

¯
` max

Ω

´ˇ̌Bxv̄1

ˇ̌¯

` 1
ε10

max
Ω

pˇ̌v̄1

ˇ̌q ` 1
ε12

max
Ω

p|Bxv̄2 |q ` 1
ε13

max
Ω

p|v̄2 |q ` 1
ε14

max
Ω

`ˇ̌Byv̄1

ˇ̌˘ ` max
Ω

´
β1

0

¯

` 1
ε16

max
Ω

´ˇ̌̌
γ1

0
` β2

0

ˇ̌̌¯
` ε17 max

Ω

˜ˇ̌
α1

0

ˇ̌
?

h̄

¸
,
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Cq2 “ ε1 max
Ω

´ g
››∇h̄

››?
h̄

¯
` ε5 max

Ω

´ ˇ̌Byv̄2
2

ˇ̌
?

h̄

¯
` ε7 max

Ω

´ ˇ̌Bxpv̄1 v̄2 qˇ̌?
h̄

¯
` max

Ω

´ˇ̌Byv̄2

ˇ̌¯

` 1
ε11

max
Ω

p|v̄2 |q ` ε12 max
Ω

p|Bxv̄2 |q ` ε14 max
Ω

`ˇ̌Byv̄1

ˇ̌˘ ` 1
ε15

max
Ω

`ˇ̌
v̄1

ˇ̌˘ ` max
Ω

´ˇ̌̌
γ2

0

ˇ̌̌¯

`ε16 max
Ω

´ˇ̌̌
γ1

0
` β2

0

ˇ̌̌¯
` ε18 max

Ω

˜ˇ̌
α2

0

ˇ̌
?

h̄

¸
,

and

Tbord ptq “ ´
ż

Γ1

´
v̄1 q2

1
nx ` v̄2 q2

2
ny

¯
dσ ´

ż
Γ1

pq2
1

` q2
2
qv̄ ¨ n dσ

`μ

ż
Γ1

pq1∇q1 ` q2∇q2 q ¨ n dσ ´
ż

Γ1

hpB ¨ qq ¨ n dσ.

Note that Ch , Cq1 and Cq2 are constant while Tbord is time variable. Let us denote

Cm “ max
´Ch

g
, Cq1 , Cq2

¯

and

Cv “ max

˜
ε2 max

Ω

` v̄2
1?
h̄

˘ ` ε11 max
Ω

p|v̄2 |q, ε8 max
Ω

` ˇ̌v̄1 v̄2

ˇ̌
?

h̄

˘ ` 1
ε15

max
Ω

`ˇ̌
v̄1

ˇ̌˘
,

ε6 max
Ω

` ˇ̌v̄1 v̄2

ˇ̌
?

h̄

˘ ` ε13 max
Ω

p|v̄2 |q, ε4 max
Ω

` v̄2
2?
h̄

˘ ` ε10 max
Ω

pˇ̌v̄1

ˇ̌q
¸

.

Since the εi can be chosen arbitrarily, we then take ε2, ε4, ε6, ε8, ε10, ε11, ε13 and ε15 such
that μ

2 ě Cv. Therefore, it comes that

BtE1ptq ` μ

2

ż
Ω

}∇q}2
2dΩ ď Tbord ptq ` CmE1ptq

BtE1ptq ` μ

2

ż
Ω

}∇q}2
2dΩ ď Tbord ptq ` CmE1ptq ` Cm

μ

2

ż t

0

ż
Ω

}∇q}2
2dΩdt.

Finally, with (12), the energy E of the stabilization problem (6) satisfies

BtEptq ´ CmEptq ď Tbord ptq. (17)

4.2. Short-Time Control Building Process

In this section, we address the existence and the design of the boundary feedback
control law in the time interval r0, T1s, which stabilizes the perturbation state in the sense
that the energy decreases.

Lemma 2. Let r be a continuous time function for which the integral diverges when t tends to `8;
there exists a nonlinear control law V1 “ pu11 , u12q to set as the boundary condition on Γ1 such
that, for all t P r0, T1s, the energy E satisfies the following estimate:

E1ptq `
ż t

0
}∇q}2

L2pΩqds ď E1p0q exp
´ ż t

0
´rpsqds

¯
@t P r0, T1s. (18)

This lemma is an intermediate result that proves the existence of a boundary control
law in the time interval r0, T1s.
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Proof. We have shown the existence of a solution in the time interval r0, T1s in Lemma 1.
Let us now consider the energy estimate (17) with Tbord ptq expressed in terms of the control
commands

Tbord ptq “ a1u2
11

ptq ` b1phqu11 ptq ` a2u2
21

ptq ` b2phqu21ptq,

where

a1 “ ´
ż

Γ1

`
2v̄1 nx ` v̄2 ny

˘
dσ, a2 “ ´

ż
Γ1

`
v̄1 nx ` 2v̄2 ny

˘
dσ,

b1phq “ ´
ż

Γ1

´
pc2 ´ v̄2

1
qnx ´ v̄1 v̄2 ny

¯
h dσ ` μ

ż
Γ1

∇q1 ¨ n dσ,

b2phq “ ´
ż

Γ1

´
pc2 ´ v̄2

1
qny ´ v̄1 v̄2 nx

¯
h dσ ` μ

ż
Γ1

∇q2 ¨ n dσ.

The energy estimate can then be written in terms of the control command as follows

1
2

BtEptq ´ CmEptq ď a1u2
11

ptq ` b1phqu11ptq ` a2u2
21

ptq ` b2phqu21 ptq.

Now we introduce the positive and continuous function r which stands for the stabilization
rate. We also denote by F0 the positive function given by

F0 ptq “ Ep0q exp
´

´
ż t

0

rpsqds
¯

such that

a1u2
11

ptq ` b1phqu11 ptq ` a2u2
21

ptq ` b2phqu21 ptq ď 1
2

BF0

Bt
´ Cm F0 . (19)

Furthermore, we denote by G0 “ 1
2 BtF0 ´ Cm F0 , and we set the following two inequalities

a1u2
11

ptq ` b1phqu11 ptq ´ 1
2

G0 ď 0 and a2u2
21

ptq ` b2phqu21 ptq ´ 1
2

G0 ď 0,

so that the inequality (19) holds. The solutions of the associated second-order polynomials
are, respectively,

ξ11 “
´b1 ´

b
b2

1
` 2a1 G0

2a1

, ξ12 “
´b1 `

b
b2

1
` 2a1 G0

2a1

,

ξ21 “
´b2 ´

b
b2

2 ` 2a2G0

2a2
, ξ22 “

´b2 `
b

b2
2 ` 2a2G0

2a2
,

because a1 and a2 are negative by construction (see statement (S1)). The coefficients b1 and
b2 depend on the perturbation height h and on the limit, towards the boundary, of the L2

norm of the gradient of the perturbation flow; therefore, to guarantee the boundedness of
the control command, we define ui1 (for i=1;2) using the following combination

ui1 “ max
`´signpbi q, 0

˘
ξi1 ` max

`
signpbi q, 0

˘
ξi2 . (20)
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The function signpxq returns the sign of the real x. The control laws defined at (20) guarantee
that the boundary condition V1 “ pu11 , u21 q is bounded and decreases the energy of the
perturbation system thanks to

E1ptq `
ż t

0
}∇q}2

L2pΩqds ď E1p0q exp
´ ż t

0
´rpsqds

¯
@t P r0, T1 s.

It is important to note that the control V1 does not act on the system after the energy
reaches EpT1q.

5. Stabilization Result

In this section, we establish the existence and uniqueness of the weak solution of the
linearized system (6) equipped with the feedback control law, which is devised by cascade
and achieves an exponential convergence of the state variables ph, qq towards p0, 0, 0q. We
start by the existence of a sequence of intervals by replicating Lemma 1. For that, we adapt
the energy definition for all time t ą 0.

Definition 2 (Energy). We consider the following definition of the energy:

Eptq “
››››
b

gh̄h
››››

2

L2pΩq
` ››q1

››2
L2pΩq ` }q2 }2

L2pΩq ` μ

ż t

Tk

}∇q}2
L2pΩqdσ (21)

“ E1ptq ` μ

ż t

Tk

}∇q}2
L2pΩqdσ,

where E1ptq is the non-viscous energy and Tk is the lower bound of the time interval rTk , Tk`1 s,
which is defined in the next lemma.

Lemma 3. There exists a sequence of intervals
`“

Tk , Tk`1

‰˘
kě0 such that

1. In each interval
“
Tk , Tk`1

‰
, there exists a stabilizing boundary control command V k

2. For all t P “
Tk , Tk`1

‰
, the energy satisfies

Eptq ď E1p0qexp

˜
´

ż Tk`1

0
rpsqds

¸
. (22)

Proof. for the sake of clarity, we proceed by induction to prove Lemma 3.

• Verification for k “ 0:
Let T0 “ 0; thanks to Lemma 1, it exists T1 such that the differential Equation (10)
admits solutions in the time interval

“
T0 , T1

‰
. Lemma 2 gives us the existence of a

control command V 1 satisfying (22). The Lemma 3 is then true for k “ 0.
• Suppose that the statement is true till rank k, and let us show it is true at rank k ` 1:

The induction hypothesis gives the existence of Tk. We now consider the control
problem (6) with initial data

`
hpTk q, qpTk q˘. Similarly to the analysis performed in

Section 4, it yields the following differential equation
"

y1ptq “ fk pt, yq
ypt “ Tk q “ yk .

(23)
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Applying Lemma 1, it comes that
›› fk

››
2 ď Kk`1 and Tk`1 “ EpTk q{Kk ` Tk such that (23)

has a solution in
“
Tk , Tk`1

‰
. Thanks to Lemma 2, it exists a stabilizing control command

V k`1 , and for all t P “
Tk , Tk`1

‰
, we have

Eptq ď E1pTkq exp
ˆ

´
ż t

Tk

rpsqds
˙

ď EpTkq exp
ˆ

´
ż t

Tk

rpsqds
˙

.

Since Tk P “
Tk´1 , Tk

‰
, we have

EpTk q ď E1pTk´1 q exp

˜
´

ż Tk

Tk´1

rpsqds

¸
,

which implies that

Eptq ď E1pTk´1q exp

˜
´

ż Tk

Tk´1

rpsqds

¸
exp

ˆ
´

ż t

Tk

rpsqds
˙

ď E1pTk´1q exp

˜
´

ż t

Tk´1

rpsqds

¸

...

ď E1p0q exp
ˆ

´
ż t

0
rpsqds

˙
.

The statement is then true at rank k ` 1, and that proves the Lemma 3.

We have shown the existence of the sequence of interval
`“

Tk , Tk`1

‰˘
kě1

and the exis-

tence of a boundary control command V k in each interval
“
Tk , Tk`1

‰
. We can now design

the feedback control law for all t ě 0.

Definition 3 (Control law). The boundary control law V for the stabilization problem (6) is
given by

Vptq “
8ÿ

k“0

V kptq1rTk ,Tk`1 sptq, (24)

where the local control command V k “ pu1k , u2k q is defined in rTk , Tk`1s by

uik “ maxp´signpbiq, 0qξk
i1 ` maxpsignpbiq, 0qξk

i2 for i “ 1; 2.

The quantities ξk
i1

and ξk
i2

are solutions of second-order polynomials and are written as

ξk
11

“
´b1 ´

b
b2

1
` 2a1 Gk

2a1

, ξk
12

“
´b1 `

b
b2

1
` 2a1 Gk

2a1

,

ξk
21

“
´b2 ´

b
b2

2
` 2a2 Gk

2a2

, ξk
22

“
´b2 `

b
b2

2
` 2a2 Gk

2a2

,
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where the coefficients ai and bi are given in Section 4.2 where the function Gk is defined in the time
interval rTk , Tk`1 s as follows:

Gk ptq “ 1
2

BtFk ptq ´ Cm Fk ptq, with Fk ptq “ EpTk q exp
´

´
ż t

Tk

rpsqds
¯

. (25)

The time function r represents the stabilization rate, and Cm is a constant depending on the
steady state.

We can now state our main result.

Theorem 1 (main result). Let r be a continuous time function for which the integral over the
interval r0, ts diverges when t tends to `8. Then, there exists a sequence of intervals

`rTk , Tk`1 s˘kě0
such that `8ď

k“0

sTk , Tk`1 s “s0, `8r,

and the stabilization problem (6) with the boundary conditions (24) admits a unique solution ph, qq
for which the energy E decreases according to the following estimate:

Eptq ď E1p0q exp
´ ż t

0
´rpsqds

¯
. (26)

The continuity of the functions x ÞÑ ?
x and x ÞÑ x2 and of the hydrodynamic water

level h imply that the control law V built by concatenating the stabilizing control commands
V k is continuous. It is also worth noticing that the control vanishes when the energy reaches
zero, and that the sequence of the time intervals is well-defined, i.e.,

`8ď
k“0

sTk , Tk`1 s “s0, `8r.

Proof. The proof is performed using the Faedo–Galerkin method. As outlined at the begin-
ning of the proof of Lemma 1, we consider again taiu1ďiďn (respectively, by teiu1ďiďn) by a fi-
nite Hilbertian basis of the space H1pΩq (respectively H1

Γ1
pΩq). Let Wn “ Vect

�
a1 , ¨ ¨ ¨ , an

(ˆ
Vect

�
e1 , ¨ ¨ ¨ , en

( ˆ Vect
�

e1 , ¨ ¨ ¨ , en

(
be the vector space of finite dimension generated by�

ai

( ˆ �
e1i

( ˆ �
ei

(
. Let ph0

n, q0
nq be a sequence in WnpΩq converging to ph0, q0q in L2pΩq.

The weak form associated with the problem (6) in WnpΩq is given by:

ż
Ω

ϕBthn dΩ ´
ż

Ω
qn∇ϕdΩ “ ´

ż
Γ1

ϕqn ¨ ndσ, (27)
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ż
Ω

Btq1n
φ dΩ `

ż
Ω

pdivqn v̄1qφ dΩ ´
ż

Ω
q1n

divpφv̄q dΩ ` μ

ż
Ω
∇q1n

∇φ dΩ

´
ż

Ω
hn divpφB1¨q dΩ `

ż
Ω

β1
0
q1n

φ dΩ `
ż

Ω
γ1

0
q2n

φ dΩ `
ż

Ω
hn α1

0
φ dΩ

“ ´
ż

Γ1

pq1n
φqv̄ ¨ n dσ ` μ

ż
Γ1

p∇q1n
¨ nqφ dσ ´

ż
Γ1

hn φpB1¨ ¨ nq dσ, (28)

ż
Ω

Btq2n
ψ dΩ `

ż
Ω

pdivqn v̄2qψ dΩ ´
ż

Ω
q2n

divpψv̄q dΩ ` μ

ż
Ω
∇q2n

∇ψ dΩ

´
ż

Ω
hn divpψB2¨q dΩ `

ż
Ω

β2
0
q1n

ψ dΩ `
ż

Ω
γ2

0
q2n

ψ dΩ `
ż

Ω
hn α2

0
ψ dΩ

“ ´
ż

Γ1

pq2n
ψqv̄ ¨ n dσ ` μ

ż
Γ1

p∇q2n
¨ nqψ dσ ´

ż
Γ1

hn ψpB2¨ ¨ nq dσ. (29)

Referring to the energy estimate, it comes that

E1
n ptq ď En ptq ď E1

n p0q exp
´ ż t

0
´rpsqds

¯
@t P r0, Ts, (30)

with

E1
n ptq “

››››
b

gh̄hn

››››
2

L2pΩq
` ››q1n

››2
L2pΩq ` }q2n }2

L2pΩq.

For T ě 0 to be sufficiently large, and a steady state Ū sufficiently regular, the integration
over the time interval r0, Ts of (30) gives us the existence of a positive constant C ě 0,
such that

}hn }2
L2p0,T,Ωq ` }qn }2

L2p0,T,Ωq ď C.

This latter inequality implies that phn , qn q is bounded in L2`0, T, L2pΩq3˘, which is a Hilbert
space. Therefore, we can extract a sub-sequence, denoted also by phn , qn q, converging
weakly to the limit ph, qq in L2`0, T, L2pΩq3˘. Let us now introduce the following spaces
H1

T , StpTq and SlpTq

H1
T “

!
g P H1p0, Tq, such that gpTq “ 0

)
,

StpTq “
#

ϕ : ϕpt, x, yq “ g1ptq
n0ÿ

i“1

aieipx, yq, such that g1 P H1
T and ai P R

+
,

SlpTq “
!

f P H1
T ˆ H1pΩq, such that f pT, x, yq “ 0

)
.

For the mass equation: the integration over the time interval r0, Ts of (27) results in,

´
ż T

0
phn , BϕqΩdt ` phn p0, x, yq, ϕp0, x, yqqΩ ´ phn pT, x, yq, ϕpT, x, yqqΩ

´
ż T

0
pqn ,∇ϕqΩdt “ ´

ż T

0

ż
BΩ

ϕqn ¨ ndσdt, (31)
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where ϕ P H1pΩq. Taking ϕ P StpTq ˆ H1pΩq, that is ϕ “ g1ptqřn0
i“1 aieipx, yq “ a1e1px, yq,

the equality (31) becomes

´
ż T

0
phn , e1qΩBtg1ptqdt ´ phn p0, x, yq, e1p0, x, yqqΩg1p0q ´

ż T

0
pqk,∇e1qΩg1ptqdt

“ ´
ż T

0

ˆ
g1ptqv1ptq

ż
Γ1

e1nxdσ

˙
dt ´

ż T

0

ˆ
g1ptqv2ptq

ż
Γ1

e1nydσ

˙
dt,

“ ´
ż

Γ1

e1nxdσ

ż T

0
g1ptqv1ptqdt ´

ż
Γ1

e1nydσ

ż T

0
g1ptqv2ptqdt.

Since StpTq is dense in SlpTq, taking the limit when n tends to `8, we obtain by compactness:

´
ż T

0

`
h̃, e1

˘
ΩBtg1ptqdt ´ `

h̃p0, x, yq, e1p0, x, yq˘Ωg1p0q ´
ż T

0
pq̃,∇e1qΩg1ptqdt

“ ´
ż

Γ1

e1nxdσ

ż T

0
g1ptqv1ptqdt ´

ż
Γ1

e1nydσ

ż T

0
g1ptqv2ptqdt,

where e1 is taken in H1pΩq and g in H1
T , respectively.

Since Dp0, Tq ˆ DpΩq Ă H1p0, Tq ˆ H1pΩq and L2pQq Ă D1pQq, we consider from
now on the test function ϕ P DpQq ˆ DpΩq. That allows us to drop the second member
in the equation above because if a function belongs to DpQq, it vanishes at the boundary.
Subsequently, we can write

´`
h, Bt ϕ

˘
pDp0,TqˆDpΩqq1,pDp0,TqˆDpΩqq ´ `

q,∇ϕ
˘

pDp0,TqˆDpΩqq1,pDp0,TqˆDpΩqq “ 0.

Finally, we conclude that , in the distributions sense,

Bth ` divq “ 0.

For the first equation of the momentum, we have

´`Btq1k , ψ
˘

Ω ´ `
q1k p0, x, yq, ψp0, x, yq˘Ω ` `

q1k pT, x, yq, ψpT, x, yq˘Ω `
ż T

0
pūdivqk, ψqqΩdt

´
ż T

0

`
q1k , divpψv̄q˘Ωdt ` μ

ż T

0

`∇q1k ,∇ψ
˘

Ωdt ´
ż T

0

`
hk , divpψB1¨q

˘
Ωdt

`
ż T

0

´
β1

0q1k , ψ
¯

Ω
dt `

ż T

0

´
γ1

0q2k , ψ
¯

Ω
dt `

ż T

0

´
α1

0hk, ψ
¯

Ω
dt (32)

“
ż T

0

ż
Γ1

pv1ψqv̄ ¨ ndσdt ` μ

ż T

0

ż
Γ1

`∇q1k ¨ n
˘
ψ dσdt ´

ż T

0

ż
Γ1

hk ψpB1¨ ¨ nq dσdt.
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Taking ψ P StpTq, ψ “ g2ptqřn0
i“1 b1

i eipx, yq “ g2ptqe2px, yq, the relation (32) becomes

´`Btq1k , ψ
˘

Ω ´ `
q1k p0, x, yq, e2p0, x, yq˘Ωg2p0q `

ż T

0

`
v̄1 divqk, e2q˘Ωg2ptqdt

´
ż T

0

`
q1k , divpe2v̄q˘Ωg2ptqdt ` μ

ż T

0

`∇q1k ,∇e2
˘

Ωg2ptqdt

´
ż T

0

`
hk , divpe2B1¨q

˘
Ωg2ptqdt `

ż T

0

´
β1

0q1k , e2

¯
Ω

g2ptqdt

`
ż T

0

´
γ1

0q2k , e2

¯
Ω

g2ptqdt `
ż T

0

´
α1

0hk , e2

¯
Ω

g2ptqdt

“
ż T

0
v1ptqg2ptqdt

ż
Γ1

e2v̄ ¨ ndσ ` μ

ż T

0
g2ptq

ż
Γ1

`∇q1k ¨ n
˘
e2 dσdt

´
ż T

0
g2ptq

ż
Γ1

hk e2pB1¨ ¨ nq dσdt.

Since the test function is in the space StpTq that is dense in SlpTq, by taking the limit, it
follows that

´`Btq1 , ψ
˘

Ω ´ `
q1 p0, x, yq, e2p0, x, yq˘Ωg2p0q `

ż T

0

`
v̄1divq, e2q˘Ωg2ptqdt

´
ż T

0

`
q1 , divpe2v̄q˘Ωg2ptqdt ` μ

ż T

0

`∇q1 ,∇e2
˘

Ωg2ptqdt

´
ż T

0

`
h, divpe2B1¨q

˘
Ωg2ptqdt `

ż T

0

´
β1

0q1 , e2

¯
Ω

g2ptqdt

`
ż T

0

´
γ1

0q2 , e2

¯
Ω

g2ptqdt `
ż T

0

´
α1

0h, e2

¯
Ω

g2ptqdt

“
ż T

0
v1ptqg2ptqdt

ż
Γ1

e2v̄ndσ ` μ

ż T

0
g2ptq

ż
Γ1

`∇q1 n
˘
e2 dσdt

´
ż T

0
g2ptq

ż
Γ1

he2pB1¨nq dσdt,

with e2 P H1pΩq and g2 P H1
T .

As previously for the mass conservation equation, we obtain in the distributions
sense that

Btq1 ` v̄1 divq ` ∇q1 ¨ v̄ ´ μΔq ` B1¨∇h ` β1
0q1 ` γ1

0q2 ` α1
0h “ 0.

Following the same process, we establish the existence result for the second equation of the
momentum conservation. Since Eptq ď lim infkÑ8 Ek ptq, (26) follows from (30).

6. Conclusions

We presented a methodology for building a local boundary control law for the ex-
ponential stabilization of two-dimensional shallow viscous water flow. The control law
acts only on the volumetric flow parameter in a portion of the boundary and is built by
cascade over a sequence of intervals that are given by the existence of weak solutions of
the perturbation state. The latter state is obtained by neglecting higher orders terms in the
linearization. Nevertheless, it is desirable to address the construction of the control law us-
ing the nonlinear model directly. A prospective direction toward improving the presented
approach, to address in future, is to consider higher order terms in the approximation in
the reformulation of the governing equations of around the equilibrium.
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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Mycobacterium tu-
berculosis (Mtb) coinfection has been observed in a number of nations and it is connected with severe
illness and death. The paper studies a reaction–diffusion within-host Mtb/SARS-CoV-2 coinfection
model with immunity. This model explores the connections between uninfected epithelial cells,
latently Mtb-infected epithelial cells, productively Mtb-infected epithelial cells, SARS-CoV-2-infected
epithelial cells, free Mtb particles, free SARS-CoV-2 virions, and CTLs. The basic properties of the
model’s solutions are verified. All equilibrium points with the essential conditions for their existence
are calculated. The global stability of these equilibria is established by adopting compatible Lyapunov
functionals. The theoretical outcomes are enhanced by implementing numerical simulations. It is
found that the equilibrium points mirror the single infection and coinfection states of SARS-CoV-2
with Mtb. The threshold conditions that determine the movement from the monoinfection to the
coinfection state need to be tested when developing new treatments for coinfected patients. The
impact of the diffusion coefficients should be monitored at the beginning of coinfection as it affects
the initial distribution of particles in space.

Keywords: tuberculosis; COVID-19; diffusion; coinfection; stability

MSC: 35B35; 37N25; 92B05

1. Introduction

Coronavirus disease 2019 (COVID-19) is a viral disease induced by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and emerged in 2019. Although the
number of new cases decreased in the last few months, COVID-19 is continuing its spread
around the globe [1]. Following the World Health Organization (WHO) report issued
on 1 March 2023, above 758,000,000 affirmed cases and over 6,800,000 deaths have been
accounted globally [1]. COVID-19 coinfections with other viral or bacterial diseases are
common, which complicates the treatment of COVID-19 [2]. Tuberculosis (TB) is a bacterial
infection attributable to Mycobacterium tuberculosis (Mtb). Currently, COVID-19 co-
occurring with TB has been declared in a number of nations [3]. As COVID-19 and TB are
greatly infectious diseases, understanding Mtb/SARS-CoV-2 coinfection is very crucial for
protection and treatment of coinfection.

SARS-CoV-2 is an enveloped RNA virus which is linked with the Betacoronavirus
genus [4]. It breaks into the host cell using the angiotensin-converting enzyme 2 (ACE2)
receptor [5]. It primarily infects the alveolar epithelial type-II cells of the lungs [6]. Similar
to SARS-CoV-2, Mtb infects alveolar epithelial type-II cells through pattern recognition
receptors such as toll-like receptors, complement receptors, and CD14 receptors [7]. Thus,
the lung is the major infection site for these pathogens. Nevertheless, they can invade cells
within different organs [6]. Since SARS-CoV-2 and Mtb infect the same target, this could
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increase the seriousness of disease in coinfected people [4]. Both pathogens are dissemi-
nated through respiratory droplets [2]. The most dominant features of Mtb/SARS-CoV-2
co-occurring are fever, cough, and dyspenea [2]. Risk factors in coinfection include age
and comorbidities such as diabetes, HIV, and hypertension [2,3]. The immune response
in coinfection includes T cells [8]. Specifically, cytotoxic T lymphocytes (CTLs) work on
eliminating infected cells from the body. In the mild cases, the immune response can clear
both infections. It has been proposed that Mtb/SARS-CoV-2 patients are at higher risk of
death and developing severe disease than SARS-CoV-2 patients without Mtb [2,3,8]. More-
over, some studies reported that SARS-CoV-2 infection may cause latent Mtb to become
active in coinfected people [3,4]. Other studies also observed that coinfected patients have
low lymphocyte counts [2,8]. Thus, understanding the mechanism of coinfection is very
important to evolve treatments for coinfected patients.

Mathematical models have been utilized to assist experimental and medical studies
of different infections. These models are partitioned into epidemiological and within-host
models. Epidemiological systems consider the interactions between individuals at the
population level, while within-host systems explore the interplay between pathogens and
cells within the host’s body. A variety of COVID-19 epidemiological models (see for exam-
ple, [9–15]) and within-host models (see for example, [16–18]) have been introduced and
investigated. Similarly, TB models have been widely studied as epidemiological models
(see for example, [19–22]) and within-host models (see for example, [23–27]). Some coinfec-
tion models of COVID-19 with other diseases have been developed. For instance, Pinky and
Dobrovolny [28] analyzed a model that tests the impact of SARS-CoV-2 coinfection with
the influenza virus. Al Agha and Elaiw [29] established a within-host SARS-CoV-2/malaria
model with immune response. Elaiw et al. [30] developed a SARS-CoV-2/HIV coinfection
model that takes the latent stage of infected epithelial cells (EPCs) into consideration. Elaiw
and Al Agha [31] studied a SARS-CoV-2/cancer system with two immune responses.

Many epidemiological models of TB/COVID-19 coinfection have been proposed (see
for example, [32–34]). On the other hand, within-host models are not widely considered.
In [35], a within-host coinfection model has been formalized using ordinary differential
Equations (ODEs). This work develops a reaction–diffusion within-host Mtb/SARS-CoV-2
coinfection model. It depicts the interplay between uninfected EPCs, latently Mtb-infected
EPCs, productively Mtb-infected EPCs, SARS-CoV-2-infected EPCs, Mtb particles, SARS-
CoV-2 particles, and CTLs. Additionally, this model is formalized using partial differential
Equations (PDEs) which count the nonuniform distribution of cells and pathogens with
their ability to move. Thus, PDEs are more realistic than ODEs which assume the spatial
distribution homogeneity of cells and particles. Using the developed model, we (i) establish
the boundedness and nonnegativity of the solutions, (ii) determine all equilibrium points
and find the thresholds, (iii) confirm the global stability of each point, and (iv) use numerical
simulations to validate the theoretical observations.

The remaining sections are divided as follows. Section 2 represents the model.
Section 3 proves the boundedness and nonnegativity of the solutions. Moreover, it re-
counts all equilibrium points. Section 4 employs Lyapunov functionals to show the global
stability of each point. Section 5 implements numerical simulations. The last section
provides the conclusion with upcoming works.

2. A Reaction–Diffusion Mtb/SARS-CoV-2 Coinfection Model

This part describes the model under consideration. In this model, we assume that
Mtb and SARS-CoV-2 have the same target, and CTLs kill infected cells at the same rate.
The model consists of seven PDEs as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U(x, t)
∂t

= DUΔU + λ − η1UB − η2UV − ε1U,

∂L(x, t)
∂t

= DLΔL + η1UB − aL,

∂IB(x, t)
∂t

= DIB ΔIB + aL − γIBZ − ε2 IB,

∂IV(x, t)
∂t

= DIV ΔIV + η2UV − γIV Z − ε3 IV ,

∂B(x, t)
∂t

= DBΔB + μ1ε2 IB − ε4B,

∂V(x, t)
∂t

= DVΔV + μ2 IV − ε5V,

∂Z(x, t)
∂t

= DZΔZ + ωIBZ + ωIV Z − ε6Z,

(1)

where the time t > 0 and the position x ∈ Ψ. The domain Ψ is bounded and connected
with a smooth boundary ∂Ψ. The compartments U, L, IB, IV , B, V, and Z designate the
concentrations of uninfected EPCs, latently Mtb-infected EPCs, productively Mtb-infected
EPCs, SARS-CoV-2-infected EPCs, Mtb particles, SARS-CoV-2 particles, and CTLs at (x, t),
respectively. Uninfected EPCs are generated at rate λ. Mtb converts healthy EPCs into
latently infected cells at rate η1UB, while SARS-CoV-2 infects the same type of cells at rate
η2UV. Latently Mtb-infected cells become an active producer at rate aL. Mtb particles
are created at a total production rate μ1ε2 IB. SARS-CoV-2 virions are ejected from SARS-
CoV-2-infected cells at rate μ2 IV . CTLs remove Mtb and SARS-CoV-2 infected cells at rates
γIBZ and γIV Z, respectively. The corresponding stimulation rates are ωIBZ and ωIV Z,
respectively. The compartments U, IB, IV , B, V, and Z die at rates ε1U, ε2 IB, ε3 IV , ε4B,
ε5V, and ε6Z, respectively. We assume that each compartment K diffuses with a diffusion
coefficient DK. The operator Δ = ∂2

∂x2 is the Laplacian operator. We presume that all
parameters of model (1) are positive. The initial conditions (ICs) of system (1) are

U(x, 0) = ν1(x), L(x, 0) = ν2(x), IB(x, 0) = ν3(x), IV(x, 0) = ν4(x),

B(x, 0) = ν5(x), V(x, 0) = ν6(x), Z(x, 0) = ν7(x), x ∈ Ψ̄, (2)

where νi(x) ≥ 0, i = 1, 2, . . . , 7, are continuous functions in Ψ̄. The boundary conditions
(BCs) of (1) are

∂U
∂�r

=
∂L
∂�r

=
∂IB

∂�r
=

∂IV

∂�r
=

∂B
∂�r

=
∂V
∂�r

=
∂Z
∂�r

= 0, t > 0, x ∈ ∂Ψ, (3)

where
∂

∂�r
is the outward normal derivative on ∂Ψ. These Neumann BCs suggest that the

boundary is isolated.
In the upcoming parts of the paper and for simplicity, we consider the contraction

K(x, t) ≡ K for each compartment K in model (1).

3. Basic Properties

This section certifies that the solutions of system (1)–(3) are unique, nonnegative,
and bounded. Additionally, it computes all equilibrium points of model (1).

Let S = BUC
(
Ψ̄,R7) be the set of functions that are bounded and continuous from

Ψ̄ to R7. The positive cone S+ = BUC
(
Ψ̄,R7

+

) ⊂ S forms a partial order on S. Define
‖ f ‖S = sup

x∈Ψ̄
| f (x)|. Consequently, (S, ‖ · ‖S) is a Banach lattice [36,37].

Theorem 1. Suppose that DU = DL = DIB = DIV = DZ = D1. Then, model (1) with any ICs
(2) has a unique, nonnegative, and bounded solution on Ψ̄ × [0,+∞).
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Proof. For any ν = (ν1, ν2, ν3, ν4, ν5, ν6, ν7)
T ∈ S+, we define P = (P1, P2, P3, P4, P5, P6, P7)

T :
S+ → S by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(ν)(x) = λ − η1ν1(x)ν5(x)− η2ν1(x)ν6(x)− ε1ν1(x),

P2(ν)(x) = η1ν1(x)ν5(x)− aν2(x),

P3(ν)(x) = aν2(x)− γν3(x)ν7(x)− ε2ν3(x),

P4(ν)(x) = η2ν1(x)ν6(x)− γν4(x)ν7(x)− ε3ν4(x),

P5(ν)(x) = μ1ε2ν3(x)− ε4ν5(x),

P6(ν)(x) = μ2ν4(x)− ε5ν6(x),

P7(ν)(x) = ων3(x)ν7(x) + ων4(x)ν7(x)− ε6ν7(x).

We observe that P is Lipschitz on S+. Therefore, it is possible to rewrite system (1)–(3)
as the abstract DE: ⎧⎨⎩

dJ
dt

= DJ + P(J), t > 0,

J0 = ν ∈ S+,

where J = (U, L, IB, IV , B, V, Z)T and DJ = (DUΔU, DLΔL, DIB ΔIB, DIV ΔIV , DBΔB,
DVΔV, DZΔZ)T . We can show that

lim
h→0+

1
h

dist(ν + hP(ν),S+) = 0, ν ∈ S+.

Hence, for any ν ∈ S+, model (1)–(3) has a unique nonnegative mild solution for the
time interval [0, Te).

To verify the boundedness, we consider the function

Υ1(x, t) = U + L + IV .

As DU = DL = DIV = D1, then by utilizing model (1) we obtain

∂Υ1

∂t
− D1ΔΥ1 =λ − ε1U − aL − γIV Z − ε3 IV

≤λ − ε1U − aL − ε3 IV

≤λ − σ1

[
U + L + IV

]
=λ − σ1Υ1,

where σ1 = min{a, ε1, ε3}. Thus, Υ1 satisfies the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂Υ1

∂t
− D1ΔΥ1 ≤ λ − σ1Υ1,

∂Υ1

∂�r
= 0,

Υ1(x, 0) ≥ 0.

Assume that Υ̃1(t) satisfies the system⎧⎪⎨⎪⎩
dΥ̃1(t)

dt
= λ − σ1Υ̃1(t),

Υ̃1(0) = max
x∈Ψ̄

Υ1(x, 0),

which implies that Υ̃1(t) ≤ max
{

λ

σ1
, max

x∈Ψ̄
Υ1(x, 0)

}
. In accord with the comparison princi-

ple (CP) [38], we obtain Υ1(x, t) ≤ Υ̃1(t). As a result, we have
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Υ1(x, t) ≤ max
{

λ

σ1
, max

x∈Ψ̄
Υ1(x, 0)

}
:= Q1.

This ensures that U, L, and IV are bounded. From the third equation of (1), we have

∂IB

∂t
− DIB ΔIB =aL − γIBZ − ε2 IB

≤aL − ε2 IB

≤aQ1 − ε2 IB.

We can conclude from the CP [38] that

IB ≤ max
{

aQ1

ε2
, max

x∈Ψ̄
IB(x, 0)

}
:= Q2.

Thus, IB is bounded. From the fifth equation of (1), we have

∂B
∂t

− DBΔB =μ1ε2 IB − ε4B

≤μ1ε2Q2 − ε4B.

Based on the CP [38], we obtain

B ≤ max
{

μ1ε2Q2

ε4
, max

x∈Ψ̄
B(x, 0)

}
.

Hence, B is bounded. From the sixth equation of model (1), we obtain

∂V
∂t

− DVΔV =μ2 IV − ε5V

≤μ2Q1 − ε5V.

The CP [38] implies that

V ≤ max
{

μ2Q1

ε5
, max

x∈Ψ̄
V(x, 0)

}
:= Q3.

Thus, V is bounded. Finally, we introduce the function

Υ2(x, t) = IB + IV +
γ

ω
Z.

Then, we obtain

∂Υ2

∂t
− D1ΔΥ2 =aL + η2UV − ε2 IB − ε3 IV − γε6

ω
Z

≤aQ1 + η2Q1Q3 − σ2Υ2,

where σ2 = min{ε2, ε3, ε6}. By the CP, [38], we obtain

Υ2(x, t) ≤ max
{

aQ1 + η2Q1Q3

σ2
, max

x∈Ψ̄
Υ2(x, 0)

}
.

This implies that Z is bounded. The above results show that all solutions are bounded
on Ψ̄ × [0, Te), and so solutions are bounded on Ψ̄ × [0,+∞). This conclusion is derived
from the standard theory for semi-linear parabolic Equations [39].

Proposition 1. The conditions R0B, R0V, R1B, R1V, and σ exist such that system (1) has six
equilibrium points:
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(i) The uninfected equilibrium E0 always exists;
(ii) The Mtb immune-free equilibrium E1 is defined when R0B > 1;
(iii) The COVID-19 immune-free equilibrium E2 is defined if R0V > 1;
(iv) The Mtb equilibrium with immunity E3 exists if R1B > 1;
(v) The COVID-19 equilibrium with immunity E4 exists if R1V > 1;

(vi) The Mtb/SARS-CoV-2 coinfection equilibrium E5 exists if
ωλη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+ 1 >

ε3

ε2
+R1B,

ωλη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+ 1 >

ε2

ε3
+R1V,

R0V
R0B

> 1, ε2 > ε3, and σ > 1.

Proof. The equilibrium points of Equation (1) can be drawn by solving the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = λ − η1UB − η2UV − ε1U,

0 = η1UB − aL,

0 = aL − γIBZ − ε2 IB,

0 = η2UV − γIV Z − ε3 IV ,

0 = μ1ε2 IB − ε4B,

0 = μ2 IV − ε5V,

0 = ωIBZ + ωIV Z − ε6Z.

Then, we obtain the following:

(i) The uninfected equilibrium E0 = (U0, 0, 0, 0, 0, 0, 0), where U0 =
λ

ε1
> 0. Thus, E0

always exists.
(ii) The Mtb immune-free equilibrium E1 =

(
U1, L1, IB

1 , 0, B1, 0, 0
)
. The components are

given as follows:

U1 =
ε4

η1μ1
, L1 =

ε1ε4

aη1μ1

(R0B − 1
)
, IB

1 =
ε1ε4

η1μ1ε2

(R0B − 1
)
, B1 =

ε1

η1

(R0B − 1
)
,

where R0B =
λη1μ1

ε1ε4
. We note that U1 is positive, whilst L1, IB

1 , and B1 are positive

when R0B > 1. Hence, E1 exists if R0B > 1. The parameter R0B appoints the onset of
Mtb infection with inactive CTLs.

(iii) The COVID-19 immune-free equilibrium E2 =
(
U2, 0, 0, IV

2 , 0, V2, 0
)
. Its coordinates

are written as follows:

U2 =
ε3ε5

η2μ2
, IV

2 =
ε1ε5

η2μ2

(R0V − 1
)
, V2 =

ε1

η2

(R0V − 1
)
,

where R0V =
λη2μ2

ε1ε3ε5
. Thus, U2 > 0, whilst IV

2 > 0 and V2 > 0 when R0V > 1.

Accordingly, E2 is defined when R0V > 1. The threshold R0V locates the start of
COVID-19 infection, where the CTL immunity is inactive.

(iv) The Mtb equilibrium with immunity E3 =
(
U3, L3, IB

3 , 0, B3, 0, Z3
)
, where

U3 =
ωλε4

ωε1ε4 + η1μ1ε2ε6
, L3 =

λη1μ1ε2ε6

a[ωε1ε4 + η1μ1ε2ε6]
, IB

3 =
ε6

ω
,

B3 =
μ1ε2ε6

ωε4
, Z3 =

ε2

γ

(R1B − 1
)
,

where R1B =
ωλη1μ1

ωε1ε4 + η1μ1ε2ε6
. We note that U3, L3, IB

3 and B3 are always positive,

while Z3 > 0 if R1B > 1. This implies that E3 exists if R1B > 1. The threshold R1B
sets the activation of CTLs versus Mtb-infected EPCs.
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(v) The COVID-19 equilibrium with immunity E4 =
(
U4, 0, 0, IV

4 , 0, V4, Z4
)
. The compo-

nents are given as

U4 =
ωλε5

ωε1ε5 + η2μ2ε6
, IV

4 =
ε6

ω
, V4 =

μ2ε6

ωε5
, Z4 =

ε3

γ

(R1V − 1
)
,

where R1V =
ωλη2μ2

ε3[ωε1ε5 + η2μ2ε6]
. We see that U4, IV

4 , V4 > 0, while Z4 > 0 if

R1V > 1. Hence, E4 is defined when R1V > 1. Here, the threshold R1V defines the
stimulation status of CTL immunity versus SARS-CoV-2-infected EPCs.

(vi) The Mtb/SARS-CoV-2 coinfection equilibrium E5 =
(
U5, L5, IB

5 , IV
5 , B5, V5, Z5

)
. The

components are defined as

U5 =
(ε2 − ε3)ε5

η2μ2(σ − 1)
,

L5 =
η1μ1ε2ε3ε4ε5(ωε1ε5 + η2μ2ε6)

aω(η1μ1ε2ε5 − η2μ2ε4)
2

[
ωλη1μ1ε2ε5

ε3ε4(ωε1ε5 + η2μ2ε6)
+ 1 − ε2

ε3
−R1V

]
,

IB
5 =

ε3(ωε1ε5 + η2μ2ε6)

ω(ε2 − ε3)η2μ2(σ − 1)

[
ωλη1μ1ε2ε5

ε3ε4(ωε1ε5 + η2μ2ε6)
+ 1 − ε2

ε3
−R1V

]
,

IV
5 =

ε2ε5(ωε1ε4 + η1μ1ε2ε6)

ω(ε2 − ε3)η2μ2ε4(σ − 1)

[
ωλη2μ2ε4

ε2ε5(ωε1ε4 + η1μ1ε2ε6)
+ 1 − ε3

ε2
−R1B

]
,

B5 =
μ1ε2ε3(ωε1ε5 + η2μ2ε6)

ω(ε2 − ε3)η2μ2ε4(σ − 1)

[
ωλη1μ1ε2ε5

ε3ε4(ωε1ε5 + η2μ2ε6)
+ 1 − ε2

ε3
−R1V

]
,

V5 =
ε2(ωε1ε4 + η1μ1ε2ε6)

ω(ε2 − ε3)η2ε4(σ − 1)

[
ωλη2μ2ε4

ε2ε5(ωε1ε4 + η1μ1ε2ε6)
+ 1 − ε3

ε2
−R1B

]
,

Z5 =
η1μ1ε2ε3ε5(R0V/R0B − 1)

γη2μ2ε4(σ − 1)
,

where σ =
η1μ1ε2ε5

η2μ2ε4
. We see that L5, IB

5 , and B5 are positive if
ωλη1μ1ε2ε5

ε3ε4(ωε1ε5 + η2μ2ε6)
+

1 >
ε2

ε3
+R1V , while IV

5 and V5 are positive if
ωλη2μ2ε4

ε2ε5(ωε1ε4 + η1μ1ε2ε6)
+ 1 >

ε3

ε2
+R1B,

and Z5 > 0 if
R0V
R0B

> 1. In addition, we need the two conditions ε2 > ε3 and σ > 1.

Hence, E5 exists when the above conditions are met.

4. Global Properties

This part is aimed to prove the global stability of all equilibria by adopting correct
Lyapunov functionals. The construction of these Lyapunov functionals follows the methods
presented in [40–42].

We consider a function Ξi(U, L, IB, IV , B, V, Z) and suppose that χ
′
i is the largest in-

variant subset of χi =

{
(U, L, IB, IV , B, V, Z) | dΞi

dt
= 0

}
, i = 0, 1, . . . , 5.

Theorem 2. The equilibrium E0 is globally asymptotically stable (GS) if R0B ≤ 1 and R0V ≤ 1.

Proof. We opt a Lyapunov functional (LF)

Ξ0(t) =
∫

Ψ
Ξ̃0(x, t) dx, where

Ξ̃0 =U0

(
U
U0

− 1 − ln
U
U0

)
+ L + IB + IV +

1
μ1

B +
ε3

μ2
V +

γ

ω
Z.
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By taking the partial derivative, we obtain

∂Ξ̃0

∂t
=

(
1 − U0

U

)(
DUΔU + λ − η1UB − η2UV − ε1U

)
+ DLΔL + η1UB − aL + DIB ΔIB

+ aL − γIBZ − ε2 IB + DIV ΔIV + η2UV − γIV Z − ε3 IV +
1

μ1

(
DBΔB + μ1ε2 IB − ε4B

)
+

ε3

μ2

(
DVΔV + μ2 IV − ε5V

)
+

γ

ω

(
DZΔZ + ωIBZ + ωIV Z − ε6Z

)
=

(
1 − U0

U

)
(λ − ε1U) +

(
η1U0 − ε4

μ1

)
B +

(
η2U0 − ε3ε5

μ2

)
V − γε6

ω
Z +

(
1 − U0

U

)
DUΔ U

+ DLΔL + DIB ΔIB + DIV ΔIV +
1

μ1
DBΔB +

ε3

μ2
DVΔV +

γ

ω
DZΔZ.

The derivative
dΞ0

dt
is given by

dΞ0

dt
=− ε1

∫
Ψ

(U − U0)
2

U
dx +

ε4

μ1
(R0B − 1)

∫
Ψ

B dx +
ε3ε5

μ2
(R0V − 1)

∫
Ψ

V dx − γε6

ω

∫
Ψ

Z dx

+ DU

∫
Ψ

(
1 − U0

U

)
ΔU dx + DL

∫
Ψ

ΔL dx + DIB

∫
Ψ

ΔIB dx + DIV

∫
Ψ

ΔIV dx

+
1

μ1
DB

∫
Ψ

ΔB dx +
ε3

μ2
DV

∫
Ψ

ΔV dx +
γ

ω
DZ

∫
Ψ

ΔZ dx.

(4)

Based on the Divergence theorem and Neumann BCs, we obtain

0 =
∫

∂Ψ
∇Φ ·�r dx =

∫
Ψ

div(∇Φ) dx =
∫

Ψ
ΔΦ dx,

0 =
∫

∂Ψ

1
Φ
∇Φ ·�r dx =

∫
Ψ

div(
1
Φ
∇Φ) dx =

∫
Ψ

[
ΔΦ
Φ

− ‖�Φ‖2

Φ2

]
dx, for Φ ∈ {U, L, IB, IV , B, V, Z}.

(5)

As a result, the derivative in (4) is altered to

dΞ0

dt
=− ε1

∫
Ψ

(U − U0)
2

U
dx +

ε4

μ1
(R0B − 1)

∫
Ψ

B dx +
ε3ε5

μ2
(R0V − 1)

∫
Ψ

V dx − γε6

ω

∫
Ψ

Z dx

− DUU0

∫
Ψ

‖�U‖2

U2 dx.

We see that
dΞ0

dt
≤ 0 if R0B ≤ 1 and R0V ≤ 1. Furthermore,

dΞ0

dt
= 0 if U = U0

and B = V = Z = 0. The solutions approach χ
′
0 that has B = V = 0. Thus,

∂B
∂t

= 0 and
∂V
∂t

= 0. According to the fifth and sixth equations of system (1), we acquire IB = IV = 0.

Therefore,
∂IB

∂t
= 0 and the third equation of (1) gives L = 0. Consequently, χ

′
0 = {E0} and

in compliance with LaSalle’s invariance principle (LIP) [43], the point E0 is GS if R0B ≤ 1
and R0V ≤ 1.

Theorem 3. Let R0B > 1. Then, the equilibrium E1 is GS if
R0V
R0B

≤ 1 with R1B ≤ 1.

Proof. We adopt an LF

Ξ1(t) =
∫

Ψ
Ξ̃1(x, t) dx, where

Ξ̃1 =U1

(
U
U1

− 1 − ln
U
U1

)
+ L1

(
L
L1

− 1 − ln
L
L1

)
+ IB

1

(
IB

IB
1
− 1 − ln

IB

IB
1

)
+ IV

+
1

μ1
B1

(
B
B1

− 1 − ln
B
B1

)
+

ε3

μ2
V +

γ

ω
Z.
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By calculating the partial derivative, we obtain

∂Ξ̃1

∂t
=

(
1 − U1

U

)(
DUΔU + λ − η1UB − η2UV − ε1U

)
+

(
1 − L1

L

)(
DLΔL + η1UB − aL

)
+

(
1 − IB

1
IB

)(
DIB ΔIB + aL − γIBZ − ε2 IB

)
+ DIV ΔIV + η2UV − γIV Z − ε3 IV

+
1

μ1

(
1 − B1

B

)(
DBΔB + μ1ε2 IB − ε4B

)
+

ε3

μ2

(
DVΔV + μ2 IV − ε5V

)
+

γ

ω

(
DZΔZ + ωIBZ + ωIV Z − ε6Z

)
.

(6)

By employing the equilibrium conditions at E1, we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ = η1U1B1 + ε1U1,

η1U1B1 = aL1,

aL1 = ε2 IB
1 ,

ε2 IB
1 =

ε4

μ1
B1.

Hence, the derivative in (6) can be simplified to

∂Ξ̃1

∂t
=

(
1 − U1

U

)
(ε1U1 − ε1U) + η1U1B1

(
4 − U1

U
− UL1B

U1LB1
− LIB

1
L1 IB − IBB1

IB
1 B

)
+

(
η2U1 − ε3ε5

μ2

)
V

+
(

γIB
1 − γε6

ω

)
Z +

(
1 − U1

U

)
DUΔU +

(
1 − L1

L

)
DLΔL +

(
1 − IB

1
IB

)
DIB ΔIB

+ DIV ΔIV +
1

μ1

(
1 − B1

B

)
DBΔB +

ε3

μ2
DVΔV +

γ

ω
DZΔZ.

By using (5),
dΞ1

dt
is given by

dΞ1

dt
=− ε1

∫
Ψ

(U − U1)
2

U
dx + η1U1B1

∫
Ψ

(
4 − U1

U
− UL1B

U1LB1
− LIB

1
L1 IB − IBB1

IB
1 B

)
dx +

ε3ε5

μ2

(R0V
R0B

− 1
) ∫

Ψ
V dx

+
γ(ωε1ε4 + η1μ1ε2ε6)

ωη1μ1ε2
(R1B − 1)

∫
Ψ

Z dx − DUU1

∫
Ψ

‖�U‖2

U2 dx − DLL1

∫
Ψ

‖�L‖2

L2 dx

− DIB IB
1

∫
Ψ

‖�IB‖2

IB2 dx − DBB1

μ1

∫
Ψ

‖�B‖2

B2 dx.

In this situation,
dΞ1

dt
≤ 0 if

R0V
R0B

≤ 1 and R1B ≤ 1. In addition,
dΞ1

dt
= 0 when

U = U1, L = L1, IB = IB
1 , B = B1, while V = Z = 0. The solutions tend to χ

′
1 with V = 0

and therefore
∂V
∂t

= 0. The sixth equation of (1) yields IV = 0. Hence, χ
′
1 = {E1} and E1 is

GS when R0B > 1,
R0V
R0B

≤ 1 and R1B ≤ 1 according to LIP [43].

Theorem 4. Let R0V > 1. The equilibrium E2 is GS if
R0B
R0V

≤ 1 and R1V ≤ 1.

Proof. We pick an LF

Ξ2(t) =
∫

Ψ
Ξ̃2(x, t) dx, where
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Ξ̃2 =U2

(
U
U2

− 1 − ln
U
U2

)
+ L + IB + IV

2

(
IV

IV
2
− 1 − ln

IV

IV
2

)
+

1
μ1

B +
ε3

μ2
V2

(
V
V2

− 1 − ln
V
V2

)
+

γ

ω
Z.

Then,
∂Ξ̃2

∂t
is computed as

∂Ξ̃2

∂t
=

(
1 − U2

U

)(
DUΔU + λ − η1UB − η2UV − ε1U

)
+ DLΔL + η1UB − aL + DIB ΔIB + aL

− γIBZ − ε2 IB +

(
1 − IV

2
IV

)(
DIV ΔIV + η2UV − γIV Z − ε3 IV

)
+

1
μ1

(
DBΔB + μ1ε2 IB − ε4B

)
+

ε3

μ2

(
1 − V2

V

)(
DVΔV + μ2 IV − ε5V

)
+

γ

ω

(
DZΔZ + ωIBZ + ωIV Z − ε6Z

)
.

(7)

By considering the equilibrium conditions at E2⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ = η2U2V2 + ε1U2,

η2U2V2 = ε3 IV
2 ,

ε3 IV
2 =

ε3ε5

μ2
V2,

the derivative in (7) becomes

∂Ξ̃2

∂t
=

(
1 − U2

U

)
(ε1U2 − ε1U) + η2U2V2

(
3 − U2

U
− UIV

2 V
U2 IVV2

− IVV2

IV
2 V

)
+

(
η1U2 − ε4

μ1

)
B

+
(

γIV
2 − γε6

ω

)
Z +

(
1 − U2

U

)
DUΔU + DLΔL + DIB ΔIB +

(
1 − IV

2
IV

)
DIV ΔIV

+
1

μ1
DBΔB +

ε3

μ2

(
1 − V2

V

)
DVΔV +

γ

ω
DZΔZ.

By using (5), the derivative of Ξ2(t) is expressed as

dΞ2

dt
=− ε1

∫
Ψ

(U − U2)
2

U
dx + η2U2V2

∫
Ψ

(
3 − U2

U
− UIV

2 V
U2 IVV2

− IVV2

IV
2 V

)
dx +

ε4

μ1

(R0B
R0V

− 1
) ∫

Ψ
B dx

+
γ(ωε1ε5 + η2μ2ε6)

ωη2μ2
(R1V − 1)

∫
Ψ

Z dx − DUU2

∫
Ψ

‖�U‖2

U2 dx

− DIV IV
2

∫
Ψ

‖�IV‖2

IV2 dx − DVV2ε3

μ2

∫
Ψ

‖�V‖2

V2 dx.

We note that
dΞ2

dt
≤ 0 if

R0B
R0V

≤ 1, and R1V ≤ 1. Moreover,
dΞ2

dt
= 0 when U = U2,

IV = IV
2 , V = V2 and B = Z = 0. The solutions approach χ

′
2, which has an element with

B = 0 and hence
∂B
∂t

= 0. From the fifth equation of (1), we have IB = 0. Consequently,

∂IB

∂t
= 0 and thus L = 0 according to the third equation of (1). Thereupon, χ

′
2 = {E2} and

E2 is GS when R0V > 1,
R0B
R0V

≤ 1 and R1V ≤ 1 as attributed to LIP [43].

Theorem 5. Assume that R1B > 1. Then, the equilibrium E3 is GS if
λωη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+

1 ≤ ε3

ε2
+R1B.
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Proof. We pick an LF

Ξ3(t) =
∫

Ψ
Ξ̃3(x, t) dx, where

Ξ̃3 =U3

(
U
U3

− 1 − ln
U
U3

)
+ L3

(
L
L3

− 1 − ln
L
L3

)
+ IB

3

(
IB

IB
3
− 1 − ln

IB

IB
3

)
+ IV

+

(
1

μ1
+

γZ3

μ1ε2

)
B3

(
B
B3

− 1 − ln
B
B3

)
+

(
ε3

μ2
+

γZ3

μ2

)
V +

γ

ω
Z3

(
Z
Z3

− 1 − ln
Z
Z3

)
.

Then,
∂Ξ̃3

∂t
is written as

∂Ξ̃3

∂t
=

(
1 − U3

U

)(
DUΔU + λ − η1UB − η2UV − ε1U

)
+

(
1 − L3

L

)(
DLΔL + η1UB − aL

)
+

(
1 − IB

3
IB

)(
DIB ΔIB + aL − γIBZ − ε2 IB

)
+ DIV ΔIV + η2UV − γIV Z − ε3 IV

+

(
1

μ1
+

γZ3

μ1ε2

)(
1 − B3

B

)(
DBΔB + μ1ε2 IB − ε4B

)
+

(
ε3

μ2
+

γZ3

μ2

)(
DVΔV + μ2 IV − ε5V

)
+

γ

ω

(
1 − Z3

Z

)(
DZΔZ + ωIBZ + ωIV Z − ε6Z

)
.

(8)

By utilizing the equilibrium requirements at E3 to add the terms of Equation (8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ = η1U3B3 + ε1U3,

η1U3B3 = aL3,

aL3 = γIB
3 Z3 + ε2 IB

3 ,

ε2 IB
3 =

ε4

μ1
B3,

γIB
3 Z3 =

γε6

ω
Z3,

we obtain

∂Ξ̃3

∂t
=

(
1 − U3

U

)
(ε1U3 − ε1U) + η1U3B3

(
4 − U3

U
− UL3B

U3LB3
− LIB

3
L3 IB − IBB3

IB
3 B

)

+

(
η2U3 − ε3ε5

μ2
− γε5Z3

μ2

)
V +

(
1 − U3

U

)
DUΔU +

(
1 − L3

L

)
DLΔL +

(
1 − IB

3
IB

)
DIB ΔIB

+ DIV ΔIV +

(
1

μ1
+

γZ3

μ1ε2

)(
1 − B3

B

)
DBΔB +

(
ε3

μ2
+

γZ3

μ2

)
DVΔ V

+
γ

ω

(
1 − Z3

Z

)
DZΔZ.

By using (5), the derivative of Ξ3(t) is presented as

dΞ3

dt
=− ε1

∫
Ψ

(U − U3)
2

U
dx + η1U3B3

∫
Ψ

(
4 − U3

U
− UL3B

U3LB3
− LIB

3
L3 IB − IBB3

IB
3 B

)
dx

+
ε2ε5

μ2

(
λωη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+ 1 − ε3

ε2
−R1B

) ∫
Ψ

V dx − DUU3

∫
Ψ

‖�U‖2

U2 dx

− DLL3

∫
Ψ

‖�L‖2

L2 dx − DIB IB
3

∫
Ψ

‖�IB‖2

IB2 dx − DBB3

(
1

μ1
+

γZ3

μ1ε2

) ∫
Ψ

‖�B‖2

B2 dx

− γDZZ3

ω

∫
Ψ

‖�Z‖2

Z2 dx.
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We see that
dΞ3

dt
≤ 0 if

λωη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+ 1 ≤ ε3

ε2
+R1B. In addition, it is

possible to show that
dΞ3

dt
= 0 when (U, L, IB, IV , B, V, Z) = (U3, L3, IB

3 , 0, B3, 0, Z3). Then,

χ
′
3 = {E3} and in reference to LIP [43], E3 is GS when R1B > 1 and

λωη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+

1 ≤ ε3

ε2
+R1B.

Theorem 6. Let R1V > 1. Thereupon, the equilibrium E4 is GS if
λωη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+ 1 ≤

ε2

ε3
+R1V.

Proof. We nominate an LF

Ξ4(t) =
∫

Ψ
Ξ̃4(x, t) dx, where

Ξ̃4 =U4

(
U
U4

− 1 − ln
U
U4

)
+ L + IB + IV

4

(
IV

IV
4
− 1 − ln

IV

IV
4

)
+

(
1

μ1
+

γZ4

μ1ε2

)
B

+

(
ε3

μ2
+

γZ4

μ2

)
V4

(
V
V4

− 1 − ln
V
V4

)
+

γ

ω
Z4

(
Z
Z4

− 1 − ln
Z
Z4

)
.

By computing the partial derivative, we obtain

∂Ξ4

∂t
=

(
1 − U4

U

)(
DUΔU + λ − η1UB − η2UV − ε1U

)
+ DLΔL + η1UB − aL + DIB ΔIB + aL

− γIBZ − ε2 IB +

(
1 − IV

4
IV

)(
DIV ΔIV + η2UV − γIV Z − ε3 IV

)
+

(
1

μ1
+

γZ4

μ1ε2

)(
DBΔB + μ1ε2 IB − ε4B

)
+

(
ε3

μ2
+

γZ4

μ2

)(
1 − V4

V

)(
DVΔV + μ2 IV − ε5V

)
+

γ

ω

(
1 − Z4

Z

)(
DZΔZ + ωIBZ + ωIV Z − ε6Z

)
.

(9)

By considering the equilibrium conditions at E4⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ = η2U4V4 + ε1U4,

η2U4V4 = γIV
4 Z4 + ε3 IV

4 ,

ε3 IV
4 =

ε3ε5

μ2
V4,

γIV
4 Z4 =

γε6

ω
Z4,

the derivative in (9) is transformed to

∂Ξ4

∂t
=

(
1 − U4

U

)
(ε1U4 − ε1U) + η2U4V4

(
3 − U4

U
− UIV

4 V
U4 IVV4

− IVV4

IV
4 V

)
+

(
η1U4 − ε4

μ1
− γε4Z4

μ1ε2

)
B

+

(
1 − U4

U

)
DUΔU + DLΔL + DIB ΔIB +

(
1 − IV

4
IV

)
DIV ΔIV +

(
1

μ1
+

γZ4

μ1ε2

)
DBΔ B

+

(
ε3

μ2
+

γZ4

μ2

)(
1 − V4

V

)
DVΔV +

γ

ω

(
1 − Z4

Z

)
DZΔZ.

By using (5), the derivative of Ξ4(t) has the form
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dΞ4

dt
=− ε1

∫
Ψ

(U − U4)
2

U
dx + η2U4V4

∫
Ψ

(
3 − U4

U
− UIV

4 V
U4 IVV4

− IVV4

IV
4 V

)
dx

+
ε3ε4

μ1ε2

(
λωη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+ 1 − ε2

ε3
−R1V

) ∫
Ψ

B dx − DUU4

∫
Ψ

‖�U‖2

U2 dx

− DIV IV
4

∫
Ψ

‖�IV‖2

IV 2 dx − DVV4

(
ε3

μ2
+

γZ4

μ2

) ∫
Ψ

‖�V‖2

V2 dx − γDZZ4

ω

∫
Ψ

‖�Z‖2

Z2 dx.

It follows that
dΞ4

dt
≤ 0 if

λωη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+ 1 ≤ ε2

ε3
+R1V . In addition,

dΞ4

dt
= 0

when (U, L, IB, IV , B, V, Z) = (U4, 0, 0, IV
4 , 0, V4, Z4). Hence, χ

′
4 = {E4} and E4 is GS if

R1V > 1 and
λωη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+ 1 ≤ ε2

ε3
+R1V based on LIP [43].

Theorem 7. Suppose that
λωη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+ 1 >

ε3

ε2
+R1B,

λωη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+

1 >
ε2

ε3
+R1V,

R0V
R0B

> 1, ε2 > ε3, and σ > 1. Then, the equilibrium E5 is GS.

Proof. We start with an LF

Ξ5(t) =
∫

Ψ
Ξ̃5(x, t) dx, where

Ξ̃5 =U5

(
U
U5

− 1 − ln
U
U5

)
+ L5

(
L
L5

− 1 − ln
L
L5

)
+ IB

5

(
IB

IB
5
− 1 − ln

IB

IB
5

)
+ IV

5

(
IV

IV
5

− 1 − ln
IV

IV
5

)

+

(
1

μ1
+

γZ5
μ1ε2

)
B5

(
B
B5

− 1 − ln
B
B5

)
+

(
ε3
μ2

+
γZ5
μ2

)
V5

(
V
V5

− 1 − ln
V
V5

)
+

γ

ω
Z5

(
Z
Z5

− 1 − ln
Z
Z5

)
.

By computing the partial derivative, we obtain

∂Ξ5
∂t

=

(
1 − U5

U

)(
DUΔU + λ − η1UB − η2UV − ε1U

)
+

(
1 − L5

L

)(
DLΔL + η1UB − aL

)
+

(
1 − IB

5
IB

)(
DIB ΔIB + aL − γIBZ − ε2 IB

)
+

(
1 − IV

5
IV

)(
DIV ΔIV + η2UV − γIV Z − ε3 IV

)
+

(
1

μ1
+

γZ5
μ1ε2

)(
1 − B5

B

)(
DBΔB + μ1ε2 IB − ε4B

)
+

(
ε3
μ2

+
γZ5
μ2

)(
1 − V5

V

)(
DVΔV + μ2 IV − ε5V

)
+

γ

ω

(
1 − Z5

Z

)(
DZΔZ + ωIBZ + ωIV Z − ε6Z

)
.

At equilibrium, the following conditions are satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ = η1U5B5 + η2U5V5 + ε1U5,

η1U5B5 = aL5,

aL5 = γIB
5 Z5 + ε2 IB

5 ,

η2U5V5 = γIV
5 Z5 + ε3 IV

5 ,

ε2 IB
5 =

ε4
μ1

B5,

ε3 IV
5 =

ε3ε5
μ2

V5,

γIB
5 Z5 + γIV

5 Z5 =
γε6
ω

Z5.
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By using the above conditions with (5), the time derivative of Ξ5(t) is written as

dΞ5

dt
=− ε1

∫
Ψ

(U − U5)
2

U
dx + η1U5B5

∫
Ψ

(
4 − U5

U
− UL5B

U5LB5
− LIB

5
L5 IB − IBB5

IB
5 B

)
dx

+ η2U5V5

∫
Ψ

(
3 − U5

U
− UIV

5 V
U5 IVV5

− IVV5

IV
5 V

)
dx − DUU5

∫
Ψ

‖�U‖2

U2 dx − DLL5

∫
Ψ

‖�L‖2

L2 dx

− DIB IB
5

∫
Ψ

‖�IB‖2

IB2 dx − DIV IV
5

∫
Ψ

‖�IV‖2

IV2 dx − DBB5

(
1

μ1
+

γZ5

μ1ε2

) ∫
Ψ

‖�B‖2

B2 dx

− DVV5

(
ε3

μ2
+

γZ5

μ2

) ∫
Ψ

‖�V‖2

V2 dx − γDZZ5

ω

∫
Ψ

‖�Z‖2

Z2 dx.

Thus,
dΞ5

dt
≤ 0 and

dΞ5

dt
= 0 when (U, L, IB, IV , B, V, Z) = (U5, L5, IB

5 , IV
5 , B5, V5, Z5).

This implies that χ
′
5 = {E5} and E5 is GS when it exists in regard to LIP [43].

5. Numerical Simulations

In this part, we implement numerical simulations using MATLB PDE solver (pdepe)
to validate the theoretical observations attained in the previous parts. This solver solves
initial boundary value problems for systems of PDEs in one spatial variable x and time t.
The domain of x is provided as Ψ = [0, 2] with step sizes Δx = 0.02 and Δt = 0.1. The ICs
of system (1) are determined as the following:

U(x, 0) = 105(1 + 0.2 cos2(πx)), L(x, 0) = 104(1 + 0.2 cos2(πx)), IB(x, 0) = 103(1 + 0.2 cos2(πx)),

IV(x, 0) = 103(1 + 0.2 cos2(πx)), B(x, 0) = 500(1 + 0.2 cos2(πx)), V(x, 0) = 500(1 + 0.2 cos2(πx)),

Z(x, 0) = 0.1(1 + 0.2 cos2(πx)).

To present the global stability of the equilibria of system (1), the results are divided
into six cases. In each case, we change the values of η1, η2, and ω while keeping all other
values as shown in Table 1. These cases are stated as follows:

(i) We choose η1 = 2.5 × 10−9, η2 = 1 × 10−11, and ω = 8 × 10−3. This gives R0B =

0.1923 < 1 and R0V = 0.4667 < 1. This indicates that E0 =
(
4 × 105, 0, 0, 0, 0, 0, 0

)
is

GS (Figure 1), which comes to an agreement with Theorem 2. This case simulates the
condition of an individual with no Mtb and SARS-CoV-2 infections.

(ii) We select η1 = 2.5 × 10−7, η2 = 1 × 10−11, and ω = 8 × 10−7 to obtain R0B =

19.2308 > 1,
R0V
R0B

= 0.0243 < 1, and R1B = 0.0638 < 1. The result agrees with The-

orem 3 that the equilibrium E1 = (20,800, 9480, 7584, 0, 729,231, 0, 0) is GS (Figure 2).
In this situation, the patient has Mtb monoinfection and the CTL immunity is inefficient.

(iii) We take η1 = 2.5 × 10−9, η2 = 1 × 10−9, and ω = 1 × 10−8. We obtain R0V =

46.6667 > 1,
R0B
R0V

= 0.0041 < 1, and R1V = 0.04 < 1. These conditions implicate the

global stability of E2 =
(
8571.43, 0, 0, 391,429, 0, 4.56667 × 108, 0

)
, which harmonizes

with Theorem 4 (Figure 3). In this case, the patient has SARS-CoV-2 monoinfection in
the absence of CTLs.

(iv) We choose η1 = 2.5 × 10−7, η2 = 1 × 10−11, and ω = 1 × 10−4. This gives R1B =

5.6497 > 1 and
λωη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+ 1 = 1.0027 < 5.6697 =

ε3

ε2
+R1B. This

implies that the equilibrium E3 = (117,514, 7062.15, 1000, 0, 96,153.8, 0, 4.64972) is GS
(Figure 4), which comes to an agreement with Theorem 5. Here, the CTL immunity
is turned on to exterminate the Mtb infection. Consequently, the densities of Mtb-
infected cells and Mtb particles decrease, whilst the density of healthy cells increases.
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(v) We consider η1 = 2.5 × 10−9, η2 = 1 × 10−9, and ω = 1 × 10−6. Thus, we obtain

R1V = 3.6842 > 1 and
λωη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+ 1 = 1.7591 < 53.6842 =

ε2

ε3
+R1V .

In favor of Theorem 6, E4 =
(
31,578.9, 0, 0, 1 × 105, 0, 1.16667 × 108, 0.05368

)
is GS

(Figure 5). This case mimics the condition of a COVID-19 patient with active CTLs
which work on removing SARS-CoV-2-infected cells.

(vi) We choose η1 = 2 × 10−7, η2 = 1 × 10−9, and ω = 2 × 10−6. These values give
λωη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+ 1 = 1.0096 > 0.1784 =

ε3

ε2
+R1B,

λωη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+

1 = 113.5704 > 56.8293 =
ε2

ε3
+R1V ,

R0V
R0B

= 3.0333 > 1, and σ = 16.4835 > 1.

This implicates the global stability of E5 = (27,125.6, 5712.6, 4380.44, 45,619.6, 421,196,
5.322 × 107, 0.043), which is compatible with Theorem 7 (Figure 6). In this situation,
the person has SARS-CoV-2/Mtb coinfection with robust CTL immunity.

5.1. The Movement from the Monoinfection to the Coinfection State

From the results above, we see that increasing the infection rate of EPCs by SARS-
CoV-2, η2, forces the system to move from Mtb monoinfection state to SARS-CoV-2/Mtb
coinfection state. In other words, E3 loses its stability and E5 becomes GS. Similarly,
increasing the infection rate by Mtb, η1, pushes the system from SARS-CoV-2 monoinfection
state to the coinfection state. In this case, E4 loses its stability and E5 becomes GS. Therefore,
the values of these parameters need to be controlled as they have a powerful effect in
converting the system from the monoinfection zone to the coinfection zone.

5.2. The Impact of the Diffusion Coefficients On Coinfection

To test the impact of the diffusion coefficients in model (1) on the behavior of the solu-
tions, we change the values of the coefficients considered in case (vi) to DU = DL = DIB =
DIV = DB = DV = DZ = 1 × 10−5. We observe from Figure 7 that the effect of this change
appears at the initial times, while the final solutions are not affected. Thus, the diffusion
coefficients do not affect the robustness of the global stability of the solutions. Therefore,
the impact of these coefficients should be monitored at the beginning of coinfection as it
affects the distribution of particles in space.

Table 1. Parameters’ values of system (1).

Parameter Value Source

λ 4 × 103 [44]
η1 Varied –
η2 Varied –
a 0.4 [24]
γ 0.5 [23]
μ1 100 [25]
μ2 700 [44]
ω Varied –
ε1 0.01 [44]
ε2 0.5 [25]
ε3 0.01 [44]
ε4 0.52 [27]
ε5 0.6 [16]
ε6 0.1 [44]
DU 0.1 Assumed
DL 0.1 Assumed
DIB 0.1 Assumed
DIV 0.1 Assumed
DB 0.2 Assumed
DV 0.2 Assumed
DZ 0.1 Assumed
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 1. The numerical results of system (1) for η1 = 2.5 × 10−9, η2 = 1 × 10−11, and ω = 8 × 10−3.
The uninfected equilibrium E0 =

(
4 × 105, 0, 0, 0, 0, 0, 0

)
is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 2. The numerical results of system (1) for η1 = 2.5 × 10−7, η2 = 1 × 10−11, and ω = 8 × 10−7.
The equilibrium E1 = (20,800, 9480, 7584, 0, 729,231, 0, 0) is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 3. The numerical results of system (1) for η1 = 2.5 × 10−9, η2 = 1 × 10−9, and ω = 1 × 10−8.
The equilibrium E2 =

(
8571.43, 0, 0, 391,429, 0, 4.56667 × 108, 0

)
is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 4. The numerical results of system (1) for η1 = 2.5 × 10−7, η2 = 1 × 10−11, and ω = 1 × 10−4.
The equilibrium E3 = (117,514, 7062.15, 1000, 0, 96,153.8, 0, 4.64972) is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 5. The numerical results of system (1) for η1 = 2.5 × 10−9, η2 = 1 × 10−9, and ω = 1 × 10−6.
The equilibrium E4 =

(
31,578.9, 0, 0, 1 × 105, 0, 1.16667 × 108, 0.0536842

)
is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 6. The numerical results of system (1) for η1 = 2 × 10−7, η2 = 1 × 10−9, and ω = 2 × 10−6.
The equilibrium E5 =

(
27,125.6, 5712.6, 4380.44, 45,619.6, 421,196, 5.322 × 107, 0.043

)
is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 7. The impact of changing the diffusion coefficients in case (vi) to 1 × 10−5. The initial
distributions of the solutions are affected, while the global stability is not affected.

166



Mathematics 2023, 11, 1715

6. Conclusions and Future Works

There is an emerging evidence that the COVID-19 patients who have Mtb are more
likely to develop acute disease and die [2,3,8]. Therefore, understanding Mtb/SARS-CoV-2
coinfection is critical to treat this group of patients. Here, we introduced a reaction–diffusion
within-host Mtb/SARS-CoV-2 model. It counts the connections between uninfected EPCs, la-
tently Mtb-infected EPCs, productively Mtb-infected EPCs, SARS-CoV-2-infected EPCs, Mtb
particles, SARS-CoV-2 virions, and CTLs. It owns six equilibrium points as the following:

(i) The uninfected equilibrium E0 constantly exists. It is GS if R0B ≤ 1 and R0V ≤ 1.
This equilibrium imitates the status of a healthy individual with negative SARS-CoV-2
and Mtb tests.

(ii) The Mtb immune-free equilibrium E1 is marked if R0B > 1, while it is GS if
R0V
R0B

≤ 1

and R1B ≤ 1. The patient here suffers from Mtb monoinfection, where the CTL
immunity has not yet been activated.

(iii) The COVID-19 immune-free equilibrium E2 occurs when R0V > 1. It is GS if
R0B
R0V

≤ 1

and R1V ≤ 1. Here, the patient has SARS-CoV-2 monoinfection with inefficient CTLs.
(iv) The Mtb equilibrium with immunity E3 exists if R1B > 1, while it is GS if

λωη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+ 1 ≤ ε3

ε2
+ R1B. In this condition, the CTL immunity is

stimulated to eliminate Mtb infection.
(v) The COVID-19 equilibrium with immunity E4 exists if R1V > 1, and it is GS if

λωη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+ 1 ≤ ε2

ε3
+R1V . This simulates the case of an individual with

COVID-19 infection and active CTL immunity.
(vi) The Mtb/SARS-CoV-2 coinfection equilibrium E5 exists and it is GS if

ωλη2μ2ε4

ε2ε5[ωε1ε4 + η1μ1ε2ε6]
+ 1 >

ε3

ε2
+ R1B,

ωλη1μ1ε2ε5

ε3ε4[ωε1ε5 + η2μ2ε6]
+ 1 >

ε2

ε3
+ R1V ,

R0V
R0B

> 1, ε2 > ε3, and σ > 1. Here, the patient with a single infection becomes

infected with both SARS-CoV-2 and Mtb.

We found that the numerical computations are quite congruous with the theoretical
contributions. The equilibrium points reflect three states: the healthy state, the monoin-
fection state, and the coinfection state. The threshold parameters defined in Proposition 1
determine the locomotion between these states. Thus, the values of parameters in model (1)
should be selected with caution. In addition, the global stability of the solutions of model (1)
is robust against the values of the diffusion coefficients. However, the initial distributions
of particles are affected by the selection of these values. Thus, it should be monitored as it
may affect the initial status of the coinfected patients. In fact, Mtb/SARS-CoV-2 coinfection
is a disease that needs to be further investigated and requires more awareness in high-TB
burden regions such as India, Indonesia, and China [2]. Understanding the dynamics
of coinfection will help develop new treatments, find better ways to treat coinfected pa-
tients, or recommend preventive measures for coinfected patients. The main limitation
of this work is that we did not acquire real data to estimate the values of parameters
in system (1). We gathered the values from SARS-CoV-2 monoinfection models or Mtb
monoinfection models. Furthermore, we proved the boundedness only for the case when
DU = DL = DIB = DIV = DZ. In addition, we assumed that CTLs kill infected cells at the
same rate constant. Therefore, this work could be polished by (i) utilizing real data to obtain
an estimation of the values of parameters in system (1) when the data on coinfection become
available, (ii) proving the boundedness for different diffusion coefficients, (iii) analyzing
the model with different killing rates of CTLs, (iv) counting the time delays inherent in the
latent stage or other responses, (v) adding the role of antibodies in eliminating SARS-CoV-2
or Mtb particles, (vi) using fractional derivatives to study model (1) [45,46], (vii) performing
a sensitivity analysis for the threshold parameters to identify the most sensitive parameters
in the model [47], (viii) considering mutations that can generate more aggressive variants of
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SARS-CoV-2 and their effect on coinfection dynamics [48], and (ix) developing a multiscale
model to connect within-host dynamics with between-hosts dynamics and gain a better
comprehension of the coinfection mechanism.
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Abstract: This article presents a study on singularly perturbed 1D parabolic Dirichlet’s type differen-
tial equations with discontinuous source terms on an interior line. The time derivative is discretized
using the Euler backward method, followed by the application of the streamline–diffusion finite
element method (SDFEM) to solve locally one-dimensional stationary problems on a Shishkin mesh.
Our proposed method is shown to achieve first-order convergence in time and second-order conver-
gence in space. Our proposed method offers several advantages over existing techniques, including
more accurate approximations of the solution on the boundary layer region, better efficiency, and
robustness in dealing with discontinuous line source terms. The numerical examples presented in this
paper demonstrate the effectiveness and efficiency of our method, which has practical applications
in various fields, such as engineering and applied mathematics. Overall, our proposed method
provides an effective and efficient solution to the challenging problem of solving singularly perturbed
parabolic differential equations with discontinuous line source terms, making it a valuable tool for
researchers and practitioners in various domains.

Keywords: singularly perturbed problem; parabolic differential equation; convection–diffusion
problem; line discontinuous source term; streamline–diffusion finite element method; Shishkin mesh;
uniformly convergent

MSC: 34K26; 35B25; 65M22; 65M50; 65N22

1. Introduction

In the literature, there are several articles available that deal with the numerical
solution of singularly perturbed 1D parabolic differential equations with sufficiently smooth
data functions, see [1–5]. Such problems, but with non-smooth data functions, can be seen
in [6–8]. In [9], Clavero considered a numerical scheme with two small parameters in both
the convection and diffusion terms. In [10], Gracia and O’Riordan considered a singularly
perturbed reaction–diffusion parabolic problem with an initial condition that was not
smooth. In [11], Clavero and Jorge considered 1D singularly perturbed parabolic convection
diffusion systems and used a splitting uniformly convergent method. In [12], Yao Cheng,
Yanjie Mei and H G Roos considered the local discontinuous Glerkin method for time
dependent singularly perturbed convection diffusion problems on layer adapted meshes.

While there have been several studies on solving parabolic differential equations with
various boundary conditions, such as Dirichlet and Neumann conditions, the problem
of nonlinear parabolic stochastic differential equations with nonlinear Robin conditions
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remains an active area of research. For instance, the recent article, [13], discusses Well-
Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin
Conditions which provides a rigorous analysis of the mathematical properties of this
problem. In this study, we focus on the related, but distinct, problem of numerically solving
1D singularly perturbed parabolic differential equations with discontinuous source terms
on an interior line.

This type of problem has a regular boundary layer at x = 1 (boundary point) as
the parameter ε tends to zero [14]. As a layer near the boundary exists, conventional
discretization techniques, such as Finite Difference Methods (FDMs) or Finite Element
Methods (FEMs), cannot yield an accurate solution, unless the mesh is highly refined [14].
Therefore, it is essential that any method proposed must employ a layer-adapted mesh
to achieve uniform accuracy. Mukherjee and Natesan [15] developed a hybrid finite
difference approach that converges uniformly for singularly perturbed 1D parabolic initial-
boundary value problems (IBVPs) on the piecewise uniform Shishkin mesh. Similarly,
Das et al. [16] proposed a numerical technique on the Bakhvalov-Shishkin mesh to solve
2D delay parabolic IBVPs. Hughes and Brooks [17] introduced the Streamline–diffusion
finite element method (SDFEM), which is widely recognized as an effective technique for
obtaining the numerical solutions of convection-dominated flow problems. Later, Roos and
Zarin [18] applied SDFEM on the Shishkin mesh to solve a singularly perturbed two-point
boundary value problem with a non-smooth source function.

The main focus of this paper was to investigate the numerical treatment of 1D singu-
larly perturbed parabolic Dirichlet’s differential equations with discontinuous source terms
on an interior line. This problem contains an interior layer at x = z due to the presence
of line discontinuities. The authors propose a method that first uses the backward Euler
method to discretize the time derivative, followed by applying SDFEM on the Shishkin
mesh to solve the locally one-dimensional stationary problem. In [19], Ghiocel Groza and
Nicolae Pop considered a numerical scheme for the locally one-dimensional stationary
boundary value problem. Various numerical examples were used to validate the suggested
method, both theoretically and numerically, and it demonstrated uniform convergence in
both space and time.

The paper is organized as follows: Section 2 presents the statement of the problem,
the temporal discretization, derivative estimates and stability findings of locally 1D prob-
lems. In Sections 3 and 4, the weak formulation and the numerical scheme for solving our
problem are described. In Section 5, the error estimate for the SDFEM method is provided,
while Section 6 offers numerical validation through various test examples. Finally, Section 7
provides some concluding remarks.

2. Continuous Problem and Stability Analysis

2.1. Statement of Continuous Problem

Inspired by the work of [20], the following singularly perturbed 1D parabolic differen-
tial equation is investigated in this paper.

Find a function u such that

Mu :=ut − εuxx + a(x)ux + b(x)u = δ(x − z)g(t) + f (x, t), (x, t) ∈ Ω∗ × (0, T], (1)

u(x, 0) = u0(x), x ∈ Ω, (2)

u(0, t) = 0 = u(1, t), t ∈ [0, T], (3)

where 0 < ε � 1 is a very small positive parameter, Ω∗ = Ω− ∪ Ω+, Ω− = (0, z),
Ω+ = (z, 1), Ω = [0, 1], the functions a(x) ≥ α > 0, b(x) > β > 0, g(t), f (x, t) and u0(x)
are sufficiently differentiable and bounded in their respective domains, δ(x − z) is the delta
function, and T is some fixed positive time.

In [18], Roos and Zarin used the SDFEM method to solve a two-point boundary value
problem with a point source function, which exhibits singular perturbation and requires
a layer adaptive mesh like Shishkin mesh. In their model, there was only one interior
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layer at a single point. However, in our problem, which involves time evolution, we have
an interior layer along a line source. Thus, we need to accurately capture the numerical
solution along this line source.

In the paper, the positive constant C is used to denote a generic constant that is
not dependent on the perturbation parameter ε, or the discretization parameters, such
as N or M. For practical purposes, the accepted convention is to assume ε ≤ CN−1 for
the convection coefficient problem. Additionally, the authors use the supremum norm
|ψ|D = supx∈D |ψ(x)| to measure the error and derivative bounds.

2.2. Time Domain Discretization and Locally 1D Problems

We introduce equidistant meshes in the time domain [0, T] with time step Δt, such
that ΩM

t = {ti = iΔt}M
i=0, Δt = T

M , where M represents the number of mesh elements in
the time direction. Now, discretizing the time derivative by means of the Euler fractional
method on uniform mesh, we obtain the following ordinary differential equation for every
time step tn in the set ΩM

t , where n ranges from 1 to M:

(I + ΔtL)ũn =ũn−1 + Δt[ f (x, tn) + δ(x − z)g(tn)], x ∈ Ω∗ (4)

ũn(0) = 0 = ũn(1), (5)

where the differential operator L = −ε d2

dx2 + a(x) d
dx + b(x) and ũn is the solution of (4) and (5).

Note that ũ0(x) = 0 = u0(x), x ∈ Ω.
To achieve the stability of the scheme given by (4) and (5), one can easily prove that

the operator Q = (I + ΔtL) satisfies the maximum principle:

‖Q−1‖∞ ≤ 1
1 + βΔt

. (6)

We can rewrite the semi-discretized problem (4) and (5) as:⎧⎨⎩L∗ũn := −ε
d2ũn(x)

d2x
+ a(x)

dũn(x)
dx

+ c(x)ũn(x) = gn(x), x ∈ Ω∗,

ũn(0) = 0 = ũn(1)
(7)

where c(x) = b(x) + 1
Δt and gn(x) = 1

Δt ũn−1 + { f (x, tn) + δ(x − z)g(tn)}. The above
scheme (7) is an ordinary differential equation in space variable x for each time step tn.

2.3. Maximum Principle and Derivative Estimates

Lemma 1 (Maximum Principle). Suppose that there exists a function ξ, belonging to the set
C0(Ω) ∩ C2(Ω∗), that satisfies the following conditions: ξ(x) ≥ 0 for x = 0, 1, L∗ξ(x) ≥ 0 for
all x ∈ Ω∗ and ξ ′(z−)− ξ ′(z+) ≥ 0 Then, it can be concluded that ξ(x) ≥ 0 for all x ∈ Ω.

Proof. The method of proof for the lemma is comparable to the one used in (Lemma 2
in [21]).

Lemma 2. Suppose ũn is the solution of problem (7) and is decomposed as ũn = r + s. Then,
the derivatives of the regular components satisfy∥∥∥∥∥dlr(x)

dxl

∥∥∥∥∥
Ω∗

≤ C(1 + ε−l+2), l = 0, 1, 2, 3, (8)

and, the derivatives of the singular components satisfy
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∣∣∣∣∣dls(x)
dxl

∣∣∣∣∣ ≤ Cε−l

⎧⎪⎪⎨⎪⎪⎩
exp

(
α(x − z)

ε

)
, x ∈ Ω−, l = 0, 1, 2, 3,

exp
(

α(x − 1)
ε

)
, x ∈ Ω+.

(9)

Proof. A similar strategy to the one used in (Theorem 9.1 in [22]) is employed for the proof.

2.4. Truncation Error

Lemma 3. Assume that, | ∂iu
∂ti | ≤ C, i = 0, 1, 2, 3, then ‖en‖∞ ≤ CΔt2 and ‖En‖∞ ≤ CΔt, where

en = u(x, tn)− ūn and En = ∑n
j=1 ej.

Proof. As ũn is the solution of (4) and (5), we have

(I + ΔtL)ũn − Δt{ f (x, tn) + δ(x − z)g(tn)} = un−1. (10)

By means of Taylor expansion, we have

u(x, tn−1) = u(x, tn)− Δt
∂u
∂t

(x, tn) + O(Δt2). (11)

From Equation (1) and if the solution of (1) is smooth enough, we have

∂u
∂t

(x, tn) = { f (x, tn) + δ(x − z)g(tn)} − Lun. (12)

From (10)–(12), we have

(I + ΔtL)en = O(Δt2), en(0) = en(1) = 0.

From this, we have ‖en‖ ≤ C(Δt)2 by using the stability result in (6).
The stability result and consistency property of (4) and (5) together implies

‖En‖ ≤ CΔt.

3. Weak Formulation

The standard weak formulation of problem (7) for a fixed n is given as follows. Find
ũn ∈ V = H1

0(Ω), such that

B(ũn, v) = gn(v), ∀v ∈ V,

where
B(y, v) = ε(y′, v′) + (ay′ + cy, v)

gn(v) = (gn, v).

Here, (. , .) represents the inner product in L2(Ω∗).
Consider the mesh in space as ΩN

x = {x0, x1, . . . , xN}, where N is some positive integer.
We define a mesh that includes the point z as one of its nodes. Let φi be the basis for the
finite-dimensional subspace Vh of piece-wise linear polynomials. The basis is given by

φi(x) =

⎧⎪⎪⎨⎪⎪⎩
x−xi−1

hi
xi−1 ≤ x ≤ xi,

xi+1−x
hi+1

xi ≤ x ≤ xi+1,

0 otherwise,

where hi = xi − xi−1 and i ∈ {1, 2, . . . , N}. We use this basis to ensure that z is one of the
mesh points.

The standard Galerkin method is given as follows: find ũn
h ∈ Vh ⊂ V = H1

0(Ω)
such that
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Bh(ũn
h , vh) = gn

h(vh), ∀vh ∈ Vh.

4. Streamline Diffusion Finite Element Formulation

The streamline diffusion weak formulation for the problem (7) is to find ũn
h ∈ Vh ⊂

V = H1
0(Ω), such that

Bh(ũn
h , vh) = gn

h(vh), ∀v ∈ Vh, (13)

where

Bh(y, w) = ε(y′, w′) + (ay′ + cy, w) +
N

∑
i=1

∫ xi

xi−1

δi(−εy′′ + ay′ + cy)aw′dx,

gn
h(w) = (gn, w) +

N

∑
i=1

∫ xi

xi−1

δign(x)a(x)w′dx.

The parameter, known as the Streamline–diffusion (SD) parameter, denoted as δi, is
decided later.

The SDFEM’s relevant difference scheme is presented below.

LN
SD := −ε[D+ui − D−ui] + αiD−ui + βiD+ui + γiui = gh(φi), (14)

where the symbols D+ and D− are given by the following:

D+ui =
ui+1 − ui

hi+1
, D−ui =

ui − ui−1

hi
,

and

αi =
∫ xi

xi−1

a(x)φidx − hi

∫ xi

xi−1

c(x)φi−1φidx +
δi
hi

∫ xi

xi−1

a(x)2 dx

− δi

∫ xi

xi−1

a(x)c(x)φi−1dx,

βi =
∫ xi+1

xi

a(x)φidx + hi+1

∫ xi+1

xi

c(x)φi+1φidx − δi+1

hi+i

∫ xi+1

xi

a(x)2 dx

− δi+1

∫ xi+1

xi

a(x)c(x)φi+1dx,

γi =
∫ xi+1

xi−1

c(x)φidx +
δi
hi

∫ xi

xi−1

a(x)c(x)dx − δi+1

hi+1

∫ xi+1

xi

a(x)c(x)dx.

The standard Galerkin method is effective for step lengths that are sufficiently small. If this
condition is not met, the method can be stabilized by utilizing the characteristics of an M-
matrix. To satisfy this condition, the streamline–diffusion parameter δi can be determined
such that the matrix resulting from the associated difference scheme (14) transforms into
an M-matrix, as outlined below:

[−αi]δi=0 ≤ ε,

This can be written as Cihi ≤ Ai + ε, where Ai =
∫ xi

xi−1
a(x)φidx and Ci =

∫ xi
xi−1

c(x)φi−1φidx.
If this condition is not met, αi is set to zero for i ∈ {1, 2, . . . , N} to achieve an M-matrix,
which results in the following:

δi =
(hiCi − Ai)hi

A2
i − hi ACi

where, A2
i =

∫ xi
xi−1

(a(x))2dx and ACi =
∫ xi

xi−1
a(x)c(x)φi−1dx. If we summarize the above

conditions, then we obtain
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δi =

⎧⎨⎩0, i f Cihi ≤ Ai + ε
(hiCi−Ai)hi
A2

i−hi ACi
, otherwise.

(15)

As a result, it is evident that δi = O(hi). By choosing vh as φi as well as ũh = (ũn
h(x1),

ũn
h(x2), . . . , ũn

h(xN)) ∈ RN , we obtain the linear system of algebraic equations associated
with the SDFEM scheme

Kũh = gh,

where K represents a tridiagonal matrix K = (kij) and gh = gn
h(φi). Upon computing the

coefficients,

ki,i−1 =− εh−1
i − h−1

i

∫ xi

xi−1

a(x)φidx +
∫ xi

xi−1

c(x)φi−1φidx − δih−2
i

∫ xi

xi−1

a(x)2 dx

+ δih−1
i

∫ xi

xi−1

a(x)c(x)φi−1dx,

ki,i =εh−1
i + εh−1

i+1 + h−1
i

∫ xi

xi−1

a(x)φidx − h−1
i+1

∫ xi+1

xi

c(x)φidx +
∫ xi

xi−1

c(x)φ2
i dx

+
∫ xi+1

xi

c(x)φ2
i dx + δih−2

i

∫ xi

xi−1

a(x)2 dx

+ δi+1h−2
i+1

∫ xi+1

xi

a(x)2dx + δih−1
i

∫ xi

xi−1

a(x)c(x)φidx − δi+1h−1
i+1

∫ xi+1

xi

a(x)c(x)φi dx

ki,i+1 =− εh−1
i+1 + h−1

i+1

∫ xi+1

xi

a(x)φidx +
∫ xi+1

xi

c(x)φi+1φi dx

− δi+1h−2
i+1

∫ xi+1

xi

a(x)2dx − δi+1h−1
i+1

∫ xi+1

xi

a(x)c(x)φi+1dx.

Remark 1. We defined the SD parameter using the procedure given in [23]. Realistically, the con-
ventional Galerkin method satisfies the criterion that defines an M-matrix for almost all 1D problems.
In such a situation, the Galerkin method and the SDFEM both yield almost identical outcomes.

Remark 2. Generally, the conventional Galerkin method is analogous to the central finite difference
approach. However, in regions where convection is dominant, applying a central finite difference
approximation to the convective term may lead to oscillations [14]. In such instances, the SDFEM
is a superior alternative.

4.1. Discrete Green’s Function and Stability

To establish the (l∞, w−1,∞) stability of the SDFEM, we introduce the discrete Green’s
function. The i-th discrete Green’s function, denoted as λi ∈ Vh, is determined by solving
the following problem: {

Bh(φj, λi) = δij,
λi(0) = λi(1) = 0,

(16)

where δij denotes the Kronecker delta. Additional details on these and related concepts can
be found in references such as [24–26].

Lemma 4 ([25]). If λi = ∑N
j=1 λi

jφj,, then the discrete Green’s function exhibits the follow-
ing conditions:

(1) λi
j ≥ 0, i, j ∈ {1, 2, . . . , N},

(2) 0 ≤ λi
1 < . . . < λi

i > λi
i+1 . . . > λi

N .

Lemma 5. If we denote c0 = mini{ci}, i = 1, 2, . . . , N where ci = ki+1,i − ki,i+1 and
λi = ∑N

j=1 λi
jφj, then λi

i ≤ c−1
0 .
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Proof. From (16), for any vh ∈ Vh, we have

Bh(vh, λi) = vh(xi).

Considering vh = ∑i
j=1 φj, one can derive

N

∑
j=1

j

∑
k=1

kj,kλi
j = 1.

Expanding, we obtain

(k1,1+k1,2)λ
i
1 +

i

∑
j=2

(kj,j−1 + kj,j + kj,j+1)λ
i
j+

ki+1,i(λ
i
i+1 − λi

i) + λi
i(ki+1,i − ki,i+1) = 1.

K is an M-matrix implying (ki,i−1 + ki,i + ki,i+1) ≥ 0, for i ∈ {2, . . . , N − 1}. Now, by means
of Lemma 4 and k1,1 > k1,2 (property), we have

λi
i(ki+1,i − ki,i+1) ≤ 1.

This implies that

λi
i ≤

1
(ki+1,i − ki,i+1)

= c−1
i .

So, we conclude that λi
i ≤ c−1

0 .

Lemma 6 ([25]). The SDFEM, equipped with the streamline–diffusion parameter specified in
Equation (15), is uniformly stable in the (l∞, w−1,∞) norm, as demonstrated by the following result:

‖vh‖∞ ≤ 2
c0

max
j

∣∣∣∣∣ N

∑
k=j

(Kvh)k

∣∣∣∣∣, ∀vh ∈ Vh, j = 1, . . . , N.

4.2. Shishkin Type Mesh

We used a general type mesh introduced in [27] with adapted layers at the points
x = z and x = 1. Let N be a positive even integer greater than 4 and σ1 = min{ z

2 , τ0
α ε ln N},

σ2 = min{ 1−z
2 , τ0

α ε ln N}, τ0 ≥ 2. Here, we considered σ1 = σ2 = τ0
α ε ln N. Let

Ωs = (0, z − σ1) ∪ (z, 1 − σ2) and Ω0 = (z − σ1, z) ∪ (1 − σ2, 1). On Ωs and Ωo, the mesh is
equidistant and graded respectively. The transition points are chosen to be

x N
4
= z − σ1, x N

2
= z, x 3N

4
= 1 − σ2.

We chose two mesh generating functions ϕ1 and ϕ2 for the particular layers:

ϕ1(
1
4
) = ln N, ϕ1(

1
2
) = 0,

ϕ2(
3
4
) = ln N, ϕ2(1) = 0.

The nodes of the Shishkin mesh (S-mesh) are as follows:

xi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4i
N (z − σ1) i = 0, . . . , N

4 ,
z − τ0

α εϕ1(ti) i = N
4 + 1, . . . , N

2 ,

z + 4(1−z−σ2)(i− N
2 )

N i = N
2 + 1, . . . , 3N

4 ,
− τ0

α εϕ2(ti) + 1 i = 3N
4 + 1, . . . , N,

(17)
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where ti = i
N , ϕi = − ln ψi for i = 1, 2, ψ1(t) = exp (−(2 − 4t) ln N) and ψ2(t) =

exp (−(4 − 4t) ln N) on Shishkin mesh (S-mesh).
maxi |ψ′

i |, i = 1, 2 plays a part in error analysis as we see in the upcoming section. we
have max |ψ′| ≤ C ln N in the S-mesh. Assuming that the mesh generating function ϕi,
for i = 1, 2, obeys the following:

max{|ϕ′
i|} ≤ NC0, f or i = 1, 2. (18)

We observe that on the coarse part Ωs, the following holds for the S-mesh:

hi N ≤ C. (19)

On the layer part it is true that on the S-mesh,

hi ≤ Cε
ln N

N
(20)

and, by the assumption (18), we obtain

hi
ε
≤ CN−1 max |ϕ′| ≤ C. (21)

5. Error Estimations

The error at each time level tn, where 1 ≤ n ≤ M − 1, can be expressed as the
difference between ũn(xi) and ũn

h(xi) for all xi ∈ Ω∗. Another way to represent this error is
by utilizing the linear interpolant ũn

I of ũn as follows:

e(xi) = (ũn − ũn
h)(xi) = (ũn − ũn

I )(xi) + (ũn
I − ũn

h)(xi)

= eI + eD.

The errors of interpolation and discretization are denoted by eI and eD, respectively. In this
section, we begin by deriving an estimate for the upper bound of the discretization error,
based on the error caused by interpolation. Following that, we estimate the upper bound
of the interpolation error.

The discretization error is given by

eD = (ũn
I − ũn

h)(x) =
N

∑
i=0

eiφi. (22)

By means of the orthogonality property, we have

Bh(ũn − ũn
h , vh) = 0, ∀vh ∈ Vh.

Using the above property, we obtain

Bh(eD, φi) = Bh(ũn
I − ũn

h , φi)

= Bh(ũn
I − ũn, φi), i ∈ {1, 2, . . . , N − 1}.

Therefore, the equation for error is{
Bh(eD, φi) = Bh(ũn

I − ũn, φi), i ∈ {1, 2, . . . , N − 1},
eD

0 = 0, eD
N = 0.

(23)

The following lemma gives the explicit expression for Bh(ũn
I − ũn, φi).
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Lemma 7. The error Equation (23) involves the bilinear form Bh(ũn
I − ũn, φi), which can be

explicitly expressed as follows:

Bh(ũn
I − ũn, φi) = Oi + (Pi + Pi+1) + (Qi − Qi+1) + (Ri − Ri+1) + (Si − Si+1),

where

Oi =
∫ xi+1

xi−1

a′(x)(ũn
I − ũn)φidx, (24)

Pi =
∫ xi

xi−1

c(x)(ũn
I − ũn)φidx, (25)

Qi =
δi
hi

∫ xi

xi−1

(a(x)c(x)(ũn
I − ũn) + a(x)2(ũn

I − ũn)′)dx, (26)

Ri =− εδih−1
i

∫ xi

xi−1

a(x)(ũn
I − ũn)′′dx, (27)

Si =h−1
i

∫ xi

xi−1

a(x)(ũn
I − ũn)dx. (28)

Proof. One can prove the required results by a simple calculation.

Lemma 8. Assume that a(x) ∈ W2,1, then the following estimates are true:

(i)
N

∑
i=1

|Oi| ≤ c1‖ũn − ũn
I ‖∞, (ii)

N

∑
i=1

|Pi| ≤ c2‖ũn − ũn
I ‖∞,

(iii) ‖Qi‖∞ ≤ c3‖ũn − ũn
I ‖∞, (iv) ‖Ri‖∞ ≤ c4‖ũn − ũn

I ‖∞,

(v) ‖Si‖∞ ≤ c5‖ũn − ũn
I ‖∞.

Proof. We prove this Lemma sequentially:

(i). From (24), we know that

Oi =
∫ xi+1

xi−1

a′(x)(ũn
I − ũn)φidx.

Now, taking all the intervals and summing up, we have

N

∑
i=1

|Oi| ≤ ‖ũn
I − ũn‖∞

N

∑
i=1

∫ xi+1

xi−1

a′(x)dx

≤ ‖ũn
I − ũn‖∞|a(x)|1,1

= c1‖ũn
I − ũn‖∞.

(ii). From Equation (25), we have

Pi =
∫ xi

xi−1

c(x)(ũn
I − ũn)φidx.

If we conduct a summation over all intervals, and derive

N

∑
i=1

|Pi| ≤ ‖ũn
I − ũn‖∞‖a(x)‖∞ hi

= c2‖ũn
I − ũn‖∞.
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(iii). From Equation (26), we have

Qi =
δi
hi

∫ xi

xi−1

(a(x)c(x)(ũn
I − ũn) + a(x)2(ũn

I − ũn)′)dx.

If the inequality Cihi ≤ Ai + ε holds, then δi = 0 and, as a result, ri = 0. On the other
hand, if the condition is not satisfied, then we have δi �= 0. In this scenario, it can be
observed that δi = O(hi), we obtain

|Qi| ≤ C‖a(x)‖∞‖ũn
I − ũn‖∞(‖c(x)‖∞hi − 2|a(x)|1,1)

= c3‖ũn
I − ũn‖∞.

(iv). From Equation (27), we have

Ri = − εδi
hi

∫ xi

xi−1

a(x)(ũn
I − ũn)′′dx,

and, here also we have ri = 0 when Cihi ≤ Ai + ε, and if it is not true, we have

|Ri| ≤ C|a(x)|2,1‖ũn
I − ũn‖∞

= c4‖ũn
I − ũn‖∞.

(v). Now, finally from Equation (28), we have

Si =
1
hi

∫ xi

xi−1

a(x)(ũn
I − ũn)dx.

Simplifying this, we obtain

|Si| ≤ ‖a(x)‖∞‖ũn
I − ũn‖∞

= c5‖ũn
I − ũn‖∞.

Lemma 9. Consider the problem (7) and let ũn be the exact solution to this problem. Furthermore,
let ũn

I denote the interpolant of ũn on a given grid and let ũn
h represent the approximate solution at

the time level tn. Then, It follows that

‖ũn − ũn
h‖∞ ≤ C‖ũn

I − ũn‖∞.

Proof. Using Lemmas 6 and 8, we have

‖ũn
I − ũn

h‖∞ ≤ C max
i∈{1,...,N}

∣∣∣∣∣ N

∑
j=i

(K(ũn
I − ũn

h))j

∣∣∣∣∣
= C max

i∈{1,...,N}

∣∣∣∣∣ N

∑
j=i

Bh(ũn
I − ũn, φj)

∣∣∣∣∣
≤ C

(∣∣∣∣∣ N

∑
i=1

Oi

∣∣∣∣∣+ 2

∣∣∣∣∣ N

∑
i=1

Pi

∣∣∣∣∣+ max
i∈{1,...,N}

(Qi − QN) + max
i∈{1,...,N}

(Ri − RN)

)
+ C max

i∈{1,...,N}
(Si − SN)

≤ C

(
N

∑
i=1

|Oi|+ 2
N

∑
i=1

|Pi|+ 2(‖Qi‖∞ + ‖Ri‖∞ + ‖Si‖∞)

)
≤ C‖ũn

I − ũn‖∞.
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This implies that the discretization error eD given in (22) is bounded in terms of
the interpolation error eI . By applying the triangle inequality, we establish the follow-
ing inequality:

‖ũn − ũn
h‖∞ ≤ C|ũn

I − ũn‖∞.

Therefore, we have successfully demonstrated the validity of this inequality.

We now proceed to estimate the upper bound of the interpolation error for the S-mesh.

Theorem 1. Let ũn be the classical solution of the problem (7), ũn
I be its interpolant on a Shishkin

mesh with the grid points xi as in (17) and ε ≤ C
N . Then, the following holds:

‖ũn
I − ũn‖∞ ≤

{
C(N−1 ln N)2, x ∈ Ω0,
CN−2, x ∈ Ωs.

Proof. We perform a separate analysis of the error due to interpolation on the domain Ω−
as well as Ω+.

First, consider x in the domain Ω−. Let ũn
1 (x) be the solution to the problem:{

L∗ũn
1 (x) = gn(x), x ∈ Ω− = (0, z),

ũ0(0) = 0, ũ0(z) = d.

For now, assume that d is a constant. Then, the solution ũn
1 (x) exists and we can decompose

it as a sum of two functions r1 and s1, where r1 and s1 satisfy bounds (8) and (9). Then, we
can write

ũn
1 (x)− ũn

1,I(x) = r1(x)− r1,I(x) + s1(x)− s1,I(x).

By means of classical theory, and from (19) and (8), we have the following estimate for
the interpolation error r1(x)− r1,I(x) on the regular part:

|r1(x)− r1,I(x)| ≤ Ch2
i max

xi−1≤x≤xi
|r′′1 | ≤ Ch2

i ≤ CN−2.

For the interpolation error r1(x)− r1,I(x) in the layer part, one can derive:

|r1(x)− r1,I(x)| ≤ Cε2(N−1 ln N)2 exp
(−2α

τ0ε
(xi−1 − z)

)
≤ C(N−1 ln N)2.

The above expression is obtained by utilizing the inequality (20), selecting the transition
point σ1, and assuming the condition ε ≤ C

N holds. Now, for the interpolation error
s1(x)− s1,I(x) on the regular part, we have

|s1(x)− s1,I(x)| ≤ 2|s1(x)| ≤ C max
xi−1≤x≤xi

exp
(
−α

ε
(z − x)

)
≤ C exp

(
−α

ε
σ1

)
= CN−τ0 .

Regarding the interpolation error for the layer component, i.e., s1(x)− s1,I(x), we apply
the classical theory to obtain the following:

|s1(x)− s1,I(x)| ≤ Ch2
i max

xi−1≤x≤xi
|s′′1 |

≤ C(N−1 ln N)2 max
xi−1≤x≤xi

exp
(−α

ε
(z − x)

)
≤ C(N−1 ln N)2.
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Here, we used the inequality (20), the first inequality of (9) and (21). Similarly, we can
prove the case x ∈ Ω+.

Theorem 2. Suppose that u(x, t) represents the classical solution of problem (1)–(3), ũn
h(x) rep-

resents the numerical solution of the SDFEM scheme (fully discrete) (13) at the nth time step tn.
Under the conditions of Lemma 3 and Theorem 1, we have the error estimate as follows:

‖ũn
h(x)− u(x, tn)‖∞ ≤

{
C((N−1 ln N)2 + Δt), x ∈ Ω0,
C(N−2 + Δt), x ∈ Ωs.

Proof. We can prove this error estimate by combining the results from Lemma 3 and
Theorem 1.

6. Numerical Validation

In order to demonstrate the accuracy of the theoretical findings, we provide two
illustrative examples in this section. We employed the double mesh principle to estimate
the errors and their convergence rates for the test problems, as the exact solutions are
unknown. The principle involves obtaining the numerical solution Y2N,k/2(xn

i , ti) on a grid
Ω2N

x × Ω2M
t , where the spatial direction is divided into 2N intervals, while the temporal

direction is divided into 2M intervals. The mesh Ω2N
x × Ω2M

t is obtained by dividing each
segment of the previous mesh ΩN

x × ΩM
t , where the spatial direction is divided into N

intervals, while the temporal direction is divided into M intervals, in two equal parts.
Subsequently, we estimate the maximum point-wise error and convergence rate for each ε.

EN,k
ε = max

i,n

∣∣∣YN,k(xn
i , tn)− Y2N,k/2(xn

i , tn)
∣∣∣,

DN,k
x = max

ε
EN,k

ε , rN,k = log2

(
DN,k

x

D2N,k/2
x

)
.

Example 1. We examined the one-dimensional parabolic partial differential equation with a line
source, described by Equations (1)–(3). The given data for this problem were as follows:

u(x, 0) = 0, x ∈ Ω = (0, 1),

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

a(x) = x + 5; b(x) = 1; f (x, t) = x + t; g(t) = 1; z =
1
2

.

In Table 1, we list the order of convergence and the maximum point-wise error cor-
responding to Example 1. When M=50, the CPU run time for the error given in the table
was 7.6844 × 102 s. Additionally, Figure 1 shows the spatial profile of the solution of the
problem described in Example 1 at different times t, for a fixed value of ε and is a visual
representation of the solution with a strong boundary layer at x = 1, where the solution
changed rapidly over a very small distance. This boundary layer arose due to the strong
boundary condition ũn

h(1, t) = 0, which forced the solution to approach the value zero very
quickly. The figure also shows the location of a strong interior layer at x = 1

2 , which caused
a localized increase in the solution, which arose due to the line source term at the line x = 1

2 .
Figure 2 shows the corresponding point-wise maximum error, that is, the maximum error
decreased as N increased, irrespective of ε.
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Table 1. Maximum error and order of convergence for Example 1 with the number M = 50,100.

ε M N (Number of Grid Points)

↓ ↓ 26 27 28 29 210 211 212

2−6 50 1.0843 × 10−1 3.1740 × 10−2 1.2410 × 10−2 4.0043 × 10−3 1.2979 × 10−3 3.6024 × 10−4 1.0865 × 10−4

100 1.0286 × 10−1 2.6681 × 10−2 1.0315 × 10−2 3.7978 × 10−3 1.5062 × 10−3 6.2557 × 10−4 2.6478 × 10−4

2−7 50 1.1120 × 10−1 2.8842 × 10−2 1.1237 × 10−2 3.5721 × 10−3 1.1214 × 10−3 3.9296 × 10−4 1.6141 × 10−4

100 1.0748 × 10−1 2.8066 × 10−2 1.1374 × 10−2 4.6676 × 10−3 1.8575 × 10−3 8.9909 × 10−4 4.2970 × 10−4

2−8 50 1.1289 × 10−1 2.7113 × 10−2 1.0495 × 10−2 3.2872 × 10−3 1.2105 × 10−3 4.5429 × 10−4 1.9634 × 10−4

100 1.1002 × 10−1 2.9689 × 10−2 1.2033 × 10−2 5.0398 × 10−3 2.4171 × 10−3 1.1748 × 10−3 5.8837 × 10−4

2−9 50 1.1361 × 10−1 2.6175 × 10−2 1.0085 × 10−2 3.2652 × 10−3 1.2404 × 10−3 5.0069 × 10−4 2.1944 × 10−4

100 1.1175 × 10−1 3.0602 × 10−2 1.2410 × 10−2 5.3361 × 10−3 2.5656 × 10−3 1.3340 × 10−3 6.5985 × 10−4

2−10 50 1.1395 × 10−1 2.5686 × 10−2 9.8700 × 10−3 3.3070 × 10−3 1.2620 × 10−3 5.1495 × 10−4 2.3576 × 10−4

100 1.1263 × 10−1 3.1082 × 10−2 1.2609 × 10−2 5.5213 × 10−3 2.6932 × 10−3 1.3756 × 10−3 7.0938 × 10−4

2−11 50 1.1411 × 10−1 2.5438 × 10−2 9.7602 × 10−3 3.3285 × 10−3 1.2731 × 10−3 5.2436 × 10−4 2.4101 × 10−4

100 1.1307 × 10−1 3.1327 × 10−2 1.2711 × 10−2 5.6167 × 10−3 2.7588 × 10−3 1.4141 × 10−3 7.2555 × 10−4

2−12 50 1.1418 × 10−1 2.5312 × 10−2 9.7046 × 10−3 3.3393 × 10−3 1.2787 × 10−3 5.2911 × 10−4 2.4429 × 10−4

100 1.1329 × 10−1 3.1451 × 10−2 1.2763 × 10−2 5.6650 × 10−3 2.7921 × 10−3 1.4321 × 10−3 7.3508 × 10−4

2−13 50 1.1422 × 10−1 2.5249 × 10−2 9.6767 × 10−3 3.3448 × 10−3 1.2815 × 10−3 5.3150 × 10−4 2.4594 × 10−4

100 1.1340 × 10−1 3.1514 × 10−2 1.2789 × 10−2 5.6894 × 10−3 2.8088 × 10−3 1.4416 × 10−3 7.3966 × 10−4

2−14 50 1.1424 × 10−1 2.5217 × 10−2 9.6627 × 10−3 3.3475 × 10−3 1.2829 × 10−3 5.3270 × 10−4 2.4679 × 10−4

100 1.1345 × 10−1 3.1545 × 10−2 1.2803 × 10−2 5.7016 × 10−3 2.8172 × 10−3 1.4469 × 10−3 7.4190 × 10−4

2−15 50 1.1425 × 10−1 2.5201 × 10−2 9.6557 × 10−3 3.3489 × 10−3 1.2836 × 10−3 5.3330 × 10−4 2.4725 × 10−4

100 1.1348 × 10−1 3.1561 × 10−2 1.2809 × 10−2 5.7077 × 10−3 2.8214 × 10−3 1.4496 × 10−3 7.4301 × 10−4

DN,k
x 50 1.1425 × 10−1 3.1740 × 10−2 1.2410 × 10−2 4.0043 × 10−3 1.2979 × 10−3 5.3330 × 10−4 2.4725 × 10−4

100 1.1348 × 10−1 3.1561 × 10−2 1.2809 × 10−2 5.7077 × 10−3 2.8214 × 10−3 1.4496 × 10−3 7.4301 × 10−4

rN,k 50 1.8478 × 100 1.3548 × 100 1.6319 × 100 1.6253 × 100 1.2832 × 100 1.1089 × 100 -
100 1.8462 × 100 1.3010 × 100 1.1662 × 100 1.0165 × 100 9.6076 × 10−1 9.6419 × 10−1 -

Figure 1. Numerical solution of Example 1.

Example 2. We examined another one-dimensional parabolic partial differential equation with a
line source, described by Equations (1)–(3). The given data for this problem were as follows:

u(x, 0) = 0, x ∈ Ω = (0, 1),

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

a(x) =
5 + x

5 + 3x2 + e−1/x2
; b(x) = 1; f (x, t) = e−

1
x +

√
t; g(t) = 1; z =

1
2

.
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Figure 2. Maximum error of Example 1, when M = 50.

Table 2 presents the maximum point-wise error and the associated convergence rate
for Example 2, when M = 50. The CPU run time for the error given in the table was
7.8426 × 102 s. Additionally, as illustrated in Example 1, the graphs of numerical solu-
tion and point-wise maximum error of the problem are illustrated in Figures 3 and 4,
respectively.

Table 2. Maximum error and order of convergence for Example 2 with the number M = 50,100.

ε M N (Number of Grid Points)

↓ ↓ 26 27 28 29 210 211 212

2−6 50 2.1266 × 10−1 1.3349 × 10−1 7.0424 × 10−2 3.3712 × 10−2 1.5223 × 10−2 7.1724 × 10−3 3.4900 × 10−3

100 2.8109 × 10−1 2.2380 × 10−1 1.3696 × 10−1 7.0987 × 10−2 3.3312 × 10−2 1.5960 × 10−2 7.8452 × 10−3

2−7 50 3.5020 × 10−1 2.2511 × 10−1 1.2890 × 10−1 6.7146 × 10−2 3.3507 × 10−2 1.6344 × 10−2 7.8856 × 10−3

100 4.5196 × 10−1 3.8586 × 10−1 2.6099 × 10−1 1.4770 × 10−1 7.6575 × 10−2 3.8040 × 10−2 1.8516 × 10−2

2−8 50 4.4469 × 10−1 3.0061 × 10−1 1.7211 × 10−1 9.0480 × 10−2 4.6009 × 10−2 2.3068 × 10−2 1.1432 × 10−2

100 5.8200 × 10−1 5.2658 × 10−1 3.6716 × 10−1 2.1077 × 10−1 1.1126 × 10−1 5.6420 × 10−2 2.8120 × 10−2

2−9 50 5.0400 × 10−1 3.4278 × 10−1 1.9902 × 10−1 1.0568 × 10−1 5.3720 × 10−2 2.7130 × 10−2 1.3529 × 10−2

100 6.6504 × 10−1 6.0947 × 10−1 4.3599 × 10−1 2.5668 × 10−1 1.3564 × 10−1 6.9369 × 10−2 3.4832 × 10−2

2−10 50 5.3763 × 10−1 3.6934 × 10−1 2.1445 × 10−1 1.1366 × 10−1 5.8382 × 10−2 2.9379 × 10−2 1.4749 × 10−2

100 7.1658 × 10−1 6.5915 × 10−1 4.7996 × 10−1 2.8410 × 10−1 1.5157 × 10−1 7.7503 × 10−2 3.8981 × 10−2

2−11 50 5.5558 × 10−1 3.8344 × 10−1 2.2246 × 10−1 1.1819 × 10−1 6.0637 × 10−2 3.0661 × 10−2 1.5383 × 10−2

100 7.4477 × 10−1 6.8558 × 10−1 5.0407 × 10−1 3.0050 × 10−1 1.6044 × 10−1 8.2210 × 10−2 4.1429 × 10−2

2−12 50 5.6486 × 10−1 3.9071 × 10−1 2.2677 × 10−1 1.2054 × 10−1 6.1870 × 10−2 3.1290 × 10−2 1.5730 × 10−2

100 7.6104 × 10−1 6.9976 × 10−1 5.1666 × 10−1 3.0910 × 10−1 1.6535 × 10−1 8.4716 × 10−2 4.2767 × 10−2

2−13 50 5.6958 × 10−1 3.9441 × 10−1 2.2904 × 10−1 1.2175 × 10−1 6.2500 × 10−2 3.1619 × 10−2 1.5897 × 10−2

100 7.6927 × 10−1 7.0691 × 10−1 5.2310 × 10−1 3.1350 × 10−1 1.6788 × 10−1 8.6049 × 10−2 4.3442 × 10−2

2−14 50 5.7196 × 10−1 3.9627 × 10−1 2.3017 × 10−1 1.2236 × 10−1 6.2816 × 10−2 3.1785 × 10−2 1.5984 × 10−2

100 7.7341 × 10−1 7.1050 × 10−1 5.2636 × 10−1 3.1573 × 10−1 1.6915 × 10−1 8.6729 × 10−2 4.3793 × 10−2

2−15 50 5.7315 × 10−1 3.9720 × 10−1 2.3074 × 10−1 1.2267 × 10−1 6.2975 × 10−2 3.1868 × 10−2 1.6027 × 10−2

100 7.7548 × 10−1 7.1230 × 10−1 5.2803 × 10−1 3.1685 × 10−1 1.6980 × 10−1 8.7074 × 10−2 4.3971 × 10−2

DN,k
x 50 5.7315 × 10−1 3.9720 × 10−1 2.3074 × 10−1 1.2267 × 10−1 6.2975 × 10−2 3.1868 × 10−2 1.6027 × 10−2

100 7.7548 × 10−1 7.1230 × 10−1 5.2803 × 10−1 3.1685 × 10−1 1.6980 × 10−1 8.7074 × 10−2 4.3971 × 10−2

rN,k 50 5.2904 × 10−1 7.8358 × 10−1 9.1156 × 10−1 9.6189 × 10−1 9.8265 × 10−1 9.9160 × 10−1 -
100 1.2260 × 10−1 4.3187 × 10−1 7.3683 × 10−1 8.9999 × 10−1 9.6349 × 10−1 9.8568 × 10−1 -

From the above two Examples, 1 and 2, we see that the solutions of the problems
exhibited an interior layer at x = 1

2 and a boundary layer at x = 1.
Note: For the numerical computation, a system with the following configuration i7

processor, 8.00 GB RAM was used.
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Figure 3. Numerical solution of Example 2.

Figure 4. Maximum error of Example 2, when M = 50.

7. Conclusions

In this study, we analyzed 1D parabolic equations that were singularly perturbed and
contained a discontinuous source term on an interior line. Our objective was to discretize
the time derivative using the Euler backward method and apply SDFEM to the locally one-
dimensional stationary problems on Shishkin mesh. We aimed to determine the accuracy
order of the spatial arrangement and evaluate test problems in terms of their maximum
pointwise errors.

Our results showed that the accuracy order of the spatial arrangement was of second-
order nature, but, due to the presence of the first-order term Δt in the error bound, the over-
all accuracy order was limited to first-order accuracy. These findings are presented as
Theorems 1 and 2. Examples 1 and 2 represent the test problems, and Figures 1 and 3
depict their solutions. The layer occurred at the interior line x = z and boundary line
x = 1, which is evident from these figures. Figures 2 and 4 represent the convergence of
the numerical solutions, that is, they illustrate that a higher value of N corresponded to a
lower maximum pointwise error.

We evaluated the test problems in terms of their maximum pointwise errors, presented
in Tables 1 and 2. From the tables we see that the computational order of convergence
was almost one, but Theorem 2 showed second-order convergence in space and first-order
convergence in time. This was due to the first-order term in the final result. Our results
demonstrated that the maximum pointwise error stabilized as parameter ε decreased and
decreased as parameter N increased.

It is worth noting that the results for SDFEM for ordinary differential equations,
together with discontinuous source terms, are already available in the literature, as in,
for example, [18], and, for the parabolic PDE without source line, in [3]. However, our

185



Mathematics 2023, 11, 2034

results in this paper extend SDFEM to a parabolic PDE with a line source term, which is
a significant contribution to the field. The error estimates are presented using the above-
defined norm.

In summary, our study successfully achieved the objective of extending SDFEM to a
parabolic PDE with a line source term. We determined the accuracy order of the spatial
arrangement, evaluated the test problems in terms of their maximum pointwise errors,
and demonstrated the stability of the maximum pointwise error as the parameter ε decreases.
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Abstract: In this work, we find analytical solutions to the Chavy-Waddy–Kolokolnikov equation, a
continuum approximation for modeling aggregate formation in bacteria moving toward the light, also
known as phototaxis. We used three methods to obtain the solutions, the generalized Kudryashov
method, the e−R(ξ)-expansion, and exponential function methods, all of them being very efficient for
finding traveling wave-like solutions. Findings can be classified into the case where the nonlinear
term can be considered a small perturbation of the linear case and the regime of instability and pattern
formation. Standing waves and traveling fronts were also found among the physically interesting
cases, in addition to recovering stationary spike-like solutions.

Keywords: diffusion equations; traveling waves; phototaxis; bacterial motion; biological aggregation
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1. Introduction

Bacteria have evolved various mechanisms to adapt and survive in their environments,
such as migrating towards regions with higher nutrient concentrations or better living
conditions. Chemotaxis is a common adaptation where bacteria sense and respond to
chemical gradients, moving towards a region with a higher concentration of a particular
substance. Another adaptation is phototaxis, which involves the movement of photosyn-
thetic, motile organisms towards light. Both chemotaxis and phototaxis play important
roles in evolutionary and ecological processes. Chemotaxis has been extensively studied in
biology and mathematics, with the Keller–Segel equation being one of the earliest and most
well-known models [1]. This equation consists of a reaction–diffusion–advection-like equa-
tion for bacterial density containing a function for chemotactic sensitivity, another function
for the production and death of individuals, and a cross-diffusion term that couples with
the concentration of the chemical signal that has its kinetics [2]. On the other hand, from a
biological perspective, it has been verified that for the successful realization of phototaxia,
the presence of both photoreceptors and pili is crucial, as they play a key role in facilitating
its progression [3], which proved to be fundamental in agent model simulations [4]. From
mathematical modeling, there is a series of papers, where D. Levy et al. [5–10] proposed
some models to describe how phototaxis bacteria behave based on some basic features
extracted from observations and experiments. The tools range from stochastic equations,
particle models, kinetic models, to master equations in terms of probabilities and partial
differential equations (PDEs). Group dynamics is a crucial feature in this system and was
encoded through an internal degree of freedom called excitation [6,9]. Some models show
additional internal variables involved with excitation, such as rotation; it was found that the
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sensitivity to perform phototaxis decreases if there is no rotation of the colony [11]. Among
Levy’s papers, there are two relevant PDE models, the first being a reaction–diffusion
equation system for bacterial concentration, excitation, and substrate memory derived
as a continuous limit of a stochastic model [5,6]. This resembles the chemotactic model,
which has also been adapted to analyze phototaxis [12,13]. The second model involves
local interactions by means of a proposed system of master equations for the probability
of finding bacteria in a particular state. Such a system includes reaction–diffusion, persis-
tence, and sticking terms [9,10]. From the latter, Chavy-Waddy and Kolokolnikov (CWK)
proposed a simplified system of equations for the probability that the bacteria move and
obtained a fourth-order nonlinear partial differential equation, only depending on one
parameter that combines the probabilities of moving to either side, staying, or changing
direction according to the sensing distance [14]. The resulting model is of swarming type
for bacterial aggregation, like the Cahn–Hillard equation [15]. The stationary solution
coincides with a state of particle aggregation, for which Taranets and Chugunova [16]
studied the rate of convergence and the existence of non-negative solutions. Recently, the
physical characteristics of the bacteria, such as their shape and the way the flaps work, are
also being explored for increasingly accurate models of phototaxis [17]. The CWK equation
includes a reverse diffusion term, a fourth-order term related to a long-range effect term,
and a nonlinear term with a unique parameter that considers the aggregate extent and
whose value determines the instability region for structure formation.

In this paper, we solve the CWK equation for propagating non-deformable pulses,
employing three generalizations of Kudryashov’s method. The Kudryashov method is
highly efficient for finding exact solutions to nonlinear differential equations. It has a wide
range of applications, from physics, engineering, mathematics, and biology. Particularly
in biology, it was used to delve into nonlinear phenomena, such as the study of HIV-1
infection [18], population dynamics [19], etc. These methods are suitable for describing
soliton-like traveling wave solutions that have a clear biophysical interpretation in the
present model.

The article’s structure is the following. We present the CWK phototaxis model that will
be solved in Section 2. Section 3 provides an overview of the methods employed, including
the solutions found in each case and some graphical representations of important cases.
In Section 4, we highlight the importance of our solutions and discuss the overall results.
We also present five appendices with the largest expressions and additional results. Our
findings provide a collection of exact solutions for studying phototaxis from the reduced
CWK one-dimensional model.

2. Mathematical 1D Model of Aggregation in Bacterial Colonies

As mentioned previously, Chavy-Waddy and Kolokolnikov proposed in [14] a non-
linear parabolic fourth-order partial differential equation for modeling the movement of
phototaxic bacterial aggregates using the random models proposed by Levy et al. The
CWK formula is as follows:

ut = −uxx − uxxxx + α
(uxuxx

u

)
x
. (1)

The first two right-hand terms are similar to reverse diffusion and a long-range
term. Reverse diffusion occurs when transport is towards zones where the concentration
gradient is high, opposite to what happens in diffusion. This is the case, for instance, in
the Cahn–Hilliard equation for the phase separation process [15,20]. The fourth-order term
is sometimes associated with long-range terms where the influence of distant neighbors
on the concentration at a given point is considered [21,22]. Both terms balance each other;
while the inverse diffusion destabilizes the system, the fourth-order term stabilizes the
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higher Fourier modes. The third term is the one containing the nonlinearity and the only
parameter of the model, α, which controls the size of the aggregate and is given by

α =
c(2d + 1)(d + 1)2(

c[1 + d(d2 + 2d + 3)]− 2a
) , (2)

where the constants are given in terms of the simplified Levy’s master equation [9]. a is the
jump rate at which the bacterium moves, preserving its orientation, c is the rate at which it
moves after switching to a new orientation, and d is the bacterium’s sensing radius. The
model given by Equation (1) is similar to the swarming models of biological aggregation
based on attraction–repulsion forces [23,24]. However, it is a way simpler since it only
involves a single equation with stationary finger-like solutions, as found in the experiments.
The stationary finger-like solution found in [14] is as follows:

u(x, t) = A
[
sech

(√α − 1
2

x
)] 2

α−1
, (3)

where A is a real normalization constant, and only depends on the value of α. We note that
α = 1 is a particular value; indeed, in [14], it is shown that α > 1 is necessary to obtain
the steady state since it is obtained in the unstable regime when c > 2a/d, where patterns
can occur; see Appendix A. Some extreme cases satisfy this condition when the motion
rate after changing orientation becomes very large c → ∞. If the bacterium stops without
changing orientation a = 0, one obtains α ≥ [(1 + d)2(1 + 2d)]/[1 + d(3 + 2d + d2)]. From
this, three cases follow depending on the value of the sensitivity distance. If d = 1, then
α ≥ 12/7; if d → ∞, then α ≥ 2; if d = 0, then α ≥ 1. In all these cases, the unstable
threshold is fulfilled in general when α > 1.

The simplest case is when α = 0, where Equation (1) reduces to ut = −uxx − uxxxx,
which only has a contribution to the flux due to inverse diffusion and long-range terms.
It is a linear equation that conventional methods can solve; nonetheless, the methods
used in this paper also give additional solutions, so we will present them for the sake
of completeness. Appendix B presents the solutions of the case α = 0 by the method of
separation of variables and comparison with some of the solutions obtained here. The
nonlinear equation is not straightforward to solve by the usual methods, so for non-zero
α cases, solutions are obtained by the methods explored herein and include two regimes,
0 < α < 1 and α > 1, being the most relevant cases.

Finding the stationary solution of Equation (1) is accomplished in [14] by reducing
the order of the equation and then studying the orbits of the system, which involves the
following transformation u(x, t) = ev(x,t), and Equation (1) becomes

vt = −v2
x − vxx − vxxxx + (4α − 6)v2

xvxx + (α − 4)vxvxxx + (α − 3)v2
xx + (α − 1)v4

x. (4)

In this equation, there seem to be four particular values of α. However, when changing
to z = vx, the corresponding equation has only two characteristic values for α = 1, 3.
Indeed, for α = 3, the equation for z can be easily integrated, as found in [16], where
they also analyze the stability of some stationary state families of the CWK equation.
Moreover, time-dependent solutions were presented, giving their convergence rate to the
stationary case.

In the next section, we will present some stationary and time-dependent solution
families, each obtained with the so-called Kudryashov method. Since Equation (1) is of the
parabolic type, and it is well known that parabolic equations admit traveling wave-like
solutions as in [25,26], we expect that the CWK equation also admits soliton-like solutions
suitable to be found with the Kudryashov method. To do so, we use Equation (4) and make
the following variable change ξ = x − ωt, under the assumption of traveling-wave-like
solutions, resulting in the following:

ωvξ − v2
ξ − vξξ − vξξξξ + (4α − 6)v2

ξ vξξ + (α − 4)vξvξξξ + (α − 3)v2
ξξ + (α − 1)v4

ξ = 0, (5)
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where ω is the constant wave velocity. Lastly, we substitute φ(ξ) = vξ to obtain a simplified
version of Equation (5):

ωφ − φ2 − φξ − φξξξ + (4α − 6)φ2φξ + (α − 4)φφξξ + (α − 3)(φξ)
2 + (α − 1)φ4 = 0. (6)

We will present in the next section the methods used to solve Equation (6), and hence
Equation (1), and the collection of families that each technique will produce.

3. Methods and Solutions

In this section, we will describe briefly each of the proposed methods, their application,
and the families of solutions obtained by means of them.

3.1. Brief Description of the Generalized Kudryashov Method

The purpose of this section is to present the algorithm of the generalized Kudryashov
method for finding exact solutions of nonlinear evolution equations, such as Equation (6),
consisting of the following steps:

Step 1: We assume the exact solutions to Equation (6) can be formulated as follows:

φ(ξ) =
∑N

i=0 aiQi(ξ)

∑M
j=0 biQj(ξ)

, (7)

where ai and bj are arbitrary constants with aN �= 0, bM �= 0, and the function
Q(ξ) satisfies the next differential equation [27]:

Qξ = Q2 − Q. (8)

The relation between integers N and M can be established by considering the
homogeneous balance between the higher-order derivatives and the nonlinear
factors in Equation (6). In our case, N = 2 and M = 1.

Step 2: Next we substitute both φ, given in Equation (7), and its derivatives φξ , φξξ , . . . , in
Equation (6) to obtain the polynomial equation:

P(Q(ξ)) = 0. (9)

Step 3: We select all the terms having the same algebraic power in Q from the polynomial
Equation (9), setting them equal to zero, and obtain a system of algebraic equations
with the following set of unknowns, {a0, a1, a2, b0, b1, ω} depending on the value
of α. We use algebraic manipulation software such as Mathematica to solve
the system with the model constraints, considering that a2 �= 0 and b1 �= 0 are
also required.

Step 4: Using the previous results and considering Equation (7) together with Equation (8),
we obtain the possible exact solutions of Equation (6) and consequently those of
Equation (1).
Due to the fact that the generalized Kudryashov method is defined by the rational
form of finite series given by Equation (7), it provides a greater number of exact
and more general solutions in an identical manner as the classical Kudryashov
method, which is a significant advantage [28].

Solutions Obtained by the Generalized Kudryashov Technique

The system of nonlinear algebraic equations resulting from this method is shown in
Appendix C in Equation (A27). Next, we present the solutions obtained for different values
of the parameters. The first set of solutions is for α = 0.
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Solution 1. If α = 0, we have a0 = a0, a1 = −a2 − b0, a2 = a2, b0 = a0, b1 = −a2, and ω = 2,
from which we obtain the solution

u1(x, t) = cosh(2t − x)− sinh(2t − x) + 1. (10)

Solution 2. If α = 0, we have a0 = 0, a1 = −b0, a2 = a2, b0 = b0, b1 = −a2, and ω = −2,
from which we obtain the solution

u2(x, t) = − sinh(2t + x) + cosh(2t + x) + 1. (11)

Solution 3. If α = 0, we have a0 = 0, a1 = 0, a2 = 2b0, b0 = b0, b1 = −a2, and ω = −10,
from which we obtain the solution

u3(x, t) = − sinh(20t + 2x) + cosh(20t + 2x)− 1. (12)

Solution 4. If α = 0, we have a0 = 2b0, a1 = −4b0, a2 = 2b0, b0 = b0, b1 = −a2, and ω = 10,
from which we obtain the solution

u4(x, t) = sinh(20t − 2x)− cosh(20t − 2x) + 1. (13)

In all cases, non-stationary waves propagating in different directions were obtained.
To illustrate, let us consider Solution 4. In Figure 1, we show the plot of traveling wave
solution u4(x, t).

Figure 1. Solution 4 for α = 1. Although no aggregate is produced, the wavefront propagates to the
right with velocity ω = 10.

Next we present the solutions for α �= 0.

Solution 5. If α = 1, we have a0 = b0(a1b1−a2b0)

b2
1

, a1 = a1, a2 = a2, b0 = b0, b1 = b1, and

ω = 0, from which we obtain the solution

u5(x) = cosh
(

1
4

x(β + x)
)
− sinh

(
1
4

x(β + x)
)

, β =
4a2b0 − 4b1(2a2 + a1)

b2
1

. (14)

Solution 6. If α > 1, we have a0 = 1
4 (−2a1 − a2), a1 = a1, a2 = a2, b0 = −a1 − 1

2 a2,
b1 = −a2, and ω = 0, from which we obtain the solutions

u6(x) = C cosh(γx), C �= 0 and γ = ± 1√
α − 1

. (15)
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Solution 7. If α > 1, we have a0 = 1
2 a2, a1 = −a2, a2 = a2, b0 = −a1 − 1

2 a2, b1 = −a2, and
ω = 0, from which we obtain the solutions

u7(x) = C sinh(γx), C �= 0 and γ = ± 1√
α − 1

. (16)

Solution 8. If α > 1, we have a0 = 1
4 (−2a1 − a2), a1 = a1, a2 = a2, b0 = 1

4 (α − 1)(2a1 + a2),
b1 = 1

2 (α − 1)a2, and ω = 0, from which we obtain the solutions

u8(x) = Csechm(γx), C �= 0, m =
2

α − 1
and γ =

√
α − 1
2

. (17)

Here only stationary solutions with ω = 0 were obtained, recovering especially the
finger-like distribution from [14] in Solution 8. Figure 2 shows that the bell-shaped curve’s
distribution becomes progressively wider as the value of alpha increases. This suggests
that the bacteria exhibit a preference for being farther away. In other words, as alpha
increases, the bacteria tend to distribute themselves over a larger area, indicating a lower
degree of clustering.

= 1.1
= 3.1
= 6.1

-10 -5 0 5 10

0.0
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x

u 8
(x)

Figure 2. Solution 8 reproduces the stationary finger-like distribution obtained in [14]. Values of
α = 1.1, 3.1, 6.1 are presented. As α grows, the distribution becomes increasingly wider.

Earlier, we mentioned that when α = 3, Equation (4) for vx can be directly integrated.
For this special case, the following solutions were found.

Solution 9. If α = 3, we have a0 = a2
12−6

√
3
, a1 = − 1

3 (
√

3 + 3)a2, a2 = a2, b0 = −a1 − 1
2 a2,

b1 = −a2, and ω = 1
3
√

3
, from which we obtain the solution

u9(x, t) = −
e

x√
3
− t

9

(
e

t
3
√

3 + ex
)

(
2
√

3 − 3
)

e
t

3
√

3 +
(

2
√

3 + 3
)

ex
(18)

Solution 10. If α = 3, we have a0 = a2
6(
√

3+2)
, a1 = 1

3 (
√

3 − 3)a2, a2 = a2, b0 = −a1 − 1
2 a2,

b1 = −a2, β ∈ R, h = ±1, and ω = − 1
3
√

3
, from which we obtain the solution
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u10(x, t) = β

[
sinh

(
t

3
√

3
+ hx

)
+ cosh

(
t

3
√

3
+ hx

)
+ 1

][√
3 sinh

(
t

3
√

3
+ hx

)
+
√

3 cosh
(

t
3
√

3
+ hx

)
+ 7

√
3 + 12

] 1
2
√

3
− 1

2
[(

2
√

3 + 3
)(

sinh
(

t
3
√

3
+ hx

)
(19)

+ cosh
(

t
3
√

3
+ hx

))
+ 26

√
3 + 45

]− 1
2− 1

2
√

3
[

cosh
(

t
9
+

hx√
3

)
− sinh

(
t
9
+

hx√
3

)]
Solution 11. If α = 3, we have a0 = ± 1

6 (
√

3 ± 2)a2, a1 = ∓ 1
3 (
√

3 ± 3)a2, a2 = a2,
b0 = 1

4 (α − 1)(2a1 + a2), b1 = 1
2 (α − 1)a2, and ω = ∓ 1

3
√

3
, from which we obtain the solution

u11∓(x, t) = ∓
(

3 tanh
(

1
18

(√
3t ± 9x

))
+ 2

√
3
)

e∓
x√
3
− t

9 . (20)

The above solutions exhibit similar behaviors at different scales. Although they have
exponential growth, near zero, there is a small propagating pulse. To illustrate this, we
consider the solution u11−(x, t). In Figure 3, we present the graph of the traveling pulse of
Solution 11; notice how it moves to the right.

Figure 3. Solution 11 where a small pulse propagates to the right with velocity ω = 1
3
√

3
.

Since the method allows specific solutions for particular values of the parameters, here
we present the stationary solution for α = 5, being a particular case for α > 1.

Solution 12. If α = 5, we have a0 = 1
2 a2, a1 = −a2, a2 = a2, b0 = 1

4 (α − 1)(2a1 + a2),
b1 = 1

2 (α − 1)a2, and ω = 0, from which we obtain the solution

u12(x) =
sinh

( x
2
)
+ cosh

( x
2
)√

−2 sinh2(x)− 2 sinh(x) cosh(x)
. (21)

3.2. Brief Description of the e−R(ξ)-Expansion Method

Among the methods for finding analytical solutions to nonlinear equations is the
so-called e−R(ξ)-expansion, which has been used to find solitary wave-like solutions in
some fluid problems [29,30].
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Step 1: The e−R(ξ)-expansion method assumes that the solution of Equation (6) is ex-
pressed as

φ(ξ) =
N

∑
i=0

ai(e−R(ξ))i (22)

where ai is an arbitrary constant with aN �= 0, and the function R satisfies the
following differential equation [31]:

Rξ = λ + μeR(ξ) + e−R(ξ). (23)

Consequently, the function R can be given by

R(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln

(
−
√

λ2−4μ tanh
(

1
2 (ξ+A)

√
λ2−4μ

)
2μ − λ

2μ

)
if λ2 − 4μ > 0, μ �= 0

ln

(
−
√

λ2−4μ coth
(

1
2 (ξ+A)

√
λ2−4μ

)
2μ − λ

2μ

)
if λ2 − 4μ > 0, μ �= 0

ln

(√
4μ−λ2 tan

(
1
2 (ξ+A)

√
4μ−λ2

)
2μ − λ

2μ

)
if λ2 − 4μ < 0, μ �= 0

ln

(√
4μ−λ2 cot

(
1
2 (ξ+A)

√
4μ−λ2

)
2μ − λ

2μ

)
if λ2 − 4μ < 0, μ �= 0

− ln
(

λ
eλ(ξ+A)−1

)
if μ = 0, λ > 0

ln
(
− 2(λ(ξ+A)+2)

λ2(ξ+A)

)
if λ �= 0, λ2 − 4μ = 0

ln(ξ + A) if μ = 0, λ = 0.

(24)

As previously said, to compute the positive integer N, consider the homoge-
neous balance between the higher-order derivatives and the nonlinear parts in
Equation (6). In this case, N = 1.

Step 2: In this method we consider φ given in Equation (22) and the necessary derivatives
φξ , φξξ , . . . , then we substitute them into Equation (6) to obtain the following
polynomial equation:

P
(

e−R(ξ)
)
= 0. (25)

Step 3: We select from the polynomial Equation (25) all terms having the same algebraic
power of e−R(ξ), set them equal to zero, and obtain a system of algebraic equa-
tions with the set of unknowns {a0, a1, ω} depending on α. In the same way as
the previous method, we use Mathematica to solve the system with its natural
constraints, assuming a1 �= 0.

Step 4: With the results obtained in the previous step and taking Equation (22) along with
Equation (23), we obtain the possible exact solutions of Equation (6), and hence
those of Equation (1).

Solutions Found by the e−R(ξ)-Expansion Method

The resulting nonlinear algebraic system of equations resulting from this method is
presented in Equation (A28) of Appendix D; here we present the solutions obtained by this
method. First for the case α = 0:

Solution 13. If α = 0, we have a0 = 0, a1 = 1, λ > 0, μ = 0, and ω = −λ3 − λ, from which
we obtain the solution

u13(x, t) = e−λ((λ3+λ)t+x) − eAλ, A ∈ R. (26)
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Solution 14. If α = 0, we have a0 > 0, a1 = 1, λ = a0, μ = a0(λ − a0), and ω = 6a0λ2 −
12a2

0λ + 8a3
0 + 2a0 − λ3 − λ, from which we obtain the solution

u14(x, t) = − sinh
(

a0(x + A)− a2
0t(a2

0 + 1)
)
− cosh

(
a0(x + A)− a2

0t(a2
0 + 1)

)
+ 1, A ∈ R. (27)

The first two solutions are similar to u4(x, t), with wavefronts propagating to one side.
Figure 4 shows, with fixed values of the parameters, a constant unit density over time.

Figure 4. Solution 14 for A = 1 and a0 = 1. Propagating wave front behavior is observed.

Solution 15. If α = 0, we have a0 = a0, a1 = 2, λ = a0, μ = 1
4
(
a2

0 + 1
)
, and ω = 0, from which

we obtain the solution

u15(x) =
(

sin
(

x + A
2

)
− a0 cos

(
x + A

2

))2
, A ∈ R. (28)

The solution u15(x) is an oscillatory function; evidently, the constants A and a0 are
the phase and amplitude of a standing wave. Notably, this solution arises only from the
reverse diffusion and the fourth-order term. Thus, although each maximum represents the
bacterial concentration, this distribution is preserved from the beginning of the process.

This method made it possible to find two stationary solutions for α < 1. While this
clearly does not correspond to the region of instability, and therefore we cannot expect the
formation of aggregates, we can think of α as a perturbation parameter in an intermediate
region between reverse diffusion alone and pattern formation.

Solution 16. If α = 1 − 2
a1

, we have a0 = a0, a1 > 0, λ = 2a0
a1

, μ =
2a2

0+a1
2a2

1
, and ω = 0, from

which we obtain the solution

u16(x) =

(√
2 sin

(
x + A√

2a1

)
− 2a0

√
1
a1

cos
(

x + A√
2a1

))a1

, A ∈ R. (29)

Particularly, it makes sense for a1 ≥ 2, which implies α < 1.
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Solution 17. If α = 1
3 , we have a0 = a0, a1 = 3, λ = 2a0

3 , μ = 1
18
(
2a2

0 + 3
)
, and ω = 0, from

which we obtain the solution

u17(x) =
(√

6 sin
(

x + A√
6

)
− 2a0 cos

(
x + A√

6

))3
, A ∈ R. (30)

Interestingly, the solutions in this regime are also oscillatory, with Solution 16 having
the same structure as u17 for even values of a1. However, for odd a1, negative values occur,
and the parity of a1 must be considered to interpret u16 as a distribution.

Figure 5 illustrates the solution with different values of a1, which represents stationary
distributions of bacteria aggregates. As the value of a1 increases, the number of bacterial
aggregates decreases while the amplitude of each curve increases. This leads to a higher
density of bacteria within each curve.

Figure 5. Solution 16 for fixed A = 0, a0 = 2, and a1 = 2, 4, 6, where increasing the value of a1

increases the amplitude of each curve.

Finally, in the region of structure formation, when α > 1, we obtain five stationary
solutions, which also depend on method parameters.

Solution 18. If α > 1, we have a0 = a0, a1 = − 2
α−1 ,λ = 2a0

a1
, μ =

2a2
0+a1
2a2

1
, and ω = 0, from

which we obtain the solution

u18(x) =

[
e−

√
α−1 − e

√
α−1

√
α − 1

+ a0 e−
1
2
√

α−1(A+x)
(

1 + e
√

α−1(A+x)
)]− 2

α−1

, A ∈ R. (31)

Solution 19. If α > 1, we have a0 = a0, a1 = 1, λ = 2a0, μ = a2
0 − 1

1−α , and ω = 0, from which
we obtain the solution

u19(x) =
1√

α − 1
sinh

( x + A√
α − 1

)
∓ a0 cosh

( x + A√
α − 1

)
, A ∈ R. (32)

Solution 20. If α = 1 + 1
a2

0
> 1, we have a0 > 0, a1 = 1, λ = 2a0, μ = a2

0 − 1
1−α , and ω = 0,

from which we obtain the solution

u20(x) = e−a0x
(

1 − e2a0(A+x)
)

, A ∈ R. (33)
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Solution 21. If α = 1 − 2
a1

, we have a0 < 0, a1 = −2a2
0, λ = 2a0

a1
, μ =

2a2
0+a1
2a2

1
, and ω = 0, from

which we obtain the solution

u21(x) = e−a0x(1 − e−
x+A

a0
)2a0 , A ∈ R. (34)

Note that given the restriction for a1, α = 1 + 1
a2

1
> 1.

Solution 22. If α = 1 − 2
a1

, we have a0 = a0, a1 < 0, λ = 2a0
a1

, μ =
2a2

0+a1
2a2

1
, and ω = 0, from

which we obtain the solution

u22(x) =

(√
− 2

a1
a1 cosh

(
x + A√−2a1

)
+ 2a0 sinh

(
x + A√−2a1

))a1

, A ∈ R. (35)

Note that α > 1, given that a1 < 0.

Some of the solutions are exponential, but there are also spike solutions, as in Solution 18.
Figure 6 illustrates, for α = 5, that the distribution of the bacterial population takes a

bell-shaped curve in the steady state. In this scenario, the bacteria form an aggregate, and
the density of the aggregate is determined by the value of a0. When this value increases,
the distance required for the bacteria to join and form an aggregate also increases. As a
result, the bacteria are farther apart from each other, leading to a lower overall density
of aggregates.

a1 = . 360
a1 = 532
a1 = 431

-8 -4 -5 1 5 4 8
1

.

5

2

4

x

u .
6(x)

Figure 6. Solution 18 for fixed A = 0 and α = 5. We show tree cases for a0 = 1.85, 2.3, 4, as a0

increases the amplitude of the spike decreases.

3.3. Brief Description of the Modified Exponential Function Method

The Exp-method was introduced to find solitary, compact, and periodic solutions of
nonlinear wave-like equations [32]. It has been applied, for instance, to obtain soliton-type
solutions for the Allen–Cahn equation, a reaction–diffusion equation describing phase
separation in multi-alloy systems, and plasma dynamics [33]. The algorithm of the method
is given below.

Step 1: We assume the exact solutions to Equation (6) can also be formulated as follows:

φ(ξ) =
∑N

i=0 ai(e−Q(ξ))i

∑M
j=0 bi(e−Q(ξ))j

, (36)
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where the ai and bj are arbitrary constants with aN �= 0, bM �= 0, and the function Q
satisfies the differential equation [32,33]:

Qξ = λ + μeQ(ξ) + e−Q(ξ). (37)

Consequently, the function Q satisfies the same differential equation given in Equation (24).
The integers N and M that appear in this method can be determined in the same way as
before by considering the homogeneous balance between the higher-order derivatives and
the nonlinear factors in Equation (6). In this case, N = 2 and M = 1.
The second, third, and fourth steps of the current procedure are identical to those outlined
in Section 3.2.

Solutions Found by the Modified Exponential Function Method

The nonlinear algebraic system of equations necessary to obtain solutions according
to the exponential function method can be seen in Equation (A29) of Appendix E. Next we
show the solutions we obtain by this method. For α = 0, we find three stationary and three
traveling solutions below.

Solution 23. If α = 0, a0 = 0, a1 = a1, a2 = 2b1, b0 = 0, b1 �= 0, λ = a1
b1

, μ =
a2

1+b2
1

4b2
1

and

ω = 0, from which we obtain the solution

u23(x) =
(

a1 cos
(

x + A
2

)
− b1 sin

(
x + A

2

))2
, A ∈ R. (38)

Solution 24. If α = 0, a0 �= 0, a1 = 0, a2 = − a0
μ , b0 = 0, b1 = − a0

μ , λ = ∓√4μ − 1, μ �= 0
and ω = 0, from which we obtain the solution

u24(x) =
1
2

(√
4μ − 1 cos(x + A)± sin(x + A) +

√
4μ − 1

)
, A ∈ R. (39)

Solution 25. If α = 0, a0 �= 0, a1 = 0, a2 = − a0
μ , b0 = 0, b1 = − a0

μ , λ =
√

4μ − 1, μ �= 0 and
ω = 0, from which we obtain the solution

u25(x) =
1
2

(√
4μ − 1 cos(x + A)− sin(x + A) +

√
4μ − 1

)
, A ∈ R. (40)

Solution 26. If α = 0, a0 = 0, a1 = a1, a2 = b1, b0 = a1, b1 �= 0, λ �= 0, μ = 0 and
ω = −λ3 − λ, from which we obtain the solution

u26(x, t) = sinh(Aλ) + cosh(Aλ) + sinh
(

λ4t + λ2t + λx
)
− cosh

(
λ4t + λ2t + λx

)
, A ∈ R. (41)

Solution 27. If α = 0, a0 = 0, a1 = 0, a2 = b1, b0 = b1λ
2 , b1 �= 0, λ �= 0, μ = 0 and

ω = −2
(
4λ3 + λ

)
, from which we obtain the solution

u27(x, t) = sinh(2Aλ) + cosh(2Aλ) + sinh
(

16λ4t + 4λ2t + 2λx
)
− cosh

(
16λ4t + 4λ2t + 2λx

)
, A ∈ R. (42)

Solution 28. If α = 0, a0 = 0, a1 �= 0, a2 = b1, b0 = 0, b1 �= 0, λ = a1
b1

, μ = 0 and

ω =
a1(a2

1+b2
1)

b3
1

, from which we obtain the solution

u28(x, t) = sinh
(
−λA + λ2(λ2 + 1)t − λx

)
− cosh

(
−λA + λ2(λ2 + 1)t − λx

)
+ 1, A ∈ R. (43)

In this case, we have three standing wave-like solutions and three traveling wavefront-like solutions,
close to those obtained with previous methods. Additionally, these solutions also depend on the
parameters of the method.
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Seven stationary solutions were found for the pre-pattern formation region, α < 1, all
oscillatory functions, which are presented next.

Solution 29. If α < 1, a0 = − b1
8 , a1 = 0, a2 = b1, b0 = 0, b1 �= 0, λ = 0, μ = 1

8 and ω = 0,
from which we obtain the solution

u29(x) = C sin
(

x + B√
1 − α

)
, C �= 0, B ∈ R. (44)

Solution 30. If α < 1, a0 = 0, a1 = a1, a2 = b1, b0 = 0, b1 �= 0, λ = 2a1
b1

, μ =
αa2

1−a2
1−b2

1
(α−1)b2

1
and

ω = 0, from which we obtain the solution

u30(x) = a1 cos

(√
1

1 − α
(x + A)

)
−
√

1
1 − α

b1 sin

(√
1

1 − α
(x + A)

)
, A ∈ R. (45)

Solution 31. If α < 1, a0 = 0, a1 = a1, a2 = − 2b1
α−1 , b0 = 0, b1 �= 0,

λ = a1−αa1
b1

, μ = − (α−1)(−αa2
1+a2

1+b2
1)

4b2
1

and ω = 0, from which we obtain the solution

u31(x) =
(
−(1 − α)a1 cos

(
1
2

√
1 − α(A + x)

)
+ b1

√
1 − α sin

(
1
2

√
1 − α(A + x)

))
2

1−α , A ∈ R. (46)

Solution 32. If α < 1, a0 �= 0, a1 = 0, a2 = − a0
μ , b0 = 0, b1 = − a0

μ , λ = 0, μ = − 1
4(α−1) and

ω = 0, from which we obtain the solution

u32(x) =
1
2

sin

(√
1

1 − α
(x + A)

)
, A ∈ R. (47)

Solution 33. If α = 1
3 , a0 = 0, a1 = a1, a2 = 3b1, b0 = 0, b1 �= 0, λ = 2a1

3b1
, μ =

2a2
1+3b2

1
18b2

1
and

ω = 0, from which we obtain the solution

u33(x) =
(

2a1 cos
(

x + A√
6

)
−
√

6b1 sin
(

x + A√
6

))3
, A ∈ R. (48)

Solution 34. If α = 1
2 , a0 �= 0, a1 = 0, a2 = − 3a0

μ , b0 = 0, b1 = − a0
μ , λ = 0, μ = 1

8 and ω = 0,
from which we obtain the solution

u34(x) = sin3
(

x + A
2
√

2

)
cos

(
x + A
2
√

2

)
, A ∈ R. (49)

Solution 35. If α = 1
2 , a0 �= 0, a1 = 0, a2 = − a0

3μ , b0 = 0, b1 = − a0
3μ , λ = 0, μ = 1

8 and ω = 0,
from which we obtain the solution

u35(x) =
1
8

(
sin
(√

2(A + x)
)
+ 2 sin

(
x + A√

2

))
, A ∈ R. (50)

Three of the five solutions in the instability region are time-independent, and two are
time-dependent. With these solutions, one of the difficulties is that they involve increas-
ingly more parameters external to the model.
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Solution 36. If α > 1, a0 = 0, a1 = − b1√
α−1

, a2 = − 2b1
α−1 , b0 = 0, b1 �= 0, λ =

√
α − 1, μ = 0

and ω = 0, from which we obtain the solution

u36(x) = e
x√
α−1
(

1 − e
√

α−1(A+x)
) 2

1−α , A ∈ R. (51)

Solution 37. If α =
a2

1+b2
1

a2
1

, a0 = 0, a1 �= 0, a2 = b1, b0 = 0, b1 �= 0, λ = 2a1
b1

, μ = 0 and ω = 0,

from which we obtain the solution

u37(x) = e−
λx
2

(
1 − eλ(x+A)

)
, A ∈ R. (52)

Solution 38. If α =
a2

1+b2
1

a2
1

, a0 = 0, a1 �= 0, a2 = 2b1
1−α , b0 = 0, b1 �= 0, λ = a1−αa1

b1
,

μ = − (α−1)(−αa2
1+a2

1+b2
1)

4b2
1

and ω = 0, from which we obtain the solution

u38(x) =
e

a1
b1

x

(
1 − e

a1
b1
(x+A)

) 2a2
1

b2
1

, A ∈ R. (53)

Solution 39. If α = 3, we have a0 = b1
6 , a1 = ∓ b1√

6
, a2 = b1, b0 = 0, b1 �= 0, λ = ∓

√
2
3 ,

μ = 1
6 , and ω = ± 1

3

√
2b1
3 , from which we obtain the solution

u39(x, t) =
3e±( A√

6
− t

9+
x√
6
)
(

3
√

6A ∓ 2t + 3
√

6x ∓ 18
)

9A ∓√
6t + 9x

, A ∈ R. (54)

Solution 40. If α �= 1, a0 = a0, a1 �= 0, b0 = 0, b1 = 0, a2 = b2, λ = a1
α−1 , μ = (α−1)

2 and
ω = a3

0(α − 1) + a0, from which we obtain the solution

u40(x, t) = Ae
(

a0x+a2
0t(a2

0(α−1)−1)
)

, A ∈ R. (55)

These solutions are combinations of exponentials; however, for several parameter
values, no spike or wavelet patterns occur, and as a result, these combinations cannot be
considered as a distribution.

4. Summary and Conclusions

In this work, we find several families of analytical solutions to the CWK equation for
different values of the parameters, not only in the instability region. For this purpose, we
use the generalized Kudryashov method, the e−R(ξ)-expansion, and exponential function
methods, which allows us to find exact solutions of nonlinear differential equations, includ-
ing those with variable coefficients, non-integer powers, singular perturbation problems,
and non-polynomial nonlinearities. These methods allow us to find analytical solutions
to the CWK equation that have not been previously reported in the literature. Specifically,
when α �= 0, the nonlinearity in the CWK equation cannot be analyzed with conventional
methods. Our solutions are important because they provide insights into the behavior of
the system and can be used in numerical simulations or experiments. Moreover, they can
be used to develop new mathematical tools and techniques for analyzing and solving other
nonlinear differential equations in fluid mechanics and related fields.

We found twenty-seven analytical solutions in the case α �= 0 by using the three
methods. In the α < 1 case, the nonlinear term can be considered a perturbation of the linear
behavior where inverse diffusion and fourth-order terms drive the dynamics. Although
structure formation is not expected here, we find several wave-like stationary solutions.
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Thus, this region can be considered a pre-pattern formation region, and the solutions are
budding patterns. The instability region α > 1 is where this model’s aggregate formation
is expected. We first recover the stationary solution found in [14] and a pulse propagating
without deformation by the generalized Kudryashov method. Some similar spike-like
solutions were found by the e−R-expansion method. The exponential function method did
not yield any new physical solutions beyond those obtained by previous methods. This is
not surprising, given that N.A. Kudryashov observed this in [27].

It is worth emphasizing that these methods allow us to obtain a wide range of be-
haviors, some previously obtained and that qualitatively resemble what was seen in the
experiments. Furthermore, reverse diffusion and fourth-order terms still need to be ex-
plored since the traveling solutions were mainly found in this regime. The pattern formation
and pulse motion mechanism could be better understood by studying each case in depth.
On the other hand, the shortcoming of these methods is the large number of free parameters
that appear in the solutions. One only way to fix them is to consider initial and boundary
value problems, making the solutions more realistic and closer to the experimental pho-
totaxis conditions, even in simple models like the one-dimensional CWK equation. We
strongly believe the collection of physically meaningful solutions can guide the study of
bacterial aggregate formation in phototaxis.
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Appendix A. Stability Analysis

In [14], the authors derive Equation (1) from the continuum limit of the system of
differential equations over a lattice formed by n bins, which is given by⎧⎪⎪⎨⎪⎪⎩

dRj

dt
= aRj−1 − (a + c)Rj + cUj−1η+

j−1

dLj

dt
= aLj+1 − (a + c)Lj + cUj+1η−

j+1;
(A1)

where

η±
j =

∑d
k=1 Uj±k

∑d
k=1(Uj+k + Uj−k)

and Uj = Lj + Rj. (A2)

Here, Rj(t) and Lj(t) represent the density of right- and left-moving bacteria in the bin
j = 1, ..., n at time t; a represents the rate at which the bacterium moves one bin according
to its orientation; and c represents the rate at which the bacterium moves after transitioning
to a new orientation. The parameter d is the sensing radius of the bacterium.

Considering that Uj = Lj + Rj and adding the two equalities of the system (A1),
we obtain

dUj

dt
= a(Rj−1 + Lj+1)− (a + c)Uj + c(Uj−1η+

j−1 + Uj+1η−
j+1). (A3)

A closed system can be constructed by defining

Vj = Rj+1 + Lj−1. (A4)
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Observe that immediately from system (A1) and (A2) we have⎧⎪⎪⎨⎪⎪⎩
dRj+1

dt
= aRj − (a + c)Rj+1 + cUjη

+
j

dLj−1

dt
= aLj − (a + c)Lj−1 + cUjη

−
j .

(A5)

Now, adding the two equations in (A5), we obtain

dVj

dt
= (a + c)(Uj − Vj). (A6)

Now, rewriting
Rj−1 + Lj+1 = Uj−1 + Uj+1 − Vj, (A7)

we conclude that the system (A1) is equivalent to⎧⎪⎪⎨⎪⎪⎩
dUj

dt
= a(Uj−1 + Uj+1 − Vj)− (a + c)Uj + c(Uj−1η+

j−1 + Uj+1η−
j+1)

dVj

dt
= (a + c)(Uj − Vj).

(A8)

Model (A1) clearly allows for a homogeneous equilibrium Lj = Rj = C for any constant
C. Now, we will analyze the stability of this equilibrium. It is easier and more practical to
conduct the analysis for the system (A8) whose steady state is given by Uj = Vj = V.
Consider the following perturbations:

Uj = V + ξ j(t); Vj = V + ρj(t), j = 1, 2, . . . , n (A9)

where |ξ j|, |ρj| � 1. We now obtain the linearized system from the system (A8):

dξk
dt

= (a + c/2)(ξk−1 + ξ j+1)− aρj − (a + c)ξ j

+
c

2d
(2ξ j + ξ j−1 + ξ j+1 − ξ j+d − ξ j−d − ξ j+d+1 − ξ j−d−1) (A10)

dρj

dt
= (a + c)(ξ j − ρj). (A11)

This (2n)× (2n) linear problem can be divided down into n subproblems of 2 × 2. Make
an ansatz

ξ j = ξeλte
2πmji

n ; ρj = ρeλte
2πmji

n , m = 0, 1, . . . , n − 1 (A12)

to obtain

λξ = (2a + c)ξ cos(θ)− aρ − (a + c)ξ

+
c

2d
ξ
(
1 + cos(θ)− cos(dθ)− cos((d + 1)θ)

)
(A13)

λρ = (a + c)(ξ − ρ) (A14)

Here, θ = 2πm
n with m = 0, 1, . . . , n − 1.

There are two eigenvalues for each possible value of m, for a total of 2n eigenvalues.
The quadratic equation

λ2 − (g(θ)− c)λ − (a + c)g(θ) = 0 (A15)
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gives the solution to the 2 × 2 eigenvalue Problems (A13) and (A14), where function g is
defined as

g(θ) = (2a + c)
(

cos(θ)− 1
)
+

c
2d
(
1 + cos(θ)− cos(dθ)− cos((d + 1)θ)

)
. (A16)

Note that g(θ)− c ≤ 0 for all θ so that a sufficient and necessary condition for stability is
that g(θ) < 0 for all θ.

Computations reveal that the instability occurs for the first time at θ = 0. Because
g(0) = g′(0) = 0, the value of the threshold can be determined by setting
g′′(0) = dc − 2a = 0. Consequently, we conclude that the critical value of the thresh-
old is c0 = 2a

d . The homogeneous steady state is therefore stable when c < c0 and unstable
when c > c0, i.e., it is unstable if c > 2a

d . The conclusion is obtained by spectral equivalence.

Appendix B. Separation of Variables Method for the Linear Case α = 0

Here, we discuss the case α = 0 occurring when, after changing orientation, the
bacterium stops c = 0, or when the rate of motion without changing orientation is very
large a → ∞, both for all finite d. In this case, Equation (1) reduces to the linear differ-
ential equation ut = −uxx − uxxxx, i.e., only the reverse diffusion and long-range terms.
The aggregate size is controlled by α, so we cannot refer here to finger-like solutions.
This equation can be solved by the well-known method of separation of variables where
u(x, t) = f (x)g(t) leads to the following:

g′

g
= − ( f ′′ + f ′′′′)

f
= γ2, (A17)

where the solutions can be directly obtained by considering the three possible cases for the
separation parameter γ2:

Case A1. γ2 = 0

g′ = 0 and f ′′′′ + f ′′ = 0. (A18)

solving two linear differential equations gives

g(t) = c1 and f (x) = k1 + k2x + k3 cos(x) + k4 sin(x) (A19)

from which we obtain the family of solutions

uA(x, t) = C1 + C2x + C3 cos(x) + C4 sin(x), C1, C2, C3, C4 ∈ R. (A20)

Case A2. γ2 > 0

g′ − γ2g = 0 and f ′′′′ + f ′′ + γ2 f = 0. (A21)

solving two linear differential equations gives

g(t) = c1eγ2t and f (x) = k1e
(−1−β

2

)
x
+ k2e

(−1+β
2

)
x
+ k3xe

(−1−β
2

)
x
+ k4xe

(−1+β
2

)
x (A22)

from which, considering β =
√

1 − 4γ2, we obtain the family of solutions

uB(x, t) = eγ2t
(

C1e
(−1−β

2

)
x
+ C2e

(−1+β
2

)
x
+ C3xe

(−1−β
2

)
x
+ C4xe

(−1+β
2

)
x
)

, C1, C2, C3, C4 ∈ R. (A23)

Case A3. γ2 < 0

g′ + γ2g = 0 and f ′′′′ + f ′′ − γ2 f = 0. (A24)
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solving two linear differential equations gives

g(t) = c1e−γ2t and f (x) = k1e(
−1−δ

2 )x + k2e(
−1+δ

2 )x + k3xe(
−1−δ

2 )x + k4xe(
−1+δ

2 )x (A25)

from which, considering δ =
√

1 + 4γ2, we obtain the family of solutions

uC(x, t) = e−γ2t
(

C1e(
−1−δ

2 )x + C2e(
−1+δ

2 )x + C3xe(
−1−δ

2 )x + C4xe(
−1+δ

2 )x
)

, C1, C2, C3, C4 ∈ R. (A26)

All five constants in each case can be fixed through the corresponding initial and
boundary conditions. We generally observe that, according to the sign of γ2, we can have
oscillatory solutions or increasing and decreasing exponential solutions. Consider also that
the principle of superposition of solutions is valid for the present linear case. We have
one family of standing wave-like solutions and two families of traveling wavefront-like
solutions, similar to those obtained with the previous methods. Moreover, these solutions
coincide with those obtained with the proposed methods. We show some examples of
this below.

Example A1. If we consider the family of solutions u1:

u1(x, t) = cosh(2t − x)− sinh(2t − x) = e−(2t−x) + 1,

this is derived from the present method using uC and considering C1 = 0, C2 = 1, δ − 1 = 2,
γ2 = 4, C3 = C4 = 0.

Example A2. If we consider the family of solutions u3:

u3(x, t) = cosh(20t + 2x)− sinh(20t + 2x) = e−(2x+20t) − 1,

this is derived from the present method using uC and considering C1 = 0, C2 = 1, δ − 1 = −4,
γ2 = 20, C3 = C4 = 0.

Example A3. If we consider the family of solutions u13:

u13(x) = e−λ
(
(λ3+λ)t+x

)
− eλA,

this is derived from the present method using uC and considering C1 = 1, C2 = 0, δ + 1 = 2λ,
γ2 = λ4 + λ2, C3 = C4 = 0; moreover, eλA is a constant.

Example A4. If we consider the family of solutions u28:

u28(x, t) = sinh
(− λA + λ2(λ2 + 1)t − λx

)− cosh
(− λA + λ2(λ2 + 1)t − λx

)
+ 1,

this is derived from the present method using uC and considering C1 = 0, C2 = −eλA, δ − 1 = 2λ,
γ2 = λ2(λ2 + 1), C3 = C4 = 0.

The other families for α = 0 are obtained similarly and consider the superposition
principle. In the present case of α = 0, aggregate formation is not expected when the
nonlinear term does not appear in the CWK equation. However, among the solutions found
are time-propagating wavefront solutions and some standing wave solutions that could
be interpreted as finger-shaped distributions. Such solutions are interesting but cannot be
considered a final steady state; they must start with that form.

Unfortunately, for α �= 0, Equation (1) is nonlinear. Note that when the derivative is
expanded, the nonlinearity becomes more involved:

ut = −uxx − uxxxx + α
[uuxuxxx + uu2

xx − u2
xuxx

u2

]
.
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This equation cannot always be solved by the method of separation of variables, nor can all
the families of solutions found in this work be obtained.

Appendix C. Algebraic System for Kudryashov Method

The Kudryashov method algorithm requires solving the following system of equations
for the unknowns {a0, a1, a2, b0, b1, ω}.

Q0 : αa4
0 + a0b3

0ω − a2
0b2

0 − a4
0 = 0,

Q1 : 4αa1a3
0 + 4αa3

0b1 − 4αa1a2
0b0 − αa2

0b0b1 + αa1a0b2
0 + 3a0b2

0b1ω + a1b3
0ω − 6a3

0b1

+ 6a1a2
0b0 + 2a2

0b0b1 − 6a1a0b2
0 − 2a0b2

0b1 + 2a1b3
0 − 4a1a3

0 = 0,

Q2 : 4αa2a3
0 + 6αa2

1a2
0 − 4αa3

0b1 + 2αa2
0b2

1 + 4αa1a2
0b0 − 8αa2a2

0b0 + 8αa1a2
0b1 + 3αa2

0b0b1

− 3αa1a0b2
0 + 4αa2a0b2

0 − 8αa2
1a0b0 − 4αa1a0b0b1 + 2αa2

1b2
0 + 3a0b0b2

1ω

+ a2b3
0ω + 3a1b2

0b1ω + 6a3
0b1 − 8a2

0b2
1 − 6a1a2

0b0 + 12a2a2
0b0 − 12a1a2

0b1

− 12a2
0b0b1 + 12a1a0b2

0 − 18a2a0b2
0 + 2a0b0b2

1 + 12a2
1a0b0 + 8a0b2

0b1 (A27)

+ 10a1a0b0b1 − 8a1b3
0 + 10a2b3

0 − 8a2
1b2

0 − 2a1b2
0b1 − 4a2a3

0 − 6a2
1a2

0 = 0,

Q3 : 4αa0a3
1 + 12αa2

0a2a1 − 4αa3
1b0 − 5αa2

1b2
0 + 8αa0a2

1b0 + 4αa0a2
1b1 − αa2

1b0b1

+ 2αa0a1b2
0 + 9αa2a1b2

0 + αa0a1b2
1 − 24αa0a2a1b0 − 8αa2

0a1b1 + 8αa0a1b0b1

− 10αa0a2b2
0 − 3αa2

0b2
1 + 8αa2

0a2b0 + 4αa2
0a2b1 − 2αa2

0b0b1 − 2αa0a2b0b1

+ 3a1b0b2
1ω + a0b3

1ω + 3a2b2
0b1ω + 6a3

1b0 + 18a2
1b2

0 − 12a0a2
1b0 − 6a0a2

1b1

+ 2a2
1b0b1 + 12a1b3

0 − 8a0a1b2
0 − 34a2a1b2

0 − 6a0a1b2
1 + 2a1b0b2

1 + 36a0a2a1b0

+ 12a2
0a1b1 + 8a1b2

0b1 − 28a0a1b0b1 − 40a2b3
0 − 2a0b3

1 + 40a0a2b2
0 + 10a2

0b2
1 − 8a0b0b2

1

− 12a2
0a2b0 − 12a0b2

0b1 + 10a2b2
0b1 − 6a2

0a2b1 + 8a2
0b0b1 − 4a0a3

1 − 12a2
0a2a1 = 0,

Q4 : αa4
1 + 12αa0a2a2

1 + 6αa2
0a2

2 + 4αa3
1b0 + 3αa2

1b2
0 − 16αa2a2

1b0 − 4αa0a2
1b1

+ αa2
1b0b1 − 21αa2a1b2

0 − αa0a1b2
1 + 24αa0a2a1b0 − 4αa0a1b0b1 − 18a2a1b0b1

− 4a2
1b0b1 + 4αa2a1b0b1 + 8αa2

2b2
0 + 6αa0a2b2

0 + αa2
0b2

1 − 16αa0a2
2b0 − 4αa2

0a2b1

+ 2αa0a2b0b1 + a1b3
1ω + 3a2b0b2

1ω − 6a3
1b0 − 11a2

1b2
0 − a2

1b2
1 + 24a2a2

1b0 + 6a0a2
1b1

− 6a1b3
0 + 76a2a1b2

0 + 4a0a1b2
1 − 2a1b0b2

1 − 36a0a2a1b0 − 6a1b2
0b1 + 14a0a1b0b1

+ 54a2b3
0 + 2a0b3

1 − 29a2
2b2

0 − 24a0a2b2
0 − 3a2

0b2
1 − 4a0a2b2

1 + 6a0b0b2
1 + 8a2b0b2

1

+ 24a0a2
2b0 + 6a0b2

0b1 − 46a2b2
0b1 + 6a2

0a2b1 − a4
1 − 12a0a2a2

1 − 6a2
0a2

2 = 0,

Q5 : 4αa2a3
1 + 12αa0a2

2a1 + 16αa2a2
1b0 − 4αa2a2

1b1 + 12αa2a1b2
0 + αa2a1b2

1

+ 44a2a1b0b1 − 20αa2
2a1b0 − 12αa2a1b0b1 − 18αa2

2b2
0 + 16αa0a2

2b0 − 4αa0a2
2b1

+ 7αa2
2b0b1 + a2b3

1ω − 24a2a2
1b0 + 6a2a2

1b1 − 44a2a1b2
0 − 6a2a1b2

1 + 30a2
2a1b0

− 24a2b3
0 + 2a2b3

1 + 64a2
2b2

0 + 4a0a2b2
1 − 32a2b0b2

1 − 24a0a2
2b0 + 6a0a2

2b1

+ 72a2b2
0b1 − 26a2

2b0b1 − 4a0a2b0b1 − 4a2a3
1 − 12a0a2

2a1 = 0,
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Q6 : 4αa0a3
2 + 6αa2

1a2
2 − 8αa3

2b0 + 10αa2
2b2

0 + 2αa2
2b2

1 + 20αa1a2
2b0 + 12a3

2b0

+ 4αa0a2
2b1 − 8αa1a2

2b1 − 17αa2
2b0b1 − 3αa1a2b2

1 + 4αa2
1a2b1 + 8αa1a2b0b1

− 36a2
2b2

0 − 8a2
2b2

1 − 30a1a2
2b0 − 6a0a2

2b1 + 12a1a2
2b1 + 60a2

2b0b1 − 8a2b3
1 − 2a0a2b2

1

+ 12a1a2b2
1 + 48a2b0b2

1 − 6a2
1a2b1 − 36a2b2

0b1 − 30a1a2b0b1 − 4a0a3
2 − 6a2

1a2
2 = 0,

Q7 : 4αa1a3
2 + 8αa3

2b0 − 4αa3
2b1 − 5αa2

2b2
1 + 8αa1a2

2b1 + 10αa2
2b0b1 + 2αa1a2b2

1 − 12a3
2b0

+ 6a3
2b1 + 18a2

2b2
1 − 12a1a2

2b1 − 36a2
2b0b1 + 12a2b3

1 − 8a1a2b2
1 − 24a2b0b2

1 − 4a1a3
2 = 0,

Q8 : αa4
2 + 4αa3

2b1 + 3αa2
2b2

1 − 6a3
2b1 − 11a2

2b2
1 − 6a2b3

1 − a4
2 = 0.

Appendix D. Algebraic System for the e−R(ξ)-Expansion Method

In the algorithm of the e−R(ξ)-expansion method, the algorithm needs to solve the
following system of equations for the a0, a1, and ω; here we present the system for each
power of e−R(ξ) from 0 to 4.

e0 : a1μ
(
(α − 3)a1μ + λ2 + 2μ + 1

)
+ a0((α − 4)a1λμ + ω)

+ a2
0((6 − 4α)a1μ − 1) + (α − 1)a4

0 = 0,

e−R(z) : αa0a1λ2 + 3αa2
1λμ − 4αa2

0a1λ − 8αa0a2
1μ + 2αa0a1μ

+ 4αa3
0a1 + a1λ3 − 4a0a1λ2 − 10a2

1λμ + 8a1λμ + 6a2
0a1λ

+ a1λ + 12a0a2
1μ − 8a0a1μ + a1ω − 4a3

0a1 − 2a0a1 = 0,

e−2R(z) : 2αa2
1λ2 − 8αa0a2

1λ + 3αa0a1λ − 4αa3
1μ + 4αa2

1μ

+ 6αa2
0a2

1 − 4αa2
0a1 − 7a2

1λ2 + 7a1λ2 + 12a0a2
1λ − 12a0a1λ (A28)

+ 6a3
1μ − 14a2

1μ + 8a1μ − 6a2
0a2

1 − a2
1 + 6a2

0a1 + a1 = 0,

e−3R(z) : − 4αa3
1λ + 5αa2

1λ + 4αa0a3
1 − 8αa0a2

1 + 2αa0a1

+ 6a3
1λ − 18a2

1λ + 12a1λ − 4a0a3
1 + 12a0a2

1 − 8a0a1 = 0,

e−4R(z) : αa4
1 − 4αa3

1 + 3αa2
1 − a4

1 + 6a3
1 − 11a2

1 + 6a1 = 0.

Appendix E. System of Equations for Exponential Function Method

To obtain solution through the exponential function method, the following nonlinear
algebraic system needs to be solved:

e0 : a2

(
−4a2b1 + a2

2 + 3b2
1

)
((α − 1)a2 + 2b1) = 0,

eQ(z) : 4αa1a3
2 − 4αa3

2b1λ + 5αa2
2b2

1λ − 8αa3
2b0 − 8αa1a2

2b1 + 10αa2
2b0b1 + 2αa1a2b2

1 + 6a3
2b1λ

− 18a2
2b2

1λ + 12a2b3
1λ + 12a3

2b0 + 12a1a2
2b1 − 36a2

2b0b1 − 8a1a2b2
1 + 24a2b0b2

1 − 4a1a3
2 = 0,
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e2Q(z) : 4αa0a3
2 + 6αa2

1a2
2 + 2αa2

2b2
1λ2 − 8αa3

2b0λ − 8αa1a2
2b1λ + 17αa2

2b0b1λ + 3αa1a2b2
1λ

− 4αa3
2b1μ + 4αa2

2b2
1μ + 10αa2

2b2
0 − 20αa1a2

2b0 − 4αa0a2
2b1 − 4αa2

1a2b1 + 8αa1a2b0b1

− 7a2
2b2

1λ2 + 7a2b3
1λ2 + 12a3

2b0λ + 12a1a2
2b1λ − 60a2

2b0b1λ − 12a1a2b2
1λ + 48a2b0b2

1λ

+ 6a3
2b1μ − 14a2

2b2
1μ + 8a2b3

1μ − 36a2
2b2

0 − a2
2b2

1 + 30a1a2
2b0 + 6a0a2

2b1 + a2b3
1 − 2a0a2b2

1

+ 6a2
1a2b1 + 36a2b2

0b1 − 30a1a2b0b1 − 4a0a3
2 − 6a2

1a2
2 = 0,

e3Q(z) : 4αa2a3
1 + 12αa0a2

2a1 + αa2a1b2
1λ2 + 7αa2

2b0b1λ2 + 3αa2
2b2

1λμ − 4αa2a2
1b1λ

− 20αa2
2a1b0λ + 12αa2a1b0b1λ + 18αa2

2b2
0λ − 4αa0a2

2b1λ + 2αa2a1b2
1μ

− 8αa2
2a1b1μ − 8αa3

2b0μ + 14αa2
2b0b1μ − 16αa2a2

1b0 + 12αa2a1b2
0 − 16αa0a2

2b0

+ a2b3
1λ3 − 4a2a1b2

1λ2 + 28a2b0b2
1λ2 − 24a2

2b0b1λ2 + 8a2b3
1λμ − 10a2

2b2
1λμ

+ 6a2a2
1b1λ + 30a2

2a1b0λ − 44a2a1b0b1λ + a2b3
1λ − 64a2

2b2
0λ − 4a0a2b2

1λ + 6a0a2
2b1λ

+ 72a2b2
0b1λ − 8a2a1b2

1μ + 12a2
2a1b1μ + 32a2b0b2

1μ + 12a3
2b0μ − 48a2

2b0b1μ

+ a2b3
1ω + 24a2a2

1b0 − 44a2a1b2
0 − 2a2a1b2

1 + 24a2b3
0 + 4a2b0b2

1

+ 24a0a2
2b0 − 2a2

2b0b1 − 4a0a2b0b1 − 4a2a3
1 − 12a0a2

2a1 = 0,

e4Q(z) : αa4
1 − a4

1 − 4αb0a3
1 + 6b0a3

1 + 3αb2
0a2

1 − 11b2
0a2

1 − b2
1a2

1 + 12αa0a2a2
1 − 12a0a2a2

1

− 16αλa2b0a2
1 + 24λa2b0a2

1 + 4αa0b1a2
1 − 6a0b1a2

1 − 4αμa2b1a2
1 + 6μa2b1a2

1

− αλb0b1a2
1 + 4λb0b1a2

1 + 6b3
0a1 + ωb3

1a1 + 21αλa2b2
0a1 − 76λa2b2

0a1

+ αλa0b2
1a1 − 4λa0b2

1a1 + αλμa2b2
1a1 − 4λμa2b2

1a1 + λ2b0b2
1a1 + 2μb0b2

1a1

+ b0b2
1a1 − 20αμa2

2b0a1 + 30μa2
2b0a1 − 24αa0a2b0a1 + 36a0a2b0a1 − 6λb2

0b1a1

− 4αa0b0b1a1 + 14a0b0b1a1 + 4αλ2a2b0b1a1 − 14λ2a2b0b1a1 + 8αμa2b0b1a1

− 28μa2b0b1a1 − 4a2b0b1a1 + 54λa2b3
0 − λ2a0b3

1 − 2μa0b3
1 − a0b3

1 + 2μ2a2b3
1

+ λ2μa2b3
1 + μa2b3

1 + 6αa2
0a2

2 − 6a2
0a2

2 + 8αλ2a2
2b2

0 − 28λ2a2
2b2

0 + 16αμa2
2b2

0

− 56μa2
2b2

0 − a2
2b2

0 + 6αa0a2b2
0 − 24a0a2b2

0 + αa2
0b2

1 − 3a2
0b2

1 + αμ2a2
2b2

1

− 3μ2a2
2b2

1 − 2λ2a0a2b2
1 − 4μa0a2b2

1 − 2a0a2b2
1 + 6λa0b0b2

1 + 4λ3a2b0b2
1

+ 4λa2b0b2
1 + 32λμa2b0b2

1 + 3ωa2b0b2
1 − 16αλa0a2

2b0 + 24λa0a2
2b0

− 4αμa0a2
2b1 + 6μa0a2

2b1 − 6a0b2
0b1 + 41λ2a2b2

0b1 + 46μa2b2
0b1 + 5a2b2

0b1

+ 4αa2
0a2b1 − 6a2

0a2b1 + 11αλμa2
2b0b1 − 36λμa2

2b0b1 − 2αλa0a2b0b1 = 0,
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e5Q(z) : − a0b3
1λ3 + a1b0b2

1λ3 + 5a2b2
0b1λ3 + 38a2b3

0λ2 + 9αa1a2b2
0λ2 − 32a1a2b2

0λ2

+ αa0a1b2
1λ2 − 4a0a1b2

1λ2 + 10a0b0b2
1λ2 + 4μa2b0b2

1λ2 − 10a1b2
0b1λ2

− αa2
1b0b1λ2 + 4a2

1b0b1λ2 − 2αa0a2b0b1λ2 + 4a0a2b0b1λ2 + 12a1b3
0λ

− 8μa0b3
1λ − a0b3

1λ + 5αa2
1b2

0λ − 18a2
1b2

0λ + 14αμa2
2b2

0λ − 48μa2
2b2

0λ

+ 10αa0a2b2
0λ − 40a0a2b2

0λ + 3αa2
0b2

1λ − 10a2
0b2

1λ − 4μa0a2b2
1λ + 8μa1b0b2

1λ

+ a1b0b2
1λ − 4αa3

1b0λ + 6a3
1b0λ − 24αa0a1a2b0λ + 36a0a1a2b0λ + 4αa0a2

1b1λ

− 6a0a2
1b1λ − 12a0b2

0b1λ + 40μa2b2
0b1λ + 5a2b2

0b1λ + 4αa2
0a2b1λ − 6a2

0a2b1λ

− 8αa0a1b0b1λ + 28a0a1b0b1λ + 4αμa1a2b0b1λ − 12μa1a2b0b1λ + 4αa0a3
1

− 4a0a3
1 + 40μa2b3

0 + 2a2b3
0 + ωa0b3

1 + 2αa0a1b2
0 − 8a0a1b2

0 + 18αμa1a2b2
0

− 64μa1a2b2
0 − 2a1a2b2

0 + 2αμa0a1b2
1 − 8μa0a1b2

1 − 2a0a1b2
1 + 8μa0b0b2

1 − 2a0b0b2
1

+ 3ωa1b0b2
1 + 8μ2a2b0b2

1 + 4μa2b0b2
1 + 12αa2

0a1a2 − 12a2
0a1a2 − 8αa0a2

1b0

+ 12a0a2
1b0 − 16αμa0a2

2b0 + 24μa0a2
2b0 − 8αa2

0a2b0 + 12a2
0a2b0 − 16αμa2

1a2b0

+ 24μa2
1a2b0 − 8μa1b2

0b1 + 2a1b2
0b1 + 3ωa2b2

0b1 + 8αa2
0a1b1 − 12a2

0a1b1

− 2αa2
0b0b1 + 8a2

0b0b1 − 2αμa2
1b0b1 + 8μa2

1b0b1 − 2a2
1b0b1 + 4αμ2a2

2b0b1

− 12μ2a2
2b0b1 − 4αμa0a2b0b1 + 8μa0a2b0b1 − 4a0a2b0b1 = 0, (A29)

e6Q(z) : 8a2b3
0λ3 + 4a0b0b2

1λ3 − 4a1b2
0b1λ3 + 7a1b3

0λ2 − 7μa0b3
1λ2 + 2αa2

1b2
0λ2 − 7a2

1b2
0λ2

+ 4αa0a2b2
0λ2 − 16a0a2b2

0λ2 + 2αa2
0b2

1λ2 − 7a2
0b2

1λ2 + 7μa1b0b2
1λ2 − 7a0b2

0b1λ2

− μa2b2
0b1λ2 − 4αa0a1b0b1λ2 + 14a0a1b0b1λ2 + 52μa2b3

0λ + 2a2b3
0λ + 3αa0a1b2

0λ

− 12a0a1b2
0λ + 15αμa1a2b2

0λ − 52μa1a2b2
0λ + 3αμa0a1b2

1λ − 12μa0a1b2
1λ

+ 20μa0b0b2
1λ − 2a0b0b2

1λ − 8αa0a2
1b0λ + 12a0a2

1b0λ − 8αa2
0a2b0λ + 12a2

0a2b0λ

− 20μa1b2
0b1λ + 2a1b2

0b1λ + 8αa2
0a1b1λ − 12a2

0a1b1λ − 3αa2
0b0b1λ + 12a2

0b0b1λ

− 3αμa2
1b0b1λ + 12μa2

1b0b1λ − 6αμa0a2b0b1λ + 16μa0a2b0b1λ + 8μa1b3
0 + a1b3

0

+ ωa2b3
0 − 8μ2a0b3

1 − μa0b3
1 + 6αa2

0a2
1 − 6a2

0a2
1 + 4αμa2

1b2
0 − 14μa2

1b2
0 − a2

1b2
0

+ 6αμ2a2
2b2

0 − 20μ2a2
2b2

0 + 8αμa0a2b2
0 − 32μa0a2b2

0 − 2a0a2b2
0 + 4αμa2

0b2
1 − 14μa2

0b2
1

− a2
0b2

1 − 2μ2a0a2b2
1 + 3ωa0b0b2

1 + 8μ2a1b0b2
1 + μa1b0b2

1 + 4αa3
0a2 − 4a3

0a2 − 4αμa3
1b0

+ 6μa3
1b0 − 4αa2

0a1b0 + 6a2
0a1b0 − 24αμa0a1a2b0 + 36μa0a1a2b0 + 4αa3

0b1 − 6a3
0b1

+ 4αμa0a2
1b1 − 6μa0a2

1b1 − 8μa0b2
0b1 − a0b2

0b1 + 3ωa1b2
0b1 + 4μ2a2b2

0b1

+ 5μa2b2
0b1 + 4αμa2

0a2b1 − 6μa2
0a2b1 − 8αμa0a1b0b1

+ 28μa0a1b0b1 − 4a0a1b0b1 + 2μ2a1a2b0b1 = 0,
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e7Q(z) : a1b3
0λ3 − a0b2

0b1λ3 + 14μa2b3
0λ2 + αa0a1b2

0λ2 − 4a0a1b2
0λ2 + 10μa0b0b2

1λ2

− 10μa1b2
0b1λ2 − αa2

0b0b1λ2 + 4a2
0b0b1λ2 + 8μa1b3

0λ + a1b3
0λ − 12μ2a0b3

1λ

+ 3αμa2
1b2

0λ − 10μa2
1b2

0λ + 6αμa0a2b2
0λ − 24μa0a2b2

0λ + 5αμa2
0b2

1λ

− 18μa2
0b2

1λ + 12μ2a1b0b2
1λ − 4αa2

0a1b0λ + 6a2
0a1b0λ + 4αa3

0b1λ − 6a3
0b1λ

− 8μa0b2
0b1λ − a0b2

0b1λ − 12μ2a2b2
0b1λ − 8αμa0a1b0b1λ + 28μa0a1b0b1λ

+ ωa1b3
0 + 16μ2a2b3

0 + 2μa2b3
0 + 2αμa0a1b2

0 − 8μa0a1b2
0 − 2a0a1b2

0 + 6αμ2a1a2b2
0

− 20μ2a1a2b2
0 + 2αμ2a0a1b2

1 − 8μ2a0a1b2
1 + 8μ2a0b0b2

1 − 2μa0b0b2
1 + 4αa3

0a1

− 4a3
0a1 − 8αμa0a2

1b0 + 12μa0a2
1b0 − 8αμa2

0a2b0 + 12μa2
0a2b0 + 3ωa0b2

0b1

− 8μ2a1b2
0b1 + 2μa1b2

0b1 + 8αμa2
0a1b1 − 12μa2

0a1b1 − 2αμa2
0b0b1 + 8μa2

0b0b1

− 2a2
0b0b1 − 2αμ2a2

1b0b1 + 8μ2a2
1b0b1 − 4αμ2a0a2b0b1 + 12μ2a0a2b0b1 = 0,

e8Q(z) : αa4
0 − αa2

0b0b1λμ + αa1a0b2
0λμ + 3αa2

0b2
1μ2 + 2αa2a0b2

0μ2 − 4αa1a0b0b1μ2

+ αa2
1b2

0μ2 + 4αa3
0b1μ − 4αa1a2

0b0μ − a0b2
0b1λ2μ + a1b3

0λ2μ + 6a0b0b2
1λμ2

+ 6a2b3
0λμ2 − 6a1b2

0b1λμ2 + 4a2
0b0b1λμ − 4a1a0b2

0λμ − 6a0b3
1μ3 + 6a1b0b2

1μ3

− 6a2b2
0b1μ3 − 11a2

0b2
1μ2 − 8a2a0b2

0μ2 − 2a0b2
0b1μ2 + 14a1a0b0b1μ2 + 2a1b3

0μ2

− 3a2
1b2

0μ2 − 6a3
0b1μ + 6a1a2

0b0μ − a0b2
0b1μ + a1b3

0μ + a0b3
0ω − a2

0b2
0 − a4

0 = 0.
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Abstract: In this paper, we propose a user-friendly integral inequality to study the coupled parabolic
chemotaxis system with singular sensitivity under the Neumann boundary condition. Under a low
diffusion rate, the classical solution of this system is uniformly bounded. Our proof replies on

the construction of the energy functional containing
∫

Ω
|v|4
v2 with v > 0. It is noteworthy that the

inequality used in the paper may be applied to study other chemotaxis systems.

Keywords: chemotaxis model; energy functional; integral inequality; global uniform boundedness

MSC: 35A01; 35A02

1. Introduction

Our work considers the coupled parabolic chemotaxis system with singular sensitivity⎧⎪⎪⎨⎪⎪⎩
ut = ∇ · (∇u − χ u

v∇v), x ∈ Ω, t > 0,
vt = kΔv − v + u, x ∈ Ω, t > 0,
∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0, v(x, 0) = v0, x ∈ Ω,

(1)

for parameters χ, k > 0 with the Neumann boundary condition, where Ω ⊂ R2 is a
bounded domain with a smooth boundary. u and v are the cell density and concentration of
chemical stimulus with respect to time t and x, respectively. k represents the diffusion rate
of the chemical signal. The initial functions u0 ∈ C0(Ω̄) and v0 ∈ W1,∞(Ω) satisfy u0 ≥ 0
and v0 > 0.

In 1970, Keller and Segel [1] originally introduced the system{
ut = ∇ · (∇u − uχ(v)∇v), x ∈ Ω, t > 0,
τvt = kΔv − αv + βu, x ∈ Ω, t > 0,

(2)

to describe chemotaxis, the oriented movement of cells in response to the concentration of
chemical signal produced by themselves and self-diffusion, where τ, k, α, β > 0 are parame-
ters. The chemical signal experiences random diffusion and decay. Particular cases and
derivatives of chemotaixs models have been developed extensively, such as the parabolic–
elliptic case [2–5], the fully parabolic case [6–10] and other extensive versions [11–13]. Some
studies have focused on the problem of whether the solution to the respective model under-
goes a chemotactic collapse in the sense that the cell density becomes unbounded in finite
or infinite time [3,6,7,12]. Given the initial conditions u0 ≥ 0, v0 > 0 and the Neumann
boundary conditions, others have concentrated on the aggregation effect of the chemotactic
sensitivity χ(v).

Mathematics 2023, 11, 2743. https://doi.org/10.3390/math11122743 https://www.mdpi.com/journal/mathematics
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If χ(v) = χ with τ = k = α = β = 1, Osaki and Yagi [14] showed the global
boundedness of solutions to (2) for n = 1 and Nagai et al. [15] proved the results if∫

Ω u0 < 4π for n = 2. For n ≥ 3, if ‖u0‖L
n
2 (Ω)

is small enough, there exist global weak

solutions [16]. Another form of sensitivity function is

χ(v) =
χ0

(c + αv)k

for c, χ0 > 0, k > 1 and α > 0, which is non-singular. In this case, the global existence is
established for k = 2, c = 1 by [17] and for k = 1, α = 1 by [12]. Furthermore, if χ(v) = χ0

vk

for k > 1, χ0 > 0, there exist global classical solutions to (2) [18].
The logarithmic sensitivity function χ(v) = χ

v with χ > 0 is commonly considered
because it is in compliance with the Weber–Fechner law [19]. Taking this form with
τ = k = α = β = 1, the chemotaxis model becomes the classical version:⎧⎪⎪⎨⎪⎪⎩

ut = ∇ · (∇u − χu∇v
v ), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,
∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0, v(x, 0) = v0, x ∈ Ω.

(3)

Global bounded solutions to (3) are provided by Osaki and Yagi [14] in a one-dimensional
case. As for n = 2, Lankeit [7] introduced an energy functional and proved that the
solutions are uniform bounded in a convex domain with the range of χ extending to
slightly more than one. Moreover, Winkler [20] proved that there exist global classical

solutions if 0 < χ <
√

2
n , and Fujie [6] showed the solutions are uniformly time bounded.

In [21], global bounded solutions are constructed under the the condition of χ ≤ 4
n with

Ω ⊂ Rn being the convex domain. Furthermore, (3) employs global weak solutions when

χ <
√

n+2
3n−4 [20]. In the radially symmetric setting, weak solutions are constructed by [22]

under the condition χ <
√

n
n−2 . These results imply that there is a balance between χ

and dimension n for the establishment of global solutions to classic models (3). The work
to extend both χ and n is laborious without giving any condition of (3). Lankeit and
Winkler [23] extended the range of χ to

χ <

⎧⎪⎨⎪⎩
∞ if n = 2√

8 if n = 3
n

n−2 if n ≥ 4

,

under the definition of the generalized solution, which is constructed on the basis of the
global weak solution.

There are also other results established on the changing of parameters, referring to [9,24].
Indeed, the parameters in (2) have an impact on the aggregation of cell density. Xiang-
dong [25] constructed global solutions to (1) with n ≤ 8 under some conditions, where the
relationship between k and χ is established. However, if n = 2, the diffusion rate of the
concentration of chemicals k does not work, since χ is still less than one, as in [25].

In [26], the estimates containing
∫

Ω |∇v|2 are established to study the system where
the chemotactic sensitivity is a constant and the source of the signal is modeled by v.
In the work of Winkler [27], the only evident global quasi-dissipative structure involving∫

Ω
|∇v|2

v2 , (v > 0) is established to address the difficulty brought about by the nonlinear
source of signal. However, the system with logarithmic sensitivity presents more challenges,
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and the structure of
∫

Ω f (v)|∇v|n (n is even) is essential to the estimates. Hence, motivated
by Lankeit [7] and Nagai [15], we establish an energy-type functional containing

∫
Ω

|∇v|4
v2 .

The fractional term of v in the energy-type functional may alleviate the difficulty of
preventing the aggregation caused by nonlinear kinetics in some derivate systems such
as [27,28], where the source of the signal is modeled by uv.

In this paper, the global existence and uniform boundedness of the classical solutions
of (1) are established as follows:

Theorem 1. Let Ω be a bounded domain with a smooth boundary ∂Ω on R2, initial data v0 > 0
and u0 ≥, �≡ 0 in Ω with u0 ∈ C0(Ω̄) and v0 ∈ W1,∞(Ω). For all χ > 0, there exists a constant
Ck that depends on u0, v0, Ω and χ, such that whenever

k ≥ Ck,

then (1) admits a unique classical solution (u, v) ∈ C0(Ω̄× [0, ∞))
⋂

C2,1(Ω̄× (0, ∞)). Moreover,
there exist constants δ, C > 0 such that δ ≤ v < C and 0 ≤ u < C for all t ∈ (0, ∞).

Intuitively, this shows that the large diffusion rate of chemical signals can prevent the
aggregation of cell density resulting from a large χ.

In the paper, we first demonstrate the local existence of and recall some inequalities
in the preliminaries. Then, we prove our key integral inequality in the Section 3 and give
some useful a priori estimates in the Section 4. Finally, we prove the uniform boundedness
of the solutions.

2. Preliminaries

2.1. Local Existence

The local existence of classical solutions to chemotaxis systems has been well-established
using the methods of standard parabolic regularity theory and an appropriate fixed-point
framework, which is shown in the following. Details of proof can be seen in Theorem 2.1
of [7] or [20].

Proposition 1. Let Ω ⊂ Rn be a bounded domain with a smooth boundary, and u0 ∈ C0(Ω̄) and
v0 ∈ W1,q(Ω), q > n ≥ 1 are non-negative; then, for any k, χ > 0, there exists Tmax ∈ (0, ∞] and
a pair of unique non-negative solutions satisfying{

u ∈ C0(Ω̄ × [0, Tmax))
⋂

C2,1(Ω̄ × (0, Tmax)),
v ∈ C0(Ω̄ × [0, Tmax))

⋂
C2,1(Ω̄ × (0, Tmax))

⋂
L∞

loc([0, Tmax); W1,q(Ω)),

such that (u, v) solves (1) classically in Ω × [0, Tmax) and, moreover, if Tmax < ∞, then
lim

t→Tmax
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W1,q(Ω) = ∞.

2.2. The Positive Lower Boundedness of v

In order to prove the lower boundedness of v in (1), we first prove the boundedness of
‖u‖L1 and ‖v‖L1 . Integrating the first and the second PDE in (1), we have the mass identities∫

Ω
u =

∫
Ω

u0 =: m, t > 0

and ∫
Ω

v =
∫

Ω
u0 +

( ∫
Ω

v0 −
∫

Ω
u0
) · e−t, t > 0.
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Based on these facts, one can deduce the non-negative lower boundedness of v from the
abstract representation formula of the v equation. Copying Lemma 2.2 of [7], we write it
as follows:

Lemma 1. Let (u, v) satisfy Proposition 1; then, there exists Tmax > 0 and a positive constant δ
depending on v0 such that

v(x, t) ≥ δ > 0, ∀(x, t) ∈ Ω̄ × [0, Tmax). (4)

Proof. Firstly, by the comparison principle and the fact of v0 > 0 on Ω̄, we have for a small t

v(x, t) ≥ min
x∈Ω̄

v0 · e−t > 0.

Let us fix τ = τ(u0, v0). Then, it follows that

v(x, t) ≥ min
x∈Ω̄

v0 · e−τ := δ1 > 0, ∀t ∈ [0, τ).

Now, from the well-known Neumann heat semigroup estimate for etΔ (see Lemma 1.3 in [29]
and Lemma 2.2 in [20]), we denote by d the diameter of the Ω and have for Ω ⊂ R2 that

(etΔω) ≥ 1
4πt

e−
d2
4t ·

∫
Ω

ω > 0, ω ∈ C0(Ω).

Then, the abstract representation formula of v shows

v(·, t) =et(Δ−1)v0 +
∫

Ω
e(t−s)(Δ−1)u(·, t)ds

≥
∫ t

0

1
4π(t − s)

e−((t−s)+ d2
4(t−s) )(

∫
Ω

u(·, t))ds

≥m
∫ t

0

1
4πr

e−(r+ d2
4r )dr := δ2 > 0, ∀t ∈ [τ, ∞),

(5)

where r := t − s. Choosing δ = min{δ1, δ2}, we deduce (4).

2.3. Recall of Useful Theorems

The well-known general Young’s inequality [30] is recalled.

Lemma 2. Let f , g ≥ 0 be the continuous function with p, q > 0 satisfying 1
p + 1

q = 1, then

f g ≤ ε f p +
1
q
(εp)−

q
p gq (6)

holds for all ε > 0. Moreover, for continuous h > 0 and any ε1, ε2 > 0, taking p = 2, q = 3, r = 6
such that 1

p + 1
q +

1
r = 1, we have

f gh ≤ ε1 f 2 +
ε2

4ε1
g3 +

√
6

36ε1
√

ε2
h6. (7)

Proof. In (7) is given the result of the straightforward calculation of the well-known
inequality (6).
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Lemma 3. Let Ω ⊂ Rn, n ≥ 1 be a smooth bounded domain. Any function f ∈ C2(Ω) satisfies

i. ∇|∇ f |2 = 2∇ f · D2 f , (8)

ii. (Δ f )2 ≤ n|D2 f |2, (9)

iii. ∇ f · ∇Δ f =
1
2

Δ|∇ f |2 − |D2 f |2. (10)

All the identities and inequalities in the above lemma can be obtained from straightfor-
ward calculation. One can see [7,31] and Lemma 3.1 in [8] for their application. We could
not find a precise reference in the literature that covers all that is necessary for our purpose;
therefore, we conclude with a short lemma here.

3. A User-Friendly Integral Inequality

The proof of Theorem 1 is based on the extension and application of an integral
inequality, which is generated within one dimension by Q. Wang [28]. The following
theorem has a multidimensional form. It is worth noting that the integral inequality
connects the fraction of the gradient and the second derivative. A similar inequality can be
found in [7]. Furthermore, the explicit coefficient in the integral inequality is easy to use
for readers.

Theorem 2. Let Ω ⊂ Rn be a smooth bounded domain with w > 0 satisfying w ∈ C2(Ω̄) and
∂w
∂ν = 0 on ∂Ω. Then,

∫
Ω

|∇w|2p+2

wq+2 ≤ n + 4pε

2q + 1 − p
ε

∫
Ω

|D2w|2|∇w|2p−2

wq (11)

for all p ≥ 1, q > − 1
2 and ε > p

2q+1 > 0.

Proof. Let J :=
∫

Ω |Δ log w|2 |∇w|2p−2

wq−2 > 0 for p ≥ 1. Directly calculating |Δ log w|2 leads to

J =
∫

Ω

|Δw|2|∇w|2p−2

wq

J0︷ ︸︸ ︷
−2

∫
Ω

|∇w|2pΔw
wq+1 +

∫
Ω

|∇w|2p+2

wq+2 . (12)

Since ∂w
∂ν = 0 on ∂Ω, integration by parts gives

J0 =2
∫

Ω

∇|∇w|2p · ∇w
wq+1 − 2(q + 1)

∫
Ω

|∇w|2p+2

wq+2

=2p
∫

Ω

|∇w|2p−2∇|∇w|2 · ∇w
wq+1 − 2(q + 1)

∫
Ω

|∇w|2p+2

wq+2 .

By (8) of Lemma 3 and (6), we have for ε > 0 that

J0 =4p
∫

Ω

|∇w|2p · D2w
wq+1 − 2(q + 1)

∫
Ω

|∇w|2p+2

wq+2

≤4pε
∫

Ω

|∇w|2p−2|D2w|2
wq − (

2(q + 1)− p
ε

) ∫
Ω

|∇w|2p+2

wq+2 .
(13)

By (9), substituting (13) into (12) gives

J ≤ (n + 4pε)
∫

Ω

|∇w|2p−2|D2w|2
wq − (

(2q + 1)− p
ε

) ∫
Ω

|∇w|2p+2

wq+2 .

Due to q > − 1
2 , ε > p

2q+1 > 0; thus, (2q + 1)− p
ε > 0, and we conclude with (11).
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Remark 1. Letting Ω ⊂ R2 and taking q = p = 2, ε > 2
5 , then n+4pε

2q+1− p
ε

= 2+8ε
5− 2

ε

. Note

that 2+8ε
5− 2

ε

achieves its global minimum over ( 2
5 , ∞) at ε = 4+

√
26

10 (≈0.9099) with the value
2

21−4
√

26
(≈3.3117). Therefore,

∫
Ω

|∇w|6
w4 ≤ 2

21 − 4
√

26

∫
Ω

|D2w|2|∇w|2
w2 . (14)

4. Some Useful A Priori Estimates

Let us first give an inequality to estimate the boundary integration.

Lemma 4. Let Ω ⊂ R2 be a bounded smooth domain. If v ∈ C2(Ω̄) satisfies ∂v
∂ν = 0, the for any

ε̂ > 0, there exists C(ε̂) depending on Ω such that

∫
∂Ω

|∇v|2
v2

∂(|∇v|2)
∂ν

≤ ε̂
∫

Ω

|∇v|2|D2v|2
v2 + C(ε̂) (15)

for all t ∈ (0, Tmax) and n ≥ 1.

Proof. Firstly, we show that

∫
∂Ω

|∇v|2
v2

∂(|∇v|2)
∂ν

= 16
∫

∂Ω
|∇√

v|2 ∂(|∇√
v|2)

∂ν
. (16)

From the Neumann boundary condition, we calculate the right-hand side, obtaining

16
∫

∂Ω
|∇√

v|2 ∂(|∇√
v|2)

∂ν
=
∫

∂Ω

|∇v|2
v

∂ |∇v|2
v

∂ν

=
∫

∂Ω

|∇v|2
v

∂|∇v|2
∂ν v − ∂v

∂ν |∇v|2
v2 =

∫
∂Ω

|∇v|2
v2

∂(|∇v|2)
∂ν

for all t ∈ (0, Tmax).
Now, according to (3.17) in [11], we have for any ε > 0 and constant Cε > 0 depending

on Ω that∫
∂Ω

|∇√
v|2 ∂(|∇√

v|2)
∂ν

≤ ε
∫

Ω

∣∣∣∇|∇√
v|2
∣∣∣2 + Cε for all t ∈ (0, Tmax). (17)

By straightforward calculation, we have

∫
Ω

∣∣∣∇|∇√
v|2
∣∣∣2 =

1
16

∫
Ω

∣∣∣∣∇( |∇v|2
v

)∣∣∣∣2 =
1
16

∫
Ω

∣∣∣∣∇(|∇v|2)
v

− ∇v|∇v|2
v2

∣∣∣∣2
=

1
16

∫
Ω

(∣∣∇|∇v|2∣∣2
v2 − 2

∇|∇v|2 · ∇v|∇v|2
v3 +

|∇v|6
v4

)

≤ 1
16

∫
Ω

(
(2ε1 + 1)

∣∣∇|∇v|2∣∣2
v2 + (

1
2ε1

+ 1)
|∇v|6

v4

)

for ε1 > 0. Then, we have from (14) that

∫
Ω

∣∣∣∇|∇√
v|2
∣∣∣2 ≤ 1

16

(
2ε1 + 1 +

ε̃

8ε1
+

ε̃

4

) ∫
Ω

∣∣∇|∇v|2∣∣2
v2 (18)
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for all t ∈ (0, Tmax), where ε̃ = 2
21−4

√
26

for simplicity. Combining (18) and (17) with (16),
we can obtain that

∫
∂Ω

|∇v|2
v2

∂(|∇v|2)
∂ν

≤ ε

(
2ε1 + 1 +

ε̃

8ε1
+

ε̃

4

) ∫
Ω

∣∣∇|∇v|2∣∣2
v2 + 16Cε.

Denoting ε̂ = ε(2ε1 + 1 + ε̃
8ε1

+ ε̃
4 ) and C(ε̂) = 16Cε, we prove (15) for any ε̂ > 0.

In preparation for the construction and estimation of energy-type functionals, some
important a priori estimates are provided and collected into two lemmas in the following.

Lemma 5. Let k > 0 and (u, v) be the solutions of (1) satisfying Proposition 1. Then, we have for
any ε̂ > 0 that

d
dt

∫
Ω

|∇v|4
v2 +

∫
Ω

|∇v|4
v2 ≤− (

4k
3

− 2kε̂)
∫

Ω

|∇v|2|D2v|2
v2 − 2

∫
Ω

|∇v|4u
v3

+4
∫

Ω

|∇v|2∇v · ∇u
v2 + C(ε̂).

(19)

Proof. Through straightforward calculation, we can show

d
dt

∫
Ω

|∇v|4
v2 =4

∫
Ω

|∇v|2∇v · ∇vt

v2 − 2
∫

Ω

|∇v|4vt

v3

=

I1︷ ︸︸ ︷
4k
∫

Ω

|∇v|2∇v · ∇Δv
v2 −2

∫
Ω

|∇v|4
v2 + 4

∫
Ω

|∇v|2∇v∇u
v2

I2︷ ︸︸ ︷
−2k

∫
Ω

|∇v|4Δv
v3 −2

∫
Ω

|∇v|4u
v3 .

(20)

In light of (10), we have from (15) that

I1 =2k
∫

Ω

|∇v|2Δ|∇v|2
v2 − 4k

∫
Ω

|∇v|2|D2v|2
v2

=2k
∫

∂Ω

|∇v|2
v2

∂(|∇v|2)
∂ν

− 2k
∫

Ω
∇( |∇v|2

v2

) · ∇|∇v|2 − 4k
∫

Ω

|∇v|2|D2v|2
v2

=2k
∫

∂Ω

|∇v|2
v2

∂(|∇v|2)
∂ν

− 2k
∫

Ω

(∇|∇v|2)2

v2

+

I3︷ ︸︸ ︷
4k
∫

Ω

|∇v|2∇v · ∇|∇v|2
v3 −4k

∫
Ω

|∇v|2|D2v|2
v2

≤− (12k − 2kε̂)
∫

Ω

|∇v|2|D2v|2
v2 +

I3︷ ︸︸ ︷
4k
∫

Ω

∇v|∇v|2 · ∇|∇v|2
v3 +C(ε̂).

(21)

Similarly, we calculate that

I2 = 2k
∫

Ω
∇( |∇v|4

v3

)∇v = 4k
∫

Ω

|∇v|2∇v · ∇|∇v|2
v3 − 6k

∫
Ω

|∇v|6
v4 .
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Given by the sum of I2 and I3 and taking ε = 1
3 , (6) implies that

I2 + I3 =8k
∫

Ω

|∇v|2∇v · ∇|∇v|2
v3 − 6k

∫
Ω

|∇v|6
v4

≤8kε
∫

Ω

(∇|∇v|2)2

v2 + (
2k
ε

− 6k)
∫

Ω

|∇v|6
v4

=
32k
3

∫
Ω

|∇v|2|D2v|2
v2 .

(22)

Substituting (22) and (21) into (20), we finish the proof by taking the first identity of Lemma 3.

Lemma 6. Supposing that (u, v) solves (1) and all conditions of Proposition 1 hold, then there
exist small ε1, ε2 > 0 and δ > 0 such that

1
2

d
dt

∫
Ω

u2 ≤ −(1 − χε1δ∗)
∫

Ω
|∇u|2 + χε2

4ε1

∫
Ω

u3 +
χ
√

6
36ε1

√
ε2

∫
Ω

|∇v|6
v4 . (23)

Proof. In light of the u equation of (1) and integration by parts, we can show that

1
2

d
dt

∫
Ω

u2 =
∫

Ω
u∇ · (∇u − χ

∇v
v

u) = −
∫

Ω
|∇u|2 +

∫
Ω

χu
∇u · ∇v

v
. (24)

The employment of (7) implies

∫
Ω

χu
∇u · ∇v

v
≤ χε1

∫
Ω

|∇u|2
v

2
3

+
χε2

4ε1

∫
Ω

u3 +
χ
√

6
36ε1

√
ε2

∫
Ω

|∇v|6
v4 (25)

for small ε1, ε2 > 0. Note that v has the lower bound for any t > 0. Let δ∗ := δ− 2
3 be the

upper bound of v− 2
3 and substitute (25) into (24) to obtain (23).

5. Uniform Boundedness

In this section, we shall finish the proof of Theorem 1. Firstly, we construct the energy
functional and prove that each item of the functional is uniform bounded.

Theorem 3. For α > 0, let Fα(u, v) take the following form:

Fα(u, v) = α
∫

Ω
u2 +

∫
Ω

|∇v|4
v2 .

Then, for Ω ⊂ R2 and any χ > 0, there exists a constant Ck(u0, v0, Ω, χ) > 0 such that if
k > Ck(u0, v0, Ω, χ), then for some C > 0

d
dt
Fα(u, v) +Fα(u, v) < C for all t ∈ (0, Tmax). (26)
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Proof. Combining (19) and (23), we achieve

d
dt
(α
∫

Ω
u2 +

∫
Ω

|∇v|4
v2 ) + (α

∫
Ω

u2 +
∫

Ω

|∇v|4
v2 )

≤− (2α − 2αχε1δ∗)
∫

Ω
|∇u|2 +

I1︷ ︸︸ ︷
αχε2

2ε1

∫
Ω

u3 +

I2︷ ︸︸ ︷
αχ

√
6

18ε1
√

ε2

∫
Ω

|∇v|6
v4

− (
4k
3

− 2kε̂)
∫

Ω

|∇v|2|D2v|2
v2 − 2

∫
Ω

|∇v|4u
v3 +

I3︷ ︸︸ ︷
4
∫

Ω

|∇v|2∇v · ∇u
v2

+ α
∫

Ω
u2 + C(ε̂).

(27)

The Gagliardo–Nirenberg inequality and the boundedness of ‖u‖L1(Ω) imply that there
exists C > 0 depending on ‖u0‖L1(Ω), Ω such that∫

Ω
u2 ≤ η

∫
Ω
|∇u|2 + C

for some small η > 0 and

I1 =
αχε2

2ε1
‖u‖3

L3(Ω) ≤
αχε2

2ε1
(C1‖∇u‖2

L2(Ω) + C2), (28)

where C1, C2 > 0, depending on ‖u0‖L1(Ω) and Ω. For I3, we employ Lemma 2 to obtain

I3 ≤ 1
ε3

∫
Ω

|∇v|6
v4 + 4ε3

∫
Ω
|∇u|2 (29)

for any ε3 > 0. Combining the first item of (29) with I2 and employing (14), we have

(
αχ

√
6

18ε1
√

ε2
+

1
ε3
)
∫

Ω

|∇v|6
v4 ≤ (

αχ
√

6
18ε1

√
ε2

+
1
ε3
)ε̃
∫

Ω

|∇v|2|D2v|2
v2 , (30)

where we denote ε̃ = 2
21−4

√
26

for simplicity. Thus, substituting (28)–(30) into (27) gives

d
dt
(α
∫

Ω
u2 +

∫
Ω

|∇v|4
v2 ) + (α

∫
Ω

u2 +
∫

Ω

|∇v|4
v2 )

≤−
κ1︷ ︸︸ ︷

(2α(1 − χε1δ∗ − χε2

4ε1
C1 − η)− 4ε3)

∫
Ω
|∇u|2

−

κ2︷ ︸︸ ︷
(

4k
3

− 2kε̂ − αχ
√

6
18ε1

√
ε2

ε̃ − 1
ε3

ε̃)
∫

Ω

|∇v|2|D2v|2
v2 + C.

(31)

Let ε1, ε2 and ε3 be small, such that κ1 = 0. Then, taking a small ε̂ such that 2
3 > ε̂,

we denote

C(ε1,ε2,ε3)
:=

αχ
√

6
6ε1

√
ε2(4 − 6ε̂)

ε̃ +
3

ε3(4 − 6ε̂)
ε̃ > 0,

and let Ck depending on u0, v0, Ω, χ be the lower bound of C(ε1,ε2,ε3)
provided κ1 = 0.

Therefore, for any k ≥ Ck > 0, we have κ2 ≥ 0 and can then deduce (26).
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Theorem 4. Let (u,v) be the solutions of (1) satisfying all conditions in Proposition 1. Then,∫
Ω

u2(·, t) ≤ C and
∫

Ω
|∇v(·, t)|2 ≤ C, (32)

with t ∈ (0, Tmax).

Proof. According to (26), there is C > 0 such that

∫
Ω

u2(·, t) ≤ C and
∫

Ω

|∇v|4
v2 (·, t) ≤ C,

for all t ∈ (0, Tmax). From Young’s inequality and the Gagliardo–Nirenberg inequality,
there exist ε4, εGN > 0 and C > 0 such that∫

Ω
|∇v(·, t)|2 ≤Cε4

∫
Ω

|∇v|4
v2 (·, t) + ε4

∫
Ω

v2(·, t)

≤Cε4

∫
Ω

|∇v|4
v2 (·, t) + ε4εGN

∫
Ω
|∇v(·, t)|2 + C

(33)

for all t ∈ (0, Tmax). Taking ε4 < 1
2εGN

, then we have ε4εGN < 1
2 and prove (32).

Proof of Theorem 1. Using the well-known Moser’s technique [32], the L∞ boundedness
of u follows from Theorem 4. Indeed, one can follow the estimates of Nagai [15] or directly
employ Lemma 2.3 in [7] to prove the theorem.

6. Conclusions

Our paper proves the uniform boundedness of solutions of the chemotaxis system
with singular sensitivity under a small diffusion rate of the chemical signal. We prove a
user-friendly inequality that has certain parameters, and construct a new energy functional
that is applicable to the double Keller–Segel model with nonlinear sources.
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Abstract: This article studies diverse forms of lump-type solutions for coupled nonlinear generalized
Zakharov equations (CNL-GZEs) in plasma physics through an appropriate transformation approach
and bilinear equations. By utilizing the positive quadratic assumption in the bilinear equation, the
lump-type solutions are derived. Similarly, by employing a single exponential transformation in the
bilinear equation, the lump one-soliton solutions are derived. Furthermore, by choosing the double
exponential ansatz in the bilinear equation, the lump two-soliton solutions are found. Interaction
behaviors are observed and we also establish a few new solutions in various dimensions (3D and
contour). Furthermore, we compute rogue-wave solutions and lump periodic solutions by employing
proper hyperbolic and trigonometric functions.

Keywords: CNL-GZE; lump-type solitons; rogue wave; appropriate transformation technique

MSC: 35J05; 35J10; 35K05; 35L05

1. Introduction

The study of partial differential equations (PDEs) occurs in various fields such as
theoretical physics, applied mathematics, biological sciences, and engineering sciences.
These PDEs play a crucial role in explaining key scientific phenomena. For instance, the
Korteweg–de Vries equation governs shallow water wave dynamics near ocean shores and
beaches, and the nonlinear Schrödinger’s equation governs the propagation of solitons
through optical fibers. Some examples of PDEs and their applications can be found in [1–8].

Although the above-mentioned PDEs are scalar, a large number of PDEs are coupled.
Some of them are two-coupled PDEs such as the Gear–Grimshaw equation, whereas others
are three-coupled PDEs. An example of a three-coupled PDE is the Wu–Zhang equation.
These coupled PDEs are also calculated in distinct areas of theoretical physics. In this paper,
we will study CNL-GZE used in plasmas.

Lump waves (LWs), as superior nonlinear wave phenomena, have been visualized
in various fields. LWs are theoretically viewed as a limited type of soliton and move
with higher propagating energy compared to general solitons. Consequently, LWs can be
destructive and even catastrophic in certain systems, such as in the ocean and finance. It is
important to be able to find and anticipate LWs in practical applications. In recent years,
studies on lump solutions have increased, leading to more specialized investigations. There-
fore, theoretical investigations of LWs are instrumental in enhancing our understanding
and predicting possible extremes in nonlinear systems [9–13].

Finding the lump solutions of PDEs has become a primary focus in recent years. As a
result, several mathematical experts have developed important schemes in order to solve
PDEs [14–16].
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In this article, we consider the CNL-GZE for the complex envelope u(x, t) of the
high-frequency wave and the real low-frequency field v(x, t), as follows [17]:{

ih1ψt + ψxx − 2h2|φ|2ψ + 2ψφ = 0,
φtt − ψxx − (|φ|2)xx = 0.

(1)

where h1 and h1 are real constants. The cubic term in Equation (1) represents the nonlinear
self-interaction in the high-frequency subsystem, which corresponds to a self-focusing
effect in plasma physics.

Several researchers have worked on the stated model. For instance, Wang et al. eval-
uated periodic wave solutions for GZEs using the extended F-expansion method [17].
Zheng et al. performed a numerical simulation of a GZ system [18]. Bao et al. developed
numerical schemes for a GZ system [19]. Bhrawy et al. constructed an efficient Jacobi
pseudospectral approximation for a nonlinear complex GZ system [20]. Zhang et al. stud-
ied solitary wave solutions through a variational approach [21]. Similarly, Yildirim et al.
studied some newly discovered soliton solutions of GZEs by applying He’s variational
approach [22]. Li et al. computed additional exact solutions of GZEs through the Exp-
function method [23]. Buhe et al. studied symmetry reductions, conservation laws, and
exact solutions for GZEs [24]. Lin et al. constructed some additional exact solutions for
GZEs through the Exp-function method [23]. Wu et al. studied exact solutions for GZEs
using a variational approach [25]. However, in this paper, we will explore lump, lump-type,
lump one-strip, and lump two-strip solutions for CNL-GZEs through appropriate transfor-
mation methods and bilinear equations. We compute the lump solutions by choosing the
appropriate polynomial function. In addition, we compute lump-periodic and rogue-wave
solutions by using logarithmic transformation.

This article is organized as follows. In Section 2, we form bilinear equations and evalu-
ate lump solutions for the coupled nonlinear generalized Zakharov equations in plasma
physics through appropriate transformation approaches. The solutions are presented along
with with their corresponding graphs. The mixed solutions of soliton and lump waves
are provided in Section 3. We evaluate the lump one-strip and lump two-strip solutions
using suitable profiles in Section 3. By employing a trigonometric ansatz in the bilinear
equation, we compute lump periodic solutions in Section 4. By utilizing a hyperbolic
ansatz in the bilinear equation, we explore rogue-wave solutions in Section 5. Section 6
discusses the results of the obtained solutions, and finally, in Section 7, we present some
concluding remarks.

2. Lump Solution

For the lump solutions of Equation (1), we apply the following ansatz: [26–30],

ψ(x, t) =
h3e(ict)p(x, t)

q(x, t)
, φ(x, t) = 2[ln q(x, t)]x − c, (2)

then, we obtain the bilinear equations,

2h2h2
3 p3 + 2ch3 pqt2 + ch1h3 pq2 − ih1h3q2 + pt + ih1h3 pqqt − 4h3 pqqx

+2h3qpxqx − 2h3 pq2
x − h3q2 pxx + h3 pqqxx = 0, (3)

and

h2
3q2 p2

xq2
t qx − q2qttqx − 4h2

3 pqpxqx + 3h3
3 p2q2

x − 2qq3
x − 2q2qtqxt + q3qxtt

+h2
3 pq2 pxx − h2

3 p2qqxx + 3q2qxqxx − q3qxxx = 0, (4)

respectively.
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Now, to obtain the LP solution, the functions p and q in Equations (3) and (4) are
assumed to be [27,28],

p = ξ2
1 + ξ2

2 + a2 , q = ξ2
1 + ξ2

2 + a3, (5)

where ξ1 = a0x + t, ξ2 = a1x + t.
In addition, ai(1 ≤ i ≤ 3) are specific constants. Now, by substituting Equation (5)

into Equations (3) and (4) and solving the equations obtained from the coefficients of x and
t, we obtain:

Set I. The values of unknowns for Equations (3) and (4), respectively, are as follows:⎧⎪⎪⎨⎪⎪⎩
a0 = −1+i

√
3

2 , h1 = − 2(h2h2
3+c)

c , a2 = a2, a3 = a3, a0 = a0.
and
a0 = 1−i

2 , a1 = 1+i
2 , h3 = 0, a2 = a2, a3 = a3.

(6)

Then, the values in Equation (6) generate the required solutions for Equations (3) and (4),
which are, respectively,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1,1 = −
2eict(c+h2h2

3)

(
a2+

(
t+ (−1+i

√
3)

2 x
)2

+(t+a1x)2

)

c

(
a3+

(
t+ (−1+i

√
3)x

2

)2
+(t+a1x)2

) ,

and

φ1,1 =
2(−1+i

√
3)

((
t+ (−1+i

√
3)2

2 x

)
+2a1(t+a1x)

)

a3+

(
t+ (−1+i

√
3)x

2

)2
+(t+a1x)2

− c.

(7)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ψ1,2 =

eicth1

(
a2+(t+( 1−i

2 )x)
2
+(t+( 1+i

2 )x)
2)

a3+(t+( 1−i
2 )x)

2
+(t+( 1+i

2 )x)
2 ,

and

φ1,2 =
2((1−i)(t+( 1−i

2 )x)+(1+i)(t+( 1+i
2 )x))

a3+(t+( 1−i
2 )x)

2
+(t+( 1+i

2 )x)
2 − c.

(8)

Set II. The values of the parameters in Equations (3) and (4) are, respectively,⎧⎪⎨⎪⎩
a0 = −3+3i

4 , a1 = 3+3i
4 , h1 = −2, a2 = 0, a3 = a3.

and
a0 = 1, a1 = 1, h3 = h3, a2 = a2, a3 = a3.

(9)

Then, the values in Equation (9) generate the required solutions for Equations (3) and (4),
which are, respectively,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ2,1 = − 2eict
(
(t−( 3−3i

4 )x)
2
+(t+( 3+3i

4 )x)
2)

a3+(t−( 3−3i
4 )x)

2
+(t+( 3+3i

4 )x)
2 ,

and

φ2,1 =
2((−3+3i

2 )(t−( 3−3i
4 )x)+( 3+3i

2 )(t+( 3+3i
4 )x))

a3+(t−( 3−3i
4 )x)

2
+(t+( 3+3i

4 )x)
2 − c.

(10)
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and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ2,2 =

eicth1(a2+2(t+x)2)
a3+2(t+x)2 ,

and
φ2,2 = −c + 8(t+x)

a3+2(t+x)2 .

(11)

3. Mixed Solutions of Soliton and Lump Waves

In this section, we study the interaction of a lump soliton with a single kink wave and
the interaction of a lump soliton with double kink waves.

3.1. Lump One-Strip Soliton Interaction Solution

To obtain the lump one-strip solution, we use the transformations given in Equa-
tions (3) and (4) [22,27–30]:

p = ξ2
1 + ξ2

2 + a2 + b0ek1x+k2t , q = ξ2
1 + ξ2

2 + a3 + b0ek1x+k2t, (12)

where ξ1 = a0x + t, ξ2 = a1x + t, and ai(1 ≤ i ≤ 3), k1, k2, and b0 are any constants. Now,
from Equations (12) and (4), we obtain the coefficients of x and t and solve the equations
as follows:

Set I. The values of the parameters in Equations (3) and (4) are, respectively,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c = −18h2h2

3+8+4
√

−9ih1k2−72h2h2
3+4

9h1+18 , k1 =
2+
√

−9ih1k2−72h2h2
3+4

3 , a0 = ia1, h3 = h3, a2 = a2,

and

a0 = 1−2i
√

5
3 , a1 = 1+2i

√
5

3 , a2 = − 69300
19h4

3
, a3 = − 62100

19h4
3

, k1 = − 19
90 h2

3, k2 = − 19
90 h2

3.

(13)

Then, the values in Equation (13) generate the required results for Equations (3) and (4),
which are, respectively,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ3,1 =

e
i

(
−18h2h2

3+8+4
√

−9ih1k2−72h2h2
3+4

)
t

9h1+18 h1

⎛⎜⎜⎝a2+b0ek2t+

(
2+
√

−9ih1k2−72h2h2
3+4

)
x

3 +(t+ia1x)2+(t+a1x)2

⎞⎟⎟⎠
a3+b0ek2t+

(
2+
√

−9ih1k2−72h2h2
3+4

)
x

3 +(t+ia1x)2+(t+a1x)2

,

and

φ3,1 = −−18h2h2
3+8+4

√
−9ih1k2−72h2h2

3+4
9h1+18 +

2

⎛⎜⎜⎝ 1
3 b0ek2t+

(
2+
√

−9ih1k2−72h2h2
3+4

)
x

3 Π1

⎞⎟⎟⎠
a3+b0ek2t+

(
2+
√

−9ih1k2−72h2h2
3+4

)
x

3 +(t+ia1x)2+(t+a1x)2

,

Π1 =
(

2 +
√
−9ih1k2 − 72h2h2

3 + 4
)
+ 2ia1(t + ia1x) + 2a1(t + a1x).

(14)
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ4,1 =

eicth1

⎛⎝b0e
19h2

3t
90 − 19h2

3x
90 − 69300

19h4
3
+

(
t+ (1−2i

√
5)x

3

)2
+

(
t+ (1+2i

√
5)x

3

)2
⎞⎠

b0e
19h2

3t
90 − 19h2

3x
90 − 69300

19h4
3
+

(
t+ (1−2i

√
5)x

3

)2
+

(
t+ (1+2i

√
5)x

3

)2
,

and

φ4,1 =

2

⎛⎝− 19
90 b0e

19h2
3t

90 − 19h2
3x

90 h2
3+

2(1−2i
√

5)
3

(
t+ (1−2i

√
5)x

3

)
+Π2

⎞⎠
b0e

19h2
3t

90 − 19h2
3x

90 − 62100
19h4

3
+

(
t+ (1−2i

√
5)x

3

)2
+

(
t+ (1+2i

√
5)x

3

)2
− c,

Π2 =
2(1+2i

√
5)

3

(
t + (1−2i

√
5)x

3

)
.

(15)

Set II. The values of the parameters in Equations (3) and (4) are, respectively,⎧⎪⎪⎨⎪⎪⎩
a0 = ia1, k1 =

6h2h2
3+3ch1+6c

4 , a3 = a3, h3 = h3, a2 = a2.
and

a0 = −1−2i
√

5
3 , a1 = −1+2i

√
5

3 , a2 = − 69300
19h4

3
, a3 = − 62100

19h4
3

, k1 = − 19
90 h2

3, k2 = − 19
90 h2

3.

(16)

Then, the values in Equation (16) generate the required results for Equations (3) and (4),
which are, respectively,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ5,1 =

eicth1

⎛⎝a2+b0ek2t+
(6h2h2

3+3ch1+6c)x
4 +(t+ia1x)2+(t+a1x)2

⎞⎠
a3+b0ek2t+

(6h2h2
3+3ch1+6c)x

4 +(t+ia1x)2+(t+a1x)2

,

and

φ5,1 =

2

⎛⎝ 1
4 b0ek2t+

(6h2h2
3+3ch1+6c)x

4 +(6h2h2
3+3ch1+6c)+2ia1(t+ia1x)2+2a1(t+a1x)2

⎞⎠
a3+b0ek2t+

(6h2h2
3+3ch1+6c)x

4 +(t+ia1x)2+(t+a1x)2

− c.

(17)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ5,2 =

eicth1

⎛⎝b0e
19h2

3t
90 − 19h2

3x
90 − 69300

19h4
3
+

(
t+ (−1−2i

√
5)x

3

)2
+

(
t+ (−1+2i

√
5)x

3

)2
⎞⎠

b0e
19h2

3t
90 − 19h2

3x
90 − 69300

19h4
3
+

(
t+ (−1−2i

√
5)x

3

)2
+

(
t+ (−1+2i

√
5)x

3

)2
,

and

φ5,2 =

2

⎛⎝− 19
90 b0e

19h2
3t

90 − 19h2
3x

90 h2
3+

2(−1−2i
√

5)
3

(
t+ (−1−2i

√
5)x

3

)
+Π3

⎞⎠
b0e

19h2
3t

90 − 19h2
3x

90 − 62100
19h4

3
+

(
t+ (−1−2i

√
5)x

3

)2
+

(
t+ (−1+2i

√
5)x

3

)2
− c,

Π3 =
2(−1+2i

√
5)

3

(
t + (−1−2i

√
5)x

3

)
.

(18)

3.2. Lump Double-Strip Soliton Interaction Solution

To obtain the lump two-strip solution, we assume the following transformation [22,27–30]:

p =
2∧
1

+
2∧
2
+a3 + m1ek1x+k2t+k3 + m2ek4x+k5t+k6 , q =

2∧
1

+
2∧
2
+a4 + m1ek1x+k2t+k3 + m2ek4x+k5t+k6 , (19)
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where
∧

1 = a1x + a2t,
∧

2 = a1x + a2t, and ai(1 ≤ i ≤ 4), ki(1 ≤ i ≤ 6), m1, and m2
are specific real parameters. Now, from Equation (19) and Equation (4), we obtain the
coefficients of x, t, and exp and solve these equations as follows:

Set I. When k5 = k4 = a1 = 0 for Equation (3) and k3 = k6 = a1 = 0 for Equation (4),
the values of the parameters are, respectively,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a4 = − i(9ih2h2

3k2
1−3a2a3h2h2

3+ia2
2a3)

(3ih2h2
3+a2)a2

, k2 =
2k1(3ih2h2

3−2a2)
3h2h2

3
, m1 = − a2m2(3ih2h2

3m2+2a2)
−a2+3ih2h2

3
.

and

a2 =
√

6h2
3

60 , k1 = −
√

6k2
4− 2

3
√

6k2
5+3k4k5

5
√

2
5
√

6k4k5− 6
5 k2

4− 1
5 k2

5

, k2 =
√

2
5

√
6k4k5 − 6

5 k2
4 − 1

5 k2
5, a4 = 0.

(20)

Then, the values in Equation (20) generate the required results for Equations (3) and (4),
which are, respectively,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ5,1 =

eicth1

⎛⎝a3+k2
6+ea2tm2−

a2m2ea2t(3ih2h2
3m2+2a2)

−a2+3ih2h2
3

+

(
k3+

2k1(3ih2h2
3−2a2)t

3h2h2
3

+k1x

)2
⎞⎠

2ea2t− i(9ih2h2
3k2

1−3a2a3h2h2
3+ia2

2a3)
(3ih2h2

3+a2)a2
+k2

6+

(
k3+

2k1(3ih2h2
3−2a2)t

3h2h2
3

+k1x

)2 ,

φ5,1 =
4k1

(
k3+

2k1(3ih2h2
3−2a2)t

3h2h2
3

+k1x

)

2ea2t− i(9ih2h2
3k2

1−3a2a3h2h2
3+ia2

2a3)
(3ih2h2

3+a2)a2
+k2

6+

(
k3+

2k1(3ih2h2
3−2a2)t

3h2h2
3

+k1x

)2 − c.

(21)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ6,1 =

eicth1

⎛⎝Δ1+

(√
2
5
√

6k4k5− 6
5 k2

4− 1
5 k2

5t− (
√

6k2
4− 2

3
√

6k2
5+3k4k5)x

5
√

2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5

)2
⎞⎠

2e
h2

3t

10
√

6 +(k5t+k4x)2+

(√
2
5
√

6k4k5− 6
5 k2

4− 1
5 k2

5t− (
√

6k2
4−

2
3
√

6k2
5+3k4k5)x

5
√

2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5

)2
,

Δ1 = a3 + e
h2

3t

10
√

6 m1 + e
h2

3t

10
√

6 m2 + (k5t + k4x)2.
and

φ6,1 =

2

⎛⎜⎜⎜⎜⎝Δ2−
(
√

6k2
4− 2

3
√

6k2
5+3k4k5)

⎛⎝√ 2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5t− (
√

6k2
4− 2

3
√

6k2
5+3k4k5)x

5
√

2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5

⎞⎠
5
√

2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5

2⎞⎟⎟⎟⎟⎠
2e

h2
3t

10
√

6 +(k5t+k4x)2+

(√
2
5
√

6k4k5− 6
5 k2

4− 1
5 k2

5t− (
√

6k2
4−

2
3
√

6k2
5+3k4k5)x

5
√

2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5

)2
− c,

Δ2 = 2k4(k5t + k4x).

(22)

Set II. When k5 = k4 = a1 = 0 for Equation (3) and k3 = k6 = a1 = 0 for Equation (4),
the values of the parameters are, respectively,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a2 =
4ih2h2

3c(a3−a4)

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1
, h1 = −−10a3h2h2

3+10a4h2h2
3+2a3c−2a4c+9k2

1
c(a3−a4)

,

k2 = − 4
3 ick1(a3−a4)

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1
, m1 = −m2 − 4.

and
m1 = − 5a3m2−4a4m2−8a3+6a4

5a3−4a4
, k1 = ik4, k2 = ik5, a2 = 0.

(23)

Then, the values in Equation (23) generate the required results for Equations (3) and (4), which
are, respectively,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ7,1 =

−

⎛⎜⎜⎝eictD1

⎛⎜⎜⎝a3+k2
6+(−m2−4)e

4ih2h2
3c(a3−a4)t

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1 +m2e

4ih2h2
3c(a3−a4)t

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1 D2

⎞⎟⎟⎠
⎞⎟⎟⎠

(a3−a4)c

⎛⎜⎜⎝a4+k2
6+2e

4ih2h2
3c(a3−a4)t

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1 D2

⎞⎟⎟⎠
,

D1 = −10a3h2h2
3 + 10a4h2h2

3 + 2a3c − 2a4c + 9k2
1,

D2 =

(
k3 − 4ik1c(a3−a4)t

3(−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1)

+ k1x
)2

,

and

φ7,1 = −c +
4k1

(
k3− 4ik1c(a3−a4)t

3(−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1)

+k1x

)
⎛⎜⎜⎝a4+k2

6+2e

4ih2h2
3c(a3−a4)t

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1 D2

⎞⎟⎟⎠
.

(24)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ8,1 =

eicth1

(
a3+m2− 5a3m2−4a4m2−8a3+6a4

5a3−4a4
+(ik5t+ik4x)2+(k5t+k4x)2

)
2+a4+(ik5t+ik4x)2+(k5t+k4x)2 ,

and

φ8,1 =
2(2ik4(ik5t+ik4x)2+2k4(k5t+k4x)2)

2+a4+(ik5t+ik4x)2+(k5t+k4x)2 − c.

(25)

4. Lump Periodic Soliton Solution

To compute the LPS solution, we use the following supposition in Equations (3)
and (4) [22,27–30]:

p =
2∧
1

+
2∧
2
+a2 + a3 cos(n1x + t), q =

2∧
1

+
2∧
2
+a4 + a5 cos(n1x + t) (26)

where
∧

1 = B0x+ t,
∧

2 = B1x+ t. In addition, ai(1 ≤ i ≤ 5) and n1 are various parameters
to be determined. Now, by substituting Equation (26) into Equations (3) and (4) and then
examining the coefficients of x, cos function, and t, we obtain the following:

Set I. The values of the parameters for Equations (3) and (4) are, respectively,⎧⎪⎪⎪⎨⎪⎪⎪⎩
n1 = − 1

4 ih1(a4−a5)
a4+a5

, a0 = −a1, c = c, a4 = a4.

and

n1 = − 4(a2
0+a2

1)
(a1+a0)(3a2

0+3a2
1−2)

, a0 = a0, c = c, a4 = a4, a3 = a3.

(27)

Then, the values in Equation (27) generate the required results for Equations (3) and (4), which
are, respectively,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ9,1 =
eicth1

(
a2+(t+a0x)2+(t+a1x)2+a4 cos

(
t− i(a4−a5)h1x

4(a4+a5)

))
(

a3+(t+a0x)2+(t+a1x)2+a5 cos
(

t− i(a4−a5)h1x
4(a4+a5)

)) ,

and

φ9,1 = −c +

2

⎛⎜⎜⎝2a0(t+a0x)+2a1(t+a1x)+
i(a4−a5)h1a5sin

(
t− i(a4−a5)h1x

4(a4+a5)

)
4(a4+a5)

⎞⎟⎟⎠
(

a3+(t+a0x)2+(t+a1x)2+a5 cos
(

t− i(a4−a5)h1x
4(a4+a5)

)) .

(28)
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ10,1 =
eicth1

(
a2+(t+a0x)2+(t+a1x)2+a4 cos

(
t+

4(a2
0+a2

1)x

(a1+a0)(3a2
0+3a2

1−2)

))
(

a3+(t+a0x)2+(t+a1x)2+a5 cos

(
t+

4(a2
0+a2

1)x

(a1+a0)(3a2
0+3a2

1−2)

)) ,

and

φ10,1 = −c +

2

⎛⎜⎜⎜⎝2a0(t+a0x)+2a1(t+a1x)−
4(a2

0+a2
1)a5sin

⎛⎝t+
4(a2

0+a2
1)x

(a1+a0)(3a2
0+3a2

1−2)

⎞⎠
(a1+a0)(3a2

0+3a2
1−2)

⎞⎟⎟⎟⎠
(

a3+(t+a0x)2+(t+a1x)2+a5 cos

(
t+

4(a2
0+a2

1)x

(a1+a0)(3a2
0+3a2

1−2)

)) .

(29)

5. Rogue-Wave Solutions

To compute the LPS solution, we use the following supposition in Equations (3)
and (4) [22,27–30]:

p =
2∧
1

+
2∧
2
+a2 + a3 cosh(n1x + t), q =

2∧
1

+
2∧
2
+a4 + a5 cosh(n1x + t) (30)

where
∧

1 = a0x + t,
∧

2 = a1x + t. In addition, ai(1 ≤ i ≤ 5) and n1 are various parameters
to be determined. Now, by substituting Equation (26) into Equations (3) and (4) and then
examining the coefficients of x, cos function, and t, we obtain the following:

Set I. The values of the parameters for Equations (3) and (4), are, respectively,⎧⎪⎪⎨⎪⎪⎩
a4 = − a5(4in1+h1)

(4in1−h1)
, a0 = −a1, a2 = a2, a4 = a4, a3 = a3.

and
a1 = ia0, a4 = 0, n1 = 1, a3 = a3, a5 = a5.

(31)

Then, the values in Equation (31) generate the solutions for Equations (3) and (4), which
are, respectively,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ11,1 =
eicth1

(
a2+(t−a1x)2+(t+a1x)2− a5(4in1+h1) cosh(t+n1x)

(4in1−h1)

)
(a3+(t−a1x)2+(t+a1x)2+a5 cosh(t+n2x))

,

and
φ11,1 = 2(−2a1(t−a1x)+2a1(t+a1x)+a5n2sinh(t+n2x))

(a3+(t−a1x)2+(t+a1x)2+a5 cosh(t+n2x))
− c.

(32)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ12,1 =

eicth1(a2+(t+ia0x)2+(t+a1x)2)
(a3+(t+ia0x)2+(t+a1x)2+a5 cosh(t+n2x))

,

and
φ12,1 = −c + 2(2ia0(t+ia0x)+2a0(t+a0x)+a5n2 sinh(t+n2x))

(a3+(t+ia0x)2+(t+a1x)2+a5 cosh(t+n2x))
.

(33)

6. Results and Discussion

We observed that the solution ψ1,1(x, t) in Equation (7) with a1 = 10, h2 = −2, h3 = 2,
a3 = 2, and c = 3 formed two lump waves (LWs) known as upper-bright and lower-dark
LWs, and that the bright and dark LWs were symmetrical about the coordinate plane. As
a2 varied from a minimum to a maximum number, the two LWs rotated counterclockwise.
When a2 = 0, the LW disappeared, but at a2 = 5, the LW gradually reappeared (see
Figure 1). The contour lump-wave profiles for ψ1,1(x, t) are plotted for a1 = 10, h2 = −2,
h3 = 2, a3 = 2, and c = 3 in Figure 2. The mixed solutions of soliton and lump waves
were successfully obtained. Notice that our solution φ3,1(x, t) in Equation (14) with
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h1 = 10, b0 = 10, and c = 5 formed lump one-strip waves (LSWs) known as upper-bright
LSWs. The lump one-strip wave profiles for φ2,1(x, t) are depicted for h1 = 10, b0 = 10,
and c = 5 in Figures 3 and 4. The lump double-strip wave profiles for φ5,1(x, t) are
plotted for k3 = 4, h2 = 2, h1 = 4, h3 = 3, a2 = 20, a3 = 5, k6 = 2, m2 = 2, and c = 5
in Figures 3, 5 and 6. By utilizing the assumption of the cosine function in bilinear
equations in Equations (3) and (4), we have obtained the lump periodic solutions. We
have successfully obtained the lump periodic graphs for φ9,1(x, t), which are plotted for
a0 = 10, a1 = 5, a2 = 4, a3 = 2, a4 = 3, a5 = 5, and h1 = 20 in Figure 7. The lump periodic
contour graphs for φ9,1(x, t) are plotted for a0 = 10, a1 = 5, a2 = 4, a3 = 2, a4 = 3, a5 = 5,
and h1 = 20 in Figure 8. By utilizing the assumption of cosine hyperbolic functions in
bilinear equations in Equations (3) and (4), we have obtained the lump periodic solutions.
As a1 varied from −10 to 10, the rogue wave rotated, and its behavior can be seen for
ψ11,1(x, t) for h1 = 4, a2 = 3, a3 = 1.5, a5 = 5, n1 = 3, n2 = 4, and c = 5 in Figure 9.

(a) a2 = −10 (b) a2 = −8 (c) a2 = −5

(d) a2 = 0 (e) a2 = 5 (f) a2 = 8

(g) a2 = 10

Figure 1. Lump-wave profiles for ψ1,1(x, t) are plotted for a1 = 10, h2 = −2, h3 = 2, a3 = 2, c = 3.
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(a) a2 = −10 (b) a2 = −8 (c) a2 = −5

(d) a2 = 0 (e) a2 = 5 (f) a2 = 8

(g) t = 10

Figure 2. Contour lump-wave profiles for ψ1,1(x, t) are plotted for a1 = 10, h2 = −2, h3 = 2,
a3 = 2, c = 3.

(a) h3 = −10 (b) h3 = −8 (c) h3 = −5

Figure 3. Cont.
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(d) h3 = −1 (e) h3 = 5 (f) h3 = 8

(g) h3 = 10

Figure 3. Lump one-strip wave profiles for φ3,1(x, t) are plotted for h1 = 10, b0 = 10, c = 5.

(a) h3 = −10 (b) h3 = −8 (c) h3 = −5

(d) h3 = −1 (e) h3 = 5 (f) h3 = 8

Figure 4. Cont.

235



Mathematics 2023, 11, 2856

(g) h3 = 10

Figure 4. Contour lump one-strip wave profiles for φ3,1(x, t) are plotted for h1 = 10, b0 = 10, c = 5.

(a) k1 = −10 (b) k1 = −8 (c) k1 = −5

(d) k1 = −1 (e) k1 = 5 (f) k1 = 8

(g) k1 = 10

Figure 5. Lump double-strip wave profiles for φ5,1(x, t) are plotted for k3 = 4, h2 = 2, h1 = 4,
h3 = 3, a2 = 20, a3 = 5, k6 = 2, m2 = 2, c = 5.
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(a) k1 = −10 (b) k1 = −8 (c) k1 = −5

(d) k1 = −1 (e) k1 = 5 (f) k1 = 8

(g) k1 = 10

Figure 6. Contour profiles for Figure 5.

(a) c = −10 (b) c = −8 (c) c = −5

Figure 7. Cont.
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(d) c = −1 (e) c = 5 (f) c = 8

(g) c = 10

Figure 7. Lump periodic graphs for φ9,1(x, t) are plotted for a0 = 10, a1 = 5, a2 = 4, a3 = 2,
a4 = 3, a5 = 5, h1 = 20.

(a) c = −10 (b) c = −8 (c) c = −5

(d) c = −1 (e) c = 5 (f) c = 8

Figure 8. Cont.
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(g) c = 10

Figure 8. Lump periodic contour graphs for φ9,1(x, t) are plotted for a0 = 10, a1 = 5, a2 = 4,
a3 = 2, a4 = 3, a5 = 5, h1 = 20.

Figure 9. Rogue-wave profiles for ψ11,1(x, t) are plotted for h1 = 4, a2 = 3, a3 = 1.5, a5 = 5, n1 =

3, n2 = 4, c = 5.

7. Concluding Remarks

In this paper, we have studied multiple forms of lump solutions for CNL-GZEs in
plasma physics using appropriate transformation approaches, bilinear equations, and
symbolic computations. By utilizing the positive quadratic assumption in the bilinear
equation, we have derived the lump-type solutions. We have evaluated the lump one-
soliton solutions through a single exponential function transformation in the bilinear
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equation. Similarly, we have computed the lump two-soliton solutions using a double
exponential function transformation in the bilinear equation. Mixed solutions of lump
waves and solitons have been successfully evaluated. Furthermore, we have computed
rogue-wave solutions and lump periodic solutions by utilizing appropriate hyperbolic
and trigonometric functions. We have identified certain constraint values throughout the
derivation of the solutions that must hold for the soliton solution to exist. The presented
solutions have valuable uses in plasma physics.
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Abstract: This paper is focused on energy decay rates for the viscoelastic wave equation that in-
cludes nonlinear time-varying delay, nonlinear damping at the boundary, and acoustic boundary
conditions. We derive general decay rate results without requiring the condition a2 > 0 and without
imposing any restrictive growth assumption on the damping term f1, using the multiplier method
and some properties of the convex functions. Here we investigate the relaxation function ψ, namely
ψ′(t) ≤ −μ(t)G(ψ(t)), where G is a convex and increasing function near the origin, and μ is a
positive nonincreasing function. Moreover, the energy decay rates depend on the functions μ and G,
as well as the function F defined by f0, which characterizes the growth behavior of f1 at the origin.

Keywords: optimal decay; viscoelastic wave equation; nonlinear time-varying delay; nonlinear
damping; acoustic boundary conditions

MSC: 35B40; 35L05; 37L45; 74D99

1. Introduction

In this paper, we study the energy decay rates for the viscoelastic wave equation
with nonlinear time-varying delay, nonlinear damping at the boundary, and acoustic
boundary conditions

utt(x, t)− Δu(x, t) +
∫ t

0
ψ(t − s)Δu(x, s)ds = 0, in Ω × (0, ∞), (1)

u(x, t) = 0, on Γ0 × (0, ∞), (2)
∂u
∂ν

(x, t)−
∫ t

0
ψ(t − s)

∂u
∂ν

(x, s)ds + a1 f1(ut(x, t)) + a2 f2(ut(x, t − �(t)))

= wt(x, t), on Γ1 × (0, ∞), (3)

ut(x, t) + h(x)wt(x, t) + m(x)w(x, t) = 0, on Γ1 × (0, ∞), (4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (5)

ut(x, t) = j0(x, t), in Γ1 × (−�(0), 0), (6)

where Ω is a bounded domain in Rn(n ≥ 1) with smooth boundary Γ of class C2;
Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are closed and disjoint; w(x, t) is the normal displacement into
the domain of a point x ∈ Γ1 at time t; and h, m : Γ1 → R are essential bounded functions
that represent resistivity and spring constant per unit area, respectively. f1, f2 : R → R

are given functions, and f1 represents the nonlinear frictional damping. a1, a2 are real
numbers with a1 > 0, a2 �= 0. The integral term is the memory responsible for the viscoelas-
tic damping. The functions ψ and �(t) represent the kernel of the memory term and the
time-varying delay, respectively. ν is the outward unit normal vector to Γ. The initial data
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(u0, u1, j0) belong to a suitable space. Boundary conditions (3) and (4) are called acoustic
boundary conditions.

In the past decades, the non-delayed wave equation with a viscoelastic term has
garnered significant attention in the field of partial differential equations. Research on
the energy decay rate of the solution to the viscoelastic wave equation is vital in various
fields, contributing to technological advancements, safety assurance, environmental pro-
tection, energy efficiency, and academic exploration. The stability of solutions for such
equations has recently been studied by many authors (see [1–3] and references therein).
When a1 = a2 = 0, models (1)–(5) are pertinent to noise control and suppression in
practical applications. The noise propagates through some acoustic medium, like air, in
a room that is defined by a bounded domain Ω and whose floor, walls, and ceiling are
determined by the boundary conditions [4,5]. Under the conditions that

∫ ∞
0 ψ(s)ds < 1

2 and
ψ′(t) ≤ −μ(t)ψ(t), for t ≥ 0, Park and Park [6] considered the general decay for
problems (1)–(5). Liu [7] improved the research of [6] by achieving arbitrary rates of
decay, which may not necessarily be an exponential or a polynomial one. Recently, Yoon
et al. [8] generalized the work of [6,7] without the assumption condition

∫ ∞
0 ψ(s)ds < 1

2 .
The assumption on relaxation function ψ has been weakened compared to the conditions
assumed in previous literature [6,7].

Numerous phenomena are influenced by both the current state and the previous
occurrences of the system. There has been a notable increase in the research on the equation
with delay effects, which frequently arise in various physical, biological, chemical, medical,
and economic problems [9–11]. However, the delay effects can generally be considered a
cause of instability. In order to stabilize a system containing delay terms, additional control
terms will be necessary. Kirane and Said-Houari [12] showed the global existence and
asymptotic stability for the following wave equation with memory and constant delay,

utt(x, t)− Δu(x, t) +
∫ t

0
ψ(t − s)Δu(x, s)ds + a1ut(x, t) + a2ut(x, t − �) = 0,

where a1, a2, and � are positive constants. They used the damping term a1ut(x, t) to control
the delay term in obtaining the decay estimate of the energy. They proved that its energy
was exponentially decaying when a2 ≤ a1. Dai and Yang [13] investigated the exponential
decay of an unsolved problem proposed by Kirane and Said-Houari [12], namely, the
problem with a1 = 0. In the case of constant weight and constant delay, the delay term
typically considers the past history of strain, only up to some finite time �(t) ≡ �. Nicaise
and Pignotti [14] investigated the following wave equation with internal time-varying
delay instead of constant delay,

utt(x, t)− Δu(x, t) + a1ut(x, t) + a2ut(x, t − �(t)) = 0,

where �(t) > 0, a1, and a2 are real numbers with a1 > 0. They proved the exponential
stability result for the wave equation under the condition |a2| <

√
1 − ζ0 a1, where the

constant ζ0 satisfies �′(t) ≤ ζ0 < 1, ∀t > 0. Liu [15] studied the following wave equation
involving memory and time-varying delay:

utt(x, t)− Δu(x, t) + α(t)
∫ t

0
ψ(t − s)Δu(x, s)ds + a1ut(x, t) + a2ut(x, t − �(t)) = 0.

Systems with time-varying delays have been extensively considered by many authors
(see [16–22] and references therein). Recently, Zennir [23] considered the stability for
solutions of plate equations with a time-varying delay and weak viscoelasticity in Rn.
Moreover, Benaissa et al. [24] proved the global existence and stability for solutions of the
following wave equation with a time-varying delay in the weakly nonlinear feedback,

utt(x, t)− Δu(x, t) + a1σ(t) f1(ut(x, t)) + a2σ(t) f2(ut(x, t − �(t))) = 0,
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where �(t) > 0, a1, and a2 are positive real numbers, and f1, f2 satisfy some conditions.
This result extended the previous work [10,14]. Park [25] investigated the decay result of
the energy for a von Karman equation with time-varying delay by dropping the restriction
a2 > 0 under the same conditions as �, f1, and f2 in [24]. For the viscoelastic problem
with time-varying delay in the nonlinear internal or boundary feedback, we also refer
to [26,27]. As far as we know, there are few results for the viscoelastic wave equation with a
nonlinear time-varying delay. Recently, Djeradi et al. [28] and Mukiawa et al. [29] showed
the stability of the thermoelastic laminated beam and thermoelastic Timoshenko beam with
nonlinear time-varying delay, respectively. The papers introduced so far have studied the
energy decay rate of the solution for the equation with nonlinear time-varying delay in the
Dirichlet boundary condition.

Motivated by these results, we study the general decay rates of the solution for
problems (1)–(6) with a nonlinear time-varying delay term, nonlinear damping at the
boundary, and acoustic boundary conditions. Research on the energy decay rate of solutions
for the viscoelastic wave equation with nonlinear time-delay terms plays a critical role in
various application areas, including stability assessment, understanding complex behaviors,
advancing neuroscience, disaster preparedness, and improving energy efficiency. We
consider the general assumption on the relaxation function ψ,

ψ′(t) ≤ −μ(t)G(ψ(t)), (7)

where μ : R+ → R+ is a positive nonincreasing function, and G is linear or is a strictly
increasing and strictly convex function. We derive the general decay rate results without
requiring the condition a2 > 0 and without imposing any restrictive growth assumption
on the damping term f1. The energy decay rates depend on the functions μ and G, as well
as the function F defined by f0, which represents the growth f1 at the origin. Our result
improves upon previous work [6–8].

This paper is composed of the following. In Section 2, we prepare some notations and
materials needed for our work. In Section 3, we introduce some technical lemmas to prove
our stability result. In Section 4, we state and prove the general energy decay.

2. Preliminaries

In this section, we present some materials required for our results. Throughout this
paper, we use the notation

V = {u ∈ H1(Ω) : u = 0 on Γ0}.

For simplicity, we denote ‖ · ‖L2(Ω) and ‖ · ‖L2(Γ1)
by ‖ · ‖ and ‖ · ‖Γ1 , respectively.

The Poincaré inequality holds in V; that is, there exist the positive constants λ0 and λ1
such that

‖u‖2 ≤ λ0‖∇u‖2 and ‖u‖2
Γ1

≤ λ1‖∇u‖2 for all u ∈ V. (8)

As in [1,3,8,26,30], we consider the following assumptions for ψ, f1, f2, �, h, and m.
(H1) ψ : [0, ∞) → R+ is a differentiable function satisfying

1 −
∫ ∞

0
ψ(s)ds = l > 0, (9)

and there exists a C1 function G : R+ → R+ that is linear or is a strictly convex and strictly
increasing C2 function on (0, r0], r0 ≤ ψ(0) such that

ψ′(t) ≤ −μ(t)G(ψ(t)), ∀t ≥ 0, (10)

where G(0) = G′(0) = 0, and μ is a positive nonincreasing differentiable function. The
function G was first introduced in [31]. These are weaker conditions on G than those
introduced in [31].
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(H2) f1 : R → R is a nondecreasing C0 function such that there exists a strictly increasing
function f0 ∈ C1(R+), with f0(0) = 0, and positive constants c0, c1, and ε such that

f0(|s|) ≤ | f1(s)| ≤ f−1
0 (|s|) for all |s| ≤ ε, (11)

c0|s| ≤ | f1(s)| ≤ c1|s| for all |s| ≥ ε. (12)

Moreover, we assume that the function F, defined by F(s) =
√

s f0(
√

s), is a strictly
convex C2 function on (0, r1], for some r1 > 0, when f0 is nonlinear.
(H3) f2 : R → R is an odd nondecreasing C1 function such that there exist positive constants
c2, c3, and c4 that satisfy

| f ′2(s)| ≤ c2, c3s f2(s) ≤ F2(s) ≤ c4s f1(s), for s ∈ R, (13)

where F2(s) =
∫ s

0 f2(t)dt.
(H4) � ∈ W2,∞([0, T]) is a function such that

0 < �1 ≤ �(t) ≤ �2 and �′(t) ≤ �3 < 1 for all t > 0, (14)

where T, �1, and �2 are positive constants. Moreover, the weight of dissipation and the
delay satisfy

0 < |a2| < c3(1 − �3)

c4(1 − c3�3)
a1. (15)

(H5) We assume that h, m ∈ C(Γ1), h(x) > 0, and m(x) > 0 for all x ∈ Γ1. Then, there exist
positive constants hi and mi(i = 1, 2) such that

h1 ≤ h(x) ≤ h2, m1 ≤ m(x) ≤ m2 for all x ∈ Γ1. (16)

Remark 1. 1. The assumption (H2) implies that s f1(s) > 0, for all s �= 0.
2. The assumption (11) of function f1 has been weakened compared to the condition assumed
in [24,25].
3. Since f2 is an odd nondecreasing function, F2 is an even and convex function. Furthermore, it is
satisfied that F2(s) =

∫ s
0 f2(t)dt ≤ s f2(s). From (13), we find that c3 ≤ 1.

Remark 2 ([3]). 1. By (H1), we obtain lim
t→+∞

ψ(t) = 0. Then, there exists t0 ≥ 0 large enough that

ψ(t0) = r0 ⇒ ψ(t) ≤ r0, ∀t ≥ t0. (17)

Given ψ and μ are positive nonincreasing continuous functions, G is a positive continuous
function, and for (10), we have, for some positive constant c5,

ψ′(t) ≤ −μ(t)G(ψ(t)) ≤ −c5ψ(t), ∀t ∈ [0, t0]. (18)

2. If G is a strictly convex and strictly increasing C2 function on (0, r0], with G(0) = G′(0) = 0,
then it has an extension G, which is a strictly convex and strictly increasing C2 function on (0, ∞).
The same remark can be established for F.

We recall the well-known Jensen inequality, which plays a pivotal role in proving our
main result. If φ is a convex function on [a, b], p : Ω → [a, b] and k represents integrable
functions on Ω such that k(x) ≥ 0 and

∫
Ω k(x)dx = k0 > 0, then Jensen’s inequality holds:

φ

[
1
k0

∫
Ω

p(x)k(x)dx
]
≤ 1

k0

∫
Ω

φ[p(x)]k(x)dx. (19)
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Let H∗ be the conjugate of the convex function H defined by H∗(s) = sup
r≥0

(sr − H(r)),

then
sr ≤ H∗(s) + H(r), ∀s, r ≥ 0. (20)

Moreover, due to the argument provided in [32], it holds that

H∗(s) = s(H′)−1(s)− H
(
(H′)−1(s)

)
, ∀s ≥ 0. (21)

As in [10,14], we introduce the following new function:

v(x, κ, t) = ut(x, t − κ�(t)), for (x, κ, t) ∈ Γ1 × (0, 1)× (0, ∞).

Then, problems (1)–(6) can be expressed as follows:

utt(x, t)− Δu(x, t) +
∫ t

0
ψ(t − s)Δu(x, s)ds = 0, in Ω × (0, ∞), (22)

�(t)vt(x, κ, t) + (1 − κ�′(t))vκ(x, κ, t) = 0, in Γ1 × (0, 1)× (0, ∞), (23)

u(x, t) = 0, in Γ0 × (0, ∞), (24)
∂u
∂ν

(x, t)−
∫ t

0
ψ(t − s)

∂u
∂ν

(x, s)ds + a1 f1(ut(x, t)) + a2 f2(v(x, 1, t)) = wt(x, t), on Γ1 × (0, ∞), (25)

ut(x, t) + h(x)wt(x, t) + m(x)w(x, t) = 0, on Γ1 × (0, ∞), (26)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (27)

v(x, κ, 0) = j0(x,−κ�(0)), in Γ1 × (0, 1). (28)

We state the global existence result that can be established by the arguments of [24,33].

Theorem 1. Let initial data (u0, u1) ∈ (V ∩ H2(Ω))× V and j0 ∈ L2(Γ1 × (0, 1)). Suppose
that (H1)–(H5) hold. Then, for any T > 0, there exists a unique pair of functions (u, w, v)
that are the solution to problems (22)–(28) in the class

u ∈ L∞(0, T; V ∩ H2(Ω)), ut ∈ L∞(0, T; V), utt ∈ L∞(0, T; L2(Ω)),

v ∈ L∞(0, T; L2(Γ1 × (0, 1))), w, wt ∈ L2(0, ∞; L2(Γ1)).

As in [6,25], we introduce the energy for problems (22)–(28),

E(t) =
1
2
‖ut(t)‖2 +

1
2

(
1 −

∫ t

0
ψ(s)ds

)
‖∇u(t)‖2 +

1
2
(ψ ◦ ∇u)(t)

+
1
2

∫
Γ1

m(x)w2(t)dΓ +
ζ�(t)

2

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ, (29)

where

(ψ ◦ ∇u)(t) =
∫ t

0
ψ(t − s)‖∇u(t)−∇u(s)‖2ds

and

2|a2|(1 − c3)

c3(1 − �3)
< ζ <

2(a1 − |a2|c4)

c4
. (30)

Thanks to (15), this makes sense.
To show the main results of this paper, we need the following lemma.
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Lemma 1. Assume that (H3)–(H5) hold. Then, there exist positive constants γ0 and γ1 satisfying

E′(t) ≤ 1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 − h1||wt(t)||2Γ1

−γ0

∫
Γ1

f1(ut(t))ut(t)dΓ − γ1

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ. (31)

Proof. Multiplying by ut(t) in (22), using Green’s formula, (25), and (26), we have

1
2

d
dt

[
‖ut(t)‖2 +

(
1 −

∫ t

0
ψ(s)ds

)
‖∇u(t)‖2 + (ψ ◦ ∇u)(t) +

∫
Γ1

m(x)w2(t)dΓ
]

=
1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ

−a1

∫
Γ1

f1(ut(t))ut(t)dΓ − a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ, (32)

where we used the relation

−
∫

Ω
∇ut(t)

∫ t

0
ψ(t − s)∇u(s)dsdx

=
d
dt

[
1
2
(ψ ◦ ∇u)(t)− 1

2

∫ t

0
ψ(s)ds‖∇u(t)‖2

]
− 1

2
(ψ′ ◦ ∇u)(t) +

1
2

ψ(t)‖∇u(t)‖2.

From (29) and (32), we have

E′(t) = 1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ

−a1

∫
Γ1

f1(ut(t))ut(t)dΓ − a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ

+
ζ�′(t)

2

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ +

ζ�(t)
2

∫
Γ1

∫ 1

0
f2(v(x, κ, t))vt(x, κ, t)dκdΓ, (33)

where F2(t) =
∫ t

0 f2(s)ds. In (23), we multiply by f2(v(x, κ, t)) and integrate over Γ1 × (0, 1)
to obtain

ζ�(t)
2

∫
Γ1

∫ 1

0
f2(v(x, κ, t))vt(x, κ, t)dκdΓ

= − ζ

2

∫
Γ1

[
(1 − �′(t))F2(v(x, 1, t))− F2(v(x, 0, t)) +

∫ 1

0
�′(t)F2(v(x, κ, t))dκ

]
dΓ.

Applying this to (33) and noting that v(x, 0, t) = ut(x, t), it follows that

E′(t) = 1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ − a1

∫
Γ1

f1(ut(t))ut(t)dΓ

−a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ − ζ

2

∫
Γ1

[
(1 − �′(t))F2(v(x, 1, t))− F2(ut(x, t))

]
dΓ. (34)

From (13) and (14), we obtain

− ζ

2

∫
Γ1

[
(1 − �′(t))F2(v(x, 1, t))− F2(ut(x, t))

]
dΓ

≤ − ζc3

2
(1 − �3)

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ +
ζc4

2

∫
Γ1

f1(ut(t))ut(t)dΓ. (35)
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Substituting (35) into (34), we obtain

E′(t) ≤ 1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ

−
(

a1 − ζc4

2

) ∫
Γ1

f1(ut(t))ut(t)dΓ − ζc3

2
(1 − �3)

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ

−a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ. (36)

Now, we estimate the last term in the right-hand side of (36). The definition of F2 and
(21) give

F∗
2 (s) = s f−1

2 (s)− F2( f−1
2 (s)), for s ≥ 0. (37)

When f2(v(x, 1, t)) < 0 and ut(t) ≥ 0, using (20) and (37) with s = − f2(v(x, 1, t)) and
r = ut(t), we obtain (see details in [25])

a2

∫
Γ1

(− f2(v(x, 1, t)))ut(t)dΓ

≤ |a2|
∫

Γ1

(
− f2(v(x, 1, t))(−v(x, 1, t))− F2(−v(x, 1, t)) + F2(ut(t))

)
dΓ

= |a2|
∫

Γ1

(
f2(v(x, 1, t))v(x, 1, t)− F2(v(x, 1, t)) + F2(ut(t))

)
dΓ, (38)

where we used the fact that f2 is odd and F2 is even. When f2(v(x, 1, t)) ≥ 0 and ut(t) < 0,
with s = f2(v(x, 1, t)) and r = −ut(t), we obtain

a2

∫
Γ1

f2(v(x, 1, t))(−ut(t))dΓ

≤ |a2|
∫

Γ1

(
f2(v(x, 1, t))(v(x, 1, t))− F2(v(x, 1, t)) + F2(−ut(t))

)
dΓ

= |a2|
∫

Γ1

(
f2(v(x, 1, t))v(x, 1, t)− F2(v(x, 1, t)) + F2(ut(t))

)
dΓ. (39)

From (38) and (39), for the case f2(v(x, 1, t))ut(t) ≤ 0, we have

−a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ ≤ |a2|
∫

Γ1

(
f2(v(x, 1, t))v(x, 1, t)− F2(v(x, 1, t)) + F2(ut(t))

)
dΓ. (40)

Similarly, (40) holds when f2(v(x, 1, t))ut(t) ≥ 0. Hence, using (13) and (40), we
see that

−a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ

≤ |a2|
(
(1 − c3)

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ + c4

∫
Γ1

f1(ut(t))ut(t)dΓ
)

. (41)

By using (16), (36), and (41), and by selecting ζ satisfying (30), we obtain the desired
inequality (31) where γ0 = a1 − ζc4

2 − |a2|c4 > 0 and γ1 = ζc3
2 (1− �3)− |a2|(1− c3) > 0.

3. Technical Lemmas

In this section, we prove the following lemmas to obtain the general decay rates of the
solution to problems (22)–(28).

Lemma 2. Under the assumption (H1), the functional Φ1 defined by

Φ1(t) =
∫

Ω
u(t)ut(t)dx +

∫
Γ1

u(t)w(t)dΓ +
1
2

∫
Γ1

h(x)w2(t)dΓ
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satisfies

Φ′
1(t) ≤ ‖ut(t)‖2 − l

2
‖∇u(t)‖2 +

2C(ξ)
l

(i ◦ ∇u)(t) +
8λ1

l
‖wt(t)‖2

Γ1

+
a1a3

l

∫
Γ1

f 2
1 (ut(t))dΓ +

|a2|a3

l

∫
Γ1

f 2
2 (v(x, 1, t))dΓ −

∫
Γ1

m(x)w2(t)dΓ, (42)

for any 0 < ξ < 1, where

i(t) = ξψ(t)− ψ′(t) and C(ξ) =
∫ ∞

0

ψ2(s)
i(s)

ds. (43)

Proof. Using Equations (22) and (24)–(26), and utilizing (9) and Young’s inequality,
we obtain

Φ′
1(t) = ‖ut(t)‖2 −

(
1 −

∫ t

0
ψ(s)ds

)
‖∇u(t)‖2 +

∫ t

0
ψ(t − s)(∇u(s)−∇u(t),∇u(t))ds

−a1

∫
Γ1

f1(ut(t))u(t)dΓ − a2

∫
Γ1

f2(v(x, 1, t))u(t)dΓ + 2
∫

Γ1

u(t)wt(t)dΓ −
∫

Γ1

m(x)w2(t)dΓ

≤ ‖ut(t)‖2 − 7l
8
‖∇u(t)‖2 +

2
l

∫
Ω

( ∫ t

0
ψ(t − s)|∇u(s)−∇u(t)|ds

)2

dx

−a1

∫
Γ1

f1(ut(t))u(t)dΓ − a2

∫
Γ1

f2(v(x, 1, t))u(t)dΓ + 2
∫

Γ1

u(t)wt(t)dΓ −
∫

Γ1

m(x)w2(t)dΓ.

Using the Cauchy–Schwarz inequality and (43), we have (see [3,34])

∫
Ω

( ∫ t

0
ψ(t − s)|∇u(s)−∇u(t)|ds

)2

dx ≤
( ∫ t

0

ψ2(s)
i(s)

ds
)
(i ◦ ∇u)(t) ≤ C(ξ)(i ◦ ∇u)(t). (44)

Applying Young’s inequality and (8), we obtain, for η > 0,∣∣∣∣− a1

∫
Γ1

f1(ut(t))u(t)dΓ
∣∣∣∣ ≤ ηa1λ1‖∇u(t)‖2 +

a1

4η

∫
Γ1

f 2
1 (ut(t))dΓ, (45)∣∣∣∣− a2

∫
Γ1

f2(v(x, 1, t))u(t)dΓ
∣∣∣∣ ≤ η|a2|λ1‖∇u(t)‖2 +

|a2|
4η

∫
Γ1

f 2
2 (v(x, 1, t))dΓ, (46)

and
2
∫

Γ1

u(t)wt(t)dΓ ≤ l
8
‖∇u(t)‖2 +

8λ1

l
‖wt(t)‖2

Γ1
. (47)

Combining estimates (44)–(47), we see that

Φ′
1(t) ≤ ‖ut(t)‖2 − (

3l
4
− ηa1λ1 − η|a2|λ1)‖∇u(t)‖2 +

2C(ξ)
l

(i ◦ ∇u)(t) +
8λ1

l
‖wt(t)‖2

Γ1

+
a1

4η

∫
Γ1

f 2
1 (ut(t))dΓ +

|a2|
4η

∫
Γ1

f 2
2 (v(x, 1, t))dΓ −

∫
Γ1

m(x)w2(t)dΓ.

Setting a3 = (a1 + |a2|)λ1 and choosing η = l
4a3

leads to (42).

Lemma 3. Under the assumption (H1), the functional Φ2 defined by

Φ2(t) = −
∫

Ω
ut(t)

∫ t

0
ψ(t − s)(u(t)− u(s))dsdx

satisfies
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Φ′
2(t) ≤ −

( ∫ t

0
ψ(s)ds − δ

)
‖ut(t)‖2 + δ‖∇u(t)‖2 +

C1(1 + C(ξ))
δ

(i ◦ ∇u)(t)

+δλ1‖wt(t)‖2
Γ1
+ δa1λ1

∫
Γ1

f 2
1 (ut(t))dΓ + δ|a2|λ1

∫
Γ1

f 2
2 (v(x, 1, t))dΓ, (48)

for any 0 < δ < 1.

Proof. Using Equations (22), (24), and (25), we obtain

Φ′
2(t) =

(
1 −

∫ t

0
ψ(s)ds

) ∫
Ω
∇u ·

∫ t

0
ψ(t − s)(∇u(t)−∇u(s))dsdx

+
∫

Ω

( ∫ t

0
ψ(t − s)(∇u(t)−∇u(s))ds

)2

dx −
∫

Γ1

wt(t)
∫ t

0
ψ(t − s)(u(t)− u(s))dsdΓ

+a1

∫
Γ1

f1(ut(t))
∫ t

0
ψ(t − s)(u(t)− u(s))dsdΓ + a2

∫
Γ1

f2(v(x, 1, t))
∫ t

0
ψ(t − s)(u(t)− u(s))dsdΓ

−
∫

Ω
ut(t)

∫ t

0
ψ′(t − s)(u(t)− u(s))dsdx −

( ∫ t

0
ψ(s)ds

)
‖ut(t)‖2

= ϑ1 + ϑ2 + · · ·+ ϑ6 −
( ∫ t

0
ψ(s)ds

)
‖ut(t)‖2.

By Young’s inequality, (8), and (44), we obtain, for δ > 0,

ϑ1 ≤ δ‖∇u(t)‖2 +
C(ξ)

4δ
(i ◦ ∇u)(t),

ϑ2 ≤ C(ξ)(i ◦ ∇u)(t),

|ϑ3| ≤ δλ1‖wt(t)‖2
Γ1
+

C(ξ)
4δ

(i ◦ ∇u)(t),

|ϑ4| ≤ δa1λ1

∫
Γ1

f 2
1 (ut(t))dΓ +

a1C(ξ)
4δ

(i ◦ ∇u)(t),

|ϑ5| ≤ δ|a2|λ1

∫
Γ1

f 2
2 (v(x, 1, t))dΓ +

|a2|C(ξ)
4δ

(i ◦ ∇u)(t).

Using Young’s inequality, (8), (9), (43), and (44), we see that

ϑ6 =
∫

Ω
ut(t)

∫ t

0
i(t − s)(u(t)− u(s))dsdx − ξ

∫
Ω

ut(t)
∫ t

0
ψ(t − s)(u(t)− u(s))dsdx

≤ δ‖ut(t)‖2 +
1
2δ

∫
Ω

( ∫ t

0
i(t − s)|u(s)− u(t)|ds

)2
dx +

ξ2

2δ

∫
Ω

( ∫ t

0
ψ(t − s)|u(t)− u(s)|ds

)2

dx

≤ δ‖ut(t)‖2 +
λ0(ψ(0) + ξ)

2δ
(i ◦ ∇u)(t) +

λ0ξ2C(ξ)
2δ

(i ◦ ∇u)(t).

Combining all above estimates and taking C1 = max{ λ0(ψ(0)+ξ)
2 , δ+ 1+λ0ξ2

2 + a1+|a2|
4 },

the desired inequality (48) is established.

Lemma 4. Under the assumptions (H3) and (H4), the functional Φ3 defined by

Φ3(t) = �(t)
∫

Γ1

∫ 1

0
e−κ�(t)F2(v(x, κ, t))dκdΓ

satisfies
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Φ′
3(t) ≤ −e−�2 �(t)

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ − c3(1 − �3)e−�2

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ

+c4

∫
Γ1

f1(ut(t))ut(t)dΓ. (49)

Proof. Using Equation (23), integration by parts, (13), and (14), we obtain (see [26])

Φ′
3(t) = �′(t)

∫
Γ1

∫ 1

0
e−κ�(t)F2(v(x, κ, t))dκdΓ − �(t)

∫
Γ1

∫ 1

0
κ�′(t)e−κ�(t)F2(v(x, κ, t))dκdΓ

−
∫

Γ1

∫ 1

0
e−κ�(t)(1 − κ�′(t)) d

dκ
F2(v(x, κ, t))dκdΓ

= −Φ3(t)− e−�(t)
∫

Γ1

(1 − �′(t))F2(v(x, 1, t))dΓ +
∫

Γ1

F2(ut(x, t))dΓ

≤ −e−�2 �(t)
∫

Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ − c3(1 − �3)e−�2

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ

+c4

∫
Γ1

f1(ut(t))ut(t)dΓ.

Lemma 5 ([3]). Under the assumption (H1), the functional Φ4 defined by

Φ4(t) =
∫

Ω

∫ t

0
G2(t − s)|∇u(s)|2dsdx

satisfies

Φ′
4(t) ≤ 3(1 − l)‖∇u(t)‖2 − 1

2
(ψ ◦ ∇u)(t), (50)

where G2(t) =
∫ ∞

t ψ(s)ds.

Next, let us define the perturbed modified energy by

L(t) = NE(t) + N1Φ1(t) + N2Φ2(t) + Φ3(t) + b1E(t), (51)

where N, N1, N2, and b1 are some positive constants.
As in [6,26], for a large enough N > 0, there exist positive constants β1 and β2 such

that

β1E(t) ≤ L(t) ≤ β2E(t).

Lemma 6. Assume that (H1) and (H3)–(H5) hold. Then, there exist positive constants β3, β4, and
β5 such that

L′(t) ≤ −β3E(t) + β4

∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds + β5

∫
Γ1

f 2
1 (ut(t))dΓ, ∀t ≥ t0, (52)

where t0 was introduced in (17).

Proof. Let ψ0 =
∫ t0

0 ψ(s)ds. Using the fact that i(t) = ξψ(t)− ψ′(t) and combining (31),
(42), (48), (49), and (51), we obtain, for all t ≥ t0,
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L′(t) ≤ ξN
2

(ψ ◦ ∇u)(t)−
( lN1

2
− δN2

)
‖∇u(t)‖2 −

(
ψ0N2 − δN2 − N1

)
‖ut(t)‖2

−
(N

2
− 2C(ξ)N1

l
− C1(1 + C(ξ))N2

δ

)
(i ◦ ∇u)(t)− N1

∫
Γ1

m(x)w2(t)dΓ + b1E′(t)

−
(

h1N − 8λ1N1

l
− δλ1N2

)
‖wt(t)‖2

Γ1
− e−�2 �(t)

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ (53)

−(γ0N − c4
) ∫

Γ1

f1(ut(t))ut(t)dΓ −
(

γ1N + c3(1 − �3)e−�2
) ∫

Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ

+
( a1a3N1

l
+ δa1λ1N2

) ∫
Γ1

f 2
1 (ut(t))dΓ +

( |a2|a3N1

l
+ δ|a2|λ1N2

) ∫
Γ1

f 2
2 (v(x, 1, t))dΓ.

From (13), we find that∫
Γ1

f 2
2 (v(x, 1, t))dΓ ≤ c2

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ. (54)

Applying (54) to (53) and taking δ = l
4N2

, we obtain, for all t ≥ t0,

L′(t) ≤ ξN
2

(ψ ◦ ∇u)(t)−
( lN1

2
− l

4

)
‖∇u(t)‖2 −

(
ψ0N2 − N1 − l

4

)
‖ut(t)‖2

−
(

N
2
− 4C1N2

2
l

− C(ξ)
[2N1

l
+

4C1N2
2

l
])

(i ◦ ∇u)(t)− N1

∫
Γ1

m(x)w2(t)dΓ

−
(

h1N − 8λ1N1

l
− lλ1

4

)
‖wt(t)‖2

Γ1
− e−�2 �(t)

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ

−(γ0N − c4
) ∫

Γ1

f1(ut(t))ut(t)dΓ +

(
a1a3N1

l
+

a1lλ1

4

) ∫
Γ1

f 2
1 (ut(t))dΓ + b1E′(t)

−
(

γ1N + c3(1 − �3)e−�2 − |a2|a3c2N1

l
− |a2|c2lλ1

4

) ∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ.

We choose N1 large enough so that

lN1

2
− l

4
> 4(1 − l),

then N2 large enough so that

ψ0N2 − N1 − l
4
> 1.

Using the fact that ξψ2(s)
i(s) < ψ(s) and the Lebesgue dominated convergence theorem,

we deduce that

ξC(ξ) =
∫ ∞

0

ξψ2(s)
i(s)

ds → 0 as ξ → 0.

Hence, there is 0 < ξ0 < 1 such that if ξ < ξ0, then

ξC(ξ)
[2N1

l
+

4C1N2
2

l
]
<

1
8

.

Finally, selecting ξ = 1
2N and choosing N large enough so that

N > max
{16C1N2

2
l

,
1
h1

(8λ1N1

l
+

lλ1

4

)
,

c4

γ0
,

1
γ1

( |a2|a3c2N1

l
+

|a2|c2lλ1

4
− c3(1 − �3)e−�2

)}
,

we obtain
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L′(t) ≤ −‖ut(t)‖2 − 4(1 − l)‖∇u(t)‖2 +
1
4
(ψ ◦ ∇u)(t)− N1

∫
Γ1

m(x)w2(t)dΓ

−e−�2 �(t)
∫

Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ + β5

∫
Γ1

f 2
1 (ut(t))dΓ + b1E′(t), ∀t ≥ t0, (55)

where β5 = a1a3 N1
l + a1lλ1

4 . Using (18) and (31), we find that, for any t ≥ t0,∫ t0

0
ψ(s)

∫
Ω
|∇u(t)−∇u(t − s)|2dxds ≤ − 1

c5

∫ t0

0
ψ′(s)

∫
Ω
|∇u(t)−∇u(t − s)|2dxds ≤ − 2

c5
E′(t). (56)

Combining (29), (55), and (56) and making a suitable choice for b1, we obtain the
estimate (52).

To evaluate the two terms on the right side of (52), we establish the following lemmas.

Lemma 7 ([1]). Assume that (H2) holds and max{r1, f0(r1)} < ε, where ε was introduced in
(11). Then, there exist positive constants C2, C3, and C4 such that∫

Γ1

f 2
1 (ut(t))dΓ ≤ C2

∫
Γ1

f1(ut(t))ut(t)dΓ, if f0 is linear, (57)∫
Γ1

f 2
1 (ut(t))dΓ ≤ C3F−1(χ(t))− C3E′(t), if f0 is nonlinear, (58)

where
χ(t) =

1
|Γ11|

∫
Γ11

f1(ut(t))ut(t)dΓ ≤ −C4E′(t), (59)

Γ11 = {x ∈ Γ1 : |ut(t)| ≤ ε1} and 0 < ε1 = min{r1, f0(r1)}.

Lemma 8. Assume that (H1) and (H3)–(H5) hold and that f0 is linear. Then, the energy func-
tional satisfies ∫ ∞

0
E(s)ds < ∞. (60)

Proof. We introduce the functional

L(t) = L(t) + Φ4(t),

which is nonnegative. From (50) and (55), we see that, for all t ≥ t0,

L′(t) ≤ −‖ut(t)‖2 − (1 − l)‖∇u(t)‖2 − 1
4
(ψ ◦ ∇u)(t)− N1

∫
Γ1

m(x)w2(t)dΓ

−e−�2 �(t)
∫

Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ + β5

∫
Γ1

f 2
1 (ut(t))dΓ + b1E′(t).

Applying (29), (31), and (57), we have

L′(t) ≤ −d1E(t) +
(
b1 − β5C2

γ0

)
E′(t),

where d1 is some positive constant. Selecting a suitable choice for b1, we obtain

L′(t) ≤ −d1E(t).
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This implies that

d1

∫ t

t0

E(s)ds ≤ L(t0)−L(t) ≤ L(t0) < ∞.

Next, we define Υ(t) by

Υ(t) := −
∫ t

t0

ψ′(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds ≤ −2E′(t). (61)

Lemma 9. Assume that (H1) and (H2) hold and that G is nonlinear. Then, the solution to (22)–(28)
satisfies the estimates∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds ≤ 1

θ
G−1

(
θΥ(t)
μ(t)

)
, ∀t ≥ t0, if f0 is linear, (62)∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds ≤ t − t0

θ
G−1

(
θΥ(t)

(t − t0)μ(t)

)
, ∀t > t0, if f0 is nonlinear, (63)

where θ ∈ (0, 1), and G is an extension of G such that G is a strictly convex and strictly increasing
C2 function on (0, ∞).

Proof. First, we prove the estimate (62) when f0 is linear. For 0 < θ < 1, we define I(t) by

I(t) := θ
∫ t

t0

∫
Ω
|∇u(t)−∇u(t − s)|2dxds.

By (60), θ is taken so small that, for all t ≥ t0,

I(t) < 1. (64)

Since G is strictly convex on (0, r0], then

G(qζ) ≤ qG(ζ), (65)

where 0 ≤ q ≤ 1 and ζ ∈ (0, r0]. Using the fact that μ is a positive nonincreasing function
and applying (10), (64), (65), and Jensen’s inequality (19), we find that (see details in [1,3])

Υ(t) ≥ μ(t)
θ I(t)

∫ t

t0

I(t)G(ψ(s))
∫

Ω
θ|∇u(t)−∇u(t − s)|2dxds

≥ μ(t)
θ I(t)

∫ t

t0

G(I(t)ψ(s))
∫

Ω
θ|∇u(t)−∇u(t − s)|2dxds (66)

≥ μ(t)
θ

G
(

θ
∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds

)
.

Since G is strictly increasing, we obtain

∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds ≤ 1

θ
G−1

(
θΥ(t)
μ(t)

)
.

Now, we show the estimate (63) when f0 is nonlinear. Since we cannot guarantee (60),
we define the following function:

I1(t) :=
θ

t − t0

∫ t

t0

∫
Ω
|∇u(t)−∇u(t − s)|2dxds, ∀t > t0.
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Using the fact that E′(t) ≤ 0 and (29), we have

I1(t) ≤ 2θ

t − t0

∫ t

t0

(||∇u(t)||2 + ||∇u(t − s)||2)ds ≤ 8θE(0)
l

.

Choose θ small enough so that, for all t > t0,

I1(t) < 1. (67)

Similar to (67), using (10), (65), (67), and Jensen’s inequality (19), we obtain

Υ(t) =
t − t0

θ I1(t)

∫ t

t0

I1(t)(−ψ′(s))
∫

Ω

θ

t − t0
|∇u(t)−∇u(t − s)|2dxds

≥ (t − t0)μ(t)
θ I1(t)

∫ t

t0

G(I1(t)ψ(s))
∫

Ω

θ

t − t0
|∇u(t)−∇u(t − s)|2dxds

≥ (t − t0)μ(t)
θ

G
(

θ

t − t0

∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds

)
.

This implies that

∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds ≤ t − t0

θ
G−1

(
θΥ(t)

(t − t0)μ(t)

)
.

4. General Decay of the Energy

In this section, we state and prove the main result of our work.

Theorem 2. Assume that (H1)–(H5) hold and that f0 is linear. Then, there exist positive constants
k1, k2, k3, and k4 such that the energy functional satisfies, for all t ≥ t0,

E(t) ≤ k2e−k1
∫ t

t0
μ(s)ds, if G is linear, (68)

E(t) ≤ k4G−1
1

(
k3

∫ t

t0

μ(s)ds
)

, if G is nonlinear, (69)

where G1(t) =
∫ r0

t
1

sG′(s)ds is strictly decreasing and convex on (0, r0].

Proof. Now, we consider the following two cases.
Case 1: G(t) is linear. Multiplying (52) by the positive nonincreasing function μ(t) and
using (10), (31), and (57), we obtain

μ(t)L′(t) ≤ −β3μ(t)E(t) + β4

∫ t

t0

μ(s)ψ(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds + β5μ(t)

∫
Γ1

f 2
1 (ut(t))dΓ

≤ −β3μ(t)E(t)− β4

∫ t

t0

ψ′(s)
∫

Ω
|∇u(t)−∇u(t − s)|2dxds + β5C2μ(0)

∫
Γ1

f1(ut(t))ut(t)dΓ

≤ −β3μ(t)E(t)− C5E′(t),

where C5 = 2β4 +
β5C2μ(0)

γ0
is a positive constant. Since μ(t) is nonincreasing, we have

(μL + C5E)′(t) ≤ −β3μ(t)E(t), ∀t ≥ t0.

Since μ(t)L(t) + C5E(t) ∼ E(t), for some positive constants k1 and k2, we obtain

E(t) ≤ k2e−k1
∫ t

t0
μ(s)ds.
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Case 2: G(t) is nonlinear. This case is obtained through the ideas presented in [3] as follows.
Using (31), (52), (57), and (62), we obtain

L′(t) ≤ −β3E(t) +
β4

θ
G−1

(
θΥ(t)
μ(t)

)
− β5C2

γ0
E′(t), ∀t ≥ t0. (70)

Let L1(t) = L(t) + β5C2
γ0

E(t) ∼ E(t), and then (70) becomes

L′
1(t) ≤ −β3E(t) +

β4

θ
G−1

(
θΥ(t)
μ(t)

)
, ∀t ≥ t0. (71)

For 0 < ε0 < r0, using (71) and the fact that E′ ≤ 0, G′
> 0 and G′′

> 0, we find that
the functional L2, defined by

L2(t) := G′
(

ε0
E(t)
E(0)

)
L1(t) ∼ E(t),

satisfies

L′
2(t) ≤ −β3E(t)G′

(
ε0

E(t)
E(0)

)
+

β4

θ
G′
(

ε0
E(t)
E(0)

)
G−1

(
θΥ(t)
μ(t)

)
, ∀t ≥ t0. (72)

With s = G′(
ε0

E(t)
E(0)

)
and r = G−1( θΥ(t)

μ(t)

)
, using (20), (21), and (72), we obtain

L′
2(t) ≤ −β3E(t)G′

(
ε0

E(t)
E(0)

)
+

ε0β4

θ

E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
+

β4Υ(t)
μ(t)

,

where we have used that ε0
E(t)
E(0) < r0 and G′

= G′ on (0, r0]. Multiplying this by μ(t) and
using (61), we obtain

μ(t)L′
2(t) ≤ −

(
β3E(0)− ε0β4

θ

)μ(t)E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
− 2β4E′(t).

By defining L3(t) = μ(t)L2(t) + 2β4E(t), we see that, for some positive constants γ2
and γ3,

γ2L3(t) ≤ E(t) ≤ γ3L3(t). (73)

With a suitable choice of ε0, we obtain, for some positive constant d2,

L′
3(t) ≤ −d2μ(t)

E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
= −d2μ(t)G2

(
E(t)
E(0)

)
, ∀t ≥ t0, (74)

where G2(t) = tG′(ε0t). Applying the strict convexity of G on (0, r0] and G′
2(t) = G′(ε0t) +

ε0tG′′(ε0t), we see that G2(t), G′
2(t) > 0 on (0, 1]. Finally, defining

Q(t) =
γ2L3(t)

E(0)

and using (73), we have

Q(t) ≤ E(t)
E(0)

≤ 1 and Q(t) ∼ E(t). (75)

From (74), (75), and the fact that G′
2(t) > 0 on (0, 1], we arrive at

Q′(t) ≤ −k3μ(t)G2(Q(t)), ∀t ≥ t0,
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where k3 = d2γ2
E(0) is a positive constant. Integrating this over (t0, t) and using variable

transformation, we find that (see details in [3])∫ t0

t

ε0Q′(s)
ε0Q(s)G′(ε0Q(s))

ds ≥ k3

∫ t

t0

μ(s)ds =⇒
∫ ε0Q(t0)

ε0Q(t)

1
sG′(s)ds ≥ k3

∫ t

t0

μ(s)ds.

Since ε0 < r0 and Q(t) ≤ 1, for all t ≥ t0, we have

G1(ε0Q(t)) =
∫ r0

ε0Q(t)

1
sG′(s)ds ≥ k3

∫ t

t0

μ(s)ds =⇒ Q(t) ≤ 1
ε0

G−1
1

(
k3

∫ t

t0

μ(s)ds
)

, (76)

where G1(t) =
∫ r0

t
1

sG′(s)ds. Here, we have used the fact that G1 is a strictly decreasing
function on (0, r0]. Therefore, using (75) and (76), the estimate (69) is established.

Theorem 3. Assume that (H1)–(H5) hold and that f0 is nonlinear. Then, there exist positive
constants α1, α2, α3, and α4 such that the energy functional satisfies

E(t) ≤ α2F−1
1

(
α1

∫ t

t0

μ(s)ds
)

, ∀t ≥ t0, if G is linear, (77)

where F1(t) =
∫ r1

t
1

sF′(s)ds and

E(t) ≤ α4(t − t0)K−1
1

(
α3

(t − t0)
∫ t

t1
μ(s)ds

)
, ∀t ≥ t1, if G is nonlinear, (78)

where K1(t) = tK′(ε2t), 0 < ε2 < r2 = min{r0, r1} and K =
(
G−1

+ F−1)−1.

Proof. Case 1: G(t) is linear. Multiplying (52) by the positive nonincreasing function μ(t)
and using (10), (31), and (58), we obtain

μ(t)L′(t) ≤ −β3μ(t)E(t) + β5C3μ(t)F−1(χ(t))− C6E′(t), (79)

where C6 = 2β4 + β5C3μ(0) is a positive constant. Since μ(t) is nonincreasing, (79) becomes

F′
3(t) ≤ −β3μ(t)E(t) + β5C3μ(t)F−1(χ(t)), ∀t ≥ t0, (80)

where F3(t) = μ(t)L(t) + C6E(t) ∼ E(t). For 0 < ε1 < r1, using (80) and the fact that
E′ ≤ 0, F′ > 0 and F′′ > 0 on (0, r1], the functional F4, defined by

F4(t) := F′
(

ε1
E(t)
E(0)

)
F3(t) ∼ E(t),

satisfies

F′
4(t) ≤ −β3μ(t)E(t)F′

(
ε1

E(t)
E(0)

)
+ β5C3μ(t)F′

(
ε1

E(t)
E(0)

)
F−1(χ(t)).

Given (20) and (21) with s = F′(ε1
E(t)
E(0)

)
and r = F−1(χ(t)), using (59), we obtain that

F′
4(t) ≤ −β3μ(t)E(t)F′

(
ε1

E(t)
E(0)

)
+ ε1β5C3

μ(t)E(t)
E(0)

F′
(

ε1
E(t)
E(0)

)
+ β5C3μ(0)χ(t)

≤ −(β3E(0)− ε1β5C3
)μ(t)E(t)

E(0)
F′
(

ε1
E(t)
E(0)

)
− β5C3C4μ(0)E′(t), ∀t ≥ t0.
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Let F5(t) = F4(t) + β5C3C4μ(0)E(t); then it satisfies, for positive constants γ4 and γ5,

γ4F5(t) ≤ E(t) ≤ γ5F5(t). (81)

Consequently, with a suitable choice of ε1, we have, for some positive constant d3,

F′
5(t) ≤ −d3μ(t)

E(t)
E(0)

F′
(

ε1
E(t)
E(0)

)
= −d3μ(t)F0

(
E(t)
E(0)

)
, ∀t ≥ t0, (82)

where F0(t) = tF′(ε1t). From the strict convexity of F on (0, r1], we obtain F0(t), F′
0(t) > 0

on (0, 1]. Let

J(t) =
γ4F5(t)

E(0)
,

and from (81) and (82), we obtain

J(t) ≤ E(t)
E(0)

≤ 1 and J′(t) ≤ −α1μ(t)F0(J(t)), ∀t ≥ t0,

where α1 = d3γ4
E(0) is a positive constant. Then, similar to (76), the integration over (t0, t) and

variable transformation yield

J(t) ≤ 1
ε1

F−1
1

(
α1

∫ t

t0

μ(s)ds
)

, (83)

where F1(t) =
∫ r1

t
1

sF′(s)ds, which is a strictly decreasing function on (0, r1]. Combining (81)
and (83), the estimate (77) is proved.
Case 2: G(t) is nonlinear. This case is obtained by the arguments presented in [1] as follows.
Using (52), (58), and (63), we obtain

L′(t) ≤ −β3E(t) +
β4(t − t0)

θ
G−1

(
θΥ(t)

(t − t0)μ(t)

)
+ β5C3F−1(χ(t))− β5C3E′(t), ∀t > t0.

(84)

Since lim
t→∞

1
t − t0

= 0, there exists t1 > t0 such that

1
t − t0

< 1, ∀t ≥ t1. (85)

Using the strictly convex and strictly increasing function of F and (65) with q = 1
t−t0

,
we see that

F−1
(χ(t)) ≤ (t − t0)F−1

(
χ(t)

t − t0

)
, ∀t ≥ t1. (86)

Combining (84) and (86), we arrive at

R′
1(t) ≤ −β3E(t) +

β4(t − t0)

θ
G−1

(
θΥ(t)

(t − t0)μ(t)

)
+ β5C3(t − t0)F−1

(
χ(t)

t − t0

)
, ∀t ≥ t1, (87)

where R1(t) = L(t) + β5C3E(t) ∼ E(t). Let

r2 = min{r0, r1}, ϕ(t) = max
{

θΥ(t)
(t − t0)μ(t)

,
χ(t)

t − t0

}
and K =

(
G−1

+ F−1)−1, ∀t ≥ t1. (88)

Therefore, (87) reduces to

R′
1(t) ≤ −β3E(t) + C7(t − t0)K−1(ϕ(t)), ∀t ≥ t1, (89)
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where C7 = max{ β4
θ , β5C3}. The strictly increasing and strictly convex properties of G and

F imply that

K′ = G′F′

G′
+ F′ > 0 and K′′ = G′′

(F′
)2 + (G′

)2F′′

(G′
+ F′

)2
> 0, (90)

on (0, r2].
Now, for 0 < ε2 < r2, using (85), we see that ε2

t−t0

E(t)
E(0) < r2. Defining

R2(t) = K′
(

ε2

t − t0

E(t)
E(0)

)
R1(t), ∀t ≥ t1,

and using (89) and (90), we find that

R′
2(t) =

(
− ε2

(t − t0)2
E(t)
E(0)

+
ε2

t − t0

E′(t)
E(0)

)
K′′
(

ε2

t − t0

E(t)
E(0)

)
R1(t) + K′

(
ε2

t − t0

E(t)
E(0)

)
R′

1(t)

≤ −β3E(t)K′
(

ε2

t − t0

E(t)
E(0)

)
+ C7(t − t0)K′

(
ε2

t − t0

E(t)
E(0)

)
K−1(ϕ(t)), ∀t ≥ t1. (91)

Using (20) and (21) with s = K′( ε2
t−t0

E(t)
E(0)

)
and r = K−1(ϕ(t)) and applying (91), we

obtain

R′
2(t) ≤ −β3E(t)K′

(
ε2

t − t0

E(t)
E(0)

)
+ ε2C7

E(t)
E(0)

K′
(

ε2

t − t0

E(t)
E(0)

)
+ C7(t − t0)ϕ(t). (92)

From (59), (61), and (88), we obtain

(t − t0)μ(t)ϕ(t) ≤ −C8E′(t), (93)

where C8 = min{2θ, C4μ(0)}. Multiplying (92) by the positive nonincreasing function μ(t)
and using (93), we have

R′
3(t) ≤ −

(
β3E(0)− ε2C7

)μ(t)E(t)
E(0)

K′
(

ε2

t − t0

E(t)
E(0)

)
, ∀t ≥ t1,

where R3(t) = μ(t)R2(t) + C7C8E(t) ∼ E(t). For a suitable choice of ε2, we find that

R′
3(t) ≤ −d4

μ(t)E(t)
E(0)

K′
(

ε2

t − t0

E(t)
E(0)

)
, ∀t ≥ t1, (94)

where d4 is a positive constant. An integration of (94) yields

d4

E(0)

∫ t

t1

E(s)K′
(

ε2

s − t0

E(s)
E(0)

)
μ(s)ds ≤

∫ t1

t
R′

3(s)ds ≤ R3(t1).

Using (90) and the non-increasing property of E, we see that the map t → E(t)K′( ε2
t−t0

E(t)
E(0)

)
is non-increasing and, consequently, we obtain

d4
E(t)
E(0)

K′
(

ε2

t − t0

E(t)
E(0)

) ∫ t

t1

μ(s)ds ≤ R3(t1), ∀t ≥ t1. (95)

Multiplying (95) by 1
t−t0

, we obtain

d4K1

(
1

t − t0

E(t)
E(0)

) ∫ t

t1

μ(s)ds ≤ R3(t1)

t − t0
, ∀t ≥ t1,
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where K1(s) = sK′(ε2s), which is strictly increasing. Therefore, we deduce that

E(t) ≤ α4(t − t0)K−1
1

(
α3

(t − t0)
∫ t

t1
μ(s)ds

)
, ∀t ≥ t1,

where α3 and α4 are positive constants. This completes the proof.

Examples. We provide examples to explain the decay of energy (see [1]).
1. Case: f0 and G are linear.

Let ψ(t) = ae−b(1+t), μ(t) = b, and G(t) = t, where b > 0, and a > 0 is small enough.
Assume that f0(t) = ct and F(t) =

√
t f0(

√
t) = ct. Then, we can obtain

E(t) ≤ k2e−k1t, for all t ≥ t0.

2. Case: f0 is linear and G is nonlinear.

Let ψ(t) = ae−tp
, μ(t) = 1, and G(t) = pt

(ln( a
t ))

1
p −1

, where 0 < p < 1, and a > 0 is small

enough. Assume that f0(t) = ct and F(t) =
√

t f0(
√

t) = ct. Then, G satisfies the condition
(H1) on (0, r0] for any 0 < r0 < a.

G1(t) =
∫ r0

t

1
sG′(s)ds =

∫ r0

t

[ln a
s ]

1
p

s[1 − p + p ln a
s ]

ds =
∫ ln a

t

ln a
r0

u
1
p

1 − p + pu
du ≤ (

ln
a
t
) 1

p .

Then, we can have
E(t) ≤ k4e−k3tp

, for all t ≥ t0.

3. Case: f0 is nonlinear and G is linear.
Let ψ(t) = ae−b(1+t), μ(t) = b, and G(t) = t, where b > 0, and a > 0 is small enough.

Assume that f0(t) = ctp, where p > 1 and F(t) =
√

t f0(
√

t) = ct
p+1

2 . Then,

F1(t) =
∫ r1

t

1
sF′(s)ds =

∫ r1

t

2
c(p + 1)

s−
p+1

2 ds = −α0
(
r−

p−1
2

1 − t−
p−1

2
)

and

F−1
1 (t) = (r−

p−1
2

1 +
1
α0

t)−
2

p−1 ,

where α0 = 4
c(p+1)(p−1) . Therefore, we find that

E(t) ≤ (α1t + α2)
− 2

p−1 , for all t ≥ t0.

4. Case: f0 is nonlinear and G is nonlinear.
Let ψ(t) = a

(1+t)2 , μ(t) = b, and G(t) = t
3
2 , where b > 0, and a > 0 is taken so that (9)

remains valid. Assume that f0(t) = t5 and F(t) = t3. Then,

K(s) = (G−1 + F−1)−1(s) =
(−1 +

√
1 + 4s

2

)3
.

Therefore, we see that

E(t) ≤ α3

(t − t0)
1
3

, for all t ≥ t1,

where t1 > t0.
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5. Conclusions

Numerous phenomena are influenced by both the current state and the previous
occurrences of the system. There has been a notable increase in the research on the equa-
tion with delay effects, which frequently arise in various physical, biological, chemical,
medical, and economic problems. In this paper, we study the energy decay rates for the
viscoelastic wave equation with nonlinear time-varying delay, nonlinear damping at the
boundary, and acoustic boundary conditions. We consider the relaxation function ψ, namely
ψ′(t) ≤ −μ(t)G(ψ(t)), where G is an increasing and convex function near the origin, and
μ is a positive nonincreasing function. We establish general decay rate results without
the need for the condition a2 > 0 and without imposing any limiting growth assumption
on the damping term f1, using the multiplier method and some properties of the convex
functions. Moreover, the energy decay rates depend on the functions μ and G, as well as
the function F defined by f0, which characterizes the growth behavior of f1 at the origin.
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