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Preface

Emerging renewable energy sources have received extensive attention in the past few decades.

Energy storage has been one of the hottest research fields for more than half a century. Recently,

low-dimensional nanostructured materials have been widely investigated due to their fascinating

performances in energy storage fields. Great efforts have been devoted to studying their

synthesis strategies, unique properties, and potential applications in various electrochemical devices.

Nevertheless, challenges still exist, and many energy devices are still highly demanded for practical

applications. At the same time, the ever-increasing demand for alternative energy strategies

to fossil fuels and electrochemical cells has initiated considerable efforts to develop novel and

renewable energy storage systems. Considering the synergetic effects between different components,

hybrid nanomaterials may demonstrate dramatically enhanced performance compared to their single

components. It is therefore urgent and significant to have a Special Issue to appreciate updated

advances and to review recent progress regarding nanostructured electrodes for high-performance

supercapacitors and batteries. In this Special Issue, we collected 21 papers, including 17 research

articles and 4 review papers. It covers supercapacitors, sensors, catalysts, metal-ion batteries, solar

cells, and so on.

Xiang Wu

Editor
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School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
wuxiang05@sut.edu.cn

Emerging renewable energy sources have received extensive attention in the past few
decades. Energy storage has been one of the hottest research fields for over half a century.
Recently, low-dimensional nanostructured materials have been widely investigated due to
their fascinating performances in energy storage fields. Great efforts have been devoted to
studying their synthesis strategies, unique properties, and potential applications in various
electrochemical devices. Nevertheless, challenges still exist, and many energy devices are in
high demand for practical applications. At the same time, the ever-increasing demand for
alternative energy strategies to fossil fuels/electrochemical cells has initiated considerable
efforts to develop novel and renewable energy storage systems. Considering the synergetic
effects between different components, hybrid nanomaterials may demonstrate dramatically
enhanced performance compared to their single components. Therefore, It is urgent and
significant to have a Special Issue to appreciate updated advances and review recent
progress regarding nanostructured electrodes for high-performance supercapacitors and
batteries. In this Special Issue, we collected 21 papers, including 17 research articles and
four review papers. It covers supercapacitors, sensors, catalysts, metal ion batteries, solar
cells, etc.

Supercapacitors show an important development perspective owning to their high-
power density and excellent cycling performance [1–4]. Obaidat et al. reported hierarchical
CuMn2O4 nanosheet arrays nanostructures using a one-step hydrothermal route on a nickel
foam substrate. The obtained samples were utilized as battery-type electrode material,
which delivered a specific capacity of 125.56 mA h g−1 at 1 A g−1 with a rate capability
of 84.1% and a cycling stability of 92.15% over 5000 cycles [5]. Niu and coworkers pre-
pared α-Fe2O3@MnO2 electrode materials on carbon cloth using hydrothermal strategies
and subsequent electrochemical deposition. The specific capacitance of the as-obtained
product is 615 mF cm−2 at 2 mA cm−2. Moreover, a flexible supercapacitor presents an
energy density of 0.102 mWh cm−3 at 4.2 W cm−2. Bending tests of the device at different
angles show excellent mechanical flexibility [6]. Nitrogen/oxygen-doped porous carbon
materials were also fabricated by calcining and activating an organic crosslinked poly-
mer. The optimized porous carbon material showed a specific capacitance of 522 F g−1 at
0.5 A g−1 in a three-electrode system. Furthermore, an energy density of 18.04 Wh kg−1

was obtained at a power density of 200.0 W kg−1 in a two-electrode system [7]. NiMoO4
is a very suitable electrode material for SCs because of its advantages of outstanding elec-
trochemical performance and low price. Zhao’s group synthesized NiMoO4@MnCo2O4
composite electrodes based on a two-step hydrothermal method. The sample reaches
3000 mF/cm2 at 1 mA/cm2. The asymmetric supercapacitor was constructed with ac-
tivated carbon as the negative electrode, which showed a maximum energy density of
90.89 mWh/cm3 at a power density of 3726.7 mW/cm3, and the capacitance retention can
achieve 78.4% after 10,000 cycles [8]. In addition, Svetukhin et al. prepared PANI/VA-
MWCNT pseudo-capacitors and studied the device’s temperature-dependent charging–
discharging dynamics [9]. Wang’s group summarized the research progress of cobalt-based
nanomaterials as electrode materials for supercapacitors and focused on the strategies
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to improve the electrochemical properties of these materials [10]. Polyaniline (PANI) is
thought to be an excellent candidate for energy-storage applications owing to its tunable
structure, multiple oxidation/reduction reaction, and environmental stability. Scientists
from different countries summarized updated progress about polyaniline/metal-organic
framework composite electrodes for supercapacitor applications [11]. Zhang and coworkers
fabricated the n*AlN/n*ScN superlattices by the epitaxial growth technology of controlling
layer interface in an atom resolution. Their energy storage characteristics were studied us-
ing first principle calculation of the band-structure and dielectric polarizability dependent
on the electrical field and superlattice configuration [12].

Besides the above supercapacitor reports, we collected some work about metal ion
batteries, such as Li-ion, Zn ion, and sodium batteries. Zhang and You synthesized an
environmentally friendly and cost-effective CoO@rGO flexible membrane with excellent
electrochemical properties as anode material. It showed that the hollow material is much
more favorable for lithium-ion transport and storage [13]. Cui et al. prepared fibrous
red phosphorus as an anode material for LIBs using chemical vapor transport. The ob-
tained composite material showed a reversible specific capacity of 1621 mAh/g and a
capacity of 742.4 mAh/g after 700 cycles at a current density of 2 A/g. The Coulombic
efficiencies reached almost 100% for each cycle [14]. It is known that Li-rich oxides are
promising cathode materials for Li-ion batteries. Scientists from Russia studied different
compositions of Li-rich materials and various electrochemical testing modes. The results
showed that the Li1.149Ni0.184Mn0.482Co0.184O2 cathode material demonstrated the best
functional properties [15]. SiO2 is also used as an anode materials for lithium battery.
Qin et al. prepared SiO2 aerogels using a Sol-Gel method. The results showed that Ketjen
Black provides superior cycling and rate performance with a reversible specific capacity of
351.4 mA h g−1 at 0.2 A g−1 after 200 cycles and 311.7 mA h g−1 at 1.0 A g−1 after
500 cycles [16]. Hierarchical Si@MnO2@reduced graphene oxide (rGO) can effectively re-
duce the volume change of Si and increase the lithium-ion battery capacity due to the dual
protection of MnO2 and rGO. It showed a discharge-specific capacity of 1282.72 mAh g−1

at 1 A g−1 after 1000 cycles. Moreover, the volume expansion of the anode material is 50%
after 150 cycles, which is much less than that of Si (300%) [17].

Aqueous zinc ion batteries (AZIBs) have attracted much attention owing to their low
cost, high capacity, and non-toxic characteristics. Therefore, transition metal chalcogenides
with a layered structure are considered suitable electrode materials. The large layer spac-
ing facilitates the intercalation/de-intercalation of Zn2+ between the layers. Wu’s group
summarized many design strategies for modifying cathodes and specifically emphasized
the zinc storage capacity of the optimized electrodes. They also proposed the challenges
and prospects of cathode materials for high-energy AZIBs [18]. Gong et al. investigated
the PANI cathode’s electrochemical performance and ion transport kinetics to further
understand Zn2+ storage mechanisms. The assembled PANI/Zn cell achieves a capacity
of 74 mAh g−1 a t 0.3 A g−1 and maintains 48.4% of its initial discharge capacity after
1000 cycles [19]. Additionally, biomass-derived hard carbon as anode material for sodium-
ion batteries has attracted attention because of its renewable nature and low cost. Qin’s
group employed a two-step method to prepare three different structures of hard carbon
materials from sisal fibers. It showed the best electrochemical performance, with an initial
Coulomb efficiency of 76.7% [20].

Indeed, graphitic carbon nitride (g-C3N4) is extensively used as an electron transport
layer or interfacial buffer layer for realizing photoelectric performance improvement in
perovskite solar cells (PSCs). Chu and Li overviewed different g-C3N4 nanostructures as
an additive and surface modifier layers applied to PSCs. They emphasized the mechanism
of reducing the defect state in PSCs and proposed the potential challenges and perspectives
of g-C3N4 incorporated into perovskite-based optoelectronic devices [21]. Zhu et al. from
Northeastern University investigated the durability of proton exchange membrane fuel cells
(PEMFCs) by 300 h accelerated stress test under vibration and non-vibration conditions.
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The voltage under vibration slightly declines at the current density of 400 mA cm−2 and
decreases quickly over time in high current density [22].

Hydrogen is regarded as a promising clean energy source in the future due to its high
heat value and environmentally friendly features. Sodium borohydride (NaBH4) is a good
candidate for hydrogen generation from hydrolysis because of its high hydrogen storage
capacity and hydrolysis products. However, due to its sluggish hydrogen generation
(HG) rate in the water, it usually needs an efficient catalyst to enhance the HG rate. Sun’s
group reported graphene oxide (GO)-modified Co-B-P catalysts by a chemical in situ
reduction route. The results showed that the as-prepared catalyst with a GO content of
75 mg possesses an optimal catalytic efficiency with an HG rate of 12,087.8 mL min−1 g−1

at 25 ◦C [23]. They also synthesized a porous titanium oxide cage (PTOC) using a one-
step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the
coordination agent. Due to the synergistic effect between the PTOC and PtNi alloy particles,
the catalysts present a hydrogen generation rate of 10,164.3 mL min−1 g−1) and activation
energy of 28.7 kJ mol−1 [24].

Moreover, wearable motion-monitoring systems have been widely studied in recent
years. However, traditional wearable devices’ battery energy storage problem limits the
development of human sports training applications. Mao and coworkers reported a self-
powered, portable micro-structure triboelectric nanogenerator (MS-TENG). It provides a
maximum output voltage of 74 V, angular sensitivity of 1.016 V/degree, and high signal-to-
noise ratio and can a power electronic calculator and electronic watch. In addition, as a
flexible electrode hydrogel, it can readily stretch over 1300%, which can help improve the
service life and work stability of MS-TENG [25].

Funding: This research received no external funding.
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referees for reviewing the manuscripts.
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Effect of Mechanical Vibration on the Durability of Proton
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Abstract: To study the durability of proton exchange membrane fuel cells (PEMFCs), the experiments
were performed by using a 300 h accelerated stress test under vibration and non-vibration conditions.
Before and after chronic operation, the polarization curve, impedance spectra and cyclic voltam-
mogram were measured at regular intervals. The voltage under vibration shows a small decline at
the current density of 400 mA cm−2 and decreases quickly along the time in high current density.
Meanwhile, the pavement vibration dramatically impacts the contact resistance of the membrane
electrode assembly to the bipolar plates and the clamping screws of the fuel cell easily loosen under
vibration. The calculations from X-ray diffraction patterns indicate that the average diameters of
Pt particles under vibration are smaller than those under no-vibration conditions. It increases from
3.17 nm in the pristine state to 3.43 nm and 4.62 nm, respectively. Moreover, much more platinum
that dissolved from the catalyst layer and redeposited was detected inside the polymer membrane
under vibration conditions.

Keywords: proton exchange membrane fuel cell; mechanical vibration; durability; platinum
migration; accelerated stress test

1. Introduction

The proton exchange membrane fuel cell (PEMFC) have become a new power option
which can supersede the engines powered by fossil fuels in passenger vehicles owing to
their characteristics of zero emissions, high efficiency and power density [1,2]. However,
there are still challenges to fulfilling the target of 5000 hours’ steady operation for passenger
vehicles presented by the US Department of Energy (DOE) [3].

In order to ensure better forecast accuracy of the fuel cell’s lifetime and analyze its
probable degradation mechanism, the accelerated stress tests (ASTs) have been imple-
mented by many researchers in experimental studies with regard to the contamination in
hydrogen and air [4,5], start-up at subzero temperature [6–9] and dynamic response under
driving cycles [10]. For the on-board fuel cells in vehicles, the performance degradation
consists of membrane degradation, Pt/C catalyst degradation and gas diffusion layer
degradation [11–19]. More specifically, the typical membrane degradation includes cracks,
punctures and pinholes, resulting from a harsh operating environment accompanied by
improper temperature, relative humidity and mechanical conditions. In the long run,
rupture, delamination, agglomeration and migration of Pt or carbon corrosion will all result
in the Pt/C catalyst degradation. All of these negative effects, which arise from either the
changes in the microstructure of carbon-supported platinum or the decline of electrons and
ions involved in the electrochemical reaction, lead to an obvious loss of catalyst activity.
Additionally, the gas diffusion layer degradation due to the poly-tetrafluoroethylene (PTFE)
decomposition, the movement of micropores and the loss of microporous layer (MPL)
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hydrophobicity caused by the carbon corrosion-based degradation process often cause the
variation of water content.

Even though the degradation phenomenon of PEMFC has been investigated, research
on the performance degradation of vehicle fuel cell stacks subjected to vibration situations
is in progress. Among the few open literatures, Imen et al. [20] evaluated the effect of
mechanical loads and vibrations on an open-cathode PEMFC in operating state as well
as a non-operating PEMFC; the experimental results reveal that these external factors can
change the performance and reliability of the fuel cell by causing physical damage to the
fuel cell components. Rajalakshmi et al. [21] performed vibration test analysis on a 500 W
PEM fuel cell stack developed by simulating some application situations in the stack and
evaluated the robustness of the stack; the fuel cell performance was in good agreement
before and after the vibration and shock tests, showing the mechanical integrity of the
system. Hou et al. [22] studied the performance of a fuel cell stack through long-term
strengthened road vibration tests, the individual cell voltage uniformity became distinctly
worse. With the increase of vibration duration, the ohmic resistance obtained from AC
impedance diagnosis ascended approximately linearly and presented a growth of 5.36%
ultimately. Wu et al. [23] numerically analyzed the mechanical response of a large fuel cell
stack clamped by steel belts to a violent impact. The results indicate that the stack may
give rise to interface slippage between cells when subjected to a large impact in the direc-
tion parallel with the cells, showing a downward bowing phenomenon. Wang et al. [24]
experimentally investigated the effect of mechanical vibration on the dynamic response
of PEMFC. Diloyan et al. [25] discussed the effect of mechanical vibration on platinum
particle agglomeration and growth in the catalyst layer of PEMFC; it was observed that the
average diameter of Pt particles under vibration was 10% smaller than the ones that were
under no-vibration conditions.

In the current research, the influence of vibration on the durability of PEMFCs was
studied, presenting the results of the performance variation in PEMFCs. A 300 h vibration
test was accomplished to assess the effect of vibration as for the endurance of MEA and
the results were characterized clearly by electrochemical and physical methods. The po-
larization curve, impedance spectra and cyclic voltammogram were measured at regular
intervals. Meanwhile, the changes in the microstructure of MEAs were observed and mea-
sured by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission
Electron Microscopy (TEM) before and after the experiments.

2. Experimental Section
2.1. Experimental Setup

In Figure 1, the experimental bench is composed of the vibration generator, the elec-
tronic load, the data acquisition system, the bubble humidifier and the gas supply system.
The vibration tests of PEMFC were performed on the horizontal and vertical vibration
generator controlled by computer software, which could produce excitations of multiple
waveforms within the frequency scope of 1 Hz to 600 Hz with the maximum displacement
of 5 mm. Its acceleration amplitude is up to 20 g and the maximum load is 100 kg.

As to PEMFC, the parallel serpentine flow channel of 25 cm2 was used for the experi-
ments. For MEA, a commercially available Nafion® 211 membrane and SGL-25BC carbon
papers, of which the porosity was 80% and the air permeability was 1.0 cm3/(cm2·s), were
chosen. The Pt catalyst loading on the cathode side and anode side were, respectively,
0.48 mg cm−2 and 0.28 mg cm−2.

2.2. Test Procedure

Based on the typical vibration feature of running vehicles and the actual road condi-
tions, the accelerated stress test was designed to research the durability of PEMFCs under
both the cases of vibration and non-vibration. The vibrational frequency of vehicles on the
road is close to 17–40 Hz and the maximum vibration acceleration of the vehicles in the
horizontal and vertical directions are usually less than 2.06 g and 4.665 g, respectively [26].
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Therefore, the vibration experiments were conducted at the frequency of 20 Hz and the
horizontal acceleration and vertical acceleration of 2.0 g. During an experimental cycle, the
vibration generator first provided the horizontal excitation for 20 min with a rest for 5 min,
and then produced the vertical excitation for 20 min. For the purpose of analyzing the
influence of mechanical vibration on the durability of PEMFC, the PEMFC was operated
under vibrational and static conditions, along with the operating parameters summarized
in Table 1.
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Figure 1. The schematic illustration of the test rig.

Table 1. The test conditions of the fuel cell.

Test Conditions

Fuel/Oxidant Hydrogen/Air
Constant current density 400 mA/cm2

PEMFC temperature 65 ◦C
Anode/Cathode humidity 100%/100%

Anode/Cathode stoic 1.5/2.5
Test length 300 h

Throughout the vibration tests, the performance of PEMFC was evaluated several
times at regular intervals by measuring the polarization curves, electrochemical impedance
spectroscopy (EIS) and cyclic voltammogram (CV). For the EIS measurements, the test
frequency was chosen in the range of 10 kHz to 10 mHz while the amplitude was kept at
5 mV. Moreover, the scanning rate of CV was recorded at 50 mV/s.

2.3. Characterization of MEA

The micromorphology characteristics and the changes in the microstructure of MEAs
were observed and measured by X-ray Diffraction (XRD), Scanning Electron Microscopy
(SEM) and Transmission Electron Microscopy (TEM) before and after the experiments. In
order to compare the Pt grain diameter of the cathode side with TEM, we first scraped
some Pt/C catalyst off the MEA and dissolved it in the ethanol–water mixture, and then
split the Pt particles from the carbon support with ultrasonic shaking for 2 h. Afterwards,
1 mL mixture was extracted and dripped onto the copper mesh for observing.
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3. Results and Discussion

The degradation of the PEMFC running continuously for 300 h under vibrational
and static conditions is exhibited in Figure 2. Under vibration conditions, the cell voltage
drops with a faster rate during the 300 h operation, the average performance of the PEMFC
decreases from 0.643 V to 0.612 V and the degradation rate reaches 103 µVh−1. While
running at no-vibration conditions, a voltage difference from 0.658 V to 0.642 V is indicated
and the voltage decay rate is approximately 53 µVh−1. The U.S. Department of Energy
sets the stack voltage at the end of lifetime as 90% of the initial voltage at the rated power
output [3], and the degradation rate is assumed to be constant based on the results of rele-
vant studies [22,27]. It can be inferred that the durability of the MEA under static condition
can reach 1500 h, which only reaches 700 h under vibration conditions. The voltage drop
is one of the manifestations of the vehicular PEMFCs’ performance degradation caused
by chronic pavement vibration. In addition, the voltage fluctuates greatly under vibration
conditions, which is an interruption phenomenon caused by instability in the PEM fuel cell
operation under vibration.
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Figure 2. The effect of vibration on voltage degradation of the PEMFC operated at 400 mA cm−2.

Figure 3a,b present the polarization curves of the PEMFC operating at different dura-
tion under vibration and no-vibration conditions, respectively. The kinetics region remains
almost unaltered, and the ohmic region seems to slightly degrade compared to the non-
vibration experiments. With the growth of current density, the attenuation ratio of voltage
that represents the slope of the voltage value before and after the decay under the increase
of the unit current density becomes larger under both cases. Particularly when running
for 240 h at no-vibration conditions, the performance of the cell remains stable with the
current density less than 400 mA cm−2, but in the mass-transfer region density the voltage
gradually falls off; the mass-transfer region is the most affected section of the polarization
curves, indicative of a degradation of the electrode structure. Compared with above results,
the voltage under vibration has shown a small decline at the current density of 400 mA
cm−2 and decreases faster along the time in the high-current-density region.
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Figure 3. The polarization curves of a 25 cm2 single cell under (a) no-vibration and (b) vibration
conditions.

For all the single PEMFC, the high frequency intercept denotes the sum of interfacial
contact and material bulk resistance (Rohm). The medium frequency arc reflects the
combination of a charge transfer resistance (Rct) and a double layer capacitance (C) within
the catalyst layer. The low frequency arc represents the mass transport process [28]. As is
revealed in Figure 4a,b, the impedance loop of the PEMFC increases with the extension of
discharge time, the ohmic resistance of PEMFC at no-vibration conditions increases from
0.09 Ω cm−1 to 0.102 Ω cm−1, while the ohmic resistance under vibration enhances from
0.09 Ω cm−1 to 0.114 Ω cm−1. This indicates that the pavement vibration dramatically
impact the contact resistance of the membrane electrode assembly to the bipolar plates and
the clamping screws of the fuel cell easily loosen under vibration conditions.
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The cyclic voltammograms measured after running at different test duration under
vibrational and static conditions are presented in Figure 5. Obviously, the oxidation
desorption peak of hydrogen is observed at about 0.2 V and the peak area decreases with
the increase of operating time under both cases. The electrochemical active surface area
(ECSA) can be calculated with the following equation [29]:

ECSA =
[Charge area/V]× 1000

0.21 × Catalyst loading × 10000
(1)
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(b) vibration conditions.

As is shown in Table 2, ECSA reduces with the increase of operating time, which
changes between 60.1 and 49.6 m2 g−1, respectively, under vibration conditions and falls
from 57.5 to 50 m2 g−1 under static conditions. In Figure 6, the ratio between the effective
active area and the initial active area after different running times is plotted. It can be
observed that the effective active area has decreased greatly in the vibrational environment
since the operation time of 150 h and the drop degree of the ratio under vibration is always
greater than that under no-vibration conditions. The decline of ECSA to the catalyst may
be on account of the agglomeration and dissolution of Pt nanoparticles, as well as the
detachment of Pt nanoparticles from the carbon support.

Table 2. The ECSA of MEA with operating time under vibration and no-vibration conditions.

Operating Time
Under Vibration Under No Vibration

Peak Area (mC cm−2) ECSA (m2 g−1) Peak Area (mC cm−2) ECSA (m2 g−1)

0 h 60.6 60.1 58 57.5
60 h 60.2 59.7 56.4 55.9

155 h 54.4 53.9 55.6 55.1
240 h 52 51.5 52.6 52.1
300 h 50 49.6 50.4 50

The microscopic state of Pt particles on the cathode side of MEA was analyzed with
TEM in terms of the state before the test, and under no-vibration and vibration conditions
after 300 h accelerated test, as shown in Figure 7a–c. From the obtained TEM images, we
can see that after the static and vibrational tests, the crystal particles of Pt become larger and
agglomerated, and then the overall uniformity of the particles are worse than that before
the test. In order to confirm and quantify the particle size distribution, X-ray scattering
measurements were executed to calculate the average particle size. As can be seen from
X-ray diffraction patterns, the characteristic diffraction peaks of Pt at 2θ = 40◦, 46◦, 68◦

and 81◦, respectively, belong to the (111), (200), (220) and (311) crystal planes. Before the
experiments, the diffraction peaks of the catalyst showed a wide broadened full-width at
half of maximum, indicating that the grain diameter of Pt is smaller compared with under
vibration and no-vibration conditions. Due to the diffraction intensity of Pt peaks, (111),
(200) and (311) are interfered by the carbon-10 and carbon-11 characteristic peaks, and
the Pt (220) crystal plane was used to calculate the average grain size of the catalyst with
Sherrer formula [30]:

d =
0.9λka

B2θ cos θB
(2)
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where d represents the average grain diameter of the catalyst, λka is 1.54056 Å, θB represents
the diffraction angle of the Pt-220 crystal plane and B2θ represents the full width at half
of maximum.
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The average grain diameter of the catalyst is summarized in Figure 7e. The grain
diameter before the test was 3.17 nm; after 300 h of operation under vibration and no-
vibration conditions, the grain diameter of catalyst enhanced to 3.43 nm and 4.62 nm,
respectively. It can be observed that the Pt particles on the cathode side have different
extents of agglomeration after chronic operation under both cases in comparison to the
state before the test. The catalyst agglomeration will bring about the drain in the ECSA,
leading to degradation in the performance of PEMFC [15,31], but the grain diameter of a
catalyst under vibration is smaller than that in a static environment, and so the Pt particles’
agglomeration is not the only reason for the vehicular PEMFCs’ performance degradation
after chronic pavement vibration.

To further explain the attenuation mechanism of MEA in a vibration environment, EDX
element analysis is performed on the cross-section of MEA at the end of 300 h accelerated
tests in vibration and no-vibration environments. From Figure 8a,b, the cross-section of
MEA shows that the interfaces of the catalyst layer to the membrane are very flat and
without delamination under vibration and static conditions. Furthermore, it can be seen in
Figure 8c,d that after a long time of operation, the polymer membrane which contains no
platinum element shows the existence of platinum under both cases. This illustrates that
the dissolved Pt ions from the cathode side transfer into the polymer membrane along the
hydrophilic channels and redeposit in it, which also give rise to the drain of ECSA [32–34].
Meanwhile, much more platinum is detected inside the proton exchange membrane under
vibration conditions than static conditions. The Pt catalyst loading of both cases before
the tests are equivalent, so that more Pt particles drain from the catalyst layer, resulting in
greater loss of the electrochemical active area and the performance of PEMFC.
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4. Conclusions

In the present study, we demonstrate that the voltage degradation rate is 103 µV h−1

under vibration conditions during a 300 h accelerated test, which is higher than the
53 µV h−1 degradation rate under no-vibration conditions. The high frequency resistance
under vibration conditions increases faster in the test time. This is by reason of the clamping
screws of the PEMFC easily loosen under vibration conditions. In addition, according to
TEM images and XRD patterns, the Pt particles on the cathode side show different extents
of agglomeration after chronic operation under both cases, which lead to degrade in the per-
formance of PEMFC. To explain why the performance and the electrochemical active area
of the PEMFC under vibration operation remain a faster decrease than those of the PEMFC
under static environment, EDX element analysis was performed. Much more platinum
that dissolved from the catalyst layer and redeposited was detected inside the polymer
membrane under vibration conditions, resulting in greater loss of the electrochemical active
area and the performance of PEMFC.
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Abstract: We report an environment-friendly preparation method of rGO-based flexible self-supporting
membrane electrodes, combining Co-MOF with graphene oxide and quickly preparing a hollow
CoO@rGO flexible self-supporting membrane composite with a porous structure. This unique hollow
porous structure can shorten the ion transport path and provide more active sites for lithium ions. The
high conductivity of reduced graphene oxide further facilitates the rapid charge transfer and provides
sufficient buffer space for the hollow Co-MOF nanocubes during the charging process. We evaluated
its electrochemical performance in a coin cell, which showed good rate capability and cycling stability.
The CoO@rGO flexible electrode maintains a high specific capacity of 1103 mAh g−1 after 600 cycles
at 1.0 A g−1. The high capacity of prepared material is attributed to the synergistic effect of the
hollow porous structure and the 3D reduced graphene oxide network. This would be considered
a promising new strategy for synthesizing hollow porous-structured rGO-based self-supported
flexible electrodes.

Keywords: CoO@rGO; graphene; MOF; flexible electrodes; hollow structure; ultrafast integration;
lithium-ion batteries

1. Introduction

Due to the increasing demand for higher capacity, higher power density, longer cycle
life of energy storage devices for portable electronic devices, wearable electronic devices,
and energy-consuming devices such as electric vehicles, research on new lithium-ion
batteries with higher performance and more excellent safety has become more and more
urgent [1–4]. Lithium-ion batteries have significant advantages and have become the first
choice for the modern day owing to their high energy density, high cycle life, and high
efficiency [5–7]. The low theoretical capacity of conventional graphite anode materials
contradicts the need for higher-capacity Li-ion batteries [8–10].

Transition metal oxides (TMOs), the most promising active anode materials for the
new generation of Li-ion batteries, have received much attention from researchers due
to their high specific capacity and exemplary safety [11,12]. Among them, CoO has been
further investigated due to its high theoretical capacity (716 mAh g−1), relatively low
cost, and fully reversible electrochemical reaction. However, transition metal oxides,
including CoO, are conversion-type anode materials that generate large volume expansion
during cycling, leading to the chalking of active material particles and greatly reduced
cycle life. Thus, the practical application of metal compounds for lithium-ion batteries is
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severely limited [13–16]. Building nanostructures is an effective solution to improve their
performance [17,18]. Metal–organic backbone (MOF) derivatives can effectively maintain
the morphology of MOF precursors due to their tunability at the molecular level and unique
porous backbone structure [19,20]. Therefore, MOF is widely used as a template [21,22],
and TMO nanostructures such as CoO can be fabricated by a simple process [23]. However,
the low electrical conductivity and slow reaction kinetics of CoO nanomaterials still limit
their performance in lithium-ion battery electrode materials.

Graphene is often used as an ideal substrate material due to its high electrical conduc-
tivity, huge specific surface area, and excellent physical and mechanical flexibility [24–26].
The composite of graphene with TMOs is considered a reasonable and effective solution
at present. On the other hand, it can also effectively alleviate the chalking of the active
material caused by the volume expansion during cycling, thus greatly improving the bat-
tery cycling stability [27]. To date, various composites of TMOs with graphene, including
Fe3O4 nanoflakes/RGO composites [28], MnO2/reduced Graphene Oxide Nanosheet [29],
hollow Fe3O4/graphene hybrid films [30], and Co3O4@rGO nanocomposites [31], etc.,
have been successfully reported for lithium-ion battery electrodes. However, these re-
ported TMOs/graphene composites usually have more preparation steps, high preparation
cost, and complicated processing, which seriously hinder their industrial application in
Li-ion batteries.

Herein, we designed and synthesized a simple, environmentally friendly, cost-effective
CoO@rGO flexible membrane electrode. Co-MOF is known as a metal–organic skeleton
and its derivatives can effectively maintain its intrinsic morphology, and its composite with
a three-dimensional (3D) graphene network has also exhibited excellent electrochemical
properties. In addition, it has been shown that ammonia has an etching effect on some
MOFs, which can be etched into hollow materials [28], and at the same time, graphene
oxide is rapidly reduced. The hollow material is more favorable for lithium ion transport
and storage, so the composite of hollow structured CoO with graphene oxide would be an
excellent self-supporting anode material.

2. Material and Methods
2.1. Synthesis of Co-MOF

In the typical synthesis of Co-MOF, 0.6 mmol cobalt acetate tetrahydrate and 0.9 mmol
sodium citrate were dissolved in 20 mL of deionized (DI) water to obtain solution A. In
addition, 0.4 mmol potassium cobalt cyanide was dissolved in 20 mL of deionized water
to obtain solution B. The solution A and solution B were then quickly mixed together and
stirred for 12 h [32]. The precipitated product was collected by centrifugation and washed
three times with deionized water and alcohol, followed by vacuum drying overnight at
70 ◦C to obtain the Co-MOF precursor material.

2.2. Synthesis of Co-MOF@rGO and CoO@rGO Flexible Membranes

A total of 20 mg of GO and 60 mg of Co-MOF precursor were dissolved into 5 mL DI
water. The precursor solution was mixed well by stirring for 10 min, poured into disposable
Petri dishes, and then freeze-dried to obtain Co-MOF@GO membrane material. Then, hot
(NH4)2S solution was added dropwise to the above membrane for rapid reduction. After
1 min, the excess (NH4)2S was quickly washed off with deionized water and freeze-dried
to obtain Co-MOF@rGO flexible membrane finally.

The above-obtained Co-MOF@rGO flexible film was heat treated at 550 ◦C for 2 h
under Ar atmosphere with a heating rate of 2 ◦C min−1, and the CoO@rGO flexible film
could be directly used as an electrode after natural cooling.

2.3. Material Characterization

The morphology of the products was characterized by field emission scanning electron
microscopy (SU8010, HITACHI, Japan), transmission electron microscopy (TEM), and
high-resolution TEM (HRTEM). Energy dispersive X-ray spectroscopy (EDX) analysis and
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corresponding elemental mapping were performed using an X-ray spectrometer attached
to the TEM instrument. The crystalline phases of the products were collected by X-ray
diffraction (MiniFlex600, Rigaku, Japan) using monochromatic Cu-Kα lines as a radiation
source. The thermal stability of the samples in the air was evaluated by thermogravimetric
analysis (209-F3, NETZSCH, Germany) in the temperature range of 40–800 ◦C, with a ramp
rate of 10 ◦C min−1. Raman spectra were obtained by testing on a Raman spectrometer
(1PQG99, Renishaw, Korea) at a laser wavelength of 532 nm.

2.4. Electrochemical Measurements

CoO@rGO and rGO flexible films were cut into small 10 mm diameter discs and used
directly for an electrochemical evaluation. As a comparison, CoO electrodes were prepared
by mixing 80 wt% of active electrode material (CoO), 10 wt% of carbon black, and 10 wt% of
polyvinylidene fluoride binder to prepare a slurry. Then, the slurry was uniformly coated
on the copper foil and dried overnight in a vacuum oven at 60 ◦C. The CR2032 half-cells
were assembled in an argon-filled glove box by cutting into 10 mm-diameter disc electrodes
by a button cell slicer, using lithium sheets as counter electrodes and a mixture of vinyl
carbonate (EC) and diethyl carbonate (DEC) with 5% fluoroethylene carbonate (FEC) as
the electrolyte. Cycling performance and rate performance tests were performed on a cell
test system (LANHE, CT2001A, Wuhan, China) with a voltage range of 0.01–3.0 V. Cyclic
voltammetry tests with a voltage window of 0.01–3.0 V (vs. Li+/Li, 0.1 mV s−1) were
performed on an electrochemical workstation (CHI, 760E, Shanghai, China).

3. Results and Discussion
3.1. Characterization

As shown in Scheme 1, the Co-MOF nanocubes (Figure S1) prepared in advance were
co-dispersed with GO in deionized water and later freeze-dried to form a film directly.
Then, using the strong reduction effect of (NH4)2S, GO was rapidly reduced to rGO, and
the Co-MOF@rGO flexible film was obtained. It is noteworthy that Co-MOF is a tunable
and unique porous backbone structure at the molecular level, and in addition, it can be
etched by NH4

+ to form a hollow structure. This is because ammonia will coordinate with
cobalt cations to form complex ions, which cause the etching of cobalt [33]. Therefore,
while the three-dimensional reduced graphene oxide network improves the electrical
conductivity of the material, its hollow structure further shortens the ion transport path;
thereby, the ion transport efficiency can be effectively improved. Meanwhile, the buffering
effect of the 3D reduced graphene oxide network can effectively adapt to the volume change
during the cycling process. Thus, it will be a promising new anode material for energy
storage devices.

Scheme 1. Schematic illustration for the synthesis and construction of the Co-MOF@rGO flexible film.

The flexible membrane electrodes prepared by this promising synthetic strategy are
shown in Figures 1a and S2, which can well meet the requirements of bendability and
wearability. Figure S1 shows the SEM images of the prepared Co-MOF nanocubes, and
all the cubes show smooth surface structures with a size of about 1 µm. The SEM images
of the Co-MOF@GO composites were obtained after compounding with graphene oxide
and are shown in Figure 1b,c. The Co-MOF nanocubes are uniformly wrapped in a 3D
network of graphene oxide, showing a good 3D buffer structure. In addition, it can be seen
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that the Co-MOF@GO composite keeps its initial morphology intact and is successfully
compounded with graphene oxide before being etched by ammonium sulfide.

Figure 1. (a) Digital images of CoO@rGO films; SEM images of (b,c) Co-MOF@GO composites,
(d–g) etched Co-MOF@rGO composites, (h,i) CoO@rGO flexible film.

When ammonium sulfide is added, GO is rapidly reduced to rGO, as shown in
Figure 1d,e, and the original oxygen-containing functional groups in graphene oxide are
destroyed, thus contracting and cross-linking each other and tightly wrapping the Co-MOF
nanocubes. It is noteworthy that the Co-MOF in the obtained Co-MOF@rGO flexible
composite film produced a slight deformation due to the NH4

+ in ammonium sulfide,
which simultaneously had a strong etching effect on the Co-MOF nanocubes; it was etched
into a hollow structure in a very short period of time. As can be seen from the SEM
images at high magnification in Figure 1e, the etched Co-MOF nanocubes exhibit a different
contrast around the etched area from the central position, indicating that they may have
been etched into hollow structures. This judgment is confirmed by the subsequent SEM
of individual broken Co-MOF nanocubes, as shown in Figure 1f,g. It can be seen from
the broken Co-MOF nanocubes that the Co-MOF nanocubes are hollow inside, leaving a
layer of outer wall. This proves the strong etching effect of ammonium sulfide on Co-MOF
nanocubes and illustrates the successful synthesis of hollow Co-MOF nanocubes with
rGO-based flexible composites.

The Co-MOF@rGO flexible composite film was heat-treated, and the Co-MOF was
heat-treated to obtain its corresponding derivatives, which were then used as electrode
materials. The SEM images of the obtained CoO@rGO flexible composite films are shown in
Figures 1h,i and S3, from which it can be seen that the CoO nanocubes derived from the Co-
MOF nanocubes obtained after heat treatment still maintain the complete cubic structure
with a size of about 1 µm. Notably, the CoO nanocubes obtained after heat treatment have
a hazy, gauzy texture and exhibit a more sparse and porous surface structure. This may
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be attributed to the porous structure caused by the escape of gases generated during the
heat treatment process. This porous structure can further reduce the ion transport path and
promote rapid lithium-ion transport, which is conducive to better lithium-ion insertion and
extraction, and synergize with the high electrical conductivity of the 3D reduced graphene
oxide network and the excellent buffer structure, thus effectively improving the cycling
stability while also effectively improving the composite multiplicity performance. Figure S4
shows the EDS analysis of the CoO@rGO flexible composite film. As expected, the Co and
O elements in the obtained CoO@rGO flexible composite film are uniformly distributed
and correspond to the CoO nanocubes. At the same time, the C elements corresponding to
the reduced graphene oxide around the CoO nanocubes were also uniformly distributed
around the CoO nanocubes, and they wrapped the CoO nanocubes tightly. In addition, the
S and N heteroatom doping introduced by adding ammonium sulfide is also present in the
heat-treated CoO nanocubes, further demonstrating the successful composite of CoO@rGO
flexible composite film materials.

The internal structure of Co-MOF nanocubes in the Co-MOF@rGO flexible composite
film was further investigated by TEM analysis, as shown in Figure 2a,b. It is obvious that the
Co-MOF nanocubes etched by ammonium sulfide exhibit a distinct hollow structure with
an empty internal structure and an outer wall thickness of about 155 nm (Figure 2c). Figure
S6 shows the tight junctions between the rGO and CoO crystals, and the 0.24 nm lattice
stripe labeled in the figure is attributed to the CoO(111) crystal plane. And the elemental
distribution in the Co-MOF@rGO flexible composite film was analyzed in Figure 2d, from
which the hollow structure of the hollow Co-MOF nanocubes could be seen, (e), (f), (g), (h),
(i) are the elemental mapping of C, Co, O, S and N, respectively.

Figure 2. (a–c) TEM image of Co-MOF@rGO, (d) HRTEM images of EDX mapping of hollow Co-
MOF@rGO flexible films, (e–i) are the elemental mapping of C, Co, O, S and N, respectively.
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The elemental distribution shows that Co and O elements are uniformly distributed
on the outer wall of the hollow Co-MOF nanocubes, and C elements can also be seen
around the hollow Co-MOF nanocubes due to the peripheral wrapping of the reduced
graphene oxide. In addition, the introduction of S and N elemental heteroatoms can also be
seen on the elemental distribution map due to the reduction and etching of ammonium
sulfide, which is beneficial for the storage of lithium ions. From this elemental mapping
analysis, it can be well illustrated that the Co-MOF@rGO flexible composite film material is
successfully compounded.

To further determine the composition of the hollow porous CoO@rGO flexible com-
posite films, the resulting composites were characterized by XRD. As shown in Figure 3a,
all major diffraction peaks of the hollow porous CoO@rGO flexible composite film can
be successfully indexed to the corresponding standard card (JCPDS 48-1719). The hollow
porous CoO@rGO flexible composite membrane shows very distinct diffraction peaks at
36.74, 42.61, 61.62, 73.97, and 77.65◦, corresponding to the (111), (200), (220), (311), and
(222) crystal planes of cobalt oxide, respectively. The broad diffraction peaks centered
at 2θ ≈ 26◦ in the diffraction pattern of the hollow porous CoO@rGO flexible composite
film is be attributed to the typical (002) crystal plane of rGO [34], and the absence of other
impurity peaks is a good proof of the successful synthesis of the hollow porous CoO@rGO
flexible composite film.

Figure 3. (a) XRD patterns; (b) TG curve; (c) Raman spectra; (d) FT-IR spectra of the CoO@rGO
flexible film.

In order to obtain the carbon content in the hollow porous CoO@rGO flexible compos-
ite film, thermogravimetric analysis was also performed and represented in Figure 3b, and
the mass content of rGO in the hollow porous CoO@rGO flexible composite film can be
calculated from the thermogravimetric analysis results. During the heating process from
40–800 ◦C under air atmosphere, carbon is gradually decomposed to form carbon dioxide
and expelled, while CoO nanocubes are gradually oxidized to Co3O4 when heated in the
air [35]. It can be seen that at 800 ◦C, 49.08 wt% content of Co3O4 is finally obtained, so
it can be calculated that the hollow porous CoO@rGO flexible composite film has a mass
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content of CoO of about 45.82%, which leads to the further calculation that the mass content
of rGO is about 54.18%.

As shown in Figure 3c, the Raman spectra of CoO@rGO 3D mesh composites have two
main peaks at 1349 cm−1 and 1574 cm−1 for the D-band of the A1g vibrational mode used
for disordered carbon and the G-band of the E2g vibrational mode for ordered graphitic
carbon. The D to G band’s intensity ratio (ID/IG) usually reflects the degree of defects and
disorder in carbon materials [36]. The intensity ratio (ID/IG) of the D-band to the G-band
of the CoO@rGO composite is about 1.37, indicating that there are many defects in the
CoO@rGO 3D mesh composite. Compared with the Raman spectrum of the rGO flexible
film (Figure S5), the CoO@rGO flexible composite film has a stronger D-band intensity,
indicating more defects or disorder sites in the heterogeneous structure, which helps to
provide more active regions for lithium storage. Figure 3d shows the FTIR spectra of
CoO@rGO, which exhibits characteristic stretching frequencies at 823, 1039, 1385, 1762,
and 3343 cm−1, corresponding to C=C, Co-O-Co, S-O, C=O, and O-H functional groups,
respectively. One of the peaks at 1385 cm−1 represents the S-O stretching vibration of the
sulfate group, which can be attributed to the addition of ammonium sulfide etching in
the Co-MOF@GO composite. The above analysis confirms the successful preparation of
CoO@rGO 3D mesh composites.

As shown in Figure 4a,b, the adsorption–desorption experiments of N2 were per-
formed on co-MOF@rGO before and after etching, and the pore size distribution was
calculated by the BJH method. The type IV isotherm plot with a distinct characteristic
hysteresis loop after etching (Figure 4b) indicates the dominant number of mesopores com-
pared to the unetched sample. The obtained specific surface area is 22.4 m2 g−1, and the
pore size distribution is in the range of 2–20 nm. It is noteworthy that the specific surface
area of the etched composites increases compared to the pre-etching composites possessing
a specific surface area of 11.7 m2 g−1. This is due to the coupling effect between the N,S
doping introduced during the etching process and the hollow structure produced by the
etching. The large specific surface area helps to improve the utilization of the active elec-
trode material, while the abundant mesopores of the material facilitate the rapid diffusion of
lithium ions and increase the lithium storage sites. X-ray photoemission spectroscopy (XPS)
measurements show the surface chemistry of CoO@rGO flexible films. The XPS spectra in
Figure 4c confirm the presence of C, CO, O, N, and S elements in the CoO@rGO flexible film.
The low content of N and S elements can be attributed to the introduction of heteroatoms
caused by the reduction of (NH4)2S during the etching process. The introduction of N and
S into the carbon structure can add more active sites, thus increasing the lithium storage
capacity and providing high specific capacity and rate performance for Li-ion batteries.
As shown in the C 1s spectrum (Figure 4d), the XPS C 1s spectrum of CoO@rGO flexible
film can be divided into two main peaks, where 284.76 eV corresponds to the C=C/C–C
bond and 286.32 eV corresponds to the C–O bond. The peak of C 1s is attributed to rGO.
The stronger peak with a binding energy of 284.76 indicates the deoxygenation process
accompanying rGO reduction in CoO@rGO flexible films, which is consistent with the
previously reported results [32]. In the fitted high-resolution Co 2p spectra (Figure 4e), the
two peaks located at 781.26 and 797.05 eV can be attributed to Co2+ with Co 2p3/2 and
Co2p1/2, which indicates the presence of Co2+ in the CoO@rGO flexible film, consistent
with its theoretical chemical state. The high-resolution O1spectrum (Figure 4f) can be de-
composed into three peaks corresponding to Co–OH (533.68 eV), Co–O–C (531.83 eV), and
Co–O (530.29 eV), respectively. One of them at the binding energy of 531.83 eV corresponds
to the Co–O–C bond of the oxygen-containing functional group on the surface of rGO. This
result indicates that CoO and rGO successfully hybridize through Co–O–C, which provides
a strong binding strength at the mutual interface of CoO and rGO [37].
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Figure 4. Nitrogen adsorption–desorption isotherms of (a) Co-MOF@rGO before etching and
(b) Co-MOF@rGO after etching; (c) XPS survey spectrum and corresponding (d) C 1s, (e) Co 2p,
and (f) O 1s XPS spectra of the CoO@rGO flexible film.

3.2. Electrochemical Performances

Our designed CoO@rGO flexible film has an excellent three-dimensional network
that facilitates overcoming significant volume variations, promotes rapid lithium-ion trans-
port, and provides reasonable rate capability and cycling performance for the assembled
Li-ion batteries. More importantly, benefiting from its flexible self-supporting feature, the
CoO@rGO flexible film can be quickly prepared and directly utilized as a stand-alone nega-
tive electrode for Li-ion batteries and avoids using conductive binders. We have assembled
CoO@rGO flexible films into half cells and evaluated their electrochemical performance.
Figure 5a shows the charge and discharge curves at a current density of 1 A g−1 with a
voltage window of 0.01–3.0 V. It is clear that the first turn discharge and charge capacities
of the CoO@rGO flexible membrane electrode are about 1020 mA h g−1 and 722 mA h g−1,
respectively, thus corresponding to an initial coulombic efficiency (ICE) of 72%. The ir-
reversible capacity loss can be attributed to the formation of the SEI membrane, some
undecomposed Li2O, and the irreversible decomposition of the electrolyte [38]. The rate
performance of the CoO@rGO flexible-film electrode was evaluated by gradually increasing
the current density from 0.1 to 2.0 A g−1 (Figure 5b). It can be seen that the CoO@rGO
flexible film exhibits the best rate of electrochemical performance compared to the compari-
son sample. Reversible capacities of 556, 437, 373, 336, 320, 307, and 251 mA h g−1 were
obtained at 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and 2.0 A g−1, respectively. Moreover, the specific
capacity can be easily recovered to 509 mA h g−1 when the current density is reduced to
0.1 A g−1, proving its excellent rate performance. In contrast, the comparison electrodes
CoO and pure rGO films exhibit relatively low specific capacities and do not recover their
initial specific capacities well when the current density is restored to the initial current.

To explain the excellent kinetic origin of CoO@rGO, CV measurements at different
scan rates were used to evaluate the kinetic reactions (Figure 5c). In the CV curve, the
scan voltage from negative to positive can be seen as the anodic oxidation process, which
corresponds to the oxidation peak, and vice versa as the cathodic reduction process, which
corresponds to the reduction peak. It can be seen that when the scan rate is at 0.1 mVs−1,
the cathodic and anodic peaks in the CV curves are symmetrical in shape, and the peak
heights are basically the same, indicating that the electrochemical reactions occurring at the
CoO@rGO flexible-film electrode/electrolyte interface have good reversibility. With the
increase in scanning rate, all CV curves exhibit similar shapes and well-preserved redox
peaks, with peak current (i) increasing with scan rate (v). The relationship between peak
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current and scan rate is i = avb, where a and b are parameters, and b is worth calculating
by plotting a graph and fitting a straight line [39–41]. Determining the value of b allows
a qualitative analysis of the charge storage mechanism. When the value of slope (b) is
close to 0.5, the storage behavior is dominated by diffusion-type reactions; when it is close
to 1.0, it tends to capacitively controlled processes [42]. The b-values of the anodic and
cathodic peaks of the CoO@rGO flexible film are 0.84 and 0.82 (Figure 5d), suggesting
that it is dominated by capacitance-controlled behavior. Specifically, the ratio between
diffusion-controlled and capacitive-controlled can be further quantified with a relationship
given by the Equation [43–45]:

i = k1 ν + k2 ν0.5.

With this equation, the ratio of pseudocapacitive charge storage can be obtained for
different scan rates. Figure 5e shows the capacitive contribution (68%) to the entire scan
area at 0.2 mV s−1. As shown in Figure 5f, when the CoO@rGO flexible film was tested at
scan rates of 0.2, 0.4, 0.6, 0.8, and 1 mV s−1, the contribution of capacitive behavior was 68%,
72%, 77%, 83%, and 93%, respectively. It can be seen that the contribution of capacitance
increases with increasing scan rate. The high pseudo-capacitance rate may be due to the
synergistic effect of the hollow structure formed by Co-MOF after etching by ammonium
sulfide and after compounding with reduced graphene oxide, which provides more active
sites for Li intercalation/delamination as well as lithium storage.

Figure 5. Electrochemical properties of the CoO@rGO flexible film for LIBs: (a) discharge/charge
curves at a current density of 1 A g−1; (b) rate properties; (c) CV curve at different sweep speeds;
(d) fitting curves of the b-values; (e) the capacitive contribution to charge storage at a scan rate of
0.2 mV s−1; (f) the capacitive and diffusion contributions at different scan rates; (g) cycling properties
at 1.0 A g−1.

Figure 5g shows the cycling performance of the CoO@rGO composite electrode com-
pared to the comparison electrode CoO and pure rGO films at a current density of 1 A g−1.
It can be seen that the CoO@rGO composite electrode exhibits the most excellent cycling
performance compared to the comparison electrode. The CoO@rGO composite electrode
shows a trend of consistently increasing capacity over one hundred and fifty cycles dur-
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ing the entire charge/discharge process with the voltage window of 0.01–3.0 V at 1 A g−1

current density, which is common for various nanostructured metal oxide electrodes
whose capacity increases with cycling [46]. Activation of the electrode material during
charge/discharge is one of the main reasons for this phenomenon, and the gradual increase
in capacity may be due to the reversible growth of the polymer gel-like film caused by the
degradation of the dynamically active electrolyte [47,48]. In addition, the hollow structure
of CoO effectively restrains the volume expansion during cycling, while the rGO sheet layer
provides an excellent buffering effect. After 600 cycles, the CoO@rGO composite electrode
exhibits an impressive discharge capacity of 1103 mA h g−1. In contrast, the discharge ca-
pacities of CoO and pure rGO electrodes are only 483 and 155 mA h g−1 (Table S1). This is
significantly better than many other reported cobalt-based anode materials for lithium-ion
batteries (Table S2). In addition, from three cycles onwards, for the CoO@rGO composite
electrode, around 97% coulombic efficiency remains stable, showing its excellent reversible
Li+ insertion extraction performance. This fully reflects the important role of the hollow
structure of the CoO and rGO three-dimensional conductive network for the excellent
cycling performance of the CoO@rGO flexible film self-supported electrode.

4. Conclusions

In summary, we designed and synthesized a flexible self-supporting film electrode
with hollow porous CoO nanocubes compounded with rGO. The CoO@rGO flexible-film
composite electrode prepared using this method has many advantages: it can be prepared
faster and more economically, on a large scale, with a simple process flow, which is beneficial
for its industrial application in lithium-ion batteries, and the method is self-forming without
adding conductive agents and binders, which can effectively improve the overall energy
density of the electrode. The hollow and porous structure can effectively shorten the ion
transport path and provide more active sites for lithium ions. In addition, the large-sized
rGO sheet layer not only improves the overall conductivity of the material and promotes
rapid charge transfer but also provides sufficient buffer space for the hollow Co-MOF
nanocubes. Due to the synergistic effect of this hollow porous structure and the three-
dimensional reduced graphene oxide network, the CoO@rGO flexible-film electrode shows
extremely excellent electrochemical performance. We investigated the electrochemical
performance of CoO@rGO flexible film as an anode material for Li-ion batteries, showing
good cycling stability (1103 mA h g−1 after 600 cycles at 1.0 A g−1). Even at a high current
density of 5.0 A g−1, a reversible capacity of 586 mA h g−1 was maintained, which is
significantly better than many previously reported cobalt-based electrode materials. The
CoO@rGO flexible-film composite electrode is expected to be an ideal next-generation
anode candidate for industrial applications of lithium-ion batteries.
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ble film; Figure S5: Raman spectra of rGo flexible film; Figure S6: HRTEM image of Co-MOF@rGO;
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Abstract: The development of battery-type electrode materials with hierarchical nanostructures has
recently gained considerable attention in high-rate hybrid supercapacitors. For the first time, in the
present study novel hierarchical CuMn2O4 nanosheet arrays (NSAs) nanostructures are developed
using a one-step hydrothermal route on a nickel foam substrate and utilized as an enhanced battery-
type electrode material for supercapacitors without the need of binders or conducting polymer
additives. X-ray diffraction, scanning electron microscopy (SEM), and transmission electron mi-
croscopy (TEM) techniques are used to study the phase, structural, and morphological characteristics
of the CuMn2O4 electrode. SEM and TEM studies show that CuMn2O4 exhibits a nanosheet array
morphology. According to the electrochemical data, CuMn2O4 NSAs give a Faradic battery-type
redox activity that differs from the behavior of carbon-related materials (such as activated carbon,
reduced graphene oxide, graphene, etc.). The battery-type CuMn2O4 NSAs electrode showed an
excellent specific capacity of 125.56 mA h g−1 at 1 A g−1 with a remarkable rate capability of 84.1%,
superb cycling stability of 92.15% over 5000 cycles, good mechanical stability and flexibility, and low
internal resistance at the interface of electrode and electrolyte. Due to their excellent electrochemical
properties, high-performance CuMn2O4 NSAs-like structures are prospective battery-type electrodes
for high-rate supercapacitors.

Keywords: CuMn2O4; nanosheet arrays; hydrothermal; battery-type; supercapacitors

1. Introduction

The exhaustion of fossil fuels, with related global climate issues and growing energy
demand from society, has created an urgent call for the progress of high-rate electrochemical
energy storage systems that can store vast amounts of energy (high specific energy) and
have rapid charge–discharge (high specific power) [1]. Currently, lithium-ion batteries
(LIB), supercapacitors (SCs), and sodium-ion (SIBs) storage systems are extensively used for
the storage systems of electric vehicles, portable electronics, wearable electronics, etc. [2,3].
Supercapacitors have received the most attention from people among all types of energy
storage devices, owing to their benefits including outstanding cycling stability, superior
specific power, and rapid charge–discharge cycles [4]. Supercapacitors are classified into
three varieties based on their energy storage capabilities: electrochemical double-layer
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capacitors (EDLCs), pseudocapacitors (PCs), and battery-type supercapacitors [5]. The
EDLC materials accumulate the charges by the adsorption of electrolyte ions at the elec-
trode and electrolyte interface, while the PCs and battery-type materials store charges
by Faradaic electrochemical reactions. The morphology, structure, and conductivity of
the electrode materials, the electrolyte, the complexity of the device’s fabrication circum-
stances, and other aspects need to be considered while preparing supercapacitor devices.
The electroactive material is the essential supercapacitor device component to determine
electrochemical performance [6]. Commonly used electrode materials include conductive
polymers, conductive carbon compounds, transition metal components, etc. [7]. However,
the SCs could produce a tremendous specific power but low specific energy; in contrast, the
LIBs could only give a low specific power [8,9]. In this case, creating a hybrid supercapaci-
tor (HSC) with high specific power and high specific energy is particularly desirable [10].
These HSCs comprise a collective arrangement of a supercapacitor electrode material and a
battery-type electrode material [11]. Hence, in recent years developing positive and nega-
tive electroactive materials for HSC has witnessed significant demand in electric vehicles,
portable electronics, and wearable electronics applications.

Battery-type materials, such as NiO, Co3O4, Ni(OH)2, NiS, NiCo2S4, etc., delivered
superior energy storage capabilities compared to electric double layer capacitors (EDLC
materials, such as carbon-related materials, such as reduced graphene oxide, graphene, etc.)
and pseudocapacitor materials (such as MnO2, RuO2, etc.) [12–17]. Therefore, it is crucial
to design and create highly effective battery-type electrodes to elevate the supercapac-
itor’s performance, particularly its specific energy. Additionally, binary metal oxides
(CuCo2O4, NiCo2O4, NiMoO4, CoMoO4, FeMoO4, CuNiO2, NiMn2O4, MnCo2O4, etc.)
have drawn significant interest as battery-type electrodes for supercapacitors compared
to the mono-metal oxides due to their enhanced electrical conductivity and additional
oxidation states [18–21]. Manganese-based binary oxides have received the most attention
among these oxides, because they offer numerous benefits including low toxicity, great
abundance, various valence, and low cost [22]. Several research initiatives have been
developed to produce binary metal oxides, including exploring novel electrode materials
and constructing hierarchical nanostructures. For example, Krishnan et al. developed a
MnCo2O4 nanoflakes battery-type material for a supercapacitor using the rapid microwave-
assisted technique and obtained a specific capacity of 74.44 mA h g−1 at 0.5 A g−1 [23]. The
NiMn2O4 synthesized by Krishna et al. delivered a specific capacity of 33.66 mA h g−1 at
0.5 A g−1 [24]. By a simple hydrothermal route, Wei et al. developed the nanostructured
spinal NiMn2O4 electrode and obtained a specific capacity of 73.61 mA h g−1 at 1 A g−1

with superb cycling stability (96% over 1000 cycles) [25]. Recently, Cheng et al. synthesized
hierarchical CuMn2O4 microspheres using a micro/nano MnCO3 precursor and obtained a
specific capacity of 73 mA h g−1 at 1 A g−1 [26]. On the other hand, Zhang et al. deposited
the spinel CuMn2O4 on graphene nanosheets (CuMn2O4-RGO) using the sol-gel method
and physical grinding and obtained a specific capacity of 95 mA h g−1 at 1 A g−1 [27].
However, it still remains a challenge to develop CuMn2O4 micro/nanostructures with out-
standing energy storage performance for supercapacitors. Moreover, transition metal oxide
performance is unsatisfactory in supercapacitor applications due to their limited electrical
conductivity, intrinsic structural features, and lower capacitance value than the theoreti-
cal value. Therefore, exceptional efforts have been undertaken in this direction to create
battery-type binary metal oxides with various morphologies for high-rate supercapacitors.

It is also necessary to consider the fabrication route to develop highly efficient electrode
materials for hybrid supercapacitor applications. Several fabrication routes for producing
metal oxides and sulfides include sol-gel, coprecipitation, chemical bath deposition, and
hydrothermal and solvothermal reactions. Among these approaches, hydrothermal syn-
thesis typically outperforms the others because of its low-temperature synthesis process,
affordable equipment, and ability to modify composition and particle size by adjusting
fabrication factors [16,28]. As a result, a simple hydrothermal approach was applied in this
study to create a highly effective electrode material for supercapacitor applications.
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Inspired by the latest findings of binary metal oxides, we created a CuMn2O4 nanosheet-
like structure using a facile one-step hydrothermal approach and effectively utilized it as
a battery-type electrode for supercapacitors. According to structural and morphological
investigations, CuMn2O4 has a nanosheet array-like morphology that provides plenty
of electroactive sites and promotes quick redox reactions. As a result, the battery-type
CuMn2O4 NSA electrode displays an exceptional specific capacity (125.56 mA h g−1 at
1 A g−1), excellent rate capability (84.1% even at 10 A g−1), and extraordinary cycling
performance (92.15% after 5000 cycles). Moreover, at various bending angles (flat, 45◦, and
90◦) the CV and GCD plots of the CuMn2O4 NSAs electrode are consistent in shape and no
noticeable distortion occurs, suggesting outstanding mechanical stability and flexibility.

2. Experimental Method
2.1. Materials

The chemicals used in this study were acquired from Sigma-Aldrich, Seoul, South
Korea, and utilized without additional purification; these are potassium hydroxide (KOH),
copper nitrate hexahydrate (Cu(NO3)2·6H2O), ammonium fluoride (NH4F), manganese
nitrate hexahydrate (Mn(NO3)2·6H2O), hydrochloric acid (HCl), and urea (CH4N2O).

2.2. Fabrication of Battery-Type CuMn2O4 NSA Material on Ni Foam Surface

On nickel (Ni) foam substrate, binder-free CuMn2O4 NSA structures were deposited
via a simple one-step hydrothermal technique. The 1 × 2 cm2 Ni foam substrates were
cleaned using an ultrasonic cleaner for 15 min each with 3 M HCl, acetone, ethanol, and
deionized (DI) water before the electroactive material was deposited. Based on our previous
work, various binary metal oxides were deposited on the Ni foam surface at the deposition
temperature and time of 100 ◦C and 6 h. Hence, in the present study the deposition
temperature and time of 100 ◦C and 6 h are used in the hydrothermal condition to deposit
the CuMn2O4 NSA material on the Ni foam surface [20,29,30]. In 60 mL DI water, 0.05 M
of Cu(NO3)2·6H2O, 0.1 M of Mn(NO3)2·6H2O, 0.24 M of CH4N2O and 0.12 M NH4F were
combined and stirred for 30 min to deposit the CuMn2O4 material on Ni foam. Pre-cleaned
Ni foams and the CuMn2O4 reaction recipe were put into a 100 mL Teflon-lined autoclave
for 6 h at 100 ◦C. After cooling, the electrodes were taken out of the autoclave, washed
several times with deionized water and ethanol, and dried at 60 ◦C for a whole night.
Ultimately, the electrode was heated for 2 h at 200 ◦C and given the designation CuMn2O4
NSAs. The active material loading on Ni foam is about 2.3 mg. The CuO material on Ni
foam was also synthesized at the same fabrication method, except without the addition of
Mn(NO3)2·6H2O [31].

2.3. Material Characterization and Electrochemical Measurements

Transmission electron microscopy (TEM, CJ111), X-ray diffraction (D8 ADVANCE), and
scanning electron microscopy (SEM, S4800, Hitachi, Pusan National University, Busan, South
Korea) were used to analyze the morphology, crystalline structure, and phase purity of the
as-prepared CuMn2O4 electrode. All electrochemical measurements were made using a Bio-
Logic SP-150 electrochemical analyzer. In a three-electrode system configuration filled with
3 M KOH aqueous electrolyte, the electrochemical behaviors of the as-developed electrode
were examined utilizing electrochemical impedance spectroscopy (EIS), galvanostatic charge–
discharge (GCD), and cyclic voltammetry (CV). The as-prepared CuMn2O4 electrode was
used as the working electrode, Ag/AgCl electrode was used as the reference electrode, and
the platinum wire was used as the counter electrode. In a three-electrode arrangement,
Equation (1) was used to compute the specific capacity (QSC, mA h g−1) of the as-fabricated
sample from the GCD plots [32].

QSC =
I × ∆t

m × 3.6
(1)

where I (A) is the current (A), ∆t (s) is the discharge time, and m (g) is the electroactive
material mass (g).
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3. Results and Discussion

To validate the effective deposition of the CuMn2O4 active material on the Ni foam,
an XRD analysis of the thin film was performed. Figure 1 shows the XRD spectrum
of CuMn2O4, which displayed well-defined sharp peaks consistent with the previous
literature reports [33,34], denoting the successful fabrication of the active material. Bright
and intense Nickel diffraction peaks are visible in XRD due to the backdrop of Ni foam.
The peaks obtained at 2θ positions of 30.6◦, 35.6◦, 43.4◦, 57.5◦, 63.2◦, and 74.3◦ correspond
to the (220), (311), (400), (511), (440), and (533) planes of crystalline CuMn2O4 (JCPDS
no. 34-1400) [33,34]. The absence of additional peaks in the XRD pattern supports the
CuMn2O4 sample’s phase purity.

Figure 1. CuMn2O4 NSA’s XRD pattern on the surface of Ni foam.

Figure 2a depicts the schematic representation for the fabrication of binder-free CuMn2O4
nanosheet arrays on the Ni foam using a simple one-step hydrothermal. Ni foam, as it is
widely known, is a three-dimensional (3D) structure that is highly conductive and possesses
an open porous structure with huge surface area stems. As a result, Ni foam could be utilized
as an efficient conductive stage to increase the active material mass loading, and is also more
suited for the sweep out of electrons produced from the electroactive material during redox
processes. These fantastic benefits led us to select the Ni foam as a current collector and build
the CuMn2O4 NSA sequentially using a one-step hydrothermal method. Urea and NH4F
were utilized as precipitants and complexing agents, respectively.

As shown in Figure 2b–d, the morphology and structure of the fabricated CuMn2O4
electrode were examined by SEM analysis. The SEM image with low magnification (Figure 2b)
shows that the CuMn2O4 active material is completely coated on the Ni foam surface. The
high-resolution SEM images in Figure 2c,d reveal that the microstructures are made up
of interwoven ultrathin nanosheets with relative thicknesses ranging from ~7.5 to 30 nm.
The ultrathin nanosheets are interconnected and generate a hierarchical nanosheet array
(NSA) morphology. TEM and high-resolution-TEM characterization methods were used to
evaluate the morphology and crystalline characteristics of the CuMn2O4 NSAs electrodes.
Different magnification TEM pictures of CuMn2O4 NSAs are shown in Figure 2e–g, and they
demonstrate the deposition of hierarchical CuMn2O4 NSAs over the Ni foam surface. The
HR-TEM picture exhibits lattice fringes of the CuMn2O4 compound at a lattice spacing of
0.256 nm relating to the (311) plane, as shown in Figure 2g. The TEM results are consistent with
the XRD analysis of the CuMn2O4 NSAs. The as-deposited NSAs are anticipated to improve
the specific surface area, supply many electroactive sites, and enable the rapid diffusion of
electrolyte ions, all of which will enhance the charge storage performance.
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Figure 2. (a) Schematic diagram of the preparation of CuMn2O4 NSAs electrode. (b–d) SEM and
high-resolution SEM images of CuMn2O4 NSAs electrode. (e–g) TEM and high-resolution TEM
images of CuMn2O4 NSAs electrode.

The electrochemical battery-type supercapacitor performance of the CuMn2O4 NSAs
electrode was investigated by CV, GCD, and EIS techniques in a three-electrode configu-
ration using 3 M KOH as the electrolyte. As-prepared CuMn2O4 NSAs electrodes belong
to the battery-type electrodes, as shown by the CV plots of the CuMn2O4 NSAs sample
in Figure 3a, which show clear redox peaks obtained in the potential window range from
0 to 0.55 V (vs. Ag/AgCl) at various sweep rates of 2, 5, 10, 25, and 50 mV s−1. The
diffusion mechanism is mainly due to the redox reaction between the electrolyte ions and
the active material. As a result, diffusion control mainly drives the active substance’s
contribution to specific capacity at low scan rates. Peak current levels of the pair of redox
peaks were seen to increase as the scan rate increased, and the forms of the redox peaks
were conserved even at a high sweep rate of 50 mV s−1, implying a rapid redox reaction,
elevated electro-conductivity, and excellent rate capacity of this electrode. Additionally, the
oxidation and reduction peaks gradually moved to more positive and negative potentials
when the sweep rate rose because of the electrochemical redox reaction’s fast charge and
discharge rates and lower material resistance [35]. According to the following equations,
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the reversible Faradaic redox reactions of Cu and Mn species provide the basis for the
electrochemical reaction’s mechanism:

CuMn2O4 + OH− + H2O � CuOOH + 2MnOOH + e− (2)

CuOOH + OH− � CuO2 + H2O + e− (3)

MnOOH + OH− � MnO2 + H2O + e− (4)

Figure 3. (a) CuMn2O4 NSAs electrode CV graphs at different sweep rates. (b) The b−value was
calculated using a Log of cathodic peak current density vs. a Log of sweep rate. (c) The plot of the
CuMn2O4 NSAs electrode’s charge distribution vs. scan rates. (d) CuMn2O4 NSAs electrode GCD
profiles at varied current densities. (e) Calculated specific capacity values vs. current density of the
CuMn2O4 NSAs electrode.

Additionally, to determine the charge storage kinetics of the as-developed material,
the b value was calculated using log (i) = blog(v) + log(a) where v and I denote the cathode
sweep rate and peak current, respectively [36]. As depicted in Figure 3b, the b value of
the CuMn2O4 NSAs electrode material is 0.539, which is very close to 0.5, indicating that
its diffusion-control (battery-type) dominant kinetics behavior is entirely compatible with
recent studies on battery-type material behavior [18,36].

Furthermore, to estimate the diffusive- and capacitive-controlled contribution in the
CuMn2O4 NSAs electrode, we represented peak current (ip) as the sum of a capacitive-
regulated (k1v) and diffusion-regulated (k2v) process by the following Equations [37]:

ip = k1v + k2v1/2 (5)

ip

v1/2 = k1v1/2 + k2 (6)

where ip, υ, and k1 and k2 represent the peak current (A), sweep rate (V s−1), and the
constant parameters. The linearly fitted plot between i/v1/2 vs. v1/2 provided the k1 and k2
values. As illustrated in Figure 3c, the CuMn2O4 NSAs electrodes demonstrated a more
dominating diffusion-controlled mechanism, with 92.13% overall capability at a low sweep
rate of 2 mV s−1. The intense battery-type mechanism was caused by the electrolyte’s
OH- ions having sufficient time to diffuse into the electrode material at low sweep rates.
However, the CuMn2O4 NSAs electrode’s diffusion-controlled contribution was reduced to
67.97% as the sweep rate rose from 2 to 50 mV s−1, while the capacitive-controlled impact
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climbed to 32.03%. With increased scan rates, the reduced diffusion-controlled behavior
was due to insufficient time for ion migration and intercalation; in contrast, the enhanced
capacitive-regulated behavior was due to the rapid electrolyte ions transit that happens at
the interface of electrode and electrolyte.

The GCD plots of the CuMn2O4 NSAs electrode are shown in Figure 3d, which de-
picts the current densities varying from 1 to 10 A g−1 with a potential window range of
0 to 0.5 V. The GCD plots’ distinct plateau sections reveal their battery-like nature. The
results of the GCD tests on the CuMn2O4 NSAs electrode agree well with those obtained
from the CV. Due to the limited ion diffusion at high current density, the charging and
discharging periods for the CuMn2O4 NSAs electrode steadily reduce as the current density
increases. However, the ions and charges in the electrolyte will have enough time to diffuse
and transfer when the current density is low [38]. Equation (1) was used to determine
the specific capacities of the battery-type CuMn2O4 NSAs electrode at different current
densities, and calculated values are depicted in Figure 3e. The calculated specific capacities
of the CuMn2O4 NSAs electrode were 125.56, 121.11, 116.67, 109.92, and 105.56 mA h g−1

at 1, 2, 4, 7, and 10 A g−1, respectively. As investigated in the electrochemical analyses,
the CuMn2O4 NSA electrode delivered a high QSC value of 125.56 mA h g−1 at a current
density of 1 A g−1. Furthermore, the CuMn2O4 NSAs electrode material retained 84.1%
of its initial specific capacity value even at 10 A g−1 current density, indicating the nanos-
tructured CuMn2O4 electrode materials’ high charge–discharge efficiency. The specific
capacity value’s steady reduction with increasing current density was mainly due to the
loss of active materials on the Ni foam surface during the redox reaction [39]. The specific
capacity values produced in this study are comparable to and even more significant than
the other electroactive materials and other reported CuMn2O4 hierarchical structures for
supercapacitors previously reported (Table 1).

Moreover, the CuMn2O4 NSAs electrode was further investigated using EIS analysis to
assess the material’s charge transfer kinetics and electrical conductivity. Figure 4 depicts the
resulting Nyquist plot of the as-fabricated CuMn2O4 NSA electrode in the 0.01 Hz–100 kHz
frequency range at the open-circuit potential. The obtained Nyquist plots are fit using the
equivalent circuit shown in the inset of Figure 4. The Nyquist plot showed a small semi-
circle in the high-frequency and a straight line in the low-frequency regions, representing
the charge transfer resistance (Rct) and Warburg diffusion resistance, respectively. The
intersection of the Nyquist plot with the X-axis in the high-frequency area represents the
electrode material’s equivalent series resistance (Rs). The fitting results show that low RS
(∼0.58 Ω cm2) and Rct (∼0.18 Ω cm2) values on the CuMn2O4 NSAs electrode demonstrated
excellent charge transfer kinetics and outstanding electronic conductivity. The vertical line
in the low-frequency zone represents the lower Warburg diffusion resistance, representing
the quick electrolyte diffusion and rapid ion charge transfer. The slope for the CuMn2O4
NSA electrode is near 45◦, showing that the Faradic redox reaction for the CuMn2O4
NSA is mainly controlled by diffusion, indicating that the CuMn2O4 NSA corresponds to
conventional battery-type electrode materials, as depicted in Figure 4.

Furthermore, the electroactive material’s excellent cycling behavior is essential for su-
percapacitors’ real-time application. The cycling behavior of the CuMn2O4 NSAs material
evaluated at 4 A g−1 over 5000 cycles is shown in Figure 5a. The specific capacity values im-
proved somewhat in the early cycles due to the complete activation of the CuMn2O4 NSAs
material by the continual entry of electrolyte ions into their inner portions [40]. Over
5000 cycles, the specific capacity gradually decreased and it retained ∼92.15% of its pri-
mary specific capacity value, demonstrating exceptional cycling life. This was further
verified by the SEM picture of the CuMn2O4 electrode taken after 5000 cycles (inset of
Figure 5a). The shape of the nanosheet arrays was highly retained, and the electroactive
material remained attached to the surface of the Ni foam, illustrating the remarkable cycling
life of the CuMn2O4 NSAs electrode. Moreover, electrochemical measurements (CV, GCD,
and EIS) were carried out both before and after the cycling assessment, and the related
graphs are shown in Figure 5b–d. As shown in Figure 5b,c, before and after the cycling test,
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the CV and GCD curves preserved no change in the energy storage performance, revealing
the excellent cycling stability of the electroactive material on the Ni foam surface. As shown
in Figure 5d, the obtained RS values before and after the cycling test were almost the same,
denoting the stable electrochemical stability of the electroactive material. Moreover, EIS
analysis reveals a minor change in the charge transfer resistance of the CuMn2O4 NSA
electrode after the cycling test (∼0.18 Ω cm2 to ∼0.29 cm2). Hence, the slightly decreased
specific capacity value and a slight rise in Rct value during the cycling test might be at-
tributed to a slight solidification or dryness of the electrolyte [41]. Moreover, the tangent
line in the low-frequency region of the Nyquist plot confirms the lower Warburg diffusion
resistance, which facilitates the ionic diffusion process.

Figure 4. Nyquist plot of CuMn2O4 NSAs electrode (inset shows the enlarged Nyquist plot and
equivalent circuit to fit the Nyquist plots).

The CuMn2O4 NSAs electrode delivered an excellent specific capacity, outstand-
ing rate capability (84.1%), and good cycling life span. It is worth mentioning that the
delivered higher specific capacity value from the hydrothermally fabricated battery-type
CuMn2O4 NSA electrode exhibited improved electrochemical performance that was anal-
ogous to the performances of the previously reported battery-type binary metal oxide
electrodes such as the hydrothermally prepared NiCo2O4 electrode (QSC = 34.02 mA h g−1

at 1 A g−1 and cycling life of 78.30% over 6000 cycles) [42], hydrothermally developed
CuCo2O4 electrode (QSC = 84.22 mA h g−1 at 1 A g−1 and cycling life of 71.80% over
5000 cycles) [43], microwave-assisted NiMn2O4 electrode (QSC = 138.83 mA h g−1 at 1 A g−1

and cycling life of 85.80% over 6000 cycles) [44], hydrothermally synthesized CuNiO2 elec-
trode (QSC = 111.52 mA h g−1 at 2 A g−1 and cycling life of 89.13% over 3000 cycles) [45],
hydrothermally prepared CuCo2O4 electrode (QSC = 86.37 mA h g−1 at 1 A g−1 and cy-
cling life 93% over 6000 cycles) [46], and the hydrothermally developed FeCo2O4 electrode
(QSC = 125.56 mA h g−1 at 1 A g−1 and cycling life 93.68% over 4000 cycles) [47], respectively.
Table 1 compares and summarizes the total electrochemical behavior of different electrodes.

Moreover, CV and GCD assessments at different bending angles were used to examine
the CuMn2O4 NSA electrode’s flexibility and mechanical stability. The obtained curves are
depicted in Figure 6a,b. The inset of Figure 6b shows the photographs of the CuMn2O4 NSA
electrode bent at various angles. The CuMn2O4 NSA electrode is highly flexible and can be
bent at 45◦ and 90◦ angles without destroying its physical structure, as is shown in the inset of
Figure 6b. The CuMn2O4 electrode’s CV and GCD profiles exhibit almost identical CV and
GCD profiles at different bending angles (flat, 45◦, and 90◦), and show minimal performance
change, demonstrating the material’s exceptional mechanical stability and flexibility.
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Figure 5. (a) Cycling stability (inset depicts the SEM image after the stability test). The CuMn2O4

NSA electrode (b) CV, (c) GCD, and (d) EIS graphs before and after cycle testing.

Table 1. The energy storage behavior of the current battery-type CuMn2O4 NSAs electrode and previ-
ously disclosed battery-type binary metal oxide electrodes and other reported CuMn2O4 hierarchical
structures are compared.

Battery-Type Electrode Preparation Route Specific Capacity
(mA h g−1)

Cycling Stability
(Cycles) Ref.

NiCo2O4 flower-like Hydrothermal 34.02 at 1 A g−1 78.30% (6000) [42]

CuCo2O4 ultrathin nanosheets Hydrothermal 84.22 at 1 A g−1 71.80% (5000) [43]

NiMn2O4 microspheres Microwave-assisted 138.83 at 1 A g−1 85.80% (6000) [44]

CuNiO2 dandelion flower-like Hydrothermal 111.52 at 2 A g−1 89.13% (3000) [45]

CuCo2O4 microspheres Hydrothermal 86.37 at 1 A g−1 93.00% (6000) [46]

FeCo2O4 chopsticks-like Hydrothermal 113.32 at 1 A g−1 93.68% (4000) [47]

CuMn2O4 microspheres Micro/nano MnCO3 precursor 73 at 1 A g−1 96% (3000) [26]

Spinel CuMn2O4-RGO nanosheets Sol-gel with physical griding 95 at 1 A g−1 75.5% (1000) [27]

CuMn2O4 Hydrothermal 125.56 at 1 A g−1 92.15% (5000) Present work

Figure 7 depicts the electrochemical behavior of the binder-free CuMn2O4 NSAs ma-
terial on Ni-foam for the hybrid supercapacitors. The conductivity of the as−prepared
materials could be improved by directly depositing ultra-thin CuMn2O4 NSAs−based
hierarchical nanostructures on the Ni foam surface. Additionally, this would offer efficient
transport routes and rapid ion diffusion channels that would be feasible for electrochemical
processes. Therefore, as–prepared binder–free CuMn2O4 NSAs electrodes with improved
electrochemical properties could be a battery-type electrode material for high–rate hybrid
supercapacitor applications. Additionally, more advanced experimental research (combin-

36



Nanomaterials 2023, 13, 1125

ing CuMn2O4 nanostructures with other metal oxides or carbon materials), thorough anal-
yses, and measurement methods are currently being investigated to improve the CuMn2O4
electroactive material’s properties for electrochemical energy storage applications.

Figure 6. At different bending angles, the (a) CV and (b) GCD profiles of a CuMn2O4 NSA electrode.
Photographs of CuMn2O4 NSA electrode bent in various angles showing the flexibility of the electrode
(inset of Figure 6b).

Figure 7. Diffusion of electrolyte ions is shown schematically in CuMn2O4 nanosheet array morphology.

4. Conclusions

A facile one-step hydrothermal process was employed to deposit novel CuMn2O4
NSAs structures on Ni foam. The structural and morphological studies of the as-fabricated
CuMn2O4 NSAs electrode were studied using XRD, SEM, and TEM characterization tech-
niques. The as-developed CuMn2O4 NSAs electrode displayed a Faradic battery-type
redox activity, as evidenced by the potential plateaus from the CV and GCD techniques. As
a battery-type electrode material, the CuMn2O4 NSAs electrode demonstrated exceptional
electrochemical capabilities, including the maximum specific capacity (125.56 mA h g−1

at 1 A g−1), rate capability (84.1% even at 10 A g−1), and cycling stability (92.15% over
5000 cycles). Moreover, the as-prepared CuMn2O4 NSAs electrode material delivered
good mechanical stability and flexibility at various bending angles (flat, 45◦, and 90◦). The
as-prepared electrode’s remarkable energy storage performance was due to the hierarchi-
cal interconnected nanosheet array architectures, which supplied numerous electroactive
sites to facilitate the rapid Faradaic redox reactions. Hence, the excellent electrochemical

37



Nanomaterials 2023, 13, 1125

properties of the CuMn2O4 NSAs electrode have significant potential for use in high-rate
supercapacitors as a battery-type electrode material.
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Abstract: Red phosphorus (RP) is considered to be the most promising anode material for lithium-Ion
batteries (LIBs) due to its high theoretical specific capacity and suitable voltage platform. However,
its poor electrical conductivity (10−12 S/m) and the large volume changes that accompany the cycling
process severely limit its practical application. Herein, we have prepared fibrous red phosphorus (FP)
that possesses better electrical conductivity (10−4 S/m) and a special structure by chemical vapor
transport (CVT) to improve electrochemical performance as an anode material for LIBs. Compound-
ing it with graphite (C) by a simple ball milling method, the composite material (FP-C) shows a
high reversible specific capacity of 1621 mAh/g, excellent high-rate performance and long cycle life
with a capacity of 742.4 mAh/g after 700 cycles at a high current density of 2 A/g, and coulombic
efficiencies reaching almost 100% for each cycle.

Keywords: fibrous phosphorus; lithium-Ion battery; anode

1. Introduction

With the growing urgency of the global energy crisis and environmental pollution,
the development and application of clean energy must be vigorously promoted. Great
progress has been made in sustainable energy technologies based on wind or solar energy.
Therefore, it is desirable to develop efficient, safe and inexpensive energy storage tech-
nologies. Rechargeable (secondary) batteries are typically used in small to medium scale
energy storage. Among these, LIBs have been utilized as the predominant power source
of portable electronic devices due to their relatively high energy density, long life, lack of
memory effects and environmental friendliness [1–3].

Recently, phosphorus (P) has turned out to be the most promising anode material
candidate for LIBs with a high theoretical specific capacity (2596 mAh/g, based on the
alloying process of P-LiP-Li2P-Li3P) [4]. The element phosphorus exists in three main forms:
white phosphorus (WP), RP and black phosphorus (BP). Figure S1 shows the structures of
different allotropes of phosphorus. WP is very unstable and flammable due to the weak
bonding energy of tetrahedral P4, which is very dangerous and makes WP unsuitable for
use in LIBs [5]. BP is also widely recognized for its high electrical conductivity (−100 S/m,
close to hard carbon) and its application in LIBs [6], but the difficulty of preparation and
the high price of BP severely limit the commercialization of BP. Compared to WP and
BP, RP is a more prospective commercial anode material that is not only cheaper but also
environmentally friendly. However, there are two main challenges limiting the practical
application of RP: (1) RP has an extremely low electronic conductivity of 10−14 S/m and is
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almost non-conductive. (2) RP suffers from a huge volume expansion of about 300% during
cycling [5,7–9].

These problems can lead to material fracture and pulverization of the red phosphorus
material during cycling, as well as rapid capacity decay. To address these problems, many
researchers have demonstrated the need to build microstructures and reduce the size of
the active material to achieve fast kinetics. Park et al. [10] prepared phosphorus–carbon
composites by high-energy ball milling, which significantly improved the electrical conduc-
tivity of P and enabled its application in LIBs. Zhou et al. [11] successfully prepared hollow
phosphorus nanospheres with porous shells and controlled diameters by a solvothermal
method. The hollow nanosphere structures of these porous shells effectively adapt to vol-
ume changes and avoid the pulverization of active material, exhibiting excellent long-cycle
performance in LIBs.

Wang et al. [12] first compounded porous carbon with RP by the evaporation–condensation
method, resulting in a stable battery cycle of 55 turns. The evaporation–condensation method
is considered to be an effective strategy to address the large volume expansion caused by
conductivity and lithiation. However, there are two important issues in the evaporative con-
densation approach; firstly, the low P mass loading (~30 wt%) in the carbon-based framework
severely limits the energy density. Secondly [13,14], the residual WP can lead to safety issues
of flammability and high toxicity [15,16]. To address the low P mass loading and safety issues,
Zhang et al. [17] systematically investigated the interactions between P4 and various functional
groups in carbon materials (Csurf, Cedge, C−N−5, C−N−1, C−Ng, C–S−5, C−S−6, C−S−6,
C=O, C−O−C, C−OH and COOH) and provided a structural design strategy for the carbon
framework to build up the edge sp2 carbon atoms. These edge carbon atoms, in turn, provide
high adsorption energy for P4 molecules through the strong P-C bonds. The RP-PC anodes
they prepared exhibit extremely high P mass loading (close to the theoretical limit for loading),
strong and stable P-C bonds, and significantly improved electron and Li+ transfer, resulting in
excellent high-rate, long-cycle stability.

Inspired by this previous work, we prepared FP materials by the CVT method in
order to further improve the rate capability of P to Li storage. FP materials possess many
electrochemical advantages: (1) the electrical conductivity of FP is 10−4 S/m (0.2 V),
which is 8 orders of magnitude higher than that of commercial red phosphorus (RP)
(10−12 S/m), and FP possesses better electrical conductivity compared to RP [18]. (2) FP is
a 1-dimensional (1D) material, but it also possesses a 2-dimensional (2D) layered structure,
and this 2D structure can effectively reduce the Li+ diffusion length and also enrich its
electrochemical active center [19]. (3) FP can be reduced in size to the nanoscale by liquid
phase exfoliation, and its small-enough size can effectively reduce the volume change of
the material during cycling without structural damage [20]. The fibrous red phosphorus–
graphite (FP-C) composite, prepared by FP with graphite by ball milling exhibited excellent
cycling stability and high-rate performance, maintaining a high reversible specific capacity
of 742.4 mAh/g after 700 cycles at high current densities.

2. Materials and Methods
2.1. Preparation of FP

(1) Synthesis of the FP: 6 g of commercial amorphous red phosphorus and 0.6 g of
iodine were loaded into a quartz tube while maintaining a vacuum inside the tube. The tube
was placed in a muffle furnace. The muffle furnace increased the temperature to 500 ◦C at
a rate of 2.5 ◦C per minute and maintained it for 24 h, followed by natural cooling to room
temperature. The quartz tube was broken, and the lump of FP was removed and ground
into a powder, which was subsequently cleaned and dried using ethanol and acetone.

(2) Control experiment: 6 g of commercial amorphous red phosphorus was loaded
into a quartz tube while maintaining a vacuum inside the tube. The subsequent heat and
treatment process is as described above.
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(3) Preparation of crystalline red phosphorus nanoribbons (FP NR): The cleaned FP
powder was added to 250 mL of NMP and sonicated (600 W) for 12 h to disperse the FP in
the NMP.

2.2. Preparation of FP-C and RP-C

Synthesis of the phosphorus–graphite composites: The phosphorus–carbon compos-
ites were prepared by a simple ball milling process. FP or RP was mixed with graphite
powder (mass ratio 7:3), 1 g of the mixture was removed and added to zirconia (25 mL)
and zirconia ball milling beads were placed (mass ratio 90:1). The above operations were
carried out in a glove box. The jar was placed in a planetary wheel ball mill with a speed of
500 r/min and ball milling was carried out without interruption for 12 h.

2.3. Measurement of Material Characteristics

Analysis of the crystal phase of the material was carried out by X-ray diffraction (XRD)
using a Panalytical Empyrean diffractometer. Raman spectra of the analyzed materials were
collected using a Renishwa Raman instrument using a 532 nm laser wavelength. Analysis
of the chemical composition of the material was determined using X-ray photoelectron
spectroscopy (XPS), carried out on a Thermo ESCALAB 250XI using a monochromatic
Al-Ka source (1486.6 eV). Observation of the morphology and structure of the prepared
materials was carried out using a scanning electron microscope (SEM) and transmission
electron microscopy (TEM). SEM images were collected using a ZEISS Gemini 300 device
and TEM images were gathered using a JEOL JEM-F200 device operating at 200 kV.

2.4. Electrochemical Characterization of Materials

A CR2032 button cell, consisting of a phosphorus electrode, diaphragm and lithium
metal, was assembled in an argon glove box with a glove box water oxygen content of less
than 0.01 PPm. Preparation of the phosphorus based electrode: A homogeneous slurry
was made by mixing phosphorus–carbon composite, acetylene black and polyvinylidene
fluoride (PVDF) binder in a mass ratio of 7:2:1 into a N-Methyl pyrrolidinone (NMP)
solution. The slurry was coated onto copper foil and baked in a vacuum drying oven
at 120 ◦C for 12 h. The mass loading of electrodes was around 1.9 mg. A common
electrolyte was used, 1 M/L LiPF6 at EC/DEC/EMC = 1:1:1, v/v, 10% FEC. Celgard
2400 film was used as the separator. Constant current charge/discharge tests were carried
out using a LANDHE cell test system with a voltage window ranging from 0.01 to 2.5 V
(for Li electrodes). Cyclic voltammetric curve testing was carried out using a CH1660B
electrochemical workstation with an electrochemical window ranging from 0.01 to 3.0 V.
Electrochemical impedance spectra were tested on a CH1660B electrochemical workstation
in the frequency range from 105 to 0.01 Hz. All of these electrochemical performances were
tested under ambient temperature.

3. Results and Discussion
3.1. Characterization of FP

We prepared bulk FP by the low-temperature CVT method. As can be seen in Fig-
ure S2b, the addition of iodine (I2) causes the RP to nucleate and crystallize in the low-
temperature region of the quartz tube to form FP blocks that attach to the inner wall of
the quartz tube. This suggests that I2 plays a transport and catalytic role throughout
CVT. RP as a solid source and I2 as a sublimed mineralizer produce gaseous intermediate
iodophosphorus compounds (PIx) in the sublimation zone when the temperature reaches
the sublimation temperature, which are transported towards the deposition zone by the PIx
partial pressure gradient [21]. The gaseous intermediate is converted to deposit products
(FP) and releases mineralizer molecules. The released mineralizer molecules increase the
partial pressure of the mineralizer in the deposition zone, thus they can transport back to
the sublimation zone for further reactions until all the RP is converted to FP [22]. The bulks
of FP (Figure S3) were ground and cleaned by ultrasonication with alcohol to remove I2 and
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dried by filtration to obtain FP powder. As shown in Figure S4, from optical microscope
images of RP and FP powders, it is evident that RP is a deep red color, while FP appears
orange-red. It can be seen that RP is a particle of approximately 40 µm in size, in contrast
to FP which is a strip of fibers. There is a clear morphological difference between RP and
FP, and RP can induce a transition from granular RP to one-dimensional fibrous FP after
catalysis by I2. The FP was observed by SEM, as can be seen in Figure 1a, and the bulk FP
after growth by CVT consisted of 50 µm long micron rods arranged neatly and showing a
dispersive shape. A partial magnification of one end of one of the micrometer rods shows
that the FP has a lamellar structure (Figure 1b). After ultrasonic exfoliation, the length
and diameter of the FP powder were significantly shortened, both consisting of rods of
a few tens of microns (Figure 1c). The morphology and structure of the FP nanoribbons
were observed by TEM (Figure 1d), and it was found that the FP nanoribbons showed a
lamellar shape. In the high-resolution TEM (HR-TEM) image (Figure 1e), the lattice stripe
spacing of 0.58 nm corresponded to the (001) plane in the vertical view. In addition, the
surface of the FP nanoribbons is locally oxidized, which is consistent with the P-O bonding
results appearing by XPS. The selected area electron diffraction (SAED) pattern of a single
nanoribbon in Figure 1f shows that single-crystal FP nanoribbons were formed along the
[141] axis.
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Figure 1. (a,b) SEM images of FP bulk; (c) SEM image of FP powder; (d) TEM image of FP NR;
(e) HR-TEM image of the FP NR; (f) SAED pattern of a single of FP NR.

FP was further compared with RP by XRD, as shown in Figure 2a. The XRD pattern of
RP is a broad-peaked amorphous phase in the range of 12–18◦ and 26–36◦, corresponding
to the characteristic peaks of commercial amorphous RP. The XRD peak of FP corresponds
highly to the XRD diffraction peak of triclinic P. Also based on the study of Du et al. [23]
for FP, it shows that the sample we prepared was 1D FP. In their study of FP, Liu et al. [19]
found that FP also has a 2D band structure with a nanoribbon thickness of approximately
7.8 nm, which indicates that FP has not only a 1D structure but also a 2D band structure.
As can be seen from the structural diagram of FP (Figure 2a–c), FP consists of P-cage
chains of P8 and P9 interconnected to form tubular structures, and the layers of these
tubular structures are parallel to each other, with two tubular structures connected by two
dumbbell-shaped p-atom structures. It should be noted that if the layers of the tubular
structure are perpendicular to each other they are Hittorf’s phosphorus (HP) or violet
phosphorus (Figure S1), which also results in a high degree of similarity between the
XRD and Raman spectrum of FP and HP [18]. Moreover, based on Winchester et al.’s
summary [24], the preparation of FP did not match with type II RP and matched best
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with type IV RP. Figure 2b contrasts the Raman spectra of FP and RP in the frequency
range of 200–500 cm−1. It can be seen that RP has no obvious characteristic peaks, and
only broad peaks appear in the range of 345–365 cm−1, which mainly comes from the
long-range disordered structure of polymeric phosphides, while the Raman spectra of FP
show complex vibrational patterns, mainly due to the low symmetry of trigonal crystals
and the diversity of atomic coordination. The peak at 368 cm−1 is the stretching vibration
of the P8 phosphorus cage and the peak at 353 cm−1 is the stretching vibration peak of
the P9 phosphorus cage [25]. XPS was used to perform compositional analysis of the FP
powders. As shown in Figure 2c, the presence of element I2 was not detected in the XPS
survey spectrum, suggesting that the addition of I2 only facilitated the transition from RP
to FP and did not adulterate the FP. In addition, the 2p1/2 and 2p3/2 peaks at 130.0 eV and
131.4 eV, respectively, correspond to the P-P bond [18]. The peak at 134.7 eV corresponds
to the P-O bond (Figure 2d), which indicates that FP undergoes oxidation in air, which is
identical to the oxidative nature of BP [26,27].
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3.2. Electrochemical Properties of FP-C and RP-C

FP-C and RP-C composites were prepared by ball milling FP and RP with graphite
and characterized by XRD and Raman (Figure S5), and the electrochemical properties
of the composites were studied. The lithiation and de-lithiation processes of FP-C and
RP-C composites under half-cells were investigated by cyclic voltammetry, tested at a
scan rate of 0.2 mV/s with a voltage window of 0.01–3 V. As shown in Figure 3b,c, a
broad peak appeared at about 1 V during the first cathodic scan of the CV curve of FP-C,
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which is attributed to the formation of the SEI film of the solid electrolyte [28], and the
subsequent broad peak is the lithiation process of the P-based material. Two peaks of
approximately 1.1 V and 1.6 V appeared in the anode, corresponding to a de-lithiation
process of the P-based material [29,30]. In the subsequent cycles, the cathode peak shifted to
0.6 V and the peak area increased, followed by a high overlap of the CV curves, indicating
the high reversibility and stability of the FP-C negative electrode. In contrast, the anodic
peak of the RP-C negative electrode decayed severely and the peak area decreased, which
suggests severe polarization and low reversible stability of the RP-C negative electrode.
It is noteworthy that the redox peak potentials of FP and RP are almost identical, which
illustrates that the electrochemical properties of FP and RP as anode materials in LIBs are
highly similar, but the electrochemical properties owing to their different structures show
great differences.

Figure 3d compares the cycling stability performance of FP and RP. FP-C shows
excellent cycling stability and still holds a high specific capacity of 1621 mAh/g after
80 cycles, whereas the capacity of RP-C only remains at 494 mAh/g. The capacity of
the RP-C electrode drops rapidly before 40 cycles, which is attributed to a rupture of
the SEI film due to the huge volume expansion of RP during lithiation. The thicker SEI
film creates such electrochemical segregation that the Li+ in the formed Li-P alloy cannot
return to the Li metal to form dead Li+, while the larger volume expansion leads to
pulverization of the active material, and this part of the P is no longer involved in the
normal lithiation/delithiation process. The FP, however, may have a special 1D structure
and nanoscale scale such that it does not continue to expand after a certain range of
expansion [20], which results in the FP maintaining a very high reversible specific capacity
after 80 cycles. It was observed that FP-C maintained a stable and high coulombic efficiency
throughout the cycle, while the coulombic efficiency of RP-C fluctuated remarkably, which
was attributed to the stable structure of FP-C (Figure 3a). The structural stability of the
composite facilitates the stabilization of the SEI passivation layer during cycling (Figure S6),
maintaining nearly 100% coulombic efficiency and excellent cyclability. Figure S6 shows
that the FP remains a relatively intact structure after 20 cycles at a current density of 0.5 A/g.
Figure 3c,f show the constant current charge/discharge curves for FP-C and RP-C at a
current density of 0.2 mA/g. The hysteresis of the charge-discharge curve of RP-C increased
significantly after cycling, rising to 1158 mV after 70 cycles, whereas the overpotential
of FP-C was more stable and much lower than that of RP-C, at 338 mV after 70 cycles, a
phenomenon that is highly consistent with the results of the CV curve.

The high-rate capability is also an important indicator to evaluate the performance of
the battery. Figure 3g displays that FP-C exhibits a higher-rate capability than RP-C in the
current density range of 0.28–2 A/g. Specifically, the average reversible capacities of FP-C
at current densities of 0.28, 0.8, 1.2, 1.6, 2, 0.5 and 0.28 A/g were 1726, 1444, 1312, 1203,
1060, 1316 and 1638 mAh/g, respectively, while the average reversible capacities of RP-C
were only 1116, 839, 661, 591, 449, 609 and 599 mAh/g, respectively. The contrast between
the two is remarkable, as the reversible discharge capacity of RP-C is only 45% that of
FP-C at a high current density of 2 A/g. After high multiplication cycles, when the current
density returned to 0.28 mA/g, FP-C still had a specific capacity of 1401 mAh/g compared
to 567 mAh/g for RP-C, indicating that FP-C exhibits excellent high-rate performance and
fast response kinetics. It is noteworthy that the initial discharged capacity of FP-C is higher
than that of RP-C in both the cycling test of low current density and the high-rate capability
test. This may be due to the fact that the layered structure of FP allows Li+ to be embedded
in the layers before the alloy reaction, similar to the insertion of BP into the layers before
the alloy reaction [31], so that Li+ can alloy with more P atoms, while the 1D structure of
FP allows Li+ to pass through faster [32]. Figure 3h shows that the reversible discharge
capacity of FP-C remains at 742.4 mAh/g after 700 cycles at a high current density of 2 A/g,
demonstrating the excellent high rate cycling stability performance of FP-C. Figure 3i
and Table S1 show how this work compares to previous work, with the FP-C electrode
exhibiting excellent electrochemical performance [5,6,12,17,32–42].
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Figure 3. Electrochemical performance of RP-C and FP-C electrodes for LIBs. (a) Schematic illustration
of the FP-C and button cell. (b,c) CV of the FP-C and RP-C anodes with a scan rate of 0.2 mV/s
between 0.01 and 3.0 V vs. Li+/Li. Cycling stability of FP-C and RP-C anodes for 80 cycles at
0.2 A/g (d) and the corresponding voltage profiles of FP-C (e) and RP-C (f). (g) Rate performance
of FP-C and RP-C anodes at the varied rate from 0.28 A/g to 2 A/g. (h) Capacity and coulombic
efficiency during cycling of the FP-C anode at 2 A/g after 5 initial cycles at a low current density
of 0.2 A/g. Overall capacity and cycling stability compared with other reported RP- and BP-based
anode materials (i). The data and current density of each material are summarized in Table S1
(Supporting Information).

We prepared BP-C composites using the same method and investigated their cyclic
stability and high-rate capability. As can be seen from Figure S7, the remaining reversible
capacity of the BP-C negative electrode after 80 cycles at a current density of 0.2 A/g is
1555.7 mAh/g, a lower rate than that of the FP-C (1621 mAh/g). However, BP-C performed
well in terms of high-rate capability with an average reversible capacity of 1250.13 mAh/g
at a high current density of 2 A/g, compared to 1060 mAh/g for FP-C, suggesting that FP
has better cycling stability compared to BP, and BP has better high-rate performance. The
higher conductivity (100 S/m) of BP also contributes to the better high-rate performance of
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BP, which can be attributed to the special 1D structure of FP that allows FP-C to exhibit
better cycling stability. Although the conductivity of FP is 8 orders of magnitude better
than that of RP, the conductivity of FP is still lower than that of BP, indicating that FP is
more suitable for energy storage applications than BP, while BP is more suitable for power
battery applications.

The kinetic factors were further investigated on the electrochemical performance by
testing the CV of FP-C and RP-C at a series of scan rates of 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 mV/s,
as shown in Figure 4a,b. The peak potentials of the CV curves for both FP-C and RP-C
electrodes rise with increasing scan rate and cover the potential range of the lower scan rate,
which also indicates the capacitive behavior of both FP-C and RP-C electrodes. According
to equations 1 and 2 [36], there is a power law relationship between the peak current of
the CV curve and the scan rate, and the electrochemical reactions can be divided into
diffusion-Controlled interactions and capacitive processes.

i = aνb (1)

log(i) = blog(ν) + log(a) (2)

where i is the peak current (mA), v is the scan rate (mV/s) and a and b are adjustable parameters.
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Figure 4. Electrochemical reaction kinetics of FP-C and RP-C electrodes for LIBs. CV curves of
FP-C (a) and RP-C (b) at various scan rates from 0.1 to 1.0 mV/s for LIBs. (c) Log (peak current)-log
(scan rate) curves for the observed cathodic and anodic peaks in (a,b). EIS Nyquist plots of fresh
FP-C and RP-C electrodes (d). EIS Nyquist plots of FP-C (e) and RP-C (f) electrodes were tested after
10, 20, and 40 cycles at 0.2 A/g. Equivalent circuit (g) corresponding to (d) EIS spectra. (h) is the
equivalent circuit for the EIS spectra of (e,f).

As shown in Figure 4c, the b values for the FP-C anode and cathode peaks were calculated
to be 0.604 and 0.827, respectively, indicating that both diffusion-Controlled alloying reactions
and the capacitive processes dominate the electrochemical reactions of FP-C. Similarly, the b
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values of 0.516 and 0.757 for the anode and cathode of RP-C, respectively, suggest that the
capacity of both FP-C and RP-C are diffusion-Controlled alloy reactions.

Electrochemical impedance spectroscopy (EIS) was also used to interpret the detailed
electrochemical reaction kinetics. Figure 4d–f show the EIS spectra of FP-C and RP-C
electrodes after testing at 0, 10, 20, and 40 cycles turns at a current density of 0.2 A/g.
All Nyquist plots consist of a semicircle in the high-frequency region and a line in the
low-frequency region, representing the charge transfer process and Li+ diffusion in the
solid state, respectively. The equivalent circuits corresponding to the impedance data
include the electrolyte and electrode ohmic resistance (Re), the SEI film resistance (RSEI),
the charge-transfer resistance (Rct) and the parallel constant phase element (CPE), as well
as the Warburg impedance (Wo). The fresh RP-C electrode had an Rct of ~4750 Ω, while
the FP-C electrode had an Rct of ~2035 Ω, showing the higher electronic conductivity of
the FP-C. As shown in the graphs of turn 10 versus turn 20 of the cycle, the Rct of both the
RP-C and FP-C electrode decrease to a small stable value, indicating that a stable interface
is formed between the electrolyte and the electrode (Figure 4e,f), while the Rct of the RP-C
is slightly larger than that of the FP-C. However, at the 40th cycle, the FP-C and RP-C show
a more distinct difference, with the RP-C electrode having a higher internal cell resistance
and being heavily polarized, corresponding to the cycle performance test in Figure 3d,
which coincides with the time of maximum cell capacity decay. In the case of the FP-C
electrode, the tendency for the battery capacity to decay decreases in 20 cycles and becomes
more stable inside the battery at 40 cycles.

4. Conclusions

In conclusion, we have prepared FP by the low-temperature CVT method. FP signifi-
cantly increases its electrochemical performance as a P anode electrode due to its special
structure and high electrical conductivity. While FP was prepared with C by the ball milling
method to produce FP-C composites, the composites exhibited much better electrochemical
performance with excellent cycle stability and multiplicative properties than RP-C. The
design strategy of FP-C offers great guidance implications for achieving mass-produced
and high-performance P-based negative electrodes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13061060/s1. Table S1: Comparison of the electrochemical
performance of our work with that of previous phosphorus-based LIBs. Figure S1. Schematic
structures of different allotropes of phosphorus. Figure S2: Optical photographs of the quartz tube
reactor after the reaction (a) without I2, (b) with I2. Figure S3: Optical photographs of FP bulk lumps.
Figure S4: Optical photographs of filamentous red phosphorus. Figure S5: FP-C and RP-C composites’
(a) XRD diagram (b) Raman spectra. Figure S6. SEM images of the FP-C electrodes in LIBs after
20 cycles at a current density of 0.5 A/g. Figure S7: (a) Cycling stability of BP-C anodes for 80 cycles
at 0.2 A/g. (b) Rate performance of FP-C and RP-C anodes at the varied rate from 0.28 A/g to 2 A/g.

Author Contributions: Conceptualization, X.C. (Xuemei Cui); formal analysis, F.H. and T.Y.; investi-
gation, B.W.; resources, H.L.; writing—original draft preparation, L.L.; writing—review and editing,
X.G.; visualization, J.L.; supervision, L.Z.; funding acquisition, X.C. (Xiuguo Cui) All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by [National Natural Science Foundation of China Projects] grant
number [51573021].

Data Availability Statement: The data presented in this study are available on request on request
form the corresponding author.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

49



Nanomaterials 2023, 13, 1060

References
1. Marom, R.; Amalraj, S.F.; Leifer, N.; Jacob, D.; Aurbach, D. A review of advanced and practical lithium battery materials. J. Mater.

Chem. 2011, 21, 9938–9954. [CrossRef]
2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review.

Energy Environ. Sci. 2011, 4, 3243–3262. [CrossRef]
3. Yu, H.-C.; Ling, C.; Bhattacharya, J.; Thomas, J.C.; Thornton, K.; Van der Ven, A. Designing the next generation high capacity

battery electrodes. Energy Environ. Sci. 2014, 7, 1760–1768. [CrossRef]
4. Ramireddy, T.; Xing, T.; Rahman, M.M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A.M. Phosphorus-carbon nanocom-

posite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2015, 3, 5572–5584. [CrossRef]
5. Sun, J.; Zheng, G.; Lee, H.-W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y. Formation of Stable Phosphorus-Carbon Bond for

Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes. Nano Lett. 2014, 14, 4573–4580.
[CrossRef]

6. Jin, H.; Xin, S.; Chuang, C.; Li, W.; Wang, H.; Zhu, J.; Xie, H.; Zhang, T.; Wan, Y.; Qi, Z.; et al. Black phosphorus composites with
engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197. [CrossRef]

7. Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. A phosphorene-graphene hybrid material as a
high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985. [CrossRef]

8. Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S.-C.; Wang, C. Red Phosphorus–Single-Walled Carbon Nanotube
Composite as a Superior Anode for Sodium Ion Batteries. ACS Nano 2015, 9, 3254–3264. [CrossRef]

9. Yu, Z.; Song, J.; Gordin, M.L.; Yi, R.; Tang, D.; Wang, D. Phosphorus-Graphene Nanosheet Hybrids as Lithium-Ion Anode with
Exceptional High-Temperature Cycling Stability. Adv. Sci. 2015, 2, 1400020. [CrossRef]

10. Park, C.-M.; Sohn, H.-J. Black Phosphorus and its Composite for Lithium Rechargeable Batteries. Adv. Mater. 2007, 19, 2465–2468.
[CrossRef]

11. Zhou, J.; Liu, X.; Cai, W.; Zhu, Y.; Liang, J.; Zhang, K.; Lan, Y.; Jiang, Z.; Wang, G.; Qian, Y. Wet-Chemical Synthesis of Hollow
Red-Phosphorus Nanospheres with Porous Shells as Anodes for High-Performance Lithium-Ion and Sodium-Ion Batteries. Adv.
Mater. 2017, 29, 1700214. [CrossRef]

12. Wang, L.; He, X.; Li, J.; Sun, W.; Gao, J.; Guo, J.; Jiang, C. Nano-Structured Phosphorus Composite as High-Capacity Anode
Materials for Lithium Batteries. Angew. Chem. 2012, 124, 9168–9171. [CrossRef]

13. Hao, G.; Jiao, R.; Deng, Z.; Liu, Y.; Lan, D.; He, W.; Lang, Z.; Cui, J. Red phosphorus infiltrated into porous C/SiOx derived
from rice husks to improve its initial Coulomb efficiency in lithium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2023,
665, 131180. [CrossRef]

14. Vorfolomeeva, A.A.; Stolyarova, S.G.; Asanov, I.P.; Shlyakhova, E.V.; Plyusnin, P.E.; Maksimovskiy, E.A.; Gerasimov, E.Y.;
Chuvilin, A.L.; Okotrub, A.V.; Bulusheva, L.G. Single-Walled Carbon Nanotubes with Red Phosphorus in Lithium-Ion Batteries:
Effect of Surface and Encapsulated Phosphorus. Nanomaterials 2022, 13, 153. [CrossRef]

15. Zhou, J.; Shi, Q.; Ullah, S.; Yang, X.; Bachmatiuk, A.; Yang, R.; Rummeli, M.H. Phosphorus-Based Composites as Anode Materials
for Advanced Alkali Metal Ion Batteries. Adv. Funct. Mater. 2020, 30, 2004648. [CrossRef]

16. Zhou, J.; Jiang, Z.; Niu, S.; Zhu, S.; Zhou, J.; Zhu, Y.; Liang, J.; Han, D.; Xu, K.; Zhu, L. Self-standing hierarchical P/CNTs@ rGO
with unprecedented capacity and stability for lithium and sodium storage. Chem 2018, 4, 372–385. [CrossRef]

17. Zhang, S.; Liu, C.; Wang, H.; Wang, H.; Sun, J.; Zhang, Y.; Han, X.; Cao, Y.; Liu, S.; Sun, J. A Covalent P–C Bond Stabilizes Red
Phosphorus in an Engineered Carbon Host for High-Performance Lithium-Ion Battery Anodes. ACS Nano 2021, 15, 3365–3375.
[CrossRef]

18. Chen, Z.; Zhu, Y.; Wang, Q.; Liu, W.; Cui, Y.; Tao, X.; Zhang, D. Fibrous phosphorus: A promising candidate as anode for
lithium-ion batteries. Electrochim. Acta 2019, 295, 230–236. [CrossRef]

19. Liu, Q.; Zhang, X.; Wang, J.; Zhang, Y.; Bian, S.; Cheng, Z.; Kang, N.; Huang, H.; Gu, S.; Wang, Y.; et al. Crystalline Red Phosphorus
Nanoribbons: Large-Scale Synthesis and Electrochemical Nitrogen Fixation. Angew. Chem. 2020, 132, 14489–14493. [CrossRef]

20. Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using
silicon nanowires. Nat. Nanotechnol. 2007, 3, 31–35. [CrossRef]

21. Wang, D.; Luo, F.; Lu, M.; Xie, X.; Huang, L.; Huang, W. Chemical Vapor Transport Reactions for Synthesizing Layered Materials
and Their 2D Counterparts. Small 2019, 15, e1804404. [CrossRef] [PubMed]

22. Sun, Z.; Zhang, B.; Zhao, Y.; Khurram, M.; Yan, Q. Synthesis, Exfoliation, and Transport Properties of Quasi-1D van der Waals
Fibrous Red Phosphorus. Chem. Mater. 2021, 33, 6240–6248. [CrossRef]

23. Du, L.; Zhao, Y.; Wu, L.; Hu, X.; Yao, L.; Wang, Y.; Bai, X.; Dai, Y.; Qiao, J.; Uddin, G.; et al. Giant anisotropic photonics in the 1D
van der Waals semiconductor fibrous red phosphorus. Nat. Commun. 2021, 12, 4822. [CrossRef] [PubMed]

24. Winchester, R.A.L.; Whitby, M.; Shaffer, M.S.P. Synthesis of Pure Phosphorus Nanostructures. Angew. Chem. 2009, 121, 3670–3675.
[CrossRef]

25. Fasol, G.; Cardona, M.; Hönle, W.; Von Schnering, H. Lattice dynamics of Hittorf’s phosphorus and identification of structural
groups and defects in amorphous red phosphorus. Solid State Commun. 1984, 52, 307–310. [CrossRef]

26. Wood, J.D.; Wells, S.A.; Jariwala, D.; Chen, K.-S.; Cho, E.; Sangwan, V.K.; Liu, X.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Effective
Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 2014, 14, 6964–6970. [CrossRef]

50



Nanomaterials 2023, 13, 1060

27. Zhao, Y.; Sun, Z.; Zhang, B.; Yan, Q. Unveiling the degradation chemistry of fibrous red phosphorus under ambient conditions.
ACS Appl. Mater. Interfaces 2022, 14, 9925–9932. [CrossRef]

28. Li, X.; Zhang, S.; Du, J.; Liu, L.; Mao, C.; Sun, J.; Chen, A. Strong interaction between phosphorus and wrinkle carbon sphere
promote the performance of phosphorus anode material for lithium-ion batteries. Nano Res. 2023. [CrossRef]

29. Marino, C.; Boulet, L.; Gaveau, P.; Fraisse, B.; Monconduit, L. Nanoconfined phosphorus in mesoporous carbon as an electrode
for Li-ion batteries: Performance and mechanism. J. Mater. Chem. 2012, 22, 22713–22720. [CrossRef]

30. Kim, D.-Y.; Ahn, H.-J.; Kim, J.-S.; Kim, I.-P.; Kweon, J.-H.; Nam, T.-H.; Kim, K.-W.; Ahn, J.-H.; Hong, S.-H. The Electrochemical
Properties of Nano-Sized Cobalt Powder as an Anode Material for Lithium Batteries. Electron. Mater. Lett. 2009, 5, 183–186.
[CrossRef]

31. Hembram, K.P.S.S.; Jung, H.; Yeo, B.C.; Pai, S.J.; Lee, H.J.; Lee, K.-R.; Han, S.S. A comparative first-principles study of the
lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. Phys. Chem. Chem. Phys. 2016, 18,
21391–21397. [CrossRef]

32. Li, W.; Yang, Z.; Li, M.; Jiang, Y.; Wei, X.; Zhong, X.; Gu, L.; Yu, Y. Amorphous Red Phosphorus Embedded in Highly Ordered
Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. Nano Lett. 2016, 16, 1546–1553. [CrossRef]

33. Kong, W.; Wen, Z.; Zhou, Z.; Wang, G.; Yin, J.; Cui, L.; Sun, W. A self-healing high-performance phosphorus composite anode
enabled by in situ preformed intermediate lithium sulfides. J. Mater. Chem. A 2019, 7, 27048–27056. [CrossRef]

34. Li, M.; Li, W.; Hu, Y.; Yakovenko, A.A.; Ren, Y.; Luo, J.; Holden, W.M.; Shakouri, M.; Xiao, Q.; Gao, X. New insights into the
high-performance black phosphorus anode for lithium-ion batteries. Adv. Mater. 2021, 33, 2101259. [CrossRef]

35. Zhang, Y.; Wang, L.; Xu, H.; Cao, J.; Chen, D.; Han, W. 3D Chemical Cross-Linking Structure of Black Phosphorus@CNTs Hybrid
as a Promising Anode Material for Lithium Ion Batteries. Adv. Funct. Mater. 2020, 30, 1909372. [CrossRef]

36. Liu, B.; Zhang, Q.; Li, L.; Jin, Z.; Wang, C.; Zhang, L.; Su, Z.-M. Encapsulating Red Phosphorus in Ultralarge Pore Volume
Hierarchical Porous Carbon Nanospheres for Lithium/Sodium-Ion Half/Full Batteries. ACS Nano 2019, 13, 13513–13523.
[CrossRef]

37. Wang, L.; Guo, H.; Wang, W.; Teng, K.; Xu, Z.; Chen, C.; Li, C.; Yang, C.; Hu, C. Preparation of sandwich-like phosphorus/reduced
graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta 2016, 211, 499–506. [CrossRef]

38. Han, X.; Zhang, Z.; Han, M.; Cui, Y.; Sun, J. Fabrication of red phosphorus anode for fast-charging lithium-ion batteries based on
TiN/TiP2-enhanced interfacial kinetics. Energy Storage Mater. 2019, 26, 147–156. [CrossRef]

39. Yuan, D.; Cheng, J.; Qu, G.; Li, X.; Ni, W.; Wang, B.; Liu, H. Amorphous red phosphorous embedded in carbon nano-tubes
scaffold as promising anode materials for lithium-ion batteries. J. Power Sources 2016, 301, 131–137. [CrossRef]

40. Li, J.; Jin, H.; Yuan, Y.; Lu, H.; Su, C.; Fan, D.; Li, Y.; Wang, J.; Lu, J.; Wang, S. Encapsulating phosphorus inside carbon nanotubes
via a solution approach for advanced lithium ion host. Nano Energy 2019, 58, 23–29. [CrossRef]

41. Liu, H.; Zou, Y.; Tao, L.; Ma, Z.; Liu, D.; Zhou, P.; Liu, H.; Wang, S. Sandwiched Thin-Film Anode of Chemically Bonded Black
Phosphorus/Graphene Hybrid for Lithium-Ion Battery. Small 2017, 13, 1700758. [CrossRef] [PubMed]

42. Yan, C.; Zhao, H.; Li, J.; Jin, H.; Liu, L.; Wu, W.; Wang, J.; Lei, Y.; Wang, S. Mild-Temperature Solution-Assisted Encapsulation of
Phosphorus into ZIF-8 Derived Porous Carbon as Lithium-Ion Battery Anode. Small 2020, 16, 1907141. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

51



Citation: Luo, Y.; Xu, Y.; Li, X.;

Zhang, K.; Pang, Q.; Qin, A. Boosting

the Initial Coulomb Efficiency of Sisal

Fiber-Derived Carbon Anode for

Sodium Ion Batteries by

Microstructure Controlling.

Nanomaterials 2023, 13, 881.

https://doi.org/10.3390/

nano13050881

Academic Editor: Carlos Miguel

Costa

Received: 5 February 2023

Revised: 19 February 2023

Accepted: 22 February 2023

Published: 26 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Boosting the Initial Coulomb Efficiency of Sisal Fiber-Derived
Carbon Anode for Sodium Ion Batteries by
Microstructure Controlling
Yuan Luo 1, Yaya Xu 1, Xuenuan Li 1, Kaiyou Zhang 1, Qi Pang 2 and Aimiao Qin 1,2,*

1 Key Lab New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, College of
Material Science and Engineering, Guilin University of Technology, Guilin 541004, China

2 Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China

* Correspondence: 2005032@glut.edu.cn

Abstract: As anode material for sodium ion batteries (SIBs), biomass-derived hard carbon has
attracted a great deal of attention from researchers because of its renewable nature and low cost.
However, its application is greatly limited due to its low initial Coulomb efficiency (ICE). In this
work, we employed a simple two-step method to prepare three different structures of hard carbon
materials from sisal fibers and explored the structural effects on the ICE. It was determined that the
obtained carbon material, with hollow and tubular structure (TSFC), exhibits the best electrochemical
performance, with a high ICE of 76.7%, possessing a large layer spacing, a moderate specific surface
area, and a hierarchical porous structure. In order to better understand the sodium storage behavior
in this special structural material, exhaustive testing was performed. Combining the experimental
and theoretical results, an “adsorption-intercalation” model for the sodium storage mechanism of the
TSFC is proposed.

Keywords: bio-derived hard carbon; Coulomb efficiency; Na-ion batteries; storage mechanism

1. Introduction

Although lithium-ion batteries (LIBs), with a long cycle life and high energy density,
are considered one of the most promising and successful energy storage systems today, they
also face a number of problems, such as high cost and lack of resources. As a result, a new
technology has emerged in the field of energy storage-sodium ion batteries (SIBs), which
have electrochemical properties similar to LIBs [1–3]. Researchers have focused on the
following types of anode materials: titanium-based oxides, sodium alloys, binary transition
metal oxides (such as NiMoO4 [4] and MgMoO4 [5]), and carbon materials. Among the
carbon-based materials that have been widely studied are graphite, graphene, soft carbon,
and hard carbon. It is well known that graphite is the most common anode material in
lithium-ion batteries, but its performance in sodium-ion batteries is not as expected because
the Na+ radius (0.102 nm) is larger than the Li+ radius (0.076 nm) [6], Na+ cannot be stably
embedded in the graphite structure, and only a very small number of binary sodium-
graphite embedding compounds can be embedded in graphite [7]. Since the insertion
and removal of large size sodium ions leads to a slowing down of the kinetic process, the
structure undergoes irreversible phase changes, thus accelerating the degradation of the
electrochemical properties, which implies a greater degree of limitation on the structure of
the material [8–10].

Biomass hard carbon has attracted great attention due to its low cost, renewable na-
ture, and green properties. Many biomass hard carbon materials, such as biowaste [11],
eggshell [12], mango seed husk [13], etc., have been proven to have excellent storage per-
formance when used in energy storage systems. However, most of them exhibit low initial
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Coulombic efficiency (ICE) for SIBs, i.e., 53.1%, 64.0%, and 69.0% of ICE for hard carbon
from kelp [14], rice husk [15], and tea [16], respectively. Therefore, many researchers have
discussed in depth the issues of defects, structural design, surface area, and conductivity
to effectively improve the Coulomb efficiency. The properties of biomass char are mainly
dependent on the nature of the raw material and thermal transformation. In order to make
these biochar products more suitable for use as electrochemical energy storage materials,
appropriate modifications are required to enhance the specific surface area, the pore volume,
or the formation of functional groups. Usually, there are two methods for enhancement:
physical or chemical. Physical activation usually involves a two-step process. Biomass
materials are first pyrolyzed to generate biochar (400 ◦C to 850 ◦C) and then activated
using gases such as CO2, air, or their mixtures [17]. These methods can reasonably design
the structure of carbon material and improve the electrochemical properties. For example,
Yan et al. [18] reported char balls obtained from nitrogen-rich oatmeal by hydrothermal
and subsequent charring processes, exhibiting a smooth surface with an average diameter
of about 2 µm; the results show that NCSs treated at 500 ◦C exhibit a high maximum charge
capacity of 336 mAh g−1 after 50 cycles at a current density of 50 mA g−1. Duan et al. [19]
prepared N-doped carbon microspheres by the pyrolysis of chitin from seafood waste (crab
and shrimp shells), which consisted of nanofiber entanglements forming an interlinked
nanofiber framework structure, and the highest deliverable energy density reached up
to 58.7 Wh/kg. Jin et al. [20] prepared a series of porous hollow charcoal spheres using
various spores (stone pine grass, Ganoderma lucidum, and multi-spike stone pine spores)
as charcoal precursors and self-templates using high-temperature charring and activation
treatments; the obtained electrodes showed remarkable electrical double-layer storage
performances, such as high specific capacitance (308 F g−1 in organic electrolytes), ultrafast
rate capability (retaining 263 F g−1 at a very high current density of 20 A g−1), and good
cycling stability (93.8% retention after 10,000 charge-discharge cycles). Dong et al. [21]
prepared a nitrogen-doped foamy charcoal plate by the charring and activation of teak peel
and the prepared charcoal plate, with a macroporous network consisting of hollow tubes with
diameters of 20–50 µm; the obtained electrodes showed a high specific capacitance of up to
338 F g−1 at 1 A g−1 and good rate capability with a capacitance retention of 59% at 20 A g−1.

In our group’s early efforts, we have conducted great work on the application of
biomass carbon materials in LIBs. Among many studies, it was found that the hard
carbon derived from cellulose-rich sisal fibers, with the advantages of low cost, green, and
sustainable bioresource, exhibits excellent electrochemical performance when used as an
anode for LIBs. The main focus of our previous work was to modulate the structure of
sisal fibers using chemical activation and calcination methods, and to obtain sisal fiber
carbon with various morphologies and structures [22–24] (its chemical activation reagents
were KOH and HCl). Generally, the ICE of hard carbon can be effectively improved
by controlling the defect concentration and specific surface area [25], but developing
appropriate structures to ensure structural stability and high Coulombic efficiency, without
affecting the electrolyte–electrolyte interface behavior, remains a challenge. In this work, in
order to carry out an in-depth study on the relationship between the biomass hard carbon
structures and their energy storage properties, for the first time, we chose sisal fibers as
the study material for SIBs. We prepared three structure sisal fiber carbons: tubular sisal
fiber carbon (TSFC), sheet sisal fiber carbon (SSFC), and spherical sisal fiber carbon (GSFC),
using hydrothermal and calcination methods, and systematically investigated the different
effects on ICE with the change of sisal fiber carbon structure. It was found that the special
structure of TSFC can helps to improve electrochemical performance, especially greatly
improving the ICE (76.7%), as well as the cycling stability. In addition, the diffusion kinetics
and storage behavior of sodium ions in TSFC were further investigated.
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2. Materials and Methods
2.1. Materials

All the chemical reagents used in the experiments were of analytical grade and were
used without further purification. All aqueous solutions were prepared with deionized
water. The sisal fiber used was from Guangxi Sisal Group, KOH reagent (Purity 85%,
Guangdong Guanghua Chemical Factory Co., Ltd., Guangdong, China), and HCl reagent
(AR 36–38%, Xilong Chemical Co., Shanghai, China).

2.2. Preparation of Tubular Sisal Fiber Carbon

The tubular sisal fiber carbon was prepared based on the methods used in our previous
work [22], and the preparation process is as follows:

First, the sisal fiber was cleaned by washing, and 5 g of the clean, dry sisal fiber was
placed into 2.5 mol L−1 KOH solution for hydrothermal reaction (160 ◦C, 14 h). When the
reaction was finished and the autoclave was naturally cooled to room temperature, the
precursor was collected after filtering and washing it to neutral. Then, it was dried in a
blast drying oven (60 ◦C) for 24 h. Finally, the dried precursor was put into a crucible and
calcined in a tube furnace at nitrogen atmosphere and kept at 900 ◦C for 1 h. The obtained
black sample was collected in a crucible and named TSFC.

2.3. Preparation of Sheet Sisal Fiber Carbon

The sheet sisal fiber carbon was prepared based on the methods used in our previous
work [23], and the preparation process is as follows:

First, the sisal fiber was cleaned by washing, and 5 g of the clean, dry sisal fiber was
placed into 2.5 mol L−1 KOH solution for hydrothermal reaction (160 ◦C, 14 h). When
the reaction finished and the autoclave was naturally cooled to room temperature, the
precursor was collected after filtering and washing it to neutral. Then, it was dried in a
blast drying oven (60 ◦C) for 24 h. A total of 3 g of the dried sample was weighed into
a beaker, heated (80 ◦C), and stirred for 2 h (with 100 mL of 2.5 mol L−1 KOH solution),
followed by drying. Finally, the dried precursor was put into a crucible and calcined in a
tube furnace (nitrogen atmosphere, 900 ◦C, 1 h). The obtained black sample was collected
in a crucible and named SSFC.

2.4. Preparation of Sphere Sisal Fiber Carbon

The sphere sisal fiber carbon was prepared based on the methods used in our previous
work [24], the preparation process is as follows:

First, sisal fiber was cleaned by washing, and 5 g of the clean, dry sisal fiber was placed
into a 2 mol L−1 HCl solution for hydrothermal reaction (180 ◦C, 12 h). When the reaction
finished and the autoclave was naturally cooled to room temperature, the precursor was
collected after filtering and washing it to neutral. Then, it was dried in a blast drying oven
(60 ◦C) for 24 h. Finally, the dried precursor was put into a crucible and calcined in a tube
furnace (nitrogen atmosphere, 900 ◦C, 1 h). The obtained black sample was collected in a crucible
and named GSFC. In order to investigate the optimal conditions, we adjusted the concentration
of HCl (0.1 M, 1 M, 4 M), which we named GSFC-0.1, GSFC-1, and GSFC-4, respectively.

2.5. Material Characterization

The morphology of the samples was observed by SEM (S4800) and TEM (JEM-2100F).
The structure of the hard carbon material was characterized by XRD (X‘Pert PRO, PANa-
lytical B.V., Cu Kα = 1.54056 Å, 2Θ = 10–80) and Raman ( Thermo Fisher Scientific DXR,
Waltham, MA, USA), with the 532 nm excitation wavelength. The micropore volume
and average pore size of the materials were characterized by nitrogen adsorption and
desorption experiments (Quantachrome, Autosorb, Boynton Beach, FL, USA) at 77 k. The
electrical conductivity of the material was measured by the four-probe method using model
RTS-2A (Guangzhou Four-Probe Technology, Guangzhou, China) equipment.
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2.6. Electrochemical Measurements

The prepared active material was homogeneously mixed with conductive carbon
black and polyvinylidene fluoride (PVDF) in the mass ratio of 8:1:1; then, N-methyl-2-
pyrrolidone (NMP) was used as the solvent, and finally, the mixture was made into a paste
of appropriate concentration. The electrolyte was 1.0 mol L−1 NaClO4 in ethylene carbonate
(EC) and dimethyl carbonate (DEC), with a volume ratio of 1:1 and 5 vol% fluoroethylene
carbonate. The electrochemical properties were tested using the CHI-760D electrochemical
workstation. The voltage window for cyclic voltammetry (CV) measurement is 0.01–3 V and
the electrochemical impedance spectra (EIS) were in the frequency range of 0.01–100,000 Hz.
The Neware GCD testing system was utilized for galvanostatic charging/discharging profiles.

3. Results and Discussion
3.1. Morphology and Structure of Carbon Materials

The morphology and structure of the samples were represented by SEM and TEM. The
SEM images of TSFC, SSFC, and GSFC at different magnifications are shown in Figure 1.
From Figure 1a,b, it can be seen that the microstructure of TSFC consists of a hollow tube,
with a wall thickness of ~1.4 µm and an inner tube diameter of ~4.5 µm. The special hollow
tubular structure with a bumpy striped surface can promote the transfer of electrons. As
shown in Figure 1c,d, the SSFC displays porous nanosheet structures, with a sheet thickness
of about 10 nm and a pore size of 1–2 µm, and these interconnected nanosheets form a
porous channel structure. Figure 1e,f presents the solid spherical structure of GSFC of about
~3 µm in size, with a smooth surface. In order to investigate the pretreatment condition
effects on the morphology and structure of the materials, we take GSFC as an example
to observe the evolution process of the spherical structure under different concentrations
of HCl (0.1 M, 1 M, 2 M, and 4 M). The SEM results are shown in Figure S1. It can be
seen that the morphology and structure of the material change significantly with the
increase in the concentration of HCl: (i) in small concentrations of 0.1 M, small sphere
particles grow on the surface of fibrous tubular carbon; (ii) when the concentration increases
to 1 M, the elongated tubular fibers gradually disappear and become irregular spheres;
(iii) when the concentration reaches 2 M, regular and more uniform spheres are obtained;
and (iv) when the concentration continues to increase to 4 M, a large number of spheres are
bonded together and the uniformity of the morphology decreases. We can assume that this
structural change is due to the breakage of a large number of ester and ether bonds in the
material during the degradation process [26]. Previously, the Austrian chemist Skrabal also
mentioned that the decomposition of a compound is affected by a certain concentration
of H+ or OH− [26]. When cellulose hydrolyzes in an acidic environment, it produces a
conjugate acid, which cleaves the β-1,4 glycosidic bond and interacts with H2O to produce
H+, yielding more glucose [26]. Glucose is cleaved to form a large number of carboxylic
acids, aldehydes, and furans, which are dehydrated and condensed to form aromatic
compounds, which in turn form spherical carbon materials [26,27]. On the contrary, in
an alkaline environment [26], cellulose will form a large number of organic acids during
hydrolysis to neutralize the alkaline substances of the reaction system, which will cause
a large amount of H+ to be consumed, resulting in inadequate cellulose dissolution and
stripping the cellulose away. The formation of a lamellar porous structure is mainly due
to the reaction of KOH and C at high temperatures to produce H2, CO2, and CO, which
promote the formation of porous carbon materials [28].

As depicted in Figure 2a–f, the TEM diagram clearly exhibits the microstructure of
the materials. Figure 2b,d,f shows the high resolution transmission microscopy (HRTEM)
images of TSFC, SSFC, and GSFC, respectively. We can clearly see that the crystal plane
spacing of all three structures is larger than the graphite layer spacing (graphite layer
spacing is 0.335 nm), and the crystal plane spacing of TSFC (0.37 nm) is significantly larger
than the other two morphologies. It has also been demonstrated in the literature that Na
ions cannot be inserted into graphite with a layer spacing smaller than 0.335 nm, but they
can be easily inserted into graphite with a layer spacing of 0.37 nm [29], so we can expect
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that the TSFC anode will exhibit superior sodium storage performance compared to the
other two structures.
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Figure 2. TEM images of (a,b) TSFC, (c,d) SSFC, (e,f) GSFC.

As shown in Figure 3a,b, the microstructure of samples was analyzed by XRD and
Raman spectroscopy. The XRD patterns of TSFC, SSFC, and GSFC display two main broad
peaks at about ~23◦ and 43◦ corresponding to (002) and (101) lattice planes, respectively [30],
demonstrating the amorphous state of the samples. A shift in the (002) peak toward a small
angle can be observed for the TSFC material, indicating that the interlayer spacing of the
structure also changes to some extent. This is consistent with the TEM results, indicating
that the layer spacing of biogenic hard carbon changes with the change of morphology [31].
Additionally, the disordered and graphitized structures of samples have been assessed
by Raman spectroscopy. The Raman spectra show two separate characteristic bands of
the D-band peak at ~1330 cm−1 and the G-band peak at 1580 cm−1, corresponding to the
D-band, with sp3 defects, and the G-band, with ordered graphite sp2 features [32]. The
value of ID/IG is often used to characterize the defects in carbon materials [33]. It can be
seen that the ID/IG value of TSFC sample (0.852) is higher than that of the SSFC (0.847) and
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GSFC (0.835) samples, indicating that TSFC has more defects and may provide more active
sites for sodium storage [34]. The porosity of the samples was further investigated by N2
adsorption-desorption tests. The N2 adsorption-desorption isotherms of TSFC, SSFC, and
GSFC are shown in Figure 3c, where we can observe that the three structures exhibit the type
IV isotherms. For TSFC and SSFC, their isotherms show a sharp rise at relative pressures
of less than 0.1, followed by bending into a platform accompanying the H4 reversible
hysteresis loop, implying the presence of well-developed microporous and mesoporous
structures. The average pore size and pore volume were calculated by the Barrett–Joyner–
Halenda (BJH) method and the single point method. The pore size distribution of the three
structures in Figure 3d indicates the presence of well-developed mesoporous structures
in the three hard carbon structure materials [32]. The porous structure details are given
in Table S1, and compared with other two samples, TSFC has the most developed porous
structure, with an average pore diameter of about 2.79 nm and a medium specific surface
area of 426.02 m2 g−1, as well as a moderate open pore volume of 0.049 cm3 g−1. However,
it is worth noting that the increase in microporous volume leads not only to a low density of
the hard carbon material, but also to a decrease in intercalation capacity due to the reduction
of graphite-like nanodomains in the hard carbon structure [35]. Therefore, combining all the
above data references, the hollow tubular structure is favorable for soaking the electrolyte
and will promote the ion transport from electrolyte to electrode.
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3.2. Electrochemical Performances

To further investigate the effect of structure on the sodium ion storage properties, we
performed cyclic voltammetry CV tests for the first three turns at a scan rate of 0.5 mV s−1.
As shown in Figure 4a–c, it can be observed that the CV curves of the first three turns
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of the three electrode materials are very similar, with a pair of redox peaks at around
0.01 V/0.16 V, corresponding to the insertion and extraction process of Na+. In the initial
cathodic scan, the three electrodes show irreversible reduction peaks, with different in-
tensities. This may be related to the irreversible reactive binding of Na+ on the surface
functional groups or other defective sites and the formation of SEI films in the first cycle [36].
Compared to SSFC and GSFC, TSFC shows a large sharp peak below 0.1 V, demonstrating
an enhanced sodium storage [37]. All the CV curves for the TSFC (Figure 4a) have an
excellent overlap during the subsequent cycles, indicating that the electrode material has
good reversible capacity and cycle stability. The EIS plots and four-probe resistance tests
for the three electrodes are shown in Figure 4d,e, respectively. The EIS plots are composed
of a semicircle at high frequency and a slope line at low frequency, which correspond
to the interaction of Na+ with the SEI layer/charge transfer between the electrolyte and
the active material and the diffusion of Na+ in the active material, respectively [38]. It is
clear that the TSFC anode exhibits a lower Rct (32.8 Ω) than do SSFC and GSFC, which
can be attributed to its large aperture nanochannels, increasing surface wettability and
making the electrolyte flow easy throughout the electrode [39]. To further demonstrate
the electrical conductivity of the material, we tested the positive and negative currents of
the electrode sheet using a four-probe resistivity tester (Figure 4e). The test results show
that the TSFC electrode material possesses the lowest conductivity (2.49 Ω·cm), indicating
that the structure plays an important role in the resistance of the material and helps to
improve the sodium ion transport, which corroborates with the EIS results. Figure 4f
shows the discharge curves of TSFC, SSFC, and GSFC at a current density of 0.1 A g−1. All
discharge curves show two areas: the sloping portion (3.0 V~0.1 V) and the plateau portion
(<0.1 V). The initial charge/discharge capacities of SSFC, GSFC, and TSFC are 131.11/461.6,
170.8/330.8, and 265.2/345.9 mAh g−1, respectively. The ICE of the three structures also
varies from 28.4% to 76.7%, depending on their structures. It is obvious that TSFC has
a better first charge/discharge efficiency than the other two samples. The reason is that
a proper specific surface area will reduce the occurrence of side reactions, thus reducing
the irreversible capacity and thus exhibiting a high initial Coulomb efficiency [40]. The
discharge curves of TSFC, SSFC, and GSFC exhibit sloping capacities of 216 mAh g−1,
340 mAh g−1, and 265 mAh g−1, and plateau capacities of 132 mAh g−1, 120 mAh g−1, and
66 mAh g−1, respectively. Obviously, the capacities of the three anodes are mainly derived
from the adsorption of Na+ (sloping part). The plateau contributions of TSFC, SSFC, and
GSFC are 38%, 26%, and 20% of the total capacity, respectively. There is no doubt that the
plateau part of TSFC contributes more capacity than that of the other two, which is mainly
attributed to the larger Na+ intercalation layer provided by the layer spacing of TSFC.
Cyclic stability over 100 cycles was recorded for the samples at 100 mA g−1, as shown in
Figure 4g. Compared to SSFC and GSFC, TSFC performed relatively well, with an initial
specific capacity of 265.2 mAh g−1 and an ICE of 76.7%, while the ICE of SSFC and GSFC
were only 28.4% and 51.6%. This indicates that the specific surface area has a greater effect
on ICE, which has been confirmed in the literature [41]. Table S2 provides a comparison
of the electrochemical properties of various previously reported biomass-derived carbon
materials with the materials prepared in this work. It is clear that the TSFC anode material
possesses a higher ICE. In addition, the TSFC also has a higher ICE than that of some
previously reported transition metal materials (such as NiMoO4 [4] and MgMoO4 [5]).
For the stability of the electrode material structure, multiplicative performance tests were
performed on three electrodes (as shown in Figure 4h). At specific current densities of 0.02,
0.05, 0.1, 0.5, 1.0, and 2.0 A g−1, the specific capacities of TSFC are 281.2, 257.7, 235.0, 103.6,
70.14, and 24.6 mAh g−1, respectively. When the current density returns to 0.02 A g−1, a
capacity of 255.6 mAh g−1 is obtained, demonstrating a good rate performance and the
capacity retention rate remained at 90.8%. On the contrary, an inferior rate performance of
the SSFC and GSFC is observed under the same condition. The long-cycle performance of
the TSFC electrode is also evaluated, as shown in Figure 4i. The capacity of TSFC could be
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maintained at 110 mAh g−1 after 400 cycles at 50 mA g−1, and the charge/discharge efficiency
was always maintained at about 100%, indicating its excellent durability and potential.
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(g) comparison of the three anodes cycling performance at 0.1 A g−1; (h) rate performance of the
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In order to explain the excellent sodium storage performance of TSFC, the CV curve at
different scanning rates of 0.2, 0.4, 0.6, 0.8, and 1 mV s−1 (vs. Na/Na+) was measured, as
shown in Figure 5a, in which the CV curves exhibit a certain deviation from the rectangle,
demonstrating the combination of two different charge storage mechanisms of faradaic
and non-faradaic reactions [42]. As the scan rate increases, the shape of the CV curve
remains constant, without serious distortion, indicating its high reversibility and excellent
multiplicative performance [42]. Generally, the relationship between peak current (i) and
scan rate (v) obeys Equation (1) [43]:

log(i) = log(a) + blog(v) (1)

Here, b represents the slope of log(v) and log(i), where b values were in the range of
0.5 to 1, indicating a pseudo-capacitance contribution, in addition to diffusion-controlled
intercalation behavior at these potentials. The calculation result of b values can be seen in
Figure 5b. The b-value of TSFC is 0.75, indicating that it has a hybrid mechanism of pseudo-
capacitance contribution and diffusion-controlled intercalation behavior. Furthermore, the
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percentage contribution of the capacitive process in the electrochemical reaction process
can be calculated according to Equation (2) [43]:

i(v) = k1v + k2v
1
2 (2)

where k1v is the surface capacitive contribution, and k2v1/2 is the diffusion contribution.
The calculated results are shown in Figure 5c,d, where it can be observed that the pseu-
docapacitance contribution takes up an increasing percentage as the scan speed increases.
This phenomenon is probably due to the special hierarchical porous structure of TSFC,
which induces the shortened transport pathway, faster delocalization, and the embedding
of sodium ions. The pseudocapacitance tests were also analyzed for SSFC and GSFC
under the same conditions, and the detailed data are shown in Figures S2 and S3. It can
be seen that the b-value of the SSFC and GSFC electrodes is 0.57 and 0.82, respectively.
Thus, a hybrid mechanism exists in the three electrode materials. The pseudocapacitance
percentage increases as the scanning speeds increase, which are 32%, 39%, 45%, 48%, and
51% for TSFC; 46%, 53%, 57%, 63%, and 65% for SSFC; and 44%, 52%, 58%, 61%, and 64%
for GSFC. However, the contribution of the diffusion-controlled interpolation behavior
of TSFC is higher than that of the other two at different sweep speeds, and this result is
exactly consistent with the above analysis results in Figure 4f.
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Figure 6a–f show the GITT reaction curves of TSFC, SSFC, and GSFC; the Na+ diffusion
coefficients of the three electrode materials fluctuate between 10−2 cm2 s−1 and 10−6 cm2

s−1, but the Na+ diffusion coefficient of TSFC has small fluctuation at the beginning of
discharge, indicating that an enhanced sodium diffusion occurred during sodium adsorp-
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tion [44]. As the voltage slowly decreased, the diffusion of sodium ions gradually smoothed
out. When the voltage dropped down below 0.1 V, the sodium ion diffusion coefficient
decayed rapidly. We believe that the diffusion of DNa

+ is caused by the change in the
sodium ion storage mechanism from the adsorption to insertion type [45]. Interestingly,
the DNa

+ of TSFC tends to rise at the end of the discharge process. This phenomenon is
common in the high-temperature treated hard carbon materials, suggesting that TSFC can
exhibit similar structural properties after electrochemical reactions [45]. In addition, when
using TSFC as an electrode material, the charging and discharging duration of TSFC is up
to 73 h, while the charging and discharging duration of SSFC and GSFC is only 39 h and
68 h, respectively, which is clearly longer than that of the other two samples. This result is
also consistent with the results of the above comprehensive analysis.
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To investigate the sodium storage mechanism of the TSFC anode materials in detail,
we recorded the capacity variation of the TSFC discharge curve from the 1st cycle to
the 400th cycle at a current density of 0.05 mA g−1; the direct effect on the low voltage
plateau capacity and high voltage sloping capacity was also explored in detail. As shown
in Figure 7, the sloping capacity of TSFC increases from 62% in the 1st cycle to 82.5% in
the 400th. The curves show that the contribution of ramp capacity predominates during
high voltage discharge, indicating that in TSFC, the special hierarchical porous structure
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provides more active sites for the physical/chemical adsorption of Na+. As the number
of cycles increases, the number of electrochemical reactions increases accordingly from
the reactions that initially occur on the electrode surface, slowly deepening to the interior,
while the micropores open at this time with the successive sodiation/desodiation cycle
reactions, at which time the electrolyte enters the micropores more easily, leading to an
increase in sloping capacity [46]. Moreover, the combined contribution of intercalation and
micropore filling to the plateau capacity is believed to play a role in the overall sodium
storage process when the voltage is gradually reduced to 0.1 V. According to the literature, a
layer spacing of 0.36–0.40 nm is required for the viability of sodium ion insertion/extraction
from amorphous carbon in the low-voltage plateau region [47]; the layer spacing of TSFC
is 0.37 nm, which is right in this range. On the other hand, hard carbon materials possess a
complex structure where porosity and layer spacing are the main objective conditions for
sodium storage. The presence of inflection points at the end of the potential of the discharge
curve also becomes the basis for determining the predominance of interlayer intercalation
and microporous filling [35]. As for the low-voltage plateau region of TSFC, there was
no electrochemical inflection point when the discharge gradually reached 0 V. Therefore,
based on the above analysis we reasonably believe that the sodium storage mechanism of
TSFC is “adsorption-intercalation/filling,” and the model is shown in Figure 7.
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Based on the above analysis, it can be concluded that the TSFC anode exhibits ex-
cellent ICE and multiplicative performance, which may be attributed to the following
characteristics: (i) the specific surface area can effectively reduce the generation of side
reactions and further improve the Coulomb efficiency; (ii) the larger layer spacing can
provide efficient ion channels and accelerate the Na+ transport; and (iii) the specific hierar-
chical porous structure facilitates the rapid diffusion of electrolyte ions into the interior of
the electrode material, providing more active surface sites and thus increasing the slope
capacity contribution.

4. Conclusions

In conclusion, three different structure hard carbon materials (TSFC, SSFC, and GSFC)
were prepared via a low-cost and simple method to treat sisal fibers through varying the
pretreatment conditions under acid or alkali systems, and a detailed comparative study
on the morphology and the electrochemical properties of these structures was conducted.
The effect of biomass hard carbon structures on the initial Coulomb efficiency was carefully
explored. It was found that the tubular structure of sisal fiber carbon (TSFC) shows
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a medium specific surface area, larger layer spacing, and a special hierarchical porous
structure, which favors efficient ion transport channels, ion migration, and storage. The
reversible specific capacity of TSFC can maintain 110 mAh g−1 at a current density of
0.05 A g−1 for 400 cycles, and the charge/discharge efficiency was maintained at about
100%. TSFC also exhibits a great increase in ICE (76.7%), along with cycling stability,
compared with SSFC and GSFC. To investigate the effect of structural changes on its sliding
and plateau capacities, the discharge curves of the TSFC with different numbers of cycles
were analyzed, and the “adsorption-intercalation/filling” model for the sodium storage
mechanism of TSFC was proposed; that is, at low voltage, the plateau capacity is related to
the intercalation/filling of sodium ions in materials, and the slope capacity at high voltage
is related to the adsorption behavior of the sodium ions. In summary, this study provides a
new approach for obtaining high ICE for sodium ion battery anodes.
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Abstract: Among many electrode materials, cobalt-based nanomaterials are widely used in super-
capacitors because of their high natural abundance, good electrical conductivity, and high specific
capacitance. However, there are still some difficulties to overcome, including poor structural stability
and low power density. This paper summarizes the research progress of cobalt-based nanomaterials
(cobalt oxide, cobalt hydroxide, cobalt-containing ternary metal oxides, etc.) as electrode materials for
supercapacitors in recent years and discusses the preparation methods and properties of the materials.
Notably, the focus of this paper is on the strategies to improve the electrochemical properties of
these materials. We show that the performance of cobalt-based nanomaterials can be improved by
designing their morphologies and, among the many morphologies, the mesoporous structure plays a
major role. This is because mesoporous structures can mitigate volume changes and improve the
performance of pseudo capacitance. This review is dedicated to the study of several cobalt-based
nanomaterials in supercapacitors, and we hope that future scholars will make new breakthroughs in
morphology design.

Keywords: supercapacitor; cobalt-containing nanomaterials; morphological design

1. Introduction
1.1. Background

Using non-renewable resources such as fossil fuels will cause severe environmental
pollution, and their prices are rising yearly due to their dwindling reserves. Therefore, it
is urgent to develop sustainable green energy, among which wind and solar energy have
been used on a large scale [1]. To better store and transport electricity from sustainable
energy sources, energy storage technology has been developed significantly. Rechargeable
batteries and supercapacitors (SCs) have been the major chemical energy storage devices.

At present, rechargeable lithium-ion batteries with good safety performance, high
voltage and high energy density are widely used. However, with the rising demand
for lithium-ion batteries, lithium resources are facing an extremely tight situation. Thus,
sodium, an alkali metal, has attracted increasing attention in recent years due to its abun-
dant content and low cost. However, poor cycle performance is still the most significant
problem hindering the development of sodium-ion batteries. Compared to rechargeable
batteries, SCs have faster charging and discharging processes (SCs: 1–10 s and batteries:
0.5–5 h), higher power density (SCs: 500–10,000 W kg−1 and batteries < 1000 W kg−1),
longer lifetime (SCs > 500,000 h and batteries: 500–1000 h) and safer operation [2–5]. How-
ever, SCs have a disadvantage in terms of low energy density (SCs: 1–10 W h kg−1 and
batteries: 10–100 W h kg−1) [2,6–9]. To get over the barrier of low energy density, one of
the most common approaches is to develop high-performance electrode materials for SCs.

1.2. Transition Group Metals Electrode Materials

Transition group metal materials have been widely used as electrode materials for SCs
in recent years, and include oxides/hydroxides [10–13], sulfides [14–17], phosphides [18],
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and other categories. Among these materials, RuO2, the most representative one, was con-
sidered the most desirable pseudocapacitive material for its theoretical specific capacitance
(1300–2200 F g−1) [19]. However, insufficient resources and the environmental toxicity of
RuO2 has unfortunately limited its further development [20]. This has led the relevant
research on RuO2 to its compound materials and other transition group metals to reduce
the cost. Among them, cobalt-based materials are promising electrode materials for SCs
because of their natural abundance, good cycle stability, abundant electroactive sites, high
specific capacitance, and high electronic conductivity. In recent years, various cobalt-based
materials, such as Co3O4, Co(OH)2, cobalt-based ternary metal oxides, and sulfides, have
been widely studied and many advances have been made.

1.3. Contents of This Review

Scholars have done much research on cobalt-based nano-material electrodes. However,
their broad application is limited due to low electrochemical potential window, poor struc-
tural stability, unsatisfactory cycle stability and low power density. Generally speaking, the
morphology, chemical composition and crystal defects of cobalt-based electrode materials
have a great influence on the electrochemical performance of energy storage devices. Re-
searchers have explored this issue, including doping other elements, introducing oxygen
vacancies, and controlling synthesis conditions to construct different spatial structures of
materials to improve the performance of the above electrode materials.

As far as we know, most of the existing reviews classify cobalt-based nanomaterials
into a specific class of materials for a brief overview, while few reviews summarize their
applications in SC electrodes alone. To promote future breakthroughs in this field, we
provide a more comprehensive description of the application of cobalt-based nanomaterials
in supercapacitors. Starting from nano-structured cobalt-based materials (cobalt tetroxide,
cobalt hydroxide, cobalt-containing ternary metal oxides) and their composites, the applica-
tion of cobalt-based materials in supercapacitor electrodes is introduced. First, the working
principle and classification of SCs are introduced. Second, the applications of cobalt-based
nano-compounds in SCs are studied, including the structure and electrochemical prop-
erties of cobalt-based nano-materials, the synthesis methods of electrode materials, the
construction of different nano-structures and composites with other materials. In addition,
the influence of morphology on the properties of cobalt-based nanomaterial electrodes
is emphasized. Finally, we look forward to the development and challenges of SCs and
cobalt-based materials.

2. Cobalt-Based Nanomaterials for SC Applications

With the popularity of mobile electronic devices, electric vehicles, and new energy
vehicles, energy storage systems have become an integral part of modern society. Among
them, SCs have become electrochemical containers, and have attracted significant attention
because of their safe operation, good cycle performance, fast charging capacity and high-
power density.

As shown in Figure 1a, a SC mainly consists of a pair of parallel plate electrodes,
an electrolyte solution, electrode materials and an ion-permeable separator [21]. The
separator can separate the two electrodes effectively to prevent mutual contact and short
circuit [22]. The energy storage mechanism of SCs include (1) reversible ion adsorption
and desorption processes between active materials and electrolytes, and (2) reversible
faradaic redox reactions during charging and discharging. Furthermore, according to the
charge storage mechanism of SCs, they can be divided into three categories: electronic
double-layer capacitors (EDLCs), pseudo-capacitors (PCs) and battery-type capacitors. The
specific mechanisms of these three types of capacitors are explained below.
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Figure 1. (a) Schematic diagram of the structure of an SC and energy storage mechanism of (b) an
electric double layer capacitor, (c) a surface redox capacitor, (d) intercalation capacitor and (e) a
battery-type capacitor.

EDLC is controlled by reversible adsorption/desorption of electrolyte ions at the
electrode/electrolyte interface (Figure 1b), a process involving only the physical adsorption
of ions but not any chemical reaction [23]. During the charging process, electrons migrate
from the negative electrode to the positive electrode, accumulating positive and negative
charges at the two electrodes. Then, the anions in the electrolyte solution move toward the
positive electrode and the cations move toward the negative electrode. During the discharge
process, the reverse procedure takes place. Since the potential drop is primarily limited
to a small range (0.1–10 nm), EDLC has a higher energy density than the conventional
capacitor, and its capacitance is related to the interface area of the electrodes. Therefore,
common electrode materials mainly include porous carbon-based electrode materials with
high specific surface area [24–26]. However, due to the absence of Faraday redox reactions
in the energy storage process, the charging mechanism confines the capacitance to a lower
range, exhibiting a higher power density but lower energy density and specific capacitance.

Based on the Faraday redox reaction, the pseudo-capacitance gives the SCs higher
charge storage capacity. Similar to the charging and discharging processes occurring in
batteries, the energy storage process in such SCs is a fast reversible Faraday reaction at or
near the surface of the active material, but without causing phase changes in the electrode
material [22,27]. PCs can be divided into two types: PCs controlled by surface redox
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reactions (Figure 1c) and PCs controlled by intercalation layers (Figure 1d). For the former
PCs, during the redox pseudo-capacitance process, electron transfer occurs when ions in
the electrolyte solution are attracted to or near the electrode surface. For the latter PCs,
electron transfer occurs when ions are transferred into the gap or interlayer of the electrode
and layered electrodes expose a larger area in an electrolyte solution. However, electrode
materials are prone to shrinkage and expansion during charging and discharging due to the
redox reaction at the electrode, leading to poor cycling performance [28]. Both capacitance
and energy density of PCs are much larger than those of EDLCs. This is mainly attributed
to the unique charge storage mechanism of the Faraday redox reaction rather than the fully
reversible physical charge/discharge processes.

Battery-type SCs (their structures are shown in Figure 1e) are distinguished from
PCs by their distinctive feature of exhibiting phase change behavior during charging and
discharging [29–31]. The charge storage mechanism in battery materials involves the
reaction with OH− in alkaline medium, which is controlled by the diffusion of electrolyte
ions [31]. Battery-like materials usually have high charge storage capacity. However, the
slow phase change of the material during charging and discharging reduces its kinetic
performance, making its multiplicative performance low. In contrast, battery-type materials
with unique nanostructures have a high specific surface area, creating great active sites
for redox reactions and providing a shorter distance for the diffusion of electrolyte ions.
Moreover, the rapid phase transition of battery-like materials during charge storage is
mitigated by designing their nanostructures.

Transition metal oxides are widely studied as SC electrode materials because they
possess higher energy density than carbon materials due to the Faraday electrolysis reaction
involved in the electrochemical process. Among them, cobalt nanomaterial is a typical
transition metal SC material. In recent years, research on SC electrode materials of Co3O4,
Co(OH)2, MnCo2O4, NiCo2O4, ZnCo2O4 and their derivatives have been widely reported.

2.1. Cobalt Oxide

In recent years, transition metal oxides have attracted more and more attention as
electrode materials with ultra-high electrochemical activity for SCs [32–38]. Among various
transition metal oxides, Co3O4 electrode materials and related composites have been widely
studied because of their high specific capacitance, low price, and environmental friendliness.
In addition, the Co3O4 electrode material, with special microstructure and morphology, has
excellent electrochemical capacitance behavior.

At present, several processes are used to prepare Co3O4, the common ones being
hydrothermal [39,40], electrochemical deposition [41], thermal decomposition [42], and
sol-gel methods [43]. The hydrothermal method is a process in which the dissolution and
recrystallization of insoluble substances occurs in a closed reactor at high temperature
and pressure. Experimental parameters, such as temperature, time and molar ratio of
additives, have been found to have a significant effect on the morphology of the product [44].
Electrochemical deposition is another important method to prepare electrode materials.
During the deposition process, electrical energy can provide a strong driving force for the
redox reaction, thus ensuring the uniform growth of electrode materials on conductive
substrates, such as stainless steel, nickel foam, and carbon cloth [45–47]. Meanwhile,
the conductive substrate is used as the working electrode, and deposition conditions
such as scan rate, number of cycles, electrolyte concentration and pH are used as control
parameters to achieve high surface area and uniform deposition. On the other hand, the
thermal decomposition method usually relies on the conversion of certain substances
at high temperatures to achieve the modification of electrode materials. This avoids
complex multiple synthesis steps and minimizes the use of solvents, making it simple
and environmentally friendly. As for the sol-gel method, the process can be described as
follows: precursors such as metal alcohol salts or inorganic compounds are hydrolyzed
under certain conditions to form a stable and transparent sol system, then are agglomerated
into a gel, and finally dried and sintered to form a solid. The advantages of this method are
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low reaction temperature, easy control of the reaction, and high homogeneity of the sample
down to the molecular or atomic level. The shape and size of the nanoparticles are usually
controlled by adjusting the ratio of raw materials and the initial pH of the solution.

2.1.1. Co3O4

As mentioned above, Co3O4 as a transition metal oxide, has a theoretical specific
capacitance of 3560 F g−1, good reversibility, and excellent electrochemical properties [48].
Therefore, it is one of the most attractive electrode materials for SCs. However, the capaci-
tive degradation of Co3O4 at high current densities results in its poor reversibility [49,50].
This phenomenon leads to the actual obtained Co3O4 specific capacitance being much
lower than the theoretical value, so the application of Co3O4 in SCs is severely limited. It
has been reported that the electrochemical performance of Co3O4 can be greatly improved
by regulating the micromorphology of Co3O4.

In recent years, various morphologies of Co3O4 have been synthesized by differ-
ent methods (shown in Figure 2), such as Co3O4 nanofibers [51], layered Co3O4 [52],
Co3O4 nanoparticles [53], Co3O4 nanorod arrays [54], core-shell Co3O4 [55], porous Co3O4
nanowires [56], and hollow coral-shaped Co3O4 [57]. Several Co3O4 electrode materials
with typical morphologies are briefly described below, including their preparation pro-
cesses, unique spatial structures, and their principles. For the convenience of readers, the
electrical property data of these materials is listed separately in Table 1.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 34 
 

 

the molecular or atomic level. The shape and size of the nanoparticles are usually con-
trolled by adjusting the ratio of raw materials and the initial pH of the solution. 

2.1.1. Co3O4 
As mentioned above, Co3O4 as a transition metal oxide, has a theoretical specific ca-

pacitance of 3560 F g‒1, good reversibility, and excellent electrochemical properties [48]. 
Therefore, it is one of the most attractive electrode materials for SCs. However, the capac-
itive degradation of Co3O4 at high current densities results in its poor reversibility [49,50]. 
This phenomenon leads to the actual obtained Co3O4 specific capacitance being much 
lower than the theoretical value, so the application of Co3O4 in SCs is severely limited. It 
has been reported that the electrochemical performance of Co3O4 can be greatly improved 
by regulating the micromorphology of Co3O4.  

In recent years, various morphologies of Co3O4 have been synthesized by different 
methods (shown in Figure 2), such as Co3O4 nanofibers [51], layered Co3O4 [52], Co3O4 
nanoparticles [53], Co3O4 nanorod arrays [54], core-shell Co3O4 [55], porous Co3O4 nan-
owires [56], and hollow coral-shaped Co3O4 [57]. Several Co3O4 electrode materials with 
typical morphologies are briefly described below, including their preparation processes, 
unique spatial structures, and their principles. For the convenience of readers, the electri-
cal property data of these materials is listed separately in Table 1. 

 
Figure 2. Various morphologies of Co3O4. (a) Nano fibers; reprinted with permission from ref. [51]. 
(b) Layered Co3O4; reprinted with permission from ref. [52]. (c) Nano particles; reprinted with per-
mission from ref. [53]. (d) Nanorod arrays; reprinted with permission from ref. [54]. (e) Core-shell 
Co3O4; reprinted with permission from ref. [55]. (f) Nano wires; reprinted with permission from ref. 
[56]. (g) Hollow coral shape; reprinted with permission from ref. [57]. 

Table 1. Electrochemical properties of each microscopic morphology. 

Morphology Specific Capacitance 
(Current Density) 

Cycling Performance 
(Cycles, Current Density) 

Year Ref. 

Figure 2. Various morphologies of Co3O4. (a) Nano fibers; reprinted with permission from ref. [51].
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Table 1. Electrochemical properties of each microscopic morphology.

Morphology Specific Capacitance
(Current Density)

Cycling Performance
(Cycles, Current Density) Year Ref.

nanofibers 407 F g−1 (5 mV s−1) 94% (1000, 1 A g−1) 2014 [51]

layered Co3O4 352 F g−1 (2 A g−1) 129% (2500, 2 A g−1) 2012 [52]

nanoparticles 362.8 F g−1 (0.2 A g−1) 73.5% (1000, 1 A g−1) 2014 [53]

nanorod arrays 154.9 C g−1 (1 A g−1) 88% (1000, 1 A g−1) 2019 [54]

core-shell Co3O4 837.7 F g−1 (1 A g−1) 87.0% (2000, 5 A g−1) 2018 [55]

porous nanowires 2815.7 F g−1 (1 A g−1) 88.8% (1100, 1 A g−1) 2018 [56]

hollow coral shape 626.5 F g−1 (5 mV s−1) ≈100% (5000, 10 A g−1) 2019 [57]

Manish Kumar et al. prepared Co3O4 nanofibers (shown in Figure 2a) by electrospin-
ning technology [51]. Due to the large specific surface area and unique porous network
morphology of this structure, the electrolyte solution can better contact with the electrode
material. This is conducive to the transport of ions and electrons at the electrode-electrolyte
interface, thus accelerating the redox progress. Duan et al. synthesized layered porous
Co3O4 films by a hydrothermal method [52]. As shown in Figure 2b, the prepared Co3O4
films display a two-layer structure in which the lower structure consists of an array of
Co3O4 monolayer hollow spheres and the upper structure consists of porous mesh-like
Co3O4 nanosheets. The high porosity and large specific surface area provide a short path for
ion/electron transfer, and the close contact between the active material and the electrolyte
leads to high electrochemical activity, which enhances the pseudocapacitive performance.
In addition, the graded porous structure can also moderate the volume changes caused
by redox reactions, thus improving cycling performance. Deng et al. synthesized cobalt
oxides (Co3O4 and Co3O4/CoO) by burning a mixture of Co(NO3)2·6H2O and citric acid
(Figure 2c) [53]. They experimentally confirmed that the morphology of the electrode mate-
rials could be influenced by adjusting the citric acid/Co(NO3)2·6H2O molar ratio. Based on
this, they produced electrode materials with the best performance. As shown in Figure 2d,
unique Co3O4 nanorod arrays were synthesized through a simple chemical bath deposition
and annealing process by Chen et al. [54]. Due to their high specific surface area and novel
structure, the specific capacitance of Co3O4 nanorod arrays is high. It was found that
Co3O4 nanorod arrays have good cycling stability, conductivity, and ion diffusion behavior.
Liu et al. prepared Co3O4 mesoporous nanospheres with a homogeneous core-shell by the
solvothermal and rapid calcination methods (Figure 2e) [55]. The accumulation density
of sub-nanoparticles and the thickness of Co3O4 shell layer can be controlled by changing
the annealing time. Both the tunable mesoporous and core-shell structures can facilitate
the ion and electron transport efficiently while adapting to the volume change of the oxide
electrode during cycling. Xu et al. successfully prepared one-dimensional porous Co3O4
nanowires by thermal decomposition of coordination polymers with nitrilotriacetic acid
as a chelating agent using a solvothermal method (Figure 2f) [56]. The porous structure
of Co3O4 nanowires consists of many nanoparticles. The special structure maximizes the
exposure of the active material to the alkaline electrolyte, resulting in high specific capacity
and good cycling stability. Wang et al. obtained hollow coral-shaped Co3O4 nanostructures
by calcining cobalt oxalate precursors in the air (Figure 2g) [57]. The hollow structure allows
it to withstand volume changes during the reaction process and thus exhibits excellent
cycling performance.

Starting from improving the contact area between electrode and electrolyte, Lu et al.
prepared layered Co3O4 electrode material by combining 2-methylimidazole cobalt salt
and electro-spun nanofibers [58]. Its unique three-dimensional (3D) network and nano
porous structure reduced the ion diffusion distance and increased the contact area between
electrode and electrolyte, thus improving its electrochemical performance. The synthesized
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Co3O4 electrode can provide a high specific capacitance of 970 F g−1 at a current density
of 1 A g−1, an energy density of 54.6 W h kg−1 at a power density of 360.6 W kg−1, and a
capacitance retention rate of 77.5% after 5000 cycles at 6 A g−1.

The above study showed that the electrochemical performance of Co3O4 can be sig-
nificantly improved by adjusting its morphology. By designing a unique structure, the
contact area can be increased, and the close contact between the active material and the
electrolyte can lead to high electrochemical activity, which enhances the pseudocapacitive
performance. In addition, the graded porous structure can also moderate the volume
changes caused by redox reactions, thus improving the cycling performance.

2.1.2. Co3O4 Composites

To further improve the performance of Co3O4, and meet the needs of various appli-
cations, one of the main means is to prepare Co3O4 composites by anchoring Co3O4 on
a carbon-based material with high electrical conductivity. Among many carbon-based
materials, graphene with large specific area, unique mechanical, and excellent electrochem-
ical properties is considered to be an ideal carrier for loading Co3O4 nanostructures [59].
Therefore, graphene-based Co3O4 composites have become a research hotspot in recent
years. For example, Tan et al. made self-supporting and non-adhesive Co3O4 nano sheet
arrays/graphene/Ni hybrid foams by in-situ synthesis of graphene and Co3O4 nanosheets
on nickel foam [60]. The SEM image shows that the porous structure supported by the
composite remain good. At the same time, the substrate is completely covered by Co3O4
nanosheets and there is no agglomeration. This self-supporting and adhesive free char-
acteristic avoids the disadvantage of the high resistance of traditional graphene-based
Co3O4 composites due to the contact between hybrid particles, additives, adhesives, and
collectors. The cycle performance of Co3O4 nano sheet/graphene/Ni hybrid electrode has
been studied. It was found that after 5000 cycles at a current density of 10 mA cm−2, it had
112.2% of the initial capacitance. This indicates that the ability of this unique Co3O4 nano
sheet/graphene/Ni hybrid electrode can meet the requirements of good capacity and long
cycle life at high current density.

Younis et al. synthesized Co3O4 nanosheets by one-step electrochemical deposition
on carbon foam followed by annealing [41]. The electrochemical properties of the Co3O4
nanosheets were improved due to the good electrical conductivity of the composite carbon
foam. In addition, a dense mesoporous structure could be observed in the SEM images,
which may be one of the main reasons for the improved electrochemical properties. Electro-
chemical tests showed that the prepared Co3O4 nanosheets had ideal capacitive properties
with a maximum specific capacitance of 106 F g−1 in 1 M NaOH solution at a scan rate of
0.5 V s−1. In this report, the prepared ultrathin nanosheets were simple in process, low in
cost, and suitable for industrial applications, which have high reference value.

Introducing oxygen vacancies into transition metal oxides can change their geometric
and electronic structures, improve their intrinsic conductivity and electrochemical activity,
and improve their properties [61–64]. For example, Xiang and others prepared Co3O4 nano
sheet electrode materials with different oxygen vacancy content by different reduction
methods [65]. They showed that Co3O4 electrode with high oxygen vacancy content
has better electrochemical performance. At the current density of 2 A g−1, the capacity
retention percentage can reach 95% after 3000 cycles, while the capacitance retention rate
of the original Co3O4 nanosheet electrode was only 90% under the same conditions. This
indicates that the introduction of oxygen vacancy can improve the conductivity, increase
the capacitance, and significantly improve the electrochemical performance.

Yang et al. used the one-step laser irradiation method for the first time to synthesize
ultrafine Co3O4 nanoparticles/graphene composites with rich oxygen vacancies by laser-
induced reduction and fragmentation [66]. Compared with the traditional method, the
one-step laser irradiation method is simple, does not need to add reducing agents and
additives, and solves the pollution problem of organic additives. At 10 A g−1 current
density, the capacitance retention of the composites after 2000 cycles could reach 99.3%,
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while the capacitance retention of porous Co3O4 nanorods electrodes was only about 84.7%,
indicating that Co3O4 nanoparticles/graphene composites have excellent cycle stability.

2.2. Co(OH)2

Similar to transition metal oxides, transition metal hydroxides have excellent pseu-
docapacitive properties [67]. Among them, Co(OH)2 has become one of the promising
materials in SCs due to its high theoretical capacitance (3460 F g−1) and low cost. With
electrode materials, reversible redox reactions take place during charge and discharge. The
specific process is that Co(OH)2 stores charge by participating in the O-H bond breaking
and recombination reaction in the electrolyte. The redox reaction can be expressed as [68]:

Co(OH)2 + OH− → CoOOH + H2O + e− (1)

The oxidation product CoOOH can further undergo a deprotonation reaction and
carry out the second redox reaction [22]:

CoOOH + OH− → CoO2 + H2O + e− (2)

Although the theoretical capacitance of Co(OH)2 is very high, it is difficult to meet
the requirements of fast electron transport rate at high power density because it is a P-
type semiconductor. An effective way to alleviate the above problems is to construct
conductive matrix hybrid nanostructures of Co(OH)2. For example, Pan et al. synthesized
Co(OH)2/Ni nano-lake array with porous structure by hydrothermal and electrodeposition
methods [69]; its microstructure is shown in Figure 3. As a conductive substrate, nickel
foam forms a porous conductive network, which can shorten the diffusion path of ions and
electrons, and improve the charge efficiency, thus effectively improving the electrochemical
performance of SC. When the charge and discharge rate changes from 1 A g−1 to 40 A g−1,
the capacitance retention rate reaches 87.6%, while that of pure Co(OH)2 nano-lake array is
only 76.4% under the same conditions.

Li et al. prepared a 3D independent Co(OH)2/Ni heterostructure electrode by deposit-
ing sea urchin-like Co(OH)2 microspheres on nickel foam using a one-step hydrothermal
method [70]. According to the analysis of its electrochemical performance, the capacitance
could reach 1916 F g−1 at 10 mA cm−2, and 79.3% of the original capacitance was main-
tained after 5000 charge and discharge cycles at 80 mA cm−2 current density. The reason
for this decrease in capacitance is that some sea urchin-like Co(OH)2 microspheres become
inconspicuous rod-like and stacked plate-like CoOOH due to changes in composition and
structure during charging and discharging.

To improve the density of SCs while maintaining their flexibility, Zhao and his col-
leagues deposited Co(OH)2 on nickel oxide/hydroxide coated nano porous nickel (np-
NiOxHy@Ni) by electrochemical deposition [71]. Then they successfully synthesized a
Co(OH)2/np-NiOxHy@Ni hybrid electrode with a hierarchical porous structure and ex-
cellent flexibility. The layered porous structure improves the surface area and effectively
promotes ion diffusion. At the same time, the coordination between Co(OH)2 and NiOxHy
electroactive materials significantly improves the electrochemical reaction activity of elec-
trode materials. The capacitance of Co(OH)2/np-NiOxHy@Ni electrode was 1421.1 F cm−3

at 0.5 A cm−3 current density, and 81.6% of the original capacitance remained after 8000 cy-
cles at 2 A cm−3 current density.
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Figure 3. (a) SEM image, (b) TEM image and (c) SAED pattern of a Co(OH)2 nanoflake array. (d) SEM
image, (e,f) TEM images and (g) SAED pattern of a Co(OH)2/Ni composite nanoflake array grown on
nickel foam. Reproduced with permission from G.X. Pan, Porous Co(OH)2/Ni composite nanoflake
array for high performance supercapacitors; published by Elsevier, 2012 [69].

2.3. Cobalt-Containing Ternary Metal Oxide

Cobalt-containing ternary metal oxides are typical spinel structures, and the cells of
spinel consist of eight small cubic cells, which are four A-type cells and four B-type cells
interconnected (Figure 4). Each A-type or B-type unit has four O2− for a total of 32. M ions
are in the center of the A-type unit (tetrahedral gap) and half of the vertices of the eight
small cubic units for a total of eight. Cobalt ions occupy each of four octahedral gaps, for a
total of 16. The cell general formula of cobalt-based spinel is M8Co16O32, and the chemical
formula is summarized as MCo2O4. Furthermore, in general, the alkaline electrolytes of
different Co-based spinel MCo2O4 (M = Co, Ni, Fe, and Mn) undergo approximately the
same reversible electrochemical redox reactions with the discharge products of M ions
as hydroxyl oxides MOOH [72–74]. The resulting MOOH (M = Co, Fe, and Mn) further
discharges and produces the corresponding CoO2 [72], FeO4

2− [75] and MnO2. Because of
the presence of Cu(I)/Cu(II) pairs, the discharge products of Zn2+ and Cu2+ are Zn(II) [76]
and Cu(I)/Cu(II) [77] hydroxides.
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Metal oxides with multiple metal cations generally have higher conductivity and
capacitive activity than single metal oxides [78]. Among them, ternary transition metal
oxides provide more active sites for redox reaction and improve electronic conductivity
because they have two different cations [79]. Compared with binary transition metal oxides
such as Co3O4, the electrochemical properties of ternary transition metal oxides (MnCo2O4,
NiCo2O4, ZnCo2O4, etc.) are significantly improved under the influence of the synergistic
effect generated by the coupling of two transition metals [36].

2.3.1. MnCo2O4

MnCo2O4 is a typical compound with a spinel structure. It can show two lattice
structures: (a) normal spinel [80,81], (b) anti spinel [82]. Due to the diversity of crystal
structure, the variation of charges (Mn and Co) occupied in octahedron and tetrahedron
makes it have excellent redox stability [83]. Manganese transmits more electrons and
has higher capacity, while cobalt has higher oxidation potential. Many experiments have
proved that MnCo2O4 improves the electrochemical performance of single Co3O4 and
shows better conductivity, structural stability, and cycle performance [84–86]. The reaction
principle of MnCo2O4 is as follows:

MnCo2O4 + OH− + H2O→MnOOH + 2CoOOH + e− (3)

MnOOH + OH− →MnO2 + H2O + e− (4)

CoOOH + OH− → CoO2 + H2O + e− (5)

MnCo2O4 reacts under alkaline conditions to form MnOOH and CoOOH, and the
resulting MnOOH and CoOOH continue to react with OH− to form MnO2 and CoO2, while
releasing electrons.

Based on the above studies, MnCo2O4 is considered an ideal candidate material for SCs,
so it has been widely studied. Various forms of MnCo2O4 materials have been prepared,
such as flower shaped hollow microspheres [87], core-shell structures [88], nano cages [89],
nano needles [90], ellipsoids [91], and sea urchins [92]. For example, Dong et al. synthesized
MnCo2O4 with a hierarchical nanocage structure using a bimetallic zeolite imidazolate
framework as the precursor and template [89]. The preparation process and morphological
characterization are shown in Figure 5. Through the analysis of its micro morphology,
it can be found that many interconnected nanoparticles form a highly porous nanocage
structure. This unique nanocage structure exposes a large area of surface and mesoporous
structure, which promotes the diffusion of ions and ensures its excellent electrochemical
performance in SCs. By testing the electrochemical performance of MnCo2O4 electrode, it
was found that it can show 95% capacitance retention after 4500 cycles at 1 A g−1, which
proves its superior cycle stability. Che et al. synthesized flower-shaped MnCo2O4 hollow
microspheres with a nano flower structure by the template free method of mixing and
heating the solvent to 180 ◦C [87], and then calcining at 350 ◦C for two hours. An SEM
microscopic image is shown in the Figure 6. The larger surface area and porous structure
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provide more active sites, promote the transfer of ions and electrons, accelerate the reaction
rate, and greatly enhance its electrochemical storage performance. The capacity retention
rate of the electrode was 93.6% after 2000 consecutive cycles at a high current density of
1 A g−1.
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Figure 6. SEM images (a,b) of the calcined MnCo2O4 products and the corresponding elements
mapping (c–e) taken from the square area marked in Figure 6a. Reproduced with permission from
Hongwei Che, Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for
application in supercapacitors; published by Elsevier, 2016 [87].

Although the electrochemical performance of an MnCo2O4 electrode is significantly
improved compared with a single Co3O4 electrode, its development is limited by its poor
cycle stability in long-term use. To solve this problem, one of the effective methods is to
compound it with some carbonaceous material with light electric power or other pseudo-
capacitive oxide or hydroxide to improve its cycle stability. For example, Wang et al.
synthesized a 3D porous structure based on MnCo2O4 modified graphene [93]. The specific
capacitance reached 503 F g−1 at a current density of 1 A g−1. After 5000 charge-discharge
cycles (current density of 10 A g−1), 97.4% of the specific capacitance was retained.

Zhao et al. synthesized an MnCo2O4@Ni(OH)2 multicomponent composite by a stepwise
hydrothermal method [88]. The synthesis process is shown in Figure 7. First, layered double
hydroxides of cobalt and manganese were generated with hexamethylenetetramine as a
structure guide. With the directional attachment process as the driving force, the nanoparticles
finally grew into MnCo2O4 nanostructures. Then, using nickel chloride and hexamethylenete-
tramine as the lead solution, an ultra-thin Ni(OH)2 nano sheet was fixed on the nano alloy
by hydrothermal method to produce a layered MnCo2O4@Ni(OH)2 core-shell structure. The
discharge time of MnCo2O4@Ni(OH)2 was about four times that of MnCo2O4.
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The specific capacitance of activated carbon electrode can reach 328 F g−1 at 0.2 A g−1,
and the maximum energy density of asymmetric SC (ASC) can reach 48 W h kg−1 when
the mean power density is 1.4 kW kg−1, which is significantly higher than that of most
commercial batteries. In addition, the capacitance retention of the hybrid electrode is
about 90% after 2500 cycles at a current density of 6 A g−1, and the structure of the
nano alloy remains good. The above results show that the electrochemical performance
of MnCo2O4 is significantly improved and its cycle stability is higher by compounding
MnCo2O4 with Ni(OH)2.

As mentioned above, compared with a single MnCo2O4 material, MnCo2O4 com-
pounded with other materials has higher cycle stability and greater prospects. Although the
electrochemistry of the material can be improved to some extent by changing the morphology
and structure or compounding with other materials, the low conductivity of MnCo2O4 has
hindered its wide application as an energy storage device. At the same time, how to accurately
control the micro morphology of the composite still needs further exploration.

2.3.2. NiCo2O4

As a typical cobalt-containing ternary metal oxide, NiCo2O4 is also a transition metal
oxide with a spinel structure. It has the advantages of high electrochemical activity, good
conductivity, high theoretical capacitance, low cost, and simple synthesis. Therefore,
NiCo2O4 is also one of the most attractive electrode materials in SCs [94–98]. In its structure,
nickel ions occupy octahedral sites, and cobalt ions diffuse in octahedral and tetrahedral
sites [99]. The electronic conductivity and electrochemical activity of NiCo2O4 are signifi-
cantly higher than those of nickel oxide and cobalt oxide alone due to the synergistic effect
of Ni with Co.

At present, various nanostructures of NiCo2O4 have been prepared, such as nanowires [100],
nanosheets [101], nanoflowers [102], and nanorods [103]. Among them, hollow nano ma-
terials have a large surface area, large gap and short effective transmission distance of
electrolyte ions [104]. They provide more electroactive sites for rapid ion insertion of
the whole electrode material and show excellent electrochemical performance. Xu et al.
synthesized hollow NiCo2O4 nanospheres with a layered structure [104]. When using them
as electrodes, the specific capacitance at 1 A g−1 is 1229 F g−1, which is higher than that of
NiCo2S4 hollow spheres (1036 F g−1 at 1 A g−1) [105], NiCo2O4 hollow spheres (1141 F g−1

at 1 A g−1) [106], hollow NiCo2O4 sub microspheres (678 F g−1 at 1 A g−1) [107], urchin-like
NiCo2O4 hollow microspheres (942.2 F g−1 at 0.5 A g−1) [108], and mesoporous NiCo2O4
hollow microspheres (987 F g−1 at 1 A g−1) [109]. After 3000 cycles at 50 mV s−1, the total
specific capacitance retention of hollow NiCo2O4 nanosphere electrode is 86.3%, while the
total specific capacitance retention of NiCo2O4 microsphere electrode is 83.7%.

Although hollow microspheres can effectively improve surface area, the single-structure
NiCo2O4 electrode material still has the disadvantages of low conductivity, limited kinetics,
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and poor electrochemical performance [110–114]. To improve its electrochemical perfor-
mance, constructing NiCo2O4 layered nanostructure composites has become an important
means [115–119]. For example, Zhou and others synthesized 3D porous graphene/NiCo2O4
hybrid films with copper oxide as a template [120]. Its unique 3D porous structure can
store many electrolytes and provide rich active centers, thus improving the electrochemical
performance. At 1 A g−1, the specific capacitance can reach 708.36 F g−1. After 6000 cycles
at 10 A g−1, the initial capacitance of 94.3% is maintained. Li et al. prepared flower-like
hollow C@MnCo2O4 with high specific surface area. At a discharge current density of
1 A g−1, the discharge capacitance reached 728.4 F g−1, and after 1000 cycles at 8 A g−1

the initial capacitance retention of the composite was 95.9% [121]. Zhao et al. synthesized
ultra-thin NiCo2O4/NiO nanosheets grown on silicon nitride [122]. After 2000 cycles at
20 mA cm−2 current density, the specific capacitance retention was 90.9%, and the energy
density was 60 W h kg−1 when the power density was 1.66 kW kg−1. Cheng et al. prepared
a 3D layered NiCo2O4@NiMoO4 nuclear shell nanowires/nanowire sheet array on nickel
foam, with a capacitance retention rate of 85.2% after 3000 cycles at a current density of
20 mA cm−2 [123]. After a long cycle, the volume resistance of the ASC device increased
slightly from the initial 0.40 Ω to 0.42 Ω. The above shows that the prepared composites
have good cycle stability. Lee et al. synthesized MnCo2O4-NiCo2O4 composite with lay-
ered nanostructure by one-step chemical bath deposition method [124]. When used as
an electrode, the specific capacitance reached 1152 F g−1 at 1 A g−1. After 3000 cycles at
6 A g−1, the specific capacitance retention of the composite was 95.38%, while NiCo2O4
is 86.14% and MnCo2O4 was 61.65%, indicating that the composite of the two materials
significantly increased the cycle stability of the material.

The electrochemical properties of the above NiCo2O4 composite have been signifi-
cantly improved. However, due to lattice mismatch between NiCo2O4 and other com-
ponents, this leads to poor structural stability, lower specific capacitance and cycle life.
Therefore, Wang et al. compounded NiCo2O4 and NiCo2O4 with the same lattice type to
prepare 3D delamination NiCo2O4@NiCo2O4 [94]. The preparation process of the core-shell
nano cone array is shown in Figure 8. First, NiCo2O4 is grown vertically on nickel foam
by hydrothermal method. After annealing, neat NiCo2O4 nano-cone arrays is formed first.
Then, the NiCo2O4 nanosheet is coated on the NiCo2O4 surface formed in the previous
step. Finally, layered core-shell NiCo2O4@NiCo2O4 nanostructures are fabricated on nickel
foams after subsequent annealing.

After 21,000 cycles at 4 A g−1, the capacitance retention rate of the electrode reached
85.3%, and the structure did not change significantly during charge and discharge. When
used in SCs, NiCo2O4@NiCo2O4 core-shell nanostructure had a capacitance of 2045.2 F g−1

at a current density of 1 A g−1, which is better than the single component of NiCo2O4
nanosheet (346.4 F g−1) and NiCo2O4 nano cone (1381.8 F g−1).

2.3.3. ZnCo2O4

Similar to MnCo2O4 and NiCo2O4 mentioned above, ZnCo2O4 has the advantages of
high theoretical capacitance, high conductivity, environmental friendliness, and low cost,
and is considered as a potential SC material [125]. At present, ZnCo2O4 materials with var-
ious nanostructures, such as nanowires [126], nanosheets [127,128] nanoparticles [129], and
nanospheres [130,131], have been prepared. For example, Wang and colleagues synthesized
ZnCo2O4 nanowire electrode materials grown on nickel foam [132]. First, the precursor
ZnCo2O4 nanowire arrays were grown on nickel foam by a hydrothermal reaction and
then calcined in air. Finally, ZnCo2O4 nanowire arrays supported by nickel foam were
obtained. The synthesized ZnCo2O4 nanowires have a porous structure, which makes the
material have large specific surface area and can promote the diffusion of reactants. The
prepared ZnCo2O4 nanowire/nickel foam electrode had a specific capacitance of 1625 F g−1

at a current density of 5 A g−1, and 94% of the original capacitance was maintained after
5000 cycles at 20 A g−1.
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Figure 8. Schematic of the fabrication process for 3D NiCo2O4@NiCo2O4 hierarchical core-
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Xu et al. prepared a ZnCo2O4 nanostructure with a porous structure and found that
the conversion between nanosheets and nanowires was obtained by regulating hydrother-
mal temperature [133]. When the current density was 1 A g−1, ZnCo2O4 had a specific
capacitance of 776.2 F g−1, and the energy density was 84.48 W h kg−1 when the mean
power density was 0.4 kW kg−1. It had 84.3% capacity retention after 1500 cycles (3 A g−1).
Venkatachalam et al. prepared hexagonal-like ZnCo2O4 nanomaterials by a simple hy-
drothermal method [134]. The prepared electrode materials had a specific capacitance of
845.7 F g−1 at a current density of 1 A g−1, and retained 95.3% of the original capacitance
after 5000 cycles at 5 A g−1. Shang et al. synthesized 3D layered peony flower-like ZnCo2O4
electrode nanomaterials by a simple solvothermal method and annealing without addi-
tives [135]. The microstructure is shown in Figure 9. The assembled ASC ZnCo2O4//active
carbon had an energy density of 29.76 W h kg−1 at a power density of 398.53 W kg−1.
In addition, the peony-shaped ZnCo2O4 electrode material had a specific capacitance of
440 F g−1 at a current density of 1 A g−1, and the capacitance was maintained at 155.6%
after 3000 cycles (2 A g−1).

Although the above nano ZnCo2O4 materials have specific applications in SCs, the
insufficient utilization efficiency and poor conductivity of the materials limit their electro-
chemical properties to a certain extent and there are difficulties in them meeting the needs
of practical applications. To solve this problem, one of the commonly used methods is to
introduce oxygen vacancies. The existence of an oxygen vacancy can significantly improve
the conductivity of ZnCo2O4, adjust the electronic structure, increase the active sites, and
promote the electrochemical performance of SCs. For example, Xiang and his colleagues
prepared two-dimensional (2D) ZnCo2O4 nanosheets rich in oxygen vacancies [136]. The
nanoscale thickness and large surface area effectively improved the utilization of the elec-
trode while promoting electron transfer. A specific capacitance of 2111 F g−1 was attained
at a current density of 1 A g−1, while the specific capacitance of the original ZnCo2O4
nano sheet at the same current density was only 1121 F g−1. When the power density was
160 W kg−1, the energy density of ASC constructed by ZnCo2O4 nanosheet (with oxygen
vacancy)//activated carbon is 34.6 W h kg−1, and 93% of the original capacitance was
maintained after 3000 cycles at 2 A g−1.

Combining ZnCo2O4 nanostructures with conductive metal or carbon materials to
construct composites is one of the methods to alleviate the above problems. For example,
Wu et al. synthesized a series of ZnCo2O4@Ni(OH)2 nanostructures grown on nickel foam
by a two-step hydrothermal method; the preparation process is shown in Figure 10 [137].
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First, the ZnCo2O4 nanowires were uniformly covered on the nickel foam by a hydrother-
mal method and then Ni(OH)2 nanosheets were grown on the ZnCo2O4 nanowire after
a second hydrothermal reaction. ZnCo2O4 nanowires were used as the substrate and
Ni(OH)2 nanosheets were used as the upper layer. The strong binding force between
them reduced the contact resistance and promote the transfer of electrons to enhance the
electrochemical reaction activity of the material. The synthesized hybrid structure was
used to fabricate capacitors with an energy density of 57.3 W kg−1 at 4675.3 W h kg−1, and
an initial capacitance of 48.6 C g−1 at 1 A g−1, which retained 90.5% after 10,000 cycles at
the same current density.
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Xie et al. synthesized a ZnCo2O4@ZnWO4 nanowire array with a core-shell structure
on nickel foam, and the synergistic effect between ZnCo2O4 nanowire and ZnWO4 sheet
effectively improved the electrochemical performance of hybrid electrode [138]. The synthe-
sis process is like that of ZnCo2O4@Ni(OH)2. As shown in Figure 11, ZnCo2O4 nanowires
are first grown on nickel foam, and then ZnWO4 nanosheets arrays are produced by a
simple hydrothermal method using ZnCo2O4 nanowires as skeletons. The constructed
ZnCo2O4@ZnWO4//active carbon ASC had an energy density of 24 W h kg−1 at a power
density of 400 W kg−1. The original capacitance retention was 98.5% after 5000 cycles at a
current density of 100 mA cm−2.
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lished by Elsevier, 2018 [138].

Table 2 summarizes the structure, specific capacity and cycling performance of MnCo2O4,
NiCo2O4 and ZnCo2O4. The electrochemical performance of the electrodes was signifi-
cantly improved after designing unique morphologies for the materials. By constructing
effective structures, such as spherical, rod-like, and hollow structures, the contact area
can be increased, resulting in close contact between the active material and the electrolyte,
which leads to high electrochemical activity and enhanced pseudocapacitive performance.
In addition, the porous structure can alleviate the volume change caused by the redox reac-
tion, thus improving the cycle performance, so the materials in the table are often designed
as porous structures. Among the various unique morphologies, 2D microstructures are an
important category because such structures increase the contact area between the electrolyte
and the electrode material. For example, Younis et al. designed various micro morphologies
including nanowires, nanocables, nano-micro biscuits, and micro-walls [139]. Among them,
nano-micro biscuits with distinct 2D structural features exhibited the best electrochemical
performance. Xiang et al. designed ZnCo2O4 nanosheets with nanoscale thickness and
large surface area, which could improve the electron transfer efficiency and electrode
utilization [136]. In addition, Zhang et al. prepared NiCo2O4 nanosheets with a more
ordered crystal structure, high specific surface area and diffusion channels [140]. Liu et al.
prepared MnCo2O4 with a nanoflower-like morphology and porous structure [141]. Be-
cause of its unique nanostructure, the prepared electrode had high capacity and good rate
performance. In conclusion, 2D nanostructures usually have a large surface area and dense
porous structure. This structure is beneficial to increase the contact area between electrolyte
and electrode, thus improving the electron transfer efficiency.
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Table 2. Summary of materials, structures, and electrochemical properties of cobalt-containing ternary
metal oxides.

Materials Structure Specific Capacitance
(Current Density)

Cycling Performance
(Cycles, Current Density) Year Refs.

MnCo2O4 polyhedral nanostructure 1763 F g−1 (1 A g−1) 95% (4500, 1 A g−1) 2017 [89]
flower-like hollow microspheres 235.7 F g−1 (1 A g−1) 93.6% (2000, 1 A g−1) 2016 [87]
3D porous structure 503 F g−1 (1 A g−1) 97.4% (5000, 10 A g−1) 2019 [93]
belt-based core-shell nanoflowers 2154 F g−1 (5 A g−1) 90% (2500, 6 A g−1) 2016 [88]

NiCo2O4
hollow nanospheres with layered
structure 1229 F g−1 (1 A g−1) 86.3% (3000, 50 mV s−1) 2018 [104]

hollow spheres 1036 F g−1 (1 A g−1) 78.6% (10,000, 5 A g−1) 2015 [105]
hollow sub microspheres 678 F g−1 (1 A g−1) 87% (3500, 10 A g−1) 2013 [107]
urchin-like hollow microspheres 942.2 F g−1 (0.5 A g−1) 90% (1000, 2.5 mA cm−2) 2017 [108]
mesoporous hollow microspheres 987 F g−1 (1 A g−1) ≈100% (5000, 5 A g−1) 2015 [109]
3D porous graphene/NiCo2O4 hybrid
films 708.36 F g−1 (1 A g−1) 94.3% (6000, 10 A g−1) 2020 [120]

flower-like hollow 728.4 F g−1 (1 A g−1) 95.9% (1000, 8 A g−1) 2014 [121]
ultra-thin nanosheets 1801 F g−1 (1 mA cm−2) 90.9% (2000, 20 mA cm−2) 2016 [122]
3D layered nuclear shell
nanowires/nanowires sheet array __ 85.2% (3000, 20 mA cm−2) 2015 [123]

layered nanostructure 1152 F g−1 (1 A g−1) 95.38% (3000, 6 A g−1) 2018 [124]
layered core-shell nanostructures 2045.2 F g−1 (1 A g−1) 85.3% (21000, 4 A g−1) 2018 [94]

ZnCo2O4 nanowire 1625 F g−1 (5 A g−1) 94% (5000, 20 A g−1) 2014 [132]
porous structure 776.2 F g−1 (1 A g−1) 84.3% (1500, 3 A g−1) 2017 [133]
hexagonal like nano materials 845.7 F g−1 (1 A g−1) 95.3% (5000, 5 A g−1) 2017 [134]
3D layered peony flower like material 440 F g−1 (1 A g−1) 155.6% (3000, 2 A g−1) 2017 [135]
2D nanosheets 2111 F g−1 (1 A g−1) 93% (3000, 2 A g−1) 2021 [136]
nanowires 48.6 C g−1 (1 A g−1) 90.5% (10,000, 1 A g−1) 2021 [137]
nanowire array with core-shell structure 13.4 F cm−2 (4 mA cm−2) 98.5% (5000, 100 mA cm−2) 2018 [138]

2.4. Cobalt-Containing Ternary Metal Oxide Derivatives

As mentioned above, cobalt-containing ternary metal oxides have great potential in
the application of SCs. To further improve their electrochemical performance, researchers
have focused on the derivatives of these metal oxides. Transition metal sulfides have high
electronic conductivity, two orders of magnitude higher than the corresponding oxides,
because the valence states of the transition metals in the sulfides closely resemble those of
the metals [142–144]. At the same time, because sulfur is less electronegative than oxygen,
it can produce a more flexible structure instead of oxygen. This can effectively avoid
the structural disintegration of transition metal sulfide-based electrodes due to interlayer
elongation, which facilitates the transport of electrons in the internal structure [145]. In
addition, combining two or more sulfides can improve the electrical properties of transition
metal sulfides, resulting in a richer redox reaction [146–148] because bimetallic sulfides
possess more prosperous diverse states, smaller optical band gaps, and better chemical
stability than single-metal sulfides [144,148]. Compared with single metal oxide, transition
metal sulfides such as Co-Mo-S, NiCo2S4 have higher capacitance, multivalent redox
reactions and higher conductivity [149], so they have great potential.

2.4.1. Co-Mo-S

Co-Mo-S matrix composites have great potential as SC electrode materials because
of their advantages of reversible redox reaction band gap, high conductivity, and low
electronegativity [149–159]. For example, Balamurugan et al. used ion exchange reaction
technology to synthesize a porous nano foam support structure composed of ultra-thin
Co-Mo-S nanosheets [160]. When Co-Mo-S nanosheets are used as the electrode of the SC,
they can provide an ultra-high specific capacitance of 2343 F g−1 at a current density of
1 mA cm−2, and the capacitance remains 96.6% after 20,000 cycles. In addition, the energy
density and power density of Co-Mo-S/nitrogen doped graphene nanosheets assembled
in ASC are 89.6 W h kg−1 and 20.07 W kg−1. The capacitance retention rate can reach
86.8% after 50,000 cycles. The unique electrochemical properties of Co-Mo-S nanosheets
are attributed to the ultra-high contact area with 3D nickel foam and electrolyte.
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Xu et al. prepared amorphous CoMoS4 by a simple precipitation method and used
it as an SC material for the first time [161]. Changing the current density from 1 A g−1

to 3 A g−1, the galvanostatic charge/discharge curves are shown in Figure 12 when the
potential is from 0 V to 0.6 V. The specific capacitance was calculated according to these
curves. The results show that it had a specific capacitance of 661 F g−1 at a current density
of 1 A g−1. Simultaneously, the constructed CoMoS4//reduced graphene oxide hybrid SC
had a particular capacity of 77 F g−1 at a current density of 0.5 A g−1, and its energy density
was 27.2 W h kg−1 at a power density of 400 W kg−1. In addition, after 10,000 cycles at
80 mV s−1, the original capacitance was maintained at about 86%.
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Recently, Sun et al. synthesized Co-Mo-S nanosheet networks by a simple two-step
hydrothermal method [162]. The ASC assembled with the product as the cathode had
an energy density of 72.25 W h kg−1 at 2700 W kg−1. After 9000 cycles at 2 A g−1, the
capacitance retention rate reached 83.4%.

Although Co-Mo-S has excellent potential in SCs, its relatively poor rate capability
and cycle stability limit its application. Overcoming these disadvantages and improve
its electrochemical properties has become a key problem of Co-Mo-S capacitor materials.
A practical method is to achieve excellent cycle capacity and rate performance by con-
struction of the electrode material structure. Ma et al. designed and constructed hollow
core-shell CoMoS4@Ni-Co-S nanotubes on carbon cloth for the first time by a hydrothermal
method and electrodeposition process [163]. The preparation process of Co-S nanotubes
is shown in Figure 13. First, Co(OH)F nanowire arrays are synthesized by hydrothermal
reaction under high temperature and high pressure with carbon cloth as a current collec-
tor. Then, Co(OH)F nanowires and (NH4)2MoS4 precursor solution ae transformed into
CoMoS4 nanotubes. Finally, 3D layered CoMoS4@Ni-Co-S nanotube hybrid arrays are
synthesized by electrochemical deposition method. Among them, Ni-Co-S nanosheets are
closely arranged around CoMoS4 hollow nanotubes, which is conducive to the exposure of
electrochemical active sites and keeps the structure stable to a certain extent during charge
and discharge. At the same time, the core-shell structure facilitates the close contact of the
electrode/electrolyte and avoids the aggregation of Ni-Co-S. The novel CoMoS4@Ni-Co-S
electrode had an excellent specific capacitance of 2208.5 F g−1 at 1 A g−1 and good cycle
life (91.3% capacitance retention over 5000 cycles at 3 A g−1). In addition, the assembled
CoMoS4@Ni-Co-S//activated carbon ASC had an energy density of 49.1 W h kg−1 at
800 W kg−1 and a capacity retention rate of 90.3% after 10,000 cycles.
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2.4.2. NiCo2S4

As mentioned earlier, NiCo2O4 and its composites have great potential in SCs. The
conductivity of NiCo2S4 is 100 times that of NiCo2O4, and NiCo2S4 shows higher elec-
trochemical activity and capacitance than other cobalt nickel compounds because of its
inherent redox reaction center. However, NiCo2S4-based electrodes suffer from defects
such as easy oxidation in alkaline electrolytes and poor long-term cycling stability [164].
Therefore, effective space structures need to be designed to improve their drawbacks.
So far, 3D NiCo2S4 nanostructures such as nanoflowers, core-shell and dendrites have
been synthesized.

For example, Shi et al. synthesized layered sea urchin-like hollow NiCo2S4 by a
template-free solvothermal method [165]. The capacitance reached 1398 F g−1 at 1 A g−1,
and the specific capacity retention rate reached 74.4% after 5000 cycles at 10 A g−1.
Zhang et al. synthesized nano NiCo2S4 with 3D honeycomb structure by a hydrother-
mal method and vulcanization method [166]. When the current density was 1 mA cm−2, its
maximum specific capacity exceeded 14 mA h cm−2. After 1000 cycles at a current density
of 10 mA cm−2, the specific capacity remained at 96.96%.

These structures have been widely used in electrode materials. However, their poor
electronic conductivity and potential risk of structural collapse and damage during long-
term use limit the application of NiCo2S4 materials. One of the main methods to solve
this problem is to build 3D hierarchical structure materials and increase the contact area
with electrolyte.

Li et al. successfully synthesized layered dendritic NiCo2S4@NiCo2S by a three-step
continuous hydrothermal method, and the layered microstructure of the highly porous
structure facilitated ion transport during charge and discharge, resulting in a significant
improvement in electrochemical performance. When the current density was 240 mA cm−2,
the electrode discharge specific capacity of the dendritic structure reached 4.43 mA h cm−2.
When the current density was increased from 40 mA cm−2 to 240 mA cm−2, its rate
capability reached 70.1% [167]. Tang et al. synthesized ultra-high load (10.33 mA cm−2)
3D layered NiCo2S4/Ni3S2 nanosheets with an energy density of 4.69 W h m−2 (power
density of 10.33 W m−2), and a stability of 91.4% after 8000 cycles at 20.66 mA cm−2 [168].

Zhang et al. synthesized NiCo2S4 spheres with granular nuclei by a simple two-step
hydrothermal reaction [169]. A NiCo2(OH)6/C precursor was prepared using a carbon
pellet cluster as a template. Granular NiCo2S4 was synthesized by reacting with sodium
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sulfide, and then the NiCo2S4 precursor was grown on the periphery of the granular
NiCo2S4 to form a unique structure. The specific surface area of the prepared NiCo2S4
ball was 26.61 m2 g−1, which is about twice that of the particle NiCo2S4 (11.41 m2 g−1).
This higher specific surface area increased the electroactive sites that can transfer charge
and shortens the transmission path, which is conducive to improving the electrochemical
activity of the material. When the current density was 1 A g−1, the specific capacitance of
the granular NiCo2S4 spherical electrode reached 1156 F g−1, which was 71% higher than
that of the NiCo2S4 electrode. In addition, after 1000 charge-discharge cycles (5 A g−1), the
NiCo2S4 sphere electrode with granular nuclear showed 82% capacitance retention, and
the cycle stability was significantly better than that of the granular NiCo2S4 electrode.

Wu et al. prepared a hierarchical nanostructured NiCo2S4 nanoflower@NiCo2S4
nanosheet material by a hydrothermal method (Figure 14) [170]. Using this composite as the
electrode in the SC, it had a specific capacity of 338.1 mA h g−1 at 2 mV s−1, which is about
three times higher than that of a single NiCo2S4 nanosheet. In addition, 90% of the original
capacity was maintained after 4000 reaction cycles at a current density of 20 A g−1. The
synthesized NiCo2S4 nanoflowers@NiCo2S4 nanosheets//NiCo2S4 nanoflowers@NiCo2S4
nanosheets symmetrical SC device had an energy density of 18.05 W h kg−1 at a power
density of 750 W kg−1. The capacitance retention rate of the symmetrical SC device was
89% after 4000 cycles (10 A g−1). The multilayer 3D structure can explain this improvement
in electrochemical performance. The upper nanoflowers are composed of many rough
nanotubes, which increase the surface volume ratio and the contact range of the electrolyte.
This unique structure can provide more electrochemical active sites, promote ion adsorption,
and reduce the volume expansion in the charge and discharge process. Furthermore, the
lower layer nanosheet arrays on the nickel foam can avoid damage and increase the stability
of the electrochemical reaction.
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Figure 14. Schematic diagram showing the fabrication of NiCo2S4 nanoflowers @NiCo2S4 nanosheets.
Reproduced with permission from Wenling Wu, Hierarchical structure of Self-Supported NiCo2S4

Nanoflowers@NiCo2S4 nanosheets as high rate-capability and cycling-stability electrodes for ad-
vanced supercapacitor; published by Elsevier, 2021 [170].

Densely arranged and structurally stable nanosheets can act as a charge transport
interconnectors with nickel foam, further improving the charge transport rate. This unique
synergistic effect between nanoflower and nanosheet structure effectively increases the
structural stability and electrochemical active sites of the material. The effect also promotes
charge transfer and ion transport, which is conducive to accelerating the electrochemical
reaction rate and improving the energy storage effect of the material.

As mentioned above, the construction of 3D multilayer hierarchical structures can
improve the electrochemical properties of materials and in-use stability. At the same
time, the construction of nanostructured composites by doping other impurity atoms is
the foremost solution to the problem of low electronic conductivity and poor stability of

86



Nanomaterials 2022, 12, 4065

NiCo2S4 materials. Among them, carbon material has superior conductivity [170], which
can promote charge transfer. Due to the strong coupling between the carbon substrate
and metal-based oxide, the composite of carbon material and NiCo2S4 can effectively
increase the electrochemical activity of electrode material [171]. For example, Pezzotti
and co-workers synthesized a kelp-like NiCo2S4-C-MoS2 composite by hydrothermal and
solvothermal methods [172]. It had a specific capacitance of 1601 F g−1 at a current density
of 0.5 A g−1 and 75% of the initial specific capacity after 2000 cycles at a current density
of 2 A g−1. Shim et al. synthesized a hollow C-NiCo2S4 nano-lake sheet structure with a
one-step solvent method [173]. The specific capacitance reached 1722 F g−1 at a current
density of 1 A g−1, and 95.60% capacity retention after 5000 cycles at a current density of
10 A g−1.

In addition, since the electronegativity and atomic radius of P and S atoms are similar,
introducing P atoms results in lattice distortion, providing more active sites. Therefore,
the introduction of the P atom is also a way to improve the electrochemical activity of
materials. Based on the above, Liu et al. introduced P and C elements into a NiCo2S4
electrode material by a one-step solvothermal method and phosphating process [174]. As
the electrode material of SCs, it had a specific capacity of 1026 C g−1 at a current density of
1 A g−1, and an original capacity retention rate of 89% after 20,000 cycles at 10 A g−1. In
comparison, NiCo2S4 only reached 65% of the original capacity under the same conditions.
The ASC had an energy density of 131.40 W h kg−1 at a power density of 1355.37 W kg−1,
and 96.3% of the original capacity was maintained after 10,000 cycles at a current density of
2 A g−1.

Dai et al. prepared relatively stable ZnCo2O4@Ni [171]. The specific capacity of
Ni-Co-S composite electrode material was 1396.9 C g−1 at a current density of 1 A g−1,
while ZnCo2O4 nanorods and Ni-Co-S showed a specific capacity of 1025.5 C g−1 and
1026 C g−1, respectively, under the same conditions. At the same time, the device showed
a capacity retention rate of 85.5% after 1000 charge-discharge cycles at 4 A g−1. Bai et al.
prepared 2D Co3O4@Ni(OH)2 [175]. The SC synthesized by this method had a specific
capacitance of 98.4 F g−1 in the potential range of 0–1.7 V at 5 mA cm−2 and an energy
density of 40.0 W h kg−1 at a power density of 349.6 W g−1. In addition, the original
specific volume retention rate was 90.5% after 5000 cycles (1.61 A g−1). This proved that
the composite with core-shell structure can retain the advantages of each component, and
the synergistic effect between them can be used to improve the electrochemical properties
of the material. Based on the above, Zhang et al. synthesized layered core-shell polyporrole
nanotubes@NiCo2S4 materials by coating NiCo2S4 nanosheets on conductive polypyrrole
nanotubes [144]; the formation process is shown in Figure 15. The material had a specific
capacitance of 911 F g−1 at a current density of 1 A g−1 and maintained a capacitance of
592 F g−1 at a current density of 20 A g−1. After 4000 cycles at a current density of 5 A g−1,
the original capacitance was 93.2%.

Nanomaterials 2022, 12, x FOR PEER REVIEW 22 of 34 
 

 

materials. Among them, carbon material has superior conductivity [170], which can pro-
mote charge transfer. Due to the strong coupling between the carbon substrate and metal-
based oxide, the composite of carbon material and NiCo2S4 can effectively increase the 
electrochemical activity of electrode material [171]. For example, Pezzotti and co-workers 
synthesized a kelp-like NiCo2S4-C-MoS2 composite by hydrothermal and solvothermal 
methods [172]. It had a specific capacitance of 1601 F g−1 at a current density of 0.5 A g−1 
and 75% of the initial specific capacity after 2000 cycles at a current density of 2 A g−1. 
Shim et al. synthesized a hollow C-NiCo2S4 nano-lake sheet structure with a one-step sol-
vent method [173]. The specific capacitance reached 1722 F g−1 at a current density of 1 A 
g−1, and 95.60% capacity retention after 5000 cycles at a current density of 10 A g−1. 

In addition, since the electronegativity and atomic radius of P and S atoms are simi-
lar, introducing P atoms results in lattice distortion, providing more active sites. There-
fore, the introduction of the P atom is also a way to improve the electrochemical activity 
of materials. Based on the above, Liu et al. introduced P and C elements into a NiCo2S4 
electrode material by a one-step solvothermal method and phosphating process [174]. As 
the electrode material of SCs, it had a specific capacity of 1026 C g−1 at a current density of 
1 A g−1, and an original capacity retention rate of 89% after 20,000 cycles at 10 A g−1. In 
comparison, NiCo2S4 only reached 65% of the original capacity under the same conditions. 
The ASC had an energy density of 131.40 W h kg−1 at a power density of 1355.37 W kg−1, 
and 96.3% of the original capacity was maintained after 10,000 cycles at a current density 
of 2 A g−1. 

Dai et al. prepared relatively stable ZnCo2O4@Ni [171]. The specific capacity of Ni-
Co-S composite electrode material was 1396.9 C g−1 at a current density of 1 A g−1, while 
ZnCo2O4 nanorods and Ni-Co-S showed a specific capacity of 1025.5 C g−1 and 1026 C g−1, 
respectively, under the same conditions. At the same time, the device showed a capacity 
retention rate of 85.5% after 1000 charge-discharge cycles at 4 A g−1. Bai et al. prepared 2D 
Co3O4@Ni(OH)2 [175]. The SC synthesized by this method had a specific capacitance of 
98.4 F g−1 in the potential range of 0–1.7 V at 5 mA cm−2 and an energy density of 40.0 W h 
kg−1 at a power density of 349.6 W g−1. In addition, the original specific volume retention 
rate was 90.5% after 5000 cycles (1.61 A g−1). This proved that the composite with core-
shell structure can retain the advantages of each component, and the synergistic effect 
between them can be used to improve the electrochemical properties of the material. 
Based on the above, Zhang et al. synthesized layered core-shell polyporrole nano-
tubes@NiCo2S4 materials by coating NiCo2S4 nanosheets on conductive polypyrrole nano-
tubes [144]; the formation process is shown in Figure 15. The material had a specific ca-
pacitance of 911 F g−1 at a current density of 1 A g−1 and maintained a capacitance of 592 F 
g−1 at a current density of 20 A g−1. After 4000 cycles at a current density of 5 A g−1, the 
original capacitance was 93.2%. 

 

Figure 15. Schematic illustration of polyporrole nanotubes@NiCo2S4 core-shell formation. Repro-
duced with permission from Jun Zhang, Hierarchical polypyrrole nanotubes@NiCo2S4 nanosheets 
core-shell composites with improved electrochemical performance as supercapacitors; published by 
Elsevier, 2017 [144]. 

2.5. Other Cobalt-Containing Materials 
Among other cobalt-containing materials, Co3O4@NiMoO4 has been most studied be-

cause NiMoO4 has good conductivity, which can improve the energy storage capacity of 
Co3O4. 

Figure 15. Schematic illustration of polyporrole nanotubes@NiCo2S4 core-shell formation. Repro-
duced with permission from Jun Zhang, Hierarchical polypyrrole nanotubes@NiCo2S4 nanosheets
core-shell composites with improved electrochemical performance as supercapacitors; published by
Elsevier, 2017 [144].

87



Nanomaterials 2022, 12, 4065

2.5. Other Cobalt-Containing Materials

Among other cobalt-containing materials, Co3O4@NiMoO4 has been most studied
because NiMoO4 has good conductivity, which can improve the energy storage capacity
of Co3O4.

Zhang et al. used hydrothermal and annealing methods to synthesize flower-like
hybridized arrays on nickel foam [176]. Using Co3O4 nanowire arrays as scaffolds, NiMoO4
nanosheets were grown on the surface to form a new type of 3D layered battery electrode
Co3O4@NiMoO4. The specific capacity of the hybrid array of the prepared Co3O4@NiMoO4
was 636.8 C g−1 at 5 mA cm−2. Moreover, the retention rate was 84.1% at 20 mA cm−2

after 2000 cycles and showed excellent electrochemical performance. The prepared hybrid
capacitor (Co3O4@NiMoO4 as the positive electrode and activated carbon as the negative
electrode) reached a high energy density of 58.5 W h kg−1 at 389 W kg−1.

Yang et al. adopted a similar method using mesoporous Co3O4 nanowires directly
grown on the nickel foam as the skeleton to support the NiMoO4 nanosheet coating,
and obtained Co3O4@NiMoO4 [177]. The high specific capacitance of the synthesized
Co3O4@NiMoO4 was 3.61 F cm−2 at a current density of 2 mA cm−2. After 9000 cy-
cles, about 101.3% of the initial capacity was still retained. Such a unique structure can
significantly improve the permeability of electrolyte ions in the material.

Li et al. designed and synthesized nanowire/nanosheet arrays directly grown on
carbon cloth by a two-step hydrothermal method [178]. Growing uniformly on carbon cloth
collectors, the crystalline Co3O4 nanowires were used as backbone supports and provided
reliable electrical connections for NiMoO4 nanosheet coatings with mesoporous structures.
This enabled NiMoO4 to be fully utilized by creating faster electron/ion conductivity and
electroactive sites. When the current density was 3 mA cm−2, the specific capacitance of
the prepared 3D hybrid nanocomposites was 3.61 F cm−2, and when the current density
increased from 3 mA cm−2 to 15 mA cm−2, the capacitance retention was 82%. The
combined effect of the 3D nanostructure and the pseudo capacitance of the electrode
materials resulted in superior electrochemical performance.

Cai et al. fabricated a 3D structure Co3O4@NiMoO4 using a similar method as
above [179]. A shown in Figure 16, the prepared material showed a significantly en-
hanced surface capacitance of 5.69 F cm−2 when the current density was 30 mA cm−2,
which was five times that of the original Co3O4 electrode (1.10 F cm−2). With a power
density of 5000 W kg−1, the energy density of the hybrid electrode was 56.9 W h kg−1.
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(b) Impedance Nyquist plots of the Co3O4 electrode and the Co3O4@NiMoO4 hybrid electrode
before and after 3000 cycles. Reproduced with permission from Daoping Cai, Three-Dimensional
Co3O4@NiMoO4 Core/Shell Nanowire Arrays on Ni Foam for Electrochemical Energy Storage;
published by ACS Publications, 2014 [179].

Dong et al. first prepared a layered tubular yolk-shell composite by electrospinning
and hydrothermal methods, and then calcination to prepare a Co3O4@NiMoO4 compos-
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ite [180]. As shown in Figure 17, the Co3O4@NiMoO4 composite was made into an electrode
with a specific enhanced capacitance of 913.25 F g−1 at a high current density of 10 A g−1,
and a capacitance retention of 88% due to its unique structure and chemical composi-
tion. When the current density changes from 0.5 A g−1 to 20 A g−1, it had remarkable
cycle stability.

Nanomaterials 2022, 12, x FOR PEER REVIEW 24 of 34 
 

 

When the current density changes from 0.5 A g−1 to 20 A g−1, it had remarkable cycle sta-
bility. 

 
Figure 17. Specific capacitance of CO@NMO, CO/C@NMO, NiMoO4 andCo3O4 electrodes. Repro-
duced with permission from Ping Yang, Synthesis of hierarchical tube-like yolk-shell Co3O4@Ni-
MoO4 for enhanced supercapacitor performance; published by Elsevier, 2018 [180]. 

Hong et al. prepared a uniform 2D Co3O4 structure by a simple chemical etching as-
sisted method followed by thermal annealing, and then synthesized Co3O4@NiMoO4 by a 
simple hydrothermal method [181]. The specific capacitance of the 3D hybrid nanostruc-
tures was1526 F g−1 at the current density of 3 mA cm−2, and the capacitance retention was 
72% when the current density increased from 3 mA cm−2 to 30 mA cm−2. On this basis, a 
Co3O4@NiMoO4 ASC was designed, and the maximum energy density of activated carbon 
was 37.8 W h kg−1 when the power density was 482 W kg−1. 

The above describes another cobalt-containing material, Co3O4@NiMoO4. Among 
them, NiMoO4 can improve the electrochemical performance of Co3O4. The electrochemi-
cal performance and stability of the two materials can be greatly improved by rational 
design of their microstructure, which has great potential. 

3. Summary and Outlook 
In conclusion, this paper reviews the application of cobalt-based nanomaterials in 

supercapacitors and presents the contributions of many scholars in this field in recent 
years. These scholars have tried many approaches to improve the electrode materials and 
enhance the supercapacitor performance. The properties of cobalt-based materials and the 
issues related to supercapacitors are also discussed. 

In this paper, we first introduce the classification and working principle of SCs. Ac-
cording to the charge storage mechanism of SCs, they can be classified into three catego-
ries: EDLCs, PCs and battery-type capacitors. EDLCs store charge through a physical ad-
sorption process controlled by reversible adsorption/desorption of electrolyte ions at the 
electrode/electrolyte interface without any chemical reaction involved. In contrast, PCs 
and battery-type capacitors benefit from Faraday redox reactions and have a unique 
charge storage mechanism with much larger capacitance and power density than EDLCs. 
Among the many electrode materials for these SCs, common cobalt-based materials in-
clude cobalt oxide, cobalt hydroxide, and cobalt-containing ternary metal oxides. Among 
them, the theoretical specific capacitance of Co3O4 (3560 F g−1) is slightly higher than that 
of Co(OH)2 (3460 F g−1), and electrodes made from Co3O4 usually exhibit better cycling 
performance than that of Co(OH)2. Compared to these two substances, the ternary metal 
oxides (MnCo2O4, NiCo2O4 and ZnCo2O4) show significantly higher performance due to 
the synergistic effect of the two transition metals coupled together. 

To further enhance the performance of the above cobalt-based materials, the main 
methods are: (1) designing the morphology of the electrode materials; (2) introducing 

Figure 17. Specific capacitance of CO@NMO, CO/C@NMO, NiMoO4 andCo3O4 electrodes. Repro-
duced with permission from Ping Yang, Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4

for enhanced supercapacitor performance; published by Elsevier, 2018 [180].

Hong et al. prepared a uniform 2D Co3O4 structure by a simple chemical etching
assisted method followed by thermal annealing, and then synthesized Co3O4@NiMoO4 by
a simple hydrothermal method [181]. The specific capacitance of the 3D hybrid nanostruc-
tures was1526 F g−1 at the current density of 3 mA cm−2, and the capacitance retention was
72% when the current density increased from 3 mA cm−2 to 30 mA cm−2. On this basis, a
Co3O4@NiMoO4 ASC was designed, and the maximum energy density of activated carbon
was 37.8 W h kg−1 when the power density was 482 W kg−1.

The above describes another cobalt-containing material, Co3O4@NiMoO4. Among
them, NiMoO4 can improve the electrochemical performance of Co3O4. The electrochemical
performance and stability of the two materials can be greatly improved by rational design
of their microstructure, which has great potential.

3. Summary and Outlook

In conclusion, this paper reviews the application of cobalt-based nanomaterials in
supercapacitors and presents the contributions of many scholars in this field in recent years.
These scholars have tried many approaches to improve the electrode materials and enhance
the supercapacitor performance. The properties of cobalt-based materials and the issues
related to supercapacitors are also discussed.

In this paper, we first introduce the classification and working principle of SCs. Ac-
cording to the charge storage mechanism of SCs, they can be classified into three cate-
gories: EDLCs, PCs and battery-type capacitors. EDLCs store charge through a physical
adsorption process controlled by reversible adsorption/desorption of electrolyte ions at
the electrode/electrolyte interface without any chemical reaction involved. In contrast,
PCs and battery-type capacitors benefit from Faraday redox reactions and have a unique
charge storage mechanism with much larger capacitance and power density than EDLCs.
Among the many electrode materials for these SCs, common cobalt-based materials include
cobalt oxide, cobalt hydroxide, and cobalt-containing ternary metal oxides. Among them,
the theoretical specific capacitance of Co3O4 (3560 F g−1) is slightly higher than that of
Co(OH)2 (3460 F g−1), and electrodes made from Co3O4 usually exhibit better cycling
performance than that of Co(OH)2. Compared to these two substances, the ternary metal

89



Nanomaterials 2022, 12, 4065

oxides (MnCo2O4, NiCo2O4 and ZnCo2O4) show significantly higher performance due to
the synergistic effect of the two transition metals coupled together.

To further enhance the performance of the above cobalt-based materials, the main
methods are: (1) designing the morphology of the electrode materials; (2) introducing other
elements, such as S, P, and Mn, among others; (3) compounding with other materials, and
(4) improving the preparation process. First, designing unique morphologies is an effec-
tive and commonly used means to enhance the electrochemical performance of electrode
materials. Microstructures such as nanoparticles, nanowires, nanotubes, nanosheets, and
nanospheres are mainly used in the many studies reported in this paper. Among these
morphologies, mesoporous structures play a major role. On the one hand, a mesoporous
structure can significantly increase the surface area and shorten the diffusion length for
electron and ion transport, thus accelerating the redox process and improving pseudo-
capacitance performance. On the other hand, it can moderate the volume change during
the charging/discharging process, thus improving the cycling capability. Second, the
introduction of other elements can further improve the performance of cobalt-based nano-
materials. As mentioned above, transition metal sulfides have significantly higher electrical
conductivity and redox ability than corresponding metal oxides. Meanwhile, compounding
cobalt-based nanomaterials with other materials can combine the advantages of both mate-
rials and improve the performance of electrodes. As mentioned above, many scholars have
compounded cobalt-based nanomaterials with carbon-based materials, which are very com-
monly used today. Among the many carbon-based materials, graphene, which has a large
specific surface area and excellent mechanical and electrochemical properties, is an ideal
carrier. As a result, many graphene-cobalt-based nanomaterial composites have emerged
in recent years. Finally, the electrode performance can also be enhanced by improving the
current process. Among the many studies presented in this paper, hydrothermal methods
have been widely used, which can easily alter the morphology and structure of nanomate-
rials. In addition, processes such as electrochemical deposition, electrostatic spinning, and
sol-gel methods are also widely used due to their advantages in preparing nanostructures.

Some researchers have investigated the effects of some external factors (e.g., ultraviolet
radiation, annealing temperature, deposition potential, etc.) on the performance of SCs.
Ultraviolet irradiation increases the crystallinity of raw materials, and the electrochemical
performance of supercapacitors made from ultraviolet-irradiated electrode materials was
significantly improved [182]. During the annealing process, the grains agglomerate to
form large particles, resulting in a uniform and dense porous microstructure [183]. This
porous microstructure facilitates electrolytic ion insertion and electron transfer at the
electrode/electrolyte interface, resulting in effective charge storage. As for the deposition
potential, it has been shown that lower deposition potential leads to lower mass transfer
rate and lower electrochemical performance.

In recent years, the field of energy storage devices has been developing rapidly, and
sodium-ion batteries, potassium-ion batteries, and various kinds of SCs are being widely
and deeply researched, among which miniature SCs (MSCs) are gradually attracting the
attention of many researchers. MSCs are miniaturized SCs that have a similar composition
to conventional SCs, but with significant structural differences. Conventional SCs have a
vertical sandwich structure with inherent limitations including short-circuiting within a
narrow distance between two electrodes, increased ion transport resistance, and high mass
loading of active materials at an appropriately long distance [184,185]. By contrast, MSCs
have a planar structure with a narrow insulating gap between the two electrodes, which
avoids the use of a separator. This increases the mass loading of the active material, resulting
in high power and energy density, low ion transport resistance, and short electrolyte ion
diffusion distance [186]. Due to their small size and excellent electrochemical properties,
MSCs could soon be widely used in various applications. Therefore, it is important to study
the application of cobalt-based nanomaterials in MSCs.

It should also be noted that studies have shown that a deficit in cobalt supply could
occur as early as 2030 [187]. This means that the advantage of the low cost of cobalt-based

90



Nanomaterials 2022, 12, 4065

materials compared to RuO2 will gradually decrease. The solutions to this problem are as
follows: (1) finding alternative materials, such as Ni, Mn, Zn, and other transition group
metals with good performance; (2) hybridizing cobalt-based materials with conductive ma-
terials with good performance to reduce the content of cobalt in monoliths while ensuring
performance (there have been studies on doping polyaniline, polypyrrole, carbon nan-
otubes, and graphene, among other substances, into cobalt-based materials), and (3) further
developing more efficient, convenient, and low-cost SCs recycling technology.
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Abstract: Li-rich oxides are promising cathode materials for Li-ion batteries. In this work, a number
of different compositions of Li-rich materials and various electrochemical testing modes were inves-
tigated. The structure, chemical composition, and morphology of the materials synthesized were
studied by XRD with Rietveld refinement, ICP-OES, and SEM. The particle size distributions were
determined by a laser analyzer. The galvanostatic intermittent titration technique and galvanostatic
cycling with different potential limits at various current densities were used to study the materials.
The electrochemical study showed that gradual increase in the upper voltage limit (formation cycles)
was needed to improve further cycling of the cathode materials under study. A comparison of the
data obtained in different voltage ranges showed that a lower cut-off potential of 2.5 V (2.5–4.7 V
range) was required for a good cyclability with a high discharge capacity. An increase in the low
cut-off potential to 3.0 V (3.0–4.8 V voltage range) did not improve the electrochemical performance
of the oxides and, on the contrary, considerably decreased the discharge capacity and increased the
capacity fade. The LMR35 cathode material (Li1.149Ni0.184Mn0.482Co0.184O2) demonstrated the best
functional properties among all the compositions studied.

Keywords: Li-rich cathode material; lithium-ion battery; voltage and capacity fade; testing mode

1. Introduction

Today, there is continued interest in the development of energy storage devices,
especially supercapacitors and lithium-ion batteries (LIBs) [1–3]. Li-rich cathode materials
for LIBs of the general formula Li1+xM1−xO2 (M = Ni, Mn, Co, etc.) are superior to layered
NCM-like cathode materials due to much greater specific capacities and energies. The
high capacity of Li-rich materials is provided by the oxygen redox process in addition
to the redox reactions of transition metals (TM) when cycling to a high voltage (above
4.5 V) [4–9]. The first charge–discharge cycle of these materials to a high voltage generates a
high capacity, however, with a large irreversibility, and leads to a structural transformation,
whose nature is the subject of many recent discussions [4,8,10]. In the literature, the
structural transformation is attributed to partial losses of oxygen and lithium mainly
from the particle surface [3,11,12]. An increase in the discharge capacity is correlated
with the formation of an electrochemically active manganese-containing phase [13,14].
During further cycling, TM ions migrate to the lithium sites, which gradually leads to the
transformation of the layered structure to the spinel-like one [15,16].

The structure of Li-rich materials is considered in the literature as both a two-phase
composite (nanocomposite) consisting of the trigonal (sp. g. R3m) and the monoclinic (sp. g.
C2/m) phases [17–20] and a solid solution based on the monoclinic [21,22] or the trigonal
phase [23]. The formation of intergrowth structures and mirror twins is also discussed in
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the literature [23,24]. The structure complexity, a large first cycle irreversibility, and the
structural transformation leading to a voltage decay and capacity fade do not allow one to
apply Li-rich cathode materials in practice [10,25]. For the second decade, scientists have
actively investigated the mechanisms of degradation of Li-rich cathode material [26–28];
however, a number of processes taking place during electrochemical cycling remain unclear.

It should be noted that many controversial studies concerning both the structure and
functional properties of the Li-rich materials were published, which is likely due to the
influence of many factors such as the synthesis method and conditions, morphology, tap
density, etc. [29–31]. Moreover, the cell assembly, including the cell components, and the
cycling mode, and other factors affect the functional properties of the cathode materials.

To improve the electrochemical properties of the Li-rich cathode material, it is neces-
sary to understand the nature of the structural transformations and to find the methods to
suppress unfavorable processes. The variation of the main components (Li, Mn, Ni, Co)
is one of the methods to influence on the structure and properties of the Li-rich materials.
Herein, we studied an effect of the different Li/(Mn + Ni + Co) ratios from 1.2 to 1.65 on
the morphology, structure, and electrochemical properties of the materials such as cathodes
for LIBs. We also studied the influence of the different testing modes, including so called
formation cycles, in which the upper voltage limit increased gradually from cycle to cycle
at different current densities. It was found that the slow formation cycles were required
for the better electrochemical performance of the Li-rich oxides. All the materials were
also tested in three different voltage ranges to estimate contributions of the low and high
voltages to the material degradation. It was found that the cycling to the low voltage
limit of 2.5 V was necessary to obtain the high capacity and stable cyclability of the Li-rich
cathode materials.

2. Materials and Methods

The cathode materials were synthesized by coprecipitation of the transition metal
(nickel, manganese, cobalt) carbonates from the corresponding nitrate salts. Potassium or
sodium carbonate was used as a precipitator. The synthesis procedure was described in
detail in our previous works [32,33]. The carbonate precursor was thoroughly mixed with
lithium hydroxide monohydrate in ethanol and annealed at 480 ◦C for 6 h and 900 ◦C for
12 h. The targeted compositions of the cathode materials with sample designations and
metal ratios are listed in Table 1.

Table 1. Designations of the samples and their targeted compositions.

Samples Targeted Composition Li/(Mn + Ni + Co)

LMR20 Li1.091Ni0.242Mn0.424Co0.242O2 1.20

LMR35 Li1.149Ni0.184Mn0.482Co0.184O2 1.35

LMR50 Li1.200Ni0.134Mn0.534Co0.134O2 1.50

LMR65 Li1.245Ni0.088Mn0.579Co0.088O2 1.65

The cathode materials obtained were characterized by XRD with the structure pa-
rameter refinement by the Rietveld method. The X-ray diffraction studies were carried
out with a Bruker D8 Advance (Bruker AXS, Germany, Cu Kα, (Ni filter), λ = 0.15418 nm,
40 kW/40 mA, LynxEye 1D detector) diffractometer at room temperature in the 2θ range of
10◦–90◦ with a step of 0.02◦. The data collection was performed using the BrukerDIFFRAC-
plus software package (Bruker AXS, Karlsruhe, Germany); the analysis was carried out
with the EVA and TOPAS programs. The morphology of the materials was studied by SEM
(NVision-40 (Carl Zeiss, Oberkochen, Germany)) with EDX microanalysis. The size particle
distribution analysis was performed with the use of a laser particle sizer Analysette 22 Mi-
croTec Plus (Idar-Oberstein, Germany). The compositions of the synthesized compounds
were determined by ICP-OES (Thermo Scientific iCAP XP, Waltham, MA, USA).
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All the compounds synthesized were tested in CR2032 coin-type cells as the active
material (92 wt%). Polyvinylidene difluoride Solef 513 (Solvay, 3 wt%) and carbon black
Super C65 (Timcal, 5 wt%) were used as a binder and electroconductive additive, respec-
tively. The lithium foil was used as an anode, and two layers of Celgard 2325 were used as
a separator. The used electrolyte (TC-E918, Tinci, Guangzhou, China) contained LiPF6 salt
dissolved in a mixture of ethylene, diethyl, ethylmethyl and propylene carbonates.

The electrochemical studies were performed using a Neware CT-4008W-5V10mA
battery tester in the galvanostatic cycling mode in the voltage ranges of 2.5–4.7, 2.5–4.3, and
3.0–4.8 V at the current densities of 20 and 80 mA/g. The results of all the electrochemical
tests were averaged over 4–6 cells. The formation cycles (by 2 cycles in the ranges of 2.5–4.3,
2.5–4.5, 2.5–4.6, and 2.5–4.7 V, successively) were conducted at the current density of 20
or 80 mA/g before the further cycling tests. The cycling tests at the current density of
80 mA/g without formation cycles were performed in the range of 2.5–4.7 V. The rate
capability was examined in the range of 2.5–4.7 V, and the current densities were from 80 to
480 mA/g.

The galvanostatic intermittent titration (GITT) was performed during discharge pro-
cess to estimate the resistance values. At first, the formation cycles were also carried out;
and then the samples were cycled in the required voltage range. The cell was discharged at
a constant current during 30 min succeeded by the current interruption (relaxation time)
for 60 min, which is sufficient to achieve an equilibrium voltage value. The steps were
repeated four times within a discharge, i.e., full discharge time was 120 min. From the
GITT results, we estimated the resistance values by the following procedure. At first, the
voltage was measured at the end of each discharge step (U1). Then, the cut-off voltage was
measured immediately after the current interruption (U2) and at the end of relaxation time
(U3). The cell resistances were calculated from the voltage differences between U2 and U1
(Rohm.), and U3 and U2 (Rpol.) according to Equations (1) and (2), respectively:

Rohm. =
U2 − U1

I
(1)

Rpol. =
U3 − U2

I
(2)

where I-discharge current (A).

3. Results and Discussion
3.1. Chemical and Structural Analyses

The SEM images of the carbonate precursors for the Li-rich materials of different
compositions are presented in Figure S1. All precursors were spheric-like agglomerates.
The agglomerates became larger in the samples with a larger manganese content. The
average agglomerate size of the LMR20 carbonate precursor was 8 µm, but there were also
smaller agglomerates (size range of 0.5–1 µm). The average agglomerate size for the LMR35
precursor was about 8 µm, and there were also small agglomerates 1–2 µm in size. The
same average value for the LMR50 precursor was 5–12 µm, whereas it was 15–16 µm for
LMR65. The narrowest size distribution was observed for the LMR65 carbonate precursor.
The average primary particle sizes for the LMR65 and LMR50 precursors were 400–500 and
40–50 nm, respectively. The same values for LMR35 and LMR20 were less than 50 nm.

The cathode materials, obtained by a solid-state reaction with lithium hydroxide monohy-
drate and following annealing, maintained the shape and size of the carbonate agglomerates
(Figure 1). The primary particle sizes varied in the ranges of 250 nm–2 µm, 300–800 nm,
400 nm–1 µm, and 400 nm–2.5 µm for LMR20, LMR35, LMR50, and LMR65, respectively.
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Figure 1. SEM micrographs of the cathode materials at different magnifications: (a) LMR20,
(b) LMR35, (c) LMR50, and (d) LMR65.

The differential size distributions for the cathode materials are shown in Figure S2.
The numeric values d10, d50, d90 are listed in Table 2. As is observed, the agglomerates
increase with an increase in the manganese content in the material composition. At the
same time, the size distributions become narrower. Width of agglomerate size distribution
characterized by (d90-d10)/d50 value is very close to LMR50 and LMR65.

Table 2. The agglomerate size distribution for the Li-rich samples.

LMR20 LMR35 LMR50 LMR65

d10, µm 3.50 4.56 6.23 8.75

d50, µm 8.11 8.54 10.88 16.97

d90, µm 15.97 15.26 17.64 27.15

(d90-d10)/d50 1.54 1.25 1.05 1.08

The cathode material compositions determined by ICP-OES were close to the targeted
compositions (Table S1).

Most of the peaks in the XRD patterns can be described by both the trigonal structure
with R3m space group and the monoclinic structure with C2/m space group. In the range
of a 20–30◦ 2θ in the LR35, LR50, LR65 diffractograms, the broadened, low-intensity peaks
were observed, characteristic of a superlattice monoclinic phase with ordering of some
lithium ions in the transition metal layers (Figure 2). The intensities of these peaks increased
in the order of LMR35, LMR50, LMR65. No superstructural peaks were observed in the
X-ray pattern of LMR20, which may indicate a small number of the layers with ordered
Li ions. We used the model of the solid solution based on the monoclinic phase for the
Rietveld refinement (Table 3).
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Figure 2. XRD patterns for the cathode materials with different compositions: (a) LMR20, (b) LMR35,
(c) LMR50, (d) LMR65.

Table 3. Crystallographic data and the unit cell parameters from the Rietveld refinement (C2/m space
group) for the cathode materials.

LMR20 LMR35 LMR50 LMR65

Rwp, % 1.76 2.84 2.10 2.40

Rp, % 1.28 2.22 1.60 1.81

GOOF, % 3.19 5.05 4.58 5.59

a, Å 4.9441(4) 4.9363(4) 4.9317(4) 4.9305(3)

b, Å 8.5637(8) 8.5502(6) 8.5422(8) 8.5401(6)

c, Å 5.0245(14) 5.0218(4) 5.0216(4) 5.0233(4)

β, Å 109.226(3) 109.264(3) 109.283(2) 109.303(2)

V, Å3 200.87(7) 200.08(3) 199.68(4) 199.63(3)

The dependence of the peak broadening on the diffraction angle was described by
the Williamson–Hall approach. The larger was the manganese content and the smaller
were the nickel and cobalt concentrations in the composition of the cathode materials, the
smaller were the unit cell parameters.

3.2. Electrochemical Characterization

Three different protocols of the electrochemical tests were used to study the samples.
Protocol 1 included the formation cycles consisting of the successive cycles by two samples
in the ranges of 2.5–4.3, 2.5–4.5, 2.5–4.6, and 2.5–4.7 V at the current density of 20 mA/g;
protocol 2 contained the same successive formation cycles at the current density of 80 mA/g;
and protocol 3 constituted the cycling without formation.

A comparison of the formation cycles (LMR50 sample) at different current densities
(protocols 1 and 2) is presented in Figure 3.
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Figure 3. Charge–discharge curves of the formation cycles for LMR50 sample at the current densities
of (a) 20 mA/g (protocol 1) and (b) 80 mA/g (protocol 2).

As is seen, the formation cycles at the current density of 80 mA/g have a negative
effect on the discharge capacity value compared with the formation cycles at the current
density of 20 mA/g. The discharge capacity was about 240 mAh/g at the second formation
cycle to 4.7 V (the eighth cycle in total, Figure 3) at the current density of 20 mA/g, whereas
the discharge capacity was only 140 mAh/g at 80 mA/g in the same cycle. Notice also
that the highest irreversible capacity at 20 mA/g was observed at the first formation cycle
at 2.5–4.5 V (the third cycle in total), and the highest irreversible capacity at 80 mA/g
(protocol 2) was observed in the later cycles (first cycle at 2.5–4.6 V, i.e., the fifth cycle in
total). This fact can indicate that the activation of the materials is kinetically hindered.

The differential capacity curves (dQ/dV) for the third, fifth, seventh, and eighth
cycles performed according to protocol 1 and protocol 2 for the sample LMR50 are shown
in Figure 4.
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The peak in the anode curve in the region of 4.5–4.6 V is responsible for the oxidation
of O2− [34]. This peak appeared later for the samples prepared by protocol 2, which
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correlated with the irreversible capacities due to a partial oxygen loss. The activation also
led to the formation of an electrochemically active manganese-containing phase, which
manifested itself by additional cathodic and anodic peaks in the range of 3.2–3.4 V [13,35].
These peaks appeared later in case of protocol 2. The samples prepared according to this
protocol demonstrated worse performance in the course of further cycling.

All the cathode materials were cycled at the current density of 80 mA/g according to
the three different protocols described above. The materials formed by protocol 2 worked
no more than 20 cycles, and their discharge capacities at this current density were about
20–30 mAh/g (the data are not represented graphically).

The cycling profiles at 80 mA/g for the oxides tested by protocol 1 and protocol
3 are compared in Figure 5. LMR65 had very poor electrochemical performance, so its
cycling results are not shown in all the graphs. The specific capacity and energy of LMR50
and LMR35 gradually increased in the first 10–20 cycles (protocol 3), whereas for LMR20,
these values gradually decreased from the first cycle (Figure 5c,d). The samples after the
formation cycles according to protocol 1 (Figure 5a,b) demonstrated considerably higher
specific capacities and energies than the samples without this preliminary procedure.
Notice also that LMR35 showed better cyclability compared with the other two samples.
In our opinion, the formation cycles with successive voltage increase give a possibility to
smooth the inherent transformation of the initial structure in the course of activation. The
confirmation of this assumption is the difference in the behavior of LMR50 and LMR35
samples. The structure transformation in LMR35 occurred more gradually (Figure 5c,d),
which led to a better cyclability of this material.
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Figure 5. Cycling behavior of the cathode materials with different compositions cycled according
to (a,b) protocol 1 and (c,d) protocol 3 at the current density of 80 mA/g. Designations: 1—LMR20,
2—LMR35, 3—LMR50, and 4—LMR65.

The dQ/dV curves for the first, second, and 100th cycles for the materials without
formation and the 100th cycle for the samples cycled by protocol 1 are shown in Figure 6.
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Apparently, the oxygen oxidation in the samples without formation cycles occurred
only in the first cycle (Figure 6a), the anodic peak in the range of 4.5–4.6 V was not observed
in the second cycle (Figure 6b). At the same time, the structure transformation continued in
the further cycles, as evidenced by increasing the discharge capacity and appearance of the
new cathodic peak at 3.2–3.4 V that was described above. This can indicate that an increase
in the capacity in the further 10–20 cycles is provided by the manganese-containing species.
We did not observe the similar behavior for the sample LMR20 with the lowest manganese
concentration from the samples studied. This sample showed only a small shoulder in the
area of 3.2–3.4 V to the second cycle and a very broad low-intensity cathodic peak in the
area of 2.8–3.2 V to the 100th cycle.

The dQ/dV curves for the 100th cycle for the same materials without the formation
cycles (protocol 3) and formed by protocol 1 are shown in Figures 6c and 6d, respectively.
The intensities of the peaks were higher for the samples after preliminary slow formation
cycles at 20 mA/g (Figure 6d), which correlated with the higher capacities of these samples.
The additional peak in the range of 4.0–4.1 V was observed in the cathodic curve of LMR50
and especially in that of LMR35, where its value was considerably larger (Figure 6d). This
peak was attributed in the literature to reversible oxygen activity [36]. Therefore, the LMR35
oxide most likely showed better cyclability and larger values of the discharge capacity
(energy) due to better reversibility of the oxygen redox process.

The materials tested by protocol 1 were also cycled at 20 mA/g (Figure 7).
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As was discussed above, LMR65 had very poor electrochemical performance and its
data were not shown in the Figure 7. Only 8–10 cycles could be obtained for this material at
20 mA/g. LMR50 showed the highest initial capacity and energy values from the samples
under study, but the capacities of LMR35 and LMR50 became comparable to the 20th cycle
(Figure 7a,b). At the same time, the energy values for LMR35 material became higher after
20 cycles due to a lower voltage decay. It is significant that the capacity fade for LMR35
material to the 70th cycle was only 1%, which is comparable or better than in the literature
data for the Li-rich cathode materials [37–39]. The energy fade for LMR35 was 10% to the
same cycle because of the voltage decay. The energy fades for LMR50 and LMR20 were 20
and 34%, respectively.

The preliminary formation cycles according to protocol 1 also positively affected
the further cycling at a low rate of 20 mA/g, as was observed for the cycling at the
current density of 80 mA/g. However, the formation cycles performed at the high current
density (protocol 2) worsened the electrochemical performance of the materials compared
with the samples cycled both according to protocol 1 and protocol 3. Apparently, the
formation cycles at the low current density led to the structure capable to reversibly
oxidize/reduce oxygen.

To study the oxidation/reduction processes taking place during charge/discharge,
three compositions (LMR20, LMR35, LMR50) after slow formation cycles (protocol 1) were
cycled in the three different voltage ranges of 2.5–4.3, 3.0–4.8 (Figure 8), and 2.5–4.7 V
(Figure 5a,b). Note that a comparison of the cycling behavior in the voltage ranges of
2.5–4.7 and 2.5–4.8 V showed the minimal difference in the capacity values and capacity
retentions for all the samples. The range of 2.5–4.3 V reflects the effect of an increase in the
resistance due to a deep discharge. The range of 3.0–4.8 V shows the effect of deep charges,
which may contribute to the structural transformations. During cycling in the wide voltage
range of 2.5–4.7 V both factors may contribute to the capacity fade.

The comparison of the cycling profiles in the different voltage ranges showed that
the capacity fade was not maximal in the widest voltage range of 2.5–4.7 V, as might be
expected. However, we observed the maximum of the capacity fade in the 3.0–4.8 V voltage
range. The capacity retention for all the materials to the 110th cycle was only about 50% for
the 3.0–4.8 V voltage range (Figure 8c,d). The capacity retentions to the same cycle in the
ranges of 2.5–4.7 and 2.5–4.3 V were, respectively, 76, 90, and 87% and 92, 89, and 85% for
LMR20, LMR35, and LMR50. It should be noted, that the capacity retentions for LMR35 and
LMR50 were somewhat lower in the range of 2.5–4.3 V than those in the voltage range of
2.5–4.7 V. The sample LMR20, on the contrary, showed the better cyclability in the range of
2.5–4.3 V. This correlates with the lowest manganese content in this sample, which formally
corresponds to the lowest content of the monoclinic phase (or the ordered layers containing
transition metals and Li ions). The voltage decay is maximal for all the cathode materials in
the 2.5–4.7 V voltage range due to formation of the electrochemically active phase with a
lower redox potential and an increase in the polarization resistance in the course of cycling.
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The charge–discharge profiles and the dQ/dV curves in the 100th cycle for the three
different voltage ranges are shown in Figure 9.
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The redox peaks in the dQ/dV curves (Figure 9b,d) for all the samples cycled in the
ranges of 2.5–4.3 and 2.5–4.7 V were observed at different potentials. The cathodic peak for
the samples cycled in the range of 2.5–4.7 V was broadened and shifted to lower potentials,
whereas that for the 2.5–4.3 V range slightly changed with cycling. The LMR35 sample had
the additional cathodic peak at 4.1–4.2 V in the range of 2.5–4.7 V. The discharge capacities
obtained in the range of 3.0–4.8 V in the 100th cycle for all the samples were considerably
lower (Figure 9e) than those in the voltage ranges of 2.5–4.3 and 2.5–4.7 V. The redox process
corresponding to the low-voltage species could not occur in this range, and the related
cathodic peaks were not displayed in the dQ/dV plots (Figure 9f). Therefore, to carry out
the cycling tests at the lower potential limit higher than 2.5 V is impractical.

The polarization resistances were calculated for all the cathode materials in the differ-
ent voltage ranges from the GITT data. As a rule, the polarization resistance characterizes
the processes associated with the surface concentration changes due to the hindered diffu-
sion of lithium ions from the particle surface to the bulk [40].

The polarization resistances calculated for the cell discharge vs. the voltage values
are shown in Figure 10. In the voltage range of 2.5–4.3 V, the resistance increased in the
course of discharge in each cycle for all the samples. In the range of 2.5–4.7 V, the character
of the curves was more complex and varied depending on the cycle number for all the
materials. In this range, we also observed an increase in the resistance during the first cycle.
However, from the 45th cycle, the character of the resistance dependence changed within
a cycle showing an increase at both the beginning and the end of the cycle. At the same
time, the resistance values were lower in the wide voltage range than those in the range of
2.5–4.3 V. The least changes within a cycle were observed for LMR35, which demonstrated
the better cyclability.
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The rate capabilities in the range of 2.5–4.7 V were studied for all the materials with
the different compositions (Figure S3). The LMR35 sample showed a significantly lower
discharge capacity fade at the high current densities compared to the other samples.

4. Conclusions

The effect of the different Li-rich compositions on the properties and electrochemical
performance of the materials was investigated; the Li/(Mn + Ni + Co) ratios were varied
from 1.2 to 1.65. The oxides were synthesized by coprecipitation of TM carbonates followed
by a solid-state reaction with a lithium source. Different schemes of the electrochemical tests
were used to study these materials. Some of the tests included so-called formation cycles—
eight cycles with gradual increasing of the upper voltage limit at the different current
densities. In addition, we studied also the electrochemical behavior of the materials in the
three voltage ranges, namely, 2.5–4.3, 2.5–4.7, and 3.0–4.8 V. It was found that successive
formation cycles at the low current density (20 mA/g, 0.1C) are necessary to obtain the high
discharge capacities and stable cycling of the materials under study. The electrochemical
tests in the three different voltage ranges were performed after preliminary formation
cycles described above. The results of this study showed that the largest capacity fade
and the lowest capacities during cycling are observed in the range of 3.0–4.8 V, whereas
the cycling in the widest voltage range of 2.5–4.7 V demonstrates very good cyclability
with the high discharge capacities. This behavior of the materials under study may be
explained by the formation of the electrochemically active phase with the redox processes
at a low potential as a result of the structural transformations during the first cycles. These
structural changes, although leading to a voltage decay, provide an additional discharge
capacity. In addition, the structures formed by the slow preliminary formation revealed
a greater reversibility of the anionic redox process, which also might contribute to the
discharge capacity. Comparing the 2.5–4.3 V and 2.5–4.7 V ranges, it may be noted that the
polarization resistance in the 2.5–4.3 V range increased significantly within one discharge
cycle, as opposite to that when the samples cycled in the 2.5–4.7 V range. In this voltage
range, the resistance values were lower (except LMR50) than those the 2.5–4.3 V range.
The LMR35 sample (Li/(Mn + Ni + Co) = 1.35) showed the best electrochemical properties
among all the other samples, likely due to a lower polarization resistance, a more gradual
structure transformation, and a greater reversibility of the oxygen redox process.
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//www.mdpi.com/article/10.3390/nano12224054/s1, Figure S1: Micrographs of carbonate precur-
sors for cathode materials with different magnifications: (a,b) LMR20, (c,d) LMR35, (e,f) LMR50,
(g,h) LMR65; Figure S2: Differential agglomerate distribution of cathode materials with different
compositions: (a) LMR20, (b) LMR35, (c) LMR50, (d) LMR65; Figure S3: Rate capabilities of the
cathode materials; Table S1: Determined by ICP-OES compositions of cathode materials.
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Abstract: In this study, graphitic carbon nitride (g-C3N4) was extensively utilized as an electron
transport layer or interfacial buffer layer for simultaneously realizing photoelectric performance
and stability improvement of perovskite solar cells (PSCs). This review covers the different g-
C3N4 nanostructures used as additive and surface modifier layers applied to PSCs. In addition,
the mechanism of reducing the defect state in PSCs, including improving the crystalline quality
of perovskite, passivating the grain boundaries, and tuning the energy level alignment, were also
highlighted in this review. Currently, the power conversion efficiency of PSCs based on modified
g-C3N4 has been increased up to 22.13%, and its unique two-dimensional (2D) package structure
has enhanced the stability of PSCs, which can remain stable in the dark for over 1500 h. Finally, the
potential challenges and perspectives of g-C3N4 incorporated into perovskite-based optoelectronic
devices are also included in this review.

Keywords: g-C3N4; perovskite solar cells; additive; surface modifier layer

1. Introduction

Fossil fuels created a huge amount of pollution in the environment. Solar energy,
as one of the main sources of clean and renewable energy, can solve both environmental
pollution and energy demand. Perovskite solar cells (PSCs) are a new type of photovoltaic
device that can directly convert solar energy into electrical energy [1,2]. Compared with
silicon-based solar cells, the manufacturing cost of PSCs is lower, and their photoelectric
characteristics are more prominent [3–5]. Moreover, the PSCs can be attached on the flexible
substrate, significantly expanding its application scenarios [6,7]. Currently, the lab-scale
power conversion efficiency (PCE) has been certified to boost efficiency up to 25.5% [8].
For realizing the commercialization of PSCs as soon as possible [9,10], several urgent
breakthroughs are required, such as obtaining a higher PCE, longer-term stability, and
eco-friendliness [11–17].

Generally, the structure of PSCs are composed of a hole transport layer (HTL), a per-
ovskite layer, and an electron transport layer (ETL), along with counter electrodes [18,19].
The defect-induced recombination of photo-generated carriers significantly impacts the
extraction and transportation of charges in PSCs [20–23], which severely diminishes the
performance of PSCs, in including short-circuit current density (Jsc), PCE, current hys-
teresis and stability, etc. [24,25]. For PSCs, defects are mainly located at the interfaces of
ETL/perovskite/HTL, as well as at the grain boundaries (GBs) of perovskite films [26–28].
Many routes have been explored to reduce defects in PSCs, including additive and in-
terface engineering, etc. [29–40]. Meanwhile, it is worth noting that the stability and
eco-friendliness of the materials used in additive or interface engineering should also be
taken into account.

Due to the polymeric feature, the surface of g-C3N4 abounds with N, -NH2, -NH-, and
other groups, which are facile functionalized by surface modification [41–43]. Thus, g-C3N4
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has been utilized in PSCs as an additive or interface engineering material, as depicted in
Figure 1a [44,45]. Additionally, different nanostructures (bulk, nanosheets, nanoparticle
and quantum dots, etc.) of g-C3N4 reveal diversified photoelectric characteristics [46,47].
In this work, we summarized the role of g-C3N4 in PSCs. The main role are as follows:
first, facilitating electron transport or perovskite growth via adjusting the energy level or
roughness of ETL, corresponding. Second, decreasing the deep electron defect state of
PSCs via improving the crystalline quality of perovskite. Moreover, we looked into the
development trend of applying g-C3N4 in perovskite-based optoelectronic devices.
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2. g-C3N4 as an Additive in Perovskite Films

g-C3N4 is a metal–free, non–toxic, and high–yield polymeric semiconductor with
an around 2.7 eV bandgap. More importantly, it has excellent thermal and chemical
stability [46,48–50]. Consequently, g–C3N4 has been broadly used in pollutant degradation,
sensing, optoelectronic devices, and other fields [51–60]. Figure 1b plotted the molecule
structure diagrams of g–C3N4, based on tri–s–triazine connection patterns. The hexagon
triazine ring is comprised of sp2 hybridized N and C atoms, with hydrogen bonds between
the –NH2 groups and the N edge atoms, and they are linked at the end with a C–N bond,
creating an extended network–like planar structure.

2.1. Pure g–C3N4 Nanosheets as an Additive

g–C3N4 nanosheets are π–conjugated nanomaterials with two–dimensional structure, and
a larger specific surface area, thus conducting the separation of photo–generated charges [61,62].
In 2018, Jiang et al. reported pure g–C3N4 nanosheets mixed into a perovskite precursor solution
as additives [63], suppressing nucleation and slowing down the growth of perovskite during
the crystallization process; this results in the g–C3N4:CH3NH3PbI3 films have larger grain
sizes and a lower defect density (nt). In 2019, Liao et al. used a method similar to that of
Jiang et al. to add g-C3N4 nanosheets into perovskite films [64]. Importantly, they revealed
the location of g-C3N4 in perovskite. Meanwhile, the mechanisms of defect passivation
and charge extraction by g-C3N4 were clarified. From Figure 2a, it can be seen that g-C3N4
was uniformly anchored at the surface of the GBs, and the dangling Pb2+ can coordinate
with the N atom in g-C3N4, retarding the crystallization of perovskite [65,66]. Moreover,
the conductive g-C3N4 network condensed at the GBs can act as an efficient carrier shuttle,
facilitating the electron transport. From the TRPL spectra, as presented in Figure 2b, for
g-C3N4 additive CH3NH3PbI3 films, the PL lifetime reduce to 17 ns, which is less than that
of the CH3NH3PbI3 films, indicating ultrafast photo–excited carrier transport due to the
addition of g–C3N4 [67].

Yang et al. added g–C3N4 into carbon-based PSCs [68]. Additionally, the insulating
layer was prepared on the surface of the ETL by spin-coating Al2O3 [69–71]. Figure 2c
presents the fabrication procedure of the device. From the J-V curve, as shown in Figure 2d,
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it can be noted that the Jsc has barely changed after incorporating the Al2O3 layer, which
suggests that the conductive g-C3N4 network at the GBs can provide electrons via a carrier
shuttle. This can be proved from the TRPL spectra, as shown in Figure 2e. In the field of
wearable electronics, g-C3N4 nanosheets were applied into flexible tin-based PSCs [72].
Figure 2f plots the device configuration: PDMS/hc-PEDOT:PSS/PEDOT:PSS/FASnI3/C60/
BCP/Ag. The network structure of g-C3N4 indicates a better lattice match with formami-
dine cation, which is more conducive to the crystallization of FASnI3 films. The illustration
of bonding and passivation between FASnI3 and g-C3N4 is shown in Figure 2g. Finally, the
stabilized PCE of 8.56% was obtained.
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Figure 2. (a) Schematic illustration of the functions of g–C3N4 as an additive in perovskite films.
(b) TRPL lifetime of g–C3N4:CH3NH3PbI3 and CH3NH3PbI3 films (reproduced with permission [64];
copyright 2019, Royal Society of Chemistry). (c) Fabrication procedure of a device with FTO/c–
TiO2/m–TiO2/Al2O3/g–C3N4:CH3NH3PbI3/carbon. (d) J–V curves of the devices and (e) TRPL
spectra of perovskite films (reproduced with permission [68]; copyright 2019, Elsevier). (f) Device
configuration: PDMS/hc–PEDOT:PSS/PEDOT:PSS/FASnI3/C60/BCP/Ag. (g) Illustration of bond-
ing and passivation between FASnI3 and g–C3N4 (reproduced with permission [72]; copyright 2021,
John Wiley and Sons).
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2.2. Functionalized g–C3N4 Nanosheets as an Additive

The pure g–C3N4 nanosheets tend to agglomerate in the organic or aqueous environ-
ment due to the robust van der Waals interactions, resulting in lower dispersibility [49,73].
However, the functionalized g–C3N4 nanosheets show good dispersity in liquid, mainly
caused by the electrostatic repulsion of the charged groups [42]. Here, there are two
main methods to achieve functionalized g–C3N4 nanosheets—doped, and surface modi-
fied [74,75].

In 2019, Cao et al. reported that iodine–doped g–C3N4 (g–CNI) was added into triple
cation perovskite films as an additive [76]. Due to the fact that doped iodine can coordinate
with dangling Pb2+ at GBs, the trap states in PSCs were effectively passivated [77,78].
Therefore, they achieved high–quality perovskite films with fewer trap states [65,79,80].
Figure 3a displays the mechanism of g–CNI modified PSCs. From the XPS spectra, as
shown in Figure 3b, for perovskite with g–CNI, the I 3d signal is higher than that of the ref.,
suggesting the incorporation of g–CNI into the perovskite [81]. After adding g–CNI, the nt
reduced to 1.07×1016 cm3 from 1.43 × 1016 cm3, with the maximum PCE of up to 18.28%.
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U–g–C3N4 nanoparticles. (f) Scheme of g–C3N4 fragments coils into U–g–C3N4 nanoparticles.
(g) Scheme of the U–g–C3N4 self–recognizing grain boundaries of CH3NH3PbI3 films (reproduced
with permission [82]; copyright 2019, Elsevier).
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Li et al. reported that surface–modified g–C3N4 with various organic groups (–NO3,
–NH3, –SO3 and –OH) was mixed into perovskite films [41], which can improve crystalline
quality and passivate defects state at the GBs. Specifically, for NO3–C3N4–based perovskite,
the average crystallite size of up to 68 nm was achieved, as exhibited in Figure 3c, leading
to a decent photovoltaic performance, which can be proved by the PL spectra, as shown
in Figure 3d. It is worth noting that the PL intensity of NO3-C3N4–based perovskite film
is the strongest compared to the other perovskite films. This can be ascribed to the better
crystallinity of perovskite with the NO3–C3N4 addition, as well as a reduction in the trap
states density. As a result, for p–i–n PSCs based on NO3–C3N4, the best PCE obtained was
up to 20.08%.

2.3. Ultrafine g–C3N4 Nanoparticles as an Additive

In 2019, Liu et al. reported that g–C3N4 nanoparticles were introduced into perovskite
films as an additive [82]. Here, the ultrafine size of g–C3N4 nanoparticles is about 20–50 nm,
which were successfully synthesized with exfoliated g–C3N4 nanosheets. The surface of
ultrafine g–C3N4 nanoparticles (U–g–C3N4) is rich in O–H or N–H groups, which can
easily bond with N–H bonds on CH3NH3PbI3 GBs [83]. Thus, it can self–recognize GBs
and adhere to them, decreasing the deep electron trap state. The FESEM images of U–g–
C3N4 nanoparticles are plotted in Figure 3e. Figure 3f presents the scheme of U–g–C3N4
nanoparticles from g–C3N4 fragments. Figure 3g describes the scheme of the U–g–C3N4
self–recognizing CH3NH3PbI3 GBs. Finally, the champion PCE of U–g–C3N4 based planar
PSCs is up to 15.8%.

3. g–C3N4 as a Surface Modifier Layer
3.1. g–C3N4 Quantum Dots (g–CNQD) as Modifier Layer

g–C3N4 quantum dots are a type of zero–dimensional nanomaterial in which electrons
and holes cannot move freely [84]. The tiny particle size creates its unique size effect,
macroscopic quantum tunnel effect, edge effect [85], etc. In 2020, Chen et al. prepared
g–CNQD via acid etching and hydrothermal cure [86]; the diameter of g–CNQD were about
5–10 nm, and they were added into an SnO2 colloid precursor, forming nanocomposite
ETL (G–SnO2). Figure 4a exhibits the position of g–CNQD in SnO2. Tiny and conductive
g–CNQD could reorganize the electronic density distribution of SnO2. The charge density
difference between G–SnO2 and SnO2 is displayed in Figure 4b, which was obtained using
the density functional theory. It can be seen that the vacancies surrounding the three
Sn atoms interact with g–C3N4, and an obvious charge redistribution occurs around the
oxygen vacancy, resulting in the elimination of the trap state defects [87]. Importantly,
g–CNQD can effectively adjust the Fermi level of ETL, promoting electron transport [88,89].
The energy–level diagrams are shown in Figure 4c. For G–SnO2 based planar PSCs, the
PCE is up to 22.13% with a Voc of 1.176 V. They also exhibit excellent long–term stability
under ambient conditions, e.g., about 60% humidity [90].

Liu et al. published a similar report on g–CNQD. The g-CNQD was synthesized
with urea and sodium citrate [91], the diameter was about 10–30 nm, and it was well
monodispersed. In this work, g–CNQD were intercalated into the ETL/perovskite layer,
which facilitates the formation of high–quality perovskite films due to the smoother surface
of ETL [92,93]. Figure 4d presents the schematic illustration of the g–CNQD–based device.
The roughness of the ETL was evaluated by AFM, as shown in Figure 4e. After intercalating
g–CNQD, the root mean square roughness reduced from 17.5 nm to 12.8 nm, suggesting
that a smoother ETL was obtained, which is conducive to perovskite growth [94]. From
the SEM images and XRD spectra of the perovskite films as shown in Figure 4f,g, it can be
seen that the g–CNQD based perovskite films have purer phases, fewer GBs, and lower
trap states. Finally, the maximum PCE is noted, up to 21.23% under full air–processing,
and without apparent current hysteresis.
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Figure 4. (a) The position of G–CNQD in SnO2. (b) The side view for the charge density difference of
SnO2 (above) and G–SnO2 (below) with oxygen vacancy; the yellow and cyan areas indicate electron
depletion and accumulation, respectively. (c) Energy band alignment of the devices (reproduced
with permission [86]; copyright 2020, Royal Society of Chemistry). (d) Schematic illustration of
the devices with a g–CNQD layer and a J–V curve. (e) AFM images of pristine SnO2 film and
SnO2/g–CNQD films. (f) SEM images and (g) XRD spectra of perovskite films based on different
ETL. The asterisks indicate the main peaks of perovskites structure (reproduced with permission [91];
copyright 2020, Elsevier).

3.2. g–C3N4 Nanosheets as a Modified Layer

In 2020, Liu et al. used multilayer g–C3N4 to simultaneously modify the upper
and lower interfaces of perovskite [95]. For the perovskite/HTL interface, the dangling
Pb2+ can coordinate with lone–pair electrons on g–C3N4, reducing the defects state at the
perovskite film surface. For the ETL/perovskite interface, the Gibbs free energy of SnO2
surface was decreased, which facilitates the preparation of flat and non–pinhole perovskite
films [96,97]. Figure 5a displays the schematic diagram of dual–modified PSCs with g–
C3N4. The improvement of perovskite films can be seen from SEM, as shown in Figure 5b.
A maximum PCE of 19.67% was obtained for planar PSCs with longer–term stability. The
main reason for this was that g–C3N4 could reduce the surface defects of perovskite films,
thus decreasing the migration of iodide and ion mobilization within the perovskite lattices.
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In 2021, Yang et al. adopted g–C3N4 nanosheets as a modified layer [98], and the work
function of ETL was finely tuned, as shown in Figure 5c, resulting in the enhancement
of Voc from 1.01 to 1.11 V, and diminishing the current hysteresis of PSCs. Therefore, the
maximum PCE was boosted to 19.55% from its initial 15.81%. Yang et al. reported new
buried layers for efficient perovskite [99], which are composed of a mixture of g–C3N4
and SnO2. Due to the fact that amine–rich g–C3N4 can promote the prenucleation of the
Pb–related intermediates, the vertical crystallization of perovskite films were obviously
optimized, exhibiting superior carrier transmission characteristics. Figure 5d presents the
schematic illustration of vertical carrier transportation via buried manipulation.
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Figure 5. (a) Schematic diagram of g–C3N4 dual–modified PSCs. (b) SEM of perovskite films
(reproduced with permission [95]; copyright 2018, Royal Society of Chemistry). (c) Energy band
alignment of the device. The EF level of the ETL, without and with g–C3N4, are represented with
a dotted line (reproduced with permission [98]; copyright 2021, Springer Nature). (d) Schematic
of the vertical carrier transportation of the perovskite films via buried manipulation (reproduced
with permission [99]; copyright 2021, John Wiley and Sons). (e) Schematic illustration of the possible
interface defect sites (reproduced with permission [100]; copyright 2021, John Wiley and Sons).

3.3. Functionalized g–C3N4 as a Modified Layer

In 2019, Cruz et al. prepared thiazole–modified g–C3N4 via exfoliation treatment [101],
then intercalated it in p–i–n PSCs as ETL. The charge recombination in the interface was
suppressed due to the enhanced energy level of electronic interface [88]. Finally, the Voc
of 1.09 V and the Jsc of 20.17 mA/cm2 were achieved. In 2021, Wang et al. prepared the
functionalized g–C3N4 with thiophene or thiazole by thermal treatment [100]. Then, the
functionalized g–C3N4 were intercalated between ETL and the perovskite layer. Notably,
there was a well–matched energy level in the device. Due to the strong chemical affinity
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between Pb2+ and N or S atoms [67], the defect state in the device was efficiently passivated.
Figure 5e shows the possible interface defect sites in perovskite, as well as the passivation of
thiophene or thiazole. For the thiazole g–C3N4based device, the maximum PCE increased
to 19.23% from pristine 13.42%, with the Voc increasing from 1.02 V. to 1.11 V.

4. Conclusions and Future Perspectives

In this paper, we summarize the recent progress of g–C3N4 application in PSCs. g–
C3N4 is an eco–friendly polymeric semiconductor with a suitable bandgap. Recently, it has
been widely applied in PSCs, which can reduce defect states in PSCs, and simultaneously
enhance the PCE and long–term stability of PSCs. Specifically, different nanostructures of
g–C3N4 (i.e., nanosheets, nanoparticles, and QDs) used as additive and surface modifier
layers have been discussed in detail. The performance of the devices is listed in Table 1.

Pure g–C3N4 nanosheets are a kind of two–dimensional nanomaterial with large N,
–NH2, –NH, and other groups, and the N atom in g–C3N4 can coordinate a bond with
dangling Pb2+, increasing the perovskite grain size. Moreover, when it functions as an
additive, the conductive g–C3N4 network acts as an efficient carrier shuttle, facilitating
electron transport. g–C3N4 nanoparticles are formed by the self–coiling of the exfoliated
g–C3N4 nanosheets, with an ultra–fine size (20–50 nm), and the surface of the g–C3N4
nanoparticles contains abundant O–H or N–H groups. Therefore, g–C3N4 nanoparticles
can magically self–recognize GBs in perovskite films, decreasing the deep electron trap
state of PSCs. Functionalized g–C3N4 nanosheets can also be achieved from nanosheets,
but the former shows better dispersity in organic solvent. They exhibit a similar effect
as additives. Specifically, when used as a modifier layer, they can adjust the energy level
alignment of PSCs, making the electron transport more efficient. g–CNQD has a tiny
particle size, which can adjust the energy level or roughness of the ETL, facilitating electron
transport or perovskite growth, corresponding. These features give the PSCs potential
for consideration as next–generation photovoltaic devices, as the most promising means
of simultaneously solving environmental pollution and energy demand. The passivation
of the perovskite layer is mainly used to improve the PCE and the long–term stability of
PSCs. g–C3N4 can be added in different solutions to prepare efficient PSCs with long–term
stability, which have the potential to compete with other conventional silicon cells in the
future. Meanwhile, g–C3N4 shows great promise in solving external and internal concerns,
including packaging, additional technology, and reducing charge recombination. Thus,
the g–C3N4 can increase the grain size of perovskite and passivate the interface defect,
making it more conducive to charge extraction. However, the development of the g–C3N4
nanostructure is still in its early stages. Additional methods for improving the efficiency
and stability of PSCs require further exploration. We expect to develop new additives
exhibiting eco–friendliness, long–term stability, and compatibility with flexible substrates,
as well as other new strategies to improve the performance of perovskite. This effort should
be closely connected to application of dedicated defect passivation strategies to produce
high–performance and enduring stable PSCs.

120



N
an

om
at

er
ia

ls
20

22
,1

2,
36

25

Ta
bl

e
1.

R
ec

en
td

ev
el

op
m

en
to

fg
–C

3N
4

ba
se

d
PS

C
s

ph
ot

ov
ol

ta
ic

pe
rf

or
m

an
ce

.

St
ru

ct
ur

e
PC

E
(%

)
V

oc
(V

)
Js

c
(m

A
·cm

−
2 )

FF
(%

)
R

ef
.

Ye
ar

IT
O

/P
TA

A
/N

O
3-

g-
C

3N
4:

C
sF

A
M

A
Pb

I 3
−

xB
r x

/P
C

BM
/B

C
P/

A
g

20
.0

8
1.

11
22

.8
4

79
.2

0
[4

1]
20

19
FT

O
/c

-T
iO

2/
g-

C
3N

4:
M

A
Pb

I 3
/s

pi
ro

-O
M

eT
A

D
/M

oO
3/

A
g

19
.4

9
1.

07
24

.3
1

74
.0

[6
3]

20
18

FT
O

/c
-T

iO
2/

g-
C

3N
4:

M
A

Pb
I 3

/s
pi

ro
-O

M
eT

A
D

/A
u

21
.1

0
1.

16
23

.0
0

79
.0

[6
4]

20
19

FT
O

/c
-T

iO
2/

m
-T

iO
2/

g-
C

3N
4:

C
sP

bB
r 3

/c
ar

bo
n

8.
00

1.
27

7
7.

80
80

.3
2

[6
6]

20
21

FT
O

/c
-T

iO
2/

m
-T

iO
2/

A
l 2

O
3/

g-
C

3N
4:

M
A

Pb
I 3

/c
ar

bo
n

14
.3

4
1.

00
23

.8
0

60
.1

[6
8]

20
19

PD
M

S/
hc

-P
ED

O
T:

PS
S/

PE
D

O
T:

PS
S/

g-
C

3N
4:

FA
Sn

I 3
/C

60
/B

C
P/

A
g

8.
56

0.
62

1
20

.6
8

66
.6

8
[7

2]
20

21
FT

O
/T

iO
2/

G
-C

N
I:C

sF
A

M
A

Pb
I 3
−

xB
r x

/s
pi

ro
-O

M
eT

A
D

/A
u

18
.2

8
1.

07
22

.9
7

74
.0

[7
6]

20
19

FT
O

/c
-T

iO
2/

U
-g

-C
3N

4:
M

A
Pb

I 3
/s

pi
ro

-O
M

eT
A

D
/A

u
15

.8
0

1.
10

23
.2

0
62

.0
[8

2]
20

19
IT

O
/C

N
Q

D
s:

Sn
O

2/
C

sF
A

M
A

Pb
I 3
−

xB
r x

/S
pi

ro
-M

eO
TA

D
/A

u
22

.1
3

1.
18

24
.0

3
78

.3
[8

6]
20

20
FT

O
/S

nO
2/

C
N

Q
D

s/
(F

A
/M

A
/C

s)
Pb

I 3
−

(x
+y

)B
r x

C
l y

/s
pi

ro
-O

M
eT

A
D

/A
u

21
.2

3
1.

14
23

.3
9

79
.6

[9
1]

20
20

FT
O

/S
nO

2/
g-

C
3N

4/
M

A
Pb

I 3
/g

-C
3N

4/
Ss

pi
ro

-O
M

eT
A

D
/A

u
19

.6
7

1.
14

21
.4

5
80

.7
[9

5]
20

20
FT

O
/c

-T
iO

2/
m

-T
iO

2/
g-

C
3N

4
na

no
sh

ee
ts

/M
A

Pb
I 3

/
C

ar
bo

n
11

.3
7

1.
02

16
.9

1
66

[9
7]

20
21

FT
O

/c
-T

iO
2/

g-
C

3N
4/

M
A

Pb
I 3

/s
pi

ro
-O

M
eT

A
D

/A
g

19
.5

5
1.

11
23

.6
9

74
.0

[9
8]

20
21

IT
O

/g
-C

3N
4:

Sn
O

2/
FA

0.
85

M
A

0.
11

C
s 0

.0
4P

bI
2.

67
Br

0.
33
·x

Pb
I 2

/s
pi

ro
-M

eO
TA

D
/A

u
21

.5
4

1.
19

23
.2

1
78

[9
9]

20
21

IT
O

/P
TA

A
/M

A
Pb

I 3
/P

C
60

BM
/C

M
B-

vT
A

/A
Z

O
/A

g
17

.1
5

1.
09

20
.1

7
78

.0
3

[1
00

]
20

19
FT

O
/T

iO
2/

th
ia

zo
le

-C
3N

4/
(F

A
Pb

I 3
) 0

.8
75

(C
sP

bB
r 3

) 0
.1

25
/s

pi
ro

-O
M

eT
A

D
/A

g
19

.2
3

1.
11

22
.5

0
77

[1
01

]
20

21

121



Nanomaterials 2022, 12, 3625

Author Contributions: Conceptualization, J.Y. (Jian Yang); resources, W.L. and X.L.; writing—original
draft preparation, J.Y. (Jianping Yang); writing—review and editing, W.L.; visualization, Y.M.; super-
vision, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education of China (IRT1148), the National
Natural Science Foundation of China (52172205, 51872145, U1732126, 11804166, 51602161, 51372119),
the China Postdoctoral Science Foundation (2022M711685), the Priority Academic Program Devel-
opment of Jiangsu Higher Education Institutions (YX03001), the Natural Science Research Project
of Jiangsu Universities (22KJB510035), and the Start-up Fund of Nanjing University of Posts and
Telecommunications (NUPTSF, NY221029).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, H.; Lu, Y.; Han, W.; Zhu, J.; Zhang, Y.; Huang, W. Solar energy conversion and utilization: Towards the emerging

photo-electrochemical devices based on perovskite photovoltaics. Chem. Eng. J. 2020, 393, 124766. [CrossRef]
2. Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. Properties and potential optoelectronic applications of lead halide perovskite

nanocrystals. Science 2017, 358, 745–750. [CrossRef] [PubMed]
3. Wang, F.; Yang, M.; Zhang, Y.; Du, J.; Han, D.; Yang, L.; Fan, L.; Sui, Y.; Sun, Y.; Meng, X.; et al. Constructing m-TiO2/a-WOx hybrid

electron transport layer to boost interfacial charge transfer for efficient perovskite solar cells. Chem. Eng. J. 2020, 402, 126303.
[CrossRef]

4. Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Grätzel, M.; et al. A solvent- and vacuum-free route to
large-area perovskite films for efficient solar modules. Nature 2017, 550, 92–95. [CrossRef]

5. Li, H.; Chen, C.; Jin, J.; Bi, W.; Zhang, B.; Chen, X.; Xu, L.; Liu, D.; Dai, Q.; Song, H. Near-infrared and ultraviolet to visible photon
conversion for full spectrum response perovskite solar cells. Nano Energy 2018, 50, 699–709. [CrossRef]

6. Han, G.S.; Jung, H.S.; Park, N.-G. Recent cutting-edge strategies for flexible perovskite solar cells toward commercialization.
Chem. Commun. 2021, 57, 11604–11612. [CrossRef]

7. Tang, G.; Yan, F. Recent progress of flexible perovskite solar cells. Nano Today 2021, 39, 101155. [CrossRef]
8. Kim, M.; Jeong, J.; Lu, H.; Lee, T.K.; Eickemeyer, F.T.; Liu, Y.; Choi, I.W.; Choi, S.J.; Jo, Y.; Kim, H.-B.; et al. Conformal quantum

dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022, 375, 302–306. [CrossRef]
9. Cheng, Y.; Ding, L. Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy Environ. Sci.

2021, 14, 3233–3255. [CrossRef]
10. Rong, Y.G.; Hu, Y.; Mei, A.Y.; Tan, H.R.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H.W. Challenges for

commercializing perovskite solar cells. Science 2018, 361, eaat8235. [CrossRef]
11. Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J.; et al. The Main Progress of Perovskite

Solar Cells in 2020–2021. Nano-Micro Lett. 2021, 13, 152. [CrossRef]
12. Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275.

[CrossRef]
13. Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016,

15, 247–251. [CrossRef]
14. Kim, M.-c.; Ham, S.-Y.; Cheng, D.; Wynn, T.A.; Jung, H.S.; Meng, Y.S. Advanced Characterization Techniques for Overcoming

Challenges of Perovskite Solar Cell Materials. Adv. Energy Mater. 2021, 11, 2001753. [CrossRef]
15. Fan, R.; Huang, Y.; Wang, L.; Li, L.; Zheng, G.; Zhou, H. The Progress of Interface Design in Perovskite-Based Solar Cells. Adv.

Energy Mater. 2016, 6, 1600460. [CrossRef]
16. Arjun, V.; Muthukumaran, K.P.; Ramachandran, K.; Nithya, A.; Karuppuchamy, S. Fabrication of efficient and stable planar

perovskite solar cell using copper oxide as hole transport material. J. Alloys Compd. 2022, 923, 166285. [CrossRef]
17. Li, S.; Zhang, X.; Xue, X.; Wu, Y.; Hao, Y.; Zhang, C.; Liu, Y.; Dai, Z.; Sun, Q.; Hao, Y. Importance of tin (II) acetate additives in

sequential deposited fabrication of Sn-Pb-based perovskite solar cells. J. Alloys Compd. 2022, 904, 164050. [CrossRef]
18. Zhao, Z.; Sun, W.; Li, Y.; Ye, S.; Rao, H.; Gu, F.; Liu, Z.; Bian, Z.; Huang, C. Simplification of device structures for low-cost,

high-efficiency perovskite solar cells. J. Mater. Chem. A 2017, 5, 4756–4773. [CrossRef]
19. Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Grätzel, M.; Hagfeldt, A. The rapid evolution of highly

efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727. [CrossRef]

122



Nanomaterials 2022, 12, 3625

20. Ma, Y.; Deng, K.; Gu, B.; Cao, F.; Lu, H.; Zhang, Y.; Li, L. Boosting Efficiency and Stability of Perovskite Solar Cells with CdS
Inserted at TiO2/Perovskite Interface. Adv. Mater. Interfaces 2016, 3, 1600729. [CrossRef]

21. Taheri, S.; Ahmadkhan kordbacheh, A.; Minbashi, M.; Hajjiah, A. Effect of defects on high efficient perovskite solar cells. Opt.
Mater. 2021, 111, 110601. [CrossRef]

22. Ke, W.; Fang, G.; Wan, J.; Tao, H.; Liu, Q.; Xiong, L.; Qin, P.; Wang, J.; Lei, H.; Yang, G.; et al. Efficient hole-blocking layer-free
planar halide perovskite thin-film solar cells. Nat. Commun. 2015, 6, 6700. [CrossRef]

23. Li, B.; Ferguson, V.; Silva, S.R.P.; Zhang, W. Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Adv.
Mater. Interfaces 2018, 5, 1800326. [CrossRef]

24. Tavakoli, M.M.; Yadav, P.; Tavakoli, R.; Kong, J. Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis-Less Planar
Perovskite Solar Cell (21.4%) with Enhanced Open-Circuit Voltage and Stability. Adv. Energy Mater. 2018, 8, 1800794. [CrossRef]

25. Montoya, D.M.; Pérez-Gutiérrez, E.; Barbosa-Garcia, O.; Bernal, W.; Maldonado, J.-L.; Percino, M.J.; Meneses, M.-A.; Cerón,
M. Defects at the interface electron transport layer and alternative counter electrode, their impact on perovskite solar cells
performance. Sol. Energy 2020, 195, 610–617. [CrossRef]

26. Dong, Y.; Li, W.; Zhang, X.; Xu, Q.; Liu, Q.; Li, C.; Bo, Z. Highly Efficient Planar Perovskite Solar Cells Via Interfacial Modification
with Fullerene Derivatives. Small 2016, 12, 1098–1104. [CrossRef]

27. Jain, S.M.; Phuyal, D.; Davies, M.L.; Li, M.; Philippe, B.; De Castro, C.; Qiu, Z.; Kim, J.; Watson, T.; Tsoi, W.C.; et al. An effective
approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based
perovskite solar cells for improved performance and long-term stability. Nano Energy 2018, 49, 614–624. [CrossRef]

28. Ali, J.; Li, Y.; Gao, P.; Hao, T.; Song, J.; Zhang, Q.; Zhu, L.; Wang, J.; Feng, W.; Hu, H.; et al. Interfacial and structural modifications
in perovskite solar cells. Nanoscale 2020, 12, 5719–5745. [CrossRef]

29. Han, T.H.; Tan, S.; Xue, J.; Meng, L.; Lee, J.W.; Yang, Y. Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic
Devices. Adv. Mater. 2019, 31, 1803515. [CrossRef]

30. Qiu, L.; Ono, L.K.; Jiang, Y.; Leyden, M.R.; Raga, S.R.; Wang, S.; Qi, Y. Engineering Interface Structure to Improve Efficiency and
Stability of Organometal Halide Perovskite Solar Cells. J. Phys. Chem. B 2018, 122, 511–520. [CrossRef] [PubMed]

31. Bai, Y.; Meng, X.; Yang, S. Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells. Adv. Energy
Mater. 2018, 8, 1701883. [CrossRef]

32. Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A.G.; Falaras, P.; Argitis, P.; Yusoff, A.; Nazeeruddin, M.K. Molecular materials
as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 2020, 49, 4496–4526. [CrossRef]

33. Boopathi, K.M.; Mohan, R.; Huang, T.-Y.; Budiawan, W.; Lin, M.-Y.; Lee, C.-H.; Ho, K.-C.; Chu, C.-W. Synergistic improvements in
stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem. A 2016, 4, 1591–1597.
[CrossRef]

34. Gong, X.; Li, M.; Shi, X.-B.; Ma, H.; Wang, Z.-K.; Liao, L.-S. Controllable Perovskite Crystallization by Water Additive for
High-Performance Solar Cells. Adv. Funct. Mater. 2015, 25, 6671–6678. [CrossRef]

35. Kang, Y.F.; Wang, A.R.; Li, R.; Song, Y.L.; Dong, Q.F. A Review: Flexible Perovskite Solar Cells towards High Mechanical Stability.
Acta Polym. Sin. 2021, 52, 920–937. [CrossRef]

36. Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for
efficient solar cells. Nat. Photonics 2019, 13, 460–466. [CrossRef]

37. Zhao, X.; Tao, L.; Li, H.; Huang, W.; Sun, P.; Liu, J.; Liu, S.; Sun, Q.; Cui, Z.; Sun, L.; et al. Efficient Planar Perovskite Solar Cells
with Improved Fill Factor via Interface Engineering with Graphene. Nano Lett. 2018, 18, 2442–2449. [CrossRef]

38. Ioakeimidis, A.; Choulis, S.A. Nitrobenzene as Additive to Improve Reproducibility and Degradation Resistance of Highly
Efficient Methylammonium-Free Inverted Perovskite Solar Cells. Materials 2020, 13, 3289. [CrossRef]

39. Chu, L.; Ahmad, W.; Liu, W.; Yang, J.; Zhang, R.; Sun, Y.; Yang, J.; Li, X.A. Lead-Free Halide Double Perovskite Materials: A New
Superstar Toward Green and Stable Optoelectronic Applications. Nano-Micro Lett. 2019, 11, 16. [CrossRef]

40. Li, Y.; Wang, D.; Yang, L.; Yin, S. Preparation and performance of perovskite solar cells with two dimensional MXene as active
layer additive. J. Alloys Compd. 2022, 904, 163742. [CrossRef]

41. Li, Z.; Wu, S.; Zhang, J.; Yuan, Y.; Wang, Z.; Zhu, Z. Improving Photovoltaic Performance Using Perovskite/Surface-Modified
Graphitic Carbon Nitride Heterojunction. Sol. RRL 2019, 4, 1900413. [CrossRef]

42. Majdoub, M.; Anfar, Z.; Amedlous, A. Emerging Chemical Functionalization of g-C3N4: Covalent/Noncovalent Modifications
and Applications. ACS Nano 2020, 14, 12390–12469. [CrossRef] [PubMed]

43. Pu, Y.-C.; Fan, H.-C.; Liu, T.-W.; Chen, J.-W. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocom-
posites: Interfacial charge carrier dynamics and photocatalysis. J. Mater. Chem. A 2017, 5, 25438–25449. [CrossRef]

44. Jia, C.; Yang, L.; Zhang, Y.; Zhang, X.; Xiao, K.; Xu, J.; Liu, J. Graphitic Carbon Nitride Films: Emerging Paradigm for Versatile
Applications. ACS Appl. Mater. Interfaces 2020, 12, 53571–53591. [CrossRef]

45. Javad, S.; Guoxiu, W. Progress and prospects of two-dimensional materials for membrane-based osmotic power generation. Nano
Res. Energy 2022, 1, e9120008. [CrossRef]

46. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials:
Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [CrossRef]

47. Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in
photocatalysis. J. Alloys Compd. 2020, 846, 156446. [CrossRef]

123



Nanomaterials 2022, 12, 3625

48. Cao, Q.; Kumru, B.; Antonietti, M.; Schmidt, B.V.K.J. Graphitic carbon nitride and polymers: A mutual combination for advanced
properties. Mater. Horiz. 2020, 7, 762–786. [CrossRef]

49. Niu, X.; Yi, Y.; Bai, X.; Zhang, J.; Zhou, Z.; Chu, L.; Yang, J.; Li, X. Photocatalytic performance of few-layer graphitic g-C3N4:
Enhanced by interlayer coupling. Nanoscale 2019, 11, 4101–4107. [CrossRef]

50. Lu, D.; Fang, P.; Wu, W.; Ding, J.; Jiang, L.; Zhao, X.; Li, C.; Yang, M.; Li, Y.; Wang, D. Solvothermal-assisted synthesis of
self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic
removal of Cr(vi) and rhodamine B under visible light irradiation. Nanoscale 2017, 9, 3231–3245. [CrossRef] [PubMed]

51. Wang, A.; Wang, C.; Fu, L.; Wong-Ng, W.; Lan, Y. Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications
in Catalyst, Sensing, Imaging, and LEDs. Nano-Micro Lett. 2017, 9, 47. [CrossRef] [PubMed]

52. Niu, P.; Zhang, L.; Liu, G.; Cheng, H.-M. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Adv.
Funct. Mater. 2012, 22, 4763–4770. [CrossRef]

53. Lu, D.; Wang, H.; Zhao, X.; Kondamareddy, K.K.; Ding, J.; Li, C.; Fang, P. Highly Efficient Visible-Light-Induced Photoactivity
of Z-Scheme g-C3N4/Ag/MoS2 Ternary Photocatalysts for Organic Pollutant Degradation and Production of Hydrogen. ACS
Sustain. Chem. Eng. 2017, 5, 1436–1445. [CrossRef]

54. Ou, M.; Tu, W.; Yin, S.; Xing, W.; Wu, S.; Wang, H.; Wan, S.; Zhong, Q.; Xu, R. Amino-Assisted Anchoring of CsPbBr3 Perovskite
Quantum Dots on Porous g-C3N4 for Enhanced Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2018, 57, 13570–13574.
[CrossRef]

55. Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light
driven photocatalysts for environmental pollution remediation. Appl. Catal. B-environ. 2016, 198, 347–377. [CrossRef]

56. Ansari, M.S.; Banik, A.; Qureshi, M. Morphological tuning of photo-booster g-C3N4 with higher surface area and better charge
transfers for enhanced power conversion efficiency of quantum dot sensitized solar cells. Carbon 2017, 121, 90–105. [CrossRef]

57. Yuan, Z.; Tang, R.; Zhang, Y.; Yin, L. Enhanced photovoltaic performance of dye-sensitized solar cells based on Co9S8 nanotube
array counter electrode and TiO2/g-C3N4 heterostructure nanosheet photoanode. J. Alloys Compd. 2017, 691, 983–991. [CrossRef]

58. Xie, F.; Dong, G.; Wu, K.; Li, Y.; Wei, M.; Du, S. In situ synthesis of g-C3N4 by glass-assisted annealing route to boost the efficiency
of perovskite solar cells. J. Colloid Interface Sci. 2021, 591, 326–333. [CrossRef]

59. Gao, Q.; Sun, S.; Li, X.; Zhang, X.; Duan, L.; Lu, W. Enhancing Performance of CdS Quantum Dot-Sensitized Solar Cells by
Two-Dimensional g-C3N4 Modified TiO2 Nanorods. Nanoscale Res. Lett. 2016, 11, 463. [CrossRef]

60. Zou, J.; Liao, G.; Wang, H.; Ding, Y.; Wu, P.; Hsu, J.-P.; Jiang, J. Controllable interface engineering of g-C3N4/CuS nanocomposite
photocatalysts. J. Alloys Compd. 2022, 911, 165020. [CrossRef]

61. Sheng, Y.; Zhao, A.; Yu, L.; Yuan, S.; Di, Y.; Liu, C.; Dong, L.; Gan, Z. Highly Efficient Charge Transfer between Perovskite
Nanocrystals and g-C3N4 Nanosheets. Phys. Status Solidi (B) 2020, 257, 2000198. [CrossRef]

62. Wang, K.; Liu, J.; Yin, J.; Aydin, E.; Harrison, G.T.; Liu, W.; Chen, S.; Mohammed, O.F.; De Wolf, S. Defect Passivation in Perovskite
Solar Cells by Cyano-Based π-Conjugated Molecules for Improved Performance and Stability. Adv. Funct. Mater. 2020, 30, 2002861.
[CrossRef]

63. Jiang, L.-L.; Wang, Z.-K.; Li, M.; Zhang, C.-C.; Ye, Q.-Q.; Hu, K.-H.; Lu, D.-Z.; Fang, P.-F.; Liao, L.-S. Passivated Perovskite
Crystallization via g-C3N4 for High-Performance Solar Cells. Adv. Funct. Mater. 2018, 28, 1705875. [CrossRef]

64. Liao, J.-F.; Wu, W.-Q.; Zhong, J.-X.; Jiang, Y.; Wang, L.; Kuang, D.-B. Enhanced efficacy of defect passivation and charge extraction
for efficient perovskite photovoltaics with a small open circuit voltage loss. J. Mater. Chem. A 2019, 7, 9025–9033. [CrossRef]

65. Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. A vacuum flash-assisted solution process
for high-efficiency large-area perovskite solar cells. Science 2016, 353, 58–62. [CrossRef]

66. Liu, W.W.; Liu, Y.C.; Cui, C.Y.; Niu, S.T.; Niu, W.J.; Liu, M.C.; Liu, M.J.; Gu, B.; Zhang, L.Y.; Zhao, K.; et al. All-inorganic CsPbBr3
perovskite solar cells with enhanced efficiency by exploiting lone pair electrons via passivation of crystal boundary using carbon
nitride (g-C3N4) nanosheets. Mater. Today Energy 2021, 21, 100782. [CrossRef]

67. Zhu, P.; Gu, S.; Luo, X.; Gao, Y.; Li, S.; Zhu, J.; Tan, H. Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite
Solar Cells Using SnO2-KCl Composite Electron Transport Layer. Adv. Energy Mater. 2019, 10, 1903083. [CrossRef]

68. Yang, Z.-L.; Zhang, Z.-Y.; Fan, W.-L.; Hu, C.-s.; Zhang, L.; Qi, J.-J. High-performance g-C3N4 added carbon-based perovskite solar
cells insulated by Al2O3 layer. Sol. Energy 2019, 193, 859–865. [CrossRef]

69. Xiong, Y.; Zhu, X.; Mei, A.; Qin, F.; Liu, S.; Zhang, S.; Jiang, Y.; Zhou, Y.; Han, H. Bifunctional Al2O3 Interlayer Leads to Enhanced
Open-Circuit Voltage for Hole-Conductor-Free Carbon-Based Perovskite Solar Cells. Sol. RRL 2018, 2, 1800002. [CrossRef]

70. Han, G.S.; Chung, H.S.; Kim, B.J.; Kim, D.H.; Lee, J.W.; Swain, B.S.; Mahmood, K.; Yoo, J.S.; Park, N.-G.; Lee, J.H.; et al. Retarding
charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films. J. Mater. Chem. A 2015,
3, 9160–9164. [CrossRef]

71. Xia, Z.; Zhang, C.; Feng, Z.; Wu, Z.; Wang, Z.; Chen, X.; Huang, S. Synergetic Effect of Plasmonic Gold Nanorods and MgO for
Perovskite Solar Cells. Nanomaterials 2020, 10, 1830. [CrossRef] [PubMed]

72. Rao, L.; Meng, X.; Xiao, S.; Xing, Z.; Fu, Q.; Wang, H.; Gong, C.; Hu, T.; Hu, X.; Guo, R.; et al. Wearable Tin-Based Perovskite Solar
Cells Achieved by a Crystallographic Size Effect. Angew. Chem. Int. Ed. Engl. 2021, 60, 14693–14700. [CrossRef] [PubMed]

73. Gillan, E.G. Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor. Chem. Mater.
2000, 12, 3906–3912. [CrossRef]

124



Nanomaterials 2022, 12, 3625

74. Sriram, B.; Baby, J.N.; Hsu, Y.F.; Wang, S.F.; George, M.; Veerakumar, P.; Lin, K.C. Electrochemical sensor-based barium zirconate on
sulphur-doped graphitic carbon nitride for the simultaneous determination of nitrofurantoin (antibacterial agent) and nilutamide
(anticancer drug). J. Electroanal. Chem. 2021, 901, 115782. [CrossRef]

75. Rakibuddin, M.; Kim, H.; Khan, M.E. Graphite-like carbon nitride (C3N4) modified N-doped LaTiO3 nanocomposite for higher
visible light photocatalytic and photo-electrochemical performance. Appl. Surf. Sci. 2018, 452, 400–412. [CrossRef]

76. Cao, W.; Lin, K.; Li, J.; Qiu, L.; Dong, Y.; Wang, J.; Xia, D.; Fan, R.; Yang, Y. Iodine-doped graphite carbon nitride for enhancing
photovoltaic device performance via passivation trap states of triple cation perovskite films. J. Mater. Chem. C 2019, 7, 12717–12724.
[CrossRef]

77. Niu, T.; Lu, J.; Munir, R.; Li, J.; Barrit, D.; Zhang, X.; Hu, H.; Yang, Z.; Amassian, A.; Zhao, K.; et al. Stable High-Performance
Perovskite Solar Cells via Grain Boundary Passivation. Adv. Mater. 2018, 30, e1706576. [CrossRef]

78. Chen, S.; Pan, Q.; Li, J.; Zhao, C.; Guo, X.; Zhao, Y.; Jiu, T. Grain boundary passivation with triazine-graphdiyne to improve
perovskite solar cell performance. Sci. China Mater. 2020, 63, 2465–2476. [CrossRef]

79. Wei, J.; Wang, X.; Sun, X.; Yang, Z.; Moreels, I.; Xu, K.; Li, H. Polymer assisted deposition of high-quality CsPbI2Br film with
enhanced film thickness and stability. Nano Res. 2020, 13, 684–690. [CrossRef]

80. Zeng, J.; Bi, L.; Cheng, Y.; Xu, B.; Jen, A.K.Y. Self-assembled monolayer enabling improved buried interfaces in blade-coated
perovskite solar cells for high efficiency and stability. Nano Res. Energy 2022, 1, e9120004. [CrossRef]

81. Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z.; et al. A Breakthrough Efficiency of 19.9%
Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I. J. Am. Chem. Soc. 2017,
139, 7504–7512. [CrossRef]

82. Wei, X.; Liu, X.; Liu, H.; Yang, S.; Zeng, H.; Meng, F.; Lei, X.; Liu, J. Exfoliated graphitic carbon nitride self-recognizing
CH3NH3PbI3 grain boundaries by hydrogen bonding interaction for improved perovskite solar cells. Sol. Energy 2019,
181, 161–168. [CrossRef]

83. Kang, B.; Biswas, K. Preferential CH3NH3
+ Alignment and Octahedral Tilting Affect Charge Localization in Cubic Phase

CH3NH3PbI3. J. Phys. Chem. C 2017, 121, 8319–8326. [CrossRef]
84. Hao, Q.; Jia, G.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B.-J. Graphitic carbon nitride with different dimensionalities for

energy and environmental applications. Nano Res. 2019, 13, 18–37. [CrossRef]
85. Chen, X.; Liu, Q.; Wu, Q.; Du, P.; Zhu, J.; Dai, S.; Yang, S. Incorporating Graphitic Carbon Nitride (g-C3N4) Quantum Dots into

Bulk-Heterojunction Polymer Solar Cells Leads to Efficiency Enhancement. Adv. Funct. Mater. 2016, 26, 1719–1728. [CrossRef]
86. Chen, J.; Dong, H.; Zhang, L.; Li, J.; Jia, F.; Jiao, B.; Xu, J.; Hou, X.; Liu, J.; Wu, Z. Graphitic carbon nitride doped SnO2 enabling

efficient perovskite solar cells with PCEs exceeding 22%. J. Mater. Chem. A 2020, 8, 2644–2653. [CrossRef]
87. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion

correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [CrossRef]
88. Wang, S.; Sakurai, T.; Wen, W.; Qi, Y. Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. Adv. Mater.

Interfaces 2018, 5, 1800260. [CrossRef]
89. Jena, A.K.; Ishii, A.; Guo, Z.; Kamarudin, M.A.; Hayase, S.; Miyasaka, T. Cesium Acetate-Induced Interfacial Compositional

Change and Graded Band Level in MAPbI3 Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 33631–33637. [CrossRef]
90. Singh, A.N.; Kajal, S.; Kim, J.; Jana, A.; Kim, J.Y.; Kim, K.S. Interface Engineering Driven Stabilization of Halide Perovskites

against Moisture, Heat, and Light for Optoelectronic Applications. Adv. Energy Mater. 2020, 10, 2000768. [CrossRef]
91. Liu, P.; Sun, Y.; Wang, S.; Zhang, H.; Gong, Y.; Li, F.; Shi, Y.; Du, Y.; Li, X.; Guo, S.-s.; et al. Two dimensional graphitic carbon nitride

quantum dots modified perovskite solar cells and photodetectors with high performances. J. Power Sources 2020, 451, 227825.
[CrossRef]

92. Ameri, M.; Ghaffarkani, M.; Ghahrizjani, R.T.; Safari, N.; Mohajerani, E. Phenomenological morphology design of hybrid
organic-inorganic perovskite solar cell for high efficiency and less hysteresis. Sol. Energy Mater. Sol. Cells 2020, 205, 110251.
[CrossRef]

93. Zeng, W.; Liu, X.; Guo, X.; Niu, Q.; Yi, J.; Xia, R.; Min, Y. Morphology Analysis and Optimization: Crucial Factor Determining the
Performance of Perovskite Solar Cells. Molecules 2017, 22, 520. [CrossRef]

94. Zheng, L.; Zhang, D.; Ma, Y.; Lu, Z.; Chen, Z.; Wang, S.; Xiao, L.; Gong, Q. Morphology control of the perovskite films for efficient
solar cells. Dalton Trans. 2015, 44, 10582–10593. [CrossRef]

95. Liu, Z.; Wu, S.; Yang, X.; Zhou, Y.; Jin, J.; Sun, J.; Zhao, L.; Wang, S. The dual interfacial modification of 2D g-C3N4 for
high-efficiency and stable planar perovskite solar cells. Nanoscale Adv. 2020, 2, 5396–5402. [CrossRef]

96. Cao, J.; Tang, G.; You, P.; Wang, T.; Zheng, F.; Zhao, J.; Yan, F. Enhanced Performance of Planar Perovskite Solar Cells Induced by
Van Der Waals Epitaxial Growth of Mixed Perovskite Films on WS2 Flakes. Adv. Funct. Mater. 2020, 30, 2002358. [CrossRef]

97. Jin, J.; Wu, S.; Yang, X.; Zhou, Y.; Li, Z.; Cao, Q.; Chi, B.; Li, J.; Zhao, L.; Wang, S. Improve the efficiency of perovskite solar cells
through the interface modification of g-C3N4 nanosheets. Mater. Lett. 2021, 304, 130685. [CrossRef]

98. Yang, J.; Chu, L.; Hu, R.; Liu, W.; Liu, N.; Ma, Y.; Ahmad, W.; Li, X.a. Work function engineering to enhance open-circuit voltage
in planar perovskite solar cells by g-C3N4 nanosheets. Nano Res. 2021, 14, 2139–2144. [CrossRef]

99. Yang, X.; Li, L.; Wu, J.; Hu, Q.; Wang, Y.; Russell, T.P.; Tu, Y.; Zhu, R. Optimizing Vertical Crystallization for Efficient Perovskite
Solar Cells by Buried Composite Layers. Sol. RRL 2021, 5, 2100457. [CrossRef]

125



Nanomaterials 2022, 12, 3625

100. Wang, L.; Fu, L.; Li, B.; Li, H.; Pan, L.; Chang, B.; Yin, L. Thiazole-Modified C3N4 Interfacial Layer for Defect Passivation and
Charge Transport Promotion in Perovskite Solar Cells. Sol. RRL 2021, 5, 2000720. [CrossRef]

101. Cruz, D.; Garcia Cerrillo, J.; Kumru, B.; Li, N.; Dario Perea, J.; Schmidt, B.; Lauermann, I.; Brabec, C.J.; Antonietti, M. Influence
of Thiazole-Modified Carbon Nitride Nanosheets with Feasible Electronic Properties on Inverted Perovskite Solar Cells. J. Am.
Chem. Soc. 2019, 141, 12322–12328. [CrossRef]

126



Citation: Liu, Y.; Wu, X. Recent

Advances of Transition Metal

Chalcogenides as Cathode Materials

for Aqueous Zinc-Ion Batteries.

Nanomaterials 2022, 12, 3298.

https://doi.org/10.3390/

nano12193298

Academic Editor: Henrich

Frielinghaus

Received: 4 September 2022

Accepted: 20 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Recent Advances of Transition Metal Chalcogenides as Cathode
Materials for Aqueous Zinc-Ion Batteries
Ying Liu and Xiang Wu *

School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
* Correspondence: wuxiang05@sut.edu.cn

Abstract: In recent years, advances in lithium-ion batteries (LIBs) have pushed the research of other
metal-ion batteries to the forefront. Aqueous zinc ion batteries (AZIBs) have attracted much attention
owing to their low cost, high capacity and non-toxic characteristics. Among various cathodes,
transition metal chalcogenides (TMCs) with a layered structure are considered as suitable electrode
materials. The large layer spacing facilitates the intercalation/de-intercalation of Zn2+ between the
layers. In this mini-review, we summarize a variety of design strategies for the modification of TMCs.
Then, we specifically emphasize the zinc storage capacity of the optimized electrodes. Finally, we
propose the challenges and future prospects of cathode materials for high-energy AZIBs.

Keywords: aqueous zinc ion battery; transition metal chalcogenides; layered structure; cathode;
energy storage mechanism

1. Introduction

The growing energy crisis has driven the unprecedented development of renew-
able clean energy [1–3]. To date, lithium-ion batteries (LIBs) are the most widely used
energy storage devices. However, the scarcity of lithium resources, the inflammability
of electrolytes, and high operating environment requirements limit their growth [4–7].
Rechargeable aqueous zinc ion batteries (AZIBs) are a new generation of safety batteries.
They possess certain advantages in terms of abundant zinc reserves, low anode potential
(−0.763 V vs. SHE) and high theoretical capacity (820 mAh g−1) [8–11]. Therefore, AZ-
IBs have become one of the candidates to replace LIBs. However, zinc anodes undergo
dissolution–precipitation reactions with several adverse reactions, such as dendrite growth,
corrosion, and by-product formation. They are inevitable during repeated plating and
stripping and seriously damage the cycle life of the cells [12]. Also, divalent zinc ions
possess stronger electrostatic interactions than monovalent lithium ions [13,14]. Therefore,
the choice of a suitable intercalation material is the crucial to break through this challenge.

In recent years, many efforts are devoted to the exploration of cathode materials,
including Prussian blue analogs, vanadium-based and manganese-based compounds, and
transition metal chalcogenides (TMCs) [15–19]. Among them, Prussian blue analogs are
featured by a high voltage window, but their crystal structure is unstable and prone to
phase transformation [20]. The inherent low electrical conductivity and poor structural
stability of V- and Mn-based materials lead to their slow electrochemical kinetics [21–23].
The electrical conductivity of TMCs is superior to that of oxides. Additionally, TMCs are
characterized by a unique layer structure with large layer spacing. Their high specific
surface area can provide many active sites and reduce ion transfer paths [24]. In previous
reports, Naveed et al. designed the VS2 nanosheet materials as cathodes, which maintain
a capacity of 138.3 mAh g−1 at 0.1 A g−1 after 500 cycles with a retention of 94.38% [25].
Kang’s group summarized the Zn storage ability of various oxides, sulfides and borides [26].
The results show that the activated MnS electrode is a potential cathode material with
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both high capacity and stable cycling performance. However, bulk MoS2 and WS2 mate-
rials are virtually incapable of storing zinc ions. Therefore, it is essential to improve the
electrochemical performance of TMCs by effective tuning strategies.

In recent years, there have been numerous reports on TMCs-based cathode materials.
Herein, we first summarize several feasible strategies for optimizing the electrode structure.
Then, we discuss the electrochemical performance of TMCs cathodes for AZIBs. Lastly,
we overview the advances in cathode materials and present the current challenges and
prospects for constructing advanced cathodes of AZIBs.

2. The Electrochemical Performance of TMCs Cathodes

Two-dimensional (2D) TMCs are composed of transition metals (M = V, Ni, Mo, W
and Mn, etc.) and chalcogen elements (X = S, Se, Te) with tunable electrical properties
from semiconductors to metals. They is widely studied in the field of energy storage
and conversion field [24,27,28]. In addition, graphene-like 2D layered TMCs are highly
advantageous for battery applications because of their large specific surface area, which can
significantly increase the contact area between the active material and the electrolyte [29].
Figure 1 illustrates the crystal structures of various TMCs materials. Their non-bonding
properties allow the insertion of atoms, ions and molecules. The design strategies of TMCs
materials mainly include defect engineering, hybridization, phase modulation, and in situ
electrochemical oxidation. The main focus is to widen the interlayer space, improve the
electrode conductivity, and accelerate the electrochemical kinetic process. We will categorize
the strategies of structural design and zinc storage capabilities of various cathode materials
in the following sections.
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2.1. VS2 and VS4

The hexagonal-structured vanadium disulfide (VS2) is a member of the TMC family. It
owns a layered structure with a layer spacing of 5.76 Å [30]. The S-V-S layers rely on weak
van der Waals interactions (Figure 2a). Hence, VS2 materials have become an attractive
host for Zn ion insertion/extraction. Nevertheless, VS2 is unstable in aqueous solutions,
leading to severe capacity decay during cycling. From the aspect of modulating the material
structure, coating is considered to be effective strategy. Pu et al. prepared rose-shaped VS2
encapsulated with a hydrophilic VOOH coating using a one-pot hydrothermal route [31].
The assembled cells maintained 82% capacity after 400 cycles. The rate capability and
long cycle life of the optimized sample is significantly improved compared to the VS2
sample, which is attributed to the O–H in VOOH. From Figure 2b, its presence not only
enhances the wetting of the electrode and electrolyte, but also prevents the dissolution of
the main materials. Fan’s group prepared ultrathin VS2 nanosheets grown on graphene
sheets (rGO–VS2) by a solvothermal strategy [32]. The rGO offers a large specific surface
area and excellent electrical conductivity. In addition, the close contact of VS2 nanosheets
with rGO can effectively prevent the dissolution and corrosion of the host materials. It
ensures the high stability of the electrode in long-term cycling. Thus, Zn/rGO–VS2 cells can
deliver a large specific capacity (238 mAh g−1 at 0.1 A g−1) and excellent rate performance
(190 mAh g−1 at 5 A g−1, Figure 2c). After 1000 cycles of charging and discharging, it can
still maintain 93.3% of the initial capacity, as shown in Figure 2d.

The N dopant provides high affinity for the transition metals, so it is possible to form
a strong coupling between the host material and the N-doped carbon. This contributes to
accelerate the interfacial electron transfer and reduces cycling-induced stress and volume
changes. Liu and co-workers prepared spun VS2 materials on a N-doped carbon layer
(VS2@N-C) by an in situ hybridization strategy [33]. This strategy ensures a strong inter-
facial interaction between the active material and the N-doped carbon. It promotes the
enhancement of electrochemical kinetics and cycling stability of the cathode. The optimal
electrode possesses a capacity of 203 mAh g−1 at 0.05 A g−1. Based on the Zn ion insertion
and extraction mechanism, the cells can obtain a capacity of 144 mAh g−1 after 600 cycles.
Liu’s group synthesized 1T-VS2 colloidal nanospheres assembled from nanoflakes [34]. By
controlling the charge cutoff voltage, a number of the Zn ions were trapped in the interlayer
of the structure after the initial charge/discharge cycle. These “dead Zn” act as “pillars” to
ensure the stability of the layered structure of VS2. After 2000 cycles, the cells maintained
the capacity retention of 86.7%. This unique layered structure increases the conductivity
due to the presence of carbon and oxygen groups on the surface, facilitating the penetration
of the aqueous electrolyte and providing more active sites.

In order to further improve the stability of VS2 electrodes in an aqueous electrolyte.
Yang et al. employed an in situ electrochemical oxidation approach to enhance the interlayer
space of vanadium disulfide (VS2NH3) hollow spheres [35]. This large layer spacing
(1.21 nm) is favorable to the improvement of zinc ion storage capacity. The VS2NH3 samples
transform into a porous structured V2O5·nH2O phase during the first charging cycle
(Figure 2e). It enhances the active sites and is conducive to a rapid electrochemical kinetic
process. This derived electrode maintains a high capacity at 3 A g−1 even after 2000 cycles.
Similarly, Du and co-workers proposed the formation of VS2/VOx heterostructures by in
situ electrochemical induction [36]. When the sample is charged to 1.8 V, the morphology of
the composite changes from rose-like shape to sheet-like one. This structure can withstand
the volume expansion caused by repeated cycles. Compared to the pure Zn–VS2 cell,
the Zn–VS2/VOx one demonstrates a cycling stability of 3000 cycles at 1 A g−1 with an
improved working potential of 0.25 V (Figure 3a). This strategy of combining highly
conductive sulfides and excellent chemically stable oxides leads to an enhancement of the
Zn2+ storage capacity of the VS2/VOx cathode.
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VS4 is a material with a one-dimensional (1D) atomic chain structure. When compared
with the VS2 material, it possesses many S atoms with layer spacing up to 5.83 Å, as shown
in Figure 3b. It indicates that VS4 may show excellent zinc storage capacity. Zhu et al.
prepared VS4 materials as cathodes via a hydrothermal route [37]. Density functional theory
(DFT) calculations demonstrate that the electrode is capable of storing zinc ions up to a
maximum specific capacity of 262 mAh g−1. Then, the cell can deliver a specific capacity of
310 mAh g−1 at 0.1 A g−1. It is higher than the theoretical capacity, which could be due
to the additional absorption capacity. Furthermore, the absence of additional by-product
generation suggests that the energy storage of material follows a zinc-ion embedding/de-
embedding mechanism. The construction of heterostructures is also an attractive strategy.
In theory, the intrinsic zinc storage capacity of the cathode can be effectively enhanced by
building a heterostructure with sufficient interfaces and grain boundaries. Fang’s group
designedVS4/V2O3 heterostructures with a high specific surface area [38]. The assembled
battery shows a capacity of 163 mAh g−1 at 0.1 A g−1. As a contrast, the single electrode
presents inferior electrochemical performance. This demonstrates that the optimized
heterogeneous material can boost the energy storage capacity.
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It is also an effective strategy for improving electrochemical kinetics by compositing
with highly conductive materials. Qin and co-workers synthesized VS4 composite material
immobilized on reduced graphene oxide (VS4@rGO) as a cathode [39]. This synergistic
effect enables the VS4@rGO electrode to reach a capacity of 180 mAh g−1 (1 A g−1) after
165 cycles with a capacity retention of 93.3%. Nevertheless, the above-mentioned electro-
chemical performance is still unsatisfactory. Chen and co-workers optimized the morphol-
ogy of the VS4@rGO composites to achieve a specific capacity of 450 mAh g−1 at a current
density of 0.5 A g−1 when used as cathodes [40]. Moreover, the capacity of 313.8 mAh g−1

was maintained at high current densities (10 A g−1). It indicates that the batteries possess
an excellent rate capability. It is noteworthy that a new phase Zn3(OH)2V2O7·2H2O (ZVO)
appears during charging. The following reactions may occur in the electrode material:

VS4 + xZn2+ + 2xe− ↔ ZnxVS4 (1)

VS4 + 11H2O + 3Zn2+ → Zn3(OH)2V2O7·2H2O + 8S + 16H+ + 10e− (2)
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After that, it transforms into the ZnV3O8 phase during the long cycles, which is
associated with the subsequent capacity decay. Gao et al. reported a flower-like VS4/CNTs
cathode with an abundant mesoporous structure, which effectively shortens the diffusion
path of zinc ions [41]. In Figure 3c, when the first cycle is charged to 1.7 V, the charging curve
undergoes a slow upward trend, which implies a phase transition process. Figure 3d further
confirms that the mechanism of the phase change reaction of VS4 with zinc pyrovandate
(Zn3+x(OH)2V2O7·2H2O). The results show that the Zn–VS4/CNTs batteries possess a
reversible capacity of 265 mAh g−1 (0.25 A g−1) and a good rate performance in the
potential range from 0.2 to 1.7 V. Although the energy storage capacity has been significantly
improved by modification of the electrode material, the inevitable phase change during the
reaction process still hinders the cycle life. This may be related to the high charging voltage.

2.2. MoS2

MoS2 is a typical 2D-layered structure bound by weak van der Waals forces [42–44].
However, the ionic radius of hydrated Zn2+ is 0.43 nm, which places high demands on
the interlayer space of the host materials. To enhance the reaction kinetics of Zn ion
insertion and extraction, Li et al. extended the interlayer spacing of the (002) plane of MoS2
nanosheets from 0.62 nm to 0.70 nm [45]. Due to the addition of glucose, an amorphous
carbon layer is wrapped on the surface of MoS2. This facilitates the alleviation of volume
expansion and promotes charge transfer. From Figure 4a, the specific capacity of the
batteries can be maintained at 164.5 mAh g−1 after 600 cycles. In Figure 4b, the charge
storage mechanism can be described as follow:

Cathode: xZn2+ + x2e− + MoS2 ↔ ZnxMoS2 (3)

Anode: Zn2+ + 2e− ↔ Zn (4)

In addition, a flexible solid-state Zn/E-MoS2 cell was further assembled using the
starch/polyacrylamide (PAM) polymer electrolyte. Under different mechanical strengths,
the cell still can maintain a stable charge/discharge process.

Due to the diversity of coordination of Mo and S atoms, MoS2 can show a semicon-
ductor phase with a triangular prismatic structure (2H phase) and a metallic phase with an
octahedral structure (1T phase). 1T-phase MoS2 possesses higher electrical conductivity
and better hydrophilicity than 2H-phase ones [46,47]. Therefore, the material is also a
promising electrode for zinc storage. Huang et al. synthesized a 1T-phase MoS2 nanosheet
grown directly on reduced graphene oxide (rGO) scaffolds [48]. The addition of the rGO
scaffold can serve to stabilize the 1T phase and reduce the possibility of phase transition
during zinc ions insertion/extraction. In addition, it can improve the electrical conductiv-
ity, thus shortening the diffusion path of zinc ions. The initial discharge capacity of the
1T-MoS2/rGO heterogeneous electrode is 108.3 mAh g−1, and the cell maintains a capacity
retention of 88% after repeated charge/discharges of 1000 times.

Tang’s group synthesized N-doped 1T MoS2 nanoflowers assembled from ultrathin
nanosheets by a one-step hydrothermal sulfidation of Mo-based organic framework (MOF)
precursors [49]. The introduction of defects effectively widens the interlayer spacing and
increases the number of sulfur vacancies as well as the hydrophilicity of the sample. Zn/N-
doped 1T MoS2 batteries deliver a capacity of 149.6 mAh g−1 (0.1 A g−1). The capacity
retention is up to 89.1% after 1000 cycles at 3 A g−1. Additionally, the electrochemical
performance was studied for the difference in area mass loading of the electrodes. The area
capacity shows an outstanding performance when the area loading reaches 1.701 mg cm−2.
This implies that the electrode presents excellent rate capacity even at high loadings.
Liu and co-workers reported MoS2 nanosheets with different phase contents as cathode
materials [50]. Among them, the MoS2 nanosheet electrode with 1T phase of content
around 70% presents favorable long-term cycling stability. This indicates that the presence
of metallic 1T phase favors the ion and charge transfer.
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Apart from composite with conductive materials, combination with organic molecules also
promotes the increase of zinc ion storage capacity. Yao et al. designed a 2D MoS2/C19H42N+

(CTAB) organic–inorganic superlattice structure (MoS2–CTAB) as a cathode [51]. This
unique structure can significantly enlarge the interlayer spacing (1.0 nm) of the host materi-
als (Figure 4c). In addition, the stable electrode structure can accommodate the expansion
and contraction of Zn2+ within the host structure. The loading mass of the active material is
a very important parameter for the evaluation of the specific capacity and energy density of
the cell. The areal capacity of the battery increases with the area mass loading in a potential
window of 0.2–1.3 V. Figure 4d demonstrates the optimal adsorption position of Zn ions at
the pure MoS2 and modified MoS2 electrodes by DFT calculations. In the former structure,
the Zn ion prefers to adsorb at the top site of the Mo atom with a corresponding energy
of −0.31 eV, but the charge accumulation of adsorbed Zn with adjacent S atoms suggests
a strong electrostatic interaction between Zn and the host material. In the latter one, the
adsorption energy of Zn ion at the same site is −0.25 eV, and the distance between Zn and
its three neighboring S atoms remains almost unchanged relative to the original electrode.
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2.3. MnS

In recent years, many efforts have been made in Mn-based oxide cathodes [52]. For
instance, Minakshi et al. compared the cathodic behavior of electrolytic manganese dioxide
(EMD) and chemically prepared battery-grade manganese dioxide (BGM) in a lithium
hydroxide (LiOH) electrolyte [53]. The EMD cell demonstrated stable discharge/charge
cycles compared to the BGM. Wang’s group designed nanocrystal line structures of MnO2
materials with particle sizes typically less than 10 nm [54]. This structure confers some
electrode/electrolyte contact interfaces. Therefore, the Zn/MnO2 cell delivers a capacity of
260 mAh g−1 at 1.3 C.

However, their rate capability and cycle stability cannot meet the current high-capacity
energy storage requirements. In addition, Zn ions show strong electrostatic interactions
with the Mn oxide lattice, leading to large energy barriers for Zn2+ migration [55]. Chen
et al. reported the transformation of α-MnS materials into high-performance manganese
oxide cathodes (MnS–EDO) by in situ electrochemical oxidation [56]. Compared to α-MnO2,
this electrode generated more defects and vacancies after structural reconfiguration. This
indicates a rapid electrochemical kinetic process. The Zn/MnS–EDO cell shows a high
specific capacity of 335.7 mAh g−1 with capacity retention close to 100% and reversible rate
performance (Figure 5a). In addition, it can undergo a repeated charge/discharge process
of 4000 cycles, as shown in Figure 5b.

To further enhance the electrical conductivity of MnS, Ma and co-workers designed
a MnS and rGO composite material. This synergistic effect effectively improves the Zn
storage capacity of the electrode material [57]. MnS possesses various phase types: α-MnS,
β-MnS and γ-MnS. Both β- and γ-phases are sub-stable and readily transform to the stable
rock salt structure α-MnS (Figure 5c). Jiang et al. fabricated flexible zinc ion microcells
with MnS as cathodes and guar gels as the quasi-solid electrolyte by etching soft templates
on various substrates [58]. The cells prepared on PET substrates deliver an area-specific
capacity of 178 µAh cm−2. After 1000 cycles, they can maintain a capacity of 150 mAh g−1 at
1 A g−1 in Figure 5d. Moreover, the area energy density can reach 322 µWh cm−2 at a power
density of 120 µW cm−2. In addition, this quasi-solid-state cell shows excellent flexibility
with almost no significant capacity degradation when the device is bent at multiple angles.
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(b) The long-term cycling at 10 C. Reproduced with permission [56]. Copyright 2020, Elsevier Ltd.
(c) Crystal structure model of α-MnS; (d) Cyclic stability in 2 M ZnSO4 and 0.1 M MnSO4 aqueous
electrolyte. Reproduced with permission [58]. Copyright 2021, Wiley-VCH GmbH.

2.4. VSe2

Among numerous TMCs, vanadium diselenide (VSe2) presents a typical layered
structure with a sandwich-like Se–V–Se connected by van der Waals interactions [59]. The
materials possess a layer spacing of 6.11 Å, which can provide sufficient transport channels
and active sites for the intercalated ions [60]. Moreover, the strong electronic coupling
force between adjacent V4+–V4+ endows it with metallic properties. Thus, it shows great
potential in terms of energy storage [61,62]. For instance, Alshareef’s group explored
the energy storage capacity of VSe2 materials in different alkali metal batteries [63]. The
morphology of VSe2 nanosheets can be modulated using N-methylpyrrolidone (NMP)
solvent, and the electrochemical performance of the samples is further improved by in situ
carbon coating. The electrodes can provide a specific capacity of 768 mAh g−1 (lithium
storage) and 571 mAh g−1 (sodium storage), respectively.

Recently, VSe2 materials also show attractive performance in zinc storage. Wu et al.
designed an ultrathin VSe2 nanosheet as a cathode [64]. The assembled cells maintain an
initial capacity of 80.8% after 500 cycles. This durable cycling stability is attributed to their
fast Zn2+ diffusion kinetic process and durable cycling stability. The local charge density
map in Figure 6a shows a decrease in charge around the Zn ion and an increase in charge
around the Se and some V sites. This demonstrates that the intercalated Zn is bonded to
the Se ligand. From Figure 6b, the migration barrier for the optimal diffusion pathway
of Zn ions is 0.91 eV, which corresponds to a fast ion migration rate. Based on the Zn
ion insertion and extraction mechanism (Figure 6c), the cell possesses an energy density
of 107.3 Wh kg−1 at a power density of 81.2 W kg−1. Cai and co-workers synthesized
homogeneous flower-shaped VSe2 spheres using MXene as a support [65]. The specific
capacity of Zn–VSe2/MXene cells was higher than the initial capacity after 2000 cycles
at 5 A g−1 in the voltage window of 0.2–1.6 V (Figure 6d). This may be attributed to the
generation of a Zn0.25V2O5 (ZVO) phase. With repeated discharge/charging, the generation
and accumulation of ZVO phase provides a continuous capacity contribution to the battery.

2.5. Ni3S2

Nickel sulfide (Ni3S2) is a promising electrode material with the advantages of high
activity and theoretical capacity, excellent stability, and low cost [66,67]. However, Ni3S2
materials perform inferiorly in cycling stability and specific capacity when they are used as
a cathode for AZIBs. Structural defects are an approach to modulate the crystal structure
of the materials [68]. In addition, the introduction of defects can increase the electrical
conductivity and carrier density, effectively improving the electrochemical activity of the
electrode materials [69].

For instance, Tong et al. doped highly reactive Co ions in Ni3S2 nanocones by atomic
layer deposition (ALD) and the hydrothermal method [70]. A Co12-Ni3S2/NF (C12NS)
sample was used as the cathode; the hydrogel electrolyte is immersed in 5 M KOH/0.1 M
Zn(AC)2 solution to assemble a quasi-solid-state flexible cell. The reactivity of the electrodes
is increased due to the Co doping and sulfation. The specific capacity of the activated
electrode is about four times higher than that before activation. This is mainly due to the
adsorption of OH radicals from the alkaline electrolyte on the sulfur sites of the Co-doped
Ni3S2. The reaction mechanism can be described as:

Cathode: Co-Ni3S2 + 2OH− ↔ Co-Ni3S2(OH)2 + 2e− (5)

Co-Ni3S2(OH)2 + 3OH− ↔ Co-Ni3S2O2OH + 2H2O + 3e− (6)

Anode: Zn[(OH)4]2− + 2e− ↔ Zn + 4OH− (7)
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Figure 6. The kinetic process and cycle capability of a VSe2-based Zn battery. (a) The schematic
of charge density map after zinc-ion intercalation. (b) The optimal diffusion pathway of zinc ions.
(c) Schematic of the two-step Zn2+ intercalation/de-intercalation process. Reproduced with permis-
sion [64]. Copyright 2020, Wiley-VCH GmbH. (d) Long-cycles performance at 5 A g−1. Reproduced
with permission [65]. Copyright 2022, Elsevier Inc.

During the continuous adsorption of hydroxide radicals, sulfur and oxygen coexist.
The formed oxygen–sulfur bonds enhance the electrochemical performance of the electrode
material, as shown in Figure 7a. The Co-doped electrodes present a low energy barrier. It
indicates that they can achieve a fast Zn ion migration (Figure 7b). In Figure 7c, the capacity
retention of Co12-Ni3S2/NF electrode after 5000 cycles is up to 90%.

In addition to the defect strategy, Wang’s group prepared Ni/Ni3S2 nanocomposites
with large specific surface areas using Ni–ZIF MOFs as precursors through a simple medium
temperature solid–gas phase reaction [71]. The assembled batteries with 6 M KOH-0.6 M
ZnO electrolyte possess an excellent rate capability (Figure 7d). They can maintain a
capacity retention of 83% after 1000 cycles at 20 A g−1 (Figure 7e). Additionally, an energy
density of 379 Wh kg−1 can be obtained at 340 W kg−1 at a high output voltage (1.7 V).
Table 1 summarizes the electrochemical performance of TMC cathodes. It can be observed
that these materials present some disadvantages, mainly in terms of limited voltage window,
low specific capacity and inferior cycle life. In addition, the modification tactics lead to a
large difference in the electrochemical performance of the electrodes. This demonstrates
that an appropriate strategy can enhance the structural stability as well as the cycle life of
the cells. The VS4 composite shows significant advantages with a cycle life of 3500 cycles
with a stable charge/discharge process. It can be noted that the electrolytes used in these
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batteries are varied. The high concentration of electrolyte contributes to the increase in
capacity. Therefore, the choice of electrolyte is also crucial in future work to affect the
electrochemical performance of the Zn/TMCs batteries.
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Table 1. The electrochemical performance of TMC cathodes.

Cathodes Anodes Voltage (V) Electrolyte Capacity (mAh g−1)
Cycle Stability
(mAh g−1,
Cycles, A g−1)

Ref.

VS2@VOOH Zinc foil 0.4–1.0 3 M ZnSO4 165 (0.1 A g−1) 91.4, 400, 2.5 [31]
VS2 and
N-doped carbon Zinc foil 0.2–1.8 3 M

Zn(CF3SO3)2
203 (0.05 A g−1) 144, 600, 1 [33]

VS2/VOx Zinc foil 0.1–1.8 25 M ZnCl2 260 (0.1 A g−1) 75%, 3000, 1 [36]
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Table 1. Cont.

Cathodes Anodes Voltage (V) Electrolyte Capacity (mAh g−1)
Cycle Stability
(mAh g−1,
Cycles, A g−1)

Ref.

VS4 Zinc foil 0.2–1.6 1 M ZnSO4 310 (0.1 A g−1) 110, 500, 2.5 [37]

VS4/V2O3 Zinc foil 0.3–1.2 3 M
Zn(CF3SO3)2

163 (0.1 A g−1) - [38]

VS4@rGO Zinc foil 0–1.8 1 M
Zn(CF3SO3)2

450 (0.5 A g−1) 82%, 3500, 10 [40]

MoS2
Deposited zinc
on carbon cloth 0.5–1.5 2 M ZnSO4 202.6 (0.1 A g−1) 164.5, 600, 1 [45]

MoS2-CTAB
Zn anode
plated on
carbon paper

0.2–1.3 3 M ZnSO4 181.8 (0.1 A g−1) 92.8%, 2100, 10 [51]

MnS zinc powder 0.9–1.95 2 M ZnSO4 and
0.1 M MnSO4

297 (0.1 A g−1) 150, 1000, 1 [58]

VSe2 Zinc foil 0.2–1.6 2 M ZnSO4 131.8 (0.1 A g−1) 80.8%, 500, 0.1 [64]

Ni/Ni3S2 Zinc foil 1.3–1.9 6 M KOH and
0.6 M ZnO 220 (0.2 A g−1) 93.1%, 1000, 4 [71]

3. Summary and Outlook

AZIBs have attracted a considerable attention as an alternative to LIBs with the
features of being inexpensive, environmentally friendly, resource-rich, and having high
theoretical capacity. However, current cathode materials are still hampered by their inferior
conductivity, slow kinetics, structural instability, and dissolution of active substances.
Among them, TMCs possess a unique layered structure and a large layer spacing and high
conductivity, which facilitate the transfer of ion carriers. First, the high specific surface
area provides many electrochemically active sites and short ion transfer paths. Secondly,
its excellent electrical conductivity ensures fast electron transfer. Finally, the open-layer
structure favors the embedding of electrolyte ions and reduces the volume change. We
summarized the research advances of TMCs as electrode materials in recent years. The
main focus was on their modification strategies and the improvement of zinc storage
capacity. Reasonable modification strategies are beneficial for the improvement of energy
storage capability. Nevertheless, the goal of commercialization is still not reached. More
efforts may be required to try to shorten this gap.

The electrochemical performance of TMCs materials, such as specific capacity and long
cycle performance, still needs to be improved. There are several strategies for considering
directions for this: (1) introducing defects (vacancies or doping) in electrode materials.
It can add many active sites and conductivity to effectively increase the capacity of the
battery. (2) Combining high conductivity and specific surface area materials such as MOFs
and rGO. MOFs possess rich pore structures. The calcination of MOFs precursors is an
effective method to prepare metal compound/carbon composites. (3) Expanded layer
spacing. The increase of layer spacing is beneficial to the rapid shuttling of zinc ions, which
can effectively improve the electrochemical kinetics.

Although some TMCs have been employed for energy storage, there are few materials
with desired zinc storage capability. Therefore, it is still necessary to explore the unex-
ploited cathode materials (Figure 8). We should place our eyes on the study of materials
such as WS2, MoSe2, etc., and focus on the design of effective modification strategies.
Additionally, the mechanism of electrochemical energy storage is still unclear. Advanced in
situ characterization techniques are beneficial to explore the evolution of the structure of
electrode materials during charging and discharging as well as elemental valence changes.

In addition, the structural stability of electrode materials is closely associated with their
electrochemical performance. The cycling process may generate irreversible phase changes
and side reactions, which lead to structural collapse or capacity loss. The modulation of
heterogeneous interfaces may suppress the occurrence of side reactions. Finally, flexible
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electronic devices have attracted much attention because of their high safety, portability,
and wearable features. There are few reports related to flexible devices for AZIBs. They
should focus on flexible substrates and cathodes with certain mechanical flexibility, and
stable solid-state electrolytes with high ionic conductivity.
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Abstract: Sodium borohydride (NaBH4) is considered a good candidate for hydrogen generation
from hydrolysis because of its high hydrogen storage capacity (10.8 wt%) and environmentally
friendly hydrolysis products. However, due to its sluggish hydrogen generation (HG) rate in
the water, it usually needs an efficient catalyst to enhance the HG rate. In this work, graphene
oxide (GO)-modified Co-B-P catalysts were obtained using a chemical in situ reduction method.
The structure and composition of the as-prepared catalysts were characterized, and the catalytic
performance for NaBH4 hydrolysis was measured as well. The results show that the as-prepared
catalyst with a GO content of 75 mg (Co-B-P/75rGO) exhibited an optimal catalytic efficiency
with an HG rate of 12087.8 mL min−1 g−1 at 25 ◦C, far better than majority of the findings that
have been reported. The catalyst had a good stability with 88.9% of the initial catalytic efficiency
following 10 cycles. In addition, Co-, B-, and P-modified graphene showed a synergistic effect
improving the kinetics and thermodynamics of NaBH4 hydrolysis with a lower activation energy
of 28.64 kJ mol−1. These results reveal that the GO-modified Co-B-P catalyst has good potential for
borohydride hydrolysis applications.

Keywords: NaBH4; graphene oxide; catalytic activity; hydrolysis

1. Introduction

Since the first industrial revolution, the overconsumption of fossil energy has created
issues of air pollution and energy storage [1]. Therefore, the development of new renewable
green and efficient energy has become an urgent matter for the future development of
society and the economy. Hydrogen is expected to be a fossil energy alternative, which
relies on its outstanding features of the nonemission of pollutants and high efficiency [2]. In
general, there are several ways, such as photocatalysis, biomass decomposition, chemical
hydrides hydrolysis, to produce hydrogen [3,4]. In the method described above, hydrogen-
rich compound hydrolysis, such as NaBH4 [5] and ammonia borane (NH3BH3) [6], has
been considered as a convenient, economical, and efficient way to produce hydrogen.

NaBH4 is rich in hydrogen (10.8 wt%), environmentally friendly, safe, and non-
flammable, which can be employed for producing hydrogen through hydrolysis reac-
tions [7]. The hydrolysis reaction occurs through the following reactions:

NaBH4 + 2H2O→ NaBO2 + 4H2 + heat (217 kJ mol−1) (1)

During this process, four moles of H2 can be produced by one mole of NaBH4. In
particular, NaBH4 and water each provide 50% of the hydrogen. [8]. In addition, the
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byproduct NaBO2 can be collected to reproduce NaBH4, which shows a sustainable de-
velopment value. However, the NaBH4 hydrolysis reaction exhibits sluggish kinetics in
the solutions. Previous reports have proved that selecting an appropriate catalyst can
significantly improve the HG rate. Noble metal-based catalysts (Pt [9,10], Ru [11,12], and
Pd [13,14]) have shown positive catalytic performance. However, their scarce storage and
high price limit the related practical applications. Transition metal catalysts (Co [15,16],
Ni [17], and Co-Ni [18]) with inferior cost and relatively good catalytic activity have been
broadly investigated for hydrogen production from NaBH4. In addition, transition metals
combined with heteroatoms, such as boron (B) and phosphorus (P), could further enhance
the catalytic activity [19,20]. For example, Patel et al. reported that the transition-metal
borides (e.g., CoB, NiB) exhibited superior catalytic activities due to the mutual electronic
interaction between boron and transition metals (Co or Ni), thus preventing them from oxi-
dation and protecting the active metal center. [21]. Chen et al. prepared cobalt–phosphorus
(Co-P) catalysts and investigated their catalytic efficiency in alkaline sodium borohydride
solutions. The Co-P catalyst showed favorable hydrolysis performance with a low acti-
vation energy, which was attributed to the improvement of the catalytic performance by
the appropriate amount of P doping [22]. So far, catalysts including Co-P [22], Ni-B [23],
Co-W-B [24], Co-Ni-B [25], Co-B-P [26], etc., have been extensively researched and have
shown good catalytic performance. Although these catalysts possess preferable catalytic
activity, they usually show a low cycle stability. To address the above issue, selecting a
suitable matrix, such as MOFs [27], porous carbon [28], MWCNTs [29], SiO2 [30], and
γ-Al2O3 [31], which possesses a high specific surface area to support the active metals, can
effectively improve the catalytic performance. Recently, graphene with excellent physical
and chemical characteristics has been researched, making it an ideal carrier material to
support metal clusters [32,33]. The large specific surface area can not only improve the
distribution of metal clusters, thereby exposing more catalytically active sites for catalysis
reaction, but it can also suppress the aggregation issue during the catalytic process, thus
presenting a superior catalytic performance.

In this study, we successfully prepared the graphene modified Co-B-P catalysts
through chemical in situ reduction. The structural characteristics and catalytic efficiency of
the Co-B-P/xrGO (x = 25, 50, 75, 100) catalysts were studied. The Co-B-P/75rGO catalyst ex-
hibited an optimal catalytic performance with an average HG rate of 12,087.8 mL min−1 g−1.
In addition, the effects of the GO content and heteroatom types on the catalytic activity
of NaBH4 hydrolysis were also studied. The excellent hydrogen generation performance
is attributed to the fact that the large specific surface area of graphene oxide can better
disperse Co-B-P clusters and thus expose more active sites. Meanwhile the elemental B and
P doping exhibits a synergistic catalytic effect. This is because the presence of GO increases
the specific surface area for uniform dispersion of Co-B-P clusters on the surface of the GO,
thus exposing more catalytically active sites for the hydrolysis reaction.

2. Materials and Methods
2.1. Materials

High purity flake graphite (300 mesh), sulfuric acid, hydrochloric acid, hydrogen per-
oxide, sodium nitrate, potassium permanganate, sodium borohydride, sodium hydroxide,
cobalt chloride hexahydrate, and sodium hypophosphite monohydrate were obtained from
Alfa Aesar Co., Ltd. (Tianjin, China). The chemicals used were analytical reagent. All
experiments used ultrapure water.

2.2. Synthesis of GO

We prepared the GO materials using a modification of the Hummers method [34].
First, concentrated H2SO4 (60 mL), NaNO3 (2 g), and flake graphite (2 g) were mixed at
5 ◦C to obtain a solution. Subsequently, 12 g of KMnO4 was slowly added to the above
solution, and the solution was heated to 35 ◦C for 7 h with magnetic stirring. Then, 200 mL
ice water and 15 mL H2O2 were added in turn to the mixed solution, until the mixed
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solution changed from brown to bright yellow. Next, the mixed solution was repeatedly
washed with hydrochloric acid and deionized water until the pH was 7 to obtain the GO
solution. Finally, the GO was obtained after freeze-drying for 72 h.

2.3. Catalyst Preparation

The Co-B-P/75rGO was obtained through chemical in situ reduction synthesis. First,
GO (75 mg), CoCl2·6H2O (5 mmol), and NaH2PO2·H2O (30 mmol) were dispersed into
20 mL ultrapure water with sonication for 30 min. Next, 20 mL solution containing an
appropriate amount of NaBH4 (30 mmol) was slowly dropped into the reaction solution
with intense agitation. After being aged in an ice water bath for 10 h, the Co-B-P/75rGO
catalysts were obtained after washing with water, washing with ethanol, and drying. For
comparison, a Co-B-P cluster without GO was prepared under the same conditions. In
addition, we controlled the addition of GO to be 25, 50, and 100 mg, and the obtained
corresponding composites were labeled as Co-B-P/xrGO (x = 25, 50, and 100), respectively.
The comparison samples of CoB, CoP, and CoBP without GO were prepared under the
same conditions.

2.4. Catalyst Characterization

The Co-B-P/xrGO catalyst structures were analyzed by X-ray diffraction (XRD). The
chemical structures of the catalyst were characterized by Fourier transform infrared (FTIR)
spectroscopy. The elemental valence states of the Co-B-P/xrGO catalysts were determined
by X-ray photoelectron spectroscopy (XPS). The morphologies of the Co-B-P/xrGO catalysts
were determined by scanning electron microscopy (SEM). The degree of graphitization
of the Co-B-P/xrGO catalysts was analyzed by Raman microscope (Raman spectra). The
specific surface areas of the Co-B-P/xrGO catalysts were calculated by the Brunauer–
Emmett–Teller (BET) method. The bulk elemental composition of Co, B, and P in the
as-prepared Co-B-P/xrGO catalysts was measured via inductive coupled plasma–optical
emission spectroscopy (ICP-OES).

2.5. Hydrogen Generation Measurement

The catalytic efficiency of Co-B-P/xrGO in alkaline NaBH4 solution was evaluated
by a laboratory fabricated self-assembled drainage device [35]. The amount of hydrogen
produced was determined by the volume of water drained, and the hydrogen generation
rate was calculated through tracking the volume of water expelled at regular periods.
Firstly, 0.1 g of Co-B-P/xrGO was added to a dry 125 mL wide-mouth flask. Then, 10 mL of
a solution (1.5 wt% NaBH4 and 5 wt% NaOH) was placed into a wide-mouth flask through a
10 mL capacity syringe, and an appropriate amount of sodium hydroxide solution inhibited
the NaBH4 self-hydrolysis reaction. The hydrogen generation efficiency of the catalyst
hydrolysis was tested at different temperatures, and the reaction activation energy (Ea) was
evaluated by the exponential law of reaction rate. After the hydrolysis test, the catalyst was
washed with water and vacuum dried for 10 h. Then, the catalyst was tested for durability
by adding 10 mL of fresh NaBH4 solution as described above.

3. Results and Discussion
3.1. Catalyst Characterization

The Co-B-P/xrGO was prepared through the chemical in situ reduction method
(Figure 1) [36]. In a typical procedure, GO material was prepared by a modified Hummers
method and distributed in ultrapure water under ultrasonic conditions. Subsequently,
Co2+ was anchored on the GO surface by the electrostatic adsorption. After adding the
NaH2PO2·H2O and NaBH4 solution, GO was reduced to rGO, and Co-B-P clusters formed
on the rGO surface [37].
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Figure 1. The illustration of the synthetic route of Co-B-P/xrGO.

The microscopic morphology and nanostructure of the catalysts were characterized
through SEM. The prepared pure Co-B-P alloy catalyst was agglomerated in a granular
morphology (Figure 2a), which was ascribed to the exothermic nature of the catalyst during
the preparation process. Figure 2b shows that the GO was successfully synthesized by
the modified Hummers method with a typical pleated-sheet morphology. To overcome
the aggregation issue, GO with a typical pleated structure can act as a matrix material
to disperse the Co-B-P clusters [38]. For exploring the effect of the GO addition on the
catalytic performance, catalysts with different contents of GO were prepared. Figure 2c–f
show the morphologies of Co-B-P/xrGO (x = 25, 50, 75, and 100), respectively. All the SEM
images showed that the metal clusters were tightly anchored to the surface of the reduced
graphene. Increasing the content of GO means the larger specific surface area can be used
to provide a larger space for the dispersion of Co-B-P clusters. The Co-B-P clusters tended
to grow uniformly on the surface of the reduced graphene. However, when the addition
content was 100 mg, the redundant reduced graphene wrapped around leading to the
aggregation issue of Co-B-P clusters. Among them, Co-B-P/75rGO exhibited an optimal
morphology with Co-B-P clusters tightly and uniformly anchored on the surface of the
reduced graphene. This structure can expose more active sites for the catalytic reaction,
which was verified in subsequent hydrolysis catalysis measurements [29]. In addition, the
EDX spectra (Figure 2g–l) showed that the Co, B, P, O, and C elements were uniformly
dispersed in the Co-B-P/75rGO catalyst.

The XRD patterns and Raman spectra of Co-B-P/xrGO were measured as shown in
Figure 3a. A broad diffraction peak near 2θ = 45◦ corresponded to the Co-B and Co-P
phases, indicating that the as-prepared catalysts were a typical amorphous structure [39,40],
and the addition of GO would not affect the amorphous structure of the catalyst. The peaks
around 26.0◦ belonged to the (002) plane of reduced graphene, indicating that the GO
was reduced. The short-range ordered and long-range disordered amorphous structures
are generally considered to have an unsaturated surface coordination, which has been
proved to be beneficial for catalytic hydrolysis [21]. The characteristic peaks of the D-band
and G-band were observed near 1350 and 1580 cm−1, as shown in Figure 3b. The ratio
of the strength of the D band to the G band represents the disorder of the carbon-based
hybrid material [41]. Experimental results showed that with the addition of GO, the ID/IG
values of all catalysts were greater than 1.00; in particular, Co-B-P/75rGO (ID/IG) reached
1.28. The ID/IG value indicated that Co-B-P/75rGO had more defects, which can anchor
more metal and metal-like clusters to improve the catalytic performance. The following
performance test experiments also confirmed this conclusion.
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Figure 2. SEM images of (a) Co-B-P, (b) GO, (c–f) Co-B-P/xrGO (x = 25, 50, 75, and 100), and EDX
mapping images of (g) Co-B-P/75rGO, (h) Co, (i) B, (j) P, (k) O, and (l) C in Co-B-P/xrGO.

Figure 3. (a) XRD patterns of Co-B-P and Co-B-P/xrGO catalysts; (b) Raman spectra of Co-B-P/xrGO
catalysts (x = 25, 50, 75, and 100).

The chemical structures of GO and the Co-B-P/75rGO were characterized by FTIR
(Figure 4). For the spectra of GO, the peak of the -OH stretching vibration of water molecules
appeared at 3431 cm−1 [42]. The characteristic peaks at 1736, 1630, and 1089 cm−1 were
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observed for the -COOH stretching vibration, C=C bond skeleton vibration, and C-O-
C vibration of GO, respectively [42]. The considerable numbers of oxygen-containing
groups contained in the GO were produced during the oxidation of the graphite with a
strong oxidizer, which can easily absorb metal ions. The FTIR spectrum of Co-B-P/75rGO
was similar to the GO; yet, the peak near 1736 cm−1 disappeared. We ascribed this to
the addition of H2PO2

− and BH4
−, which acted as reducing agents to reduce the GO to

reduced graphene (rGO) [39]. These experimental results show that the Co-B-P/75rGO
catalyst was successfully synthesized.

Figure 4. FTIR spectra of GO and CO-B-P/75rGO.

The surface interactions and electronic states of the Co-B-P/75rGO catalyst were
investigated by XPS. In the XPS spectrum of Co 2p (Figure 5b), the two major peaks at
781.4 and 797.2 eV were Co 2p 3/2 and Co 2p 1/2, respectively [43], while two satellite
peaks were observed at 786.5 and 803.1 eV, indicating the presence of elemental Co and
the oxidized state of Co in the catalyst [44]. The C 1s spectrum (Figure 5c) showed three
peaks located at 284.8, 285.9, and 288.7 eV, which belonged to the C-C/C=C, C-O, and
O=C-O groups of rGO, respectively [45]. The peaks of B 1s at 187.7 and 191.2 eV were
attributed to boron in the elemental and oxidized states, respectively. The elemental
boron was positively shifted by 1.2 eV compared to the pure boron (186.5 eV) binding
energy [46]. This was due to the transfer of electrons from boron to cobalt, filling the empty
d-orbitals of cobalt (Figure 5d). In the O 1s XPS spectrum, two peaks located at 531.6
and 533.0 eV were ascribed to -C=O and -C-O, respectively (Figure 5e). In addition, two
distinctive characteristic peaks near 129.5 and 132.9 eV in the full spectrum of element P
(Figure 5f) were attributed to the presence of P0 and P-O, respectively [29]. Due to the high
electronegativity of P, the binding energy of P0 was negatively shifted by 0.7 eV compared
to pure P (130.2 eV) [47]. Apparently, as shown in Figure 2, the binding energy of cobalt in
Co-B-P/75rGO was positively shifted by 0.3 eV compared to that in Co-B/75rGO.These
experimental results suggest that there was an interaction between Co, B, and P, which is
more favorable for catalysis.
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Figure 5. XPS analysis of Co-B-P/75rGO: (a) full spectrum, (b) Co 2p, (c) C 1s, (d) B 1s, (e) O 1s, and
(f) P 2p.

The specific surface area and surface pore characteristics of the catalysts were tested by
an Autosorb-iQ analyzer. According to the IUPAC classification, both curves in Figure 6a
show hysteresis back loops, which were apparently type IV isotherms, indicating that both
catalysts had a mesoporous characteristic [48]. The mesoporous channels are beneficial
to the diffusion and contact between catalyst and reactant [49]. In addition, according
to Table 1, the specific surface area of the Co-B-P/75rGO catalyst increased from 3 m2/g
to 89 m2/g as the GO was added. Compared with pure Co-B-P, the total pore volume
of Co-B-P/75rGO was increased, and the average pore diameter of 12.0 nm decreased to
9.0 nm. The addition of GO significantly increased the specific surface area for uniform
distribution of Co-B-P clusters; thus, the composite catalyst offered more active sites for
catalyzing the hydrolysis.

Figure 6. Nitrogen sorption isotherms (a) and pore-size distributions (b) for the Co-B-P and Co-B-
P/75rGO catalysts.

Table 1. Textural parameters of the Co-B-P and Co-B-P/75rGO catalysts.

Catalyst Specific Surface
Area (m2 g−1)

Pore Volume
(cm3 g−1)

Average Pore Diameter
(nm)

Co-B-P 3 0.01 12.0
Co-B-P/75rGO 89 0.28 9.0
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3.2. Effect of Different Types of Catalysts

In order to evaluate the properties of the catalyst, performance tests with different
comparison samples were carried out. Figure 7 shows the hydrogen production per unit
time of sodium borohydride hydrolysis catalyzed by the GO, Co-P, Co-B, Co-B-P, and
Co-B-P/75rGO catalysts, and the magnitude of the slope represents the different superior
and inferior performances. The experimental results showed that pure GO had less catalytic
performance when used for NaBH4 hydrolysis. Moreover, the combination of Co elements
with heteroatoms (e.g., B and P) presented better catalytic performance than pure Co-based
catalysts, which is due to the addition of heteroatoms forming electronic interactions with
Co, thereby enhancing the catalytic behavior [21]. Based on the above conclusion, the
Co-B-P catalyst with two heteroatoms exhibited a better performance than Co-B and Co-P
catalysts because of the synergistic effect between Co, B, and P. Moreover, after combining
Co-B-P with GO, the Co-B-P/rGO catalyst presented the optimal catalytic activity and
has a higher competitive advantage over previously reported catalysts (Table 2). This is
because the presence of GO increased the specific surface area for the uniform dispersion
of the Co-B-P clusters on the surface of GO, thus exposing more catalytically active sites
for the hydrolysis reaction [38]. Therefore, our further research was based on the Co-B-
P/rGO catalyst.

Figure 7. Hydrogen volume versus time for GO, Co-P, Co-B, Co-B-P, and Co-B-P/rGO (batch system,
25 ◦C, 1.5 wt% NaBH4 + 5 wt% NaOH, 0.1 g catalyst).

Table 2. The Co-B-P/75rGO catalyst was compared with those previously reported in the literature.

Sample Maximum HG Rate
(mL min−1 g−1) Ea (kJ mol–1)

Number
of Cycles

Cyclic
Stability References

Co@3DGO 4394 37.42 5 54.0% [50]
Co@GO 5955 64.87 5 73.0% [51]

Co-P 1647.9 47.0 5 31.0% [39]
CoO-Co2P 3940 27.4 4 60.0% [52]

Co@N MGC-500 3575 35.2 20 82.5% [53]
Cu-Co-P/γ-Al2O3 1115 47.8 6 66.0% [54]

Co-P/CNTs-Ni foam 2430 49.94 8 74.0% [55]
Co-B-10CNTs 12,000 23.5 5 64.0% [29]

Co-O-P 4850 63 5 78.0% [56]
Co-B-50GO 14,430 26.2 5 81.5% [40]

Co-B-P/75rGO 12,087.8 28.64 10 88.9% This work

3.3. Effect of GO Amount

The appropriate amount of carrier plays a crucial role in the synthesis of catalysts.
The effects on Co-B-P/rGO catalysts with different amounts of GO (25, 50, 75, and 100 mg)
for the catalytic activity of NaBH4 were also investigated. The hydrolysis of NaBH4
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experiments showed that, with an increase in the amount of GO, the HG rate first increased
and then decreased. The Co-B-P/75rGO sample with 75 mg GO presented an optimal
catalytic performance with the HG rate of 12,087.8 mL min−1 g−1 (Figure 8a,b). Previous
studies have proved that metal clusters play a major role in the hydrolysis NaBH4 reaction.
The chemical composition of the prepared catalysts with different amounts of GO were
determined by ICP–OES (Table 3). The results showed that the Co-B-P/75rGO catalyst had
the highest Co content (61.79%), which also corresponded to the results of the hydrolysis
experiment. Combined with the textural and surface morphology analysis, there were two
factors for the superior performance of the Co-B-P/75rGO. First, the optimal content of
GO supplied sufficient specific surface area for uniform distribution of Co-B-P/75rGO and
provided more active sites for catalysis reaction [57]. Meanwhile, B and P heteroatoms
doping led to a higher electron density in the active site of the catalyst, thus exhibiting a
better catalytic performance.

Figure 8. Hydrogen volume versus reaction time for the as-prepared catalysts (a); the histogram of
the H2 generation rate versus the additive amount of GO (b) (batch system, 25 ◦C, 1.5 wt% NaBH4 +
5 wt% NaOH, 0.1 g catalyst).

Table 3. The chemical composition of the prepared catalysts with different amounts of GO were
determined by ICP–OES.

Catalyst Amount of Co (wt%) Amount of B (wt%) Amount of P (wt%)

Co-B-P/25GO 35.80 0.04 16.48
Co-B-P/50GO 40.2 1.02 12.62
Co-B-P/75GO 61.79 2.51 5.50
Co-B-P/100GO 34.65 0.72 14.34

3.4. Effect of Catalyst Amount

In order to investigate the relationship between the catalyst amount and catalytic
performance, four groups of different masses of Co-B-P/75rGO (25, 50, 75, and 100 mg)
were tested for hydrolysis performance (Figure 9a). Each test reached the theoretical
capacity of hydrogen volume, and the HG rate became increasingly faster with the increase
in catalyst dosage. A linear relationship between the two can be seen in Figure 9b. This
indicates that the Co-B-P/75rGO catalyst’s catalyzing hydrogen production from NaBH4
was characterized by first-order reaction kinetics.

151



Nanomaterials 2022, 12, 2732

Figure 9. (a) Effect of catalyst loadings on the HG rate (batch system, 25 ◦C, 1.5 wt% NaBH4 + 5 wt%
NaOH); (b) HG rate versus catalyst dosage.

3.5. Effect of NaBH4 Concentration

The effect of NaBH4 concentration on hydrogen generation was studied under the
condition of 0.1 g Co-B-P/75rGO catalyst and 25 ◦C (Figure 10a). The generated hydrogen
volume was gradually increased to the theoretical capacity after increasing the NaBH4
concentration from 0.5 wt% to 2.0 wt%. In addition, Figure 10b shows that the HG rate
remained nearly identical as the NaBH4 concentration increased. The insignificant change
in HG rate indicated that the concentration of NaBH4 did not affect the HG reaction,
showing zero-order reaction kinetics [58].

Figure 10. (a) Effect of NaBH4 concentrations on the HG rate (batch system, 25 ◦C, 5 wt% NaOH,
0.1 g of catalyst); (b) HG rate versus NaBH4 concentration.

3.6. Kinetic Studies at Different Temperatures

The HG rate of the Co-B-P/75rGO catalyst was measured under standard conditions.
The temperature was controlled from 15 ◦C to 55 ◦C with 10 ◦C as a gradient. Figure 11a
shows that high temperature had a significant promotion effect on the rate of hydrogen
production. The total HG volume reached theoretical capacity at different temperatures.
The formula is shown below:

k = k0·exp
(

Ea

RT

)
(2)

where k0 is the rate constant (mL min−1 g−1), Ea is the activation energy (kJ mol−1), T is
the reaction temperature (K), and R is the gas constant (8.314 kJ mol−1 K−1). Figure 11b
shows the Arrhenius plot of ln k and the reciprocal of the absolute temperature (1/T).
According to the slope of the fitting line, the Ea of the hydrolysis reaction in this study
was calculated to be 28.64 kJ mol−1, which is lower than most previous reports in the
literature (Table 2). The favorable catalytic activity was ascribed to the presence of GO,
which promoted the uniform dispersion of Co-B-P clusters and exposed more catalytically
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active sites for the hydrolysis. Meanwhile the synergistic effect of the GO and Co-B-P
clusters was also conducive to the hydrolysis activity of NaBH4.

Figure 11. (a) Hydrogen generation kinetics curves and (b) Arrhenius plot obtained using
1.5 wt% NaBH4 and 1.0 wt% NaOH solution and employing Co-B-P/75rGO as a catalyst at dif-
ferent solution temperatures.

3.7. Reusability Performance

The cycle stability of catalysts is critical in practical applications. Therefore, NaBH4
was hydrolyzed 10 times with Co-B-P/75rGO catalyst in the same conditions. Figure 12
shows the variation in the catalytic hydrogen production efficiency of the Co-B-P/75rGO
catalyst with the number of cycles. It can be observed that the HG rate decreased slightly
as the cycle time increased. The HG rate still maintained 88.9% of the initial rate after
10 cycles, which shows better stability compared to other previously reported cobalt-based
catalysts (Table 2). The decline in the catalytic activity may be due to the active clusters
being reunited during each cycle. In addition, the produced boride byproducts (such as
BαOβ(OH)γ and BxOy·nH2O) were adsorbed on the catalyst surface during the catalysis
process, thereby decreasing the HG rate [59].

Figure 12. (a) Reusability of Co-B-P/75rGO with 0.1 g catalyst and 1.5 wt% NaBH4 + 5 wt% NaOH
solution at 25 ◦C; (b) HG rate bar chart of catalyst used 10 times.

4. Conclusions

In summary, a series of Co-B-P/xrGO catalysts were achieved using a chemical in situ
reduction method and were employed for NaBH4 hydrolysis. The experimental results
showed that Co-B-P/xrGO had a strong effect on the catalytic behaviors, in which the
Co-B-P/75rGO presented an optimal HG rate (12,087.8 mL min−1 g−1) and lower activation
energy (28.64 kJ mol−1). The satisfied catalytic performances were due to the uniform
dispersion of clusters and the synergistic catalytic effect between Co, B, and P. In addition,
the repeatability test results showed that 88.9% of the initial catalytic efficiency could be
maintained following 10 cycles, indicating that the catalyst had a good cycle stability. The
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above findings suggest that the Co-B-P/75rGO catalyst has great promise for producing
hydrogen via chemical hydrate hydrolysis.
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Abstract: Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and
safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions.
In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal
method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the
evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect
between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen
generation rate (10,164.3 mL·min−1·g−1) and low activation energy (28.7 kJ·mol−1). Furthermore, the
robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC
catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the
PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.

Keywords: hydrogen generation; porous titanium oxide cage; PtNi nanoparticles; sodium borohy-
dride hydrolysis

1. Introduction

The overconsumption of traditional fossil fuels has brought in severe energy shortages
and environmental pollution issues, such as the greenhouse effect [1]. To solve the above
issues, hydrogen energy, as an efficient and sustainable energy, is considered to be a
promising alternative to fossil energy [2,3]. The extensive development and use of hydrogen
energy is conducive to the pursuit of carbon neutrality and emission peak. Hydrogen
produced by the hydrolysis of sodium borohydride (NaBH4) has been regarded as one of
the most promising hydrogen production methods due to the advantages of high theoretical
hydrogen production density (10.8 wt%), low hydrogen release temperature, controllable
reaction process, high hydrogen purity, and environmental friendliness [4]. However, the
slow hydrolysis reaction limits the wide use of hydrogen.

In order to accelerate the reaction kinetics of hydrolysis NaBH4, a variety of catalysts
such as Co [5–8], Ni [9–11], Rh [12], Pd [13], Ru [14,15], and Pt [16,17] have been compre-
hensively studied. Although Pt-based catalysts are one of the most active catalysts, the
scarce storage and expensive price are the main obstacles to their large-scale application.
Therefore, increasing the utilization efficiency of Pt remains the focus of the search. Previous
studies have demonstrated that combining Pt with non-noble metals (such as Co [18,19],
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Ni [20–22], and Fe [23,24]) could significantly improve the utilization efficiency of the cata-
lysts. For example, Shumin Han et al. synthesized a carbon nanosphere (CNS)-supported
ultrafine bimetallic Pt-Co nanoparticle (CNSs@Pt0.1Co0.9) catalyst for NaBH4 catalysis.
The as-prepared CNSs@Pt0.1Co0.9 catalyst exhibited excellent performance in kinetic and
thermodynamic tests [25]. Younghun Kim et al. designed a magnetic core and multi-shelled
silica/titania-supported bimetallic (Pt/Ni NPs Fe3O4@SiO2@TiO2) catalyst for catalyzing
the hydrolysis of NaBH4 [20]. Jong-Sung Yu et al. uniformly deposited PtFe hydroxide by
in situ hydrolysis of urea, followed by the preparation of a carbon-supported PtFe catalyst
in ethylene glycol, and the catalyst exhibited excellent electrocatalytic performance [24].

Recently, Ni combined with precious metals, such as Pt-Ni and Ru-Ni, have been con-
firmed to be effective catalysts for hydrogen production from hydrolysis NaBH4 [26–28].
However, these catalysts exhibit poor catalytic activity due to the accumulation of metal
nanoparticles (NPs) during the reaction. Strategies including structural and morphology
control, as well as the addition of suitable carries can effectively inhibit the agglomeration
problem [29–31]. In addition, the introduction of support material not only is conducive to
the distribution of metal NPs but also improves the metal properties through geometric and
electronic effects. Anelia Kakanakova-Georgieva et al., employing theoretical calculations,
demonstrated that the porous structural material and the synergistic effect between metal
NPs with support materials played an important role in the activity of the catalyst [32,33].
Porous hollow structures assembled from nanosheets with large surface areas could pro-
vide a unique microenvironment both on the inside and outside through species channels
for guest shuttling [34]. Among numerous porous materials, metal-organic frameworks
(MOFs) with tunable metal ions and organic ligands are extensively searched in the fields of
energy storage and catalysis [35]. Furthermore, they also act as a self-sacrificing template in
preparing the porous hollow materials. For example, pioneering studies used the Ti-MOFs
as carriers to improve the catalytic performance of metal catalysts for hydrogen produc-
tion [36,37]. Therefore, reasonably designed porous structural carries for the dispersion of
metal NPs enables the achievement of a satisfactory catalytic performance.

Herein, PtNi NPs were confined in a porous titanium oxide cage (PTOC) derived
from NH2-MIL-125 (Ti) by a facile hydrothermal method and used for the hydrogen pro-
duction of hydrolysis NaBH4. The synthesized catalysts exhibit good catalytic activity
with a high hydrogen generation rate (10,164.3 mL·min−1·g−1) and low activation energy
(28.7 kJ·mol−1). In addition, the robust porous structure of PTOC benefits from the distribu-
tion of PtNi alloy particles and suppresses the agglomeration issue; thus, the PtNi/PTOC
nanocomposite catalyst retains 87.8% of the initial catalytic activity after eight cycles.

2. Materials and Methods
2.1. Materials

All chemicals were of analytical grade and used without further purification.
2-aminoterephthalic acid, sodium borohydride (NaBH4), and nickel nitrate hexahydrate
(Ni(NO3)2·6H2O) with a purity of 99% were purchased from Alfa Aesar Co., Ltd. (Tianjin,
China). Chloroplatinic acid hexahydrate (H2PtCl6·6H2O), titanium (IV) isopropoxide, L-
alanine, and dimethylformamide (DMF)were purchased from Aladdin Reagent (Shanghai,
China). All experiments were performed using DMF and anhydrous CH3OH as solvents.

2.2. Synthesis of NH2-MIL-125

The preparation of NH2-MIL-125 nanocrystals followed a previously reported pro-
cess [38]. Using DMF and ethanol as organic reaction solvents, 2-aminoterephthalic acid
(500 mg, 2.76 mmol) was dissolved in a mixture solvent (10 mL) of 1 mL of CH3OH (1 mL)
and DMF (9 mL). Subsequently, 0.76 mmol of titanium isopropoxide was slowly added to
the mixture under ultrasound. The solution was then placed in a 25 mL Teflon-lined reactor
and heated at 150 ◦C for 72 h. After, the mixture was cooled to room temperature and
the yellow powder was recovered by centrifugation. To remove impurities, the collected
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powder was washed sequentially with DMF, ethanol, and deionized water and dried at
80 ◦C for 12 h.

2.3. Synthesis of PTOC

NH2-MIL-125 (10 mg) was sonicated and dispersed in 5 mL of anhydrous ethanol.
Next, 47.5 mg of L-alanine was added to the mixture and stirred for 6 h. The solution was
then placed in a reaction vessel containing 25 mL of Teflon liner and heated at 176 ◦C for
36 h. The white precipitate was recovered by centrifugation, washed with ethanol, and
dried under vacuum at 80 ◦C for 12 h.

2.4. Preparation of PtNi/PTOC

Amino acid molecules (generally a class of mild reducing agents) are used to pre-
pare metal NPs. Herein, NH2-MIL-125 (10 mg) was sonicated and dispersed in 5 mL of
anhydrous ethanol. Then, L-alanine (47.5 mg) was added into the mixture and stirred for
6 h. H2PtCl6·6H2O (1.0 mg, 2.3 µmol) and Ni(NO3)2·6H2O (3 mg, 10.3 µmol) were added
sequentially and stirred for 1 h. Then, the mixture was placed in a 25 mL Teflon pan and
heated at 176 ◦C for 36 h. After centrifugation, the mixture was dried with ethanol at 80 ◦C
for 12 h. For the comparison, Ni(NO3)2·6H2O was not added in the preparation process of
Pt/PTOC, and H2PtCl6·6H2O was not added to Ni/PTOC; the other steps were consistent
with the preparation process of PtNi/PTOC.

2.5. Characterization

The morphology of the PtNi/PTOC catalyst was analyzed by scanning electron mi-
croscopy (SEM, Quanta 200, FEI, Hillsboro, OR, USA) under a vacuum environment and
30 kV AC voltage. The test sample was dispersed on conductive material and stuck on a
small sample holder. Excess powder was blown off with gas to avoid contaminating the
cavity. The morphology and elemental composition of the catalyst was analyzed using a
transmission electron microscope (TEM, JEOL 2010, JEOL, Tokyo, Japan) and dispersive
X-ray detector (EDX) with an informal resolution of 0.12 nm and a point resolution of
0.25 nm. The powder was put into an anhydrous ethanol solution, shaken well with
ultrasonic waves, and dropped onto the microgrid support film to obtain the sample to
be tested. The chemical structure of the catalyst was characterized by Fourier-transform
infrared (FT-IR) spectroscopy (Nicolet 6700, Waltham, MA, USA) in the wavenumber range
of 400–4000 cm−1. The fine powder of the sample was uniformly dispersed in potassium
bromide in the ratio of 1:100 (mcatalyst:mKBr) and the transparent flakes were obtained by
the tablet method at the pressure of 5 MPa for 30 s. The crystal structure was analyzed by
X-ray diffraction (XRD, 1820, Philips, Amsterdam, The Netherlands), with a scan angle
from 5◦ to 90◦, a step size set to 0.02, a working voltage of 40 kV, and a working current of
40 mA. The sample preparation was carried out as follows: the powder sample was evenly
distributed in the sample holder and compacted with the glass plate. The sample surface
was required to be smooth and flush with the glass surface. The nitrogen-desorption
isotherms of the PtNi/PTOC catalysts were investigated using a QuantachromeAutosorb-
iQ2 adsorber. The specific surface area of PtNi/PTOC catalyst was determined using a
fully automated ratio meter and porosity analyzer. The samples were degassed in a glass
tube at 150 ◦C for 10 h and then analyzed in liquid nitrogen. The pore size of a pore of the
PtNi/PTOC catalyst was determined by the BJH method. X-ray photoelectron spectroscopy
(XPS; Thermo Electron ESCALAB 250, Waltham, MA, USA), was mainly used qualitatively
and semi-quantitatively through the analysis of catalysts, the valence state, species class,
and surface content. The sample was pressed on aluminum foil, the excitation light source
was Al Kα (hv= 1486.6 eV), and the final XPS was calibrated by C 1s (284.8 eV).

2.6. Hydrogen Production Testing

The catalytic hydrogen generation experiments were measured on a self-built hydro-
gen generation device [39]. The volume of hydrogen produced was determined by the
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equivalent displacement of water. First, 0.1 g of catalyst was added in a 125 mL conical
flask. Next, 10 mL of the solution containing 1.5 wt% NaBH4 and 5 wt% NaOH was injected
into the conical flask. The produced gas was collected in a container filled with water after
flowing through a condenser and dryer to remove water vapor. The volume of produced
H2 was measured by the water displacement method. The water was displaced into a 1 L
flask through a tube connected with a gas-gathering container and weighted by an elec-
tronic balance (UX2200H, Shimadzu Corporation, Kyoto, Japan). A computer connected
to the electronic balance was used to record water quality automatically. The hydrogen
released per gram of catalyst per unit time (HGR) was calculated through the display on the
computer. After one hydrolysis test was completed, the catalyst was immediately washed
and dried for 12 h. Subsequently, a fresh 10 mL of the 1.5 wt% NaBH4 and 5 wt% NaOH
solution was added to repeat the above measurements.

The hydrogen generation rate (HGR) was calculated according to the following equation:

HGR =
VH20(mL)

t(min)× m(g)

where VH20 is the volume of drained water, m is the total mass of the catalyst, and t is the
total reaction time in minutes [40].

3. Results and Discussion
3.1. Catalyst Characterization

In this paper, PtNi/PTOC was synthesized by a simple hydrothermal method and wet-
reduction method. Figure 1 shows a schematic diagram of the preparation of PtNi/PTOC
(PTOC). First, a round cake of NH2-MIL-125 (Ti) was obtained using 2-aminoterephthalic
acid as organic ligands and titanium (IV) isopropoxide as a metal precursor. Then, PTOC
with a porous hollow structure was formed into an alcoholic thermal process at 176 ◦C
under auxiliary amino acid molecules L-alanine. Lastly, PtNi precursors were reduced to
Pt3Ni NPs by the L-alanine. The formation of PTOC involved the Kirkendall effect of Ti
ion dissolution and recrystallization. The Ti(iv) ions were firstly dissolved from NH2-MIL-
125(Ti) nanocrystals by coordination of Ti(iv) with amino acids (l-alanine), leading to the
formation of sheet-like titanium oxide NPs on the NH2-MIL-125(Ti) nanocrystals. With
this continuous transformation, successive shells of titanium oxides were generated and
transferred into the completed porous cages.
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Figure 1. The illustration of the synthetic route of PtNi/PTOC.

The morphology of NH2-MIL-125 and PTOC were characterized by SEM; as can
be seen in Figure 2a,b, the NH2-MIL-125 exhibits a round cake with a smooth surface,
and the size is around 300–500 nm. After the auxiliary of the amino acid molecule L-
alanine under hydrothermal circumstances, the cage structure of PTOC remains, with
multi-channel interlacing on the surface (Figure 2c,d). Due to the alcoholization of NH2-
MIL-125, the nanosheets were assembled into a cage structure. L-alanine is commonly used
as a mild reducing agent for the preparation of metal NPs [41,42]. After the hydrothermal
reaction, PtNi precursors were reduced to Pt3Ni NPs and confined in PTOC. As shown
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in Figure 2e,f, compared with the PTOC sample, Pt-Ni/PTOC still retained the unique
“nanocage” structure.
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Figure 2. SEM images of (a,b) NH2-MIL-125; (c,d) PTOC and (e,f) PtNi/PTOC catalyst.

As shown in Figure 3, HRTEM analysis showed that PtNi NPs were uniformly dis-
tributed in the PTOC nanocages with average particle sizes of 1.68 nm (Figure 3b). Further,
high-resolution HRTEM analysis revealed that the d-spacing of 0.223 nm is between the
(111) crystal faces of Pt (0.227 nm) and Ni (0.204 nm), indicating the formation of PtNi alloy
NPs (Figure 3c) [43]. The HAADF-STEM image also confirmed the formation of uniformly
distributed PtNi NPs (Figure 3d). EDX analysis showed that the as-prepared nanocompos-
ites consisted of Ti, N, Pt, and Ni (Figure 3e–h). These results indicate that the 3D structure
of PtNi NPs encapsulated by PTOC nanocages have been successfully prepared.
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FT-IR measurements (Figure 4a) were carried out to detect the functional groups of
the as-prepared catalysts. The experimental results showed that all the prepared catalysts
contained benzene rings and amino groups (the characteristic peaks at 3428 cm−1 and
1630 cm−1). The existence of amino groups stably binds the metal NPs due to the strong
chelation/complexation effect between the metal and amine groups [44]. Therefore, our
results indicate that PTOC precursors are beneficial for the distribution of metal NPs. The
XRD spectrum (Figure 4b) had four peaks at 2θ = 25◦, 48◦, 55◦, and 62◦, which corresponded
to the (101), (200), (211), and (213) crystal planes of anatase TiO2 (PDF, No. 21-1272). The
diffraction peaks of layered titanate H2Ti8O17 also appeared (PDF No. 36-0656), indicating
that the PTOC had a two-component titanium oxide porous cage. In addition, the reflected
signals of the Pt/PTOC and Ni/PTOC samples matched well with metallic Pt (PDF No.
87-0647) and Ni (PDF No. 65-0380), respectively. The diffraction peaks of PtNi alloy laid
between the corresponding characteristic peaks of Pt and Ni, which further reflected the
well-alloyed PtNi nanoparticles [45].
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The surface interactions and electronic state of PtNi/PTOC were investigated using
XPS. Figure 5a shows the whole XPS pattern of PtNi/PTOC. The signals generated by the
PTOC corresponded to C 1s, N 1s, O 1s, Ti 2p, Pt 4f, and Ni 2p. The narrow range spectra
of Ti 2p is depicted in Figure 5b, which also proves the presence of PTOC. In Figure 5c,
it can be seen that the Pt 4f region of core level binding energies is deconvoluted into
two sets of spin-orbit doublet peaks. The Pt 4f spectrum exhibited two peaks at 71.4 and
74.7 eV and were assigned to Pt 4f7/2 and Pt 4f5/2, respectively, suggesting the presence
of Pt0. Two peaks at 71.9 and 75.3 eV corresponded to the satellite peaks of Pt. The binding
energy located at 855.6 and 873.4 eV belonged to the Ni 2p3/2, and Ni 2p1/2, respectively.
The binding energies at 861.38, 868.92, and 873.4 eV corresponded to the satellite peaks.
In addition, the binding energy around 852.05 eV is attributed to the Ni0 peak, which
confirmed the existence of metallic Ni in PtNi/PTOC (Figure 5d). The strong interaction
between Pt and Ni within the catalyst may lead to an increased oxidation resistance, which
is beneficial to the catalysis activity and durability [46].

As shown in Figure 6a, PtNi/PTOC exhibited a typical IV-type isotherm with obvious
hysteresis loops with a high specific surface area of approximately 206.2 m2·g−1. In
addition, PTOC showed that similar isotherms with the specific surface area decreased
from 206.2 m2·g−1 to 145.8 m2·g−1, which is due to the addition of PtNi NPs. From the
IV-type isotherms with obvious hysteresis loops, the main pore size distribution of two
materials is mesopores. Pore-size distribution curves showed that the size of the pore in
PtNi/PTOC ranged from 3.5 nm to 10.0 nm (Figure 6b). The rich mesopores are conducive
to the penetration of the electrolyte and the transport of electrons, thereby enhancing the
catalytic activity of the material.
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3.2. Effect of Different Types of Catalysts

The effect of different catalysts on the hydrolysis of NaBH4 under alkaline conditions
was investigated. As shown in Figure 7, PtNi/PTOC exhibited optimal performance
with hydrogen release rate (HGR) of 10,164.3 mL·min−1 at 25 ◦C, which is higher than
Pt/PTOC and Ni/PTOC. Compared to most of the previously reported results, PtNi/PTOC
also exhibited a good catalytic activity (Table 1) [25,47–52]. According to Figure 7b, the
magnitude of the catalytic performance was PtNi/PTOC > Pt/PTOC > Ni/PTOC, while
PTOC and NH2-MIL-125 had no catalytic activity. The experimental results show that the
synergistic effect between Pt and Ni enhanced the catalytic activity more than the single
Pt or Ni-based catalyst, thereby promoting the rapid release of hydrogen from NaBH4.
Furthermore, the evenly distributed PtNi alloy particles with more catalytically active sites
simultaneously enhanced the hydrolysis activity.
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Ni/PTOC, and (b) PtNi/PTOC (reaction conditions: batch system, 25 ◦C, 1.5 wt% NaBH4 + 5 wt%
NaOH, 0.1 g catalyst).

Table 1. Comparison of catalyst systems, reaction temperatures, HGR, Ea values, and number of
cycles for NaBH4 hydrolysis catalyzed by various catalysts.

Sample Tempera-ture
(◦C)

HG Rate
(mL·min−1·gM−1)

Ea
(kJ·mol–1)

Number of
Cycles

Cyclic
Stability Ref.

CNSs@Pt0.1Co0.9 30 8943.0 38.0 5 85.2% [25]
Pt/MWCNTs 30 16.9 46.2 5 80.0% [47]

Pt/CeO2-Co7Ni2Ox 25 7834.8 47.4 5 85.0% [48]
PtPd/GO 25 3940.0 29.4 4 60.0% [49]
Pt/Si3N4 80 13,000.0 35.2 5 82.5% [50]

NiCoP NA/Ti 30 3016.8 52.7 8 70.0% [51]
RuNi/Ti3C2×2 30 1649.0 34.7 4 50% [52]

PtNi/PTOC 29 10,164.3 28.7 8 87.8% This work
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In order to measure the activation energy (Ea) of the hydrolysis reaction, hydrolysis
tests were carried out using different temperatures with the other parameters unchanged,
controlling the reaction temperature from 15 to 55 ◦C (Figure 8a) with a gradient of 10 ◦C.
As expected, all of the tests reached the theoretical hydrogen quantity, and the hydrogen
release rate increased with the increase in reaction temperature, which belongs to the first-
order reaction [53–55]. According to the Arrhenius slope calculation, the activation energy
of Pt-Ni/PTOC is 28.7 kJ·mol−1 (Figure 8b), which was lower than most of the catalysts that
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have been reported (Table 1). The synergistic effect between PtNi NPs and PTOC may be the
main factor for the decrease in the Ea value. The small particle size of the PtNi NPs is well
supported on the pores of PTOC, thus avoiding excessive losses and agglomeration during
hydrolysis. Moreover, the porous hollow structure promotes the interaction mass transfer
between the catalyst and NaBH4 in the pores. Therefore, these results show that PtNi/PTOC
has good kinetic properties for catalyzing NaBH4 hydrogen release.

3.3. Stability of PtNi/PTOC

The stability of the catalyst is a key index to the actual application of hydrogen
generation from NaBH4 hydrolysis. Figure 9 shows that the PtNi/PTOC catalyst was tested
eight times under conventional conditions (25 ◦C). The catalytic activity of the hydrogen
evolution of NaBH4 decreased slightly and maintained the initial catalytic activity of 87.8%
after eight cycles. The excellent cycling performance may be related to the hollow porous
structure of PTOC, not only providing a large surface area for the distribution of PtNi alloy
particles but also suppressing the agglomeration issues.
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To verify the structural stability of the PtNi/PTOC catalyst, TEM (Figure 10a) and XRD
characterizations were carried out after the cyclability test (Figure 10b). The TEM images
of PtNi/PTOC after cycle tests show that the material maintained the nanocage structure
with numerous sheets, indicating the stable structural integrity of the catalyst. In addition,
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compared to the original PtNi/PTOC sample, there was no significant agglomeration,
which is favorable for the catalytic reaction. The XRD spectra of the obtained products
showed that two XRD spectra were well-matched, and the peak of the catalyst became
sharp after cycle tests, indicating the increased crystallinity of the catalyst. According to
the Scherrer formula, (D = Kλ/βCosθ), the size of PtNi/PTOC catalyst increased from 1.68
to 2.32 nm after eight cycle tests, which was one of the reasons for the decay of catalytic
activity. The stable structure and high catalytic activity of metal NPs are promising for the
hydrolysis of borohydride.

4. Conclusions

In this work, ultra-small PtNi NPs were confined in a porous titanium oxide cage
(PTOC) derived from NH2-MIL-125 (Ti) by a facile hydrothermal method and used for the
hydrogen production of hydrolysis NaBH4. At a room temperature of 25 ◦C, the hydrogen
production rate of PtNi/PTOC reached 10,164.3 mL·min−1·gM

−1, and the activation energy
was 28.7 kJ·mol−1. After eight cycles of testing, 87.8% of the initial test performance was
maintained. Such excellent performance can be attributed to the following: (i) The porous
and hollow structure of PTOC creates a unique microenvironment between its interior and
exterior, which provides more reaction channels. (ii) PTOC with a high surface area enables
the even distribution of PtNi alloy particles, thus exhibiting a large number of active sites.
(iii) The synergistic effect between PTOC and PtNi alloy particles can improve the reactivity.
(iv) The robust porous structure maintains the integrity of the catalyst and suppresses the
aggregation of nanoparticles. The catalyst has the advantages of a simple operation and
economic efficiency and shows promise for producing hydrogen for fuel-cell vehicles.

Author Contributions: Conceptualization, Y.Y. and L.K.; methodology, Y.Y. and L.K.; software, Y.Y.,
L.K., Z.S. and C.Z.; validation, Y.Y. and L.K.; formal analysis, C.Z., L.S. and F.X.; investigation, Y.Y.,
L.K., L.S. and F.X.; resources, L.S. and F.X.; data curation, Y.Y., L.K., Z.S. X.J., Q.S., Y.B., D.C., Y.X., K.Z.
and B.L.; writing—original draft preparation, Y.Y., L.K. and C.Z; writing—review and editing, L.S.,
F.X. and H.P.; visualization, Y.Y. and L.K.; supervision, L.S., F.X. and H.P; project administration, L.S.
and F.X.; funding acquisition, L.S. and F.X. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China (2018YFB1502103 and 2018YFB1502105), the National Natural Science Foundation of China
(51971068, U20A20237 and 51871065), the Scientific Research and Technology Development Program
of Guangxi (AA19182014, AD17195073 and AA17202030-1), Guangxi Bagui Scholar Foundation,
Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials,
Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands,
Chinesisch-Deutsche Kooperationsgruppe (GZ1528), Science research and Technology Development
project of Guilin (20210216-1) and Science Research and Technology Development Project of Guilin
(20210102-4).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, M.; Xiao, X.; Wang, X.; Lu, Y.; Zhang, M.; Zheng, J.; Chen, L. Self-templated carbon enhancing catalytic effect of ZrO2

nanoparticles on the excellent dehydrogenation kinetics of MgH2. Carbon 2020, 166, 46–55. [CrossRef]
2. Zhang, M.; Xiao, X.; Luo, B.; Liu, M.; Chen, M.; Chen, L. Superior de/hydrogenation performances of MgH2 catalyzed by 3D

flower-like TiO2@C nanostructures. J. Energy Chem. 2020, 46, 191–198. [CrossRef]
3. Chen, W.; Xiao, X.; He, J.; Dong, Z.; Wang, X.; Chen, M.; Chen, L. A dandelion-like amorphous composite catalyst with outstanding

performance for sodium borohydride hydrogen generation. Int. J. Hydrogen Energy 2021, 46, 10809–10818. [CrossRef]
4. Zhu, Y.; Ouyang, L.; Zhong, H.; Liu, J.; Wang, H.; Shao, H.; Huang, Z.; Zhu, M. Closing the Loop for Hydrogen Storage: Facile

Regeneration of NaBH4 from its Hydrolytic Product. Angew. Chem. Int. Ed. 2020, 59, 8623–8629. [CrossRef]

166



Nanomaterials 2022, 12, 2550

5. Huang, Y.; An, C.; Zhang, Q.; Zang, L.; Shao, H.; Liu, Y.; Yuan, H.; Wang, C.; Wang, Y. Cos-effective mechanochemical synthesis of
highly dispersed supported transition metal catalysts for hydrogen storage. Nano Energy 2021, 80, 105535. [CrossRef]

6. Min, J.; Jeffery, A.; Kim, Y.; Jung, N. Electrochemical Analysis for Demonstrating CO Tolerance of Catalysts in Polymer Electrolyte
Membrane Fuel Cells. Nanomaterials 2019, 9, 1425. [CrossRef] [PubMed]

7. Bu, Y.; Liu, J.; Chu, H.; Wei, S.; Yin, Q.; Kang, L.; Luo, X.; Sun, L.; Xu, F.; Huang, P.; et al. Catalytic Hydrogen Evolution of NaBH4
Hydrolysis by Cobalt Nanoparticles Supported on Bagasse-Derived Porous Carbon. Nanomaterials 2021, 11, 3259. [CrossRef]

8. Ren, Y.; Wang, J.; Hu, W.; Wen, H.; Qiu, Y.; Tang, P.; Chen, M.; Wang, P. Hierarchical Nanostructured Co-Mo-B/CoMoO4−x
Amorphous Composite for the Alkaline Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2021, 13, 42605–42612.
[CrossRef]

9. Shao, H.; Huang, G.; Liu, Y.; Guo, Y.; Wang, Y.N. Thermally stable Ni MOF catalyzed MgH2 for hydrogen storage. Int. J. Hydrogen
Energy 2021, 46, 37977–37985. [CrossRef]

10. Gao, H.; Shao, Y.; Shi, R.; Liu, Y.; Zhu, J.; Liu, J.; Zhu, Y.; Zhang, J.; Li, L.; Hu, X. Effect of Few-Layer Ti3C2Tx Supported Nano-Ni
via Self-Assembly Reduction on Hydrogen Storage Performance of MgH2. ACS Appl. Mater. Interfaces 2020, 12, 47684–47694.
[CrossRef]

11. Liu, W.; Zhi, H.; Yu, X. Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage
Mater. 2019, 16, 290–322. [CrossRef]

12. Larichev, Y.V.; Netskina, O.V.; Komova, O.V.; Simagina, V.I. Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for
NaBH4 hydrolysis. Int. J. Hydrogen Energy 2010, 35, 6501–6507. [CrossRef]

13. Liu, S.; Chen, X.; Wu, Z.J.; Zheng, X.C.; Peng, Z.K.; Liu, P. Chitosan-reduced graphene oxide hybrids encapsulated Pd (0)
nanocatalysts for H2 generation from ammonia borane. Int. J. Hydrogen Energy 2019, 44, 23610–23619. [CrossRef]
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Abstract: It is vital to improve the electrochemical performance of negative materials for energy
storage devices. The synergistic effect between the composites can improve the total performance.
In this work, we prepare α-Fe2O3@MnO2 on carbon cloth through hydrothermal strategies and
subsequent electrochemical deposition. The α-Fe2O3@MnO2 hybrid structure benefits electron
transfer efficiency and avoids the rapid decay of capacitance caused by volume expansion. The
specific capacitance of the as-obtained product is 615 mF cm−2 at 2 mA cm−2. Moreover, a flexible
supercapacitor presents an energy density of 0.102 mWh cm−3 at 4.2 W cm−2. Bending tests of the
device at different angles show excellent mechanical flexibility.

Keywords: α-Fe2O3@MnO2; electrode materials; electrochemical performance; flexibility

1. Introduction

Supercapacitors (SCs) have attracted much attention from researchers as an inno-
vative type of energy storage device [1–4]. Compared with traditional capacitors, SCs
shows the advantages of superior cycle stability, outstanding power density and fast charg-
ing/discharging [5–7]. Recently, electronic devices have progressively high requirements
for long-term endurance. However, SCs is severely limited with low energy density [8–10].
According to the present research results, one of the most valid ways to settle this issue is
to increase the specific capacity of electrode [11]. Therefore, designing electrodes with high
specific capacitance is the primary task to broaden the application range of SCs.

Currently, the research on positive and negative materials is unevenly developed and
research on negative electrodes is relatively little, which makes it difficult to increase the
energy density of SCs. Commonly used negative materials are carbon (AC, CNTs and
rGO), transition metal oxides (such as Fe3O4, α-Fe2O3, MoO3 and Mn3O4) and a small
amount of metal nitride [12–17]. Among them, α-Fe2O3 is considered to have the highest
potential and is the most widely used anode material, because of its high redox activity,
large theoretical specific capacitance and environmental protection [18]. Nonetheless, the
weak conductivity of α-Fe2O3 electrodes leads low practical specific capacitance and poor
electrochemical stability [19,20]. Manganese dioxide (MnO2) has gained extensive attention
in the construction of supercapacitors due to its high oxidation activity [21]. At present,
preparing nanocomposite materials utilizing the synergistic effect of two materials not
only promotes redox reactions, but also enhance device energy density [22]. Co3O4@MnO2,
SnO2@MnO2, ZnO@MnO2, CuO@MnO2 and α-Fe2O3@MnO2 nanostructures were com-
pounded to achieve both excellent cyclic stability and high capacitance [23–26].

Seol et al. prepared two types of SCs (EDLC and PC) using activated carbon and
graphene/Mn3O4 nanocomposite. The performance degradation of EDLC was negligible
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after 100,000 cycles, while PC was less than 10% after 25,000 cycles [27]. Both devices
demonstrate excellent cyclic stability and durability. Sarkar et al. fabricated α-Fe2O3/MnO2
nano-heterostructure with a specific capacitance of 750 mFcm−2 at 2 mV s−1 [28]. However,
in practice, these composites, because of loose contact, might impact their electrochemical
performance. Thus, it is necessary to construction α-Fe2O3-based materials with unique
nanostructures and excellent electrochemical performance. By combining two materials
with high oxidative activity, the synthesis of ordered nanostructures will help to construct
electrode materials with excellent specific capacitance. The main objective of our research
is that by compounding nanomaterials, the advantages of both can be fully exploited and
the electrochemical performance can be effectively enhanced.

Herein, we synthesized α-Fe2O3 nanorods structures through a hydrothermal route.
Then, a MnO2 film is coated on α-Fe2O3 surface by subsequent electrochemical deposition.
When utilized as negative material for SCs, α-Fe2O3@MnO2 electrode shows a specific
capacitance of 615 mF cm−2 at 2 mA cm−2. After 10,000 cycles, it maintains 92.3% of
the initial capacitance. Finally, a flexible supercapacitor possesses the maximum energy
density is 0.102 mWh cm−3 at 4.2 W cm−2. The results under different angles bending tests
demonstrated that the device possesses excellent mechanical flexibility.

2. Experimental Section
Material Preparation

The α-Fe2O3 sample was synthesized via a hydrothermal method. In total, 0.808 g
Fe(NO3)3·9H2O, 0.2841 g Na2SO4 and 0.5 g PVP were dissolved into 45 mL deionized water.
Then, a clean carbon cloth (2.5 × 2.5 cm2) and the above mixed solution was transferred
into an 80 mL autoclave and kept 110 ◦C for 9 h. Finally, the as-synthesized samples were
annealed at 350 ◦C for 2 h (2 ◦C min−1). An α-Fe2O3@MnO2 sample was prepared by
subsequent electrochemical deposition. In total, 2.4509 g C4H6MnO4·4H2O and 1.4204 g
Na2SO4 was used as electrolyte. The α-Fe2O3 product was used as the working electrode,
Ag/AgCl as the reference electrode and Pt foil as the counter one, with deposition at
1 V constant potential for 30 s. The NiCo2S4 sample was prepared from a homogeneous
solution of 0.4 g Ni(NO3)2·6H2O, 1 g Co(NO3)2·6H2O, 0.5 g urea, 0.1 g NH4F and 60 mL
deionized water, heated with nickel foam at 140 ◦C for 12 h. It was then combined with
0.5 g Na2S·9H2O and 60 mL deionized water at 140 ◦C for 6 h. α-Fe2O3, α-Fe2O3@MnO2
and NiCo2S4 mass loading is 2, 2.3 and 1.2 mg cm−2, respectively.

A supercapacitor was assembled with PVA-KOH gel as the electrolyte, NiCo2S4 as the
positive electrode and α-Fe2O3@MnO2 as the negative electrode. The preparation process
of PVA-KOH gel electrolyte is as follows: stir 2 g KOH with 2 mL distilled water, mix well
and set aside for later use. In a 20 mL beaker, add 2 g polyvinyl alcohol (PVA) and 20 mL
deionized water, and stir at 80 ◦C until transparent. Finally, drop the KOH solution into the
PVA solution at a constant speed, and stir at a constant temperature until it becomes a clear
and transparent gel.

The crystal structure and the elemental compositions of the products were investi-
gated by an X-ray diffractometer (XRD, Shimadzu-7000, Kyoto, Japan, CuKα, 40 kV) and
X-ray photoelectron spectrometer (XPS, Amsterdam, Holland,). The morphology and mi-
crostructure of the sample is characterized by scanning electron microscope (SEM, Gemini
300-71-31, Berlin, Germany).

In a three-electrode system, the as-prepared electrode was measured through an
electrochemical workstation (Shanghai Chenhua). Electrochemical performance methods
include cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemi-
cal impedance spectroscopy (EIS). The as-synthesized materials were used as the working
electrode, Pt foil as the counter electrode and Ag/AgCl as the reference electrode.

3. Results and Discussion

Figure 1 presents the growth process of α-Fe2O3@MnO2 products on carbon cloth.
Firstly, α-Fe2O3 nanorods are obtained via a facile hydrothermal approach. Afterwards, a
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layer of MnO2 film is deposited by subsequent electrochemical deposition on the nanorod-
shaped α-Fe2O3 surface.
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Figure 1. Synthesis schematic of the products.

First, the crystal structure of the obtained product is studied by XRD. Figure 2a shows
the XRD patterns of α-Fe2O3 and α-Fe2O3@MnO2 composites. A typical peak of the carbon
cloth can be clearly observed. The peaks at 2θ values of 33.4◦, 35.8◦, 49.7◦, 54.4◦, 64.3◦

and 72.4◦ can be indexed to (104), (110), (024), (116), (300) and (1010) planes of α-Fe2O3
phases, respectively (PDF No. 84-0308). Those at 28.7◦, 37.6◦, 41.1◦, 47.2◦ and 72.6◦ match
well with (310), (121), (420), (510) and (631) planes of MnO2 (PDF No. 72-1982). The
shape and sharpness of the diffraction peaks in figure reveal that the products possess
high crystallinity.

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 2. Structural characterization using (a) XRD patterns and (b–d) XPS spectra. 

Then, XPS is used to investigate the α-Fe2O3@MnO2 materials surface element compo-
sition. In Fe 2p spectra, the characteristic peaks of Fe 2p3/2 and Fe 2p1/2 at 711.2 eV and 724.8 
eV, respectively (Figure 2b). Additionally, two shake-up satellite peaks (Sat.) at 716 eV 
and 732.9 eV are determined. This indicates that Fe3+ exists in composite product [29]. Fig-
ure 2c depicts the two main peaks of O 1s spectra located at 529.9 eV and 532 eV [30]. 
Binding energies at 529.9 eV, labeled as O1, denote metal oxygen [31]. Another O2 peak 
located at 532 eV is due to some degree of hydrolysis on the product surface [32]. For Mn 
2p spectra (Figure 2d), four peaks at 642.2 eV, 645.8 eV, 653.9 eV and 658.1 eV are from 
Mn 2p3/2, Sat., Mn 2p1/2 and Sat., respectively [33]. 

Figure 3a indicates that α-Fe2O3 shows a short rod-like structure. In addition, it can be 
found that many nanorods homogeneously grown on carbon cloth with uniform size and 
shape, and the cross-section of nanorods is rough. The high magnification image (Figure 3b) 
shows the as-synthesized products average length is 100 nm. Figure 3c presents a thin 
MnO2 film covers α-Fe2O3, and still maintains the shape of nanorods. From Figure 3d, the 
cross-section of α-Fe2O3@MnO2 nanorods becomes smooth. 

Figure 2. Structural characterization using (a) XRD patterns and (b–d) XPS spectra.

171



Nanomaterials 2022, 12, 2202

Then, XPS is used to investigate the α-Fe2O3@MnO2 materials surface element com-
position. In Fe 2p spectra, the characteristic peaks of Fe 2p3/2 and Fe 2p1/2 at 711.2 eV and
724.8 eV, respectively (Figure 2b). Additionally, two shake-up satellite peaks (Sat.) at 716 eV
and 732.9 eV are determined. This indicates that Fe3+ exists in composite product [29].
Figure 2c depicts the two main peaks of O 1s spectra located at 529.9 eV and 532 eV [30].
Binding energies at 529.9 eV, labeled as O1, denote metal oxygen [31]. Another O2 peak
located at 532 eV is due to some degree of hydrolysis on the product surface [32]. For Mn
2p spectra (Figure 2d), four peaks at 642.2 eV, 645.8 eV, 653.9 eV and 658.1 eV are from Mn
2p3/2, Sat., Mn 2p1/2 and Sat., respectively [33].

Figure 3a indicates that α-Fe2O3 shows a short rod-like structure. In addition, it can be
found that many nanorods homogeneously grown on carbon cloth with uniform size and
shape, and the cross-section of nanorods is rough. The high magnification image (Figure 3b)
shows the as-synthesized products average length is 100 nm. Figure 3c presents a thin
MnO2 film covers α-Fe2O3, and still maintains the shape of nanorods. From Figure 3d, the
cross-section of α-Fe2O3@MnO2 nanorods becomes smooth.
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Next, we analyzed several as-obtained electrode electrochemical performances by
CV, GCD and EIS. Figure 4a shows CV curves of α-Fe2O3, MnO2 and α-Fe2O3@MnO2
materials. Evidently, α-Fe2O3@MnO2 delivers a large CV area in −1–0 V, reflecting its good
energy storage effect in this range. At 8 mA cm−2 (Figure 4b), the GCD curves obvious
that α-Fe2O3@MnO2 product with long discharge times, which can be correlative to the
synergistic effect between α-Fe2O3 and MnO2 materials. Figure 4c presents CV curves of
α-Fe2O3@MnO2 from 5 to 40 mV s−1. The shape of CV curves almost the same as the scan
rate increased, indicating excellent reversibility of electrode. In Figure 4d, the GCD curves
of α-Fe2O3@MnO2 materials are measured from 2 to 10 mA cm−2. Areal capacitance (Ca)
is obtained by GCD, and the equation is shown below:

Ca = I
∫

Vdt/V (1)
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In Equation (1), I is current density,
∫

Vdt stands for the integral area of discharge
curve and V is the constant discharge voltage range (V). The α-Fe2O3@MnO2 electrode
delivers 615 mF cm−2 specific capacitance at 2 mA cm−2

EIS is a significant factor in assessing the electrochemical kinetics of products. The
sample is tested over a frequency range of 0.01 Hz to 100 kHz (Figure 4e). In the low
frequency region, the slope of the straight line shows the ion diffusion resistance. Among
the three samples, α-Fe2O3@MnO2 sample presents the largest slope, which expresses
fast diffusion of ions in electrolyte [34]. The intersection with the real axis represents the
equivalent resistance (Rs) [35]. α-Fe2O3, MnO2 and α-Fe2O3@MnO2 electrodes Rs value is
5.1 Ω, 4.1 Ω and 3.3 Ω, respectively. According to above analysis, α-Fe2O3@MnO2 shows
the largest slope and smallest Rs, so the conductivity of composite material is better than
α-Fe2O3 and MnO2.

At the end, the cyclic stability is investigated at 4 mA cm−2. Figure 4f indicates
that the capacitance of α-Fe2O3@MnO2 is only reduced by 7.7% after 10,000 cycles, while
α-Fe2O3 and MnO2 products present only 71.4% and 75% of the initial capacitance. This
phenomenon is due to the MnO2 film covering the α-Fe2O3 nanorods, which can help
alleviate the volume expansion during long cycle measurements. Similarly, the positive
NiCo2S4 is also studied by the same methods. Figure 4g presents the CV curves of NiCo2S4
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sample. Redox peaks and shapes, confirming its pseudocapacitive material. Five symmet-
rical GCD curves shows an obvious platform (Figure 4h), which indicates their Faradaic
redox behavior [36]. At 2 mA cm−2, the specific capacitance is 720.8 mF cm−2. Nyquist
plots of NiCo2S4 products are shown in Figure 4i; the value of Rs is 0.9 Ω.

To further explore the α-Fe2O3@MnO2 electrodes for practical applications, a flexible
supercapacitor is assembled. From Figure 5a, the voltage windows of α-Fe2O3@MnO2 and
NiCo2S4 are −1–0 V and 0–0.6 V, respectively. Figure 5b shows CV curves from 1.1 V to
1.5 V with a sweep rate of 100 mV s−1, demonstrating the device can maintain operate
stably within 1.5 V. It can be seen that with the decrease of voltage, the area becomes
small. Figure 5c depicts all CV curves at different scan rates keep similar shapes, revealing
outstanding rate performance of device. GCD curves from 1 to 8 mA cm−2 possess the
same charging and discharging time (Figure 5d). The specific capacitance of the device
at 1 mA cm−2 is 37.8 mF cm−2 and it still delivers 15.6 mF cm−2 at 8 mA cm−2. The
equivalent resistance value of the device is 1.9 Ω, as shown in Figure 5e.
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At present, electronic devices are developing towards wearable, which puts forward
higher requirements for the mechanical flexibility of supercapacitors [37]. We twisted the
device and then examined it by cyclic voltammetry (Figure 5f). While device is folded at
15◦, 45◦, 90◦ and 135◦, the shape sustains virtually unchanged, demonstrating its superior
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mechanical stability. Figure 5g illustrates that the device maintains 88.9% capacitance
retention after 6000 cycles. Figure 5h is the Ragone diagram of α-Fe2O3@MnO2//NiCo2S4.
The capacitor values of energy density (E) and power density (P) can be derived based on
the Equations (2) and (3):

E = 1/2 × Ca × V2 (2)

P = 3600 × E/∆t (3)

where Ca stands for the areal capacitance of the capacitor, V represent the discharge voltage
and ∆t is the discharge time. At 1 mA cm−2, the energy density of device is 0.102 mWh cm−3

at 4.2 W cm−2. This is better than some previously reported materials [38–41] (Table 1).

Table 1. Electrochemical performance of various devices.

Supercapacitor Capacitance Energy Density
(mWh cm−3)

Power Density
(W cm−2)

Capacitance
Retention Ref.

PEDOT: PSS/δ-MnO2 2.4 F cm−3 0.018 0.018 88% [38]
Fe2O3NTs@PPy//MnO2 - 0.0594 1 92% [39]

ZnO@MnO2 26 mF cm−2 0.04 2.44 87.5% [40]
Fe2O3//Ni/Yarns 0.67 F cm−3 0.086 3.87 87.1% [41]

α-Fe2O3@MnO2//NiCo2S4 37.8 mF cm−2 0.102 4.2 88.9% this work

α-Fe2O3@MnO2 delivers excellent performance, which can be explained by the fol-
lowing reasons: (a) Nanostructure uniformly covered on the carbon cloth, which provides
outstanding electrical conductivity and flexibility; (b) With α-Fe2O3 as a strong mechanical
support and MnO2 as an outer layer, this structure not only protects the morphological
structure, but also provides many active sites; (c) The composite utilizes the synergistic ef-
fect of α-Fe2O3 and MnO2, so that electrode processes high capacitance and low resistance.

4. Conclusions

In this manuscript, α-Fe2O3@MnO2 nanorods are synthesized through a hydrothermal
route and subsequent electrochemical deposition. By combining two oxides of α-Fe2O3
and MnO2, it is favorable to accelerate the electron transport and the oxidation reaction.
The synergistic effect between two materials improves electrochemical performance for
negative electrode. MnO2 film, after electrodeposition, affects the performance of the
electrode material, and the full use of the active area of the film increases, which increases
the capacitance of the electrode material. XPS results show that the material processes abun-
dant redox valence states. α-Fe2O3@MnO2 sample presents high specific capacitance and
excellent cycling stability. Furthermore, the as-assembled capacitors still show outstanding
electrochemical performance and mechanical stability. Therefore, it provides an alternative
method for constructing supercapacitor negative materials with higher specific capacitance.
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Abstract: Supercapacitors, as a new type of green electrical energy storage device, are a potential
solution to environmental problems created by economic development and the excessive use of fossil
energy resources. In this work, nitrogen/oxygen (N/O)-doped porous carbon materials for high-
performance supercapacitors are fabricated by calcining and activating an organic crosslinked poly-
mer prepared using polyethylene glycol, hydroxypropyl methylcellulose, and 4,4-diphenylmethane
diisocyanate. The porous carbon exhibits a large specific surface area (1589 m2·g−1) and high elec-
trochemical performance, thanks to the network structure and rich N/O content in the organic
crosslinked polymer. The optimized porous carbon material (COCLP-4.5), obtained by adjusting the
raw material ratio of the organic crosslinked polymer, exhibits a high specific capacitance (522 F·g−1 at
0.5 A·g−1), good rate capability (319 F·g−1 at 20 A·g−1), and outstanding stability (83% retention after
5000 cycles) in a three-electrode system. Furthermore, an energy density of 18.04 Wh·kg−1 is obtained
at a power density of 200.0 W·kg−1 in a two-electrode system. This study demonstrates that organic
crosslinked polymer-derived porous carbon electrode materials have good energy storage potential.

Keywords: supercapacitor; organic crosslinked polymer; porous carbon; electrochemistry

1. Introduction

Solutions to environmental problems, owing to economic development and the exces-
sive use of fossil energy resources, are urgently being sought [1]. Supercapacitors, as a new
type of green electrical energy storage device, have drawn increasing attention, owing to
their high power density, fast charging/discharging, excellent reversibility, long life cycle,
and environmental friendliness [2–4].

Theoretical research on and practical applications of supercapacitors have significantly
progressed; however, insufficient energy density and high cost are still challenges requiring
resolution [5–7]. Electrode materials, which can be divided into carbon materials [8,9], metal
oxides [10,11], and conductive polymers [12,13], play an important role as core components
in supercapacitors and are a key step in solving the existing problems. Among them, carbon
materials are the most widely used electrode materials because of their high specific surface
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area, and good electrical conductivity and chemical stability [14–16]. Studies have shown
that doping heteroatoms in a carbon-based framework increases the specific capacitance
of carbon materials. On the one hand, it can improve the infiltration area between the
electrode material and the electrolyte; on the other hand, the heterogeneous atoms can
introduce pseudocapacitance during the charging/discharging process, further enhancing
the electrochemical performance [17].

Nitrogen doping has been demonstrated to be an effective way to improve the wettabil-
ity and conductivity of carbon materials and can also provide additional pseudocapacitance
for supercapacitors. Generally, nitrogen-doped carbon materials can be prepared using two
synthetic strategies, namely by the pyrolysis of nitrogen-containing precursors, such as
biomass [18], synthetic polymers [19], small molecules [20], and ionic liquids [21], or by the
chemical or thermal modification of premade carbon materials with reagents/gases con-
taining nitrogen atoms [22]. Zhang et al. [23] used urea as a nitrogen-containing precursor
and KOH as the activator to prepare a carbon material with an appropriate amount of N
doping, which yielded a nitrogen-doped carbon material with a porous structure and large
specific surface area. They also found that the capacitance of the carbon material reached
up to 446.0 F·g−1 at 0.5 A·g−1 in a three-electrode system. The symmetrical supercapacitor
device assembled with this nitrogen-doped carbon also displayed good performance, with
an energy density of 16.3 Wh·kg−1 at a power density of 348.3 W·kg−1.

Organic crosslinked polymers are mainly composed of elements, such as carbon, nitro-
gen, oxygen, and hydrogen, which have the characteristics of a network structure. Porous
carbon materials prepared using such polymers had a high heteroatom content, specific
surface area, and outstanding electrochemical properties [24]. In particular, the structure
of organic crosslinked polymers can be adjusted by changing the ratio of raw materials
during the synthesis process. Zou et al. [25] prepared a new type of heteroatom-doped
porous carbon material with a high specific surface area by carbonizing and activating
polyphosphazenes, which exhibited a specific capacitance of 438 F·g−1 at a current density
of 0.5 A·g−1 in a three-electrode system. Chen et al. [26] prepared a porous carbon material
by calcining hypercrosslinked polymer (poly (vinylbenzyl chloride-co-divinylbenzene)),
which exhibited a specific capacitance of 455 F·g−1 at a current density of 0.5 A·g−1.

In this work, nitrogen/oxygen(N/O)-doped carbon-based porous materials were
fabricated by carbonizing and activating an organic crosslinked polymer with a network
structure. The organic crosslinked polymer was synthesized using polyethylene glycol (PEG
6000), hydroxypropyl methylcellulose (HPMC), and 4,4-diphenylmethane diisocyanate
(MDI). The carbon material obtained by optimizing the ratio of the raw materials had a large
specific surface area (1589 m2·g−1) and a high specific capacitance of 522 F·g−1 at a current
density of 0.5 A·g−1. Furthermore, its energy density reached 18.04 Wh·kg−1 at a power
density of 200.0 W·kg−1 in a two-electrode system using 1 M Na2SO4 as the electrolyte.
Mechanistic studies showed that the high electrochemical performance of the obtained
carbon was attributed to the network structure and rich N/O content of the crosslinked
polymer. Hence, the preparation method for porous carbon materials proposed in this
study provides a new approach for the research and development of electrode materials.

2. Materials and Methods
2.1. Materials

Polyethylene glycol (PEG, Mw = 6000), 4,4-diphenylmethane diisocyanate (MDI,
analytical grade), hydroxypropyl methylcellulose (HPMC, Mw = 10,000), polytetrafluo-
roethylene (PTFE), and N, N-dimethylformamide (DMF) were purchased from Aladdin.
Analytical-grade potassium hydroxide (KOH) and acetylene black were obtained from
Xilong Science Co., Ltd. (Shantou, China). None of the purchased reagents were purified
before use. All aqueous solutions were prepared using ultrapure water (deionized water,
resistance 18 MΩ cm−1).
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2.2. Synthesis of Organic Crosslinked Polymers

The organic crosslinked polymers were prepared by a one-pot method, which is a
minor modification based on our previous report [27]. Briefly, PEG 6000 (12.0 g), MDI
(1.0 g), and a certain amount of HPMC were stirred in a three-neck flask containing DMF
(80 mL) under argon gas and an oil bath with a constant temperature of 75 ◦C. The organic
crosslinked polymer obtained after 30 h of condensation reflux is referred to as OCLP. The
mass of HPMC was 3.5, 4.5, and 5.0 g; therefore, the corresponding organic crosslinked
polymers were named as OCLP3.5, OCLP4.5 and OCLP5.0, respectively. Figure 1 presents a
flowchart of the one-pot method for the preparation of organic crosslinked polymers.
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Figure 1. Schematic illustration of the one-pot method for the preparation of organic crosslinked
polymer-derived porous carbon.

2.3. Preparation of Porous Carbon Materials

The prepared OCLPs were directly carbonized by heating them in a tube furnace at
500 ◦C for 2 h under a N2 atmosphere at a heating rate of 5 ◦C/min. The resulting carbon
precursors were homogeneously ground with KOH in a mass ratio of 1.0:3.0, then calcined
in a tube furnace at 600 ◦C under a N2 atmosphere for 2 h. The calcined products were
stirred with a 1 M hydrochloric acid solution for 2 h, followed by washing with distilled
water and anhydrous ethanol sequentially until the filtrate was neutral. The obtained
residues were dried in a blast oven at 80 ◦C for 24 h to obtain porous carbon materials,
which were named as COCLP-3.5, COCLP-4.5, and COCLP-5.0, respectively.

2.4. Characterization

Fourier transform infrared (FTIR) spectroscopy was performed on the samples using
a Thermo Fisher (Waltham, MA, USA) Nicolet 6700 spectrometer with KBr pellets. A
powder X-ray diffractometer (XRD; D8 Advance Bruker, Billerica, MA, USA) operating
at 40 kV and 40 mA with Cu Kα radiation (λ = 0.15406 nm) in the 2θ range of 5–90◦

with 0.01◦ step increments was used to analyze the microstructure of the materials. The
chemical structure and graphitization of the samples were further characterized using
Raman spectroscopy (Horiba JY, Palaiseau, France) at an excitation wavelength of 532 nm.
The surface micromorphology of the samples was characterized using scanning electron
microscopy (SEM; SU8010, HITACHI, Tokyo, Japan) and transmission electron microscopy
(TEM; Tecnai G2 F20, FEI Company, Hillsboro, OR, USA), and elemental analysis was
performed using energy-dispersive X-ray spectroscopy (EDS). The specific surface area
and pore structure characteristics of the samples were characterized using a nitrogen
adsorption–desorption analyzer (ASIQM0002-4, Quantachrome, Boynton Beach, Florida,
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USA) at −196 ◦C. Surface element analysis was performed using X-ray photoelectron
spectroscopy (XPS; Thermo Scientific Escalab 250Xi, Waltham, MA, USA).

2.5. Electrochemical Measurements

The electrochemical performance of the samples, including galvanostatic charge–
discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance (EIS), was
measured using a CHI 660E instrument in a three-electrode system. A slurry mixture of
carbon material (COCLP), acetylene black, and PTFE in a weight ratio of 8:1:1 was applied to
nickel foam (2 cm × 2 cm) as the working electrode; platinum and Hg/HgO electrodes were
used as the counter and reference electrodes, respectively, in the three-electrode system. The
voltage was set to −1–0 V and the electrolyte was 6 M KOH. A symmetric supercapacitor
was built for a two-electrode system using the COCLP, a 1 M Na2SO4 electrolyte, and a
voltage range of 0–1.6 V.

For the three-electrode and two-electrode systems, the weight-specific capacitances
(F·g−1) of the electrode material were calculated based on the GCD curves using
Equations (1) and (2), respectively.

Cg =
I∆t

m∆V
(1)

Cg =
2I∆t
m∆V

(2)

where I (A), ∆t (s), ∆V (mV), and m (g) represent the discharge current, discharge time,
discharge voltage range, and mass of the active material of a single electrode, respectively.

The energy density (Ecell) and power density (Pcell) of the symmetrical supercapacitor
were calculated using Equations (3) and (4), respectively.

Ecell =
Cg ∆V2

8 × 3.6
(3)

Pcell =
3600 Ecell

∆t
(4)

where Cg is obtained from Equation (2), ∆V is the working voltage of the discharge, and ∆t
is the discharge time.

3. Results and Discussion
3.1. Structural and Morphological Characterization

Figure 2 shows the FTIR spectra of the samples, which indicates that the characteristic
absorption peaks for the OCLPs (OCLP3.5, OCLP4.5, and OCLP5.0) are similar. The peaks
around 3438, 1639, 1526, and 1106 cm−1 correspond to the stretching vibration absorption
peaks of the –OH, C=O, C–N, and C–O groups, respectively, which is consistent with the
organic crosslinked polymer [27]. The above results illustrate that the OCLPs are a type of
organic crosslinked polymer.

The COCLPs obtained from the OCLPs were characterized using XRD and Raman spec-
troscopy. Figure 3a summarizes the XRD spectra of the COCLP-3.5, COCLP-4.5, and COCLP-5.0,
showing that all the COCLPs exhibit obvious diffraction peaks at 43◦, corresponding to the
(100) crystal planes of the graphite structure. The results indicate that COCLP-3.5, COCLP-4.5,
and COCLP-5.0 have amorphous graphite structures [28,29]. The diffraction peak intensity
of the (100) lattice plane for COCLP-4.5 is the weakest, demonstrating that COCLP-4.5 has the
highest structural disorder [30]. Figure 3b shows that there are two characteristic peaks
at 1343 and 1594 cm−1, corresponding to the D and G peaks of graphite, respectively. The
ratio of the areas of the D peak to the G peak (AD/AG) reflects the order degree of the
COCLP structure [31]. The calculated ratios for COCLP-3.5, COCLP-4.5, and COCLP-5.0 are 1.15:
1, 1.18: 1, and 1.13: 1, respectively. This result also illustrates that COCLP-4.5 has more defects
because the D peak represents a defect peak caused by the low symmetry or irregularity of
the carbon material [32].
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The surface morphologies of COCLP-3.5, COCLP-4.5, and COCLP-5.0 were characterized
using SEM, as shown in Figure 4. Figure 4 indicates that the three COCLPs are all porous and
present a three-dimensional network structure. The number of pores in the COCLP increases
with an increase in the amount of HPMC; however, when the HPMC content is increased
to 5.0 g, the pore structure is only partially formed, and the number of pores decreases.
The result demonstrates that the pore structure of COCLP-4.5 was excellent. Generally, an
abundant number of pores can significantly increase the specific surface area of COCLPs,
thereby providing more storage sites and transport channels for electrolyte ions. This is
beneficial for improving the electrochemical performance [33].
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Additionally, Figure 5a further demonstrates that COCLP-4.5 is a porous COCLP. When
COCLP-4.5 is used as the electrode material, these disordered microporous structures can
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provide sufficient active sites for charge storage [34]. Figure 5b–e are element distribution
diagrams obtained from the EDS analysis of COCLP-4.5, showing that carbon, nitrogen, and
oxygen were uniformly distributed in the carbon framework. Abundant nitrogen and
oxygen can introduce pseudocapacitance and enhance the capacitance performance of the
electrode material.
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The COCLPs were subjected to N2 adsorption–desorption measurements to explore the
pore characteristics. Figure 6 shows that all the COCLPs exhibit obvious type I isotherm
characteristics, indicating that these samples are rich in micropores [35]. Table 1 summarizes
the pore structure characteristics of the COCLPs, showing that the specific surface area and
pore volume of these samples are mainly provided by the micropores and mesopores.
Among the three samples, COCLP-4.5 has the largest specific surface area (1589 m2·g−1)
and the highest pore volume (0.657 cm3·g−1), which further confirm that COCLP-4.5 has the
best pore structure. Numerous studies have demonstrated that the large specific surface
area and rich pore structure of porous carbon material can greatly promote the storage
and rapid migration of ions, resulting in the excellent specific capacitance performance
of supercapacitors [36,37]. The aqueous electrolytes currently used in supercapacitors are
mainly sulfuric acid (H2SO4, acidic), KOH (alkaline), and sodium sulfate (Na2SO4, neutral).
The electrolyte ions in these electrolytes mainly exist as hydrated ions (H+, K+, OH−,
Na+, and SO2−

4 ). Based on Table 1, it can be found that the COCLPs obtained can meet the
fast migration requirements of these electrolyte ions, thereby significantly improving the
conductivity of carbon-based electrodes and enhancing their electrochemical performance.

Table 1. Channel structure parameters of the COCLPs.

Samples
Specific Surface Area (m2·g−1) Pore Volume (cm3·g−1)

Total Microporous Mesoporous Total Microporous Mesoporous

COCLP-3.5 942 894 48 0.399 0.353 0.046

COCLP-4.5 1589 1509 80 0.657 0.592 0.065

COCLP-5.0 1102 1040 62 0.482 0.407 0.075
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Further analysis of the surface electronic states and elemental compositions of the
COCLPs samples was performed using XPS. Figure 7a shows that there are three peaks in
the spectra of all the samples. The binding energies of the three peaks are 285, 400, and
532 eV, corresponding to C 1s, N 1s, and O 1s, respectively. The results also prove that
carbon, nitrogen, and oxygen are present in the three samples. Table 2 lists the surface
element contents of the three samples. These samples are mainly a carbon-based framework
with oxygen and nitrogen. Fine analyses of the C 1s, N 1s, and O 1s spectra of COCLP-4.5
are performed using the peak differentiation fitting method, as shown in Figure 7b–d.
The C 1s spectrum (Figure 7b) can be matched by four peaks at 284.8, 285.7, 286.8, and
289.0 eV, corresponding to the C–C, C–N, C–O, and COOR groups, respectively [38]. The
N 1s spectrum, shown in Figure 7c, is deconvoluted into four peaks of 398.8, 400.3, 400.8,
and 402.4 eV, corresponding to pyridinic-N (N-6) (11.70%), pyrrolic-N (N-5) (52.13%),
quaternary-N (N–Q) (29.79%), and oxidized N (N–X) (6.38%), respectively. In particular,
the pyridinic-N and pyrrolic-N contents reach 63.83%. A high content of N-6 and N-5
is beneficial for introducing pseudo-capacitance and providing electrochemically active
sites and quaternary nitrogen (N–Q) can effectively improve the conductivity of COCLPs
and promote electron transfer in the carbon matrix [35,39]. The deconvoluted O 1s peak
displayed four peaks at 531.2, 532.3, 533.3, and 534.2 eV, representing the oxygen atoms in
the C=O, C–O/C–OH, COOR, and N–O groups, respectively (shown in Figure 7d) [35,39].
According to a previous report [40], the oxygen groups are evenly distributed in the carbon
framework, which can improve the interfacial tension between the carbon-based porous
material and electrolyte to reduce the interfacial resistance.

Table 2. Surface element content of the COCLPs.

Samples
Element Content

Carbon (%) Nitrogen (%) Oxygen (%)

COCLP-3.5 92.83 1.98 5.19

COCLP-4.5 85.75 1.68 12.75

COCLP-5.0 84.51 2.65 12.84
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3.2. Electrochemistry Measurements

The electrochemical performances of the electrode materials were evaluated using a
three-electrode system. Figure 8a shows the CV plots of the different COCLPs (COCLP-3.5,
COCLP-4.5, and COCLP-5.0) at a sweep rate of 5 mV·s−1. All the samples display a typical
rectangular shape, indicating that the capacitive behavior of these materials is mainly
electric double-layer capacitance. Concurrently, these curves have a broad peak in the
voltage window of −0.8 to −0.3 V, which is caused by the oxidation–reduction reaction of
nitrogen and oxygen atoms contained in these samples during the charge and discharge
process. Moreover, the pseudo-capacitance introduced by the redox reaction can signifi-
cantly increase the specific capacitance of carbon electrodes. The COCLP-4.5 sample exhibits
the largest encircled area of the CV curve among the three samples, which also illustrates
that COCLP-4.5 has the highest specific capacitance. Figure 8b shows the constant GCD
curves for the COCLPs at a current density of 1 A·g−1. The GCD curves for the three samples
are all quasi-isosceles triangle shapes, indicating that the capacitance is mainly electric
double-layer capacitance (EDLC), and the slight deformation is attributed to the existence
of pseudo-capacitance. According to Equation (1), the specific capacitances of COCLP-3.5,
COCLP-4.5, and COCLP-5.0 at a current density of 1 A·g−1 are 302, 503, and 330 F·g−1, respec-
tively. This result shows that the specific capacitance of COCLP-4.5 is the largest, owing to
its large specific surface area (1589 m2·g−1) and pore volume (0.657 cm3·g−1). Figure 8c
presents the CV curves for COCLP-4.5 at different scanning rates. It reveals that the COCLP-4.5
still maintains a quasi-rectangular shape at scan rates of 5–50 mV·s−1, indicating that the
good pore structure of COCLP-4.5 enables the rapid migration of electrolyte ions to result
in its good rate capability. Figure 8d presents the GCD curves for COCLP-4.5 at current
densities of 0.5–20 A g−1, showing that the GCD curve does not exhibit a significant IR
drop at a high current density of 20 A·g−1. Therefore, it demonstrates that the COCLP-4.5
has a high conductivity, good rate capability, and electrochemical reversibility. The specific
capacitances are calculated as 522, 503, 432, 396, 363, and 319 F·g−1 at current densities of
0.5, 1, 2, 5, 10, and 20 A·g−1, respectively. Comparing the electrochemical performance of
COCLP-4.5 with that of the references, the result is listed in Table 3. According to Table 3, the
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electrochemical performance of COCLP-4.5 is better than that of other electroactive materials
reported in the literature. This is attributed to the unique network structure and rich N/O
content of the crosslinked polymer fabricated in this study.

Table 3. Comparison of the specific capacitances of the COCLP-4.5 electroactive material to recently
reported carbonaceous materials.

Material Electrolyte Current Density
(A·g−1)

Capacitance
(F·g−1) Reference

Grape marc 6 M KOH 0.5 446 [23]

Polyphosphazene 6 M KOH 0.5 438 [25]

Polypyrrole/Polythiophene KOH 0.5 455 [41]

Cotton stalk 1 M H2SO4 0.2 338 [42]

L-tyrosine KOH 0.3 512 [43]

Coal tar pitch 6 M KOH 0.5 298 [44]

CNTs@Gr-CNF 6 M KOH 0.25 521 [45]

CTAB 6 M KOH 1.0 241 [46]

3-aminophenol-formaldehyde resin 6 M KOH 0.5 381 [47]

Organic crosslinked polymer 6 M KOH 0.5 522 This work

Figure 8e presents the EIS curves for COCLPs and the equivalent circuit model (the
inset of Figure 8e), showing that COCLP-4.5 has the lowest Rct (internal charge transfer
resistance) and Rs (contact resistance with the electrolyte) among the three materials. That
is, in the high-frequency region, the Rct of COCLP-4.5 is 0.042 Ω, lower than those of COCLP-3.5
(0.152 Ω) and COCLP-5.0 (0.183 Ω). The low Rs demonstrates that the electrolyte ions are
readily transferred to the surface of the COCLP-4.5 electrode [48]. Additionally, the linear
curve of COCLP-4.5 is almost vertical in the low-frequency region. The EIS results illustrate
that the structure of COCLP-4.5 is beneficial for charge transfer and the efficient diffusion
of electrolyte ions. For supercapacitors, the cycling stability is a significant parameter to
estimate their practical application. Figure 8f shows that COCLP-4.5 retains 83% of its initial
specific capacitance value after 5000 cycles at a current density of 5 A g−1. The surface
morphology of COCLP-4.5 after cycling was characterized by SEM, as shown in Figure 9.
Compared with the COCLP-4.5, before (Figure 4b) shows that the pore structure of COCLP-4.5
has some damage and collapses after 5000 cycles.

A symmetric supercapacitor was constructed using COCLP-4.5 to evaluate its practical
application. Figure 10a shows the CV curves for the symmetric supercapacitor at different
scan rates. The curves maintained a quasi-rectangular shape at a scan rate of 50 mV·s−1.
A slight deformation indicates that the electrochemical behavior of a symmetric super-
capacitor is a combination of the EDLC and pseudocapacitance. Figure 10b shows that
the GCD curves for the symmetric supercapacitor increased with an increasing current
density from 1 to 20 A·g−1. Based on Equation (2), the specific capacitance of COCLP-4.5 is
203 F·g−1 at 1 A·g−1 and its specific capacitance remains 150 F·g−1 at 10 A·g−1, demonstrat-
ing a good rate capability even at high current densities for the symmetric supercapacitor.
Figure 10c shows the cycle stability curve at a current density of 10 A·g−1. It displays that
the capacitance retention of the device is 84.0% after 5000 cycles, reflecting good cycling
stability. Figure 10d indicates that the symmetric capacitor obtains an energy density of
18.04 Wh·kg−1 at a power density of 200.0 W·kg−1 based on Equations (3) and (4), signifi-
cantly higher than those reported in recent years (13. [25], 10.83 [49], 13.60 [50], 7.00 [51],
13.86 [52], 10.60 [53], and 15.50 Wh·kg−1 [54]). Specifically, the symmetric supercapacitor
device successfully powers up a light-emitting diode (the inset of Figure 10d). As shown in
the video (see Supplementary Materials File S1), the light-emitting diode can last for a while.
Obviously, the N/O-doped porous COCLPs are expected to be used in supercapacitors.
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4. Conclusions

In this study, a network-structured organic crosslinked polymer was used as a carbon
source to obtain N/O-doped porous COCLPs. The results indicated that the COCLP-4.5 ob-
tained by optimizing the raw materials exhibited an excellent electrochemical performance.
For instance, the specific capacitance of COCLP-4.5 was as high as 522 F·g−1 at a current
density of 0.5 A·g−1, and still exhibited 309 F·g−1 at 20 A·g−1 in a three-electrode system.
Furthermore, the symmetric capacitor achieved an energy density of 18.04 Wh·kg−1 at a
power density of 200.0 W·kg−1. The COCLPs benefitted from the net structure of organic
crosslinked polymers to form hierarchical porous carbon and the pseudocapacitance intro-
duced by heteroatoms. Therefore, the method for fabricating carbon material proposed in
this study provides a new strategy for the development of electrode materials with high
electrochemical performance.
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Abstract: As a paradigm of exploiting electronic-structure engineering on semiconductor superlattices
to develop advanced dielectric film materials with high electrical energy storage, the n*AlN/n*ScN
superlattices are systematically investigated by first-principles calculations of structural stability,
band structure and dielectric polarizability. Electrical energy storage density is evaluated by dielec-
tric permittivity under a high electric field approaching the uppermost critical value determined
by a superlattice band gap, which hinges on the constituent layer thickness and crystallographic
orientation of superlattices. It is demonstrated that the constituent layer thickness as indicated by
larger n and superlattice orientations as in (111) crystallographic plane can be effectively exploited to
modify dielectric permittivity and band gap, respectively, and thus promote energy density of electric
capacitors. Simultaneously increasing the thicknesses of individual constituent layers maintains
adequate band gaps while slightly reducing dielectric polarizability from electronic localization of
valence band-edge in ScN constituent layers. The AlN/ScN superlattices oriented in the wurtzite (111)
plane acquire higher dielectric energy density due to the significant improvement in electronic band
gaps. The present study renders a framework for modifying the band gap and dielectric properties to
acquire high energy storage in semiconductor superlattices.

Keywords: semiconductor superlattice; dielectric capacity; energy storage; first-principles calculation

1. Introduction

Today renewable sources are urgently developed and expected to dominate the future
operation systems of electricity power. However, the inevitable intermittence bearing on
renewable sources, such as solar and wind energies, challenges the continuous equilibrium
required for temporarily storing electrical energy in adequately prolonged periods of
time [1,2]. Even advanced batteries cannot respond sufficiently as fast to complement the
promptly fluctuating energy sources [2]. In contrast, high-speed discharging electrostatic
capacitors are uniquely preferable to efficiently fulfill the prompt complements in energy
support systems [3]. Meanwhile, dielectric capacitors cannot be comprehensively applied to
high-power energy storage until now due to the relatively low energy density of dielectric
materials in electric discharging work.

In general, it is required for dielectric materials to achieve high energy storage density
by increasing the maximum polarization intensity and breakdown field while persisting a
low remnant polarization [4–6]. Comprehensive efforts have focused on pursuing antiferro-
electric film materials with high energy storage density due to their double hysteresis loops
of polarization-field characteristics, which can mostly approach the high-energy-density
of 154 J/cm3, which is comparable with excellent electrochemical supercapacitors [7,8].
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However, the energy storage performance of these antiferroelectric films requires a ferroelec-
tric/antiferroelectric coexistence around the morphotropic boundary, which is intensively
dependent on chemical composition and thermodynamic temperature [9–11]. It is also
unfortunate for nonlinear dielectrics such as antiferroelectrics and relaxors that the in-
evitable energy dissipation in the charge/discharge cycle from hysteresis leads to low
storage efficiency of recoverable energy. Moreover, for ferroelectric materials, it is difficult
to approach a high energy density due to their substantial remnant polarization [12]. In
comparison, linear dielectrics without remnant polarization and considerable energy loss it
is only considered to acquire high energy density by promoting dielectric permittivity and
breakdown field strength [13,14].

Recently arising linear dielectrics of III-V semiconductors in forms of solid solutions or
superlattices, such as AlScN alloys or AlN/ScN superlattices, have attracted great focus for
prospective energy storage due to their nonpolar phase in close proximity with ferroelectric
states [15–17]. AlN is the most commonly used barrier material due to its largest band gap
in the III-V group semiconductors, which is qualified for applying electric field as high
strength as possible, and much promising for energy storage due to its chemical simplicity
and low dielectric permittivity under high electric field. Recently observed ferroelectric
states appearing in Al1-xScxN films with a substantial remnant polarization in contrast
to pure AlN are actually polar or nonpolar but not in the ferroelectric phase [18,19]. The
reactive magnetron sputtering method has been successfully applied to prepare Al1-xScxN
alloy film, which was expected to be improved for enhancing piezoelectric and ferroelectric
responses [20,21]. From these works, it is worthwhile to investigate the AlN/ScN super-
lattices in a chemical component that is similar to the Al1-xScxN alloys as a representative
of newly arising semiconductor film dielectrics with a preferable performance in terms of
dielectric energy storage. The electronic band-edge characteristics of the semiconductor
superlattices pivot on the quantum well confinement and band alignment of constituent
layers, which accounts for the band gap and determines the electrical breakdown field of
the electrical capacitor. Previous research lacks the proper consideration of the constituent
layer thickness and crystallographic orientation of the AlN/ScN superlattices.

In the present study, we focus on the n*AlN/n*ScN superlattices oriented on the (001)
or (111) crystallographic plane of a wurtzite structure, where n denotes the number of AlN
or ScN monolayers in constituent layers of superlattices and indicates the constituent layer
thickness. Their energy storage characteristics are studied by first-principle calculations
of the band-structure and dielectric polarizability dependent on the electrical field and
superlattice configurations to explore potential applications in high energy storage. Such
artificial layered materials are generally fabricated by the epitaxial growth technology of
controlling layer interface in an atom resolution, which provides great flexibility in optimiz-
ing electronic states and dielectric polarization by modifying the constituent-layer thickness
and crystallographic orientation of superlattices. This also helps us to comprehend the
underlying physics of high density and efficiency of energy storage in electrical capacitors.

2. Theoretical Methodology

The pseudopotential plane-wave method is used to carry out first-principle calcula-
tions of the crystal structure, electronic structure and polarizability by applying an electric
field for (001) and (111) n*AlN/n*ScN superlattices, as implemented by CASTEP of Materi-
als Studio 2020 (Accelrys Inc., Materials Studio version 2020.08, San Diego, CA, USA). The
GGA-WC exchange-correlation function was adopted to perform geometry optimization
and calculate the dielectric polarizability, while the HSE06 hybrid exchange-correlation func-
tion was specified to obtain accurate band structures [22]. The potential field of atomic cores
bearing on the electrons is described by on-the-fly generated (OTFG) norm-conserving pseu-
dopotential with the Koelling–Harmon treatment of relativistic effect [23]. Self-consistent
field (SCF) iterations are implemented under convergence tolerance of 5 × 10−7 eV/atom
in an FFT grid of 72 × 72 × 216, in which the Pulay scheme of charge density mixing in the
magnitude of 0.5 is specified to relax the electrons [24,25]. The plane-wave basis-set with
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cut-off energy of 440.0 eV is modified by the basis-set finiteness correction [26]. Brillouin
zone integration is realized by k point sampling on the Monkhorst-Pack 4 × 4 × 1 grid [27].
Crystal structures are geometrically optimized with the BFGS algorithm in delocalized
internal coordinates under energy convergence of 5.0 × 10−6 eV/atom with a maximum of
0.02 eV/Å atomic force and 0.001 Å stress [28].

The internal electric fields are theoretically applied to the superlattice crystal struc-
tures along layer-plane normal (axis-z) to calculate hysteresis curves of electric polarization
versus electric field strength (P-E), in which the geometry optimization for each electric
field is performed to represent piezoelectric strain, and linear response formalism based
on density-functional perturbation theory is enabled to calculate static dielectric permit-
tivity under the direct-current internal electric fields [29]. According to the calculated
band gaps, the intrinsic breakdown electric field is estimated empirically as the universal
expression proposed by reference [30]. Cohesive energies in atom average are calculated
by Ecoh = n[E(Al) + 2E(N) + E(Sc)] − E(sup) where E(Al), E(N), E(Sc) and E(sup) represent
total energies of Al, N and Sc isolated atoms, and superlattices.

3. Results and Discussion
3.1. Crystal Structure

Atomic configurations in crystal structures of (001) and (111) n*AlN/n*ScN super-
lattices (n = 1, 2, 3), as shown in Figure 1, have been energetically relaxed by geometry
optimization without applying an internal electric field, indicating a diversity of space sym-
metries alternating with the adjustable superlattice parameters of n and crystallographic
orientation. In addition, the space symmetry groups, lattice constants, the thicknesses of
individual constituent layers, and cohesive energy per atom obtained are listed in Table 1.
For the superlattice configurations, the ScN monolayer (double atomic layer) or the entire
constituent layer for constructing superlattice structures is explicitly larger in thickness
than the AlN monolayer or constituent layer, indicating that compressive and tensile strains
of layer-plane exist in ScN and AlN layers respectively due to a lattice misfit. The thickness
of the AlN constituent layer is strictly proportional to n while the ScN constituent layer
becomes larger than n times the ScN monolayer thickness, implying that the Sc-N bonding
elongation of the relaxing misfit strain along the layer-plane is normal when n increases,
which also accounts for the higher cohesive energy per atoms of larger n than that of
smaller ones.
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Figure 1. Crystal structures of n*AlN/n*ScN superlattices (n = 1, 2, 3) on (a) (001) and (b) (111)
crystallographic faces of wurtzite structure, as indicated by layer-plane normal along (001) and (111)
crystallographic orientations respectively, and the dispersion paths of electronic energy band through
high symmetry points in the Brillouin zone are also shown. The gray, pink, and blue balls symbolize
Sc, Al, and N bonding atoms, respectively.

Table 1. The space symmetry group, lattice constant (a/b, c), thicknesses of AlN and ScN constituent
layers (hAlN and hScN), and cohesive energy per atom (Ecoh), band gaps Eg and intrinsic breakdown
field strength Eb for the AlN/ScN superlattices.

Orientations Superlattices Space
Groups a = b/Å c/Å hAlN/Å hScN/Å Ecoh/(eV/atom) Eg/eV Eb/(MV·cm−1)

(001)
1*AlN/1*ScN P-4M2 3.2608 4.6528 2.0997 2.5531 7.9224 3.815 7.75
2*AlN/2*ScN PMM2 3.2525 9.3081 4.1715 5.1366 7.9542 3.559 7.23
3*AlN/3*ScN P-4M2 3.2507 13.9629 6.2454 7.7175 7.9642 3.535 7.18

(111)
1*AlN/1*ScN R3M 3.2551 16.1767 2.4945 2.8978 7.9126 4.519 9.18
2*AlN/2*ScN R3M 3.2492 32.4172 4.9897 5.81603 7.9324 4.231 8.59
3*AlN/3*ScN P3M1 3.2487 16.2102 7.4845 8.7257 7.9380 4.072 8.27

The cohesive energy of the AlN/ScN superlattices approaches the highest and lowest
values of 7.96 and 7.91 eV/atom for (001) 3*AlN/3*ScN and (111) 1*AlN/1*ScN super-
lattices, respectively, which are all remarkably higher than the III-chalcogenide covalent
double-layers and TMD monolayers [31–33]. Bulk AlN and ScN are also calculated by
identical first-principle schemes to obtain the cohesive energies of 7.66 and 8.38 eV/atom,
which are slightly lower and higher, respectively, than these superlattices. It is an ener-
getic manifestation of high structural stability that both (001) and (111) n*AlN/n*ScN
superlattices can be feasibly achieved by matching the AlN and ScN monolayers through
Sc-N or Al-N bonding strongly into a periodic layer structure. In comparison to the (001)
superlattice orientation, the larger misfit in the (111) layer orientation accounts for the
larger extension along the layer-plane normal with increasing constituent layer thickness
and results in a lower cohesive energy per atoms.

3.2. Band Structure

Due to the in-layer quantum confinement and large lattice misfit between constituent
layers in AlN/ScN superlattices, their band structures are quite different from AlN and
ScN bulk materials, as shown in Figure 2. All of these superlattices present large electronic
band gaps in the 3.5~4.5 eV range while persisting almost constantly without substantial
dependence on constituent layer thickness (n), which is attributed to the simultaneous
changing thickness of the individual constituent layer, almost fixing the quantum confine-
ment levels or minibands of superlattices. In particular, for the higher values of n, a smaller
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dispersion along with the normal layer, as illustrated by the narrower minibands at the
valence band-edge in Figure 2, indicates a more localized feature of valence electrons in
response to the electric field perpendicular to superlattice layers, which manifests as a
lower intensity of dielectric polarization.
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Figure 2. Band structures of the (001) and (111) n*AlN/n*ScN superlattices (n = 1,2,3) in the dispersion
paths through high symmetry points in the Brillouin zone as indicated in Figure 1; the Fermi level
(horizontal dash line) is referenced as energy zero.

The quantum confinement minibands of AlN/ScN superlattices are promptly nar-
rowed down as the superlattice orientation is converted from the low symmetry (001)
to high symmetry (111) crystallographic plane of a wurtzite-like structure due to the
symmetry-induced degeneration of electronic energy levels. Even when n is raised to 3
for (111) orientation, the multiple electronic minibands with minimal energetic dispersion
along with the superlattice’s normal layer, as in the n < 3 AlN/ScN superlattices, have
shrunk into discrete energy levels due to the quantum well confinement of ScN constituent
layer sandwiched by sufficiently wider AlN energy barriers. This results in notably larger
band gaps of (111)-orientated superlattices than that of the (001) orientation, as shown in
Table 1. For a more important consequence of a (111) orientation, the valence electrons are
almost completely residing in ScN layers with a considerably lower dielectric polarizability
than in the AlN layers, which are dominantly contributed by the uneasily polarized bond-
ing of the valence band-edge electrons derived from the Sc-3d and N-2p orbitals. To this
end, these electronic structure results elucidate why a higher electric polarization can be
acquired whilst persisting with a large band gap by simultaneously increasing the AlN and
ScN layer thicknesses.
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3.3. Dielectric Polarization and Energy Density

Dielectric polarization P under a high electric field has been evidently promoted by
increasing the constituent layer thickness as indicated by a larger number of AlN or ScN
monolayers in superlattice configurations, as shown in Figure 3a. The P–E relationship ob-
tained from first-principle calculations at diverse points of the electric field intensity is fitted
with the analytical functions of E(P) = aP + bP3 based on the Landau free-energy, whereby
the energy storage densities are accurately evaluated by an analytical integral of E(P) as
(aPm

2/2) + (bPm
4/4) where Pm denotes the electric polarization at intrinsic breakdown

field, and no polarization arises under a zero external electric field, as shown in the results
shown in Figure 3b. In contrast, in the (001) and (111) superlattice orientations, higher
energy density can be acquired by the (111)-oriented superlattices, which is attributed to
the significant improvement in band gap or intrinsic breakdown field strength for (111)
AlN/ScN superlattices as listed in Table 1, whilst without considerable deficiency in dielec-
tric polarization. Meanwhile, the increase of constituent layer thicknesses leads to higher
dielectric polarizability under high electric fields for both the (001) and (111) AlN/ScN
superlattices. The present first-principles calculations demonstrate that the n*AlN/n*ScN
superlattices (n ≤ 3) are excellent nonlinear dielectrics of energy storage with the high-
est energy density approaching 304 J/cm3 by far exceeding the current supercapacitor
materials realized in the experiments, as shown in Table 2.
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Figure 3. (a) P–E hysteresis curves where indicating breakdown field intensity by Eb and energy
density areas; (b) energy storage densities as an electric capacitor of (001) and (111) n*AlN/n*ScN
superlattices (n = 1, 2, 3).

Table 2. Energy densities of the AlN/ScN superlattices in comparison to the recently reported
nonlinear dielectrics for energy storage capacitors, where the rGO and EDLC indicate reduced
graphene oxide and electrochemical double-layer supercapacitor, respectively.

Material Energy Density/J·cm−3 Method or Process

(001) 3*AlN/3*ScN superlattice 259 First-principles calculation
(111) 3*AlN/3*ScN superlattice 304 First-principles calculation

Nitrogen-Thiol-rGO Scrolls [34] 215 Nitrogen-doped
thiol-functionalization

Pt(111)/Ti/SiO2/Si [35] 99.8 Solid-state reaction
rGO-based EDLC [36] 142 Hydrazine reduction

It is clearly shown in Figure 1 that the majority of Al-N and Sc-N bonds are parallel
to the layer-pane in (111) AlN/ScN superlattices which means all these polar bonds can-
not contribute to dielectric polarization in response to the electric field perpendicular to
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layer-pane. In contrast, despite the diversion of an angle from the normal layer-plane in
the (001) AlN/ScN superlattices, all of these ionic bonds of intrinsic dipoles are partially
devoted to dielectric polarization under a normal electric field, as discriminated by the
higher (001) electric polarizabilities than that of the (111) orientation. However, the (111)
AlN/ScN superlattices possess remarkably larger band gaps and breakdown fields than
the (001) AlN/ScN superlattices. Meanwhile, the larger out-of-plane tensile strain of the
ScN constituent layer in the (111) AlN/ScN superlattices, as mentioned in Section 3.2, is
another reason accounting for the larger band gaps and higher energy densities than the
(001) AlN/ScN superlattices. It is thus flexible and preferable to exploit the superlattice
configuration parameters, such as the constituent layer thickness and crystallographic ori-
entation, to engineer band structures and dielectric responses of the AlN/ScN superlattices
to suggest a feasible pathway for developing linear dielectrics for energy storage.

4. Conclusions

Employing a first-principle pseudopotential plane-wave method, the n*AlN/n*ScN
superlattices with different constituent layer thicknesses and crystallographic orientations
have been systematically studied by calculating the atomic structure, band structure and
polarizability to elucidate their high energy density of the electrical capacity and predictable
experimental feasibility. The large band gaps of the AlN/ScN superlattices can be retained,
and the higher dielectric polarizabilities under a high electric field can be acquired by simul-
taneously increasing the numbers of AlN and ScN monolayers in individual constituent
layers of superlattice configurations. The crystallographic orientation in the (111) plane will
distinctively promote electronic band gaps while slightly decreasing the static dielectric
response to the electric field normal to superlattice layers, which is respectively attributed
to the increased absolute misfit of the superlattice layer and the in-plane orientations of
major polar bonds. It is preferable to manipulate the superlattice configuration parameters
to effectively adjust band structures and dielectric polarization of AlN/ScN superlattices.
This study suggests a prospective routine of employing the highly controllable superlattice
materials to steer electric polarizability and develop high energy density dielectrics.
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Abstract: NiMoO4 is an excellent candidate for supercapacitor electrodes, but poor cycle life, low
electrical conductivity, and small practical capacitance limit its further development. Therefore, in
this paper, we fabricate NiMoO4@MnCo2O4 composites based on a two-step hydrothermal method.
As a supercapacitor electrode, the sample can reach 3000 mF/cm2 at 1 mA/cm2. The asymmetric
supercapacitor (ASC), NiMoO4@MnCo2O4//AC, can be constructed with activated carbon (AC)
as the negative electrode, the device can reach a maximum energy density of 90.89 mWh/cm3 at a
power density of 3726.7 mW/cm3 and the capacitance retention can achieve 78.4% after 10,000 cycles.

Keywords: supercapacitors; NiMoO4@MnCo2O4; microstructure; electrochemical performance;
cycling stability

1. Introduction

With the development of the world economy, environmental pollution is caused by
the excessive burning of traditional fossil fuels, which poses a serious threat to the goal
of human sustainable development [1]. Supercapacitors (SCs), as a new environmentally
friendly electrochemical energy storage device, have attracted extensive attention from
researchers. The selection of electrode material is an important factor for energy storage
performance. Developing an electrode material with excellent electrochemical performance
has become key to the future development of SCs [2–5]. Transition metal oxides possess
high specific capacitance, superior cycling performance and abundant valence states, such
as NiMoO4, MnCo2O4, NiCo2O4 and ZnCo2O4. They have been widely reported due
to their large theoretical capacitance, excellent redox performance and environmental
friendliness [6–10].

NiMoO4 is a very suitable electrode material for SCs because of its advantages of better
electrochemical performance and low price [11–13]. However, there are still many problems
such as low theoretical utilization value, poor cycle life and low conversion performance at a
higher rate [14]. Xuan [15] et al. prepared a NiMoO4@Co3O4 composite nanoarray electrode.
The pseudocapacitance performance of the prepared NiMoO4@Co3O4-5H composite was
1722.3 F/g at the current density of 1 A/g, and the capacitance retention rate of 91%
was realized by the 6000 cycles test. Feng [16] et al. prepared hierarchical flower-like
NiMoO4@Ni3S2 composite material on a 3D nickel foam matrix by the hydrothermal
method. The specific capacity was 870 C/g at 0.6 A/g, and the capacity retention rate was
81.2% after 8000 cycles. Transition metal oxide MnCo2O4 with excellent electrochemical
performance is very suitable for the electrode material of SCs, because its Mn ion can offer
high electron conductivity and excellent rate performance, and cobalt ion has high oxidation
potential. However, they can also demonstrate poor application, such as poor cycling
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performance, poor electrical conductivity and so on, which greatly affect the practical
application of SCs [17,18]. Cheng [19] et al. prepared porous MnCo2O4@NiO nanosheets by
hydrothermal synthesis and calcination. The specific capacitance of the electrode material
was 508.3 F/g at 2 A/g current density. The 2000 cycles test was applied at 10 A/g current
density, and it presented the capacitance retention performance of 89.7%. Liu [20] et al.
prepared MnCo2O4@MnO2 nanosheet arrays with core–shell structure on nickel foam by
two-step hydrothermal treatment. The surface capacitance of the electrode was 3.39 F/cm2

at a current density of 3 mA/cm2. Furthermore, the capacity retention rate was 92.5% by
3000 cycles test at a current density of 15 mA/cm2. It could be seen that the composites
exhibited excellent electrochemical properties due to their excellent conductivity [21–24]. It
was also confirmed that NiMoO4 and MnCo2O4 have great potential as electrode materials
for SCs [25]. The composite electrodes constructed from these two materials can effectively
improve the conductivity, specific surface area, and number of reaction sites, thereby
improving the overall electrochemical performance. [26–28].

In this work, NiMoO4@MnCo2O4 composite electrode material is obtained by the
two-step hydrothermal synthesis method. The results show that the NiMoO4@MnCo2O4
electrode has better electrochemical performance than single NiMoO4 or MnCo2O4 elec-
trode, and its electrochemical performance is greatly improved after the composite. At the
current density of 1 mA/cm2, the specific capacitance of single NiMoO4 electrode material
is 1656 mF/cm2, and the specific capacitance of the single MnCo2O4 electrode material
is 224 mF/cm2. Finally, the NiMoO4@MnCo2O4 electrode material is 3000 mF/cm2. Af-
ter 10,000 cycles, the capacity retention rate of NiMoO4@MnCo2O4 electrode material is
96%. NiMoO4@MnCo2O4//AC devices show high electrochemical performance with a
maximum energy density of 90.89 mWh/cm3 and a power density of 3726.7 mW/cm3.

2. Experimental Section
2.1. Preparation of NiMoO4 Nano Pompon-Like Structure Electrode Material

In a typical process, 6 mmol Na2MoO4·2H2O, 6 mmol Ni(NO3)2·6H2O, 1 mmol NH4F,
and 1 mmol CO(NH2)2 was added to 50 mL deionized water. After magnetic stirring, the
nickel foam was put into the solution and reacted at 120 ◦C for 12 h, and then it was cleaned
by deionized water and anhydrous ethanol to remove surface impurities. The NiMoO4
precursor was obtained by drying for 6 h in a drying oven at 60 ◦C and annealing for 2 h in
air at 350 ◦C.

2.2. Preparation of NiMoO4@MnCo2O4 Urchin-like Core-Shell Structure Electrode Material

In a similar process to above, 6 mmol Mn(CH3COO)2·4H2O, 6 mmol Co(NO)3·6H2O,
5 mmol NH4F and 5 mmol CO(NH2)2 were dissolved in 50 mL deionized water to obtain a
homogeneous solution. The nickel foam with NiMoO4 was put into this solution, and it
kept 140 ◦C for 8 h. After cooling down to room temperature, the samples were washed,
dried, and annealed for 2 h at 350 ◦C. The mass loading of NiMoO4, MnCo2O4, and
NiMoO4@MnCo2O4 is 1.27, 1.02, and 1.91 mg/cm2, respectively.

2.3. Materials Characterizations

The elemental composition and valence of the samples were characterized by X-ray
powder diffraction (XRD, D/max-2500/PC, Rigaku Corporation, Tokyo, Japan) with Cu
Kα (λ = 1.5406 Å) and X-ray photo-electron spectroscopy (XPS, ESCALAB250, FEI Com-
pany, Waltham, MA, USA). The structure and morphology were investigated by emission
scanning electron microscopy (SEM, Sigma500, Zeiss, Jena, Germany), and high-resolution
transmission electron microscopy (HRTEM, Tecnai G2 S-Twin F20, FEI Company, Waltham,
MA, USA).

2.4. Electrochemical Measurements

The electrochemical characteristics of the products were tested by Shanghai CHI660E
electrochemical workstation. The sample material was applied as the working electrode,
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the platinum electrode was utilized as the auxiliary electrode, and Hg/HgO electrode
was employed as the reference electrode. The working electrode was processed as a circle
with a diameter of 1 cm. Moreover, 3 M KOH solution was used as the electrolyte and the
ultrasonic-treated nickel foam was served as the collector. Through cyclic voltammetry
(CV), galvanostatic charging–discharging (GCD), electrochemical impedance spectroscopy
(EIS) and cycling performance measurements, the electrochemical properties of electrode
materials and their application value were analyzed.

Energy density (E) can be obtained from the integral area of discharging curves.
Specific capacitance (Cs), power density (P), and coulombic efficiency (η) can be calculated
by the following equations:

Cs = I∆td/S∆V (1)

P = 3600E/∆td (2)

η = ∆td/∆tc (3)

where I is the current value, ∆td and ∆tc represent the discharging time and charging time,
S is the geometrical area of the electrode, and ∆V denotes the voltage window.

2.5. Fabrication of Asymmetric Supercapacitors

Asymmetric supercapacitors were constructed with NiMoO4@MnCo2O4 as the posi-
tive electrode and active carbon as the negative one. The active carbon electrode was made
of active carbon, acetylene black, and polyvinylidene fluoride with N-methylpyrrolidone
as the solvent in a mass ratio of 7:2:1. The slurry was evenly coated on the nickel foam. The
active carbon electrode was vacuum dried for 24 h at 60 ◦C. The electrolyte of ASCs was
PVA-KOH. The preparation process was as follows: 3 g PVA and 3 g KOH were mixed
in 30 mL deionized water, and the mixture was heated in an 80 ◦C water bath for 1 h and
stirred continuously until clear.

3. Results and Discussion

The NiMoO4@MnCo2O4 composite electrode was synthesized by a two-step hy-
drothermal method, as shown in Figure 1. Firstly, NiMoO4 precursor is grown on nickel
foam. Secondly, NiMoO4 can be obtained by calcination. Thirdly, the nano needle-like
MnCo2O4 precursor was coated on NiMoO4 by the second hydrothermal preparation.
Finally, the samples were calcined to obtain NiMoO4@MnCo2O4 on nickel foam.

As seen from the XRD results of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode
materials, it can be observed that the three strong peaks are diffraction peaks of the foamed
nickel substrate in Figure 2. When 2θ values are 26.57◦, 29.14◦, 33.73◦ and 60.01◦, the crystal
planes correspond to (220), (310), (222) and (060). The crystal structure is consistent with
that of NiMoO4 (JCPDS No. 45-0142). Meanwhile, the values of 2θ are 30.53◦, 35.99◦, 57.90◦

and 63.62◦ and the diffraction peaks correspond to (220), (311), (511) and (440) crystal
planes, which is consistent with the crystal structure of MnCo2O4 (JCPDS No. 23–1237).
Therefore, the diffraction peaks of NiMoO4@MnCo2O4 electrode material prepared under
the condition of the best ratio correspond to the diffraction peaks of a single compound.

Figure 3 shows the morphologies of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4
electrode materials. As seen from Figure 3a,b, the NiMoO4 electrode material is nano
pompon-like, and there are many intersecting nano needle-like structures densely grow-
ing on the nickel foam substrate. As shown in Figure 3c,d, MnCo2O4 electrode material
possesses a nano needle-like structure and uniformly grows on the nickel foam substrate.
Figure 3e,f show the micromorphology of NiMoO4@MnCo2O4 electrode material. It can be
observed that a large number of uniformly distributed nano needle-like MnCo2O4 and nano
pompon-like NiMoO4 grow together to form a uniform and orderly arrangement of nano
urchin-like morphology, which increases the specific surface area of NiMoO4 electrode and
presents a great deal of active sites for rapid transfer between ions and active substances.
The gap between the nano needle-like structures allows sufficient Faraday chemical reac-
tions between the active substance and electrolyte, which enhances the electrochemical

202



Nanomaterials 2022, 12, 1674

storage performance. Figure 3g,h show TEM images of NiMoO4@MnCo2O4 electrode
material. Figure 3g exhibits the morphology after the composite of NiMoO4 and MnCo2O4.
It can be seen from Figure 3h that NiMoO4@MnCo2O4 composite material shows two kinds
of lattice fringes; the lattice fringes with the spacing of 0.154 nm correspond to the (060)
crystal plane of NiMoO4, and the lattice fringes with the spacing of 0.146 nm correspond to
the (440) crystal plane of MnCo2O4. From the stable microstructure of NiMoO4@MnCo2O4,
it can be inferred that the composite has multiple ion and electron transport channels and a
larger specific surface area, therefore it is beneficial to shorten the ion diffusion path, which
makes it advantageous for high storage capacity and rate capacity.

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Synthesis schematic of NiMoO4@MnCo2O4 composite electrode. 

As seen from the XRD results of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode 
materials, it can be observed that the three strong peaks are diffraction peaks of the 
foamed nickel substrate in Figure 2. When 2θ values are 26.57°, 29.14°, 33.73° and 60.01°, 
the crystal planes correspond to (220), (310), (22 2 ) and (060). The crystal structure is con-
sistent with that of NiMoO4 (JCPDS No. 45-0142). Meanwhile, the values of 2θ are 30.53°, 
35.99°, 57.90° and 63.62° and the diffraction peaks correspond to (220), (311), (511) and 
(440) crystal planes, which is consistent with the crystal structure of MnCo2O4 (JCPDS No. 
23–1237). Therefore, the diffraction peaks of NiMoO4@MnCo2O4 electrode material pre-
pared under the condition of the best ratio correspond to the diffraction peaks of a single 
compound. 

 
Figure 2. XRD patterns of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode materials. 

Figure 3 shows the morphologies of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 elec-
trode materials. As seen from Figure 3a,b, the NiMoO4 electrode material is nano pompon-
like, and there are many intersecting nano needle-like structures densely growing on the 

urea 
MoO42- 

NH4F Ni2+ 

Figure 1. Synthesis schematic of NiMoO4@MnCo2O4 composite electrode.

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Synthesis schematic of NiMoO4@MnCo2O4 composite electrode. 

As seen from the XRD results of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode 
materials, it can be observed that the three strong peaks are diffraction peaks of the 
foamed nickel substrate in Figure 2. When 2θ values are 26.57°, 29.14°, 33.73° and 60.01°, 
the crystal planes correspond to (220), (310), (22 2 ) and (060). The crystal structure is con-
sistent with that of NiMoO4 (JCPDS No. 45-0142). Meanwhile, the values of 2θ are 30.53°, 
35.99°, 57.90° and 63.62° and the diffraction peaks correspond to (220), (311), (511) and 
(440) crystal planes, which is consistent with the crystal structure of MnCo2O4 (JCPDS No. 
23–1237). Therefore, the diffraction peaks of NiMoO4@MnCo2O4 electrode material pre-
pared under the condition of the best ratio correspond to the diffraction peaks of a single 
compound. 

 
Figure 2. XRD patterns of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode materials. 

Figure 3 shows the morphologies of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 elec-
trode materials. As seen from Figure 3a,b, the NiMoO4 electrode material is nano pompon-
like, and there are many intersecting nano needle-like structures densely growing on the 

urea 
MoO42- 

NH4F Ni2+ 

Figure 2. XRD patterns of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode materials.

203



Nanomaterials 2022, 12, 1674Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 3. (a–f) Microstructure of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode materials at 
different multiples; (g,h) TEM of NiMoO4@MnCo2O4 electrode material. 

In order to further investigate the elemental component and different valence states 
of the prepared NiMoO4@MnCo2O4 composite, XPS tests were carried out on the samples. 
Figure 4a presents the full measurement scanning spectrum showing the presence of Mn 
2p, Co 2p, Mo 3d, Ni 2p, O 1s and C 1s, among which O 1s and C 1s elements are mixed 
impurities in the test process. In order to identify the detailed valence states of Mn, the 
high resolution XPS spectrum is present in Figure 4b. The Mn 2p3/2 and Mn 2p1/2 are found 
in the two main peaks, respectively, which can be divided into four peaks after fine fitting. 
The two peaks with a binding energy of 641.4 eV and 652.9 eV can be ascribed to the 
presence of Mn2+. The peaks corresponding to Mn3+ are distributed with a binding energy 
of 644.6 eV and 654.2 eV, respectively. Meanwhile, there is a satellite peak (defined as 
“Sat.”) at a position with a binding energy of 644.6 eV. According to the Co 2p spectrum 

(a) 

1 μm 

(b) 

200 nm 

(c) 

1 μm 

(d) 

200 nm 

(e) 

1 μm 

(f) 

100 nm 

(g) 

2 nm 

(h) 

200 nm 

Figure 3. (a–f) Microstructure of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrode materials at
different multiples; (g,h) TEM of NiMoO4@MnCo2O4 electrode material.

In order to further investigate the elemental component and different valence states of
the prepared NiMoO4@MnCo2O4 composite, XPS tests were carried out on the samples.
Figure 4a presents the full measurement scanning spectrum showing the presence of Mn
2p, Co 2p, Mo 3d, Ni 2p, O 1s and C 1s, among which O 1s and C 1s elements are mixed
impurities in the test process. In order to identify the detailed valence states of Mn, the
high resolution XPS spectrum is present in Figure 4b. The Mn 2p3/2 and Mn 2p1/2 are
found in the two main peaks, respectively, which can be divided into four peaks after fine
fitting. The two peaks with a binding energy of 641.4 eV and 652.9 eV can be ascribed to
the presence of Mn2+. The peaks corresponding to Mn3+ are distributed with a binding
energy of 644.6 eV and 654.2 eV, respectively. Meanwhile, there is a satellite peak (defined
as “Sat.”) at a position with a binding energy of 644.6 eV. According to the Co 2p spectrum
of Figure 4c, it was found that two peaks appear at 780 eV and 795.3 eV, corresponding to
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the two excitation spectra of Co 2p3/2 and Co 2p1/2. The diffraction peaks corresponding
to Co2+ have a binding energy of 781.5 eV and 797.3 eV, respectively. The diffraction peaks
corresponding to Co3+ have a binding energy of 779.9 eV and 795.2 eV, respectively. In
Figure 4d, the peaks of Mo 3d spectrum at 231.6 eV and 234.8 eV belong to Mo 3d5/2
and Mo 3d3/2, respectively. In Figure 4e, Ni 2p spectra can be well fitted into two main
peaks, characterized by Ni2+ and Ni3+ oxidation states. Each peak has its own satellite
peak (defined as “Sat.”) at 861.6 eV and 879.9 eV, respectively. Two fitting peaks at 855.1 eV
(Ni 2p3/2) and 872.9 eV (Ni 2p1/2) belong to Ni2+, and two fitting peaks at 855.9 eV (Ni
2p3/2) and 873.8 eV (Ni 2p1/2) belong to Ni3+. Figure 4f shows the O 1s region, which can
be divided into two peaks (529.8 eV and 531.8 eV). For the binding energy of 529.8 eV, it is
attributed to the formation of M-O bond (M=Co, Mn). Therefore, XPS data confirm that the
synthesis of NiMoO4@MnCo2O4 is successful [29–31].
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Figure 5a shows the cyclic voltammetry (CV) curves of NiMoO4@MnCo2O4 electrode
material, which is measured by a scanning rate of 10–100 mV/s and a voltage window of
0–0.5 V, showing excellent rate performance. The visible redox peaks are seen from the
curves, indicating that redox reaction occurs in the process of energy storage. Figure 5b
presents the galvanostatic charge–discharge (GCD) curves with current density of 1, 2,
4, 8, and 10 mA/cm2, the areal capacitance is 3000, 1076, 964, 696, and 580 mF/cm2,
respectively. The high electrochemical performance is mainly attributed to the nano urchin-
like morphology of the material. The nano needle-like structure densely and uniformly
distributed on the urchin-like surface provides a larger surface area for electrolyte contact,
thus improving the electrochemical performance of the composite.
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In order to show the advantages of the composite electrode, NiMoO4, MnCo2O4 and
NiMoO4@MnCo2O4 electrode materials are used as working electrodes, respectively, and
necessary tests are carried out in a three-system with 3 M KOH solution. Studies have
shown that the capacitance of NiMoO4 in an alkaline environment is mainly attributed to
the reversible redox reaction between the valence states of Ni element, while Mo element
does not participate in any reaction, but it helps to improve the conductivity of molybdate.
Figure 5c reveals the CV curves of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4 electrodes
at 10 mV/s. Visible redox peaks can be seen from the curves. By comparing the three
CV curves, it is obviously observed that the NiMoO4@MnCo2O4 electrode has a larger
integral area than NiMoO4 and MnCo2O4 electrode, so it has a larger specific capacitance.
These excellent electrochemical properties can be credited to the singular nano urchin-like
structure and a series of redox reactions, which not only involve Co2+ and Mn2+, but also
come from Ni2+, thus increasing the redox peak. The specific redox reaction mechanism is
as follows:

NiMoO4: NiMoO4 → Ni2+ + MoO4
2− (4)

Ni2+ + 2OH− → Ni(OH)2 (5)

Ni(OH)2 + OH− → NiOOH + H2O + e− (6)

MnCo2O4: MnCo2O4 + H2O + OH− →MnOOH + 2CoOOH + e− (7)

MnOOH + OH− →MnO2 + H2O + e− (8)

CoOOH + OH− → CoO2 + H2O + e− (9)

Figure 5d shows the GCD curves of NiMoO4, MnCo2O4 and NiMoO4@MnCo2O4
composite electrode material measured at the current density of 1 mA/cm2. It is observed
that the charge and discharge time of NiMoO4@MnCo2O4 composite electrode material
is the longest, which corresponds to the maximum CV curve area of NiMoO4@MnCo2O4
in Figure 5c. By calculation, the specific capacitances of the three electrodes can reach
1656, 224 and 3000 mF/cm2. The specific capacitance of NiMoO4@MnCo2O4 is compared,
as shown in Table 1, which is higher than that of some previous literatures [32–36]. The
charging–discharging time of NiMoO4@MnCo2O4 composite electrode material is the
longest, and the symmetry of the charging and discharging cycle indicates that the electrode
has excellent reversibility. The capacitance performance is attributed to the nano urchin-like
morphology of the material, which provides a larger electrolyte contact area. Therefore, the
electrochemical properties of composite electrode material are improved. To further explore
the charge transfer ability of the prepared electrodes, EIS measurements were carried out,
as shown in Figure 5e. The inset exhibits that compared with two single electrodes, in the
high frequency region, the NiMoO4@MnCo2O4 sample has a smaller semicircle arc and
x-axis intercept, which represents the charge transfer resistance (Rct) and solution resistance
(Rs), indicating that the composite has a faster ion-electron transfer rate at the electrode
and electrolyte interface, and smaller intrinsic resistance. The corresponding Rs values
of NiMoO4, MnCo2O4, and NiMoO4@MnCo2O4 are 0.91, 0.77 and 0.67 Ω, respectively.
In the low frequency region, the composite material shows the higher straight-line slope,
which accounts for faster electrolyte ion mobility. Cycling performance (10 mA cm−2)
of the as-prepared electrodes is displayed in Figure 5f. Compared with NiMoO4 (75%)
and MnCo2O4 (45%), NiMoO4@MnCo2O4 (96%) shows a better cycling lifespan after
undergoing the charging–discharging process 10,000 times.

In order to study the application of NiMoO4@MnCo2O4 in SCs, the positive electrode
and negative electrode of ASCs are NiMoO4@MnCo2O4 electrode and active carbon (AC)
electrode, respectively. Figure 6 shows the electrochemical curves of the assembled device.
Figure 5a shows the CV curves at the scanning rate of 100 mV/s. The voltage windows
of the device are 1.1 V, 1.2 V, 1.3 V, 1.4 V, 1.5 V and 1.6 V, respectively. The shapes of all
curves are nearly the same, indicating that the device can operate at 1.1 V–1.6 V and the
maximum voltage window can reach 1.6 V at the same time. Figure 6b shows the CV
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curves of NiMoO4@MnCo2O4//AC at scanning rates of 5–100 mV/s. With the increase
in scanning rate, the shapes of the CV curves increase, which is mainly attributed to
the synergy between materials. These curves have obvious redox peaks, indicating that
the asymmetric SCs have pseudocapacitance characteristics. Meanwhile, with increasing
scanning rate, the integral area of the curves is enhanced. The GCD curves with different
current densities are shown in Figure 6c, which indicates that the linear trend of the curve is
obvious at high current densities. The voltage window is 1.5 V, and the surface capacitance
of the device can be calculated according to the formula. When the current densities are 1, 2,
4, 8 and 10 mA/cm2, the surface capacitances are 58.53, 22.73, 12.13, 1.9 and 1.13 mF/cm2,
respectively. Figure 6d shows the charge transfer characteristics of the prepared electrode
studied by EIS test. The slope is larger in the low frequency region, indicating that the
diffusion resistance of the assembled asymmetric SC is lower. The inset shows the Rs value
is only 1 Ω. Figure 6e shows the long cycling test with 10,000 times at 10 mA cm−2 and
coulombic efficiency. The capacity retention rate of the assembled asymmetric SC is 78.4%.
The decrease in capacity may be due to the morphology damage caused by long-term redox
reaction of electrode materials, which reduces the potential activity of the surface of the
material. The coulombic efficiency of ASCs keeps nearly 100% during 10,000 charging–
discharging tests. From Figure 6f, the Ragone plot offers an expression of the trend of the
energy density with the corresponding power density. Importantly, the maximum energy
density of the NiMoO4@MnCo2O4//AC device reaches 90.89 mWh/cm3 at the power
density of 3726.7 mW/cm3, which is better than some reported devices [37–41].

Table 1. Electrochemical performance comparison of NiMoO4@MnCo2O4 with previous literatures.

Materials Capacity Current
Density Electrolyte Capacitance

Retention Ref.

NiCo2O4/rGO/NiO 2.644 F cm−2 1 mA cm−2 3 M KOH 97.5% (3000 cycles) [32]
Fe2O3/Fe dendrite 2.166 F cm−2 1 mA cm−2 1 M KOH 90% (1000 cycles) [33]

NiCo2O4/C 2.057 F cm−2 1 mA cm−2 2 M KOH 81% (10,000 cycles) [34]
rGO/PPy 0.807 F cm−2 1 mA cm−2 1 M H2SO4 78% (2000 cycles) [35]

C@MnNiCo-OH/Ni3S2 2.332 F cm−2 1 mA cm−2 3 M KOH 89.45% (5000 cycles) [36]
NiMoO4@MnCo2O4 3 F cm−2 1 mA cm−2 3 M KOH 96% (10,000 cycles) This work
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4. Conclusions

A new type of NiMoO4@MnCo2O4 composite electrode material has been successfully
prepared on nickel foam by the two-step hydrothermal method, and its phase structures,
micromorphology and electrochemical properties are characterized and analyzed. Due
to the synergistic effect between the NiMoO4 nano pompon-like structure and MnCo2O4
nano needle-like structure, the prepared nano urchin-like NiMoO4@MnCo2O4 core–shell
nanostructure presents good pseudocapacitance properties. NiMoO4@MnCo2O4 samples
show better electrochemical performance than single NiMoO4 or MnCo2O4 electrode
materials, which exhibit a high specific capacitance of 3000 mF/cm2. After 10,000 cycles, the
capacity retention rate is 96%. In addition, the NiMoO4@MnCo2O4//AC assembled device
delivers a high energy density of 90.89 mWh/cm3 at a power density of 3726.7 mW/cm3.
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Abstract: Wearable motion-monitoring systems have been widely used in recent years. However, the
battery energy storage problem of traditional wearable devices limits the development of human
sports training applications. In this paper, a self-powered and portable micro-structure triboelectric
nanogenerator (MS-TENG) has been made. It consists of micro-structure polydimethylsiloxane
(PDMS) film, fluorinated ethylene propylene (FEP) film, and lithium chloride polyacrylamide (LiCl-
PAAM) hydrogel. Through the micro-structure, the voltage of the MS-TENG can be improved by
7 times. The MS-TENG provides outstanding sensing properties: maximum output voltage of 74 V,
angular sensitivity of 1.016 V/degree, high signal-to-noise ratio, and excellent long-term service
stability. We used it to monitor the running skills of speed skaters. It can also store the biomechanical
energy which is generated in the process of speed skating through capacitors. It demonstrates
capability of sensor to power electronic calculator and electronic watch. In addition, as a flexible
electrode hydrogel, it can readily stretch over 1300%, which can help improve the service life and
work stability of MS-TENG. Therefore, MS-TENG has great application potential in human sports
training monitoring and big data analysis.

Keywords: self-powered; wearable flexible sensor; energy harvesting; human motion monitoring;
triboelectric nanogenerator

1. Introduction

In the Beijing Winter Olympic Games, a total of 14 gold medals were won in speed
skating, including 10 Olympic records and 1 world record. The good results of athletes
are inseparable from scientific training. Among this, the data support provided by sports
training monitoring for speed skating training and competition is the key link. The speed
skating competition is fierce. Speed skaters wear 2 mm-wide skates to complete high-speed
skating on the ice. High-quality athletes’ technical motions are the fundamental guarantee
of this high-speed movement. The athletes’ physical agility is the main influencing factor of
their competitive ability and excellent performance. Moreover, the physical agility decline
caused by technical instability exists in most athletes’ training and competition [1–6]. High
speed cameras and inertial sensors have been used to monitor the changes in athletes’ real-
time technical motions during taxiing [7–10]. However, the accuracy of motion monitoring
is limited by the large space demand, complex circuit, and large battery volume of cameras,
inertial sensors, and portable sensors. Therefore, it is an urgent problem to develop a
portable, economical, self-powered, and real-time motion monitoring sensor to assist the
development of speed skating.
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In recent years, the Zhong Lin Wang team invented the triboelectric nanogenerator
(TENG) based on Maxwell displacement current theory [11–13], which has been widely
discussed and developed rapidly. This technology has a great application potential in the
fields of blue energy, self-powered systems and portable sensors [14–19]. TENG mainly
consists of two different materials [20–23]. It can convert low-frequency mechanical energy
from surroundings into electrical energy, such as human motion mechanical energy [24–29].
Due to the electrical signal being closely related to the surroundings, TENG seems to be
an ideal candidate for motion monitoring. Unfortunately, common TENG with a metal
electrode can be easily destroyed and uncomfortable to wear, so it cannot be further applied
to biological systems [30,31]. Chen et al. propose a kind of hydrogel with high conduc-
tivity, transports and flexibility [32,33]. Combing with conductive hydrogel and surface
modification with micro-structure to fabricate TENG, proposed by Zhao et al. [34–36], the
sensitivity and response of the self-powered sensor would be dramatically enhanced.

In this work, we develop a micro-structure triboelectric nanogenerator (MS-TENG). It
consists of micro-structure polydimethylsiloxane (PDMS) film, fluorinated ethylene propy-
lene (FEP) film, and lithium chloride polyacrylamide (LiCl-PAAM) hydrogel (Figure 1).
Through introduction of micro-structure on dielectric surface, the output voltage of the
MS-TENG can be improved by 7 times. In our experiment, MS-TENG can be attached to the
athlete’s body surface easily and it can collect the technical motion information accurately
(movement structure, bending angle and frequency). The triboelectric signal can not only
be used as biosensor signal, but also can power microelectronics. In addition, by replacing
metal electrodes with hydrogel, the response, stability, lifetime and comfort level have
been improved. Therefore, MS-TENG can be applied to sports training monitoring and big
data analysis of speed skating or other sports. As a new generation of motion-monitoring
equipment, it has great application potential.
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2. Materials and Methods
2.1. Materials

Fluorinated ethylene propylene and Polyimide tape were purchased from Zeyou plas-
tic Co., Ltd. (Suzhou, China). DOW CORNING Sylgard 184 was purchased from Xinheng
Trading Co., Ltd. (Tianjin, China). N,N-dimethylformamide (DMF), Acrylamide (AM),
Lithium chloride (LiCl), N,N’-methylene diacrylamide (MBA), Ammonium persulphate
(APS), and N,N,N’,N’-tetramethylethylenediamine (TMEDA) were purchased from Jintong
letai chemical industry products Co., Ltd. (Beijing, China).

2.2. Methods

Synthesis of lithium chloride polyacrylamide hydrogel pre-solution: AM was used as the
monomer, MBA was used as the crosslinking agent, and APS was used as the initiator.
The whole reaction was processed under room temperature. The specific steps were
as follows: AM powder and LiCl particles were dissolved in 50 mL deionized water
at a speed of 500 rpm, wherein the concentrations of AM and LiCl were 3 mol/L and
5 mol/L, respectively. After continuous magnetic stirring for 10 min, MBA and APS were
added to the solution, and the molar ratios of MBA and APS to AM monomer were 0.02
and 0.03 mol% respectively. Then, the particles were stirred until they were dissolved
completely, and then it was kept for 1 h to obtain the pre-solution.

Preparation of micro-structure PDMS triboelectric layer: The PDMS mixture of base and
crosslinker (the weight ratio of base to cross linker was 10:1) was stirred for at least 20 min
and degassed in vacuum for 10 min to remove air bubbles at room temperature. PDMS
mixture was spin-coated (900 rpm, 20 s) on a silicon mold with microstructure, and cured at
80 ◦C for 1 h. A few drops of TMEDA was added in the uniform hydrogel solution which is
used as an accelerator. Subsequently, the hydrogel solution was spin-coated on PDMS. After
the hydrogel was solidified, the PDMS mixture was spin-coated on the above hydrogel
membrane again. After the PDMS was solidified, PDMS films with micro-structure were
obtained by peeling off the sandwich PDMS from the Si mold surface carefully.

Manufacture of triboelectric nanogenerator: The FEP triboelectric layer with sandwich
structure was composed of FEP film and LiCl-PAAM hydrogel. Finally, the double-electrode
TENG with microstructure (MS-TENG) consisted of PDMS triboelectric layer, FEP tribo-
electric layer, and polyimide (50 µm). Polyimide was used as spacer layer, which provided
space for two triboelectric layers.

2.3. Characterization and Measurement

The MS-TENG was fixed on the stepping motor to simulate joint movement. The
different amplitudes and frequencies were used to hit sensors repeatedly and periodically
and triboelectric single was generated by the MS-TNEG. Signals were collected by oscillo-
scopes (sto 1102 c, Shenzhen, China). The morphology and structure of the sensor were
carried out by an optical microscope (Sunshine Instrument Co., Ltd., SDPTOP-CX 40m,
Ningbo, China).
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3. Results and Discussion

To achieve accurate, reliable, and convenient assessment of the technical movements of
speed skaters, conformal and real-time measurement of athlete’s joint and articular chains
is necessary. We proposed a self-powered and flexible sensor (MS-TENG) which consists of
PDMS elastomer, FEP film, and ionic conductive hydrogel. According to MS-TENG output
signals, a coach can adjust a skater’s technical movements and develop a suitable plan for
an athlete, so that they can scientifically and systematically enhance athlete’s performance.
As shown in Figure 1a, MS-TENG can attach to the joints of the skater flexibly. Based on
the triboelectric effect, the output signals of MS-TENG are sensing signals. It can collect the
information of athletes’ joint bending angle, movement frequency and movement structure,
and it provides the basis for big data analysis. We have made a comparison between the ex-
isting articles in the field of manufacturing sensors that we have referred to in this research.
The results of this comparison are shown in Table S1 [37–44]. Compared with other works,
the MS-TENG has the advantages of self-powered, soft, and high-outputting properties.
Hydrogel has been used as flexible electrode, which improves the service life and working
stability of MS-TENG. The application value of the sensor has been verified. The manufac-
ture process of MS-TENG is shown in Figure 1b. In brief, the PDMS mixture is spin-coated
on a silicon mold. After curing, the complementary structure of the epidermis pattern is
uniformly transferred from the silicon mold to the PDMS. Later, the hydrogel pre-solution
with TMEDA is spin-coated on the bottom PDMS layer, and then the PDMS mixture is
spin-coated above the hydrogel again. After curing, a microstructure PDMS triboelectric
layer can be obtained. Finally, the PDMS triboelectric layer and FEP triboelectric layer are
assembled together by polyimide tape. Figure 1c is an optical image of the MS-TENG at
bending state. It shows the flexible, soft, and thin characteristics of MS-TENG. Figure 1d
shows the cross-sectional scanning electron microscope (SEM) image of MS-TENG which
clearly shows the structure of MS-TENG. Figure S1 shows the SEM images of PDMS, FEP,
and hydrogel, respectively. The microstructure of PDMS surface is shown in Figure S1a.
Since MS-PDMS has a large effective contact area and higher surface energy. It leads to
more charge accumulation on the contact surface, higher potential, and better electrical
performance. Figure S2 shows the Fourier-transform infrared (FTIR) spectrum of the FEP,
PDMS, and hydrogel. Then we investigated the mechanical properties of hydrogel, which
is an important parameter for practical applications. The tensile strength measurement
process of hydrogel is shown in Figure S3. As shown in Figure 1e, hydrogel can stretch over
1300%, which compared with traditional metal electrode, hydrogel electrode has excellent
flexibility [45,46]. In addition, this work expands the application of hydrogels in other
fields [47–49].

The working mechanism of the MS-TENG is schematically illustrated in Figure 2a. In
the original state (Figure 2a(I)), charge transfer does not take place before the triboelectric
materials contacts. When a pressure force is applied to MS-TENG (Figure 2a(II)) charge
transfer takes places at the interface between PDMS and FEP, due to the differences of
the electronegativity [50]. Since the surface electron affinity of PDMS is higher than FEP,
electrons transfer from the FEP surface to PDMS surface, leaving equal positive triboelectric
charges on the FEP surface. When a pressure force disappears, PDMS and PEF begin
to separate and the electrons transfer from the top electrode to the bottom electrode via
external circuit due to the electrostatic force (Figure 2a(III)). As shown in Figure 2a(IV),
the MS-TENG reaches the equilibrium state, and electrons do not transfer from the top
electrode to the bottom electrode anymore. Finally, when the pressure force appears again,
the electrons transfer from bottom electrode to top electrode via external circuit due to the
electrostatic force (Figure 2a(V)), outputting a reversing electrical signal. Therefore, the AC
electricity can be continuously generated by periodical contact-separation between PDMS
film and FEP film. In order to understand the working mechanism of the MS-TENG, the
visualized simulation via COMSOL software is shown in Figure 2b, and the corresponding
simulated output electric potential is depicted by color variation. We measure the peak
voltage of MS-TENG and without microstructure TENG under variable applied force from
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0 to 50 N (as shown in Figure 2c). It shows that the two peak voltages increase with the
increase of force, but the MS-TENG is more sensitive to response of force. The output
performance of MS-TENG under different load resistances is shown in Figure 2d. The
output voltage increases with the load resistance increasing. Instantaneous electric power
is the 11 µW at 9 MΩ. Meanwhile, we tested the resistance of the hydrogel. When the
hydrogel is stretched from 1 cm to 15 cm, the resistance increases rapidly and then stabilizes
gradually, the maximum resistance reaches 564.2 kΩ (Figure S4). Even if the resistance of
hydrogel changes with the stretching, the inherent resistance of MS-TENG is much larger
than that of the hydrogel. Therefore, the change of hydrogel resistance does not affect the
output voltage. In order to explore the characteristics of the TENG generator, the energy
conversion efficiency of the MS-TENG is investigated. The efficiency of the MS-TENG
is defined as the ratio between the input mechanical energy and the generated electrical
energy delivered to the load. The formula of energy conversion efficiency are as follows:

η =
Eele

Wtotal
=

∫
I2Rdt
WG

(1)

where Eele and Wtotal stand for the electric energy and the total work done by the ambient,
WG represents the work done by gravity. As shown in Figure S5, Eele shows an energy
output that is measured under the best matched load (9 MΩ). According to calculation,
the energy conversion efficiency of TENG is 0.08%. Figure 2e shows the voltage wave of
the MS-TENG, when the pressing/releasing speed is from 5 to 20 cm/s. It can be observed
that the peak voltage decreases with the pressing/releasing speed decreasing also, and the
pulse width increases gradually with the pressing/releasing speed decreasing.
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216



Nanomaterials 2022, 12, 1576

The physiological structure of the human body determines the working mode of
the upper and lower limbs. Combined with torso coordination and cooperation, various
forms of human movement are formed. With the body movement forms changing, many
movements are formed such as push, pull, stretch, swing, among others. Further, many
motion of human can drive TENG to work. Before practical application, it is necessary to
study the effects of different mechanical stimuli on the output of MS-TENG to prove its
practicability. Figure 3a is a system of MS-TENG monitoring body joint movements. We
manufactured a MS-TENG which size is 8 × 3 cm2. The stepping motor with programmable
system and slide rail simulates joint movement to apply different deformations to the
sensor. All the measurements are carried out at room temperature (22 ◦C) and 25% relative
humidity. The output triboelectric voltage of the MS-TENG at the same frequency (1 Hz)
and different bending angles (as shown in Figure 3b). When the angles are 168, 166, 164,
and 162◦, the output triboelectric voltage is 13.8, 15, 17.56, and 19.27 V, respectively, and the
output voltage increases with the bending angle increasing. In order to show the sensitivity
of MS-TENG, the linear relationship between bending angles and output voltages is shown
in Figure S6. The red line is a linear fit. The linear fitting of Formula (2) is as follows:

y = 184.16 − 1.016x (2)

where y represents the triboelectric voltage (V) and x represents the bending angle (degree).
The linearity is up to 0.99. Figure 3c shows the relationship between output triboelectric
voltage and frequency. When the bending angle is 160◦, the frequencies are 1, 1.5, 2, and
2.5 Hz, and the output triboelectric voltages are 1.85, 1.88, 1.86, and 1.92 V respectively.
Figure 3d shows the response of MS-TENG at different bending angles and frequencies.
The response of MS-TENG can be calculated from the following equation:

% =

∣∣∣∣
V0 − Vi

Vi

∣∣∣∣× 100%, (3)

where V0 and Vi are the outputting voltage of 168◦ (first data) and other voltages. The
response of MS-TENG is 0, 8, 21.4, and 30% when it is in different bending angles, and when
the frequency is 1, 1.5, 2, and 2.5 Hz, the response of MS-TENG is 0, 0, 0, and 0%. These data
indicate that MS-TENG can monitor the joint change of angle and frequency accurately,
and these data are used be big data analysis to enhance athlete’s sports technology. The
durability of MS-TENG is shown in Figure 3e. After many tests, the output is almost
constant (~22 V). The excellent durability and high output power of the MS-TENG shows
the potential of practical application in the future.
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Figure 3. (a) MS-TENG monitors the body joint motion system; (b) outputting triboelectric voltage
of MS-TENG at different bend angles; (c) outputting triboelectric voltage of MS-TENG at different
frequencies; (d) response of output triboelectric voltage of MS-TENG at different bending angles and
frequencies; (e) durability property of MS-TENG.

On the basis of the superior performance of electrical output and splendid sensing
property to force, MS-TENG can be used to monitor skaters’ motion techniques. The human
movement system consists of bones, joints, and muscles. By using the flexibility of MS-
TENG, it can be attached to the joints of the skater flexibly. With flexion and extension of the
targeted joints, MS-TENG would then be compressed and released, converting mechanical
signals into voltage signals simultaneously (Figure 4a). The oscilloscope synchronously
collects the voltage signals of MS-TENG which is attached to the ankle, knee, and coxa of
athlete 1 (as shown in Figure 4b). All the above sensors are 8 × 3 cm2 in size. The detailed
collection process is shown in Movies S1–S3. In addition, athlete 2 also performed the same
motion test, and the voltage signal is as shown in Figure S7. The results are summarized in
Table 1. At the same joint motion, the output voltage of athlete 1 is higher, but his variance
is large. To sum up, it shows that athlete 1 is a strength-type player, and his technical
stability needs to be improved. Athlete 2 is a technique-type player, and his strength needs
to be enhanced. Speed skating is a periodic event, and it is a fitness and technique sport.
Speed skaters possess great physical strength and excellent technique. According to the
monitoring results, the coach can arrange technical training for athlete 1 appropriately, so
that athlete 1 can form the correct motion concept and maintain the good stability, thus he
can improve his competitive ability. The coach can arrange strength training load for athlete
2 to ensure that he can adapt to the load requirements of the competition. To avoid being
thrown off the track, the athlete can adjust his barycenter at curve-skating and push off
the ice with the outside edge of his left skate and the inside edge of his right skate, which
can keep his body tilted toward the center of the circle. In this state, the athlete uses the
centripetal force that is formed by the supporting reaction force of the body’s barycenter
and the resultant force of body gravity to counter the centrifugal force which is generated
by circular motion. Figure 4c is the output voltage of MS-TENG which is attached to
left/right coxa when athlete simulates curve-skating at different inclination angles. The
incline angle formed by the body, and the ice is closely related to the athlete’s speed at
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curve-skating. The lower the incline angle, the smaller the skating radius, and the faster the
speed. At high, moderate, and low inclination angles, the voltage of left coxa is 1.16, 1.54,
and 1.78 V, and voltage of the right coxa is 1.01, 1.29, and 2 V. The result shows that the
lower the incline angle, the higher the voltage. Figure 4d,f shows the output voltage of MS-
TENG attached to ankle when two athletes simulate straight-skating. Detailed drawings
of voltage curves are shown in Figure 4e,g. It shows that two athletes do leg extension-
ankle extension-leg retraction movements. Because the sole of the Clap skate has a special
hinge device (Figure S8), the heel of the skate can be separated from the skate. Therefore,
athletes can take an action to extend their ankles in the process of pushing off the ice. This
allows the edge to stay in contact with the ice longer; thus, it is important to improve the
athlete pushing-off effect. As shown in Figure 4g, three signal waves correspond to the
three movements of athlete 2’s leg-extension–ankle-extension–leg-retraction movements.
However, only two signal waves of athlete 1’s leg-extension–leg-retraction can be observed
in Figure 4e, and the above results show that the technical action of athlete 1 needs to be
improved. With the rapid progress of science, the mobile phone has become a necessary
tool in people’s lives. People collect a lot of information through mobile phones. If mobile
phones can collect the motion monitoring information, it would be more convenient to
monitor the motion. Therefore, a wireless sensor system consisting of a flexible MS-TENG,
a digital multimeter with a Bluetooth module and a mobile phone was established to
verify the feasibility of human motion monitoring (Movie S4). Through digital multimeter
transmitting the flexible-sensor-collected signals, an app in the mobile phone can monitor
the voltage change in real time. Through analysis of these data, the technical information of
athletes can be learned, which could provide quantifiable, objective, accurate, and reliable
support in sports training.

Table 1. Comparison of athletes’ data.

Athlete 1 Athlete 2

Average voltage of ankle 3.28 V 1.78 V
Variance of ankle voltage 4.817 0.203
Average voltage of knee 4.17 V 0.62 V
Variance of knee voltage 0.555 0.0135
Average voltage of coxa 0.9 V 0.45 V
Variance of coxa voltage 0.168 0.002

The mechanical energy which is generated by human motion belongs to good-quality
renewable forms of energy, because it is not limited by time, place, or other objective
factors. meanwhile it is sustainable and easily accessible. The MS-TENG can be used to
harvest biomechanical energy which is generated by human motions. Figure 5a shows the
equivalent circuit of the self-charge system. The electrical energy output is from MS-TENG
which can be stored in an energy storage device (such as a capacitor) to power electronic
devices. Figure 3c shows the voltage–time curve that MS-TNEG charges different capacitors.
It can charge 1, 3.3, 4.7, and 10 µF capacitors to 3.7, 2.6, 1.8, and 1 V when the frequency
is 5 Hz for 35 s. MS-TENG charging a 4.7 µF capacitor is shown in Movie S5. As shown
in Figure 5c,d, an electronic calculator and an electronic watch can work about 15 s after
hitting the sensor (Movies S6 and S7). These demonstrations indicate that the MS-TENG
has great potential in a fully self-powered and sustainable electronic system.
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tric voltage of MS-TENG attached to athlete 1’s ankle, knee, and coxa; (c) the output triboelectric 
voltage of MS-TENG attached to left/right coxa when athlete simulates curve-skating at different 
inclination angles; (d) the output triboelectric voltage of MS-TENG attached to ankle when athlete 
1 simulates straight-skating; (e) athlete 1—detailed drawings of voltage curves simulating straight-
skating; (f) the output triboelectric voltage of MS-TENG attached to ankle when athlete 2 simulates 
straight-skating; (g) athlete 2—detailed drawings of voltage curves simulating straight-skating. 

Table 1. Comparison of athletes’ data. 

 Athlete 1 Athlete 2 
Average voltage of ankle 3.28 V 1.78 V 
Variance of ankle voltage 4.817 0.203 
Average voltage of knee 4.17 V 0.62 V 
Variance of knee voltage 0.555 0.0135 
Average voltage of coxa 0.9 V 0.45 V 
Variance of coxa voltage 0.168 0.002 

The mechanical energy which is generated by human motion belongs to good-quality 
renewable forms of energy, because it is not limited by time, place, or other objective 
factors. meanwhile it is sustainable and easily accessible. The MS-TENG can be used to 

Figure 4. (a) Images of the MS-TENG attached to the ankle, knee, and coxa; (b) the output triboelectric
voltage of MS-TENG attached to athlete 1’s ankle, knee, and coxa; (c) the output triboelectric voltage
of MS-TENG attached to left/right coxa when athlete simulates curve-skating at different inclination
angles; (d) the output triboelectric voltage of MS-TENG attached to ankle when athlete 1 simulates
straight-skating; (e) athlete 1—detailed drawings of voltage curves simulating straight-skating; (f) the
output triboelectric voltage of MS-TENG attached to ankle when athlete 2 simulates straight-skating;
(g) athlete 2—detailed drawings of voltage curves simulating straight-skating.
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Figure 5. (a) The equivalent circuit of a self-powered system; (b) charging voltage of different
capacitor which is charged by MS-TENG; (c) powering for an electronic calculator; (d) powering for
an electronic watch.

4. Conclusions

In summary, a flexible TENG based on a micro-structure (MS-TENG) is fabricated with
a facile and low-cost fabrication method. Moreover, the fabrication method can be used as
a universal strategy for improving the output of TENG. Through the micro-structure, the
voltage of the MS-TENG can be im-proved by 7 times. We prepared a hydrogel to replace a
traditional electrode to overcome the vulnerability of traditional metallic electrode in TENG
during long-term service with large deformation. The MS-TENG provides outstanding
sensing properties: maximum output voltage of 74 V, angular sensitivity of 1.016 V/degree,
high signal-to-noise ratio and excellent long-term service stability. We used it to monitor the
running skills of speed skaters. Based on the triboelectric effect, it can accurately convert
the technical action information (such as motion, bending angle, and frequency) of athletes
in training into triboelectric signals for outputting. Moreover, there is no external power
supply for the whole process. In addition, MS-TENG can collect energy from human
mechanical motion to drive small electronic devices (such as electronic calculators and
electronic watches). The self-powered sensing and sustainable energy conversion realized
by MS-TENG show its potential as a new generation of motion-monitoring equipment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12091576/s1, Figure S1: Scanning electron microscope (SEM)
images of the PDMS (a), FEP (b), and hydrogel (c), respectively; Figure S2: Fourier-transform infrared
(FTIR) spectrum of the PDMS, FEP, and hydrogel; Figure S3: The tensile strength measurement
process of hydrogel; Figure S4: The electrical conductivity of hydrogel; Figure S5: Output current of
the MS-TENG at a load resistance of 9 MΩ; Figure S6: The linear relationship of angles and voltages;
Figure S7: The output triboelectric voltage of MS-TENG attached to athlete 2’s ankle, knee, and coxa;
Figure S8: The Clap skate with a hinge device; Table S1: The self-powered flexible sensor comparison
with other works; Movie S1: The output signal of the ankle is collected; Movie S2: The output signal
of the knee is collected; Movie S3: The output signal of the coxa is collected; Movie S4: The wireless
monitoring system consisting of MS-TENG, Bluetooth multimeter, and mobile phone; Movie S5:
MS-TENG charges a 4.7 µF capacitor; Movie S6: Powering for an electronic calculator; Movie S7:
Powering for an electronic watch.
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Abstract: Supercapacitors (SCs), also known as ultracapacitors, should be one of the most promising
contenders for meeting the needs of human viable growth owing to their advantages: for example,
excellent capacitance and rate efficiency, extended durability, and cheap materials price. Superca-
pacitor research on electrode materials is significant because it plays a vital part in the performance
of SCs. Polyaniline (PANI) is an exceptional candidate for energy-storage applications owing to
its tunable structure, multiple oxidation/reduction reactions, cheap price, environmental stability,
and ease of handling. With their exceptional morphology, suitable functional linkers, metal sites,
and high specific surface area, metal–organic frameworks (MOFs) are outstanding materials for
electrodes fabrication in electrochemical energy storage systems. The combination of PANI and MOF
(PANI/MOF composites) as electrode materials demonstrates additional benefits, which are worthy
of exploration. The positive impacts of the two various electrode materials can improve the resultant
electrochemical performances. Recently, these kinds of conducting polymers with MOFs composites
are predicted to become the next-generation electrode materials for the development of efficient and
well-organized SCs. The recent achievements in the use of PANI/MOFs-based electrode materials for
supercapacitor applications are critically reviewed in this paper. Furthermore, we discuss the existing
issues with PANI/MOF composites and their analogues in the field of supercapacitor electrodes in
addition to potential future improvements.

Keywords: polyaniline; metal–organic framework; supercapacitors; energy density; specific capaci-
tance; stability

1. Introduction

In recent times, the energy crisis has resurfaced as a severe social issue that is sti-
fling growth and eventually endangering human survival [1]. Due to the economic surge,
global consumption for sustainable and alternative energy resources is growing relentlessly
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alongside a vigorous worldwide upsurge in concern regarding ecological issues such as
global warming, inappropriate climate change (including wildfire, melting glaciers, floods,
drought, increasing in ocean level), and most important, the sustainability of oil reserves.
Energy storage and conversion technologies that are renewable, safe, clean, and long-lasting
have become a hot research topic [2–5]. Advances in the development of clean, renewable,
safe, and practical energy storage systems such as batteries and supercapacitors and fuel
cells [6–10] have attracted widespread interest from the scientific community. In recent
times, electrochemical energy storage devices have gained considerable attention due to
their higher energy efficiency and ecological power systems [11–13]. SCs are presently
found in consumer electronics, tools, power supply, voltage stabilization, microgrid, re-
newable energy storage, energy harvesting, streetlights, medical applications, military,
and automotive applications [14–19]. Recently, a commercial corporation offered a 48 V
ultra-capacitor module with 1,000,000 duty cycles or a ten-year DC life and 48 V DC work-
ing voltage [20]. The modules were engineered explicitly for hybrid bus and construction
equipment to provide cost-effective solutions. Furthermore, Maxwell Technologies and LS
Mtron Corporations offered different voltage module SCs with a high cycle life and 48 V
DC working voltage [21].

Figure 1 shows a Ragone plot of the specific energy (Wh kg−1) versus the specific
power (W kg−1), which is used to evaluate the performance of various energy storage tech-
nologies. The logarithmic scale of both vertical and horizontal axes and the performances
of different systems can be accessibly evaluated. The first version of this type of graph was
used to compare the performance of batteries. However, it is appropriate for comparing
any kind of energy storage systems. The fuel cells are high-energy-density devices, while
SCs are high-power-density devices, as shown in this diagram. Batteries have intermediate
power (Pd) and energy (Ed) densities. Furthermore, no electrochemical device can compete
with an internal combustion engine, as shown in Figure 1. Hence, to compete with the
combustion engine, the Ed and Pd values of electrochemical systems must increase [22].
Batteries can deliver specific energy between 150 and 500 Wh kg−1 [23–28] but are limited
to their poor specific power because of sluggish electron and ion transport at high rates.
To sustain a higher energy output, their discharge time is usually more than 600 s or even
60 min. In contrast, electric double-layer capacitors (EDLCs) which are characterized by
high specific power can completely release their energy within less than 10 s, providing
a power output between 10- and 20- kW kg−1 [29–32]. The specific energy and specific
power based on the recently reported work with respect to the supercapacitors has been
presented in Table S1 (please refer to the supporting information section).

Unlike fuel cells and batteries, SCs are electrochemical capacitors that store elec-
tric charges in electric double layers that form at the electrode–electrolyte interface. SCs
are presently found in consumer electronics, memory storage devices, and industrial
power/energy organization systems. The SC is composed of high surface-area elec-
trodes (such as anode and cathode), an electrolyte (for example, aqueous medium/organic
medium), and a separator (which avoids short circuits among anode and cathode). The
electrode is an important element that controls the performance of the SC. The construction
of ultrahigh performance SC electrodes includes various serious characteristics such as high
specific surface area, extraordinary conductivity, stability based on temperature, optimizing
the distribution of pore size, appropriate processing, adequate corrosive resistance, and
cost efficiency [33–38]. Hence, the selection of appropriate materials and optimizing the
electrode design are vital approaches to convert SCs into more energy-efficient energy
storage devices than secondary ion batteries [39–45].
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1.1. Classification of Supercapacitors

Supercapacitors are divided into three kinds, namely an electric double layer capacitor
(EDLC), pseudocapacitor (PC), and battery hybrid supercapacitor (BHS) based on the
mechanism of energy storage, as illustrated in Figure 2.
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1.1.1. EDLCs

EDLCs include two separate carbon-based materials employed as electrodes: an
electrolyte as well as a separator. EDLC can store the charges electrostatically, which is
a non-Faradaic process that does not require the transfer of charges between the elec-
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trode/electrolyte interfaces [46]. EDLCs use the electric double-layer model for energy
storage mechanism. The electrons migrate from the anode to the cathode via the external
loop during the charging process, with anions moving toward the cathode and cations mov-
ing toward the anode in the electrolyte. The electrons and ions flow in opposite directions
during the discharging process. The energy storage process is non-Faradaic, and there are
no redox reactions, since no charges flow across the electrode–electrolyte contact. Because of
the non-Faradaic charge storage mechanism, the volume and morphology of the electrode
materials hardly changes, resulting in EDLCs’ extended cycle-life [47,48]. Furthermore, the
mechanism of charge storage in EDLCs allows quick energy uptake, delivery, and excep-
tional power output. EDLCs have the potential to withstand millions of cycles compared
to batteries with maximum capacity. In lithium-ion batteries (LIBs), when high potential
positive electrodes or graphite negative electrodes are employed, the charging process does
not need an electrolyte; this leads to a solid electrolyte intermediate [49]. In general, EDLCs
employ carbon electrode materials, such as graphene, activated carbon, nano-architectured
carbon, and carbon aerogels, for the accumulation of charge via the reversible adsorp-
tion/desorption of ions at the electrode/electrolyte interface [50–52]. EDLC materials have
been studied extensively owing to their high SSA [53], good electrical conductivity, and
excellent mechanical stability [54], but they suffer from a low specific capacitance [55].

1.1.2. PCs

The Faradaic charge-storage mechanism, such as redox reactions, involves the transfer
of charge between the electrolyte and electrode. In PCs, when a potential is applied to
the electrode material, a redox reaction occurs at the surface of the electrode and elec-
trolyte, which cause the charges to pass through the double layer and results in Faradaic
current via the SC cell. When compared to EDLCs, the Faradaic mechanism used in PCs
allows for higher specific capacitance and energy density [47,56]. Suitable materials for
PCs are thoroughly being explored such as transition metal oxides (TMOs), which pro-
vide a relatively high specific capacitance and greater specific energy with a good intrinsic
conductivity [57,58], making them exceptional candidates for high-performance SCs. Unfor-
tunately, PCs suffer from inferior cyclic stability performance due to the frequent swelling
and shrinking of the polymer chains during the doping/de-doping procedure [59–63]. For
TMOs, the major drawback is the low conductivity, which hinders them from reaching the
high theoretical specific capacitance value.

1.1.3. Hybrid Supercapacitors

A hybrid supercapacitor is a supercapacitor with asymmetric electrodes, one with
electrostatic capacitance, and the other with electrochemical capacitance. The hybrid su-
percapacitors reached previously unachievable performance characteristics. Furthermore,
they combine the great features associated with PCs and EDLCs into one integrated su-
percapacitor. Although hybrid supercapacitors are less studied compared to EDLCs and
pseudocapacitors, efforts are increasing in terms of developing improved hybrid superca-
pacitors and creating accurate quantifiable models. Developing the high energy density
and long-term cycling stability of hybrid supercapacitors has overtaken EDLCs as a class of
core SCs [64]. Hybrid supercapacitors are divided into three groups, which differ by their
arrangement of electrodes: asymmetric, composite, and battery type.

Composite

Carbonaceous materials are mixed with conducting polymers and (or) metal ox-
ides to fabricate composite electrodes, demonstrating that a single electrode may store
energy in both chemical and physical modes. There are two types of composites: (i) bi-
nary composites—the electrode material is combination of two materials, and (ii) ternary
composites—the electrode material comprises three different materials [47].
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Asymmetric

Asymmetric-type supercapacitors are combining the process of Faradaic and non-
Faradaic by connecting the electrodes of the pseudocapacitor with EDLCs. In this manner,
the conducting polymer or metal oxide is employed as the cathode and the carbon-based
material is employed as the anode [47].

Battery Type

The battery-type supercapacitors are a one-of-a-kind integration of a battery and SC
electrode materials. This design demonstrates the requirements for greater power density
batteries and greater energy density capacitors by integrating SC and battery characteristics
in a single cell to achieve both battery and SC properties. Battery-type materials have
been widely developed and studied for hybrid supercapacitors because of their richer
Faradaic reactions and higher energy density. However, the redox reactions that emerged
in bulk materials and the phase transformation process may result in sluggish kinetics and
poor rate capability, which need to be improved further [65]. There is a typical feature
in electrochemical tests for the battery-type electrode materials: they possess obvious
redox peaks and a nonlinear potential platform, while those from capacitive and pseudo-
capacitive materials are quite different [66]. Therefore, the specific capacity with a unit of
C/g (mAh/g) instead of F/g for specific capacitance is employed to express the capability
of charge storage for the battery-grade materials. Binary transition metal oxides (BTMOs)
such as NiCo2O4 [67], MgCo2O4 [68], CuCo2O4 [69], and ZnCo2O4 [70] have been reported
as battery-grade electrode materials. In their crystal structure, some metals can provide
variable oxide states for plenty of redox reactions, and thus, the specific capacity is expected
to be enhanced [71].

2. Conducting Polymers (CPs)

Owing to their unique features, CPs have been regarded, to date, as reliable and excel-
lent electrode materials for pseudocapacitors. Several CPs, for example PANI, polypyrrole
(PPy), and polythiophene (PTh), are important for energy-storage applications. These
materials have variety of advantages, including excellent conductivity, flexibility, low cost,
and ease of preparation [72]. Furthermore, many scientists have investigated the CPs elec-
trodes for their electrochemical performances and attempted to enhance their properties in
several ways. In this section, we evaluate the current state of research on pure PANI-based
electrode materials for supercapacitor applications.

PANI

PANI is an excellent CP, which can be polymerized with monomer of aniline by various
techniques, and it has many advantages because of its facile preparation, easy acid/base
chemistry (insertion/desertion), and ecological sustainability [73]. PANI has turned into
one of the most efficient materials for PC electrodes. The morphology of PANI nanostruc-
tures has a significant impact on their electrochemical performances; therefore, it is very
important to employ a suitable and high-efficacy preparation technique to produce PANI
with the appropriate nanostructure. Indeed, the chemical or electrochemical polymerization
of PANI is rather simple. PANI prefers to form nanofibers in an aqueous solution during
chemical oxidative polymerization [74], and there are several polymerization methods for
obtaining PANI nanostructures [75–77]. Interfacial polymerization is quite simple and one
of the least expensive and general methods to prepared PANI.

Sivakkumar et al. [78] used an interfacial polymerization process to make PANI
nanofibers. Their electrochemical characteristics were evaluated in a two-electrode cell
configuration with an aqueous electrolyte where the device was reported to exhibit ex-
traordinary specific capacitance of 554 F g−1 at 1 A g−1. However, it showed very poor
cyclic stability where the initial value of capacitance declined sharply. The theoretical and
experimental capacitances of PANI in sulfuric acid medium were reported by Li et al. [79].
Because the specific capacitance of PANI depends on both the conductivity of PANI and
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the diffusion of counter-anions, the PANI theoretical capacitance value is approximately
2000 F g−1, whereas the experimental values calculated by various methods are less than
the theoretical value.

In conclusion, a large quantity of bare PANI electrode material has been investi-
gated for the use in supercapacitors, but its electrochemical performance, notably cycle
stability, did not meet commercial application criteria. The poor cyclability of the su-
percapacitors results in a rapid decrease in its specific capacitance and thus a shorter
cycle-life. Hence, for improving the performance of supercapacitors, the scientific com-
munity has attempted to mix PANI with carbonaceous materials, metal oxides, metal
hexacyanoferrates and/or MOFs to produce various PANI-based composites, particularly
electrochemical characteristics [80–84].

3. MOFs

Over the last decade, MOFs, also called coordination polymers, have attracted the
attention of materials research. They are constructed as a “node-spacer” of nanosized
materials. MOFs contain metal centers (cluster/ions), which are coupled through organic
linkers (groups comprising imidazole/carboxyl) to synthesize crystalline, durable, and
often very fine porous structures. MOFs exhibit a variety of improvements over the tra-
ditional porous materials: for example, rationally designed and highly desirable crystal
structures of achievable crystal engineering. Furthermore, the high synthetic flexibility
of MOFs with the ease of combining different chemical functionalization leads to engi-
neering MOFs with lightweight organic linkers that result in a high specific surface area
and excellent porosity that are inaccessible to traditional materials such as zeolites and
porous carbon [85–87].

For instance, Vinodh et al. reported on the effect of Co/Zn ratio on the synthesis
of zeolitic imidazole frameworks (ZIFs), where it displayed remarkable ability on the
specific surface area, crystal structure, pore size, and electrochemical performances [88].
The maximum BET surface area of ZIF with Co/Zn = 0.5 was found to be 1043.65 m2 g−1.
The ZIF with Co/Zn = 0.5 electrode exhibited a specific capacitance maximum of 30 F g−1

at a current density of 0.2 A g−1. Furthermore, ZIF with a Co/Zn = 0.5 electrode retained
91.7% of its initial capacitance over 2000 GCD cycles.

Although their weak conductivity does not ensure higher specific capacitance, pristine
MOFs and their derived structures possess an enhanced quantity of pores, leading to
higher specific surface areas, as previously noted [89]. Furthermore, the energy density
and power density values are not at the preferred levels. To mitigate such deficiencies,
different techniques have been introduced: for example, the MOFs intercalation with CPs
such as PANI, PPy, and polyethylene dioxythiophene (PEDOT) [90,91]. The CPs have been
developed to synthesize, delivering high pseudocapacitance and excellent stability on the
long term. In supercapacitors, the charge storage mechanism of their CP electrodes is
Faradaic [91]. Combining CPs and MOFs produced a supercapacitor electrode material
with remarkable electrochemical properties. PANI is one of the most extensively utilized
CPs for such applications due to its simplistic synthesis, excellent conductivity, and high
pseudocapacitance behavior [92].

4. PANI/MOF Composite Electrode Material for Supercapacitor Applications

Wang et al. reported the reduction in MOFs bulk resistance with efficient methodology
using interweaving MOF crystals into PANI chains that are electrically coated on MOFs [93].
Briefly, cobalt-based MOF crystals (ZIF-67) were deposited on carbon cloth (CC), and then,
PANI was electrochemically deposited to provide a flexible porous electrode (PANI-ZIF-67-
CC) without changing the MOF primary structure. From the electrochemical examination,
the prepared PANI-ZIF-67-CC showed an outstanding areal capacitance of 2146 mF cm−2 at
the sweep rate of 10 mV s−1. Furthermore, a symmetric flexible solid-state supercapacitor
(SFSS) was constructed and evaluated.
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Xu et al. synthesized a simple stirring method of ZIF-67 and PANI composites (ZIF-
67/PANI) [94]. Additionally, sulfur was incorporated into ZIF-67/PANI using sulfurization
(Co3S4/PANI). The electron transfer process was enhanced by introducing sulfur for its
lower electronegativity. The specific capacitance of Co3S4/PANI achieved was 1106 F g−1

at 1 A g−1, which is approximately 11 times higher than that of ZIF-67. The constructed
asymmetric supercapacitors (ASC) device showed a high energy density of 40.75 Wh kg−1

at a specific power of 800 W kg−1 and displayed excellent cyclic life. In addition, the
fabricated ASC retained 88% of its initial capacitance over 20,000 charge/discharge cycles
at a higher current density (5 A g−1). Furthermore, the authors stated that the outstand-
ing electrochemical performances suggested that the fabricated electrode could possess
virtuous market prospects and could be an appropriate candidate in energy storage fields.

Iqbal et al. reported cobalt intercalated in a composite of MOF/PANI for the super-
capattery device applications [95]. The ASC supercapattery device (AC//MOF/PANI)
was fabricated using the activated carbon (AC) and MOF/PANI as the anode and cathode,
respectively (Figure 3a). The working voltage window of the constructed ASC was the
combination of voltage windows of both of the electrodes.

Figure 3b shows the cyclic voltammetry (CV) of both MOF/PANI, and AC electrodes
that were recorded individually, in a three-electrode compartment to examine the plausible
wide voltage window. Furthermore, Figure 3c shows the galvanostatic charge/discharge
(GCD) plateaus for the fabricated ASC device. The GCD curves are neither triangular nor
humped shapes but have a combination of both shapes, which are in good arrangement
with the CV traces. The GCD profiles for the ASC device at various current densities
ranging from 1 to 3 A g−1 are depicted in Figure 3d between the cut-off window of 0 and
1.6 V. The GCD plateaus at different densities of current are nearly linear (symmetrical)
with the minimal ohmic drop indicating a reduction in the internal resistance and excellent
rate capability confirming the high columbic efficiencies of the fabricated device. The ASC
device showed a specific capacity maximum of 104.5 C g−1 at 1 A g−1.

Figure 3e exhibits the electrochemical impedance spectroscopy (EIS) examinations
which display the finest performance and exceptional electrical conductivity of the super-
capattery device. Furthermore, the constructed ASC device delivered outstanding perfor-
mance with the energy density of 23.2 Wh kg−1 with higher power density of 1600 W kg−1

at 1 A g−1 along with outstanding stability (3000 GCD cycles and endure specific capacity
of 146%).

Yao et al. have prepared porous carbon frameworks derived from MOFs (PC-MOFs)
as the substrate and deposited PANI via in situ polymerization [96]. The structurally stable
porous carbon frameworks derived from MOFs and the homogeneously immobilized
conducting PANI nanowires resulted in a PC-MOFs/PANI hybrid electrode with a supreme
capacitance of 534.16 F g−1 at 0.2 A g−1 and an extreme capacitance maintenance of
211% at 2 A g−1 after 20,000 GCD curves. In addition, the constructed symmetrical
supercapacitors (SSC) resulted in excellent electrochemical performance (specific power of
9.72 µWh cm−2) and outstanding cyclability (94.4% at 10,000 cycles), which can be powered
with commercial LED.

In another prominent work, Salunkhe et al. fabricated SSC based on a core–shell 3D
structure consisting of MOF derived nanoporous carbon-PANI composite electrodes [97].
A pictorial representation of the preparation methodology for the achievement of a core–
shell structure of nanoporous carbon-PANI nanocomposites is revealed in Figure 4A. This
configuration has the advantage of improving the mechanical strength of the polymer
without blocking the carbon core’s electronic conductivity as well as providing a direct
diffusion path to the core. The unique multifaced nanoarchitecture avoids the general issue
of stacking caused by one-dimensional CNTs or two-dimensional graphene, and thus, it
allows ions to penetrate deeper into the material more easily.
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from [95]. Copyright 2020 Elsevier.
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In addition, the PANI nanorod arrays deliver the ions with simple contact to the
carbon core, which lead to the improved interaction of these nanocomposites. In addition,
the PANI nanorods provide electrons with rapid conducting routes (electron highways)
to attain the current collector surface (Figure 4a). The synthesized composites allowed
well-organized electrochemical entry to the electrolyte ions. The comparative CVs of the
three different materials are revealed in Figure 4b. The GCD studies were examined at
different densities of current ranges from 1 to 30 A g−1. As seen in Figure 4c, the GCD
plots are linear and without ohmic drop up to 30 A g−1. Consequently, a higher value of
capacitances (between 300 and 1100 F g−1) was attained (Figure 4d). The SSC assembled
with this composite material displayed a supreme specific energy of 21 Wh kg−1 at a
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specific power of 12 kW kg−1. Approximately 86% of its original specific capacitance was
maintained over 20,000 GCD profiles.

Milakin et al. prepared a composite of PANI/Fe-BTC by the in situ polymeriza-
tion of aniline monomer in the presence of Fe-BTC [98]. The increasing ratio of aniline
and Fe-BTC was found to enhance the gravimetric capacitances value of the compos-
ite electrode materials, achieving superior capacitance of 346 F g−1 at a sweep rate of
20 mV s−1. In addition, the enhanced pseudocapacitance behavior and the significantly
better reversibility throughout the electrochemical techniques displayed by the prepared
composite electrode (PANI/Fe-BTC) compared to virgin PANI could be beneficial for
supercapacitor applications.

Wang et al. studied a novel flexible solid-state micro supercapacitor (MSCs) with good
specific power, outstanding cyclic stability, and excellent mechanical flexibility [99]. The
MSCs were constructed by layer-by-layer electrodeposition of microporous PANI and the
MOFs crystals on the substrate of laser-induced graphene. Due to the combined effects of
MOFs with higher pore structure and the outstanding conductivity of PANI chains, the
resultant MSCs showed layer-dependent capacitance performances, resulting in a very
high areal specific capacitance of 719.2 mF cm−2 at 0.5 mA cm−2. The obtained specific
capacitance value was approximately 370 folds better than that of MSCs made by the virgin
LIG. Furthermore, the fabricated MSCs retain almost 87.6% of its initial specific capacitance
over 6000 GCD curves, illustrating their remarkable cycling stability. In addition, the usage
of MSCs for light-emitting diode and their constant mechanical flexibility demonstrate
their outstanding potential as electricity for the small and wearable electronics.

Guo et al. developed a high-performance carbonized composite electrode material
(Zn-MOF/PANI) from aniline monomer, 8-hydroxyquinoline, and zinc acetate by a facile
process for supercapacitor applications [100]. The electrochemical characteristics of the
carbonized composite electrode were explored by GCD and CV techniques. The maximum
capacitance of 477 F g−1 at 1 A g−1 was achieved for MOF/PANI composite material.

Shao et al. employed a stable interpenetration polymer network (IPN) structure
using extremely stable microscopic MOFs with various synergistic effects to improve the
conductivity and electrochemical characteristics, using an efficient approach to grow the
molecular chains of PANI in the pores of UiO-66 (PANI/UiO-66) [101]. Furthermore, the
prepared composite electrode, PANI/UiO-66, displayed a specific capacitance maximum of
1015 F g−1 at 1 A g−1. The assembled supercapacitor displayed a promising capacitance of
647 F g−1 at a current density of 1 A g−1 and an extraordinary cyclic stability (retains almost
91% of its original specific capacitance over 5000 GCD curves). The bending angle test
designates that the attained SC was bendable, and only 10% of its original value declined
over 800 twisting cycles with 180◦ (bending angle). Therefore, the authors suggested that
the flexible solid-state supercapacitor (FSSC) could be a potential contender in energy
storage device.

Liu et al. established a facile and efficient approach to prepare MOFs derived SC by an
in situ network of ZIF-67 particles covered by conducting polyaniline [102]. The attained
ZIF-67/PANI electrode material possesses an extraordinarily huge porous surface area and
excellent electrical conductivity, ensuring an astonishingly superior specific capacity of
1123.65 C g−1 (2497 F g−1) at 1 A g−1 in a three-electrode configuration and a remarkable
cycling performance (capacitance retention of 92.3% over 9000 cycles at 5 A g−1) for ZIF-
67@PANI-2. Furthermore, ZIF-67@PANI-2 displayed a high specific power of 504.72 Wkg−1

at a high specific energy of 71.1 Wh kg−1 at 1 A g−1.
Xu et al. grew leaflike ZIF nanosheets (ZIF-L) into carbon fiber paper (CFP) by

a simple single-step immersing technique with the absence of binders and conductive
additives [103]. In contrast, three-dimensional ZIF-67 nanoparticles were also employed
as electrode materials. The meager intrinsic conductivity and poor capacitance of ZIFs
were enhanced by interlacing with polyaniline. The composite CFP/ZIF-L/PANI showed
an area capacitance of 730 mF cm−2 at 10 mV s−1, which is higher than that of CFP/ZIF-

234



Nanomaterials 2022, 12, 1511

67/PANI (608 mF cm−2). In addition, the CFP/ZIF-L/PANI electrode maintained 82.6% of
its initial specific capacitance over 3000 GCD cycles.

Udayan et al. employed a facile approach to alter ZIF-8 with polyaniline through a pre-
cise interfacial polymerization technique to synthesize ZIF-8/PANI nanocomposites [104].
The present methodology evades the accumulation of ZIF-8/PANI, lifts the consumption
of active materials, and disclosures additional active sites, thus making it advantageous for
simple electron transfer. Owing to its unique multiporous architecture, ZIF-8/PANI had a
large specific surface area of 610.8 m2 g−1, and the ZIF-8/PANI electrode showed a supreme
specific capacitance of 395.4 F g−1 at a current density of 0.2 A g−1. A solid-state ASC
constructed with ZIF-8/PANI displayed an excellent performance over a wide operating
voltage window from 0 to 2.5 V without non-aqueous electrolytes. It showed a specific
areal capacitance of 28.1 mF cm−2 at 0.1 mA cm−2. The solid-state ASC also displayed
a high specific energy (3.2 µW h cm−2) and specific power (1.1 mW cm−2), remarkable
cycling stability, and flexibility.

Neisi et al. fabricated a nanocomposite, PANI/Cu-MOF, by a two-step procedure
comprising the chemical polymerization of aniline monomer and Cu-MOFs at ambient
temperature [105]. The composite electrode illustrates better capacitive characteristics
compared with the bare Cu-MOF. In addition, the CV outcomes demonstrated that the
PANI/Cu-MOF electrode possesses a superior specific capacitance (734 F g−1 at 5 mV s−1)
with decent electrochemical cyclic stability.

Ternary MOF composite materials have attracted more attention compared to binary
MOF-derived composite electrodes profiting from the synergetic effect of three different
constituents [106]. Further inclusive properties are assembled by several components.

For example, Gong et al. prepared a multiporous (micro, meso, and macropores)
architecture electrode material with three-dimensional porous carbon nanotubes sponges
(porous CNTS) as a base surface for the successive incorporation of PANI and MOF [107].
The different pores-enriched architecture of the sponge favored the penetration of precur-
sors as well as the uniform dispersion of PANI and MOF in the nanotubes. The multiporous
architecture of CNTS not only offers a communication pathway for electrons but also pro-
vides networks for the rapid distribution of ions. The layered MOF provides an additional
ion storage reservoir, while the MOFs are connected to the insulating PANI wires. In addi-
tion, the composite structure requires no mechanical binders or conductive additives and
has excellent capacity combined with compressive, flexible, and moderately extraordinary
specific capacitance.

The specific capacitance characteristic of CNTS was synergistically enhanced by the
incorporation of ZIF-8, ZIF-67, and PANI. The specific capacitance value increased from 89
to 746 F g−1, and a highest specific energy of 28.9 Wh kg−1 was achieved. Furthermore,
the prepared composite electrode was compressive, flexible, and has outstanding specific
capacitance. Therefore, it could open new avenue for flexible energy storage devices.

He et al. prepared a multi-component hybrid of copper MOF-derived copper ox-
ide@mesoporous carbon (CuOx@mC) entrenched with PANI and reduced graphene oxide
(rGO) by in situ polymerization (CuOx@mC@PANI@rGO) [108]. The sequence of as-
synthesized CuOx@mC@PANI@rGO composites was investigated for supercapacitor appli-
cations, and the schematic representation of the reaction protocol is depicted in Figure 5A.

Due to the ordered octahedral structure of CuOx@mC composites, a uniform and
extremely well-organized interface layer of PANI with rGO nanosheets was formed on the
surface of the CuOx@mC architecture. This effective conductive network could increase
ion transport and redox behavior at the electrode/electrolyte interface, resulting in en-
hanced electrical conductivity and supercapacitor performances. TEM and HR-TEM images
of CuOx@mC700, CuOx@mC700@PANI, and CuOx@mC700@PANI@rGO are presented in
Figure 5a–d. From Figure 5a, we can see that the polyhedron crystals are approximately
500 nm in size, in which CuOx particles are highly distributed in amorphous carbon. In
the meantime, the HR-TEM image (Figure 5b) illustrated the distance of 0.20 and 0.21 nm,
which can be indexed for the interplanar spacing between the cubic phase of Cu (200)
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and (111) planes, respectively. Furthermore, the CuOx@mC700@PANI exhibited a huge
and uneven surface together with many nanowires on the external surface, as shown
in Figure 5c.
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Figure 5. (A) Pictorial representation of the synthesis of CuOx@mC700@PANI@rGO compos-
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Figure 5d demonstrates the stretchy and crumpled landscapes of rGO sheets which
were examined after the incorporation of rGO nanosheets. The specific capacitance char-
acteristics of the prepared composite electrode, CuOx@mC700@PANI@rGO, were further
explored by continuous electrochemical measurements. Figure 5e demonstrates the cyclic
voltammogram plots of CuOx@mC700@PANI@rGO at different sweep rates ranging be-
tween 5 and 30 mV s−1. With increasing the sweep rate, the current densities of the CV
plots also increased. Nevertheless, the redox peaks shifted negatively and positively due to
the electrode resistance [109].

Figure 5f displays the galvanostatic charge–discharge (GCD) plateaus in which typi-
cal triangular shapes were obtained at different densities of current, signifying excellent
capacitance characteristic and reversibility. In addition, the specific capacitance decreases
with raising the current density. By varying the pyrolysis temperature of Cu-MOF, the
ternary CuOx@mC700@PANI@rGO, attained at 700 ◦C, displayed a superior specific capac-
itance of 534.5 F g−1 and extraordinary cyclability (Figure 5g). In contrast, the resulted
CuOx@mC@PANI displayed a specific capacitance only of 456.0 F g−1 at 1 A g−1. Fur-
thermore, it retains 70% of its initial capacitance over 2500 GCD curves (Figure 5h). This
research has led to new insights into the study of metal oxide–carbon hybrids with morpho-
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logically controlled microstructures, where the beneficial function in the PANI is thought to
be a hidden approach to improve the performance of these composites in supercapacitors.

Liu et al. prepared an electrode material, for supercapacitor applications, through the
in situ formation of ZIF-8 onto the surface of ZnO followed by the deposition of thin PANI
film (PANI/ZnO/ZIF-8/G/PC) [110]. The exceptional electrode architecture efficiently im-
proved the performance of the supercapacitors. The assembled electrode, PANI/ZnO/ZIF-
8/G/PC, exhibited a superior areal capacitance value of 1.378 F cm−2 at 1 mA cm−1

compared with the existing textile-based electrode materials (WO3/polyester/graphene
and cotton/graphene). Furthermore, the authors constructed PANI/ZnO/ZIF-8/G/PC
electrode in a flexible supercapacitor, where it delivered a good specific energy of 235 µWh
cm−3 at a specific power of 1542 µW cm−3.

The composites of CPs with MOFs helped assemble highly efficient electrode ma-
terials, especially for PANI-based SCs. Nevertheless, such composite electrodes operate
with Faradic redox reactions, which eventually decompose the electrolyte and shorten
the lifetime of the supercapacitor device. To date, very few reports have investigated
PANI/MOF-based electrode materials for supercapacitor applications [111]. This might be
due to its comparatively inferior water stability and the wide distribution of most MOFs,
which can create difficulties in identifying the appropriate preparation methodology for
perceiving PANI/MOF composites. In addition to PANI, forthcoming inquiries on this
topic may be driven by the process of various substitutes, such as PPy, PEDOT, and P3HT.
The combination of such CPs with MOFs could lead to the arrangement of highly well-
organized and flexible electrodes for high-performance supercapacitors [112,113]. Table 1
comprises various PANI/MOF-derived electrode materials for supercapacitor applications.
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5. Conclusions and Future Perspectives

The demand for alternative energy resources and storage systems is increasing as
conventional fossil fuels are gradually decreasing. Fossil fuels are sources of conventional
energy production but have been gradually transitioned to the existing advanced tech-
nologies with a prominence of renewable resources such as solar, tidal, and wind. Despite
consistent increases in energy prices, the customers’ needs are mounting rapidly due to
an increase in populations, economic growth, per capita consumption, supply at remote
places, and stationary forms for machines and portable electronics. The energy storage may
allow the flexible generation and delivery of stable energy for meeting the demands of end
users. The requirements for energy storage will triple the current values by 2050 where
unique devices and systems are required. Protecting the ecology is an important effort
related to the requirement of new technologies. Electrode material plays a major role in
defining the practical viability of any energy storage device. For example, supercapacitors
that can be used in practice should attain the technical needs of excellent specific capacity,
specific energy, and specific power as well as long-term cyclability.

Briefly, the present review article describes the recent developments in electrode
materials with their design, synthesis, and use of supercapacitors. PANI shows high
specific capacitance value but displays a shorter life-cycle, whereas MOFs exhibit poor
conductivity and specific capacitance. To overcome the shortcoming of PANI and enhance
the conductivity and specific capacitance, PANI and MOF were composited.

There is no doubt that a wide range of PANI/MOFs and their derivatives have been
well-initiated to catch enhancements in electrochemical behavior in recent years. Neverthe-
less, there are still numerous disputes and prospects for researchers/scientific communities
to further investigate this interesting topic. The future of the PANI supercapacitor mainly
relies on the adequate structure of the associated nanocomposites. However, a commercial
supercapacitor is not based on a simple nanocomposite that mixes two composites; instead,
a delicate structure is needed to place the MOF with the interacting surfaces between the
polymer chains of PANI or vice versa. This design can take advantage of the flexibility of
PANI for the development of flexible supercapacitors, which are in high demand. There
are relatively minimal precursors or templates involving various MOFs (for example ZIF-8,
ZIF-67, MOF-5, MOF-74, MIL-101) available to create an MOF and its derivative materials
for supercapacitors. Even better starting materials and templates need to be created to
attain new functional materials with unique architectures.

A wide cut-off voltage is frequently considered to be one of the crucial factors to
enhance the supercapacitor performance. Still, the main barrier of the use of aqueous
electrolyte is the dissociation of water that occurs when the voltage surpasses 1.23 V.
PANI/MOFs as supercapacitor electrodes are still concerned with aqueous medium and
the bench scale level. Therefore, in-depth research of solid-state supercapacitors (SSC)
with a wide voltage window is required. Ecological, inexpensive, and high-yielding
PANI/MOFs-based energy storage devices are expected to exist soon due to the develop-
ment of PANI/MOFs technology.

In conclusion, the commercial usage of PANI/MOFs supercapacitors are still at the
laboratory stage. Additional inputs in this vast research field will promote the expansion of
PANI/MOF research into the next-generation environment-friendly energy storage systems.
As this research area has seen tremendous growth, we can assume the development of
highly efficient energy storage devices with the forthcoming developments in pilot-scale
machineries of PANI/MOFs.
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Abstract: Aqueous multivalent ion batteries, especially aqueous zinc-ion batteries (ZIBs), have
promising energy storage application due to their unique merits of safety, high ionic conductivity,
and high gravimetric energy density. To improve their electrochemical performance, polyaniline
(PANI) is often chosen to suppress cathode dissolution. Herein, this work focuses on the zinc ion
storage behavior of a PANI cathode. The energy storage mechanism of PANI is associated with four
types of protonated/non-protonated amine or imine. The PANI cathode achieves a high capacity of
74 mAh g−1 at 0.3 A g−1 and maintains 48.4% of its initial discharge capacity after 1000 cycles. It
also demonstrates an ultrahigh diffusion coefficient of 6.25 × 10−9~7.82 × 10−8 cm−2 s−1 during
discharging and 7.69 × 10−10~1.81 × 10−7 cm−2 s−1 during charging processes, which is one or
two orders of magnitude higher than other reported studies. This work sheds a light on developing
PANI-composited cathodes in rechargeable aqueous ZIBs energy storage devices.

Keywords: zinc-ion batteries; conducting polymers; polyaniline; zinc-ion diffusion

1. Introduction

To build a low-carbon society, green energy sources such as solar energy and wind
energy were developed rapidly. A challenge exists in terms of how we can adapt these
intermittency renewables to the electricity grid. Thus, it is essential to develop large-
scale electrochemical energy storage technologies. In recent years, much effort has been
focused on aqueous multivalent ion batteries (zinc-ion batteries (ZIBs) [1,2], magnesium-
ion batteries [3], calcium-ion batteries [4], and aluminum-ion batteries [5]) according
to the following reasons: (1) The aqueous electrolytes are much safer than flammable
organic electrolytes. (2) The ionic conductivity of aqueous electrolytes (~1 S cm−1) is
much higher than that of organic electrolytes (~1−10 mS cm−1), which enable a fast
intercalation/de-intercalation rate. (3) During charge/discharge processes, multivalent
ions enable more than one electron transfer, which imply that multivalent ion batteries can
offer high gravimetric energy densities.

Exploring high-performance electrode active materials is a critical factor to construct
advanced energy storage batteries. Until now, a variety of active materials has been de-
veloped and assembled as rechargeable batteries [6–9]. During long cyclic usage, the
electrochemical performance of the assembled rechargeable batteries inevitably shows
degradation, and the reliability of the batteries is seriously limited. J.W. Wang et al. studied
the lithiation/delithiation of micro-sized Sn particles using the in situ transmission electron
microscopy technique; the results demonstrated that degradation is attributed to parti-
cle pulverization generated by the lithiation-induced, large and inhomogeneous volume
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changes [10]. Similar conclusions were demonstrated by Y. Sun in pulverized V2O5 pow-
der [11]. To overcome the capacity fade originating from irreversible phase conversion and
structure dissolution, a conductive polymer was often chosen by researchers to suppress
cathode dissolution. Among the family of conductive polymers, polyaniline (PANI) was
the most popular media because of its high conductivity and reversible electrochemical
response during anodic oxidation and cathodic reduction. For example, J. H. Huang et al.
designed a polyaniline-intercalated-layered MnO2, in which the PANI polymer eliminated
phase change and alleviated volume change upon cation insertion/extraction [12]. W.J. Li
et al. designed a vanadium oxide (V2O5−x)/PANI superlattice to strengthen the alternative
layered structure, where the PANI layer restrains the dissolution of V2O5−x active materials
in aqueous electrolytes, which worked as structural stabilizer, enabling a high-rate capabil-
ity and a long-term cycling life [13]. The PANI-GO/CNT cathode and PANI-intercalated
VOH were also widely reported [14,15]. In such energy storage systems, PANI jumbles with
host materials, which show the synergistic energy storage effect. Despite reports showing
high specific capacity, the reasons for the improved performance after adding PANI remain
ambiguous and need to be further explored; in particular, there is a lack of comprehensive
studies on the charge storage mechanism and ion transport kinetics of PANI.

In view of the attractive properties of aqueous multivalent ion batteries, we inves-
tigated the electrochemical performance and ion transport kinetics of PANI cathode to
further understand Zn2+ storage mechanisms. It was found that the charge/discharge
processes of PANI can be controlled by protonation, and it is associated with four types
of nitrogen, including non-protonated amine −NH−, protonated amine −NH+−, non-
protonated imine −N=, and protonated imine −NH+=. The assembled PANI/Zn cell
achieves a high capacity of 74 mAh g−1 at 0.3 A g−1 and maintains 48.4% of its initial
discharge capacity after 1000 cycles. Importantly, the Zn2+ diffusion coefficient in the PANI
cathode is within the range of 6.25 × 10−9 to 7.82 × 10−8 cm−2 s−1 for discharge processes
and 7.69 × 10−10 to 1.81 × 10−7 cm−2 s−1 for charge processes, which is one or two orders
of magnitude higher than any other reported cathode materials for ZIBs [11–13,16–18]. Our
findings herein will inspire the modification of PANI-intercalated cathode materials for
high performance ZIBs.

2. Materials and Methods
2.1. Chemical Reagents

All chemical reagents were of analytical grade and were used as received without
further purification. Sulphuric acid (H2SO4, 98%) and aniline (99.5%) were purchased from
Chengdu Kelong Chemical Reagent Co. (Chengdu, China). Stainless steel films and zinc
foil were purchased from Guangdong Canrd New Energy Technology Co., Ltd. (Dongguan,
China). All solutions were prepared with deionized water.

2.2. Materials Preparation

PANI films were anodically electrodeposited by cyclic voltametric (CV) methods
on an electrochemical workstation (CHI660E, Chenhua, Shanghai, China). Saturated
calomel electrode (SCE, the potential vs. SHE is 199 mV) and platinum sheets were used
as the reference electrode and counter electrode, respectively. After cleaning by plasma
bombardment to optimize hydrophilicity, the stainless-steel substrates were carefully coated
with a thick film Polyvinyl chloride (PVC) with an exposed surface area of 1.54 cm2. The
electrolyte was prepared by dropping 2.72 mL H2SO4 into 200 mL 2 M aniline solution with
vigorous stirring until obtaining a clear brown solution. The PANI film was electroplated
at a scan rate of 25 mV s−1 for 30 cycles ranging from −0.1 to 0.9 V. After deposition, the
as-prepared PANI film was carefully washed with distilled water to remove unreacted
aniline and dried out in a drying cabinet. The mass loading of active material was around
1.0 mg cm−2
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2.3. Physicochemical Characterizations

An X-ray diffractometer (XRD, D8 ADVANCE, Bruker, Karlsruhe, Germany) using Cu
Kα radiation (λ = 1.5418 Å) was used to analyze the phases and structures of the deposited
films. A scanning electron microscope (SEM, Quanta 200, FEI, Hillsborough, OR, USA)
was used to study the morphologies and microstructures of the samples. Transmission
electron microscopy (TEM, Tecnai F20, FEI, Hillsborough, OR, USA) and high-resolution
TEM images were taken to confirm the size as well as the crystalline structure of the PANI
film. Integrated elemental compositions over an area was collected using energy dispersive
X-ray spectroscopy (EDS GENESIS Apex, EDAX Inc. Mahwah, NJ, USA) equipped with
TEM. X-ray photoelectron spectroscopy (XPS ESCALAB 250 Xi, Thermo Fisher Scientific,
Waltham, MA, USA) measurements were performed by using a monochromatic Al Kα X-
ray beam (1486.6 eV), The binding energies were calibrated using C 1s peak (BE = 284.6 eV)
as a standard.

2.4. Electrochemical Measurements

The PANI/Zn batteries were assembled using PANI film with stainless-steel substrates
as the cathode, Zn foil (diameter: 15.6 mm, thickness: 50 µm) as the anode, and Whatman
glass fiber as the separator in CR2032 coin cells. A 2 M quantity of Zn (CF3SO3)2 was used
as the aqueous electrolyte. All cells were assembled in the ambient environment. The
electrochemical performance measurements were performed by a multichannel battery
testing system (CT-4008, Neware, Shenzhen, China) with a voltage window of 0.3–1.8 V
(vs. Zn2+/Zn) at 20 ◦C. The specific capacity was calculated based on the mass of PANI in
cathode. CV curves were collected on an electrochemical workstation (CHI660, Chenhua,
Shanghai, China) within the same voltage window at different scan rates from 0.1 to
1 mV s−1. The electrochemical impedance spectra (EIS) were performed in a frequency
range of 10−2~105 Hz with an AC voltage amplitude of 5 mV (CHI660, Chenhua, Shanghai,
China).

3. Results

The PANI electrode was prepared on stainless steel through a facile electrodepo-
sition method. During the electrochemical polymerization process, aniline monomers
polymerized and formed long-chain PANI. The typical microstructures of PANI are pre-
sented in Figure 1a, which shows a continuous three-dimensional network. The pure
PANI film shows short rods clusters with diameters of ~50 nm and lengths of 150–200 nm
(Figure 1b), which can provide enough electrochemical active sites for adsorbing ions. The
high-resolution TEM image in Figure 1c shows their short worm-like characterization, and
the selected area electron diffraction (SAED) of PANI (inset of Figure 1c) presents dispersed
diffraction rings, which illustrates the amorphous character of the sample. The XRD pattern
(Supplementary Figure S1) shows the amorphous nature of PANI. However, some signals
are launched at 2θ = 6.3◦. The signal is assigned as the periodicity distance between the
dopant and N atom on adjacent main chains [19,20]. Figure 1d–f shows the EDS mapping
of the PANI film, and the dashed line shows the outline of Figure 1b. The elements of
N, O, and S are distributed uniformly, implying the homogenous doping of SO4

2− in the
polyaniline’s long chain.

XPS was also carried out to characterize the valence states and chemical composition
of PANI film. The survey XPS scans of the PANI films indicate the presence of sulfur (S 2p,
168.85 eV), carbon (C 1s, 286.32 eV), nitrogen (N 1s, 401.07 eV), and oxygen (O 1s, 533.21 eV),
as shown in Supplementary Figure S2. C and N are expected to originate from PANI film,
while S may derive from H2SO4 in electrochemical solutions. The N 1s core level XPS
spectrum can be deconvoluted into four peaks, as shown in Figure 2a. The peak at 398.48 eV
corresponds to −N= (quinoid imine), the main peak at 399.38 eV is ascribed to −NH−
(benzenoid amine), and the two remaining peaks located at 400.53 and 401.79 eV may be
attributed to protonated nitrogen −NH+− and −NH+= [21]. Moreover, the XPS analysis of
S 2p can be deconvoluted into S 2p1/2 (169.6eV) and S 2p3/2 (168.6eV) in Figure 2b, and
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the S 2p peak is fitted with the spin-orbit doublets of sulfate groups. The doped SO4
2−

remaining in PANI’s long chain could play the role of rapid balance charges during redox
reactions [22]. The morphological and structural advantages of the PANI cathode described
above are favorable for ion diffusion and Zn ion storage during charge/discharge.

Nanomaterials 2022, 12, x FOR PEER REVIEW  4  of  13 
 

 

 

Figure 1. (a) SEM, (b) TEM, and (c) high‐resolution TEM images of PANI film. The inset of (c) shows 

the corresponding SAED image. (d–f) Corresponding EDS mapping of the nitrogen (N), oxygen (O), 

and sulfur (S) in PANI film. 

XPS was also carried out to characterize the valence states and chemical composition 

of PANI film. The survey XPS scans of the PANI films indicate the presence of sulfur (S 

2p, 168.85 eV), carbon  (C 1s, 286.32 eV), nitrogen  (N 1s, 401.07 eV), and oxygen  (O 1s, 

533.21 eV), as shown in Supplementary Figure S2. C and N are expected to originate from 

PANI film, while S may derive from H2SO4 in electrochemical solutions. The N 1s core 

level XPS spectrum can be deconvoluted into four peaks, as shown in Figure 2a. The peak 

at 398.48 eV corresponds to −N= (quinoid imine), the main peak at 399.38 eV is ascribed 

to −NH− (benzenoid amine), and the two remaining peaks located at 400.53 and 401.79 eV 

may be attributed to protonated nitrogen −NH+− and −NH+= [21]. Moreover, the XPS anal‐

ysis of S 2p can be deconvoluted into S 2p1/2 (169.6eV) and S 2p3/2 (168.6eV) in Figure 2b, 

and the S 2p peak is fitted with the spin‐orbit doublets of sulfate groups. The doped SO42− 

remaining in PANI’s long chain could play the role of rapid balance charges during redox 

reactions  [22]. The morphological  and  structural  advantages of  the PANI  cathode de‐

scribed above are favorable for ion diffusion and Zn ion storage during charge/discharge. 

Figure 1. (a) SEM, (b) TEM, and (c) high-resolution TEM images of PANI film. The inset of (c) shows
the corresponding SAED image. (d–f) Corresponding EDS mapping of the nitrogen (N), oxygen (O),
and sulfur (S) in PANI film.

Nanomaterials 2022, 12, x FOR PEER REVIEW  5  of  13 
 

 

 

Figure 2. Core level XPS of (a) N 1s and (b) S 2p. 

The electrochemical profile is characterized in the typical 2032 cell. Figure 3a shows 

CV curve tested at 0.1 mV s−1 with the potential window of 0.3~1.8 V. There is one pair of 

cathodic peaks (R and O2 marked in Figure 3a) and one small shoulder (O1) next to the O2 

peak. These represent the reduction/oxidation process during adsorption/desorption of 

Zn2+. The galvanostatic discharge–charge  curves of PANI  in Figure 3b  show a  steeper 

slope, especially at large current densities and a high discharge capacity of 74 mA h g−1 at 

0.3 A g−1. The rapid charge–discharge speed corresponds to the fast ion absorb–desorption 

and redox reaction. In rate capability tests (Figure 3c), the PANI electrode with a mass 

loading of 1 mg cm−2 delivers a relatively stable capacity. With an increase in current den‐

sity from 0.3 to 0.5, 0.7, 1, and 2 A g−1, the cell delivers specific capacities of 68, 68, 58, and 

40 mA h g−1, respectively. When the current densities decrease back to 0.3 A g−1 from 2 A 

g−1, the capacities recover to the initial values, suggesting a stable structure and great elec‐

trochemical reversibility. The EIS spectra and the equivalent circuit model of PANI are 

presented in Figure 3d. The impedance measurements are taken after discharging at the 

1st cycle and 50th cycle. Both spectra comprised a semicircle in the high frequency region, 

which  originated  from  the  solid/electrolyte  interfacial  resistance.  The  interception  be‐

tween semicircle and  the real axis corresponds  to  the migrating resistance of Zn2+  ions 

through the surface layer (Rs), and the semicircle represents the charge transfer resistance 

(Rct) [23]. The Rct value transformed from 398.2 Ω to 195.5 Ω after cycling, which might 

be attributed to the activation of materials. While at the low frequency region, the inclined 

line is caused by the Zn2+ ions’ chemical diffusion impedance (Warburg impedance). The 

result of EIS further demonstrates that the PANI film with amorphous nature effectively 

enhances the electrochemical kinetics by decreasing the impedances. As shown in Figure 

3e, the 3D conductive network PANI ZIBs could maintain a discharge capacity of 30 mAh 

g−1 (48.4% of its initial discharge capacity) after 1000 cycles with high Coulombic efficiency 

close to 100%. The polymer retains the 3D network’s morphology without being peeled 

off from the substrate. Such high stability of the electrode guarantees excellent capacity 

retention. 

Figure 2. Core level XPS of (a) N 1s and (b) S 2p.

248



Nanomaterials 2022, 12, 1438

The electrochemical profile is characterized in the typical 2032 cell. Figure 3a shows
CV curve tested at 0.1 mV s−1 with the potential window of 0.3~1.8 V. There is one pair of
cathodic peaks (R and O2 marked in Figure 3a) and one small shoulder (O1) next to the
O2 peak. These represent the reduction/oxidation process during adsorption/desorption
of Zn2+. The galvanostatic discharge–charge curves of PANI in Figure 3b show a steeper
slope, especially at large current densities and a high discharge capacity of 74 mA h g−1 at
0.3 A g−1. The rapid charge–discharge speed corresponds to the fast ion absorb–desorption
and redox reaction. In rate capability tests (Figure 3c), the PANI electrode with a mass
loading of 1 mg cm−2 delivers a relatively stable capacity. With an increase in current
density from 0.3 to 0.5, 0.7, 1, and 2 A g−1, the cell delivers specific capacities of 68, 68, 58,
and 40 mA h g−1, respectively. When the current densities decrease back to 0.3 A g−1 from
2 A g−1, the capacities recover to the initial values, suggesting a stable structure and great
electrochemical reversibility. The EIS spectra and the equivalent circuit model of PANI are
presented in Figure 3d. The impedance measurements are taken after discharging at the
1st cycle and 50th cycle. Both spectra comprised a semicircle in the high frequency region,
which originated from the solid/electrolyte interfacial resistance. The interception between
semicircle and the real axis corresponds to the migrating resistance of Zn2+ ions through
the surface layer (Rs), and the semicircle represents the charge transfer resistance (Rct) [23].
The Rct value transformed from 398.2 Ω to 195.5 Ω after cycling, which might be attributed
to the activation of materials. While at the low frequency region, the inclined line is caused
by the Zn2+ ions’ chemical diffusion impedance (Warburg impedance). The result of EIS
further demonstrates that the PANI film with amorphous nature effectively enhances the
electrochemical kinetics by decreasing the impedances. As shown in Figure 3e, the 3D
conductive network PANI ZIBs could maintain a discharge capacity of 30 mAh g−1 (48.4%
of its initial discharge capacity) after 1000 cycles with high Coulombic efficiency close to
100%. The polymer retains the 3D network’s morphology without being peeled off from
the substrate. Such high stability of the electrode guarantees excellent capacity retention.

To comprehensively understand the energy storage kinetics of the Zn/PANI batteries,
CV curves at various scan rates are shown in Figure 4a. With the increased scan rates from
0.1 mV s−1 to 1 mV s−1, the CV curves keep similar shapes with subtle shifts in redox peaks,
indicating a fast and stable Zn2+ adsorption/desorption process even at the high scan rates.
Their peak currents (i) and scan rates (v) have a relationship [6,13,24,25]: i = avb, where a and
b are adjustable parameters. When the value of b is close to 0.5, the reaction process relies
on the control of ionic diffusion processes. When the value of b reaches 1, the corresponding
electrochemical behavior is controlled by capacitance. According to the slopes of the log(i)
vs. log(v) plots of all peaks in Figure 4b, the calculated b values for peaks O1, O2, and R
are 0.57, 0.85, and 0.97, respectively. The value of peak O1 is very close to 0.5, which is
mostly dominated by diffusion-controlled capacitance. While peak O2 and R imply that
the surface-dominated pseudocapacitance contribution plays a major role in the following
charge storage stage. Along with the increase in scan rate, the capacitive contribution
increases and finally reaches to about 96.62% at a scan rate of 1 mV s−1 (Figure 4c,d). The
large capacitive contribution at low sweep rates suggests a unique pseudocapacitive effect,
which can be attributed to the unique surface-dominated reaction. This kind of capacitive-
dominated behavior further indicates that fast electrochemical kinetics can match fast
surface reactions. Galvanostatic intermittent titration technique (GITT) measurements were
further carried out to reveal the kinetics of Zn2+ diffusion in PANI electrodes during the
cycles. The discharge/charge curves and corresponding diffusion coefficient of Zn2+ (D)
in GITT measurement for PANI electrodes during the cycles are shown in Figure 4e. The
details of the diffusion coefficient calculation are shown in Supplementary Materials. The
calculated D values of PANI cathode ranges from 6.25 × 10−9 to 7.82 × 10−8 cm−2 s−1

during the two discharge processes and 7.69 × 10−10 to 1.81 × 10−7 cm−2 s−1 during the
charge processes, which is one or two orders of magnitude higher than other reported
manganese oxide and vanadium oxide cathode materials for ZIBs (Table 1) [9,11,13,15,17,25–
32]. This result demonstrates that the diffusion kinetics of Zn2+ through PANI is quicker
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and easier, which may be attributed to lower number of electrostatic interactions between
Zn2+ and host sites reduced by the 3D conductive network’s morphology. PANI also boosts
the electrical conductivity of the electrode, allowing for sufficient electrical charge transfers
to accommodate the rapid diffusion of Zn2+ in the electrode.
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Table 1. Diffusion coefficient of Zn2+ in referenced cathode materials.

Active Materials Electrolyte Diffusion Coefficient
(cm−2 s−1) Reference

V2O5@CNTs 1 M ZnSO4
10−10~10−8 (Discharging)

10−12~10−8 (Charging)
[9]

V2O5 2 M ZnSO4
1.32 × 10−12 (Discharging)

3.82 × 10−11 (Charging)
[11]

V2O5·nH2O 2 M ZnSO4 2.4 × 10−9 (Discharging) [13]

PANI−VOH 3 M Zn(CF3SO3)2
10−16~10−13 (Discharging)

10−14~10−13 (Charging)
[15]

V2O5 ZnSO4 10−11~10−9 (Discharging) [17]

MnVO/VOH 3 M Zn(CF3SO3)2
3.22 × 10−12~(Discharging)

1.46 × 10−12~(Charging)
[25]

Mn0.15V2O5·nH2O 1 M Zn(ClO4)2 10−12~10−10 (Discharging) [26]
Graphene Scroll
Coated α-MnO2

2 M ZnSO4
0.2 M MnSO4

10−17~10−12 (Discharging) [27]

MnO2 nanospheres 2 M ZnSO4
0.2 M MnSO4

10−15~10−12 (Discharging) [28]

δ-MnO2
3 M ZnSO4

0.15 M MnSO4

10−13~10−9 (Discharging)
10−11~10−9 (Charging)

[29]

(NH4)2V10O25·8H2O 3 M Zn(CF3SO3)2 10−10~10−9 (Discharging) [30]
V5O12·6H2O (VOH) 3 M Zn(CF3SO3)2 10−11~10−10 (Discharging) [31]

K2V8O21 2 M ZnSO4
1.99 × 10−11~2.23 × 10−10

(Discharging)
[32]

PANI 2 M Zn(CF3SO3)2

6.25×10−9~7.82 × 10−8

(Discharging)
7.69×10−10~1.81 × 10−7

(Charging)

This work

To further understand the charge storage mechanism of PANI during the reversible
redox reaction, ex situ XPS of N 1s analyses (Figure 5a) were performed on a PANI cathode
at different charge/discharge voltages. The N 1s XPS spectra of fully charged PANI cathode
were fitted with four peaks related to non-protonated amine −NH−, protonated amine
−NH+−, non-protonated imine −N=, and protonated imine −NH+=, located at 399.38 eV,
400.53 eV, 398.48 eV, and 401.79 eV, respectively. The XPS of S 1s (Supplementary Figure S3)
can be divided into two pairs of characteristic peaks, SO4

2− and SO3
−. During the charge

process (from I to III), the peak intensities of −NH+= at 401.79 eV and −N= at 398.48 eV are
strengthened gradually, whereas in the following discharge process (from III to V), the peak
intensities are weakened and ultimately recovered to the original state, which is arising
from the reversible reactions between protonated and non-protonated PANI. After full
discharge, the XPS analysis’ results in point I show only two components of −NH− and
−NH+− with the proportion of 59% and 41%, respectively (Figure 5b). When the battery
charges from the initial 0.3 to 1.8 V (from I to III), the intensity of −NH− and −NH+−
decreases while the intensity of −NH+= and −N= increases, as a result of the protonation
process. The N 1s XPS spectrum of fully charged PANI cathode is fitted with four peaks
related to −NH− (38%), −NH+− (16%), −N= (22%), and −NH+= (24%), respectively.
Generally, the former one N signal is referred to the reduced state, while the last three N
signals correspond to the oxidized state. While SO4

2− increases to balance the charge and
the −SO3

−H+ external dopant PANI cathode is charged to 1.8 V (state III), the amount of
oxidized state increases and reduced state decreases. In the oxidation process, the oxidation
of the non-protonated components is more facile than that of the protonated −NH+− due
to an easier loss of electrons for the former.
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contents from N 1s XPS.

Based on the above analysis, we propose a transformation process of PANI electrodes
and adsorption/desorption mechanism of Zn2+ (Figure 6). In the charging stage, with
increases in oxidation voltage, the non-protonated −NH− becomes oxidized to −NH+−.
Then, −NH+− further oxidized with respect to −NH+= and −N=. This phenomenon is
consistent with the connected double oxidation peaks in the CV curve (Figure 3a). The
first oxidation step may be the main contribution to the first small oxidation peak, and
the latter oxidation reaction is described by the second oxidation peak. As for discharge
processes (from III to V), the peaks of N 1s spectra will go through opposite changes in
their intensities compared to the charge process due to the reduction of −NH+−, −N=,
and −NH+=. During the reduction reaction, H+ can be consumed to encourage −N= to
transform into −NH+−, together with the external doping of SO4

2− to balance the charge.
The leftover OH− results in the formation of basic zinc sulfate by a similar manner observed
in the previous demonstration [12]. In this process, protonated amine and protonated imine
supply abundant active sites for Zn2+ ions adsorption and desorption. This sequential
transformation can help illuminate the fast diffusion kinetics and energy storage capacities
of PANI electrodes.
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Zn2+ adsorption and desorption at the active sites supplied by protonated amine and imine during
the process.

4. Conclusions

We have comprehensively investigated zinc ion storage behaviors in three-dimensional
conductive-network-structured PANI. The energy storage mechanism of PANI exhibits four
types of N changes during protonated and non-protonated process. The PANI cathode ZIBs
shows a high capacity of 74.25 mAh g−1 at 300 mA g−1 and maintains 48.4% of its initial
discharge capacity after 1000 cycles. A corresponding kinetic analysis demonstrated that the
diffusion coefficients of PANI are within the range of 6.25 × 10−9 to 7.82 × 10−8 cm−2 s−1

for discharge processes and 7.69 × 10−10 to 1.81 × 10−7 cm−2 s−1 for charge processes, and
the values are one or two orders of magnitude higher than other reported cathode materials.
The analysis revealed in this work provides new ideas for understanding the roles of PANI
intercalated in host materials. It shows high reference values for active materials using
conductive polymers as intercalators to develop energy storage devices with high energy
density and stable performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12091438/s1, Figure S1: X-ray diffraction pattern of PANI
film electrode; Figure S2: XPS survey scans of the PANI films in the binding energy range of 0–1300 eV.
Figure S3: S 1s XPS spectra of the PANI films during the charge/discharge process Supporting Notes:
Calculated details of the GITT.

Author Contributions: Conceptualization, J.G.; methodology, J.G.; validation, J.G., C.T. and X.W.;
formal analysis, J.G., K.Z. and H.L.; investigation, J.G., K.Z. and H.L.; resources, S.F. and Q.W.; data
curation, H.L., J.C. and Z.Z.; writing—original draft preparation, H.L.; writing—review and editing,
J.G.; supervision, J.G., C.T. and X.W.; project administration, J.G.; funding acquisition, J.G. and Z.S.
All authors have read and agreed to the published version of the manuscript.

254



Nanomaterials 2022, 12, 1438

Funding: This work was financially assisted by the National Natural Science Foundation of China
(Nos 22075068, and 62074051).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are very thankful to Zhiqiang Wang form the University of Western
Ontario for his work hard in English writing proficiency.

Conflicts of Interest: The manuscript was written through the contributions of all authors. All
authors have given approval to the final version of the manuscript. The authors declare no competing
financial interests.

References
1. Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H.N. Zinc-Ion Batteries: Materials, Mechanisms, and Applications. Mater. Sci. Eng.

R. Rep. 2019, 135, 58–84. [CrossRef]
2. Jia, X.; Liu, C.; Neale, Z.G.; Yang, J.; Cao, G. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure,

Morphology, and Electrochemistry. Chem. Rev. 2020, 120, 7795–7866. [CrossRef] [PubMed]
3. Wang, F.; Fan, X.; Gao, T.; Sun, W.; Ma, Z.; Yang, C.; Han, F.; Xu, K.; Wang, C. High-Voltage Aqueous Magnesium Ion Batteries.

ACS Central Sci. 2017, 3, 1121–1128. [CrossRef]
4. Arroyo-de Dompablo, M.E.; Ponrouch, A.; Johansson, P.; Palacín, M.R. Achievements, Challenges, and Prospects of Calcium

Batteries. Chem. Rev. 2020, 120, 6331–6357. [CrossRef] [PubMed]
5. Chen, H.; Xu, H.; Wang, S.; Huang, T.; Xi, J.; Cai, S.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. Ultrafast All-Climate Aluminum-Graphene

Battery with Quarter-Million Cycle Life. Sci. Adv. 2017, 3, eaao7233. [CrossRef] [PubMed]
6. Li, J.-C.; Gong, J.; Zhang, X.; Lu, L.; Liu, F.; Dai, Z.; Wang, Q.; Hong, X.; Pang, H.; Han, M. Alternate Integration of Verti-

cally Oriented CuSe@FeOOH and CuSe@MnOOH Hybrid Nanosheets Frameworks for Flexible In-Plane Asymmetric Micro-
supercapacitors. ACS Appl. Energy Mater. 2020, 3, 3692–3703. [CrossRef]

7. Liu, Y.; Wu, X. Review of Vanadium-Based Electrode Materials for Rechargeable Aqueous Zinc Ion Batteries. J. Energy Chem. 2021,
56, 223–237. [CrossRef]

8. Sun, W.; Xiao, L.; Wu, X. Facile Synthesis of NiO Nanocubes for Photocatalysts and Supercapacitor Electrodes. J. Alloy. Compd.
2019, 772, 465–471. [CrossRef]

9. Chen, H.; Qin, H.; Chen, L.; Wu, J.; Yang, Z. V2O5@CNTs as Cathode of Aqueous Zinc Ion Battery with High Rate and High
Stability. J. Alloy. Compd. 2020, 842, 155912. [CrossRef]

10. Wang, J.; Fan, F.; Liu, Y.; Jungjohann, K.L.; Lee, S.W.; Mao, S.X.; Liu, X.; Zhu, T. Structural Evolution and Pulverization of Tin
Nanoparticles during Lithiation-Delithiation Cycling. J. Electrochem. Soc. 2014, 161, F3019–F3024. [CrossRef]

11. Li, Y.; Huang, Z.; Kalambate, P.K.; Zhong, Y.; Huang, Z.; Xie, M.; Shen, Y.; Huang, Y. V2O5 Nanopaper as a Cathode Material with
High Capacity and Long Cycle Life for Rechargeable Aqueous Zinc-Ion Battery. Nano Energy 2019, 60, 752–759. [CrossRef]

12. Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Polyaniline-Intercalated Manganese Dioxide Nanolayers as a
High-Performance Cathode Material for an Aqueous Zinc-Ion Battery. Nat. Commun. 2018, 9, 2906. [CrossRef] [PubMed]

13. Li, W.; Han, C.; Gu, Q.; Chou, S.; Wang, J.; Liu, H.; Dou, S. Electron Delocalization and Dissolution-Restraint in Vanadium
Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2020, 10, 2001852.
[CrossRef]

14. Du, W.; Xiao, J.; Geng, H.; Yang, Y.; Zhang, Y.; Ang, E.H.; Ye, M.; Li, C.C. Rational-Design of Polyaniline Cathode Using Proton
Doping Strategy by Graphene Oxide for Enhanced Aqueous Zinc-Ion Batteries. J. Power Sources 2020, 450, 227716. [CrossRef]

15. Wang, M.; Zhang, J.; Zhang, L.; Li, J.; Wang, W.; Yang, Z.; Zhang, L.; Wang, Y.; Chen, J.; Huang, Y.; et al. Graphene-like Vanadium
Oxygen Hydrate (VOH) Nanosheets Intercalated and Exfoliated by Polyaniline (PANI) for Aqueous Zinc-Ion Batteries (ZIBs).
ACS Appl. Mater. Interfaces 2020, 12, 31564–31574. [CrossRef]

16. Kataoka, F.; Ishida, T.; Nagita, K.; Kumbhar, V.S.; Yamabuki, K.; Nakayama, M. Cobalt-Doped Layered MnO2 Thin Film
Electrochemically Grown on Nitrogen-Doped Carbon Cloth for Aqueous Zinc-Ion Batteries. ACS Appl. Energy Mater. 2020, 3,
4720–4726. [CrossRef]

17. Qin, H.; Chen, L.; Wang, L.; Chen, X.; Yang, Z. V2O5 Hollow Spheres as High Rate and Long Life Cathode for Aqueous
Rechargeable Zinc Ion Batteries. Electrochim. Acta 2019, 306, 307–316. [CrossRef]

18. Alfaruqi, M.H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J.P.; Choi, S.H.; Kim, J. Electrochemically Induced Structural
Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System. Chem. Mater. 2015, 27, 3609–3620. [CrossRef]

19. Pan, L.; Pu, L.; Shi, Y.; Sun, T.; Zhang, R.; Zheng, Y.O. Hydrothermal Synthesis of Polyaniline Mesostructures. Adv. Funct. Mater.
2006, 16, 1279–1288. [CrossRef]

20. Yang, Y.; Wan, M. Chiral Nanotubes of Polyaniline Synthesized by a Template-Free Method. J. Mater. Chem. 2002, 12, 897–901.
[CrossRef]

255



Nanomaterials 2022, 12, 1438

21. Liu, Y.; Xie, L.; Zhang, W.; Dai, Z.; Wei, W.; Luo, S.; Chen, X.; Chen, W.; Rao, F.; Wang, L.; et al. Conjugated System of PEDOT:PSS-
Induced Self-Doped PANI for Flexible Zinc-Ion Batteries with Enhanced Capacity and Cyclability. ACS Appl. Mater. Interfaces
2019, 11, 30943–30952. [CrossRef] [PubMed]

22. Shi, H.-Y.; Ye, Y.-J.; Liu, K.; Song, Y.; Sun, X. A Long-Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc
Batteries. Angew. Chem. Int. Ed. 2018, 57, 16359–16363. [CrossRef] [PubMed]

23. Alruwashid, F.S.; Dar, M.A.; Alharthi, N.H.; Abdo, H.S. Effect of Graphene Concentration on the Electrochemical Properties of
Cobalt Ferrite Nanocomposite Materials. Nanomaterials 2021, 11, 2523. [CrossRef] [PubMed]

24. Li, J.-C.; Gong, J.; Yang, Z.; Tian, Y.; Zhang, X.; Wang, Q.; Hong, X. Design of 2D Self-Supported Hybrid CuSe@PANI Core/Shell
Nanosheet Arrays for High-Performance Flexible Microsupercapacitors. J. Phys. Chem. C 2019, 123, 29133–29143. [CrossRef]

25. Liu, C.; Neale, Z.; Zheng, J.; Jia, X.; Huang, J.; Yan, M.; Tian, M.; Wang, M.; Yang, J.; Cao, G. Expanded Hydrated Vanadate for
High-Performance Aqueous Zinc-Ion Batteries. Energy Environ. Sci. 2019, 12, 2273–2285. [CrossRef]

26. Geng, H.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y.; Li, C.C. Electronic Structure Regulation of Layered Vanadium Oxide via
Interlayer Doping Strategy toward Superior High-Rate and Low-Temperature Zinc-Ion Batteries. Adv. Funct. Mater. 2020, 30,
1907684. [CrossRef]

27. Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Graphene Scroll-Coated α-MnO2 Nanowires as High-
Performance Cathode Materials for Aqueous Zn-Ion Battery. Small 2018, 14, 1703850. [CrossRef]

28. Wang, J.; Wang, J.-G.; Liu, H.; Wei, C.; Kang, F. Zinc Ion Stabilized MnO2 Nanospheres for High Capacity and Long Lifespan
Aqueous Zinc-Ion Batteries. J. Mater. Chem. A 2019, 7, 13727–13735. [CrossRef]

29. Chen, L.; Yang, Z.; Cui, F.; Meng, J.; Jiang, Y.; Long, J.; Zeng, X. Ultrathin MnO2 Nanoflakes Grown on N-Doped Hollow Carbon
Spheres for High-Performance Aqueous Zinc Ion Batteries. Mater. Chem. Front. 2020, 4, 213–221. [CrossRef]

30. Wei, T.; Li, Q.; Yang, G.; Wang, C. Highly Reversible and Long-Life Cycling Aqueous Zinc-Ion Battery Based on Ultrathin
(NH4)2V10O25·8H2O Nanobelts. J. Mater. Chem. A 2018, 6, 20402–20410. [CrossRef]

31. Zhang, N.; Jia, M.; Dong, Y.; Wang, Y.; Xu, J.; Liu, Y.; Jiao, L.; Cheng, F. Hydrated Layered Vanadium Oxide as a Highly Reversible
Cathode for Rechargeable Aqueous Zinc Batteries. Adv. Funct. Mater. 2019, 29, 1807331. [CrossRef]

32. Tang, B.; Fang, G.; Zhou, J.; Wang, L.; Lei, Y.; Wang, C.; Lin, T.; Tang, Y.; Liang, S. Potassium Vanadates with Stable Structure and
Fast Ion Diffusion Channel as Cathode for Rechargeable Aqueous Zinc-Ion Batteries. Nano Energy 2018, 51, 579–587. [CrossRef]

256



����������
�������

Citation: Yavtushenko, I.O.;

Makhmud-Akhunov, M.Y.; Sibatov,

R.T.; Kitsyuk, E.P.; Svetukhin, V.V.

Temperature-Dependent Fractional

Dynamics in Pseudo-Capacitors with

Carbon Nanotube Array/Polyaniline

Electrodes. Nanomaterials 2022, 12,

739. https://doi.org/10.3390/

nano12050739

Academic Editors: Xiang Wu and

Jung Woo Lee

Received: 7 January 2022

Accepted: 17 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Temperature-Dependent Fractional Dynamics in
Pseudo-Capacitors with Carbon Nanotube
Array/Polyaniline Electrodes
Igor O. Yavtushenko 1, Marat Yu. Makhmud-Akhunov 1 , Renat T. Sibatov 2,* , Evgeny P. Kitsyuk 2

and Vyacheslav V. Svetukhin 2

1 Laboratory of Diffusion Processes, Ulyanovsk State University, 432017 Ulyanovsk, Russia;
yavigor@mail.ru (I.O.Y.); maratmau@mail.ru (M.Y.M.-A.)

2 Scientific-Manufacturing Complex “Technological Centre”, 124498 Moscow, Russia;
kitsyuk.e@gmail.com (E.P.K.); v.svetukhin@tcen.ru (V.V.S.)

* Correspondence: ren_sib@bk.ru

Abstract: Pseudo-capacitors with electrodes based on polyaniline and vertically aligned multiwalled
carbon nanotubes (PANI/VA-MWCNT) composite are studied. Fractional differential models of
supercapacitors are briefly discussed. The appropriate fractional circuit model for PANI/MWCNT
pseudo-capacitors is found to be a linearized version of the recently proposed phase-field diffusion
model based on the fractional Cahn–Hilliard equation. The temperature dependencies of the model
parameters are determined by means of impedance spectroscopy. The fractional-order α is weakly
sensitive to temperature, and the fractional dynamic behavior is related to the pore morphology
rather than to thermally activated ion-hopping in PANI/MWCNT composite.

Keywords: pseudocapacitor; carbon nanotube; polyaniline; fractional-order circuit model; memory
effect; fractional derivative

1. Introduction

Conductive polymers such as polythiophene, polyaniline (PANI), polyacetylene, etc.
have redox properties and can be used as electrode materials for electrochemical power
sources. Among these polymers, PANI has proven to be one of the most promising due to
its high capacitance characteristics, ease of processing and environmental friendliness [1–4].
Redox centers in the polymer backbone are not sufficiently stable during many cyclic redox
processes [2]. Special additives in composites (activated carbon, nanotubes, graphene,
transition metal oxides) are used to eliminate disadvantages of pure PANI such as rapid
degradation during cycling and slow ion transfer kinetics. The presence of nanotubes in
such composites promotes efficient charge transfer that reduces the internal resistance of
the electrodes. Carbon nanotubes (CNTs) increase the electrical conductivity of material
regardless of polymer redox state; in addition, a structure with optimal porosity can
be created.

For several applications, the stacking of individual CNTs during growth is of great
importance. The complex morphology of the entangled nanotube agglomerates leads
to a slowdown in the transport of charge carriers [5], including subdiffusive anomalous
transport [6]. To eliminate this disadvantageous feature, electrodes based on an array of
vertically aligned (oriented) multiwalled carbon nanotubes (VA-MWCNTs) are used [5,7].
This geometry contributes to an increase in the electronic and ionic conductivity in the
composite, and the specific active surface area can be larger than in the case of an entangled
CNT network.

In this paper, PANI/VA-MWCNT pseudo-capacitors are prepared and the temperature-
dependent charging–discharging dynamics of these devices is studied. As is known,
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fractional-order technique using fractional calculus and fractional equivalent circuits [3] is
effective to describe the dynamics of supercapacitors [6,8–15]. Recently, the time-fractional
phase-field model has been applied to describe PANI/MWCNT pseudo-capacitors [16].
Here, the simplified representation of a fractional circuit model is used to describe the
impedance spectra, cyclic voltammograms, and charging–discharging in potentiostatic
mode. The proposed model is a linearized version of the nonlinear model based on the
fractional Cahn–Hilliard equation of phase-field diffusion and suitable for the analysis of
temperature-dependent fractional dynamics.

Recently, Kopka [17] studied the effect of temperature on the derivative order in
the fractional model of supercapacitor. The rate of electrochemical reactions is related to
the temperature of the supercapacitor, so the order of fractional derivative model should
be temperature-dependent. Here, we determine the temperature dependencies of the
fractional model parameters for PANI/VA-MWCNT pseudo-capacitors.

2. Materials and Experimental Methods

Pseudo-capacitors with electrodes based on the PANI/VA-MWCNT nanocomposite
were prepared. The nanotubes are presented in the form of a vertically aligned array
(VA-MWCNT) grown on a 0.5 cm2 titanium substrate. The fabrication process starts with
wet cleaning and thermal oxidation of a bare silicon base plate to isolate the substrate
from the electrodes. Then, Ti and Ni layers were evaporated onto the substrate with the
magnetron sputtering system. Ti serves as the current collector material, and Ni particles
are the catalyst for CNT forest growth. After the preparation of the VA-MWCNT array
shown in Figure 1, the CNT forest was covered with a thin layer of PANI (emeraldine
form), obtained by the chemical method of aniline solution oxidation. SEM images (top
plan view) of the MWCNT array and the array covered by PANI layers are presented in
Figure 2. A two-stage method of coating by polyaniline was used. After drying the first
layer, the second layer was applied. The thickness of each layer is approximately equal to
150 nm, and was determined by the method of atomic force microscopy. It is known [1] that
the formation of a PANI layer on the CNT surface begins with the adsorption of aniline
molecules, which then form oligomers during oxidative polymerization. When such a
mechanism is implemented, the properties of the resulting PANI are significantly affected
by the nature of the surface groups of the initial CNTs.

(a) (b) (c)

Figure 1. SEM images of a grown MWCNT array on a titanium plate used by us for preparation of
PANI/VA-MWCNT pseudocapacitor. Scale bar: 5 µm (a), 2 µm (b) and 0.5 µm (c).
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(a) (b) (c)

Figure 2. SEM images (top plan view) of the MWCNT array (a) and the array covered by single PANI
layer (b,c). Scale bar: 5 µm (a), 5 µm (b) and 10 µm (c).

The electrolyte in our system is a solution of phosphoric acid H3PO4 and polyvinyl
alcohol (PVA). A schematic representation of the PANI/VA-MWCNT pseudocapacitor is
shown in Figure 3a.

r
C� s

�

1

ElectrodeElectrolyte

RE

Cdl Cdl Cdl Cdl Cdl Cdl

Rion Rion Rion RionPore

(c)

(a) (b)

Figure 3. Schematic representation of a cell with electrodes based on vertically aligned MWCNT
array/PANI composite (a), RC transmission line (De Levie model) for a single pore (b), and the
simplest equivalent circuit model of a supercapacitor (c).

We determine the model parameters of pseudo-capacitors by fitting impedance spec-
tra, cyclic voltammograms and charging–discharging curves. These data were obtained by
measurements with a P-45X potentiostat–galvanostat (Electrochemical Instruments com-
pany). For cyclic voltammetry, the voltage ranges from −0.5 to 0.5 V, potential scan rates
are 20, 50 and 100 mV/s. For the impedance spectroscopy measurement, the frequency
ranges from 0.1 Hz to 50 kHz, and the voltage amplitude is 50 mV.

3. Fractional Differential Models of Supercapacitors

It is common to analyze impedance results using a physical model that is expressed by
a system of mathematical equations. If this system is linear, it can be usually represented
by an equivalent circuit. The parameters of circuit electrical components are related to the
physical and chemical properties of electrolyte, electrode and their interface. The charg-
ing–discharging kinetics of supercapacitors and pseudo-capacitors is largely determined
by the diffusion of ions in electrodes and electrolyte.
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The de Levie model [18] successfully describes the impedance of a porous electrode
containing oblong pores (see, e.g., [19,20]). The impedance of a single pore is modeled by a
transmission line (Figure 3b) with the assumption that specific resistances of solution and
local impedance do not depend on the depth inside pore, and the solid phase is assumed to
be perfectly conducting [18]. The half-integer impedance Z =

√
R/jωC characterizes this

transmission line. A more general form is given by a constant phase element (CPE),

Z(ω) =
1

Cν(jω)ν
. (1)

CPE coupled in series with resistor r (Figure 3c) represents a simplified supercapacitor
model considered in references [14,21],

Z(s) = R +
1

Cνsν
, s = jω, (2)

and used in [22,23] to characterize electric double layer (EDL) supercapacitor impedance.
Here, s can be associated with the Laplace variable. In [24], this impedance model is
used to predict the transient response of a supercapacitor to a voltage-step signal. The de
Levie model successfully describes electrodes with pores of similar geometric parameters,
particularly nanocrystalline TiO2 films [25], and other metal oxides electrodes. Transition
metal oxides such as TiO2, NiOx, RuO2, MnOx are widely used in the development of
supercapacitor electrodes [26–28]. It is noteworthy that the hierarchical structure of the
electrode surface also leads to a fractional impedance, which can be derived within the
recursive fractal ladder model [29].

In review [24], the authors discuss three equivalent circuit models for EDL supercapac-
itors. The first of them is shown in Figure 3c. Another model is a combination of a resistor
and three CPEs. In this case, the impedance is

Z(s) = R +
1

Cαsα
+

1
Cβsβ

+
1

C3sα+β
. (3)

This model was used in [10] to describe the dynamics of supercapacitor HE0120C-
0027A 120 F in the frequency range 1 mHz–1 kHz. The third circuit model is given by
impedance

Z(s) = R + k
(1 + s/ω0)

α

sβ
. (4)

This was proposed in [23] and successfully applied to the description of supercapacitor
EPCOS 5 F. The fitted parameters are as follows α = 0.5190, β = 0.9765, k = 0.3440 Ω/sβ.

For the above-listed impedance models, the corresponding charging–discharging
equations for current and voltage contain fractional derivatives. On the other hand, due to
heterogeneity and complexity of porous electrodes, anomalous diffusive kinetics of ions can
take place [13–15]. Anomalous diffusion is characterized by power law expansion of the
diffusion packet, ∆(t) ∝ tα/2, with α 6= 1. The case 0 < α < 1 is classified as subdiffusion,
and the case α > 1 as superdiffusion. Mathematical treatment of self-similar anomalous
diffusion is usually based on diffusion equations with fractional derivatives.

The simplest fractional diffusion equation has the form

∂c(x, t)
∂t

= K 0D1−ν
t

∂2c(x, t)
∂x2 , (5)

where

0D1−ν
t c(x, t) =

1
Γ(ν)

∂

∂t

∫ t

0

c(x, τ)

(t− τ)1−ν
dτ, 0 < ν ≤ 1,

is the fractional Riemann–Liouville derivative of order 1− ν [30].
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Using anomalous diffusion equations with fractional derivatives, one could generalize
impedances for different geometries and boundary conditions (see [25,31] and references
therein). The simplest example is subdiffusive generalization of Warburg’s impedance for
a semi-infinite medium [31]

Z(jω) = B(iω)−(1−ν/2), (6)

where B is a frequency-independent constant.

3.1. Havriliak–Negami Response

To evaluate electrolyte diffusion parameters in porous media, electrochemical impedance
spectroscopy is often used. In [18,32,33], the relationship between pore size and electro-
chemical properties of electrodes has been studied. One of the approaches to assessing
the properties of a supercapacitor from impedance spectra is based on the formal repre-
sentation of a supercapacitor as a dielectric liquid in which the molecular relaxation of the
system is assessed in a wide range of frequencies and associated with its structure. Such
a view is convenient for using widely known models of dielectric relaxation, such as the
Debye, Cole–Cole, and Havriliak–Negami (HN) models. Unlike capacitance, resistance and
leakage current, dielectric permeability is an intensive rather than extensive characteristic
of the system. Studies [34,35] have shown that structural confinement has a significant
effect on molecular relaxation, and it is possible to estimate the contribution of surface
morphology by the electrolytic molecular component [34].

The circuit element based on the HN function describes the asymmetric and broad
nature of dielectric dispersion [36]. In the case of a linear response, the relationship between
current and voltage can be represented as follows

i(t) = K
d
dt

∞∫

0

φ(t′) u(t− t′)dt′.

Turning to the Fourier transforms, we obtain

ĩ(jω)

φ̃(jω)
= K · jω · ũ(jω).

In the case of a system with the HN response, we have

[1 + (jωτ)α]β ĩ(jω) = K · jω · ũ(jω).

The inverse Fourier transformation leads to a fractional differential relationship

[1 + τα −∞Dα
t ]

β i(t) = g(t), g(t) = KV̇(t)

In the case of a step input V(t) = V0l(t), we have

[1 + τα −∞Dα
t ]

β i(t) = KV0δ(t).

Here, l(t) is the Heaviside step function.
The solution of this equation is expressed through the generalized Mittag–Leffler

function proposed by Prabhakar [37],

Eβ
α,γ(z) =

∞

∑
n=0

Γ(β + n)
Γ(β)Γ(αn + γ)n!

zn.

Using the Laplace transform

∞∫

0

e−st tγ−1Eβ
α,γ(atα)dt =

sαβ−γ

(sα − a)β
,
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one can express the relaxation function in the form

f (t) = i(t)/KV0 = τ−αβtαβ−1Eβ
α,αβ

(
−(t/τ)α

)
.

The asymptotic behavior of the solution at large and small times is given by power
laws

f (t) ∼ Γ(1− αβ) τ−αβt−1+αβ, t→ 0,

f (t) ∼ αβτα[Γ(1− α)]−1 t−1−α, t→ ∞.

If β = 0, response f (t) is expressed through the two-parameter Mittag-Leffler function.
The HN response is often considered to be a general expression for the universal

relaxation law [38]. This universality implies the similarity of relaxation laws in different
materials. This universality holds for dielectric relaxation in dipolar and nonpolar materials,
for hopping transport in semiconductors, conduction in ionic materials, delayed lumines-
cence decay, surface conduction on insulators, kinetics of chemical reactions, mechanical
relaxation, magnetic relaxation. Despite the completely different internal mechanisms,
the processes show striking similarity [38]. This universality stimulates the search for
an appropriate stochastic model for the universal relaxation law. Investigations of such
kind have been carried out in many works (see e.g., [39–42]). Based on the solution of
fractional relaxation equation [43] and HN response [44], the memory recovery effect was
demonstrated. Corresponding relaxation curves are described by the exponential law at
initial stage and power law for long-time asymptotics. Charging–discharging curves in
PANI/VA-MWCNT demonstrate the similar behavior (see Section 3.3).

3.2. Phase-Field Model

In [16], a generalized diffusion impedance model for materials with a subdiffusion
phase transition is proposed. The model is based on the fractional Cahn–Hilliard equation
with fractional time derivatives. A one-dimensional cell with reflecting and absorbing
boundaries is considered. Phase-field generalizations of anomalous diffusion models AD-Ib
and AD-Ia presented in [31] are described by the following time-fractional equations [16]
with Caputo and Riemann–Liouville derivatives:

C
0 Dα

t c = M ∇(c ∇µa), RL
0 Dα

t c = M ∇(c ∇µa).

Here, M is the ambipolar mobility, and µa is the effective (ambipolar) chemical potential
(see details in [16]).

The corresponding impedance models were denoted as ZC−CH and ZRL−CH, respec-
tively. Letters denote the type of used fractional time derivative (Caputo or Riemann–
Liouville):

ZC−CH ∝

√
Λ(ω)

iω
F(ω), ZRL−CH ∝

1√
Λ(ω)

F(ω) (7)

with
Λ(ω) = (iω)α.

The form of F(ω) depends on boundary conditions. For a cell with reflecting boundary,
in [16], it was obtained

Frefl(ω) =

(
1 +

√
1− 4χΛ(ω)

)3/2
coth

[
l√
2χ

√
1−

√
1− 4χΛ(ω)

]
−
(

1−
√

1− 4χΛ(ω)
)3/2

coth
[

l√
2χ

√
1 +

√
1− 4χΛ(ω)

]

√
1− 4χΛ(ω)

.

The frequency dependencies of the PANI/VA-MWCNT pseudocapacitor impedance
were described by an equivalent circuit (Figure 4a) containing generalized fractional ele-
ments ZC−CH

refl or ZRL−CH
refl defined by (7).
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The proposed equivalent circuit was substantiated by the following arguments [16].
The ion transport is interpreted in terms of the one-dimensional diffusion model. The
schematic representation of the pseudocapacitor is given in Figure 3a. According to the
de Levie model [18,19], CPE describes the EDL capacity formed around the MWCNTs.
Diffusion of ions in the interelectrode space is described by the open Warburg impedance.
Generalized fractional element ZRL−CH

refl corresponds to phase-field ion diffusion in PANI
filling the VA-MWCNT array. Reflecting boundary condition is assumed for the base of
nanotube array. The RL-CH model (Riemann–Liouville type) implies non-conserving ion
density, and it is related to the EDL formation by fraction of ions during phase-field diffu-
sion in PANI filling the MWCNT forest. The series resistor corresponds to the summarized
resistance of MWCNTs, polymer and electrolyte.

3.3. Linearized Model

The model described in the previous section implies phase-field diffusion of ions in
PANI filling the MWCNT forest. The Cahn–Hilliard equation and the corresponding circuit
model are nonlinear [16]. The expressions for impedance are obtained after linearization
(for details, see [16]). The equivalent scheme is dependent on state of charge. For simplic-
ity, under small voltage perturbations phase-field diffusion can be replaced by ordinary
diffusion (Figure 4). Such a replacement implies the dependence of diffusion coefficient
on the reference values of ion concentration. Below, we will show that this simplified
model describes the observed impedance spectra of PANI/VA-MWNT pseudo-capacitors
quite well.

To study the effect of PANI layer thickness on the characteristics of PANI/VA-MWCNT
pseudocapacitor, samples with one and two PANI layers were studied. The fitted parame-
ters for impedance spectra are provided in Table 1. The used equivalent circuit is shown
in Figure 4b. A comparison of the model impedance spectra with the measured ones is
presented in Figure 5. Cyclic voltammograms of PANI/VA-MWNT pseudo-capacitors
with single and double PANI layers demonstrated in Figure 6 indicate that the sample
with double PANI layer is characterized by higher capacity (0.05 F) than the single layer
pseudo-capacitor (0.025 F).

R

CPE

rWo

Ws

RL-CH

refl
Z

W

R

oCPE

(a) (b)

Figure 4. Equivalent circuit model of PANI-MWCNT pseudocapacitor with fractional phase-field
element (a), and simplified model (b).
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Table 1. Parameters of the equivalent circuit model.

Parameter PANI/VA-MWCNT 1 PANI/VA-MWCNT 2

R, Ohm 4.124 1.623
r, Ohm 0.704 1.360

Cα, 10−4 sα·Ohm−1 5.558 1.270
α 0.8068 0.8654

Ws, Ohm·s−1/2 6.497 10.513
bs, s1/2 2.408 2.272

Wo, Ohm·s−1/2 8.081 0.348
bo, s1/2 0.238 0.0263

CPE is characterized by impedance ZCPE = C−1
α (jω)−α. Two Warburg elements (Ws

and Wo) are included into the circuit. Element Ws corresponds to the one-dimensional
diffusion in a finite cell with an absorbing boundary, the Wo element is the same with a
reflecting boundary. The corresponding impedances are

ZWs =
Ws√

jω
tanh

(
bs
√

jω
)

, ZWo =
Wo√

jω
coth

(
bo
√

jω
)

,

where Ws and Wo are Warburg coefficients, bs,o = d/
√

D, where d is thickness of the Nernst
diffusion layer, D is the diffusion coefficient.

The EIS Spectrum Analyzer software is used to fit the impedance spectroscopy data.
The Levenberg–Marquard algorithm with amplitude minimization has been chosen.
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Figure 6. Cyclic voltammograms of PANI/VA-MWNT supercapacitors with one (a) and two (b)
PANI layers. Scan rates are 20 and 100 mV/s.

Figure 7 demonstrates the charging current curve and discharging curves for different
charging times (θ =30, 60, 120, 240 s). A slight jump noticeable on the curves is associated
with a change in the measuring range of the device. The initial stage is successfully
approximated by an exponential function with a relaxation time τ = 12 s. Long-term
relaxation is dependent on prehistory of charging process. This is a sign of nonlocality in
time behavior that is consistent with the fractional circuit model discussed in this work.
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Figure 7. Charging and discharging curves |I(t)| in the log–log scale. Charging time θ is varied:
θ =30, 60, 120, 240 s. The initial stage is successfully approximated by an exponential function with a
relaxation time τ = 12 s.

4. Temperature-Dependent Fractional Dynamics in PANI/VA-MWCNT
Pseudo-Capacitors

The rate of electrochemical reactions is related to the temperature of the supercapac-
itor, so the order of fractional derivative model should be temperature-dependent [17].
Here, we determine the temperature dependencies of the fractional model parameters for
PANI/MWCNT pseudo-capacitors.

The proposed fractional circuit is consistent with the results of measurements by cyclic
voltammetry, impedance spectroscopy and charge–discharge in potentiostatic mode. We
made sure that the proposed model works satisfactorily for different temperatures. The
temperature dependencies of the fractional model parameters are studied. Equivalent
circuit model parameters for T = 25 ◦C, T = 35 ◦C, T = 45 ◦C, and T = 55 ◦C are listed
in Table 2. Cyclic voltammograms of PANI/VA-MWCNT pseudocapacitor for different
temperatures are demonstrated in Figure 8.

Table 2. Equivalent circuit model parameters for different temperatures.

Parameter T = 25 ◦C T = 35 ◦C T = 45 ◦C T = 55 ◦C

R, Ohm 3.8431 3.1989 2.8983 2.6658
r, Ohm 2.301 2.085 1.737 1.345

Cα, 10−5

sα·Ohm−1 4.47 4.34 4.23 4.13

α 0.88363 0.88906 0.89299 0.89952
Ws, Ohm·s−1/2 40.478 39.609 38.988 35.463

bs, s1/2 6.7649 18.647 25.284 7.0558
Wo, Ohm·s−1/2 3.1208 2.3203 0.54176 1.656

bo, s1/2 0.0907 0.085134 0.020342 0.066649

The resistances R and r decrease with increasing temperature (Figure 9). Apparently,
both parameters are associated with the transfer of ions in the PANI/MWCNT structure.
The α parameter is weakly sensitive to temperature, which means that it is related to
the pore morphology. It is expected that in the case of the dominant role of ion-hopping
transport in PANI, a significant dependence of α on temperature would be observed. The
Cα parameter decreases, even though voltammograms indicate a slight increase in the
supercapacitor’s capacity with increasing temperature. Changes in the parameters of
Warburg elements can be traced from the data in Table 2.
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capacitors for different temperatures.

In contrast to the results of reference [17], we observe an increase in the fractional
exponent with increasing temperature, which is, in some sense, consistent with the theory
of dispersive transport in disordered materials [41,45].
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Figure 9. Equivalent circuit model parameters for different temperatures. Resistances R (a) and r (b),
CPE parameter Cα or fractional capacity in 10−5 sα·Ohm−1 (c) and fractional order α (d).

5. Conclusions

Pseudo-capacitors with electrodes based on PANI/VA-MWCNT composites have
been manufactured and investigated. The measured discharge curves demonstrate the
presence of a memory effect in the devices under study, and the impedance spectra are
described by a fractional-order equivalent circuit model, which can be justified within the
framework of the anomalous diffusion-reaction model or transmission line model. The
proposed model is a linearized version of the nonlinear model based on the fractional
Cahn–Hilliard equation of phase-field diffusion [16]. The fractional-order equivalent circuit
is consistent with the measurements by cyclic voltammetry, impedance spectroscopy, and
potentiostatic charging–discharging. We investigate the temperature dependence of the
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parameters of the fractional model. The resistances R and r associated with the transfer
of ions in the PANI/VA-MWCNT structure decrease with increasing temperature. The
fractional-order α is weakly sensitive to temperature. This fact indicates that fractional
behavior is related to the pore morphology rather than to thermally activated ion-hopping
in the PANI/VA-MWCNT composite. In contrast to the results of reference [17], we observe
a weak increase in the fractional exponent with increasing temperature, which is consistent
with the dispersive transport theory for disordered materials [46].
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Abstract: In this paper, SiO2 aerogels were prepared by a sol–gel method. Using Ketjen Black (KB),
Super P (SP) and Acetylene Black (AB) as a conductive agent, respectively, the effects of the structure
and morphology of the three conductive agents on the electrochemical performance of SiO2 gel anode
were systematically investigated and compared. The results show that KB provides far better cycling
and rate performance than SP and AB for SiO2 anode electrodes, with a reversible specific capacity of
351.4 mA h g−1 at 0.2 A g−1 after 200 cycles and a stable 311.7 mA h g−1 at 1.0 A g−1 after 500 cycles.
The enhanced mechanism of the lithium storage performance of SiO2-KB anode was also proposed.

Keywords: silica-based anode; Ketjen Black; electrochemical properties; lithium-ion battery

1. Introduction

Lithium-ion batteries (LIBs) have attracted much attention due to their high energy
density and long cycle life. To meet the demand for scaled-up LIBs, the development
of electrode materials with high performance is necessary. Graphite is widely used as
anode material for LIBs [1], however, its theoretical lithium storage capacity is relatively
low, only 372 mA h g−1. Therefore, silicon-based anode materials with higher theoretical
specific capacity (4200 mA h g−1) are considered to be anode materials for next-generation
LIBs [2–4]. However, the severe volume expansion (>300%) associated with the various
phase transitions during the intercalation and escape of lithium in/out Si particles have
been a major disadvantage, as this led to rapid capacity fading and significantly limited
commercial application [5]. Although novel silicon anodes with nanosphere [6,7], nan-
otube [8,9], core-shell structure [10,11] and other new structures could improve the cycling
performance [12,13], the complicated process and expensive preparation technology are
prohibitive. In addition, the low initial coulombic efficiency and the poor conductivity
also limited its application [14–16]. Compared to elemental Si anode, silicon oxides show a
smaller volume change during cycling. Furthermore, when using silicon oxides as anodes,
the in situ generated Li2O and lithium silicates during the first lithiation may buffer the
large volume change and lead to the improvement of cycling stability. In cutting-edge
researches, silica [17] with hollow [18], porous [19,20], and other special structures were
composited with carbon [19,21,22], graphite [23], metal [24], and metal oxides [25–28] to
improve its conductivity and lithium storage performance. These methods could effectively
improve the electrochemical performance of silica anodes.
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Carbon conductive agents, which were added during the electrode manufacturing
process, played an important role in the impedance and electrode density. However, their
functional mechanism still needs further investigation [29,30]. The literature has reported
that conductive agents could be used as the mediator [31] to form a conductive network
in electrodes, reducing the contact resistance of the electrode and improving the electron
transport rate. Commercial carbon black, such as acetylene black (AB) and Super-P (SP),
have been used as conductive agents in LIBs [32,33]. Compared with AB and SP, Ketjen
Black (KB) has the advantages of large specific surface area, excellent electrical conductivity,
and relatively narrow pore size distribution, when used as the conductive agent [34].
However, the systematic study of the effect of KB on silica anodes is sparsely reported.

Herein, a network nanostructure of silica (SiO2) anode material using KB as a conduc-
tive agent with high electrochemical performance was prepared. The effects of KB on the
electrochemical performance of silica anode materials were systematically studied. Further-
more, the enhanced storage mechanism of the SiO2-KB anode materials was proposed. This
work revealed that the type of conductive agent played a key role on the electrochemical
performance of anode materials.

2. Materials and Methods
2.1. Synthesis

Briefly, SiO2 aerogels were prepared by the sol–gel method [35]. It was obtained by
taking 8 mL of anhydrous ethanol in a beaker, adding ammonia to adjust the pH to 9–10,
then slowly adding 0.5 mL of TEOS, and left for 4 h at room temperature before adding
1 mL of deionized water to prepare the gel, and freeze-drying to obtain SiO2 aerogels.

SiO2 nanospheres were obtained by first taking 3 mL of NH3·H2O and 60 mL of alcohol
to be mixed and stirred thoroughly, then 1.5 mL of TEOS was added into the above solution
and continued stirring for 10 h at room temperature to obtain a white emulsion, finally the
solid product was collected by centrifugation, washed several times with distilled water
and alcohol, and dried at 70 ◦C for 12 h in a vacuum.

2.2. Materials Characterization

Morphological and compositional analyses for the as-prepared sample were performed
with Transmission Electron Microscope (TEM, JEM-2100F, JEOL Inc., Tokyo, Japan) and
field emission scanning electron microscopy (SEM, S-4800, HITACHI Inc., Tokyo, Japan),
respectively, the crystallographic structure of the obtained SiO2 were characterized by X-ray
diffraction (XRD, X’ Pert PRO, PANalytical Inc., Almelo, The Netherlands), the chemical
component of the SiO2 anode was investigated using an X-ray photoelectron spectroscope
(XPS, ESCALAB 250Xi, Thermo Fisher Scientific Inc., Waltham, MA, USA) using Al kα
radiation, the electrical resistance and electrical resistivity were tested by four-point probe
meter (FPM, RTS-2A, 4 PROBES TECH Inc., China).

2.3. Electrochemical Measurements

The working electrodes were fabricated by compressing a mixture of the active materi-
als (SiO2 nanospheres), a conductive material of KB, AB, or SP, and a binder of polyvinyli-
dene fluoride at the mass ratio of 50:30:20 onto Cu foil current collector (10 µm in thickness),
then dried at 110 ◦C for 12 h. 0.1 mL of 1 M LiPF6 in EC/DMC/DEC (Ethylene carbon-
ate/Dimethyl carbonate/Diethyl carbonate) with volume ratio of 1:1:1 was used as the
electrolyte, electrochemical experiments of half cells were carried out in CR2025 coin-type
cells, 0.6 mm thick lithium discs are used as counter electrodes, and Polypropylene di-
aphragm type Celgard 2500 as battery separator. The cells were assembled in an argon-filled
glove box (MIKROUNA, LAB2000, Shanghai, China). The specific capacity was measured
by a galvanostatic discharge–charge method in the voltage range between 3.0 V and 0.01 V
at a current density of 100 mA g−1 with SiO2 as the active material mass on a battery test
system (Neware, BTS 5 V 10 mA, Shenzhen, China). Cyclic voltammetry was performed
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using an electrochemical workstation (CV, CHI 690D, CH Instruments Ins, Wuhan, China)
between 3 V and 0.01 V (vs. Li/Li+) at a scan rate of 0.5 mV s−1.

3. Results and Discussion

Figure 1a shows the SEM image of the SiO2 aerogel, and it can be seen that the
prepared SiO2 aerogel particles are uniform in size with sphere in shape. Figure 1b shows
that the average size of SiO2 aerogel particle is about 100 nm. Figure 1c is the XRD pattern
of the SiO2 aerogel, the crystal structure of the prepared silica aerogel only shows a broad
diffraction peak at around 23◦, indicating an amorphous structure.
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Figure 1. SEM (a), TEM (b) image, and XRD (c) pattern of silica aerogel.

Figure 2 shows the TEM and elemental mapping images of SiO2 aerogel mixed with
different conductive agents, respectively. It can be seen that different conductive agents
form different structures when combined with silica aerogel. Figure 2a shows that the
aerogel mixture with KB (SiO2-KB) has an internet structure with uniformly dispersed
nanoparticles, which indicates that a conductive network can be formed to provide a
large number of effective conductive pathways and contacts for Li-ions. Furthermore, the
elemental distribution shows a cobweb-like carbon chain pathway. For comparison, we
also investigated the differences in the composition of the conductive pathways of SiO2-SP
and SiO2-AB, respectively, under identical conditions. Figure 2b shows that the SiO2-SP
has a branched structure with larger SiO2 particles and more agglomerates than that of
SiO2-KB. Figure 2c shows that the SiO2-AB stacks together and has more agglomerate
structure than that of SiO2-SP and SiO2-KB. Therefore, it is clear that the SiO2-KB has the
best dispersion, indicating it has excellent conductive network channels.

To further confirm the effects of the three conductive agents on the electrochemical
performance of SiO2 anode, a four-probe electrical resistance test was carried out and
the result is shown in Table 1, the type of conductive agents plays an important role on
the electrical resistance of SiO2 anode. KB provides much lower electrical resistance and
electrical resistivity than SP and AB for SiO2 anode, which is helpful to improve the rate
performance of electrode.

Table 1. The electrical resistance and electrical resistivity of anode electrodes.

Sample SP AB KB

sheet resistance (Ω) 125.0 148.2 64.9
electrical resistivity

(Ω·cm) 12.50 14.82 6.49

The cycling performance and coulombic efficiency of the SiO2 anode with differ-
ent conductive agents are shown in Figure 3a. The first discharge capacity of SiO2-KB
reaches 378.2 mA h g−1, the capacity has a slight decrease in the several consequent cy-
cles, and maintains 351.4 mA h g−1 after 200th cycles at 0.2 A g−1. In comparison
to SiO2-KB, electrodes of SiO2-SP and SiO2-AB exhibit a lower reversible capacity of
139.4 mA h g−1 and 118.7 mA h g−1 at the first cycle and after 100th cycles display the
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capacity of 163.9 mA h g−1 and 137.7 mA h g−1 at 0.2 A g−1, respectively, which indicates
that KB is more beneficial in facilitating the silica electrochemical reaction. The specific
capacity of SiO2-KB decreased before the first 40 cycles, and then gradually increased, even
after more than 100 cycles; the former is mainly due to the gradual lithiation of SiO2 and
the generated irreversible products such as lithium silicate and Li2O, and the latter is due
to the generated elemental silicon, which can provide the reversible specific capacity by the
Si-Li alloy reaction.
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current density of 1.0 A g−1 (d) of silica aerogel anode with three carbon conductive agent.

272



Nanomaterials 2022, 12, 692

The rate capability of the electrodes is shown in Figure 3b, with different current densities
of 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, and 4.0 A g−1. The SiO2-KB electrode attains an average discharge
capacity of 318.2 mA h g−1, 263.6 mA h g−1, 231.9 mA h g−1, 213.4 mA h g−1, 207.7 mA h g−1,
176.7 mA h g−1, and 151.4 mA h g−1, respectively, at the above current densities. The stable
high reversible capacity of 331.1 mA h g−1 recovered when the current density turned back to
0.2 A g−1. Compared to SiO2-SP and SiO2-AB, SiO2-KB shows more excellent rate properties,
indicating that the SiO2-KB has excellent structural stability.

To determine the origin of the electrochemical behavior of SiO2-KB, electrochemical
impedance spectra (EIS) test was performed at their open-circuit potential. The equivalent
circuits inserted in Figure 3c were employed to analyze the Nyquist plot of the desired
anode material. The total impedance could be regarded as the electrolyte resistance Re
and the charge transfer resistance Rct, and Cdl is the double-layer capacitance. Zw is
the Warburg impedance that reflects the diffusion of lithium-ion in the solid. CL means
the simplified intercalation capacitance. A semicircle was an indication for the charge
transfer at high frequency range, while the straight line for the low frequency lithium-ion
diffusion in the electrode material [36]. Obviously, the resistance of SiO2-KB (Rct = 130 Ω)
is much lower than that of SiO2-SP (Rct = 180 Ω) and SiO2-AB (Rct = 240 Ω), suggesting
that KB could remarkably enhance the silica electrical conductivity. Furthermore, SiO2-
KB presents an exciting long-term cycling performance and delivers a specific capacity
of 311.7 mA h g−1 at a current density of 1.0 A g−1 after 500 cycles. In comparison to
SiO2-KB, SiO2-SP and SiO2-AB exhibit a much lower reversible capacity of 66.4 mA h g−1

and 75.9 mA h g−1, respectively, at the first cycle, and after 500th cycles, the capacity only
remains 115.5 mA h g−1 and 123.9 mA h g−1, respectively, which is shown in Figure 3d.

To confirm the structural integrity of the electrodes after cycle tests, SEM images of
the different electrodes with the three conductive agents after 200 cycles were obtained and
illustrated in Figure 4. For the electrode of SiO2-KB, the shape of SiO2 remained constant
after 200 cycles (Figure 4a,b). For the electrode of SiO2-SP, the silica undergoes a slight
agglomeration phenomenon after 200 cycles (Figure 4c,d), while for the electrode of SiO2-
AB, the SiO2 particles stick together and form large particles after 200 cycles (Figure 4e,f),
which reduces the contact area between the silica, and leads to the reduction in capacity.
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Figure 5 shows the CV curves of the SiO2 aerogel electrodes at a scan rate of 0.5 mV s−1

with three different conductive agents, respectively. As can be seen in Figure 5, the reduction
characteristic peak potential for the reaction of silica to produce lithium silicate and lithium
oxide is 0.42 V, 0.65 V, and 0.8 V when using KB, SP, and AB as the conductive agent,
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respectively. The peak potential is significantly shifted to a smaller voltage for the KB
(Figure 5a) compared to the SP (Figure 5b) and AB (Figure 5c). The oxidation characteristic
peak potential of 0.25 V for the silicon-lithium alloy when using KB as the conductive
agent also shows a significant shift to a smaller voltage compared to the SP (0.28 V) and
AB (0.35 V), which is mainly due to the fact that KB has higher conductivity than SP and
AB, where KB acts as a microcurrent collector between SiO2 and the current collector to
accelerate the speed of electron movement and also effectively increase the migration rate
of Li+ in the electrode material. Subsequently, the polarization of the silica anode is reduced,
which will facilitate the occurrence of electrochemical reactions [37].
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Figure 5. CV curve for the first five cycles of the silica aerogel when KB (a), SP (b), and AB (c) as
conductive agents.

The chemical states of Si in SiO2 anode with KB (Figure 6a), SP (Figure 6b) and AB
(Figure 6c) during discharge/charge were identified by XPS, where energy correction for
surface contamination was performed using C1s (284.6 eV) as a standard. The Si 2p3/2
peak shifts from 104.0 to 103.0 eV when discharged to 0.01 V, suggesting the reduction
in Si to LixSi. When charged to 3 V, the peak shifts back to the original position of the
SiO2 electrode before discharge/charge (blue curve). It is clear that the curve in SiO2-KB
fluctuates more strongly than the smooth curves in SiO2-SP and SiO2-AB, indicating that
the electrochemical reaction promoted by SiO2 using KB as a conductive agent produces
a higher amount of products containing elemental silicon, which is conducive to the
improvement of electrochemical performance.
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Based on previous researches, the possible electrochemical reaction mechanisms of
SiO2 can be summarized into the following reactions [38,39]:

SiO2+4Li++4e− → 2Li2O + Si (R1)

2SiO2+4Li++4e− → Li4SiO4+Si (R2)

Si + xLi++xe− ↔ LixSi (R3)

Reactions of R1, and R2 are irreversible (potential of KB-0.25 V, SP-0.28 V, AB-0.35 V)
and occur simultaneously although they compete with each other, and the obtained Si is
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electrochemically active, while Li2O, and Li4SiO4 are electrochemically inactive [22]. The
reaction R1 can produce more Si and result in a higher capacity than the reaction R2 [13].

To better understand the storage mechanism and excellent high-rate performance of
the SiO2 aerogel electrode with KB, the CV curves of the SiO2 aerogel electrode under the
three carbon conductive agents at different scan rates from 0.5 to 5 mV s−1 were collected
and shown in Figure 7a,e,i. Generally, the current obeys a function relationship with the
voltage during the sweep [40–43]:

i = avb (1)

where a and b are the parameters. The capacity contributions from the diffusion-controlled
intercalation process and the surface-induced capacitive process can be qualitatively ana-
lyzed by the b-value. For a diffusion-controlled process, the b-value is 0.5, while the b-value
near 1 means a totally capacitive-controlled process. According to the fitted line log (v)-log
(i) curve depicted in Figure 7b,f,j, the b-value is 0.84, 0.86, 0.66, respectively. Furthermore,
in view of the capacity contribution, the current (i) under a certain potential (V) can be
divided into two parts [42–44]:

i(V) = k1v + k2v
1
2 (2)

where k1v and k2v
1
2 present charge stemmed from the surface capacitive charge and

diffusion-controlled charge, respectively. The area share of the pseudocapacitive behavior
of the silica aerogel electrodes with the three different conductive agents is shown in the
paler parts of Figure 7c,g,k. The pseudocapacitance contributions are shown in Figure 7d,h,l.
The pseudocapacitance contribution of the SiO2 aerogel electrode with KB at scan rates of
1.0 to 5.0 mV s−1 is 41%, 49%, 54%, 58% and 61%, respectively; 51%, 58%, 63%, 67% and
70%, respectively, for SP and 65%, 73%, 77%, 79% and 80%, respectively, for AB. It can be
seen that the use of different forms of conductive agents has a greater effect on the contri-
bution of the pseudocapacitance in the SiO2 aerogel electrode. The storage mechanism of
the SiO2-KB electrode is dominated by diffusion-controlled intercalation behavior, which is
due to the excellent conductive network structure of KB and leads to an accelerated redox
reaction. The contribution of surface-driven pseudocapacitance behavior for the SiO2-KB
electrode gradually increases as the scan rate increases, but is still less than that SiO2-SP
and SiO2-AB. The contribution of the pseudocapacitance behavior of the SiO2-KB electrode
increases with increasing scan rate, however remains smaller than that of the SiO2-SP and
SiO2-AB electrodes.

Li+ diffusion coefficients during electrochemical charge/discharge for silica aerogels
with different conductive agents calculated from the GITT method [45–47] are presented
in Figure 8. The voltage change curve of the first charge/discharge under pulse current
when using three different carbon conductive agents is shown in Figure 8a, and the Li-
ion diffusion coefficient calculated from the pulse charge/discharge curve is shown in
Figure 8b. The longer charging and discharging duration of Li+ in the diffusivity test curve
of SiO2-KB is due to the special network structure of KB, which enables the nano-SiO2
particles to perform electrochemical reactions without agglomeration and less hindering to
the transport of Li+. This indicates that the KB conductive agent accelerates the diffusion of
Li+ and enables the sufficient electrochemical reaction of SiO2 [16].

In order to confirm the effect of the KB, the electrochemical properties of SiO2 nanosphere
anode was compared with three different conductive agents, respectively. The morphology of
the SiO2 nanospheres is shown in Figure 9a, which has a nice monodispersity and smooth
surface with an average particle size of 100 nm. The inset in Figure 9a shows the XRD
pattern of the SiO2 nanospheres; a broad peak at 23◦ suggesting that the SiO2 nanospheres are
amorphous in structure similar to the SiO2 aerogels. Figure 9b–d show the CV curves of the
SiO2 nanosphere anode at a scan rate of 0.5 mV s−1 when using the three different conductive
agents, respectively. The reduction characteristic peak potential for the reaction of SiO2 to
produce Li2O and Li4SiO4 locates at 0.5 V for the SiO2 nanospheres-KB anode, which has a
significant shift to the left compared to the anodes of SiO2 nanospheres-SP (0.85 V) and SiO2
nanospheres-AB (0.9 V), indicating that it also has the similar effect of reducing polarization
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of SiO2 anodes prepared by different methods when using KB as the conducting agent, and
strongly promotes the electrochemical reaction.
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Figure 7. Behaviors of pseudocapacitance in silica aerogels using KB (a–d), SP (e–h), and AB (i–l) as
conductive agents.
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Figure 9. The SEM image and XRD pattern (the inset) (a) of silica nanospheres, CV curves of the first
three cycles of the silica nanospheres when using KB (b), SP (c), and AB (d) as conductive agents,
respectively.

The function of KB can be described as a schematic diagram conductive network, as
shown in Figure 10, the special structure of KB connects the SiO2 aerogel particles together
and forms an excellent conductive network of dispersed SiO2-KB, which provides rich
electron transfer channels and improves the electrochemical performance of silica anode.
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Figure 10. Schematic diagram conductive network of KB.

4. Conclusions

In summary, the effects of the types and the structures of conductive agents on the
electrochemical performance of SiO2 aerogel electrode were investigated, and the results
show that the KB as a conductive agent not only can uniformly disperse and wrap the SiO2
nanoparticles, but also can build a good conductive network to enhance the transport rate
of lithium-ions and effectively increase their electrochemical activity. This work proves and
verifies that SiO2 aerogel can be used as a recommended electrode material for high-rate
LIBs through choosing appropriate conductive agent.

Author Contributions: Conceptualization, methodology, writing—original draft preparation, in-
vestigation, and resources, G.H.; data curation, visualization, X.S.; software, H.L.; validation, D.G.,
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Abstract: Si is a promising material for applications as a high-capacity anode material of lithium-ion
batteries. However, volume expansion, poor electrical conductivity, and a short cycle life during the
charging/discharging process limit the commercial use. In this paper, new ternary composites of
sea urchin-like Si@MnO2@reduced graphene oxide (rGO) prepared by a simple, low-cost chemical
method are presented. These can effectively reduce the volume change of Si, extend the cycle life,
and increase the lithium-ion battery capacity due to the dual protection of MnO2 and rGO. The sea
urchin-like Si@MnO2@rGO anode shows a discharge specific capacity of 1282.72 mAh g−1 under
a test current of 1 A g−1 after 1000 cycles and excellent chemical performance at different current
densities. Moreover, the volume expansion of sea urchin-like Si@MnO2@rGO anode material is
~50% after 150 cycles, which is much less than the volume expansion of Si (300%). This anode
material is economical and environmentally friendly and this work made efforts to develop efficient
methods to store clean energy and achieve carbon neutrality.

Keywords: Si; MnO2; rGO; sea urchin-like structure; lithium-ion battery; high performance

1. Introduction

In recent years, environmental pollution caused by carbon emissions has an increasing
urgency for developing high-density, long lifetime storage materials or storage devices for
clean energy. As a carrier of clean energy, lithium-ion batteries play a pivotal role in the
country’s goal of achieving carbon neutrality [1–4]. A Silicon-based electrode is one of the
most promising candidates as an anode for lithium-ion batteries and is expected to replace
the use of a commercial graphite electrode (372 mAh g−1) due to its remarkable theoretical
capacity (4200 mAh g−1) [5,6]. It is also widely regarded for its good voltage platform,
environmental friendliness, and abundant reserves. Despite these advantages, Si-based
lithium-ion batteries still face severe volume expansion during the charging/discharging
process, poor electrical conductivity, and a short cycle life [7,8]. The safety hazards and
unstable performances of Si materials resist the applications of lithium-ion batteries in
commercial use. Therefore, many attempts on modifying Si materials have been made
to restrict the volume expansion and enhance electrical conductivity for improving the
performance of Si-based lithium-ion batteries [9–12].

The rational design of an anode has been considered as an effective strategy to en-
hance Si-based lithium-ion batteries’ performances [13,14]. Some studies have reported
that coating or doping can effectively reduce the large volume changes and the subsequent
accumulation of excessive stress during lithiation–delithiation cycles [15–19]. Especially,
Si nanospheres are combined with carbon materials, a strategy that aims to provide ex-
tra space to accommodate volumes’ expansion and improve the electrical conductivity
of the electrode, such as Si/ reduced graphene oxide (rGO) and Si/Carbon Nanotube
(CNT) [20–22]. However, the size gap between Si nanospheres and rGO sheets is large,
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and Si nanospheres tend to agglomerate and do not easily migrate uniformly into the rGO
sheets to form a stable structure. It is worth mentioning that transition metal oxides are
also good anodes with high theoretical capacity, such as MnO2 (1233 mAh g−1) [23–28]. In
addition, the volume changes of MnO2 in lithium-ion intercalation and deintercalation is
very small. A reasonable coating structure was used to grow MnO2 evenly outside the Si
nanospheres, which can avoid the material crushing and form an unstable solid electrolyte
interface (SEI) film due to the volume expansion of Si nanospheres during the circulation
process, lowering the capacity. At the same time, rGO has high electrical conductivity
and excellent physical properties. The low conductivity of transition metal oxides and Si
nanospheres can be compensated by rGO. MnO2 wraps the Si nanosphere to avoid the
agglomeration of the Si nanosphere, increase the contact area with the rGO sheet, ensure
the interface strength between MnO2 and rGO, and improve the structural stability of the
material [29–32].

Herein, we propose a simple hydrothermal method to produce sea urchin-like
Si@MnO2@rGO as anodes. In this unique structure, MnO2 and rGO surrounding Si
nanospheres formed a strong armor, relieving the mechanical strain generated by the
volume expansion of the Si nanospheres and providing enough space to buffer, which helps
provide to a long lifetime. In addition, the sea urchin-like Si@MnO2@rGO anode showed
an initial discharge capacity of 1378.15 mAh g−1 at a current density of 0.1 A g−1 and a
discharge specific capacity was maintained at 1282.72 mAh g−1 under a test current of
1 A g−1 after more than 1000 cycles, showing excellent chemical performance at different
current densities. Therefore, this rational design provides a new route for the development
of high-performance Si-based anodes; this work made efforts to store clean energy and
achieve carbon neutrality [33,34].

2. Materials and Methods
2.1. Materials

All chemicals were analytical reagent grade and used as received. Graphene oxide (GO)
was purchased from XFNANO Materials Tech Co., Ltd, Nanjing, China. Si nanospheres,
ethanol, MnSO4, KMnO4, KH550, and NaBH4 were obtained from National Medicines
Corporation Ltd, Shanghai, China.

2.2. Preparation of Si@MnO2@rGO

First, 0.5 g of GO and 0.1 of M NaBH4 were ultrasonically dispersed in 100 mL of
deionized water with stirring treatment at 80 ◦C for 24 h. After cooling to room temperature,
the sample was centrifuged to obtain reduced graphene oxide (rGO). The above-prepared
rGO of 0.05 g was dispersed in 20 mL of deionized water and sonicated for 30 min, denoted
as Solution A.

Then, 0.086 g of Si nanospheres (50 nm) were dispersed in a beaker containing 20 mL
of water and 20 mL of alcohol, followed by the addition of 50 µL of KH550 silane coupling
reagent. The sample was sonicated for 30 min to form a homogeneous solution, denoted
as Solution B. Next, Solution A, Solution B, 0.64 g of MnSO4, and 1 g of KMnO4 were
sequentially added in a reaction vessel and stirred with magnetic force for 2 h. The reaction
temperatures were set as 20, 50, or 160 ◦C, respectively. After cooling to room temperature,
the products were centrifuged with water and ethanol several times to remove the residual
reaction products. A freeze-dried treatment was used to remove the water. Finally, the
samples were denoted as Si@MnO2@rGO-20◦C, Si@MnO2@rGO-50◦C, and Si@MnO2@rGO-
160◦C, respectively.

The synthesis of Si@MnO2 was similar to the synthesis Si@MnO2@rGO, only missing
the rGO, denoted as Si@MnO2-20◦C, Si@MnO2-50◦C, and Si@MnO2-160◦C, respectively.

2.3. Electrochemical Measurements

The homogeneous slurry was prepared by mixing Si@MnO2@rGO, acetylene black,
and polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) with a mass ratio of
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8:1:1. After fully stirring, the prepared slurry was evenly coated on a copper foil by a sputter
coater, whose space was 25 µm. The dimeter of electrode was 1.5 cm and the anode material
mass load was ~1 mg. The electrolyte of each coin cell was ~45 µL. Then, the electrode
sheet was placed into a vacuum drying oven for 12 h at 80 ◦C. The working electrode was
the prepared electrode sheet (Si@MnO2@rGO composites). The electrolyte was a LiPF6
(1.0 mol L−1) in a 1:1:1 v/v/v mixture of ethylene carbonate, dimethyl carbonate, and ethyl
methyl carbonate. The separator was Celgard 2400 (Saibo, Beijing, China). The capacity
calculation and cycling rate were set by a battery testing system (CT3008, Kejing, Hefei,
China). The galvanostatic charge/discharge (GCD) tests were conducted in the voltage
window of 0.1–3.2 V. The cyclic voltammetry curve (CV) was carried out with scan rate of
0.1 mV s−1 between the voltage range of 0.1–3.2 V using an electrochemical workstation
(CHI 600E, Chenhua, Shanghai, China). The electrochemical impedance spectroscopy (EIS)
was performed over the frequency range from 100 kHz to 0.1 Hz with an alternating current
(AC) impedance of 5 mV and was also recorded by an electrochemical workstation (CHI
600E, Chenhua, Shanghai, China).

2.4. Materials’ Characterization

Field-emission scanning electron microscopy (FE-SEM; SU8010, Hitachi High-Tech,
Tokyo, Japan) and field-emission transmission electron microscopy (FE-TEM; JEM2100F,
JEOL, Tokyo, Japan) were used to characterize the morphology and elemental distribution
of the electrode materials. X-ray diffraction (XRD; Rigaku lnc., Tokyo, Japan) was used to
characterize the phases, crystallinity, and crystal structures of the samples. The species and
chemical composition of the surface elements of the samples were analyzed using X-ray
photoelectron spectroscopy (XPS, Thermo AXIS-SUPRA, Kratos, Manchester, UK).

3. Results and Discussion
3.1. Anode Material Design and Morphology Characterization

Figure 1 shows a schematic of the preparation of the sea urchin-like Si@MnO2@rGO
composites. First, GO sheets were reduced to rGO by a hydrothermal method with NaBH4.
Then, the rGO was collected and dispersed in deionized water (Solution A). Next, Si
nanospheres were dispersed in a solution of water, alcohol, and the KH550 silane coupling
agent (Solution B). The composites were well grafted by KH550, improving the conductiv-
ity. Finally, Solution A, Solution B, KMnO4, and MnSO4 were added in a reaction vessel
and stirred with magnetic force for 2 h. The reactions were carried out at different tem-
peratures, resulting in different morphologies. Si nanospheres were coated with MnO2
and rGO, which may have contributed to the KH550. The unique double-layer structure
of MnO2 and rGO effectively mitigated the volume expansion of Si nanospheres during
the charging/discharging process. In addition, rGO had excellent electrical conductivity,
compensating for the low electrical conductivity of Si nanospheres and MnO2. This was
the basis of the rational design of the Si-based anode material for enhancing lithium-ion
battery performance.

Figure 2 shows the morphologies of the materials grown at three different tempera-
tures. The morphology of Si@MnO2-20◦C is shown in Figure 2a. The MnO2 formed disor-
dered and entangled filaments on the surface of Si nanospheres. Figure 2b shows Si@MnO2-
20◦C at a high magnification. The surface of the material was rough and the diameter of
Si@MnO2-20◦C particles was 200 nm. Figure 2c is an SEM image of Si@MnO2@rGO-20◦C,
showing that the rGO covered the Si@MnO2-20◦C. However, some MnO2 nanowires ap-
peared on the surface of rGO, which suggested that the material was not stable. Figure 2d,e
show the SEM images of Si@MnO2-50◦C at different magnifications, respectively. As
shown in Figure 2d, the MnO2 formed a sea urchin-like shell coating on the surface of
Si nanospheres. Figure 2e shows the sea urchin-like Si@MnO2-50◦C. The stings (MnO2)
were 100–300 nm in length. Figure 2f shows Si@MnO2@rGO-50◦C. The rGO wrapped the
Si@MnO2-50◦C without obvious damage to the structure. Interestingly, this rGO surface
was clean, without any MnO2 nanowires, indicating the sea urchin-like structure was more
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stable. MnO2 nanowires were vertically oriented on the outer layer of the Si nanospheres,
imbedding rGO layers, forming a stable structure, which can buffer the excessive expansion
of the Si nanospheres during the charging/discharging process and extend the batteries’
lifetime. Figure 2g shows the SEM image of Si@MnO2-160◦C. The MnO2 nanowires grew
longer and coated the surface of the Si nanospheres. Figure 2h is the enlarged view of
Figure 2g. The plentiful MnO2 nanowires were interleaved. Figure 2i shows the images of
Si@MnO2@rGO-160◦C. It can be clearly seen that the MnO2 nanowires were broken and
dispersed on the surface of rGO, which indicates that the Si@MnO2@rGO-160◦C was not
stable enough. The stability of the material is one of the important factors of the lithium-ion
batteries’ performance. The high stability of the anode material may suggest the long
life-time. Therefore, the Si@MnO2@rGO-50◦C was chosen for the following test.
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sponded to the (111) plane of Si, having a separation of 0.31 nm [35,36]. In addition, lattice 
fringes having an interplanar spacing of 0.47 nm can be seen, and this is consistent with 
the (200) plane of MnO2 [25,37,38]. The element mapping of the Si@MnO2@rGO-50°C com-
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Figure 2. (a) SEM image of the Si@MnO2-20◦C composite. (b) Enlarged view of the SEM image
of the Si@MnO2-20◦C composite. (c) SEM image of the Si@MnO2@rGO-20◦C composite. (d) SEM
image of the Si@MnO2-50◦C composite. (e) Enlarged view of the SEM image of the Si@MnO2-50◦C
composite. (f) SEM image of the Si@MnO2@rGO-50◦C composite. (g) SEM image of the Si@MnO2-
160◦C composite. (h) Enlarged view of the SEM image of the Si@MnO2-160◦C composite. (i) SEM
image of the Si@MnO2@rGO-160◦C composite.
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Figure 3a shows the Energy Dispersive Spectrometer (EDS) analysis of the ball-milled
material, using aluminum foil as a substrate, and the inset shows the atomic percentages of
elements in the materials. The inset shows that the Si@MnO2@rGO-50◦C contained ~48% Si,
~21% rGO, and ~31% MnO2. Table S1 shows the capacity contribution percentages of anode
materials (Si, ~63.3%; MnO2, ~35.6%; and rGO, ~1.1%). The existence of MnO2 can not only
resist the volume expansion of Si, but also provide the capacity contribution. Figure 3b,c
show HRTEM images of the Si@MnO2@rGO-50◦C composite at different magnifications.
Si nanospheres were coated with rGO and MnO2. The lattice fringes corresponded to the
(111) plane of Si, having a separation of 0.31 nm [35,36]. In addition, lattice fringes having
an interplanar spacing of 0.47 nm can be seen, and this is consistent with the (200) plane of
MnO2 [25,37,38]. The element mapping of the Si@MnO2@rGO-50◦C composite is shown in
Figure 3d–h. Mn element and O element contributed to MnO2; Si element contributed to Si
nanospheres. C element dispersed throughout the image may have contributed to both the
substrate and rGO.

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. (a) Energy Dispersive Spectrometer (EDS) spectra of Si@MnO2@rGO-50°C. Inset showing 
the respective substance of Si@MnO2@rGO-50°C. (b,c) HRTEM images of the Si@MnO2@rGO-50°C 
composite at different magnifications. (d–h) Elemental mapping of the Si@MnO2@rGO-50°C com-
posite. 

Figure 4a shows the XRD patterns of rGO, Si, Si@MnO2-50°C, and Si@MnO2@rGO-
50°C, respectively. In the XRD pattern of Si@MnO2-50°C, the pronounced peaks at 28.5°, 
47.4°, 56.2°,58.9°, 69.2°, 76.5°, and 88.2° corresponded to the (111), (220), (311), (222), (400), 
(331), and (422) planes of Si (PDF#77-2108). In addition, the characteristic peaks at 12.7°, 
18.0°, 28.7°, 37.6°, 41.1°, 49.8°, 59.5°, 65.5°, 68.5°, and 72.5° corresponded to the (110), (200), 
(310), (121), (420), (411), (260), (002), (202), and (631) planes of MnO2 (PDF#72-1982). The 
XRD pattern of the Si@MnO2@rGO-50°C composites contained peaks corresponding to Si 
and MnO2, as well as the broad peak ranges from 20° to 30°, which were indexed to the 
standard peaks of rGO [39–42]. Figure 4b shows the XPS spectrum of the Si@MnO2@rGO-
50°C composites, which revealed the presence of Si, Mn, O, and C, corresponding to ele-
ment mapping (Figure 3d–g). Figure 4c,d shows the high-resolution XPS spectra. Figure 
4c shows the Si 2p spectrum, whose peak at 99.7 eV was related to Si-Si bonds; two small 
peaks at 101.9 and 103.6 eV contributed to organic Si and Si-O, respectively, which may 
have been caused by the slight oxidation of Si in the thermal-treated process. Figure 4d 
shows the Mn 2p spectrum, which contained two spin–orbit peaks corresponding to Mn 
2p3/2 (642.5 eV) and Mn 2p1/2 (654.1 eV) of MnO2, whose separation between these peaks 
was 11.6 eV. 

Figure 3. (a) Energy Dispersive Spectrometer (EDS) spectra of Si@MnO2@rGO-50◦C. Inset showing
the respective substance of Si@MnO2@rGO-50◦C. (b,c) HRTEM images of the Si@MnO2@rGO-50◦C
composite at different magnifications. (d–h) Elemental mapping of the Si@MnO2@rGO-50◦C composite.

Figure 4a shows the XRD patterns of rGO, Si, Si@MnO2-50◦C, and Si@MnO2@rGO-
50◦C, respectively. In the XRD pattern of Si@MnO2-50◦C, the pronounced peaks at 28.5◦,
47.4◦, 56.2◦,58.9◦, 69.2◦, 76.5◦, and 88.2◦ corresponded to the (111), (220), (311), (222), (400),
(331), and (422) planes of Si (PDF#77-2108). In addition, the characteristic peaks at 12.7◦,
18.0◦, 28.7◦, 37.6◦, 41.1◦, 49.8◦, 59.5◦, 65.5◦, 68.5◦, and 72.5◦ corresponded to the (110), (200),
(310), (121), (420), (411), (260), (002), (202), and (631) planes of MnO2 (PDF#72-1982). The
XRD pattern of the Si@MnO2@rGO-50◦C composites contained peaks corresponding to Si
and MnO2, as well as the broad peak ranges from 20◦ to 30◦, which were indexed to the
standard peaks of rGO [39–42]. Figure 4b shows the XPS spectrum of the Si@MnO2@rGO-
50◦C composites, which revealed the presence of Si, Mn, O, and C, corresponding to element
mapping (Figure 3d–g). Figure 4c,d shows the high-resolution XPS spectra. Figure 4c shows
the Si 2p spectrum, whose peak at 99.7 eV was related to Si-Si bonds; two small peaks at
101.9 and 103.6 eV contributed to organic Si and Si-O, respectively, which may have been
caused by the slight oxidation of Si in the thermal-treated process. Figure 4d shows the Mn
2p spectrum, which contained two spin–orbit peaks corresponding to Mn 2p3/2 (642.5 eV)
and Mn 2p1/2 (654.1 eV) of MnO2, whose separation between these peaks was 11.6 eV.
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3.2. Lithium-Ion Battery Performance

A CV experiment carried out to further evaluate the lithium storage behavior is shown
in Figure 5. Figure 5a shows the CV curves of Si@MnO2@rGO-50◦C as the independent
anodes of lithium-ion batteries for the first four cycles at a scan rate of 0.1 mV s−1 between
0.1 V and 3.2 V. In the first cycle, a clear cathodic peak at 0.16 V corresponded to the lithium
alloying process of crystalline Si and the formation of an amorphous LixSi phase; a clear
cathodic peak at 0.10 V corresponded to the formation of the Li15Si4 phase. An anodic peak
at 0.24 V was related to the delithiation of Li15Si4; an anodic peak at 0.50 V was related to
the transition from the LixSi phase to amorphous Si, according to Equations (1) and (2).

xLi+ + Si + xe− ↔ LixSi, (1)

LixSi + xLi+ + xe− ↔ Li15Si4, (2)
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and Si@MnO2@rGO-160◦C at 0.1 A g−1. (d) Rate performance of the Si@MnO2@rGO-50◦C. (e) Long-
term cycling performance of the Si@MnO2@rGO-50◦C at 1 A g−1.

The redox peaks of Si coincided with those reported previously [43–45]. In addition,
the reversible redox peaks at 1.23 and 0.36 V, respectively, were consistent with the lithiation
and delithiation reactions of MnO2, according to Equation (3). When the cathodic peak was
0.36 V, Li was inserted into the anode to form LiO2 and MnO2 was reduced to Mn. An
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anodic peak at 1.23 V was related to the charging process of the lithium ion battery; Mn can
facilitate the decomposition of LiO2.

MnO2 + 4 Li↔ 2 Li2O + Mn, (3)

In the subsequent scans, the redox peaks were largely coincident, which was attributed
to the stability of the Si@MnO2@rGO-50◦C, indicating the good electrochemical reversibility
for lithium-ion batteries.

Figure 5b shows the galvanostatic discharge/charge curves of Si@MnO2@rGO-50◦C
at 0.1 A g−1 over the range between 0.1 V and 3.2 V. In the first cycle, the initial discharge
capacity was 1378.15 mAh g−1. In the second, third, fifth, and 10th cycles, the discharge
specific capacities were 1279.21, 1208.02, 1150.74, and 1093.70 mAh g−1, respectively. In the
subsequent cycles, the charge and discharge curves basically overlapped, which indicated
good capacity retention. In addition, the plateau of Si at 0.5 V in the figure was consistent
with the CV results.

Figure 5c shows the cycling performances of the anode (Si, Si@MnO2-50◦C,
Si@MnO2@rGO-20◦C, Si@MnO2@rGO-50◦C, and Si@MnO2@rGO-160◦C) at a current den-
sity of 0.1 A g−1. Of these samples, Si@MnO2@rGO-50◦C showed the best cycling perfor-
mance. The initial discharge specific capacity of Si was 1855.62 mAh g−1. However, after
20 cycles, the discharge specific capacity decayed to 330.03 mAh g−1; after 150 cycles, the
discharge specific capacity was almost 0. This is because, during the cycling process, the
slurry of the active material became dislodged from the collector due to the serious volume
expansion of Si nanospheres caused by lithium-ion intercalation and deintercalation. When
the Si nanospheres underwent volume changes during the charging/discharging process,
the formed SEI film was broken, resulting in new surfaces being exposed in the electrolyte.
The exposed surfaces needed external lithium ions to form a stable SEI film, which led to a
dramatic decrease in capacity. Although Si@MnO2-50◦C had a higher discharge specific
capacity than Si nanospheres alone after 150 cycles, it still did not meet current demands for
battery energy storage. The initial specific capacity of Si@rGO-50◦C was 1180.41 mAh g−1;
after 150 cycles, the capacity was maintained at 543.84 mAh g−1 (Figure 5c). Compared
with Si@rGO-50◦C and Si@MnO2@ rGO-50◦C, the existence of MnO2 improved the specific
capacity, which may have been due to the synergistic effect of MnO2 and rGO. The initial
specific capacities of Si@MnO2@rGO-20◦C and Si@MnO2@rGO-160◦C were 1670.24 and
2450.32 mAh g−1, respectively. Furthermore, after 100 cycles, the specific capacities were
512.14 and 665.19 mAh g−1, respectively, with low capacity retention rates. The initial spe-
cific capacity of Si@MnO2@rGO-50◦C was 1378.14 mAh g−1; after 150 cycles, the capacity
was maintained at 960.21 mAh g−1. Among Si@MnO2@rGO-50◦C, Si@MnO2@rGO-20◦C,
and Si@MnO2@rGO-160◦C, although the Si@MnO2@rGO-50◦C exhibited a lower capacity,
it had the excellent cyclability, which can better meet the commercial need of long lifetime,
due to the stability of the sea urchin-like Si@MnO2@rGO-50◦C and the dual protection
of rGO and MnO2. Interestingly, the structure of rGO encapsulating the sea urchin-like
Si@MnO2-50◦C mitigated the volume-change effects of Si nanospheres, improving the
electrical conductivity and contributing to the high capacity when comparing the Si and
Si@MnO2-50◦C. A comparison of the rate and cycling performances of the sea urchin-
like Si@MnO2@rGO-50◦C, at different various current densities, is shown in Figure 5d.
At current densities of 0.1, 0.2, 0.5, 1, and 2 A g−1, the specific charging capacities were
1323.87, 971.85, 701.12, 491.85, and 272.47 mAh g−1, respectively. Furthermore, when
the current density rose again to 0.1 A g−1, the specific charging capacity recovered to
981.68 mAh g−1 and the capacity retention rate was 74.2%. Compared to previous reports
of Si and Si@rGO, Si@MnO2@rGO-50◦C demonstrated a long lifetime and high capacity
retention rates [46,47]. Furthermore, to evaluate the cycling stability at high current densi-
ties, Si@MnO2@rGO-50◦C was tested at 1 Ah g−1 (Figure 5e). In the first charge/discharge
cycle, the specific capacity was 1446.85 mAh g−1; after 1000 cycles, the specific capacity
was 1282.72 mAh g−1 with a coulombic efficiency of 99.4%. The composite material also
showed excellent cycling performance at high currents. The decrease in capacity fluctua-
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tions at the first 80 cycles was due to the irreversible formation of SEI film on the materials’
surface. Interestingly, the capacity exhibited an increasing trend from the ~80th cycle
upwards. This was attributed to the reversible growth of a polymeric gel-like film. After
a long-cycling charging/discharging process, the polymeric gel-like film gradually de-
graded. The improved electrode kinetics increased the capacity. This phenomenon has
been widely reported among transition metal oxides [48–55]. Table S2 shows the perfor-
mance comparison among the reported works and indicates the high capacity and long
lifetime of Si@MnO2@rGO-50◦C. When the cycle reached 150 times, the specific capacity
was 960.21 mAh g−1 at 0.1 A g−1 and 746.13 mA g−1 at 1 A g−1. This is because the higher
the charge/discharge current density was, the fast the electrode chemical reaction speed
became. A large number of lithium ions reacted on the surface of the anode materials
instantly, leading to the formation of concentration polarization on the electrode surface.
Part of the active materials had no time to react, and the utilization rate of the active
materials became smaller, resulting in the decreasing in capacity.

EIS measurements were carried out to further investigate the electrochemical mecha-
nism shown in Figure 6. Figure 6a shows the EIS plots and corresponding fitting plots of
Si, Si@MnO2-50◦C, and Si@MnO2@rGO-50◦C, respectively. Additionally, the inset shows
the data equivalent circuit diagrams. The EIS diagram consists of a semicircle in the mid-
high-frequency region and a diagonal line in the low-frequency region. Here, RCT in the
mid-frequency region corresponds to the charge-transfer impedance and WO in the low-
frequency region corresponds to the diffusion of Li+ inside the electrode material [56,57].
The RS and RCT values fitted from the equivalent circuit model are summarized in Table S3
for comparison. The Si@MnO2@rGO-50◦C exhibited a low value of RCT (146.2 Ω) before
cycling, which was the lowest among Si, Si@MnO2@rGO-50◦C, and Si@MnO2-50◦C. This
result was attributed to the rGO networks, prominently improving the electronic conductiv-
ity of the electrodes and lowering the charge transfer impedance. Figure 6b shows the EIS
plots and corresponding fitting plots of Si@MnO2@rGO-50◦C before and after 150 cycles at
0.1 A g−1; cycled Si@MnO2@rGO-50◦C was fitted with the same equivalent circuit model
in Figure 6a. The RCT (72.7 Ω) was lower after cycling, which implies the charge transfer
impedance decreased substantially, demonstrating the stable SEI film and good structure
stability during cycling of Si@MnO2@rGO-50◦C.
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Figure 7a,b shows the cross-sectional SEM images of Si before and after 150 cycles
at 0.1 A g−1. After cycles, the volume expansion was ~323% (from 5.3 µm to 22.41 µm).
The huge change in volume expansion of Si may have contributed to the intercalation and
deintercalation of lithium ions during cycles and the exfoliation of the active materials. As
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shown in Figure S1a,b, the volume expansion of Si@MnO2-50◦C electrode after 150 cycles
at 0.1 A g−1 was ~198% (from 4.29 µm to 12.8 µm). Interestingly, the volume expansion of
Si@MnO2@rGO-50◦C electrode was ~59% (8.13 µm to 12.9 µm) after 150 cycles at 0.1 A g−1.
Such a small volume change in the active materials guarantees long-term cycling stability.
Figure S2a shows the top-view SEM image of Si@MnO2@rGO-50◦C after 150 cycles at
0.1 A g−1. The electrode sheet was relatively intact without signs of rupture. Figure S2b
shows the element mapping of Figure S2a, suggesting Si, Mn, O, and C were evenly
distributed. The mechanism of the Si electrode reaction was further illustrated in Figure 7e.
The lithiation of Si resulted in the formation of an amorphous silicon–lithium alloy (LixSi)
(0.16 V). Then, the amorphous LixSi was transformed to crystalline Li15Si4 (0.1 V). The
delithiation process involved the transformation from crystalline Li15Si4 to amorphous
LixSi (0.24 V) and, finally, to amorphous Si (0.5 V) [58–60].
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4. Conclusions

In summary, sea urchin-like Si@MnO2@rGO-50◦C as an anode for lithium-ion batteries
was presented. The reversible capacity, cyclability, and rate capability were very high, which
was attributed to the dual protection of rGO and MnO2. The discharge specific capacity was
maintained at 1282.72 mAh g−1 under a test current of 1 A g−1 after more than 1000 cycles.
Such high cyclability may be attributed to the sea urchin-like structure reducing the volume
expansion of anodes during the charging/discharging process. The present results indicate
that the sea urchin-like Si@MnO2@rGO-50◦C is a good candidate for high performance
anodes of lithium-ion batteries. This work made efforts to develop efficient methods to
store clean energy and achieve carbon neutrality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12020285/s1. Figure S1: (a,b) Cross-sectional SEM images
of Si@MnO2-50◦C before and after 150 cycles. Figure S2: (a) Cross-sectional SEM images of the
Si@MnO2@rGO-50◦C electrode sheet after 150 cycles at 0.1 A g−1. (b) Element mapping images of the
Si@MnO2@rGO-50◦C electrode sheet after 150 cycles at 0.1 A g−1. Table S1: Capacity contribution of
Si, MnO2. and rGO. Table S2: Synthesis strategies and electrochemical performance comparison of Si-
based anode materials and MnO2-based anode materials in lithium-ion batteries (References [61–64]
are cited in Table S2). Table S3: The RS and RCT values fitted from the equivalent circuit model are
summarized for comparison.
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