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Due to their wide applicability, models are generally developed based on site-specific guidelines and

are not generic; therefore, predicted/calculated values are reported to be highly uncertain. Thus,
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for sharing results and informing young minds around the world to develop suitable models to

understand water quality so that mitigation measures can be taken in advance to make water fit

for drinking and for life-supporting activities.

Amit Kumar, Santosh Subhash Palmate, and Rituraj Shukla

Editors

ix





Citation: Kumar, A.; Palmate, S.S.;

Shukla, R. Water Quality Modelling,

Monitoring, and Mitigation. Appl. Sci.

2022, 12, 11403. https://doi.org/

10.3390/app122211403

Received: 17 July 2022

Accepted: 9 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

Water Quality Modelling, Monitoring, and Mitigation

Amit Kumar 1,2,* , Santosh Subhash Palmate 3 and Rituraj Shukla 4

1 School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Ningliu
Road No. 219, Nanjing 210044, China

2 China Key Laboratory of Hydro-Meteorological Disaster Mechanism and Warning, Ministry of Water
Resources, Nanjing 210044, China

3 Texas A&M AgriLife Research, Texas A&M University, 1380 A&M Circle, El Paso, TX 79927, USA
4 School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
* Correspondence: amitkdah@nuist.edu.cn

Abstract: In the modern era, water quality indices and models have received attention from envi-
ronmentalists, policymakers, governments, stakeholders, water resource planners, and managers
for their ability to evaluate the water quality of freshwater bodies. Due to their wide applicability,
models are generally developed based on site-specific guidelines and are not generic; therefore,
predicted/calculated values are reported to be highly uncertain. Thus, model and/or index for-
mulation are still challenging and represent a current research hotspot in the scientific community.
The inspiration for this Special Issue came from our desire to provide a platform for sharing results
and informing young minds around the world to develop suitable models to understand water
quality so that mitigation measures can be taken in advance to make water fit for drinking and for
life-supporting activities.

Keywords: water quality; monitoring; modeling; mitigations; water quality indexing

1. Introduction

Due to the rapid increase in anthropogenic activity in catchments, further adverse
changes in access to water resources are expected in the future [1] Under these conditions,
water quality (WQ) plays an important role that determines its economic utility, including
in the potable or drinking water supply, recreation, and agriculture. In the modern era,
the study of and commitment to monitoring, modeling, and mitigation have become
important and meaningful aspects of the environmental impact assessment process [2].
Under various circumstances, the potentially adverse impacts on ecological flora and
fauna can be mitigated through the strategic design and implementation of appropriate
models, tools, or techniques to diminish the severity of the effects [3,4]. Different types of
nutrients, contaminants (heavy/trace metals), micropollutants, nanoparticles, microplastics,
microbes, etc., disturb the ecological life in freshwater bodies [5,6]. Therefore, evidence-
based pollution control is urgently needed to focus on the elementary level of water
governance, known as “monitoring, modeling, and mitigation”. Monitoring sets the
empirical basis by providing spatio-temporal information on substance (contaminants
and WQ parameters such as dissolved oxygen, biochemical oxygen demand, chemical
oxygen and demand, and nutrients) loads as well as the driving boundary conditions
for evaluating WQ trends and statuses and for further providing useful information to
mitigate contamination and to balance ecological life [7]. Thus, modeling helps to provide
long-/medium- and long-term information for times and locations where monitoring is
not at all possible [8,9].

The proposed Special Issue will explore cross-disciplinary approaches, modeling,
and methods and will discuss water quality risks as well as solutions for the implications
for environmental sustainability and for the further conservation of ecological life. The
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interconnectedness of this critical problem cannot be assessed with traditional approaches;
instead, inter- and trans-disciplinary approaches are urgently required worldwide to deal
with water resource problems and environmental sustainability challenges.

2. Overview of Water Quality Indexing Models

In general, water quality index (WQI) models are frequently used to evaluate the
WQ of freshwater bodies (e.g., lakes, rivers, and reservoirs) [10,11]. These models use
aggregation techniques to convert extensive WQ datasets into a single representative value.
Since the 1990s, WQI models have been extensively used to evaluate the WQ of surface
water and groundwater [12] based on local criteria because they are easy to handle and free
(Figure 1). The literature has reported that more than 30 WQI models have been created
and introduced worldwide to evaluate the WQ of freshwater bodies [13–15]. WQI models
are generally completed in four consecutive stages: (i) the selection of WQ parameters,
(ii) sub-indices generation for individual parameters, (iii) the calculation of the weighting
values of each parameter, and (iv) the sum of all sub-indices values to evaluate the WQI.
The literature has reported a range of applications of WQI models to evaluate the WQ of
freshwater systems [10,14–16]. However, most of the models that have been developed
are based on site-specific guidelines and are not generic; therefore, the large uncertainty in
the predictions and/or estimations made by these WQI models is coming into the picture
and creating a hindrance in strategic mitigation measures for WQ control for sustainable
ecological life and human use.

 

Figure 1. Commonly used WQI models worldwide [15].

3. Water Quality Models, Challenges, and Limitations

Water quality modeling (WQM) is an important tool that aids environmentalists, poli-
cymakers, water resource planners, and managers in strategic water resource management.
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However, WQM represents a challenge in the scientific community due to several con-
straints and limitations. In general, WQ models are classified based on the types of receiving
water, the complexity of the models, and the WQ parameters (e.g., nutrients, dissolved
oxygen, biological oxygen demand, etc.) that the model can predict. Thus, WQM requires
proper standardization, pollution hotspots, the identification of common features, and
policy-relevant models. These models save labor costs, materials, and time [16] and help in
effective pollution mitigation for the watershed. In the recent era, numerous models have
been frequently used to simulate the water quality of freshwater bodies (streams, rivers,
reservoirs, and lakes), estuaries, coastal waters, and marine ecosystems [17]. However, due
to the different theories and algorithms applied in the models, their corresponding outputs
are different and create huge differences in the results; thus, models could be useful and
produce fruitful results when applied to solve particular environmental problems [18].

Water quality (WQ) models are generally categorized into two categories: (i) physical
and (ii) mathematical models [19]. Furthermore, they can be categorized according to the
complexity of model simulation, i.e., 1D, 2D, and 3D; type of approach (conceptual, physical,
or empirical); data requirements; types of pollutants; area of application (groundwater,
catchment, lake, river, coastal waters, etc.); nature (stochastic or deterministic); and spatial
analysis [20]. In recent decades, WQ models such as ANSWERS-2000, AquaChem, MIKE
SHE, AGWA, GLEAMS/CREAMS, AQUATOX, APEX, EFDC, EPD-RIV1, BASINS, HSPF,
KINEROS2, LSPC, NLEAP, PRMS, QUAL2K, QUAL2E, SWMM, SWAT, WARMF, WAM,
WCS, and WASP7 have been frequently used to predict WQ worldwide [21]. Because of
data requirements and availability as well as types of catchment problems, the simplest
reliable models are dominant over complex models [22].

WQ modeling is still challenging in the scientific domain due to the lack of expert
handling of user, site, and/or regionally specific and parameter-specific information as well
as inadequacies in model calibration and errors in data reporting. The uncertainty in WQM
comes from various sources of errors, such as (i) parametric uncertainty, (ii) structural errors,
and (iii) errors in the measurements of the input values and response uncertainty [23]. In
developing countries (e.g., India and China), a uniform model standardization system has
not been recognized, which limits the extensive utilization of those models for ecological
and water management as a result of the lack of benchmarks and comparisons between
different modeling outcomes [9,10,16]. Spatial variability is reported as a serious problem
in catchment-scale WQM that generally acquires catchment behavior, representative site
selection, and the integration of nonlinear biogeochemistry [24]. However, the complexity
of models, the inadequate availability of data, and poor WQ data are other important
limiting factors for WQM.

4. Water Quality Mitigation Measures

Water quality mitigation measures or strategies are generally intended to inform and
assist communities in identifying potential alternatives to minimize the adverse impacts of
pollutants on WQ and to ensure that water is safe for community use [25]. Ultimately, miti-
gation measures help to protect, restore, preserve, and improve the WQ of receiving water
bodies. WQ protection refers to adequately treating runoff to protect downstream resources
from WQ degradation [26]. Restoration comes into action if the protection strategies are
not sufficient to maintain WQ standards as per the permissible limits. Stakeholders from
different fields working together to achieve WQ restoration goals [27]. Water quality preser-
vation necessitates a decision-support framework that can be used to evaluate, monitor, and
optimize the effects of different drivers on WQ [28]. Furthermore, WQ improvements can
be accomplished by identifying the highest priorities for WQ conditions and implementing
mitigation strategies to address ongoing issues in a study area (Figure 2) [29,30]. Sometimes,
the study areas do not follow the jurisdictional boundaries; therefore, several stakeholders
need to work together to achieve local/regional/national WQ goals.

3
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Figure 2. Implementation steps for strategies to mitigate WQ problems [2].

Water quality standards can be mitigated through regulation, remediation, and water-
shed management [31]. Water regulation in a specific area can control the free discharge of
waste from industry or sewage treatment plants by setting standards for each pollutant re-
leased into surface waters [31]. Remediation acts, such as biological, chemical, and physical
acts, help in cleaning the water contamination; (i) biological remediation is a cost-efficient
method and is also called “bioremediation”, which involves the use of naturally occurring
organisms such as plants, bacteria, and fungi to remove or neutralize water pollutants and
to breakdown hazardous substances into less toxic or nontoxic substances. Human sewage
and agricultural chemicals that leach from the soil into the groundwater are generally
treated by bioremediation [32,33]. (ii) Chemical remediation methods use chemicals to
react with the water contaminants to remove or make them less harmful, and (iii) physical
remediation includes the removal of water contamination by treating it with filtration
or disposing of it. Overall, all these three remediation methods are somehow complex,
expensive, and difficult to adapt.

Watershed management strategies consist of reducing the chemicals applied to land,
making them more effective for nonpoint source pollution than setting pollution stan-
dards [3]. In a watershed, riparian areas promote WQ and limit pollution; therefore, their
maintenance and restoration are crucial. Vegetation surrounded by a water body absorbs
nutrients and provides shade to keep water cool and increase its capacity to hold dissolved
oxygen (DO). Additionally, vegetation reduces runoff, promotes infiltration, and lowers
soil erosion. Hence, vegetation plays a key role in the effective management of WQ through
watershed management. Watershed practices that are beneficial for maintaining WQ stan-
dards include (i) regional infiltration basins; (ii) neighborhood-scale practices such as rain
gardens, bioretention, and permeable pavement; (iii) stream restoration, including pooling
and meandering to enhance infiltration; (iv) floodplain restoration, including floodplain
benching; (v) stream (riparian) buffers; (vi) using park green space and fields to store and
infiltrate water; (vii) stormwater-friendly post-construction design; and (viii) protecting
and resting natural and human-made wetlands. Some important actions can be taken to
get rid of polluted water before pollution ever happens and to mitigate WQ standards:

• Avoid dumping waste in and around water bodies—dumping waste in water bodies
leads to water pollution over a short period time.

• Septic systems need proper maintenance and cleaning from time-to-time—leakage
from septic tanks can cause groundwater pollution.

• Stakeholders and industries need to follow WQ regulations and laws—breaking local gov-
ernment rules can put water at a high risk of contamination due to anthropogenic activities.

• All chemicals and pesticides need to be disposed of properly—pouring these hazards
into nearby drains, sinks, grass yards, or water closets can lead to them entering local
water sources and water supply networks.

• Do not pour kitchen leftovers, such as cooking oils and fat substances, into the
sink—pouring these substances can seriously clog sink drains as well as spread illness
into utilizable water.

4
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• Try not to use any bleaching substances for washing at home—using bleach can trigger poi-
soning and maybe internal burning and can eventually damage local environmental sources.

• Schedule cleanings for yards and nearby areas with your neighborhood—dirty sur-
roundings may cause water pollution and put human health at risk.

Overall, we need to work on mitigating water quality and educating friends, family,
neighborhoods, and relatives about the necessary actions for water safety.

Most WQ mitigation measures aim to prohibit illicit discharge, control erosion, reduce
pollutants, and control excessive flows. Additionally, strategies consisting of implement-
ing outreach, education, and other activities that promote infiltration, flood reduction,
and stable drainage channels could be beneficial for WQ management [34]. Stormwater
flow management, floodplain restoration, channel stabilization, and green infrastructure
installations are the main strategies to prevent pollutant discharge into surface waters
from stormwater, including wastewater. Wetland protection, rehabilitation, and restoration
activities improve WQ and quantity and support the maintenance of floodplains in their
natural state [35]. The protection of riparian areas and floodplains and keeping hazardous
materials from source water areas can directly safeguard drinking WQ and can indirectly
protect public health. Sometimes, financial resources limit the application of these mit-
igation strategies, so the prioritization of mitigation strategies can focus on important
WQ issues that are necessary to complete in a short period of time. To overcome this,
the provision of grants/funding is also essential to encourage vegetation planting and
maintenance over time.

5. Conclusions

Water quality (WQ) tools and models are described and selected based on their
applicability, site- or regional-specific qualities, weaknesses, strengths, and whether or
not they are intended for commercial or industrial use. The outputs of models and WQ
indexing are different based on the input requirements and data availability and therefore
have large levels of uncertainty, are not freely available for commercial use, and require
skilled model users. Model selection is a robust task in the scientific domain; therefore,
when selecting suitable models for pollution control in freshwater bodies, catchments, or
a specific site, there are requirements to consider, such as the availability of datasets, the
complexity of the models, and the type of freshwater bodies, and the intended objectives
should be modeled so that mitigation strategies can be implemented in fruitful ways.
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Abstract: Ecosystem services are part and parcel of human lives. It is of paramount importance to
understand the interaction between these ecosystem services, as they are directly related to human
life. In the modern era, quantification of ecosystem services (ES) is playing an important role in
the proper understanding and efficient management of social–ecological systems. Even though
a significant amount of literature is available to present on the topic, there is a need to build an
adequate amount of knowledge repository. Hence, a systematic literature review method is used,
in which research question and searching stages are defined. This review study is conducted on
ecosystem services and remote-sensing-related keywords in the Scopus database. After a systematic
analysis of the papers retrieved from the Elsevier, Scopus database, MDPI, and open source, a total of
140 primary articles were categorized according to their relationship with other ecosystem services,
land use, land cover, and planning management. Major issue findings and important aspects have
been analyzed and reported in each category. With this analysis and developments in the existing
literature, we have potential areas for future research. Findings pointed out that regional or local-level
ecosystem services-related work is immensely important, and a hotspot of current research aiming to
understand the variability and spatiotemporal dynamics in terrestrial and aquatic ecosystems.

Keywords: ecosystem services; provisioning ecosystem services; regulating ecosystem services;
cultural ecosystem services; supporting ecosystem services

1. Introduction

The biophysical state of the ecosystem is affected by multiple elements and, simul-
taneously, by humans’ ability to enjoy its services [1]. Furthermore, Anthropogenic and
non-anthropogenic interventions can change the biochemical cycles and earth’s energy
equilibrium, in turn causing global warming, and future climate changes [2]. On the other
hand, rapid urbanization degrades ecosystem services [1,3]. Gretchen, in his work, points
out that the lifestyle of the people may be hampering the prosperity of ecological biodi-
versity at the expense of their descendants [4,5]. Talking about ecological biodiversity, the
term ecosystem services is described by many authors as the process that helps to sustain
human life, with the help of interaction between the natural ecosystem and the species [4,6].
Globally, human systems are supported by nature’s contribution, i.e., ecosystem services,
and [7,8] state that land use and land cover changes (LULC) induced by humans have
increased over the last three decades, leading to changes from a natural setting to human-
conquered land. Furthermore, according to Gómez-Baggethun & Barton [9] more than
50% of the world’s inhabitants reside in urban areas and potentially receive benefits from
the ecosystem services; the future projection of people living in urban areas is calculated
to reach 66% by 2050. The main motive for this research is to find a way to conserve the
existing ecosystem, with a background of arising global environmental issues.
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Ecosystem Services

Ecosystem services (ES) are defined as the benefits people obtain from nature [1,4,6]. ES
connects human well-being and natural systems to ecological and economic development to
lay a platform between nature and society [10]. Land use and land cover changes increase the
population rate and have a huge impact on ES, which is leading to its degradation [11–16].
Therefore, evaluation of ES has been the core subject of research in the academic section for
years [17,18], and the recent past interventions also show the readiness of the study to inform
policymakers in undertaking essential decisions in the policy making process along, with
the integration of ecology, geography, and economy [19]. In the study [20], the authors put
forward that the authenticity of the ecosystem cannot be based on human intervention alone;
the same is considered authentic when the researcher considers both pristine and altered
forms of the ecosystem, therefore understanding the change in fundamental characteristics of
the ecosystem.

ES plays a vital part in constituting the well-being of an individual’s life through
security provision, meeting the basic needs for day-to-day life along with health and good
social relationships with each other. Urban ecosystems are still a critical area of ES research,
as half of the world’s population dwells in urban areas. According to MEA, around 60% of
global ES has been threatened or used inappropriately, and the same process is expected
to continue essentially in the first half of the present century [1]. For this reason, recently,
ES is significantly considered one of the vital aspects of land use planning and ecological
environmental planning and management [19–32].

The interaction between the ESs can take place in two ways. The first is trade-offs,
where an increase in the effect of one of the ES results in a decreased effect in other ES. The
second is synergies, where the increase in the effect of one ES also leads to the increased
effect of other ES [23,24]. When these relationships occur again across space and time, they
are called ES bundles [25]. Understanding this relationship is rather critical, as it focuses on
the relationship between ES by concentrating on inherent bundles rather than on discrete
ES [26–28]. Studies by Bennett et al. say that the trade-offs and the synergies are caused by
the interaction among various ecosystems, so the ecosystem services cannot be considered
independent [29]. Braat & de Groot infer that the study of various ES is complex [30].

Ecosystems can be monitored at different levels; they can be studied at a global scale or
regional scale, or local scale. Global-level studies are carried out worldwide, but researchers
suggest studying the services at the local level, which gives us a better understanding of
the situation, helping us to take up appropriate mitigation strategies at a regional level.
This helps us achieve sustainable goals at the global level [28]. Although research studies
by a wide range of scholars have shed light on the interaction of various ecosystem services
in recent years, the amalgamation of our existing knowledge repository and gaps is still
inadequate [31].

Various other frameworks emerged in the recent past for ES studies [33]. To account
for the natural capital, Common International Classification of Ecosystem Services (CICES)
integrates different criteria of various ESs. Closely capturing concepts that relate to nature’s
contribution to humans is the framework developed by Inter-governmental Science-Policy
Platform on Biodiversity and Ecosystem Services (IPBES). To understand ES, Ref. [1] came
up with a base framework for global ES study; therefore, ES can be classified into four
categories: (i) provisioning ecosystem services, (ii) regulating ecosystem services, (iii)
cultural ecosystem services, and (iv) supporting ecosystem services.

Provisioning ecosystem services (PES) are defined as the goods that can be directly
extracted from nature and consumed, which have a certain market value. Examples of
provisioning ecosystem services are water, food, wood, biofuels, etc. Stating the same, for
the freshwater supply ecosystem service, it is necessary to have an ecosystem that is func-
tioning in a good way [34]. Climatic factors such as precipitation, evaporation, and climate
variability are the important components that control the water yield of the region [34].
Water yield has positive linkage between evapotranspiration and soil conservation [35],
along with other components such as food production, timber, etc.
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Regulating ecosystem services (RES) can be defined as the benefits that are drawn from
the process of the ecosystem that modifies the condition that we are presently experiencing.
Examples of the same will be climate changes, carbon storage, soil fertility, floods, etc. [29].
The study emphasizes the relationship in terms of trade-offs and/or synergies of regulating
ecosystem with other ESs, due to which regulating ESs can be considered as one of the
critical parameters for the assessment of ecological resilience [35]. Managing one ES
parameter will improve synergies among other ES parameters, especially among carbon
storage, low flow, biodiversity, etc. [36]. Carbon (C) storage is a key attribute in regulating
the global service of climate regulation [9]. Practical implementation of C sequestration
knowledge will take a back step in public policymaking due to the lack of effectiveness
in translating scientific criteria [37]. Carbon sequestration acts as an important parameter
in global climatic regulation [33]. Carbon is stored in four different layers in nature,
i.e., aboveground biomass, belowground biomass, soil organic carbon, and dead matter
storage. As carbon is stored (~70%) in the terrestrial ecosystem [38–40], its carbon dynamics
potential could be affected in the future under rising carbon dioxide. Therefore, the carbon
present in the soil considerably has a huge impact on the spatial and non-spatial data.
Hence, long-and-medium term modeling taking into consideration of different LULC
scenarios is the hotspot of current research, which helps policymakers with the mitigation
strategies framework and decision-making process. This process can be re-scaled globally,
regionally, and locally by co-relating different rationales to economic opportunities and
regulatory policymaking.

Gómez-Baggethun et al. [41] introduced cultural ecosystem services (CES), but MEA
studied and defined them as “the non-material or intangible benefits people obtain from the
ecosystem either spiritually, through cognitive development, recreation, self-reflection or
through experiencing aesthetically” [1]. In this ES, some of the services, such as recreations,
have market value, whereas other services do not have the same. Functions fulfilling
life information functionality are the different ways in which cultural ecosystems are
included in the study [4,6,42]. Additionally, Sen & Guchhait simplify the definition by
correlating humans’ sociocultural practices with psychological development [43]. CES
is also associated with the intangible benefits that people attain from nature due to the
interaction [44,45]. Most of the studies on cultural ecosystem services deal with recreation
services that are nature based and aesthetic [46], whereas not a great amount of study hqw
been carried out on the spiritual value of landscape due to the limitation of modeling [47].
Supporting ecosystem services (SES) are the fundamental process of the ecosystem that
supports life, such as photosynthesis, nutrient cycle, and evolution; this is a vital service
that the ecosystem provides, which allows the rest of the ecosystem services to be delivered.

To achieve sustainable development of the city and conserve the ecosystem, it is neces-
sary to understand each of the abovementioned ecosystem services and their interactions
with the changing LULC [48]. This study can help provide future research perspectives
and proper decision-making strategies. To offer the same, a literature review for each
of the ecosystem services was carried out, providing a global perspective first and then
elaborating on the studies conducted at the national level. It will provide an overview of
the models and methods that are used for the quantitative study of ecosystem services in
the limelight. The publications used various methods of quantitative assessments, such as
spatial mapping, economic valuation, etc. Therefore, the main objective of our paper is to
understand; (i) the global scenario of ES, (ii) where does ES study in India fall? (iii) what
are the research gaps that could be studied, and a way forward in the same area.

2. Materials and Methods

2.1. Data Collection

The literature survey was carried out in November 2021, and data were collected
from Science Direct, Scopus, MDPI, official reports, and Wiley. The main strategies of
the basic literature review contained four different phases. First, to understand the
total number of publications present, we used the keyword “Ecosystem services” to
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understand the pattern of the study on a yearly basis. Second, to understand works
on different types of Ecosystem services, we used the keywords “Ecosystem services
and Provisioning Ecosystem services”. In the next search, using keywords “Ecosystem
services and Regulating Ecosystem services”, similarly, the search was carried out for
cultural ES and supporting ES and their trend of publication for two decades. This was
followed by the search to understand the types of models used to study ES, and also to
figure out the types of models catering to ES. Additionally, a search was carried out to
understand the trends of individual models serving various parameters of ES. Finally,
the investigation was carried out to understand the ES publication in the Indian context
using the search keyword “Ecosystem services and India”.

After collection of the records, the initial step of analysis took place at various levels.
The first step of the selection criteria was to select the papers which spoke about ES
throughout the world. This was followed by the data range strategy of selection, wherein
the collected data were segregated based on types of publication. In this step, most of
the journal articles were selected over the books or conference papers, as the articles are
periodical, and there was a high chance of understanding the current trend of publication.
Books and conference proceedings were negated. The step was followed by the title and
abstract search, wherein the non-related articles were negated after going through the
article abstracts and title. This was followed by the criteria search, which considered
the related variables of the study. As a result of this, 138 articles were extracted for this
review. The assessment parameters for this review are based on the ecosystem services
approach and include the date of publication, the context of the publications, the kind of
data used/analyzed (qualitative or quantitative), as well as the spatial size of the study.
Table 1 gives an insight into the criteria considered for the study.

Table 1. Criteria of Review with Feasible entries.

Criterion Feasible Entry

Source Science Direct database
Paper type Research Paper
Data type Quantitative data, Qualitative data
Spatial measurement scale Local, regional, national, global scale
ES indicators 4 types of ES indicators

2.2. Data Analysis

The data analysis consisted the database of search records that was built from the data
collection process. The study can be considered susceptible given the huge amount of data
resent in the database. To avoid arbitrary comments, a systematic review was carried out
on 140 selected papers that dug deeper to understand the knowledge base of the subject,
which excluded book chapters, student theses, and reports. Regardless, the search output is
considered authenticated and peer reviewed, as it was taken from the distinguished journal
article database. The data were taken as a basis for future study (Figure 1).

12



Appl. Sci. 2022, 12, 8518

Figure 1. Showing the flow chart of the data analysis for ecosystem services.

3. Results

3.1. Mapping of Publication

Research publications until early 2000 were fewer in number (Figure 2). The reason
was unfamiliarity with the subject; later, the work changed the whole lens on how the
ecosystem was viewed [4,6]. From 2000 to 2005, we can find approximately two thousand
papers on ecosystem services (Figure 2). Later, once the MEA [1] was published, we found a
sudden rise in the graph, which denotes that universal attention was attained by ecosystem
service research. Later on, it became one of the core research areas among academicians
and scholars. From the years 2005 to 2010, we found publications that provided an insight
into the trade-off and synergies among the ecosystem services. Following MEA, in 2010,
TEEB [46] came up with a newer lens of added economic value to the ES. In 2011, CICES [49]
gave common ground for all international works related to ecosystem services. Post-2015
marks a prolific change in the number of publications on ecosystem services, with the
publication of the Sustainable Development Goals (SDG) 2030. These are aimed at making
cities locally and globally sustainable due to the change in global climatic aspects.
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Figure 2. Number of publications on ecosystem services for two decades.

3.2. Chronological Publication on ES Papers

Ecosystem services papers published between the years 2000 and 2005 show that
awareness of the subject was limited, wherein a critical understanding of the same was not
present (Figure 3). Post MEA, the publications on the ecosystem services increased; today,
we find 20,000 publications based on ESs (Figure 3). Sustainable development goals gave
the necessary push required for the study and to make the cities more sustainable. MEA
formed the ecosystem framework, along with four major categories.

 

Figure 3. Number of publications on ecosystem services classification—chronology. Where PES
indicates provisioning ecosystem services, RES is regulating ecosystem services, CES is cultural
ecosystem services and SES is supporting ecosystem services.

14



Appl. Sci. 2022, 12, 8518

The number of papers was classified into four ES categories (Figure 4). Sixteen percent
of the papers discuss provisioning ecosystem services, basically focusing on agricultural
products, freshwater bodies, food, etc. (Figure 3). The publication trend of PES is gradually
increasing day by day and is more focused on the water and agriculture-related aspect, as
it has a significant role to play in every human life today. Regulating ES has 17% of paper
publications, mainly focusing on the vital aspects of the present-day scenario, i.e., climatic
changes, carbon sequestration, floods, soil erosion, etc. The publication trend of RES falls
in line with the provisioning ecosystem, as we find trade-offs and synergies among the
ESs [29], so it is important to study critical aspects on the same basis (Figure 4).

 

Figure 4. Number of publications on ecosystem services classification. Where PES denotes provision-
ing ecosystem services, RES is regulating ecosystem services, CES is cultural ecosystem services, and
SES is supporting ecosystem services.

3.3. Models Used to Access Ecosystem Services

Modeling of the ES helps the researcher to quantify, spatially locate, and potentially
evaluate the economic trends. Daily et al. [19] point out that this information plays a
vital role in the decision making of urban planners, urban designers, and policymakers
attempting to understand the effect of urban expansion on ES. In the present scenario,
there is a proliferation of models and tools that helps us to map and access ES and vice
versa [42,50,51].

Over time, numerous studies tried to simultaneously understand land use changes
and their impact on ES, which helped designers and policymakers take appropriate steps
to overcome the issue. To monitor LULC changes and ES changes, satellite images have
been globally used as the most accurate tool [52,53]. Models are used to investigate
the interactions (such as a trade-off, synergies, bundles/clusters, and flows) of ES, and
deliberately put forward benefits that are enjoyed by humans for their well-being [54–56].
There is much importance given to enhancing ecosystem service management by objectively
quantifying interactions among various ES [57].

Integrated Valuation of Environmental Services and Trade-offs (InVEST) is a globally
accepted tool that was developed inside the Natural Capital Project [50,54–59]. The In-
VEST model can illustrate a spatially visualized map of the ESs. Comparing the InVEST
model with other models, InVEST does not require any expertise; this model provides a
nearly accurate assessment with limited demand of data input criteria, and is relevant in
understanding the areas dealing with ecological processes [50,51,60]. InVEST model is a
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useful tool for assessing small-scale and local studies which give relevant and credible
results for LULC and ES [58]. The InVEST toolbox is used to determine nearly 14 ES
for supply changes using user-defined base setups like land use land cover and climatic
changes [61,62].

The Soil and Water Assessment Tool (SWAT) is considered universally to simulate
hydrological processes [63]. Further, the model has the flexibility in a spatial discretization
that evaluates the space, locally, regionally, and globally. Like this, a decent number
of models are used to assess ES changes; some of them are ARIES, LUCI, CA- Markov,
SLEUTH, CLUES, etc.

The study of ecosystem services is performed quantitatively using mapping and
modeling techniques. Researchers also have used a combination of models to assess
ES, such as a combination of model mapping ES (such as InVEST, SWAT, ARIES) and
model mapping urban expansion. With the help of the statistical model, the mapping was
carried out. Urban expansion models such as LUSD–urban (Land Use Scenario Dynamics–
urban) [64] help in a multi-scale simulation of urban expansion, LUSD–urban along with
Cellular Automata (CA) and system dynamics models signifies micro-scale evolutionary
factors and macro-scale resource constraints. This model has undergone certain iterations
in recent years, with improved accuracy and an average kappa index [65]. The other models
are SLEUTH (slope, land use, exclusion, urban extent, transportation, and hill shade) [66],
CLUE-S (the Conversion of Land Use and its Effects at Small regional extent) [67]. Statistical
models such as correlation analysis [13,68], regression analysis [28], and root mean square
deviation were used [69]. This combination of models is efficient at forming the correlation
among a few variables but is not considered to be functionally viable. The most celebrated
models are InVEST, ARIES, and SWAT. ]. Figure 5 gives a brief idea of various models used
by researchers.

 

Figure 5. Number of publications on assessment models of ecosystem services.

The most commonly used base data are LULC, soil data, terrain data, and hydrological
data. This gives a whole picture of different criteria such as habitats, soil types, vegetation
class, and biomes. According to Metzger et al., the above data are used as ecosystem services
indicators [70]. Adding on the same data can be used for valuation and spatial estimation
of ecosystem services [71]; the other types of data used for ES assessment are census data;
climatic data such as precipitation data, which is used for water yield assessment; and a
digital elevation model (DEM); this is used for hydrology assessment [72].

The models used to access ESs spatiotemporally are InVEST [60], SWAT [61], ARIES
(Artificial Intelligence for Ecosystem Services) [73], LUCI, etc. According to the publi-
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cation trend from 2000 till 2021, we find the InVEST model is being used extensively
due to its input data criteria; it uses open source data that are freely available, with a
mapping/modeling scale of 30 m × 30 m. This model helps us to access multiple ecosys-
tem services, (water quality, soil erosion, carbon sequestration, biodiversity conservation,
nutrients, agricultural produce, etc.) [72].

3.4. World ES Publication Status

Ecosystem service study post [1] has been proliferated due to rapid urbanization,
causing temporal changes such as climatic variation, global warming, etc. We find work
on ecosystem services is mainly carried out in the developed countries. It is of prime
importance to study the changing trajectory of spatial settings in developing countries, as
the population increase demands changes in the land use and land cover dynamics. The
interrelation between the ESs and human activities play a critical role in global climatic
conditions. Publication trends in the world ES scenario is showcased in Figures 6 and 7.

 

Figure 6. Trend of world’s ecosystem service publications.

 

Figure 7. Trend of Asia’s ecosystem service publications.

In the present scenario, we find ES studied globally in three ways: (1) estimating the
physical quantity of services provided [74]; this is primary work that is carried out, to
understand the influence of LULC change on ES, as well as its impact on the climatic aspect;
(2) the economic value [75], which is needed to understand the income that is generated

17



Appl. Sci. 2022, 12, 8518

due to the interaction of ES, and also helps in estimating the economy lost due to the
deterioration of ES, and (3) the basic benefit transfer method [6].

3.5. ES Publication Status of India

The publication trend of ecosystem services in the Indian context gives us a brief
idea of the present knowledge gap. After the search carried out in the Scopus database,
we found hardly 200 papers published on ESs (Figure 8). India is a very diverse country
regarding its spatial, temporal, and cultural aspects. It will be of prime importance for the
study of ES to bring about awareness of ESs’ influence on recent global temporal changes.
India is a developing country; hence, it has experienced a lot of spatiotemporal changes in
recent decades.

 

Figure 8. Indian Ecosystem service Publication trends.

India is peninsular; it is surrounded by the sea on three sides. With this being said,
mangrove plays an important role in protecting the coastal region. Table 2 gives a brief
idea on the studies conducted on ES in India. Giri et al. studied the status of mangrove
forests in Southeast Asia [76]. Prasad et al. [77] studied the rate of degradation of seagrass
impacting regulating ES due to human activities, whereas Edward et al. gave insight
into methods of restoring seagrass [78]. The study conducted by [79] to understand the
spatiotemporal dynamics in the mid-sized town of Telangana using statistical methods
showed unsustainable growth trends among LULC variables, making study of the patterns
vital. Studies were conducted to understand the degradation and rate of sedimentation
of wetlands in the Western Himalayan region of Himachal Pradesh, showing a large-scale
unregulated development causing the damage to ES [80]. Furthermore, Sannigrahi et al. [81]
measured 17 ESs; Sannigrahi et al. [82] showed that climatic factors, biophysical factors,
and environmental stress significantly affect the ESs in the Sundarbans region. The seasonal
variation was captured using GHG (Green House Gas) on carbon pools in the degraded
Sundarbans region [83]. Talukdar et al. [84] demonstrated the relationship between LULC
and changes in ES; later on, Das et al. [85] shed light on decreasing ecosystem health in the
lower Gangetic Plain region. Stakeholder participation plays a vital role in conserving ES.
Sinclair et al. showed the willingness of the stakeholders to maintain the same [86]. ESs by
the world hotspot region of Western Ghats played a vital role, elaborating on the impact of
LULC on the ecological hotspot region and ES of Western Ghats [87,88]. Water richness and
wetland habitable suitability criteria are important for understanding the habitat suitability
of a populated region [89]. Further, there are stresses related to the dynamics of soil carbon
in alternative cropping techniques [90,91]. Shah et al. [92] came up with the framework to
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understand the ecosystem services with a comprehensive view of common resources used
by policymakers to attain sustainability.

Table 2. Studies conducted on ESs in India.

Author (s) and Study
Year

Region
ES Categories

Studied
(P, R, S, C)

Number of ES
Assessed

Grain
Methodology Used to

Access ES

Giri et al. [76]

South Asia, Pakistan,
Bangladesh, and
India (Goa and

Sundarbans)

S 1 Goa–23.5 m
Sundarbans–30 m

GIS and ERDAS
(unsupervised,

ISODATA)

Srinivasarao et al. [91] Semi-arid tropics of
India P, R 2 Survey

Shah & Garg [92] Cascading Framework

Sahani &
Rahavaswamy [79]

Khammam,
Telangana P, R, C 3 Municipality GIS with LULC base and

Shannon’s entropy

Ramachandra et al. [88] Western Ghats,
Karnataka S 1 160,000 km2

Mountain
GIS with Markov

Analysis

Shukla et al. [14] Upper Ganga basin P 1 22,292 km2 Wetland
GIS with Pearson’s

correlation and multiple
linear regression

Prasad et al. [77] Palk Bay S 1 330 km2 Wetland Sampling design

Malik & Rai [80] Himachal Pradesh P, R 2 12,562 km2 Wetland
GIS and ERDAS Imagine,

Socioecological
interviews

Sannigrahi et al. [81] Sundarbans P, R, S, C 17 4264 km2 GIS using LULC analysis
and ESV

Sannigrahi et al. [82] Sundarbans P, R, S 5 4264 km2 NPP with InVEST and
CA-Markov

Shukla et al. [13] Upper Ganga basin P 1 22,292 km2 Wetland
Soil and Water

Assessment Tool (SWAT)
with MANOVA

Padhy et al. [83] Sundarbans R 2 4264 km2 Sampling design

Talukdar et al. [84] Lower Gangetic plain P, R, S, C 17 GIS using LULC analysis
and ESV

Ramachandra &
Bharath [87]

Western Ghats,
Karnataka P, R, S 3 160,000 km2

Mountain
GIS with Markov

Analysis

Debanshi & Pal [89] Ganges-
Brahmaputra delta P, S 3 6358.21 km2 Wetland

Artificial Neural Network
(ANN) and Support

Vector Machine (SVM)

Babu et al. [90] Mizoram R 2 22.0 Mha Sampling design

Das et al. [85] Kolkata P, R, S, C 17 Metropolitan area GIS using LULC analysis
and EH

Sinclair et al. [86] Ashtamudi lake
Ramsar, Kerala P, S 3 56 km2 Wetland

Questionnaire and
sampling, econometric

model

Sen & Guchhait [43] Bardhaman C 5 Municipality
field survey with
semi-structured
questionnaire

Pathak et al. [93] Upper Ganga basin P 1 22,292 km2 Wetland
mean Lumped Zhang
model with InVEST

Where P denotes provisioning ES, R is regulating ES, S is supporting ES, and C is cultural ES.

4. Discussion

4.1. Contribution of ES and Global Issues

According to the study, Millenium Ecosystem Assessment [1] inferred that 15 of
24 ecosystem services had degraded globally. Anthropogenic activities are the main reason
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for 60% of the deterioration of provisioning ecosystem services [1,94–96]. On a global scale,
we projected the impact of LULC on ecosystem services and concluded that changes in
LULC can deteriorate the ES [97].

Bennett et al. [29] infer that trade-off and/or synergies do take place between regu-
lation ecosystem services and other ESs, considering this the main determinant to access
the ecological changes [35]. In the global scenario of the past five decades, due to an
increase in the population, demand, and usage of water, intensive agricultural produce,
industrialization, and economic growth, Ref. [98] pinpoints that the use of water has tripled.
Studies conducted by [14,99–101] prove that there is a significant role played by LULC
on the water yield. A trade-off relationship between ES was found by Zhang et al. [102]
between provision ES and soil conservation. The study conducted by Yi et al. [103] found
that there is a significant connection between carbon storage and soil sediment retention in
an urban watershed and river basins. However, it was also proved that the synergies and
trade-offs occur in different scenarios [104]. Hence, a study analyzing various ESs is vital
to urban management, planning, and policy decision making [28,105].

Literature proves that there is a direct relationship between the carbon and soil-based
ESs [106–108]; Rodríguez et al. [109] proved the existence of a positive correlation between
aboveground carbon storage with water regulation and supply. However, knowledge
related to the potential of the coastal belt to regulate climate change and emission levels
due to different anthropogenic activities is not available. Nevertheless, it is critical to access
the influence of carbon sequestration on climate changes by different LULC on susceptible
areas that are sensitive to changing processes. Many research scholars have studied the
influence of LULC on carbon stock and climatic changes [110]. Following this study, we
find [111] established the relationship between precipitation variation and LULC and its
influence on ES

The study of soil erosion has caught the attention of researchers recently, and studies
have been conducted globally on various scales [112]. The study conducted by Vaezi
et al. [113] showed the result of ecosystem services hampered due to soil erosion, desertifi-
cation, etc. Additionally, due to the presence of spatial heterogeneity, Ref. [114] explains the
importance of soil-related study at various scale dynamics. This helps us to understand the
effect of soil and its trade-off and/or synergies at various scales, as demonstrated by [115].

The major issue found globally today, as summarized by [116–119], shows that ES
have been critically impacted due to the intense interaction between the ecosystem and
humans at a regional scale, and this has to be looked after with immediate effect. This is
also important according to the study [120], which found that the relationship between ES
is spatially heterogeneous. Some researchers have studied the LULC change on a smaller
scale can transform into synergy in spatiotemporal distribution at a larger scale [121–123].
Sun et al. [104] stated that studies at the future level at a regional scale should be designed to
improve various scenarios in a detailed way to cater to the local situation and policy planning.
Researchers such [82,124,125] found that there was a significant influence of climatic factors on
the ESs variations. Therefore, Refs. [126,127] suggest that the effective planning management
strategy is to incorporate ES bundles and hotspots in the decision-making process.

4.2. Way forward to ES Research in India

Based on the literature review conducted, there is a need to account for ecosystem
services on different LULC in Indian scenarios, varying in urban settings and geolocation
of the urban areas. On a national scale, we have the work of LULC changes giving an
insight into the change dynamics in land use. There is empirical evidence that shows there
are evident changes in the structure of ES due to urban expansion, which will lead to the
degradation of the same [65]. However, little is known about the intensity of ES losses at
a regional scale in the Indian context, due to the influence of LULC. It is also important
to understand the influence of climatic factors on ES at a regional scale, providing better
service to society.
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The reason to select the ESs is that first, ESs such as carbon sequestration, water yield,
and soil retention are the common focus areas for research study, as they represent the ESs
subset [128–130]. Second, the quantitative methods of spatially analyzing the driving forces
of these ESs can be reinforced by the efficient availability of large-scale data [130,131]. Vallet
et al. [132] state that the study of ES interaction is important when it comes to questioning
the usefulness of various criteria to come up with appropriate decision-making needs and
expectations. From the literature survey, it is seen that provision, regulation, and support
of ESs are threatened [27].

Even though there is a prolific amount of research on ES, there must be in-depth
knowledge about the relationship and tradeoff among various ES [27], which should also
be explored in terms of emerging climatic changes [27]. Additionally, Refs. [36,84] suggests
that research should be conducted on every site-specific scenario leading to informed
design management strategies, which in turn elevates ES benefits. The authors of [132]
investigated the relationship between ES and urbanization, and concluded that for LULC,
topography has a greater influence on ESs than urbanization.

5. Conclusions

Understanding the changes in ESs and their relationship with the help of spatially
explicit methods could be helpful for the study to be conducted. In the present review,
research dynamics of ES in the global scenario are given, and are then narrowed down to
the national scale of the Indian scenario between 2000 and 2021. This analysis is based on
138 articles gathered from the databases of Science Direct, etc., with the help of bibliometric
statistics such as keywords, countries, and outcomes. Additionally, ecosystem types,
geographical location of the studies conducted, and assessment and valuation methods are
in the limelight. The number of publications in the Indian context is gradually increasing.
We find a steady increase in the publication trend post-2015. We find publications focusing
on the study of two or more ES categories. Crop production and water yield have focused
on provisioning ecosystem services; carbon sequestration, soil conservation for regulating
ecosystem services; biodiversity conservation, along with the nutrient cycle, for supporting
ecosystem services; psychological behavior, and quality of life in cultural ecosystems. We
find these studies have been completed, since these are considered major determinants
ruling these ESs along with the help of readily available research methodological framework.
On the other hand, due to lack of methods and data, it is difficult to map the remaining
ESs. In the Indian context, water, carbon, and soil play a major role in improving the
socioeconomical aspect of ES.

India is a peninsular country with a wide variety of physical landscapes, including
croplands, woods, grasslands, deserts, rivers, lakes, deltas, shelves, oceans, mountains,
plateaus, basins, and islands. With its existing rapid economic growth and massive ur-
banization, India has become increasingly vulnerable to both natural disasters, such as
droughts and floods, and human-caused ecological disasters, such as deforestation, saliniza-
tion, erosion, and water, air, and soil pollution. The ES transdisciplinary paradigm serves as
a useful framework for analyzing diversified natural assets and addressing environmental
issues through integrated ecosystem management. However, the dataset built in this review
work is not comprehensive; it can serve as a foundation for future studies, with the hope of
creating a complete ES research database at the national level.
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103. Yi, H.; Güneralp, B.; Kreuter, U.P.; Güneralp, İ.; Filippi, A.M. Spatial and Temporal Changes in Biodiversity and Ecosystem
Services in the San Antonio River Basin, Texas, from 1984 to 2010. Sci. Total Environ. 2018, 619–620, 1259–1271. [CrossRef]

104. Sun, X.; Li, F.; Sun, X.; Li, F. Spatiotemporal Assessment and Trade-Offs of Multiple Ecosystem Services Based on Land Use
Changes in Zengcheng, China. Sci. Total Environ. 2017, 609, 1569–1581. [CrossRef]

105. Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem Service Trade-Offs and Their Influencing Factors: A Case Study in the
Loess Plateau of China. Sci. Total Environ. 2017, 607–608, 1250–1263. [CrossRef]

106. Izquierdo, A.E.; Clark, M.L. Spatial Analysis of Conservation Priorities Based on Ecosystem Services in the Atlantic Forest Region
of Misiones, Argentina. Forests 2012, 3, 764–786. [CrossRef]

107. Sahoo, U.K.; Tripathi, O.P.; Nath, A.J.; Deb, S.; Das, D.J.; Gupta, A.; Devi, N.B.; Charturvedi, S.S.; Singh, S.L.; Kumar, A.; et al. Quantifying
tree diversity, carbon stocks and sequestration potential for diverse land-uses in northeast India. Front. Environ. Sci. 2021. [CrossRef]

108. Kumar, M.; Kumar, A.; Thakur, T.K.; Pandey, R.; Shaboo, U.K. Soil Organic Carbon Estimation along an Altitudinal Gradient of
Chir-Pine forests of Garhwal Himalaya, India: A field inventory to remote sensing approach. Land Degrad. Dev. 2022. [CrossRef]

109. Rodríguez, N.; Armenteras, D.; Retana, J. National Ecosystems Services Priorities for Planning Carbon and Water Resource
Management in Colombia. Land Use Policy 2015, 42, 609–618. [CrossRef]

110. Tan, Z.; Liu, S.; Tieszen, L.L.; Tachie-Obeng, E. Simulated Dynamics of Carbon Stocks Driven by Changes in Land Use,
Management and Climate in a Tropical Moist Ecosystem of Ghana. Agric. Ecosyst. Environ. 2009, 130, 171–176. [CrossRef]

111. Chiang, L.C.; Lin, Y.P.; Huang, T.; Schmeller, D.S.; Verburg, P.H.; Liu, Y.L.; Ding, T.S. Simulation of Ecosystem Service Responses
to Multiple Disturbances from an Earthquake and Several Typhoons. Landsc. Urban Plan. 2014, 122, 41–55. [CrossRef]

112. Anache, J.A.A.; Flanagan, D.C.; Srivastava, A.; Wendland, E.C. Land Use and Climate Change Impacts on Runoff and Soil Erosion
at the Hillslope Scale in the Brazilian Cerrado. Sci. Total Environ. 2018, 622–623, 140–151. [CrossRef] [PubMed]

113. Vaezi, A.R.; Ahmadi, M.; Cerdà, A. Contribution of Raindrop Impact to the Change of Soil Physical Properties and Water Erosion
under Semi-Arid Rainfalls. Sci. Total Environ. 2017, 583, 382–392. [CrossRef]

114. Wei, W.; Chen, L.; Yang, L.; Fu, B.; Sun, R. Spatial Scale Effects of Water Erosion Dynamics: Complexities, Variabilities, and
Uncertainties. Chin. Geogr. Sci. 2012, 22, 127–143. [CrossRef]

115. Wen, X.; Zhen, L. Soil Erosion Control Practices in the Chinese Loess Plateau: A Systematic Review. Environ. Dev. 2020, 34, 100493.
[CrossRef]

116. Li, J.; Zhou, Z.X. Natural and Human Impacts on Ecosystem Services in Guanzhong—Tianshui Economic Region of China.
Environ. Sci. Pollut. Res. 2016, 23, 6803–6815. [CrossRef]

117. Liao, C.; Yue, Y.; Wang, K.; Fensholt, R.; Tong, X.; Brandt, M. Ecological Restoration Enhances Ecosystem Health in the Karst
Regions of Southwest China. Ecol. Indic. 2018, 90, 416–425. [CrossRef]

118. Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem Services Response to Urbanization in Metropolitan Areas: Thresholds
Identification. Sci. Total Environ. 2017, 607–608, 706–714. [CrossRef] [PubMed]

119. Han, R.; Feng, C.C.; Xu, N.; Guo, L. Spatial Heterogeneous Relationship between Ecosystem Services and Human Disturbances:
A Case Study in Chuandong, China. Sci. Total Environ. 2020, 721, 137818. [CrossRef]

120. Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Zhang, Y.; Zhang, Y. What Factors Affect the Synergy and Tradeoff between Ecosystem
Services, and How, from a Geospatial Perspective? J. Clean. Prod. 2020, 257, 120454. [CrossRef]

121. Raudsepp-Hearne, C.; Peterson, G.D. Scale and Ecosystem Services: How Do Observation, Management, and Analysis Shift with
Scale—Lessons from Québec. Ecol. Soc. 2016, 21, 16. [CrossRef]

122. de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in Integrating the Concept of Ecosystem Services and
Values in Landscape Planning, Management and Decision Making. Ecol. Complex. 2010, 7, 260–272. [CrossRef]

123. Bai, Y.; Chen, Y.; Alatalo, J.M.; Yang, Z.; Jiang, B. Scale Effects on the Relationships between Land Characteristics and Ecosystem
Services- a Case Study in Taihu Lake Basin, China. Sci. Total Environ. 2020, 716, 137083. [CrossRef] [PubMed]

124. Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-Temporal and Cumulative Effects of Land Use-Land
Cover and Climate Change on Two Ecosystem Services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192.
[CrossRef] [PubMed]

125. Ma, S.; Wang, L.J.; Jiang, J.; Chu, L.; Zhang, J.C. Threshold Effect of Ecosystem Services in Response to Climate Change and
Vegetation Coverage Change in the Qinghai-Tibet Plateau Ecological Shelter. J. Clean. Prod. 2021, 318, 128592. [CrossRef]

126. Yohannes, H.; Soromessa, T.; Argaw, M.; Warkineh, B. Spatio-Temporal Changes in Ecosystem Service Bundles and Hotspots
in Beressa Watershed of the Ethiopian Highlands: Implications for Landscape Management. Environ. Chall. 2021, 5, 100324.
[CrossRef]

127. Li, Y.; Zhang, L.; Qiu, J.; Yan, J.; Wan, L.; Wang, P.; Hu, N.; Cheng, W.; Fu, B. Spatially Explicit Quantification of the Interactions
among Ecosystem Services. Landsc. Ecol. 2017, 32, 1181–1199. [CrossRef]

128. Jiang, C.; Li, D.; Wang, D.; Zhang, L. Quantification and Assessment of Changes in Ecosystem Service in the Three-River
Headwaters Region, China as a Result of Climate Variability and Land Cover Change. Ecol. Indic. 2016, 66, 199–211. [CrossRef]

129. Khan, M.; Sharma, A.; Goyal, M.K. Assessment of Future Water Provisioning and Sediment Load under Climate and LULC
Change Scenarios in a Peninsular River Basin, India. Hydrol. Sci. J. 2019, 64, 405–419. [CrossRef]

26



Appl. Sci. 2022, 12, 8518

130. Jianying, X.; Jixing, C.; Yanxu, L. Partitioned Responses of Ecosystem Services and Their Tradeoffs to Human Activities in the Belt
and Road Region. J. Clean. Prod. 2020, 276, 123205. [CrossRef]

131. Naidoo, R.; Balmford, A.; Costanza, R.; Fisher, B.; Green, R.E.; Lehner, B.; Malcolm, T.R.; Ricketts, T.H. Global Mapping of
Ecosystem Services and Conservation Priorities. Proc. Natl. Acad. Sci. USA 2008, 105, 9495–9500. [CrossRef]

132. Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the Spatial Relationship between Ecosystem Services and Urbanization:
A Case Study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [CrossRef]

27





Citation: Bielski, A.; Toś, C. Remote
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Abstract: This study examines the chlorophyll a content and turbidity in the shallow dam reservoir of
Lake Dobczyce. The analysis of satellite images for thirteen wavelength ranges enabled the selection
of wavelengths applicable for a remote determination of chlorophyll a and turbidity. The selection
was completed as the test of the significance of the coefficients in the equation, which calculates
the values of the parameters on the basis of reflectance. The reflectance of the reservoir surface
differs from the reflectance of individual water components, and the overlapping of spectral curves
makes it difficult to isolate the significant reflectance. In the case of Lake Dobczyce, the significant
reflectance was for wavelengths 665, 705, 740, and 842 nm (chlorophyll a) and for wavelengths 705,
740, and 783 nm (turbidity). In the model, the natural logarithm of chlorophyll a or turbidity was a
linear combination of the natural log reflectance and the squares of those logarithms. A lake surface
reflectance also includes the bottom reflectance. The reflectance obtained from the Sentinel-2 satellite
was corrected with a bottom reflectance determined using the Lambert–Beer equation. The reflectance
of a given surface may vary with the position of both the satellite and the sun, atmospheric pollution,
and other factors. Correction of reflectance from satellite measurements was performed, as reflectance
changes for the reference surface; the reference reflectance was assumed as the first reflectance of the
reference surface observed during the study. The models helped to develop the maps of turbidity
and chlorophyll a content in the lake.

Keywords: Sentinel-2; chlorophyll; turbidity; lake; concentration modeling of contaminants

1. Introduction

The chlorophyll content in surface waters is related to nutrients, such as nitrogen and
phosphorus, and serves as one of many indicators of eutrophication. High amounts of
these elements in water contribute to the excessive growth of algae, resulting in poor water
quality. This topic is especially urgent in surface water intakes used for municipal or in-
dustrial consumers. The chlorophyll content in water can be determined by the traditional
laboratory method, based on acetone extraction and absorbance measurement [1,2]. How-
ever, to track down changes in the chlorophyll content in rivers or lakes, and to develop
concentration maps, a large number of analyses would have to be done; it would be a
time-consuming and ineffective approach.

Satellite images of water surfaces allow for faster and more cost-effective estimation
of chlorophyll content in water [3]. Another advantage of remote sensing (teledetection) is
a spatial analysis of chlorophyll concentrations from in situ data are collected at particular
points [4]. There are, however, a number of problems regarding the remote sensing of
chlorophyll faces in surface waters. Water regime [5], as well as the reservoir’s depth [6],
are associated with the chemical composition and content of biological elements in water.
Radiometric and atmospheric corrections also play an important role in the case of satellite
data. The correction models, such as ATCOR [7], Second Simulation of a Satellite Signal in
the Solar Spectrum (6SV), Acolite, or Sen2cor are available and used in these studies. All
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these concerns have prompted the use of empirical [8,9] or semi-analytical approaches in
the development of teledetection methods for monitoring chlorophyll content in inland
waters. These methods are based on the physics of the interactions of radiation with water
and its compounds [10,11]. In recent years, neural networks and machine learning methods
have been employed in the research on chlorophyll detection [8,12].

Empirical methods, though well suited to local conditions [13], require quite a lot of
data. On the other hand, semi-analytical methods are more universal, but provide less
accurate results. Deep learning methods are still in the early stage of development, and
they require a large amount of heterogeneous teaching data; their complexity delays their
implementation in small subjects, such as water reservoirs.

The research focused on the automation of the estimation of turbidity (in nephelometric
units, NTU) and chlorophyll content in water taken from shallow dam reservoirs used
for drinking purposes. In such reservoirs, water is usually classified as case 2, where
optical properties are a function of at least three water components, i.e., phytoplankton,
suspended sediments, and colored dissolved organic matter [14]. Such objects, with their
firm positions, usually exhibit multiple time observation series of basic water quality
indicators (turbidity, chlorophyll). The described remote water quality research favors the
empirical method, which, however, must include an optical interaction between the main
pollution components, i.e., mineral suspension and phytoplankton, and the shallow tank.
Therefore, the authors offer a combination of statistical models that include these elements.
The models have been verified using Sentinel 2 data in Lake Dobczyce; the lake serves as
the drinking water reservoir for Krakow, Poland.

2. Data, Methods, and Techniques

2.1. Remote Sensing Methods for a Chlorophyll Content

In surface waters, algae and bacteria contain many pigments that can be analyzed
using spectral methods. Listed according to color, these are, e.g., chlorophylls a, b, c, c1,
c2, d, e, f, and g—green; carotene—orange; xanthophyll—yellow; phycoerythrin—red;
phycocyanin—blue; and fucoxanthin—brown. The dominant pigments in photosynthetic
organs are chlorophyll a (blue-green) and chlorophyll b (yellow-green).

Chlorophyll a is the most frequently used indicator of surface water quality. The
surface spectral reflectance curves for water with different chlorophyll a concentrations are
presented in Figure 1. Blue and far-red light ranges are strongly absorbed by chlorophyll,
while the reflectance peaks are recorded at the wavelengths of approximately 566 and
688 nm (Figure 1).

Figure 1. Surface remote sensing reflectance spectrum for the waters with different concentration
of chlorophyll a, collected in the study area (119◦52′–119◦54′ E, 26◦16′–26◦19′ N) at 10:00–15:40,
2 June 2003. Reprinted with permission from [15].
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Mineral and organic suspensions may pose a serious difficulty in studying the concen-
tration of chlorophyll a in surface waters. Both suspensions result in the reflectance peaks
at approximately 550, 712.5, and 805 nm (Figure 2), so a shift in the peaks only takes place
relative to the peaks for chlorophyll a. The suspensions may also enhance the reflectance in
relation to that of chlorophyll a and therefore, models describing the relationship between
chlorophyll a and the reflectance should consider several wavelengths.

Figure 2. Relative contributions of chlorophyll and suspended sediment to a reflectance spectra of
the surface water, based on in situ laboratory measurements made 1 m above the water surface by
the authors of [16,17]. Reprinted with permission from [16,17].

The presence of clay or dusty particles in water results in a specific spectrogram
(Figures 3 and 4) [18]. High reflectance in the range of 580–690 nm and reflectance near
810 nm will strongly distort the chlorophyll a spectrogram. The first range is characteristic
for a specific type of suspension. In the case of lake bottom sediments that are composed of
clay or dusty suspensions, they will have a similar spectrogram. The reflectance pattern
around 810 nm is similar for clay and dusty suspensions and therefore, the reflectance
around 810 nm can be used to estimate the suspension concentration.

Figure 3. Reflectance for water with a clay suspension [g/m3]. Reprinted with permission from [18].
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Figure 4. Reflectance for water with a dusty suspension [g/m3]. Reprinted with permission from [18].

Mathematical models using the reflectance R to determine the concentration of Cchl-a
chlorophyll a in water are developed for a given type of surface water. These are the
most abundant types of empirical models. Models such as GlobColour or Modis Aqua
can be used globally or adapted to local reservoir conditions. They can take the form of
polynomial dependence, as shown in the research of [19,20], dependence, as a form of the
products or quotients of expressions [21,22], or a logarithmic form [23,24]. The estimation
of model parameters can be carried out in different ways—using multiple linear recreation,
support vector machine regression (SVR), or genetic algorithms. Examples of models used
to determine the chlorophyll a content in the water are presented in Table 1.

Table 1. Typical mathematical formulas to calculate chlorophyll a concentrations.

Formula Source

Cchl-a=(23.09 ± 0.98) + (117.42 ± 2.49)·(R−1
660–670 − R−1

700–730)·R740–760
Cchl-a = −(16.2 ± 1.8) + (136.3 ± 3.2)·(R−1

662–672 · R743–753)
(Gitelson et al., 2006) [21]

Cchl-a = (0.74·R681 + [(681 nm − 665 nm)/(681 nm − 620 nm)]·(R620 − R681) − R665 (Shen et al., 2010) [22]

log10(Cchl-a) = (0.32978 + 2.6465X + 1.9988X2 + 0.5708X3 + 3.033X4)
X = log10(Max(R443nm, R486nm)/R551nm)

(Son et al., 2020) [23]

Cchl-a [mg/L] = 1.67 + 299 R438 − 33.1 R675 − 7217 R438R675 – 14022 R2
438 − 973

R2
675 + 373702 R2

438R675 + 112440 R438R2
675 − 3317051 R2

438R2
675

Cchl-a [mg/L] = 3.45 + 66.2 R438 − 100 R550 − 3.9 R675 + 5349 R438R550 − 16643
R550R675 − 12682 R438R675 + 3077 R2

438 + 5209 R2
550 + 15992 R2

675

(Johan et al., 2018) [20]

log10(Cchl-a) = (0.366 − 3.067X + 1.930X2 + 6.049X3 − 1.532 X4)
X = log10(Max(R443nm/R555nm, R490nm/R555nm, R510nm/R555nm))

GlobColour (Johnson et al., 2013) [25]
(Diouf et al., 2018) [24]

log10(Cchl-a) = (0.6994 − 2.0384X + 0.4656RX2 + 0.4337X3)
X = log10(Max(Rrs(443/555), Rrs(490=555))

Cchl-a = [mg/m3]
Modis-Aqua (Johnson et al., 2013) [24]

The models are characterized by a different precision of results. Johnson et al., 2013 [25],
testing global models GlobColour or Modis Aqua, obtained low R2 determination coeffi-
cients of 0.25–0.51; on the other hand, for local conditions, this indicator may reach up to
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the value 0.96, with an error for RMSE chlorophyll a content of 0.07 mg chl/m3, determined
on the basis of a few data covering 5 days of composite images for the year 2014 [24].

Empirical models that are focused on determining the chlorophyll a concentration
take into account the variability of the aquatic environment in terms of the content of other
substances in a very limited way, which may affect the accuracy of the results obtained.

A possible solution to this problem in the case of inland waters may be the construction
of seasonal models (used for imaging registered at specific seasons of the year) [26]. Another
more widely used technique is the use of bioptic methods based on the modeling of light-
water interaction, such as Hydrolight [27], or the newer 2SeaColor [28], adapted to water
with high turbidity.

In the case of the second model, the determination indicator was equal 0.71, and model
error RMSE was 6.23 mg chl/m3 [28]. Such models may include bottom reflectance [29,30],
which is extremely important for shallow tanks, as pointed out by Hicks et al. 2013 [31].

In the works (Li et al., 2017, 2018) [32,33], a semi-analytical method for colored dis-
solved organic matter (CDOM) was presented. This method includes bottom effect and is
accurate (RMSE = 0.17 mg chl/m3 and R2 = 0.87); it also uses multispectral data.

The extremely promising result for turbid water research was the model developed
by Gitelson et al. [21]. Finding three ranges of wavelengths guaranteeing the least error
to estimate the chlorophyll a content enabled an accuracy of 7.8 mg chl a/m3 in the
range of 1.2 to 236 mg chl a/m3, medium relative error 18.3%, with a high determination
factor R2 ≈ 0.96. The version of the model with two wave length ranges provided much
worse results. Despite the high accuracy of in situ research for low concentrations (below
10 mg chl a/m3), there are relative errors reaching almost 100%.

Remote bathymetrical tests of shallow water, conducted by Lee et al. [34,35], yield the
possibility of linking the effect of bottom reflectance and chlorophyll concentration. The
developed model includes many different reflectances, including bottom reflectance and
the absorption of radiation for various water components, such as phytoplankton pigments.
However, the model is focused on the remote determination of depth. The number of
model parameters is very large, making it troublesome to simultaneously determine the
data for several wavelengths. Therefore, the absorption of radiation by phytoplankton is
an input parameter for this model, not an output enabling the determination of chlorophyll
concentration. In the case of oligotrophic sea waters, the computing models are simpler.
Computational difficulties appear when many water components with spectrally different
properties affect the calculation of the content of a given water component. This usually
requires the use of the reflectances of many water components for many wave lengths.
Particularly large complications appear in the case of shallow and turbid water.

The model of chlorophyll a content estimation in a reservoir used for drinking water
intake was presented in this work. This application model is characterized by high accuracy,
taking into account the bottom effect and interactions between chlorophyll and mineral or
organic suspension.

2.2. Area of Study

The research was carried out in the area of Lake Dobczyce, located in the Myślenice
poviat, in the Lesser Poland voivodeship of Poland. It is a dam reservoir, constructed in
1986 by damming the Raba river with a 30 m high and 617 m long dam. The reservoir area
is approximately 10.7 km2, and its total capacity is 127 million m3. The reservoir serves
as a source of drinking water. The lake water quality is determined by the quality of the
Raba river, which varies due to anthropogenic activities and precipitation. These factors
contribute to significant fluctuations in the concentrations of nutrients, mineral and organic
suspensions, and other substances. The depth of the lake is just over twenty-six meters
(Figure 5).
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Figure 5. Depth map of Lake Dobczyce.

In the case of Dobczyce Lake, it is difficult to determine its range, especially in the
western shallow region. This problem was solved by using information on the area elevation
of the water surface and lidar altitude data (ALS), which, due to its high density, was
subjected to resampling from the 5 × 5 m network using the MIN method, suggested by
Śliwiński et al., 2022 [36], as the most suitable method for this type of task.

2.3. Data for a Remote Sensing Research

Images from Sentinel 2 (L1C product), registered from 13 April 2016 to 31 December
2021, were used for the teledetection quality modeling of water in Lake Dobczyce. The
choice of specific images was determined by the dates of water quality tests in situ. A
significant limitation in the number of images resulted from the rejection of images in
which clouds or ice covered the lake.

The content of chlorophyll a and suspended solids (as turbidity) in the water was
measured, in the period from 2016 to 2021, in the laboratory of the Waterworks of the
City of Krakow, located at the water intake. The study covered the period from 2016 to
2021. Chlorophyll a was analyzed in acetone extracts using the monochromatic spectropho-
tometric method, with correction for pheopigment a [2,37]; absorbance was measured
on a Hach DR 4000 U spectrophotometer, while turbidity was measured on a TL 2360
spectrophotometer, according to the standard methods [38].

2.4. Spectral Reflectance Curves

To compare the data recorded by Sentinel-2 satellites at different times, they were
normalized to the conditions above the reference surface. The reference area was established
as a fragment of the lakeside dam crest; it shows a low reflectance, and its properties are
stable in time. The air composition over the reference surface was assumed to be the same
as that over the lake surface. To correct lake surface reflectance obtained from satellite data,
the special corrective parameter was introduced. It is the ratio of the reflectance registered
on 13 April 2016 (13 April 2016, base date) in the reference field and the actual reflectance at
a given day in the field. The normalized reflectance for the lake surface was the product of
the corrective parameter and the reflectance of a given point on the lake surface at a given
date. Such normalization is considered as an atmospheric correction. It made it possible to
accommodate changes in air quality over the reference surface and the lake surface.

Spectral curves for the fragment of the dam crest are presented in Figure 6.
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Figure 6. Some spectral curves for the fragment of the dam crest.

The base reflection curve for the fragment of the dam crest (reference area) is dated
13 April 2016 (Figure 6). Other spectral curves have a similar shape, but pass through
points with different reflectance values, even though the properties of the dam crest surface
have not changed; this was due to changes in the atmosphere composition over time.

The specific course of the spectral curves for Lake Dobczyce (Figure 7) results from the
combination (superposition) of partial spectral curves for the water surface, water column,
and bottom of the reservoir. Backscattering in a blue band also results in high reflectance
(Figure 7). It should be noted that even at a high concentration of, e.g., montmorillonite
suspensions (500 g/m3), the spectral curve does not show strong local extremes for wave-
lengths over 440 nm (Figure 8). Such a concentration corresponds to a turbidity of 500 NTU,
rarely found in surface waters (mostly after heavy rains). Starting from approximately
440 nm, the spectral curve drops down (Figure 8), as shown in the curves in Figure 7.
At concentrations exceeding 500 g/m3, the maximum, corresponding to 440 nm, shifts
towards longer wavelengths. The spectral curves may take completely different shapes
than the ones shown in Figures 7 and 8 for other types of the mineral suspensions.

Figure 7. Reflectance at different measuring points of Lake Dobczyce in the years 2016–2021, after a
normalization of the original reflectance from the satellite.
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Figure 8. Spectral curve for the montmorillonite suspensions in water, USGS Spectral Library
Version 7, https://crustal.usgs.gov/speclab/QueryAll07a.php?quick_filter=water (accessed on
1 January 2022). Reprinted with permission from [39].

The spectral curves for the chlorophyll solution can also differ significantly. At low
concentrations (2.97 mg chl/m3) (Figure 9), there are no strong local extremes on the
spectral curve above 400 nm. Characteristic local extremes appear at higher concentrations
(7.609 mg chl/m3) (Figure 10) and are similar to the curves in Figure 2. Therefore, it may be
concluded that concentration of water components (chlorophyll, type of suspension) will
have a decisive influence on the shape of the spectral curves.

Figure 9. Spectral curve of chlorophyll in water (2.97 mg chl/m3), USGS Spectral Library Version 7,
https://crustal.usgs.gov/speclab/QueryAll07a.php?quick_filter=water (accessed on 1 January 2022).
Reprinted with permission from [39].
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Figure 10. Spectral curve of chlorophyll in water (7.609 mg chl/m3), USGS Spectral Library Version 7,
https://crustal.usgs.gov/speclab/QueryAll07a.php?quick_filter=water (accessed on 1 January 2022).
Reprinted with permission from [39].

2.5. Model

To compute concentrations of chlorophyll a (Cchl) from reflectance R obtained from
satellite images for different wavelengths, a mathematical relationship has to be developed
that meets the rules for logical concentration values for extremely high or low reflectance
values. Empirical models, which are a linear combination of partial formulas, are risky
to use because they cannot determine model parameters for all possible R values. The
risk arises from a finite number of observational data, which usually does not include
information on extreme values of R. Therefore, it may happen that Cchl calculated from
the R values obtained from the new photos will be illogical, or even negative. Generally,
extrapolation of such a model beyond the R values used to determine the model param-
eters yields highly ambiguous results; that is why models originating from the theory of
dimensional analysis are considered to be safer. These types of models are usually the
product of function modules at the appropriate power. They may also generate poor results
outside of the R values used in the model estimation, but at least they guarantee that the
results are positive.

The initial model was defined as:

Cchl = α0Rα1
443Rα2

490Rα3
560Rα4

665Rα5
705Rα6

740Rα7
783Rα8

842Rα9
865Rα10

945Rα11
1375Rα12

1610Rα13
2190 (1)

where:
α0 to α13—model coefficients;
R . . . .—radiation reflectance for wavelengths: 443, 490, 560, 665, 705, 740, 783, 842, 865,

945, 1375, 1610, and 2190 nm, determined from the satellite data; and
Cchl—concentration of chlorophyll a [mg/m3].
The logarithmic Equation (1) leads to a linear relationship for the logarithms of re-

flectance R. The spectral curves of chlorophyll a (Figure 1) and the suspensions (Figures 2–4)
show that the reflectance for wavelengths over 865 nm and shorter than 490 nm will not
provide significant information on the concentration of chlorophyll a. Therefore, the
logarithmic form of Equation (1), after simplification, takes the form:

lnCchl = a0 + a1lnR490 + a2lnR560 + a3lnR665 + a4lnR705+
a5lnR740 + a6lnR783 + a7lnR842 + a8lnR865

(2)
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where:
a0 to a8—model coefficients,
R . . . .—radiation reflectance for wavelengths: 490, 560, 665, 705, 740, 783, 842, and

865 nm, determined from the satellite data.
To make the model more general, additional components, like the squares of the

reflectance log, were introduced:

lnCchl = a0 + a1lnR490 + a2lnR650 + a3lnR665 + a4lnR705+

a5lnR740 + a6lnR783 + a7lnR842 + a8lnR865 + a9(lnR490)
2

a10(lnR560)
2 + a11(lnR665)

2 + a12(lnR705)
2 + a13(lnR740)

2+

a14(lnR783)
2 + a15(lnR842)

2 + a16(lnR865)
2

(3)

The regression analysis of Equation (3) enabled the selection of such coefficients (from
a1 to a16) that showed a probability lower than the significance coefficient 0.05 in the
Student’s t-distribution (significance test of the equation coefficients). It was found that the
most important coefficients are related to the wavelengths: 665, 705, 740, and 842 nm. These
are the lengths approximately corresponding to the local minimum and maximum on the
spectral curve of chlorophyll a (Figures 1 and 2) and the local minimum and maximum on
the spectral curve of the suspensions (Figures 2–4). In the case of the Sentinel satellite, there
were no 760 and 810 nm wavelength channels corresponding to the local minimum and
maximum on the spectral curve of the suspensions (Figures 2–4); hence, the 740 and 842 nm
channels turned out to be statistically significant. Eventually, the model looked as follows:

lnCchl = a0 + a3lnR665 + a4lnR705 + a5lnR740 + a7lnR842+

a11(lnR665)
2 + a12(lnR705)

2 + a13(lnR740)
2 + a15(lnR842)

2 (4)

To eliminate the influence of the lake bottom reflectance, some reflectance corrections
in Equation (4) were required. The effect of light reflection by the lake bottom in four light
wavelengths is shown in Figure 11. However, just the reflectance corrections for 665 nm and
705 nm are sufficient for a good model accuracy. Of course, the reflectance for 740 nm and
842 nm may also be corrected, but their impact is negligible for the quality of the model (4).
Generally, the shorter the wave, the stronger the bottom reflectance. Such observation is
also confirmed by the spectral curves (Figure 7), which show that the shorter the wave, the
higher the reflectance.

Following the Lambert–Beer law, absorbance (−ln(I/I0)) of the medium for UV, Vis,
and IR radiation is proportional to an optical path length l and a concentration of substance
C. This means that a light intensity I in a water column decreases exponentially:

I = I0·exp(−k·C·l) (5)

I0—incident light intensity [W/m2];
k—absorption coefficient [m3/(g·m)];
C—concentration of a radiation absorber [g/m3];
l—optical path length [m].
Assuming that the lake bottom reflectance Rb is approximately proportional to the

intensity of the radiation reaching the depth of l = h, the reflectance over a water surface,
recorded by a photosensitive sensor, would be described by the relationship:

Rb =
αb·I0·exp(−k·C·2h)

I0
= αb·exp(−k·C·2h) (6)

αb—coefficient of the radiation reflectance through the bottom;
C—concentration of all substances (e.g., chlorophyll a, mineral suspensions, organic

suspensions, water) responsible for absorption of radiation [g/m3], i.e., water turbidity [NTU];
h—depth (actual length of an optical path, when shooting close to the zenith, is

approximately equal to the depth h) [m].
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Figure 11. Images of Lake Dobczyce at four wavelengths (color representation: blue, yellow, violet,
with the same color saturation in each photo).

The number 2 in Formula (6) means that radiation passes twice through the water layer.
The reflectance R, recorded by the satellite, is approximately equal to the sum of the

four principal reflectances:

R = αs I0+Ichl+Im+αb(I0−αs I0)exp(−k·C·2h)
I0

=

αs +
Ichl
I0

+ Im
I0
+ αb(1 − αs)exp(−k·C·2h) =

αs + Rchl + Rm + αb(1 − αs)exp(−k·C·2h)

(7)

αs—coefficient of the radiation reflectance for the water surface (water surface reflectance);
Rchl—reflectance related to chlorophyll a in water, as the total effect of radiation;
Ichl—reflected at different water depths;
Rm—reflectance related to the substances, other than chlorophyll a, in water, as the

total effect of radiation Im reflected at different water depths;
αb(1 − αs)exp(−k·C·2h)—reflectance of the lake bottom Rb.
Intensity of radiation Ichl , Im reflected from water at different depths is defined as the

depth integration from the derivative of the radiation intensity at different depths, with
respect to the depth defined by (5); intensity I0 must be reduced by the intensity of the
radiation reflected from the water surface αs I0. Therefore:

Ichl = −
h∫

0

d(αchlCchl(I0−αs I0)exp(−k·C·2l))
dl dl =

αchlCchl(I0 − αs I0)(1 − exp(−k·C·2h))
(8)

Im = −
h∫

0

d(αmCm(I0−αs I0)exp(−k·C·2l))
dl dl =

αmCm(I0 − αs I0)(1 − exp(−k·C·2h))
(9)

Cchl—concentration of chlorophyll a [mg/m3];
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αchl—coefficient of the radiation reflectance for chlorophyll a [m3/mg];
Cm—concentration of non-chlorophyll a substances in water responsible for light

reflection [g/m3];
αm—coefficient of the radiation reflectance for substances other than chlorophyll

a [m3/g].
If h and/or C are sufficiently high, then exp(−k·C·2h) << 1 and:

Ichl ≈ αchlCchl(I0 − αs I0) ⇒ Rchl ≈ αchlCchl(1− αs) (10)

Im ≈ αmCm(I0 − αs I0) ⇒ Rm ≈ αmCm(1− αs) (11)

In model (4), the R . . . reflectance for different wavelengths is the computational
reflectance Rcalc, which are formally sums Rchl, ... + Rm, ... for different wavelengths. There-
fore, each reflectance in model (4) should be corrected and replaced with the computational
reflectance for different wavelengths:

R... ← Rcalc, ... = Rchl, ... + Rm, ... =
R... − αs, ... − αb, ...(1− αs, ...)exp(−k...·C·2h)

(12)

. . . —the index dots refer to different wavelengths;
R . . . .—radiation reflectance for different wavelengths determined from satellite;
Rcalc, ...—computational reflectance for different wavelengths.
The coefficient αs (or reflectance) for different wavelengths is small if compared to

other reflectance, and therefore should be neglected, so:

R... ← Rcalc, ... = Rchl, ... + Rm, ... =
R... − αb, ...exp(−k...·C·2h)

(13)

A reflectance correction (13) in Equation (4) gives the equation describing the concen-
tration of chlorophyll a as:

Cchl = exp[a0 + a3ln(R665 − αb,720mu665exp(−k665·C·2h)) +

a4ln(R705 − αb,720mu705exp(−k705·C·2h))+

a5lnR740 + a7lnR842+

a11(ln(R665 − αb,720mu665exp(−k665·C·2h)))2+

a12(ln(R705 − αb,720mu705exp(−k705·C·2h)))2+

a13(lnR740)
2 + a15(lnR842)

2]

(14)

Cchl—chlorophyll a concentration [mg/m3];
exp(a0)—model’s coefficient [mg/m3].
Assume the following parameter values for Equations (7)–(9) relating to one wave-

length: αs = 0.002, αm = 0.001, αb = 0.3, αchl = 0.001, k = 0.05 (NTU·m)−1, Cm = C ≈ 5 NTU
(in practice, water turbidity is assumed as C) and Cchl = {1, 5, 10, 20, 50} mg/m3. From
the Equations (7)–(9), the reflectance R can be determined, as a function of the depth h
(Figure 12). Knowing R and the parameters of Equations (7)–(9), the concentration of
chlorophyll a Cchl can be again determined. These would be horizontal lines of constant
values Cchl = {1, 5, 10, 20, 50} mg/m3 for all depths h. In order to check the quality of the
model (14), we write it for a single wavelength:

Cchl = exp
[
a0 + a3ln

(
R− α∗bexp(−k∗·C·2h)

)
+

a11
(
ln
(

R− α∗bexp(−k∗·C·2h)
))2

]
(15)
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Figure 12. Changes in reflectance R as a function of depth h for the sensor above the water surface at
different concentrations of chlorophyll a Cchl = {1, 5, 10, 20, 50} mg/m3.

The parameters of model (15) were determined on the basis of changes in reflectance R as
a function of h, determined from Equations (7)–(9). The following parameters were obtained:
a0 = −0.994654, a3 = −3.91129, α∗b = 0.293404, k∗ = 0.04999945 (NTU·m)−1, a11 = −0.767181.
Parameters: α∗b and k∗ are almost equal to αb = 0.3, k = 0.05 (NTU·m)−1 used in Equations (7)–(9).
Formally, α∗b should be equal to αs + αb(1− αs) = 0.002 + 0.3·(1 − 0.002) = 0.3014, as in Equa-
tion (12). The compliance of the parameters α∗b and k∗ with the parameters αb and k confirms
that a correction (13) for the bottom reflectance in the models (14) and (15) was needed.
Model (15) is less accurate for shallow depths and higher concentrations of chlorophyll a
Cchl (Figure 13), along with model (14).

Figure 13. Chlorophyll a Cchl concentrations as a function of depth h for Equations (7)–(9) and
model (15) (approximation).

It would be difficult to use a combination of Equations (7)–(9) to calculate chlorophyll
a concentrations on the basis of the reflectance recorded by a satellite; such reflectance is
a combination of both a chlorophyll a reflectance and the reflectance of other substances
present in the water. Such calculations were performed for the wavelengths of 665 nm and
705 nm. However, accurate parameters of models (7)–(9) for one wavelength and known
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turbidity could not be found. Therefore, model (14) has been proposed as the one that that
includes the reflectance for different wavelengths.

3. Results

3.1. Model Parameters for Chlorophyll a

Based on the measurements of the concentration of chlorophyll a Cchl, turbidity C,
lake depth h, and the reflectance R . . . for wavelengths: 665, 705, 740, and 842 nm, the
model parameters were determined (14). Due to the large number of parameters:

a0 , a3 , αb, 665 , k665 , a4 , αb, 705 , k705 , a5 , a7 , a11 , a12 , a13 , a15

the two-stage procedure was introduced. At first, a preliminary estimate of the parameters:
a0 , a3 , a4 , a5 , a7 , a11 , a12 , a13 , a15 was produced for the logarithm of r (4)
using the least square method, i.e., minimizing the sum of squares of deviations between
the logarithm of the measured chlorophyll concentration Cchl and the logarithm of the
concentration calculated from model (4). Then, other model parameters were found,
assuming the parameter values previously determined for model (4) for the calculations.
All parameters were determined by minimizing the sum of squared deviations between
the measured Cchl concentration and the one calculated from model (14); the correlation
coefficient was 0.944. The values of the model parameters (14) are summarized in Table 2,
col. 2. The model fit is shown in Figure 14. If turbidity was calculated from model (17),
the parameters of model (14) would have been provided, as shown in Table 2, col. 3. The
correlation coefficient was 0.925. The fit of model (14), while using model (17), is shown
in Figure 15. In both cases, the model’s fit to the measurements was good. If there is no
detailed data on turbidity and the parameter shows little variability, the average value of
turbidity can be used in the calculations.

Table 2. Model parameters (14).

Parameter
Value at

Known Turbidity
Value at

Turbidity Calculated from Model (17)
Units

1 2 3 4

a0 −32.25907512 −75.68466110 ln(mg/m3)

a3 −43.55040094 −72.72855795 –

αb, 665 0.015293030 0.006693771 –

k665 0.007665104 0.011140396 (NTU·m)−1

a4 42.36776151 62.29811979 –

αb, 705 0.010635655 0.008960131 –

k705 0.003498578 0.000530822 (NTU·m)−1

a5 −23.86732103 −47.45269805 –

a7 4.731529537 9.465054057 –

a11 −5.149196218 −9.056892001 –

a12 4.533167105 6.641324249 –

a13 −2.345421643 −5.388690882 –

a15 0.193746731 0.802524849 –

3.2. Maps of Chlorophyll a Concentrations for Lake Dobczyce

The map of chlorophyll a concentrations (Figure 16) was developed from satellite
images using models (14) and (17). Long retention times observed in Lake Dobczyce
(average 157 days), contribute to the algae growth and high chlorophyll a concentrations;
higher concentrations are noted in the middle of the lake. In this region, towards the dam,
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low flow velocities are also observed (Figure 17); therefore, concentrations slightly decrease
due to sedimentation of the suspended solids and algae. There are stagnant zones at the
northern and southern banks of the lake, where flow velocities are very low (Figure 17).
Such conditions promote algae growth, and the observed concentration of chlorophyll a
is high. Moreover, in the lake branches, where a water exchange is low and the retention
times exceed the average one, high concentrations of chlorophyll a are observed (Figure 16).

Figure 14. Model fit (Cchl model) (14) to the measured concentrations of chlorophyl-a (Cchl data) at
the known turbidity values.

Figure 15. Model fit (Cchl model) (14) to the measured concentrations of chlorophyl-a (Cchl data) for
turbidity model (17).

In October, water temperatures in the lake are low (around 13 ◦C), and the algae
growth slows down. At that time, higher concentrations of algae could be found only in
the northern branch of the lake (stagnant zone) and at the southern shores, where low
flow velocities (Figure 17) are responsible for stagnant zones (Figure 18). The chlorophyll a
model showed a good fit to the measurement data (Figure 18, table).
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Figure 16. Chlorophyll concentration in Lake Dobczyce 9 May2021 (imagery by Sentinel 2).

Figure 17. Two-dimensional field of the average vertical velocity in the main part of Lake Dobczyce
(without the northern bay), with the total flow of 10 m3/s and no-wind conditions (model RMA2).
Reprinted with permission from [40].

3.3. Models Parameters for Turbidity

The turbidity C model was developed similarly to the chlorophyll a model. At first,
it was determined which factors from the range of a0–a16 are significant for turbidity in
Equation (3). Then, the significance test was used for the a1–a16 coefficients at a significance
level of 0.05 using the Student’s t-distribution. It was found that the most important coeffi-
cients are related to the wavelengths: 705, 740, and 783 nm; these lengths approximately
correspond to the local minimum and maximum on the spectral curve of suspensions
(Figures 2–4). The initial form of the equation was as follows:

lnC = aC,0 + aC,4lnR705 + aC,5lnR740 + aC,6lnR783+

aC,12(lnR705)
2 + aC,13(lnR740)

2 + aC,14(lnR783)
2 (16)

C—turbidity [NTU];
a . . . .—model coefficients;
R . . . .—radiation reflectance for wavelengths: 705, 740, and 783 nm.
Taking into account the reflectance of the lake bottom leads to a relationship:

C = exp aC,0 + aC,4ln(R705 − αC,b, 705exp(−kC,705·C·2h))+
aC,5lnR740 + aC,6lnR783+

aC,12

(
ln

(
R705 − αC,b, 705exp

(
−kC,705·C·2h

)))2
+

aC,13(lnR740)
2 + aC,14(lnR783)

2

(17)
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exp(aC,0)—model’s coefficient [NTU].

Figure 18. Chlorophyll concentrations in Lake Dobczyce, 21 October 2021 (imagery by Sentinel 2).

The effect of light reflection by the lake bottom is shown in Figure 11. It appears
that it is sufficient to consider the reflectance correction for 705 nm to obtain a satisfactory
accuracy of model (17). Of course, it is also possible to correct the reflectance for 740 nm
and 783 nm, but the overall improvement of the model quality would be negligible.

Equation (17) is implicit due to turbidity C. The C value can be obtained by successive
approximations, i.e., inserting in exp

(
−kC,705·C·2h

)
values C from the previous approxi-

mation; after several attempts (e.g., 4), the value C becomes reasonably accurate. Another
method involves searching for the function’s zero, i.e., the difference of the right side of
Equation (17) and C. Here, the regula falsi method of searching for the function’s zero can
be used.

Based on the measurement data of: turbidity C, lake depth h, and the reflectance R...
for wavelengths 705, 740, and 783 nm, the parameters of model (17) were determined. Due
to the large number of parameters:

aC,0 , aC,4 , αC,b, 705 , kC,705 , aC,5 , aC,6 , aC,12 , aC,13 , aC,14

the two-stage procedure was employed. First, the values of some parameters were initially
estimated: aC,0 , aC,4 , aC,5 , aC,6 , aC,12 , aC,13 , aC,14, and then all the others were
estimated, while correcting the values of the pre-estimated parameters. The parameters
were determined using the least squares method (the best fit) for turbidity C and turbidity
from model (17). The model parameters are summarized in Table 3. The correlation
coefficient was 0.939, and the model fit is shown in Figure 19. A good fit of the model to
the measurement data was obtained.

3.4. Maps of Turbidity for Lake Dobczyce

The water turbidity map for the lake (Figure 20) was developed from the satellite
images and model (17). Long retention times in Lake Dobczyce (average 157 days) favor
the sedimentation of suspended particles. Therefore, the water turbidity in the middle
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of the lake, towards the dam, where there are low velocities (Figure 17), is lower than
turbidity close to the place where the Raba river enters the lake (Figure 20). In the branches
of the lake, where water exchange is low and retention times are longer, low turbidity may
be attributed to good sedimentation conditions (Figure 20); turbidity is also low on the
south-eastern shores of the lake, where the flow velocities are low.

Table 3. Values of the model (17) parameters.

Parameter Value Unit

aC,0 −28.87376959 ln(NTU)

aC,4 13.12134743 –

αC,b, 705 0.014648999 –

kC,705 0.0000434391 (NTU·m)−1

aC,5 −59.94110417 –

aC,6 26.75417218 –

aC,12 1.323875637 –

aC,13 −8.392820945 –

aC,14 3.936558098 –

Figure 19. Model (17) fit (C model) to the measured turbidity (C data).

In October (Figure 21) and in May (Figure 20), turbidity decreased along the lake
towards the dam. Moreover, in the northern branch, sedimentation contributed to a lower
turbidity (Figure 21). The turbidity model showed a good fit with the measurements
(Figure 21, table); however, at point 2 (Figure 21), the turbidity calculations were poor due
to clouds obscuring the view.
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Figure 20. Water turbidity of Lake Dobczyce 9 May 2021 (imagery by Sentinel 2).

Figure 21. Water turbidity of Lake Dobczyce, 21 October 2021 (imagery by Sentinel 2).

4. Discussion

The authors developed the model to calculate the concentration of chlorophyll a and
turbidity in the water. In the case of Lake Dobczyce, the chlorophyll a model takes into
account reflectance corresponding to the middle wavelengths 665, 705, 740, and 842 nm,
while the bottom effect is related to the wavelengths 665 and 705 nm. The model for
turbidity considers the reflectance corresponding to the middle wavelengths 705, 740,
and 783 nm, while the bottom effect is related to the wavelength 705 nm. To eliminate
a minor reflectance related to other wavelengths from the pseudo-linear model (3), the
Student’s t-test was been used for both chlorophyll a and turbidity. It cannot be predicted in
advance whether the models for different lakes will always use the reflectance for the same
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wavelengths. If so, the model coefficients may probably be different due to different water
characteristic and other properties of the bottom sediments. In the case of Lake Dobczyce,
all of the discriminants that are quotients of reflectance differences or reflectance quotients
(Table 1) were not used in the models because they did not improve their quality.

The average relative error of the model for chlorophyll a is about 0.216, while the
average error is about 2.01 mg Chl a/m3. Graphs for errors are shown in Figures 22 and 23.

Figure 22. Model errors for chlorophyll a versus measurement data.

Figure 23. Model relative errors for chlorophyll a versus measurement data.

The greatest errors of the model relate to concentrations of about 15 mg Chl a/m3

(Figure 22) and the highest relative errors concentrations of about 6 mg Chl a/m3 (Figure 23).
For low and high chlorophyll a concentrations, the relative errors are the smallest. Some-
times, the existence of greater errors is caused by the unrepresentativeness of point mea-
surement relative to the area represented by one raster. In addition, a greater number
of data with average values of chlorophyll a concentration increases the likelihood of a
greater error.

The reflectance corrections for 665 nm were smaller than for 705 nm (Figure 24). This
may be due to the fact that the wavelength of emissions for chlorophyll a is 663 nm, after it
was stimulated using a 430 nm radiation. Backscattering with a length of 665 nm, recorded
by the satellite, therefore had to be more characteristic of chlorophyll a than for other
substances contained in water. Backscattering with a length of 705 nm is characteristic
of minerals, in particular montmorillonite (Figure 8), and this likely explains why the
reflectance corrections were greater. Reflectances for other wavelengths, occurring in the
model for chlorophyll a, can be characteristic of other substances contained in water and
atmosphere ingredients.
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Figure 24. The reflection corrections graph versus the product of the depth and turbidity for the
chlorophyll a model.

The average relative error of the model for turbidity is about 0.184, while the average
error is about 0.629 NTU. Graphs of errors are shown in Figures 25 and 26.

Figure 25. Model errors for turbidity versus measurement data.

Figure 26. Model relative errors for turbidity versus measurement data.

The greatest errors for the turbidity model concern the turbidity of about 7 NTU
(Figure 25) and the greatest relative errors of turbidity of about 2–4 NTU (Figure 26).
Sometimes, the existence of greater errors is caused by the unrepresentativeness of point
measurement relative to the area represented by one raster. In addition, a greater number
of data with average turbidity increases the likelihood of a greater error.
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The reflectance corrections for 705 nm for the turbidity model were approximately
constant and amounted to around 0.0146.

The remote determination of water quality parameters requires corrections of the
reflectance measured by the satellite, which may pose some problems. In urbanized
areas or areas close to industrial agglomerations, standard corrections do not give good
results. The changes in composition of the atmosphere (content of moisture, dust, and
other pollutants) may require different corrections. Therefore, it becomes necessary to
determine a reference surface that enables a reflectance correction. This can be any surface
with spectral properties constant in time. In this case, a fragment of the dam crest served as
the reference surface. The base reflectance was the first reference surface reflectance in a
series of measurements. The changes in the reflectance of the reference surface in relation
to the base surface made it possible to correct the reflectance of the lake surface.

5. Conclusions

• The large number of different models used to calculate chlorophyll a concentrations
and turbidity in water means that there is no one universal model for use with different
bodies of water.

• Models developed as the product of the reflectance powers (after logarithm) undergo
statistical analysis to eliminate irrelevant components. This procedure simplifies
the model. The final model may take into account the reflectances of many wave-
lengths, which are then eliminated by the statistical test at the significance level, e.g.,
0.05 (Student’s t-distribution).

• The specific physic-chemical and biological composition of the water in a given reser-
voir may result in significant differences between the spectral curves for individual
water components.

• Shallow reservoirs require corrections for the bottom reflectance. It is impossible to
predict in advance at what depth and for which wavelengths the bottom reflectance
is already negligible. The analysis of satellite images helps to determine whether the
bottom reflectance at a given wavelength is insignificant (poor bottom visibility); this
simplifies the model.

• It is difficult or even impossible to use a combination of physical equations (type (7)–(9))
to calculate the concentration of chlorophyll a based on the reflectance recorded by the
satellite; such reflectance is a mix of the chlorophyll a reflectance and the reflectance of
many other substances present in the water. The authors could not find parameters of
the model types (7)–(9) for just one wavelength and the known turbidity and maintain
a satisfactory accuracy. Therefore, they proposed model (14) that took into account the
reflectance for different wavelengths.

• Reflectances corresponding to the middle wave range 665, 705, 740, and 842 nm have
been used in the model of chlorophyll concentration, while the effect of lake bottom
interaction is associated with wavelengths 665 and 705 nm.

• Reflectances corresponding to the middle wave range 705, 740, and 783 nm have been
used in the model of turbidity, while the effect of lake bottom interaction is associated
with wavelength 705 nm.

• The described models use the reflectances normalized to the conditions prevailing at a
specific moment over the reference surface.
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Abstract: The magnitude of pollution in Lake Hawassa has been exacerbated by population growth
and economic development in the city of Hawassa, which is hydrologically closed and retains
pollutants entering it. This study was therefore aimed at examining seasonal and spatial variations in
the water quality of Lake Hawassa Watershed (LHW) and identifying possible sources of pollution
using multivariate statistical techniques. Water and effluent samples from LHW were collected
monthly for analysis of 19 physicochemical parameters during dry and wet seasons at 19 monitoring
stations. Multivariate statistical techniques (MVST) were used to investigate the influences of an
anthropogenic intervention on the physicochemical characteristics of water quality at monitoring
stations. Through cluster analysis (CA), all 19 monitoring stations were spatially grouped into two
statistically significant clusters for the dry and wet seasons based on pollution index, which were
designated as moderately polluted (MP) and highly polluted (HP). According to the study results,
rivers and Lake Hawassa were moderately polluted (MP), while point sources (industry, hospitals
and hotels) were found to be highly polluted (HP). Discriminant analysis (DA) was used to identify
the most critical parameters to study the spatial variations, and seven significant parameters were
extracted (electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD),
total nitrogen (TN), total phosphorous (TP), sodium ion (Na+), and potassium ion (K+) with the
spatial variance to distinguish the pollution condition of the groups obtained using CA. Principal
component analysis (PCA) was used to qualitatively determine the potential sources contributing
to LHW pollution. In addition, three factors determining pollution levels during the dry and
wet season were identified to explain 70.5% and 72.5% of the total variance, respectively. Various
sources of pollution are prevalent in the LHW, including urban runoff, industrial discharges, diffused
sources from agricultural land use, and livestock. A correlation matrix with seasonal variations was
prepared for both seasons using physicochemical parameters. In conclusion, effective management
of point and non-point source pollution is imperative to improve domestic, industrial, livestock,
and agricultural runoff to reduce pollutants entering the Lake. In this regard, proper municipal
and industrial wastewater treatment should be complemented, especially, by stringent management
that requires a comprehensive application of technologies such as fertilizer management, ecological
ditches, constructed wetlands, and buffer strips. Furthermore, application of indigenous aeration
practices such as the use of drop structures at critical locations would help improve water quality in
the lake watershed.

Keywords: monitoring; mitigations; spatial and temporal variabilities; principal component analysis;
cluster analysis; discriminant analysis; water quality; pollution; correlation
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1. Introduction

Studies have shown that urban, agricultural, and industrial discharges have a direct
effect on surface water quality. Similarly, urban wastewaters cause fecal contamination
of surface waters, and urban stormwater runoff, which contains large amounts of fecal
microbes, also affects surface water quality [1]. Surface water bodies are vital natural
resources that are vulnerable to pollution. The contaminants are chemical, physical, and
biological constituents resulting from anthropogenic activities and are of greater environ-
mental consideration [2]. Surface water bodies are extensively used as the major sources
for domestic, non-domestic, industrial, and irrigation purposes. Therefore, monitoring and
assessment of water bodies is imperative to obtain reliable information on water quality
for effective management [3]. Anthropogenic uses of the waterbodies in the study basin
can degrade the quality of surface water and impair its usability as potable water supply
or for industry, agriculture, recreation, or other purposes. Hence, regular monitoring of
water quality of rivers and lake is indispensable [4,5]. The most affected river stretches are
those that flow through urbanized and exceedingly populated urban areas where there
is no adequate sanitation. Upstream rural areas are mainly affected by pollutants from
non-point sources such as agricultural runoff, whereas urban areas are polluted by point
sources, sewage discharges, urban runoff, and pollutants from upstream areas [6,7].

Studies have shown that some lakes and wetlands around the world have disappeared
or are showing changes in their ecosystem. Furthermore, factors such as intensive land use
for urbanization and agriculture have had significant impact on the hydrology, ecology,
and ecosystem services of lakes, which has eventually led to a decline in lake levels [8].
In addition, pollutants have long been a concern, as their accumulation can have serious
effects on fauna, flora, and human health when the huge amount of urban and industrial
wastewater reaches the shores [9].

Lake Hawassa is located near the city of Hawassa and is surrounded by agricultural
land, industries and residential areas. Therefore, it is susceptible to a variety of pollutants
that enter the lake directly or indirectly. On the other hand, the Lake Hawassa Watershed
is experiencing rapid land cover change, and natural resources have overwhelmingly
diminished. The lake is hydrologically closed and has no apparent outlet, so all pollutants
entering the lake are retained. As a result, the lake faces numerous problems, and the water
quality deteriorates over time, threatening biodiversity [10].

Significant industrialization, augmented with rapid urbanization and increasing eco-
nomic development, has increased the extent of pollution [11]. The pollution is mainly from
non-point sources caused by urban and agricultural runoff, overgrazing, deforestation, soil
erosion, land development, and industrial effluents. This leads to numerous environmental
concerns that have resulted in substantial hydrological disturbances. The main factories in
the study area are a ceramics factory, a flourmill, a cement products factory, a Moha soft
drink factory, a BGI (St. George Brewery factory), an Etabs soap factory, an industrial park
in Hawassa, and other small-scale industries. They are virtually all concentrated along the
main road, which is close to the shallow swamp, and discharge their effluents into the lake
through streams. On the other hand, deforestation and irrigation of the land have caused
the drying up of Lake Cheleleka by reducing the streamflow [12].

Various studies have been conducted to examine water quality in the LHW catchment
and identify sources of pollution. Teshome [11] investigated the eastern catchment of
Lake Hawasa Watershed to assess the seasonal water quality and its suitability for the
designated uses. The findings revealed that the rivers in the eastern part of Lake Hawassa
Watershed are suitable for agriculture and livestock but unpleasant for aquatic life, and the
lake is hypereutrophic.

Amare [13] investigated the primary sources of non-point source pollution and their
relative contribution in Lake Hawassa Watershed using the Annualized Agricultural
Non-Point Source (AnnAGNPS) model. The pollutant-loading model revealed non-point
source pollutants originating from agricultural lands and associated with deleterious
anthropogenic activities responsible for the water quality impairment of Lake Hawassa.
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These point sources have been determined to be the source of numerous pollutants in the
lake ecosystem if the effluent control system put in place is unsuitable [14].

Kebede [15] studied the impact of land cover changes on water quality and streamflow
in Lake Hawassa Watershed and concluded that water quality in the upper watershed of
the three rivers was better than the lower sections of the catchment with respect to the
parameters studied, which might be correlated to the observed land use.

A study conducted by Lencha et al. [16] at Lake Hawassa revealed that most of
the population, including the inner part of the city, are using latrines. Larger buildings
have conventional flushing systems but without any wastewater treatment. Furthermore,
industrial and commercial point sources are known to discharge their effluents into streams
or rivers that end up in the Lake. In addition, Hawassa Industrial Park and Referral
Hospital discharge their effluents directly into the lake. This is a threat to the people who
rely on rivers, streams, and the lake for domestic and other purposes and to the survival of
aquatic life as well.

To sum up, some studies regarding the water quality have been conducted in either
the eastern or the western catchment of Lake Hawassa, while others have been carried out
only at Lake Hawassa. Nonetheless, there is no sufficient water quality study to connect
agricultural and urban land use with the watershed pollution level to identify the sources
of pollution. The previous studies mainly relied on random monitoring and data from
literature and focused only on a few water quality parameters, which cannot reflect the
whole picture of water quality in the watershed. Additionally, some previous studies
also obtained contradictory findings. On the other hand, urbanization, industrialization,
commercial activities, and population growth are increasing rapidly, which could increase
sewage and effluents production. Through monitoring data, consistent data analysis,
and homogenization of parameters, this study aimed to (1) statistically analyze multiple-
parameter data by using principal component analysis (PCA), cluster analysis (CA), and
discriminant analysis (DA); (2) investigate the broad-spectrum variation in the parameters
of LHW; and (3) cluster monitoring stations with similar characteristics and identify
potential sources of pollution in LHW.

2. Materials and Methods

2.1. Study Area

Lake Hawassa Watershed (LHW) is located 275 km from the capital Addis Ababa,
in the capital of Sidama regional state, on the main road leading to Nairobi, Kenya via
Moyale. LHW has a total area of 1431 km2 and lies between 6◦45′ to 7◦15′ N latitude and
38◦15′ to 38◦45′ E longitude (Figure 1). LHW comprises five sub-watersheds [17].

The watershed is known for its flat plains and dissevered undulating landscape with
elevation ranging from 1571 to 2962 m above sea level [18]. The area comprises mountains
and low-lying areas, with a wide flat wetland called Cheleleka. Perennial rivers and
streams on the north and northeast sides of the catchment and runoff on the east wall feed
Cheleleka. The sub-basin of Tikur-Wuha consists of only a tributary called Tikur-Wuha
that flows into Lake Hawassa. In this lake system, no surface water flows out from the lake
except by evaporation and abstraction, so the catchment can be considered hydrologically
closed [15]. The climate of the Hawassa sub-basin is sub-humid and distinctly seasonal.
The months from April to October are wet and humid, and the main rainy season is
between July and September, with a mean annual precipitation of about 955 mm. The mean
minimum precipitation is 17.8 mm in December (dry season) and the mean maximum
precipitation is 119.8 mm in August (rainy season) [19].
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Figure 1. Study area map and monitoring station locations (a) = countries sharing boundaries with
Ethiopia, (b) = major river basins in Ethiopia, (c) = Rift Valley lake basin and (d) = Lake Hawassa
sub-basin and monitoring stations).

2.2. Sampling and Monitoring Parameters

The monitoring sites and sampling strategy were planned to cover a wide range of
factors contributing to the water quality of the river, taking into account tributaries and
point sources whose effluents end up in the lake and have a substantial impact on the
water quality of the lake. The criteria for selecting monitoring points were hydrological,
with confluence of sub-basins having distinct characteristics and land use types, with the
intention of transferring parameters to unmonitored sub-basins. Furthermore, factors such
as availability of point and non-point sources, land use type, and urban and wastewater
drains were considered in the selection of monitoring sites.

Hence, a total of nineteen (19) monitoring stations were selected (Table 1 and Figure 1).
Four (4) monitoring sites were selected purposively at the Wesha, Hallow, Wedessa, and
Tikur-Wuha river mouths of the respective sub-watersheds.

Eleven (11) monitoring sites were distributed evenly along the entire course of Lake
Hawassa for water quality monitoring. Three (3) monitoring sites were selected near the
industrial disposal site, and one (1) was at the health care center.

The monitoring sites in the Tikur-Wuha catchment were Wesha River (MS1), Hallo
River (MS2), and Wedessa River (MS3), which are located in the upstream part of Lake
Hawassa, where agricultural runoff from the catchment flows directly or through its
tributaries into the Cheleleka wetland. The three rivers were purposively selected based on
their size and spatial location to represent their respective sub-basins. Monitoring station 6
(MS6) is a critical area with mostly fresh water where factories discharge their effluent into
the Tikur-Wuha River, and the river eventually flows into Lake Hawassa. This is an area
where river inputs to the lake are high.
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Table 1. Monitoring stations in Lake Hawassa Watershed.

No Monitoring Stations Site Code Location

1 Wesha River MS1 LHW upstream
2 Hallo River MS2 LHW upstream
3 Wedessa River MS3 LHW upstream
4 BGI effluent discharge site MS4 LHW middle
5 Pepsi factory oxidation pond MS5 LHW middle
6 Tikur-Wuha River MS6 LHW middle
7 Amora-Gedel (fish market) MS7 Eastern side of LH
8 Amora-Gedel (Gudumale) MS8 Eastern side of LH
9 Nearby Lewi resort MS9 Eastern side of LH
10 Fikerhayk center (FH) MS10 Center of LH
11 Fikerhayk (meznegna) MS11 Eastern side of LH
12 Center of LH (Towards HR) MS12 Center of LH
13 Nearby Haile resort MS13 Eastern side of LH
14 Tikur-Wuha site MS14 Eastern side of LH
15 Referral Hospital MS15 Eastern side of LH
16 Ali-Girma site (opposite to HR) MS16 Western side of LH
17 Sima Site (opposite to Mount Tabor) MS17 Western side of LH
18 Dore-Bafana Betemengist MS18 Southern part of LH
19 Hawassa Industrial Park MS19 LHW middle

The site codes are indicated in Figure 1. FH designates Fikerhayk, HR labels Haile Resort, LHW designates Lake
Hawassa Watershed, LH designates Lake Hawassa.

Monitoring sites for point sources were selected from available industries in the
catchment that directly or indirectly feed Lake Hawassa. The selected sites were the St.
George Brewery factory, BGI (MS4), and the Moha soft drink factory (MS5), whose effluents
discharge into the Cheleleka wetland and eventually enter Lake Hawassa via Tikur-Wuha
River, as well as the Referral Hospital (MS15) and Hawassa Industrial park (MS19), which
discharge their effluents directly in to Lake Hawassa.

The monitoring stations for Lake Hawassa were selected based on the presence of
major pollution sources in the lake, existence of point sources, health facilities, industrial
effluent emission sites, availability of boating and recreational activities, presence of ser-
vice rendering facilities such as Haile and Lewi resorts, fish market (Amora-Gedel and
Gudumale), and also the central part of the lake where the disturbance is minimum.

For this purpose, eight (8) monitoring sites were selected in the eastern part (northeast to
southeast) of the lake and designated as MS7, MS8, MS9, MS10, MS11, MS12, MS13, and MS14.

The other three (3) monitoring sites were located on the western (northwest to south-
west) sides of the lake and were designated as MS16 for the local village Ali-Girma site
(opposite Haile Resort), MS17 for Sima site that is opposite side of Mount Tabor, and
MS18 for Dore-Bafana Betemengist site. In this part of the lake, although there is no point
source pollution, there is enormous anthropogenic activity in the form of non-point source
pollution from recreational activities, agricultural runoff, and animal waste.

The analyses of physicochemical water quality parameters at selected sites and periods
were conducted from May 2020 to January 2021 to see seasonal variation. Sample collection
for the wet season was event-based, i.e., samples were collected after rainfall events. The
coordinates of each sampling stations was determined using GNSS.

Composite samples were collected in pre-cleaned 2L polyethylene plastic bottles (ster-
ilized glass bottles were used for biochemical oxygen demand (BOD) and chemical oxygen
demand (COD) analyses) for different parameters. The bottles were washed with concen-
trated nitric acid and distilled water before sample collection and thoroughly rinsed with
sample water during collection to avoid possible contamination. The water samples were
aseptically handled, labelled, preserved in sterile glass bottles, stored in the cooler (Mobi-
cool v30 AC/DC, Germany) and ice box, and transported to the laboratory of Hawassa
University Environmental Engineering, Addis Ababa City Government Environmental
Protection, and Green Development Commission and Engineering Corporation of Oromiya
for analysis.
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The collection, handling, preservation, and treatment of the water samples followed
the standard methods outlined for the examination of water and wastewater by the Ameri-
can Public Health Association guidelines [20] and all the parameters were presented with
their respective analytical methods and instruments used for analysis in Table 2 below.

Table 2. Analytical methods and instruments used for analysis.

Parameter Analytical Method and Instrument

pH, EC, TDS, and Temperature Portable multi-parameter analyzer (Zoto, Germany)
Turbidity Nephelometric (Hach, model 2100A)

DO Modified Winkler
BOD Manometric, BOD sensor
COD Closed Reflux, colorimetric

SRP and TP Spectrophotometrically by molybdovandate (Hach, model DR 3900)
TN Spectrophotometrically by TNT Persulfate digestion (Hach, model DR 3900)

NO2
− and TAN

(NH3−N + NH4−N) Spectrophotometrically by salicylate (Hach, model DR 3900)

NO3
− Photometric measurements, Wagtech Photometer 7100 at 520 nm wavelength

SS Filtration by standard glass fiber filter
Mg2+, Na+, Ca2+, and K+ Atomic Absorption Spectrophotometer, AAS, model NOVAA400

Total ammonium nitrogen (TAN), electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), biochemical oxygen
demand (BOD5), chemical oxygen demand (COD), soluble reactive phosphorous (SRP), total phosphorous (TP), nitrate (NO3

−), nitrite
(NO2

−), magnesium ion (Mg+2), sodium ion (Na+), potassium ion (K+), calcium ion (Ca+2), and suspended solids (SS).

Un-Ionized Ammonia Determination from Total Ammonium Nitrogen (TAN)

The un-ionized free ammonia was calculated by the mass action law in its logarithmic
form (1). The pKa as function of temperature was taken from Emerson et al. [21]:

% Un − ionized NH3 − N =
1(

1 + 10(pKa−pH)
) (1)

pKa =
0.09108+2729.92

(Tk)
(2)

where Tk is temperature in Kelvins (273 + ◦C).

3. Multivariate Statistical Techniques and Data Treatment

3.1. Multivariate Statistical Techniques

Multivariate statistical techniques (MVST) are a valuable tool to estimate efficiently
the spatio-temporal variability in a watershed and the influences of human intervention on
the characteristics of physicochemical parameters at monitoring stations [22]. In addition,
MVST like cluster analysis (CA), discriminant analysis (DA), and PCA/factor analysis
can be implemented to interpret complex databases to offer better visualization of water
quality in the studied watershed [23]. The statistical techniques PCA, CA, and DA are vital
to determine the primary relationships among the physicochemical parameters measured
in experimental data standardized to the Z-scale to avoid inaccurate grouping because of
the huge variability in the data dimensionality [5,24–26].

Principal component analysis (PCA), cluster analysis (CA) and discriminant Analy-
sis (DA) were carried out to examine the seasonal variations, identify possible pollution
sources, and analyze and interpret surface water quality data to draw meaningful in-
formation in China [2,7,27–30], South Asia—Bangladesh [31], the Middle East—Iran [3],
India [23,32,33], South African [34], Ethiopia [22,35], South Asia Malaysia [36], the Middle
East—Lebanon [6,37], Spain [38], and Serbia [39].

XLSTAT 2016 (Addinsoft, New York, USA), Microsoft Excel 2016, and “Statistical
Package for the Social Sciences Software, IBM SPSS 25 for Windows” were employed to
perform statistical analysis integrally.
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3.2. Data Treatment and Multivariate Statistical Methods

PCA is sensitive to outliers, missing data, and poor linear correlation among variables
due to insufficient assigned variables. Thus, the data treatment needs to be performed for
missing data and outliers in the monitored water quality data before executing multivariate
statistical analysis. There might be a real shift in the value of an observation that arises
from non-random causes. In this study, outliers were detected according to Grubbs [40]
test method using XLSTAT 2016. On the other hand, data collection and analysis were
conducted with great prudence to minimize the amount of missing data. However, the
incidence of missing data is inevitable and was handled by the multiple imputation of
missing values technique using Markov Chain Monte Carlo (MCMC) [41].

The raw water quality parameters were standardized to a mean of 0 and variance of 1
using Z-scale transformation to examine the normality of the distribution of data sets and to
ensure that the different variables were equally weighted in the statistical analyses [36]. The
data were further checked for normality using Kaiser–Meyer–Olkin (KMO) and Bartlett’s
sphericity tests to determine if our measured variables may be factorized efficiently. KMO
is the degree of sampling adequacy, which shows the percentage of variance that is likely
attributable to the underlying factors. Generally, the KMO index ought to be greater than 0.5
for satisfactory factor analysis. When the KMO index is close to 1, the PCA of the variables
is suitable; however, when it is close to 0, the PCA is not relevant. In this study, the KMO
had a value of 0.68. Bartlett’s test of sphericity shows whether the correlation matrix is an
identity with variables that are unrelated. The significance level, which is 0 in this study
(less than 0.05), indicates that there are significant relationships among the variables.

3.2.1. Principal Component (PCs)/Factor Analysis (FA)

PCA reduces the dimensionality of the data set by explaining the correlations amongst
a large number of variables in terms of a smaller number of underlying factors without
losing much information [42,43]. The original variables of PCs produce loadings that have
correlation coefficients with PCs. The PCs’ formula was taken from [33,36]:

Ymn = Zm1X 1n+Zm2X 2n+Zm3X 3n . . . +ZmiX in (3)

where z is the component loading, y is the component score, x is the measured value of a
variable, m is the component number, n is the sample number, and m is the total number
of variables.

Meanwhile, FA attempts to extract a lower-dimensional linear structure from the data
set and extracts the new group of variables known as varifactors (VFs) via rotation along
the PCA axis. In FA, the basic concept is borrowed from [33,36]:

Ymn = Zp1P1m+Zp2P2m+Zp3P3m+ . . . +ZprPrm+ epm (4)

where y is the measured value of the variable, z refers to the factor loading, p is the factor
score, m is the sample number, n is the variable number, r is the total number of factors,
and e is the residual term accounting for errors or other sources of variation.

In this study, PCA was employed for qualitative determination of pollution sources.

3.2.2. Discriminant Analysis

DA was used for discriminating between and among groups by applying discrim-
inating variables. These variables measure characteristics regarding which the groups
are expected to differ [44]. DA applies a linear equation of a regression analysis on raw
data with prior knowledge of membership of objects to particular clusters and provides
statistical classification of samples, expressed in the following equation [43,45]:

f(Gi) = Ki +
n

∑
i=1

(Wij ∗ Pij) (5)

59



Appl. Sci. 2021, 11, 8991

where Ki is a constant specific to each particular group, i is the number of groups (G), n is
the number of parameters used in group classification, and Wij is the weight coefficient
designated by DA for the specific parameter (Pij).

Independent variables are entered into DA either all together or stepwise, using
both backward and forward approaches. In the first approach of variable entry, the
discriminant function is calculated by engaging all the independent variables at once. This
approach is used when there are a limited number of independent variables in the interest
of discovering how well certain variables perform as discriminants in the absence of others.
The stepwise method, on the other hand, involves entering the independent variables
into the discriminant function (DF) one at a time. This stepwise input is based on the fact
that variables with relative importance to the cluster variables with greater discriminant
weights were entered first [46].

In this study, standard, forward, and backward stepwise approaches of DA were
applied to each matrix of the primary data. In the forward stepwise mode, discriminant
function analysis (DFA) variables were added stepwise until no significant change oc-
curred, while in the backward stepwise mode, variables were removed starting from least
significant until a significant change occurred. For this purpose, two groups obtained from
CA were selected for spatial evaluations [35].

3.2.3. Pollution Index (PI)

Pollution index (PI) is a simple technique to examine surface water quality and was
applied by Tiwan EPA. The parameters such as DO, BOD, SS, and NH3−N employed
to determine PI were classified into four index scores (Table 3) and computed using the
equation formulated by [47,48]. In particular, PI refers to the arithmetic mean of the index
values with respect to the water quality.

PI =
1
4

4

∑
K=1

Si (6)

Table 3. Classification system for pollution index.

Rank

Item
Non-Polluted

(Good)

Slightly
Polluted

(LP)

Moderately
Polluted

(MP)

Highly Polluted
(HP)

DO (mg/L) >6.5 4.6–6.5 2.0–4.5 <2.0
BOD5 (mg/L) <3 3.0–4.9 5.0–15.0 >15

SS (mg/L) <20 20–49 50–100 >100
NH3−N (mg/L) <0.5 0.5–0.9 1.0–3.0 >3.0

Index score 1 3 6 10

PI classifies water quality into four categories: (0–2) for good or non-polluted, (2–3)
for slightly polluted, (3–6) for moderately polluted, and (>6) for highly polluted. Anthro-
pogenic activities have been associated with water quality degradation [47,49].

3.3. Cluster Analysis

Hierarchical agglomerative CA was carried out on the normalized data set using
Ward’s approach, where Euclidean distances were used as the degree of similarity among
samples, and a distance was represented by the distinction among analytical values. In
hierarchical clustering, sequentially higher clusters formed [23,45,50–52]. In cluster analysis,
cases are classified into classes based on similarities between two samples, which are usually
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given by the Euclidean distance between analytical values of the two samples. The squared
Euclidean distance can be calculated by [53]:

Distance
(

Qi, Qj

)
=

n

∑
j=1

(
X1i − X2j

)2 (7)

where Qi is the ith object, and Xij is the value of the jth variable of the ith object.
The dendrogram provides a visual summary of the clustering process to classify a

sample of entities into a smaller number of mutually exclusive groups on the basis of
multivariate similarities among entities [33].

Therefore, CA, DA, PCA, and pollution index were applied in this study to identify
the underlying interrelationship among the parameters and monitoring stations. CA was
applied based on prior knowledge of monitoring stations and the results of DA and pollution
index to accurately cluster monitoring stations. PCA was employed to qualitatively identify
pollution sources and the type of contaminants contributing to pollution.

4. Results and Discussion

4.1. Correlation Matrix Evaluation and Seasonal Variation

Correlation coefficients are established to portray a correlation among variables and
measure statistical significance between pairs of water quality variables [54,55]. Correlation
analysis measures the proximity between the identified dependent and independent variables.
Correlation coefficients that are close to −1 or +1 demonstrates a strong correlation between
x and y, which have a linear correlation. The correlation between the parameters is referred to
as strong from (+0.8 to 1.0) or (−0.8 to −1.0), moderate from (+0.5 to 0.8) or (−0.5 to −0.8) and
weak from (+0.0 to 0.5) or (−0.0 to −0.5) [56]. In cases where the correlation coefficient between
variables is zero, there could be no correlation with a degree of p < 0.05 between the two
variables [57]. In this study, a correlation matrix was constructed for each dry and wet season
using the physicochemical parameters. Pearson’s correlation coefficient (r) is determined using
correlation matrix to identify the highly correlated and interrelated water quality parameters.
To test the significance of the pair of parameters, the p-value is determined.

In the wet season, strong positive correlations were observed between TDS values and
EC, temperature, TP, TN, and Na+ values (r = 0.992, r = 0.874, r = 0.850, r = 0.836; p < 0.05),
and strong negative correlations between TDS and DO with −0.825 at p < 0.05. Moderate
positive correlations were found between TDS and PO4−P, BOD, COD, and K+ values
(r = 0.797, r = 0.698, r = 0.695, r = 0.523; p < 0.05), and low positive correlation between TDS
and pH with r = 0.26; p < 0.05 (Table 4). Strong negative correlations were found between
DO and EC, TDS, TP, and TN (r = −0.825, r = −0.850, r = −0.851, r =−0.806; p < 0.05), and
moderate negative correlations were observed between DO and temperature, BOD, COD,
and Na+ values (r = −0.526, r = −0.544, r = −0.692, r = −0.599; p < 0.05).

Table 4. Correlation matrix Pearson (r) and alpha (p) values for the wet season.

Parameters TDS EC NH3−N NO3
−N PO4−P DO BOD COD TN TP Temp Mg2+ Ca2+ Na+ K+

TDS 1
EC 0.992 1

NH3−N 0.446 0.379 1
NO3−N 0.183 0.172 −0.030 1
PO4−P 0.797 0.824 0.416 −0.116 1

DO −0.825 −0.850 −0.216 −0.275 −0.793 1
BOD 0.698 0.719 0.106 −0.173 0.712 −0.526 1
COD 0.695 0.714 0.204 −0.111 0.730 −0.544 0.965 1
TN 0.874 0.855 0.481 0.059 0.825 −0.851 0.587 0.602 1
TP 0.850 0.871 0.249 0.255 0.602 −0.806 0.485 0.482 0.736 1

Temperature 0.860 0.864 0.331 0.410 0.594 −0.692 0.454 0.447 0.669 0.82 1
Mg2+ −0.005 0.029 −0.317 0.070 −0.013 −0.085 0.224 0.159 0.046 0.09 −0.020 1

Ca2+ 0.375 0.397 −0.085 −0.080 0.350 −0.394 0.523 0.528 0.429 0.24 0.137 0.401 1
Na+ 0.836 0.853 0.314 0.268 0.709 −0.599 0.619 0.632 0.572 0.68 0.849 −0.062 0.19 1
K+ 0.523 0.431 0.531 0.155 0.290 −0.429 0.149 0.190 0.700 0.34 0.320 −0.080 0.20 0.19 1

Values in bold are different from 0 with a significance level alpha = 0.05.
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Strong positive correlations were observed between temperature and the values of
EC, TDS, Na+ and TP (r = 0.86, r = 0.864, r = 0.849, r = 0.821; p < 0.05), and a moderate
positive correlation was observed between temperature and the values of TN and PO4−P
(r = 0.525, r = 0.669, r = 0.594; p < 0.05). There was also a moderate negative correlation
between temperature and DO, with r = −0.692 at p < 0.005. There was a weak correlation
between temperature and the values of COD and BOD (r = 0.447, r = 0.454; p < 0.05).

NH3−N had a moderate positive correlation with K+, with r = 0.531 at p < 0.005,
and weak positive correlations with TN and temperature (r = 0.331, r = 0.481 at p < 0.05).
NO2−N correlated moderately positively with BOD and COD (r = 0.721, r = 0.664 at
p < 0.05) and weakly positively with PO4−P and Ca+2 (r = 0.449, r= 0.404 at p < 0.05).

A strong positive correlation was found between PO4−P and TN, with r = 0.825 at
p < 0.005, moderate positive correlations were found between PO4−P and COD, BOD, TP,
and temperature (r = 0.712, r = 0.709, r = 0.730, r = 0.602, r = 0.594; p < 0.05), and a moderate
negative correlation was observed between PO4−P and DO values (r = −0.793; p < 0.05).
No statistically significant difference was found between pH and NO3−N and the rest of
the parameters of LHW (p > 0.05).

In the dry season, strong positive correlations were observed between TDS values
and EC, TP, Na+, PO4

−P, and temperature values (r = 0.999, r = 0.814, r = 0.899, r =0.839,
r = 0.933; p < 0.05), moderate positive correlations were observed between TDS and BOD,
COD, K+, and TN values (r = 0.686, r = 0.561, r = 0.645, r = 0.534; p < 0.05), and a strong
negative correlation was found between TDS values and DO (r = −0.819 at p < 0.05).

Strong negative correlations were observed between the values of DO and TDS,
EC, and Na+ (r = −0.819, r = 0.817, r = −0.826; p <0.05), moderate negative correlations
were observed between DO and TN, TP, BOD, K+, and temperature values (r = −0.577,
r = −0.568, r = −0.687, r = −0.639 r = −0.729; p < 0.05), and a moderate negative correlation
was observed between DO and NO3

−N, with r = −0.464 at p < 0.005).
Strong positive correlations were found between temperature and EC and TDS (r = 0.839,

r = 0.842; p < 0.05), and moderate positive correlations were found for temperature with TP
and PO4−P(r = 0.730, r = 0.532; p < 0.05). There was also a moderate negative correlation
observed between temperature and DO, with r = −0.729 at p < 0.005. NH3−N had a moderate
positive correlation with COD, TP, temperature, and Na+ (r = 0.476, r = 0.484, r = 0.550,
r = 0.343; p < 0.005).

A strong positive correlation was found between PO4−P and TP, with r = 0.921 at
p < 0.005, moderate positive correlations were found for PO4−P with BOD, COD, TP, Na+,
and temperature (r = 0.749, r = 0.647, r = 0.680, r = 0.76; p < 0.05), and a moderate negative
correlation was found between PO4−P and DO values r = −0.626; p < 0.05) (Table 5).

Table 5. Correlation matrix Pearson (r) and alpha (p) values for dry season.

Parameters TDS EC NH3−NNO3−NPO4−P DO BOD COD TN TP Tem Mg2+ Ca2+ Na+ K+

TDS 1
EC 0.999 1

NH3−N 0.433 0.419 1
NO3−N 0.208 0.212 −0.10 1
PO4−P 0.814 0.815 0.383 −0.04 1

DO −0.82 −0.82 −0.31 −0.46 −0.63 1
BOD 0.686 0.686 0.450 −0.12 0.749 −0.58 1
COD 0.561 0.564 0.476 −0.19 0.647 −0.41 0.871 1
TN 0.645 0.642 0.410 0.184 0.680 −0.57 0.520 0.619 1
TP 0.899 0.899 0.484 −0.03 0.921 −0.69 0.804 0.683 0.535 1

Temperature 0.839 0.842 0.343 0.237 0.532 −0.73 0.436 0.344 0.291 0.730 1

Mg2+ −0.27 −0.27 −0.25 −0.13 −0.04 0.305 −0.13 −0.20 −0.16 −0.13 −0.42 1

Ca2+ 0.385 0.392 −0.19 0.398 0.091 −0.33 0.235 0.324 0.208 0.17 0.455 −0.33 1

Na+ 0.933 0.931 0.550 0.173 0.760 −0.83 0.813 0.694 0.601 0.881 0.788 −0.38 0.37 1
K+ 0.534 0.531 0.182 0.419 0.261 −0.64 0.237 0.240 0.701 0.197 0.335 −0.39 0.42 0.53 1

Values in bold are different from 0 with a significance level alpha = 0.05.
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The pH of rivers was 7.4 (7.1 to 7.6) in the dry season and 8.2 (7.5 to 8.7) in the wet
season, and the pH of lake was 8.2 (7.3 to 8.9) in the dry season and 8.5 (7.5 to 9) in the wet
season. The pH of point sources was 8.3 (7.1 to 9) in the dry season and 8.3 (8.1 to 8.7) in the
wet season. The recommended pH as per the standard for drinking, irrigation, and aquatic
life is 6.5–8.6, and the pH of LHW was within the accepted limit (Table 6). The EC (TDS) of
rivers was 148mg/L (297 μS/cm) in dry seasons and 89 mg/L (179 μS/cm) in wet seasons,
and EC (TDS) of lakes was 453 mg/L (877 μS/cm) in dry season and 421 mg/L (829 μS/cm)
in wet seasons. The EC (TDS) of point sources was 1655 mg/L (3509 μS/cm) in dry season
and 1395 mg/L (2809 μS/cm) in wet seasons. This shows that the EC (TDS) of rivers, lakes,
and point sources increases significantly with increasing temperature (Table 6). The NO3−N
concentration of rivers was 0.5 mg/L, NO3−N concentration of Lake Hawassa was 1.4 mg/L,
and that of point sources was 1.5 mg/L for the dry season. In the wet season, the NO3−N
concentration was 0.7, 1.9, and 1.9 for rivers, Lake Hawassa, and point sources, respectively.
The value of NO3−N increases in the rainy season due to the contribution of agricultural
runoff and use of fertilizers. The PO4−P concentration of rivers was 6.5 mg/L, PO4−P of
Lake Hawassa was 3.3 mg/L, and that of point sources was 43.8 mg/L in dry season. In the
wet season, the PO4−P concentration was 7.4, 2.9, and 25.7 for rivers, Lake Hawassa, and
point sources, respectively (Table 6). Similarly, Gebre-Mariam [58] reported that Ethiopian
Rift Valley lakes generally have lower EC values in the rainy season than in the dry season,
due to dilution by rain coupled with minimal evaporation rates during the rainy season.

Table 6. Descriptive statistics (mean and standard deviation) of the physicochemical characteristics of LHW collected
during dry season.

Codes SS TDS EC pH NH3−N NO3−N PO4−P DO BOD COD TN TP Mg2+ Ca2+ Na+ K+ Temperature

MS1 17.3 89 178 7.1 0.04 0.6 3.6 4.1 13.8 88.3 5.8 0.001 7.2 20 32.5 6.7 19.2
(1.6) (4) (7) (0.2) (0.01) (0.01) (2) (0.7) (1.5) (26.9) (1.5) (0) (2.1) (7.4) (1.5) (0.6) (0.8)

MS2 27.3 100 200 7.6 0.16 0.4 10.2 3.5 23.7 107.5 7.2 0.5 54.0 9 26.2 8.1 17.7
(5.8) (15) (30) (0.5) (0.07) (0.04) (6.7) (1) (7.2) (32.5) (1.8) (0.5) (16.4) (8.4) (3) (0.6) (1)

MS3 54.5 87 175 7.7 0.10 0.6 5.9 4.4 69.0 313.8 7.5 0.001 153.4 4.6 25.8 6.8 18.1
(3) (6) (12) (0.3) (0.01) (0.1) (0.1) (0.4) (20.5) (93.3) (2.5) (0) (50.2) (4.2) (3) (0.6) (0.7)

MS4 58.0 1575 3825 7.1 7.60 2.8 18.7 1.5 63.3 263.7 23.8 15 11.4 50.4 501.1 19.8 33.8
(10.4) (59) (108) (0.4) (1.49) (0.5) (2.9) (0.1) (10.8) (84.9) (5.9) (3) (0.1) (5.6) (83) (0.3) (0.3)

MS5 27.7 2349 4698 9.5 12.35 0.6 118.3 0.9 190 600 41.3 6.5 2.9 15.0 1078.1 19.3 29
(1.5) (193) (385) (0.6) (5.15) (0.05) (40) (0.1) (1.3) (241) (16.7) (1.6) (1.8) (10.6) (178) (0.8) (0.6)

MS6 23.3 317 635 7.6 0.06 1 6.3 4 5.3 26.3 11.3 0.001 5.7 18.7 111.8 9.4 24.5
(0.1) (63) (126) (0.1) (0.03) (0.2) (0.6) (0.5) (1.8) (5.8) (3.7) (0) (1) (0.7) (24) (0.9) (0.4)

MS7 10.6 388 765 8.8 0.37 0.9 2.5 4.5 5.9 116 6.8 0.8 5.1 16.2 221.9 20.1 22.8
(1.4) (7) (25) (0.003) (0.08) (0.02) (0.5) (0.5) (0.3) (88) (1.2) (0.2) (0.7) (1.1) (15.9) (0.3) (1)

MS8 13.6 518 851 8.9 11.75 1 4.3 5.3 9.5 135 4.5 0.4 3.9 24.2 255.0 22.2 22.8
(0.1) (26) (32) (0.02) (3.9) (0.02) (0.1) (0.3) (1.5) (5) (1.5) (0.1) (0.1) (1.8) (30.1) (0.8) (1)

MS9 9.0 392 748 8.7 0.38 2 3.0 4 9.9 45 3 0.001 12.8 22.2 191.9 20.0 22.7
(1.2) (3) (24) (0.1) (0.11) (1) (0.1) (0) (0) (0) (0) (0) (1) (1.9) (5.4) (0.3) (1.8)

MS10 10.8 473 955 8.5 0.12 0.6 2.5 4.3 71.8 326 1.1 0.1 5.2 18.4 224.2 20.0 21.3
(0.4) (8) (5) (0.04) (0.04) (0.1) (0.7) (0.3) (22.8) (104) (0.1) (0.1) (0.5) (1.4) (7.9) (0.1) (1.4)

MS11 13.5 463 880 8.6 3.71 3.1 2.0 3.3 9.0 96 4.5 0.001 5.4 20.9 205.1 20.7 23.1
(0.2) (3) (20) (0.04) (1.23) (1.8) (0.3) (0.1) (1) (20.5) (1.5) (0) (0.1) (0.1) (4.9) (0.3) (1.3)

MS12 10.3 460 921 8.6 1.34 1 2.3 4.5 10.1 46 4.0 0.001 10.1 26 225.0 23.4 22.6
(1.8) (18) (35) (0.2) (0.56) (0) (0.4) (0) (0.4) (1.8) (1.8) (0) (1.9) (1.9) (10.9) (2.7) (1.1)

MS13 12.5 411 807 8.5 0.15 3.1 3.1 4.0 47.3 255 6.9 0.5 13.5 40.9 280.8 19.0 23.2
(3) (9) (33) (0.2) (0.03) (2.1) (0.6) (0.5) (8.8) (55) (2.1) (0.1) (2.5) (7.1) (29.2) (0.7) (1.3)

MS14 9.3 358 714 7.3 1.19 1.3 3.8 3.5 20.2 134 3.8 0.001 6.3 16.9 150.8 16.7 20.8
(1.3) (82) (166) (0.1) (0.38) (0.1) (0.8) (0.5) (4) (23.8) (1.2) (0) (0.3) (0.2) (37.3) (3.3) (0.9)

MS15 24.2 1632 3266 8.3 24.97 1.6 36.7 1.5 63.5 290 49.5 5.6 13.7 33.7 420.2 44.7 23.9
(0.9) (39) (78) (0.005) (7.06) (0.8) (6.8) (0.03) (9.1) (40) (15.5) (1.9) (2.1) (2.9) (41.3) (3.3) (0.8)

MS16 16.6 483 935 8.6 0.96 1.0 3 4.2 22.6 75.5 6.3 3.8 3.2 8.8 197.2 17.8 21.5
(0.8) (8) (45) (0.1) (0.78) (0.1) (0.3) (0.1) (3.1) (10.5) (0.8) (1.2) (0.3) (1.3) (13.7) (2.3) (0.3)

MS17 14.3 479 935 8.6 3.17 1 2.7 4.2 48 160 5.3 0.001 14.1 33.8 159.0 18.0 22.0
(0.2) (1) (25) (0.01) (0.04) (0.01) (0.1) (0.1) (3) (10) (0.2) (0) (1.7) (1.3) (16.3) (2.3) (0.5)

MS18 96.4 561 1133 8.7 0.86 1 7.8 4.3 55.5 185 12.3 0.8 16 34 243.7 19.1 23
3.0 (34) (48) (0.1) (0.21) (0.01) (0.7) (0.3) (1.5) (5) (2.7) (0.2) (1.7) (2) (11.2) (1.2) (0.3)

MS19 7.2 1065 2246 8.4 0.05 0.8 9.8 4.2 126 420 12.8 2 18.3 53.7 301.4 20.9 21.2
(0.8) (215) (469) (0.1) (0.02) (0.04) (1.4) (0.1) (3) (10) (2.3) (0.3) (3.8) (4.9) (25.5) (0.05) (0.4)

All units in mg/L except pH (Dimensionless), Temperature (◦C), EC (μS/cm) and Turbidity (NTU).
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The TN (TP) of rivers was 8 (0.12) mg/L in dry seasons and 5(0.26) mg/L in wet
season, and TN (TP) of lakes was 5.3 (0.2) mg/L) in dry season and 5.2 (0.6) mg/L in
wet season. Hence, there is an obvious increase of TN in rivers and Lake Hawassa when
temperature increases due to lower dilution and greater agricultural contribution from
the upper stream by irrigation, whereas TP in rivers and Lake Hawassa increases in wet
seasons due to greater agricultural, rural, and urban runoff. The TN (TP) from point sources
was 31.8 (7.2) mg/L in dry season and 13.9 (5.4) mg/L in wet season. This shows that
TN (TP) of point sources increases significantly with increasing temperature due to lower
dilution. The NH3−N of rivers was 0.2 mg/L, NH3−N of Lake Hawassa was 0.83 mg/L,
and that of point sources was 4.72 mg/L in dry season. In the wet season, the NH3−N
values were 0.03, 0.71, and 3.6 for rivers, Lake Hawassa, and point sources, respectively.
The decreases in NH3−N level in the rainy season might be due to dilution effect (Table 6).

The positive correlation between temperature and TN, TP, EC, TDS, NH3−N, and
PO4−P indicates the increase in the concentration of nutrients as the temperature increases
(dry period). It also confirms the major contributors of nutrients were the point sources
that are releasing a relatively higher amount of pollutants than the agricultural and other
sources, as this value lowers during the wet season due to dilution effect. However, the
increase in nutrient (NO3−N) concentration in rivers and Lake Hawassa in the wet season
might be due to the increased contribution of agricultural runoff and use of fertilizers.

Sodium, calcium, magnesium, and potassium concentrations of the rivers were 49.1,
13.06, 55.1, and 7.74 mg/L in dry season and 28.9, 32.7, 10.1, and 5.7 mg/L in wet seasons.
Sodium, calcium, magnesium and potassium concentrations of the lake were 214, 23.8,
8.7, and 19.7 mg/L in dry season and 178.9, 25.1, 7.3, and 17.2 mg/L in wet season. The
sodium, calcium, magnesium, and potassium concentrations of the point sources were
575.2, 38.2, 11.5, and 26.2 mg/L, respectively, in the dry season and 375.2, 38.2, 9.5, and
50.1 mg/L. respectively in the wet season (Table 6). There was an observed decrease in ions
when the temperature decreased in the study area. This can be ascribed to the discharge
of industrial and domestic effluents, which contribute large amounts of alkaline ions to
the river system, as the conductivity depends mainly on the ion concentration in surface
water [52]. The natural range of sodium ions in water and soil is so low that their existence
can show river pollution caused by human activities. Calcium is added to water from soil,
industrial wastes, and natural resources. Magnesium is an essential nutrient required for
numerous biochemical and physiological functions [59].

The TDS of water generally increases with the level of dissolved pollutants (such as
nitrate, ammonium, and phosphate). Conductivity of ions in water depends on water
temperature, and ions move faster when water is warm. Hence, conductivity apparently
increases when water has a higher temperature [60]. In addition, Taylor et al. [61] pointed
out a strong relationship between these variables or ions, such as nitrate, ammonium,
and phosphate, and stated that high concentrations of EC indicate high concentrations of
soluble salts. There are strong correlations between EC/TDS, as evidenced by an increase
in conductivity as the concentration of all dissolved constituents increases [62] Table 6.

The BOD (COD) of rivers was 19.7 (96.5) mg/L in dry seasons and 6.9 (89.4) mg/L in
the wet season, and the BOD and COD of lakes was 28.1 (133.3) mg/L in dry season and
was 19.1 (112.9) mg/L in wet season. The BOD and COD concentrations for point sources
were 116.2 (398.6) mg/L in dry season and 111.6 (353.7) mg/L in wet season (Table 6). The
DO of rivers was 3.5 mg/L in dry season and 6 mg/L in wet season, and the DO of lakes
was 4.2 mg/L in dry season and 4.4 mg/L in wet season. The DO of point sources was
2 mg/L in dry season and 2.3 mg/L in the wet season (Table 6).

The DO of the rivers in the dry seasons and Lake Hawassa were well below the
standard value. This indicates that the discharge of industrial and domestic effluents has
resulted in serious organic pollution of these rivers, as the decrease of DO was mainly
caused by the decomposition of organic compounds. Moreover, an extremely low DO
content usually indicates the degradation of an aquatic system [63].
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The DO showed a negative correlation with most parameters in both dry and rainy
seasons, revealing the value of DO decreases with the increase in other water quality
parameters. This could explain the temporal variations, as more oxygen was available
for reaction with the pollutants, especially metals and organic pollutants, during dry
seasons. Additionally, the characteristics of temporal variation in water quality of LHW
were affected by DO. DO was strongly correlated with organic matters, nutrients, and
metals, and thus seasonal variation should be considered when DO is used as an indicator
to evaluate surface water quality. Low dissolved oxygen (DO) is primarily the result of
excessive algal growth caused by nutrients. As the algae die and decompose, this process
consumes dissolved oxygen. This may result in insufficient dissolved oxygen for fish and
other aquatic life. Temperature was significantly correlated with water quality parameters
such as EC, TDS, TP, PO4−P, and DO in both seasons. Temperature had significant negative
correlation with DO in the dry and wet seasons, indicating that when water temperature
increases, the metabolic rate of microorganisms also increases, and the amount of DO
in the water decreases. This might be because faster biodegradation of organic matter
during dry seasons can effectively improve water quality. The solubility of oxygen was
inversely related to temperature, as the water becomes warmer and more easily saturated
with oxygen, hence holds less DO during the dry season. Singh et al. [32] observed the
inverse relationship between temperature and DO in natural processes, as water can hold
less DO with increasing temperature.

4.2. Pollution Index (PI)

The mean pollution index of the rivers in the lake watershed was 4.5 in dry and 3.3 in
wet season, indicating a moderately polluted condition of rivers. Lake Hawassa PI was 5 in
both dry and rainy season, indicating that the quality of the lake was moderately polluted.
Anthropogenic activities were causing deterioration of the water quality of the rivers and
Lake Hawassa, and the overall status of the water quality is moderately polluted. The PI for
the point sources was measured for comparison purposes, and it was found to be highly
polluted, having a PI index of 6.8 and 7.3 for the wet and dry seasons, respectively (Table 7).

Table 7. Average concentrations of monitoring stations for rivers, Lake Hawassa, and point sources
(PS) observed in both dry and wet seasons.

Parameters Seasons Rivers Lake Hawassa PS

DO (mg/L) dry seasons 4.2 4.2 1.7
wet seasons 6 4.3 2.1

BOD5 (mg/L) dry seasons 19.7 28.1 116.2
wet seasons 6.9 19.1 111.6

SS (mg/L) dry seasons 30.6 19.7 29.3
wet seasons 51.1 20.9 28.1

NH3−N (mg/L) dry seasons 0.2 0.8 1.2
wet seasons 0.002 0.71 14.4

PI
dry seasons 4.5 5 7.3
wet seasons 3.3 5 6.8

Rank
dry seasons MP MP HP
wet seasons MP MP HP

4.3. Cluster Analysis
Spatial and Temporal Similarities

Cluster analysis was applied to find out if the monitoring stations had similar charac-
teristics in terms of water quality parameters. It was implemented with the water quality
data set to group comparable monitoring sites (spatial variability) spread over the water-
shed. Results from CA display high homogeneity within clusters and high heterogeneity
between clusters [64]. Hierarchical agglomerative CA was carried out with the normalized
data set employing Ward’s method, using Euclidean distances as a measure of similarity.
In this approach, the analysis of variance method is used to evaluate the distances between
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clusters, attempting to reduce the sum of squares of all clusters that can be made at each
step. In this method, the clusters are grouped sequentially, beginning with the most com-
parable pair of objects and establishing better clusters one after the other, demonstrated
through a dendrogram [2,65].

The dendrogram presents a visual summary of the clustering processes and provides
the map of the groups with a dramatic reduction in the dimensionality of the original
records [2,5,32,43,44]. The CA grouped all 19 monitoring stations into two statistically
significant clusters for the dry and wet seasons in LHW, and the dendrogram displays the
grouping of stations for the wet and dry seasons, as demonstrated in Figure 2. Regarding
the clustering for the dry and wet seasons, monitoring stations from most of the watershed
upstream, from the eastern and western sides of the lake, and from the center of Lake
Hawassa have been grouped in Cluster 1. Stations in these clusters typically consist of
rivers and Lake Hawassa and are categorized as moderately polluted. The monitoring
stations in these clusters are MS1-MS3, MS6-MS14, and MS16-MS18, which can be labeled
as “moderate anthropogenic effect”. This cluster received pollution from point sources and
non-point sources, consisting of animal waste and runoff. It is characterized by moderate
anthropogenic impact and labelled as moderately polluted.

Figure 2. Dendrogram for LHW based on Ward’s method showing the clustering of 19 monitoring stations into two
significant clusters for both dry (a) and wet (b) seasons.

The pollution sources for monitoring stations MS1-MS3 were mainly anthropogenic
activities from non-point pollution sources such as agricultural and sewage pollution,
whereas pollution sources for monitoring stations MS6 (Tikur-Wuha river) and Lake
Hawassa (MS7–MS14, MS16–MS18) were mainly industrial pollution, dispersed point
sources, agricultural pollution, urban runoff, and sewage pollution.

Owing to their relative sources, all stations in this cluster were rivers and lakes,
suggesting that clustering is reasonable for both dry and wet seasons.
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The spatial trend of water quality was generally driven by anthropogenic activities
from point and non-point sources of pollution, especially anthropogenic activities with
respect to pollutant loading and land use.

Cluster 2 includes four monitoring stations in the middle part of the LHW and groups
monitoring stations in this cluster as MS4, MS5, MS15, and MS19. Four point sources,
specifically BGI, Pepsi Factory, Referral Hospital, and Industrial Park monitoring stations,
were assigned to this cluster. Consequently, this cluster is characterized by comparatively
heavy pollution.

4.4. Discriminant Analysis

Discriminant analysis (DA) was used to evaluate the spatial variations in water quality
and to distinguish the most critical parameters in relation to variations between clusters.
Both the standard and stepwise modes were applied to the primary data by dividing them
into wet and dry seasons, and the two spatial groups resulting from CA were used in DA. In
this case, the WQ parameters were treated as independent variables, while the clusters were
considered as dependent variables. The confusion matrixes (CM) showed that 100%, 100%,
and 100% of the data points were correctly classified in the standard, forward stepwise, and
backward stepwise modes for both dry and wet seasons, respectively (Table 8).

Table 8. Classification matrix for standard, forward stepwise, and backward stepwise DA of spatial variation in LHW for
both dry and wet seasons, showing percentage of correct assignation for discriminating parameters.

Monitoring
Stations

% Correct
Stations Assigned by DA

C1 C2

Standard DA mode for dry season
C1 100 15 0
C2 100 0 4

Total 100 15 4
Standard DA mode for wet season

C1 100 15 0
C2 100 0 4

Total 100 15 4
Forward stepwise DA mode for dry season

C1 100 15 0
C2 100 0 4

Total 100 15 4
Forward stepwise DA mode for wet season

C1 94 15 0
C2 85 0 4

Total 84.5 15 4
Backward stepwise DA mode for dry season

C1 100 15 0
C1 100 0 4

Total 100 15 4
Backward stepwise DA mode for wet season

C1 100 15 0
C2 75 0 4

Total 87.5 15 4

C1: Includes stations (MS1-MS3, MS6-MS14, and MS16-MS18). C2: Includes stations (MS4, MS5, MS15, and MS19).

The standard DA method builds DFs using eighteen parameters, while only three
and seven parameters were the critical parameters useful to make distinction within
the two pollution groups for both the forward stepwise modes and backward stepwise
modes, respectively, for both dry and wet seasons. In forward stepwise mode, most of the
parameters such as turbidity, TDS, pH, NH3−N, NO3−N, PO4−P, DO, COD, NO2−N, TN,
TP, temperature, Mg2+, Ca2+, and K+ were insignificant variables leading to less variation,
and they were deleted in the further process. However, in the forward stepwise DA
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mode, the three significant variables that were useful to make distinctions within the two
pollution groups with 100% correct assignation were EC, BOD, and Na+. The backward
stepwise mode deleted the least significant and identified seven significant variables: EC,
DO, COD, TN, TP, Na+ and K+. These seven parameters, which were 100% correctly
assigned, were the critical parameters useful to make distinctions within the two pollution
groups. This implies that the expected spatial variation in water quality can be explained
sufficiently using variables EC, DO, COD, TN, TP, Na+, and K+. Wilks’ lambda shows that
the discriminant distribution is skewed towards high concentrations.

On the other hand, the standard DA functions was constructed using eighteen pa-
rameters, of which three and four parameters were used for forward stepwise mode and
backward stepwise mode, respectively, for wet season. In forward stepwise mode, the
pollutants that were found to be insignificant variables and had less variation in terms of
their spatial distribution were deleted in the further process. However, in the backward
stepwise DA mode, the three significant variables that were useful to make distinctions
within the two pollution groups with 84.5% correct assignment were EC, Na+, and COD.
The backward stepwise mode deleted the least significant and identified two significant
variables: EC and Ca+2. These two parameters were the critical parameters useful to make
distinctions within the two pollution groups with 87.5% correct assignation (Table 8). This
implies the spatial water quality variation can be sufficiently explained by using variables
EC, Na+, COD, and Ca2+, with Wilks’ lambda value showing discriminatory distribution is
skewed toward high concentration, as shown in Figure 3.

Figure 3. Box plot of the most discriminating parameters, BOD (mg/L), EC (μS/cm) and Na+ (mg/L) and Wilks’ lambda
showing skewedness of discriminatory distribution toward high concentration.

4.5. Pollution Source Identification of Monitored Variables
Principal Component Analysis

PCA was applied to the normalized data and was able to identify three principal
components (PCs) using the Kaiser criterion [66] based on loading higher than 0.5. The scree
plot graphs are used widely to identify the number of PCs to be retained to understand the
underlying data structure [26]. Based on the scree plot and the eigenvalues >1 criterion,
three factors were chosen as principal factors. The variables with eigenvalues lower than 1
were removed due to their low significance [67].

In this study, the scree plot (Figure 4) shows the sorted eigenvalues from large to small
as a function of the number of PCs. This figure shows a pronounced change in slope after the
third eigenvalue; three components were retained (Table 9). After the third PC (Figure 4a,b),
beginning with the upward curve, the remaining components were circumvented. It was
used to classify the number of PCs to be retained in order to figure out the underlying data

68



Appl. Sci. 2021, 11, 8991

structure [25]. Consequently, a new set of data is obtained that may explain the variation of
data set having fewer variables.
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Figure 4. Factor loadings derived from scree plot and eigenvalue for LHW and three factors are retained for dry (a) and wet
(b) seasons.

Table 9. Matrix of factor loadings calculated based on water quality parameters measured in the period from May to January
in the Lake Hawassa Watershed and factor loadings of variables on the first three PCs extracted by using eigenvalue for
both wet (a) and dry (b) seasons.

Parameters F1 (a) F2 (a) F3 (a) F1 (b) F2 (b) F3 (b)

Turbidity 0.282 −0.420 c 0.452 c −0.032 −0.781 a −0.320 c

TDS 0.974 a 0.136 0.044 0.962 a 0.020 −0.084
EC 0.978 a 0.078 0.079 0.961 a 0.018 −0.098
pH 0.285 0.324 c −0.710 b 0.056 −0.178 0.775 a

NH3−N 0.416 c 0.516 b −0.313 c 0.521 b −0.244 0.700 c

NO2−N 0.428 c −0.475 c −0.620 b −0.088 −0.531 b −0.064
NO3−N 0.131 0.398 c 0.507 b 0.195 0.599 b −0.168
PO4−P 0.871 a −0.035 −0.174 0.830 a −0.414 c −0.200

DO −0.842 a −0.055 −0.365 c −0.847 a −0.246 0.186
BOD 0.784 a −0.461 c −0.297 0.796 a −0.394 c 0.015
COD 0.793 a −0.388 c −0.302 c 0.721 b −0.320 c 0.135
TN 0.898 a 0.064 0.101 0.724 b −0.015 0.047
TP 0.812 a 0.139 0.436 c 0.897 a −0.333 c −0.105

Temp 0.825 a 0.290 0.194 0.783 a 0.246 −0.143
Mg2+ 0.077 −0.654 b 0.389 c −0.350 c −0.567 b −0.380 c

Ca2+ 0.449 c −0.627 b 0.103 0.401 c 0.524 b −0.246
Na+ 0.832 a 0.205 −0.116 0.973 a 0.001 0.076
K+ 0.477 c 0.335 c 0.035 0.572 b 0.522 b 0.106

Eigenvalue 8.4 2.4 2.2 8.2 2.9 1.6
Variability (%) 46.8 13.4 12.3 45.7 16 8.8
Cumulative % 46.8 60.2 72.5 45.7 61.7 70.5

a strongly correlated factor loadings, b moderately correlated factor loadings, c weakly correlated factor loadings.

Moreover, scree plots are used to visually evaluate which components or factors
elucidate the maximum variability in the data.

The PCA results, which include the loadings (participation of the original variable
in the new one), are summarized in Table 9. The FA in LHW extracted three factors by
retaining the PCs through varimax rotation that explained 72.5% of the total variance for
the wet season. An eigenvalue offers a degree of the importance of the factor, and factors
having the highest eigenvalues are the most significant. Eigenvalues of 1.0 or more are
considered significant. Liu et al. [26] additionally categorized the factor loadings as ‘strong’,
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‘moderate’, and ‘weak’, corresponding to absolute loading values of >0.75, 0.75–0.50, and
0.50–0.30, respectively.

The first factor (F1), accounting for 46.8% of the total variance, showed strong positive
loadings of TDS, EC, PO4−P, BOD, COD, TP, TN, Na+, and temperature with factor
loadings of 0.974, 0.978, 871, 0.811, 0.784, 0.793, 0.898, 0.812, 0.825, and 0.832, respectively; a
weak positive loading of K+ (0.477); and strong negative loading of DO (−0.842) (Table 9).
High positive loadings of temperature and high negative loading of DO might suggest
the impact of seasonal variation, and temperature is inversely related to DO. The strong
and moderate positive loading of BOD and COD signify biodegradation of organic matter
and are negatively affected by DO of water bodies. F1 stands clearly for pollution by BOD
or COD, and nutrients and oxygen depletion is a consequence. When the temperature of
water bodies decreases, the biodegradation of organic matter decreases, and the solubility
of oxygen in the water increases. Similar reports of high concentrations of BOD and
COD exist elsewhere [42,44,45]. Similarly, the strong negative DO loading indicates the
utilization of DO under anaerobic conditions in rivers and lakes for the degradation of
organic matter. F1 showed strongly positive loadings for both COD and BOD, while the
loading for DO was strongly negative. This indicates a group of purely organic pollution
indicator parameters from industrial effluents, domestic discharges, and livestock affecting
water bodies [23,27,51].

High nutrient loadings of factors such as TN and TP represent pollution from point
and non-point sources from industrial setup, agriculture areas, domestic sewage, and
urban runoff. The high loading of metals demonstrates the influences of industrial effluents
and agriculture activities. Phosphorus and nitrogen can originate from point sources such
as sewage pollution, industrial facilities and livestock, as well as from non-point sources,
mainly from agricultural activities, runoff from rural and urban areas, soil erosion, and
livestock. These results are consistent with findings of other reports elsewhere [27,68].
Consequently, the component is more likely to be explained by the combination of domestic
pollution and industrial factors. These factors are characteristic of the monitoring stations
in the upper catchment (MS1 and MS2), in the middle section including point sources (MS5
and MS15), along Tikur-Wuha River (MS6), and on the eastern side of Lake Hawassa (MS7,
MS9, MS12, MS13, and MS14), where domestic and industrial effluents and agricultural
runoff are predominant.

The strongly positive loadings of Na+ and weak positive loadings of K+ are likely due
to industrial effluents discharged into the river Tikur-Wuha and Lake Hawassa. Reports
also indicate that the sources of Na+ and K+ might be domestic sources, fertilizers, and
residential waste in addition to industrial effluents [69]. During field observation, it was
found that the major industries are discharging their treated and untreated effluents directly
into the Tikur-Wuha River and the lake during the rainy period when the flow rate is high,
resulting in high dilution, but during the dry period, the dilution effect is lower and
consequent pollution is higher.

On the other hand, the strong loadings of TN and TP in F1 suggest higher contribution
from point sources in industry and non-point sources such as agricultural land use, urban
drainage, and residential areas during the rainy season. In general, these factors are symbolic
of a blended source of contamination, encompassing industrial discharges, urban runoff, and
agricultural land use. The results are in agreement with those of other studies [5,24,67,69].
Hence, they can be considered as the contamination index for surface water [44,45].

The second factor (F2) explained 13.4% of the total variance. It had a moderately
negative loading of Mg2+ and Ca2+ (−0.654, −0.627) and a moderately positive loading
of NH3–N (0.516). This factor’s moderately negative loading of Mg2+ and Ca2+ is likely
to originate from industrial wastewater discharged into the Tikur-Wuha River and Lake
Hawassa, usually from carbonate minerals, which are naturally present in the soils of the
Lake Hawassa watershed. This factor is more pronounced at monitoring stations affected
by point sources, agricultural lands, and rural and urban runoff, such as MS3 in the upper
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catchment, MS19 in the middle section (point source), and MS8, MS11, MS16, and MS18
monitoring stations on both eastern and western sides of Lake Hawassa.

A moderately positive loading of NH3−N (0.7) indicates biodegradation of organic
matter. This variable is primarily from runoff, with high loading of solids and wastes
from point sources of pollution from domestic and industrial areas. Furthermore, NH3−N
is triggered by the decomposition of organic matter, indicating the discharge of domestic
sewage to surface water. Studies elsewhere have showed comparable results [42,44,45,69,70].

The third factor (F3), explaining 12.3% of the total variance, had a moderately negative
loading for pH (−0.710), suggesting the dominance of physical reactions by aquatic plants
and natural weathering of the basin, possibly due to industrial impact from different
sources [22]. It had weak positive loading of turbidity (0.452), moderate negative loading
of NO2−N (−0.620), and moderate positive loading of NO3−N (0.507). NO3–N may
additionally have derived from agricultural areas in the region, where inorganic nitrogen
fertilizers are in common use and the role of domestic waste is strong, and hence, this
component can be best explained by a “nutrient” factor representing influences from non-
point sources such as agricultural runoff and the domestic pollution factor. The reports
of Yilma et al. [35] in Ethiopia and Zhang et al. [27] elsewhere were comparable with this
result. This factor is typical of the monitoring stations in the middle section including point
sources and eastern and western sides of Lake Hawassa (MS4, MS10, and MS17), where
domestic sewage, industrial effluents, and agricultural runoff are predominant.

The FA in LHW extracted three factors by retaining the PCs through varimax rota-
tion that explained 70.5% of the total variance for the dry season. The first factor (F1),
accounting for 45.7% of the total variance, showed strong positive loadings of TDS, EC,
PO4−P, BOD, DO, TP, Na+, and temperature, having factor loadings of 0.962, 0.961, 0.830,
0.796, 0.897, 0.783, and 0.973, respectively; moderate positive loadings of K+, COD, and
TN (0.572, 0.721, 0.724); and strong negative loadings of DO (−0.847). Strong positive
loadings of temperature and strong negative loadings of DO might suggest the impact of
seasonal variations. The strong and moderate positive loading of BOD and COD signify
biodegradation of organic matters and negatively affect DO of water bodies. F1 stands
clearly for pollution by BOD or COD, and nutrients and oxygen depletion is a consequence.
High temperature increases biodegradation and reduces solubility of oxygen in the water.
This PC was correlated with COD and BOD5, indicating a group of purely organic pollution
indicator parameters from uncontrolled domestic discharges caused by rapid urbanization
and industrial effluents. Biodegradation of organic matter causes concentrations of BOD
and dissolved oxygen in water [23,27,51].

A high loading of nutrients represents pollution from industrial setup and domestic
wastewater. High loading of metals demonstrates the influences of industrial discharges.
Phosphorus and nitrogen may originate from point sources such as sewage pollution,
agricultural runoff in the upper stream due to irrigation, industrial facilities, and livestock.
Consequently, this component is more likely to be explained by the combination of domestic
pollution factors and industrial factors. Strongly positive loading of Na+ and moderate
positive loadings of K+ are likely to originate from industrial effluents discharged directly
into the Tikur-Wuha River and Lake Hawassa. These results are also supported by similar
findings obtained elsewhere [27,69].

This factor is more pronounced at monitoring stations in the upper catchment (MS1
and MS3), monitoring stations in the middle section including point sources (MS4, MS5,
MS15 and MS19), Tikur-Wuha River (MS6), and monitoring stations from both eastern and
western sides of Lake Hawassa (MS9, MS10, MS14, MS16, and MS17), where domestic
sewage, industrial effluents, and agricultural activities are predominant. The major indus-
tries discharge their treated and untreated effluents directly into Tikur-Wuha River and the
lake during the dry period when the flow is low, which might lead to higher pollution. On
the other hand, the strong loadings of TN and TP at F1 suggest a higher contribution of
point sources from industrial facilities and agricultural runoff in the upper stream due to
irrigation. Generally, these factors suggest a blended source of contamination encompass-
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ing municipal and industrial point source and livestock. This result is also confirmed by
other studies [5,23,33,67,69]. Hence, it can be considered to be the contamination index for
surface water [44,45].

The second factor (F2) explained 16% of the total variance and had a strong negative
loading of turbidity (−0.781), a moderate negative loading of NO2−N and Mg+2 (−0.567,
−0.531), and a moderate positive loading of NO3−N and Ca+2 (0.599, 0.524). NO3–N could
be mainly from point sources, and the role of domestic waste is also strong. Hence, this
component can be explained by the “nutrient” factor, which represents influences from
non-point sources such as the domestic pollution factor [24,27,32,35,66,69]. A moderately
positive loading of K+ and a moderately negative loading of Mg2+ in this factor likely
originate from industrial discharges into the Tikur−Wuha River and Lake Hawassa. This
PC is more influenced by industrial discharges, and monitoring stations from the LHW,
where industry is predominant, are more pronounced. This factor is more pronounced in
monitoring stations in the upper catchment (MS2) and the monitoring stations in the eastern
and western sides of Lake Hawassa (MS11, MS12, MS13, and MS18), where domestic,
industrial, and agricultural activities are predominant in the upper stream due to irrigation.

The third factor (F3), explaining 8.8% of the total variance, had a strong positive
loading of pH (0.775), suggesting the dominance of physical reactions by aquatic plants
and natural weathering of the basin, and attributed to industrial impact from different
sources [22]. A moderate positive loading of NH3−N (0.7) indicates the biodegradation
of organic matter causing concentrations of waterborne factors such as NH3−N. This
variable originated primarily from wastes from point sources of pollution from domestic
and industrial areas. Furthermore, NH3−N is triggered by organic matter decomposition,
indicating the discharge of domestic sewage to surface water. Reports elsewhere support
the findings of this study [42,44,45,70]. This factor is more pronounced in monitoring
stations on the eastern side of Lake Hawassa (MS7 and MS8), where domestic sewage,
industrial effluents, and agricultural activities are prevalent.

The bi-plot of PCs on key parameters TDS, EC, PO4−P, DO, BOD, COD, TN, TP,
temperature, Na+, K+, Turbidity, NO2−N, NO3−N, Mg2+, and Ca2+ that characterize
monitoring stations from rivers in the upper and middle catchment, point sources in the
middle catchment, and the eastern and western sides of Lake Hawassa are presented in
Figure 5a,b for dry and wet seasons. In fact, the average values of EC, TDS, BOD, COD,
Na+, K+, Mg2+, Ca2+, and NH3−N of point sources were exceedingly higher than that of
rivers in the upper and middle catchment (MS1–MS3, and MS6) and Lake Hawassa (MS7-
MS14, MS16 and MS18) in Table 6. In addition, NO3−N, NO2−N, TN, TP, and PO4−P
were the main parameters characterizing the stated monitoring sites in both seasons. These
stations predominantly include rural areas, urban and peri-urban areas, and industrial
sites from which domestic sewage, urban runoff, and effluents are discharged into the
lake. Furthermore, the influence of agricultural activities in the upper catchment and
Tikur-Wuha River feeding the lake was evident. The results of this investigation were
comparable to the findings of the studies conducted by Tibebe et al. [71] and Meshesha
et al. [72] on Lake Ziway. In particular, higher EC and TDS values were recorded for similar
monitoring stations in both seasons (Table 6). In an aquatic environment, EC is used to
categorize the pollution status of surface waters, and an increase in conductivity indicates
the presence of dissolved ions that can affect aquatic life and water quality [73].
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Figure 5. PCA biplots (a,b) suggest the projection of the monitoring sites (blue dots) and the variable loadings of the
primary components (F1 and F2). The biplots additionally display the relationship between highly correlated variables and
monitoring stations for dry (a) and wet (b) seasons. High and low values indicate strong positive and negative correlation,
respectively, while values close to 0 imply weak correlation between F1 and F2 and the respective parameter.

4.6. Total Nitrogen to Total Phosphorus (TN:TP) Ratio

The TN:TP ratio in lakes and reservoirs is a key element, as it gives an idea of which
of these nutrients is either in excess or limiting to growth, and it was used to estimate the
nutrient limitation in the lake. According to Smith [74], blue-green algae (cyanobacteria)
has a capacity to dominate in the lake section when the TN:TP ratio was less than 29, and it
tends to be rare in the lake when TN:TP > 29. On the other hand, Fisher et al. [75] used a
more conservative ratio of TN:TP. According to them, the ratio > 20 is designated as the
phosphorus limitation and nitrogen limitation when the ratio is <10, while a TN:TP ratio
of 10 to 16 demonstrates either phosphorus or nitrogen (or both) are limiting for growth.
The estimated ratio for Lake Hawassa was 31, which is higher than 20 and 30, revealing
cyanobacteria dominance in the lake section, which is rare. The TN:TP ratio > 20 in Lake
Hawassa indicated that phytoplankton growth in the lake might be phosphorous deficient.

5. Conclusions

Multivariate statistical techniques help researchers to scrutinize the relationships
between parameters in a broader fashion by applying different approaches such as cluster
analysis, correlation, factor analysis, discriminant analysis, and multiple regressions to
determine the association between dependent and independent variables. They reduce
the dimensionality of data so that the whole picture can be visualized more easily than
looking at specific cases allows. Furthermore, multivariate techniques provide powerful
significance testing compared to univariate techniques. Despite their various merits, the
results of multivariate statistical modeling are not easy to interpret and require a large data
set to get meaningful results due to the high standard errors. In particular, PCA/FA is
likely to lose information if PCs or factors are not chosen judiciously.

This study was conducted to evaluate seasonal and spatial variations in water quality
and to identify potential sources of pollution using multivariate statistical techniques
for the Lake Hawassa Watershed. The results of this study show that the condition of
Lake Hawassa Watershed was classified into moderately and highly polluted categories
in both dry and wet seasons. In data-limited developing countries such as Ethiopia, it is
especially clumsy to identify possible sources of pollution due to certain contaminants, as
this requires frequently monitored water quality data, which are often not available. To
address this serious problem, this study applied MVST. Multivariate statistics were used to
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perform temporal and spatial assessment of surface water quality to reduce the number
of monitoring stations and chemical parameters in LHW. In this study, we used Pearson
correlation, PCA/FA, CA, and DA to evaluate spatial and temporal variance in surface
water quality.

CA grouped the monitoring stations into two statistically significant clusters for
the dry and wet seasons, labelled MP and HP, using PI. Accordingly, this resulted in a
dendrogram with two clusters for the dry and wet seasons. The findings of the study
revealed that rivers in the upstream and middle portion of the lake watershed and Lake
Hawassa were moderately polluted (MP), while point sources (industries, hospitals, and
hotels) in the middle of the LHW were found to be highly polluted (HP).

DA was used to identify the most critical parameters to investigate the spatial vari-
ations and extracted seven significant parameters: EC, DO, COD, TN, TP, Na+, and K+,
with spatial variance to distinguish the pollution statuses of the groups obtained using CA.

PCA/FA techniques helped to identify the potential sources of water quality degra-
dation. This study comprehensively analyzed the water quality of LHW and identified
three significant sources responsible for pollution of Lake Hawassa Watershed in dry and
wet seasons affecting the water quality. Accordingly, the pollution is due to mixed sources
including point sources such as municipal and industrial effluents, natural processes,
livestock, urban runoff, and non-point sources from agricultural activities.

Poor industrial effluent management combined with non-point sources from agricul-
ture and urban runoff contribute significantly to the pollution of Lake Hawassa. Discharge
of industrial effluents into the surface water system is the largest point source of an-
thropogenic pollution. Diffuse sources that contribute enormously to LHW come from
agricultural activities, i.e., intensive farming and livestock (F1, F2, and F3).

We conclude that effective management of point and non-point source pollution is
imperative to improve domestic, industrial, livestock, and agricultural runoff to reduce
pollutant inputs into the lake. A stringent management that requires a comprehensive
application of technologies such as fertilizer management, ecological ditches, constructed
wetlands, and buffer strips should complement proper municipal and industrial wastewa-
ter treatment set-up.

Furthermore, application of indigenous aeration practices such as the use of drop
structures at critical locations would help improve water quality in the lake watershed.
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Abstract: Groundwater is an important source of fresh water in the world. However, the excessive
extraction and increasing pollution represent a major challenge for water sustainability in Mexico.
Nowadays, since water quality changes in aquifers are not noticeable, aquifer monitoring and
assessment are imperious. In this study, the water quality of the Cuernavaca aquifer was evaluated
using a database of 23 parameters in 4 sampling points from 2012 to 2019. The spatial behavior of
water quality variables was described by using interpolation. The temporal evaluation of groundwater
quality was carried out through time series. Water quality indices (WQI) were obtained in this aquifer
and the WQI values suggest that the groundwater could be considered as good quality for potable
use and of medium-high quality for irrigation. The chemical characteristics of the groundwater
were also evaluated using Gibb, Piper, and Schoeller diagrams. Finally, with a total of 34 samples
of each parameter in each sampling site, a multivariate statistical analysis was performed using a
Pearson correlation and hierarchical cluster analysis. This analysis showed a correlation between
hydrochemical features and groundwater quality parameters, where nitrates presented the highest
number of significant correlations with other parameters. These results may be useful for the
authorities to adopt planning methods to improve the sustainable development of the aquifer.

Keywords: Cuernavaca aquifer; hydrochemistry; water quality index; time series analysis; spatial analysis

1. Introduction

Groundwater is one of the most important natural resources and plays an important
role in ecosystems [1]. It is widely used for domestic, industrial, and agricultural activities;
hence, its demand is constantly increasing [2–5]. Population growth, accidental spills,
surface leaching, runoff, and the extensive use of fertilizers in irrigated areas are considered
the main causes of groundwater alteration [6,7]. Furthermore, agricultural activities modify
groundwater conditions with nutrients and pesticides coming from leachate infiltration into
the soil. Therefore, the use of fertilizers, pesticides, and herbicides in agriculture are major
threats to aquifers [8–10]. In addition, the deterioration of an aquifer can be also related
to natural causes such as floods, droughts, and salinization [11–13]. Once the aquifer is
altered, it is complex and expensive to reverse the damage [12,14]. Therefore, groundwater
quality must be monitored regularly to prevent aquifer alterations.

Many studies have been proposed for the assessment of aquifer vulnerability.
Bannenberg et al. [6] evaluated the hydrological regime and hydrochemical features of
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the Flamouria aquifer in Edessa, Greece. They found that groundwater quality was not
suitable for irrigation use since the high alkalinity and total dissolved solids found in
groundwater could generate excessive salinization of the soil. Kumar et al. [8] conducted
a hydrochemical study to assess the water quality suitability for drinking and irrigation
purposes. As a result, they found a high concentration of some ions, such as As, Fe, and Mn,
in an aquifer located in the Central Ganga Basin. Loh et al. [15] evaluated the suitability
of an aquifer in Ghana for domestic and irrigation purposes. They used conventional
hydrochemical and mass balance models to reveal relationships between water parameters
and the main influence on the chemistry of the aquifer under study. As a result, they found
that the groundwater in the area is permissible for agricultural irrigation.

Zakaria et al. [16] evaluated the hydrochemistry of groundwater in the Anayari catch-
ment to identify the hydrogeochemical processes that are responsible for the main ions in
groundwater. Their results showed good quality for irrigation without prior treatment.
Wisitthammasri et al. [17] studied the water quality and hydrochemical characteristics of
an aquifer in Thailand using multivariate statistical analysis to identify preliminary ion
sources. This multivariate analysis evidenced the ion exchange between Ca2+ and Na+

from the weathering of silicates and calcite. Some commonly used multivariate statistical
techniques, such as Pearson correlations and Hierarchical Cluster Analysis (HCA), have
been used to illustrate the relationship between many groundwater variables and describe
the relationship between them [18]. These studies have been carried out to develop ap-
propriate groundwater management strategies and policies to protect aquifers. According
to Elumalai et al. [4], multivariate statistical analyses are important because they provide
essential information on groundwater quality and the processes responsible for its alteration.

Another tool for groundwater water quality assessment is the water quality index
(WQI). This tool has been widely used by several researchers [8,14,19] since it simplifies the
interpretation of water quality behavior. El Osta et al. [19] used this technique to classify
the suitability of groundwater. As a result, they found that only a low percentage of the
samples were classified as good to excellent to be used, while the rest of the samples were
inadequate and required treatment to be used as drinking water. Another effective tool for
assessing groundwater quality and its variability is that recommended by Kumar et al. [8]
who evaluated the groundwater quality based on the Geographic Information System
(GIS) through the Groundwater Quality Index (GQI) in an aquifer in southern India.
They mention that this method is reliable for groundwater quality assessment and serves
as a useful tool for decision-makers for efficient groundwater quality monitoring and
management mainly in agricultural areas which have a great influence on groundwater
recharge and quality.

In recent years, population growth and the increase of agricultural areas and indus-trial
activities have intensified water demand, threatening the sustainable use of ground-water
in the Cuernavaca aquifer. Despite this situation has been locally evidenced, no formal
studies have been carried out to demonstrate the effect of these activities on groundwater
resources. The novelty of this study lies in describing the hydrological and hydrochemical
conditions of this aquifer to identify its vulnerability. The geohydrological features of the
Cuernavaca aquifer are described using Gibb, Piper, and Schoeller diagrams. Groundwater
quality evaluation is carried out based on time series analysis, water quality distribution
maps, and water quality indices. This study performs a multivariate and correlation
analysis to identify possible pollution sources and proposes better water management
strategies for this aquifer.

2. Materials and Methods

2.1. Study Area

The study area is in the state of Morelos, Mexico with an approximate area of
820 km2 (Figure 1). Mean annual precipitation, evapotranspiration, and air temperature
are 1278 mm, 874.7 mm, and 19.4 ◦C, respectively. The highest rainfall values are observed
from July to September, which corresponds to the summer season, and less significant
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precipitations are registered in winter from October to January mainly caused by cold
fronts. The Cuernavaca aquifer is a free, heterogeneous, and anisotropic aquifer with
surface geology that is represented by lithological units mainly of sedimentary and volcanic
origin [20] and does not show any significant structural complications. The static water
level of this aquifer varies from 20 to 100 m.

Figure 1. Location of the Cuernavaca aquifer and location of sampling wells.

2.2. Data Collection

In Mexico, the National Water Commission (CONAGUA) is a federal agency respon-
sible for monitoring, surveillance, and management of aquifers [21]. The analysis of the
groundwater samples was carried out by an accredited laboratory [22] which applied a
methodology based on the standard methods (APHA) [23]. The data used in this study
were obtained by this federal agency. For economic and strategic reasons, four sampling
wells were monitored, which were in sites with intense anthropogenic activity. These wells
are used for water consumption. The extraction of groundwater for consumption purposes
is carried out using pumping systems.

The hydrochemical and water quality parameters considered in this study were: bi-
carbonates (HCO3−), fecal coliforms (FC), total organic carbon (TOC), ammonium (NH3),
nitrites (NO2−), nitrates (NO3−), organic nitrogen (ON), total nitrogen (TN), total phos-
phorus (TP), total dissolved solids (TDS), electrical conductivity (EC), pH, chlorides (Cl−),
fluorides (F), silicon oxides (SiO2), potassium (K+), manganese (Mn), sodium (Na+), sulfates
(SO4

2−), calcium (Ca2+), magnesium (Mg2+), total hardness (TH), water temperature (WT).
Quality control (QC) and quality assurance (QA). The sampling wells were monitored

by CONAGUA. An accredited laboratory carried out the analysis of 23 parameters sampled
every six months in the 2012–2019 period. The water sampling was carried out according
to Mexican regulations. Based on these regulations, chemical products of analytical grade
were required for the preparation of the standard solutions and reagents. In addition,
replicates were performed to ensure the reliability of the results and comply with quality
control required by the General Directorate of Standards and the Federal Law on Metrology
and Normalization.

2.3. Spatial and Temporal Assessment of Groundwater Quality

The spatial evaluation of the groundwater quality of the Cuernavaca aquifer was
carried out through interpolation of the measured parameters as suggested by other stud-
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ies [24,25]. The inverse distance weighting (IDW) interpolation method was used to
describe the spatial distribution of the groundwater quality values through the study area
by using the QGIS 3.18 software. The weights used in the IDW method were calculated
according to the weighting strategy proposed by Bartier [25]. These weight values are
determined based on the distance between the sampling points according to Equation (1).

zx,y =
∑n

i=1 zid
−β
x,y,i

∑n
i=1 d−β

x,y,i

(1)

where zx, y is the water quality parameter to be estimated; zi represent the measured value
for the sampling point; dx, y, i is the distance between zx, y and zi; and β is a user-defined
coefficient (the software default value of 2 was used for the β coefficient).

Temporal evaluation of groundwater quality was performed using time series analysis
to determine possible groundwater quality temporal trends using biannual sampling data
from 2012 to 2019. A temporal analysis was carried out by describing the groundwater
quality variations over time. Finally, groundwater quality data were compared to World
Health Organization (WHO) and local guidelines.

2.4. Water Quality Assessment
2.4.1. Drinking Water Quality Index

The drinking water quality index (DWQI) is frequently used to determine the suitabil-
ity of groundwaters. In this study, the determination of DWQI was performed according to
Equations (2)–(5) [14,26,27].

Wi =
wi

∑n
i wi

(2)

Qi =
ei − vi
bi − vi

∗ 100 (3)

SI = Wi ∗ Qi (4)

DWQI =
n

∑
i=1

SI (5)

where Wi is the relative weight; wi is the weight assigned to each parameter according to
its relative importance for drinking water (the maximum weight of “5” has been assigned
for the highest importance and the minimum weight of “2” for the lowest importance); “n”
is the number of groundwater parameters; Qi: is the rating according to the distribution
of the “ith” parameter. ei: is the concentration of each parameter; vi: is the optimum
value of the parameter (“0” is considered as optimum value for all parameters, except pH
which is “7”); bi is the guideline value [28] for each parameter; SI: is the sub-index of “ith”
parameter. According to some researchers [14,29,30], the optimum values and weights for
the parameters of the DWQI are: pH (bi = 8.5, wi = 4, Wi = 0.13), TDS (mg/L, bi = 500, wi = 4,
Wi = 0.13), total hardness (mg/L, bi = 300, wi = 3, Wi = 0.10), calcium (mg/L, bi = 75, wi = 3,
Wi = 0.10), magnesium (mg/L, bi = 30, wi = 3, Wi = 0.10), nitrates (mg/L, bi = 45, wi = 4,
Wi = 0.13), chlorides (mg/L, bi = 250, wi = 2, Wi = 0.06), sulfates (mg/L, bi = 200, wi = 2,
Wi = 0.06), fluorides (mg/L, bi = 1, wi = 4, Wi = 0.13), and total alkalinity (mg/L, bi = 200,
wi = 2, Wi = 0.06). Based on the results of Equation (4), the aquifer water was then classified
into different categories: DWQI < 50 (excellent), DWQI = 50–100 (good), DWQI = 100–150
(moderate), DWQI = 150–200 (poor) and DWQI ≥ 200 (extremely poor).

2.4.2. Hydrochemical Characteristics

The chemical composition of groundwater is highly variable. Hence, the hydrochemi-
cal classification and groundwater chemical composition evolution were determined by
using the Gibb, Piper, and Schoeller plots [15,31]. Then, the suitability of the groundwater
for irrigation was evaluated by using the groundwater indices shown in Table 1.
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2.4.3. Multivariate Statistical Analysis

Multivariate statistical techniques such as Pearson correlation and hierarchical cluster
analysis (HCA) were used to figure out the relationship between the water quality variables.
This multivariate statistical analysis was used to identify the factors and possible sources
that could explain the behavior of the groundwater quality of the aquifer [32–35]. In
addition, a dendrogram was performed using the ward conglomeration method with a
Euclidean distance metric [7,15].

Table 1. Groundwater indices based on hydrochemical features.

Indices Acronym Equation References

Sodium adsorption ratio SAR SAR = Na+√
Ca2++Mg2+

2

Abdelaziz et al. [34]

Soluble sodium percentage SSP SSP = Na+

Ca2++Mg2++K+ ∗ 100
Tefera et al. [31]

Sodium percentage %Na %Na =
(Na++K)

(Ca2++Mg2+Na++K+)
∗ 100

Abbasnia et al. [36]

Residual Sodium Carbonate RSC RSC =
(
HCO−

3
)− (

Ca2+ + Mg2+
) Zakaria et al. [16]

Magnesium Hazard MH MH =
Mg2+

Mg2++Ca2+ ∗ 100
Hossain et al. [37]

Permeability index PI PI = Na++K++
√

HCO−
3

Ca2++Mg2++Na++K+ ∗ 100
Kumar et al. [8]

Kelly Ratio KR KR = Na+

Mg2++Ca2+
Acharia et al. [27]

Total Hardness TH TH = (Ca + Mg) ∗ 50 Tefera et al. [31]

3. Results and Discussion

3.1. Descriptive Analysis of Groundwater Quality Parameters

The total dissolved solids reflect the behavior of the salt concentration of the aquifer.
These solids were found in a range of 75–688 mg/L and a mean value of 316 mg/L was
registered. This value is low compared to that reported by Tefera et al. [31], who found
concentrations up to 2777.6 mg/L. According to WHO [28], groundwaters with TDS
values higher than 500 mg/L could be considered unsuitable for drinking water supply.
The total hardness was found in a range of 24.6–456.8 mg/L. However, the mean value
(179.2 mg/L) is below the concentration of 300 mg/L suggested by WHO [28] for drinking
water. This value is also below the total hardness found by Kumar et al. [8], who presented
concentrations greater than 292 mg/L in an unconfined aquifer located in the Central
Ganga Basin, India.

The electrical conductivity of the Cuernavaca aquifer was between 90 and 991 μS/cm
with a mean conductivity of 409.8 μS/cm. A high variation of electrical conductivity was
observed in this aquifer, where the lowest conductivity values were found in sampling well
one. Anthropogenic activities, such as agriculture, and rainwater filtration could be the
reason for this variation. Jama et al. [38] presented concentrations up to 11,950 μS/cm in
the unconfined Doukkala Aquifer located in a large agricultural region in Morocco. The
groundwater of the Cuernavaca aquifer is slightly alkaline since its pH is in the range of
6.2–8.4 (the water is considered alkaline when pH > 8 and acidic when pH < 6). This pH
range is within the drinking water standards of the WHO (6.5–8.5).

Nitrogen and phosphorus were below the permissible limits proposed by local stan-
dards. The TN and TP concentrations found were between 0.012–7.02 and 0.001–0.39 mg/L,
respectively. Nitrogen concentrations are not usually frequent in natural soils, they occur
due to the contact of the soil cover with nitrated fertilizers, animal waste, domestic effluents,
and septic tanks [14]. The total organic carbon was found in a range of 0.07–2.57 mg/L.
The presence of organic matter in the Cuernavaca aquifer could be related to the infiltration
of the organic matter produced naturally by plants and animals due to excretion and de-
composition. This situation is corroborated since fecal coliforms were found in the aquifer,
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with a mean value of 276.6 CFU/100 mL. The presence of fecal coliforms in groundwater
could indicate pollution from anthropogenic sources since the sampling wells are in an
urban area with a large population. Table 2 presents the mean values of the water quality
parameters measured in the Cuernavaca aquifer from 2012 to 2019.

Table 2. Range, standard deviation and mean values for water quality parameters in the Cuernavaca
aquifer from 2012 to 2019.

Parameters Abbreviation Minimum Maximum Mean Standard Deviation

Bicarbonates (mg/L) HCO3− 48.40 294.90 145.12 79.75
Fecal coliforms (MPN/100 mL) FC 1.00 2909.00 276.62 719.15

Total organic carbon (mg/L) TOC 0.08 2.87 0.92 0.72
Ammonium (mg/L) NH3 0.00 0.61 0.07 0.12

Nitrites (mg/L) NO2− 0.00 0.04 0.01 0.01
Nitrates (mg/L) NO3− 0.00 6.87 3.24 2.13

Organic Nitrogen (mg/L) ON 0.00 1.55 0.24 0.29
Total nitrogen (mg/L) TN 0.01 7.03 3.56 2.20

Total phosphorus (mg/L) TP 0.00 0.40 0.15 0.09
Total dissolved solids (mg/L) TDS 64.64 688.00 316.01 195.16

Electrical conductivity (μS/cm) EC 90.00 991.00 409.79 266.25
pH PH 6.20 8.40 7.29 0.45

Chlorides (mg/L) Cl− 8.44 78.25 23.89 20.62
Fluorides (mg/L) F 0.04 0.97 0.32 0.19

Silicon oxides (mg/L) SiO2 30.42 91.29 67.10 13.56
Potassium (mg/L) K+ 1.32 7.72 3.68 1.60
Manganese (mg/L) Mn 0.00 0.48 0.01 0.08

Sodium (mg/L) Na+ 1.92 40.01 18.59 9.43
Sulfates (mg/L) SO4

2− 0.82 226.38 48.41 49.98
Calcium (mg/L) Ca2+ 3.87 121.10 41.93 37.57

Magnesium (mg/L) Mg2+ 3.82 50.47 19.25 13.07
Total hardness (mg/L) TH 24.60 456.80 184.46 141.14
Water temperature (◦C) WT 17.25 22.49 20.24 21.68

The concentrations of some mineral compounds such as calcium and magnesium
cause the precipitation of these salts. In the Cuernavaca aquifer, calcium was found in
concentrations from 3.88 to 121.1 mg/L and a mean value of 41.9 mg/L, while magnesium
was found from 3.8 to 50.5 mg/L with a mean value of 19.2 mg/L. The presence of
concentrations of these salts (Mg2+ and Ca2+) is due to the geological features of the aquifer.
Sodium and potassium were found in a range of 1.92–37.5 and 1.3–6.6 respectively. The
mean values for all major cations were within the maximum permissible limit [28].

Bicarbonates were within a range of 48.4–295 mg/L and a mean value of 145.1 mg/L
was calculated. It is noteworthy that carbonates were not found in the samples. Sulfates
in the Cuernavaca aquifer are between 0.8 and 136 mg/L, which are below the SO4

2−
concentrations reported in other studies [39] and the guidelines recommended by the
WHO [28]. Moreover, the chlorides presented a concentration between 8.4 and 78.2 mg/L,
while nitrates showed a maximum concentration up to 6.2 mg/L, with a mean value
of 3.2 mg/L. Both anions’ mean values were also below the WHO maximum allowable
values. Adimalla and Qian [14] suggest that nitrates could be found in groundwaters
due to anthropogenic activity. They reported NO3 concentrations up to 198.17 mg/L in
groundwater under the influence of agriculture activities in Nanganur, India. In this study, a
high variation in NO3 concentrations was found between sampling sites, where the highest
concentration was found in sampling site 2. Cadmium, chromium, mercury, lead, zinc,
and arsenic were also analyzed in this study; however, the concentrations found could be
negligible because low concentrations were observed (cadmium < 0.0002 mg/L; chromium
< 0.00088 mg/L; mercury < 0.00009 mg/L, lead < 0.00154 mg/L, zinc < 0.002 mg/L and
arsenic < 0.00139 mg/L). According to these results, the influence of geogenic sources was
evidenced, where leaching and weathering of rocks and the use of pesticides and fertilizers
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could be recognized as the main driving factors for the hydrochemical and water quality of
the aquifer.

3.2. Spatial and Temporal Variations of Measuring Indicators

A total of 23 water quality parameters were analyzed at four sampling wells. These
sampling wells are located within the urban area of the city of Cuernavaca, which has
different elevations as shown in Figure 2.

Figure 2. Elevations of the Cuernavaca aquifer.

The land use and soil classifications in the study area are shown in Figures 3 and 4,
respectively. These figures demonstrate that P1 is in a wooded area with little human
settlement, close to the annual rainfed agricultural area. The dominant soil type in this area
is Luvic phaeozem which is characterized by organic matter and scarce carbonates. This
sample site is next to an oak-pine forest land-use zone. Sample sites P2, P3, and P4 have
similar characteristics because they are in irrigated agricultural areas close to the urban
area. These sites are in a Pelic vertisol soil characterized by high mineral content.

Figure 3. Land use classification of the Cuernavaca aquifer.
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Figure 4. Soil classification of the Cuernavaca aquifer.

Figure 5 presents the spatial interpolation of the water quality parameters in the
Cuernavaca aquifer. The highest values for all the parameters analyzed were observed in
sampling point two (P2), while sampling point one (P1) presented the lowest values. This
situation could be related to the soil type in the area. Since the highest elevation is observed
in P1, the rest of the sample points located in lower elevation areas could be influenced by
the erosion, transport, and deposition of contaminants.

Figure 5. Spatial behavior of physicochemical parameters in the Cuernavaca aquifer.

Figure 6 presents the spatial behavior of the major ions. The presence of ions in the
sampling wells is due to interactions with the geological material of the aquifer, natural
processes of rock dissolution, and ion leaching. This figure shows that higher concentrations
of ions were found at the P2. At this site, groundwater is not suitable for domestic use
according to WHO [28] guidelines. The spatial distribution of these chemical elements
highlights the vulnerability of the aquifer, especially at P2. Since the concentrations of ions
at P1, P3, and P4 sites are similar, they could be considered reference values for the major
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ions in the Cuernavaca aquifer. It is noteworthy that the concentration of ions in all the
groundwater samples was found to be within the WHO desirable limits for agricultural
irrigation [6,28].

Figure 6. Spatial behavior of major ions in the Cuernavaca aquifer.

Figure 7 presents the temporal variation of the water quality parameters from
2012 to 2019. No trends, seasonal or cyclic patterns were found in the groundwater
quality data. The time series also demonstrated that P2 showed higher values in almost all
parameters. Lower concentrations of the physicochemical and major ions are observed at
P1 since this site is at a higher elevation where the runoff of anthropogenic contaminants
is significantly low. Similar values are presented by Adimalla et al. [14], who evaluated
the groundwater of Nanganur county in India. Based on these results, they consider
that groundwater quality does not represent health risks for drinking water use and only
recommend groundwater defluoridation.

Table 3 presents the ANOVA statistical analysis of the groundwater quality parameters.
This table showed that 15 parameters had a statistically significant variation from a spatial
point of view. However, only 4 groundwater quality parameters showed a temporal
significant variation.
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Figure 7. Variation of water quality parameters over time (2012–2019) at P1 (-�-), P2 (-•-), P3 (-�-) y
P4 (-�-).
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Table 3. Spatial and temporal statistical analysis (ANOVA) of the water quality parameters measured
in the Cuernavaca aquifer.

Parameter
Site (Spatial) Year (Temporal)

p-Value p-Value

Bicarbonates (mg/L) 0.0000 * 0.7058
Fecal coliforms NMP/100 mL 0.2229 0.8342
Total organic carbon (mg/L) 0.3044 0.1937

Ammonium (mg/L) 0.3219 0.4469
Nitrites (mg/L) 0.7001 0.4622
Nitrates (mg/L) 0.0000 * 0.0911

Organic Nitrogen (mg/L) 0.1192 0.1272
Total nitrogen (mg/L) 0.0000 * 0.1061

Total phosphorus (mg/L) 0.2540 0.0283
Total dissolved solids (mg/L) 0.0000 * 0.5686
Electrical conductivity μS/cm 0.0000 * 0.4360

pH 0.0002 * 0.0034
Chlorides (mg/L) 0.0000 * 0.4176
Fluorides (mg/L) 0.3992 0.0844

Silicon oxides (mg/L) 0.0315 * 0.0001 *
Potassium (mg/L) 0.0001 * 0.2912
Manganese (mg/L) 0.5720 0.8024

Sodium (mg/L) 0.0000 * 0.0143 *
Sulfates (mg/L) 0.0000 * 0.0134 *
Calcium (mg/L) 0.0000 * 0.2466

Magnesium (mg/L) 0.0000 * 0.0058 *
Total hardness (mg/L) 0.0000 * 0.3337
Water temperature ◦C 0.0000 * 0.8973

* p-value ≤ 0.05) is statistically significant.

3.3. Multivariate Statistical Analysis

Figure 8 shows the Pearson correlations between the groundwater quality parameters.
Pearson correlation coefficient (r) ranges from −1 to +1 and measures the strength of the linear
relationship between parameters [9]. A high negative correlation is found when r is close to
−1 but r values close to +1 indicate a high positive correlation. A Pearson correlation (r) close
to 0 indicates that there is no linear relationship between the two variables.

Figure 8. Pearson correlation coefficients of the water quality parameters of the Cuernavaca aquifer.
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Nitrates presented the highest number of correlations with other parameters. This
parameter is correlated with TN, TDS, EC, PH, Cl−, K+, Na+, SO4, Ca2+, Mg2+, TH, and
WT. TA is related to HCO3

−, NO3
−, TN, TDS, EC, Cl−, Na+, Ca2+, Mg2+, TH, and WT.

Bicarbonates showed a high correlation with NO3
−, TN, TDS, EC, Cl−, Na+, Ca2+, Mg2+,

TH, and WT. Total nitrogen is associated with TDS, EC, Na+, SO4
2−, Ca2+, Mg2+, TH,

and WT. Total dissolved solids are highly related to ions, TH, EC, and WT. The electrical
conductivity attributes a higher correlation with Cl−, K+, Na+, SO4

2−, Ca2+, Mg2+, TH, and
WT. Chlorides are significantly related to K+, Na+, SO4

2−, Ca2+, Mg2+, and TH. Potassium
is related to other ions such as Na+, SO4, Ca2+, Mg2+, and TH. In turn, sodium is related to
SO4

2−, Ca2+, Mg2+, and TH). Sulfates are related to Ca2+, Mg2+, and TH, and calcium shows
a correlation with Mg and TH. This method has been used for the evaluation of groundwater
quality. Strong correlations between major ions are also reported by Miao et al. [40]. This
situation evidenced that the groundwater quality of a coastal city in China was affected by
various factors, such as dissolution and water evaporation.

Since a high amount of groundwater quality parameters were correlated with each
other, a hierarchical cluster analysis was carried out (Figure 9). Hierarchical cluster anal-
ysis was used to further unearth the main chemical processes controlling groundwater
chemistry in the aquifer [15,34]. This analysis included the 23 analyzed parameters and
34 water samples at different times of the year. The dendrogram formed the main cluster
which in turn formed two groups. The first group includes only fluorides and sulfates.
The second main group is composed of the rest of the water quality analyzed parame-
ters. Several subgroups are evidenced, such as those formed by TDS, EC, and TH, TA,
and HCO3

−, and SiO2, K, Ca2+, and Mg2+. These results corroborated the relationship
between the observed parameters in the Pearson correlations. The relationship between
the groundwater parameters indicated a common source. Due to the nature of these sub-
groups, groundwater quality is derived from geogenic sources, mainly carbonate mineral
solutions [32]. Abdelaziz et al. [34] also noted that the dendrogram can be used to classify
the groundwater quality parameters and found great similarities with the grouping carried
out by the principal components analysis.

Figure 9. Hierarchical cluster analysis for groundwater quality parameters monitored in the Cuer-
navaca aquifer from 2012 to 2019.

3.4. Drinking Water Quality Index

Table 4 shows the DWQI obtained in the four sampling sites of the Cuernavaca aquifer.
DWQI range from 11.2 to 78.2 were obtained from 2012 to 2019, where 70% of the samples
showed an excellent groundwater quality, mainly in the P1, P3, and P4 sampling sites, as
shown in Figure 10. P1 showed the best water quality, possibly because this sampling site
is at the highest elevation and close to a protected green area. In contrast, P2 showed a high
variation of groundwater quality because it is in a highly-populated area. Similar DWQI
results are reported by Ahmed et al. [41], who mentioned that the DWQI ranged from 1.86
to 82.25 for water samples from different sampling sites of an aquifer in India.
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Table 4. Classification of the water quality index and percentage of the values of the Cuernavaca
aquifer samples.

DWQI Classification of Water Samples % of Samples

<50 Excellent water 24 70.5
50–100 Good water 10 29.5

100–200 Poor water 0 0
200–300 Very poor water 0 0

>300 Unsuitable for drinking 0 0

Figure 10. Variation of the water quality index in the sampling wells of the Cuernavaca aquifer.

3.5. Hydrochemical Characteristics

Hydrochemical analysis was carried out to characterize the Cuernavaca aquifer’s
groundwater. A high content of salts in groundwater could lead to the salinization of the
soils and crop yield losses due to dehydration of plants [38,42]. The concentrations of salts
in the Cuernavaca aquifer showed the following behavior:

HCO3
− > Ca2+ > Na+ > Mg2+ > Cl− > SO4

2− > K+ > NO3
−

Figure 11a shows the Piper triangular diagram. In this figure, the mean values of
34 samples at each sampling point were used. This diagram is a graphical representation of
groundwater chemistry, where the relative concentrations of cations and anions are shown
by separate ternary plots. In the lower-left ternary plot (cation diagram), a dominance
of Mg2+ and Na+ + K+ is observed. This dominance could be related to progressive
evaporation and ion exchange processes [43]. The lower-right ternary plot (anion diagram)
indicated that the groundwater chemistry of the Cuernavaca aquifer is highly influenced
by Calcium-bicarbonate type and Bicarbonate type [44]. These results are consistent with
the results suggested by other researchers [45]. Figure 11b shows the Schoeller diagram which
exhibits a similar behavior of cations and anions in the multiple samples from different wells.
This diagram demonstrated that the highest equivalent concentrations of the ions were present
in sampling site P2, where Ca2+ and HCO3

− showed the highest equivalent concentrations of
cations and anions, respectively. Similar results were presented by Tefera et al. [31] in Tana
basin in Ethiopia. However, Abotalib et al. [46] obtained opposite results to those presented in
this study for an aquifer located in hyperarid deserts in central Egypt.
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Figure 11. Piper (a), and Schoeller (b) diagrams for groundwater chemistry composition at P1 ( ),
P2 ( ), P3 ( ) y P4 ( ).

El Osta et al. [19] suggest that the groundwater chemistry of an aquifer is the result
of evaporation, weathering, and rock-water interaction. In this study, the Gibbs diagram
(Figure 12) showed that the cations and anions in the aquifer are primarily controlled by
rock–water interaction. The dissolution of the rock in the aquifer is evidenced since a high
content of chlorides and sulfates is observed. Therefore, this process regulates groundwater
chemistry and quality. Likewise, this diagram suggests that the P2 site could be controlled
by evaporation. This process produces dissolved solutes in groundwater and soil in areas
with little depth [15,19,47,48].

Figure 12. Gibbs diagram showing the source of cations and anions in the Cuernavaca aquifer at P1
(-•-), P2 (-•-), P3 (-•-) y P4 (-•-) sites.

3.6. Groundwater Indices Based on Hydrochemical Features

Figure 13 presents the classification of water quality for irrigation purposes. Some ground-
water indices obtained in this study suggest that the Cuernavaca aquifer has a good quality
for irrigation purposes. For example, the SAR index classified the groundwater as excellent,
which indicates that there is no risk of sodium for irrigation. The RSC index also showed
that all samples presented a good quality of water for irrigation. Based on the KR index, the
groundwater of the Cuernavaca aquifer was adequate in most of the samples (84%).
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Figure 13. Classification of water samples for irrigation purposes in the Cuernavaca aquifer.

However, other groundwater indices suggest that groundwater quality is inadequate
for irrigation. The SSP index showed that 65% of the samples have good water quality,
mainly at P2 and P4. However, most of the samples at P1 and P3 showed an inadequate
quality. Tefera et al. [31] reported that 53.3% of samples analyzed in alluvial aquifers in the
Upper Blue Nile Basin, Ethiopia, could be considered good quality but 46.7% of the samples
could be considered unsuitable. The MH index demonstrated that 56% of the samples
have adequate quality at P2 and P4, but inadequate at P1 and P3. The high sodium levels
found at these sampling sites could be related to weathering of Na-containing basaltic
rocks. However, the content of calcium (41.93 mg/L) and magnesium (19.25 mg/L) in
the groundwater of the aquifer maintains an equilibrium state. The groundwater of the
Cuernavaca aquifer could be considered good quality according to the %Na. Most of the
samples (56%) are within 20–40% Na. However, high sodium percentages were recorded in
38% of the samples, mainly at P1. The presence of high levels of sodium could reduce soil
permeability. Similar results were obtained when using the PI index. Good water quality
was observed in 56% of the samples, but it is noteworthy that 29% of the samples were
within the poor-quality range (PI > 100). This groundwater quality index is related to the
texture and structure of the soil. Since a high content of ions such as sodium, magnesium,
calcium, and bicarbonates were found in the aquifer, the PI index also suggests that the
use of groundwater for irrigation could affect the soil permeability [19]. Moreover, the
high levels of bicarbonates over calcium and magnesium make groundwater unsuitable for
irrigation uses.

The hardness of groundwater varied from soft to very hard. This variation is related
to urbanization since soft groundwater was found at P1, characterized by the presence of
agricultural areas, with low population density and small settlements, while very hard
groundwater was located at P2 which is characterized by a mineralized subsoil. Hardness
levels found in this study could be considered normal according to that suggested by
Udeshani [49], who reports similar TH values in the groundwater of Sri Lanka.

The electrical conductivity in the Cuernavaca aquifer was found between 90 and
991 μS/cm. Despite this high variation, most of the samples were in a good quality
range according to Tutmez’s [50] classification (EC level between 0 and 750 mS/cm).
The levels of electrical conductivity have been increasing during the last years. This
increase could be also related to the loss of vegetation cover due to urbanization [51].
However, electrical conductivity in groundwater showed a satisfactory quality classification
because the presence of ions (Ca2+, Mg2+, Na+, K+, Cl−, HCO3−, SO42+, and NO3−) is
within the permissible limits according to the standards of the World Health Organization
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(WHO). Determining groundwater suitability is important to understand the potential
negative impacts of the high content of ions on crop production and mitigate groundwater
contamination problems to improve healthy crop production [31].

4. Conclusions

• The hydrological and hydrochemical conditions of the Cuernavaca aquifer were
evaluated through the application of water quality indices and statistical techniques.
This study provides an approach to the spatial and temporal behavior of an urbanized
aquifer and assesses its vulnerability due to population growth.

• This study identified spatial variations between the sampling sites and evidenced the
influence of urbanization on groundwater chemistry and quality in the Cuernavaca
aquifer. The spatial variation of the chemical elements highlights the vulnerability of
the aquifer, especially at P2.

• The time series analysis demonstrated no trend, seasonal, or cyclic patterns in the
groundwater quality data. The multivariate statistical analysis showed a high number
of correlations between the groundwater parameters. These parameters were grouped
based on hierarchical cluster analysis which revealed the main chemical processes
controlling groundwater chemistry in the aquifer.

• Most of the parameters (physicochemical and ions) measured in the Cuernavaca
aquifer were within the standards allowed by the WHO for irrigation purposes. This
situation was confirmed by the water quality indexes since the groundwater of the
aquifer was classified as good quality. However, the presence of fecal coliforms,
organic matter, and the high content of ions such as Ca2+, Mg2+, and HCO3

− is an
important situation that must be addressed to reduce the vulnerability of the aquifer.

• This study provides an approach to describe the behavior of the hydrochemical features
and water quality of the Cuernavaca aquifer and points out the main driving factors for
the deterioration of groundwater quality in an aquifer located in an urban area.
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Featured Application: In-Situ and Hybrid Machine Learning—Geostatistical Interpolation

method for groundwater quality monitoring applications.

Abstract: This article discusses the assessment of groundwater quality using a hybrid technique
that would aid in the convenience of groundwater (GW) quality monitoring. Twenty eight (28) GW
samples representing 62 barangays in Calapan City, Oriental Mindoro, Philippines were analyzed
for their physicochemical characteristics and heavy metal (HM) concentrations. The 28 GW samples
were collected at suburban sites identified by the coordinates produced by Global Positioning
System Montana 680. The analysis of heavy metal concentrations was conducted onsite using
portable handheld X-Ray Fluorescence (pXRF) Spectrometry. Hybrid machine learning—geostatistical
interpolation (MLGI) method, specific to neural network particle swarm optimization with Empirical
Bayesian Kriging (NN-PSO+EBK), was employed for data integration, GW quality spatial assessment
and monitoring. Spatial map of metals concentration was produced using the NN-PSO-EBK. Another,
spot map was created for observed metals concentration and was compared to the spatial maps.
Results showed that the created maps recorded significant results based on its MSEs with values
such as 1.404 × 10−4, 5.42 × 10−5, 6.26 × 10−4, 3.7 × 10−6, 4.141 × 10−4 for Ba, Cu, Fe, Mn, Zn,
respectively. Also, cross-validation of the observed and predicted values resulted to R values range
within 0.934–0.994 which means almost accurate. Based on these results, it can be stated that the
technique is efficient for groundwater quality monitoring. Utilization of this technique could be
useful in regular and efficient GW quality monitoring.

Keywords: groundwater; heavy metals; physicochemical parameters; in-situ; machine learning;
geostatistical analysis

1. Introduction

Water quality is associated with ecosystem preservation, economic growth and social
development [1]. Groundwater (GW) quality is critical to the Philippines’ overall water
resource; hence, monitoring should be given attention. Population expansion and the
acceleration of modernization as well as industrialization have resulted in an increased
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water demand [2]. It is inevitable that quality of both surface water and GW is compro-
mised in areas where economy is in transition and where there is increasing urbanization,
industrialization, and agricultural activities [3]. However, due to scarcity of elemental
laboratory instruments in the Philippines, the preparation requirements of the laboratory
station-based instruments for samples, and the travel time from sampling sites to lab-
oratory stations become a challenge to GW quality monitoring especially to elemental
concentration analysis.

The population of the Philippines has rice in its regular daily meals. Rice fields and
techniques to produce high and good quality yields are among the agricultural areas and
programs, respectively, that are being supported by the Philippine government. Calapan
City, Oriental Mindoro province in the Philippines, with GW as primary water source, is
among the top producers of rice in the country. Rice fields require highly flattened area and
good water quality as among the criteria to increase yields with good rice quality. Having
the Philippines within the tropical storm belt, Calapan City experienced regular flooding
as shown in Figure 1. This condition become a challenge to the water quality for rice fields
and for domestic supply.

Figure 1. Flood Hazard Map of Calapan City [4].

The Philippines is rich in natural resources such as metals and non-metallic min-
erals [5] with tropical climate where annual rainfall is high. However, anthropogenic
activities, due to economic development, population positive growth rate and urbanization,
caused unintentional adverse effects to the environment. When the pristine environment
is disturbed, and minerals are exposed to oxygen and water, chemical reactions happen.
Similar condition takes place during weathering. Having rich in mineral resources, high
annual rainfall, large flattened agricultural areas, and GW as primary source of water
supply, GW quality monitoring is important. Water quality that has elevated concentration
of metals such as arsenic (As), copper (Cu), iron (Fe) nickel (Ni), manganese (Mn), lead (Pb),
and other metals known for its toxicity characteristics would have acute and/or chronic
adverse effects to human health [6–8].

Several technologies for measurement of the presence of metals in GW exists such
as Inductively Coupled Plasma—Mass Spectrometry (ICP—MS), Inductively Coupled
Plasma—Optical Emission Spectrometry (ICP—OES), and Atomic Absorption Spectrometry
(AAS). These approaches are laboratory-based and require several days before result
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of analysis is available. This condition become not suitable for field monitoring and
measurements [9] in sub-urban, rural areas, areas where access is a challenge and when
time is a primary criterion in the analysis. These conditions require in-situ measurements,
and accurate detection become a critical component in monitoring the GW quality. In-
situ measurements provide observations on a rapid phase as well as covering the wider
areas especially those with difficulty in access. This is in contrast of laboratory—based
methods with significant limitations such as expensive instrumentation making limited
availability, complex sample preparation and applicability in field conditions [10]. There
are on-site detection and monitoring techniques such as electrochemical analysis [10,11],
cyclic voltammetry (CV) [12], anodic stripping voltammetry (ASV) [13], square wave
anodic stripping voltammetry (SWASV) [14], electro-chemical impedance spectroscopy
(EIS) [15], electrochemiluminescence (ECL) [16] and the use of piezoelectric biosensors [17].
However, these techniques have drawbacks such as background noise control, unable to
fulfill the current requirements for selectivity [9], detection limits of CV [12], insolubility
of metals and the multiple peaks of ASV [13], complicated interferences and complex
matrices in SWASV [14], EIS’s inability to identify different ions [15], frequent fouling of
electrodes in the case of ECL [16], and only few enzymes are sensitive to heavy metals
for the case of biosensors [17]. Hence, the use of portable x-ray fluorescence spectrometry
(pXRF) technique in onsite metals detection and analysis is appropriate in rugged condition
yet provides user of accurate and rapid analysis. This is in contrast of laboratory-based
methods with significant limitations such as expensive instrumentation, complex sample
preparation and applicability in field conditions [18]. Therefore, non-destructive analytical
technique, such as relatively simple spectra line void of many interferences and rapid
multi-element analyses [19], contributes significantly to the successful implementation of
this study.

Concentration maps were frequently used tool for spatial monitoring. Spatial informa-
tion in water resources are limited, and GW quality data can be obtained only through spot
sampling. However, this procedure often requires extensive manpower and resources [10].
The issue in this practice and the determination of sample locations density influences the
accuracy of the generated spatial maps [19]. The integration of in–situ measurements and
GIS—based spatial interpolation techniques offer an improvement in the presentation and
display of the status of GW quality in an area. The use of this integrated approach provides
a clear and intelligent base—maps which can be utilized by researchers, policy makers,
implementors for planning proposals [20] and creation of strategic programs.

Several studies on GW monitoring and assessment implemented using GIS—based
approaches focused on different Southeast Asian countries such as the Philippines [1,21],
Thailand [22], Malaysia [23], Singapore [24], Indonesia [25], Cambodia [26], Laos [27], and
Vietnam [28]. This article illustrates the quantification and mapping of the concentrations
of heavy metals such as Ba, Cu, Fe, Mn, and Zn in GW and presents the utilization of
in-situ GW quality monitoring that uses a hybrid machine learning-geospatial interpolation
technique and pXRF. This type of technique and analyses give prompt, accurate data and
information on the current GW quality. This is to address the challenges encountered
on-ground during sampling activities, the scarcity of instruments in the Philippines due
to its price, and the complex samples preparation required by some laboratory-based
instruments. Analyzing heavy metal concentrations in a faster, accurate and convenient
method can help the researchers, authorities, water utility companies and local government
units in making prompt decision, guidelines and strategic programs.

2. Materials and Methods

2.1. Description of the Study Area

The study area is Calapan City, in the province of Oriental Mindoro, Philippines.
This is a third-class city and one of only two cities in the MIMAROPA region of the
Philippines. It is the capital of the island province of Mindoro and located on the island’s
northeastern shore. It has a population of about 150,000 people (about 25,000 households)
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and 62 barangays (the smallest local government unit) [29]. The city lies within 13◦22′ N
Latitude and 121◦9′ E Longitude and Mindoro is located approximately 13◦11′ N Latitude
and 121◦53′ E Longitude south of Mainland Luzon. The island of Mindoro is popularly
known of rice production. Calapan City has an area of 217.30 square kilometers. Deep
and shallow wells, in addition to piped water supply, are currently the primary sources of
water in the city.

2.2. Collection/Treatment of Groundwater Samples

The GW samples were collected from twenty-eight (28) suburban deep and shallow
well sites following the USEPA SESDPROC-301-R3/SESDPROC-111-R4 [30] as shown in
Figure 2. The GW samples were collected using stainless steel sampler and polyethylene
(PE) bottles. The PE bottles were thoroughly pre-washed with Type 1 water. Each PE bottle
was carefully labeled, sealed, and placed temporarily in coolers for metals concentration
detection. This is in preparation for the detection of the presence of metals concentration in
all collected GW samples.

Figure 2. Map of the Study Area and Sampling Sites.

2.3. Physicochemical and Metal Concentrations Analysis

Temperature, pH, electric conductivity (EC), and total dissolved solids (TDS) of the
samples were determined onsite using a multi-parameter water analyzer (HANNA HI
9811-5) with HI1285-5 probe (electrode) and HI7007, HI70031, HI70032, buffer solutions for
calibration [31]. The HI7007, HI70031, HI70032 solution were used for pH, EC and TDS
calibration, respectively. While HI700661 solution was used for cleaning the electrode. The
physicochemical values detected in groundwater were compared to the permissible limits
specified in the 2017 Philippine National Standards for Drinking Water (PNSDW) [32] and
the WHO Drinking Water Guidelines [33,34]. These water parameters were used in the
hybrid machine learning technique.

The heavy metal concentration analysis employed the use of portable handheld Olym-
pus Vanta X-Ray Fluorescence Spectrometry. This pXRF is a rapid onsite accurate elemental
analyzer that could be used for various environmental media including water [35–39].
The pXRF was set on geochem mode and recorded metals concentration in ppm (mg/L)
detected from GW samples. Target metals were Ba, Cu, Fe, Mn and Zn.
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2.4. Spatial Concentration Mapping Using Machine Learning Informed Empirical Bayesian
Kriging (EBK) Method

Hybrid machine learning—geostatistical interpolation (MLGI) method was employed.
The EBK technique was used to produce spatial concentration maps of the GW’s physic-
ochemical properties and heavy metal concentrations. By sub-setting and replicating
observed data, the EBK automates the most time-consuming aspects of constructing a
viable kriging model. EBK provides a distribution of semi-variogram models and compen-
sates for semi-variogram estimate uncertainty. The EBK is more realistic and superior to
other current geostatistical modeling methods owing to its dependence on limited maxi-
mum likelihood estimation. This is in contrast to other existing kriging models that rely
on weighted least squares estimation. EBK has many significant benefits, including a low
need for interactive modeling, more accurate prediction of standard error and projection
for small datasets as compared to other traditional kriging techniques, and exact prediction
of substantially non-static data [40].

The Artificial Neural Network (ANN) approach is a subset of methods for artificial
intelligence inspired by biological neurons. It is capable of quickly acquiring patterns and
forecasting the result of a problem in a multi-dimensional environment. ANN models are
trained using datasets [41] to show the efficacy. The training algorithm and the transfer
function that was utilized in the model are two critical components of the ANN model. The
Levenberg—Marquardt (LM) algorithm was chosen as the training algorithm since it is
the quickest function for training a network, and the hyperbolic tangent sigmoid function
was used as the transfer function because it is the recommended transfer function for rapid
processes [42,43].

Particle Swarm Optimization (PSO) is a population-based stochastic optimization
technique inspired by biological communities’ collaborative nature. The PSO is initiated
using a community of randomly generated particles as solution options. It looks for global
optima via iterations in which particles with their own velocity fly around the search space
following the current optimum particles, which is the best approach for finding the best
solution. The PSO was integrated to the ANN to determine the weights and biases which
gives the minimum error [44].

This hybrid technique integrated to the EBK method generated the spatial concentra-
tion maps of the target study area. The Neural Network—Particle Swarm Optimization
(NN-PSO) approach was applied to generate the spatial concentration maps of physico-
chemical parameters and HM concentrations.

3. Results

Subsequent sections elaborate the results of the study and in comparison, of the WHO
and PNSDW guidelines.

3.1. Physicochemical Groundwater Parameters

The recorded physical and chemical properties of groundwater of the 28 sampling
points are shown in Table 1, and in comparison to WHO (2017) and PNSDW (2017) guide-
lines. The detailed description of the sampling locations of the study area with the physico-
chemical properties of GW were exhibited in Table A1 of Appendix A.
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Table 1. The groundwater physical and chemical properties.

Sampling No. Temperature (◦C) pH EC (μS/cm) TDS (ppm)

1 28.3 7.9 130 60
2 28.5 8.4 130 60
3 26.2 8.5 120 50
4 29.2 7.6 660 320
5 30.7 7.8 1200 590
6 27.1 8.8 130 50
7 27.2 7.9 200 90
8 32.4 7.1 900 440
9 31.6 7.5 350 160
10 32.5 7.5 970 480
11 31.4 7.4 1820 900
12 31.1 7.1 780 380
13 31.0 7.0 990 490
14 32.0 7.5 600 290
15 28.1 7.5 220 100
16 31.5 7.3 570 270
17 30.6 7.3 820 400
18 29.2 8.1 690 340
19 30.2 7.4 410 200
20 30.1 7.6 140 160
21 28.4 8.3 180 150
22 33.6 7.7 910 450
23 28.7 8.3 140 60
24 27.4 8.4 140 60
25 32.9 7.6 750 370
26 29.7 7.3 500 240
27 29.7 7.7 100 40
28 30.3 6.7 1140 560

WHO [45] 30.0 6.5–8.5 400 1000
PNSDW [46] 6.5–8.5 - 600

The GW temperatures ranged from 26.2 to 33.6 degree Celsius which could lead to
increased release rates of metals concentration especially within the water temperature of
30–35 degrees Celsius [47]. Furthermore, the study of Zhu, et al. in 2010 [48] attributed
the high temperature in GW to the boom of urbanization that was also observed in the
City of Calapan. The recorded pH of GW ranged from 6.7 to 8.8 which is within the pH
range guidelines set by the WHO and PNSDW [49]. The release rates of metals were
affected by a lower water pH. Lower pH of water means acidic water and known to be
aggressive, enhancing the breakdown of Fe and Mn resulting in an unpleasant taste in
water [50]. This condition could have adverse effects including heavy metal poisoning
and toxicity [51–53]. The majority of the water samples are slightly basic which could be
attributed to the existence of carbonates and bicarbonates [54]. The TDS and EC range
recorded was 40–900 ppm and 100–1820 μS/cm, respectively. The TDS in GW found to be
below WHO guidelines; however, beyond PNSDW guidelines. The TDS and EC had been
found to have positive correlation [55]. The elevated EC of 1820 μS/cm has been attributed
to inorganic chemicals in ionized form in water [54] such as metal elements.

3.2. Heavy Metal Concentrations

Presence of heavy metals were investigated in GW samples collected from the 28 sam-
pling sites as indicated in Figure 2. Detected concentrations were compared to the existing
maximum allowable limit of the WHO and the PNSDW 2017. These limits are enumerated
in Table 2. The toxicants found in the GW samples are discussed in more detail in the
subsections below.
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Table 2. Permissible limits of metals in groundwater.

Parameter, mg/L WHO USEPA (2009) PNSDW 2017

Ba 0.7 [56] 2.00 0.70
Cu 1.30 [45] 1.30 1.00
Fe - 0.30 1.00
Mn 0.40 1 0.05 0.40
Zn - 5.00 -

1 Guidance value.

3.2.1. Barium

All sampling locations observed Ba concentrations below permissible limits (Figure 3)
of WHO, USEPA and PNSDW. The presence of Ba in GW has been attributed to the
weathering of rocks such as igneous rocks, sandstone, shale, and coal [57,58].

Figure 3. Concentration of Ba in GW samples.

3.2.2. Copper

The Cu concentrations (Figure 4) in GW samples from all sampling locations did not
exceed the WHO guideline of 1.3 mg/L. The Cu in trace amounts in GW was associated
to the kind of rock that forms the aquifer [59]. Another possible source of copper is the
pipeline. Also, Cu concentrations at all sampling sites were within the acceptable limit of
PNSDW (1 mg/L) and WHO guidelines.

Figure 4. Concentration of Cu in GW samples.
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3.2.3. Iron

Iron stains laundry and plumbing fixtures at concentrations more than 0.3 mg/L; it
can also give metallic taste [60]. Hence, USEPA set an allowable concentration limit of
0.3 mg/L. The majority of the Fe in GW comes from minerals and sediments which may be
in the form of particulate or dissolved [61]. The Fe concentration in each sampling location
is presented in Figure 5. Sampling location 8 recorded an elevated Fe concentration. This
was attributed to a longer residence time [62] which is associated to the type of subsurface
(aquifer) that promotes longer residence time and creates opportunity for metals to react
through chemical and physical weathering [63]. In addition, the area shown in Figure 2
illustrates the area of sampling point 8 of having lesser active wells. This condition also
contributes to longer residence time of GW.

Figure 5. Concentration of Fe in GW samples.

3.2.4. Manganese

Groundwater samples collected from all sampling locations did not exceed the WHO’s
maximum permissible level for Mn concentration (Figure 6). The natural occurrence of Mn
in GW can be influenced by several factors including TDS, GW level fluctuations, and the
residence time. Agricultural operations and domestic wastewater are additional potential
two sources of Mn that can adversely affect the GW quality [64,65].

Figure 6. Concentration of Mn in GW samples.
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3.2.5. Zinc

The highest concentration of Zn was recorded at Brgy. Gutad. However, this highest
Zn concentration was within the WHO and PNSDW permissible limits. Several locations
observed without Zn concentrations were at Brgy. Balingayan, Brgy. Maidlang, Brgy.
Managpi, and Brgy. Personas. Zinc is naturally found in GW and the acidity affects the
quality [64]; hence, it is important that monitoring is carried out. The acidity theory states
that the higher the acidity (i.e., lower pH) of the water, the higher the Zn concentration.
As observed in Table 1, GW samples from all sampling sites were slightly basic which
explains the low concentration levels of Zn. The Zn concentration in each sampling location
is presented in Figure 7.

Figure 7. Concentration of Zn in GW samples.

3.3. Correlation Analysis

The correlations between the physicochemical characteristics were investigated using
Pearson correlation analysis calculated through International Business Machine Statistical
Package for Social Sciences (IBM SPSS). The r and p values were presented. The r value
expresses the relationship between variables. The p value expresses the significance of
the relationship. A lower p-value denotes statistical significance, whereas a higher p-value
denotes the opposite. A negative correlation was found between pH and the other variables,
while a positive correlation was found between the other parameters. At the 0.01 p level, all
relationships were significant. The correlation matrix for the physicochemical parameters
are presented in Table 3.

Table 3. Correlation matrix of the physicochemical parameters.

Parameter Temp pH EC TDS

Temp 1.000
pH −0.665 ** 1.000
EC 0.657 ** −0.602 ** 1.000

TDS 0.664 ** −0.603 ** 0.995 ** 1.000
** Correlation is significant at the 0.01 level (2-tailed).

A substantial negative correlation was observed between pH and temperature
(r = −0.665), pH and EC (r = −0.602), and pH and TDS (r = −0.603) which is similar to the
findings of Abou Zakhem et al. in 2017 [66] and Sunkari and Abu in 2019 [67]. On the
other hand, a substantial positive correlation was observed between temperature and EC
(r = 0.657), temperature and TDS (r = 0.664), and EC and TDS (r = 0.995). This correlation
values agreed to the findings of Wali et al. in 2021 [68].
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Similar to physicochemical parameters, Pearson correlation analysis for the relation-
ships between Ba, Cu, Fe, Mn, and Zn was also taken. Fe was positively correlated with
Mn and Zn; and Mn was positively correlated with Zn. Positive substantial correlations
between these metals indicated the same origin, are mutually dependent, and have similar
transport characteristics [69]. The positive p with higher r values of this study illustrates
relationship between metals; however, this relationship was not significant. The presence
of these metals in GW is attributed to natural weathering of rocks. The correlation matrix
for metals concentrations is shown in Table 4.

Table 4. Correlation matrix for the heavy metal concentration of groundwater samples.

Metal Ba Cu Fe Mn Zn

Ba 1
Cu 0.055 1
Fe −0.136 −0.001 1
Mn −0.235 0.072 0.320 1
Zn −0.089 0.013 0.870 ** 0.190 1

** Correlation is significant at the 0.01 level (2-tailed).

3.4. Spatial Concentration Mapping Using NN-PSO + EBK

The NN-PSO simulation was applied to accelerate the performance of the prediction
capability of the EBK method. The simulation showed an excellent result as evident to
the mean squared error (MSE) and correlation coefficient (R) values wherein the ideal
value is 0 and 1, respectively. The NN-PSO simulation performed for the physicochemical
parameters and heavy metal concentrations are presented in Table 5. Correlation plots of
the R (validation) and R (testing) for the governing NN-PSO models of physicochemical
parameters and heavy metals concentration are illustrated as Figure A1 of Appendix B.

Table 5. NN-PSO Simulation Results.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec)

MSE
R

Validation Testing

Temp 25 3 2000 180.38559 0.01204 0.99878 0.99656
pH 29 10 2000 119.16085 0.00434 0.99078 0.99039
EC 30 1 2000 163.34882 0.00155 0.99851 0.99966

TDS 27 3 2000 337.90592 0.00032 0.99925 0.99981
Ba 29 1 2000 172.62202 2.44 × 10−6 0.98838 0.99286
Cu 29 3 2000 366.12861 1.64 × 10−7 0.99826 0.99636
Fe 28 3 2000 139.78693 0.00091 0.99010 0.99951
Mn 29 5 2000 115.26285 1.34 × 10−7 0.98252 0.99725
Zn 30 1 2000 142.60618 1.08 × 10−5 0.97945 0.99580

The relationship between the number of neurons ranging from 1 to 30 and the cor-
responding AIC (Akaike Information Criterion) values obtained for the physicochemical
parameters (temperature, pH, EC, and TDS) as well as the heavy metal concentrations are
exhibited in Figures 8 and 9, respectively. These figures represent the AIC values of all
NN-PSO models for each hidden neuron that was simulated in this study. It was observed
that the best models for the physicochemical parameters were determined from the 25, 29,
30, and 27 hidden neurons (HN) for temperature, pH, EC and TDS, respectively. The best
models for Ba, Cu, Fe, Mn, and Zn were observed in 29, 29, 28, 29, 30 HN, respectively, for
the heave metal concentrations.
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Figure 8. The AIC Values for Physicochemical Parameters.

Figure 9. The AIC Values for Heavy Metals.

The spatial concentration of the physicochemical parameters of GW in Calapan City,
Oriental Mindoro was mapped using NN-PSO+EBK interpolation method. The highest
temperature for GW recorded in the study area was 33.6 ◦C which was observed in Brgy.
Parang. While the least temperature was observed in Brgy. Biga with recorded temperature
of 26.2 ◦C. The highest pH for GW was observed at Brgy. Canubing I, with pH equal to
8.8. The lowest pH was detected at Brgy. Sto. Nino with pH of 6.7. The highest EC and
TDS observed in Brgy. Ibaba West with EC and TDS value of 1820 μS/cm and 900 ppm,
respectively. The least observed EC and TDS concentration was 100 μS/cm and 40 ppm,
respectively which was recorded in Brgy. Sta. Rita. The spatial concentration of the
physicochemical parameters of GW is shown in Figure 10.

107



Appl. Sci. 2022, 12, 132

Figure 10. Physicochemical parameters map of Calapan City (a) Temperature, (b) pH, (c) EC, and
(d) TDS.

The spatial concentration of the heavy metals of GW in Calapan City, Oriental Mindoro
including Ba, Cu, Fe, Mn, and Zn was also mapped using the NN-PSO+EBK interpolation
method. The heavy metal concentration maps generated using the NN-PSO+EBK method
was presented in Figure 11.

Figure 11. Cont.
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Figure 11. Heavy metal concentration map of Calapan City (a) Ba, (b) Cu, (c) Fe, (d) Mn, and (e) Zn.

The highest Ba concentration was measured in Brgy. Canubing I, where it was 7.9 times
more than the background value for Ba measured in the research area. The average Ba
concentration across all sample sites was 5.6 times more than the background value in
the area of study. The highest concentrations of Cu were measured at several locations
and recorded to be three times greater than the background concentration of copper. The
mean concentration of Cu was found to be 2.1 times that of the background concentration.
The Fe concentrations were found to be highest in Brgy. Gutad where it was found to be
6.1 times greater than the background value reported for the research region. Moreover,
multiple sites were observed to exceed the WHO standards for Fe. These sites include Brgy.
Camansihan, Brgy. Ibaba East, Brgy. Masipit, Brgy. Parang, Site 2 of Brgy. Personas, Brgy.
San Vicente East, Brgy. Sta. Cruz, Brgy. Sta. Rita, and Brgy. Sto. Nino. Meanwhile, the mean
concentration in Calapan City was just 0.5 percent more than the background level. Mn and
Zn concentrations were highest in Brgy. Sto. Nino and Brgy. Gutad, respectively. However,
these concentrations were still below the background concentration in the research region.
The heavy metal concentration trend in the study area was observed to be Mn < Cu < Ba <
Zn < Fe. Generally, these concentrations are within the WHO, USEPA and PNSDW limit
except for Fe in several areas.

3.5. Cross Validation and Spot Sampling Evaluation Results

The predicted and observed values were compared to the NN-PSO+EBK method using
the correctness measures to test the robustness of the predicted models. The results shown
in Table 6 exhibit a robust and accurate result based on the R values close to 1. The cross-
validation results suggested that all values provided more accurate spatial distribution for
the study area. The cross-validation results are presented in Table 6.
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Table 6. Cross Validation Results for NN-PSO+EBK simulation.

Criteria Temp pH EC TDS Ba Cu Fe Mn Zn

R 0.989 0.990 0.934 0.977 0.994 0.976 0.985 0.975 0.984

A spot sampling analysis was performed using the data from the households in
different barangays of Calapan City. A total of 21,559 households were utilized in the spot
sampling analysis which is presented in Figure 12. The distribution of the households
included in the spot sampling analysis per barangay is presented in Figure 13.

Figure 12. Concentration of Zn in GW samples.

Figure 13. Distribution of the Number of Households included in the Spot Sampling Analysis.

The spot sampling results was compared to the spatial concentration maps created
in Figure 11. Table 7 exhibits the spot sampling comparison results for all heavy metals
detected in the GW resources in Calapan City. The results showed that the created maps
provided good results based on its MSE which is approaching zero when contrasted to the
spot sampling values.

Table 7. Spot Sampling Comparison Results.

Criteria Ba Cu Fe Mn Zn

MSE 0.0001404 0.0000542 0.0006260 0.0000037 0.0004141

Considering each barangay, the MSEs for each element were also obtained as pre-
sented in Table A2 of Appendix C. Figure 14 presents the summary of the spot sampling
comparison results in each barangay for all heavy metals considered in the study.

110



Appl. Sci. 2022, 12, 132

Figure 14. Cont.
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Figure 14. Summary of MSE per Barangay considering (a) Ba, (b) Cu, (c) Fe, (d) Mn, and (e) Zn.

4. Discussion

Oriental Mindoro, an island province, is vulnerable to GW pollution and degradation
due to natural and human activities. Due to structural disadvantages and characteristics
such as smaller land area and population, insufficient natural resources, geographical
distribution, and other global factors beyond domestic control, a small island economy is
less resilient to the threat of GW deterioration and contamination than larger and more
diverse economies [70].

Water plays a critical part in achieving the United Nations’ Sustainable Development
Goals (SDGs). One of the problems that population has been experiencing is ensuring that
everyone achieves SDG 6 (clean water and sanitation) which seeks to guarantee universal
access to, and sustainable management of water. Continuous data integration and frequent
monitoring remain to be critical components to achieving SDG 6 [71]. Hence, creating tools
to aid in carrying out GW monitoring is significant. Tools such as the hybrid NN-PSO+EBK
in making GW monitoring convenient to researchers and authorities are important.

Various heavy metals were detected at various sampling sites across Calapan City. The
mean concentration of these metals in GW remained below the WHO and PNSDW accept-
able levels. The recorded in-situ physicochemical characteristics were also compared to the
WHO and PNSDW acceptable limits. The average GW temperature observed in the study
area was 29.99 ◦C while the average GW pH observed was 7.69. Both figures are within
the permissible range of WHO and PNSDW. One (1) sampling location exhibited pH value
exceeding the maximum limit for pH of PNSDW. The average EC for the area of study was
560.36 μS/cm. This is within the permissible limit of the WHO. One (1) sampling location
exhibited an EC value exceeding the WHO limit of 1500 μS/cm. The EC observation made
in this location was categorized as Type II. The EC greater than 1500 μS/cm but less than
3000 μS/cm implies medium salts enrichment [72]. The average TDS is 277.15 ppm which
was below the maximum allowable limit by the PNSDW and WHO. Though, TDS levels did
not exceed the permissible limits set by WHO and PNSDW but were substantially lower or
higher than the suggested TDS range of 600−1000 impairing palatability. Specifically, data
of water samples from Ibaba West recorded TDS of 900. This number is at the high side of
the limit which suggested the probability of impaired taste. On the other hand, the TDS
concentrations recorded in Balingayan (60), Biga (50), Canubing (50), Comunal (90), Ibaba
East Site 1 (160), Managpi (100), Personas (60), and Sta. Rita (40) were all significantly lower
than the recommended range (600−1000 ppm) which may result to flat and insipid flavor.

The heavy metals concentration for GW was also observed in the study area. The Fe
concentrations detected in multiple locations were above the WHO and PNSDW standards.
However, the rest of the heavy metals detected were within the permissible limits. Water
with elevated metals concentration has the potential to cause several public health issues.
Health risks associated with elevated Fe in GW is probable. Pollutants entering the human
body through drinking water have been shown in numerous studies to have detrimental
health consequences for consumers. Micronutrients are essential in living organisms; how-
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ever, elevated concentration adversely affects public health. Similar case with Mn which
is necessary for humans; however, excessive quantities will have negative consequences.
Neurological disorders, such as aberrant walking, ataxia, muscle hypotonicity, and a face
devoid of lasting emotions, are frequently associated to Mn [64]. Dysfunction of liver
was also reported [73]. Furthermore, excess Mn concentration has been demonstrated to
produce neurotoxicity in infants receiving parenteral nourishment [74]. Excess Mn has
been also linked to a lower level of IQ in children [64].

Meanwhile, asbestos-related cancer is believed to be caused by free radicals, which are
produced by iron. Free radicals produced by iron can cause cancer by oxidizing DNA and
causing DNA damage [75]. Additionally, elevated levels of Mn and Fe in drinking water
have been associated to a decrease in birth weight in term-born infants [76]. Furthermore,
since animals’ intestinal mucosa is highly porous, the fast absorption into the blood has
been attributed to the Ba2+ ions which are rapidly absorbed from the gastrointestinal
system and lungs. Moreover, it has been observed that Ba poisoning mostly affects the
cardiovascular system; nevertheless, renal dysfunction has been documented as well [77].

The use of in-situ and hybrid machine learning—geostatistical methods are an integral
part of data integration for GW quality monitoring. The impact of GW contamination in an
island province had been a threat to public health especially when GW is used as primary
source of domestic, agricultural and industrial water supply. Application of NN-PSO+EBK
hybrid technique enables the establishment of spatial variability map of the contaminants
that contributes to the depletion of GW quality. As a result, future undesired consequences
could be avoided using this monitoring technique. The NN-PSO+EBK can offer periodic
and long-term data that can be utilized for permanent monitoring of GW quality and risk
assessments. Also, this tool can be utilized as early warning of GW quality for detrimental
effects [78] by human activities and/or natural weathering.

5. Conclusions

An in-situ approach and hybrid MLGI, i.e., NN-PSO+EBK, was applied to assess and
evaluate the GW quality in Calapan City, Oriental Mindoro, Philippines. Physicochem-
ical characteristics and metals concentrations were detected onsite at various sampling
locations. Generally, the physicochemical analysis of GW samples met the WHO and
PNSDW guidelines. The average values for temperature, pH, EC, and TDS were within the
permissible limits though few sampling locations exceeded the permissible limits of WHO
and PNSDW. The pH of all samples was within the limits set by the PNSDW. Barangays
Buhuan, Camansihan, Gutad, Ibaba East (Site 2), Ibaba West, Ilaya, Lazareto, Maidlang,
Masipit, Nag-iba II, Pachoca, Parang, San Vicente East, Sta. Cruz, and Sto. Nino recorded
elevated EC values. This was attributed to the addition of leachable salts. Also, the recorded
TDS values suggested probable impaired palatability by having values significantly below
the recommended range of 600−1000 ppm. Heavy metals analysis showed that only Fe de-
tected in multiple GW samples had concentration above the WHO and PNSDW maximum
permitted levels. This condition presents health concerns to the consumers. The record
on Fe concentration in Brgy. Gutad GW samples were above WHO and PNSDW limit.
Other GW samples recorded target metals concentration within the WHO and PNSDW
permissible limits. The spot sampling analysis results showed that the generated maps
by hybrid technique such as NN-PSO+EBK were reliable in describing the heavy metal
concentration in the city of Calapan based on its MSE, R and AIC values.

This study is useful as a reference to providing techniques on gathering data for GW
quality monitoring to help attain SDGs 6. It is suggested to conduct a study targeting
other metals and regular monitoring of its concentration using this hybrid MLGI technique.
Additionally, the regular monitoring is necessary to better understanding of the possible
health consequences. Furthermore, a health risk assessment based on GW quality should
be conducted. Another, preliminary interventions on GW quality control is necessary.
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Appendix A

Table A1. Observed Physicochemical Properties of Groundwater Samples.

Sampling
No.

Barangay Latitude Longitude
Temp
(◦C)

pH
EC

(μS/cm)
TDS

(ppm)

1 Balingayan (Site 1) 13.31903◦ N 121.13432◦ E 28.3 7.9 130 60
2 Balingayan (Site 2) 13.32454◦ N 121.13555◦ E 28.5 8.4 130 60
3 Biga 13.32791◦ N 121.17312◦ E 26.2 8.5 120 50
4 Buhuan 13.31451◦ N 121.22395◦E 29.2 7.6 660 320
5 Camansihan 13.33399◦ N 121.22656◦ E 30.7 7.8 1200 590
6 Canubing I 13.35590◦ N 121.14091◦ E 27.1 8.8 130 50
7 Comunal 13.31267◦ N 121.16494◦ E 27.2 7.9 200 90
8 Gutad 13.35518◦ N 121.25278◦ E 32.4 7.1 900 440
9 Ibaba East (Site 1) 13.41517◦ N 121.17836◦ E 31.6 7.5 350 160

10 Ibaba East (Site 2) 13.41484◦ N 121.17769◦ E 32.5 7.5 970 480
11 Ibaba West 13.41478◦ N 121.17676◦ E 31.4 7.4 1820 900
12 Ilaya 13.41181◦ N 121.18548◦ E 31.1 7.1 780 380
13 Lazareto 13.42972◦ N 121.19940◦ E 31 7 990 490
14 Maidlang 13.39711◦ N 121.22727◦ E 32 7.5 600 290
15 Managpi 13.32512◦ N 121.19595◦ E 28.1 7.5 220 100
16 Masipit 13.38917◦ N 121.16190◦ E 31.5 7.3 570 270
17 Nag-iba II 13.34643◦ N 121.25301◦ E 30.6 7.3 820 400
18 Pachoca 13.41061◦ N 121.16840◦ E 29.2 8.1 690 340
19 Palhi 13.37502◦ N 121.20703◦ E 30.2 7.4 410 200
20 Panggalaan 13.30148◦ N 121.19908◦ E 30.1 7.6 140 160
21 Panggalaan 13.30027◦ N 121.20041◦ E 28.4 8.3 180 150
22 Parang 13.40059◦ N 121.21769◦ E 33.6 7.7 910 450
23 Personas (Site 1) 13.30623◦ N 121.14083◦ E 28.7 8.3 140 60
24 Personas (Site 2) 13.30930◦ N 121.13945◦ E 27.4 8.4 140 60
25 San Vicente East 13.31045◦ N 121.17980◦ E 32.9 7.6 750 370
26 Sta. Cruz 13.31633◦ N 121.23461◦ E 29.7 7.3 500 240
27 Sta. Rita 13.35212◦ N 121.13091◦ E 29.7 7.7 100 40
28 Sto. Nino 13.40712◦ N 121.18545◦ E 30.3 6.7 1140 560
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Appendix B

Figure A1. R Value Plots for Validation and Testing Phase of the NN-PSO: (a) Temperature; (b) pH;
(c) EC; (d) TDS; (e) Ba; (f) Cu; (g) Fe; (h) Mn; (i) Zn.
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Appendix C

Table A2. Spot Sampling Results in each Barangay of Calapan City.

Brgy. No. Barangay Latitude Longitude Elev. (m)
Average MSE

Ba Cu Fe Mn Zn

1 Balingayan 13.3241◦ N 121.1407◦ E 13.2 0.0000151 0.0000412 0.0000104 0.0000007 0.0000138
2 Balite 13.4131◦ N 121.1580◦ E 7.6 0.0002007 0.0002381 0.0009690 0.0000110 0.0025765
3 Batino 13.3494◦ N 121.2201◦ E 7.8 0.0000578 0.0000624 0.0009873 0.0000028 0.0003248
4 Bayanan I 13.3679◦ N 121.1685◦ E 8.8 0.0005507 0.0000240 0.0001122 0.0000040 0.0002384
5 Bayanan II 13.3560◦ N 121.1699◦ E 12.5 0.0002042 0.0001388 0.0005354 0.0000042 0.0001622
6 Biga 13.3270◦ N 121.1733◦ E 14.1 0.0000080 0.0000108 0.0000396 0.0000006 0.0001686
7 Bondoc 13.3867◦ N 121.2010◦ E 165.5 0.0000844 0.0000133 0.0025490 0.0000110 0.0003627
8 Bucayao 13.3066◦ N 121.1915◦ E 17.3 0.0000146 0.0000316 0.0000047 0.0000039 0.0000776
9 Buhuan 13.3106◦ N 121.1915◦ E 12.8 0.0000069 0.0000081 0.0002698 0.0000003 0.0000034
10 Bulusan 13.4037◦ N 121.2012◦ E 28.4 0.0000127 0.0000730 0.0009766 0.0000010 0.0000702
11 Calero 13.4159◦ N 121.1831◦ E 9.4 0.0000079 0.0001424 0.0000126 0.0000020 0.0000081
12 Camansihan 13.3428◦ N 121.2290◦ E 7.1 0.0000042 0.0000183 0.0004483 0.0000007 0.0004709
13 Camilmil 13.4061◦ N 121.1760◦ E 8.4 0.0000827 0.0000129 0.0000828 0.0000059 0.0000046
14 Canubing I 13.3554◦ N 121.1423◦ E 8.6 0.0000088 0.0000043 0.0030914 0.0000055 0.0012961
15 Canubing II 13.3261◦ N 121.1216◦ E 12.9 0.0002042 0.0001033 0.0002191 0.0000018 0.0017159
16 Comunal 13.3075◦ N 121.1606◦ E 19.5 0.0000085 0.0000694 0.0000558 0.0000008 0.0000270
17 Guinobatan 13.3829◦ N 121.1818◦ E 9.7 0.0003723 0.0000199 0.0003131 0.0000073 0.0000374
18 Gulod 13.3433◦ N 121.2073◦ E 9.0 0.0004521 0.0000160 0.0007486 0.0000049 0.0002808
19 Gutad 13.3597◦ N 121.2464◦ E 7.2 0.0001561 0.0000687 0.0075550 0.0000108 0.0021064
20 Ibaba East 13.4149◦ N 121.1788◦ E 6.6 0.0000009 0.0000016 0.0000250 0.0000008 0.0000022
21 Ibaba West 13.4146◦ N 121.1762◦ E 5.9 0.0000027 0.0000018 0.0000010 0.0000001 0.0000021
22 Ilaya 13.4129◦ N 121.1840◦ E 8.7 0.0000040 0.0000232 0.0000372 0.0000002 0.0000020
23 Lalud 13.3993◦ N 121.1739◦ E 9.1 0.0003669 0.0000186 0.0002229 0.0000068 0.0000209
24 Lazareto 13.4286◦ N 121.1995◦ E 12.9 0.0000251 0.0000371 0.0000305 0.0000012 0.0000589
25 Libis 13.4149◦ N 121.1847◦ E 9.2 0.0000074 0.0001006 0.0000018 0.0000010 0.0000036
26 Lumang Bayan 13.4009◦ N 121.1816◦ E 6.8 0.0001156 0.0000113 0.0001495 0.0000042 0.0000077
27 Mahal na Pangalan 13.4082◦ N 121.1502◦ E 9.0 0.0004217 0.0002451 0.0057978 0.0000094 0.0056021
28 Maidlang 13.3883◦ N 121.2339◦ E 8.3 0.0000427 0.0000111 0.0017492 0.0000014 0.0000401
29 Malad 13.3396◦ N 121.1588◦ E 10.8 0.0001085 0.0000189 0.0002558 0.0000093 0.0001421
30 Malamig 13.3439◦ N 121.1456◦ E 10.7 0.0000640 0.0000077 0.0002769 0.0000110 0.0001567
31 Managpi 13.3282◦ N 121.1997◦ E 18.0 0.0000321 0.0000051 0.0000465 0.0000014 0.0000330
32 Masipit 13.3869◦ N 121.1603◦ E 6.6 0.0000484 0.0000162 0.0001101 0.0000002 0.0000723
33 Nag-Iba I 13.3400◦ N 121.2721◦ E 8.5 0.0000893 0.0000313 0.0032634 0.0000108 0.0010670
34 Nag-Iba II 13.3470◦ N 121.2622◦ E 11.0 0.0000154 0.0000190 0.0016347 0.0000060 0.0006289
35 Navotas 13.3739◦ N 121.2486◦ E 7.5 0.0004349 0.0000114 0.0065142 0.0000019 0.0018669
36 Pachoca 13.4108◦ N 121.1677◦ E 6.0 0.0000441 0.0000266 0.0000465 0.0000024 0.0001095
37 Palhi 13.3750◦ N 121.2070◦ E 18.6 0.0001992 0.0000633 0.0003630 0.0000046 0.0000934
38 Panggalaan 13.3012◦ N 121.1990◦ E 17.9 0.0000164 0.0000234 0.0000402 0.0000039 0.0000126
39 Parang 13.4035◦ N 121.2182◦ E 9.5 0.0000148 0.0000209 0.0001279 0.0000015 0.0000127
40 Patas 13.3452◦ N 121.1222◦ E 12.9 0.0009213 0.0001269 0.0005874 0.0000021 0.0000333
41 Personas 13.3083◦ N 121.1438◦ E 14.5 0.0000006 0.0000300 0.0000213 0.0000001 0.0000028
42 Puting Tubig 13.3470◦ N 121.1887◦ E 7.3 0.0003178 0.0000788 0.0003261 0.0000037 0.0001840
43 San Antonio 13.4259◦ N 121.1956◦ E 14.0 0.0000013 0.0001353 0.0000519 0.0000045 0.0000587
44 San Rafael 13.4216◦ N 121.1911◦ E 6.4 0.0000099 0.0002183 0.0000171 0.0000053 0.0000280
45 San Vicente Central 13.4120◦ N 121.1787◦ E 8.6 0.0000010 0.0000086 0.0000024 0.0000011 0.0000011
46 San Vicente East 13.4098◦ N 121.1798◦ E 9.3 0.0000009 0.0000106 0.0000044 0.0000014 0.0000004
47 San Vicente North 13.4138◦ N 121.1785◦ E 6.7 0.0000003 0.0000045 0.0000005 0.0000003 0.0000001
48 San Vicente South 13.4095◦ N 121.1779◦ E 7.6 0.0000072 0.0000115 0.0000123 0.0000031 0.0000018
49 San Vicente West 13.4124◦ N 121.1765◦ E 7.8 0.0000005 0.0000040 0.0000024 0.0000005 0.0000010
50 Santa Cruz 13.3169◦ N 121.2370◦ E 12.1 0.0001231 0.0000173 0.0006697 0.0000002 0.0001946
51 Santa Isabel 13.3654◦ N 121.1577◦ E 5.3 0.0003942 0.0000233 0.0005533 0.0000043 0.0000575
52 Santa Maria Village 13.4093◦ N 121.1748◦ E 6.3 0.0000154 0.0000115 0.0000167 0.0000040 0.0000019
53 Santa Rita 13.3489◦ N 121.1303◦ E 11.1 0.0000139 0.0000317 0.0000140 0.0000002 0.0000081
54 Santo Niño 13.4066◦ N 121.1848◦ E 8.2 0.0000004 0.0000075 0.0000057 0.0000004 0.0000003
55 Sapul 13.3651◦ N 121.1885◦ E 14.3 0.0008450 0.0000108 0.0003983 0.0000126 0.0001391
56 Silonay 13.3992◦ N 121.2248◦ E 8.8 0.0000004 0.0000004 0.0000011 0.0000000 0.0000007
57 Suqui 13.4177◦ N 121.2040◦ E 11.1 0.0000057 0.0000434 0.0001749 0.0000019 0.0000464
58 Tawagan 13.3712◦ N 121.1448◦ E 8.6 0.0000693 0.0000169 0.0019052 0.0000004 0.0012349
59 Tawiran 13.3950◦ N 121.1680◦ E 7.0 0.0002160 0.0000253 0.0002604 0.0000030 0.0001365
60 Tibag 13.4123◦ N 121.1730◦ E 8.2 0.0000018 0.0000040 0.0000027 0.0000006 0.0000014
61 Wawa 13.4025◦ N 121.1453◦ E 8.8 0.0004609 0.0002441 0.0085841 0.0000055 0.0063922
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Abstract: The measured vibrational responses of the pumping station pipeline in the irrigation site
were chosen to confirm the chaotic characteristics of the pumping station pipeline vibration and
to determine the vibrational excitation that makes it chaotic. First, the chaotic properties of the
pipeline vibration responses were investigated using a saturation correlation dimension and the
maximum Lyapunov exponent. The vibration excitation with chaotic features was obtained using an
improved variational mode decomposition (IVMD) method to examine the multi-time-scale chaotic
characteristics of the pipeline vibration responses. The results show that the vibrational responses
of each measuring point of the pipeline under different operating conditions have clear chaotic
characteristics, where the chaotic characteristics of the axial points and bifurcated pipe points are
relatively strong. The vibration of the operating conditions and measurement points affected by the
unit’s operation and flow state change is further complicated. The intrinsic mode function (IMF)
produces a low-dimensional chaotic attractor after the IVMD disrupts the vibration response. Still,
the vibration excitation of the remaining components on behalf of the units does not have chaotic
properties, implying that water pulsation excitation makes the pumping station pipeline vibrations
chaotic. The vibration excitation caused by the unit’s operation covers the chaotic characteristics of
the pipeline vibration and increases its uncertainty. The outcomes of this study provide a theoretical
basis for further exploration of the vibration characteristics of pumping station pipelines, and a new
method of chaos analysis is proposed.

Keywords: pumping station pipeline; chaotic characteristic; IVMD; vibration response; correlation
dimension; Lyapunov exponent

1. Introduction

High-lift pumping stations and water-diversion irrigation areas have been built in
many water-deficient areas due to the continuous development of electric water-lifting
equipment and water-diversion irrigation technology in China. These projects have created
enormous economic, ecological and social benefits. Thus, ensuring their safe and stable
operation is the main task of modernising and developing water conservation in China [1].
Natural and human forces create varying degrees of pipeline vibration during long-term
operation at pumping stations [2]. Long-term irregular pipe vibration will lead to the
loosening of the pipelines and their auxiliary system, causing catastrophic damage in severe
cases [3]. Therefore, it is of great research interest to analyse the vibration characteristics of
the pumping station pipeline to avoid its adverse vibrations.

Chaos is a unique mechanical phenomenon in the vibration of strongly nonlinear
structures. Most researchers believe that the vibrations of pipelines are weakly nonlinear,
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so they mainly focus on studying chaotic phenomena caused by the flow of water and
other excitation sources such as flow. There is a scarcity of research on the chaotic processes
in the pipeline itself when researching nonlinear problems. It is found that the chaotic
phenomena of pipelines do not depend solely on the strength of structural nonlinearity;
for some weak nonlinear or even linear structures, chaos occurs [4]. PaïDoussis studied
the dynamics of a cantilever pipeline with nonlinear constraints and constant internal
flow, which discovered the chaotic motion of the system [5]. Tang obtained the chaotic
characteristics of the transport pipeline by increasing the nonlinear force and found that
the occurrence of chaos is mainly affected by the flow velocity in the pipeline [6]. B.G.
Sinir investigated the nonlinear vibrations of slightly curved pipes that transport fluid
with constant velocity [7]. The periodic and chaotic movements have been observed in
the transverse vibrations of slightly curved pipes transporting fluid. Zhao analysed the
chaotic phenomenon in the pipeline vibration caused by the flow pulsation excitation
under thermal load and then obtained the relationship between the frequency response
and flow velocity [8].

Research on the chaotic characteristics of pipeline systems mainly focuses on oil-gas
pipelines and the mathematical models of pipelines with specific nonlinear constraints. In
contrast, the chaotic characteristics of pumping station pipeline systems are rarely studied.
Most of the previous research achievements have only analysed the chaotic characteristics
of the vibration system but have not further explored the vibrational excitation that caused
the chaos. In this paper, the measured vibration responses of the pumping station pipeline
in an irrigation area are taken as the research objective. The chaotic characteristics of the
vibratory responses of the pumping station pipeline under different working conditions
are analysed by using the saturation correlation dimension and the largest Lyapunov
exponent. In addition, the IVMD method is used to decompose the vibration responses of
the measurement points under typical working conditions. The chaotic characteristics of the
IMFs are analysed to obtain the vibratory excitation that causes the chaotic characteristics
of the pumping station pipeline.

2. Theoretical Aspects

2.1. Identification Method of Chaotic Characteristics

There are many methods for identifying chaotic characteristics, which are roughly
divided into qualitative and quantitative analysis. Orbit observation, Poincare surface of
section, and power spectral analysis are examples of qualitative approaches [9–11]. These
methods are feasible and straightforward, but they are limited in determining whether
the system has chaotic characteristics and cannot perform transverse comparisons under
different operating conditions. Quantitative methods, such as the saturation correlation
dimension method [12] and the largest Lyapunov exponent method [13], can reflect the
vibration complexity and the degree of chaos under different conditions by comparing the
values of the parameters. The saturation correlation dimension and the largest Lyapunov
exponent are chosen as the chaotic identification indexes of pipeline vibration responses in
pumping stations to improve the trustworthiness of the result.

2.1.1. Saturation Correlation Dimension

The correlation dimension characterises the compactness of a dynamic system and
is used to reflect the system’s complexity. When the saturation correlation dimension is
fractional, the system is said to have chaotic properties. For an m-dimensional phase space,
its correlation function can be defined as follows:

C(r) = lim
M→∞

2
M(M − 1) ∑

1≤i≤j≤M
H
(
r − ‖Yi − Yj‖

)
(1)

where M = N − (m − 1)τ is the number of phase points, H(u) is the Heaviside function,
N is the time series; r is the vector point in the time series; M is the embedding dimension;
Tau is the time delay; Y is the reconstruction vector.
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When the time series is chaotic, for the positive, the relationship between the correla-
tion function C(r) and r is

C(r) ∝ αrD2 (2)

where α is a constant, D2 is the correlation dimension which can be obtained by the slope
of the log2 C(r) ∼ log2 r curve, that is

D2 = lim
r→0

log2 C(r)
log2 r

(3)

Due to the noise in the measured signal, the embedding dimension is generally
controlled to rise gradually. The apparent straight line segments in the log2 C(r) ∼ log2 r
curve are fitted using the least square method for each embedding dimension. The slope
of each segment increases with the rising embedding dimension, and eventually reaches
saturation, the saturation correlation dimension.

2.1.2. Largest Lyapunov Exponent

The Lyapunov exponent determines the chaotic characteristics of the system based
on the diffusion of the phase trajectory. Generally, the direction represented by the pos-
itive Lyapunov exponent supports the attractors. In contrast, the contraction direction
corresponding to the negative Lyapunov exponent contributes to the attractor dimension’s
fractional part after counteracting the expansion direction’s effect. Thus, the positive
Lyapunov exponent is a prominent feature of chaos. Suppose λ1 as the largest Lyapunov
exponent of a system, then the chaotic components of the system can be found if λ1 is
positive, and its value reflects the chaos degree.

Rosenstein [14] proposed the small data sets for computing λ1. Its basic steps are as follows:
Choose suitable τ and m to reconstruct the phase space and find the nearest neighbor

point Yî of each Yi in the phase space. Short separation limitation is as follows:

di(0) = min
î
‖Yi − Yî‖(

∣∣i − î
∣∣ > p) (4)

where p is the average period of time series, i is the vector in space, î is the vector of the
nearest neighbor of the second vector.

Define the distance of Yi+j and Yî+j as

di(j) = ‖Yi+j − Yî+j‖ (5)

where j = 0, 1, 2, · · · , min
(

M − i, M − î
)
.

For each j, compute the ln di(j) average as follows:

y(i) =
1

qΔt

q

∑
i=1

ln di(j) (6)

where q is the number of nonzero ln di(j). The slope of the regression line made by the
least square method is λ1.

2.2. Improved Variational Mode Decomposition (IVMD)

Variational mode decomposition (VMD) is a new method of multi-component adap-
tive signal decomposition [15]. Compared to traditional signal decomposition methods, it
effectively avoids modal aliasing and over-decomposition defects and has a higher utiliza-
tion value [16]. VMD comprises two processes comprising the establishment of variational
constraints and iteration to find the optimal solution. The specific operation process is
as follows: VMD decomposes a given signal f into K modal functions using variational
constraints mk(t). The bandwidth of each IMF is limited, and each IMF is distributed
around the central pulsating frequency. The variational constraint model is as follows [17]:
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⎧⎪⎨⎪⎩
min
mk ,wk

{
∑
k

���∂t

[(
σ(t) + j

πt

)
mk(t)

]
e−jwkt

���2

2

}
s.t.∑

k
mk = f

(7)

where {mk} represents the decomposed K IMF components, {mk} = {m1,m2, · · · , mk};
σ(t) is a pulse function; {wk} is the central frequency of each IMF, {wk} = {w1, . . . wk}.

To complete the adaptive decomposition of input signals f and to obtain the IMFs
with the minimum sum of bandwidth, the following expanded Lagrange expression
is introduced:

L(mk, wk, λ) =α∑
k
‖∂(t)

[(
δ(t) +

j
πt

)
mk(t)

]
e−jwkt‖2

2+‖ f (t)− ∑
k

mk(t)‖2

2

+

〈
λ(t), f (t)− ∑

k
mk(t)

〉
(8)

where α is the penalty factor to ensure the accuracy of signal reconstruction; λ(t) is a La-
grange multiplier used to strengthen the constraint; 〈〉 represents the inner product operation.

To solve the above variational constraint problem, the dual decomposition and alter-
nate direction multiplication sub-algorithm are used [18]. Keep updating mk, wk and λ(t)
to find the saddle point of Equation (8), that is, the optimal solution of Equation (7). The
modal component function mk and the central frequency wk are

mn+1
k (w) =

f (w)− ∑
i �=k

mi(w) +
λ(ω)

2

1 + 2α(w − wk)
2 (9)

wn+1
k =

∫ ∞
0 w|mk(w)|2dw∫ ∞
0 |mk(w)|2dw

(10)

λn+1 = λn + τ

(
f (w)− ∑

k
mn+1

k (w)

)
(11)

When VMD decomposes the vibration response sequence, determining the total modal
number is a crucial step. The selection of modal parameters K greatly affects the accuracy
of the results [19]. A parameter K is usually challenging to determine. If K is greater
than the number of useful components obtained by signal decomposition, information
superposition will occur; if K is smaller than it, a part of the limited bandwidth of the solid
modulus cannot be decomposed. An IVMD method based on the mutual information (MI)
method is proposed for K selection.

MI reflects the correlation between two random variables and allows better identifica-
tion of the degree of correlation [15]. MI is as follows:

I(X, Y) = H(Y)− H(X|Y ) (12)

where H(Y) is the entropy of Y, and H(Y|X ) is the conditional entropy of Y when X is
known. When I(X, Y) = 0, X and Y are independent of each other.

The mutual information Ik of the original signal and each IMF obtained by the IVMD
decomposition is calculated and normalised by Equation (13). Then the correlation between
each modal component and the original signal is judged, that is, whether the original signal
is completely decomposed.

σi =
Ii

max(Ii)
(13)

where σi is the normalized mutual information value of each IMF, i =1, 2, . . . k. Refer to
reference [20], when σi is less than 0.02, it is considered that the IMF does not contain valid
feature information. The original signal has been decomposed completely.

The specific algorithm for adaptive determination of K using MI method is as follows:
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Step 1: Initialize n = n + 1, assign K = 1;
Step 2: K = K + 1, perform outer circulation;
Step 3: Initialize m1

k , w1
k , λ1 and n, assign n = 0;

Step 4: Order n = n + 1 to execute the inner loop;
Step 5: For all w ≥ 0, according to Equations (9) and (10), mk and wk are updated,

respectively;
Step 6: Update λ according to Equation (11);

Step 7: For a given discriminate accuracy e > 0, if the iteration condition ∑
k

‖mn+1
k −mn

k ‖2
2

‖mn
k ‖2

2
< e

is satisfied, the process is terminated, otherwise loop step 2 to step 6;
Step 8: Circulate step 2 to 7 until the set threshold σ is greater than the normalized

mutual information σi, that is, if I( f − ∑ mk, f ) < σ, end the cycle.
The flow chart of the above calculation steps is shown in Figure 1.

K=K+1

n=n+1 K=1

n=n+1

w 0 mk wk

Figure 1. Flow chart for adaptive determination of K.
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3. Chaotic Characteristics Analysis of Pipeline Vibration Response

The pipe material is stainless steel. Model 891–2 vibration sensors are used in the
test, which are divided into four grades: small speed, medium speed, large speed and
acceleration. So speed sensors are used in this test. Taking the No. 2 pressure pipeline of
the Jingdian Project pumping station No. 3 as a research objective, the No. 4 and No. 5
units of a 1200S–56 horizontal centrifugal pump are connected with the branch pipe. Six
measurement points are selected on the main pipe and two branches of the pipeline. Each
point is equipped with vibration sensors in X, Y and Z directions. The measuring points
are arranged as shown in Figure 2.

 
(a) 

Y
X

 
(b) 

Figure 2. Layout of pipeline measuring points (a) Field test of pipeline, and (b) Measuring points
layout (Note: 1~18 is the sensor number).

In the prototype test, four working conditions were selected to collect the vibration
responses of the pipeline. The descriptions of each working condition, sampling time and
sampling frequency are shown in Table 1.

Table 1. Four working conditions.

Cases Description of Working Conditions Sampling Time/s
Sampling

Frequency/Hz

1 No. 4 unit stable operating 900 512
2 No. 4 unit opening 1800 512
3 No. 4 unit closing 1800 512
4 No. 4 and 5 units stable operating 900 180
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The velocity-time history of points under typical conditions is shown in Figure 3.
The chaotic characteristic analysis of the vibration responses under different conditions is
carried out as follows:

  
(a) (b) 

Figure 3. Velocity time history of points under typical conditions (a) Z-axis vibration of point 1 under condition 2, and
(b) Z-axis vibration of point 1 under condition 4.

First, the reconstruction of the phase space of the time series is performed, that is, the
calculation of the time delay τ and embedding dimension m. The CAO method essentially
uses the minimum error method to determine the embedding dimension, which was
proposed by Liangyue Cao in 1997. This paper calculates τ by the autocorrelation function
method and chooses the CAO method to obtain m [21]. The calculation process of τ and m
is illustrated by taking the Z-axis vibration of point 1 under condition 4 as an example.

In the process of calculating τ by the autocorrelation function method, when the value
drops to 1–1/e of the initial value, the corresponding time delay is τ. The result of the
autocorrelation function is shown in Figure 4.

 

Figure 4. τ Calculation of point 1 Z-axis vibration under condition 4.

After obtaining τ, the embedding dimension is determined by the CAO method. E1(m)
represents the minimum embedding dimension. E2(m) represents the characteristics of
time series. When E1(m) obviously no longer changes with the increase, and the E2(m)
value tends towards 1, the corresponding m is the optimal embedding dimension. From
Figure 5, we can see that the optimal embedding dimension m of point 1 Z-axis vibration
under condition 4 is 11.
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Figure 5. m Calculation of point 1 Z-axis vibration under condition 4.

The G-P algorithm [22] and the small data sets are chosen to calculate the saturation
correlation dimension and the largest Lyapunov exponent. Two types of indexes are used
to analyse the chaotic characteristics of time series.

The G-P algorithm is a chaotic eigenvalue calculation method proposed by Grassberger
and Procaccia to calculate the saturation correlation dimension D2.

The embedding dimension is selected as m = 2, 4, 6, · · · , 20 and the τ has been
calculated above. According to the correlation function relation in Equation (3), the
log2 C(r) ∼ log2 r double logarithmic relation graph of different m is plotted, respec-
tively. The slope fitted by the near line segment of the curve is the correlation dimension
under the corresponding embedding dimension. As the embedding dimension increases, it
is the saturation dimension D2 when the correlation dimension reaches saturation. Figure 6
is the diagram representing the calculation of the saturation correlation dimension of
specific points.

 
 

(a) (b) 

 
(c) 

Figure 6. Calculation of point 1 z-axis vibration under condition 4 (a) Double logarithmic curve, (b) Slope of double
logarithmic curve, and (c) Relation between D2 and m.
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To reveal the distribution law of the saturation correlation dimension, the D2 variation
curves of points in each direction under different conditions are shown in Figure 7.

  
(a) (b) 

 
(c) 

Figure 7. Correlation dimension curves of points in different directions (a) X-axis points, (b) Y-axis points, and
(c) Z-axis points.

As can be seen from Figure 7:

(1) In general, D2 ranges from 1.156 to 5.283, and they are fractional, indicating that the
responses of the pipeline in all directions are chaotic;

(2) Compared with the other two directions, the correlation dimension of the axial
measurement points (Y-axis) of the main pipe is obviously smaller than that of the
other two directions. It shows that the axial vibration of the pipeline has a smaller
dimension chaotic attractor and requires fewer independent control variables to
describe the dynamic system. This is mainly because the direction of the centrifugal
force generated by the centrifugal pump of units is not in the axial direction of the
main pipeline;

(3) At the same points, the D2 of each point in condition 4 (No. 4 and 5 units in stable
operation) is greater than in other conditions, while the corresponding D2 in condition
3 (No. 4 unit in closing) is less. It indicates that the pipeline vibration is more
complicated in the stable conditions of the two units and the complexity of the
pipeline vibration is relatively weak in the closed condition. Unit operation increases
the uncertainty of the pipeline vibration;

(4) In the same condition, the points near the units (point 1 and 5) and the bifurcated
pipe (point 4) reach a relatively larger D2, indicating that the vibration complexity
of the pumping station pipe is greatly affected by the unit’s vibration and the flow
pattern stability.
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To verify the validity of the above analysis results, the chaotic characteristics of the
pumping station pipeline are further analyzed by using the largest Lyapunov exponent λ1.
According to the time delay τ and embedding dimension m, the small data sets calculate
the largest Lyapunov exponent. Figure 8 is the λ1 calculation diagram of typical points,
and the value of the separation factor y(i) tends to be stable after nearly linear growth. The
linear slope is adjusted by the least square method, and the value is λ1. The λ1 of each
point in different vibration directions are shown in Figure 9.

λ1

 

λ1

 
(a) (b) 

Figure 8. Calculation diagram of typical points (a) Point 3 Y-axis vibration under condition 1, and (b) Point 1 Z-axis vibration
under condition 4.

  
(a) (b) 

 
(c) 

Figure 9. Largest Lyapunov exponent curves of points in different directions (a) X-axis points (b) Y-axis points, and (c) Z-axis
points.
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As shown in Figure 9:

(1) The largest Lyapunov exponents λ1 of different points are between 0.0323 and 0.0734,
greater than 0. It shows that the measured vibration responses of pipelines have
obvious chaotic characteristics. Also, the axial points λ1 of the main pipeline (Y-axis)
are obviously larger than the other two directions in the same condition, indicating
the chaotic characteristics of the points separated from the influence of centrifugal
force generated by pumping station units are more obvious;

(2) The λ1 of measuring points under condition 4 (No. 4 and 5 units in stable operation)
are lower than in other conditions, while the λ1 of condition 3 (No. 4 unit closing) is
relatively larger. The largest Lyapunov exponent λ1 decreases with the start-up of the
two units, indicating that the units’ operation weakens the chaotic characteristics of
the pipeline vibration;

(3) In the same condition, the λ1 of the points near the units (point 1 and 5) are smaller.
In contrast, while the λ1 of the points at the pipeline’s bifurcation (point 4) are greater
than that of other measuring points, indicating that the sudden change of the flow
state in the pipeline makes the vibration more chaotic, and the units’ operation reduces
the chaotic degree of vibration signals near the units.

The above analysis is complementary to the calculation results of the saturation
correlation dimension D2, which further confirms that the unit’s operation and flow state
changes greatly impact the chaotic characteristics of the pumping station pipeline.

4. The Analysis of Multi-Time-Scale Chaotic Characteristics Based on IVMD

The vibration characteristics of the pumping station pipeline are different from those of
the general pipeline, which is mainly reflected in the influence of the pumping station unit
on the vibration of the connecting pipeline. The vibration sources are primarily composed
of low-frequency water pulsations caused by the pipeline flow and blade frequency, rotation
frequency and frequency doubling produced by the unit’s operation [23].

Taking the vibration response of the specific point (point 1 Z-axis vibration under
condition 4) as an example, the spectrum analysis is shown in Figure 10. Concerning the
author’s previous article [23,24], 20, 40 and 60 Hz are the blade frequency, the rotation
frequency and the frequency doubling, respectively, and 0.5 Hz is the low-frequency water
pulsation. Spectrum analysis shows that the frequency band of the vibration excitation
caused by water pulsation (0.5 Hz) is relatively wide. The wide-peak power spectrum is
the typical characteristic of the chaotic system [25,26]. The pipeline vibration excitation
produced by the unit’s operation (20 Hz, 40 Hz, and 60 Hz) corresponds to the peak power
spectrum and has high periodicity. Therefore, it is speculated that the chaotic characteristics
of the pipeline are mainly caused by water pulsation, while the unit vibration masks the
chaotic characteristics of the pump station pipeline.

The excitation components of different time scales must be effectively separated to
clarify the vibration excitation with chaotic characteristics. As a new signal decomposition
method, IVMD can adaptively decompose a signal into a series of IMFs with different scale
characteristics. Therefore, the IVMD method is used to identify the vibration excitation
that causes the chaotic characteristics of the pipeline.

The multi-time scale chaotic vibration response characteristics of the specific point
(point 1 Z-axis vibration under condition 4) are analysed.

131



Appl. Sci. 2021, 11, 8864

  
(a) (b) 

Figure 10. Spectrogram of point 1 Z-axis vibration response under condition 4 (a) Holistic drawing, and (b) Partial enlarged
drawing.

The modal parameters K of IVMD are determined as 4 by the MI method. Four
IMFs are obtained by the IVMD decomposition of point 1 Z-axis vibration response under
condition 4. Figure 11 is the time history of decomposed IMFs.

. 

Figure 11. Time histories of IMFs decomposed by IVMD.

Mutual information value: IMF1 is 1.000, IMF2 is 0.025, IMF3 is 0.038, IMF4 is 0.0661.
It can be seen that the normalized mutual information values of the IMFs are all above
the threshold of 0.02, which meets the decomposition requirements. Figure 11 shows
that IVMD can sequentially decompose the original vibrational response to obtain four
IMFs with increasing frequency. The frequencies from IMF1 to IMF4 correspond to four
major frequency bands in the original response spectrum: 0.5, 20, 40 and 60 Hz, respec-
tively, and the decomposition effect is improved. Then the chaotic characteristics of the
decomposed IMFs are analysed using the saturation correlation dimension and the largest
Lyapunov exponent.

The calculation process of typical IMF chaotic eigenvalues is shown in Figure 12. From
Figure 12a,b the saturation correlation dimension D2 of IMF1 is 1.115, and the largest
Lyapunov exponent λ1 is 0.0774, indicating that IMF1 has prominent chaotic characteristics.
The near-linear region of the D2 logarithmic curve cannot be found from IMF2 to IMF4;
these components have no chaotic characteristics. Due to space limitations, only the slope
of the IMF2 double logarithmic curve is given in Figure 12c.
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λ1

 
(a) (b) 

(c) 

Figure 12. Calculation of chaotic eigenvalues of typical IMFs (a) Relation between D2 and m of IMF1 (b) λ1 Separation
factor function of IMF1 (c) Slope of double logarithmic curve of IMF2.

By comparing the results of the chaotic eigenvalues of the IMFs with those of the
vibrational response before decomposition, it can be concluded that:

(1) IMF1, which represents the water pulsation excitation, the saturated correlation di-
mension 1.115 is a fractal dimension, and the largest Lyapunov exponent is 0.0774
greater than zero, has prominent chaotic characteristics. IMF2 to IMF4, which repre-
sent the vibration excitation of the unit’s operation, do not have any chaotic character-
istics, indicating that the unit’s operation cannot cause chaotic characteristics of the
pumping station pipeline vibration;

(2) After eliminating the IMFs (IMF2 to IMF4) caused by the unit’s operation with no
chaotic characteristics, the saturation correlation dimension D2 of the pipeline vibra-
tion response decreases from 4.985 to 1.115. At the same time the largest Lyapunov
exponent increases from 0.0513 to 0.0774, that is, the complexity of the pipeline vi-
bration decreases, and its chaotic characteristics are more evident. This shows that
when the pumping station pipeline vibrates, the water pulsation excitation makes
its vibration have obvious chaotic characteristics. In contrast, vibration excitation
generated by the unit’s operation masks the chaotic characteristics of the pumping
station pipeline and increases the uncertainty of the pipeline vibration.

5. Conclusions

(1) Comparing the saturation correlation dimension D2 among the vibration responses
of the pumping station pipeline under different conditions, the D2 of the measuring
points are distributed in the range of 1.156–5.283, and all are fractions, which show
that the vibration of the pumping station pipeline has chaotic characteristics. The
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axial vibration of the pipeline presents a chaotic attractor with a lower dimension
(1.156~2.569), and the vibration form is relatively simple. At the same time, the D2 of
conditions and points which are greatly affected by the unit’s operation have a larger
value (3.021~5.283), and the vibration form is more complex;

(2) The Lyapunov exponents λ1 of measuring points under different conditions are
between 0.0513 and 0.0774. With the opening of two units, the largest Lyapunov
exponent λ1 decreases accordingly, suggesting that the unit’s operation weakens the
chaotic characteristics of the pipeline vibration. The λ1 of points at the bifurcation are
larger than those of other points under the same condition. The chaotic characteristics
of the vibration at the bifurcation are enhanced by the sudden expansion of the pipe
diameter at the bifurcation and the impact of water heads at different flow velocities;

(3) After the IVMD decomposition of the vibration response of specific points under the
unit’s operation conditions, the chaotic characteristics of the IMFs are analysed. The
results show that the saturation correlation dimension D2 of IMF1 representing water
pulsation excitation in the pipeline is 1.115, and the largest Lyapunov exponent is
0.0774. The IMF2 to IMF4 representing the blade frequency, the rotation frequency,
and the frequency doubling vibration excitation generated by the unit’s operation do
not have chaotic characteristics. It indicates that the chaotic character of the pumping
station pipeline is mainly caused by water pulsation in the pipeline, and the vibration
caused by the unit masks the chaotic characteristic of the pipeline, which makes the
pipeline vibration system more complex.

In this paper, the chaotic characteristics of the vibration system of the pumping station
pipeline are shown by the analysis of the measured vibration responses, and the chaotic
excitation is found by combination with IVMD, which provides a theoretical basis for the
complete description of the vibration characteristics of the pumping station pipeline. A new
way of chaotic characteristics analysis based on IVMD decomposition is also proposed.
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Abstract: As the most populous country in the world, China has a great shortage pressure of water
resources. With the acceleration of urbanization, China’s water usage in different sectors will change
significantly in next few years. In order to investigate the main reasons behind water usage change
in China, the Logarithmic Mean Divisia Index (LMDI) model was adopted in this paper from 2000
to 2020 with provincial data. Three effects, including that of technology, industrial structure, and
regional scale, were analyzed. In addition, the decoupling effect between water usage and economic
growth was also considered. The results show that: (1) from 2000 to 2020, the technological effect,
industrial structure effect, and regional scale effect are −376.54, −89.85 and 20.66, respectively;
(2) the technical effect and industrial structure effect have the greatest impact on primary industry,
followed by secondary industry; (3) the technical effect is greater than the industrial structure effect
in most provinces; and (4) the decoupling state gradually changes from weak decoupling to strong
decoupling. In the future, the key policy recommendations for water saving are the following:
(1) technological innovation has the most efficient effect on the reduction of water usage in China,
and (2) the optimization of industrial structure can be helpful in water-saving in the future.

Keywords: water intensity; LMDI model; Tapio model; technical effect; industrial structure effect;
regional scale effect

1. Introduction

China is one of the countries with the most serious water shortage pressures in the
world [1–3]. Besides, the weak awareness of water saving, uneven distribution of water
resources, rapid population growth, increasing water usage of residents, and climate change
have all aggravated the tensions surrounding water resources in China [4,5]. With the rapid
development of modern industry and the accelerating process of urbanization, the demand
for water resources in different sectors will change greatly, and access to water will become
an important factor restricting China’s economic development [6,7].

In the last 20 years, China’s water usage structure has changed significantly in line with
economic development. The water usage in China has been divided into three industries.
The primary industry category mainly includes agriculture, forestry, and animal husbandry
and fisheries. The secondary industry category mainly refers to mining, manufacturing, and
construction. The tertiary industries include everything not contained within the primary
and secondary industries, including the service industry, transportation, accommodation
and catering, finance, real estate, culture and sports, public administration, and social
security [8,9]. The water usage in primary industry showed a downward trend, and
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the water usage in secondary industry increased first and then decreased [10–12]. Water
usage in tertiary industry continued to rise at a rapidly increasing rate, which was 15% in
2020 [13,14]. Therefore, it is of great significance for the sustainable management of water
resources to investigate the driving factors behind China’s water intensity [15].

A series of publications have calculated the single resource intensity at national level,
the city level, and certain industry levels. Some researchers even considered the resource
intensity of overall resources in the world or in a certain country.

A series of publications regarding driving factors in different resources have been
conducted by previous researchers, including structural decomposition analysis (SDA),
granger causality test, and the Logarithmic Mean Divisia Index (LMDI) model. Most
of the existing studies using SDA were based on the monetary I–O tables, which require
a considerable amount of sector data, and the research scope is mainly in a national
level [16–18]. While the Granger causality test is only a statistical estimation, not a real
causality, which cannot be used as the basis for affirming or denying causality [19–21].
Therefore, the LMDI model was adopted in this paper.

The LMDI model is a factor decomposition method that does not generate residual
error [22]. The application of LMDI is essentially for resources and the environment, such as
carbon emissions, energy, land, and water resources [23–28]. At present, LMDI research on
water resources has calculated the driving factors at national level or the city level [29–35].
The LMDI method in water resources research was mainly broken down into population
scale effect, economic development effect, domestic intensity effect, production intensity,
and industrial structural effect [36]. However, as the world’s most populous country with
serious water usage pressure, there is a shortage of research on the drivers of change in
China’s water intensity at industrial level with provincial data.

Based on the data of water usage, GDP, and the added value of various industries
in different provinces of China from 2000 to 2020, the LMDI model was used to analyze
the potential factors affecting the change of water usage within various industries. Three
effects, including the technical effect, industrial structure effect, and regional scale effect
will be adopted. Besides, these three effects will be applied in each province and each
industry in China. The decomposition model can measure the contribution of various
factors to water intensity, while it cannot directly measure the decoupling state between
economic growth and water usage, and the actual decoupling situation under different
policies [37]. The Tapio method is then used for decoupling analysis between water usage
and GDP. Finally, the most efficient water-saving methods will also be discussed.

2. Materials and Methods

2.1. Logarithmetic Mean Divisia Index Model

In order to analyze the influence of technological progress, regional scale, industrial
structure, and other factors on the water usage change of different industries in China,
it is beneficial to analyze the driving factors of water usage in China by using the LMDI
proposed by Ang [38]. This method has the advantages of zero value and complete
decomposition, and can be completely decomposed [39–41].

Water usage index can be expressed by absolute quantity and relative quantity. The
absolute quantity refers to total water usage, and the relative quantity refers to the water
usage per unit of economic output, that is, water intensity. It reflects the utilization
efficiency of water resources, which is influenced by economic growth, technological
progress, industrial structure, regional scale, and policy factors. According to the definition
of water intensity, it can be expressed as:

w = ∑
i

∑
j

Wij

Gij
(1)
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where w is the water intensity (cubic meters/10 thousand CNY); Wij is the water us-
age (cubic meters) of the jth industry in the ith province; Gij is the gross output value
(10 thousand CNY) of the jth industry in the ith province.

According to LMDI analysis framework, by analyzing the influence of each effect on
water intensity, we can construct Equation (2) as follows:

w = ∑ i ∑ j
Wij

G
= ∑ i ∑ j

Wij

Gij
× Gij

Gi
× Gi

G
= ∑ i ∑ jqijrijsi (2)

where w is the water intensity, Wij is the total water usage of the jth industry in the ith
province, Gij is the gross national product of the jth industry in the ith province, Gi is the
gross product of the ith province, G is the gross domestic product, qij is the water intensity
of the jth industry in the ith province, rij is the proportion of the gross product of the jth
industry in the gross product of the ith province, si is the ratio of GDP of the ith province to
total GDP.

Therefore, the total effect formula of water intensity is:

Δtot = Δt + Δu + Δv (3)

where Δtot is the total effect, that is, the sum of all effects, indicating the total change of
water intensity; Δt refers to the technical effect, indicating the contribution of the change
of resource utilization efficiency caused by technological progress to the total change of
water intensity; Δu refers to the industrial structure effect, indicating the contribution of
industrial structure adjustment to the total change of water intensity; Δv is the regional
scale effect, which indicates the contribution of the ratio of regional economic output to
GDP to the total change of water intensity.

The contribution of each effect is expressed as follows:

Δt = ∑
i

∑
j

WT
ij

GT − W0
ij

G0

ln(
WT

ij
GT )− ln(

W0
ij

G0 )

ln(
qT

ij

q0
ij
) (4)

Δu = ∑
i

∑
j

WT
ij

GT − W0
ij

G0

ln(
WT

ij
GT )− ln(

W0
ij

G0 )

ln(
rT

ij

r0
ij
) (5)

Δv = ∑
i

∑
j

WT
ij

GT − W0
ij

G0

ln(
WT

ij
GT )− ln(

W0
ij

G0 )

ln(
sT

ij

s0
ij
) (6)

The contribution rates of the three effects to the change of water intensity are Δt/Δtot,
Δu/Δtot, and Δv/Δtot, respectively. When the positive and negative impacts of each effect
are consistent with the total effect, it shows that this effect has a positive impact on the
reduction of water intensity, and vice versa.

2.2. Decoupling Model

The decomposition model can be used to study the contribution of various factors
to the change of water usage intensity, but it cannot directly measure the decoupling
state between economy and water usage [22]. Therefore, the Tapio decoupling model is
adopted [42–44], and the decomposition model of water usage is as follows:

W = ∑
i

∑
j

Wij = ∑
i

∑
j

Wij

Gij
× Gij

Gi
× Gi

G
× G (7)
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So as to decompose the changes of water usage into:

ΔTOT = ∑
i

∑
j

ΔT + ΔU + ΔV + ΔQ (8)

Among them, ΔTOT is the total effect of water usage, ΔT is the technical effect, ΔU is
the effect of industrial structure, ΔV is the effect of regional scale, and ΔQ is the effect of
output scale. The contribution of each effect is as follows:

ΔT = ∑
i

∑
j

WT
ij − W0

ij

lnWT
ij − lnW0

ij
ln(

WT
ij /GT

ij

W0
ij/G0

ij
) (9)

ΔU = ∑
i

∑
j

WT
ij − W0

ij

lnWT
ij − lnW0

ij
ln(

GT
ij /GT

i

G0
ij/G0

i
) (10)

ΔV = ∑
i

∑
j

WT
ij − W0

ij

lnWT
ij − lnW0

ij
ln(

GT
i /GT

G0
i /G0

) (11)

ΔQ = ∑
i

∑
j

WT
ij − W0

ij

lnWT
ij − lnW0

ij
ln

GT

G0 (12)

Decoupling elasticity index is used to discuss the decoupling relationship between
economic growth and water usage. The elastic coefficient of GDP water usage is calculated
as follows:

ω(W, G) =
ΔW/W
ΔG/G

(13)

The types of decoupling can essentially be divided into coupling, decoupling, and
negative decoupling. In addition, according to the elasticity coefficient, the change of water
usage and the change of GDP, the decoupling types can be subdivided into eight cases
(Table 1) [45].

Table 1. Types of Tapio models.

State Type �W �GDP ω Meaning

Connection

Decline connection
(DC) − − (0.8, 1.2) Water usage is declining at the

same rate as the economy.
Expansion connection

(EC) + + (0.8, 1.2) Water usage is increasing at the
same rate as the economy.

Decoupling

Decline decoupling
(DD) − − (1.2, +∞) Water usage is declining faster

than the economic recession.

Strong decoupling
(SD) − + (−∞, 0)

Economic growth is
accompanied by a decline in

water usage.
Weak Decoupling

(WD) + + (0, 0.8) The growth rate of water usage
is slower than that of economy.

Negative
decoupling

Weak negative decoupling
(WND) − − (0, 0.8)

The rate of water usage
reduction is slower than the rate

of economic recession.
Strong negative decoupling

(SND) + − (−∞, 0) Water usage is increasing but
the economy is declining.

Expansion negative decoupling
(END) + + (1.2, +∞)

The water usage growth rate is
lower than the economic

growth rate.
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The decoupling elasticity index can be used to calculate the decoupling relationship
between economic growth and water usage, but it cannot help to investigate the specific
factors that affect the decoupling state. The LMDI model can be used to analyze the
influence of various factors on water usage, but it cannot be used to analyze the decoupling
effect between economic growth and water usage. Combining the LMDI model with the
Tapio decoupling model, a decoupling effort index model is constructed:

ΔWUS = ΔTOT − ∑
i

∑
j

ΔQ = ∑
i

∑
j

ΔT + ΔU + ΔV (14)

where ΔWUS indicates the government’s efforts to save water, and refers to various mea-
sures taken by the government to reduce water usage in the process of economic devel-
opment, such as improving production technology, adjusting industrial structure, and
expanding regional scale.

The decoupling effort indicators are constructed as follows:

Di = − ΔWUS

∑i ∑j ΔQ
(15)

where Di is the total decoupling effect of water usage. When Di > 1, it indicates a strong
decoupling effect. When Di < 1, it indicates a weak decoupling effect. When Di < 0, it
means there is no decoupling effect.

2.3. Date

The data used in this study are the water usage and industrial added value of three
major industries in each province of China from 2000 to 2020. All the data in this paper
come from the Water Resources Bulletin issued by China’s Ministry of Water Resources from
2000 to 2020 and the National Bureau of Statistics [46,47].

From 2000 to 2013, China’s total annual water usage increased from 549.752 billion
cubic meters to 618.394 billion cubic meters, before the water usage showed a decreasing
trend. The water usage of primary industry contributes most to the total water usage and
remains stable with approximately 400 billion cubic meters per year. While secondary
industry is a more minor user of water in China, and it has a trend of first increasing and
then decreasing. The water usage of tertiary industry continues to rise, from 57.492 billion
cubic meters in 2000 to 86.310 billion cubic meters in 2020 (Figure 1).

Figure 1. Water usage and proportion of various industries in China from 2000 to 2020.
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The added value in each industry of the past 20 years is shown in Figure 2. China’s
economy maintains a high speed of development from 2000 to 2020, so the added value in
each industry increases continually. The fastest growth occurs in tertiary industry, with
an average annual growth rate of 0.07%, which demonstrates that China’s economy has
gradually shifted into tertiary industry.

Figure 2. China’s added value of various industries from 2000 to 2020.

3. Results

3.1. Water Intensity and Factor Decomposition Analysis
3.1.1. Analysis of Decomposition Effect in Each Year

According to Equations (3)–(6), three effects and their respective contribution rates
from 2000 to 2020 are shown in Figure 3. The total effect of each year is negative, indicating
that the water intensity is decreasing year by year, signaling water saving considerations.
The total effect from 2002 to 2003 was the smallest, with value of −64.50.

Figure 3. Effects and contribution rates in China from 2000 to 2020.

Technical effects in the last 20 years are negative and the technical effect contribution
rate is the largest among three effects, indicating it has an inhibitory impact on the water
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intensity, while technological innovation is the most effective measure for water saving.
The technical effect fluctuated greatly, with its largest value from 2002 to 2003 of −59.91
and highest contribution rate in 2001 of 2481.29%. For the industrial structure effect, it
was negative except for 1.62 in 2003 and 0.38 in 2020, meaning that it restricted the water
intensity in most years. As for for the regional scale effect, it fluctuated greatly from 2000 to
2001, reaching 39.49, and it was stable with values between −1 and 2 from 2003 to 2020.

The three effects in each industry were also explored in China through the LMDI in
Figure 4. The technical effects are all negative for the three industries, which means that
the water intensity of the three industries all declined with technological innovation. It
also fluctuated greatly before 2011, with the largest absolute value of −36.24, −12.52 and
−11.15, respectively, during 2002 to 2003, then it tended to be flat. Besides, it fluctuated
most within primary industry, due to the largest proportion of China’s primary industry in
current water usage structure.

Figure 4. Decomposition analysis of China’s water intensity in each industry from 2000 to 2020.

The industrial structure effect on the three major industries has different characteristics.
In primary industry, it has increased from −18.21 to 2.63, shifting from a restriction effect
to a promoting effect from 2018 to 2020. In secondary industry, it changed from strong
promotion to weak promotion, and finally into a restriction effect, which is mainly attributed
to the intensive management of industrial development with the increasing industry output.
In tertiary industry, it remains essentially unchanged. Therefore, the industrial structure
effect has restricted the water usage in China, indicating the industrial transformation in
China has impacted on water usage reduction in the last 20 years.

3.1.2. Analysis of Decomposition Effect in Each Province

According to Equations (3)–(6), the three effects in each province are calculated in
Table 2. The technical effect in each province is negative with the increasing absolute
value, and it means that the technical effect in each province in China has been generally
improved. Besides, due to the highest average value of −12.15 in these three effects, the
technical effect is a decisive factor to promote the decline of water intensity. Among all the
provinces, Xinjiang have the greatest inhibitory effect with values of −34.05, and Tianjin
has the smallest inhibitory effect with values of −1.20. The industrial structure effect is also
negative excepted for Anhui Province in the studied areas with values between −0.21 and
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−10.35, and its absolute value is smaller than the technology effect. This indicates that the
industrial structure transformation has taken effect.

Table 2. Three effects in each province in China.

Province
Technological

Effect
Industrial

Structure Effect
Regional Scale

Effect
Total Effect

Beijing −2.13 −1.41 0.24 −3.30
Tianjin −1.20 −0.55 −0.05 −1.80
Hebei −13.63 −2.69 −1.30 −17.61
Shanxi −3.98 −0.55 0.09 −4.44

Inner Mongolia −11.31 −3.78 1.25 −13.84
Liaoning −8.06 −0.46 −2.69 −11.20

Jilin −5.29 −2.75 −1.18 −9.22
Heilongjiang −20.62 3.62 −7.05 −24.06

Shanghai −6.20 −2.23 −0.52 −8.96
Jiangsu −29.37 −10.35 4.59 −35.13

Zhejiang −13.32 −4.31 0.84 −16.79
Anhui −6.55 −9.00 2.03 −13.52
Fujian −12.16 −3.63 1.45 −14.34
Jiangxi −14.83 −5.38 2.71 −17.51

Shandong −15.33 −4.35 −0.46 −20.13
Henan −13.67 −3.87 1.15 −16.39
Hubei −20.87 −3.82 2.68 −22.01
Hunan −22.86 −5.70 2.65 −25.90

Guangdong −30.22 −6.70 1.58 −35.33
Guangxi −22.02 −3.59 1.41 −24.19
Hainan −3.12 −0.68 0.21 −3.59

Chongqing −4.79 −0.54 0.86 −4.46
Sichuan −15.50 −3.49 2.25 −16.75
Guizhou −7.78 −1.01 1.97 −6.81
Yunnan −11.87 −1.51 1.46 −11.92

Tibet −1.53 −1.23 0.58 −2.17
Shaanxi −6.65 −0.99 1.33 −6.30
Gansu −8.58 −1.20 −0.36 −10.15

Qinghai −2.31 −0.21 0.20 −2.31
Ningxia −6.76 −1.63 1.10 −7.29
Xinjiang −34.05 −5.87 1.63 −38.29

The decomposition analysis of water intensity in each province from 2000 to 2020 is
also obtained in Table 3 based on Equations (3)–(6). The technical effects of all industries
in each province are negative, which is consistent with Table 2, indicating the restraining
effect on water usage. The value of primary industry in most provinces is the smallest, with
values between −31.70 and −0.06, followed by secondary industry and tertiary industry.
Because the water usage of primary industry accounts for the largest proportion of the total
water usage in China, the technological progress of primary industry plays a significant
role. The efficiency of technological progress in secondary industry is higher than that
in tertiary industry. Moreover, the industrial structure effects of primary industry are
basically negative, and it has both positive and negative values in secondary industry, with
an almost positive effect on tertiary industry, indicating the greater effect of industrial
transition on primary industry than that in secondary or tertiary industry. In addition, the
provinces with a positive industrial structure effect of secondary industry are typically
underdeveloped areas, such as Tibet, Inner Mongolia, and Qinghai, which also shows that
industrial transition in underdeveloped areas needs to be improved.
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3.2. The Decoupling Effect of Water Usage
3.2.1. Decoupling Elasticity Index

In this paper, the elastic index of decoupling analysis between economic growth and
water usage in China from 2000 to 2020 is calculated and divided into four stages (Table 4).

Table 3. Effects of various industries in various provinces.

Province

Technological Effect Industrial Structure Effect Regional Scale Effect

Primary
Industry

Secondary
Industry

Tertiary
Industry

Primary
Industry

Secondary
Industry

Tertiary
Industry

Primary
Industry

Secondary
Industry

Tertiary
Industry

Beijing −0.06 −0.80 −1.27 −1.35 −0.18 0.12 0.11 0.04 0.09
Tianjin −0.36 −0.37 −0.47 −0.56 −0.07 0.07 −0.03 −0.01 −0.01
Hebei −9.62 −2.00 −2.00 −2.83 −0.17 0.32 −0.99 −0.15 −0.16
Shanxi −2.25 −1.09 −0.65 −0.56 −0.04 0.05 0.06 0.02 0.01
Inner

Mongolia −9.76 −0.73 −0.82 −3.88 0.02 0.07 1.11 0.07 0.07

Liaoning −4.89 −1.68 −1.49 −0.45 −0.26 0.25 −1.75 −0.48 −0.45
Jilin −3.16 −1.42 −0.71 −2.81 −0.05 0.11 −0.91 −0.16 −0.11

Heilongjiang −14.13 −5.25 −1.24 5.12 −1.80 0.29 −5.20 −1.46 −0.38
Shanghai −0.18 −4.81 −1.21 −0.98 −1.46 0.21 −0.08 −0.36 −0.09
Jiangsu −13.85 −11.20 −4.31 −9.91 −1.11 0.66 2.51 1.61 0.46

Zhejiang −6.41 −4.21 −2.70 −4.37 −0.46 0.52 0.48 0.21 0.15
Anhui −5.89 0.91 −1.56 −5.01 −4.15 0.16 1.31 0.50 0.22
Fujian −6.07 −4.34 −1.74 −3.88 0.12 0.13 0.90 0.36 0.19
Jiangxi −8.36 −4.80 −1.68 −5.88 0.37 0.13 1.88 0.58 0.25

Shandong −9.83 −3.25 −2.25 −4.43 −0.35 0.44 −0.33 −0.08 −0.06
Henan −7.24 −3.54 −2.90 −4.23 −0.14 0.50 0.76 0.21 0.18
Hubei −11.27 −6.91 −2.68 −3.90 −0.25 0.33 1.58 0.77 0.33
Hunan −14.12 −5.00 −3.74 −6.12 0.11 0.32 1.84 0.47 0.34

Guangdong −15.61 −8.39 −6.22 −6.82 −0.58 0.71 0.92 0.36 0.30
Guangxi −15.95 −3.25 −2.82 −3.80 −0.13 0.35 1.07 0.19 0.16
Hainan −2.32 −0.33 −0.46 −0.75 0.00 0.07 0.17 0.01 0.03

Chongqing −1.10 −2.40 −1.29 −0.61 −0.05 0.13 0.32 0.32 0.22
Sichuan −8.17 −4.69 −2.64 −3.84 −0.02 0.36 1.48 0.41 0.36
Guizhou −4.08 −1.92 −1.78 −1.16 −0.06 0.21 1.18 0.43 0.37
Yunnan −8.58 −1.57 −1.72 −1.62 −0.12 0.23 1.10 0.17 0.19

Tibet −1.25 −0.09 −0.19 −1.26 0.02 0.01 0.52 0.02 0.05
Shaanxi −4.39 −1.24 −1.01 −1.04 0.00 0.06 0.93 0.20 0.20
Gansu −6.51 −1.40 −0.66 −1.17 −0.11 0.09 −0.30 −0.04 −0.03

Qinghai −1.69 −0.38 −0.24 −0.23 0.03 −0.01 0.16 0.03 0.02
Ningxia −6.14 −0.46 −0.16 −1.64 0.00 0.01 1.00 0.06 0.03
Xinjiang −31.70 −0.89 −1.46 −5.96 −0.04 0.12 1.54 0.03 0.05

In these four stages, the relationships between water usage and economic growth in
all provinces are decoupled, indicating the water usage is not related with the development
of China’s economy. There are 13 strong decoupling provinces in the first stage, with 8 in
the second stage, 15 in the third stage and 23 in the fourth stage, respectively. Besides, the
weak decoupling status in most provinces has gradually changed into strong decoupling
status. The increasing trends of decoupling provinces in different stages is due to the
gradually improvement of water efficiency with economic development. In recent years,
corresponding policies in China have been issued to improve water efficiency, such as the
National Water Conservation Action Plan and the Water Pollution Prevention Action Plan, and
the task of water conservation has been officially put into the 13th Five-Year Plan, which
illustrates the Chinese government’s determination on the issue of water saving.

From a regional perspective, Beijing, Yunnan, and Qinghai Province have changed
from strong decoupling in the first stage to weak decoupling later. The four stages of Inner
Mongolia are all weak decoupling, which means that the economic development quality in
water resources in these regions still need to be improved. Hebei and Ningxia Province
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are strongly decoupled in the four stages, which shows that the popularization of water
conservation policies in these two regions is relatively effective and should be maintained.
East China, such as Shanghai, Zhejiang, Jiangsu, Anhui, and Fujian; South China, such as
Guangdong, Guangxi, and Hainan; and Southwest China, such as Guizhou, Sichuan, and
Chongqing, have all changed from weak decoupling at first stage to strong decoupling later,
meaning the areas with relatively abundant water resources are more likely to improve the
local decoupling state and achieve high-quality economic development.

Table 4. Decoupling index and state of water usage and economic growth in each province.

Province

2000–2005 2005–2010 2010–2015 2015–2020

Decoupling
Index

Decoupling
Type

Decoupling
Index

Decoupling
Type

Decoupling
Index

Decoupling
Type

Decoupling
Index

Decoupling
Type

Beijing 1.16 SD 0.79 WD 0.71 WD 0.75 WD
Tianjin 0.81 WD 0.82 SD 0.49 WD 0.53 WD
Hebei 0.99 SD 0.92 SD 0.91 SD 0.92 SD
Shanxi 0.94 SD 0.61 WD 0.40 WD 0.86 SD
Inner

Mongolia 0.95 WD 0.86 WD 0.83 WD 0.78 WD

Liaoning 0.82 SD 0.72 WD 0.81 SD 1.01 SD
Jilin 1.05 SD 0.58 WD 0.58 WD 1.14 SD

Heilongjiang 0.88 SD 0.52 WD 0.63 WD 1.20 SD
Shanghai 0.25 WD 0.14 WD 0.50 SD 0.47 SD
Jiangsu 0.54 WD 0.56 WD 0.53 WD 0.56 SD

Zhejiang 0.77 WD 0.74 SD 0.84 SD 1.06 SD
Anhui 0.51 WD 0.31 WD 0.75 SD 0.92 SD
Fujian 0.63 WD 0.58 WD 0.69 SD 1.01 SD
Jiangxi 0.97 SD 0.63 WD 0.73 WD 0.79 SD

Shandong 1.18 SD 0.82 WD 0.94 SD 0.69 WD
Henan 0.95 SD 0.62 WD 0.76 SD 0.62 WD
Hubei 0.87 SD 0.56 WD 0.63 WD 0.84 SD
Hunan 0.76 WD 0.81 SD 0.76 WD 0.94 SD

Guangdong 0.72 WD 0.66 WD 0.81 SD 0.99 SD
Guangxi 0.76 WD 0.91 SD 0.84 SD 1.19 SD
Hainan 0.93 WD 0.92 WD 0.87 WD 1.06 SD

Chongqing 0.23 WD 0.31 WD 0.87 SD 1.00 SD
Sichuan 0.78 WD 0.69 WD 0.50 WD 1.16 SD
Guizhou 0.56 WD 0.67 WD 0.95 SD 1.04 SD
Yunnan 0.88 SD 0.86 WD 0.84 WD 0.80 WD

Tibet 0.62 WD 0.90 WD 1.24 SD 0.87 WD
Shaanxi 0.92 WD 0.81 WD 0.70 WD 0.86 SD
Gansu 0.88 WD 0.90 SD 0.92 SD 1.11 SD

Qinghai 0.71 SD 0.85 SD 1.18 WD 1.16 WD
Ningxia 1.17 SD 1.06 SD 0.99 SD 0.95 SD
Xinjiang 0.88 WD 0.92 WD 0.83 WD 1.01 SD

3.2.2. Decoupling Effort Index

The decoupling effort index is used to measure the decoupling status between eco-
nomic growth and water usage (Table 5).

Table 5. Decoupling effort index of China’s water usage from 2000 to 2020.

Year
Technological

Effect
Industrial

Structure Effect
Regional

Scale Effect
Output Scale

Effect
Decoupling

Index
Decoupling

Type
ω

2000–2001 −256.68 −188.32 434.68 79.73 0.13 EC 0.88
2001–2002 −434.71 −180.49 29.23 516.51 1.13 SD −0.13
2002–2003 −773.46 −133.11 73.95 655.57 1.27 SD −0.26
2003–2004 −684.70 24.19 −0.26 888.14 0.74 WD 0.25
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Table 5. Cont.

Year
Technological

Effect
Industrial

Structure Effect
Regional

Scale Effect
Output Scale

Effect
Decoupling

Index
Decoupling

Type
ω

2004–2005 −529.81 −213.56 11.01 817.02 0.90 WD 0.10
2005–2006 −415.81 −311.52 −14.61 903.92 0.82 WD 0.17
2006–2007 −998.16 −147.19 −36.03 1205.64 0.98 WD 0.02
2007–2008 −807.22 −111.59 29.80 980.24 0.91 WD 0.09
2008–2009 −339.02 −121.16 −5.39 520.75 0.89 WD 0.10
2009–2010 −947.96 −71.03 71.33 1004.48 0.94 WD 0.05
2010–2011 −871.84 −132.45 65.48 1023.94 0.92 WD 0.08
2011–2012 −597.65 −25.63 43.53 603.88 0.96 WD 0.04
2012–2013 −479.08 −86.17 25.23 592.19 0.91 WD 0.08
2013–2014 −456.84 −134.69 0.39 502.57 1.18 SD −0.17
2014–2015 −256.58 −83.98 −65.77 414.73 0.98 WD 0.02
2015–2016 −377.91 −129.13 −43.03 486.99 1.13 SD −0.12
2016–2017 −354.92 −266.43 −32.22 656.16 1.00 WD 0.00
2017–2018 −446.62 −177.31 −17.73 600.44 1.07 SD −0.06
2018–2019 −402.14 −6.99 5.07 424.23 0.95 WD 0.04
2019–2020 −404.85 38.44 −1.81 159.92 2.30 SD −1.26

From the perspective of contributions of these three effects, the technology effect has
the greatest influence on the total decoupling effect, with the maximum absolute value
of 998.16, which is bigger than the corresponding industrial structure effect with values
of 66.43. This shows that technological innovation is an important measure to realize the
decoupling of economic development and water usage. The influence of the regional scale
effect is smallest, but it plays a driving role in most periods.

4. Conclusions and Implications

This research focused on the investigation of driving factors behind water usage
intensity in China from 2000 to 2020, and the identification of decoupling status between
water usage and economics. The LMDI model and Tapio model were applied jointly. The
results show that:

(1) from 2000 to 2020, the technological effect, industrial structure effect, and regional
scale effect are −376.54, −89.85, and 20.66, respectively. The technical effect is from −59.91
to −4.05, and the industrial structure effect is from −17.11 to 1.62, indicating these two
effects constrained the increase of water usage intensity. The regional scale effect was stable
with values between −1 and 2. From the perspectives of different industries, each effect
has the greatest impact on primary industry, followed by secondary industry, and finally
tertiary industry.

(2) From the perspective of different provinces, the development of technology and
the adjustment of industrial structure have promoted the decline of water intensity. The
technological effect varies in different provinces. For example, Tianjin has the value of
−1.20, while Xinjiang has values of −34.05. The industrial structure effect is smaller,
with the largest value of −0.21 in Qinghai and the smallest being −10.35 in Jiangsu. The
technology effect is greater than the industrial structure effect, except for in Anhui Province.
When the effects in each industry in different provinces were explored, the technical effect
is largest in primary industry in most areas, and the industrial structure effect of primary
industry is negative, with positive values in tertiary industry.

(3) The decoupling status for most provinces in China have gradually improved, from
weak decoupling to strong decoupling. The technical effect is the main factor towards
promoting the decoupling effect, followed by the industrial structure effect.

Therefore, two implications could be put forward. Firstly, technological innovation
is the most efficient effect on the reduction of water usage intensity in China with the
proliferation of water-saving facilities, and it is still the most efficient policy in China in the
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near future. Secondly, the optimization of industrial structure is helpful in water-saving in
China, but it still needs to be strengthened.
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Abstract: The tannery industry during its process generates various polluting substances such as
organic matter from the skin and chemical inputs, producing wastewater with a high concentration of
turbidity. The objective of this research is to evaluate the most appropriate operational parameters of
the coupled process of electrocoagulation and advanced oxidation to achieve the removal of turbidity
in wastewater from a tannery in the riparian zone (tannery). This process uses a direct current source
between perforated aluminum electrodes of circular geometry submerged in the effluent, which
causes the dissolution of the aluminum plates. For our study, an electrocoagulation unit coupled to
an ozone generator has been built at the laboratory level, where the influence of five factors (voltage,
inlet flow to the reactor, initial turbidity, pH, and ozone flow) has been studied with three levels
with regarding turbidity, using the Taguchi experimental methodology. The optimal conditions for
the removal of turbidity were obtained at 10 volts, 7.5 pH, 360 L/h of wastewater recirculation flow
rate; 2400 mg/h of ozone flow rate; and 1130 NTU of initial turbidity of the sample in 60 min of
treatment reaching a removal of 99.75% of the turbidity. Under optimal conditions, the removal of
chemical oxygen demand (COD) and biochemical oxygen demand (BOD) was determined, reaching
a removal percentage of 33.2% of COD and 39.36% of BOD was achieved. Likewise, the degree of
biodegradability of the organic load obtained increased from 0.467 to 0.553.

Keywords: electrocoagulation; tannery effluent; ozonation; optimization; turbidity removal; Taguchi

1. Introduction

The leather trade can be an economic problem for developing countries that produce
a good type of product from animal leather, such as footwear, luggage, and clothing.
However, its production has a terribly high environmental footprint [1]. In addition, con-
sidering the enormous quantity and low biodegradability of the chemical products present
in the productive cycle of tannery work, the wastewater from said process represents a
great environmental and technological inconvenience [2]. In [3], the authors mentioned
that the Electrocoagulation (EC) is often considered as an alternate treatment methodology
with several advantages such as easy instrumentality, simple operation and automation, a
brief retention time, low sludge production, and no chemical necessities.

Other studies have stated that Electrocoagulation mixtures and alternative technolo-
gies have been designed to treat high concentration organic waste material such as the
textile trade and mixed industries [4,5]. In [6], mentioned that the use of EC as the only
treatment process could face serious practical limitations, especially if the wastewater is
highly contaminated. Therefore, there is a need for an efficient and relatively inexpensive
treatment process. Due to this, the use of a post- or pre-treatment process with the EC
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will improve its performance, as mentioned by several studies that have described more
profitable combined treatment systems [6,7].

The authors of [8] published a review that includes EC combined with other treatment
processes such as: electrocoagulation–ozone, electrocoagulation–adsorption, electrocoagulation–
ultrasound, and electrocoagulation–pulses. In his work, the authors also mention about the
performance of these combined systems.

According to [9] Electrocoagulation (EC) is used in chemical science water treatment
techniques where anode electrodes (aluminum, Al, or iron, Fe) area unit are dissolved
in place, which promote coagulation and succeeding removals of pollutants and also the
concurrent reduction of turbidity from water and wastewater. EC relies on the physical–
chemical method of destabilization of mixture systems below the action of a right away
current [10].

The electrodes dissolve according to Equations (1) and (2) to provide coagulant metal
ions (Al3+ or Fe2+/Fe2−) into the water, and these instantaneously carries rapid hydrolysis.

Anode reactions:
Al(s) → Al3+(aq) + 3e− E0 = 1.66 V (1)

Fe(s) → Fe3+
(aq) + 3e− E0 = 0.04 V (2)

When the anode potential is sufficiently high, secondary reactions may occur, espe-
cially oxygen evolution, according to Equation (3)

2H2O(l) → O2(g) + 4H+
(aq) + 4e− E0 = 1.66 V (3)

Simultaneously with the anode reaction, water molecules H2O break down at the
cathode, producing hydrogen gas H2 and OH− ions, according to Equation (4).

Cathode reaction:

H2O(l) + 2e− → H2(g) + OH−
(aq) E0 = 1.66 V (4)

The electrical energy applied to the anode dissolves the aluminum into the solution
which then reacts with the hydroxyl ion from the cathode to form aluminum hydroxy.
The most significant advantage of electrocoagulation is avoiding any addition of chemical
substances thus reducing the likelihood of secondary pollution; the dosing of coagulator
depends on the cell potential (or current density) applied [11]. Other advantages are the
simple equipment, so requiring less maintenance and straightforward automation of the
method [12].

Standard treatments for cloudiness removal have many disadvantages, such as the
use of enormous amounts of chemicals and generating large amounts of sludge that causes
disposal issues and therefore the loss of water. Then in [13] mentioned that the combination
of ultrasound technique with different processes such as electrocoagulation, electro-Fenton,
and electrooxidation could be important to achieve effective decomposition of organic
contaminants in wastewater. Independently in [14] mentioned the integrated sonoelectro-
Fenton (SEF) method could be a novel methodology for the removal of paracetamol (PCT)
waste material from liquid solutions through synthesized iron ore (Fe2O3) nanoparticles.

The novelty of our study was the design of the electrocoagulation cell with perforated
plates installed vertically, improving the mixture of ozone with the residual water and
the ions generated by the electrodes. In this way, reducing areas of stagnation in the
electrocoagulation cell that produce passivation of the electrodes, causing a decrease in the
efficiency of the process.

The objective of this study was to examine the treatment of wastewater from the
tanning industry, through the electrocoagulation process, the impact of the factors electrical
potential, feed flow, initial concentration of turbidity, pH, and ozone flow on the percentage
reduction of turbidity and energy consumption, based on the Taguchi methodology.
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2. Materials and Methods

2.1. Effluent Sample Collection

The samples were collected from the operations corresponding to the riparian zone
(pre-soaking, main soaking, peeling, descaling, and purging or delivery), from the tan-
nery located in the district of Ate Vitarte, Lima (Peru). Each sample was collected and
then homogenized and allowed to stand for 3 h. These samples came from a process of
transformation of sheep skins preserved with salt, with hair destruction technology.

A part of the sample was sent to a specialized laboratory, applying the corresponding
monitoring protocols to know the physicochemical characteristics, as illustrated in Table 1.

Table 1. Some of the physicochemical characteristics of the wastewater of the riparian zone.

Parameters Unit Value

pH 9.43
Turbidity NTU 1130

Chemical oxygen demand mg/L 2638
Biological oxygen demand mg/L 1232

Oils and fats mg/L 15.1
Ammonia nitrogen NH3+-N mg/L 88.85

Sulfides S = mg/L 21.4
Fecal coliforms NMP/100 mL <1.8

Aluminum mg/L 0.29

2.2. Analytical Methods

The turbidity was measured by Ezodo model TUB-430, turbidimeter, to determine the
pH, conductivity and total dissolved solids, the Multiparameter equipment (pH, EC, TDS,
T ◦C), HANNA brand was used. To determine the voltage and current intensity, the Digital
Hook Multimeter (amps, voltage, temperature, etc.) was used.

2.3. Design of Experiment

The optimization of wastewater turbidity removal using Aluminum electrodes was
performed using the Taguchi Design. Five important factors such as voltage, feed flow,
effluent concentration, pH, and ozone flow were used as independent variables where
their combined effects were examined, while the percentage of turbidity removal was the
dependent variable.

This was performed to determine the best conditions for the optimum removal of
turbidity from the wastewater. The experimental design involves varying the independent
variable at three different levels (−1, 0, +1). The experimental range and levels of the
independent variables are presented in Table 2. In this work, a set of 27 experiments
with two replicates, the mean shown in Table 3. Where the levels of the applied electrical
potential were acquired from the work developed by [15] and to select the pH range the
research work provided by [16] was taken.

The interactive effects of the independent (process) variables on the dependent variable
(response) were examined using the analysis of variance (ANOVA) as shown in Table 4.
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Table 2. Experimental range and levels of independent variables used in this study.

Levels
Factors Unit Notation

Low Medium High

Voltage V X1 4 7 10
Feed flow L/h X2 240 300 360
Turbidity NTU X3 375 580 1130

pH X4 4.0 7.5 10.8
Ozone flow mg/h X5 900 1500 2400

Table 3. Presents the results of the 27 experiments carried out using the Taguchi methodology of five
factors at three levels under study.
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1 4 240 375 4 900 471.4 58.28 0.1176 175.17823
2 4 240 375 4 1500 487.8 56.83 0.0535 85.34855
3 4 240 375 4 2400 483.6 57.2 0.0471 76.356466
4 4 300 580 7.5 900 48.7 91.65 0.0279 45.541531
5 4 300 580 7.5 1500 55.5 90.48 0.0314 50.222793
6 4 300 580 7.5 2400 52.3 91.03 0.0397 63.811338
7 4 360 1130 10.8 900 88.3 76.45 0.0246 37.127518
8 4 360 1130 10.8 1500 91.2 75.68 0.0275 43.868429
9 4 360 1130 10.8 2400 87.1 76.77 0.0294 46.751746

10 7 240 580 10.8 900 135.2 76.49 0.2093 657.31997
11 7 240 580 10.8 1500 145.1 74.77 0.1539 499.21802
12 7 240 580 10.8 2400 139.7 75.7 0.1726 551.08302
13 7 300 1130 4 900 3.2 99.14 0.1111 365.33785
14 7 300 1130 4 1500 1.3 99.65 0.1135 362.05164
15 7 300 1130 4 2400 0 100 0.136 421.1065
16 7 360 375 7.5 900 17.5 98.45 0.1822 570.44258
17 7 360 375 7.5 1500 13.8 98.78 0.1936 604.95181
18 7 360 375 7.5 2400 15.2 98.66 0.1485 479.17558
19 10 240 1130 7.5 900 7.2 98.11 0.1402 652.35772
20 10 240 1130 7.5 1500 5.2 98.64 0.1546 748.96169
21 10 240 1130 7.5 2400 2.8 99.27 0.1492 712.034
22 10 300 375 10.8 900 207 81.63 0.2704 1178.6499
23 10 300 375 10.8 1500 195.2 82.68 0.2993 1310.3554
24 10 300 375 10.8 2400 198 82.43 0.153 726.03864
25 10 360 580 4 900 0 100 0.238 1060.6992
26 10 360 580 4 1500 1.2 99.79 0.2312 1029.1543
27 10 360 580 4 2400 1.57 99.73 0.2371 1042.1303
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Table 4. Analysis of variance (ANOVA).

Source GL SC Sec. Contribution SC Ajust. MC Ajust. Value F Value p

Model 14 5252.01 99.94% 5252.01 375.14 1337.59 0.000

Linear 5 3347.2 63.69% 3392.4 678.48 2419.14 0.000
X1 1 1669.48 31.77% 1560.97 1560.97 5565.7 0.000
X2 1 924.79 17.60% 919.82 919.82 3279.66 0.000
X3 1 514.58 9.79% 656.93 656.93 2342.3 0.000
X4 1 238.29 4.53% 254.67 254.67 908.05 0.000
X5 1 0.06 0.00% 0.06 0.06 0.23 0.643

Square 5 1903.28 36.22% 1903.28 380.66 1357.24 0.000
(X1)2 1 193.78 3.69% 193.78 193.78 690.95 0.000
(X2)2 1 256.89 4.89% 256.89 256.89 915.95 0.000
(X3)2 1 210.76 4.01% 210.76 210.76 751.48 0.000
(X4)2 1 1241.12 23.62% 1241.12 1241.12 4425.26 0.000
(X5)2 1 0.72 0.01% 0.72 0.72 2.56 0.135

Error 12 3.37 0.06% 3.37 0.28

Total 26 5255.38 100.00%

2.4. Electrocoagulation Reactor

The EC experiments were performed by a batch process using a 7 L capacity of
a cylindrical reactor, the configuration (Figure 1) of the electrochemical reactor has a
cylindrical shape, aluminum electrodes were used both for the anode and for the circular
cathode (Perforated plates), we work with a configuration of parallel monopolar electrodes,
with a separation of 1 cm as mentioned in [17–19], and the specific area of each electrode
was 0.014 cm2. Each electrode was 10 cm (diameter) with 10 holes of 10 mm diameter
each, by 0.3 cm (thickness), the number of electrodes used were four. The EC cell was
configured for the vertical water flow of the feed water that was delivered by a peristaltic
pump. Accessory (ACC) power supply was connected (0–15 volts). Before installation in
the EC unit, each plate was weighed to allow the calculation of the mass consumed after
the tests. Each experiment was continued for 60 min, which was considered enough to
achieve a stable operation. Ozone was coupled to the system by means of venturi, the
ozone generating equipment has a capacity of (0 to 3 g O3/h).

All experiments were performed at room temperature (nominally 20 ◦C). After the
seating time elapsed, the samples were removed from a depth of 2 cm using a syringe
and measured using the turbidity meter. The electrodes were cleaned in a solution of low
concentration hydrochloric acid (0.04 M) and another caustic soda solution (0.08 M) to
remove the remains stuck on the surface of the electrodes; they were finally washed with
distilled water for reuse. The arrangement of the electrodes consisted of two cathodes that
were interspersed with two anodes connected by stainless steel rods to other arranged and
then the samples were periodically taken every 10 min for the measurement of turbidity.
The power was supplied to the electrodes with a Direct Current (DC) power supply.

An improvement over other reported works [15,20,21] is the configuration of the ex-
perimental equipment used. In this investigation, an electrocoagulation cell with perforated
circular electrodes has been built. This design allows for improved mixing, longer residence
time for the effluent and ozone. therefore the mechanisms used in this hybrid process are
improved such as sedimentation [15,22]. A disadvantage compared to other configurations
of electrocoagulation cells is the maintenance of the electrodes, which is relatively easy.
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Figure 1. Electrocoagulation and ozone experimental module. (A) Photograph of the experimental
module doing preliminary tests. The sample is fed to tank 1, followed by the sample being pumped
through the flow meter, followed by the Venturi system, dynamic mixer until reaching the electrolytic
reactor, once the system is filled again the sample returns to the tank. (B) Module diagram, where 1 is
the deposit; 2, 3, 5, 6, 8, and 14 stopcocks; 4 recirculation pump; 7 flow meter; 9 Venturi; 10 ozone
generator; 11 dynamic mixer; 12 electrocoagulation reactor and 13 current rectifier.

2.5. The Main Calculations of Electrocoagulation Process

The reduction rate of turbidity, expressed in percentage “T” (%), was calculated using
Equation (5).

T(%) =

(Ti − Tf

Ti

)
× 100% (5)

where Ti and Tf represent initial and final turbidity, respectively. Electrical energy con-
sumption is a very important economical parameter in the electrocoagulation process. The
electrical energy consumption was calculated using the following Equation (6) [23].

C.E. =
U

Vm

∫ 3600

0
I(t)dt (6)

C.E. is the energy consumption (kWh/m3)
U is the applied voltage (V)
Vm is the treated volume of the sample (L).

The integral represents the intensity value multiplied with time in seconds.
The amount of dissolved electrode was calculated theoretically using Faraday’s

law [24], through the following Equation (7).

m =
M
nF

∫ t. final

t. inicial
I(t)dt (7)

m is the aluminum mass (g) in the electrolytic cell
I is the intensity of the current (A)
t is the electrocoagulation time (s), M is the molecular weight of the anode (g/mol)
z is The chemical equivalence, F is the faraday constant (96,500 c/mol)
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(MAl = 26,982 g/mol)
n is the valence of the ions of the electrode material (nAl = 3.0).

3. Results

The results of our experiment are shown below. Complementing the results of Table 3,
the standard deviation has been evaluated with respect to the mean of the percentage of
turbidity removal and Energy consumption whose results are shown in Table 5. Then we
show the physicochemical parameters obtained in Table 6.

Table 5. Standard deviation of percent turbidity removal and energy consumption and Energy consumption.

Response N
Statistical Statistical

Mean
Standard Standard

Minimum Maximum Error Deviation

Turbidity removal percentage 27 56.83 100 86.6033 2.736 14.217
Energy consumption (KW/m3) 27 0.037 1.310 0.503 0.075 0.390

Table 6. Results of the physicochemical characterization of the treated sample.

Parameters Unit Value

pH 8.6
Turbidity NTU 2.8

Chemical oxygen demand mg/L 876
Biological oxygen demand mg/L 485

Oils and fats mg/L <1.2
Ammonia nitrogen NH3+-N mg/L 32.75

Sulfides S = mg/L <0.002
Fecal coliforms NMP/100 mL <1.8

Aluminum mg/L 44.06

3.1. Main Effect of Variables

The main effect plots for the six operating variables are given in Figure 2. The main
effects of the tested variables were calculated by averaging the experiment results achieved
at each level for each variable. This plot was obtained from Table 3 and is used to visualize
the relation between variables and the output response.

Figure 2. The effects of the operating variables on the mean turbidity removal percentage.
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3.1.1. Comparison of Ozonation, Electrocoagulation, and Ozone-Assisted Electrocoagulation

From Figure 3 we observe that for the initial turbidity of 655 NTU of the sample, when
the process is hybrid (electrocoagulation and ozone), a turbidity of 4.19 NTU is reached
(99.36% turbidity removal). In the electrocoagulation process, a turbidity of 18.34 NTU
(97.2%) is obtained and through ozone up to 196.6 NTU (69.98%) is reached, therefore it
is concluded that the hybrid and electrocoagulation process reach yields above 97% for
removal of turbidity. We also observed that the removal of turbidity in the three processes
is achieved in the first 20 initial minutes of treatment. In the work of [25] indicated that
the combined electrocoagulation/ozonation process improved both the degradation rate
and the maximum removal of COD compared to the electrocoagulation and ozonation
processes alone.

Figure 3. Turbidity reduction for separate processes such as pure ozone, electrocoagulation and
coupled process of EC/O3, operated at conditions of 10.0 volts, feed flow 360 L/h, O3 flow 2400 mg/h,
pH 6.89, and initial turbidity of 655 NTU.

3.1.2. Initial pH Effect

From Table 3, trials 1, 4, 10, 20, 24, and 27 have been plotted as they are the most
representative. Then it is observed from Figure 4 that for experiments 1 and 10 the pH of
the sample increases with the treatment time. For experience 27, a pH of 8.21 is reached
and is attributed mainly to the increase in electrical potential (10 volts). When the initial
pH is 7.5 for experiences 4 and 20, the increase is not very significant, reaching a final value
of 8.54. Finally, when the sample has an initial pH of 10.8 in tests 10 and 24, a decrease is
observed, reaching a value of 9.21.

The tannery industry generates effluents with a wide pH range, from pH = 3.5 to
pH = 11; on the other hand, studies show that pH has a significant impact on electrocoagu-
lation performance. The increase in pH is a consequence of the formation of Al3+ which
precipitates due to the presence of other anions, as well as the precipitation of aluminum
hydroxide; however when the pH starts at alkaline, the decrease in pH is the result of the
formation of Al(OH)−1

4 [26].

3.1.3. Effect of Initial Turbidity

According to Figure 5B, a greater reduction in turbidity is observed as the initial
turbidity is less than 1130 NTU, this behavior could be explained because the amount of
flocs formed is sufficient for their adsorption and thus quickly decrease turbidity. This
trend is also deduced from Faraday’s law, which states that Al3+ released to the solution
for the same applied solution is constant [27].
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Figure 4. Variation of the pH in the time of treatment by electrocoagulation/O3.

Figure 5. Representation of the effect of operational variables on % reduction in turbidity, energy
consumed in the electrolytic cell, and operational cost of the module. (A) Variation of the pH
and voltage variables against % turbidity for fixed values of 300 L/h, 752.5 NTU, and 1650 mg/h.
(B) Variability of pH and initial turbidity versus % turbidity for fixed values of 6.5 volts, 300 L/h and
1650 mg/h of O3 flow. (C) pH and feed flow variability versus % turbidity for fixed values of 6.5 volts,
752.5 NTU, and 1650 mg/h O3 flow. (D) Ozone and pH flow variability versus % turbidity for fixed
values of 6.5 volts, 300 L/h, and 752.5 NTU. (E) Variability of initial turbidity and voltage versus
energy consumption in the electrocoagulation cell for fixed values of 300 L/h, 7.4 pH, and 1650 mg/h
of O3 flow. (F) Variability of voltage and initial turbidity against the cost of the built module for fixed
values of 300 L/h, 7.4 pH, and 1650 mg/h of O3 flow.
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The proposed mechanism for the reduction of turbidity by means of the hybrid
system of electrocoagulation and ozone is shown in Figure 6. This consists of destabilizing
the colloidal particles and forming larger flocs, in which the contaminants are trapped
and these flocs can be separated from the solution by flotation or sedimentation [28].
The dissolved air flotation mechanism is effective in reducing the organic load [29] and
dissolved ozone flotation gives efficient results in the removal of suspended solids [30,31].
For soluble contaminants, aluminum-based coagulants can act as catalysts for ozone and
generate hydroxyl formation [22] and also oxidize surface functional groups of colloidal
contaminants that promote colloid aggregation.

Figure 6. Mechanism of hydroxyl formation.

3.1.4. Feed Flow Effect

According to Figure 5C, as the feed flow increases (240 to 360 L/h) there is an increase
in the reduction of turbidity, this could be attributed as the feed flow increases towards
the reactor, there is a greater formation of bubbles, this is influenced by the principle of
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hydrodynamic cavitation that forms in the Venturi tube [32]. As a consequence, the flotation
mechanism predominates to reduce turbidity, this formation of bubbles increases when
working under acidic conditions, forming two phases (80% foam and 20% liquid) [33].
However, this generation of bubbles generates a problem in the electrodes (activation
polarization), generating an increase in voltage and a decrease in electrical current, thus an
increase in energy consumption [34].

3.1.5. Ozone Flow Effect

Ozone flow is one of the factors that has the least influence on reducing turbidity, as
can be seen in Figure 5D. Furthermore, in Figure 2, we observe that the mass flow of ozone
does not have much influence on the removal of turbidity. In [35], mentioned that for the
activation of ozone and its transformation into hydroxide ion (OH−), it is achieved through
electroreduction, which in this case would help in the oxidation either directly or indirectly
to the components present in the effluent (organic matter, nitrates, sulfides, etc.). To oxidize
the sulfur, ozone is an alternative to the traditional ions (Fe2+, O2, etc.), as verified in the
research work [36].

4. Discussion

When evaluating the five operational parameters against the reduction of turbidity
according to Figure 2, it is shown that the factor with the greatest influence is the voltage,
corroborating it in Table 4 of ANOVA due to its greater contribution with respect to the
other parameters. By increasing the potential values from 4 to 10 volts as seen in Figure 5A,
it was possible to increase the percentage of turbidity reduction reaching 56.83% and 100%,
a growing effect in the elimination of turbidity. This originated effect is analogous to those
reported in [37], where they worked at 6, 8.5 and 10 volts, for one hour of treatment on grey
water, reaching a reduction of 68%, 73%, and 86% respectively.

On the other hand, the effect on removal is due to the increase in particle size as a
function of time, studied by [38], where he reported that in a synthetic sample of kaolinite,
the size formed is affected as the voltage and time are increased, allowing the generation of
a higher sedimentation rate of the particles.

This ascending effect of the voltage on the turbidity can also be seen in the report
presented by [39], they worked in the range of 2.9 to 11.7 mA/cm2, for a time of 14 min on
water. residues from car washes, achieving close to a 96% reduction in turbidity. On the
other hand, the work presented by [15], also reported the influence of the applied potential
on turbidity, where they evaluated 4 voltage levels for a period of 15 min such as: 2, 5,
10, and 15 V, achieving a reduction 83% for voltage 2 and 92% for 15 volts; therefore, as
stated [40], the applied voltage is an influential and important parameter. As a main step,
it ensures the production of Al3+ ion coagulants as a result of electrolytic oxidation of the
electrode. Table 7 shows the results.

Table 7. Effect of the applied potential difference on the removal of the turbidity.

Electric Potential (V) Turbidity (%)

2 83
5 90
10 91
15 92

From Table 3 we generate Figure 7 which shows the effect of the process parameters
with respect to energy consumption in kWh/m3. From said figure we observe that the
average energy consumption in the 27 experiments was 0.5 kWh/m3.

In addition, the factor with the greatest influence was the electrical potential applied
to the electrocoagulation cell, as indicated by the diagram, the lowest energy consumption
(0.069) was obtained with the electrical potential at 4 volts and the highest energy consump-
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tion (0.94) was obtained at an electrical potential of 10 volts. Likewise, it is observed that
turbidity has a significant influence on energy consumption at the high level, 0.376 kWh/m3

is consumed, whose value is below the average.
In the study carried out by [15], about the reduction of turbidity and chromium

content in tannery wastewater by electrocoagulation process using aluminum electrodes at
an electrical potential of 10 volts, pH of 6.1, and a time of 90 min. The authors obtained
an energy consumption of 1.5 kWh/m3, which is quite close to that obtained in our
present study.

Figure 7. Effect of process parameters on specific energy consumption.

5. Conclusions

The coupled process of electrocoagulation with ozone was successfully tested in the
treatment of wastewater from a tannery from the riparian zone. Parameters such as applied
voltage potential, feed flow, initial turbidity concentration, pH, and ozone flux were studied
on the percentage of turbidity reduction and energy consumption in the electrocoagulation
cell. It was found that parameters have the greatest influence on turbidity reduction and
the effects separately of each process such as ozone, electrocoagulation and ozone-assisted
electrocoagulation on turbidity.

The result showed that the factor that has the greatest influence on reducing turbidity
is voltage. The present study showed that the coupled electrocoagulation and ozone system
reduced more turbidity than the processes alone. The optimal conditions for the removal
of turbidity, Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD)
were obtained at 10 volts, 7.5 pH, 360 L/h of wastewater recirculation flow, 2400 mg/h of
ozone flow, and 1130 NTU of initial turbidity of the sample in 60 min of treatment. Finally,
under these conditions, a removal of 99.75% of turbidity, 33.2% of COD, and 39.36% of
BOD was achieved. Likewise, the degree of biodegradability of the organic load obtained
increased from 0.467 to 0.553.
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Abstract: Adsorption is a typical method for treating copper-containing wastewater. Fly ash and
steel slag both have a good adsorption performance, and activated clay is added in this study, too. In
this study, the performance of residue and soil adsorption composite (RSAC) particles for copper ion
adsorption was discussed through the substrate ratio and the influence mechanism, to achieve the
win–win effect of industrial waste reuse and copper ion wastewater treatment. The results indicated
that adsorption time, dosage, initial copper ion concentration, coexisting ions, and temperature
showed different effects on the adsorption, respectively. Additionally, the adsorption kinetic study
showed the removal of copper ions by adsorption of RSAC particles was in accordance with quasi-
primary kinetic model and quasi-secondary kinetic model. The adsorption thermodynamics study
shows the adsorption process of ΔG0 < 0, ΔH0 > 0 and ΔS0 > 0, indicating that the process of copper
ion adsorption by RSAC particles was spontaneous, heat-absorbing, and entropy-increasing. The
research demonstrates that RSAC particles have a certain adsorption capacity for copper ion.

Keywords: water pollution; adsorption; copper ions; adsorption mechanism; adsorption kinetics;
thermodynamics

1. Introduction

Water contamination through heavy metal ions is an environmental problem of great
concern [1]. Adsorption is one of the most efficient methods to remove noxious heavy
metal ions, especially for wastewater with large volumes and low heavy metal ion concen-
trations [2]. Adsorption is spontaneous and the basic principle is that the surface energy of
substances could change the concentration at the phase interface. Adsorption usually relies
on some adsorbent materials with a large specific surface area and a high surface energy to
remove heavy metal ions [3,4]. Adsorption has two major advantages: the reaction rate is
fast, and no other reagents are needed. Therefore, adsorption is regarded as an important
and promising method for addressing heavy metal ions such as copper in wastewater.

The key issue of adsorption is the adsorbent. Adsorbents with good adsorption
performance have such qualities as: a fast adsorption reaction rate, stable physical and
chemical properties, good solid–liquid separation, an economical cost, easy recovery and
regeneration, and reusability [5]. However, industrial adsorbents could not meet all of these
qualities. Therefore, the core of the adsorption method focusing on treating wastewater
with heavy metal ions is to find efficient adsorbents at a low cost [6,7].

Currently, common adsorbents in the water treatment domain include activated
carbon, fly ash, etc. Activated carbon has a large surface area, fast filtration rate, stable
structure, large adsorption capacity, a wide range of applications, and good adsorption
performance. However, activated carbon has a short service life, high sludge treatment cost,
and low recycling performance [8,9]. Fly ash, a waste product from power plants that use
coal as the main fuel, has a loose and porous structure. It can intercept pollutant molecules
and bind pollutants to the active sites on the surface by a chemical bond, resulting in
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excellent adsorption [10]. Whereas, Andersson et al. [11] have also considered fly ash a
low-cost material for adsorption. It has been found that steel slag has a good adsorption
effect on copper, nickel and zinc ions, which mainly relies on the generation of hydroxide
complexes [12]. Under optimal conditions, the adsorption efficiency of modified steel slag
for uranium was 98% [13]. Activated white clay is an adsorbent made from clay minerals
by inorganic acidification and other means, and dried by water rinsing. It is mainly made
of bentonite clay as a raw material; its appearance is presented as a milky white powder,
which is a non-toxic, tasteless, odorless, strong adsorption; and it can adsorb colored
substances and organic matter [14]. Bentonite is considered to be an excellent adsorbent for
Cu2+, and the maximum adsorption capacity was 248.9 mg/g [15].

The residue and soil adsorption composite (RSAC) particle consists of solid waste
and natural minerals. The raw materials used in the preparation of RSAC granules are
fly ash, steel slag, activated white clay, bonding agent, and porogenic agents. The main
raw materials are fly ash, steel slag, and activated white clay, the first two of which are
industrial waste substrates [16].

2. Materials and Methods

2.1. RSAC Preparation

The fly ash used in this study was obtained from a power plant in Nanjing, China, and
the steel slag was from a steel mill in Nanjing, China. Table 1 presents the main physical
properties of the fly ash and the steel slag, Table 2 provides the particle size distribution of
the fly ash and the steel slag, and Table 3 provides the chemical composition of the fly ash
and the steel slag as measured by X-ray fluorescence analysis (XRF).

Table 1. Physical properties of waste substrates.

Waste Substrates Density (g/cm3)
Specific Surface

Area (m2/g)
Particle Size (μm) Color

Fly ash 2.91 580 150 or more Grey
Steel slag 2.10 3653 210 or more Brown

Table 2. Particle size distribution of waste substrates.

Fly ash particle size (μm) >3350 3350~880 880~325 325~212 <212

Proportion (%) 7.45 12.76 42.93 23.55 11.87

Steel slag particle size (μm) >1400 1400~180 180~45 <45 -

Proportion (%) 2.49 7.68 32.40 57.36 -

Table 3. Chemical composition of waste substrates (%).

Chemical Composition Fly Ash Steel Slag

CaO 1.31 55.0
Fe2O3 4.39 21.5
Al2O3 45.9 1.51
SiO2 44.4 13.4
MgO 0.261 3.65
MnO 0.026 1.75
SO3 0.666 0.512

V2O5 0.038 0.417
TiO2 1.26 0.296
Na2O 0.094 0.077
ZnO 0.021 -
CuO 0.02 -
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Additionally, the physical properties and the chemical composition of the activated
white clay used in this experiment are presented in Tables 4 and 5.

Table 4. Physical properties of activated white clay.

Ingredients
Density
(g/cm3)

Particle Size
(Through 75 μm Sieve)

Moisture
(%)

Free Acid
(as H2SO4)

Color

Activated
white clay 0.7–1.1 ≥95% 12 ≤0.2% pale

Table 5. Chemical composition of activated white clay.

SiO2 Al2O3 MgO Fe2O3

Content (%) 50–70 10–16 1–6 2–4

The binder used in the experiments was 525R ordinary silicate cement, which has
the characteristics of a slow thickening rate, fast setting, and high strength. It can signifi-
cantly improve the early strength of the composites [17]. The porogenic agent used in the
experiment was a plant-based foaming agent. It is made by a saponification reaction with
rosin and sodium hydroxide as the main raw materials, and it has a light yellow-brown
viscous liquid appearance. The use of a plant-based foaming agent makes the adsorbent
structure lose and porous, which can enhance the adsorption performance of RSPRC parti-
cles [18]. After comprehensive consideration of the adsorption and mechanical properties,
the following substrate proportioning methods were set, which are shown in Table 6.

Table 6. Ratio of base material to binder for different groups (%).

Groups Fly Ash Steel Slag Activated White Clay Bonding Agent

Group I 65 15 10 10
Group II 70 10 10 10
Group III 65 10 15 10
Group IV 60 10 20 10

After the groups of adsorbents were maintained and shaped, static adsorption tests
were performed. The results of the experiments are shown in Table 7 and Figure 1. The
RSAC particle morphology and the residual liquid shape were observed after the comple-
tion of static adsorption experiments.

Table 7. Copper ion removal by different groups of adsorbents.

Groups
Initial Copper Ion

Concentration (mg/L)
Residual Copper Ion
Concentration (mg/L)

Removal Rate (%)

Group I 100 28.92 71.08
Group II 100 31.04 69.96
Group III 100 25.54 74.46
Group IV 100 18.48 81.52

The properties of the RSAC particles in each group were observed after the adsorption
of copper ions. The residuals of Groups I, II, and III were clear, the RSAC particles were not
abnormal, and the hardness did not change significantly. The residuals of group IV were
somewhat turbid, with slight precipitation, the surface of RSAC particles showed signs of
shedding, and the hardness decreased.
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Figure 1. Comparison of adsorption effect of different groups of adsorbents.

Although Group IV had the best adsorption effect on copper ions, it was found that
the residual solution had slight precipitation and the strength of the RSAC particles was
reduced to break easily. On balance, Group III with the second highest removal rate was
selected as the best ratio for the subsequent experiments. The process flow of the pellet is
shown in Figure 2.

Figure 2. Experimental RSAC pellet fabrication process.

2.2. Determination of Copper Ion Concentration
2.2.1. Measurement Methods

The method used for the determination of copper ion concentration was the bisgly-
oxal oxaldihydrazone spectrophotometric method (GB/T 5750.6-2006). The measurement
instrument used was a 752 UV-Vis spectrophotometer, which had a minimum detection
mass concentration of 0.04 mg/L. At pH 9, copper ions (Cu2+) could react with bis (cy-
clohexanone oxaldihydrazone) and acetaldehyde. The reaction product is a purple bis
(acetaldehyde oxaldihydrazone) chelate, and the copper ion concentration is determined
by the relationship between absorbance and copper ion concentration in direct proportion.
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2.2.2. Reagents for Experiments

The reagents for the experiments were: copper sulfate (CuSO4), acetaldehyde solution
(W(CH3CHO) = 40%), ammonium chloride (NH4CI), ammonium hydroxide (NH4OH), am-
monium citrate ((NH4)3C6H5O7), ethyl alcohol (C2H6O), and bis(cyclohexanone)oxaldihyd-
razone(BCO). All reagents were supplied by Sinopharm Chemical Reagent Co., Ltd.,
Nanjing, China. All solutions in these experiments were prepared with analytical grade
water (R = 18 M/cm) using grade A glassware unless otherwise stated.

2.2.3. Determination Procedure

Absorb 25.0 mL water sample in 50 mL glass plug colorimetric tube; another 50 mL
colorimetric tube 5, respectively, adding copper standard solution 0 mL, 0.50 mL, 1.00 mL,
1.50 mL, and 2.00 mL, diluted with deionized water to 25 mL.

Absorbing 2.0 mL ammonium citrate solution, adding each colorimetric tube, mixing
evenly and adjusting pH to 9.0 with (1 + 1) ammonia. Then, 5.0 mL ammonia-ammonium
chloride buffer solution was added and mixed evenly. Then, 5.0 mL BCO solution and
1.0 mL acetaldehyde were added successively. Finally, deionized water was added to the
scale and mixed evenly.

Heat for 10 min in a 50 ◦C water bath, remove, and cool. After cooling to room temper-
ature (standing for 20 min), under the condition of wavelength of 546 nm, the absorbance
of the sample to be tested and the standard series was determined using a colorimetric dish
with an optical path of 1 cm and deionized water as the reference.

The standard curve was plotted with the copper ion concentration of the standard
series as the abscissa and the corresponding absorbance as the ordinate. The correspond-
ing copper ion concentration was determined from the standard curve according to the
absorbance of the water sample to be measured.

The results of the standard series measurements are presented in Table 8.

Table 8. Measurement results for the standard series.

Absorbance A 0.019 0.020 0.374 0.563 0.751

Copper ion concentration (mg/L) 0 2 4 6 8

The standard curve was plotted as shown in Figure 3 and the linear regression equation
(Equation (1)):

y = 0.0914x + 0.016, R2 = 0.9997 (1)

2.3. Copper Ion Removal Effect Examination Index

The adsorption effect of RSAC particles on copper ions is mainly reflected in two
aspects, namely the copper ion removal rate and the adsorption amount. Removal rate (η)
and adsorption amount (Γ) are used in this paper to investigate the copper ion removal
effect and the adsorption performance of RSAC particles, respectively.

η =
C0 − Ce

C0
× 100% (2)

Γ =
(C0 − Ce) V

m
(3)

In Equations (2) and (3), η is the removal rate of copper ions (%), C0 is the initial
copper ion concentration of the solution (mg/L), Ce is the concentration of copper ions
in solution at equilibrium (mg/L), Γ is the amount of copper adsorbed per unit mass of
adsorbent (mg/g), V is the volume of the solution (L), and m is the mass of adsorbent (g).
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Figure 3. Copper ion standard curve.

2.4. Effect of Time on Adsorption

RSAC particles were weighted and divided into five groups: 2, 4, 6, 8, and 10 g.
The groups were put into conical flasks, respectively, with 150 mL of 100 mg/L copper
ion solution. Then, all the samples were mixed at room temperature (25 ± 1 ◦C). The
concentration of residual copper ion in the supernatant of each sample was measured at a
specific time and the relationship was investigated.

2.5. Effect of Dosage on Adsorption

The same samples were prepared and oscillated at room temperature (25 ± 1 ◦C). The
concentration of residual copper ions in the supernatant of each sample was measured
when the adsorption time reached 48 h.

2.6. Study of Initial Concentration on Adsorption

A series of 10, 50, 100, and 150 mg/L copper ion solutions were prepared separately.
Then, a 5 g RSAC adsorbent was added into the solution series. Finally, the copper ion
concentration in the supernatant of each sample was measured when the static adsorption
time reached 2, 6, 12, 24, 48, and 72 h.

2.7. Study of Coexisting Metal Cations on Adsorption

A series of 150 mL of 100 mg/L copper ion solutions were prepared with the coexis-
tence of Na+, Mg2+, Ca2+, and Fe3+, respectively. To each sample 5 g RSAC particles was
added and then mixed at room temperature (25 ± 1 ◦C). The cooper ion concentration in
the supernatant of each sample was measured when the adsorption time reached 48 h.

2.8. Study of Ambient Temperature on Adsorption

Three groups of 150 mL solutions with 10, 40, 80, 120, 160, and 200 mg/L cooper ion
were prepared. To each sample was added 5 g RSAC particles. The three groups were
mixed at 15 ◦C, 25 ◦C, and 35 ◦C separately. To each sample was measured a cooper ion
concentration of the supernatant when reaching adsorption equilibrium.
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The Freundlich and Langmuir models are often used to describe the adsorption
behavior in solid–liquid systems [19]. Therefore, the adsorption isotherms of the Freundlich
and the Langmuir models were plotted using nonlinear fits based on the experimental
results of heavy metal ion adsorption by RSAC particles.

The expression for the Langmuir model equation is (Equation (4)):

qe =
qmaxKLCe

1 + KLCe
(4)

In Equation (4), qe is the adsorption equilibrium adsorption capacity (mg/g), Ce is the
equilibrium concentration (mg/L), qmax is the maximum adsorption capacity (mg/g), and
KL is the Langmuir adsorption constant.

The expression for the Freundlich model equation is (Equation (5)):

qe = KFCe
1
n (5)

In Equation (5), qe is the adsorption equilibrium adsorption capacity (mg/g), Ce is
the equilibrium concentration (mg/L), KF is the Freundlich adsorption constant, and n is a
constant related to the adsorption capacity.

2.9. Kinetic Study of Copper Ion Adsorption by RSAC

Currently, quasi-primary and quasi-secondary kinetic models are often used to de-
scribe the adsorption kinetic behavior of adsorbents in solid–liquid static adsorption sys-
tems [20].

The expression for the quasi-level kinetic model equation is (Equation (6)):

ln
(
qe − qt

)
= lnqe − k1t (6)

In Equation (6), qe is the amount of solute adsorbed on the adsorbent surface at
adsorption equilibrium (mg/g), qt is the amount of solute adsorbed on the adsorbent
surface at the specified moment (t) during the adsorption process (mg/g), and k1 is the
adsorption rate constant (h−1).

The expression for the quasi-secondary kinetic model equation is (Equation (7)):

t
qt

=
1

k2qe
+

t
qe

(7)

In Equation (7), qe is the amount of solute adsorbed on the adsorbent surface at
adsorption equilibrium (mg/g), qt is the amount of solute adsorbed on the adsorbent
surface at the specified moment (t) during the adsorption process (mg/g), and k2 is the
adsorption rate constant (g/(mg·h)).

A 150 mL sample of a 100 mg/L copper ion was prepared and 5 g RSAC particles
were added. Then, the sample was mixed at room temperature (25 ± 1 ◦C). The rest copper
ion concentration was measured at different times to calculate the adsorbed copper ion.
The experimental data of static adsorption of copper ions were fitted to the curve using
quasi-primary and quasi-secondary kinetic models in turn.

2.10. Thermodynamic Study of the Adsorption of Copper Ions by RSAC

The thermodynamic equations are as follows (Equations (8) and (9)):

ΔG0 = ΔH0 − TΔS0 = −RTlnK0 (8)

ln K0 = ΔS0/R − ΔH0/RT (9)

In Equations (8) and (9), T is the thermodynamic temperature (K), ΔH0 is the en-
thalpy change of adsorption (kJ/mol), ΔG0 is the free energy of adsorption (kJ/mol),
ΔS0 is the change in entropy of adsorption [J/(mol·K)], R is the molar volume constant
8.314 J/(mol·K), and K0 is the adsorption partition coefficient, usually taken as the Lang-
muir constant KL. Using the isothermal adsorption experimental data of RSAC particles at
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different temperatures, the adsorption equilibrium coefficient K0 was calculated [21]. A
straight line could be fitted by using the inverse of the temperature 1/T as the horizontal
coordinate and lnK0 as the vertical coordinate for the graph.

3. Results and Discussion

3.1. Adsorption Experiments
3.1.1. Effect of Adsorption Time

The concentration of the residual copper ion in the supernatant of each sample as a
function of adsorption time is shown in Figure 4. The residual copper ion concentration
showed a similar trend for different dosage amounts. At the beginning of the adsorption
reaction (0–12 h), the residual copper ion concentration decreased significantly with the
increasing time; at the middle of the adsorption reaction (12–48 h), the residual copper ion
concentration decreased slowly with time; at the end of the adsorption reaction (48–72 h),
the adsorption equilibrium state was reached. The reason for this trend could be that the
initial adsorption occurs mainly on the surface and in the pores of RSAC particles. In
the initial adsorption stage, there are many active sites on the surface and in the pores
of RSAC particles so copper ions could occupy the active sites rapidly and show the
characteristics of a fast adsorption rate [22]. With the extension of time and the increase of
adsorption capacity, the active sites become fewer [23]. It was also found that there were
large functional groups on the surface of FA and MFA, such as O-H, C=C, and Si-O-Si,
which played a crucial role in the process of adsorption of heavy metal ions [24]. It could be
inferred that the adsorption equilibrium time of copper ions on RSAC particles is 48 h. This
is consistent with the experimental results to explore the optimal ratio of RSAC particles.
Therefore, the adsorption time could be set as 48 h in the subsequent static adsorption
experiments.

Figure 4. Effect of adsorption time on the adsorption of copper ions by RSAC particles.

3.1.2. Effect of Adsorbent Amount

Figure 5 shows the correlation between adsorbent amount and copper ion adsorption.
Firstly, the copper ion removal rate increased continuously with the increase of the RSAC
particle amount, but the slope decreased at the same time. Meanwhile, the adsorption
amount per unit mass of RSAC particles showed a different trend: the adsorption amount
per unit mass of RSAC particles increased at the beginning stage and decreased after
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reaching a specific point with the increase of the adsorbent amount. The two trends
indicated that there was a balance point between efficiency and performance. The amount
aimed best removal rate may lead to inefficient usage of RSAC particles: the adsorption
capacity per mass of RSAC particles was only 1.43 mg/g at 10 g, which indicated that the
adsorption performance of RSAC particles was not fully utilized. The reason may be that
the copper ion removal rate increased because of the increase of RSPRC particle amount,
the increase in contact area, and the increase in the number of adsorption sites [25].

Figure 5. Effect of adsorbent amount on the adsorption of copper ions by RSAC particles.

The adsorption amount of copper ions per unit mass of adsorbent showed a different
trend. This may be due to the fact that when the concentration of copper ions in the
solution is constant and the adsorbent dosage is low, the adsorption sites are not significant
in driving the diffusion and adsorption reaction caused by the atmosphere of copper
ion concentration. With the increase in the dosage, the total adsorption sites provided
to copper ions in the solid-liquid system increased and the adsorption amount per unit
mass of RSPRC particles also increased [26]. Considering economic factors, the dosage of
5 g/150 mL was chosen as a balance point and used in the subsequent experiments.

3.1.3. Effect of Initial Concentration

The relationship between the initial concentration and the residual concentration of
copper ions is shown in Figure 6. The removal rate of copper ions and the adsorption
amount per unit mass of RSAC particles in each sample after adsorption for 72 h is pre-
sented in Table 9. As shown in Figure 6, a high initial copper ion concentration led to a
corresponding steep adsorption curve and a fast adsorption rate compared with a low
initial concentration sample in the pre-sorption stage. This could be attributed to high initial
copper ion concentration providing a sufficient driving force for mass transport, which
could make ions occupy the active site on adsorbents rapidly, facilitating the adsorption of
copper ions by RSAC particles [27,28].
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Figure 6. Effect of initial concentration on the adsorption of copper ions by RSAC particles.

Table 9. Copper ion removal for different initial concentrations.

Initial Concentration
(mg/L)

Removal Rate (%)
Adsorption of RSAC Particles per

Unit Mass (mg/g)

10 91.90 0.28
50 93.58 1.40

100 74.61 2.24
150 53.50 2.41

3.1.4. Effect of Coexisting Metal Cations

Figure 7 shows the relationship between the metal cation concentration and the effect
on the removal of copper ions. The results revealed that the adsorption removal rate
of copper ions by RSAC particles fluctuates in a small range with the increase of Na+

concentration, which indicated that Na+ has a weak competitive behavior against RSAC
particles. The adsorption removal rate of copper ions by RSAC particles decreases with the
increase of Mg2+ and Ca2+ concentration, which indicated that Mg2+ and Ca2+ may have
some effect on the removal rate. The adsorption removal rate decreased significantly with
the increase of Fe3+ concentration, from 74.65% to 62.47%, which indicated that Fe3+ had a
significant inhibitory effect on the adsorption of copper ions.

The experimental results may be interpreted as that metal cations can replace the
original cations in the RSAC particles by ion exchange into the adsorbent surface and pore
channels, affecting the adsorption of copper ions on the RSAC particles by changing the
adsorbent environment [29]. A higher charge number of the metal cation may result in a
stronger ability to replace the original cation [30]. Ion exchange and surface adsorption
may be involved in the adsorption process of copper [31].
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Figure 7. Effect of metal cations on the adsorption of copper ions by RSAC particles.

3.1.5. Effect of Ambient Temperature

The fitted curves at 25 ◦C are shown in Figure 8. The fitting parameters can be obtained
from the adsorption isotherm. It can be observed from Table 10 that the fit coefficients R2

of both Langmuir and Freundlich models are greater than 0.95 at different temperatures,
which indicates that both models could well express the isothermal characteristics of
the adsorption of copper ions by RSAC particles. This also implies that the adsorption
isotherm characteristics of the adsorbent for copper ions could fit two or more adsorption
isotherm models under certain conditions [32]. Based on the Langmuir model, the KL
and the qmax which increase as temperature increases indicates that the intermolecular
binding and the adsorption capacity may increase as temperature increases. Based on
Freunlich model, the low 1/n value indicates that the adsorption process could undertake
easily. Meanwhile, the KF which represents the absorbability increases as temperature
increases [33]. The two models show that the adsorption of copper ions by RSAC particles
is a heat-absorbing process. This could be explained from different aspects. Firstly, the
cooper ion needs the energy to approach the RSAC particles and overcome the resistance
from the liquid film of the particles to reach the internal active sites. Secondly, the physical
adsorption may release heat since the intermolecular force (Van der Waals force) between
adsorbates and adsorbents contributed to the main effect during adsorption, which made
the molecular kinetic energy decrease by releasing thermal energy [34]. Another study
also found that the adsorption process of fly ash involves physical adsorption [35]. In
conclusion, chemisorption is an endothermic reaction while physical adsorption is an
exothermic reaction, and the adsorbed thermal is more than the released thermal, causing
the increase in temperature to promote the adsorption reaction, which is consistent with
previous research conclusions [36,37].
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Figure 8. Adsorption isotherm of copper ions (25 ◦C).

Table 10. Parameters for the adsorption isotherm model fit.

Temp. (◦C)
Langmuir Model Freundlich Model

KL qmax RL
2 KF 1/n RF

2

15 0.138 2.438 0.974 0.737 0.248 0.960
25 0.196 2.633 0.967 0.805 0.253 0.952
35 0.254 2.862 0.954 0.874 0.262 0.956

3.2. Kinetic Study of Copper Ion Adsorption by RSAC

The fitted curves are shown in Figure 9 and the fitted parameters of the two kinetic
models are shown in Table 11. As shown in Figure 9, the adsorption amount of copper
ions by RSAC particles increases rapidly with the increase of adsorption time in the early
stage of the adsorption reaction. The increase of adsorption amount decreases gradually
to almost 0 in the middle and the late stage of the adsorption reaction, which means the
adsorption reaches the equilibrium state. In the preliminary stage of adsorption reaction,
the adsorbent mainly adsorbs copper ions at the solid–liquid interface [38]. After the
preliminary stage, copper ions diffuse from the adsorbent surface to the internal micropores
and lattice, reach and are fixed by the internal surface active-sites, thus the adsorption
rate decreases slowly [39]. Another study found that the adsorption of fly ash involves
both boundary-layer diffusion and intraparticle diffusion [11]. Kai-sung Wang et al. also
found fast surface adsorption was followed by a slow intra-particle diffusion adsorption
of fly ash [40]. The adsorption process of copper ions by RSAC particles can reach the
equilibrium state at 48 h.
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Figure 9. Adsorption kinetic curve of copper ions (25 ◦C).

Table 11. Sorption kinetic model fitting parameters.

Initial Concentration
(mg/L)

Quasi-One Dynamical Model
Quasi-Secondary Dynamical

Model (QSDM)

qe k1 R1
2 qe k2 R2

2

100 2.241 0.0713 0.990 2.640 0.0955 0.993

The R2 of both models is greater than 0.95 and the difference between them is not
significant (Table 11), which indicates that both kinetic models could describe the adsorp-
tion process of copper ions on RSAC particles well. It could be further inferred that the
adsorption process of copper ions on RSAC particles is a mixed control: both surface
diffusion and internal fine pore diffusion are important.

3.3. Thermodynamic Study of the Adsorption of Copper Ions by RSAC

As shown in Figure 10, the intercept and the slope of the straight line were calculated
by ΔS0 and ΔH0; then, we proceeded to calculate the different temperatures of ΔG0, and
Table 12 presents the various thermodynamic parameters obtained. The adsorption free
energy ΔG0 of copper ions adsorbed by RSAC particles at different temperatures is nega-
tive, and the absolute value of ΔG0 increases gradually with the increase of temperature
(Table 12). This indicates that the adsorption of copper ions in solution by RSAC particles is
a spontaneous reaction and the spontaneity increases with the increase of temperature [41].
The enthalpy change ΔH0 during the adsorption of copper ions by RSAC particles is
positive, which indicates that the adsorption process is a heat absorption reaction and
therefore the increase in temperature contributes to the adsorption [42]. As presented in
Table 5, the maximum adsorption capacity of copper ions increases with the increasing
temperature, which also confirms that the adsorption of copper ions by RSAC particles is a
heat absorption reaction.
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Figure 10. Relationship between lnK0 − 1/T for the process of copper ion adsorption by RSAC
particles.

Table 12. Thermodynamic parameters of copper ion adsorption on RSAC particles.

Temp. (K)
qmax

(mmol/g)
KL × 10−3

(L/mol)
ΔG0

(kJ/mol)
ΔH0

(kJ/mol)
ΔS0

(J/mol-K)
R2

288.15 0.0381 8.832 −21.79
22.55 153.89 0.9955298.15 0.0411 12.544 −23.33

308.15 0.0447 16.256 −24.87

4. Conclusions

This study aimed to prepare and to apply RSAC to remove copper ions from wastew-
ater and to discuss the influence mechanism and the microstructure for adsorption by
RSAC particles. One of the more significant findings to emerge from this study is that the
adsorption of copper ions in a solution by RSAC particles is a spontaneous, heat absorption
reaction. The mechanism of copper ion removal by RSAC particles includes an ion ex-
change reaction and chemical precipitation in addition to physical adsorption. The second
major finding is that metal cations can replace the original cations in the RSAC particle ion
exchange, change the environment of the adsorbent, and affect the adsorption of copper
ions on RSAC particles. This study has also indicated that both Langmuir and Freundlich
models can well describe the isothermal characteristics of the adsorption of copper ions
by RSAC particles. Both the quasi-primary kinetic model and the quasi-secondary kinetic
model can describe the adsorption process of copper ions on RSAC particles well. It can be
further inferred that the adsorption process of copper ions on RSAC particles is a mixed
control, and both surface diffusion and internal fine pore diffusion are important.
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Abstract: Heavy metal contamination in water is a major health concern, directly related to rapid
growth in industrialization, urbanization, and modernization in agriculture. Keeping this in view, the
present study has attempted to develop models for the process optimization of nanofiltration (NF)
membrane and electrocoagulation (EC) processes for the removal of copper, nickel, and zinc from an
aqueous solution, employing the response surface methodology (RSM). The variable factors were
feed concentration, temperature, pH, and pressure for the NF membrane process; and time, solution
pH, feed concentration, and current for the EC process, respectively. The central composite design
(CCD), the most commonly used fractional factorial design, was employed to plan the experiments.
RSM models were statistically analyzed using analysis of variance (ANOVA). For the NF membrane,
the rejection of Zn, Ni, and Cu was observed as 98.64%, 90.54%, and 99.79% respectively; while the
removal of these through the EC process was observed as 99.81%, 99.99%, and 99.98%, respectively.
The above findings and a comparison with the conventional precipitation and adsorption processes
apparently indicate an advantage in employing the NF and EC processes. Further, between the two,
the EC process emerged as more efficient than the NF process for the removal of the studied metals.

Keywords: nanofiltration; electrocoagulation; nickel; zinc; copper; heavy metals; water pollution

1. Introduction

Heavy metals are inorganic elements naturally found throughout the earth’s crust [1].
Their concentration above permissible limits is considered pollution. “Heavy metals” refers
to a group of elements with a density greater than 4 g cm−3, including metals and met-
alloids [2]. Industrial discharges, agricultural runoff, storm water, mining activity, and
direct inclusion of sewage/wastewater contribute to the heavy metal pollution load in
fresh water, leading to various health and environmental problems. Among the commonly
reported heavy metals, copper (Cu) is used widely in electroplating, batteries, pesticides,
galvanized pipes, and alloys [3–7]. Regular consumption of copper-contaminated drinking
water may cause stomach upsets, abdominal cramp and diarrhea. Nickel (Ni) is another
metal found widely in water and wastewater. The electroplating industry, rechargeable
batteries, and galvanized pipes are its main sources. High levels of nickel contamination
cause serious lung and kidney problems as well as skin dermatitis and pulmonary fibrosis.
In drinking water, the maximum allowable limit for nickel is 0.1 ppm [8]. Zinc (Zn) is used
in many types of industry, such as metal production, galvanization, food preservation,
agri-food and biological engineering, pharmaceuticals, electronics, mining and metallurgy,
with major contributions coming from electroplating and mining effluents [9,10]. Zinc is not
considered highly toxic but its presence in drinking water if exceeding 15 mg/L is reported
to cause nausea, vomiting and diarrhea [11]. These heavy metals are ingested directly either
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by drinking contaminated water or indirectly through the food chain, and subsequently
affect human health [12–14]. Drinking of contaminated water has been reported to lead
to around 70–80% of the total diseases in developing countries [15,16], where the impact
of increased pollution is particularly problematic because the population at large does
not have sufficient resources to effectively treat the contaminated water or access to safe
drinking water systems at their homes. According to a WHO (2017) estimate, around
844 million people do not have access to a basic drinking water source and 230 million
people spend more than 30 min/day in collecting water from an improved water source,
which may include piped water, boreholes, protected wells and springs, rainwater and
packaged/delivered water [17]. According to the United Nations, an estimated 80% of all
industrial and municipal wastewater in the developing world is released into freshwater
bodies without any prior treatment [18]. Heavy metal removal can be achieved through dif-
ferent physical, chemical and biological methods such as fungal remediation [19], microbial
remediation [12,20], phytoremediation [21,22], adsorption [23,24], flotation, coagulation–
flocculation [25], chemical precipitation or ion exchange [26]; selection between these may
be based on the nature and quantum of the pollution load and merits/demerits of decon-
tamination processes along with other factors. It is noted that removal of heavy metals from
water/wastewater is still an evolving research area, and there is wide scope for case-specific
evaluation, optimization and integration of new and/or available technologies. In this
regard, it has been noted that removal of heavy metals from aqueous solutions, especially
metal-laden water or wastewater displaying high and heterogeneous concentrations is one
of the major challenges. For this, nanofiltration (NF) and electrocoagulation (EC) processes
have been reportedly more reliable than bioremediation in terms of the shorter time taken in
providing near complete removal, ease of setup, and predictability. The primary emphasis
of the present study is to explore the efficiency of removal of Cu, Ni, and Zn by NF and
EC processes from their synthetic aqueous solutions in low to high concentrations. The
selection of these metals for study is based on the findings of a comprehensive literature
review, indicating that these comprise the major constituents in electroplating effluents or
the recipient waters of these effluents.

2. Materials and Methods

2.1. Chemicals, Membranes and Electrodes

The experiments were conducted for the technical evaluation of the NF and EC
processes employing a range of concentrations of metals in aqueous solution based on
the available secondary data on electroplating effluent quality in the literature and also
in the study area [27,28]. All chemicals used in this research were of analytical grade,
and synthetic composite metal solutions were prepared by dissolving the appropriate
mass of each metal in high purity Milli-Q water (18.2 MΩ cm). Copper (III) sulphate
pentahydrate CuSO4·5H2O, nickel (II) sulphate hexahydrate NiSO4·6H2O, zinc sulphate
ZnSO4·7H2O, sodium hydroxide (NaOH), nitric acid (69–72%), sodium chloride (NaCl) and
calcium carbonate extra pure (CaCO3) were all obtained from Merck Specialties Private Ltd.
Quicklime (CaO), nanofiltration membrane (Permionics, Flat Sheet Membrane HFN-300
AR) and stainless steel (SS-304) electrodes were procured from the market as commercially
available. The stated membrane was specifically employed so as to effectively work in both
acid and basic medium. Stainless steel electrodes were used, as they are less susceptible to
corrosion, and have reportedly shown a better performance in earlier studies. The grade of
steel used is reported to not contain Zn, and have very low amount of carbon.

2.2. Experimental Setup and Procedure
2.2.1. Experimental Setup for Nanofiltration

The NF unit was a cross-flow lab-scale system (Nilshan Nishotech Pvt. Ltd., Navi Mumbai,
India). It consisted of a high-pressure pump, feed vessel, flat membrane sheet housing cell, and
a temperature control unit (Figure 1a). The membrane housing cell contained a rectangular
channel. The active surface area of the membrane was 0.0155 m2. Lab experiments were
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conducted by filtering the multicomponent solution with NF membrane. The permeate and the
concentrate streams were recirculated back into the feed tank continuously during experiments.
After the completion of every single experiment, the system was appropriately cleaned by
Milli-Q water. The samples were collected after each experiment.

 
(a) 

 
(b) 

Figure 1. (a) Flat Plate Membrane System. (Control Panel, TN = Temperature Node, P = Pressure
Node, FR = Flow Rate Controller node, TS = Temperature Sensor, PV = Pressure Valve, PS = Pressure
Sensor, FPC = Flat Plate Membrane Cell, HP = High-Pressure Pump, FT = Feed Tank.). (b) Laboratory
scale experimental setup of electrocoagulation unit. (1-AC, power scheme; 2, direct current supply;
3, treatment vessel, consists of anode and cathode in mono-polar mode, magnetic-bead; 4,
magnetic stirrer).

2.2.2. Experimental Set for Electrocoagulation

The electrocoagulation (EC) experimental setup consisted of a DC power supply unit
for constant DC output. The experimental reactor (11.0 cm × 11.0 cm × 15.0 cm) was made of
plexiglass and four mono-polar stainless-steel plates (9.0 cm × 9.0 cm × 0.1 cm) submerged
in the solution as the electrodes (Figure 1b). Plate spacing was 1 cm. The magnetic stirrer
was used to provide proper stirring to maintain the uniformity of the solution throughout
the reactor. Initially, at the start of each EC experimental run, 1.8 L of the synthetic solution
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was put into the electrolytic reaction cell after mixing it with one gm/L electrolyte (NaCl).
The pH of the solution was measured and maintained by adding drops of 0.1 N NaOH and
H2SO4 solution using a pH meter. The current was controlled through the power supply
regulator. Samples were collected at the end of the electrolysis process.

Samples collected after the experiments employing different treatment processes were
digested through the microwave digestion unit (Anton Par) and filtered by 0.42 μ filter
papers. They were further analyzed by inductively coupled plasma mass spectroscopy
(ICP-MS of Agilent). The removal efficiency was determined by calculating the difference
in the concentrations measured by ICP-MS before and after each experiment.

2.3. Preparation of Working Solutions

Metal solutions were prepared by dissolving the appropriate mass of each metal
in high purity Milli-Q water (18.2 MΩ cm), as mentioned earlier. All metal salts were
added sequentially, after the previous metal salt had completely dissolved. Thereafter, the
mixed-metal solutions with different concentrations (ppm) were prepared for each batch
experiment.

2.4. Calculation of Removal Percentage

The removal efficiency of any metal can be calculated using the following equation:

R(%) =
Ci−Cf

Ci
× 100 (1)

where Ci and Cf (mg/L) denote the concentration of the metal before and after the treatment
process, respectively.

2.5. Experimental Design and Optimization through Response Surface Methodology

For mathematical modelling of the process, an empirical approach [29–31] employing
response surface methodology (RSM) was adopted [32–34]. RSM reportedly reduces
systematic errors with an estimation of investigational error and also reduces the number of
experiments [30], requires lesser computer simulations, is more accessible and more efficient
than the other methods based on limited components or computational complexity [31].

RSM based on the central composite design (CCD) was used to examine the efficacy of
the NF membrane and EC processes. CCD helped in arriving at the operational conditions
highlighting the highest removal efficiency scenarios. In the NF membrane process, the
solution pH, pressure, concentration, and temperature were the key factors widely reported
to contribute to the removal of metal ions [35–38] and thus design expert software was
used for the experimental design with a varying range of these factors (Table 1).

Table 1. Factor and range for design experiments of NF membrane and EC.

Code Factors
Coded Level of N.F.

−α −1 0 +1 +α

X1 pH 2.0 4.5 7.0 9.5 12.0

X2 Pressure (bar) 2.5 10 17.5 25 32.5

X3 Concentration (ppm) 2.5 10 17.5 25 32.5

X4 Temperature (◦C) 5 15 25 35 45

Code Factors
Coded level of E.C.

−α −1 0 +1 +α

X1 pH 3.0 4.5 6.0 7.5 9.0

X2 Time (min) 20 40 60 80 100

X3 Concentration(ppm) 2.5 10 17.5 25 32.5

X4 Current (Å) 0.5 1.0 1.5 2.0 2.5
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In the EC process, solution pH, time, concentration, and current were the key fac-
tors [25] widely reported to contribute to the removal of metal ions [39–42] and thus design
expert software was used for experimental design with a varying range of these factors
(Table 1). The initial and final conductivity values were 2.78 and 2.35 mS/cm for the
final optimum condition. The complete design matrix of the NF membrane and EC pro-
cesses obtained after the application of CCD is presented in Supplementary Table S1 and
Supplementary Table S2 respectively, which suggest thirty sets of runs and six centrally
coded level runs for each treatment process.

3. Results and Discussion

In this study, experiments were performed for different combinations of factors for
both processes, as described in the following sections.

3.1. Experimental Performance of NF

The details of the coded variables (X1, X2, X3 and X4), and their response values are
presented in supplementary (Supplementary Table S1).

3.1.1. Statistical Analysis and Modelling by RSM

The NF membrane process responses were studied for the permeate flux and metal
rejections (Zn, Cu, and Ni). The findings of the experimental studies were analyzed
statistically through analysis of variance (ANOVA). Table 2 shows the ANOVA models.

Table 2. ANOVA analysis for the NF membrane.

Source Sum of Squares Degree of Freedom Mean Square F-Value p-Value R2 R2
adj Responses

Model 5816.87 14 415.49 70.29 <0.0001 0.985 0.971 Flux

Model 17,449.52 14 1246.39 12.41 <0.0001 0.9205 0.8464 Zn Removal%

Model 10,360.61 14 740.04 5.07 0.0017 0.8255 0.6626 Ni Removal%

Model 2541.01 14 181.50 19.12 <0.0001 0.9469 0.8974 Cu Removal%

For the above models, Fisher’s test statistic (F-Value) clarifies the scattering of actual
data around the fitted models, while the p-value indicates the significance of the model
terms. The F value of responses suggested that the respective models were significant
regarding the residual error. The p-value of a model lower than 0.05 indicates a significant
model, and higher than 0.10 means an insignificant model. The p-value of all responses
were lower than 0.0001, suggesting that the models are highly significant. The coefficient
of regression (R2) described the system behaviour and the adequacy of the model in the
range of independent variables. The high R2 and adjusted R2 in Table 2 also reveal that the
models are highly significant.

The quadratic regression model equations for NF membrane permeate flux (Y1), Zn
removal (Y2), Ni removal (Y3), and Cu removal (Y4) in terms of coded factors are presented
below as Equations (2)–(5), respectively.

Y1 = +26.75 + 1.84X1 + 12.96X2 + 0.51X3 + 7.08X4 − 1.06X2
1 + 0.51X2

2 + 1.36X2
3 + 3.04X2

4
+ 1.06X1X2 − 0.53X1X3 + 0.82X1X4 + 0.33X2X3 + 2.5X2X4 + 0.77X3X4

(2)

Y2 = +89.32 + 24.78X1 − 1.62X2 − 4.67X3 − 2.82X4 − 6.26X2
1 − 4.22X2

2 − 4.71X2
3 − 3.91X2

4
+ 0.52X1X2 + 1.96X1X3 + 0.67X1X4 − 0.34X2X3 − 1.25X2X4 + 0.23X3X4

(3)

Y3 = +84.38 + 19.27X1 − 2.23X2 − 3.82X3 − 2.17X4 − 0.43X2
1−3.58X2

2 − 3.46X2
3−3.75X2

4
+ 0.61X1X2 + 0.59X1X3 + 0.31X1X4 − 0.52X2X3 + 0.076X2X4 + 0.26X3X4

(4)

Y4 = +92.65 + 8.88X1 − 0.85X2 − 2.02X3 − 1.04X4 − 3.76X2
1 + 0.66X2

2 + 0.47X2
3−0.46X2

4
+ 0.44X1X2 + 1.50X1X3 + 0.31X1X4 − 0.33X2X3 + 0.070X2X4 + 0.27X3X4

(5)
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3.1.2. Response Surface Plots

The response surface plot for the permeate flux of NF is presented in Figure 2. The
observations show an upsurge in the permeate flux simultaneously with the increase in
trans-membrane pressure. It has been well established that permeate flux depends on
pressure and gets amplified almost linearly with increasing pressure [32–36]. The maximum
permeate flux of 59.34 L/m2·h is obtained at the feed concentration of 25 ppm, pH 9.5,
pressure 25 bar, and temperature 35 ◦C, as shown in Figure 2. It is typically theorized
that an increased temperature accelerates the permeate flux due to one or more reasons
such as a decline in solvent viscosity, a rise in solvent diffusion, intensification in the
solvent diffusion coefficient, or a surge in polymer chain mobility [24]. Membrane-solvent
interactions can be expected to differ with a change in solvent properties, like dielectric
constant, molecular size, dipole movements, and Hildebrand solubility parameter. The
rise in temperature also affects structural properties such as pore radius and membrane
thickness, which have shown a much more noticeable impact on membrane performance
in comparison to solvent and solute motilities [37–39]. Experiments have demonstrated a
linear increase in the slope of flux with a rise in temperature, as reported by others [40,41].
Figure 2a shows a direct increase of permeate flux with an increase in trans-membrane
pressure. Figure 2b demonstrates a significant increase in the permeate flux with an increase
in temperature. Water permeation by micropores is an activated process that is absolutely
dissimilar from viscous flow. It should be taken into account that the water molecule is one
of the smallest molecules, having the same range of kinetic diameter (0.29 nm), as helium
(0.24 nm) and hydrogen (0.27 nm). A portion of water molecules gets adequate thermal
energy to cross the energy barrier from the pore wall and passes over the pores, which is
another justification based on the adsorption of water on hydrophilic pore walls. The actual
pore diameter might get reduced by the water adsorbed on pore walls. In such a case, the
adsorbed water layer can be thinner at higher temperatures resulting in the effective pore
diameter becoming more extensive [41].

The separation of metal ions by NF is attained by size exclusion, and electrical interac-
tions between the ions in the feed aqueous solution and the charged NF membranes. The
degree of ionization of these functional groups is a function of the solution pH, which influ-
ences the membrane charge and, therefore, the rejection properties of the membrane [41].
The rejection of Cu, Ni, and Zn ions increased with the increase in the solution pH
(Figure 3a–c). The feed solution pH determines the ion charge in the solution and the
surface charge density of the membranes. The more the pH increases, the more the mem-
brane charge becomes positive, leading to a stronger electrostatic repulsion between the
membrane and the metal ions [35]. Copper hydroxide precipitation starts at pH 5.24, and
the precipitation of the other metals (Zn and Ni) at a still higher pH. At the different pH
values studied, the rejection of copper was higher than for Zn and Ni ions, as reported
earlier [42]. The maximum rejection of Cu, Zn, and Ni was demonstrated as 99.99%,
99.96% and 99.63%, respectively, in the experiments where concentrations ranged between
10–25 ppm and pressure between 10–25 bar. It was observed that the rejection of metal ions
decreased when the concentration of feed solution increased, a common phenomenon for
NF membranes [37]. The increase in concentration in the feed solution apparently generates
a screen formation of cation adjacent to the membrane on the high-pressure side, which
neutralizes the negative charges of the NF membrane. Thus, the total negative charge of
the membrane decreases, and the repulsion between membrane and anion decreases. As a
result, the co-ions (ions with the same charge as the membrane) quickly escape through
the membrane and due to electro-neutrality, the rejection of counter-ions is reduced [8,43].
Figure 3d–f shows a slight decrease in the rejection of Ni and Zn ions with an increase in
feed solution concentration, whereas the rejection of the Cu ions was not much affected.
Temperature and pressure also have not shown much influence upon the rejection of the
metal ions. Overall, the findings of this study are quite in line with some other relevant
studies, as displayed in Table 3.
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Figure 2. RSM plot for permeate flux. (a) Effect of pressure and pH. (b) Effect of temperature and
concentration.

Table 3. Comparison of rejection efficiency of metals ions by NF membrane between this and other
studies in the literature.

Pollutants/Wastewater Type Membrane Metal Rejection/Removal References

Synthetic metal ion solution NF Zn (98.64%), Ni (90.54%), and Cu (99.79%) Current study

Synthetic metal ion solution NF Zn (96.7%), Mg (95.01%), Cd (92.4%), Cu (91.9%), Ca
(91.3%), Ni (90.7%), and Pb (90.5%). [44]

Synthetic metal ion solution NF and FO Cu-(II) 95% and 99% in NF
and F.O., respectively. [45]

Synthetic metal ion solution NF Cu ion rejection was >90% [46]

Synthetic metal ion solution NF Cu (99.82%), As (V) (96.75%), and Cr (97.22%). [47]

Electroplating wastewater NF Ni (88.093%) and Cr (80.271%) [48]

Synthetic metal ion solution NF Ni (93%) [8]

Synthetic metal ion solution NF Cu (100%), Cd (99%), Mn (89%), and Pb (74%) [37]

Synthetic metal ion solution NF Cd (97.26%) and Ni (98.90%) [49]

Synthetic metal ion solution NF Ni (98.94%) and Cd (82.69%) [50]

Note: NF—nanofiltration membrane; FO—Forward Osmosis.
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Figure 3. NF membrane RSM plots for pH and pressure effects on metals ions rejection% efficiency—
(a) Zn ions, (b) Ni ions, and (c) Cu ions; and effect of temperature and concentration on metal ions
rejection% efficiency—(d) Zn ions, (e) Ni ions, and (f) Cu ions.

3.1.3. Multi Response Optimization

The optimization of all input variables was done using the desirability function
approach to arrive at the best response values of the factors Y1, Y2, Y3, Y4. As depicted in
Table 4, at the optimal condition, the predicted response values of factors (Y1, Y2, Y3, Y4)
were observed as 36.9 (L/m2·h), 94.77%, 88.67%, 95.89%, respectively. The average values
of factor responses after three runs, were found to be 41.93 (L/m2·h) for Y1, 98.64% for Y2,
90.54% for Y3, and 99.79% for Y4. All the experimentally derived values are close to the
predicted response values, showing a good correlation (Table 4).

Table 4. NF Optimization of response through RSM.

Optimum Input Variables (Feed Solution) Predicted Responses by RSM Experimental Validation Difference%

Concentration (ppm) 14.24 Flux (L/m2·h) 36.92 41.93 13.58

Temperature (◦C) 25 Zn Removal% 94.77 98.64 4.08

pH 7.84 Ni Removal% 88.67 90.54 2.11

Pressure (Bar) 22.79 Cu Removal% 95.89 99.79 4.07
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3.2. Experimental Performance of EC

The details of the coded variables (X1, X2, X3 and X4), and their response values are
presented in Supplementary Table S2.

3.2.1. Statistical Analysis and Modelling by RSM

The findings of the experimental studies were analyzed statistically through analysis
of variance (ANOVA). Table 5 shows the ANOVA models.

Table 5. ANOVA analysis for the EC process.

Source Sum of Squares Degree of Freedom Mean Square F-Value p-Value R2 R2
adj Responses

Model 10,750.36 14 767.88 6.03 0.0007 0.8492 0.7085 Zn Removal%

Model 13,024.85 14 930.35 9.39 <0.0001 0.8976 0.8020 Ni Removal%

Model 940.48 14 67.18 2.78 0.0293 0.7220 0.4625 Cu Removal%

The F and p values presented in Table 5 indicate that the fitted models are significant.
The values of R2 and adjusted R2 in the Table 5 also reveal the high significance levels of
the models.

The quadratic regression model Equations (6)–(8) for Zn removal (Y1), Ni removal (Y2)
and Cu removal (Y3) in terms of coded factors are given below.

Y1 = +93.51 + 7.05X1 + 10.35X2 − 5.22X3 + 10.69X4 − 0.030X2
1 − 7.46X2

2 + 0.58X2
3 − 6.74X2

4
+ 0.039X1X2 + 4.07X1X3 − 4.70X1X4 + 0.81X2X3 − 0.60X2X4 + 4.38X3X4

(6)

Y2 = +90.88 + 9.06X1 + 12.42X2 − 5.53X3 + 10.75X4 − 2.14X2
1 − 8.60X2

2 + 0.069X2
3 − 7.71X2

4
− 1.75X1X2 + 1.35X1X3 − 4.46X1X4 + 1.01X2X3 + 0.93X2X4 + 2.24X3X4

(7)

Y3 = + 97.05 + 2.00X1 + 3.69X2 − 1.00X3 + 3.06X4 + 0.10X2
1 − 2.19X2

2 + 0.79X2
3 − 1.55X2

4
+ 0.081X1X2 − 0.57X1X3 − 1.25X1X4 + 0.91X2X3 − 0.16X2X4 + 0.32X3X4

(8)

3.2.2. Response Surface Plots

It is well documented in the literature that initial pH is an essential operating parameter
that strongly affects the EC process performance. The pH effect on the removal efficiencies
of metal ions after EC treatment was validated in the experimental observations. Maximum
removal efficiency for Zn (99.46%), Ni (98.14%), and Cu (99.96%) has been observed at pH 6.
Figure 4a–c demonstrates an increase in the removal efficiency with an increase in pH. This
indicates that metal ion elimination decreases in an acidic medium [50]. As reported, in an
intensely acidic medium, the protons in the solution get reduced to H2 gas at the cathode,
and a sufficient number of hydroxyl ions are not generated. The pH of the initial solution
affects the EC process by changing the solution’s physico-chemical properties, such as
solubility of metal hydroxides, electric conductivity, and size of colloidal particles of iron
(III) complexes, which are most reactive agents for metal ions [51]. A slight reduction in
the removal efficiency with the rise in the initial concentration of the metals in solution,
as shown in Figure 4, is attributed to the fact that the amount of dissolved iron from the
electrode may not have been enough to treat the metal ions present in the wastewater. The
higher initial concentration in the feed solution was also reportedly found to significantly
affect the EC process [52].

It was observed (Figure 4d–f) that increasing the constant current substantially reduces
metal ions. The constant current emerged as a crucial parameter in improving metal ion
removal, which may have contributed to the direct current field, and potential electrolysis,
resulting in more release of ferric ions and generating more iron hydroxides, further forming
coagulants for metal removal.
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Figure 4. Electrocoagulation RSM graphs: effects of concentration and pH on removal% efficiency of
metal ions: (a) Zn ions, (b) Ni ions and (c) Cu ions. Effect of current and reaction time on removal%
efficiency of metal ions: (d) Zn ions, (e) Ni ions and (f) Cu ions.

Electrolysis time period plays a vital role in metal ion removal studies along with the
constant current, pH and concentration. The concentration of Zn, Ni, and Cu has been
observed to decrease with an increase in the electrolysis time. The complete reduction of
metal ions was possible at a lower constant current by extending the electrolysis time. It
may be stated that higher metal ion concentration consumes the adsorption ability of flocs
formed, with fewer flocs being accessible for adsorption. Moreover, removal was limited
by the formation rate of flocs of iron hydroxide complexes at the anode surface. It has been
shown (Figure 4) that the minimum reduction was observed at lower electrolysis reaction
times. The present study highlights that both the current and reaction time play a vital role
in the removal efficiency of the EC process. Table 6 reports the results of this study vis-à-vis
other studies reported in the literature on metal removal through EC processes.
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Table 6. Overview of metals ion removal efficiency by EC processes described in the literature.

Pollutants/Wastewater E.C. Process Metal Removal Efficiency References

Synthetic wastewater SS electrode Zn (99.81%), Ni (99.99%), and Cu (99.98%) Current study

Synthetic wastewater Aluminum Electrode Ni2+ and Cu2+ ions% removal efficiency
ranged from 34.56–100%

[53]

Electroplating Industry
wastewater Aluminium plates Ni (99.75%) [54]

Mine wastewater Iron Electrodes Co (99%) Ni (97%), Zn (99%), Cu (97%),
and Cd (99%). [55]

Smelting wastewater Iron Plates Zn2+, Cd2+, and Mn2+ removal efficiency
99.93%, 97.15%, and 85.46% respectivilty

[40]

Synthetic Smelting
Wastewater Fe electrode Zn2+, Cd2+, and Mn2+ removal efficiency

99.5%, 99.9%, and 55% respectively.
[56]

Metal Plating Wastewater Iron (carbon steel) plates Cu2+, Cr3+, Ni2+, and Zn2+ over 97% [51]

Waste Fountain Solution Aluminium and Iron electrode Ni (>95%), Cu (>95%), and Zn (>80%) [57]

Metal Plating Effluent SS Electrode Ni (100%) and Zn (100%) [58]

3.2.3. Multi Response Optimization

For the EC System, the predicted response values of the factors (Y1, Y2, and Y3)
were obtained as 101.50%, 94.452%, and 98.866% under optimal operating conditions.
Input variables of current and time are the dominant factor in reaction conditions, so the
predicted response value shows a higher value. After three experimental runs, the average
response values of Y1, Y2, and Y3 were 99.81%, 99.99%, and 99.98%, respectively. All the
experimentally attained values are quite close to the predicted response values and show a
good correlation (Table 7).

Table 7. EC Optimization of response through RSM.

Optimum Input Variables (Feed Solution) Predicted Responses by RSM Experimental Validation Difference%

pH 7 Zn Removal% 101.50 99.81 1.67

Time 60 Ni Removal% 94.45 99.99 5.86

Initial Conc. (ppm) 24.923 Cu Removal% 98.86 99.98 1.13

Current (Å) 1.912 – – – –

3.3. Comparison with Chemical Precipitation and Adsorption Processes

Chemical precipitation is a commonly used treatment process for the removal of heavy
metals from industrial wastewater because it is relatively inexpensive and easy to operate.
This process involves the precipitation of heavy metals in the form of hydroxide and
sulfide. Hydroxide precipitation depends on pH adjustment (9–11) to basic conditions [58].
The metal ions dissolved in the solution are precipitated into the insoluble solid phase
as metal hydroxide through the chemical reaction when quicklime (CaO) is employed
as a precipitant. Yet another common treatment process viz., adsorption, on the other
hand, is a mass transfer process involving the migration of the metal ions (adsorbate) from
the wastewater to a solid surface (adsorbent, commonly CaCO3) and binding through
physical (weak Van der Waals force) and chemical (strong covalent bond) adsorption
mechanisms [59,60]. With an idea to compare the performance of NF and EC processes
with the above-stated routine ones, the present study employed concentration, contact
time, and dosing amount as operational variables for the conventional chemical treatment
process employing CaO and CaCO3. Twenty experiments were conducted for each process
and Table 8 provides details of the experimental design.
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Table 8. Factors and Range of Design for CaO and CaCO3.

Factor Name Units Low Actual High Actual Low Coded High Coded

A Conc. ppm 10.00 25.00 −1.000 1.000

B Contact Time Minute 30.00 90.00 −1.000 1.000

C Dosing Amount g/L 4.00 8.00 −1.000 1.000

In CaO precipitation, the removal efficiency of the process was quite high for Zn,
Ni, and Cu ions, as expected and as indicated by the results in Table 9 However, under-
standably, there are also many demerits in this process. It requires a large amount of
chemical precipitant and produces a considerable amount of low-density sludge due to the
poor settling properties, duly followed by further dewatering and disposal issues [60,61].
Aggregation of metal precipitates also has long term environmental impacts. Treated water
also has a very high pH (10–12), so it cannot be further used in industrial process and
requires treatment.

Table 9. Removal% Efficiency of Conventional (CaO and CaCO3) vs. EC and NF processes.

S.N.
Elements

Name
Unit

CaO
(Maximum)

CaCO3

(Maximum)
EC

(Maximum)
NF

(Maximum)

1 Zn Removal % 99.72 99.82 99.46 99.96

2 Ni Removal % 99.96 43.46 98.14 99.63

3 Cu Removal % 99.99 99.99 99.96 99.99

Regarding the CaCO3 adsorption process, the results presented in Table 9 indicate that
the removal of Ni ions is not as efficient as for Cu and Zn ions. In the adsorption process,
generated sludge needs to be separated from the solution and requires regeneration or
labelling as a hazardous waste due to the strong possibility of leaching out of metals ions in
the environment, while needing post-treatment sludge management. Van der Waal forces
are very weak to strong for different adsorbents, due to which the process is unable to
deliver promising results [62–64].

NF process lies between ultrafiltration (UF) and reverse osmosis (RO). Designed to
separate contaminants smaller than 10 nm, it emerges as one of the exemplary processes
for eliminating dissolved metals ions from wastewater. The leading gains of this process
are higher removal efficiency, reliability and easy operation, lesser space requirement, and
relatively lower energy requirement [60,63,65]. Table 9 shows an outstanding rejection rate
for metals ions from this study.

The EC process is also widely recognized as an effective treatment method for elim-
inating heavy metal ions from industrial wastewater. It does not require any additional
chemicals because the electron is a crucial reagent in the process. EC is considered a rapid
and well-controlled technique, provides good reduction yield, produces less sludge, has
the potential of metal recovery, requires less labor, can save significant energy, and is eco-
friendly [57,59]. Table 9 shows an excellent metal ion reduction in the present experimental
work.

4. Conclusions

The present study examines the removal efficiency of heavy metals (Cu, Ni, and Zn)
in a mixed aqueous solution in a batch mode through a nanofiltration (NF) membrane and
an electrocoagulation (EC) process and compares it with conventional chemical treatment
processes. Solution pH is seen to significantly affect the removal efficiency in both the
NF and EC processes. The highest permeate flux of 59.34 L/m2·h was observed at the
experimental condition of pH 9.5, pressure 25 Bar, concentration 25 ppm and temperature
35 ◦C in NF process. The rejection rate of Zn, Ni and Cu was demonstrated as 95.32%,
94.98% and 96.93%, respectively. A marked synergistic effect of temperature and pressure
has been observed, which increased the flux to a high value. The EC process has shown
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a maximum removal of Zn (99.46%), Ni (98.14%), and Cu (99.87%) at the operational
conditions viz., pH 6, time 60 (min), concentration 2.5 ppm, and current 1.5 Å. The results
for the EC process indicated that a lower concentration and approximately neutral pH
helped the system to reach its full potential. Overall, both NF and EC processes have
shown excellent removal for all the studied metal ions and the outcome of the experiments
described above projects them as promising solutions in comparison to conventional
chemical treatment approaches.
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Abstract: Domestic water plays a growing role with the unprecedented economic development
and rising urbanization. The lack of long-term evaluation of domestic water usage trends limits
our understanding of the relationship between domestic water usage and economics. Here, we
present a pragmatic approach to assess the long-term relationship between domestic water usage
and economics through historical data of the last 100 years from 10 typical countries to establish an
evaluation method for different economics. The relationship between domestic water usage and GDP
per capita was described as an expanded S-curve model and the mathematical modeling was derived
to simulate this relationship for four typical countries as case studies. The simulation results show
that the expanded S-curve of different countries can be calibrated with three key points: takeoff point,
turning point, and zero-growth point, and four transitional sections: slow growth, accelerated growth,
decelerated growth, and zero/negative growth, corresponding to the same economic development
level. In addition, other factors influencing domestic water usage are also discussed in this research,
including urbanization, industrial structure, and technical progress. We hope to provide a case study
of an expanded S-curve as a foundation for forecasting domestic water usage in different countries or
in the same economy at different developmental stages.

Keywords: expanded S-curve model; domestic water usage; economic development; mathematical model

1. Introduction

As an essential resource for human development, water is required throughout the
life-cycle processes of all of society. In the context of unprecedented economic development
and rising urbanization, water usage (i.e., withdrawal) by humans has increased from
500 km3yr−1 to nearly 4000 km3yr−1 over the last century, with an annual increase rate
of 1.5% between 1960 and 2010 [1,2]. This increasing water usage has aggravated water
scarcity, affecting more than 2 million people globally. In addition, it is predicted that more
than half of the global population will live in regions suffering from at least moderate water
shortage by 2050 [3,4].

Among global water usage, the principal user of water is in the agriculture sector,
accounting for 70% of total water usage, with the remaining part being attributable to the
industrial sector and domestic sectors [5]. The global domestic water demand is projected
to see a 130% increase by 2050, which is much faster compared to other water sectors [6].
Therefore, with economic development, domestic water will play a major role in total water
usage in the near future. A long-term evaluation of domestic water usage trends could
provide references for policymakers, and is emerging as a paramount issue for efficient and
sustainable management of water resources [7].
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A series of studies has been conducted on the evaluation of water usage trends, based
on different theories and methodologies. These published studies were performed based
on two integrated criteria: drivers and approaches. The first one investigated water-usage
drivers in a short timeframe. Domestic water usage is considered to be related to a series
of drivers, including economic, climate, population, water price, and policies. Zhou et al.
quantified socioeconomic drivers, such as urban population and service GVA, to investigate
the key drivers of water changes [7,8]. Manouseli et al. considered climate change as a factor
affecting domestic water [9,10]. Meng et al. proved the significant relationship between
regional GDP, population, and water consumption [11]. Suarez-Varela modeled the linear
relationship between water usage and water price [12]. Bijl et al. described the GDP per
capita, population, and water withdrawal efficient as synthetic factors for domestic water
change [13]. Among these factors, the investigation of long-term drivers was constrained
by the lack of continuous data, except for the economic drivers, which could be traced
back to 1900 by the World Bank [14]. The second one is the investigation of approaches.
These approaches can be divided into two types, namely, single-equation models and
hybrid models. Single-equation models include the linear regression model [10], whale
optimization algorithm [15], artificial neural network [16], pseudo-panel approach [8], and
so on. Hybrid models are driven by macroscale socioeconomic activity to simulate water
use in specific regions. Hybrid models include IMAGE (Integrated Model to Assess the
Global Environment) in IMAGE regions [17], QUAIDS (Quadratic Almost Ideal Demand
System) models in Spanish [12], and IUWM (Integrated Urban Water Management) in
Australia [18]. Therefore, a universal and long-term evaluation of water-usage trends is
still missing, and a new approach should be introduced.

In this research, we adopted the expanded S-curve model to assess the long-term
relationship between water usage and economics, which are presented by domestic wa-
ter usage per capita (DWPC) and GDP per capita, respectively. The S-curve model has
been widely used in mineral and energy resource evaluation. The S-curve pattern was
first proposed by French mathematician Verhulst in 1838 for the description of biological
population [19], and was employed by Wang et al. [20] and Gao et al. [21] to quantify
the relationships between economics and energy and steel, respectively. Besides, in the
water-usage studies by Zuo [22] and Florke et al. [23], the S-curve pattern was also used as
country curve qualitatively. Here, water-usage data from 10 typical countries and regions in
the last 100 years are described through the relationship between domestic water usage and
GDP per capita, and the key points and transitional sections are identified in the expanded
S-curve model. Other factors affecting domestic water usage are also discussed.

2. Material and Methods

2.1. Data and Key Drivers

This study first collected a vast amount of data about domestic water resources from
17 typical countries from 1950 to 2020 according to the publicly available data. The water
data in this research are mainly from three parts. Firstly, the global water-related database
with free access was established in AQUASTAT by the Food and Agriculture Organization
of the United Nations (FAO) and the water databases in the World Bank Open Data [5,14].
It should be noted that national water-use records were conducted every 5 years or longer,
and most of the water records could only be traced to 1960 or later. Secondly, a few of the
detailed water-use categories were collected from national statistical offices, such as the U.S.
Geological Survey (USGS) and the Eurostat and German Association of Energy and Water
Industries [24–26]. Thirdly, a series of published literature reviews and statical surveys
about water use were consulted. Gleick [27] and Shiklomanov [28] tried to conduct an
adequate data survey for the World’s Water Report and USA water data. Florke et al. used
the WaterGAP 3 model for back-calculating water-use data on a global scale [23]. However,
many historical records on domestic water use were incomplete or discontinuous, as shown
Figure 1, for the primary selection of 17 countries. The relationship between water usage
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and economic development is shown as the domestic water per capita (DWPC) and GDP
per capita to offset the regional disparity.

 

Figure 1. Relationship between GDP per capita and DWPC for (a) South Africa and Brazil; (b) Spain,
Poland, Greece, Romania, and Mexico; and (c) all 17 countries.

Figure 1 shows the collected domestic water data from 17 countries, including Japan
(JP), China (CN), the United States (USA), Spain (ES), France (FR), the United Kingdom
(UK), Poland (PL), India (IND), Indonesia (ID), South Africa (ZA), South Korea (KR),
Greece (GR), Romania (RO), Germany (GER), Brazil (BR), Mexico (MX), and Canada (CA).
However, several countries showed poor data availability. South Africa and Brazil, as
shown in Figure 1a, showed a C-type curve, meaning that the water usage was reduced
during economic recession and increased during economic recovery. Spain, Poland, Greece,
Romania, and Mexico showed an entangled type, showing that the water usage drastically
changed during economic transition. These 7 countries with cluttered data were excluded
and the remaining 10 countries were collected as our research objects.

To get consistent and long-term DWPC data, the relationship between urbanization
rate and DWPC was derived first, and changes in water-usage intensity were expressed as
urbanization rate change due to the observation that as urbanization rate increases, water
users in a more urban population trend toward a more water-intensive lifestyle. After
the maximum level was reached, DWPC was either stable or declined with the increasing
urbanization rate. The relationship between urbanization rate and DWPC is shown in
Figure 2. Instead of using solely regional curves to estimate past DWPC, the current data
model version was derived for 9 countries. Germany was an exception due to the lower
DWPC, so the DWPC with urbanization between 20% and 60% in Germany was derived
from its original data. Where data availability was missing with an urbanization of between
20% and 60%, the available information was combined in order to allow for the fitting of a
simulating curve to the historical data, as shown in Figure 2.
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Figure 2. Relationship between urbanization and DWPC.

The urbanization data could be traced back to 1900 and the relationship between
urbanization and DWPC was simulated as three different models in Table 1, with the
R-squared above 0.85. In addition, the corresponding models for applicable countries were
listed according to the trends of the curves after urbanization above 60%, as shown in Table 1.
When the urbanization was acquired, the DWPC could be derived with corresponding
models.

Table 1. Simulated models between urbanization and DWPC.

Model Fitting Curve
(R-Squared)

R2 Applicable Countries

Model 1 y = 0.0208*x2.1216 0.8908 USA, CA
Model 2 y = 0.49617*x1.22812 0.8689 KR, IND, IN, UK
Model 3 y = 48.314ln(x) − 128.18 0.8743 JP, FR, CN

Therefore, the long-term trends between DWPC and GDP per capita during 1900 to
2020 are shown in Figure 3 for 10 countries. It should be noted that the DWPC shown in
Figure 3 is adjusted data, which were derived from the urbanization. Consequently, the
DWPC is somewhat higher or lower than the observed data.

Figure 3. Relationship between GDP per capita and DWPC for 10 typical countries.

2.2. Mathematical Modeling of the Expanded S-Curve

The expanded S-curve model illustrating the relationship between DWPC and GDP
per capita offers a tool to identify critical transitions from one stable state to another during
economic development. A mathematical technique is employed to describe the expanded
S-curve model. According to the expanded S-curve in previous studies [20,21,29], the
relationship between DWPC (W) and GDP per capita (G) can be expressed as follows:

W − Wi = A
exp[α1(G − Gi)]− exp(−α3(G − Gi))]

2cos h[α2(G − Gi)]
(1)
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where α1, α2, and α3 are the exponential constraints, and A is the amplitude of the equation.
Wi and Gi are the corresponding turning points on the expanded S-curve for DWPC and
GDP per capita, respectively. Equation (1) is expressed as a hyperbolic tangent function.

Then, the linearity changes before the takeoff point, around the turning point, and
after the zero-growth point are derived from Equation (1) as Equations (2)–(4).

W − Wi = A + A(α2 − α3)(G − Gi) = A + ρl(G − Gi) (2)

W − Wi = 0.5A(α1 + α3)(G − Gi) = ρi(G − Gi) (3)

W − Wi = A + A(α1 − α2)(G − Gi) = A + ρv(G − Gi) (4)

where ρl, ρi, and ρv are the slopes of the curve before the takeoff point, around the turning
point, and after the zero-growth point, respectively. They can be calculated from the
systems of Equations (5)–(7):

α1 =
ρl + 2ρi + ρv

2A
(5)

α2 =
ρl + 2ρi − ρv

2A
(6)

α3 =
−ρl+2ρi − ρv

2A
(7)

Equation (1) has a first-order partial derived from 0 at the zero-point of the S-curve:

tanh[α1(Gv − Gi)]tan h[α2(GV − Gi)] = α1α−1
2 ,

dW
dG

= 0 (8)

By substituting Equations (5) and (6) into Equation (8), Equation (9) can be obtained

tanh
(

ϕ1 A−1
)

tanh
(

ϕ2 A−1
)
= ϕ3 (9)

where
ϕ1 = 0.5(ρl + ρi + ρv)(Gv − Gi) (10)

ϕ2 = 0.5(ρl + 2ρi − ρv)(Gv − Gi) (11)

ϕ3 =
ρl + ρi + ρv

ρl + 2ρi − ρv
(12)

In summary, the Wi, Gi, ρl, ρi, and ρv were from research data, and the A, α1, α2, and
α3 were from the equations.

3. Results

3.1. Expanded S-Curve in Typical Developed Countries

According to the universal equation, the expanded S-curve equations of the DWPC
were established for four typical countries as Equations (13)–(16), which were the US, Japan,
UK, and France, respectively.

(1) US

W = 170 + 181 × exp[0.000311 × (G − 11,500)]− exp[−0.0000872(G − 11,500)]
2 cosh[0.000088(G − 11,500)]

(13)

(2) Japan

W = 95 + 90 × exp[0.0000338 × (G − 11,000)]− exp[−0.0000668(G − 11,000)]
2 cosh[0.0000673(G − 11,000)]

(14)

(3) UK

W = 120 + 30 × exp[0.000395 × (G − 13,000)]− exp[−0.000311(G − 13,000)]
2 cosh[0.000395(G − 13,000)]

(15)
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(4) France

W = 90 + 35 × exp[0.00000763 × (G − 12,000)]− exp[−0.000825(G − 12,000)]
2 cosh[0.000178(G − 12,000)]

(16)

Figure 4 gives the expanded S-curve simulation for these four typical countries.

 

Figure 4. Expanded S-curve simulation of DWPC and GDP for (a) the United States (b) Japan,
(c) France, and (d) the United Kingdom.

The changing trajectories of DWPC with GDP per capita in these countries generally
experienced three stages.

For the US in Figure 4a, the first stage was before the GDP per capita of USD 6500 in
1930 during Great Depression, and its economy sequence entered a special period with
a winding curve until World War II. The DWPC maintained a flat trend during the first
stage. In the second stage, the DWPC in the US kept growing to a high level of 230 m3

in 1990, with a GDP per capita of USD 20,000. After the GDP per capita of USD 35,000 in
2000, the DWPC started to decrease due to technology improvement, with the wide use of
dishwashers and water-saving toilets. The efficiency improvements dramatically reduced
the water usage.

Japan, in Figure 4b, showed a similar evolution pattern. The DWPC decreased dis-
tinctly during World War II in 1940s with a GDP per capita of around USD 2500, and it
dropped to 32 m3 with an annual decreasing rate of 7%. Then, with the post-war construc-
tion in 1950 with GDP per capita around USD 3500, the economic development model
enabled Japan to enter a rapid development process of urbanization. From 1990 to 2000,
after 40 years of linear growth, the DWPC in Japan peaked at approximately 120 m3 with a
GDP per capita of USD 20,000. After 2000, more efficient appliances and fixtures contributed
to significant reductions in DWPC in Japan, with the same reduction trends in US.

France’s and Britain’s economic development was similar to that of US and Japan in
the first stage, as shown in Figure 4c, d. They were stagnant for a long time after World
War I and World War II before the 1950s. Meanwhile, the DWPC showed stationary trends
until 1950. Then the DWPC in these two countries developed differently. For France, the
DWPC showed no variation around 65 m3 until 1970, with a GDP per capita of USD 11,000.
Then it started to experience a slight increase due to the soaring urbanization rate. In the
third stage, the DWPC in France diminished from 106 m3 after 2000 with a GDP per capita
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of USD 20,000 due to the application of water-saving machines on a large scale. The DWPC
variations in UK were directly related to the evolution of water bureau management, which
was further propelled by urbanization development. In the late 1960s with a GDP per capita
above USD 10,000, the DWPC increased from 113 m3 with the increasing urbanization rate
and population, and the management framework of water in the UK was optimized to
improve the water efficiency. So, from 1970 to 1990, with a GDP per capita of between USD
11,000 and USD 18,000, an increase in the DWPC of between 115 m3 to 138 m3 was evident
in the UK. In 1980s, with the stagflation in economics, the UK government published the
Government White Paper on Privatization of Water Industry in 1986 and the top 10 water
industries in the UK completed the privatization in 1989, which led to an increase in water
prices and a decrease in DWPC in the 1990s with a GDP per capita of above USD 18,000 [30].

3.2. Implication of the Expanded S-Curve Model

According to the correlation analysis of the increase in DWPC and GDP per capita in
Sections 2.2 and 3.1, we can conclude that the expanded S-curve can be calibrated with
three key points, which are the takeoff point, the turning point, and the zero-growth point.
Meanwhile, the long-term DWPC trends with GDP per capital were also divided into four
stages according to the growth rate transition, including slow growth, accelerated growth,
decelerated growth, and zero/negative growth. Figure 5 shows the key points and stages
of the S-curve, and the points for each country are summarized in Table 2.

Table 2. Key points of expanded S-curve for each country (1990 GK in USD).

Country
Takeoff Points

GDP per Capita
Turning Points
GDP per Capita

Zero-Growth Points
GDP per Capita

US 4000–4200 10,100–11,500 20,000–22,000
UK 4500–4800 12,000–13,000 17,000–18,000

France 3500–3800 12,000–13,000 19,000–20,500
Japan 3000–3500 10,000–11,000 22,000–23,000
China 2000–2500 11,000–12,000 –

Germany 3200–3800 11,000–12,000 18,000–19,000
India 1500–1800 – –

Indonesia 2300–2500 – –
Canada – – 19,000–21,000

South Korea 3000–4000 10,000–12,000 18,000–20,000

The takeoff point is the starting point for the accelerated growth in DWPC in the range
of USD $1500–5000, implying an adjustment of agriculture society to industrial society with
the economic boom. Before this takeoff point, the DWPC was in the slow-growth section.
The takeoff points for developed economics, such as the UK, the USA, France, and South
Korea, occurred after USD 3000, whereas for developing economies, such as India and
China, it occurred between USD 1500 and USD 2500. The turning point made an adjustment
period of an industrial structure in the process of industrialization, with a GDP of USD
10,000–USD 13,000 for the researched countries without diversity. After the turning point,
the growth rate in the DWPC transited from accelerated growth to decelerated growth until
the zero-growth point. The zero-growth points were concentrated around USD 17,000–USD
22,000, which indicates that the DWPC entered a zero-growth or slow-decline stage. This is
also consistent with the post-industrial stage [20], when the living standards were improved
substantially to promote the technical progress of water-saving facilities.
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Figure 5. Three key points and four stages with different growth rates of the expanded S-curve.

4. Causes for the Changes in Domestic Water Usage

The expanded S-curve model describes the effect of economics on domestic water
usage; however, domestic water-usage changes also have a close connection with industrial
structure, urbanization, and scientific–technical progress, which were also promoted by
economics. The relationship between tertiary industry proportion, urbanization, DWPC,
and GDP per capita for these 10 typical countries is summarized in Figure 6. The tertiary
industry proportion in Figure 6a and urbanization in Figure 6b both present a similar
regularity with GDP per capita, with accelerate growth before a GDP per capita of USD
10,000, decelerated growth between a GDP per capita of USD 10,000 and USD 13,000, and
peak value around a GDP per capita of USD 20,000, which is consistent with the DWPC in
Figure 6c.
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Figure 6. Relationships between GDP per capita and (a) tertiary proportion, (b) urbanization, and
(c) tertiary proportion of GDP.

In order to clearly characterize the relationship between these factors, a schematic
diagram was established in Figure 7. The three key points of the expanded S-curve were
annotated, and the corresponding turning points of tertiary industry proportion and
urbanization were also calibrated to compare the corresponding relations.

4.1. Urbanization

The urbanization rate represents the population structure, which has a significant
effect on the DWPC. According to previous study, water users in a more urban population
in the first trended toward a more water-intensive lifestyle with increasing urbanization
rate [13,31,32]. Chen et al. tested the urbanization factor in promoting the DWPC by
LMDI [33,34]. The urbanization rate and DWPC showed a positive relationship with
conformal key points, as seen in Figures 1 and 7. The urbanization rate can be divided into
three stages: It rapidly grew from an urbanization of 20% to 70% before GDP per capita
reaches USD 10,000, and then the growth rate decelerated until urbanization reached 80%
and the GDP per capita reaches USD 20,000. After this stage, the urbanization was generally
saturated, with a stable trend. The turning point for DWPC also occurred between USD
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10,000 and USD 13,000, as seen in Figure 7, which is consistent with urbanization. Therefore,
we can arrive at the conclusion that urbanization could accelerate domestic water usage.

 

Figure 7. Relationship between key points of expanded S-curve and important indicators of economic
and social development.

4.2. Industrial Structure

Domestic water is used in the tertiary industry for urban households, rural households,
and commercial service [5,14,24]. As the tertiary industry proportion increases, the urban
infrastructure and commercial service would be enhanced with economic development,
resulting in an increasing trend in the DWPC. During the industrialization and post-
industrialized era, the tertiary industry proportion showed a linear increasing shape. This
rapid increasing trend discontinued until a GDP per capita of USD 10,000. Then, it entered
a slowly increasing stage between a GDP per capita of USD 10,000 and USD 15,000. The
peak of the tertiary industry proportion was around USD 20,000, coinciding with the
zero-growth point of the expanded S-curve of DWPC in Figures 6 and 7.

4.3. Technical Progress

The technical progress was usually promoted by the economic development, and it
can be considered a main driver for water-usage change [35]. Figure 8 shows the indoor
DWPC subsectors for the US and Japan. The indoor DWPC can be divided into five parts,
and showers accounted for the greatest share for the US in Figure 8a and toilets account
for the greatest share for Japan in Figure 8b. Besides, the shares for kitchen (mainly for
dishwashers), clothes washers, and others were also substantial. Between 1990 and 2016,
there was a statistically significant reduction in DWPC for toilets in both the US and Japan.
According to previous studies, the declines are easy to understand due to the wide use of
water-saving toilets. In addition, the increasing the efficiency of fixtures and appliances
significantly reduced the amounts of clothes washers and kitchen use. Therefore, the
reduction of DWPC after 2000 for most causes could be partly attributed to technological
progress.
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Figure 8. DWPC subsector proportions in (a) the US and (b) Japan.

5. Conclusions

In this paper, we focused on the evaluation of long-term domestic water-usage trends
with economic development from typical countries. The relationship between domestic
water usage and socio-economic developments on a country scale for the time period from
1900 to 2020 in 10 typical countries was demonstrated. The simulation results show that
with the growth in GDP per capita, domestic water per capita showed an expanded S-curve
of ‘slow growth–rapid growth–zero growth, or even negative growth, with three key points,
which were the takeoff point, turning point, and zero-growth point, respectively. The
takeoff point of the expanded S-curve was located at a GDP per capita of USD 1500–USD
5000, according to the different development levels. The turning point was located at a
GDP per capita of USD 10,000–USD 13,000, and the zero-growth point was concentrated
around a GDP per capita of USD 17,000–USD 22,000, consistent with the post-industrial
stage. Besides, the urbanization was proven to accelerate domestic water usage, and the
higher tertiary industry proportion of GDP enhanced the domestic water-usage trends.
The decreased water usage was attributed to technological progress, with widely used
water-saving appliances.

The results of this research show that the expanded S-curve is applicable to the
relationship between domestic water usage and economic development on a country
scale. We hope this conclusion can contribute to the development of future solutions and
strategies for domestic water prediction in different economies or similar economies under
different development stages. However, there is still a lot of uncharted territory of the
application of the expanded S-curve models. In this paper, only four of 10 typical countries
were simulated in detail, and studies on a series of countries with few water usage data are
still deficient. We will apply this expanded S-curve model to other countries in our future
research, and hope that this model will encourage the efficient and sustainable management
of water resources.
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Abstract: The South-to-North Water Diversion Project has been in operation since 2014, directly
benefiting more than 79 million people in China. Thus, its service life and long-term performance
have gained much attention from scholars. To predict its life and performance, this study used the
seepage/stress-damage coupling method. In addition, a seepage/stress-damage coupling theory
was proposed and a finite element model of a deep excavated canal in the Xichuan Section of the
South-to-North Water Diversion Project was established. The results showed that this canal subsided
greatly in the first two years of operation, which can be confirmed by the monitoring data. It is
predicted that, after 50 years of normal operation, the canal damage may start and spread from the
water level, and reach 37.6%, but such damage will not affect its normal water delivery function. The
purpose of this study is to provide guidance for the safe operation of the project.

Keywords: settlement; damage evolution; seepage/stress-damage method; data monitoring

1. Introduction

The South-to-North Water Diversion Project (SNWDP) aims to optimize the temporal
and spatial allocation of water resources in China. As a national strategic project, it
safeguards China’s land management and sustainable development. Canal engineering
is an integral part of SNWDP, and its seepage failure involves complicated hydraulic
problems, particularly in some deep excavated sections, due to the high groundwater
level, complex geological conditions, soil consolidation and deformation, and rainfall or
channel infiltration [1]. The seepage–stress coupling may occur between the concrete
lining and the foundation, damaging the lining plate. If the damage persists, the water
from the canal will seep into the soil of the canal more quickly, altering the seepage field
and causing structural damage between the soil of the canal, the concrete lining, and the
seepage field [2]. Therefore, scholars at home and abroad are all concerned about the
SNWDP’s service life and performance evolution in long-term operation, for it matters to
water delivery safety and further affects the people’s living conditions, social and economic
development, and environmental protection [3]. The Xichuan Section is the first section of
the main channel of the SNWDP Middle Route, classified into Class I project according to
the engineering grade, so its safe running is of great significance.

A seepage/stress-damage (SSD) coupling theory was proposed, and a finite element
model of a deep excavated canal in the SNWDP Xichuan Section was established in the
same scale as its actual design drawings. Even the materials used and the surrounding
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environment were the same as the actual situation. First, the SSD coupling theory proposed
in this paper needs a stable seepage field, on which a lot of research has been performed.
For example, Cai et al. [4] used the strength reduction method to establish a seepage–stress
coupled numerical model. They discussed the impact of various factors on the slope
stability under different working conditions and concluded that the groundwater and
rainfall infiltration have the most considerable effect on slope stability. In southern Jiangxi
province, Pan et al. [5] investigated the failure modes of granite residual soil slopes and
employed normal soil material parameters to analyze precipitation infiltration under three
operating situations. They discovered that the wet front’s depth and slope coefficient
have varied over time. Zhou et al. [6] studied the spatial–temporal characteristics of
water movement on fractured soil slopes under rainfall conditions. They investigated the
mechanism of fractured slope instability as a function of soil saturation variations and
discovered that matrix suction is the primary driver of overall instability. Huang et al. [7]
analyzed the stability of hydraulic landslides with different permeability coefficients under
fluctuating reservoir water levels and rainstorm conditions. They found that due to
heavy rains, the stability of the landslide was considerably reduced, and the coefficient
of stability increased with increased permeability. Kim et al. [8] analyzed and compared
water pressure and pore pressure data from hydraulic wells to observe the influence of
seepage changes. Luo et al. [9]. analyze the sudden pipeline crash of a specific project
and derive its evolution process. Zhao et al. [10] proposed an innovative permeability
evolution equation. They found that the seepage pressure will continuously intensify
fracture propagation and penetration in the rock mass due to the time effect of permeability
and failure. Nian et al. [11] used pore pressure as a controlled condition to analyze the
rainfall infiltration and seepage on slopes under different rainfall intensities. They obtained
the relationship between the rainfall intensity and the actual infiltration rate. The above
research results showed that the permeability coefficient will change with time, rainfall
intensity and other external factors, which can be verified by the SSD theory (taking the
permeability coefficient as a variable) in this study.

Second, the SSD coupling method used in this paper needs the coupling of the seep-
age field and the stress field, which is mainly achieved by solving the seepage field and
converting it into an equivalent load acting on the model nodes. Many research on the
seepage–stress coupling has been conducted at national and global scales. For example,
Wang et al. [12] established a theoretical model of micro-fracture grouting seepage based
on the fluid–solid coupling between grout seepage and micro-fractures. They studied the
fracturing conditions, fractures’ spatial distribution, and the variation law of mud seepage
distance. Through analysis and comparison, Ma et al. [13] obtained the failure mode and
seepage characteristics of unloaded rock with and without water pressure. Ma et al. [14]
used finite-difference to analyze the influence of saturated or unsaturated seepage on
the slope stability. They obtained the influence of the flow rate on the stability of the
slope. Liu et al. [15] analyzed that the external water pressure of the tunnel is related to
the basement and seepage of the basement and is the main influencing factor related to
safety. Xiao [16] used the neural network method to develop the program to combine the
seismic load effect and the fluid–solid coupling effect. He analyzed the seepage stability of
the earth dam and determined the dangerous sliding surface of the dam slope. Chen [17]
gave a method of calculating the safety factor of slope stability considering seepage con-
ditions based on the law of seepage–stress coupling evolution. He estimated that the
effect of seepage has a significant impact on slope stability. Cai et al. [18] evaluated the
slope stability under rainfall infiltration conditions based on the shear strength reduction
technology. They considered the non-coupled conditions of seepage and deformation,
combined with statistics and observation methods. Rahardjo et al. [19] studied the factors
influencing slope stability under rainfall infiltration conditions. They found that slope
instability mainly depends on the rainfall intensity and the nature of the soil, as well as
slope type and groundwater level. Baum et al. [20] established saturated and unsaturated
transient rainfall infiltration models. Based on correlated groundwater transients, unsatu-
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rated infiltration analysis, and groundwater pressure diffusion, the models predicted the
time and main source areas of landslides caused by rainfall. Rahardjo et al. [21] considered
different groundwater levels, rainfall intensity, and soil properties to analyze the stability
of the residual soil slope under rainfall infiltration conditions. The results are in good
agreement with the research trend in the parameter study. Muntohar et al. [22] analyzed
the failure laws of shallow slopes under rainfall infiltration conditions based on the Green–
Ampt infiltration model and the infinite slope stability model. The proposed model can
be used to estimate the first-order approximation of the time when a rainfall-induced
shallow landslide occurs and its sliding depth. Tsai et al. [23] compared the design plan
with actual case data. They investigated the influence of unit weight and the function of
unsaturated shear strength and saturation on shallow landslides triggered by rainfall infil-
tration. Borja et al. [24] established a finite element model that couples solid deformation
with fluid pressure in unsaturated soil to evaluate slope stability. However, most of the
above research was conducted by using the seepage method or the seepage–stress coupling
method. Based on these results, the SSD coupling method was adopted in this paper.

Third, the SSD coupling method used in this paper correlates seepage–stress with
damage to reflect the impact of damage on the seepage of concrete linings. The relationship
between the seepage coefficient and damage was used as a bridge connecting the seepage
field, stress field and damage field. Some scholars have also explored such methods. For
example, Zhou [25] derived the permeability coefficient conversion equation taking into
account the damage to the tunnel rock and depicted the SSD multi-field coupling model of
the surrounding rock. He analyzed the stability of the surrounding rock excavated in the
tunnel construction based on the fluid–solid coupling theory. Zhou et al. [26] established
an SSD coupling algorithm based on the permeable lining theory and applied it to high-
pressure hydraulic tunnels. Their results are consistent with the general engineering laws
and provide a reference for solving practical engineering problems. Sheng et al. [27] believe
that the influence of groundwater on slope stability cannot be replaced by pore water, and
the synergy of the seepage field and the stress field must be considered in foundation pit
slope engineering. Xu et al. [28] established the equation of relation between rock failure
and coefficient of permeability based on damage variables and seepage–stress coupling.
They described the evolutions of the rock-failure-based permeability and groundwater
seepage field. They studied the evolutionary relationship between rock mass stress and
strain, permeability and strain, strain and failure, as well as permeability and failure.
Zhu et al. [29] coupled failure and fluid flow to the Mohr–Coulomb failure criterion, based
on the dynamic evolution of damage, porosity and permeability, and proposed SSD models
under the effect of hydraulic fracturing and natural fracturing based on the dynamic evolu-
tion of damage, porosity, and permeability. The results are very close to the engineering
practices. The above research findings and the SSD coupling method used in this paper
make the predictions more realistic.

Aiming at the above problems, this study used the SSD coupling method to predict
the SNWDP’s service life and performance evolution after long-term operation. Taking into
account the change in the permeability coefficient induced by soil consolidation over time
and the evolution of the infiltration field and its performance after long-term operation, it is
necessary to discover the internal mechanism of the seepage failure and further explore the
long-term changes in the performance of typical deep excavated sections of the SNWDP.
The ultimate goal of this study is to predict the performance evolution of the deep excavated
canal in the SNWDP Xichuan Section after long-term operation, providing a theoretical
basis for the actual operation of the project.

2. Basic Theory and Realization Method of SSD Coupling

2.1. Basic Theory of SSD Coupling

Changes in the seepage–stress coupling environment can cause changes in the internal
microstructure (i.e., meso-damage) [30], macro-mechanical properties, and permeability
of concrete. Changes in permeability and mechanical properties can affect the concrete’s
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stress state, the distribution of soil pore pressure and worsen the meso-damage of concrete.
This phenomenon is called SSD coupling.

Conventional seepage–stress coupled governing equations include solid-based ge-
ometric equations and equilibrium equations, fluid-based mass conservation equations
and flow equations, and seepage–stress coupled constitutive equations [31]. The SSD
coupled governing equations can be obtained by introducing concrete damage variables
into the conventional seepage–stress coupled equations. The following derivation tech-
niques are explained by using direct tensor notation to simplify the theoretical formulations
mathematically [32].

Assuming that the seepage process follows the nonlinear Darcy’s law in the entire
section, water and materials are incompressible, and the volumetric deformation of the
saturated porous solid framework is equal to the deformation of the pores, then, the
seepage field conforms to the continuity equation of three-dimensional single-phase porous
fluid [33,34].

∂
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[
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∂H
∂x

]
+

∂
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[
ky

∂H
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+

∂
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∂H
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]
+ Q = 0 (1)

where kx, ky and kz are the permeability coefficients in the x, y, and z directions, respec-
tively; hydraulic potential H = p

γ , in which p is the pore water pressure and γ is the water
unit weight; z is the elevation head; and Q is the source sink term.

Assuming that concrete and rock masses are equivalent continuum models, then, after
finite element discretization, interpolation, and integration, the matrix equation for solving
the seepage field can be obtained as follows [35]:

[A]{H} = {F} (2)

where [A] is the total permeability matrix, {H} is the column vector of the node head, and
{F} is the nodal load obtained by integrating the seepage boundary. After the seepage
field is calculated, the water load generated by the hydraulic gradient acts on the inside
of the structure in the form of seepage force. In the equivalent continuum model, the
seepage gradient acts on the node in the form of seepage force. After the node head is
obtained through the seepage field calculation, the seepage load acting on the element
node is calculated as follows:

{
Fp

}
= −

∫ ∫ ∫
Ω

γ[N]T
{
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,
∂H
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,
∂H
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− 1

}T
dΩ (3)

where [N] is the interpolation function, Ω is the integral domain of the seepage force node
and T is the transposition of a matrix.

The computational space domain is discretized to obtain the seepage–stress coupling equation:

[K][U] = {FV}+ {Fs}+
{

Fp
}
+ {Fσ0} (4)

where [K] is the structural stiffness matrix; [U] is the nodal displacement matrix; FV and
Fs are the body and surface loads, respectively; Fp is the equivalent load formed by pore
pressure; and Fσ0 is the initial stress load.

According to the incremental theory of plasticity in the plastic damage model, the
total strain tensor, ε, is composed of the elastic strain rate, εel, and the equivalent plastic
strain rate, εpl:

ε = εel + εpl (5)

When there is no damage to the concrete, the stress–strain relationship of the concrete
is as follows:

σ = Del
(
ε− εpl

)
(6)

where σ is the total stress, and Del is the elastic stiffness matrix.
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When the concrete material is damaged, according to the theory of continuum damage
mechanics, the internal micro-cracks, micro-pores, and other micro-defects under the
action of external loads can be described by the damage factor, d. The damage factor is
mainly used to reflect the concrete stiffness degradation under uniaxial or multiaxial loads.
Assuming that the damage is isotropic, then, the relationship between the damage and
stress of the concrete under the three-dimensional multiaxial state can be expressed by the
damage elasticity equation, and the concrete stress, σ, is calculated as follows [36]:

σ = (1 − d)σ = (1 − d)Del
(
ε− εpl

)
(7)

where σ is the effective stress, which represents the stress on the net section of the
concrete material.

The element damage, d, is expressed by the equivalent plastic strain ε̃pl:⎧⎨⎩ dt = dt

(
ε̃

pl
t

)
, 0 ≤ dt ≤ 1

dc = dc

(
ε̃

pl
c

)
, 0 ≤ dc ≤ 1

(8)

where dt is the tensile damage factor, dc is the compressive damage factor, t is the tensile
state, and c is the compressive state.

The equivalent plastic strain ε̃pl is calculated as follows:⎧⎨⎩ ε̃
pl
t =

∫ t
0

.
ε̃

pl
t dt

ε̃
pl
c =

∫ t
0

.
ε̃

pl
c dt

(9)

⎧⎨⎩
.
ε̃

pl
t = r

(
σ̂
) .̂
ε

pl
max

.
ε̃

pl
c = −(

1 − r
(
σ̂
)) .̂
ε

pl
min

(10)

where
.̂
ε

pl
max is the maximum value the plastic strain rate tensor,

.̂
ε

pl
min is the minimum value

of the plastic strain rate tensor,
.
ε̃

pl
t is the equivalent plastic strain rate in tension, and

.
ε̃

pl
c is

the equivalent plastic strain rate in compression. The multiaxial stress weighting factor
r
(
σ̂
)

can be defined as follows:

r
(
σ̂
)
=

∑3
i=1

〈
σ̂i

〉
∑3

i=1

∣∣σ̂i
∣∣ , 0 ≤ r

(
σ̂
) ≤ 1 (11)

where σ̂i (i = 1, 2, 3) are the principal stress components, respectively, 〈·〉 is defined as
〈x〉 = (|x|+ x)/2, and |x| is the absolute value of x.

Under periodic alternating loads, the complex concrete damage mechanism is related
to the cracking and merging of the initial cracks and their interrelation during changes.
When the concrete is subject to compression after tension, its stiffness will be partially
restored, that is, the unilateral effect is more significant. To reflect this effect, the relationship
between tensile and compressive damage variables, dt and dc, is:

(1 − d) = (1 − stdc)(1 − scdt) (12)

where 0 ≤ st, sc ≤ 1, st, and sc are the relational expressions after stiffness recovery.{
st = 1 −ωtr

(
σ̂
)
, 0 ≤ ωt ≤ 1

sc = 1 −ωc
[
1 − r

(
σ̂
)]

, 0 ≤ ωc ≤ 1
(13)

where ωt and ωc are the weighting factors of stiffness recovery related to the material
properties. Figure 1 shows the stiffness recovery curve of the concrete damage model
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when the weighting factors are ωt = 0 (compression → tension) and ωc = 1 (tension →
compression) under uniaxial alternating loads.

Figure 1. Stress–strain relation under the uniaxial alternating load.

When the plastic damage model is used, the damage may cause the degradation of the
concrete structure’s stiffness. Based on it, the influence of concrete damage and cracking
on the stress state of the structure can be simulated. At the same time, the concrete damage
and cracking have a significant impact on the permeability characteristics of the structure.
The material element is composed of a damaged phase and an undamaged phase. The
element permeability coefficient is calculated as follows [37]:

k = (1 − d)km + dkd

(
1 + εv

pf
)3

(14)

where km is the permeability coefficient of the undamaged phase, and kd is the permeability
coefficient of the damaged phase. Assuming that no damage occurs in the case of elastic
deformation, while plastic deformation and damage occur simultaneously, then, the plastic
volumetric strain of the damaged phase is εv

pf = dεp
v, in which ε

p
v is the plastic volumetric

strain of the element.
Once macroscopic cracks appear, brittle material’s permeability will suddenly increase;

thus, the sudden jump factor, ξ, is introduced to calculate the permeability coefficient of
the damage phase [25]:

kd = ξkm (15)

where, for compression–shear damage, ξ = 100, and for tensile damage,

ξ =

⎧⎨⎩
10, 0 < d ≤ 0.1

1000−10
0.9−0.1 d + 10, 0.1 < d < 0.9

1000, 0.9 ≤ d ≤ 1

Compared with conventional seepage–stress coupling models, the model in this
paper couples the effect of damage and extends the study of the seepage–stress coupling
problem from the simple stress state analysis to the damage process analysis, which lays a
theoretical basis for further studying the concrete failure process and seepage evolution
under seepage–stress coupling conditions.

2.2. SSD Coupling Method

The lining supports most of the water pressure from the deep excavated canal of the
SNWDP [38]. In this paper, the constitutive elastoplastic relationship is used to simulate
the canal lining, and it is based on the Mohr–Coulomb criterion; and the SSD coupling
method is used to analyze and predict the long-term functioning of the lining of the canal.
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The SSD coupling method used in this paper is based on the ABAQUS finite element
software for secondary development [39]. The SSD coupling method used in this paper is
based on the ABAQUS finite element software for secondary development. The damage
was obtained via the FORTRAN language program, namely GETBRM. According to
the damage curve and the permeability coefficient, the subprogram USDFLD (ABAQUS
subprogram, which can define the constant variable on the material point as a time function)
is used to update the canal permeability coefficient with damage changes. The element’s
permeability coefficient is defined as a field variable, and the subprogram was utilized in
each incremental calculation to obtain the maximum principal strain and the equivalent
plastic strain of the material integration point, thereby determining the element’s stress
state. The element’s damage variable was solved. The lining’s permeability coefficient was
revised based on relevant information of the element and node to predict the long-term
operation of the SNWDP more accurately. The established SSD coupling analysis process
is shown in Figure 2.

 

Figure 2. Flowchart of seepage/stress-damage coupling analysis.

3. Model Parameters and Boundary Conditions

3.1. Project Overview

There is a canal excavated with a depth of 36–47 m in the SNWDP Xichuan Section.
The canal is located on the edge of the northern subtropical zone and also in the humid area.
Affected by the monsoon climate all year round, it has four distinct seasons and abundant
rainfall, with an average annual rainfall of more than 730 mm. In addition, this canal has a
high groundwater level. Given that canals with high fills are more likely to undergo slope
instability, this paper selects a typical section of the said deep canal in Xichuan Section for
research. Its slope is reinforced by the combination of large-section excavation and water
collection well. The canal consists of concrete lining plates, a geomembrane, sand–gravel
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cushions, and foundations. There are three-level bridleways on both banks, which can
withstand vehicle loads, canal water pressure, groundwater pressure, and gravity.

As illustrated in Figure 3, a three-dimensional finite element numerical simulation
model of a representative portion of a deep dug channel was created. It was accomplished
by considering the central point of the canal bottom as the origin, the X-axis as the hori-
zontal direction of the vertical water flow, the Y-axis as the direction parallel to the flow
direction, and the Z-axis as the vertical direction the vertical water flow. The canal structure
in the numerical model was discrete based on the C3D8RP (hexahedral reduced-integration)
element. It had 185,000 elements and 208,098 nodes in total. The bottom of the finite ele-
ment model was constrained fully, and the surrounding was constrained normally. The
boundary conditions of the total head and the free seepage section were set. The monitored
seepage flow of the canal was converted into the seepage velocity and set as the seepage
velocity boundary condition.

Figure 3. Three-dimensional finite element model of a typical section of the deep excavated canal.

3.2. Finite Element Model and Material Properties

This study chose a specific section of a high groundwater level for the numerical
simulation analysis of the infiltration–stress coupling. A three-dimensional finite element
numerical simulation model based on the drawings of the typical section design was
established. Figure 4 depicts the canal’s general details and the distribution of structural
materials in each portion. Part of the model parameters are as follows: the canal bottom
width is 13.5 m; the digging depth is 46 m; an 8 cm–thick C25 concrete slab is used as the
lining plate, under which there is a composite geomembrane and then a 25 cm–thick coarse
sand cushion, with the foundation at the bottommost; the designed water level is 8 m; the
increased water level is 8.77 m; and the underground water level is 41.28 m.

Figure 4. Finite element model of a typical section of the deep excavated canal.
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Three monitoring points, A, B, and C, were selected in the deep excavated canal to
monitor the canal’s displacement and settlement. The clay materials are mainly used
for the foundation and slope of the deep excavated canal section of the SNWDP. The
anti-seepage system is mainly achieved by a concrete lining board, geomembrane, coarse
sand cushion, and polysulfide sealant, as shown in Figure 5. During the actual operation
of the SNWDP, the canal’s infiltrated surface is subject to the continuous change of the
permeability coefficient. Therefore, in this study, the characteristics of the water section
were constantly assumed to ensure the continuity and accuracy of the results.

Figure 5. Canal seepage system.

4. Comparison between Monitored Data and Numerical Simulation

This section provides a concise and precise description of the experimental results,
their interpretation, and the experimental conclusions that can be drawn.

Three monitoring points, A, B, and C, were selected on the canal, bottom, and slope,
respectively (as shown in Figure 6a). Their safety-monitoring data from January 2014 to
January 2018 were calculated and analyzed. Settlement monitoring points were used to
conduct on-site surveys of the settlement displacement of the deep excavated section of the
SNWDP (Figure 6b,c). The calculation results were compared and analyzed. Figure 7 shows
the correlation curve between the simulated settlement and the monitored settlement of
the monitoring points.

It can be seen from Figure 7 that, (1) during the 5-year operation of the deep excavated
canal, the displacement gradually increased from the bottom to the top of the canal, reach-
ing the highest at the top. The maximum difference between the monitored displacement
and settlement value and the calculated value is 0.559 mm, and the minimum is 0.02 mm;
(2) the canal subsided rapidly during the first two years, and then the settlement slowed
down and got close to final settlement; and (3) compared to the displacement curve of
the monitored section, the settlement trend is similar. According to the Adj.R-square
coefficient and Pearson’s correlation coefficient, the calculated data curve is highly fitted
to the actually monitored data curve. After five years of operation, the settlements are
the same, suggesting that the numerical simulation of the canal’s long-term settlements is
consistent with the actual project operation.
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(a)

(b) (c)

Figure 6. Canal of the South-to-North Water Diversion Project and settlement monitoring points.
(a) A section of the South-to-North Water Diversion Project, (b) Settlement monitoring points protec-
tion box, (c) Settlement monitoring points.

Figure 7. Correlation curve between the estimated settlement and the monitored settlement of the
monitoring points.

5. Evolution of the Canal’s Long-Term Behavior Based on SSD

5.1. Evolution of Canal Pore Pressure

Long-term seepage failure has a significant impact on the safe operation of the canal.
Taking as an example the deep excavated canal in the section of the SNWDP, the long-term
settlement of the canal and seepage field changes under the effect of coupling of seepage
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and stresses are calculated. Based on the above parameters and conditions, the ABAQUS
software is used to estimate the deep excavated canal’s long-term settlements and seepage
field changes.

Figures 8 and 9 respectively show the saturation contours of the deep excavated canal
after 10 and 20 years of operation. Here, the saturation is used to describe the moisture
content of the foundation soil under the concrete lining plate. It can be seen from the
figures that in the deep excavated canal, most of the soil is in a saturated state, and some
are unsaturated, and the seepage effect is relatively large. By comparing the two contours,
it can be seen that under given conditions, as the operating time of the canal increases,
the saturated zone decreases and the unsaturated zone increases. It may be due to the
fluctuation in the void ratio and the permeability coefficient produced by canal settlement.
With the continuous settlement of the canal, the void ratio decreases, and the coefficient
of permeability also decreases. In the macroscopic view, a change in the seepage field
generates a change in the stress field, which shows a change in the settlement.

Figure 8. Canal saturation contour when t = 10 years.

Figure 9. Canal saturation contour when t = 20 years.

Figures 10 and 11 respectively show the pore pressure contours of the deep excavated
canal after ten years and 20 years of operation. It can be seen from the figures that there
is negative pore pressure at the top of the canal, indicating the existence of unsaturated
zones. The foundation exhibits both saturated seepage and unsaturated seepage, which is
consistent with the numerical results of saturation. Pore pressure decreases on both sides
towards the middle. Due to the high groundwater level on both sides of the deep excavated
canal, the groundwater flows into the canal center under the action of gravity. Therefore,
drainage measures should be taken on the slope of the canal to reduce the groundwater
seepage and improve the security of the canal water supply.

Figure 10. Canal pore pressure contour when t = 10 years.
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Figure 11. Canal pore pressure contour when t = 20 years.

5.2. Evolution of the Canal’s Long-Term Settlements

In the calculation process, the design water level of the canal, the highest groundwater
level of the slope and underground drainage measures are not applicable. The anti-seepage
system is damaged, the seepage of the slope is stable, and the interior slope has no boundary
flow. Based on the finite element model of the specific cross-section of the deep excavated
canal, the characteristic points a, b, c, and d respectively were selected for settlement
analysis at the canal bottom, embankment, slope, and top. The water level adopted the
canal’s design water level, the vehicle load on the first-level bridleway adopted the car-10
level load, the crowd load was 0.3 t/m2, and the highest groundwater level was 180.218 m.

The SSD coupling method was used to compute the canal settlements after five years
of operation based on the above working conditions. The nephogram of the canal’s vertical
displacements after a 5-year operation is shown in Figure 12, and the settlement of each
distinctive point is shown in Figure 13. The highest vertical displacement of the canal was
4.151 mm, which was within the authorized settlement range, as shown in the figures. The
U2 is the vertical component of the total settlement U.

 

Figure 12. Canal settlement nephogram when t = 5 years.

Figure 13. Settlements of each characteristic point when t = 5 years.

Based on the foregoing conclusions, a numerical simulation of the deep excavated
canal is carried out, and a nephogram of the canal’s settling clouds after ten years of
operation is obtained (see Figure 14). According to the nephogram of canal settlements, the
settlement curve of each characteristic point was obtained (as shown in Figure 15). It can
be seen from the figures that the maximum settlement is 5.128 mm, which represents an
increase of 0.977 mm compared to the five years of operation. This change is not significant,
so it is believed that the settlement has reached the final settlement. Table 1 shows the
settlement rate of the canal top’s characteristic point at different times after the 10-year
operation. The canal subsides at a decreasing rate after its operation. After 10 years of
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operation, the canal settlement rate is 0.16 mm/year. Although its absolute number is
minimal and may not have much impact, the settlement continues.

 

Figure 14. Canal settlement nephogram when t = 10 years.

Figure 15. Settlement of each characteristic point when t = 10 years.

Table 1. Canal top’s settlement rate.

Time/Year 1 2 3 4 5

Rate (mm/year) 1.38 0.98 0.64 0.5 0.4
Time/year 6 7 8 9 10

Rate (mm/year) 0.24 0.18 0.17 0.165 0.16

The numerical simulation is repeated to investigate the deep excavated canal’s long-
term settlement and deformation to get the nephogram of canal settlements after 20 years of
operation, as shown in Figure 16. It is evident from the figure that the maximum settlement
is very close to that calculated after 10 years of operation, indicating the deep excavated
canal has reached a stable state, as shown in Figure 17. However, in actual operation,
the stability of the deep excavated canal is affected by many factors such as complex
water distribution conditions and varying environments, and significant settlements can
occur locally. As the operating time increases, the canal’s settlement becomes smaller, not
affecting its operating safety.

 

Figure 16. Canal settlement nephogram when t = 20 years.
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Figure 17. Settlement of each characteristic point when t = 20 years.

In this paper, the hypothetical SSD coupling method was used to predict the life and
performance of the deep excavated canal in the SNWDP Xichuan Section. The numerical
results showed that under normal operating conditions, the canal may only subside a little
after 20 years of operation. The numerical simulation in this paper is based on the coupling
of the seepage field and the stress field. It is expected that the canal operates will work
stably for some time in the future.

5.3. Canal Lining Damage and Crack after Long-Term Operation

A numerical simulation of the evolution of the SNWDP’s deep excavated canal after
50 years of regular operation was conducted by using the SSD coupling. The canal settle-
ment nephogram was obtained (Figure 18). The displacement of each characteristic point is
shown in Figure 19. Compared with the settlement nephogram after 20 years of operation,
the settlement is insignificant and remains stable.

 
Figure 18. Canal settlement nephogram when t = 50 years.
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Figure 19. Settlement of each characteristic point when t = 50 years.

The seepage effect is larger in the deep excavated canal because much of the soil is
saturated. As the settlement increases, both the void ratio and permeability coefficient
decrease. The change in the seepage field affects the stress field and settlement at the
macro level.

After 50 years of operation, the canal was discovered to be slightly damaged when
investigating the evolution of its long-term behavior (Figure 20). In terms of overall
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damage, the maximum damage to the canal lining after the long-term operation is 37.6%. It
is predicted that the deep excavated canal in the SNWDP Xichuan Section can still be used
under normal operating conditions, for there is no large-area damage, except the concrete
damage near the water surface. The damage first appeared near the water level of the left
lining plate because the elevation of the top of the canal on the left bank was higher than
that on the right bank, and the seepage–stress coupling effect was greater. The damage
then occurred on the right lining plate, particularly at the point of the overflow of the water
table in the canal, which was symmetrical to the point of damage on the left bank. The high
level of the water table and its increasing water pressure with depth are the main causes
of damage to the canal lining board. The water pressure differential between the inside
and outside of the canal lining board is significant. The water pressure difference between
the top and lower positions of the water surface inside the canal is minor, resulting in
damage. The canal lining board is generally in a relatively safe condition, and there is no
large-scale damage. Over time, the lining board may eventually be damaged in the form
of uplifting after 50 years of operation, which may provide theoretical indications for the
actual operation of the project. This study used the SSD coupling method to predict the
service life and running status of the deep excavated canal in the SNWDP Xichuan Section
under normal conditions, but it was limited to such external factors as environment, climate,
and rainfall intensity [40]. More other influencing factors need to be studied further.

Figure 20. Damage-distribution cloud diagram after 50 years.

6. Conclusions

In this study, the SSD coupling method was adopted. The canal “lining-foundation”
is considered a whole coupled system. The concrete lining’s damage and the foundation’s
seepage damage were linked together, and long-term effects were introduced for numerical
simulation and analysis of the canal lining structure. The conclusion is summarized as
follows:

(1) The applicability of the SSD coupling method to the SNWDP in China: The long-term
settlement of the canal and the modification of the seepage field were investigated
by using a constitutive coupled plastic damage model of nonlinear dynamic damage
of concrete, which is used in the numerical simulation of the coupled seepage–stress
model. After five years of operation through modeling, the maximum settlement
of the deep excavated canal in the SNWDP Xichuan Section is 4151 mm, which is
consistent with the monitoring data, thus verifying the rationality of the numerical
simulation method.

(2) Prediction on the settlement of the canal after long-term operation: Through the
numerical simulation of the settlement after 10 years of operation, it is found that
the maximum settlement is 5.128 mm, and the canal settlement mainly occurred
in the first two years. Numerical simulations were used to obtain the settlement
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nephograms after 20 and 50 years of operation. It is evident from the nephograms
that the settlement finally remains the same.

(3) The damage evolution process of the canal after long-term operation: Judging by the
overall damage of the lining plates on the canal of the SNWDP, the lining plate on the
left bank was damaged first, and the damage was concentrated near the water level.
After a long-term operation, the lining structure of the deep excavated canal in the
SNWDP Xichuan Section is still safe, and there is no apparent damage.

(4) Causes of the damage and limitations of this study: The deep excavated canal in
the SNWDP Xichuan Section is destroyed from the water surface, mainly due to the
seepage of the high underground water. The damage spreads gradually from the
local area, eventually leading to failure of the concrete lining plate. However, this
study was limited by the environment, climate, and rainfall intensity. Therefore, more
other influencing factors need to be studied further.
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