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Preface to “Kernel Methods and Hybrid 
Evolutionary Algorithms in Energy Forecasting” 

The development of kernel methods and hybrid evolutionary algorithms (HEAs) to 
support experts in energy forecasting is of great importance to improving the accuracy of the 
actions derived from an energy decision maker, and it is crucial that they are theoretically 
sound. In addition, more accurate or more precise energy demand forecasts are required when 
decisions are made in a competitive environment. Therefore, this is of special relevance in the 
Big Data era. These forecasts are usually based on a complex function combination. These 
models have resulted in over-reliance on the use of informal judgment and higher expense if 
lacking the ability to catch the data patterns. The novel applications of kernel methods and 
hybrid evolutionary algorithms can provide more satisfactory parameters in forecasting 
models.  

This book contains articles from the Special Issue titled “Kernel Methods and Hybrid 
Evolutionary Algorithms in Energy Forecasting”, which aimed to attract researchers with an 
interest in the research areas described above. As Fan et al. [1] indicate, the research direction of 
energy forecasting in recent years has concentrated on proposing hybrid or combined models: 
(1) hybridizing or combining these artificial intelligence models with each other; (2) hybridizing
or combining with traditional statistical tools; and (3) hybridizing or combining with those
superior evolutionary algorithms. Therefore, this Special Issue sought contributions towards the 
development of HEAs with kernel methods or with other novel methods (e.g., chaotic mapping
mechanism, fuzzy theory, and quantum computing mechanism), which, with superior
capabilities over the traditional optimization approaches, aim to overcome some embedded
drawbacks and then apply these new HEAs to be hybridized with original forecasting models
to significantly improve forecasting accuracy. 

The 10 articles collected in this compendium all display a broad range of cutting-edge 
topics in the kernel methods and hybrid evolutionary algorithms. The preface author believes 
that these hybrid approaches will play an important role in energy forecasting accuracy 
improvements. It is known that the evolutionary algorithms have their theoretical drawbacks, 
such as a lack of knowledge, memory, or storage functions; they are time consuming in training; 
and become trapped in local optima. Therefore, the goal of hybridizing optimization methods to 
adjust their internal parameters (e.g., mutation rate, crossover rate, annealing temperature, etc.) 
is to overcome these shortcomings. Firstly, for example, in genetic algorithms (GAs), new 
individuals are generated by the following operators: selection, crossover, and mutation. For all 
types of objective functions, the generation begins with a binary coding for the parameter set. 
Based on this special binary coding process, GAs are able to solve some specified problems 
which are not easily solved by traditional algorithms. GAs can empirically provide a few best-
fitted offspring from the whole population, but after several generations, due to low population 
diversity, it might lead to a premature convergence. Due to the easy implementation process 
and a special mechanism to escape from local optima, chaos and chaos-based searching 
algorithms have received intense attention. Applications of chaotic mapping mechanisms to 
carefully expand variable searching space (i.e., allow variables to travel ergodically over the 
search space) are increasingly popularly employed in evolutionary computation fields.  

Secondly, several disadvantages embedded in these evolutionary algorithms need to be 
improved in order to achieve a more satisfactory performance. For example, based on the 
operation procedure of simulated annealing algorithm (SA), subtle and skillful adjustment in 
the annealing schedule is required, such as the size of the temperature steps during annealing. 
Particularly, the temperature of each state is discrete and unchangeable, which does not meet 
the requirement of continuous decrease in temperature in actual physical annealing processes. 



 x 

In addition, SA easily accepts deteriorated solutions with high temperature, and it is difficult to 
escape from local minimum traps at low temperature. Cloud theory is considered to overcome 
these drawbacks, as demonstrated in Geng et al. [2]. Cloud theory is a model of the uncertainty 
transformation between quantitative representation and qualitative concept using language 
value. Based on the SA operation procedure, subtle and skillful adjustment in the annealing 
schedule is required (e.g., the size of the temperature steps during annealing, the temperature 
range, the number of re-starts and re-direction of the search). The annealing process is like a 
fuzzy system in which the molecules move from large-scale to small-scale randomly as the 
temperature decreases. In addition, due to its Monte Carlo scheme and lack of knowledge 
memory functions, its time-consuming nature is another problem. Geng et al. [2] tried to 
employ a chaotic simulated annealing (CSA) algorithm to overcome these shortcomings. In this, 
the transiently chaotic dynamics are temporarily generated for foraging and self-organizing. 
They are then gradually vanished with autonomous decrease of the temperature, and are 
accompanied by successive bifurcations and converged to a stable equilibrium. Therefore, CSA 
significantly improves the randomization of the Monte Carlo scheme, and controlled the 
convergent process by bifurcation structures instead of stochastic ‘‘thermal” fluctuations, 
eventually performing efficient searching including a global optimum state. However, as 
mentioned above, the temperature of each state is discrete and unchangeable, which does not 
meet the requirement of continuous decrease in temperature in actual physical annealing 
processes. Even if some temperature annealing functions are exponential in general, the 
temperature gradually falls with a fixed value in every annealing step and the changing process 
of temperature between two neighbor steps is not continuous. This phenomenon also appears 
when other types of temperature update functions are implemented (e.g., arithmetical, 
geometrical, or logarithmic). In cloud theory, by introducing the Y condition normal cloud 
generator to the temperature generation process, it can randomly generate a group of new 
values that distribute around the given value like a ‘‘cloud’’. The fixed temperature point of 
each step becomes a changeable temperature zone in which the temperature of each state 
generation in every annealing step is chosen randomly, the course of temperature change in the 
whole annealing process is nearly continuous, and fits the physical annealing process better. 
Therefore, based on chaotic sequence and cloud theory, the chaotic cloud simulated annealing 
algorithm (CCSA) is employed to replace the stochastic ‘‘thermal” fluctuations control from 
traditional SA to enhance the continuous physical temperature annealing process from CSA. 
Cloud theory can realize the transformation between a qualitative concept in words and its 
numerical representation. It can be employed to avoid the problems mentioned above. 

Thirdly, the concepts of combined or hybrid models also deserve consideration. Note that 
the term “hybrid” means that some process of the former model is integrated into the process of 
the later one. For example, hybrid A and B implies some processes of A are controlled by A, and 
some are controlled by B. On the other hand, for the so-called combined models, the output of 
the former model becomes the input of the latter one. Therefore, the classification results from 
combined models will be superior to a single model. Combined models are employed to further 
capture more data pattern information from the analyzed data series. For example, inspired by 
the concept of recurrent neural networks (RNNs) where every unit is considered as an output of 
the network and the provision of adjusted information as input in a training process, the 
recurrent learning mechanism framework is also combined into the original analyzed model. 
For a feed-forward neural network, links can be established within layers of a neural network. 
These types of networks are called recurrent neural networks. RNNs are extensively applied in 
time series forecasting. Jordan [3] proposes a recurrent neural network model for controlling 
robots. Elman [4] develops a recurrent neural network model to solve linguistics problems. 
Williams and Zipser [5] present a recurrent network model to solve nonlinear adaptive filtering 
and pattern recognition problems. These three models mentioned all consist of a multilayer 
perceptron (MLP) with a hidden layer. Jordan’s networks have a feedback loop from the output 



xi 

layer with past values to an additional input, namely a “context layer”. Then, output values 
from the context layer are fed back into the hidden layer. Elman’s networks have a feedback 
loop from the hidden layer to the context layer. In the networks of Williams and Zipser, nodes 
in the hidden layer are fully connected to each other. Both Jordan’s and Elman’s networks 
include an additional information source from the output layer or the hidden layer. Hence, 
these models use mainly past information to capture detailed information. The networks of 
Williams and Zipser take much more information from the hidden layer and feed it back into 
themselves. Therefore, the networks of Williams and Zipser are sensitive when models are 
implemented. On the other hand, for another combined model, some data series sometimes 
reveal a seasonal tendency due to cyclic economic activities or seasonal nature hour to hour, 
day to day, week to week, month to month, and season to season, such as an hourly peak in a 
working day, a weekly peak in a business week, and a monthly peak in a demand-planned 
year. In order to excellently deal with cyclic/seasonal trend data series, some useful trial (e.g., 
seasonal mechanism) is also received some intentions. The preface author proposed a seasonal 
mechanism [2,6,7] with two steps for convenience in implementation: the first step is calculating 
the seasonal index (SI) for each cyclic point in a cycle length peak period; the second step is 
computing the forecasting value by multiplying the seasonal index (SI). 

This discussion of the work by the author of this preface highlights work in an emerging 
area of kernel methods and hybrid evolutionary algorithms that has come to the forefront over 
the past decade. The articles in this collection span many cutting-edge areas that are truly 
interdisciplinary in nature. 

Wei-Chiang Hong 
Guest Editor 
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Abstract: Electric load forecasting is an important issue for a power utility, associated with the
management of daily operations such as energy transfer scheduling, unit commitment, and load
dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR),
this paper presents an SVR model hybridized with the differential empirical mode decomposition
(DEMD) method and quantum particle swarm optimization algorithm (QPSO) for electric load
forecasting. The DEMD method is employed to decompose the electric load to several detail
parts associated with high frequencies (intrinsic mode function—IMF) and an approximate part
associated with low frequencies. Hybridized with quantum theory to enhance particle searching
performance, the so-called QPSO is used to optimize the parameters of SVR. The electric load data of
the New South Wales (Sydney, Australia) market and the New York Independent System Operator
(NYISO, New York, USA) are used for comparing the forecasting performances of different forecasting
models. The results illustrate the validity of the idea that the proposed model can simultaneously
provide forecasting with good accuracy and interpretability.

Keywords: electric load forecasting; support vector regression; quantum theory; particle swarm
optimization; differential empirical mode decomposition; auto regression

1. Introduction

Electric energy can not be reserved, thus, electric load forecasting plays a vital role in the daily
operational management of a power utility, such as energy transfer scheduling, unit commitment,
load dispatch, and so on. With the emergence of load management strategies, it is highly desirable
to develop accurate, fast, simple, robust and interpretable load forecasting models for these electric
utilities to achieve the purposes of higher reliability and better management [1].

In the past decades, researchers have proposed lots of methodologies to improve the load
forecasting accuracy level. For example, Bianco et al. [2] proposed linear regression models for
electricity consumption forecasting; Zhou et al. [3] applied a Grey prediction model for energy
consumption; Afshar and Bigdeli [4] presented an improved singular spectral analysis method to
predict short-term load in the Iranian power market; and Kumar and Jain [5] compared the forecasting
performances among three Grey theory-based time series models to explore the consumption situation
of conventional energy in India. Bianco et al. [6] indicate that their load model could be successfully
used as an input of broader models than those of their previous paper [2]. References [7–10] proposed

Energies 2016, 9, 221; doi:10.3390/en9030221 www.mdpi.com/journal/energies1
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several useful artificial neural networks models to conduct short-term load forecasting. The authors
of [11–14] proposed hybrid models with evolutionary algorithms that demonstrated improved energy
forecasting performances. These methods can achieve significant improvements in terms of forecasting
accuracy, but without reasonable interpretability, particularly for ANN models. Artificial neural
networks (ANNs), with mature nonlinear mapping capabilities and data processing characteristics,
have achieved widely successful applications in load forecasting. Recently, expert systems with fuzzy
rule-based linguistic means provided good interpretability while dealing with system modeling [15].
Various approaches and models have been proposed in the last decades in many area such as climate
factors (temperature and humidity), social activities (human social activities), seasonal factors (seasonal
climate change and load growth), and so on. However, these models have strong dependency on an
expert and lack expected forecasting accuracy. Therefore, combination models which are based on
these popular methods and other techniques can satisfy the two desired requests: high accuracy level
and interpretability.

With superiority in handling high dimension nonlinear data, support vector regression (SVR)
has been successfully used to solve forecasting problems in many fields, such as financial time series
(stocks index and exchange rate) forecasting, tourist arrival forecasting, atmospheric science forecasting,
and so on [16–18]. However, SVR methods have a significant disadvantage, in that while its three
parameters are determined simultaneously during the nonlinear optimization process, the solution
is easily trapped into a local optimum. In addition, it also lacks a statistically significant level of
robustness. These two shortcomings are the focused topics in the SVR research field [19]. On the
other hand, the empirical mode decomposition (EMD) with auto regression (AR), a reliable clustering
algorithm, has been successfully used in many fields [20–22]. The EMD method is particularly powerful
for extracting the components of the basic mode from nonlinear or non-stationary time series [23], i.e.,
the original complex time series can be transferred into a series of single and apparent components.
However, this method cannot deal well with the signal decomposition effects while the gradient of the
time series is fluctuating. Based on the empirical decomposition mode, reference [24] proposes the
differential empirical mode decomposition (DEMD) to improve the fluctuating changes problem of
the original EMD method. The derived signal is obtained by several derivations of the original signal,
and the fluctuating gradient is thus eliminated, so that the signal can satisfy the conditions of EMD.
The new signal is then integrated into EMD to obtain each intrinsic mode function (IMF) order and the
residual amount of the original signal. The differential EMD method is employed to decompose the
electric load into several detailed parts with higher frequency IMF and an approximate part with lower
frequencies. This can effectively reduce the unnecessary interactions among singular values and can
improve the performance when a single kernel function is used in forecasting. Therefore, it is beneficial
to apply a suitable kernel function to conduct time series forecasting [25]. Since 1995, many attempts
have been made to improve the performance of the PSO [26–31]. Sun et al. [32,33] introduced quantum
theory into PSO and proposed a quantum-behaved PSO (QPSO) algorithm, which is a global search
algorithm to theoretically guarantee finding good optimal solutions in the search space. Compared
with PSO, the iterative equation of QPSO needs no velocity vectors for particles, has fewer parameters
to adjust, and can be implemented more easily. The results of experiments on widely used benchmark
functions indicate that the QPSO is a promising algorithm [32,33] that exhibits better performance
than the standard PSO.

In this paper, we present a new hybrid model to achieve satisfactory forecasting accuracy.
The principal idea is hybridizing DEMD with QPSO, SVR and AR, namely the DEMD-QPSO-SVR-AR
model, to achieve better forecasting performance. The outline of the proposed DEMD-QPSO-SVR-AR
model is as follows: (1) the raw data can be divided into two parts by DEMD technology, one is the
higher frequency item, the other is the residuals; (2) the higher frequency item has less redundant
information than the raw data and trend information, because that information is gone to the residuals,
then, QPSO is applied to optimize the parameters of SVR (i.e., the so-called QPSO-SVR model), so the
QPSO-SVR model is used to forecast the higher frequency, the accuracy is higher than the original SVR
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model, particularly around the peak value; (3) fortunately, the residuals is monotonous and stationary,
so the AR model is appropriate for forecasting the residuals; (4) the forecasting results are obtained
from Steps (2) and (3). The proposed DEMD-QPSO-SVR-AR model has the capability of smoothing
and reducing the noise (inherited from DEMD), the capability of filtering dataset and improving
forecasting performance (inherited from SVR), and the capability of effectively forecasting the future
tendencies (inherited from AR). The forecast outputs obtained by using the proposed hybrid method
are described in the following sections.

To show the applicability and superiority of the proposed model, half-hourly electric load data
(48 data points per day) from New South Wales (Australia) with two kind of sizes are used to compare
the forecasting performances among the proposed model and other four alternative models, namely
the PSO-BP model (BP neural network trained by the PSO algorithm), SVR model, PSO-SVR model
(optimizing SVR parameters by the PSO algorithm), and the AFCM model (adaptive fuzzy combination
model based on a self-organizing mapping and SVR). Secondly, another hourly electric load dataset
(24 data points per day) from the New York Independent System Operator (NYISO, USA), also, with
two kinds of sizes are used to further compare the forecasting performances of the proposed model
with other three alternative models, namely the ARIMA model, BPNN model (artificial neural network
trained by a back-propagation algorithm), and GA-ANN model (artificial neural network trained by a
genetic algorithm). The experimental results indicate that this proposed DEMD-QPSO-SVR-AR model
has the following advantages: (1) it simultaneously satisfies the need for high levels of accuracy and
interpretability; (2) the proposed model can tolerate more redundant information than the SVR model,
thus, it has more powerful generalization ability.

The rest of this paper is organized as follows: in Section 2, the DEMD-QPSO-SVR-AR forecasting
model is introduced and the detailed illustrations of the model are also provided. In Section 3, the data
description and the research design are illustrated. The numerical results and comparisons are shown
in Section 4. The conclusions of this paper and the future research focuses are given in Section 5.

2. Support Vector Regression with Differential Empirical Mode Decomposition

2.1. Differential Empirical Mode Decomposition (DEMD)

The EMD method assumes that any signal consists of different simple intrinsic modes of oscillation.
Each linear or non-linear mode will have the same number of extreme and zero-crossings. There is only
one extreme between successive zero-crossings. In this way, each signal could be decomposed into a
number of intrinsic mode functions (IMFs). With the definition, any signal x(t) can be decomposed,
and the corresponding flow chart is shown as Figure 1:

(1) Identify all local extremes.
(2) Repeat the procedure for the local minima to produce the lower envelope m1.
(3) The difference between the signal x(t) and m1 is the first component, h1, as shown in Equation (1):

h1 “ xptq ´ m1 (1)

In general, h1 is unnecessary to satisfy the conditions of the IMF, because h1 is not a standard IMF,
and until the mean envelope approximates zero it should be determined k times. At this point, the
data could be as shown in Equation (2):

h1k “ h1pk´1q ´ m1k (2)

where h1k is the datum after k siftings. h1pk´1q stands for the data after shifting k ´ 1 times. Standard
deviation (SD) is defined by Equation (3):

SD “
Tÿ

k“1

ˇ̌̌
h1pk´1qptq ´ h1kptq

ˇ̌̌2
h2

1pk´1qptq P p0.2, 0.3q (3)

where T is the length of the data.

3
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(4) When h1k has met the basic conditions of SD, based on the condition of c1 = h1k , and a new series
r1 could be presented as Equation (4):

r1 “ x1ptq ´ c1 (4)

(5) Repeat previous steps 1 to 4 until the rn cannot be decomposed into the IMF. The sequence rn is
called the remainder of the original data x(t) as Equations (5) and (6):

r1 “ x1ptq ´ c1, r2 “ r1 ´ c2, ..., rn “ rn´1 ´ cn (5)

x1ptq “
nÿ

i“1

ci ` rn (6)

Finally, the differential EMD is proposed by Equation (7):

DEMD “ xnptq ´ c0ptq (7)

where xnptq refers to dependent variables.

Figure 1. Differential EMD algorithm flowchart.

4
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2.2. Support Vector Regression

The notion of an SVR model is briefly introduced. Given a data set with N elements
tpXi, yiq , i “ 1, 2, ..., Nu, where Xi is the i-th element in n-dimensional space, i.e., Xi “ rx1i, ...xnis P �n,
and yi P � is the actual value corresponding to Xi. A non-linear mapping p¨q : �n Ñ �nh is defined to
map the training (input) data Xi into the so-called high dimensional feature space (which may have
infinite dimensions), �nh . Then, in the high dimensional feature space, there theoretically exists a
linear function, f, to formulate the non-linear relationship between input data and output data. Such a
linear function, namely SVR function, is shown as Equation (8): align equations

f pXq “ WT ϕ pXq ` b (8)

where f (X) denotes the forecasting values; the coefficients W (W P �nh ) and b (b P �) are adjustable.
As mentioned above, the SVM method aims at minimizing the empirical risk, shown as Equation (9):

Rempp f q “ 1
N

Nÿ
i“1

Θεpyi, WTφpXiq ` bq (9)

where Θεpyi, f pXqq is the ε-insensitive loss function and defined as Equation (10):

Θεpyi, f pXqq “
#

| f pXq ´ y| ´ ε , i f | f pXq ´ y| ě ε

0 , otherwise
(10)

In addition, Θεpyi, f pXqq is employed to find out an optimum hyper-plane on the high dimensional
feature space to maximize the distance separating the training data into two subsets. Thus, the SVR
focuses on finding the optimum hyperplane and minimizing the training error between the training
data and the ε-insensitive loss function. Then, the SVR minimizes the overall errors, shown as
Equation (11):

Min
W,b,ξ˚,ξ

RεpW, ξ˚, ξq “ 1
2

WTW ` C
Nÿ

i“1

pξ i̊ ` ξiq (11)

with the constraints:
yi ´ WTφpXiq ´ b ď ε ` ξ i̊
´yi ` WTφpXiq ` b ď ε ` ξi
ξ i̊ , ξi ě 0
i “ 1, 2, ..., N

(12)

The first term of Equation (11), employing the concept of maximizing the distance of two separated
training data, is used to regularize weight sizes to penalize large weights, and to maintain regression
function flatness. The second term penalizes training errors of f (x) and y by using the ε-insensitive loss
function. C is the parameter to trade off these two terms. Training errors above ε are denoted as ξ i̊ ,
whereas training errors below ´ε are denoted as ξi.

After the quadratic optimization problem with inequality constraints is solved, the parameter
vector w in Equation (8) is obtained as Equation (13):

W “
Nÿ

i“1

pβi̊ ´ βiqφpXiq (13)

where βi̊ , ξi are obtained by solving a quadratic program and are the Lagrangian multipliers. Finally,
the SVR regression function is obtained as Equation (14) in the dual space:

f pXq “
Nÿ

i“1

pβi̊ ´ βiqKpXi, Xq ` b (14)
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where K(Xi,X) is called the kernel function, and the value of the kernel equals the inner product of
two vectors, Xi and Xj, in the feature space ϕ(Xi) and ϕ(Xj), respectively; that is, K(Xi,Xj) = ϕ(Xi)ϕ(Xj).
Any function that meets Mercer’s condition [34] can be used as the kernel function.

There are several types of kernel function. The most used kernel functions are the Gaussian radial
basis functions (RBF) with a width of σ:K pXqi , Xjq “ exp

´
´0.5||Xi ´ Xj||2{σ2

¯
and the polynomial

kernel with an order of d and constants a1 and a2: K(Xi,Xj) = (a1Xi + a2Xj)d. However, the Gaussian
RBF kernel is not only easy to implement, but also capable of non-linearly mapping the training data
into an infinite dimensional space, thus, it is suitable to deal with non-linear relationship problems.
Therefore, the Gaussian RBF kernel function is specified in this study.

2.3. Particle Swarm Optimization Algorithm

PSO is a heuristic global optimization algorithm broadly applied in optimization problems.
PSO is developed on a very simple theoretical framework that is easily implemented with only
primitive mathematical operators [26]. In PSO, a group of particles is composed of m particles in
D dimension space where the position of the particle i is Xi = (xi1, xi2, . . ., xiD) and the speed is
Vi = (vi1, vi2, . . ., viD). The speed and position of each particle are changed in accordance with the
following equations, Equations (15) and (16):

vj`1
id “ wvj

id ` c1r1ppj
id ´ xj

idq ` c2r2ppj
gd ´ xj

idq (15)

xj`1
id “ xj

id ` vj`1
id (16)

where i = 1, 2, . . . , m; d = 1,2,. . . , D; m is the particle size; pj
id is the dth dimension component of the

pbest that is the individual optimal location of the particle i in the jth iteration; pj
gd is the dth dimension

component of the gbest that is the optimal position of all particles in the jth iteration; w is the inertia
weight coefficient; c1 and c2 are learning factors; r1 and r2 are random numbers in the range [0,1].

The inertia weight w, which balances the global and local exploitation abilities of the swarm,
is critical for the performance of PSO. A large inertia weight facilitates exploration but slows down
particle convergence. Conversely, a small inertia weight facilitates fast particle convergence it
sometimes leads to the local optimal. The most popular algorithm for controlling inertia weight
is linearly decreasing inertia weight PSO [31]. The strategy of linearly decreasing inertia weight is
widely used to improve the performance of PSO, but this approach has a number of drawbacks [27].
Several adaptive algorithms for tuning inertia weight have been presented [27–30]. In the present
work, we propose the method of nonlinearly decreasing inertia weight to tune the value of w for
further performance improvement as Equation (17):

w “ wmax ´ pwmax ´ wminq ˆ pt ´ 1q2

ptmax ´ 1q2 (17)

where wmax and wmin are the maximum and minimum values of w, respectively; t is the current
iteration number; and tmax is the maximum iteration number.

2.4. Quantum-Behaved Particle Swarm Optimization

The main disadvantage of the PSO algorithm is that global convergence is not guaranteed [35].
To address this problem, Sun et al. [32,33], inspired by the trajectory analysis of PSO and quantum
mechanics, developed and proposed the QPSO algorithm. Particles move according to the following
iterative equations, Equations (18) to (21), and the flow chart is shown as Figure 2.

xijpt ` 1q “ pijptq ` α
ˇ̌̌
mbestjptq ´ xijptq

ˇ̌̌
ˆ ln p1{uq i f k ě 0.5 (18)

xijpt ` 1q “ pijptq ´ α
ˇ̌̌
mbestjptq ´ xijptq

ˇ̌̌
ˆ ln p1{uq i f k ď 0.5 (19)
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mbestjptq “ 1
M

Mÿ
i“1

pbestijptq (20)

pijptq “ φijptqpbestijptq ` p1 ´ φijptqqgbestjptq (21)

where mbest is the mean best position defined as the mean of all the pbest positions of the population;
k, u and ϕu are random numbers generated using a uniform probability distribution in the range
[0,1]. The parameter α is called the contraction expansion coefficient, which is the only parameter
in the QPSO algorithm that can be tuned to control the convergence speed of particles. In general,
this parameter can be controlled by two methods: (1) fixing; or (2) varying the value of α during the
search of the algorithm. In [36], setting α to a number in the range (0.5, 0.8) generates satisfied results
for most benchmark functions. However, fixing the value of α is sensitive to population size and the
maximum number of iterations. This problem can be overcome by using a time-varying CE coefficient.
The literatures on QPSO suggest that decreasing the value of α linearly from α1 to α0 (α0 < α1) in the
course of the search process makes the QPSO algorithm perform efficiently [36,37].

Figure 2. QPSO algorithm flowchart.
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In this paper, the value of α is computed as Equation (22):

α “ α1 ´ pt ´ 1q ˆ pα1 ´ α0q
T ´ 1

(22)

where α1 and α0 are the final and initial values of α, respectively; t is the current iteration number;
and T is the maximum iteration number. Previous studies on QPSO [36,37] recommend that α be
linearly decreased from 1.0 to 0.5 for the algorithm to attain a generally good performance.

QPSO has already been implemented with excellent results [32] in various standard optimization
problems. Moreover, the QPSO algorithm has been proven more effective than traditional algorithms
in most cases [38–42]. In the current work, QPSO algorithm is utilized in SVR parameter optimization
for forecasting the high frequency data, and its performance is compared with that of the classical PSO
algorithm [43,44].

2.5. AR Model

Equation (23) expresses a p-step autoregressive model, referring as AR(p) model [45]. Stationary
time series {Xt} that meet the model AR(p) is called the AR(p) sequence. That a = (a1, a2, . . . , ap)T is
named as the regression coefficients of the AR(p) model:

Xt “
př

j“1
ajXt´j ` εt

t P Z
(23)

2.6. The Full Procedure of DEMD-QPSO-SVR-AR Model

The full procedure of the proposed DEMD-QPSO-SVR-AR model is briefed as follows and is
illustrated in Figure 3.

Figure 3. The full flowchart of the DEMD-QPSO-SVR-AR model flowchart.

Step 1: Decompose the input data by DEMD. Each electric load data (input data) could be decomposed
into a number of intrinsic mode functions (IMFs), i.e., two parts, one is the higher frequency item,

8
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the other one is the residuals. Please refer Section 2.1 and Figure 1 to learn more about the DEMD
process details.

Step 2: QPSO-SVR modeling. The SVR model is employed to forecast the high frequency item,
thus, to look for most suitable parameters by QPSO, different sizes of fed-in/fed-out subsets will
be set in this stage. Please refer Section 2.2 to learn in more details the SVR process. The QPSO
algorithm is utilized in SVR parameter optimization for forecasting the higher frequency data, please
refer Sections 2.3 and 2.4 and Figure 2 to learn more about the details of the QPSO process.

Step 3: AR modeling. The residuals item is forecasted by the AR model due to its monotonous
and stationary nature. Please refer Section 2.5 to learn in more detail the processes of AR modeling.
Similarly, while the new parameters have smaller MAPE values or maximum iteration is reached, the
new three parameters and the corresponding objective value are the solution at this stage.

Step 4: DEMD-QPSO-SVR-AR forecasting. After receiving the forecasting values of the high
frequency item and the residuals item from SVR model and AR model, respectively, the final forecasting
results would be eventually obtained from the high frequency item and the residuals.

3. Numerical Examples

To illustrate the superiority of the proposed model, we use two datasets from different electricity
markets, that is, the New South Wales (NSW) market in Australia (denoted as Case 1) and the New York
Independent System Operator (NYISO) in the USA (Case 2). In addition, for each case, we all use
two sample sizes, called small sample and large sample, respectively.

3.1. The Experimental Results of Case 1

For Case 1, firstly, electric load data obtained from 2 to 7 May 2007 is used as the training data set
in the modeling process, and the testing data set is from 8 May 2007. The electric load data used are all
based on a half-hourly basis (i.e., 48 data points per day). The dataset containing only 7 days is called
the small size sample in this paper.

Secondly, for large training sets, it should avoid overtraining during the SVR modeling process.
Therefore, the second data size has 23 days (1104 data points from 2 to 24 May 2007) by employing all
of the training samples as training set, i.e., from 2 to 17 May 2007, and the testing data set is from 18 to
24 May 2007. This example is called the large sample size data in this paper.

(i) Results after DEMD in Case 1

As mentioned in the authors’ previous paper [25], the results of the decomposition process
by DEMD, can be divided into the higher frequency item (Data-I) and the residuals term (Data-II).
The trend of the higher frequency item is the same as that of the original data, and the structure is
more regular and stable. Thus, Data-I and Data-II both have good regression effects by the QPSO-SVR
and AR, respectively.

(ii) Forecasting Using QPSO-SVR for Data-I (The Higher Frequency Item in Case 1)

After employing DEMD to reduce the non-stationarity of the data set in Case 1, QPSO with SVR
can be successfully applied to reduce the performance volatility of SVR with different parameters, to
perform the parameter determination in SVR modeling process.

The higher frequency item is simultaneously employed for QPSO-SVR modeling, and the better
performances of the training and testing (forecasting) sets are shown in Figure 4a,b, respectively.
This implies that the decomposition and optimization by QPSO is helpful to improve the forecasting
accuracy. The parameters of a QPSO-SVR model for Data-I are shown in Tables 1 and 2 in which the
forecasting error for the higher frequency decomposed by the DEMD and QPSO-SVR has been reduced.
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Figure 4. Comparison the forecasted electric load of train and test by the QPSO-SVR model for the
data-I of sample data: (a) One-day ahead prediction of May 8, 2007 are performed by the model;
(b) One-week ahead prediction from May 18, 2007 May 24, 2007 are performed by the model.

Table 1. The QPSO’s parameters for SVR in Data-I.

N Cmin Cmax σmin σmax itmax

30 0 200 0 200 300

Table 2. The SVR’s parameters for Data-I.

Sample Size m σ C ε Testing MAPE

The samall sample data 20 0.12 88 0.0027 9.13
The large sample data 20 0.19 107 0.0011 4.1

where N is number of particles, Cmin is the minimum of C, Cmax is the maximum of C, σmin is the
minimum of σ, σmax is the maximum of σ, itmax is maximum iteration number.

(iii) Forecasting Using AR for Data-II (The Residuals in Case 1)

As mentioned in the authors’ previous paper [25], the residuals are linear locally and stable, so
use of the AR technique to predict Data-II is feasible. Based on the geometric decay of the correlation
analysis for Data-II (the residuals), it can be denoted as the AR(4) model. The associated parameters
of the AR(4) model for Data-II are indicated in Table 3. The errors almost approach the level of 10´5

both for the small or large amounts of data, i.e., the forecasting error for Data-II by DEMD has been
significantly reduced. This shows the superiority of the AR model.
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Table 3. Summary of results of the AR forecasting model for data-II.

Residuals MAE Equation

The small sample size 9.7732 ˆ 10´ 5 xn “ 5523.827 ` 1.23xn´1 ` 0.5726xn´2 `
0.0031xn´3 ´ 0.70465xn´4

The large sample size 7.5923 ˆ 10´5 xn “ 5524.9 ` 1.0152xn´1 ` 0.3628xn´2 `
0.0019xn´3 ´ 0.6752xn´4

3.2. The Experimental Results of Case 2

For Case 2, electric load data obtained from 1 to 12 January 2015 is used as the training data set in
the modeling process, and the testing data set is from 13 to 14 January 2015. These employed electric
load data are all based on an hour basis (i.e., 24 data points per day). The dataset contains only 14 days
so it is also called the small sample in this paper.

Secondly, for large training sets, the second dataset size is 46 days (1104 data points from 1 January
to 15 February 2015) by employing all of the training samples as training set, i.e., from 1 January to
1 February 2015, and the testing dataset is from 2 to 15 February 2015. This example is also called the
large size sample data in this paper.

(i) Results after DEMD in Case 2

As mentioned in the authors’ previous paper [25], similarly, the data results of the decomposition
process by DEMD can be divided into the higher frequency item (Data-I) and the residuals term
(Data-II). The trend of the higher frequency item is also the same as that of the original data, and the
structure is also regular and stable. Thus, Data-I and Data-II both have good regression effects by the
QPSO-SVR and AR, respectively.

(ii) Forecasting Using QPSO-SVR for Data-I (The Higher Frequency Item in Case 2)

After employing DEMD to reduce the non-stationarity of the data set in Case 2, to further resolve
these complex nonlinear, chaotic problems for both small sample and large sample data, the QPSO
with SVR can be successfully applied to reduce the performance volatility of SVR with different
parameters to perform the parameter determination in the SVR modeling process, to improve the
forecasting accuracy. The higher frequency item is simultaneously employed for QPSO-SVR modeling,
and the better performances of the training and testing (forecasting) sets are shown in Figure 5a,b,
respectively. This implies that the decomposition and optimization by QPSO is helpful to improve the
forecasting accuracy. The parameters of a QPSO-SVR model for Data-I are shown in Tables 1 and 4 in
which the forecasting error for the higher frequency decomposed by the DEMD and QPSO-SVR has
been reduced.

Table 4. The SVR’s parameters for data-I in Case 2.

Sample Size m σ C ε Testing MAPE

The small data 24 0.10 102 0.0029 7.19
The large data 24 0.19 113 0.0011 4.62

(iii) Forecasting Using AR for Data-II (The Residuals in Case 2)

As mentioned in the authors’ previous paper [25], the residuals are linear locally and stable, so
the AR technique is feasible to predict Data-II. Based on the geometric decay of the correlation analysis
for Data-II (the residuals), that can also be denoted as the AR(4) model, the associated parameters of
the AR(4) model for Data-II are indicated in Table 5. The errors almost approach a level of 10´5 both
for the small or large amount of data, i.e., the forecasting error for Data-II by DEMD has significantly
reduced. This shows the superiority of the AR model.
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Figure 5. Comparison the forecasted electric load of training and test data by the QPSO-SVR model
for the data-I of sample data in Case 2: (a) One-day ahead prediction from 13 to 14 January 2015 are
performed by the model; (b) One-week ahead prediction from 2 to 15 February 2015 are performed by
the model.

Table 5. Summary of results of the AR forecasting model for Data-II in Case 2.

Residuals MAE Equation

The small sample size 9.138 ˆ 10´ 5 xn “ 5521.7 ` 1.13xn´1 ` 0.5676xn´2 `
0.021xn´3 ´ 0.845xn´4

The large sample size 6.02 ˆ 10´5 xn “ 5522.7 ` 0.9152xn´1 ` 0.3978xn´2 `
0.0049xn´3 ´ 0.52xn´4

where xn is the n-th electric load residual, xn´1 is the (n ´ 1)th electric load residual similarly, etc.

4. Results and Analysis

This section illustrates the performance of the proposed DEMD-QPSO-SVR-AR model in terms
of forecasting accuracy and interpretability. Taking into account the superiority of an SVR model for
small sample size and superiority comparisons, a real case analysis with small sample size is used in
the first case. The next case with 1104 data points is devoted to illustrate the relationships between
two sample sizes (large size and small size) and accurate levels in forecasting.

4.1. Setting Parameters for the Proposed Forecasting Models

As indicated by Taylor [46], and according to the same conditions of the comparison with
Che et al. [47], the settings of several parameters in the proposed forecasting models are illustrated as
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follows. For the PSO-BP model, 90% of the collected samples is used to train the model, and the rest
(10%) is employed to test the performance. In the PSO-BP model, these used parameters are set as
follows: (i) for the BP neural network, the input layer dimension (indim) is set as 2; the dimension of
the hidden layer (hiddennum) is set as 3; the dimension of the output layer (outdim) is set as 1; (ii) for
the PSO algorithm, the maximum iteration number (itmax) is set as 300; the number of the searching
particles, N, is set as 40; the length of each particle, D, is set as 3; weight c1 and c2 are set as 2.

The PSO-SVR model not only has its embedded constraints and limitations from the original
SVR model, but also has huge iteration steps as a result of the requirements of the PSO algorithm.
Therefore, it would be time consuming to train the PSO-SVR model while the total training set is
used. For this consideration, the total training set is divided into two sub-sets, namely training subset
and evaluation subset. In the PSO algorithm, the parameters used are set as follows: for the small
sample, the maximum iteration number (itmax) is set as 50; the number of the searching particles, N, is
set as 20; the length of each particle, D, is set as 3; weight c1 and c2 are set as 2; for the large sample,
the maximum iteration number (itmax) is set as 20; the number of the searching particles, N, is set as 5;
the length of each particle, D, is also set as 3; weight c1 and c2 are also set as 2.

Regarding Case 2, to be based on the same comparison conditions used in Fan et al. [25], the newest
electric load data from NYISO is also employed for modeling, five alternative forecasting models
(including the ARIMA, BPNN, GA-ANN, EMD-SVR-AR, and DEMD-SVR-AR models) are used for
comparison with the proposed model. Some parameter settings of the employed forecasting models
are set the same as in [25], and are briefly as follows: for the BPNN model, the node numbers of its
structure are different for small sample size and large sample size; for the former one, the input layer
dimension is 240, the hidden layer dimension is 12, and the output layer dimension is 48; and these
values are 480, 12, 336, respectively, for the latter one. The parameters of GA-ANN model used in this
case are as follows: generation number is set as 5, population size is set as 100, bit numbers are set as
50, mutation rate is set as 0.8, crossover rate is 0.05.

4.2. Evaluation Indices for Forecasting Performances

For evaluating the forecasting performances, three famous forecasting accurate level indices,
RMSE (root mean square error), MAE (mean absolute error), and MAPE (mean absolute percentage
error), as shown in Equations (24) to (26), are employed:

RMSE “

gfffe
nř

i“1
pPi ´ Aiq2

n
(24)

MAE “

nř
i“1

|Pi ´ Ai|
n

(25)

MAPE “

nř
i“1

ˇ̌̌
ˇ Pi ´ Ai

Ai

ˇ̌̌
ˇ

n
˚ 100 (26)

where Pi and Ai are the i-th forecasting and actual values, respectively, and n is the total number
of forecasts.

In addition, to verify the suitability of model selection, Akaike’s Information Criterion (AIC),
an index of measurement for the relative quality of models for a given set of data, and Bayesian
Information Criterion (BIC), also known as the Schwartz criterion, which is a criterion for model
selection among a finite set of models (the model with the lowest BIC is preferred), are both taken into
account to enhance the robustness of the verification. These two indices are defined as Equations (27)
and (28), respectively:

AIC “ LogpSSEq ` 2q (27)
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where SSE is the sum of squares for errors, q is the number of estimated parameters:

BIC “ LogpSSEq ` qLogpnq (28)

where q is the number of estimated parameters and n is the sample size.

4.3. Empirical Results and Analysis

For the first experiment in Case 1, the forecasting results (the electric load on 8 May 2007) of
the original SVR model, the PSO-SVR model and the proposed DEMD-QPSO-SVR-AR model are
shown in Figure 6a. For Case 2, the forecasting results of the ARIMA model, the BPNN model, the
GA-ANN model and the proposed DEMD-QPSO-SVR-AR model are shown in Figure 7a. Based on
these two figures, the forecasting curve of the proposed DEMD-QPSO-SVR-AR model seems to achieve
a better fit than other alternative models for the two cases in this experiment.
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Figure 6. Comparison of the original data and the forecasted electric load by the DEMD-QPSO-SVR-AR
Model, the SVR model and the PSO-SVR model for (a) the small sample size (One-day ahead prediction
of 8 May 2007 are performed by the models); (b) the large sample size (One-week ahead prediction
from 18 May 2007 to 24 May 2007 are performed by the models).
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Figure 7. Comparison of the original data and the forecasted electric load by the DEMD-QPSO-SVR-AR
Model, the ARIMA model, the BPNN model and the GA-ANN model for: (a) the small sample size
(One-day ahead prediction from 13 to 14 January 2015 are performed by the models); (b) the large
sample size (One-week ahead prediction from 2 to15 February 2015 are performed by the models).

The second experiments in Cases 1 and 2 show the large sample size data. The peak load
values of the testing set are bigger than those of the training set. The detailed forecasting results
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in this experiment are illustrated in Figures 6b and 7b. It also shows that the results obtained
from the proposed DEMD-QPSO-SVR-AR model seem to have smaller forecasting errors than other
alternative models.

Notice that for any particular sharp points in Figures 6 and 7 after extracting the direction
feature of the trend by DEMD technology, these sharp points fixed in their positions represent the
higher frequency characteristics of the remaining term, therefore, quantizing the particles in PSO
the algorithm is very effective for dealing with this kind of fixed point characteristics. In other
words, the DEMD-QPSO-SVR-AR model has better generalization ability than other alternative
comparison models in both cases. Particularly in Case 1, for example, the local details for sharp points
in Figure 6a,b are enlarged and are shown in Figure 8a,b, respectively. It is clear that the forecasting
curve of the proposed DEMD-QPSO-SVR-AR model (red solid dots and red curve) fits more precisely
than other alternative models, i.e., it is superior for capturing the data change trends, including any
fluctuation tendency.
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Figure 8. The local enlargement (peak) comparison of the DEMDQPSOSVRAR Model, the SVR model
and the PSO-SVR model for (a) the small sample size (1); (b) the large sample size (2).

To better explain the superiority, the shape factor (SF), defined as Equation (29) and shown in
Figure 9, is employed to illustrate the fitting effectiveness of the method, the SF value of the model
closer to the one of the raw data, the fitness of the model is better than others. The results are shown in
Table 6. It indicates that the data of SF from DEMD-QPSO-SVR-AR model is closer to the raw data
than other models:

SF pShape Factorq “ S1pSquare of blue areaq{S2pSquare of red areaq (29)

 

Figure 9. The definition of shape factor.
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Table 6. The shape factor (SF) for local sharp points comparison.

Algorithms
Small Sample Size Large Sample Size

SF SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 MSF *

Raw data 0.83 0.92 0.95 0.81 0.76 0.73 0.71 0.74 0.71 0.791
Original SVR 1.05 1.13 1.02 0.92 0.88 0.90 0.85 0.96 0.83 0.924

PSO-SVR 1.12 0.99 0.82 0.89 0.85 0.87 0.64 0.72 0.79 0.821
DEMD-QPSO-SVR-AR 0.90 0.94 0.93 0.81 0.75 0.69 0.74 0.72 0.70 0.785

* MSF = mean(SF).

The forecasting results in Cases 1 and 2 are summarized in Tables 7 and 8 respectively.
The proposed DEMD-QPSO-SVR-AR model is compared with alternative models. It is indicated
that our hybrid model outperforms all other alternatives in terms of all the evaluation criteria. One of
the general observations is that the proposed model tends to fit closer to the actual value with a smaller
forecasting error. This is ascribed to the fact that a well combined DEMD and QPSO can effectively
capture the exact shape characteristics, which are difficult to illustrate by many other methods while
data often has intertwined effects among the chaos, noise, and other unstable factors. Therefore,
the unstable impact is well solved by DEMD, especially for those border points, and then, QPSO
can accurately illustrate the chaotic rules, i.e., achieve more satisfactory parameter solutions for an
SVR model.

Table 7. Summary of results of the forecasting models in Case 1.

Algorithm MAPE RMSE MAE AIC BIC
Running
Time (s)

MSF (Data)

For the first experiment (small sample size)

Original SVR [47] 11.6955 145.865 10.9181 112.3 111.9 180.4 0.972 (0.749)
PSO-SVR [47] 11.4189 145.685 10.6739 120.7 125.8 165.2 0.904 (0.749)
PSO-BP [47] 10.9094 142.261 10.1429 110.5 116.0 159.9 0.897 (0.749)
AFCM [23] 9.9524 125.323 9.2588 82.6 85.5 75.3 0.761 (0.749)

DEMD-QPSO-SVR-AR 9.1325 122.368 9.2201 80.9 83.1 100.7 0.756 (0.749)

For the second experiment (large sample size)

Original SVR [47] 12.8765 181.617 12.0528 167.7 180.9 116.8 1.062 (0.830)
PSO-SVR [47] 13.503 271.429 13.0739 215.8 220.3 192.7 0.994 (0.830)
PSO-BP [47] 12.2384 175.235 11.3555 150.4 157.2 163.1 0.925 (0.830)
AFCM [23] 11.1019 158.754 10.4385 142.1 146.7 160.4 0.838 (0.830)

DEMD-QPSO-SVR-AR 4.1499 140.105 9.6258 129.0 128.1 169.0 0.826 (0.830)

In view of the model effectiveness and efficiency on the whole, we can conclude that the proposed
model is quite competitive against other compared models, such as the ARIMA, BPNN, GA-ANN,
PSO-BP, SVR, PSO-SVR, and AFCM models. In other words, the hybrid model leads to better accuracy
and statistical interpretation.

In particular, as shown in Figure 8, our method shows higher accuracy and good flexibility in
peak or inflection points, because the little redundant information could be used by statistical learning
or regression models, and the level of optimization would increase. This also ensures that it could
achieve more significant forecasting results due to the closer SF values to the raw data set. For closer
insight, this can be viewed as the fact that the shape factor reflects how the electric load demand
mechanism ia affected by multiple factors, i.e., the shape factor reflects the change tendency in terms of
ups or downs, thus, closer SF value to the raw data set can capture more precise trend changes than
others, and this method no doubt can reveal the regularities for any point status.
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Table 8. Summary of results of the forecasting models in Case 2.

Algorithm MAPE RMSE MAE AIC BIC MSF (Data)

For the first experiment (small sample size)

ARIMA(4,1,4) [25] 45.33 320.45 25.72 278.4 285.1 1.132 (0.864)
BPNN [25] 31.76 219.43 21.69 198.5 200.2 0.955 (0.864)
GA-ANN [25] 23.89 220.96 23.55 199.3 202.3 0.947 (0.864)
EMD-SVR-AR [25] 14.31 158.11 17.44 140.7 141.9 0.873 (0.864)
DEMD-SVR-AR [25] 8.19 140.16 12.79 128.3 130.1 0.865 (0.864)
DEMD-QPSO-SVR-AR 7.48 138.89 14.44 125.4 126.7 0.859 (0.864)

For the second experiment (large sample size)

ARIMA(4,1,4) [25] 60. 65 733.22 54.05 551.4 579.4 1.091 (0.875)
BPNN [25] 42.5 479.48 50.39 334.6 342.3 0.976 (0.875)
GA-ANN [25] 33.12 450.63 44.35 321.7 323.6 0.953 (0.875)
EMD-SVR-AR [25] 11.29 289.21 20.76 239.0 238.2 0.890 (0.875)
DEMD-SVR-AR [25] 5.37 160.58 15.82 141.4 142.2 0.884 (0.875)
DEMD-QPSO-SVR-AR 4.62 153.22 16.30 132.5 133.8 0.879 (0.875)

Several findings deserved to be noted. Firstly, based on the forecasting performance comparisons
among these models, the proposed model outperforms other alternative models. Secondly, the
proposed model has better generalization ability for different input patterns as shown in the second
experiment. Thirdly, from the comparison between the different sample sizes of these two experiments,
we conclude that the hybrid model can tolerate more redundant information and construct the model
for the larger sample size data set. Fourthly, based on the calculation and comparison of SF in Table 6,
the proposed model also receives closer SF values to the raw data than other alternative models.
Finally, since the proposed model generates good results with good accuracy and interpretability, it is
robust and effective, as shown in Tables 7 and 8 comparing the other models, namely the original SVR,
PSO-SVR, PSO-BP and AFCM models. Overall, the proposed model provides a very powerful tool
that is easy to implement for electric load forecasting.

Eventually, the most important issue is to verify the significance of the accuracy improvement
of the proposed model. The forecasting accuracy comparisons in both cases among original SVR,
PSO-SVR, PSO-BP, AFCM, ARIMA, BPNN, and GA-ANN models are conducted by a statistical
test, namely a Wilcoxon signed-rank test, at the 0.025 and 0.05 significant levels in one-tail-tests.
The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing
two related samples, matched samples, or repeated measurements on a single sample to assess whether
their population mean ranks differ (i.e., it is a paired difference test). It can be used as an alternative
to the paired Student’s t-test, t-test for matched pairs, or the t-test for dependent samples when
the population cannot be assumed to be normally distributed [48]. The test results are shown in
Tables 9 and 10. Clearly, the outstanding forecasting results achieved by the proposed model is only
significantly superior to other alternative models at a significance level of 0.05. This also implies that
there are still lots of improvement efforts that can be made for hybrid quantum-behavior evolutionary
SVR-based models.
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Table 9. Wilcoxon signed-rank test in Case 1.

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 4 α = 0.05; W = 6

DEMDQPSOSVRAR vs. original SVR 8 3 a

DEMDQPSOSVRAR vs. PSO-SVR 6 2 a

DEMDQPSOSVRAR vs. PSO-BP 6 2 a

DEMDQPSOSVRAR vs. AFCM 6 2 a

a denotes that the DEMD-QPSO-SVR-AR model significantly outperforms other alternative models.

Table 10. Wilcoxon signed-rank test in Case 2.

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 4 α = 0.05; W = 6

DEMDQPSOSVRAR vs. ARIMA 6 2 a

DEMDQPSOSVRAR vs. BPNN 6 2 a

DEMDQPSOSVRAR vs. GA-ANN 6 2 a

DEMDQPSOSVRAR vs. EMD-SVR-AR 6 2 a

DEMDQPSOSVRAR vs. DEMD-SVR-AR 6 2 a

a denotes that the DEMD-QPSO-SVR-AR model significantly outperforms other alternative models.

5. Conclusions

This paper presents an SVR model hybridized with the differential empirical mode decomposition
(DEMD) method and quantum particle swarm optimization algorithm (QPSO) for electric load
forecasting. The experimental results indicate that the proposed model is significantly superior
to the original SVR, PSO-SVR, PSO-BP, AFCM, ARIMA, BPNN, and GA-ANN models. To improve the
forecasting performance (accuracy level), quantum theory is hybridized with PSO (namely the QPSO)
into an SVR model to determine its suitable parameter values. Furthermore, the DEMD is employed to
simultaneously consider the accuracy and comprehensibility of the forecast results. Eventually, a hybrid
model (namely DEMD-QPSO-SVR-AR model) has been proposed and its electric load forecasting
superiority has also been compared with other alternative models. It is also demonstrated that a well
combined DEMD and QPSO can effectively capture the exact shape characteristics, which are difficult
to illustrate by many other methods while data often has intertwined effects among the chaos, noise,
and other unstable factors. Hence, the instability impact can be well solved by DEMD, especially for
those border points, and then, QPSO can accurately illustrate the chaotic rules, thus achieving more
satisfactory parameter solutions than an SVR model.
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Abstract: Crude oil, as one of the most important energy sources in the world, plays a crucial role in
global economic events. An accurate prediction for crude oil price is an interesting and challenging
task for enterprises, governments, investors, and researchers. To cope with this issue, in this paper, we
proposed a method integrating ensemble empirical mode decomposition (EEMD), adaptive particle
swarm optimization (APSO), and relevance vector machine (RVM)—namely, EEMD-APSO-RVM—to
predict crude oil price based on the “decomposition and ensemble” framework. Specifically, the raw
time series of crude oil price were firstly decomposed into several intrinsic mode functions (IMFs)
and one residue by EEMD. Then, RVM with combined kernels was applied to predict target value for
the residue and each IMF individually. To improve the prediction performance of each component,
an extended particle swarm optimization (PSO) was utilized to simultaneously optimize the weights
and parameters of single kernels for the combined kernel of RVM. Finally, simple addition was
used to aggregate all the predicted results of components into an ensemble result as the final result.
Extensive experiments were conducted on the crude oil spot price of the West Texas Intermediate
(WTI) to illustrate and evaluate the proposed method. The experimental results are superior to
those by several state-of-the-art benchmark methods in terms of root mean squared error (RMSE),
mean absolute percent error (MAPE), and directional statistic (Dstat), showing that the proposed
EEMD-APSO-RVM is promising for forecasting crude oil price.

Keywords: ensemble empirical mode decomposition (EEMD); particle swarm optimization (PSO);
relevance vector machine (RVM); kernel methods; crude oil price; energy forecasting

1. Introduction

It was reported by British Petroleum (BP) that fossil fuels accounted for 86% of primary energy
demand in 2014 and remain the dominant source of energy powering the global economy, with
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almost 80% of total energy supply in 2035. Among fossil fuels, crude oil is and will be the most
important energy source, accounting for almost 29% of total energy supply in 2035 [1], and plays
a vital role in all economies. In light of the importance of crude oil for the global economy, many
enterprises, governments, investors, and researchers have devoted great efforts to building models to
predict its price and volatility. However, due to its complexity, the price of oil can be easily affected
by many factors, such as supply and demand, speculation activities, competition from providers,
technique development, geopolitical conflicts, and wars [2–4]. All of these factors make the crude
oil price nonlinear, nonstationary, and fluctuate with high volatility. For example, the West Texas
Intermediate (WTI) crude oil price reached the peak of 145.31 USD per barrel in July 2008. However,
the price drastically dropped to 30.28 USD per barrel, with about an 80% decrease from the peak at the
end of 2008 because of the financial crisis. With economic recovery, the price rose above 113 USD per
barrel in April 2011, and then sharply declined below 27 USD per barrel in February 2016 for changes
of supply and demand, and for some political reasons.

A wide variety of models have emerged to predict crude oil price over the past decades, which
could be roughly classified into two categories: (1) statistical and econometric models; (2) artificial
intelligence (AI) models. Typically, statistical and econometric models include random walk model
(RWM), error correction models (ECM), grey model (GM), vector autoregressive (VAR) models,
autoregressive integrated moving average (ARIMA), and generalized autoregressive conditional
heteroskedasticity (GARCH) family models. For instance, Hooper et al. [5] and Murat et al. [6] studied
the performance of RWM in predicting crude oil price. The study of Baumeister and Kilin showed that
a VAR model outperformed some compared methods in terms of accuracy when applied to forecasting
crude oil price [7]. Xiang and Zhang analyzed and predicted monthly Brent crude oil price by ARIMA,
and showed that model ARIMA(1,1,1) achieved good results [8]. As one of the most popular time
series methods, ARIMA has been widely used as a benchmark in forecasting crude oil price by many
scholars [4,9–11]. GARCH is another widely used method for forecasting crude oil price. Morana
exploited the GARCH properties of the Brent crude oil price volatility and developed a semiparametric
model based on the bootstrap approach to predict crude oil price [12]. Arouri applied an extended
GARCH model to forecast the conditional volatility of crude oil price with structural breaks [13].
Mohammadi and Su applied ARIMA and GARCH to forecast the conditional mean and volatility of
weekly crude oil price in several markets [14]. Since these statistical and econometric models are built
on the assumption that crude oil price is linear and stationary, it is hard for them to predict nonlinear
and nonstationary crude oil price with high performance.

As far as AI methods, artificial neural network (ANN) and support vector machine (SVM) have
been widely used for predicting crude oil price. Shambora and Rossiter used an ANN model with
moving average crossover inputs to forecast the future price of crude oil, and the results showed
the superiority of ANN when compared with RWMs [15]. Mirmirani and Li compared VAR and
ANN with genetic algorithm (GA) in forecasting crude oil price; the experimental results indicated
that ANN with GA noticeably outperformed VAR [16]. Azadeh et al. compared ANN with fuzzy
regression (FR) in forecasting long-term oil price in noisy, uncertain, and complex environments, and
they concluded that ANN considerably outperformed FR in terms of mean absolute percentage error
(MAPE) [17]. Tang and Zhang put forward a multiple wavelet recurrent neural network (MW-RNN)
model for forecasting crude oil price, where wavelet and ANN were applied to capture multiscale data
characteristics and to predict crude oil price at different scales, respectively. The proposed model could
achieve high prediction accuracy [18]. Haidar et al. utilized a three-layer feedforward neural network
to forecast short-term crude oil price [19]. SVM, first proposed by Vapnik [20], is a very popular
supervised learning algorithm that can be applied to both classification and regression. The SVM for
regression is also know as support vector regression (SVR). Xie et al. proposed an SVM-based method
for crude oil price forecasting, and the results indicated that SVM outperformed ARIMA and back
propagation neural network (BPNN) [21]. Li and Ge presented a novel model integrating ε-SVR and
dynamic correction factor for forecasting crude oil price [11]. Some scholars studied the optimization of
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kernel types and/or kernel parameters in SVM for oil price forecasting [22,23]. Least squares support
vector machine (LSSVM) [24]—an extension of SVM with less training time—has also been used in
crude oil price forecasting [25]. Generally speaking, since the above-mentioned AI models can capture
the nonlinear and nonstationary characteristics of crude oil price, these models are superior to the
statistical and econometric models.

Owing to its highly complex characteristics of nonlinearity and nonstationarity, achieving
satisfactory predictive accuracy on the raw crude oil price series is still a challenging task, although
many attempts have been made. In recent years, a novel “decomposition and ensemble” framework has
demonstrated its superiority in forecasting time series, which decomposes a complex times series into
a few simple components, predicts each component individually, and finally ensembles all predicted
values as final result [4,9,26–29]. The simple components can effectively preserve some features of
complex raw data from different perspectives, and each of them can be independently handled with
relatively simple methods. The challenging task of forecasting crude oil price from the complex raw
data is divided into several relatively easy subtasks of forecasting each component. Therefore, this
framework is effective for forecasting crude oil price. For example, Yu et al. proposed a model based
on empirical mode decomposition (EMD) and ANN to predict WTI and Brent crude oil price, and
the results demonstrated the attractiveness of the proposed model [9]. Yu et al. also proposed a
novel model based on ensemble EMD (EEMD) and extended extreme learning machine (EELM) to
predict the crude oil price of WTI [4,30]. Zhang et al. put forward a novel hybrid model with EEMD,
LSSVM, particle swarm optimization (PSO), and GARCH to predict crude oil price, where LSSVM
with parameters optimized by PSO and GARCH were used to forecast nonlinear and time-varying
components by EEMD, respectively [26]. Tang et al. integrated complementary EEMD (CEEMD) and
EELM to forecast crude oil price [27]. In addition, Fan et al. used independent component analysis
(ICA) to decompose the crude oil price time series into three independent components, and then
constructed three SVR models to predict the components respectively, and finally used SVR again to
integrate the results by the former three SVRs as final price [31].

Relevance vector machine (RVM) [32]—a kernel-trick machine learning method that uses
Bayesian inference—has attracted much attention from researchers in both classification and
regression in recent years [33–39]. The main advantages of RVM over SVM are the absence of
a regularizing parameter, and the ability to use non-Mercer kernels, probabilistic output, and
sparsity formulation. The kernel types and kernel parameters are still crucial in RVM. For example,
Fei et al. and Wang et al. studied the performance of wavelet kernel in RVM [40,41]. The authors
used composite kernels to identify nonlinear systems [42]. Psorakis et al. investigated the sparsity
and accuracy of multi-class multi-kernel RVMs [43]. To improve the performance of RVM, some
evolutionary algorithms were applied to optimize the weight of single kernel or kernel parameters.
Fei and He used an extended PSO to optimize the weight and parameters in a combined kernel by a
radial basic function (RBF) kernel and a polynomial kernel for state prediction of bearing [44], and
Zhang et al. used a similar method to predict the capacity of Lithium-Ion Batteries [45]. GA, artificial
bee colony algorithm (ABC), and ant colony optimization algorithms (ACO) were also applied to
optimize kernel parameters in RVM [46–48]. Regarding time series analysis, RVM has been successful in
detecting seizure in electroencephalogram (EEG) signals [49] and forecasting stock index [50], exchange
rate [51], nonlinear hydrological time series [52], wind speed [47,53], and the price of electricity [54].
These applications show the superiority of RVM in time series forecasting. According to the existing
literature, there was little research on crude oil price forecasting by RVM.

As a popular decomposition method, EEMD has advantages over other methods : (1) it can
be used to decompose nonlinear and nonstationary signals into several IMFs and one residue;
(2) the IMFs by EEMD are obtained adaptively and represent local features of the signal; (3) unlike
Fourier and wavelet transforms, EEMD does not need a basis function for decomposition; and (4) it
needs only two parameters (the number of ensemble and the standard deviation of Gaussian white
noise). Therefore, it can be seen that the incorporation of EEMD as the decomposition method, RVM as
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the prediction method, and addition as the ensemble method might achieve good accuracy of crude oil
price forecasting, following the “decomposition and ensemble” framework. Based on the framework,
the original difficult task of forecasting crude oil price is divided into several relatively easy subtasks
of forecasting each component individually. Since EEMD decomposes the raw crude oil price into a set
of components and the raw price equals the sum of all the components, simple addition might be a
good choice to ensemble all predicted results from components as the final result. Although EEMD
and kernel methods have succeeded in forecasting time series, most of the existing studies used a fixed
type of kernel to predict every component by EEMD, ignoring the characteristics of the data. In fact,
each component has its own characteristics. For example, the residue reflects the trend of original
signal, while the first intrinsic mode function (IMF) reflects the highest frequency [30]. It is more
appropriate to adaptively select kernel types and kernel parameters for each component by its own
characteristics [55]. To cope with this issue, this research aims to propose a novel method integrating
EEMD, adaptive PSO (APSO), and RVM—namely, EEMD-APSO-RVM—to predict crude oil price
following the “decomposition and ensemble” framework. Specifically, the raw price was decomposed
into several components. Then, for each component, RVM with a combined kernel where weights
and parameters of single kernels were optimized by an extended PSO was applied to predict its target
value. Finally, the predicted values of all components were aggregated as final predicted crude oil price.
Compared to the basic “decomposition and ensemble” framework, the proposed EEMD-APSO-RVM
improves the accuracy of crude oil price forecasting in three aspects: (1) it uses EEMD instead of some
other decomposition methods to decompose the raw time series into several components that can
better represent the characteristics of the data; (2) it applies RVM to forecast each component because
of its good predictive capabilities; and (3) it proposes APSO to adaptively optimize the weights and
parameters of the single kernels in the combined kernel of RVM. The main contributions of this work
are three-fold: (1) we proposed an EEMD-APSO-RVM to predict crude oil price. To the best of our
knowledge, it is the first time that RVM has been applied to forecasting crude oil price; (2) an extended
PSO was employed to simultaneously optimize kernel types and kernel parameters for RVM, resulting
in an optimal kernel for the specified component by EEMD; (3) extensive experiments were conducted
on WTI crude oil price, and the results demonstrated that the proposed EEMD-APSO-RVM method
is promising for forecasting crude oil price. Accordingly, the novelty of this paper can be described
as : (1) it introduces RVM to forecasting crude oil price for the first time; and (2) an adaptive PSO is
proposed to optimize the weights and parameters of kernels in RVM to improve the accuracy of crude
oil price forecasting.

The remainder of this paper is organized as follows. Section 2 describes the formulation process
of the proposed EEMD-APSO-RVM method in detail. Experimental results are reported and analyzed
in Section 3. Finally, Section 4 concludes this paper.

2. Methodology

The decomposition and ensemble framework has three steps; i.e., decomposition, individual
prediction, and ensemble prediction. In this section, the overall formulation process of
EEMD-APSO-RVM is presented. Firstly, the related EEMD, PSO, and RVM are briefly introduced
individually in Sections 2.1–2.3. Secondly, the adaptive PSO for parameters optimization in RVM
is described in Section 2.4. Finally, the EEMD-APSO-RVM algorithm is formulated, and the
corresponding steps are described in detail in Section 2.5.

2.1. Ensemble Empirical Mode Decomposition

Ensemble empirical mode decomposition (EEMD) is an extended version of empirical mode
decomposition (EMD) developed to overcome the drawback of the so-called “mode mixing” problem
in the latter [30,56]. Contrary to traditional decomposition methodologies, EEMD is an empirical,
direct, intuitive, and self-adaptive methodology that can decompose nonlinear and nonstationary time
series into components (several IMFs and one residue), with each component having a length equal
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to the original signal. Since it was proposed, it has been widely applied to complex system analysis,
showing its superiority in forecasting time series.

The main idea of EEMD is to perform EMD many times on the time series, given a number of
Gaussian white noises to obtain a set of IMFs, and then the ensemble average of corresponding IMFs is
treated as the final decomposed results. The main steps of EEMD are as follows:

Step 1: Specify the number of ensemble M and the standard deviation of Gaussian white noises σ,
with i = 0;

Step 2: i = i + 1; Add a Gaussian white noise ni(t)∼N(0, σ2) to crude oil price series X(t) to
construct a new series Xi(t), as follows:

Xi(t) = X(t) + ni(t). (1)

Step 3: Decompose Xi(t) into m IMFs cij(t)(j = 1, . . . , J) and a residue ri(t), as follows:

Xi(t) =
m

∑
j=1

cij(t) + ri(t), (2)

where cij is the j-th IMF in the i-th trial, and J is the number of IMFs, determined by the size
of crude oil price series N with J = �log2N� − 1 [30].

Step 4: If i < M, go to Step 2 to perform EMD again; otherwise, go to Step 5;
Step 5: Calculate the average of corresponding IMFs of M trials as final IMFs:

cj(t) =
1
M

M

∑
i=1

cij(t), i = 1, . . . , M; j = 1, . . . , J. (3)

Once the EEMD completes, the original time series can be expressed as the sum of J IMFs and a
residue, as follows:

X(t) =
J

∑
j=1

cj(t) + rJ,t, (4)

where rJ,t is the final residue. Now, the issue of forecasting original time series becomes the new issue
of forecasting each component decomposed by EEMD.

2.2. Particle Swarm Optimization

Particle swarm optimization (PSO)—firstly proposed by Eberhart and Kennedy—is an
evolutionary computation algorithm that uses the velocity-displacement model through iteration
to simulate swarm intelligence [57]. The algorithm initializes with a group of random particles in space
of D dimensions, and each particle—representing a potential solution—is assigned a randomized
velocity to change its position, searching for the optimal solution. In each iteration, the particles
keep track of the local best solution pl and the global best solution pg to decide the flight speed and
distance accordingly.

The ith particle has a position vector and a velocity vector in D dimensional space, described
as pi = (pi1, pi2, . . . , piD) and vi = (vi1, vi2, . . . , viD), and the optimum locations achieved by the ith
particle and population are also described as pli = (pli1, pli2, . . . , pliD) and pg = (pg1, pg2, . . . , pgD),
respectively. The formulas to update the speed and position of the dth dimension of the ith particle are
as follows, respectively:

vid(t + 1) = wvid(t) + c1r1(plid − pid(t)) + c2r2(pgd − pid(t)) (5)

pid(t + 1) = pid(t) + vid(t + 1)) (6)
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where t is the current number of iteration, w is inertia weight, c1 and c2 are nonnegative accelerate
constants, and r1 and r2 are random in the range of [0,1].

PSO is good at real optimization. Therefore, in this research, we use PSO to optimize the weight
and parameters in each single kernel for the combined kernel in RVM.

2.3. Relevance Vector Machine

Relevance vector machine (RVM)—put forward by Tipping [32]—can be applied to both regression
and classification. Since forecasting crude oil price is related to regression, here we give a brief review
of RVM for regression only. Readers can refer to [32] for more details on RVM.

Given a set of samples {xi, ti}N
i=1, where xi ∈ Rd are d-dimensional vectors as inputs and ti ∈ R

are real values as targets, and assuming that ti = y(xi; w) + εi with εi ∼ N(0, σ2), the RVM model for
regression can be formulated as:

t = y(x; w) =
N

∑
i=1

wiK(x, xi) + w0, (7)

where K(x, xi) is a kernel function on x and xi, and wi is the weight of the kernel. Then, for a sample i,
the conditional probability of the target is as follows:

p(ti|xi) = N(ti|y(xi; w), σ2). (8)

Assuming that the samples {xi, ti}N
i=1 are independently generated, the likelihood of all the

samples can be defined as follows:

p(t|w, σ2) =
N

∏
i=1

N(ti|y(xi; w), σ2)

= (2πσ2)−
N
2 exp(−||t − Φw||2

2σ2 ),

(9)

where Φ is a design matrix having the size N × (N + 1) with Φ = [φ(x1), φ(x2), . . . , φ(xN)]
T ,

wherein each component is the vector of the response of kernel function associated with the sample
xn as φ(xn) = [1, K(xn, x1), K(xn, x2), . . . , K(xn, xN)]

T . It may cause over-fitting if we implement
maximum-likelihood estimation for w and σ2 directly, because the size of training samples is almost
the same as the size of parameters. To overcome this, Tipping imposed a constraint on weights w from
a Bayesian perspective, as follows [32]:

p(w|α) =
N

∏
i=0

N(wi|0, α−1
i ), (10)

where α is an N + 1 vector named hyperparameters. With the prior on weights, for all unknown
samples, the posterior can be computed from the proceeds of Bayes inference as:

p(w, α, σ2|t) = p(t|w, α, σ2)× p(w, α, σ2)

p(t)
. (11)

For a given input point x∗, the predictive distribution of the corresponding target t∗ can be
written as:

p(t∗|t) =
∫

p(t∗|w, α, σ2)p(w, α, σ2|t)dwdαdσ2. (12)
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It is difficult to directly compute the posterior p(w, α, σ2|t) in Equation (11). Instead, Tipping
further decomposes it as follows:

p(w, α, σ2|t) = p(w|t, α, σ2)p(α, σ2|t). (13)

The computation of p(w, α, σ2|t) is now becoming the computation of two items: p(w|t, α, σ2) and
p(α, σ2|t). The posterior distribution over weights can be written from Bayes’s rule:

p(w|t, α, σ2) =
p(t|w, σ2)p(w|α)

p(t|α, σ2)

= (2πσ2)−
N+1

2 |∑ |− 1
2 exp(− (w − μ)T ∑−1(w − μ)

2
),

(14)

where the posterior covariance and mean are as follows, respectively,

∑ = (βΦTΦ + A)−1, (15)

μ = β ∑ ΦTt, (16)

with β = σ−2 and A = diag(α0, α1, . . . , αN), respectively.
As far as the second item at right hand side of Equation (13), it can be decomposed as:

p(α, σ2|t) ∝ p(t|α, σ2)p(α)p(σ2) ∝ p(t|α, σ2). (17)

Therefore, the learning process of RVM is now transformed to maximizing Equation (18) with
respect to the hyperparameters α and σ2:

p(t|α, σ2) =
∫

p(t|w, σ2)p(w|α)dw

= (2π)−
N
2 |σ2 I + ΦA−1ΦT |− 1

2 exp(− tT(σ2 I + ΦA−1ΦT)−1t
2

),
(18)

where I is an identity matrix.
By simply setting the derivatives of Equation (18) to zero, we can obtain the re-estimation

equations on α and σ2 as follows, respectively:

αnew
i =

1 − αi ∑ii

μ2
i

, (19)

(σ2)new =
||t − Φμ||2

N − ∑i(1 − αi ∑ii)
. (20)

With the iteration, the optimal values of α and σ2—termed as αMP and σ2
MP respectively—can be

achieved by maximizing Equation (18).
Finally, for the given input point t∗, the predictive result can be computed as follows:

p(t∗|t, αMP, σ2
MP) =

∫
p(t∗|w, σ2

MP)p(w|t, αMP, σ2
MP)dw = N(t∗|y∗, σ2∗), (21)

where y∗ = μTφ(x∗) and σ2∗ = σ2
MP + φ(x∗)T ∑ φ(x∗).

The kernel function in RVM plays a crucial role which significantly influences the performance
of RVM. Therefore, it is important to select appropriate kernels according to the characteristics of the
data instead of using a single fixed kernel. Some widely used single kernels include the linear
kernel Klin(xi, yi) = xT

i yi, the polynomial kernel Kpoly(xi, yi) = (a(xT
i yi) + b)c, the RBF kernel

Krb f (xi, yi) = exp(−||xi−yi ||2
2d ) (here we use d to represent σ2 for short), and the sigmoid kernel
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Ksig(xi, yi) = tanh(e(xT
i yi) + f ). Among the kernels, the parameters a − f usually need to be specified

by users. In this paper, we integrate the above-mentioned four kernels into a combined kernel for
RVM, which can be represented as:

Kcomb(xi, yi) = λ1Klin(xi, yi) + λ2Kpoly(xi, yi) + λ3Krb f (xi, yi) + λ4Ksig(xi, yi), (22)

where λ1–λ4 are the weights for the four kernels that satisfy ∑4
i=1 λi = 1. In this way, each single kernel

of the four kernels is a special case of the combined kernel. For example, when λ1 = λ2 = λ4 = 0 and
λ3 = 1, the combined kernel degenerates to the RBF kernel. In the combined kernel, ten parameters
(λ1, λ2, λ3, λ4, a, b, c, d, e, and f ) need to be optimized.

2.4. Adaptive PSO for Parameter Optimization in RVM

For a specific problem, it is hard to set appropriate values for the parameters in the combined
kernel in Equation (22) according to priori knowledge. PSO is a widely used real optimization
algorithm that could be used in this case. However, in traditional PSO, the inertia weight for each
particle in one generation is fixed, and it varies with the iteration—ignoring the difference among
particles. Some varieties of PSO adaptively adjust the inertia wight of each particle based on one or
more feedback parameters [58]. Ideally, the particles far from the global best particle should have
larger inertia weight with more exploration ability, while the ones close to the global best particle
should have smaller inertia weight with more exploitation ability. To cope with this issue, in this paper,
an adaptive PSO (APSO) is proposed to optimize the parameters in RVM, which adaptively adjusts
the inertia weight of each particle in an iteration according to the distance between the current particle
and the global best particle.

Definition 1. Distance between two particles. The distance between two particles pi and pj can be defined as:

dist(pi, pj) =

√√√√ d

∑
k=1

(pik − pjk)2 + ( f (pi)− f (pj))2 , (23)

where d is the dimension of particle, and f is the fitness function. It is worth noting that each dimension
in Equation (23) needs to be mapped into the same scale (e.g., [0,1]) in order for the computation
to make sense. According to this definition, the distance between two particles has three properties:
(1) dist(pi, pj) = dist(pj, pi); (2) dist(pi, pi) = 0; (3) dist(pi, pk) + dist(pk, pj) ≥ dist(pi, pj).

Definition 2. Average distance of population. The average distance of the population can be defined as:

mdist =

2
N
∑

i=1

i−1
∑

j=1
dist(pi, pj)

N(N − 1)
, (24)

where N is the total number of particles in a swarm.

In this paper, we propose an adaptive strategy to adjust the inertia weight for one particle pi in
the t-th iteration by Equation (25):

wt,i =

{
wmin +

wmax−wmin
T t, dist(pi, pg) > mdist

wmin +
wmax−wmin

mdist dist(pi, pg), dist(pi, pg) ≤ mdist
, (25)

where T is the number of total iterations, pg is the global best particle, and wmax and wmin are the
maximal and minimal inertia weights specified by users, respectively. The main idea of Equation (25)
is to adjust the inertia weight of each particle adaptively according to its distance from the global best
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particle. If the current particle is far from the global best particle, it uses traditional inertia weight.
Otherwise, it adaptively adjusts its inertia weight according to its distance to the global best particle.

The model using APSO to optimize the parameters of the combined kernel in RVM—called
APSO-RVM—can be presented as:

Step 1: Setting parameters. Set the following parameters for running APSO, population size P,
maximal iteration times T, the maximal and minimal inertia weights wmax and wmin, the range
of the ten parameters to be optimized;

Step 2: Encoding. Encode the ten parameters into a particle (vector) pi = (pi1, pi2, . . . , pi10) to
represent λ1, λ2, λ3, λ4, a, b, c, d, e, and f accordingly;

Step 3: Defining the fitness function. The fitness function is defined by root mean square
error (RMSE):

f (pi) =

√√√√ 1
N

N

∑
n=1

(yi − φ(xi, pi))2 , (26)

where N is the size of training samples, yi is the true target of the input xi, and φ(xi, pi) is
the predicted target associated with xi and the parameter pi;

Step 4: Initializing. Set t = 0; randomly generate initial speed and position for each particle; use the
value of particle pi to compose the kernel for RVM in Equation (22), and then evaluate each
particle; pi is selected as pli, while the particle with the optimal fitness is selected as pg;

Step 5: Updating speed and position. Set t = t + 1; calculate the inertia weight using Equation (25),
and update the speed and position according to Equations (5) and (6), respectively;

Step 6: Evaluating particles. Evaluate each particle by fitness function;
Step 7: Updating the historical best particle, if necessary. If f (pi) ≤ f (pli), then pli = pi;
Step 8: Updating the global best particle, if necessary. If f (pi) ≤ f (pg), then pg = pi;
Step 9: Judging whether the iteration terminates or not. If t ≤ T, go to Step 5. Otherwise, stop

the iteration and output pgb as the optimized parameters for the combined kernel in RVM.
The optimal RVM predictor is obtained at this point.

The APSO is based on the framework of PSO, and the main improvement lies in that each particle
has its own inertia weight according to its distance from the global best particle. In this paper, the
APSO is applied to adaptively searching the optimal weights and parameters of the single kernels for
the combined kernel in RVM to predict crude oil price.

2.5. The Proposed EEMD–APSO–RVM Model

Following the framework of “decomposition and ensemble”, a three-stage methodology that
integrates ensemble empirical mode decomposition (EEMD), adaptive particle swarm optimization
(APSO), and relevance vector machine (RVM)—termed EEMD-APSO-RVM—can be formulated for
forecasting crude oil price. As shown in Figure 1, the proposed EEMD-APSO-RVM generally consists
of three main stages:

Stage 1: Decomposition. The original crude oil price series xt, (t = 1, 2, . . . , T) is decomposed into
with J = �log2T� − 1 intrinsic mode function (IMF) components cj,t, (j = 1, 2, . . . , J) and one
residue component rN,t using EEMD;

Stage 2: Individual forecasting. RVM with the combined kernel optimized by APSO is used to forecast
each component in Stage 1 independently, resulting in the predicted values of IMFs ĉj,t and
that of the residue r̂N,t, respectively;

Stage 3: Ensemble forecasting. The final predicted results x̂t can be obtained by simply adding the

predicted results of all IMF components and the residue; i.e., x̂t =
J

∑
j=1

ĉj,t + r̂N,t.
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Figure 1. Flowchart for the proposed method. APSO: adaptive particle swarm optimization;
EEMD: ensemble empirical mode decomposition; IMF: intrinsic mode function; RVM: relevance
vector machine.

The proposed EEMD-APSO-RVM is one of the typical strategies of “divide and conquer”.
The complicated question of forecasting the original crude oil price is transformed to several
questions of forecasting relatively simple components independently. The EEMD-APSO-RVM
adopts a combined kernel that integrates four commonly used kernels. Furthermore, the weights
and parameters in the combined kernel are adaptively optimized by an extension of PSO.
The EEMD-APSO-RVM decomposes the crude oil price into several IMFs and one residue for
forecasting individually, instead of using the nonlinear and nonstationary raw data as the input
to a single forecasting method; this can improve the forecasting accuracy, because the individual
forecasting is a relatively easy task. The kernel-trick RVM has the ability to accurately predict
time series such as wind speed and electricity price, which will benefit crude oil price forecasting.
The APSO adaptively optimizes the parameters in the kernel, trying to find the optimal kernel to
improve the forecasting results. All these attributes make it possible for the EEMD-APSO-RVM to
improve the accuracy of crude oil price forecasting.

3. Numerical Example

To demonstrate the performance of the proposed EEMD-APSO-RVM, in this paper, we select the
crude oil price of West Texas Intermediate (WTI) as experimental data, as described in Section 3.1.
The evaluation criteria are introduced in Section 3.2. Section 3.3 gives the parameter settings and
data preprocessing for the experiments, and in Section 3.4, the experimental results are reported.
We further analyse the robustness and running time of the proposed method in Section 3.5. Finally,
some interesting findings can be obtained from the experimental study.

3.1. Data Description

The crude oil price of WTI can be accessed from the US energy information administration
(EIA) [59]. We use the daily close price covering the period of 2 January 1986 to 12
September 2016, with 7743 observations in total for experiments. Among the observations,
the first 6194 from 2 January 1986 to 21 July 2010 are treated as training samples, while the
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remaining 1549 from 22 July 2010 to 12 September 2016 are for testing—accounting for 80%
and 20% of total observations, respectively.

We conduct h-step-ahead predictions with horizon h = 1, 3, 6 in this study. Given a time series
xt, (t = 1, 2, . . . , T), the h-step-ahead prediction for xt+h can be formulated as:

x̂t+h = f (xt−(l−1), xt−(l−2), . . . , xt−1, xt), (27)

where x̂t+h is the h-step-ahead predicted value at time t, xt is the true value at time t, and l is the
lag orders.

3.2. Evaluation Criteria

The root mean squared error (RMSE), the mean absolute percent error (MAPE), and the directional
statistic (Dstat) are selected to evaluate the performance of the proposed method. With the true value
xt and the predicted value x̂t at time t, RMSE is defined as:

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)2, (28)

where N is the number of testing observations. Note that the RMSE here has the same meaning as
Equation (26), where the predicted value is represented by φ(xi, pi).

As another evaluation criteria for prediction accuracy, MAPE is defined as:

MAPE =
1
N

N

∑
t=1

| xt − x̂t

xt
|. (29)

In addition, Dstat measures the ability to forecast the direction of price movement, which is
defined as:

Dstat =
1
N

N

∑
t=1

αt × 100%, (30)

where αt = 0 if (x̂t+1 − xt)(xt+1 − xt) < 0; otherwise, αt = 1.
An ideal forecasting method should achieve low RMSE, low MAPE, and high Dstat.

3.3. Experimental Settings

In order to evaluate the performance of the proposed methods, some state-of-the-art models were
selected as benchmarks to compare with the EEMD-APSO-RVM. In the decomposition stage, we
select EMD as a benchmark. In the prediction stage, the compared models include one classical
statistical method (ARIMA) and two popular AI models (LSSVR and ANN). In addition, RVM with
a single kernel (RVMlin, RVMpoly, RVMrbf, RVMsig) and RVM with a combined kernel from the
former four single kernels optimized by standard PSO (PSO-RVM) are also independently employed
in this stage. Therefore, we have eight single methods (PSO-RVM, RVMlin, RVMpoly, RVMrbf,
RVMsig, ANN, LSSVR, and ARIMA) to compare with APSO-RVM, and fifteen ensemble methods
(EEMD-PSO-RVM, EEMD-RVMlin, EEMD-RVMpoly, EEMD-RVMrbf, EEMD-RVMsig, EEMD-ANN,
EEMD-LSSVR, EMD-PSO-RVM, EMD-APSO-RVM, EMD-RVMlin, EMD-RVMpoly, EMD-RVMrbf,
EMD-RVMsig, EMD-ANN, and EMD-LSSVR) to compare with EEMD-APSO-RVM. All methods are
shown in Table 1.

The parameters for APSO are listed in Table 2. The standard PSO uses the same parameters as
APSO. Note that to guarantee ∑4

i=1 λi = 1, we simply map the values in particles to new values to

be applied to the combined kernel with λ′
j =

λj

∑4
i=1 λi

. For b, we use b = round(b) to get an integer as

the exponent. Following some previous work [4,27], we apply RBF kernel in LSSVR and use grid
search to find the optimal γ and σ2 in the range of {2k, k = −4,−3, . . . , 12} and {2k, k = −4,−3, . . . , 12},
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respectively. For ANN, we use a back propagation neural network and set ten as the number of
hidden nodes. The iteration times of ANN was set to 10,000. For the parameters in single RVM-related
predictors (i.e., a − f ), we search the best parameters in the same ranges as those in APSO (listed
in Table 2) with an interval of 0.2, excepting that c varies with an interval of 1 and d varies in
{2k, k = −4,−3, . . . , 12}. We use the Akaike information criterion (AIC) [60] to determine the ARIMA
parameters (p-d-q). We also set the lag orders in Equation (27) to six, as analysed in [61].

Table 1. Descriptions of all the methods in the experiments. ANN: artificial neural network; PSO:
particle swarm optimization.

Type Name
Descriptions

Decomposition Forecasting Ensemble

Si
ng

le

APSO-RVM - RVM with a combined kernel optimized by APSO -
PSO-RVM - RVM with a combined kernel optimized by standard PSO -

RVMlin - RVM with a linear kernel -
RVMpoly - RVM with a polynomial kernel -
RVMrbf - RVM with a radial basic function kernel -
RVMsig - RVM with a sigmoid kernel -

ANN - Back propagation neural network -
LSSVR - Least squares support vector regression -
ARIMA - Autoregressive integrated moving average -

En
se

m
bl

e

EEMD-APSO-RVM EEMD RVM with a combined kernel optimized by APSO Addition
EEMD-PSO-RVM EEMD RVM with a combined kernel optimized by standard PSO Addition

EEMD-RVMlin EEMD RVM with a linear kernel Addition
EEMD-RVMpoly EEMD RVM with a polynomial kernel Addition
EEMD-RVMrbf EEMD RVM with a radial basic function kernel Addition
EEMD-RVMsig EEMD RVM with a sigmoid kernel Addition

EEMD-ANN EEMD Back propagation neural network Addition
EEMD-LSSVR EEMD Least squares support vector regression Addition

EMD-APSO-RVM EMD RVM with a combined kernel optimized by APSO Addition
EMD-PSO-RVM EMD RVM with a combined kernel optimized by standard PSO Addition

EMD-RVMlin EMD RVM with a linear kernel Addition
EMD-RVMpoly EMD RVM with a polynomial kernel Addition
EMD-RVMrbf EMD RVM with a radial basic function kernel Addition
EMD-RVMsig EMD RVM with a sigmoid kernel Addition

EMD-ANN EMD Back propagation neural network Addition
EMD-LSSVR EMD Least squares support vector regression Addition

Table 2. Parameters for APSO.

Description Symbol Range / Value

Population size P 20
Maximal iterations T 40
Particle dimension D 10

Maximal, minimal inertia weight wmax , wmin 0.9, 0.4
Accelerate constants c1, c2 1.49, 1.49

Kernel weight λ1, λ2, λ3, λ4 [0, 1]
Coefficient in Kpoly a [0, 2]
Constant in Kpoly b [0, 10]
Exponent in Kpoly c [1, 4]

Width in Krbf d [2−4, 212]
Coefficient in Ksig e [0, 4]
Constant in Ksig f [0, 8]

Regarding ensemble models, we firstly add white noise with a standard deviation of 0.15 to the
original crude oil price, and then set 100 as the number of ensembles in EEMD. The decomposition
results of the original crude oil price by EEMD is shown in Figure 2, with 11 IMFs and one residue.

To set up the stage for a fair comparison, we applied the Min–Max Normalization (as shown in
Equation (31)) for all of the data:

xnorm = (x − xmin)/(xmax − xmin), (31)
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where xmin and xmax are the minimal and maximal values for one dimension in data, respectively, and
xnorm and x are the normalized and the original values, respectively. It is clear that the normalization
maps the original values to the range [0, 1]. Conversely, after obtaining the predicted value from
the normalized data x̂norm, the corresponding expected predicted value x̂ in original scale can be
computed as:

x̂ = xmin + (xmax − xmin) ∗ x̂norm. (32)

Figure 2. The IMF and residue components by EEMD.

All of the experiments were conducted by Matlab 8.6 (Mathworks, Natick, MA, USA) on a 64-bit
Windows 7 (Microsoft, Redmond, WA, USA) with 32 GB memory and 3.4 GHz I7 CPU.

3.4. Results and Analysis

3.4.1. Results of Single Models

We firstly evaluate the single models (i.e., APSO-RVM, PSO-RVM, RVMlin, RVMpoly, RVMrbf,
RVMsig, ANN, LSSVR, and ARIMA) in terms of MAPE, RMSE, and Dstat, as shown in Figures 3–5.
From these results, it can be concluded that the proposed APSO-RVM might be the most powerful
single model among all the single models in forecasting crude oil price.
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Figure 3. Mean absolute percentage error (MAPE) by different single methods.

Figure 4. Root mean square error (RMSE) by different single methods.

Figure 5. Dstat by different single methods.
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The MAPE value by the APSO-RVM is the lowest amongst the nine single models at all horizons,
followed by PSO-RVM, RVMpoly, RVMrbf, and RVMsig. The performances of the latter four models
are quite alike, except that the MAPE value by RVMrbf at horizon one is slightly high. RVMlin achieves
the highest values at horizon one and horizon three, and the third highest value at horizon six, showing
its poor performance in forecasting crude oil price. The possible reason for this is that the crude oil
price data is not linearly separable. The results by the state-of-the-art AI benchmark models (ANN
and LSSVR) are very close at horizon one and horizon three. However, LSSVR outperforms ANN
at horizon six. The statistical model—ARIMA—ranks sixth in all cases. This is probably because,
as a typical linear model, it is difficult for ARIMA to accurately forecast crude oil price due, to its
nonlinearity and nonstationarity.

As far as RMSE, the prediction accuracy of APSO-RVM is still ranked first among all of the
compared benchmark models in all cases, although it is very close to the corresponding result by
PSO-RVM. For the RVM model with a single kernel, RVMpoly, RVMrbf, and RVMsig achieve very
close results, which are slightly higher than that of APSO-RVM, followed by RVMlin with the poorest
results at horizon one and horizon three, and the second poorest result at horizon six among all
methods. ANN, LSSVR, and ARIMA achieve very similar RMSE values at each horizon, except ANN
underperforms LSSVR and ARIMA at horizon six.

From the perspective of directional accuracy, all of the models produce quite similar results,
ranging from 0.48 to 0.52. It can be easily seen that none of the models can be proven to be better than
the others. In spite of its leading performance in terms of MAPE and RMSE, APSO-RVM does not
significantly outperform other models at all horizons regarding Dstat. The APSO-RVM ranks first
at horizon one, fifth at horizon three, and first with slight advantages at horizon six. It is interesting
that LSSVR ranks first at horizon three and second at horizon six, but it ranks last at horizon one.
Another interesting finding is that the values of seven out of nine models at horizon six are higher
than those at horizon three. Therefore, the performance of single models is not stable when forecasting
the direction of crude oil price.

From the results by single models, it can be seen that none of the methods can consistently
outperform others in all cases in terms of MAPE, RMSE, and Dstat. Another interesting finding is
that many methods achieve very close results in most cases, although the APSO-RVM is better than
others in eight out of nine cases. In addition, all of the results by the methods are undesirable, even for
the best result. For example, the results of Dstat by all methods were between 0.48 and 0.52, which
tends to guessing randomly, making it unpractical. All of these findings show that it is a difficult
task to accurately forecast crude oil price using the nonlinear and nonstationary raw price. The main
reason might be that the single models have their limitations in achieving high accuracy because of the
complexity of crude oil price. Hence, in this work, we develop a novel “decomposition and ensemble”
method to improve the performance of single models in forecasting crude oil price.

3.4.2. Results of Ensemble Models

Regarding the ensemble models (i.e., EEMD-APSO-RVM, EEMD-PSO-RVM, EEMD-RVMlin,
EEMD-RVMpoly, EEMD-RVMrbf, EEMD-RVMsig, EEMD-ANN, EEMD-LSSVR, EMD-APSO-RVM,
EMD-PSO-RVM, EMD-RVMlin, EMD-RVMpoly, EMD-RVMrbf, EMD-RVMsig, EMD-ANN, and
EMD-LSSVR), Figures 6–8 show the corresponding results in terms of MAPE, RMSE, and Dstat.
From these results, it can be easily seen that the proposed EEMD-APSO-RVM is the best model that
achieves the lowest MAPE value, the lowest RMSE value, and the highest Dstat value at each horizon.
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Figure 6. MAPE by different ensemble methods.

Figure 7. RMSE by different ensemble methods.

Figure 8. Dstat by different ensemble methods.
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At each horizon, the MAPE value of EEMD-APSO-RVM ranks first among all models,
being far lower than that of many other ensemble models. At the same time, the MAPE
value of EMD-APSO-RVM also ranks first among all of the EMD-related methods. It shows the
superiority of APSO-RVM in forecasting crude oil price. Accordingly, the EEMD-PSO-RVM and
the EMD-PSO-RVM rank the second among EEMD-related and EMD-related methods, respectively,
at each horizon, with slightly worse results than those of counterpart EEMD-APSO-RVM and
EMD-APSO-RVM. EEMD-RVMpoly ranks third in terms of MAPE at each horizon, and EEMD-RVMsig
and EEMD-RVMrbf are slightly worse than EEMD-RVMpoly, but are still better than many other
methods. Among the EEMD-RVM family methods, EEMD-RVMlin is the poorest model, and
it always ranks last at three horizons when compared with other EEMD-RVM-related models.
It is clear that RVM with a combined kernel outperforms RVMs with a single kernel. Regarding ANN
and LSSVR, it is interesting that ANN underperforms LSSVR twice with EEMD, while the first always
outperforms the latter with EMD. For these two AI models, it is difficult to judge which is superior
to the other, since they are both parameter-sensitive and it is difficult for traditional methods to find
their optimal parameters. From the perspective of decomposition algorithms, it can be found that
the ensemble methods with EEMD as decomposition method are much better than their counterpart
methods with EMD, except for ANN at horizon one and horizon six, showing that the EEMD is a more
effective decomposition method in time series analysis. Furthermore, EEMD-APSO-RVM significantly
decreases the MAPE values when compared with the single APSO-RVM method, demonstrating the
effectiveness of the decomposition method for forecasting performance.

Focusing on the RMSE values (shown in Figure 7), findings similar to those of MAPE can be
obtained. EEMD-APSO-RVM still ranks first amongst all benchmark models, with 0.59, 0.83, and 1.18 at
horizon one, horizon three, and horizon six, respectively. The results of EEMD-APSO-RVM are far less
than those by any other models, except EEMD-PSO-RVM has slightly worse results at corresponding
horizons. This further confirms that the proposed EEMD-APSO-RVM is effective for forecasting crude
oil price. Most ensemble methods obviously outperform their corresponding single method. This is
mainly attributed to the fact that EMD or EEMD can remarkably improve the prediction power of
the models. Generally speaking, the ensemble methods with EEMD have better results than their
corresponding methods with EMD, due to the good performance of EEMD on data analysis.

As far as Dstat (shown in Figure 8), all the values by ensemble models are higher than 0.525,
and are quite different from the results of single models (as shown in Figure 5), where the
highest value is less than 0.520. This demonstrates that the “decomposition and ensemble”
framework can notably improve the performance of directional prediction. At each horizon, the
proposed EEMD-APSO-RVM achieves the highest Dstat value (0.86, 0.81, and 0.74 at horizon
one, horizon three, and horizon six, respectively), showing its superiority over all other methods.
Similarly, EMD-APSO-RVM also outperforms all other EMD-related models at each horizon.
The poorest results were usually achieved by RVM models with linear kernel, except that the
EEMD-RVMlin obtains the second poorest value at horizon one, further demonstrating that the
components from crude oil price are not linearly separable.

3.5. Analysis of Robustness and Running Time

Although EEMD-APSO-RVM succeeds in forecasting crude oil price, it has disadvantages.
First, since the PSO uses many random values in the evolutionary process, it is hard for it to reproduce
the experiments with the exact solutions. Second, it is time-consuming for the EEMD-APSO-RVM to
find the optimal parameters and to compute the combined kernel.

To evaluate the robustness and stableness of the proposed EEMD-APSO-RVM, we repeated the
experiments 10 times and report the results in terms of means and standard deviations (std.) of MAPE,
RMSE, and Dstat in Table 3. It can be seen that the standard deviations of MAPE and Dstat are far less
than 0.01, and at the same time, the standard deviation in each case is lower than 5% of corresponding
mean. For RMSE, the standard deviations are slightly higher than those of MAPE and Dstat. However,
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even the poorest standard deviation in terms of RMSE is still less than 6% of the corresponding mean.
The results show that EEMD-APSO-RVM is quite stable and robust for forecasting crude oil price.

Table 3. Statistical results of running the experiment ten times by the EEMD-APSO-RVM (mean ± std.).

Horizon MAPE RMSE Dstat

One 0.0065 ± 0.0001 0.5905 ± 0.0110 0.8643 ± 0.0032
Three 0.0091 ± 0.0001 0.8324 ± 0.0340 0.8062 ± 0.0037

Six 0.0126 ± 0.0003 1.1843 ± 0.0702 0.7028 ± 0.0028

In the training phase of the EEMD-APSO-RVM, to find the optimal parameters for the combined
kernel, many particles need to be evaluated by fitness function, which is time-consuming. It takes about
10 h to train a model at one horizon in our experimental environment (Matlab 8.6 on a 64-bit Windows
7 with 32 GB memory and 3.4 GHz I7 CPU), while it takes only about 3 s to test the 1549 samples
with the optimized parameters. In practice, the testing time plays a more important role than the
training time, because the training phase is usually completed with off-line data and it runs only once.
Therefore, the time consumed by the EEMD–APSO–RVM is acceptable.

3.6. Summarizations

From the above discussions, some interesting findings can be obtained, as follows:

(1) Due to nonlinearity and nonstationarity, it is difficult for single models to accurately forecast
crude oil price.

(2) The RVM has a good ability to forecast crude oil price. Even with a single kernel, SVM may
outperform LSSVM, ANN, and ARIMA in many cases.

(3) The combined kernel can further improve the accuracy of RVM. PSO can be applied to optimize
the weights and parameters of the single kernels for the combined kernel in RVM. In this case,
the proposed APSO outperforms the traditional PSO.

(4) The EEMD-related methods achieve better results than the counterpart EMD-related methods,
showing that EEMD is more suitable for decomposing crude oil price.

(5) With the benefits of EEMD, APSO, and RVM, the proposed ensemble EEMD–APSO–RVM
significantly outperforms any other compared models listed in this paper in terms of MAPE,
RMSE, and Dstat. At the same time, it is a stable and effective forecasting method in terms of
robustness and running time. These all show that the EEMD–APSO–RVM is promising for crude
oil price forecasting.

4. Conclusions

This paper proposes a novel model integrating EEMD, adaptive PSO, and RVM (namely
EEMD-APSO-RVM) for forecasting crude oil price based on the “decomposition and ensemble”
framework. In the decomposition phase, we used EEMD to decompose the raw crude oil price
into components of several IMFs and one residue. In the single forecasting phase, we utilized RVM
with a combined kernel optimized by an adaptive PSO to forecast each component individually.
Finally, the predicted results of all components were aggregated by simple addition. To validate the
EEMD-APSO-RVM, eight other single benchmark models and fifteen ensemble models were employed
to compare the forecasting results of the crude oil spot price of WTI at three different horizons in
terms of MAPE, RMSE, and Dstat. To the best of our knowledge, it is the first time that RVM with
combined kernels have been applied to forecasting crude oil price. It can be concluded from the
extensive experimental results that: (1) the APSO-RVM outperforms other single models in most cases;
(2) the components by decomposition can better represent the characteristics of crude oil price than
raw data. Furthermore, EEMD is superior to EMD for decomposition; and (3) the EEMD-APSO-RVM
achieves satisfactory results in all cases, showing that it is promising for forecasting crude oil price.
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In the future, the work could be extended in two aspects: (1) studying multiple kernel RVM to
improve the performance on forecasting crude oil price; and (2) applying the EEMD-APSO-RVM to
forecasting other time series of energy, such as wind speed and electricity price.
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Abstract: This paper proposes a new electric load forecasting model by hybridizing the fuzzy
time series (FTS) and global harmony search algorithm (GHSA) with least squares support vector
machines (LSSVM), namely GHSA-FTS-LSSVM model. Firstly, the fuzzy c-means clustering (FCS)
algorithm is used to calculate the clustering center of each cluster. Secondly, the LSSVM is applied
to model the resultant series, which is optimized by GHSA. Finally, a real-world example is
adopted to test the performance of the proposed model. In this investigation, the proposed model
is verified using experimental datasets from the Guangdong Province Industrial Development
Database, and results are compared against autoregressive integrated moving average (ARIMA)
model and other algorithms hybridized with LSSVM including genetic algorithm (GA), particle
swarm optimization (PSO), harmony search, and so on. The forecasting results indicate that the
proposed GHSA-FTS-LSSVM model effectively generates more accurate predictive results.

Keywords: electric load forecasting; least squares support vector machine (LSSVM); global harmony
search algorithm (GHSA); fuzzy time series (FTS); fuzzy c-means (FCM)

1. Introduction

Load forecasting plays an important role in electric system planning and operation. In
recent years, lots of researchers have studied the load forecasting problem and developed a
variety of load forecasting methods. Load forecasting algorithms can be divided into three major
categories: traditional methods, modern intelligent methods and hybrid algorithms [1]. The traditional
method [1,2] mainly includes autoregressive (AR), autoregressive moving average (ARMA) [3],
autoregressive integrated moving average (ARIMA) [4], semi-parametric [5], gray model [6,7],
similar-day models [8], and Kalman filtering method [9]. Due to the theoretical limitations of the
algorithms themselves, it is difficult to improve the forecasting accuracy using these forecasting
approaches. For example, the ARIMA model is unable to capture the rapid changing process
underlying the electric load from historical data pattern. The Kalman filter model cannot avoid
the observation noise and the forecasting accuracy of the grey model will be reduced along with the
increasing degree of discretiin of the data.

The intelligent methods mainly include artificial neural network (ANN) [10], fuzzy systems [11],
knowledge based expert system (KBES) approach [12], wavelet analysis [13], support vector machine
(SVM) [14], and so on. Knowledge-based expert system combines the knowledge and experience
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of numerous experts to maximize the experts’ ability, but the method does not have self-learning
ability. Besides, KBES is limited to the total amount of knowledge stored in the database and it is
difficult to process any sudden change of the conditions [15]. The ANN has the ability of nonlinear
approximation, self-learning, parallel processing and higher adaptive ability, however, it also has some
problems, such as the difficulty of choosing parameters, and high computational complexity. SVM is
a new machine learning method proposed by Cortes and Vapnik [16]. It is based on the principle of
structural risk minimization (SRM) in statistical learning theory. The practical problems such as small
sample, nonlinear, high dimension and local minimum point could be solved by the SVM via solving a
convex quadratic programming (QP) problem. However, traditional SVM also has some shortcomings.
For example, SVM cannot determine the input variables effectively and reasonably and it has slow
convergence speed and poor forecasting results while suffering from strong random fluctuation time
series. Compared with SVM, the least squares support vector machine (LSSVM), proposed by Suykens
and Vandewalle [17], is an improved model of the original SVM. It has the following advantages, using
equality constraints instead of the inequality in standard SVM, solving a set of linear equations instead
of QP [13]. LSSVM has been widely applied to solve forecasting problems in many fields, such as stock
index forecasting [18], credit rating forecasting [19], GPRS traffic forecasting [20], tax forecasting [21]
and prevailing wind direction forecasting [22], and so on.

Fuzzy time series (FTS), as a significant quantitative forecasting model, has been broadly applied
in electric load forecasting. There are lots of literatures focused on FTS related issues that are also
involved in this paper [23–27]. Lee and Hong [23] proposed a new FTS approaches for the electric
power load forecasting. Efendi et al. [24] discussed the fuzzy logical relationships used to determine
the electric load forecast in the FTS modeling. Sadaei et al. [26] presented an enhanced hybrid method
based on a sophisticated exponentially weighted fuzzy algorithm to forecast short-term load. FTS is
often combined with other models for forecasting. For example, a new method for forecasting the
TAIEX is presented based on FTS and SVMs [28].

In addition, various optimization algorithms are widely employed in LSSVM to improve its
searching performance, such as genetic algorithm (GA) [29], particle swarm optimization (PSO) [30],
harmony search algorithm (HSA) and artificial bee colony algorithm (ABC) [31]. All the optimization
methods improve the efficiency of the model in some way. Although the single forecasting method
can improve the forecasting accuracy in some aspects, it is more difficult to yield the desired accuracy
in all electric load forecasting cases. Thus, via hybridizing two or more approaches, the hybrid
model can combine the merits of two or more models, as proposed by researchers. A new hybrid
forecasting method, namely ESPLSSVM, based on empirical mode decomposition, seasonal adjustment,
PSO and LSSVM model is proposed in [32]. Hybridization of support vector regression (SVR) with
chaotic sequence and EA is able to avoid solutions trapping into a local optimum and improve
forecasting accuracy successfully [33]. Ghofrani et al. [34] proposed a hybrid forecasting framework
by applying a new data preprocessing algorithm with time series and regression analysis to enhance
the forecasting accuracy of a Bayesian neural network (BNN). A hybrid algorithm based on fuzzy
algorithm and imperialist competitive algorithm (RHWFTS-ICA) is also developed [35], in which the
fuzzy algorithm is refined high-order weighted. In this paper, the global harmony search algorithm
(GHSA) is hybridized with LSSVM to optimize the parameters of LSSVM.

The rest of this paper consists three sections: the proposed method GHSA-FTS-LSSVM, including
FTS model, fuzzy c-means clustering (FCS) algorithm, GA, global harmony search and least squares
SVM, is introduced in Section 2; a numerical example is illustrated in Section 3; and conclusions are
discussed in Section 4.
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2. Methodology of Global Harmony Search Algorithm-Fuzzy Time Series-Least Squares Support
Vector Machines Model

2.1. Least Squares Support Vector Machine Model

LSSVM is a kind of supervised learning model which is widely used in both classification
problems and regression analysis. Comparing with SVM model, LSSVM can find the solution by
solving a set of linear equations while classical SVM needs to solve a convex QP problem. As for the
regression problem, given a training data set “ tpx1, y1q , px2, y2q , . . . , pxi, yiqu, xi P Rn and yi P R, and
the separating hyper-plane in the feature space will be as Equation(1):

y pxq “ wTϕ pxq (1)

where w refers to the weight vector and ϕ pxq is a nonlinear mapping from the input space to the feature
space. Then the structural minimization is used to formulate the following optimization problem of
the function estimation as Equation (2):

min :
1
2

||w||2 ` 1
2
γ

nř
i“1

εi
2

subject to : yi “ wTϕ pxiq ` b ` εi, i “ 1, 2, . . . , n
(2)

where γ refers to the regulation constant and εi to the error variable at time i, b to the bias term.
Define the Lagrange function as Equation (3):

L pw, b, ε,αq “ 1
2

||w||2 ` 1
2
γ

nÿ
i“1

εi
2 ´

nÿ
i“1

αi

!
wTϕ pxiq ` b ` εi ´ yi

)
(3)

where αi is the Lagrange multiplier.
Solving the partial differential of Lagrange function and introducing the kernel function, the final

nonlinear function estimate of LSSVM with the kernel function can be written as Equation (4):

Yi “ f pXiq “
nÿ

i“1

αiK pX, Xiq ` b (4)

As for the selection of kernel function, this paper used the Gaussian radial basis function (RBF) as
the kernel function, because RBF is the most effective for the nonlinear regression problems. And the
RBF can be expressed as Equation (5):

K pX, Xiq “ exp
´||X ´ Xi||2

2σ2 (5)

Through the above description, we can see that the selection of the regulation constant γ

and Gaussian kernel function parameter σ has a significant influence on the learning effect and
generalization ability of LSSVM. But the LSSVM model does not have a suitable method to select
parameters, so we employ the global harmony search to realize the adaptive selection of parameters.

2.2. Global Harmony Search Algorithm in Parameters Determination of Least Squares Support Vector
Machines Model

In music improvisation, musicians search for a perfect state of harmony by repeatedly adjusting
the pitch of the instrument. Inspired by this phenomenon, HSA [36,37] is proposed by Geem et al. [36]
as a new intelligent optimization search algorithm. However, every candidate solution in the
fundamental HSA is independent to each other, which has no information sharing mechanism, thus,
this characteristic also limits the algorithm efficiency. Lin and Li [38] have developed a GHSA which
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borrowed the concepts from swarm intelligence to enhance its performance [39]. The proposed GHSA
procedure is illustrated as follows and the corresponding flowchart is shown in Figure 1.

Step 1: Define the objective function and initialize parameters.
Firstly, f pxq is the objective function of the problem where x is a candidate solution consisting

of N decision variables xi and LBi ď xi ď UBi. LBi and UBi are the lower and upper bounds for each
variable. Besides, the parameters used in GHSA are also initialized in this step.

Step 2: Initialize the harmony memory.
The initialization process is done as:

‚ Randomly generate a harmony memory in the size of 2 ˆ HMS from a uniform distribution in
the rangerLBi, UBis pi “ 1, 2, 3, . . . , nq.

‚ Calculate the fitness of each candidate solution in the harmony memory and sort the results in
ascending order.

‚ The harmony memory is generated by rx1, x2,, . . . , xHMSs.
Step 3: Improvisation.
The purpose of this step is to generate a new harmony. The new harmony vector X1 “�

x,
1, x,

2, . . . , x,
n
(

is generated based on the following rules:
Firstly, randomly generate r1, r2 in a uniform distribution of the range r0, 1s.

‚ If r1 ă HMCR and r2 ě PAR, then x,
i “ x,

i. Palatino

‚ If r1 ă HMCR and r2 ă PAR, then x,
i “ Rnd

´
xgBest

i ´ bw, xgBest
i ` bw

¯
, where bw is an arbitrary

distance bandwidth (BW) and xgBest
i is ith dimension of the best candidate solution.

‚ If r1 ě HMCR, then x,
i “ Rnd pLBi, UBiq.

Step 4: Update harmony memory.
If the fitness of the new harmony vector is better than that of the worst harmony, it will take the

place of the worst harmony in the HM.
Step 5: Check the stopping criterion.
Terminate when the iteration is reached.

2.3. Fuzzy Time Series Generation

This paper proposes FCM model by using FCS algorithm with GA to process the raw data and to
generate FTS. The flowchart is shown as Figure 1. Firstly, the number of clustering k is computed as
the initial value. Secondly, the clustering center is obtained until the stop criteria of the algorithm are
reached. Finally, the time series fuzzy membership is determined.

2.3.1. Fuzzy Time Series Model

A FTS is defined [40,41] as follows:
Definition 1: Let Y ptq (t= 0, 1, 2, . . . ), a subset of real number, be the universe of the discourse on

which fuzzy membership of fi pi “ 1, 2, . . . , nq are defined. If F(t) is a collection of f1, f2, . . . , then F(t)
represents a FTS on Y(t).

Definition 2: If F ptq is caused by Fpt ´ 1) only, the FTS relationship can be expressed as
F pt ´ 1q Ñ F ptq . Then let F pt ´ 1q “ Ai and F ptq “ Aj, so the relationship between F pt ´ 1q and F ptq
which is referred to as a fuzzy logical relationship can be denoted by Ai Ñ Aj.

We present the general definitions of FTS as follows:
Suppose U is divided into n subsets, such as U “ tu1, u2, . . . , unu. Then a fuzzy set A in the

universe of the discourse of U can be expressed as Equation (6):

A “ fA pu1q
u1

` fA pu2q
u1

` . . . ` fA punq
un

(6)
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where fApuiq denotes the degree of membership of ui in A with the condition of fApuiq P r0, 1s.

2.3.2. Fuzzy C-Means Clustering Algorithm

Fuzzy c-means (FCM) [42] is a common clustering algorithm which could make one piece of
data to cluster into multiple classes. Let X “ �

xj
ˇ̌
j “ 1, 2, . . . , n

(
be the observation data set and

C “ tci|i “ 1, 2, . . . , ku be the set of cluster centers. The results of fuzzy clustering can be expressed by
membership function U “ �

uij
ˇ̌
i “ 1, 2, . . . , k; j “ 1, 2, . . . , n

(
where uij P r0, 1s and uij is also limited by

Equations (7) and (8).

Clustering calculation

gen>MAXI ?
or

Current change<MINC?

Parameters initialization
MAXI,MINC,gen =1

FCM  finished

Yes

LSSVM
Calculate the fitness function

Final fuzzy
 time series

A new candidate solution

X'=Rnd(xi
gBest-bw,xi

gBest+bw)

Xi'=Rnd(LBi,UBi)

Rnd(0,1)<HMCR?

Rnd(0,1)
<PAR?

No

Randomly select a solution 
in harmony memory

Initialize the harmony 
memory  

Parameters initialization
Num, HMS, HMCR,

PARmax, PARmin, bwmax,
bwmin,cnt,LB1,LB2,

UB1,UB2,NI

Update harmony memory

cnt>NI?

GHSA finished

Yes

No
cnt=cnt+1

The optimal parameter

LSSVM

Finished

Yes

Yes

Final fuzzy 
time series

Data normalization

Membership degree
evaluation

No

gen = gen+1

Figure 1. Global harmony search algorithm-fuzzy time series-least squares support vector machines
(GHSA-FTS-LSSVM) algorithm flowchart.

nÿ
j“1

uij P p0, nq (7)
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kÿ
i“1

uij “ 1 (8)

The objective function of FCM can be express as Equation (9):

J
`
uij, ck

˘ “
kÿ

i“1

nÿ
j“1

`
U

`
xj, ci

˘˘m ||xj ´ ci||2 pm ą 1q (9)

The cluster centers and the membership functions U are calculated by Equations (10) and (11):

ci “
řn

j“1
`
uij

˘m ¨ xjřn
j“1

`
uij

˘m (10)

U
`
xj, ci

˘ “ uij “
`
||xj ´ ci||

˘´2{pm´1q
řk

l“1
`
||xj ´ cl||

˘´2{pm´1q (11)

where m is any real number named weight index, uij represents the membership of xj in the ith cluster
center and ||xj ´ ci|| refers to the Euclidean distance between the real value xj and the fuzzy cluster
center ci.

3. Numerical Example

3.1. Data Set

The experiment employs electric load data of Guangdong Province Industrial Development
Database to compare the forecasting performances among the proposed GHSA-FTS-LSSVM model,
GHSA-LSSVM model, GA-LSSVM, PSO-LSSVM and GHSA-LSSVM. The detailed data used in this
paper is shown in Table 1. Among these data, the electric load data from January 2011 to December 2013
were used for model fitting and training, and the data from April to December 2014 were used
to forecast.

Table 1. Monthly electric load in Guangdong Province from January 2011 to November 2014 (unit:
thousand million W/h).

Date Load Date Load Date Load

January 2011 284.1 May 2012 351.6 September 2013 372.3
February 2011 263.2 June 2012 353.1 October 2013 375.6

March 2011 339.8 July 2012 386.5 November 2013 386.4
April 2011 325.7 August 2012 376.1 December 2013 410.9
May 2011 336.2 September 2012 338 January 2014 384.5
June 2011 341 October 2012 343 February 2014 322.1
July 2011 371.7 November 2012 356.1 March 2014 389.2

August 2011 366.4 December 2012 362.4 April 2014 373.3
September 2011 329.8 January 2013 331 May 2014 387.6

October 2011 326.9 February 2013 278.1 June 2014 393.4
November 2011 331.4 March 2013 368.3 July 2014 429.8
December 2011 362.3 April 2013 357.2 August 2014 416.7

January 2012 341.5 May 2013 368.1 September 2014 379.9
February 2012 328.3 June 2013 373.3 October 2014 385.3

March 2012 358.7 July 2013 419.4 November 2014 398.2
April 2012 335.2 August 2013 426.6 December 2014 374.8

The procedure of data preprocessing is illustrated as follows:
Step 1: Data normalization
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Before FCM, we normalized the original data by Equation (12):

X piq “ T piq ´ Tmin

Tmax ´ Tmin
(12)

where T piq pi “ 1, 2, . . . , nq is the set of time series which contains n observations, Tmin and Tmax

refer to the minimum and maximum values of the data, X piq pi “ 1, 2, . . . , nq is the normalized set of
time series.

Step 2: Clustering calculation.
The number of clustering k is calculated by Equation (13) [43]:

k “
„ pTmax ´ Tminq ¨ pn ´ 1qřn

t“2 |X piq ´ X pi ´ 1q|
j

(13)

where ‘[]’ represents the rounded integer arithmetic. According to Equation (13), k “ 8.
Step 3: Parameters initialization
We determine the maximum iteration MAXI “ 200 and the minimum change of membership

MINC “ 10´7. The performance of the algorithm depends on the initial cluster centers, so we need to
specify a set of cluster centers at random.

Step 4: Update operator
If the objective function is better than the previous ones, the membership functions and cluster

centers will be updated by Equations (10) and (11) after each iteration.
Step 5: Termination operator
In this paper, we use the iteration number and change of memberships as the termination

operators. If the current iteration is larger than MAXI or the current change of membership is smaller
than MINC, the FCM finish its work and we can get the cluster centers.

After FCM, we got a set of clustering centers (set = {0.6115, 0.4595, 3949, 0.6668, 0.9491, 0.0732,
0.7485, 0.5416}), and the final time series fuzzy membership we got is shown in Table 2.

Table 2. The final fuzzy time series (FTS) (partly).

Date FTS

11 January 0.0104 0.0220 0.0338 0.0084 0.0036 0.9013 0.0063 0.0142
11 February 0.0128 0.0227 0.0307 0.0108 0.0053 0.8928 0.0085 0.0163

11 March 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
11 April 0.0064 0.0506 0.9181 0.0042 0.0011 0.0039 0.0026 0.0130
11 May 0.0115 0.7581 0.1842 0.0066 0.0013 0.0026 0.0036 0.0322
11 June 0.0026 0.9743 0.0106 0.0014 0.0002 0.0004 0.0007 0.0099
11 July 0.1255 0.0054 0.0030 0.8256 0.0022 0.0006 0.0210 0.0165

11 August 0.9547 0.0024 0.0012 0.0272 0.0006 0.0002 0.0037 0.0101
11 September 0.0005 0.0064 0.9911 0.0003 0.0001 0.0002 0.0002 0.0011

11 October 0.0029 0.0256 0.9604 0.0019 0.0005 0.0016 0.0011 0.0060
11 November 0.0046 0.0747 0.9032 0.0028 0.0006 0.0017 0.0016 0.0107
11 December 0.8419 0.0127 0.0058 0.0449 0.0019 0.0009 0.0098 0.0821

3.2. Global Harmony Search Algorithm-Least Squares Support Vector Machines Model

3.2.1. Parameters Selection by Global Harmony Search Algorithm

Before the GHSA we need to determine parameters. The parameters include the number of
variables, the range of each variable rLBi , UBis the harmony memory size (HMS), the harmony
memory considering rate (HMCR), the value of BW, the pitch adjusting rate (PAR) and the number of
iteration (NI).

In the experiments of GHSA, the larger harmony consideration rate (HMCR) is beneficial to the
local convergence while the smaller HMCR can keep the diversity of the population. In this paper, we
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set the HMCR as 0.8. For the PAR, the smaller PAR can enhance the local search ability of algorithm
while the larger PAR is easily to adjust search area around the harmony memory. In addition, the
value of BW also has a certain impact on the searching results. For larger BW, it can avoid algorithm
trapping into a local optimal and the smaller BW can search meticulously in the local area. In our
experiment, we use a small PAR and a large BW in the early iterations of the algorithm, and with the
increase of the NIs, BW is expected to be reduced while PAR ought to increase. Therefore, we adopt
the following equations:

PAR “ pPARmax ´ PARminq ˚ currentIteration
NI

` PARmin (14)

BW “ BWmax ˚ expp logpBWmin{BWmaxq ˚ currentIteration
NI

q (15)

In swarm intelligence algorithms, the global optimization ability of algorithm will be ameliorated
by increasing the population size increase. However, the search time will also increase and the
convergence speed will slow down as the population size becomes larger. On the contrary, if the
population size is small, the algorithm will more easily be trapped in a local optimum. The original
data consists of 48 sets. Combined with the relevant research experiences and a lot of experiments, we
divided the number of data by the number of parameters and the quotient we got is 24, which is set to
be the HMS. After continuous optimization experiments, we determined 20 as the HMS in GHSA.

In the LS-SVM model, the regularization parameter, γ, is a compromise to control the proportion
of misclassification sample and the complexity of the model. It is used to adjust the empirical risk and
confidence interval of data until the LS-SVM receiving excellent generalization performance. When the
kernel parameter, σ, is approaching zero, the training sample can be correctly classified, however,
it will suffer from over-fitting problem, and in the meanwhile, it will also reduce the generalization
performance level of LS-SVM. Based on authors previous research experiences, the range of parameters
γ and σ we determined in this paper are [0, 10000], [0, 100]. The parameters we select in GHSA are
shown in Table 3.

Table 3. Parameters selection in GHSA.

Parameter Value Comment

num num “ 2 Number of variables
γ γ P r0, 10000s Range of each variable
σ σ P r0, 100s Range of each variable

HMS HMS “ 20 Harmony memory size
HMCR HMCR “ 0.9 HMS considering rate

PAR PARmax “ 0.9, PARmin “ 0.1 Pitch adjusting rate
bw bwmax “ 1, bwmin “ 0.001 Bandwidth
NI NI “ 200 Number of iteration

3.2.2. Fitness Function in Global Harmony Search Algorithm

Fitness function in GHSA is used to measure the fitness degree of generated harmony vector.
Only if its fitness is better than that of the worst harmony in the harmony memory, it can replace the
worst harmony. The fitness function is given Equation (16):

f it “ 100 ˆ
řn

i“1

ˇ̌
yi ´ y1

i

ˇ̌
yi

n
(16)

where n refers to the number of test sample, yi refers to the observation value and y1
i to the predictive

value in LSSVM.
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Then we calculate the fitness function in GHSA by Equation (16). After finishing the GHSA, we
have determined the optimal parameter γ “ 9746.7 and σ “ 30.4, then we establish LSSVM model to
train historical data for forecasting the next electric load and get a set of output of LSSVM. At last, we
denormalize the output of LSSVM.

3.2.3. Denormalization

After the GHSA we have determined the optimal parameter γ and σ, then we establish LSSVM
model to train historical data for forecasting the next electric load. The outputs of LSSVM are
normalized values, so we need to denormalize them to real values. Denormalization method is
given by Equation (17):

vreal “ vi ˆ pmax ´ minq ` min (17)

where max and min refers to the maximum and minimum value of the original data.

3.2.4. Defuzzification Mechanism

As indicated by several experiments that there are some inherent errors between actual values
and fuzzy values. Therefore, it's necessary to estimate this kind of fuzzy effects to provide higher
accurate forecasting performance. In this paper, we proposed an approach to adjust the fuzzy effects,
namely defuzzification mechanism, as shown in Equation (18):

d ft “ AVG
ˆ

Y1t

FY1t
,

Y2t

FY2t
, . . . ,

Yit
FYit

, . . . ,
Ynt

FYnt

˙
(18)

where t “ 1, 2, . . . 12 for the twelve months in a year, n is the total year number of data set, i “ 1, 2, . . . , n
refers to the number of year and Yit, FYit is the actual value and fuzzy value of the ith year respectively.
Thus, the final forecasting result can be expressed as Equation (19), and the defuzzification multipliers
are shown in Table 4.

y1
i “ y1

i ˚ d fi (19)

Table 4. Defuzzification multiplier of each month.

Month Multiplier Month Multiplier

January 1.00244 July 1.00612
February 0.98222 August 1.00567

March 0.99931 September 1.00069
April 0.99522 October 0.99932
May 0.99772 November 1.00937
June 1.00493 December 0.99996

3.3. Performance Evaluation

We compare these proposals in different respects. First the proposed GHSA efficiency is compared
with other optimization algorithms like HSA, PSO and GA. These appropriate algorithms are utilized
to optimize the parameter γ and σ.

This experimental procedure is repeated 20 times for each optimization algorithm, and the
performance comparison for different algorithms is represented in Figure 2, and the comparison of
average fitness curves is presented in Table 5. We can see from Figure 2 and Table 5 that the values
of the γ´1 obtained by the four algorithms are close to 0.0001, that is, all the search algorithms can
achieve similar optimization, but the values of parameter, σ, as optimized by the different algorithms
are not the same and this directly affects the fitness. The convergence speed of PSO is the fastest,
however, due to the algorithm complexity, its running time is long. The execution time of HSA is
the shortest, but the fitness is the worst. The running time of GHSA is equivalent to HSA, and the
fitness of GHSA is optimal among four algorithms. In second group, the forecasting accuracy of the
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proposed algorithm is compared with ARIMA, GA-LSSVM [29], PSO-LSSVM [30] and the first group
models. We take the mean absolute percentage error (MAPE), mean absolute error (MAE) and root
mean squared error (RMSE) to evaluate the accuracy of the proposed method. The MAPE are shown
in Equations (20)–(22):

MAPE “ 100 ˆ
řn

i“1

ˇ̌
yi ´ y1

i

ˇ̌
yi

n
(20)

MAE “
řn

i“1
ˇ̌
yi ´ y1

i

ˇ̌
n

(21)

RMSE “
dřn

i“1
`
yi ´ y1

i
˘2

n
(22)

where n refers to the number of sample, yi is the observation value and y1
i is the predictive value.

According to the optimal value in Table 5, forecasting results of GHSA-FTS-LSSVM, HSA-LSSVM,
GA-LSSVM and PSO-LSSVM models as shown in Table 6.

(a) (b)

Figure 2. Comparison of (a) average fitness curves; and (b) best fitness curves.

Table 5. Performance comparison for different algorithms. Particle swarm optimization: PSO; harmony
search algorithm: HAS; genetic algorithm: GA.

Algorithm Fitness γ´1 σ Running Time/s

GHSA 0.0397 0.00010 30.3977 9.2977
HSA 0.0489 0.00010 52.8422 8.2681
GA 0.0439 0.00010 52.8422 68.6248
PSO 0.0451 0.00011 22.3965 69.9352

Table 6. Forecasting results of GHSA-FTS-LSSVM, GHSA-LSSVM, GA-LSSVM, PSO-LSSVM and
autoregressive integrated moving average (ARIMA) models (unit: thousand million W/h).

Time Actual GHSA-FTS-LSSVM GHSA-LSSVM GA-LSSVM [29] PSO-LSSVM [30] ARIMA

15 January 384.5 388.5989 387.094 387.066 393.205 399.142
15 February 352.1 379.4326 372.661 372.65 373.62 381.038

15 March 349.2 368.1298 355.006 355.01 352.864 359.864
15 April 373.3 359.5839 353.429 353.434 351.189 377.003
15 May 387.6 380.1802 366.55 366.545 366.026 362.173
15 June 393.4 392.6603 374.353 374.341 375.799 361.905
15 July 429.8 387.9569 377.522 377.506 379.962 399.488

15 August 416.7 395.6517 397.452 397.409 408.614 432.612
15 September 379.9 395.7048 390.271 390.239 397.814 423.027

15 October 385.3 376.4279 370.15 370.142 370.449 404.338
15 November 398.2 391.7981 373.098 373.086 374.179 390.129
15 December 374.8 380.8968 380.146 380.127 383.494 385.307

MAPE (%) - 3.709 4.579 4.579 4.654 5.219
MAE - 14.358 18.035 18.035 18.215 20.153
RMSE - 18.180 21.914 21.921 21.525 23.0717
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The excellent performance of the GHSA-FTS-LSSVM method is due to following reasons: first
of all, we use FCM to process the original data, making the accurate load value become a set of
input variables with fuzzy feature. Thus, the defects of the original data can be overcome and the
implicit information is dug up. Secondly, the proposed algorithm employed the GHSA to improve the
searching efficiency. Finally, LSSVM reduces the time of equation solving and improves the accuracy
and generalization ability of the model.

4. Conclusions

Traditional electric load forecasting methods are based on the exact value of time series, but the
electric power market is very complex, and the functional relations between variables are too difficult
to describe, so this paper adopts the FTS model, and load values are defined as fuzzy sets. Then we
compare the four algorithms GHSA, HSA, PSO and GA. According to the experimental results, it
is obvious that GHSA which can find the optimal solution quickly and efficiently, is the best search
algorithm in the LS-LSVM model. For the prediction accuracy, the MAPE of GHSA-FTS-LSSVM model
is better than that of the GHSA-LSSVM which has no fuzzy processing. Also, our method has a better
performance than the corresponding methods with GA and PSO.
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Abstract: Accurate short-term electrical load forecasting plays a pivotal role in the national economy
and people’s livelihood through providing effective future plans and ensuring a reliable supply of
sustainable electricity. Although considerable work has been done to select suitable models and
optimize the model parameters to forecast the short-term electrical load, few models are built based on
the characteristics of time series, which will have a great impact on the forecasting accuracy. For that
reason, this paper proposes a hybrid model based on data decomposition considering periodicity,
trend and randomness of the original electrical load time series data. Through preprocessing and
analyzing the original time series, the generalized regression neural network optimized by genetic
algorithm is used to forecast the short-term electrical load. The experimental results demonstrate that
the proposed hybrid model can not only achieve a good fitting ability, but it can also approximate the
actual values when dealing with non-linear time series data with periodicity, trend and randomness.

Keywords: electrical load forecasting; data decomposition; genetic algorithm; generalized regression
neural network

1. Introduction

The electric power industry plays a pivotal role in the national security, social stability and all
aspects of people’s life. As is known to all, electricity, as one of the most important energy resources,
is difficult to store. A great variety of instability factors can affect the electric system, such as emergencies,
holidays, population changes, the weather and more [1]. Therefore, there is a high demand for the
generation, transmission and sales of electricity, because excess supply can result in wasted energy
resources and in case of excess demand the need for electricity cannot be satisfied. Therefore, performing
load forecasting based on the historical data has been a basic task in the operation of electric systems [2].
With the rapid development of society and continuous improvement of economic levels, people have
gradually shown a higher desire for electricity, which poses a huge challenge to the forecasting accuracy.
A higher accuracy can improve the electric energy usage, enhance the safety and reliability of power
grid and have a big impact on all sections in the electric power system. Accurate forecasting of electrical
load plays a significant role, which can be reflected in the following aspects:

� Improve the social and economic benefits. The electrical power sector is supposed to ensure a
good social benefit through providing safe and reliable electricity and improving the economic
benefits considering the cost problems. Thus, the electrical load forecasting is beneficial for
electrical power system to achieve the economic rationality of power dispatching.
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� Ensure the reliability of electricity supply. Whether the power generation or supply, equipment
needs periodical overhauls to ensure the safety and reliability of electricity. However, when to
overhaul or replace the equipment should be based on accurate electrical load forecasting results.

� Plan for electrical power construction. The construction of electrical power production sites
cannot stay unchanged, and should be adjusted and perfected, to satisfy the demands of a
constantly changing future with the progress of society and development of the economy.

There are a great number of methods to forecast the electrical load, and in general the electrical
load forecasting can be divided into three types, according to the applied field and forecasting time:

� Long-term electrical load forecasting. This means a time interval above five years and is usually
conducted during the planning and building stage of the electrical system, which considers the
characteristics of the electrical system and the development tendencies of the national economy
and society;

� Middle-term electrical load forecasting. It is mainly applied in the operation stage of the electrical
power system, for direction of the scientific dispatch of power, arrangement of overhauling
and so on;

� Short-term electrical load forecasting. It plays a pivotal role in the whole electrical system and is
the most important part, for it is the basis of long- and middle-term electrical load forecasting.
Besides, it can ensure the stable and safe operation of the electrical power system based on the
forecasting data.

Electrical load forecasting is a very complicated work. On the one hand, the electrical power
system itself is complex and of large size. On the other hand, the electrical market closely combines
the electrical power system with the whole society. Therefore, to properly monitor changes of the
electrical load has become increasingly crucial for utilities so as to secure a steady power supply and
make a suitable plans for investing in power facilities [3]. On the contrary, the inaccurate electrical
load forecasting would be counterproductive. The overestimated future electrical load will result
in an unnecessary generation of electrical power; while the underestimated forecasting would lead
to trouble in offering sufficient electrical power, resulting in high losses for per peaking unit [4,5].
In addition, the inaccurate electrical load forecasting would also directly increase the operating costs.
Therefore, to develop a better forecasting method and improve the forecasting ability has been more
and more imperative, which is a both significant and challenging task [6].

In recent years, the study of short-term electrical load time series forecasting has mainly included
four aspects, which are classic forecasting methods, modern forecasting methods, combined forecasting
methods and hybrid forecasting methods [7].

The classic forecasting models refer to regression analysis, time series analysis and so on.
The regression analysis models regard the influencing factors of time series as independent variables,
and the historical data as the dependent variable, ensuring the relationship between the series and
influencing factors. These methods are based on the analysis of historical data, so they can better model
the history, however, as time goes by, the forecasting effect of regression analysis models will become
weaker and weaker. The regression analysis process is easy, and the parameter estimation methods
are complete; however, when dealing with non-linear time series data, the forecasting quality is bad
and the forecasting accuracy is low. Another drawback is that it is difficult to select the influencing
factors owing to the complexity of the objective data [8]. Time series forecasting aims to construct
mathematical models based on the statistics of historical data, and it requires relatively small datasets
and achieves a fast analysis speed, which can capture the variation trends of the recent data. However,
it has a high requirement for stability, so when the influence of random factors is strong, the model
will achieve a bad forecasting effect and low forecasting accuracy.

The modern forecasting methods include artificial intelligence neural networks [9,10], chaotic
time series methods [11], expert system forecasting methods [12], grey models [13,14], support vector
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machines [15,16], fuzzy systems [17], self-adaptable models [18], optimization algorithms and so on.
The artificial neural networks (ANNs) can simulate the human brain to realize the intelligent dealing,
and it can obtain a good forecasting performance when addressing the non-structural and non-linear
time series data owing to their ability of self-adaptability, self-learning and memory. In 1991, Park [19]
first applied ANNs in electrical load forecasting, proving the good performance of the model and at
the same time concluding that ANNs were applicable in electrical load forecasting. Since then a large
number of researchers have utilized many types of ANNs to forecast the time series [20–22]; however,
ANNs also have its own limitations and disadvantages: (1) It is difficult to determine scientifically the
number of layers and neurons of a network structure; (2) ANNs have a relatively slow self-learning
convergence rate, which makes it easy to fall into a local minimum; (3) The ability to express the
fuzzy awareness of human brain is not strong. Therefore, other methods, such as support vector
machine (SVM) and evolution algorithms (EA), are used to overcome the dependence of ANNs on the
samples, enhance the extrapolation power, and reduce the learning time. Pandian [23] and Pai [24]
applied ANNs in electrical load forecasting systems. The optimization algorithms are enlightened
by the biological evolution, which is effective in dealing with complicated problems. Optimization
algorithms are usually combined with other forecasting methods, with the aim of selecting and
recognizing parameters. For example, in the aspect of ANNs, optimization algorithms do not depend
on subjective experience to determine parameters; instead, it can select more reasonable parameters
through objective algorithms.

In view of the limitations and accuracy errors of single algorithms, they cannot be adapted to
all situations; therefore, the combined models have gradually become the development tendency
currently [25]. The combined forecasting models were initially proposed by Bates and Granger who
proved that the linear combination of two forecasting models could obtain better forecasting results
than the single models alone. Xiao et al. [26] and Wang et al. [27] also proved that the forecasting
accuracy of the combined model were higher than that of a single model. The basic principles of
the combined forecasting methods are to integrate the forecasting output results of different single
models based on certain weights, narrowing the value range of the forecasting down to a smaller scale.
A problem is supposed to be studied from different angles instead of a single angle, and this is why
the combined forecasting model is needed. The information obtained from each single forecasting
method is not the same, and a weight is necessary to express the outputs of each single model
more comprehensively in order to retain the original valuable information. Recently the combined
forecasting models have been commonly used to solve forecasting issues, but how to select the single
model properly and distribute the weight reasonably is a challenging task.

The theory of hybrid algorithms can get over the shortcomings of the single forecasting model
through integrating two or more than two single models. As discussed above, the single models
have their own advantages and disadvantages when dealing with different forecasting problems.
In comparison, the hybrid forecasting methods can increase the forecasting accuracy through
determining an optimal combination and putting the advantages of single models into full play.
In other words, the hybrid algorithms can integrate many different forecasting techniques to solve
practical problems in practice. For example, the blind number theory can be applied in middle- and
long-term electrical load forecasting to build a hybrid model, which can enhance the forecasting effects
well due to the irregular nature of electrical load time series.

Affected by many factors, the complexity of time series continues improving, and several
techniques are utilized to solve the forecasting problems of time series. Azimi et al. [28] built a
novel hybrid model to forecast the short-term electrical load, because a single model cannot figure
out the characteristics of the time series data. Khashei and Bijari [29] considered that there was no a
single model that could ensure the real process of the data generation. Shukur and Lee [30] proposed a
hybrid model, including ANN and auto regressive integrated moving average (ARIMA), taking full
advantage of the linear and non-linear advantages of the two models. Considerable experimental
results demonstrate that the forecasting accuracy of the hybrid model represents a great improvement
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when compared with other single models. Aiming to improve the forecasting quality, Niu [31] built
a new hybrid ANN model and combined some statistical methods to conduct forecasting. Lu and
Wang [32] developed a growing hierarchical self-organizing map (SOM) with support vector machine
(SVM) to forecast the product demand. Okumus and Dinler [33] integrated the adaptive neuro-fuzzy
inference system and ANNs to forecast the wind power and their experimental results proved that the
proposed hybrid model was better than applying the single model. Che and Wang [34] put forward
the SVMARIMA hybrid model with SVM and ARIMA to forecast both the linear and non-linear trends
more accurately. Meng et al. [35] developed a hybrid model for short-term wind speed forecasting
by applying wavelet packet decomposition, crisscross optimization algorithm and artificial neural
networks, and their experimental results showed that the proposed hybrid model had the minimum
mean absolute percentage error, regardless of whether one-step, three-step or five-step prediction was
used. Elvira [36] selected five forecasting methods to forecast the electrical load in summer and winter
in the southeastern region of Oklahoma respectively. The empirical results showed that there was
no one model that could always perform the best in all conditions, and differences in the original
time series data and the evaluation metrics used to measure errors would both have an impact on
the selection of the optimal model. Wu et al. [37] proposed a hybrid forecasting method based on
seasonal index adjustment, and applied it in the forecasting of short-term wind speed and electrical
load. The experimental results indicated that compared with the method without seasonal index
adjustment, the proposed hybrid model could achieve a better forecasting result.

As discussed above, the single modela cannot satisfy the requirementa for forecasting accuracy
in practice, and there is no one model applicable in any situation. Given that the actual data will
be affected by various factors, which are difficult to recognize and measure, and it is not possible to
take every related factor into consideration, the model is supposed to be built based on some key
factors that can be extracted. The establishment of the hybrid model has become the mainstream
currently. Therefore, this paper proposes a hybrid forecasting model considering periodicity, trend and
randomness for electrical load time series. The contributions of the model are summarized as follows:

(1) The time series data have the characteristics of continuity, periodicity, trend and randomness,
and considerable work has been done to select suitable models and the optimize the
model parameters; however, few studies focus on building forecasting models based on the
characteristics of the time series data. Therefore, the initial contribution of this paper is to
decompose the time series data. Based on the traditional additive model, the layer-upon-layer
decomposition and reconstitution method is applied to improve the forecasting accuracy.
Then according to the data features after decomposition, suitable models could be found to
perform the forecasting. Through effective decomposition of the data and selection of reasonable
model, the forecasting quality and accuracy could be improved to a great degree.

(2) This paper uses the generalized regression neural network (GRNN) to improve the forecasting
performance. The data after decomposition have noises, so the empirical mode decomposition (EMD)
is applied to reduce the noise in the data. Then the genetic algorithm (GA) is utilized to optimize the
GRNN to conduct the forecasting to enhance the forecasting accuracy of the single model.

(3) The practical application of the proposed hybrid model in this paper is to forecast the short-term
electrical load in New South Wales of Australia, and compare it with the single models and
models without decomposition. The forecasting results demonstrate that the proposed model
has a strong non-linear fitting ability and good forecasting quality for electrical load time series.
Both the simulation results and the forecasting process could fully show that the hybrid model
based on the data decomposition has the features of small errors and fast speed. The algorithm
applied in the electrical power system is not only applicable, but also effective.

The rest of this paper is organized as follows: Section 2 describes the method and Section 3
introduces the detailed steps of the hybrid model, respectively. The experimental results are shown in
Section 4. Section 5 presents the conclusions.
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2. Methods

Conducting an accurate electrical load forecasting needs better developed forecasting methods
and it is imperative to have improved forecasting abilities. This paper proposes a hybrid model to
perform short-term electrical load forecasting, and this part introduces the fundamental methods,
including additive model of time series, moving average model, cycle adjustment model, empirical
mode decomposition and generalized regression neural network.

2.1. Additive and Multiplicative Model of Time Series

In general, a time series can be decomposed into two types of models through data transformation,
including the additive model and the multiplicative model, as shown in Equations (1) and (2):

Yt = St + Tt + Ct + Rt (1)

Yt = St × Tt × Ct × Rt (2)

where St is a seasonal item, indicating the law of transformation of time series with the season, which
exists objectively. Actually, the electrical load time series always shows a seasonal cycle fluctuation;
that is to say, the sequence will change repeatedly and continuously with time, showing a periodicity
rule. Therefore, this paper classifies the seasonal item into a periodic item considering the clarity of
expression. Tt is a trend item, denoting the law of transformation of time series with the trend. It mainly
represents a long-term changing rule, because the time series will keep increasing, decreasing or remain
stable. Ct is a periodic item and it indicates a periodic and non-seasonal law of transformation of
time series with time. The number of a cycle fluctuation periods is expressed as h. Rt is a random
item, which indicates the random change. Through decomposition, the original time series could be
transformed into a stationary time series, which could achieve a good fitting and forecasting result.

2.2. Moving Average Model

The original time series will show the features of continuity, periodicity, trend and randomness.
In order to eliminate the features and obtain a smoother time series, the moving average model will be
applied. The algorithm principle is to calculate the average of the historical data, and the average is
regarded as the next forecasting value until the final forecasting goal is realized. In other words, a new
value will replace the old value, among which the number of items of the moving average is fixed.
The detailed calculation equation is described as follows:

Mt
(1) =

yt + yt−1 + · · · yt−N−1

N
= Mt−1

(1) +
yt − yt−N

N
, t ≥ N (3)

where X = {y1, y2, · · · yt} is the original time series, N is the number of average, M(1)
t is the moving

average in the t-th period, yt is the observed value in the t-th period and N is the number of fixed
items. The forecasting equation is:

ŷt+1 = Mt
(1) (4)

2.3. Periodic Adjustment Model

The essence of the cycle adjustment is to summarize the cycle variation law based on the periodic
historical data. Assume that a group of periodic data {ct, t ∈ {1, 2, · · · T}}, it is divided into l groups
and the number of data in each group is h (T = l × h). The data series can be defined as:

Definition 1. The time series data {ct, t ∈ {1, 2, · · · T}} is decomposed into {c11, c12, . . . , c1s, . . . , c1h},
{c21, c22, . . . , c2s, . . . , c2h}, {ck1, ck2, . . . , cks, . . . , ckm}, . . . , {cl1, cl2, . . . , cls, . . . , clh} (k = 1, 2, . . . , l;
s = 1, 2, . . . , h). cks means s-th data in the k-th period.
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The average of each group can be used to approximate the periodic average [38]. The s-th average
period is:

cs = (c1s + c2s + · · · cls)/l (s = 1, 2, . . . h) (5)

The average of all data is:
Z = (c1 + c2 + · · · ch)/h (6)

The periodic value after adjustment is:

ĉs = cs − Z(s = 1, 2, . . . , h) (7)

Equations (5)–(7) represent the periodic variation law.

2.4. Empirical Mode Decomposition

The empirical mode decomposition, initially proposed in 1998, belongs to the data mining
methods, which play a crucial role in dealing with the non-linear data Currently, it has been applied
in many fields, such as geography [39], economics [40] and so on. EMD is a type of new method to
divide the same non-stationary into different frequencies. The sequence of the composed different
signal scales is called intrinsic mode function (IMF), which is the non-linear and stationary signal.
IMF has an obvious feature that the wave amplitude changes with time. For given signal x(t) ∈ Rt,
the detailed steps of EMD are described as follows (as shown in Figure 1I):

Step 1. Find all the local extreme points of x(t).
Step 2. For all local extreme points of x(t), build the envelope function of the signal, respectively,

which can be denoted as emax(t) and emin(t).
Step 3. Calculate the average of the envelope function:

em(t) =
emin(t) + emax(t)

2
(8)

Step 4. Calculate the differential function between signal x(t)and the envelope average function

h(t) = x(t)− em(t) (9)

Step 5. Replace the original signal x(t) with h(t), and repeat above steps from Step 2 to Step 4
until all averages of envelope function tends to zero. In this way an IMF c1(t) is decomposed.

Step 6. c1(t) represents the component with the highest frequency, so the low frequency of the
original signal is r1(t):

r1(t) = x(t)− c1(t) (10)

r2(t) = r1(t)− c2(t) (11)

rn(t) = rn−1(t)− cn(t) (12)

Step 7. For x1(t), repeat Step 2, Step 3 and Step 4, and the second IMF c2(t) can be obtained until
the differential function rn(t) is a constant function or monotone function. Finally, the original signal
x(t) can be represented by IMF cj(t), j = 1, 2, · · · , n and rn(t) as shown in Equation (13):

x(t) =
n

∑
j=1

cj(t) + rn(t) (13)

The EMD steps of the time series are shown in Figure 1I, and the pseudo code of EMD is described
in Algorithm 1 below.
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Figure 1. Steps of the main methods and proposed hybrid model in this paper.

Algorithm 1: Pseudo code of Empirical Mode Decomposition

Input: x(0)s = (x(0)(1), x(0)(2), . . . , x(0)(n))—a sequence of sample data.

Output: x̂(0)s = (x̂(0)(l + 1), x̂(0)(l + 2), . . . , x̂(0)(l + n))—a sequence of denoising data.
Parameters:

δ—represent a random number in the algorithm with the value between 0.2 and 0.3.
T—a parameter describing the length of the original electrical load time series data.

1: /*Initialize residue r0(t) = x(t), i = 1, j = 0; Extract local maxima and minima of ri−1(t).*/

2: FOR EACH (j = j + 1) DO
3: FOR EACH (i = 1 : n) DO

4: WHILE (Stopping Criterion SDj =
T
∑

t=0

|hi,j−1(t)−hi,j(t)|2
[hi,j−1(t)]

2 > δ) DO

5: Calculate the upper envelope Ui(t) and Li(t) via cubic spline interpolation.
6: mi(t) =

Ui(t)+Li(t)
2 /* Mean envelope */; hi(t) = ri−1(t) − mi(t)/* ith component */

7: /*Let hi,j(t) = hi(t), with mi,j(t) being the mean envelope of hi,j(t)*/
8: END WHILE

9: Calculate hi,j(t) = hi,j−1(t)− mi,j−1(t)
10: /*Let the jth IMF be IMFi(t) = hi,j(t); Update the residue ri(t) = ri−1(t) − IMFi(t)*/
11: END DO

12: END DO

13: Return x(t) =
n
∑

j=1
cj(t) + rn(t)/* The noise reduction process is finished */
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2.5. Generalized Regression Neural Network (GRNN)

The generalized regression neural network, first proposed by Specht in 1991, is a type of radial
basis function neural network (RBF). The theory of GRNN is based on non-linear regression analysis,
and in essence, the purpose of GRNN is to calculate y with the biggest probability value based on the
regression analysis of dependent variable Y and independent variable x. Assume that joint probability
density function of the random variable x and y is f (x, y), and the observed value x is known as X,
so the regression of y about x is:

Ŷ = E(y/X) =

∫ ∞
−∞ y f (X, y)dy∫ ∞
−∞ f (X, y)dy

(14)

The density function f (X, y) can be estimated from the sample data set {xi, yi}n
i=1 by applying

Parzen non-parametric estimation:

f̂ (X, y) =
1

n(2π)
p+1

2 σp+1

n

∑
i=1

exp[− (X − Xi)
T(X − Xi)

2σ2 ]exp[− (X − Yi)
2

2σ2 ] (15)

where Xi and Yi is the sample observed value of x and y, n is the sample size, p is the number
of dimension of random variable x and σ is the smoothing factor. f̂ (X, y) can replace f (X, y) of
Equation (15), so the function after transformation is:

Ŷ(X) =

n
∑

i=1
exp[− (X−Xi)

T(X−Xi)
2σ2 ]

∫ ∞
−∞ yexp[− (Y−Yi)

2

2σ2 ]dy

n
n
∑

i=1
exp[− (X−Xi)

T(X−Xi)
2σ2 ]

∫ ∞
−∞ exp[− (Y−Yi)

2

2σ2 ]dy
(16)

For
∫ ∞
−∞ ze−z2

dz = 0, after calculating the two integration, the output of GRNN can be Ŷ(X)

obtained as follows:

Ŷ(X) =

n
∑

i=1
yexp[− (X−Xi)

T(X−Xi)
2σ2 ]

n
∑

i=1
exp[− (X−Xi)

T(X−Xi)
2σ2 ]

(17)

After obtaining the training samples of GRNN, the training process of the network involves
optimizing the smoothing parameter σ. In order to improve the fitting ability of GRNN, σ needs to be
optimized, which indicates the importance of optimizing the smoothing parameter σ in GRNN.

As for the structure of GRNN, it is similar to that of RBF, including input layer, pattern layer,
summation layer and output layer. The corresponding network input is X = [x1, x2, . . . , xn], and its
output is Y = [y1, y2, . . . , yn]

T , which are described below.

(1) Input layer

The number of neuron of the input layer is the same as the dimension number of input variable,
which plays a role in transferring signals.

(2) Pattern layer

The number of neuron of the pattern layer is the same as the number of learning samples, and the
transfer function is

Pi = exp[− (X − Xi)
T(X − Xi)

2σ2 ], i = 1, 2, . . . , n (18)

where X is the input variable of the network, and Xi is the learning sample of ith neuron.
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(3) Summation layer

Two methods can be applied to calculate the neuron. One is shown in Equation (10):

n

∑
i=1

exp[− (X − Xi)
T(X − Xi)

2σ2 ] (19)

where the arithmetic sum of each neuron is calculated, the link weight is 1, and the transfer function is:

SD =
n

∑
i=1

Pi (20)

The other method is:
n

∑
i=1

Yiexp[− (X − Xi)
T(X − Xi)

2σ2 ] (21)

where the weighted arithmetic sum of each neuron is calculated, and the link weight between the
i-th neuron and j-th molecular sum neurons is the j-th element of i-th output sample Yj. The transfer
function is:

SNj =
n

∑
i=1

yijPi j, j = 1, 2, . . . , k (22)

(4) Output layer

The number of neuron of output layer is the same as the dimension number k of output variable.
The output of summation layer is divided by each neuron as shown in Equation (23):

yj =
SNj

SD
(23)

Then there are some weights in GRNN to connect different layers, and the least mean squares
and differential chain rule are applied to adjust them. Initially, we define the least mean square of each
neuron in the output layer:

Ek = [dk(X)− Fk(W, X)]2/2, k = 1, 2, . . . , K (24)

where dk(X) is the expected output, Fk(W, X) is the actual output. Ek can arrive at the smallest value
through adjusting the weights according to Equation (25) by using the least mean squares method:

Δwki(n) = ηk(− ∂Ek
∂wki

), i = 1, 2, . . . , M; k = 1, 2, . . . , K (25)

where ηk is the learning rate. Therefore, the key to realizing the least square mean is to solve
(−∂Ek/∂wki), so by using the differential chain rule, we can get:

− ∂Ek
∂wki

= − ∂Ek
∂Fk(W, X)

∂Fk(W, X)

∂wki
(26)

where −∂Ek/∂Fk(W, X) = dk(X) − Fk(W, X), which can be denoted as δk. Then we can get
(−∂Ek/∂wki) = δkyi according to Equation (27):

∂Fk(W, X)

∂wki
=

∂

∂wki
(

M

∑
i=1

wkiyki) = yi (27)

so Δwki(n) = ηkδkyi, where yi is the output of i-th neuron in the hidden layer, and the input of kth
neuron in the output layer. The detailed structure of GRNN is described in Figure 1IV.
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3. The Proposed Hybrid Model

In the proposed data decomposition hybrid model (DDH), we initially remove the periodicity
in the original series, and then the EMD-GA-GRNN is applied to forecast the electrical load time
series without periodicity. After that the periodicity is added to the forecasted time series by using the
additive model. This part will introduce the basic ideas of both DDH and EMD-GA-GRNN.

3.1. Genetic Algorithm

The genetic algorithm is based on the natural selection rule and biological evolution principle,
and its basic idea is to generate a set of initial solutions (population) in the problem space. Each group
of solutions is regarded as the individuals in the population, which is defined as a chromosome. In the
searching process, the adaptive value of chromosomes is the standard used to evaluate and select
individuals. In the next generation, new individuals are generated through crossover and mutation
operations, becoming a new generation of the population [41]. The above steps are repeated so that
the chromosome can converge to a desired optimum value and solution. GA is applied in this paper
to optimize GRNN, and the detailed steps are described as follows (as shown in the pseudo code of
Algorithm 2 and Figure 1II):

Step 1. Initialize the population. Each individual in the population is a real number, with a
known net structure, the initial values can form a neural network with structure, weight value and
threshold value.

Step 2. Ensure the fitness function. The fitness value F is the absolute error values between the
forecasting output and expected output calculated by Equation (28):

F = k(
n

∑
i=1

abs(yi − oi)) (28)

where n is the number of the output node of the network, yi is the expected output of ith node, oi is the
forecasting output of ith node, and k is the coefficient.

Step 3. Selection operation. This operation is based on the proportion of the fitness, and the
selection probability of each individual i is p:

fi =
k
Fi

(29)

pi =
fi

n
∑

i=1
f

(30)

where Fi is the fitness of individual i, and the smaller fitness is better. Before the selection operation,
the reciprocal of fitness should be calculated. k is the coefficient and N is the number of individual in
the population.

Step 4. Crossover operation.The individual is coded by using the real number, and the crossover
operation in the jth position between kth chromosome ak and al lth chromosome al:

akj = akj(1 − b) + aljb (31)

alj = alj(1 − b) + akjb (32)

where b is a random number of [0,1].
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Step 5. Mutation operation. Select the j-th gene of i-th individual to conduct the mutation
operation, and the method is:

akj = akj(1 − b) + aljb

aij =

{
aij + (aij − amax) ∗ f (g), r > 0.5
aij + (amin − aij) ∗ f (g), r ≤ 0.5

(33)

where amax is the upper bound of gene aij, amin is the lower bound of gene aij, f (g) = r2(1 − g/Gmax)
2,

r2 is a random number, g is the current iteration number, Gmax is the maximum iteration number and r
is a random of [0,1].

Algorithm 2: Pseudo Code of the genetic algorithm

Input: x(0)s = (x(0)(1), x(0)(2), . . . , x(0)(n))—a sequence of training data

x̂(0)s = (x̂(0)(l + 1), x̂(0)(l + 2), . . . , x̂(0)(l + n))—a sequence of verifying data
Output: fitness_value xb—the value with the best fitness value in the population of populations
Parameters:
Genmax—the maximum number of iterations; n—the number of individuals
Fi—the fitness function of the individual i; xi—the population i
g—the current iteration number of GA; d—the number of dimension
1: /*Initialize the population of n individuals which are xi\(i = 1, 2, ..., n) randomly.*/

2: /*Initialize the parameters of GA: Initial probabilities of crossover pc and mutation pm.*/

3: FOR EACH (i: 1 ≤ i ≤ n) DO

4: Evaluate the corresponding fitness function Fi f itness_popu(best(idx, 1), 1)
5: END FOR

6: WHILE (g < Genmax) DO FOR EACH (I = 1:n) DO

7: IF (pc > rand) THEN

8: /*Conduct the crossover operation*/ akj = akj(1 − b) + aljb and alj = alj(1 − b) + akjb
9: END IF

10: IF (pm > rand) THEN

11: /*Conduct the Mutate operation*/ aij =

{
aij + (aij − amax) ∗ f (g), r > 0.5
aij + (amin − aij) ∗ f (g), r ≤ 0.5

12: END IF END FOR

13: FOR EACH (i: 1 ≤ i ≤ n) DO

14: Evaluate the corresponding fitness function Fi f itness_popu(best(idx, 1), 1)
15: END FOR

16: /*Update the best nest xp of the d generation in the genetic algorithm.*/

17: FOR EACH (i: 1 ≤ i ≤ n) DO IF (Fp< Fb) THEN

18: /* The global best solution can be obtained to replace the local optimal xb←xp*/
19: END IF END FOR END WHILE

20: RETURN xb/* The optimal solution in the global space has been obtained.*/

3.2. Data Decomposition Hybrid (DDH) Model

The time series always changes as time goes by, and such change has the features of continuity,
periodicity, trend, and a certain randomness. In the previous research, no matter which models,
including single model, combined model or hybrid model, they are all applied in forecasting the whole
time series. Unlike the previous research, this paper proposes a data decomposition hybrid model
(DDH) based on the periodicity, trend and randomness in the time series. The basic idea of DDH is to
decompose the times series based on the main influencing factors. On the basis of decomposition and
recombination of traditional additive model, the layer-upon-layer decreasing is applied to improve the
forecasting accuracy. Then suitable models are selected to conduct the forecasting according to the
data characteristics and features. The effective decomposition of data and proper forecasting models
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for each part can enhance the fitting performance of the model and decrease the forecasting errors to a
great degree compared with conventional single forecasting methods. The detailed steps of DDH are
described below (as shown in Figure 1III):

Step 1. Observe whether the time series Yt contains trend, periodicity and randomness, and judge
the applicability of the additive model and multiplicity model. In general, compared to the additive
model, the multiplicity model is more suitable for time series with large fluctuations [42]. The electrical
load time series have a relatively stable fluctuation range; therefore, the additive model is chosen,
and the following discussion is based on it.

Step 2. Apply the moving average method or other methods to extract the periodicity Ct.
Step 3. Without the periodicity Ct, the rest of the data can be defined as trend Tt. If Tt is far larger

than Ct, a periodic adjustment of Ct should be conducted to obtain the estimated periodicity Ĉt, and
this is because if we firstly forecast larger data, there will be much noise in the latter data, which
will affect the forecasting accuracy. Then the new trend Tt

′ can be obtained (T′
t = Yt − Ĉt). Finally,

EMD-GA-GRNN can be utilized to forecast Tt
′, and the forecasting value is T̂t. On the contrary, if Ct is

far larger than Tt, EMD-GA-GRNN is used to forecast the trend Tt, and get the forecasting value T̂t.
Then the periodicity data Ct can be obtained. Finally, the estimated value Ĉt is obtained through the
periodic adjustment.

Step 4. The original randomness Rt is calculated (Rt = Yt − Ĉt − T̂t). We forecast the randomness
after decomposition by applying GA-GRNN to get the forecasting value R̂t. The randomness after
decomposition is nearly stable, so EMD is unnecessary.

Step 5. Utilize the additive model to get the final forecasting values of the time series:
Ŷt = Ĉt + T̂t + R̂t.

3.3. The EMD-GA-GRNN Forecasting Model

In the model of DDH, EMD-GA-GRNN is proposed, which is based on the data state after applying
the layer-upon-layer decreasing method. However, data after the layer-upon-layer decreasing method
may include some noise due to the forecasting accuracy in the former forecasting methods. Thus, it is
pivotal to apply a proper method to remove the noise in the decomposed data. This paper chooses
the empirical mode decomposition method considering its advantages in dealing with non-linear
time series data. Then the GRNN is utilized to forecast the dealt data, because it performs well in
fitting non-stationary data. The training process of GRNN is actually to ensure the optimum s, and the
specific steps of the hybrid model EMD-GA-GRNN are listed as follows (Pseudo code of Algorithm 3):

Algorithm 3: Pseudo code of the hybrid model of EMD-GA-GRNN

Input: x(0)s =
(

x(0)(1), x(0)(2), . . . , x(0)(q)
)

—a sequence of training data

x(0)p =
(

x(0)(q + 1), x(0)(q + 2), . . . , x(0)(q + d)
)

—a sequence of verifying data

Output: ŷ(0)z =
(

ŷ(0)(q + 1), ŷ(0)(q + 2), . . . , ŷ(0)(q + d)
)

—forecasting electrical load from GRNN

Fitness function: f itness = 1/
N
∑

i=1

K
∑

j=1
(Yj(i)− Yj(i))

2
/*The objective fitness function*/

Parameters:
Genmax—the maximum number of iterations; n—the number of individuals
Fi—the fitness function of individual i; xi—the total population i
G—the current iteration number; d—the number of dimension

1: /* Process original electrical load time series data with the noise reduction method EMD */
2: /*Initialize the population of n individuals xi (i = 1, 2, ..., n) randomly.*/

3: /*Initialize the original parameters: Initial probabilities of crossover pc and mutation pm.*/
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Algorithm 3: Cont.

4: FOR EACH (i: 1 ≤ i ≤ n) DO

5: Evaluate the corresponding fitness function Fi f itness = 1/
N
∑

i=1

K
∑

j=1
(Yj(i)− Yj(i))

2

6: END FOR

7: WHILE (g < Genmax) DO

8: FOR EACH (i = 1:n) DO IF (pc > rand) THEN

9: Conduct the crossover operation of GA to optimize the smoothing factor of GRNN

10: END IF

11: IF (pm > rand) THEN

12: Conduct the mutate operation of GA to optimize the smoothing factor of GRNN

13: END IF END FOR

14: FOR EACH (i: 1 ≤ i ≤ n) DO

15: Evaluate the corresponding fitness function Fi f itness = 1/
N
∑

i=1

K
∑

j=1
(Yj(i)− Yj(i))

2

16: END FOR

17: /*Update best nest xp of the d generation to replace the former local optimal solution.*/

18: FOR EACH (i: 1 ≤ i ≤ n) DO IF (Fp < Fb) THEN xb←xp;
19: END IF END FOR END WHILE

20: RETURN xb/* Set the weight and threshold of the GRNN according to xb.*/
21: Use xt to train the GRNN and update the weight and threshold of the GRNN and input the historical data
into GRNN to obtain the forecasting value ŷ.

Step 1. Data addressed by layer-upon-layer decreasing method would include some noises,
affecting the forecasting accuracy; therefore, the first step is to denoise the composed data by using
EMD method.

Step 2. Standardize and code the time series after the denoising.
Step 3. Generate the initial population P(t), and the evolutionary generation is t = 0.
Step 4. Code the chromosome, and get the parameters of GRNN, which can be used to train the

network structure.
Step 5. Set the individual evaluation standard according to the fitness function in Equation (34):

f itness =
1

N
∑

i=1

K
∑

j=1
(Yj(i)− Yj(i))

2
(34)

where Yj(i) is the output of GRNN and Yj(i) is the output.
Step 6. Apply the optimum strategy based on the values of fitness function.
Step 7. Judge whether the fitness value meets the accuracy requirement. If so, the process ends;

or move to the next step.
Step 8. Judge whether the current iteration t gets to the maximum iteration. If so, the process ends;

or go to the next step.
Step 9. Perform the selection, crossover and mutation operation for the current population.
Step 10. Generate the new generation of the population, and the iteration t becomes t + 1,

return Step 3.

4. Experiments

With the rapid development of technology and science, the electrical power system in each
country tends to develop fast as well. Similarly, the power grid management has become more
complicated. The forecasting is the premise and basis of decision and control; therefore, the premise
and the most vital step of electrical load management is to conduct the electrical load forecasting.
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The accurate forecasting can not only help the electrical power system operate safely based on
reasonable maintenance schedules, but it can also decrease the grid costs and maximize the profits.

4.1. Model Evaluation

To conduct the model evaluation can lead to a clear and direct understanding of the forecasting
accuracy, and it is helpful to analyze the reasons causing errors to enhance the forecasting performance.
The main reasons are listed below:

(1) Selection of influencing factors when constructing mathematical models. In truth, the time series is
affected by various factors, and it is difficult to master all of them. Therefore, errors between
forecast values and actual values cannot be avoided.

(2) Improper algorithms. For forecasting, we just build a relatively appropriate model, so if the
algorithms are chosen wrongly, the errors would become larger.

(3) Inaccurate or incomplete data. The forecasting should be based on the historical data, so inaccurate
or incomplete data can result in forecasting errors.

When there are abnormal values, we are supposed to find the reasons causing the errors and
correct each step of the model. The forecasting accuracy plays a crucial role in assessing a forecasting
algorithm, and two types of evaluation metrics are chosen to evaluate the forecasting accuracy:
the accuracy of forecasting a single point and the overall accuracy of forecasting multiple points.
Two evaluation metrics are applied to examine a single point forecasting accuracy, which are absolute
error (AE) and relative error (RE). Then we select four evaluation metrics, including mean absolute
error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean error
(ME), to evaluate the model performance more comprehensively. MAPE is a generally accepted metric
for forecasting accuracy, and MAE and RMSE can measure the average magnitude of the forecast
errors; however, RMSE imposes a greater penalty on a large error than several small errors [43].

For a group of time series xt (t = 1, 2, . . . , T), the corresponding forecasting output is x̂t and
detailed description of evaluation metrics is shown in Table 1.

Table 1. The evaluation metrics.

Name of Metrics Equation No. Name of Metrics Equation No.

MAE MAE = 1
T

T
∑

t=1
|xt − x̂t| (35) ME ME = 1

T

T
∑

t=1
(xt − x̂t) (38)

RMSE RMSE =

√
1
T

T
∑

t=1
(xt − x̂t)

2 (36) AE AE = xt − x̂t (39)

MAPE MAPE = 1
T

T
∑

t=1

∣∣∣ xt−x̂t
xt

∣∣∣× 100% (37) RE RE = xt−x̂t
xt

(40)

The smaller values of the six metrics are, the higher forecasting accuracy is. Therefore,
the evaluation metrics can both reflect the forecasting results and its accuracy clearly and directly and
provide a reference base for decisions, which is beneficial to improving the model and conducting the
analysis. Thus, the significance of the evaluation metrics is very large.

4.2. Experimental Setup

This paper uses the 30-min interval data of New South Wales, Australia in April 2011 to verify the
effectiveness of the proposed hybrid DDH model based on data decomposition. In the first experiment,
the data size is 1440, and data in the first 29 days are the training set, and the testing set includes data
in the 30th day. The detailed ideas of the proposed electrical load hybrid model is summarized as
follows (as shown in Figure 2):
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(1) The original electrical load time series data Yt has an obvious trend and periodicity. Initially,
the moving average method is conducted to extract the periodicity Ct. For the periodicity Ct,
conduct the periodic adjustment and obtain Ĉt.

(2) Subtract the periodicity of the original time series data, and get the original trend Tt(Tt = Yt − Ĉt).
For the original data without periodicity, EMD needs to be initially applied to eliminate the noises
and improve the forecasting accuracy. Then the genetic algorithm could be used to optimize
GRNN to obtain the forecasting trend item T̂t.

(3) Finally, the randomness can be obtained through Rt = Yt − Ĉt − T̂t, then the GRNN optimized by
the genetic algorithms is utilized to forecast the randomness and the forecasting value is obtained.
The trend tends to be steady; therefore, there is no need to eliminate noises.

(4) The final forecasting is performed by the additive model of time series Ŷt = Ĉt + T̂t + R̂t.

Figure 2. The process of electrical load forecasting for New South Wales.

4.3. Empirical Results

The model performance is evaluated based on the upper data, and the results are obtained by
using MATLAB®(2015a), which was implemented under Windows 8.1 with a 2.5 GHz Intel Core i5
3210 M, 64 bit CPU with 4 GB RAM. Figure 3 shows the data decomposition process.
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Figure 3. The forecasting effects. (A) The original electrical load time series; (B) Electrical load time
series data after adjustment; (C) EMD decomposition results; (D) EMD trend series, effect of EMD and
results of EMD-GA-GRNN forecasting.

(1) Figure 3A shows the results after decomposition by moving average, from which it can be
seen that the original electrical load data contains a certain periodicity, and the variation of the
period is roughly equal, so the additive model is more suitable. The length of the period h = 48
can be ensured based on the data distribution. Thus the moving average method is used to
decompose the electrical load data into two parts, which are periodicity and trend. Besides,
from the decomposed results, it can be known that the level of trend is nearly ten times the
periodicity. This is because that the moving average method can demonstrate the large trend
of the development, eliminating the fluctuation factors such as season. Therefore, the periodic
adjustment should be conducted through extracting the periodicity.

(2) Figure 3B is the electrical load data after periodic adjustment, from which is can be known
that the electrical load data after the periodic adjustment have periodic sequence and basis
trend characteristics.

70



Energies 2016, 9, 1050

(3) Figure 3C demonstrates the output results of trend data after EMD. It shows that nine components
are obtained, including IMF1, IMF2, . . . , IMF8 and Rn, after EMD data decomposition.
The high-frequency data in highest component is removed, and the rest data are regarded
as the new trend time series data.

(4) Figure 3D clearly reveals the trend data after EMD decomposition by removing the high frequency
component, and it can be obviously seen that the data denoised by EMD are smoother than the
original data.

Next, data after removing the high frequency component by EMD is fitted and forecast by GRNN.
The genetic algorithm is applied to optimize the smoothing factor σ in GRNN. The hybrid electrical
load forecasting model EMD-GA-GRNN constructed in this paper is applied to forecast the trend
value in the next time point by using the historical data in the past time point. In this experiment,
the trend value of the former four time points are used to forecast the trend value of the 5th time point.
For the given data, the data need initially to be divided into the training sample and testing sample.
Take the training sample for example, x1, x2, x3, x4, x5 is the first sample group, and x1, x2, x3, x4 are
independent variables, and x5 is the objective function value. Similarly, x2, x3, x4, x5, x6 is the second
sample group, x2, x3, x4, x5 are independent variables, and x6 is the objective function value. By that
analogy, the final training matrix is:

⎛
⎜⎜⎜⎜⎜⎝

x1 x2 x3 · · · x1292

x2 x3 x4 · · · x1293

x3 x4 x5 · · · x1294

x4 x5 x6 · · · x1295

x5 x6 x7 · · · x1296

⎞
⎟⎟⎟⎟⎟⎠ (41)

where each column is a sub-sample sequence, and the last row is the expected output. The training
sample is used to train GA-GRNN, after that the network after training is obtained. The forecasting
effects can be clearly seen from Figure 3D that EMD-GA-GRNN has a better fitting effect, and MAPE
between network output and real value is 2.11%. The training model in Figure 4 is shown as follows.

Figure 4. The generalized regression neural network model.
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To the best of our knowledge, a great variety of forecasting approaches can achieve good
performance in dealing with non-linear time series; therefore, in this paper we compared the proposed
GRNN with three other well-known and commonly used methods, including wavelet neural network
(WNN), the secondary exponential smoothing method (SES) and auto regressive integrated moving
average (ARIMA). The forecasting results are compared as shown in Figure 5, from which it can be
known that:

(1) The speed to forecast the nonlinear time series data by using WNN is fast, with a better ability of
generalization and a higher accuracy; however, the stability is weak.

(2) The advantages of SES are the simple calculation, strong adaptability and stable forecasting
results, but the ability to address nonlinear time series data is weak.

(3) ARIMA performs well with a relatively higher accuracy when forecasting the electrical load
data. However, as time goes by, the forecasting errors would gradually become larger and larger,
which is only suitable for short-term forecasting.

(4) On the whole, compared with other methods, GRNN can obtain a better and more stable
forecasting result, as it deals with the non-linear data well and can fit and forecast the electrical
load data well.

Figure 5. Forecasting results for trend of each model after removing the periodicity.

Next the randomness is obtained by Rt = Yt − Ĉt − T̂t. Because it tends to be stationary, we can
only apply GA-GRNN to get the forecasting value R̂t. The forecasting results of DDH can be calculated
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by the additive model Ŷt = Ĉt + T̂t + R̂t, and results are shown in Figure 6. Figure 6II demonstrates
that the forecasting error in the 11th time point is the largest with an MAPE within 5%, and this results
is satisfactory.

Figure 6. Forecasting results and MAPE of DDH model.

4.4. Comparative Analysis

In order to prove the good performance of the proposed DDH model in this paper, three other
hybrid models are compared with it, which are EMD-GA-WNN, GA-GRNN and EMD-GA-GRNN.
The comparison results are shown in Table 2.

(1) From Figure 7, it can be seen that EMD-GA-WNN does not perform well when forecasting the
electrical load data, and the relative errors of some parts even exceed 5%. This may be caused by
the weak forecasting stability of WNN, and although GA can optimize its parameters, the effect
to improve its stability is weak.

(2) As for GA-GRNN and EMD-GA-GRNN, MAPEs are all within 5%, which indicates that the two
forecasting models have better performance. In detail, the forecasting effect of EMD-GA-GRNN
is much better than that of GA-GRNN, proving the function of EMD in improving the
forecasting accuracy.
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(3) The DDH model based on the data decomposition put forward in this paper can control the
MAPE at 4%; thus, it can be known that it has a very strong fitting ability for non-linear data
and forecasting ability for the electrical load time series. Both the simulation results and the
forecasting process demonstrate that the proposed model can have a good performance when
forecasting the non-linear time series data with periodicity, trend and randomness.

(4) From the evaluation metrics in Figure 7, it can be known that the forecasting ability of GRNN is
better than WNN, which is because that GRNN can deal well with the data such as electrical load
time series; therefore, this paper also establishes the model based on GRNN. The proposed
forecasting model EMD-GA-GRNN and EMD-GA-GRNN based on WNN and GRNN can
improve the forecasting accuracy well. However, in comparison, GRNN is more suitable for the
nonlinear time series data, and MAPEs of EMD-GA-WNN and EMD-GA-GRNN are 2.22% and
1.53%, respectively. Certainly, EMD can reduce the forecasting errors in some degree. Besides,
MAPE decreases from 1.62% of GA-GRNN to 1.53% of EMD-GA-GRNN. However, DDH model
can reduce MAPE within 1%.

 
Figure 7. Forecasting results of each model.
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The summary is concluded in Remark 1.

Remark 1. It can be concluded that compared to the single forecasting model, DDH model is more suitable for
forecasting the electrical load time series data with a higher fitting ability and better forecasting capacity.

The analysis above only shows results of three models in one experiment, but it cannot
comprehensively and fully demonstrate the model performance. Each model will be trained 10 times
with the same iteration numbers to make the forecasting results more stable. The obtained forecasting
quality and results are shown in Figure 8 and Table 3. The two figures both indicate that DDH
model based on the data decomposition perform well when measured by different evaluation metrics.
A smaller MAE means a higher forecasting accuracy, a lower RMSE indicates a better fitting degree of
electrical load, and MAPE is an index to assess the forecasting ability of the model. At present, for the
data of New South Wales, the best standard is about 1%. From the average of MAE in ten experiments,
DDH has the smallest value, indicating the best forecasting accuracy. What is more, the smallest RMSE
cannot only mean that DDH can fit the electrical load time series well, but it can also prove that the
forecasting results of the model are stable.

Figure 8. Model evaluation of three forecasting models.

Furthermore, MAPE of DDH also shows that DDH model based on the data decomposition put
forward in this paper can reach the best forecasting standard currently.
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4.5. Further Experiments

Initially, in order to further prove the effectiveness of the proposed DDH hybrid model, we expand
our sample size by using the data in 89 days to forecast the data in the 90th day. That is to say, the first
89th days are the training set, and the testing set include data in the 90th day. The experiment results
of both working days and weekends are shown in Table 4. Besides, experiments of days in different
seasons are also done to examine the effectiveness and robustness of the proposed hybrid model,
which are listed in Table 4 and detailed analysis are as follows:

(1) As for the weekly analysis, it can be seen that the average MAPE of DDH in one week is 1.01%,
which is lower than EMD-GA-WNN and EMD-GA-GRNN. About other indexes, including
MAE, RMSE and ME, DDH all obtain the best forecasting results. When comparing the working
days with weekends, the proposed hybrid model can both have a high forecasting accuracy,
which proves the effectiveness of the model.

(2) Table 5 shows the forecasting results of days in different seasons. Based on the comparison, it can
be concluded that DDH is superior to the other two models with the values of MAPE 0.96%, 1.18%,
1.18% and 1.13% in spring, summer, autumn and winter, respectively. The results can validate
that the proposed hybrid DDH model has a high degree of robustness and forecasting accuracy.

The summary is concluded in Remark 2.

Remark 2. The performance of the DDH model is stable and good when forecasting the electrical load data in
one week and different seasons.

Table 4. Forecasting performance evaluation results of one week with larger training set.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Week

EMD-GA-WNN

MAE 117.6839 129.4867 142.1135 279.4283 225.6017 118.0649 206.1598 174.0770
RMSE 288.4620 237.0900 218.0418 211.3369 202.1987 245.0624 289.4222 241.6591
MAPE 0.0249 0.0286 0.0273 0.0263 0.0275 0.0219 0.0226 0.0256

ME −129.1364 −18.7732 −130.2645 −88.3712 −32.1989 −60.3024 −115.4213 −82.0668

EMD-GA-GRNN

MAE 117.6850 126.4213 110.0889 112.1325 129.0178 157.3144 138.0976 127.2511
RMSE 141.7699 168.3712 155.2626 148.0987 161.5546 132.1019 168.3174 153.6395
MAPE 0.0144 0.0137 0.0149 0.0155 0.0158 0.0159 0.0142 0.0149

ME −98.6273 −87.0125 −110.2455 −136.4188 −65.231 −21.0987 −33.4685 −78.8718

DDH

MAE 76.4219 88.1348 76.1653 79.0187 84.315 69.1083 70.4245 77.6555
RMSE 97.6681 102.4269 99.8349 105.1917 112.3416 108.1947 98.1032 103.3944
MAPE 0.0101 0.0094 0.0112 0.0095 0.0098 0.0106 0.0103 0.0101

ME −13.0719 −2.0715 −4.3728 18.1605 12.1004 −34.5671 −10.0628 −4.8407

Table 5. Forecasting performance evaluation results of different seasons with a larger training set.

Evaluation
Index

EMD-GA-WNN EMD-GA-GRNN DDH
Evaluation

Index
EMD-GA-WNN EMD-GA-GRNN DDH

Spring Summer

MAE 119.4287 117.0216 76.0138 MAE 137.0345 108.417 60.1837
RMSE 292.0655 140.3726 97.0138 RMSE 213.0418 156.1783 94.1296
MAPE 0.0231 0.0158 0.0096 MAPE 0.0274 0.0162 0.0118

ME −112.0659 −78.4257 −16.1076 ME −97.3125 −52.1035 −20.0244

Autumn Winter

MAE 125.0638 100.0246 78.1025 MAE 112.0605 100.4629 73.1068
RMSE 213.1294 148.7329 89.4237 RMSE 200.0217 158.0376 971136
MAPE 0.0219 0.0143 0.0118 MAPE 0.0212 0.0158 0.0113

ME −101.0137 −25.4269 −11.0036 ME −94.1346 −36.0599 −11.0217
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In addition, we also compare the forecasting performance of the proposed DDH model in this
paper to the models in the literature, including [1,4,44,45]. As shown in Table 6, the model in this paper
improves the forecasting accuracy by 0.089% compared to the HS-ARTMAP network. The MAPEs
of the combined model based on BPNN, ANFIS and diff-SARIMA and hybrid model based on WT,
ANN and ANFIS are 1.654% and 1.603%, respectively. In the compared models, the combined model
based on BPNN, RBFNN, GRNN and GA-BPNN has the lowest MAPE, which is 1.236%. Therefore,
in summary, the DDH model outperforms the other compared models in the literature. The superior
performance of DDH is because that the model can deal with both trend and periodicity in the original
time series, which can greatly enhance the forecasting accuracy. Besides, compared to conventional
BPNN and ARIMA, GRNN has a strong ability of generalization, robustness, fault tolerance and
convergence ability.

Table 6. Comparison of MAPE with models in the literature.

Model Period MAPE (%) Ref.

Combined model based on BPNN, ANFIS and
diff-SARIMA Data from May to June 2011 1.654 [1]

Combined model based on BPNN,
RBFNN,GRNN and GA-BPNN

Data from February 2006 to
February 2009 1.236 [4]

HS-ARTMAP network Data in the head days in January
from 1999 to 2009 1.900 [44]

Hybrid model based on WT, ANN and ANFIS Data from 12 July to 31 July 2004 1.603 [45]

The proposed DDH Data from April to June 2011 1.010 /

4.6. Discussion on Model Features

As discussed above, the major model in DDH model is GRNN which is optimized by GA.
The experimental results also demonstrate their effectiveness in forecasting the short-term electrical
load time series. This part will discuss the advantages of GRNN and GA further and more deeply.
As shown in Table 7, GRNN has four obvious features:

1. It has a relatively low requirement for the sample size during the model building process,
which can reduce the computing complexity;

2. The human error is small. Compared with the back propagation neural network (BPNN), GRNN
is different. During the training process, the historical samples will directly control the learning
process without adjusting the connection weight of neurons. What is more, parameters like
learning rate, training time and the type of transfer function, need to be adjusted. Accordingly,
there is only one parameter in GRNN that needs to be set artificially, which is the smoothing factor;

3. Strong self-learning ability and perfect nonlinear mapping ability. GRNN belongs to a branch of
RBF neural networks with strong nonlinear mapping function. To apply GRNN in electrical load
forecasting can better reflect the nonlinear mapping relationship;

4. Fast learning rate. GRNN uses BP algorithm to modify the connection weight of the relative
network, and applies the Gaussian function to realize the internal approximation function,
which can help arrive at an efficient learning rate. The above features of GRNN play a pivotal role
in performing the electrical load forecasting when the original data are fluctuating and non-linear.
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The genetic algorithm is utilized to optimize the only one parameter in GRNN, and it is a type
of algorithm that works without limiting the field or type of the problem. That is to say, it does not
depend on detailed problems, and can provide a universal framework to solve problems. Compared
to the traditional optimization, it has the following advantages:

• Self-adaptability. When solving problems, GA deals with the chromosome individuals through
coding. During the process of evolution, GA will search the optimal individuals based on
the fitness function. If the fitness value of chromosome is large, it indicates a stronger
adaptability. It obeys the rules of survival of the fittest; meanwhile, it can keep the best state in a
changing environment;

• Population search. The conventional methods usually search for single points, which is easily
trapped into a local optimum if a multimodal distribution exists in the search space. However,
GA can search from multiple starting points and evaluate several individuals at the same time,
which makes it achieve a better global searching;

• Need for a small amount of information. GA only uses the fitness function to evaluate the
individuals without referring to other information. It has a small dependence or limitation
conditions to the problems, so it has a wider applicability;

• Heuristic random search. GA highlights the probability transformation instead of the certain
transformation rule;

• Parallelism. On the one hand, it can search multiple individuals in the solution space; on the
other hand, multiple computers can be applied to perform the evolution calculation to choose
the best individuals until the computation ends. The above advantages make GA widely used in
many fields, such as function optimization, production dispatching, data mining, forecasting for
electrical load and so on.

5. Conclusions

The electrical load forecasting can not only provide the electricity supply plans for regions in
a timely and reliable way, but it can also help maintain normal social production and life. Thus, to
improve the forecasting accuracy of electrical load can lower risks, improve the economic benefits,
decrease the costs of generating electricity, enhance the safety of electrical power systems and help
policy makers make better action plans. Therefore, how to forecast the changing trends and features
of electrical loads in the power grid accurately and effectively has become a both significant and
challenging problem. This paper proposes a Data Decomposition Hybrid (DDH) model based on the
data decomposition that can deal well with the task, and it mainly contains two key steps:

The first one is to decompose the data based on the main factors of electrical load time series
data. On the basis of decomposition and reconstitution of traditional time series additive model,
the layer-upon-layer decreasing decomposition is applied for the reconstitution to enhance the
forecasting accuracy. Then according to the characteristics of the decomposed data, suitable forecasting
models are found to fit and forecast the sub-sequence. Through the effective decomposition of electrical
load time series data and selection of proper forecasting models, the fitting ability and forecasting
capacity can be well improved.

The second idea is to improve the forecasting accuracy of Generalized regression neural network
(GRNN). The major forecasting model in this paper is GRNN, and genetic algorithm is utilized to
optimize parameters in GRNN. Before that EMD is applied to eliminate the noises in the data. Thus,
with the help of EMD and GA, the forecasting performance of GRNN can be greatly enhanced.

The experimental results show that compared with EMD-GA-WNN, GA-GRNN and
EMD-GA-GRNN, the proposed hybrid model has a good forecasting effect for electrical load time
series data with periodicity, trend and randomness. In practice, the DDH model based on data
decomposition can reach a high forecasting accuracy, becoming a promising method in the future.
Besides, if the time series show an obvious periodicity, trend and randomness, the hybrid model can
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be applied commonly and effectively in other forecasting fields, such as product sales forecasting,
tourism demand forecasting, warning and forecasting of flood, wind speed forecasting, traffic flow
forecasting and so on.

However, with the development of technology and information, there are still many problems
existing in the forecasting field. This paper mainly focuses on the study of a hybrid forecasting model
based on time series decomposition and how to improve the forecasting accuracy, and further analysis
can be conducted in the following aspects: (1) This paper ignores the influences of other factors on the
electrical time series owing to the limitations of data collection; therefore, how to design a forecasting
model and algorithm of multiple variables is a problem worth studying; (2) The forecasting techniques
continue to improve, and there is no a perfect forecasting model that can deal well with all time series
forecasting problems. Thus, it is necessary to develop new algorithms to achieve the future forecasting
work; (3) Denoising of time series. The EMD method applied in this paper is just one type of denoising
method, and other algorithms, such as Kalman filtering and wavelet packet decomposition, should be
compared to EMD to select a better one.
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Abbreviations

ANNs Artificial neural networks
SVM Support vector machine
EA Evolution algorithms
ARIMA Auto regressive integrated moving average
SOM Self-organizing map
GRNN Generalized regression neural network
EMD Empirical mode decomposition
IMF Intrinsic mode function
WNN Wavelet neural network
SES Secondary exponential smoothing
ANFIS Adaptive network-based fuzzy inference system
RBFNN Radial basis function neural network
HS-ARTMAP Hyper-spherical ARTMAP network
RBF Radial basis function
GA Genetic algorithm
DDH Data Decomposition Hybrid Model
MAE Mean absolute error
RMSE Root mean square error
MAPE Mean absolute percentage error
ME Mean error
AE Absolute error
RE Relative error
BPNN Back propagation neural network
diff-SARIMA Difference seasonal autoregressive integrated moving average
ART Adaptive resonance theory
WT Wavelet transform
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Abstract: Due to the electricity market deregulation and integration of renewable resources, electrical
load forecasting is becoming increasingly important for the Chinese government in recent years.
The electric load cannot be exactly predicted only by a single model, because the short-term electric
load is disturbed by several external factors, leading to the characteristics of volatility and instability.
To end this, this paper proposes a hybrid model based on wavelet transform (WT) and least squares
support vector machine (LSSVM), which is optimized by an improved cuckoo search (CS). To improve
the accuracy of prediction, the WT is used to eliminate the high frequency components of the previous
day’s load data. Additional, the Gauss disturbance is applied to the process of establishing new
solutions based on CS to improve the convergence speed and search ability. Finally, the parameters
of the LSSVM model are optimized by using the improved cuckoo search. According to the research
outcome, the result of the implementation demonstrates that the hybrid model can be used in the
short-term forecasting of the power system.

Keywords: short-term load forecasting; wavelet transform; least squares support vector machine;
cuckoo search; Gauss disturbance

1. Introduction

As an important part of the management modernization of electric power systems, power load
forecasting has attracted increasing attention from academics and practitioners. Power load forecasting
with high precision can ease the contradiction between power supply and demand and provide
a solid foundation for the stability and reliable of the power grid. However, electric load is a random
non-stationary series, which is influenced by a number of factors, including economic factors, time,
day, season, weather and random effects, which lead to load forecasting being a challenging subject of
inquiry [1].

At present, the methods for load forecasting can be divided into two parts: classical mathematical
statistical methods and approaches based on artificial intelligence. Most load forecasting theories
are based on time series analysis and auto-regression models, including the vector auto-regression
model (VAR) [2,3], the autoregressive moving average model (ARMA) [4–6], and so on. Time series
smoothness prediction methods are criticized by researchers for their weakness of non-linear fitting
capability. With the development of the electricity market, the requirement of high accuracy load
forecasting is more and more strict and efficient. Therefore, artificial intelligence, which includes

Energies 2016, 9, 827; doi:10.3390/en9100827 www.mdpi.com/journal/energies85
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neural network and support vector machine, gains increasing attention by scholars. Nahi Kandil and
Rene Wamkeue et al. [7] applied short-term load forecasting using the artificial neural network (ANN).
The examples with real data showed the effectiveness of the proposed techniques by demonstrating that
using ANN can reduce load forecasting errors, compared to various existing techniques. Feng Yu and
Xiaozhong Xu [8] proposed an appropriate combinational approach, which was based on an improved
back propagation neural network for short-term gas load forecasting, and the network was optimized
by the real-coded genetic algorithm. D.K. Chaturvedi et al. [9] applied an algorithm that integrated
wavelet transform, the adaptive genetic algorithm and a fuzzy system with a generalized neural
network (GNN) to solve the short-term weekday electrical load problem. Luis Hernandez [10]
presented an electric load forecast architectural model based on an ANN that performed short-term
load forecasting. Nima Amjady and Farshid Keynia [11] proposed a neural network, which was
optimized by a new modified harmony search technique. Pan Duan et al. [12] presented a new
combined method for the short-term load forecasting of electric power systems based on the fuzzy
c-means (FCM) clustering, particle swarm optimization (PSO) and support vector regression (SVR)
techniques. Abdollah Kavousi-Fard, Haidar Samet and Fatemeh Marzbani [13] proposed a hybrid
prediction algorithm comprised of SVR and modified firefly algorithm, and the experimental results
affirmed that the proposed algorithm outperforms other techniques.

The support vector machine (SVM) [14] uses the structural risk minimization principle to
convert the solution process into a convex quadratic programming problem. This overcomes
some shortcomings in neural networks and has achieved a good performance in practical load
forecasting [15]. The problem of hyperplane parameter selection in SVM leads to a large solving
scale. In order to solve this, J.A.K. Suykens and J. Vandewalle proposed least squares support vector
machine (LSSVM) as a classifier in 1999. Unlike the inequality constraints introduced in the standard
SVM, LSSVM proposed equality constraints in the formulation [16]. This results in the solution being
transformed from one of solving a quadratic program to a set of linear equations known as the linear
Karush–Kuhn–Tucker (KKT) systems [17]. Sun Wei and Liang Yi have applied the method of LSSVM
in several engineering problems, including power load forecasting [18], wind speed forecasting [19],
project evaluation [20] and carbon emission prediction [21]. For example, in [18], a differential
evolution algorithm-based least squares support vector regression method is proposed, and the average
forecasting error is less than 1.6%, which shows better accuracy and stability than the traditional LSSVR
and support vector regression. The kernel parameter and penalty factor highly effect the learning and
generalization ability of LSSVM, and inappropriate parameter selection may lead to the limitation of
the performance of LSSVM. However, it is possible to employ an optimization algorithm to obtain
an appropriate parameter combination. The particle swarm optimization model [22] and genetic
algorithm model [23] model are proposed in parameter optimization for LSSVM. In order to improve
the forecasting accuracy of LSSVM, this paper applies the cuckoo search algorithm based on Gauss
disturbance to optimize the parameters of LSSVM. Cuckoo search (CS) was proposed by Xin-She Yang
and Suash Deb in 2009. CS is a population-based algorithm inspired by the brood parasitism of cuckoo
species. It has a more efficient randomization property (with the use of Levy flight) and requires fewer
parameters (population size and discovery probability only) than other optimization methods [24].
The advantage of CS is that it does not have many parameters for tuning. Evidence showed that the
generated results were independent of the value of the tuning parameters. At present, the CS has been
applied in many fields, such as system reliability optimization [25], optimization of biodiesel engine
performance [26], load frequency control [27], solar radiation forecasting [28], and so on. In order
to improve the convergence speed and the global search ability, the CS algorithm based on Gauss
disturbance (GCS) is proposed in which we add Gauss perturbation to the position of the nest during
the iterative process. It can increase the vitality of the change of the nest position, thus improving the
convergence speed and search ability effectively.

The wavelet transform (WT) is a recently-developed mathematical tool for signal analysis [29,30].
It has been successfully applied in astronomy, data compression, signal and image processing,
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earthquake prediction and other fields [31]. The combination of WT and LSSVM is widely used in
forecasting fields [32,33]. For example, H. Shayeghi and A. Ghasemi [33] introduce WT and improved
LSSVM to predict electricity prices. The simulation results show that this technique increases electricity
price market forecasting accuracy compared to the other classical and heretical methods in scientific
research. Thus, this paper proposes a hybrid model based on WT and LSSVM, which is optimized by
GCS, defined as W-GCS-LSSVM, and the examples demonstrate the effectiveness of the model.

The rest of the paper is organized as follows: Section 2 provides some basic theoretical aspects
of WT, LSSVM and CS and gives a brief description about the W-GCS-LSSVM model; in Section 3,
an experiment study is put forward to prove the efficiency of the proposed model; Section 4 is the
conclusion of this paper.

2. W-GCS-LSSVM

2.1. Wavelet Transform

As an effective method for signal processing, the wavelet transform can be divided into
two classifications: discrete wavelet transform (DWT) and continuous wavelet transform (CWT).
The CWT of a signal X (t) is defined as follows:

CWTψ (a, b) =
(

1/
√
|a|

) ∫ ∞

−∞
x (t)ψ∗ ((t − b) /a) dt (1)

where a and b are the scale and the translation parameters, respectively. The equation applied for the
DWT of a signal is as follows:

DWTx(m, n) = (1/
√

2m)∑
k

xkψ∗((k − n)/2m) (2)

in which m is the scale factor, n = 1, 2...N is the sampling time and N is the number of samples.
As with other WTs, DWT is a kind of WT for which the wavelets are discretely sampled, and

it captures both frequency and location information in temporal resolution; thus, DWT has a key
advantage over Fourier transforms. In this paper, DWT is used in the data filtering stage.

In WT, a signal is similarly broken up into wavelets, which are the approximation component and
detail components, in which the approximation component contains the low-frequency information
(the most important part to give the signal its identity) and the detail components to reveal the flavor
of the signal. Figure 1 shows a wavelet decomposition process. Firstly, the signal S is decomposed
into an approximation component A1 and a detail component D1; then A1 is further decomposed
into another approximation component A2 and a detail component D2 in order to meet higher level
resolution; and so on, until it reaches a suitable number of levels.

Figure 1. Wavelet decomposition.

The original short-term load data are proposed to be decomposed into one approximation
component and multiple detail components. The main fluctuation of the short-term load data and the
details to contain the spikes and stochastic volatilities on different levels are presented in approximation.
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A suitable number of levels can be decided by comparing the similarity between the approximation
and the original signal.

2.2. Least Squares Support Vector Machine

As an extension of the standard support vector machine (SVM), the least squares support vector
machine (LSSVM) is proposed by SuyKens and Vandewalle [34]. By transforming the inequality
constraints of traditional SVM into equality constraints, LSSVM considers the sum squares error loss
function as the loss experience of the training set, which transforms solving the quadratic programming
problems into solving linear equations problems [35]. The training set is set as {(xk, yk)|k = 1, 2, ..., n},
in which xk ∈ Rn and yk ∈ Rn represent the input data and the output data, respectively. φ() is the
nonlinear mapping function, which transfers the samples into a much higher dimensional feature
space φ(xk). Establish the optimal decision function in the high-dimensional feature space:

y(x) = ωT · φ(x) + b (3)

where φ(x) is the mapping function; ω is the weight vector; b is constant.
Using the principle of structural risk minimization, the objective optimization function is shown

as follows:

min
ω,b,e

(ω, e) =
1
2

ωTω +
1
2

γ
n

∑
k=1

e2
k (4)

Its constraint condition is:

yk = ωTφ(xk) + b + ek k = 1, 2, ..., n (5)

In which γ is the penalty coefficient and ek represents regression error. The Lagrange method is
used to solve the optimization problem; the constrained optimization problem can be transformed into
an unconstrained optimization problem; the function in the dual space can be obtained as:

L(ω, b, e, α) = ϕ(ω, e)−
n

∑
k=1

{αk[ω
Tφ(xk) + b + ek − yk]} (6)

where the Lagrange multiplier αk ∈ R. According to the Karush–Kuhn–Tucker (KKT) conditions,
ω, b, ek, αk are taken as partial derivatives and required to be zero.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω =
n
∑

k=1
αkφ(xk)

n
∑

k=1
αk = 0

αk = ekγ

ωTφ(xk) + b + ek − yk = 0

(7)

According to Equation (7), the optimization problem can be transformed into solving a linear
problem, which is shown as follows:

⎡
⎢⎢⎢⎢⎣

0 1 . . . 1
1 K(x1, x1) +

1
γ · · · K(x1, xl)

...
...

...
...

1 K(xl , x1) · · · K(xl , xl) +
1
γ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b
α1
...

αl

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
y1
...

yl

⎤
⎥⎥⎥⎥⎦ (8)

Solve Equation (8) to get α and b, then the LSSVM optimal linear regression function is:

f (x) =
l

∑
k=1

αkK(x, xk) + b (9)
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According to the Mercer condition, K(x, xi) = φ(x)T · φ(xl) is the kernel function. In this paper,
set the radial basis function (RBF) as the kernel function, which is shown in Equation (10):

K(x, xk) = exp(−|x − xk|2
2σ2 ) (10)

In which σ2 is the width of the kernel function.
From the problems of training the LSSVM, kernel parameter σ2 and penalty parameter γ are

generally set based on experience, which leads to the existence of randomness and inaccuracy in the
application of the LSSVM algorithm. To solve the problem, the paper applies GCS to optimize these
two parameters to improve the prediction accuracy of LSSVM.

2.3. Cuckoo Search

The cuckoo search (CS) algorithm is a new optimization metaheuristic algorithm [24], which is on
the basis of the stochastic global search and the obligate brood-parasitic behavior of cuckoos by laying
their eggs in the nests of host birds. In this optimization algorithm, each nest represents a potential
solution. The cuckoo birds choose recently-spawned nests, so that they can be sure that eggs could
hatch first because a cuckoo egg usually hatches earlier than its host bird. In addition, by mimicking
the host chicks, a cuckoo chick can deceive the host bird to grab more food resources. If the host birds
discover that an alien cuckoo egg has been laid (with the probability pa), they either propel the egg or
abandon the nest and completely build a new nest in a new location. New eggs (solutions) laid by the
cuckoo choose the nest by Levy flights around the current best solutions. Additionally, with the Levy
flight behavior, the cuckoo speeds up the local search efficiency.

Yang and Deb simplified the cuckoo parasitic breeding process by the following three idealized rules [24]:

(i) Each cuckoo lays only one egg at a time and randomly searches for a nest in which to lay it.
(ii) An egg of high quality will be considered to survive to the next generation.

(iii) The number of available host nests is fixed, and a host can discover an alien egg with a probability
pa ∈ [0, 1]. In this case, the host bird can either throw the egg away or abandon the nest so as to
build a completely new nest in a new location. The last strategy is approximated by a fraction pa

of the n nests being replaced by new nests (with new random solutions at new locations).

In sum, two search capabilities have been used in cuckoo search: global search (diversification)
and local search (intensification), controlled by a switching/discovery probability (pa). Local search
can be described as follows:

x(t+1)
i = xt

i + αs ⊕ H(pa − ε)⊗ (xt
j − xt

k) (11)

where xt
j and xt

k are different random sequences; H(u) is the Hedwig–Cede function; ε represents
a random number; s means the step lengths. The global search is based on Levy flight, which is shown
as follows:

x(t+1)
i = xt

i + α ⊕ L(s, λ) (12)

where L(s, λ) = λΓ(λ)sin(πλ/2)
π

1
s1+λ , s >> s0, 1 < λ ≤ 3; α is the levy flight step size multiplication

processes with an entry-wise multiplication process. The product ⊕ means entry-wise multiplications,
which is similar to those used in PSO, but the random walk process via Levy flight here is more efficient
in exploring the search space, for its step length is much longer in the long run. It is worth pointing
out that, in the real world, if a cuckoo’s egg is very similar to a host’s eggs, then this cuckoo’s egg is
less likely to be discovered; thus, the fitness should be related to the difference in solutions. Therefore,
it is a good idea to do a random walk in a biased way with some random step size location [36].

The pseudo-code for the CS is performed in Figure 2:
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Figure 2. The pseudo-code of the cuckoo search (CS).

2.4. CS Algorithm Based on Gauss Disturbance

On the basis of the cuckoo search algorithm (CS), the CS algorithm based on the Gauss disturbance
(GCS) is proposed in which we add Gauss perturbation to the position of the nest during the iterative
process. It can increase the vitality of the change of the nest position, thus improving the convergence
speed and search ability effectively.

The basic idea of the cuckoo search algorithm (CS) based on Gauss perturbation is: continue
to conduct the Gauss perturbation of xt

i to make a further search instead of coming directly into the
next iteration when a better set of nest locations xt

i , i = 1, 2, ..., n is gained after t iterations in CS.

Suppose xt
i , i = 1, 2, ..., n is a d-dimensional vector and pt is described as pt = [x(t)1 , x(t)2 , ..., x(t)n ]

T
,

then pt is a d × n matrix. The specific operation of GCS algorithm is adding Gauss perturbation to
pt, namely:

p′t = pt + a ⊕ ε (13)

where ε is a random matrix of the same order to pt, εij ∼ N(0, 1); a is a constant; ⊕ represents the
point-to-point multiplication. The large range of the value of ε easily leads to the large deviation of the
nest location. Therefore, we select a = 1/3 to control the search scope of ε, thus moderately increasing
the vitality of the change of the nest position to make p′t reasonable. Then, compare it with each nest in
pt and update p′′

t with a better set of nest positions. For the next iteration, p′′
t can be represented as

pt = [x(t)1 , x(t)2 , ..., x(t)n ]
T

.

2.5. LSSVM Optimized by the CS Algorithm Based on Gauss Disturbance

The flowchart of the W-GCS-LSSVM model is shown in Figure 3, and the detailed processes are
as follows:

(1) Decompose the load signal into the approximation A1 and the details D1, and select A1 as the
training data and testing data. Normalize the load data.

(2) Determine the value range of σ2 and γ of LSSVM and related parameters of GCS. In this paper,
the number of host nests is 25; the maximum number of iterations is 400; and the search range is
between 0.01 and 100.

(3) Suppose the initial probability parameter pa is 0.25, and set p0
i = [x0

1, x0
2, ..., x0

n]
T as the location

of a random n nest. Each nest corresponds to a set of parameters (σ2, γ). Then, calculate the fitting
degree of each nest position to find the best nest location x0

b and the minimum fitting degree Fmin.
The root mean square error (RMSE) is applied as the fitness function:

RMSE =

√
n
∑

i=1
(yi−ŷi)

2

n (14)
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(4) Reserve the best nest position x0
b and update other nest positions through Levy flights to obtain

a new set of nest positions, then calculate the fitting degree F.
(5) Compare the new nest positions with the preceding generation pi−1 according to the fitting

degree F and update the nest position with a better one; thus, the new set nest position is described as
follows: pt = [xt

1, xt
2, ..., xt

n]
T .

(6) Compare the pa to a random number r. Reserve the nests with lower probability to be
discovered in pt and replace the higher one. Then, calculate the fitting degree of the new nests and
update the nest position pt by comparing it with the precedent fitness degree.

(7) Obtain a new set of nest positions p′t = [xt
1, xt

2, ..., xt
n]

T through Gaussian perturbation of
pt. Then, compare the test value of p′t with pt. Update the nest positions with better test values as

p′′
t = [xt

1, xt
2, ..., xt

n]
T . Here, p′′

t is denoted by pt = [x(t)1 , x(t)2 , ..., x(t)n ]
T

for the next iteration.
(8) Find the best nest position xt

b in Step (7). If the fitting degree F meets the requirements, stop
the algorithm, and then, output the global minimum fitting degree Fmin, as well as the best nest xt

b.
If not, return to Step (4) to continue optimization.

(9) Set the optimal parameters σ2 and γ of LSSVM according to the best nest position xt
b.

Figure 3. Flowchart of the W-CS algorithm based on Gauss disturbance (GCS)-least squares support
vector machine (LSSVM) modeling.
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3. Case Study

3.1. Data Preprocessing

This paper establishes a prediction model of short-term load forecasting and analyzes the
prediction results of the examples. The 24-h short-term load forecasting has been made on the
power system of Yangquan city in China from 1 April to 30 May 2013 (the load data of 23 May are
missing). Figure 4 shows the power load of 1416 samples, ranging from around 730 MW to 950 MW.
From Figure 4, no apparent regularity of power load can be obtained. In this paper, we select 708 load
data from 1 to 30 April as the training set, 660 load data from 30 April to 28 May as the validation set
and 72 load data from 29 to 31 May as the testing set.

Figure 4. Load curve for each hour.

The original load data are decomposed to eliminate the current precipitation value for further
modeling by using WT. The original short-term load data S and their approximation A1, as well as the
detail component D1 decomposed by one-level DWT are shown in Figure 5.

Figure 5. Original load signal and its approximation component and detail component decomposed
by DWT.

From Figure 5, it can be clearly seen that A1, which presents the major fluctuation of the original
short-term load data, shows high similarity to S; meanwhile, the other minor irregularity neglected by
A1 appears in D1. Therefore, A1 is taken as the input data to model for efficiency.
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3.2. Selection of Input

Human activities are always disturbed by many external factors, and then, the power load
is affected. Therefore, some effective features are considered as input features. In this paper, the
input features are discussed as follows. (1) The temperature: Temperature is one of these effective
features. In previous studies [37,38], temperature was considered as an essential input feature and
the forecasting results were accurate enough. The curves of temperature and load data are shown in
Figure 6. Therefore, the temperature is taken into consideration. (2) Weather conditions: The weather
conditions are divided into four types: sunny, cloudy, overcast and rainy. For different weather
conditions, we set different weights: {sunny, cloudy, overcast, rainy} = {0.8, 0.6, 0.4, 0.2}. (3) Day type:
For different day types, the electric power consumption is different. Figure 7 shows the load data
from 28 April to 4 May 2013. From Figure 7, we can see that different day types have different curve
features. Therefore, we assign values to the day type in Table 1.

Figure 6. The curves of the load data and temperature.

Figure 7. Weekly load curve.

Table 1. The values of the day type.

Day Type Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Weights 1 2 3 4 5 6 7
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3.3. Model Performance Evaluation

The work in [39] discusses and compares the measures of the accuracy of univariate time series
forecasts. According to this reference, the relative error (RE), the mean absolute percentage error
(MAPE), the root mean square error (RMSE) and absolute error (AE) are proposed to measure the
forecast accuracy. The equations are as follows:

RE(i) =
ŷi − yi

yi
× 100% (15)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (16)

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (17)

AE =

∣∣∣∣ ŷi − yi
yi

× 100%
∣∣∣∣ (18)

where yi represents the actual value at period i; ŷi is the forecasting value at period i; and n is the
number of forecasting period.

3.4. Analysis of Forecasting Results

At first, the GCS is used to optimize the kernel parameter σ2 and penalty parameter γ in LSSVM.
The parameter settings of GCS is given in Section 2.4. Figure 8 shows the iterations process of GCS.
From the figure we can see that GCS achieves convergence at 263 times. The optimal values of σ2 and
γ are respectively 6.41 and 16.24.
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Figure 8. The iterations process of GCS.

The short-term electric load forecasting results of three days of the W-GCS-LSSVM, GCS-LSSVM,
CS-LSSVM, W-LSSVM (σ2 = 5 and γ = 10) and LSSVM (σ2 = 5 and γ = 10) model are respectively
shown in Tables 2–4. In order to explain the results more clearly, the proposed model and comparison
models are divided into two groups: the first group includes W-GCS-LSSVM, GCS-LSSVM and
CS-LSSVM, and the second group consists of W-GCS-LSSVM, W-LSSVM and LSSVM, which are
respectively shown in Figures 9 and 10. Moreover, Figures 11 and 12 show the comparisons of relative
errors between the proposed model and the others. The RE ranges [−3%, 3%] and [−1%, 1%] are
popularly regarded as a standard to evaluate the performance of a prediction model [40]. Based on
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these tables and figures, we can obtain that: (1) the REs of the short-term load forecasting model
of W-GCS-LSSVM are all in the range of [−3%, 3%]; the maximum RE is 2.4380% at 15:00 (Day 1),
and the minimum RE is −2.901% at 13:00 (Day 1); there exists thirty points that are in the scope
of [−1%, 1%]; (2) the GCS-LSSVM has three predicted points that exceed the RE range [−3%, 3%],
which are 4.5000% at 19:00 (Day 3), 3.6472% at 8:00 (Day 3) and 3.1826% at 16:00 (Day 1), and there
are twenty-nine predicted points in the range of [−1%, 1%]; (3) the CS-LSSVM has four predicted
points that exceed the RE range [−3%, 3%], which are 5.0824% at 19:00 (Day 3), 3.1026% at 22:00
(Day 2), 3.0863% at 16:00 (Day 1) and −3.0154% at 17:00 (Day 2), and there are twenty-one predicted
points in the range of [−1%, 1%]; (4) the W-LSSVM has four predicted points that exceed the RE range
[−3%, 3%], which are respectively 3.4763% at 17:00 (Day 1), 3.2786% at 0:00 (Day 2), 3.0215% at 11:00
(Day 2) and −3.3465% at 13:00 (Day 1), and there are seventeen predicted points in the range of [−1%,
1%]; (5) the single LSSVM has fourteen predicted points that exceed the RE range [−3%, 3%], which
are respectively 4.1518% at 8:00 (Day 1), 3.8082% at 23:00 (Day 1), 3.4807% at 12:00 (Day 3), 3.4028% at
23:00 (Day 2), 3.3572% at 16:00 (Day 3), 3.3091% at 17:00 (Day 1), 3.2287% at 17:00 (Day 3), 3.1997% at
7:00 (Day 1), 3.1958% at 15:00 (Day 3), 3.0350% at 13:00 (Day 3), −3.1991% at 5:00 (Day 1), −3.2325%
at 3:00 (Day 2) and −3.5397% at 14:00 (Day 1), and there are fifteen predicted points in the range of
[−1%, 1%]. From the global view of RE, the forecasting accuracy of W-GCS-LSSVM is better than the
other models, since it has the most predicted points in the ranges [−1%, 1%] and [−3%, 3%]. Moreover,
from Figure 9, the results of GCS-LSSVM are better than those of CS-LSSVM, which can verify that
the Gauss disturbance strategy applied in CS increases the vitality of the change of the nest position,
thus improving the convergence speed and search ability effectively. From Figure 10, the effects of
W-LSSVM are better than single LSSVM, which can illustrate that WT effectively filters the original
data. However, the comparison models also predict more accurately than the proposed model at some
points, for example the RE of W-GCS-LSSVM is 2.901% at 13:00 (Day 1), which is higher than that of
GCS-LSSVM, CS-LSSVM and LSSVM.

Table 2. Actual load and forecasting results in Day 1 (Unit: MV).

Time/h Actual Data W-GCS-LSSVM GCS-LSSVM CS-LSSVM W-LSSVM LSSVM

D1 0:00 819.22 824.19 816.24 824.33 818.62 808.19
D1 1:00 794.17 795.39 791.85 793.01 794.81 792.45
D1 2:00 781 780.58 788.85 789.83 779.74 798.44
D1 3:00 774.72 777.43 786.75 782.96 785.82 778.57
D1 4:00 772.77 778.34 779.29 781.87 782.15 788.59
D1 5:00 782.96 770.16 775.57 773.96 771.73 757.91
D1 6:00 788.06 784.95 784.70 783.63 785.81 784.52
D1 7:00 805.28 815.59 818.14 815.14 813.85 831.05
D1 8:00 814.13 821.34 829.90 830.01 827.35 847.93
D1 9:00 804.14 811.42 795.91 791.91 817.41 809.03

D1 10:00 822.51 813.97 816.38 813.35 816.82 811.04
D1 11:00 831.4 833.61 819.48 820.36 833.63 814.20
D1 12:00 844.94 835.04 837.60 836.71 834.76 830.21
D1 13:00 849.24 824.61 844.59 845.87 820.82 866.12
D1 14:00 804.53 819.21 796.47 796.34 818.67 776.05
D1 15:00 791.98 811.29 810.95 810.87 811.38 810.86
D1 16:00 802.18 818.43 827.71 826.94 818.47 838.65
D1 17:00 816.86 835.09 840.89 840.88 845.26 843.89
D1 18:00 837.08 855.90 857.95 858.30 855.93 857.99
D1 19:00 852.35 853.37 853.06 853.28 853.40 869.15
D1 20:00 856.64 869.55 864.12 865.014 867.90 836.73
D1 21:00 880.66 900.40 903.09 903.91 899.78 902.18
D1 22:00 881 897.83 889.43 895.33 893.81 898.87
D1 23:00 833.55 845.33 848.99 850.65 845.25 865.29

95



Energies 2016, 9, 827

Table 3. Actual load and forecasting results in Day 2 (Unit: MV).

Time/h Actual Data W-GCS-LSSVM GCS-LSSVM CS-LSSVM W-LSSVM LSSVM

D2 0:00 820.46 832.43 843.35 836.78 847.36 838.42
D2 1:00 805.16 812.32 816.74 825.76 814.57 818.54
D2 2:00 798.03 782.32 785.59 807.47 793.76 780.42
D2 3:00 799.06 804.94 812.42 819.58 815.87 773.23
D2 4:00 805.05 813.26 805.56 801.75 808.95 815.53
D2 5:00 805.42 810.52 798.67 792.84 822.46 815.34
D2 6:00 820.92 809.91 814.75 811.86 812.87 829.43
D2 7:00 841.42 832.62 849.53 859.54 821.74 832.58
D2 8:00 824.37 837.73 813.65 804.93 812.56 845.76
D2 9:00 846.60 863.42 868.87 857.75 842.43 832.43

D2 10:00 860.55 864.53 853.67 858.82 868.52 872.54
D2 11:00 867.44 887.29 882.56 875.26 893.65 851.76
D2 12:00 863.01 872.42 846.64 853.57 865.78 867.34
D2 13:00 817.65 809.64 803.56 835.53 826.68 825.86
D2 14:00 818.51 813.93 832.67 826.82 822.56 802.65
D2 15:00 839.02 836.22 852.57 863.98 824.75 823.75
D2 16:00 858.49 873.12 864.67 861.79 882.79 864.25
D2 17:00 879.16 874.64 862.76 852.65 877.53 885.29
D2 18:00 902.11 915.82 894.73 906.64 907.75 924.63
D2 19:00 884.54 903.54 908.47 892.88 908.64 899.43
D2 20:00 917.62 916.37 937.43 927.45 927.65 934.54
D2 21:00 919.17 930.48 912.57 925.75 937.73 902.43
D2 22:00 890.22 901.54 899.73 917.84 906.43 914.35
D2 23:00 843.72 852.45 832.76 826.87 862.58 872.43

Table 4. Actual load and forecasting results in Day 3 (Unit: MV).

Time/h Actual Data W-GCS-LSSVM GCS-LSSVM CS-LSSVM W-LSSVM LSSVM

D3 0:00 799.38 783.43 808.87 802.43 787.86 813.50
D3 1:00 784.48 792.66 789.43 794.62 801.54 806.64
D3 2:00 777.53 784.34 768.59 759.52 781.48 785.74
D3 3:00 778.53 787.23 779.76 783.59 793.78 782.74
D3 4:00 784.36 802.98 779.25 775.24 794.65 805.99
D3 5:00 784.72 796.32 790.31 778.98 804.92 790.22
D3 6:00 799.83 792.23 806.98 812.76 787.77 811.39
D3 7:00 819.81 813.87 815.42 811.46 826.41 819.27
D3 8:00 808.02 812.59 837.49 822.54 802.83 812.74
D3 9:00 829.81 837.31 848.26 844.72 823.75 836.71

D3 10:00 843.49 832.98 849.72 837.28 845.48 850.32
D3 11:00 855.36 862.48 866.74 870.62 867.74 877.88
D3 12:00 850.99 857.55 841.53 836.66 852.65 880.61
D3 13:00 806.26 813.69 805.87 800.43 825.98 830.73
D3 14:00 807.11 819.43 816.76 804.58 814.65 825.97
D3 15:00 827.34 814.87 812.83 836.65 810.54 853.78
D3 16:00 846.53 837.49 849.23 855.92 823.65 874.95
D3 17:00 866.92 874.43 871.59 864.46 863.42 894.91
D3 18:00 889.56 897.78 902.57 909.34 902.67 908.75
D3 19:00 872.23 893.45 911.48 916.56 897.85 877.78
D3 20:00 904.85 916.77 893.56 887.94 924.43 898.62
D3 21:00 906.38 909.49 917.34 922.54 916.49 926.14
D3 22:00 867.61 882.73 892.52 885.91 877.61 853.82
D3 23:00 831.98 841.76 845.46 847.43 835.64 856.50

96



Energies 2016, 9, 827

0 10 20 30 40 50 60 70
Time/ h

740

760

780

800

820

840

860

880

900

920

940

Actual data
W-GCS-LSSVM
GCS-LSSVM
CS-LSSVM

Figure 9. Actual load and forecasting results of W-GCS-LSSVM, GCS-LSSVM and CS-LSSVM.

Figure 10. Actual load and forecasting results of W-GCS-LSSVM, W-LSSVM and LSSVM.
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Figure 11. Relative Errors of W-GCS-LSSVM, GCS-LSSVM and CS-LSSVM.
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Figure 12. Relative Errors of W-GCS-LSSVM, W-LSSVM and LSSVM.

The MAPE and MSE of WT-GCS-LSSVM, GCS-LSSVM, CS-LSSVM, W-LSSVM and LSSVM are
listed in Table 5. From Table 5, we can conclude that the MAPE of the proposed model is 1.2083%,
which is smaller than the MAPE of GCS-LSSVM, CS-LSSVM, W-LSSVM and LSSVM (which are
1.3682%, 1.4790%, 1.4213% and 1.9557%). In addition, the MSE of the proposed model is 131.6950,
which is smaller than the MSE of the comparison models (which are 185.6538, 210.7736, 196.6906 and
336.5224). As a result, the MAPE and MSE of the W-GCS-LSSVM are both smaller than those of the
W-LSSVM, so we can conclude that the parameter optimization to LSSVM is essential in the forecasting
model. Besides, the MAPE and MSE of the WT-GCS-LSSVM are both smaller than GCS-LSSVM,
indicating the pre-processing of load data is useful for a better performance and higher forecasting
accuracy. At the same time, the MAPE and MSE of the GCS-LSSVM and CS-LSSVM are both smaller
than those of LSSVM, and this presents that the optimization results of the GCS and CS are efficient.

Table 5. Model performance evaluations.

Model W-GCS-LSSVM GCS-LSSVM CS-LSSVM W-LSSVM LSSVM

MAPE 1.2083% 1.3682% 1.4790% 1.4213% 1.9557%
MSE 131.6950 185.6538 210.7736 196.6906 336.5224

In addition, the AE of the load forecasting value divided into four parts that is calculated from
Equation (18) is shown in Figure 13. The numbers on the x-axis represent the models appeared
above: 1 represents the W-GCS-LSSVM model, 2 represents the GCS-LSSVM model, 3 represents
the CS-LSSVM model, 4 represents the W-LSSVM model and 5 represents the single LSSVM model.
From Figure 13, we can discover that the AE values of W-GCS-LSSVM are almost lower than those
of the other models. The numbers of points that are less than 1%, 3% and more than 3% and the
corresponding percentage of them in the predicted points are accounted, respectively. The statistical
results are shown in Table 6. It can be seen that there are 30 predicted points whose the AE of the
W-GCS-LSSVM model is less than 1%, which accounts for 41.67% of the total amount; and 42 predicted
points less than 3%, accounting for 58.33% of the total amount. Besides, there are no number predicted
points whose AE is more than 3%, accounting for 0% of the total amount. It can be indicated that the
prediction performance of the proposed model is superior, and its accuracy is higher. Therefore, the
W-GCS-LSSVM model is suitable for short-term load forecasting.
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Figure 13. Absolute error distribution curve for different models, (a) the AE value from 1 to 18 sample
point; (b) the AE value from 19 to 36 sample point; (c) the AE value from 37 to 54 sample point; (d) the
AE value from 55 to 72 sample point.

Table 6. Accuracy estimation of the prediction point for the test set.

Prediction
Model

<1% >1% and <3% ≥3%

Number Percentage Number Percentage Number Percentage

W-GCS-LSSVM 30 41.67% 42 58.33% 0 0%
GCS-LSSVM 29 40.28% 40 55.56% 3 4.17%
CS-LSSVM 21 29.17% 47 65.28% 4 5.56%
W-LSSVM 25 34.72% 43 59.72% 4 5.56%

LSSVM 15 20.83% 43 59.72% 14 19.44%

4. Conclusions

To strengthen the stability and economy of the grid and avoid waste in grid scheduling, it is
essential to improve the forecasting accuracy. Because the short-term power load is always interfered
with by various external factors with characteristics like high volatility and instability, the high accuracy
of load forecasting should be taken into consideration. Based on the features of load data and the
randomness of the LSSVM parameter setting, we propose the model based on wavelet transform
and least squares support vector machine optimized by improved cuckoo search. To validate the
proposed model, four other comparison models (GCS-LSSVM, CS-LSSVM, W-LSSVM and LSSVM)
are employed to compare the forecasting results. Example computation results show that the relative
errors of the W-GCS-LSSVM model are all in the range of [−3%, 3%], and the MAPE and MSE are both
smaller than the others. In addition, the advantage of CS is that it does not have many parameters for
tuning, so it can be applied widely in parameter optimization. However, seasonality and long-term
trend of the proposed model are not tested and verified in this paper, which may become the limitation
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of this method, and authors will study it in the future. Above all, the hybrid model can be effectively
used in the short-term load forecasting on the power system.
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Abstract: The power industry is the main battlefield of CO2 emission reduction, which plays an
important role in the implementation and development of the low carbon economy. The forecasting
of electricity demand can provide a scientific basis for the country to formulate a power industry
development strategy and further promote the sustained, healthy and rapid development of the
national economy. Under the goal of low-carbon economy, medium and long term electricity demand
forecasting will have very important practical significance. In this paper, a new hybrid electricity
demand model framework is characterized as follows: firstly, integration of grey relation degree
(GRD) with induced ordered weighted harmonic averaging operator (IOWHA) to propose a new
weight determination method of hybrid forecasting model on basis of forecasting accuracy as induced
variables is presented; secondly, utilization of the proposed weight determination method to construct
the optimal hybrid forecasting model based on extreme learning machine (ELM) forecasting model
and multiple regression (MR) model; thirdly, three scenarios in line with the level of realization of
various carbon emission targets and dynamic simulation of effect of low-carbon economy on future
electricity demand are discussed. The resulting findings show that, the proposed model outperformed
and concentrated some monomial forecasting models, especially in boosting the overall instability
dramatically. In addition, the development of a low-carbon economy will increase the demand for
electricity, and have an impact on the adjustment of the electricity demand structure.

Keywords: electricity demand forecasting; multiple regression (MR); extreme learning machine
(ELM); induced ordered weighted harmonic averaging operator (IOWHA); grey relation degree
(GRD); carbon emission

1. Introduction

As one of the leading pioneers of national economy advancement, the electricity sector shoulders
the responsibility of ensuring a stable electricity consumption and economic expansion rapidly at home
and abroad [1]. Relevant to the characteristics of the electric power commodity, such as instantaneous
production, transport and consumption as well as non-storability, future power demand prediction
seems imperative and inevitably required. Accordingly, such sort of prediction is beneficial to the
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entire electricity development planning process by allowing scientifically and timely adjustment of
power demand variation conditions towards sustainability [2].

With the increasing attention to climate change and greenhouse gas (GHGs) emission abatement
worldwide, China has initially attempted to extend a low-carbon economy pattern, namely in the
pursuit of adoption of technical progress and institutional innovation to transform energy utilization
patterns, enhance energy efficiency and optimize the energy sector structure [3]. Among GHGs
forms, CO2 is on the top of list, accounting for 77% of global warming potential [4]. In China, CO2

emissions generated by fossil energy consumption not only account for approximately 80% of total
global greenhouse emissions, but also account for more than two-thirds of the responsibility for
adverse greenhouse effect [5,6]. This adverse effect is representative and deteriorates seriously China’
electricity sector. Regarding this, China has taken considerable countermeasures to address low-carbon
issues, like climate deterioration, late environmental-protection starting of power sectors and so forth.
In 2007, “Energy Saving Generation Dispatching” was published to decrease the carbon emission
coefficient mainly caused by the thermal power structure [7]. Since 2013, much focus been placed on
the emission-reducing effects of renewable energy sources, like zero release terms, and the National
Development and Reform Commission (NDRC) in China has issued the so-called “12th five-year plan
of renewable energy development” to further raise the proportion of renewable energy sources in
the energy consumption mix to 15% [8] by 2020. As the largest emission-cutting participant in the
clean development mechanism (CDM), China has obtained large emissions reductions from zealous
participation and introduction of low-carbon technology and funds, whose checked emission reduction
(CERs) reached 50% of the global share [9]. Generally, electricity demand forecasting research from the
perspective of low-carbon economy proves much practical significance and practical value.

Currently, in the existing macroeconomic background, both domestic and international,
numerous countries have selected appropriate variables and models to forecast electricity demand,
such as Italy [10], Spain [11], USA [12], Brazil [13], Japan [14], Singapore [15], Thailand [16]
and Indonesia [17]. In general, electricity demand forecasting methods can be decomposed into
two aspects, namely traditional forecasting models and modern intelligent forecasting models.
When it comes to traditional forecasting models, time series [18–20], regression analysis [21],
Gray forecasting [22], fuzzy forecasting [23], index decomposition method [24] and so forth, are
implemented widely. Pappas et al. [19,20] applied auto regressive moving average (ARMA) model to
model the electricity demand loads in Greece, respectively using the Akaike corrected information
criterion (AICC) and multi-model partitioning algorithm (MMPA). Hussain et al. [18] integrated
Holt-winter with autoregressive integrated moving average (ARIMA) models on time series secondary
data covering 1980–2011 in Pakistan, to predict overall and segmental electricity consumption. García
and Carcedo [21] present an alternative analysis of electricity demand, on the basis of a simple growth
rate decomposition scheme that allows vital factors behind this evolution to be identified. Similarly,
Torrini et al. [22] employed the extended properties of fuzzy logic methodology to forecast the long-run
electricity consumption in Brazil; while Zhao et al. [23] recommended an improved GM (1,1) model
using Inner Mongolia as object. Further, multiple linear regression analysis and a quadratic regression
analysis were performed deeply by Fumo et al. [24] on hourly and daily data from a research house.
Inevitably, these traditional models have been comparatively proved to display a simple range of
application and low-accuracy prediction thorough validated tools and simplified calculation. As for
modern intelligent forecasting models, Günay [25] proposed artificial neural networks to forecast
annual gross electricity demand using predicted values of social-economic indicators and climatic
conditions. Son and Kim [26] applied support vector regression with particle swarm optimization
algorithms to forecast the residential sector's electricity demand. Modern intelligent forecasting models
have demonstrated excellent performance, including simplified regression course, transformation
inference realization from training samples to predicted samples as well as avoidance towards
the traditional process from induction to deduction [27]. However, they are easily trapped in
over-fitting, local optima and so on. As a new type of single-hidden layer feedforward neural network
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primarily proposed by Huang et al. [28], extreme learning machine (ELM) embodies the features of
adaptive ability, autonomic learning and optimal computation needed for unstructured and imprecise
disciplines. Only by designing the suitable hidden layer nodes before training, bestowing value on
input weight and partial hidden layer randomly in process, as well as simultaneously fulfilling at once
without iterative, a sole optimum solution will be obtained.

Various forecasting models vary greatly from the perspective of distinct points to reflect economic
variation tendencies, thus strengthening the weakness of lower accuracy using a single forecasting
model. It was Bates and Granger [29] who firstly advocated combination forecasting approaches
in 1969, and since then a considerable volume of studies have been conducted in many fields by
domestic and overseas scholars [30–32]. The essence of combined forecasting is to solve the weighted
average of single forecasting models. However, existing traditional combination forecasting models
have fallen into a paralogism, namely different single forecasting models with distinguished weight
coefficients, while constant combination models have unchanged weight coefficient [33]; in reality,
the weight coefficient of a single forecasting model is supposed to be a function of time. Problems
posed by traditional thought, are comprehensively conquered by the establishment of IOWHA
operator-based forecasting models [34] in a concept of distinguished weight coefficients with the
same single forecasting model over time [34,35]. Furthermore, the forecasting accuracy of the IOWHA
operator shows an overdependence on the reciprocal error sum of squares which similarly is influenced
by outliers to magnify the errors. Regarding this, the relevant properties of the grey relation degree
(GRD) were devised and integrated with the IOWHA operator such as robust index combination,
including dominance combination forecasting, non-pessimum forecasting and redundancy degree [36].

Hence, based on previous literature, a new framework of combination forecasting electricity
demand model is characterized as follows: firstly, integration of GRD with the IOWHA operator
to propose a new weight determination method of combination forecasting model on the basis of
forecasting accuracy as induced variables; secondly, utilization of the proposed weight determination
method to construct the optimal combination forecasting model based on the ELM forecasting model
and multiple regression model; thirdly, three scenarios in line with the realization level of various
low-carbon economy targets and dynamic simulation of the effects of low-carbon economy on future
electricity demand. The remainder of this paper is organized as follows: Section 2 discusses low-carbon
target scenario setting. In Section 3, a new combined GRD-IOWHA operator forecasting model is
proposed. Sections 4 and 5 discuss the combination forecasting model and model results of electricity
demand in China, respectively. Overall conclusions are summarized in Section 6.

2. Low-Carbon Economy Simulation Scenarios

2.1. Variation Tendency Analysis of China’s Electricity Demand

By 2014, electricity consumption in China approached approximately 5626.31 million MW·h,
which accounted for a quarter of world’s total electricity consumption and ranked the first. Thus,
electricity demand of China is representative and outperformed in terms of both applicability
and feasibility.

As Figure 1 depicts (the data is sourced from the China Statistical Yearbook), in 2000–2014,
the annual electricity demand of China enjoyed stable and relatively fast growth, with an average
annual growth rate of 10.82%; During that period, the steepest increasing emerged in 2003, with a
growth rate of 16.53%. From 2000 to 2007, electricity demand still maintained a high upward trend at
an average growth rate of 13.54%; meanwhile, power demand in 2008–2009 slowed down, especially
for export-oriented areas (such as East China and Guangdong at merely 5.59% and 7.21%) due to
several constraint factors, including the crunch in domestic credit, Renminbi (RMB) appreciation,
changes in international market demand, adjusted import-export policy, and regulatory resources,
climate change, etc.
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Along with the comprehensive implementation of “12th Five-Year Program”, China has been
accelerating the shifting in economic growth model to achieve sound and fast economic growth,
together with attempts to support strategic emerging industries and upgrade traditional industries.
Subsequently, the continuously adjusted consumption structure has curbed the excessive expansion of
the heavy energy-consuming industry (including chemical industry, building materials, black metal
smelting and smelting non-ferrous metal) and suppress China’s electricity demand at a lower level.
Typically in 2014, China shows a year-on-year electricity demand growth of 3.8% together with a
year-on-year growth rate drop 5.12%. Under the existence of multiple uncertainties, electricity demand
prediction is worthy of further exploration for prospective programming.

Figure 1. Annual electricity consumption of China.

2.2. Scenario Mode

With the objective to clarify the effect of energy-efficient and emission-cutting constraints on
future electricity demand, three scenarios are set here to dynamically simulate future electricity
demand forecasting:

(1) Baseline scenario mode. Under this mode, electricity demand growth is stimulated by economic
advancement and booming population in the direction of a scheduled economic growth rate of a
moderately prosperous society and population progress the same as usual.

(2) Low-carbon scenario mode. Low-carbon mode is aimed at fulfilling emission-reducing
responsibilities promised during international climate talks and simultaneously promoting
economic advancement by technical progress, industrial restructuring and so forth. Excluding
the impact factors of economic development and population growth, electricity demand is also
restrained by carbon emissions quotas.

(3) Intensified low-carbon scenario mode. Along with the thorough implementation of
energy-conserved and emission-reducing policies and economic development pattern
transformation towards three-low issues (low consumption, low emissions and low pollution),
a low-carbon economy is well achieved by converted energy utilization patterns, enhanced energy
efficiency, adjusted energy structures and so on. In this intensified mode, electricity demand is
largely influenced by economic development, population growth, policy constraint and so forth.

2.3. Scenario Parameter Setting

In views of factor diversity and variability, there is a necessity to elaborate future development
trend of electricity demand impact factors especially in a mid-and long term. Numerous factors are
involved in China’s electricity demand variation, such as economic development level, electricity price,
population growth and policy constraint [24–32]. While considering the data availability and typicality,
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this paper merely took into account of gross domestic product (GDP), booming of the population and
energy policy constraints (specifically explained in Section 2.3.3), described in Table 1.

Table 1. Historical data of scenario parameter.

Year
Electricity Demand

(105 MW·h)
GDP

(1012 Yuan)
Population
(108 People)

CO2 Emission Per
GDP (104 Tons
Standard Coal)

Energy Consumption
Per GDP (104 Tons

Standard Coal)

2000 13,472.4 9.98 12.67 0.97 1.49
2001 14,633.5 11.03 12.76 0.92 1.43
2002 16,331.5 12.10 12.85 0.91 1.42
2003 19,031.6 13.66 12.92 0.95 1.45
2004 21,971.4 16.07 13.00 0.94 1.44
2005 24,940.3 18.59 13.08 0.93 1.42
2006 28,588.0 21.77 13.14 0.86 1.32
2007 32,711.8 26.80 13.21 0.76 1.16
2008 34,541.4 31.68 13.28 0.65 1.01
2009 37,032.2 34.56 13.35 0.63 0.97
2010 41,934.5 40.89 13.41 0.56 0.89
2011 47,000.9 48.41 13.47 0.52 0.81
2012 49,762.6 53.41 13.54 0.48 0.75
2013 54,203.4 58.80 13.61 0.45 0.71
2014 56,263.1 63.61 13.68 0.42 0.67

2.3.1. Economic Development Level and Population

(1) GDP. Here GDP is chosen to represent economic development level. According to deepening
target released in the 18th national congress of the communist party of China [37], GDP will double by
2020 with an annual growth rate at 7% roughly. Table 2 and Figure 2 illustrated GDP growth by 2020.

Table 2. Scenario parameter setting.

Year
GDP

(1012 Yuan)
Population
(108 People)

CO2 Emission Per GDP
(104 Tons Standard Coal)

Energy Consumption Per GDP
(104 Tons Standard Coal)

2015 68.06 13.75 0.40 0.65
2016 72.83 13.82 0.39 0.63
2017 77.92 13.88 0.37 0.61
2018 83.38 13.95 0.36 0.59
2019 89.22 14.02 0.34 0.57
2020 95.46 14.09 0.33 0.55

Data source: NBS (National Bureau of Standards) and National Development and Reform Commission Energy
Research Institute.

Figure 2. Scenario parameter setting.
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(2) Population growth. Based on constraint conditions, population forecasting variables mainly
adopted direct influential parameters, like birth rate, death rate and mobility ratio. Empirical model
can be interpreted as:

Nt = Nt0 ek(t−t0) (1)

where Nt means gross population at t; is the population base at t = t0; k denotes natural population
growth rate; e is the base of natural logarithms (e = 2.718). In line with the stable natural population
growth rate over 2009–2014, we assume k = 4.92‰. Besides, population base is set as gross population
in 2014, namely =13.68.

2.3.2. Electricity Price

Due to inexhaustive electric power system reformation and an immature electricity market,
electricity price is determined by governmental macroeconomic regulation rather than an open market.
Thus electricity price is failed to be predicted and ignored.

2.3.3. Energy Policy

Policy on energy conservation and emission reduction have energetically affected China’s
electricity demand variation and provided a more explicit target. Here CO2 emissions per GDP
and energy consumption per GDP are picked as explained variables:

Energy consumption per GDP = Gross primary energy consumption ÷ GDP

CO2 emissions of primary energy at i =Primary energy consumption at i

×CO2 emissions factor

where primary energy includes coal, oil, natural gas and nuclear power, hydropower, wind power and
so on; According to the National Development and Reform Commission Energy Research Institute
in 2003, CO2 emission factors of coal, oil, natural gas, nuclear power, hydropower and wind power
are separately 0.7476, 0.582 5, 0.443 5, 0, 0 and 0 [38]. From the requirements of the 13th Five Year
Plan [39], up to 2020, CO2 emissions per GDP and energy consumption per GDP are reduced by 18%
and 15% respectively. This study chooses the average value of 2015, namely CO2 emissions per GDP at
3.6% and energy consumption per GDP at 3%, and then calculates their values in 2020, as Table 2 and
Figure 2.

3. Combination Forecasting Model of Electricity Demand Using GRD-IOWHA Operator

3.1. Regression Analysis

3.1.1. Multiple Linear Regression

Multiple linear regression, aiming at investigating the linear relationship between dependent
variable and multiple independent variables, is written as below [40]:

Y = β0 + β1X1 + β2X2 + β3X3 + · · ·+ β jXj + · · ·+ βkXk + ε (2)

where k is the quantity of explanatory variable; βj (j = 1,2, . . . ,k) means regression coefficient; ε denotes
the random error after eliminating the effect of independent variables on Y. Stochastic equations can
be expressed as Equation (3). Besides, if X is column full rank, ordinary least squares estimate could
be adopted to Equation (3), boiled down to Equation (4):

Y = Xβ + ε (3)

β̂ =
(
X′X

)−1 X′Y (4)
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3.1.2. Ridge Regression

Serious multicollinearity may lead to the failure of regression models, thus providing invalid
results. Ridge regression has been exclusively used to eliminate multicollinearity by abandoning
unbiasedness of least square method [41]. For the linear regression model in Equation (3), regressed
parameter β can be transformed as [39]:

β̂(k) =
(
X′X + kI

)−1 X′Y (5)

where k > 0 is ridge parameter. Varies greatly from various k, thus deeming as estimator clan.
Estimator clan can be drawn by a portrait of along the k.

3.2. Extreme Learning Machine (ELM)

Different from a traditional feed forward neural network, ELM uses a non-iterative hidden layer,
random selection of input weight and node and successive computed-output weight. ELM is aimed at
achieving minimum training error. Excitation function G, having hidden layer N is interpreted as [28]:

fN =
N
∑

i=1
βiG

(
ai, bi, xj

)
= tj j = 1, 2, · · · , N (6)

where ai = [a1, a2, · · · , an]
T is the weight vector of hidden node i; βi = [β1, β2, · · · , βn]

T means the
weight vector of input node and output node; bi is polarization of node i; denotes hidden node quantity.
For simplicity, Equation (6) is transformed as:

Hβ = T (7)

H
(
a1, · · · , aN , b1, · · · , bN , x1, · · · , xN

)
=

⎡
⎢⎣

G (a1, b1, x1) · · · G
(
aN , bN , x1

)
...

. . .
...

G (a1, b1, xN) · · · G
(
aN , bN , xN

)
⎤
⎥⎦

N·N

(8)

⎧⎨
⎩

β =
[

βT
1 , · · · , βT

N

]
N·m

T =
[
tT

1 , · · · , tT
N
]

N·m
(9)

where H means output matrix of hidden layer. Output weight can be obtained from least square
solution Equation (11) of Equation (10):

||Hβ − T|| = ||HH+T − T|| = min
β

||Hβ − T|| (10)

β = H+T (11)

where H+ is Moore-Penros generalized inverse matrix of .

3.3. IOWHA Operator

Supposing 〈u1, a1〉 , 〈u2, a2〉 , · · · , 〈un, an〉 as two-dimensional array, W = (w1, w2, · · · , wn)
T

means a weighted vector related to Hw, and
n
∑

i=1
wi = 1. By definition, Hw points to induced ordered

weighted harmonic averaging (IOWHA) operator [35] as Equation (12):

Hw (〈u1, a1〉 , 〈u2, a2〉 , · · · , 〈un, an〉) = 1

/
n

∑
i=1

wi
au − index (i)

(12)

where ui is the induced value of ai; u − index(i) denotes the subscript of ui. Weight coefficient wi has
nothing to do with position and size of ai, but position of its induced value.
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3.4. IOWHA Operator-Based Combination Forecasting Model

Among existence of m kinds of single forecasting models, we assume xit as the forecasting
value of i at t and suppose l1,l2, . . . ,lm as the weighted coefficient of single forecasting models in
combination forecasting:

ait =

{
1 − |(xt − xit) /xt| , |(xt − xit) /xt| < 1

0, |(xt − xit) /xt| ≥ 1
, i = 1, 2, · · · , m, t = 1, 2, · · · , N (13)

where ait means the forecasting accuracy of model i at t; i = 1,2, . . . ,m; t = 1,2, . . . ,N.
Taken forecasting accuracy ait as induced value of xit, assumed 〈a1t, x1t〉 , 〈a2t, x2t〉 , · · · , 〈amt, xmt〉

as a two-dimensional array of m and arranged forecasting accuracy a1t,a2t, . . . ,amt, then Equation (14)
is summarized, termed as IOWHA operator-based combination forecasting value by a1t,a2t, . . . ,amt:

x̂t = H (〈a1t, x1t〉 , 〈a2t, x2t〉 , · · · , 〈amt, xmt〉) = 1

/
m

∑
i=1

li
xa−index(it)

, t = 1, 2, · · · , N (14)

In average combination forecasting, time series is processed by selecting reciprocal error for
convenience. S, reciprocal error sum squares of IOWHA operator-based combination forecasting,
is written in Equation (15). Abridged weighting coefficient vector of single forecasting methods as,
then we can transform Equation (15) into Equation (16) [5]:

S =
N
∑

t=1

(
1
xt
− 1

x̂t

)2

=
N
∑

t=1

(
m
∑

i=1
li
(

1
xt
− 1

xa−index(it)

))2
=

m
∑

i=1

m
∑

j=1
lilj

(
N
∑

t=1
ea−index(it)ea−index(jt)

)
(15)

where ea−index(it) =
1
xt
− 1

xa−index(it)
.

minS (L) =
m
∑

i=1

m
∑

j=1
lilj

(
N
∑

i=1
ea−index(it)ea−index(jt)

)

s.t.

⎧⎨
⎩

m
∑

i=1
li = 1

li ≥ 0, i = 1, 2, · · · , m

(16)

3.5. GRD-IOWHA Operator-Based Combination Forecasting Model

IOWHA operator-based combination forecasting model, usually exploits reciprocal error sum of
squares to reflect forecasting accuracy. While, reciprocal error sum of squares is easily influenced by
outliers thus leading to error amplification. Regarding this, grey relation degree (GRD) is introduced
to maintain robust forecasting.

Both sides of Equation (14) are handled by reciprocal like Equation (17):

1
x̂
=

m

∑
i=1

li
xa−index(it)

, t = 1, 2, · · · , N (17)

Seen from Equation (17):

min
1≤i≤m

1
xit

= min
1≤i≤m

1
xa−index(it)

≤ 1
x̂
≤ max

1≤i≤m

1
xa−index(it)

= max
1≤i≤m

1
xit

, t = 1, 2, · · · , N (18)

et is assumed as the reciprocal error between combination forecasting value and actual value at t,
therefore Equation (19) appears. We can call Equation (20) GRD of reciprocal series between single
forecasting method forecasting values and real values of i. Likely, Equation (21) is named the GRD of
reciprocal series between IOWHA operator-based forecasting value and real values of i.
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et =
1
xt

− 1
x̂t

=
m

∑
i=1

li
1
xt

−
m

∑
i=1

li
1

xa−index(it)
=

m

∑
i=1

li

(
1
xt

− 1
xa−index(it)

)
=

m

∑
i=1

liea−index(it) (19)

γi =
1
N

N

∑
t=1

min
1≤i≤m

min
1≤t≤N

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|
|eit|+ ρ max

1≤i≤m
max

1≤t≤N
|eit| (20)

γ =
1
N

N

∑
t=1

min
1≤i≤m

min
1≤t≤N

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|
|et|+ ρ max

1≤i≤m
max

1≤t≤N
|eit| (21)

where eit = 1/xt − 1/xit means the reciprocal errors between forecasting values and real values of i
and ρ ∈ (0, 1) is the resolution coefficient, usually at 0.5.

Based on Equation (19), GRD of reciprocal series between combination forecasting values and
actual values, i.e., γ can be rewritten as below:

γ =
1
N

N

∑
t=1

min
1≤i≤m

min
1≤t≤N

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|∣∣∣∣ m
∑

i=1
li
(

1
xt
− 1

xa−index(it)

)∣∣∣∣+ ρ max
1≤i≤m

max
1≤t≤N

|eit|
(22)

where γ is the function of weighting coefficient vector of single forecasting model, called γ(L).
A higher γ, the more effective combination forecasting model will be. Hence, IOWHA operator-based
combination forecasting model is summarized as:

maxγ (L) =
1
N

N
∑

t=1

min
1≤i≤m

min
1≤t≤N

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|∣∣∣∣∣
m
∑

i=1
li

(
1
xt

− 1
xa−index(it)

)∣∣∣∣∣+ ρ max
1≤i≤m

max
1≤t≤N

|eit|

s.t.

⎧⎪⎨
⎪⎩

m
∑

i=1
li = 1

li ≥ 0, i = 1, 2, · · · , m

(23)

Plugging into Equation (24) to perform GRD-IOWHA operator-based combination forecasting:

x̂t = H (〈a1t, x1t〉 , 〈a2t, x2t〉 , · · · , 〈amt, xmt〉) = 1/
m

∑
i=1

l∗i
xa−index(it)

, t = N + 1, N + 2, · · · , (24)

where during interval [N+1,N+2, . . . ,], the size of forecasting accuracy series a1t,a2t,. . . ,amt,
is determined by the distance to average fitting accuracy. In other words, the forecasting accuracy in
interval N + k is substituted by average fitting accuracy 1/k · ∑N

t=N−k+1 ait of step k.
Regression analysis is termed as RA, while grey relation degree and modified IOWHA operator is

short for GRD-IOWHA operator. Thus far, based on modified GRD-IOWHA operator, combination
forecasting modeling is constituted by multiple regression as well as ELM, and completely fulfilled.
Figure 3 depicts the operational process concretely, where the left demonstrates two single forecasting
modeling and the right explains combination forecasting modeling.
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Figure 3. GRD-IOWHA operator-based combination forecasting modeling process.

4. Electricity Demand Forecasting in China

This section took full advantage of the above-proposed combination forecasting model to predict
China’s electricity demand under three types of low-carbon scenarios. Among that, for MR forecasting,
we use data in 2000–2008 to simulate and data in 2009–2014 to test. The same occurs for ELM,
where training sample is derived from data in 2000–2008, and test sample is from 2009–2014.

4.1. Baseline Scenario Forecasting

4.1.1. Forecasting of RA and ELM

Let GDP be x1 and population be x2, linear regression model is boiled down to the following:

y = 427.31x1 + 21559.93x2 − 264862.86

Deduced from calculation, modified fitting degree R2 = 0.997. Moreover, in the significance
level of α = 0.05, statistics F = 2406.802 > F0.05(2,12) = 2.81 and each statistics T > t0.025(12) = 2.179,
respectively, which means that regressed model has passed significance testing and embodies a better
imitative effect. Tables 3 and 4 separately discussed test process using data from 2009–2014 and single
forecasting covering data from 2015–2020.

Referencing the achievements of Huang et al. [28], this paper adopted the Matlab software to
compile the ELM toolkit, together with the “Sigmoid function” to activate neurons in the hidden layer.
The number of neurons of the hidden layer is set at 9. As for ELM forecasting in Table 3, data covering
2000–2008 is plugged in for training and data in 2009–2014 to test the well-trained model; Then,
single forecasting of China’s electricity demand in 2015–2020 is carried out, as shown in Table 4.
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Table 3. Single test result in baseline scenario.

Year
Electricity Demand

(105 MW·h)

RA ELM

Value (105 MW·h)
Forecasting

Accuracy
Value (105 MW·h)

Forecasting
Accuracy

2009 37,032.2 37,730.04 0.9812 36,680.39 0.9905
2010 41,934.5 41,728.51 0.9951 42,509.00 0.9863
2011 47,000.9 46,235.47 0.9837 47,442.71 0.9906
2012 49,762.6 49,881.22 0.9976 48,473.75 0.9741
2013 54,203.4 53,693.62 0.9906 53,276.52 0.9829
2014 56,263.1 57,258.17 0.9823 55,908.64 0.9937

Table 4. Single forecasting result in baseline scenario.

Year RA Forecasting (105 MW·h) ELM Forecasting (105 MW·h)

2015 60,670.01 58,713.27
2016 64,215.07 63,592.23
2017 67,687.05 66,181.66
2018 71,527.12 70,297.18
2019 75,530.34 74,664.38
2020 79,708.15 78,938.27

4.1.2. GRD-IOWHA Forecasting

Two single forecasting results are exploited to construct forecasting accuracy and relevant in
sample interval, t = 1,2, . . . ,6. The IOWHA operator-based forecasting value is displayed as below:

x̂1 = H(〈a11, x11〉 , 〈a21, x21〉) = 1/(l1/36680.39 + l2/37730.04)

x̂2 = H(〈a12, x12〉 , 〈a22, x22〉) = 1/(l1/41728.51 + l2/42509.00)

x̂3 = H(〈a13, x13〉 , 〈a23, x23〉) = 1/(l1/47442.71 + l2/46235.47)

x̂4 = H(〈a14, x14〉 , 〈a24, x24〉) = 1/(l1/49881.22 + l2/48473.75)

x̂5 = H(〈a15, x15〉 , 〈a25, x25〉) = 1/(l1/53693.62 + l2/53276.52)

x̂6 = H(〈a16, x16〉 , 〈a26, x26〉) = 1/(l1/55908.64 + l2/57258.17)

where l1 and l2 show weighting coefficients of two single forecasting models in combination forecasting.
With its direct substitution into Equation (23), the most effective weight coefficient of combination

forecasting model is expressed as below with ρ = 0.5.

l∗1 = 0.7325, l∗2 = 0.2675

Taking the average accuracy of former 6 as each single forecasting accuracy, we can obtain the
combination forecasting results of China’s electricity demand in baseline scenario covering 2015–2020,
shown in Table 5.
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Table 5. Combination forecasting results in baseline scenario of 2015–2020.

Year GRD-IOWHA Forecasting (105 MW·h)

2015 60,133.92
2016 64,047.27
2017 67,277.69
2018 71,193.91
2019 75,296.73
2020 79,500.74

4.2. Low-Carbon Scenario Forecasting

4.2.1. Forecasting of RA and ELM

In order to eliminate the multicollinearity of selected variables, the low-carbon scenario and
intensified scenario necessarily employed ridge regression to achieve efficient fitting. Similarly, let GDP
be x1, population be x2 and CO2 emissions per GDP be x3. Besides, take the logarithm term to remove
variable heteroscedasticity. SPSS 20.0 software was used to conduct the ridge regression shown in
Figures 4 and 5.

Figure 4. Ridge trace of variables.

Figure 5. Determination coefficient and K value.
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From the ridge trace, when K is nearly close to 0.2, all parameters tend to be stable; Even when
K exceeds 0.2, the determination coefficient presents a stable decline without drastic fluctuation.
Setting K = 0.2 and R2 = 0.9709, the ridge regression model is fitted as follows:

ln y = 0.28ln x1 + 7.86ln x2 − 0.27ln x3 − 10.98

In the significance level of α = 0.05, statistics F = 156.913 > F0.05(3,12) = 2.61 and each statistics
T > t0.05(12) = 2.179 all demonstrated that regressed model had passed through significance testing
with a well-fitting level, as shown in Tables 6 and 7. Results of ELM method forecasting are shown
there also.

Table 6. Single test result in low-carbon scenario.

Year
Electricity Demand

(105 MW·h)

RA ELM

Value
(105 MW·h)

Forecasting
Accuracy

Value
(105 MW·h)

Forecasting
Accuracy

2009 37,032.2 36,540.79 0.9867 37,683.97 0.9824
2010 41,934.5 40,878.39 0.9748 42,408.36 0.9887
2011 47,000.9 45,390.34 0.9657 47,461.51 0.9902
2012 49,762.6 49,709.48 0.9989 50,265.20 0.9899
2013 54,203.4 53,914.26 0.9947 55,531.38 0.9755
2014 56,263.1 58,759.43 0.9556 56,893.25 0.9888

Table 7. Single forecasting result in low-carbon scenario.

Year RA Forecasting (105 MW·h) ELM Forecasting (105 MW·h)

2015 62,954.49 59,313.86
2016 67,435.32 64,549.11
2017 71,839.90 68,457.73
2018 76,984.74 72,365.06
2019 82,518.03 79,509.00
2020 88,473.96 85,959.43

4.2.2. GRD-IOWHA Operator-Based Combination Forecasting

Iterative steps like above-mentioned, GRD-IOWHA operator-based combination forecasting is
summarized as below:

x̂1 = H(〈a11, x11〉 , 〈a21, x21〉) = 1/(l1/36540.79 + l2/37683.97)

x̂2 = H(〈a12, x12〉 , 〈a22, x22〉) = 1/(l1/42408.36 + l2/40878.39)

x̂3 = H(〈a13, x13〉 , 〈a23, x23〉) = 1/(l1/47461.51 + l2/45390.34)

x̂4 = H(〈a14, x14〉 , 〈a24, x24〉) = 1/(l1/49709.48 + l2/50265.20)

x̂5 = H(〈a15, x15〉 , 〈a25, x25〉) = 1/(l1/53914.26 + l2/55531.38)

x̂6 = H(〈a16, x16〉 , 〈a26, x26〉) = 1/(l1/56893.25 + l2/58759.43)

With utilization of the optimal tool in the Matlab software, the combination forecasting model
shows the most powerful coefficient, are shown as below. Future electricity demand in China is
predicted in Table 8.

l∗1 = 0.6981, l∗2 = 0.3019
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Table 8. Combination forecasting result in low-carbon scenario.

Year GRD-IOWHA Forecasting (105 MW·h)

2015 60,367.81
2016 65,394.08
2017 69,444.76
2018 73,700.24
2019 80,394.04
2020 86,703.37

4.3. Forecasting in Reinforced Low-Carbon Scenario

4.3.1. Forecasting of RA and ELM

Likewise, let GDP be x1, population be x2 and CO2 emissions per GDP be x3, energy consumption
per GDP be x4. Taking variables in logarithm terms, the ridge trace and K variation are displayed in
Figures 6 and 7.

Figure 6. Ridge trace of variables.

Figure 7. Determined coefficient and K value.

Based on ridge trace, when K is nearly close to 0.2, all parameters tend to be stable; Even when
K exceeds 0.2, the determined coefficient presents a stable declination without drastic fluctuation.
Setting K = 0.2 and R2 = 0.9623, the ridge regression model is fitted as follows:
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ln y = 0.25ln x1 + 7.29ln x2 − 0.18ln x3 − 0.22ln x4 − 9.36

In the significance level of α = 0.05, statistics F = 90.430 > F0.05(3,12) = 2.61 and each statistics
T > t0.05(12) = 2.179 all demonstrated that the regressed model had passed through significance testing
with a well-fitting level, as shown in Tables 9 and 10. Also, like the previous scenario’s parameter
setting, test results and forecasting results of ELM method are shown here.

Table 9. Single test result in reinforced low-carbon scenario.

Year
Electricity Demand

(105 MW·h)

RA ELM

Value
(105 MW·h)

Forecasting
Accuracy

Value
(105 MW·h)

Forecasting
Accuracy

2009 37,032.2 36,565.66 0.9874 36,295.26 0.9801
2010 41,934.5 41,044.15 0.9788 42,639.00 0.9832
2011 47,000.9 45,822.55 0.9749 47,673.01 0.9857
2012 49,762.6 50,249.02 0.9902 50,270.18 0.9898
2013 54,203.4 54,581.74 0.9930 54,837.58 0.9883
2014 56,263.1 59,514.14 0.9422 57,697.81 0.9745

Table 10. Single forecasting result in reinforced low-carbon scenario.

Year RA forecasting (105 MW·h) ELM forecasting (105 MW·h)

2015 63,665.11 64,261.28
2016 68,092.73 68,235.02
2017 72,466.81 73,265.20
2018 77,553.93 77,386.74
2019 83,027.15 82,835.97
2020 88,921.55 88,110.93

4.3.2. GRD-IOWHA Operator-Based Combination Forecasting

Similar forecasting process to above-mentioned section, IOWHA operator-based combination
forecasting results display as below:

x̂1 = H(〈a11, x11〉 , 〈a21, x21〉) = 1/(l1/36565.66 + l2/36295.26)

x̂2 = H(〈a12, x12〉 , 〈a22, x22〉) = 1/(l1/42639.00 + l2/41044.15)

x̂3 = H(〈a13, x13〉 , 〈a23, x23〉) = 1/(l1/47673.01 + l2/45822.55)

x̂4 = H(〈a14, x14〉 , 〈a24, x24〉) = 1/(l1/50249.02 + l2/50270.18)

x̂5 = H(〈a15, x15〉 , 〈a25, x25〉) = 1/(l1/54581.74 + l2/54837.58)

x̂6 = H(〈a16, x16〉 , 〈a26, x26〉) = 1/(l1/57697.81 + l2/59514.14)

With utilization of optimal took it in Matlab software, combination forecasting model shows the
most powerful coefficient, shown as below. Future electricity demand in China is predicted in Table 11.

l∗1 = 0.6459, l∗2 = 0.3541
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Table 11. Combination forecasting result in low-carbon scenario.

Year GRD-IOWHA Forecasting (105 MW·h)

2015 64,048.9
2016 68,184.57
2017 72,980.49
2018 77,445.86
2019 82,903.57
2020 88,396.27

5. Results and Discussions

Deduced from China’s electricity demand forecasting results under various scenarios,
further discussion is concluded from four perspectives.

(1) GRD-IOWHA operator-based combination forecasting model outperformed each single
forecasting model notably. Figure 8 demonstrates the forecasting accuracy comparison of single
forecasting models covering testing data in 2009–2014, where Scenario 1 means baseline scenario,
Scenario 2 represents the low-carbon scenario and Scenario 3 in the intensified low-carbon scenario.
Single forecasting models provide various forecasting accuracy at various moments. More specifically,
in the baseline scenario, the ELM model shows a superior forecasting accuracy of electricity demand
than the RA model in 2009, 2011 and 2014; while the RA model is much better in 2010, 2012 and 2013.
In the low-carbon scenario, the RA model provides better forecasting accuracy than the ELM model,
namely 2009, 2012 and 2013; while the ELM model predicts electricity demand overwhelmingly in
other years (2010, 2011 and 2014). In the intensified low-carbon scenario, the RA model provides higher
forecasting accuracy in 2009, 2012 and 2013 and lower forecasting accuracy in 2010, 2011 and 2014.
Generally, the proposed GRD-IOWHA operator-based combination forecasting model concentrates
the advantages of various single forecasting models, namely higher weight coefficient in higher single
forecasting accuracy and vice versa. According to Equations (20) and (21), Table 12 represents grey
relation degree comparison, from 2009 to 2014, in various scenarios between single forecasting model
and GRD-IOWHA operator-based combination forecasting model. Findings show that grey relation
degree of three scenarios in GRD-IOWHA operator-based combination forecasting model is better than
that of single forecasting models. Thus, the proposed combination model belongs to the dominated
forecasting combination model [36].

Figure 8. Forecasting accuracy comparison of single forecasting models in various scenario.
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Table 12. Grey relation degree comparison in various scenarios.

Scene 1

Model RA ELM GRD-IOWHA

Grey correlation value 0.6661 0.5945 0.9693

Scene 2

Model RA ELM GRD-IOWHA

Grey correlation value 0.5804 0.6078 0.8532

Scene 3

Model RA ELM GRD-IOWHA

Grey correlation value 0.7113 0.7503 0.9077

(2) The proposed GRD-IOWHA operator-based combination forecasting model predicts accurately
and more truly than the basic IOWHA operator-based combination forecasting model [35] and the
traditional combination forecasting (TCF) model [33], namely each single forecasting model with
unchanged weight coefficient. In order to compare typical combination forecasting models effectively,
this section compares the measured IOWHA operator-based combination forecasting model and
traditional combination models shown in Table 13.

Table 13. Comparison of model forecasting result.

Year
Scene 1 Scene 2 Scene 3

IOWHA TCF IOWHA TCF IOWHA TCF

2009 37,197.81 37,268.19 37,103.58 37,386.74 36,429.97 36,297.96
2010 42,115.14 42,071.93 41,629.32 42,010.57 41,826.38 42,623.05
2011 46,831.31 46,766.66 46,402.83 46,923.01 46,729.47 47,654.51
2012 49,167.41 49,261.93 49,985.8 50,120.71 50,259.6 50,269.97
2013 53,484.26 53,510.1 54,710.87 55,110.93 54,709.36 54,835.02
2014 56,575.36 56,664.38 57,811.28 57,378.46 58,591.9 57,715.97

Unit: 105 MW·h.

According to the evaluating principle of forecasting effect, the following dimensions are
selected as the evaluation index system, including RE, SSE, MSE, MAE, MAPE, MSPE. Concretely,
only RE is used to reflect single forecasting model effect. Figure 9 illustrates electricity demand
forecasting in 2009–2014 using GRD-IOWHA operator-based combination forecasting model,
IOWHA operator-based combination forecasting model and traditional combination forecasting
model separately:

Relative error : RE = (x̂t − xt) /xt

Error of sum square : SSE =
N

∑
t=1

(xt − x̂t)
2

Mean square error : MSE =
1
N

√√√√ N

∑
t=1

(xt − x̂t)
2

Mean absolute error : MAE =
1
N

N

∑
t=1

|xt − x̂t|

Mean Absolute Percentage Error : MAPE =
1
N

N

∑
t=1

|(xt − x̂t) /xt|

where xt denotes the actual demand value, presents the predicted value.
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Compared with the other forecasting models, the proposed GRD-IOWHA operator-based
combination forecasting model is rather close to actual values. From Figure 10, under the distinguished
scenario, the relative error value of the proposed GRD-IOWHA operator-based combination forecasting
model is in much lower interval and fluctuates slightly, followed by IOWHA operator-based
combination forecasting model or traditional combination forecasting model, worst in two single
forecasting model. In a word, proposed GRD-IOWHA operator-based combination forecasting model
perform more superiority in decreasing forecasting error fluctuation and risk of tech-economic decision
making. Furthermore, Figure 11 demonstrates the overall forecasting evaluation result of various
forecasting model, especially being satisfactory and optimal condition in index SSE, MSE, MAE and
MAPE. Yet exceptional situations still exist, like lower SSE and MSE in a traditional forecasting
model than the GRD-IOWHA operator-based combination forecasting model under intensified
low-carbon scenario due to larger forecasting error caused by single forecasting models. In spite
of this, the proposed combination forecasting model outperformed both in effectiveness and feasibility
as a whole.

Figure 9. Electricity demand forecasting of various model in 2009–2014.

Figure 10. Relative error forecasting of various model in 2009–2014.
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Figure 11. Evaluation index of various forecasting model.

(3) Low-carbon economy advancement contributes to augment electricity demand in China.
Known from Figure 12, electricity demand under energy restriction, i.e., low-carbon scenario and
intensified low-carbon scenario, is greater than that under unrestricted energy use. Hence, China will
strive to cut down the utilization of high-emission releasing resources, like coal, oil, natural gas and
so on as well as explore the substituent effect of electricity. Under energy restriction circumstances,
electricity demand in an unchanged energy efficiency scenario is higher than that of continually
improved energy efficiency, thus emission-cutting emphasis lies in energy structure optimization
and electricity demand increasing. However, if China initially promises a lower energy efficiency
(energy consumption per GDP), like 15% declining by 2020 rather in 2015, pressure on China’s
electricity demand will be cut down tremendously.

Figure 12. Electricity demand forecasting trend of various model in 2015–2020.

(4) A low-carbon economy causes a structural variation of electricity demand. Increasing
electricity demand is mainly involved in renewable clean energy, like water power, nuclear power
and wind power. With respect to a low-carbon scenario, i.e., unchanged energy efficiency, incremental
72.0263 million MW·h electricity demand is also chiefly centralized in renewable clean energy electricity
demand compared with the baseline scenario. Despite the continuous effort on electricity structure
adjustment and decreasing the ratio of coal power, the coal power ratio will not fall sharply for a
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time behind the reason of over-dependence on electricity and abundant coal resources. Illustrated
in baseline scenario of Figure 13, power generation is presumed to be 70% coal power ratio and 30%
in water power, nuclear power and wind power, which accounts for 238.5022 million MW·h in 2020.
Due to the constrained energy policy, under the unchanged energy efficiency situation, electricity
demand from clean energy approaches nearly 2601.1011 million MW·h by 2020, which accounts
for 32.72% of total electricity demand, while the coal power ratio decreased to 67.28%. Therefore,
the low-carbon economy has affected both electricity demand and its structure variation.
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Figure 13. Constitution and proportion of China’s annual power generation.

6. Conclusions

In this study, a new framework of combination forecasting electricity demand model is
characterized as follows: (1) Integration of a grey relation degree with an induced ordered weighted
harmonic averaging operator to propose a new weight determination method of combination
forecasting model on basis of forecasting accuracy as induced variables; (2) utilization of the proposed
weight determination method to construct the optimal combination forecasting model based on an
extreme learning machine forecasting model and multiple regression model; (3) three scenarios in line
with realization level of various low-carbon economy targets and dynamic simulation of the effects of
a low-carbon economy on future electricity demand.

Resultant findings are obtained and clarified in detail: (1) the grey relation degree of reciprocal
series between proposed combination forecasting value and actual values is better than the single
forecasting models studied in this paper and corresponds to an optimal combination forecasting model;
(2) the proposed combination forecasting model outperformed and concentrated the advantages of
some monomial forecasting models, especially in boosting the overall instability dramatically and
providing reliable decision basis; (3) the energetic progress of a low-carbon economy causes an increase
in electricity demand and the relevant structure adjustment of electricity demand, especially in the
increasing demand of clean energy. Above all, this study is aimed at providing a reference for future
power planning issues in China.
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Abstract: Accurate forecasting of carbon price is important and fundamental for anticipating the
changing trends of the energy market, and, thus, to provide a valid reference for establishing power
industry policy. However, carbon price forecasting is complicated owing to the nonlinear and
non-stationary characteristics of carbon prices. In this paper, a combined forecasting model based on
variational mode decomposition (VMD) and spiking neural networks (SNNs) is proposed. An original
carbon price series is firstly decomposed into a series of relatively stable components through VMD to
simplify the interference and coupling across characteristic information of different scales in the data.
Then, a SNN forecasting model is built for each component, and the partial autocorrelation function
(PACF) is used to determine the input variables for each SNN model. The final forecasting result for
the original carbon price can be obtained by aggregating the forecasting results of all the components.
Actual InterContinental Exchange (ICE) carbon price data is used for simulation, and comprehensive
evaluation criteria are proposed for quantitative error evaluation. Simulation results and analysis
suggest that the proposed VMD-SNN forecasting model outperforms conventional models in terms
of forecasting accuracy and reliability.

Keywords: carbon price forecasting; variational mode decomposition (VMD); spiking neural
network (SNN); partial autocorrelation function (PACF); comprehensive evaluation criteria

1. Introduction

Global warming induced by fossil fuel consumption has become a formidable challenge faced
by all countries, which has spurred the development of socialized economies. Correspondingly, a
worldwide consensus has emerged to foster a clean, high efficiency and low-carbon energy system.
The Kyoto Protocol agreement officially came into force in 2005, marking the beginning of greenhouse
gas reduction by leveraging a market mechanism [1]. Henceforth, the carbon trading market has
expanded worldwide. As one of the primary sources of carbon emissions, the power industry has a
dramatic potential for carbon emissions reduction and obvious scope for optimization. In the past two
decades, numerous studies have been conducted regarding power system planning and dispatching
under market circumstances that take into account carbon trading and, in particular, future carbon
prices [2–4]. Therefore, the development of a reliable carbon price forecasting and analysis approach is
the key to anticipating the changing trends of the energy market, and, thus, to provide a valid reference
for establishing power industry policy.

Recently, carbon price forecasting has attracted considerable worldwide attention. Generally
speaking, existing models and methods that have been adopted can be mainly divided into two
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categories: single models [5–7] and combined models [8–10]. Single model forecasting mainly uses
generalized autoregressive conditional heteroskedasticity (GARCH)-type models or artificial neural
networks (ANNs) to analyze and simulate a carbon price time series, and then employs the developed
model to forecast the carbon price. For example, various types of GARCH models, including GARCH,
EGARCH and TGARCH, have been proposed [5] to forecast and analyze the volatility of European
Union allowance (EUA) spot and futures. The forecasting effect of single variable and multivariable
GARCH models in the energy market has also been evaluated [6]. These types of GARCH models
are statistical models that are not able to capture the nonlinear characteristics of the carbon price time
series effectively, which affects the forecasting accuracy. Compared with statistical models, ANNs
possess strong self-learning and adaptive capabilities, and can perform complex nonlinear mapping [7].
Nevertheless, ANNs face substantial challenges in dealing with large historical data sets, which also
limits forecasting accuracy. Spiking neural networks (SNNs) are third generation neural networks that
use the temporal encoding scheme to transmit information and perform calculations [11], and SNNs
have been shown to more realistically reflect the behavior of actual biological nervous systems [12].
Furthermore, SNNs have demonstrated the capability of simulating the function of any feedforward
sigmoidal neural network and to approximate arbitrary continuous function [13,14]. As a result, SNNs
have exhibited stronger computing capabilities and higher forecasting accuracies than any other type
of neural networks, and have been successfully applied to engineering and forecasting fields [15–19].

On the other hand, carbon price series have strong nonlinear and non-stationary
characteristics [20,21]. As such, no perfect single model can be applied for accurate forecasting.
Therefore, combined forecasting models have integrated empirical mode decomposition (EMD), which
is an adaptive signal decomposition algorithm [22–24], and conventional forecasting methods to
forecast and analyze the carbon price. As an example of a combined model, a carbon price series was
decomposed into a series of relatively stable components through EMD prior to analysis [8], which
was found to forecast the underlying characteristics of the carbon price. The same method has been
adopted to simplify the interference and coupling across the characteristic information of different
scales in the carbon price data [9,10]. Thus, a forecasting model can better infer the characteristics
of each component so as to improve the forecasting accuracy. However, EMD is a recursive mode
decomposition algorithm, and is limited by mode aliasing and an inability to correctly separate
components of similar frequencies [25,26]. These limitations may affect the final forecasting accuracy of
the carbon price. To alleviate the deficiencies of the EMD algorithm, Dragomiretskiy et al. [25] proposed
a new adaptive signal decomposition estimation methodology in 2014, denoted as variational mode
decomposition (VMD). Compared with the recursive screening mode of EMD, the VMD algorithm
transforms the signal decomposition into a non-recursive and variational model based on a solid
theoretical foundation. Thus, VMD demonstrates better noise robustness and more precise component
separation [26]. At present, this method has been successfully applied to solve various problems such
as international stock market analysis, classification of power quality disturbances and rub-impact
fault detection of a rotor system [27–29].

Considering the outstanding advantages of VMD in nonlinear and non-stationary signal
decomposition and the superior performance of SNNs in forecasting, as discussed above, a carbon
price forecasting model based on VMD and SNNs is proposed in this paper. First, an original carbon
price series is decomposed using the VMD algorithm to capture its complicated intrinsic linear and
nonlinear characteristics more accurately. Next, the partial autocorrelation function (PACF) [30,31]
and the resulting partial autocorrelation graph are employed as statistical tools to determine the input
variables of each component. SNNs are then used to build forecasting models for each component
to improve the forecasting accuracy. Finally, comprehensive error evaluation criteria comprised of
two types of evaluation indexes, including level and phase errors [32], are proposed. The criteria can
provide a comprehensive evaluation of the average level and distribution of the forecasting error.

The remainder of this paper is organized as follows: Section 2 describes the processes of the VMD
technique and the SNN model. Section 3 elaborates on the combined VMD-SNN forecasting model,
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which serves as the kernel of this paper. Section 4 presents the comprehensive evaluation criteria and
analysis of the simulation results is presented to verify the feasibility and forecasting performance
of the proposed model based on the established evaluation criteria. Finally, Section 5 presents the
conclusions of the work.

2. Methodologies

2.1. Variational Mode Decomposition (VMD)

VMD transfers the signal decomposition process into a process of solving a variational model
to obtain the sub-signals (modes). It is superior to EMD in getting rid of the cycling screening signal
processing method. Assuming that each mode has a limited bandwidth with a unique center frequency
in the frequency domain, the signal can be adaptively decomposed by obtaining the optimal solution
of the constrained variational model. The center frequency and bandwidth of each mode is constantly
updated during the variational model solution process. Each mode is demodulated to its corresponding
baseband, and, ultimately, all the modes and their corresponding center frequencies are extracted [25].
In the following, the process of the VMD algorithm is described briefly, and the concrete procedures
involved are illustrated in Figure 1.

1 1 1ˆˆInitialize ,k ku w and

0n

1k

?k K1k k

1n n

ˆUpdate for all 0, according to Eq.(4)ku

Update , according to Eq.(5)k

Dual ascent for all 0, update  according to Eq.(6)k

convergeMeet nce

Figure 1. The concrete procedures of variational mode decomposition (VMD).

In the VMD algorithm, the intrinsic mode functions (IMFs) are redefined as amplitude modulated
and frequency modulated (AM-FM) signals [25], which are given as a function of time t:

ukptq “ Akptqcospφkptqq (1)

where φkptq is the phase, Akptq and ωkptq are the envelope and instantaneous frequency of the kth
mode ukptq, respectively, and ωkptq = φ1kptq. Both Akptq and ωkptq vary much more slowly than φkptq,
which implies that, on a sufficiently long interval rt ´ δ, t ` δs (δ « 2π{φ1kptq), ukptq can be considered
to be a pure harmonic signal with amplitude Akptq and instantaneous frequency ωkptq.
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Assume the original signal f is decomposed into K discrete modes, such that the variational
problem can be described as a constrained variational problem. The problem is targeted at minimizing
the sum of the estimated bandwidth for each mode by finding K mode functions ukptq. Then the
constrained variational formulation is given as follows:

min
tuku,tωku

#ř
k

||Btrpσptq ` j
πt

q ˚ ukptqse´jωkt||
2

2

+

s. t.
ř
k

uk “ f

,//.
//- (2)

Here tuku “ tu1, . . . uKu and tωku “ tω1, . . .ωKu are the set of all modes and their center
frequencies, respectively. σptq is the Dirac distribution, j2 “ ´ 1 and ˚ denotes convolution.

The above constrained variational problem can be addressed by introducing a quadratic penalty
factor α and Lagrange multipliers λptq. Therefore, the augmented Lagrangian (L) is formulated as:

Lptuku , tωku , λq “ α
ř
k

||Btrpσptq ` j
πt

q ˚ ukptqse´jωkt||
2

2
` || f ptq ´ ř

k
ukptq||2

2
`

B
λptq, f ptq ´ ř

k
ukptq

F
(3)

where ||‚||p denotes the usual vector �p norm (p “ 2). The optimization methodology denoted as
the alternate direction method of multipliers (ADMM) is then used to obtain the saddle point of the
augmented Lagrangian by updating un`1

k , ωn`1
k and λn`1

k alternately. The convergence criterion of the

algorithm is
ř
k

p||ûn`1
k ´ ûn

k ||
2
2{||ûn

k ||2
2q ă ε, where ε is the convergence tolerance and ˆ denotes the

Fuorier transforms. The final updated equations are given as follows [25]:

ûn`1
k pωq “

f̂ pωq ´ ř
iăk

ûn`1
i pωq ´ ř

iąk
ûn

i pωq ` λ̂
npωq

2

1 ` 2αpω ´ ωn
k q2 (4)

ωn`1
k “

ş8
0 ω

ˇ̌̌
ûn`1

k pωq
ˇ̌̌2

dωş8
0

ˇ̌̌
ûn`1

k pωq
ˇ̌̌2

dω
(5)

λ̂
n`1pωq “ λ̂

npωq ` τr f̂ pωq ´
ÿ

k

ûn`1
k pωqs (6)

where n is the iteration number and τ is the time step of the dual ascent.

2.2. Spiking Neural Networks (SNNs)

The architecture of a SNN consists of a feedforward network of spiking neurons with multiple
delayed synaptic terminals. A spiking neuron is the basic unit of a SNN, and common models of
spiking neurons are the leaky integrate-and-fire model (LIFM), Hodgkin-Huxley model (HHM) and
spike response model (SRM) [12]. The standard three-layer feedforward SNN based on SRM is adopted
in this paper. Figure 2 illustrates the connectivity between an arbitrary spiking neuron h and the ith
neuron in successive layers.

From Figure 2, we can see that the SNN differs from conventional back propagation (BP)
neural network in that an individual connection consists of a fixed number of m synaptic terminals.
Each terminal serves as a sub-connection associated with an adjustable delay dk and weight Whi

k.
A temporal encoding scheme is adopted in SNN, which takes the firing time of a spiking neuron
as input and output signals directly. The characteristics of multiple delayed synaptic terminals and
the time encoding scheme provide SNNs with not only a powerful computing capability and good
applicability, but also time series tractability in particular.
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Figure 2. The connectivity between neuron h and the ith neuron with m delayed synaptic terminals.

Each neuron fires at most a single spike during the simulation interval, and only fires when an
internal state variable, denoted as the membrane potential (MP), reaches the preset neuronal excitation
threshold θ (in Figure 2). Meanwhile, the neuron firing the spike generates an output signal, denoted
as the post synaptic potential (PSP), which is defined by the spike-response function εptq:

εptq “
$’&
’%

t
τs

e
1´ t

τs t ą 0

0 t ď 0

(7)

Here, τs is the membrane potential decay time constant that determines the rise and decay time
of the PSP. Neuron h receives a series of spikes, and its firing time is th. Therefore, the actual firing
time ta

i of neuron i is calculated as follows:

Yk
h ptq “ εpt ´ th ´ dkq (8)

Xiptq “
ÿ
h

mÿ
k“1

Wk
hiY

k
h ptq (9)

ta
i : Xipta

i q “ θ and
dXiptq

dt

ˇ̌̌
ˇ
t“ta

i

ą 0 (10)

Here, Yk
h ptq is the unweight contribution of a single synaptic terminal to MP, and Xiptq is the MP of

neuron i. dk and Wk
hi denote the delay and weight associated with k-th synaptic terminal, respectively.

The training algorithm employed for the SNN is spike propagation (SpikeProp), which is a
supervised learning algorithm proposed by Bohte et al. [14]. In the SpikeProp algorithm, the weight of
the network is adjusted to minimize the training error E for the entire network until it is within an
established tolerance. A detailed description of the SpikeProp algorithm for a three-layer feedforward
SNN is as follows:

(1) Calculate E for the entire network according to the difference between the actual spike firing time
ta

j and the desired spike firing time td
j of all neurons j in output layer J, respectively:

E “ 1
2

ÿ
jPJ

´
ta

j ´ td
j

¯2
(11)
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(2) Calculate δj for all neurons j in output layer J:

δj “
ptd

j ´ ta
j q

ř
iPΓj

ř
k

Wk
ij

BYk
i pta

j q
Bta

j

(12)

where Γj represents the set of all presynaptic neurons for neuron j.
(3) Calculate δi for all neurons i in hidden layer I:

δi “

ř
jPΓi

δj

#ř
k

Wk
ij

BYk
i pta

j q
Bta

i

+

ř
hPΓi

ř
k

Wk
hi

BYk
h pta

i q
Bta

i

(13)

where Γi and Γi are the set of all postsynaptic neurons and presynaptic neurons for neuron
i, respectively.

(4) Adjust the weights ΔWk
ij and ΔWk

hi for output layer J and hidden layer I, respectively, according
to the network learning rate η as follows.

ΔWk
ij “ ´ηδjYk

i

´
ta
j

¯
(14)

ΔWk
hi “ ´ηδiYk

h

´
ta
j

¯
(15)

3. The Proposed VMD-SNN Forecasting Model

To capture the complicated intrinsic nonlinear and non-stationary characteristics of carbon price
data, by using the VMD algorithm, an original carbon price series is firstly decomposed into a series
of IMF components with higher regularity than the original data. For the superior performance
of SNNs in forecasting, the SNN forecasting model for each stationary IMF component is built by
considering the characteristics of that component. To reflect the relationship between the input(s)
and output(s) of SNNs, the PACF and the resulting partial autocorrelation graph, which is simply
the plots of the PACF against the lag length, are used to determine the input variables for the SNN
forecasting model corresponding to each IMF [30,31]. Finally, the forecasting results of all the IMF
components are aggregated to produce a combined forecasting result for the original carbon price.
A detailed description regarding the determination of input variables is given in Section 3.1, and the
overall forecasting procedures are discussed in Section 3.2.

3.1. Determination of Input Variables by PACF

Assuming that xt is the output variable, if the partial autocorrelation at lag k is outside of the
95% confidence interval r´1.96{?

N, 1.96{?
Ns, xt´ k is one of the input variables. The previous value

xt´1 is taken as the input variable if all the PACF coefficients are within the 95% confidence interval.
The PACF is described as follows: for a carbon price series tx1, x2, ¨ ¨ ¨ xnu, the covariance at lag k
(if k = 0, it is the variance), denoted by γk, is estimated as:

γ̂k “ 1
n

n´kÿ
t“1

pxt ´ xqpxt`k ´ xq, k “ 1, 2, . . . , M (16)
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where x is the mean of the carbon price series and M = n/4 is the maximum lag. Then, the
autocorrelation function (ACF) at lag k, denoted by ρk, can be estimated as:

ρ̂k “ γ̂k
γ̂0

(17)

Based on the covariance and the resulting ACF, the calculation for the PACF at lag k, for
k “ 1, 2, . . . , M, denoted by αkk, is presented as follows:

α̂11 “ ρ̂1

α̂k`1,k`1 “ ρ̂k`1 ´ řk
j“1 ρ̂k`1´jα̂kj

1 ´ řk
j“1 ρ̂jα̂kj

α̂k`1,j “ α̂kj ´ α̂k`1,k`1 ¨ α̂k,k´j`1, j “ 1, 2, . . . , k

,////.
////-

(18)

3.2. Overall Procedures of the VMD-SNN Forecasting Model

The overall procedures of the proposed VMD-SNN forecasting model are illustrated in Figure 3,
which are generally comprised of the following main steps:

Step 1. Apply the VMD algorithm to decompose the original carbon price series into K IMF
components (sub-series).

Step 2. For each IMF component, with the output variable xt, the input variables are determined
through observing the partial autocorrelogram via PACF.

Step 3. A three-layer SNN forecasting model is built for each IMF component. Perform SNN training
using the training sample prior to importing the test sample into the well-trained SNN model.
The output is then the forecasting value of the current IMF component.

Step 4. Aggregate the forecasting results of all the IMF components obtained by the previous steps
to produce a combined forecasting result for the original carbon price series.

Step 5. The comprehensive error evaluation criteria proposed in this paper are applied to evaluate
and analyze the final forecasting result.

1IMF

IMFi

IMFK

1PACF

PACFi

PACFK

1SNN

1Output

Output i

OutputK

SNNK

SNNi

SNNi SNN i Output i

Figure 3. The overall procedures of the VMD-SNN forecasting model.
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4. Simulation and Results Analysis

4.1. Data Description

The InterContinental Exchange (ICE) is the largest carbon emissions futures exchange in Europe.
The EUA traded in the European Union emissions trading system (EU ETS) has also been leading
the world carbon price, and is becoming a representative index of the general carbon price [21].
Therefore, forecasting the price of EUA carbon emissions futures matured in December, 2012 (DEC12)
from the ICE can effectively reflect the overall state of the EU ETS at that time. The carbon emissions
price data used in this paper are daily transaction data available from the ICE website [33].

Owing to its availability and continuity, the DEC12 carbon price series obtained from
13 June 2008 to 17 December 2012, excluding public holidays, with 1149 total data points, was chosen
as experimental samples in this study. For modeling convenience, the data obtained from 13 June 2008
to 22 May 2012, excluding public holidays, with a total of 1000 data points were used as training sets,
and the remaining 149 data points were used as testing sets to verify the effectiveness of the VMD-SNN
forecasting model based on the comprehensive error evaluation criteria.

In addition, to improve the generalization capability and forecasting accuracy of the network, all
the original carbon series and decomposed sub-series must be normalized prior to training and testing
as follows:

p˚ “ p ´ pmin

pmax ´ pmin
(19)

Here, p˚ represents the sample data after normalization and p is the original sample data. pmax and
pmin are the maximum and minimum values of p, respectively.

4.2. Comprehensive Evaluation Criteria

To evaluate the forecasting performance of the proposed VMD-SNN carbon price forecasting
model comprehensively and effectively from different perspectives, this paper puts forward
comprehensive evaluation criteria taking into account both level and phase errors. The level errors
mainly describe the differences between actual and forecasting results in the vertical direction over
a given time period. It can be often summed up as smaller or larger. The phase errors mainly
describe the differences between actual and forecasting results along the horizontal timeline, which,
broadly speaking reflect the leading or lagging between forecasting and actual carbon price series
peaks/valleys.

4.2.1. Evaluation Indexes

Assuming that yi and
"

y i are the actual and forecasting carbon price values at time i, respectively,
and N is the number of data. The root mean square error (RMSE), calculated according to Equation (20),
measures the degree of forecasting error dispersion, and the mean absolute error (MAE), calculated
according to Equation (21), measures the average amplitude of error. Combining the two indexes
can provide a macroscopic evaluation of the level error characteristics of the forecasting carbon price
series. Next, the maximum absolute percentage error (MaxAPE), calculated according to Equation (22),
concentrates on the maximal absolute percentage error, which reflects the forecasting risk of choosing
a particular model:

RMSE “
gffe 1

N

Nÿ
i“1

pyi ´ "

y iq
2
, i “ 1, 2, ¨ ¨ ¨ , N (20)

MAE “ 1
N

Nÿ
i“1

ˇ̌̌
yi ´ "

y i

ˇ̌̌
, i “ 1, 2, ¨ ¨ ¨ , N (21)
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MaxAPE “ max
i

˜ˇ̌̌
ˇ̌ yi ´ "

y i
yi

ˇ̌̌
ˇ̌
¸

ˆ 100, i “ 1, 2, ¨ ¨ ¨ , N (22)

The correlation coefficient denoted by Icc, which primarily measures the level and phase
errors directly, can describe the correlation between the actual and forecasting carbon price series.
The forecasting accuracy increases with increasing Icc, and is defined as follows:

Icc “ covpYa , Yf q
?

DYa

b
DYf

(23)

where Ya and Yf are the actual and forecasting carbon price series, respectively, and D represents
the variance.

4.2.2. Histogram of the Error Frequency Distribution

This index is an improvement of the mean error (ME), which substitutes the original averaging
process for the form of frequency distribution histogram. This index reserves the function of ME to
measure whether the system is unbiased, in addition, it gives distribution of the error bands in the
forecasting result. The degree of concentration for the error frequency distribution relative to zero can
be regarded as a basis for comparing different forecasting models.

4.3. Parameter Setting

To demonstrate the effectiveness of the proposed VMD-SNN forecasting model, the single BP
and SNN models are employed as benchmarks for comparison. In addition, the combined EMD-SNN
and VMD-BP models are also used to forecast the carbon price for the purpose of comparison.
The forecasting simulations are performed on a MATLAB® (R2014a) platform, and the simulation
parameters are set as follows.

The number of modes K should be firstly determined when applying the VMD algorithm to
decompose the original DEC12 carbon price series. The primary distinguishing characteristic of a
mode is its center frequency. Thus, for simplicity, we determined K on the basis of the method’s
capability to distinguish center frequencies. For DEC12, modes with similar center frequencies are
observed to appear when K reaches 6, and we argue that this corresponds with the onset of greedy
decomposition. Consequently, K is set to 6. The penalty factor α and the tolerance of convergence
criterion ε are set to default values of 2000 and 10´ 6, respectively. Moreover, the noise with low level
in the original data can be filtered by adjusting the update parameter τ ą 0, and the value is set to
0.3 in this paper. For the EMD algorithm, the thresholds and tolerance level of the stop criterion are
determined as rθ1, θ1,αs “ “

0.05, 0.5, 5 ˆ 10´4‰
.

In the SNN model, the number of synaptic terminals m is set to 16, and the corresponding synapses
delay dk is selected as an incremental integer in the interval [1,16]. The decay time constant τs is set to
6 ms, and the excitation threshold θ for all neurons is set as 1 mV. For both SNN and BP, the maximum
iterations and learning rate are set as 1000 and 0.0005, respectively.

4.4. Results and Analysis

The forecasting simulations are conducted according to the procedures discussed in Section 3.2.
Firstly, the proposed VMD algorithm and the widely used EMD algorithm are adopted to
decompose the DEC12 carbon price series, and the decomposition results are illustrated in Figures 4
and 5 respectively.
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Figure 4. The decomposition of DEC12 using the VMD algorithm.
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Figure 5. The decomposition of DEC12 using the EMD algorithm.

Based on Figures 4 and 5 it can be observed that the original DEC12 series is decomposed into six
IMFs via VMD and nine IMFs plus one residue via EMD. It is noteworthy that, although the carbon
price is positive, the values of IMFs may be negative.

The VMD algorithm extracts the significant volatility and trend sub-series at equivalent scales in
the original DEC12. In addition, relative to the IMFs derived from VMD, the values of IMF1–IMF3
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derived from EMD oscillate with very high frequencies, which results in additional difficulties for
forecasting. Then, using the PACF, the partial autocorrelogram of DEC12 and the obtained IMFs can
be conveniently derived, which are shown in Figures 6 and 7 respectively. Based on evaluation of the
partial autocorrelograms, the input variables of the original carbon price series and the IMFs obtained
via the two decomposition algorithms corresponding to output variable xt are presented in Table 1.

Figure 6. The PACFs of the original series and the IMFs derived from VMD.
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Figure 7. The PACFs of the original series and the IMFs derived from EMD.
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Table 1. Input variables of the original series and the IMFs.

Series
Mode Decomposition Algorithm

VMD EMD

DEC12 pxt´1, xt´2, xt´3, xt´7q pxt´1, xt´2, xt´3, xt´7q
IMF1 pxt´1, xt´2, xt´3, xt´4, xt´6q pxt´1, xt´2, xt´3, xt´4q
IMF2 pxt´1, xt´2, xt´3, xt´4q pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6, xt´8q
IMF3 pxt´1, xt´2, xt´3, xt´4, xt´5, xt´7, xt´8, xt´9q pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6, xt´8, xt´9q
IMF4 pxt´1, xt´2, xt´3, xt´4, xt´5, xt´9q pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6q
IMF5 pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6, xt´7, xt´8, xt´9q pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6, xt´7q
IMF6 pxt´1, xt´2, xt´3, xt´4, xt´6, xt´7, xt´8, xt´9q pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6, xt´7q
IMF7 — pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6, xt´7, xt´9q
IMF8 — pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6, xt´7, xt´9q
IMF9 — pxt´1, xt´2, xt´3, xt´4, xt´5, xt´7, xt´9q

Residue — pxt´1, xt´2, xt´3, xt´4, xt´5, xt´6, xt´7, xt´8, xt´9q

After determining the input variables, basic single BP and SNN models are used to forecast the
original carbon price series and the obtained IMFs. Meanwhile, the forecasting results of the IMFs were
aggregated to produce a combined forecasting result for the VMD-based and EMD-based modeling
processes, respectively. The actual DEC12 carbon price series and the final forecasting results of various
forecasting models are presented in Figure 8. In addition, to facilitate comparison, enlarged views
of the carbon price series curves shown in Figure 8 in the time intervals reflecting strong volatility
are given in Figure 9. Enlarged views basically cover the peaks and valleys of the actual DEC12
carbon price series curve, and can reflect the fluctuation characteristics of the DEC12 and the tracking
performance of forecasting models.

It follows from the DEC12 data shown in Figure 8 that, despite the periodic volatility at different
scales, an abnormal stochastic volatility is observed in the carbon price series. Therefore, the complexity
of the carbon price variation makes accurate forecasting difficult. Nevertheless, the forecasting result
of the proposed VMD-SNN model closely tracks the changing trends of the actual carbon price, even
nearby inflection points, which is made particularly apparent from Figure 9 under conditions of
extreme price volatility. The tracking performances of the other forecasting models considered in
this paper are obviously inferior. For example, the forecasting results of single BP and SNN models
exhibit large level errors in time interval [1,18], [111,128], [45,55] and [135,145]. On the other hand,
large phase errors exist in the forecasting results of the combined EMD-SNN and VMD-BP models in
time interval [135,145].
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Figure 8. Actual carbon price and the forecasting results of various models.
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Figure 9. Enlarged views of the carbon price series curves in the time interval: (a) [1,18]; (b) [22,39];
(c) [45,55]; (d) [65,82]; (e) [111,128]; (f) [135,145].

For a quantitative analysis of the forecasting results, Table 2 lists the error statistics for the various
forecasting models considered. In Table 2, the RMSE, MAE, MaxAPE and Icc values of the VMD-SNN
model are 0.0437, 0.0355, 2.197% and 0.9993, respectively, indicating that the forecasting accuracy is
higher and the forecasting risk is smaller when using the proposed VMD-SNN model to forecast the
carbon price. Based on Table 2, we can further conclude the following: (a) The forecasting performance
of the single SNN model is better than that of the conventional BP model, which indicates that SNN
is more capable of strong nonlinear mapping, and is more applicable to forecasting the dynamic
and nonlinear characteristics of the carbon price; (b) The forecasting performances of the combined
forecasting models are superior to any single model. This may be attributable to the fact that mode
decomposition can capture the complicated intrinsic characteristics, including both linear and nonlinear
characteristics, in the carbon price series. Therefore, integrating a mode decomposition method within
forecasting models has a positive effect on the overall forecasting capability; (c) That the proposed
VMD-SNN forecasting model outperforms the EMD-SNN model can be mainly attributed to the fact
that the carbon price series is decomposed more accurately via the VMD algorithm. This emphasizes the
significance of the VMD algorithm for improving forecasting performance in carbon price forecasting.
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Table 2. Error statistics for various forecasting models.

Evaluation
Indexes

Forecasting Models

BP SNN EMD-SNN VMD-BP VMD-SNN

RMSE 0.2655 0.2077 0.1528 0.1231 0.0437
MAE 0.2062 0.1690 0.1220 0.0955 0.0355

MaxAPE (%) 13.239 10.827 10.546 6.495 2.197
Icc 0.9180 0.9621 0.9709 0.9822 0.9993

Figure 10 shows histograms of the error frequency distribution for the various forecasting models
considered. The frequency with which the forecasting error eME% of the proposed VMD-SNN model
resides within the interval (0, 10%) is approximately 90%. It is obvious that the range of error
distribution of the proposed VMD-SNN model is very narrow, and the degree of concentration for the
error frequency distribution relative to zero is much greater than that of the other forecasting models.
Moreover, the limit error of the VMD-SNN model is slightly greater than 20%, which is far smaller
than that of the other models. The above analysis implies that the proposed VMD-SNN model yields
significant improvements in carbon price forecasting.

(%)MEe

maxe

Figure 10. Histograms of the error frequency distribution for the various forecasting models.

5. Conclusions

Carbon price forecasting is a difficult and complex task owing to the non-linear and non-stationary
characteristics of carbon price series data. It is scarcely possible to achieve a satisfactory forecasting
result by simply employing a single model. This paper focused on aggregating multi-algorithms to
exploit the intrinsic characteristics of carbon price series data, and a VMD-SNN combined forecasting
model was proposed to forecast the carbon price. Using VMD, the carbon price series is decomposed
into volatility and trend sub-series at equivalent scales, such that the complicated intrinsic linear and
nonlinear characteristics are appropriately captured. The SNN model, which is capable of strong
nonlinear mapping, is proposed as a forecaster for each decomposition component. Additionally, the
PACF and the partial autocorrelogram are used as statistical tools to determine the input variables
for the resulting SNN forecasting models. The individual results are aggregated to produce a final
forecasting result for the original carbon price series. The actual daily transaction price data of
EUA from the ICE obtained from 13 June 2008 to 22 May 2012 is used to verify the effectiveness
of the proposed VMD-SNN forecasting model, and quantitative evaluation is conducted based on

137



Energies 2016, 9, 54

comprehensive error evaluation criteria. Simulation results and analysis demonstrate that the influence
of nonlinear and non-stationary characteristics of data on the carbon price forecasting is reduced by
the VMD-SNN model. Therefore the proposed VMD-SNN combined forecasting model performs
better than conventional single models and EMD-based combined models. The simulation results also
suggest that the model not only can be used to forecast the carbon price, but also can be extensively
applied to other forecasting fields.
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Abstract: In existing forecasting research papers support vector regression with chaotic mapping
function and evolutionary algorithms have shown their advantages in terms of forecasting accuracy
improvement. However, for classical particle swarm optimization (PSO) algorithms, trapping in local
optima results in an earlier standstill of the particles and lost activities, thus, its core drawback is that
eventually it produces low forecasting accuracy. To continue exploring possible improvements of
the PSO algorithm, such as expanding the search space, this paper applies quantum mechanics to
empower each particle to possess quantum behavior, to enlarge its search space, then, to improve
the forecasting accuracy. This investigation presents a support vector regression (SVR)-based load
forecasting model which hybridizes the chaotic mapping function and quantum particle swarm
optimization algorithm with a support vector regression model, namely the SVRCQPSO (support
vector regression with chaotic quantum particle swarm optimization) model, to achieve more accurate
forecasting performance. Experimental results indicate that the proposed SVRCQPSO model achieves
more accurate forecasting results than other alternatives.

Keywords: support vector regression (SVR); chaotic quantum particle swarm optimization (CQPSO);
quantum behavior; electric load forecasting

1. Introduction

Electric demand forecasting plays the critical role in the daily operational and economic
management of power systems, such as energy transfer scheduling, transaction evaluation,
unit commitment, fuel allocation, load dispatch, hydrothermal coordination, contingency planning
load shedding, and so on [1]. Therefore, a given percentage of forecasting error implies great losses
for the utility industries in the increasingly competitive market, as decision makers take advantage of
accurate forecasts to make optimal action plans. As mentioned by Bunn and Farmer [2], a 1% increase
in electric demand forecasting error represents a £10 million increase in operating costs. Thus, it is
essential to improve the forecasting accuracy or to develop new approaches, particularly for those
countries with limited energy [3].

In the past decades, many researchers have proposed lots of methodologies to improve electric
demand forecasting accuracy, including traditional linear models, such as the ARIMA (auto-regressive
integrated moving average) model [4], exponential smoothing models [5], Bayesian estimation
model [6], state space and Kalman filtering technologies [7,8], regression models [9], and other time
series technologies [10]. Due to the complexity of load forecasting, with these mentioned models
it is difficult to illustrate well the nonlinear characteristics among historical data and exogenous
factors, and they cannot always achieve satisfactory performance in terms of electric demand
forecasting accuracy.
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Since the 1980s, due to superior nonlinear mapping ability, the intelligent techniques like expert
systems, fuzzy inference, and artificial neural networks (ANNs) [11] have become very successful
applications in dealing with electric demand forecasting. In addition, these intelligent approaches
can be hybridized to form new novel forecasting models, for example, the random fuzzy variables
with ANNs [12], the hybrid Monte Carlo algorithm with the Bayesian neural network [13], adaptive
network-based fuzzy inference system with RBF neural network [14], extreme learning machine with
hybrid artificial bee colony algorithm [15], fuzzy neural network (WFNN) [16], knowledge-based
feedback tuning fuzzy system with multi-layer perceptron artificial neural network (MLPANN) [17],
and so on. Due to their multi-layer structure and corresponding outstanding ability to learn non-linear
characteristics, ANN models have the ability to achieve more accurate performance of a continuous
function described by Kromogol’s theorem. However, the main shortcoming of the ANN models are
their structure parameter determination [18]. Complete discussions for the load forecasting modeling
by ANNs are shown in references [19,20].

Support vector regression (SVR) [21], which has been widely applied in the electric demand
forecasting field [11,22–33], hybridizes different evolutionary algorithms with various chaotic mapping
functions (logistic function, cat mapping function) to simultaneously and carefully optimize the three
parameter combination, to obtain better forecasting performance. As concluded in Hong’s series of
studies, determination of these three parameters will critically influence the forecasting performance,
i.e., low forecasting accuracy (premature convergence and trapped in local optimum) results from the
theoretical limitations of the original evolutionary algorithms. Therefore, Hong and his successors
have done a series of trials on hybridization of evolutionary algorithms with a SVR model. However,
each algorithm has its embedded drawbacks, so to overcome these shortcomings, they continue
applying chaotic mapping functions to enrich the searching ergodically over the whole space to do
more compact searching in chaotic space, and also apply cloud theory to solve well the decreasing
temperature problem during the annealing process to meet the requirement of continuous decrease
in actual physical annealing processes, and then, improve the search quality of simulated annealing
algorithms, eventually, improving the forecasting accuracy.

Inspired by Hong’s efforts mentioned above, the author considers the core drawback of the
classical PSO algorithm, which results in an earlier standstill of the particles and loss of activities,
eventually causing low forecasting accuracy, therefore, this paper continues to explore possible
improvements of the PSO algorithm. As known in the classical PSO algorithm, the particle moving in
the search space follows Newtonian dynamics [34], so the particle velocity is always limited, the search
process is limited and it cannot cover the entire feasible area. Thus, the PSO algorithm is not guaranteed
to converge to the global optimum and may even fail to find local optima. In 2004, Sun et al. [35]
applied quantum mechanics to propose the quantum delta potential well PSO (QDPSO) algorithm
by empowering the particles to have quantum behaviors. In a quantum system, any trajectory of
any particles is non-determined, i.e., any particles can appear at any position in the feasible space
if it has better fitness value, even far away from the current one. Therefore, this quantum behavior
can efficiently enable each particle to expand the search space and to avoid being trapped in local
minima. Many improved quantum-behaved swarm optimization methods have been proposed to
achieve more satisfactory performance. Davoodi et al. [36] proposed an improved quantum-behaved
PSO-simplex method (IQPSOS) to solve power system load flow problems; Kamberaj [37] also
proposed a quantum-behaved PSO algorithm (q-GSQPO) to forecast the global minimum of potential
energy functions; Li et al. [38] proposed a dynamic-context cooperative quantum-behaved PSO
algorithm by incorporating the context vector with other particles while a cooperation operation
is completed. In addition, Coelho [39] proposed an improved quantum-behaved PSO by hybridization
with a chaotic mutation operator. However, like the PSO algorithm, the QPSO algorithm still easily
suffers from shortcomings in iterative operations, such as premature convergence problems.

In this paper, the author applies quantum mechanics to empower each particle in the PSO
algorithm to possess quantum behavior to enlarge the search space, then, a chaotic mapping function
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is employed to help the particles break away the local optima while the premature condition
appears in each iterative searching process, eventually, improving the forecasting accuracy. Finally,
the forecasting performance of the proposed hybrid chaotic quantum PSO algorithm with an SVR
model, named SVRCQPSO model, is compared with four other existing forecasting approaches
proposed in Hong [33] to illustrate its superiority in terms of forecasting accuracy.

This paper is organized as follows: Section 2 illustrates the detailed processes of the proposed
SVRCQPSO model. The basic formulation of SVR, the QPSO algorithm, and the CQPSO algorithm
will be further introduced. Section 3 employs two numerical examples and conducts the significant
comparison among alternatives presented in an existing published paper in terms of forecasting
accuracy. Finally, some meaningful conclusions are provided in Section 4.

2. Methodology of SVRCQPSO Model

2.1. Support Vector Regression (SVR) Model

The brief introduction of an SVR model is illustrated as follows. A nonlinear mapping function,
φp¨q, is used to map the training data set into a high dimensional feature space. In the feature space,
an optimal linear function, f, is theoretically found to formulate the relationship between training
fed-in data and fed-out data. This kind of optimal linear function is called SVR function and is shown
as Equation (1):

f pxq “ wTφpxq ` b (1)

where f pxq denotes the forecasting values; the coefficients w and b are adjustable. SVR method aims at
minimizing the training error, that is the so-called empirical risk, as shown in Equation (2):

Rempp f q “ 1
N

Nř
i“1

Θεpyi, wTφpxiq ` bq

Θεpy, f pxqq “
#

| f pxq ´ y| ´ ε, if | f pxq ´ y| ě ε

0, otherwise

(2)

where Θεpy, f pxqq is the ε-insensitive loss function. The ε-insensitive loss function is used to find out
an optimum hyper plane on the high dimensional feature space to maximize the distance separating
the training data into two subsets. Thus, the SVR focuses on finding the optimum hyperplane and
minimizing the training error between the training data and the ε-insensitive loss function. The SVR
model then minimizes the overall errors as shown in Equation (3):

Min
w,b,ξ˚,ξ

Rεpw, ξ˚, ξq “ 1
2

wTw ` C
Nř

i“1
pξi̊ ` ξiq

with the constraints

yi ´ wTφpxiq ´ b ď ε ` ξi̊ , i “ 1, 2, . . . , N

´yi ` wTφpxiq ` b ď ε ` ξi, i “ 1, 2, . . . , N

ξi̊ ě 0, i “ 1, 2, . . . , N

ξi ě 0, i “ 1, 2, . . . , N

(3)

The first term of Equation (3), by employed the concept of maximizing the distance of two
separated training data, is used to regularize weight sizes, to penalize large weights, and to maintain
regression function flatness. The second term, to penalize the training errors of f (x) and y, decides the
balance between confidence risk and experience risk by using the ε-insensitive loss function. C is a
parameter to trade off these two terms. Training errors above ε are denoted as ξi̊ , whereas training
errors below ´ε are denoted as ξi.
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After the quadratic optimization problem with inequality constraints is solved, the parameter
vector w in Equation (1) is obtained with Equation (4):

w “
Nÿ

i“1

pαi̊ ´ αiqφpxiq (4)

where αi̊ , αi are obtained by solving a quadratic program and are the Lagrangian multipliers. Finally,
the SVR regression function is obtained as Equation (5) in the dual space:

f pxq “
Nÿ

i“1

pαi̊ ´ αiq Kpxi, xjq ` b (5)

where Kpxi, xjq is so-called the kernel function, and the value of the kernel equals the inner product of
two vectors, xi and xj, in the feature space φpxiq and φpxjq, respectively; that is, Kpxi, xjq “ φpxiq ˝φpxjq.
There are several types of kernel function, and it is hard to determine the best type of kernel functions
for specific data patterns [40]. However, in practice, the Gaussian radial basis functions (RBF) with
a width of σ: Kpxi, xjq “ exp

´
´0.5

ˇ̌ˇ̌
xi ´ xj

ˇ̌ˇ̌2{σ2
¯

is not only easier to implement, but also capable of
nonlinearly mapping the training data into an infinite dimensional space. Therefore, the Gaussian RBF
kernel function is employed in this study.

It is well known that good determination of the three parameters (including hyperparameters, C, ε,
and the kernel parameter, σ) in an SVR model will seriously affect its forecasting accuracy. Thus, to look
for an efficient approach to simultaneously determine well the parameter combination is becoming
an important research issue. As mentioned above, inspired by Hong’s series of efforts in hybridizing
chaotic sequences with optimization algorithms for parameter determination to overcome the most
embedded drawback of evolutionary algorithms—the premature convergence problem—this paper
will continue exploring any solutions (such as empowering each particle with quantum behaviors) to
overcome the embedded drawbacks of PSO, namely the QPSO algorithm, and the superiority of hybrid
chaotic mapping function with the QPSO algorithms. Thus, the chaotic QPSO (CQPSO) algorithm is
hybridized with an SVR model, named the SVRCQPSO model, to optimize the parameter selection to
achieve more satisfactory forecasting accuracy.

2.2. Chaotic Quantum Particle Swarm Optimization Algorithm

2.2.1. Quantum Particle Swarm Optimization Algorithm

In the classical PSO algorithm, a particle’s action can be addressed completely by its position and
velocity which determine the trajectory of the particle, i.e., any particles move along a deterministic
trajectory in the search space by following Newtonian mechanics [34]. In the meanwhile, this situation
also limits the possibility that the PSO algorithm could look for global optima and leads it to be trapped
into local optima, i.e., premature convergence. To overcome this embedded drawback of the PSO
algorithm, to solve the limitation of the deterministic particle trajectory, lots of efforts in the physics
literature are focused on empowering each particle trajectory with stochasticity, i.e., empowering each
particle’s movement with quantum mechanics.

Based on Heisenberg’s uncertainty principle [41], under quantum conditions, the position (x)
and velocity (v) of a particle cannot be determined simultaneously, therefore, in the quantum search
space, the probability of finding a particle at a particular position should be, via a “collapsing” process,
mapped into its certain position in the solution space. Eventually, by employing the Monte Carlo
method, the position of a particle can be updated using Equation (6):

xpt ` 1q “ pptq ˘ 1
2

Lptqln
ˆ

1
uptq

˙
(6)

where u(t) is a uniform random number distributed in [0, 1]; p(t) is the particle’s local attractor, and it
is defined as Equation (7):

143



Energies 2016, 9, 426

pptq “ βpidptq ` p1 ´ βqpgdptq (7)

where β is also a random number uniformly distributed in [0, 1]; pid(t) and pgd(t) are the ith pbest
particle and the gbest particle in the dth dimension, respectively. L(t) is the length of the potential
field [35], and is given by Equation (8):

Lptq “ 2γ |pptq ´ xptq| (8)

where parameter γ is the so-called the creativity coefficient or contraction expansion coefficient, and
is used to control the convergence speed of the particle. QPSO algorithm can obtain good results by
linear decreasing value of γ from 1.0 to 0.5, as shown in Equation (9) [42]:

γ “ p1 ´ 0.5q ˆ pItermax ´ tq {Itermax ` 0.5 (9)

where Itermax is the maximum of iteration numbers, in this paper, it is set as 10,000.
Considering that the critical position of L(t) will seriously influence the convergence rate and the

performance of the QPSO algorithm, thus, we define the mean best position (mbest) as the center of
pbest position of the swarm, shown in Equation (10):

mbestptq “ pmbest1ptq, mbest2ptq, . . . , mbestDptq

“
˜

1
S

Sř
i“1

pi1ptq,
1
S

Sř
i“1

pi2ptq, . . . ,
1
S

Sř
i“1

piDptq
¸

(10)

where S is the size of population, D is the number of dimensions, pij(t) is the pbest position of each
particle in the jth dimension.

Then, we use Equation (10) to replace the p(t) in Equation (8), thus, the new evaluation equation
of L(t) is Equation (11):

Lptq “ 2γ |mbestptq ´ xptq| (11)

Finally, by substituting Equations (7) and (11) into Equation (6), the particle’s position is updated
by Equation (12):

xpt ` 1q “ βpidptq ` p1 ´ βqpgdptq ˘ γ |mbestptq ´ xptq| ln
ˆ

1
uptq

˙
(12)

2.2.2. Chaotic Mapping Function for QPSO Algorithm

As mentioned that chaotic variable can be adopted by applying chaotic phenomenon in keeping
the diversities among particles to prevent the PSO algorithm from being trapped into a local optima,
i.e., premature convergence. Therefore, the CQPSO algorithm is based on the QPSO algorithm by
employing chaotic strategy while premature convergence appears during the iterative searching
processes, else, the QPSO algorithm is still implemented as illustrated in Section 2.2.1.

On the other hand, for strengthening the effect of chaotic characteristics, lots of studies mostly
apply the logistic mapping function as chaotic sequence generator. The biggest disadvantage of the
logistic mapping function is that it distributes at both ends and less in the middle. On the contrary,
the Cat mapping function has better chaotic distribution characteristic, thus, its application in chaos
disturbance of the PSO algorithm can better strengthen the swarm diversity [43]. Therefore, this paper
will employ the Cat mapping function as chaotic sequence generator.

The classical Cat mapping function is the two-dimensional Cat mapping function [44], shown as
Equation (13): #

xn`1 “ pxn ` ynq mod 1

yn`1 “ pxn ` 2ynq mod 1
(13)
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where x mod 1 = x ´ [x], mod, the so-called modulo operation, is used for the fractional parts of a real
number x by subtracting an appropriate integer.

2.2.3. Implementation Steps of CQPSO Algorithm

The procedure of hybrid CQPSO algorithm with an SVR model is illustrated as follows and the
corresponding flowchart is shown as Figure 1.

 
Figure 1. Quantum particle swarm optimization flowchart.
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Step 1: Initialization.

Initialize a defined population of particle pairs pCi, εi,σiq with random positions pxCi, xεi, xσiq,
where each particle contains n variables.

Step 2: Objective Values.

Compute the objective values (forecasting errors) of all particle pairs. Let the particle’s own best
position be pid ptq “ ppCiptq, pεiptq, pσiptqq of each particle pair and its objective value fbest i equal its
initial position and objective value. Let the global best position be pgdptq “ `

pCgptq, pεgptq, pσgptq˘
and

its objective value fglobalbest i equal to the best initial particle pair’s position and its objective value.

Step 3: Calculate Objective Values.

Employ Equation (10) to calculate the mean best position (mbest), the center of pbest position of
the three particle pairs, then, use Equations (11) and (12) to update the position for each particle pair,
and calculate the objective values for all particle pairs.

Step 4: Update.

For each particle pair, compare its current objective value with fbest i. If current value is better
(with smaller forecasting accuracy index value), then, update ppCiptq, pεiptq, pσiptqq and its objective
value with the current position and objective value.

Step 5: Determine the Best Position and Objective.

Determine the best particle pair of whole population based on the best objective value. If the
objective value is smaller than fglobalbest i, then update

`
pCgptq, pεgptq, pσgptq˘

, and, use Equation (7)
to update the particle pair’s local attractor. Finally, update its objective value with the current best
particle pair’s position.

Step 6: Premature Convergence Test.

Calculate the mean square error (MSE), shown as Equation (14), to evaluate the premature
convergence status, set the expected criteria, δ:

MSE “ 1
S

Sÿ
i“1

ˆ
fi ´ favg

f

˙2

(14)

where fi is the current objective value of the current particles; favg is average objective value of the
current swarm; f can be obtained by Equation (15):

f “ max
"

1, max@iPS

�ˇ̌
fi ´ favg

ˇ̌(*
(15)

If the value of MSE is less than δ, it can be seen that premature convergence appears. Thus, the Cat
mapping function, Equation (13), is then employed to look for new optima, and set the new optimal
value as the optimal solution of the current particles.

Step 7: Stop Criteria.

If a stopping threshold (forecasting accuracy) is reached, then
`
PCg, Pεg, Pσg

˘
and its fglobalbest i

would be determined; otherwise go back to Step 3.
In this paper, the mean absolute percentage error (MAPE) as the forecasting accuracy index, shown

in Equation (16), is employed for calculating the objective value to determine suitable parameters in
Steps 4 and 5 of QPSO algorithm:
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MAPE “ 1
N

Nÿ
i“1

ˇ̌̌
ˇ yi ´ fi

yi

ˇ̌̌
ˇ ˆ 100% (16)

where N is the number of forecasting periods; yi is the actual value at period i; fi denotes is the
forecasting value at period i.

3. Numerical Examples

3.1. Data Set of Numerical Examples

3.1.1. Regional Load Data

The first numerical example applies Taiwan regional electric demand data from an existing
published paper [33] to construct the proposed SVRCQPSO model, and the forecasting accuracy of
the proposed model and other alternatives is compared. Therefore, in this example, the total load
values in four regions of Taiwan from 1981 to 2000 (20 years) serve as experimental data. To be based
on the same comparison basis, these load data are divided into three subsets, the training data set
(from 1981 to 1992, i.e., 12 load data), the validation data set (from 1993 to 1996, that is four load data),
and the testing data set (from 1997 to 2000, i.e., four load data). The forecasting accuracy is measured
by Equation (16).

During the training process, the rolling-based forecasting procedure proposed by Hong [33] is
employed, which divides training data into two subsets, namely fed-in (eight load data) and fed-out
(four load data) respectively. The training error can be obtained in each iteration. While training
error is decreasing, the three parameters determined by QPSO algorithm are employed to calculate
the validation error. Then, those parameters with minimum validation error are selected as the most
appropriate candidates. Notice that the testing data set is never employed while modeling. Eventually,
the desired four-years forecasting loads in each region are forecasted. Along with the smallest testing
MAPE value, the proposed model is the most suitable model in this example.

3.1.2. Annual Load Data

The second numerical example also uses Taiwan annual electric demand data from an existing
paper [33]. The total annual electric demand values from 1945 to 2003 (59 years) serve as the
experimental data. To be based on the same comparison basis, these employed load data are also
divided into three data sets, the training data set (from 1945 to 1984, i.e., 40 years), the validation
data set (from 1985 to 1994, that is 10 years), and the testing data set (from 1995 to 2003, i.e., nine
years). Similarly, the forecasting accuracy is also measured by MAPE. Meanwhile, the rolling-based
forecasting procedure, the structural risk minimization principle to minimize the training error, the
procedure to determine parameter combination, and so on, are also implemented the same as in the
first numerical example.

3.1.3. Load Data in 2014 Global Energy Forecasting Competition (GEFCOM 2014)

The third numerical example is suggested to use the historical hourly load data issued in 2014
Global Energy Forecasting Competition [45]. The total hourly load values, from 00:00 1 December
2011 to 00:00 1 January 2012 (744 h), serve as experimental data. These load data are divided into
three data sets, the training data set (from 01:00 1 December 2011 to 00:00 24 December 2011, i.e.,
552 h load data), the validation data set (from 01:00 24 December 2011 to 00:00 18 December 2011,
that is 96 h load data), and the testing data set (from 01:00 28 December 2011 to 00:00 1 January 2012,
i.e., 96 h load data). Similarly, the forecasting accuracy is also measured by MAPE; the rolling-based
forecasting procedure, the structural risk minimization principle to minimize the training error, and the
procedure to determine parameter combination are also implemented as the same as in the previous
two numerical examples.
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3.2. The SVRCQPSO Load Forecasting Model

3.2.1. Parameter Setting in the CQPSO Algorithm

Proper tuning of control parameters for convergence of the classical PSO algorithm is not easy, on
the contrary, there is only one parameter control in the CQPSO algorithm, i.e., the creativity coefficient
or contraction expansion coefficient, γ, given by Equation (9). Other settings, such as the population
sizes, are 20 in both examples; the total number of iterations (Itermax) is both fixed as 10,000; σ P r0, 5s,
ε P r0, 100s in both examples, C P r0, 20000s in example one, C P “

0, 3 ˆ 1010‰
in example two; δ is both

set as 0.001.

3.2.2. Three Parameter Determination of SVRQPSO and SVRCQPSO Models in Regional Load Data

For the first numerical example, the potential models with well determined parameter values by
QPSO algorithm and CQPSO algorithm which have the smallest testing MAPE value will be selected
as the most suitable models. The determined parameters for four regions in Taiwan are illustrated in
Table 1.

Table 1. Parameters determination of SVRCQPSO and SVRQPSO models (example one).

Regions
SVRCQPSO Parameters

MAPE of Testing (%)
σ C ε

Northern 10.0000 0.9000 ˆ 1010 0.7200 1.1070
Central 10.0000 1.8000 ˆ 1010 0.4800 1.2840

Southern 4.0000 0.8000 ˆ 1010 0.2500 1.1840
Eastern 3.0000 1.2000 ˆ 1010 0.3400 1.5940

Regions
SVRQPSO Parameters

MAPE of Testing (%)
σ C ε

Northern 8.0000 1.4000 ˆ 1010 0.6500 1.3370
Central 8.0000 0.8000 ˆ 1010 0.4300 1.6890

Southern 4.0000 0.6000 ˆ 1010 0.6500 1.3590
Eastern 12.0000 1.0000 ˆ 1010 0.5600 1.9830

Meanwhile, based on the same forecasting duration in each region, Table 2 shows the MAPE values
and forecasting results of various forecasting models in each region, including SVRCQPSO (hybridizing
chaotic function, quantum mechanics, and PSO with SVR), SVRQPSO (hybridizing quantum mechanics
and PSO with SVR), SVMG (hybridizing genetic algorithm with SVM), and RSVMG (hybridizing
recurrent mechanism and genetic algorithm with SVM) models. In Table 2, the SVRQPSO model
has almost outperformed SVRPSO models that hybridize classical PSO algorithm with an SVR
model. It also demonstrates that empowering the particles to have quantum behaviors, i.e., applying
quantum mechanics in the PSO algorithm, is a feasible approach to improve the solution, to improve
the forecasting accuracy while the PSO algorithm is hybridized with an SVR model. In addition,
the SVRCQPSO model eventually achieves a smaller MAPE value than other alternative models,
except the RSVMG model in the northern region. It also illustrates that the Cat mapping function
has done a good job of looking for more satisfactory solutions while suffering from the premature
convergence problem during the QPSO algorithm processing. Once again, it also obviously illustrates
the performance of the chaotic mapping function in overcoming the premature convergence problem.
For example, in the northern region, we had done our best by using the QPSO algorithm, we could
only to look for the solution, (σ, C, ε) = (8.0000, 1.4000 ˆ 1010, 0.6500), with forecasting error, 1.3370%,
as mentioned above that it is superior to classical PSO algorithm. However, the solution still could
be improved by the CQPSO algorithm to (σ, C, ε) = (10.0000, 0.9000 ˆ 1010, 0.7200) with more
accurate forecasting performance, 1.1070%. Similarly, for other regions, the solutions of the QPSO
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algorithm with forecasting errors, 1.6890% (the central region), 1.3590% (the southern region) and
1.9830% (the eastern region), all could be further searched for more accurate forecasting performance
by applying the Cat mapping function, i.e., the CQPSO algorithm, to receive more satisfactory
results, such as 1.2840% (the central region), 1.1840% (the southern region), and 1.5940% (the eastern
region), respectively.

Table 2. Forecasting results of SVRCQPSO, SVRQPSO, and other models (example one) (unit: 106 MWh).

Year
Northern Region

Actual SVRCQPSO SVRQPSO SVRCPSO SVRPSO SVMG RSVMG

1997 11,222 11,339 11,046 11,232 11,245 11,213 11,252
1998 11,642 11,779 11,787 11,628 11,621 11,747 11,644
1999 11,981 11,832 12,144 12,016 12,023 12,173 12,219
2000 12,924 12,798 12,772 12,306 12,306 12,543 12,826

MAPE (%) - 1.1070 1.3370 1.3187 1.3786 1.3891 0.7498

Year
Central Region

Actual SVRCQPSO SVRQPSO SVRCPSO SVRPSO SVMG RSVMG

1997 5061 4987 5140 5066 5085 5060 5065
1998 5246 5317 5342 5168 5141 5203 5231
1999 5233 5172 5130 5232 5236 5230 5385
2000 5633 5569 5554 5313 5343 5297 5522

MAPE (%) - 1.2840 1.6890 1.8100 1.9173 1.8146 1.3026

Year
Southern Region

Actual SVRCQPSO SVRQPSO SVRCPSO SVRPSO SVMG RSVMG

1997 6336 6262 6265 6297 6272 6265 6200
1998 6318 6401 6418 6311 6314 6389 6156
1999 6259 6179 6178 6324 6327 6346 6261
2000 6804 6738 6901 6516 6519 6513 6661

MAPE (%) - 1.1840 1.3590 1.4937 1.5899 2.0243 1.7530

Year
Eastern Region

Actual SVRCQPSO SVRQPSO SVRCPSO SVRPSO SVMG RSVMG

1997 358 353 350 370 367 358 367
1998 397 404 390 376 374 373 381
1999 401 394 410 411 409 397 401
2000 420 414 413 418 415 408 416

MAPE (%) - 1.5940 1.9830 2.1860 2.3094 2.6475 1.8955

Furthermore, to ensure the significant improvement in forecasting accuracy for the proposed
SVRQPSO and SVRCQPSO models, as Diebold and Mariano [46] recommend, a suitable statistical
test, namely the Wilcoxon signed-rank test, is then implemented. The test can be implemented at two
different significance levels, i.e., α = 0.025 and α = 0.05, by one-tail-tests. The test results are shown in
Table 3, which indicates that the SVRCQPSO model only achives significantly better performance than
other alternatives in the northern and eastern regions in terms of MAPE. It also implies that in these
two regions, the load tendency is approaching a mature status, i.e., in northern Taiwan, it is highly
commercial and residential electricity usage type; in eastern Taiwan, the highly concentrated natural
resources only reflects its low electricity usage type. In both regions, the electricity load tendency
and trend no doubt could be easily captured by the proposed SVRCQPSO model, thus, the proposed
SVRCQPSO model can significantly outperform other alternatives.
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Table 3. Wilcoxon signed-rank test (example one).

Compared Models

Wilcoxon Signed-Rank Test

α = 0.025; W = 0 α = 0.05; W = 0

Northern
Region

Central
Region

Southern
Region

Eastern
Region

Northern
Region

Central
Region

Southern
Region

Eastern
Region

SVRCQPSO vs. SVMG 0 a 1 1 0 a 0 a 1 1 0 a

SVRCQPSO vs. RSVMG 1 1 0 a 0a 1 1 0 a 0 a

SVRCQPSO vs. SVRPSO 0 a 1 1 0 a 0 a 1 1 0 a

SVRCQPSO vs. SVRCPSO 0 a 1 1 0 a 0 a 1 1 0 a

SVRCQPSO vs. SVRQPSO 1 1 0 a 0 a 1 1 0 a 0 a

a denotes that the SVRCQPSO model significantly outperforms other alternative models.

On the other hand, in the central and southern regions, the SVRCQPSO model almost could not
achieve significant accuracy improvements compared to the other models. It also reflects the facts
that these two regions in Taiwan are both high-density population centers, the electricity usage types
would be very flexible almost along with population immigration or emigration, thus, although the
proposed SVRCQPSO model captures the data tendencies this time, however, it could not guarantee
it will also achieve highly accurate forecasting performance when new data is obtained. Therefore,
this is also the next research topic.

3.2.3. Three Parameters Determination of SVRQPSO and SVRCQPSO Models in Annual Load Data

For the second numerical example, the processing steps are similar to the example one.
The parameters in an SVR model will also be determined by the proposed QPSO algorithm and
CQPSO algorithm. Then, the selected models would be with the smallest testing MAPE values.
The determined parameters for annual loads in Taiwan (example two) are illustrated in Table 4.
For benchmarking comparison with other algorithms, Table 4 lists all results in relevant papers with
SVR-based modeling, such as the Pai and Hong [47] proposed SVMSA model by employing SA
algorithm and the Hong [33] proposed SVRCPSO and SVRPSO models by using the CPSO algorithm
and PSO algorithm, respectively.

Table 4. Parameter determination of SVRCQPSO and SVRQPSO models (example two).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

SA algorithm [46] 0.2707 2.8414 ˆ 1011 39.127 1.7602
PSO algorithm [33] 0.2293 1.7557 ˆ 1011 10.175 3.1429

CPSO algorithm [33] 0.2380 2.3365 ˆ 1011 39.296 1.6134
QPSO algorithm 12.0000 0.8000 ˆ 1011 0.380 1.3460

CQPSO algorithm 10.0000 1.5000 ˆ 1011 0.560 1.1850

Figure 2 illustrates the real values and forecasting values of different models, including the
hybridizing simulated annealing algorithm with SVM (SVMSA), SVRPSO, SVRCPSO, SVRQPSO,
and SVRCQPSO models. In Table 4, similarly, the SVRQPSO model is superior to SVRPSO models that
hybridize a classical PSO algorithm with an SVR model. Once again, it also demonstrates that applying
quantum mechanics in the PSO algorithm is a feasible approach to improve the forecasting accuracy of
any SVR-based forecasting model. In addition, the SVRCQPSO model eventually achieves the smallest
MAPE value than other alternative models. Of course, the Cat mapping function provides its excellent
improvement in overcoming the premature convergence problem. It can be clearly to see that based
on the QPSO algorithm, we could only look for the solution, (σ, C, ε) = (12.0000, 0.8000 ˆ 1011, 0.380),
with a 1.3460% forecasting error, although it is superior to the classical PSO algorithm. Then, the Cat
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mapping function is excellent to shift the solution of the QPSO algorithm to another better solution,
(σ, C, ε) = (10.0000, 1.5000 ˆ 1011, 0.560) with a forecasting error of 1.1850%.

To verify the significance of the proposed SVRCQPSO model in this annual load forecasting
example, similarly, the Wilcoxon signed-rank test is also taken into account. The test results are shown
in Table 5, which indicate that the SVRCQPSO model has completely achieved a more significant
performance than other alternatives in terms of MAPE, i.e., the annual load tendency in Taiwan reflects
an increasing trend due to the strong annual economic growth. The electricity load tendency and
trend no doubt could be easily captured by the proposed SVRCQPSO model; therefore, the proposed
SVRCQPSO model can significantly outperform other alternatives.

Figure 2. Actual values and forecasting values of SVRCQPSO, SVRQPSO, and other models (example two).

Table 5. Wilcoxon signed-rank test (example two).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 5 α = 0.05; W = 8

SVRCQPSO vs. SVMSA 2 a 2 a

SVRCQPSO vs. SVRPSO 3 a 3 a

SVRCQPSO vs. SVRCPSO 2 a 2 a

SVRCQPSO vs. SVRQPSO 2 a 2 a

a denotes that the SVRCQPSO model significantly outperforms other alternative models.

3.2.4. Three Parameter Determination of SVRQPSO and SVRCQPSO Models in GEFCOM 2014

For the third numerical example, the processing steps are to be conducted similarly.
The determined parameters in an SVR model by the proposed QPSO algorithm and CQPSO algorithm
will have the smallest MAPE values in the test data set. The determined parameters for GEFCOM 2014
(example three) are illustrated in Table 6. In addition, the parameters determined by other famous
algorithms, such as GA, CGA, PSO, CPSO algorithms, are also listed in Table 6. Because GEFCOM
2014 load data is a completely new case for the author, to correctly assess the improvements of the
proposed models, a naïve model is introduced, which is appropriately to be a random search of the
hyper-parameters. Therefore, the randomly determined parameters are also illustrated in Table 6.
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Table 6. Parameters determination of SVRCQPSO and SVRQPSO models (example three).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

Naïve 23.000 43.000 0.6700 3.2200
CGA 19.000 28.000 0.2700 2.9100

PSO algorithm 7.000 34.000 0.9400 3.1500
CPSO algorithm 22.000 19.000 0.6900 2.8600
QPSO algorithm 9.000 42.000 0.1800 1.9600

CQPSO algorithm 19.000 35.000 0.8200 1.2900

For the forecasting performance comparison, the author also considers two famous forecasting
models, the ARIMA(0, 1, 1) model, and the back propagation neural networks (BPNN) model to
conduct benchmark comparisons. Figure 3 illustrates the real values and forecasting results, including
the ARIMA, BPNN, Naïve, SVRCGA, SVRPSO, SVRCPSO, SVRQPSO, and SVRCQPSO models.
In Figure 3, it also indicates that the SVRQPSO model achives more accurate forecasting performance
than the SVRPSO and SVRCPSO models that hybridize classical PSO algorithms or chaotic sequences
with an SVR model. It also illustrates the application of quantum mechanics in the PSO algorithm
is a potential approach to improve the performance issues of any SVR-based model. In addition,
the SVRCQPSO model eventually achieves a smaller MAPE value than the SVRQPSO model.

Figure 3. Actual values and forecasting values of SVRCQPSO, SVRQPSO, and other models
(example three).

Finally, the results of Wilcoxon signed-rank test are presented in Table 7, which indicates that the
proposed SVRCQPSO model achieves superior significance in terms of MAPE, i.e., the hourly electric
load reflects a cyclic trend which is captured exactly by the proposed SVRCQPSO model; therefore,
the proposed SVRCQPSO model can significantly outperform other alternatives.
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Table 7. Wilcoxon signed-rank test (example three).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 2,328 α = 0.05; W = 2,328

SVRCQPSO vs. ARIMA 1612 a 1612 a

SVRCQPSO vs. BPNN 1715 a 1715 a

SVRCQPSO vs. Naïve 1650 a 1650 a

SVRCQPSO vs. SVRPSO 1713 a 1713 a

SVRCQPSO vs. SVRCPSO 1654.5 a 1654.5 a

SVRCQPSO vs. SVRQPSO 1700 a 1700 a

SVRCQPSO vs. SVRCGA 1767 a 1767 a

a denotes that the SVRCQPSO model significantly outperforms other alternative models.

4. Conclusions

This paper presents an SVR model hybridized with the chaotic Cat mapping function
and quantum particle swarm optimization algorithm (CQPSO) for electric demand forecasting.
The experimental results demonstrate that the proposed model obtains the best forecasting performance
among other SVR-based forecasting models in the literature, even though overall the forecasting
superiority does not meet the significance test. This paper applies quantum mechanics to empower
particles to have quantum behaviors to improve the premature convergence of the PSO algorithm and
then, improve the forecasting accuracy. Chaotic Cat mapping is also employed to help with unexpected
trapping into local optima while the QPSO algorithm is working in its searching process. This paper
also illustrates the good feasibility of hybridizing quantum mechanics to expand the search space
which is usually limited by Newtonian dynamics. In future research, as mentioned in Section 3.2.2,
how to enhance the power of the QPSO algorithm to capture the tendency changes of electricity load
data along with population immigration or emigration to guarantee the SVRCQPSO model achieves
highly accurate forecasting performance will be studied.
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Abstract: Hybridizing chaotic evolutionary algorithms with support vector regression (SVR) to
improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima
and premature convergence are critical shortcomings of the tabu search (TS) algorithm. This paper
investigates potential improvements of the TS algorithm by applying quantum computing mechanics
to enhance the search information sharing mechanism (tabu memory) to improve the forecasting
accuracy. This article presents an SVR-based load forecasting model that integrates quantum
behaviors and the TS algorithm with the support vector regression model (namely SVRQTS) to
obtain a more satisfactory forecasting accuracy. Numerical examples demonstrate that the proposed
model outperforms the alternatives.

Keywords: support vector regression (SVR); quantum tabu search (QTS) algorithm; quantum
computing mechanics; electric load forecasting

1. Introduction

A booming economy is dramatically increasing electric loads in every industry and those
associated with people’s daily lives. Meeting the demand of all has become an important goal
of electricity providers. However, as mentioned by Bunn and Farmer [1], a 1% increase in the
error in an electricity demand forecast corresponds to a £10 million increase in operating costs.
Therefore, decision-makers seek accurate load forecasting to set effective energy policies, such as those
concerning new power plants and investment in facilities [2]. Importing or exporting electricity in
energy-limited developing economies, such as that of Taiwan, is almost impossible [3,4]. Unfortunately,
electric load data have various characteristics, including nonlinearity and chaos. Moreover, many
exogenous factors interact with each other, affecting forecasting, such as economic activities, weather
conditions, population, industrial production, and others. These effects increase the difficulty of load
forecasting [5].

In the last few decades, models for improving the accuracy of load forecasting have included
the well-known Box–Jenkins’ ARIMA model [6], exponential smoothing model [7], Kalman filtering/
linear quadratic estimation model [8–10], the Bayesian estimation model [11–13], and regression
models [14–16]. However, most of these models are theoretically based on assumed linear relationships
between historical data and exogenous variables and so cannot effectively capture the complex
nonlinear characteristics of load series, or easily provide highly accurate load forecasting.

Since the 1980s, to improve the accuracy of load forecasting, many artificial intelligent (AI)
approaches have been used and been combined to develop powerful forecasting methods, such as
artificial neural networks (ANNs) [17–21], expert system-based methods [22–24], and fuzzy inference
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approaches [25–28]. Recently, these AI approaches have been hybridized with each other to provide
more accurate forecasting results [29–33], with the aforementioned linear models [34], or with
evolutionary algorithms [35,36]. However, the shortcomings of these AI approaches include the
need to determine the structural parameters [37,38], the time required for knowledge acquisition [39],
and a lack of correct and consistent heuristic rules to generate a complete domain knowledge base [40].
Extensive discussions of load forecasting models can be found elsewhere [41].

In the middle of the 1990s, support vector regression (SVR) [42] began to be used to solve
forecasting problems [43], and in the 2000s, Hong et al. [44–56] developed various SVR-based load
forecasting models by hybridizing evolutionary algorithms, chaotic mapping functions and cloud
theory with an SVR model, to effectively determine its three parameters to improve the forecasting
accuracy. Based on Hong’s research results, the accurate determination of three parameters of the SVR
model is critical to improving its forecasting performance. The drawbacks of evolutionary algorithms
cause the combination of parameters during the optimal modeling process, such as premature
convergence or trapping in a local optimum. Therefore, Hong and his colleagues investigated
the possibility of using chaotic mapping functions to increase the ergodicity over the search space,
then transfer the three parameters into chaotic space to make the search more compact, and employ
the cloud theory to establish a cooling mechanism during annealing process to enrich the influent
effects of temperature decreasing mechanism, and eventually, improve the searching quality of SA
algorithm for better forecasting accuracy.

Inspired by the excellent work of Hong et al., the authors find that the tabu search (TS) [57,58]
algorithm is simply implemented to iteratively find a near-optimal solution, so it is powerful and has
been successfully used to solve various optimization problems [59–61]. The TS algorithm, even with
a flexible memory system to record recently visited solutions, and the ability to climb out of local
minima, suffers from the tuning of the tabu tenure, meaning that it still becomes stuck at local
minima and has a low convergence speed [62,63]. Also, the best solution is fixed for long iterations,
i.e., it takes a great deal of time to escape to near-global optima from current position [64]. Therefore,
both intensification and diversification strategies should be considered to improve the robustness,
effectiveness and efficiency of simple TS; a more powerful neighborhood structure can be feasibly
constructed by applying quantum computing concepts [65]. The same old problem, premature
convergence or trapping at local optima, causes the forecasting accuracy to be unsatisfactory. This paper
seeks to extend Hong’s exploration to overcome the shortcomings of the TS algorithm, and to use the
improved TS algorithm to forecast electric loads.

In this work, quantum computing concepts are utilized to improve the intensification and
diversification of the simple TS algorithm; to improve its searching performance, and thus to
improve its forecasting accuracy. The forecasting performance of the proposed hybrid quantum
TS algorithm with an SVR model—the support vector regression quantum tabu search (SVRQTS)
model—is compared with that of four other forecasting methods that were proposed by Hong [56] and
Huang [66]. This paper is organized as follows. Section 2 presents the detail processes of the proposed
SVRQTS model. The basic formulation of SVR and the quantum tabu search (QTS) algorithm are
introduced. Section 3 presents two numerical examples and compares published methods with respect
to forecasting accuracy. Finally, Section 4 draws conclusions.

2. Methodology of Support Vector Regression Quantum Tabu Search (SVRQTS) Model

2.1. Support Vector Regression (SVR) Model

A brief introduction of an SVR model is provided as follows. For a given training data set,
G = {(xi, yi)}n

i=1, where xi is a vector of fed-in data and yi is the corresponding actual values. G is then
mapped into a high dimensional feature space by a nonlinear mapping function, ϕ(·). Theoretically,
in the feature space, there should be an optimized linear function, f, to approximate the relationship
between xi and yi. This kind of optimized linear function is the so-called SVR function and is shown
as Equation (1),
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f (x) = wTϕ(x) + b (1)

where f (x) represents the forecasting values; the coefficients w and b are coefficients which are
estimated by minimizing the empirical risk function as shown in Equation (2),

R( f ) = 1
N

N
∑

i=1
Lε(yi, wTϕ(x) + b) + 1

2 wTw

Lε(y, f (x)) =

{
| f (x)− y| − ε, if | f (x)− y| ≥ ε

0, otherwise

(2)

where Lε(y, f (x)) is the ε-insensitive loss function. The ε-insensitive loss function is employed to
find out an optimum hyper plane on the high dimensional feature space to maximize the distance
separating the training data into two subsets. Thus, the SVR focuses on finding the optimum hyper
plane and minimizing the training error between the training data and the ε-insensitive loss function.
The SVR model then minimizes the overall errors as shown in Equation (3),

Min
w,b,ξ∗ ,ξ

R(w, ξ∗, ξ) = 1
2 wTw + C

N
∑

i=1
(ξ∗i +ξi) with the constraints :

yi − wTϕ(xi)− b ≤ ε+ ξ∗i , i = 1, 2, ..., N
−yi + wTϕ(xi) + b ≤ ε+ ξi, i = 1, 2, ..., N

ξ∗i ≥ 0, i = 1, 2, ..., N
ξi ≥ 0, i = 1, 2, ..., N

(3)

The first term of Equation (3), by employing the concept of maximizing the distance of two
separated training data, is used to regularize weight sizes, to penalize large weights, and to maintain
regression function flatness. The second term, to penalize the training errors of f (x) and y, decides
the balance between confidence risk and experience risk by using the ε-insensitive loss function. C is
a parameter to specify the trade-off between the empirical risk and the model flatness. Training errors
above ε are denoted as ξ∗i , whereas training errors below −ε are denoted as ξi, which are two positive
slack variables, representing the distance from actual values to the corresponding boundary values
of ε-tube.

After the quadratic optimization problem with inequality constraints is processed, the parameter
vector w in Equation (1) is obtained in Equation (4),

w =
N

∑
i=1

(β∗
i − βi)ϕ(xi) (4)

where β∗
i , βi, satisfying the equality βi∗ β∗

i = 0, are the Lagrangian multipliers. Finally, the SVR
regression function is obtained as Equation (5) in the dual space,

f (x) =
N

∑
i=1

(β∗
i − βi)K(xi, x) + b (5)

where K(xi, xj) is so-called the kernel function, and the value of the kernel equals the inner
product of two vectors, xi and xj, in the feature space ϕ(xi) and ϕ(xj), respectively; that is,
K(xi, xj) = ϕ(xi) ·ϕ(xj). However, the computation of the inner product in the high feature space
becomes a computationally complicated problem along with the increase in the input dimensions.
Such a problem of contradiction between high dimensions and computational complexity can be
overcome by using the kernel trick or defining appropriate kernel functions in place of the dot product
of the input vectors in high-dimensional feature space. The kernel function is used to directly compute
the inner product from the input space, rather than in the high dimensional feature space. Kernel
functions provide a way to avoid the curse of dimensionality. There are several types of kernel function,
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and it is hard to determine the type of kernel functions for specific data patterns [67]. The most
commonly used kernel functions include linear functions, polynomial functions, Gaussian functions,
sigmoid functions, splines, etc. The Gaussian function, K(xi, xj) = exp

(
−0.5‖xi − xj‖2/σ2

)
, is used

widely among all these various kernel functions as it can map the input space sample set into a high
dimensional feature space effectively and is good for representing the complex nonlinear relationship
between the input and output samples. Furthermore, only one variable (the width parameter, σ) is
there to be defined. Considering the above advantages, the Gaussian radial basis function (RBF) is
employed as the kernel function in this study.

The most important consideration in maximizing the forecasting accuracy of an SVR model
is the well determination of its three parameters, which are the hyper-parameters, C, ε, and the
kernel parameter, σ. Therefore, finding efficient algorithms for evaluating these three parameters is
critical. As indicated above, inspired by Hong’s hybridization of chaotic mapping functions with
evolutionary algorithms to find favorable combinations of parameters and to overcome the premature
convergence of the evolutionary algorithms, this work uses another (quantum-based) method to find
an effective hybrid algorithm without the drawbacks of the TS algorithm by, for example, improving
its intensification and diversification. Accordingly, the QTS algorithm is developed and improved
using the hybrid chaotic mapping function. The chaotic QTS (CQTS) algorithm is hybridized with
an SVR model, to develop the support vector regression chaotic quantum tabu search (SVRCQTS)
model, to optimize parameter selection to maximize forecasting accuracy.

2.2. Chaotic Quantum Tabu Search Algorithm

2.2.1. Tabu Search (TS) Algorithm and Quantum Tabu Search (QTS) Algorithm

In 1986, Glover and Laguna first developed a renowned meta-heuristic algorithm called tabu
Search (TS) [57,58]. TS is an iterative procedure designed for exploring in the solution space to find
the near optimal solution. TS starts with a random solution or a solution obtained by a constructive
and deterministic method and evaluates the fitness function. Then all possible neighbors of the given
solution are generated and evaluated. A neighbor is a solution which can be reached from the current
solution by a simple move. New solution is generated from the neighbors of the current one. To avoid
retracing the used steps, the method records recent moves in a tabu list. The tabu list keeps track of
previously explored solutions and forbids the search from returning to a previously visited solution.
If the best of these neighbors is not in the tabu list, pick it to be the new current solution. One of
the most important features of TS is that a new solution may be accepted even if the best neighbor
solution is worse than the current one. In this way it is possible to overcome trapping in local minima.
TS algorithm has been successfully used to lots of optimization problems [59–61].

However, in the TS algorithm, if a neighboring solution is not in the tabu list, TS sets it as the
new current solution, but this solution is commonly worse than the current best solution. TS typically
finds local minima and so do not change the best solution for many iterations; therefore, reaching
a near-global minimum takes a long time and its convergence speed is low [62]. To overcome this
shortcoming of the TS algorithm; to reduce its convergence time, to solve the similar old problem,
premature convergence or trapping at local optima, the qubit concept and the quantum rotation gate
mechanism can be used to construct a more powerful neighborhood structure by quantum computing
concepts [65].

In the traditional TS algorithm, an initial solution is randomly generated, and its fitness function
is evaluated to determine whether it should be set as the current best solution. However, in quantum
computing, the initial solution is generated by using the concept of qubit to assign a real value in the
interval (0,1), consistent with Equation (6). A qubit is the smallest unit of information for a quantum
representation, and is mathematically represented as a column vector (unit vector), which can be
identified in 2D Hilbert space. Equation (6) describes a quantum superposition between these two
states. In quantum measurement, the super-position between states collapses into either the “ground
state” or the “excited state”.
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|ψ〉 = c1 |0〉+ c2 |1〉 (6)

where |0〉 represents the “ground state”, |1〉 denotes the “excited state”; (c1, c2) ∈ ℵ; c1 and c2 are the
probability amplitudes of these two states; ℵ is the set of complex numbers.

The most popular quantum gate, the quantum rotation gate (given by Equation (7)), is used to
update the initial solution.

[
α′

i
β′

i

]
=

[
cos(θi)− sin(θi)

sin(θi)− cos(θi)

] [
αi
βi

]
(7)

where (α′
i,β

′
i) is the updated qubit; θi is the rotation angle.

The quantum orthogonality process (Equation (8)) is implemented to ensure that the
corresponding value exceeds rand(0,1). The tabu memory is introduced and set to null before the
process is executed. The QTS begins with a single vector, vbest, and terminates when it reaches the
predefined number of iterations. In each iteration, a new set of vectors, V(BS) is generated in the
neighborhood of vbest. For each vector in V(BS), if it is not in the tabu memory and has a higher
fitness value than vbest, then vbest is updated as the new vector. When the tabu memory is full,
the first-in-first-out (FIFO) rule is applied to eliminate a vector from the list.

|c1|2 + |c2|2 = 1 (8)

where |c1|2 and |c2|2 are the two probabilities that are required to transform the superposition between
the states (as in Equation (6)) into |0〉 and |1〉, respectively.

2.2.2. Chaotic Mapping Function for Quantum Tabu Search (QTS) Algorithm

As mentioned, the chaotic variable can be adopted by applying the chaotic phenomenon to
maintain diversity in the population to prevent premature convergence. The CQTS algorithm is based
on the QTS algorithm, but uses the chaotic strategy when premature convergence occurs during
the iterative searching process; at other times, the QTS algorithm is implemented, as described in
Section 2.2.1.

To strengthening the effect of chaotic characteristics, many studies have used the logistic mapping
function as a chaotic sequence generator. The greatest disadvantage of the logistic mapping function is
that its distribution is concentration at both ends, with little in the middle. The Cat mapping function
has a better chaotic distribution characteristic, so in this paper, the Cat mapping function is used as the
chaotic sequence generator.

The classical Cat mapping function is the two-dimensional Cat mapping function [68], shown as
Equation (9), {

xn+1 = (xn + yn) mod1
yn+1 = (xn + 2yn) mod1

(9)

where x mod 1 = x − [x], mod, the so-called modulo operation, is used for the fractional parts of a real
number x by subtracting an appropriate integer.

2.2.3. Implementation Steps of Chaotic Quantum Tabu Search (CQTS) Algorithm

The procedure of the hybrid CQTS algorithm with an SVR model is as follows; Figure 1 presents
the corresponding flowchart.

Step 1 Initialization. Randomly generate the initial solution, P, that includes the values of three
parameters in an SVR model.

Step 2 Objective value. Compute the objective values (forecasting errors) by using the initial
solution, P. The mean absolute percentage error (MAPE), given by Equation (10), is used to measure
the forecasting errors.
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MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣× 100% (10)

where N is the number of forecasting periods; yi is the actual value in period i; fi denotes the forecast
value in period i.

Step 3 Generate neighbors. Using the qubit concept, Equation (6) sets the initial solution, P,
to a real value between interval (0,1) and then obtains P′. Then, use the quantum rotation gate, given
by Equation (7), to generate the neighbor, P′ ′.

Step 4 Pick. Pick a new individual from the examined neighbors based on the quantum tabu
condition, which is determined by whether the corresponding value of P′ ′ exceeds rand(0,1).

Step 5 Update the best solution (objective value) and the tabu memory list. If P′ ′ > rand(0,1),
then update the solution to P* in the quantum tabu memory, vbest. Eventually, the objective value
is updated as the current best solution. If the tabu memory is full, then the FIFO rule is applied to
eliminate a P* from the list.

Step 6 Premature convergence test. Calculate the mean square error (MSE), given by
Equation (11), to evaluate the premature convergence status [69], and set the criteria, δ.

MSE =
1
S

S

∑
i=1

(
fi − favg

f

)2

(11)

where fi is the current objective value; favg is the mean of all previous objective values, and f is given
by Equation (12),

f = max
{

1, max
∀i∈S

{∣∣ fi − favg
∣∣}} (12)

An MSE of less than δ indicates premature convergence. Therefore, the Cat mapping function,
Equation (9), is used to find new optima, and the new optimal value is set as the best solution.

Step 7 Stopping criteria. If the stopping threshold (MAPE, which quantifies the forecasting
accuracy) or the maximum number of iterations is reached, then training is stopped and the results
output; otherwise, the process returns to step 3.

3. Numerical Examples

3.1. Data Set of Numerical Examples

3.1.1. The First Example: Taiwan Regional Load Data

In the first example, Taiwan’s regional electricity load data from a published paper [56,66] are
used to establish the proposed SVRCQTS forecasting model. The forecasting performances of this
proposed model is compared with that of alternatives. The data set comprises 20 years (from 1981 to
2000) of load values for four regions of Taiwan. This data set is divided into several subsets—a training
set (comprising 12 years of load data from 1981 to 1992), a validation set (comprising four years of data
from 1993 to 1996), and a testing set (comprising four years of data from 1997 to 2000). The forecasting
performances are measured using MAPE (Equation (10)).

In the training stage, the rolling forecasting procedure, proposed by Hong [56], is utilized to help
CQTS algorithm determining appropriate parameter values of an SVR model in the training stage,
and eventually, receive more satisfied results. For details, the training set is further divided into two
subsets, namely the fed-in (for example, n load data) and the fed-out (12 − n load data), respectively.
Firstly, the preceding n load data are used to minimize the training error by the structural risk principle;
then, receive one-step-ahead (in-sample) forecasting load, i.e., the (n + 1)th forecasting load. Secondly,
the next n load data, i.e., from 2nd to (n + 1)th data, are set as the new fed-in and similarly used to
minimize the training error again to receive the second one-step-ahead (in-sample) forecasting load,
named as the (n + 2)th forecasting load. Repeat this procedure until the 12nd (in-sample) forecasting
load is obtained with the training error. The training error can be obtained during each iteration, these
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parameters would be decided by QTS algorithm, and the validation error would be also calculated
in the meanwhile. Only with the smallest validation and testing errors will the adjusted parameter
combination be selected as the most appropriate parameter combination. The testing data set is only
used for examining the forecasting accuracy level. Eventually, the four-year forecasting electricity load
demands in each region are forecasted by the SVRCQTS model. The complete process is illustrated in
Figure 2.

3.1.2. The Second Example: Taiwan Annual Load Data

In the second example, Taiwan’s annual electricity load data from a published paper are
used [56,66]. The data set is composed of 59 years of load data (from 1945 to 2003), which are
divided into three subsets—a training set (40 years of load data from 1945 to 1984), a validation set
(10 ten of load data from 1985 to 1994), and a testing set (nine years of load data from 1995 to 2003).
The relevant modeling procedures are as in the first example.

3.1.3. The Third Example: 2014 Global Energy Forecasting Competition (GEFCOM 2014) Load Data

The third example involves the 744 h of load data from the 2014 Global Energy Forecasting
Competition [70] (from 00:00 1 December 2011 to 00:00 1 January 2012). The data set is divided into
three subsets—a training set (552 h of load data from 01:00 1 December 2011 to 00:00 24 December
2011), a validation set (96 h of load data from 01:00 24 December 2011 to 00:00 28 December 2011),
and testing set (96 h of load data from 01:00 28 December 2011 to 00:00 1 January 2012). The relevant
modeling procedures are as in the preceding two examples.

3.2. The SVRCQTS Load Forecasting Model

3.2.1. Parameters Setting in CQTS Algorithm

For some controlling parameters settings during modeling process, such as the total number of
iteration is all fixed as 10,000; σ ∈ [0, 15], ε ∈ [0, 100] in all examples, C ∈ [0, 20, 000] in Example 1,
C ∈ [

0, 3 × 1010] in Examples 2 and 3; δ is all set to 0.001.

3.2.2. Forecasting Results and Analysis for Example 1

In Example 1, the combination of parameters of the most appropriate model are evaluated using
the QTS algorithm and the CQTS algorithm for each region, and almost has the smallest testing MAPE
value. Table 1 presents these well-determined parameters for each region.

Table 1. Parameters determination of SVRCQTS and SVRQTS models (example 1). SVRCQTS:
support vector regression chaotic quantum tabu search; SVRQTS: support vector regression quantum
Tabu search.

Regions
SVRCQTS Parameters

MAPE of Testing (%)
σ C ε

Northern 10.0000 0.8000 × 1010 0.7200 1.0870
Central 6.0000 1.6000 × 1010 0.5500 1.2650

Southern 8.0000 1.4000 × 1010 0.6500 1.1720
Eastern 8.0000 0.8000 × 1010 0.4300 1.5430

Regions
SVRQTS Parameters

MAPE of Testing (%)
σ C ε

Northern 4.0000 0.8000 × 1010 0.2500 1.3260
Central 12.0000 1.0000 × 1010 0.2800 1.6870

Southern 10.0000 0.8000 × 1010 0.7200 1.3670
Eastern 8.0000 1.4000 × 1010 0.4200 1.9720
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Figure 1. Quantum tabu search (QTS) algorithm flowchart.
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Figure 2. The rolling-based forecasting procedure.

Table 2 presents the forecasting accuracy index (MAPE) and electricity load values of each region
that are forecast, under the same conditions, using alternative models, which were include SVRCQTS,
SVRQTS, SVR with chaotic particle swarm optimization (SVRCQPSO), SVR with quantum PSO
(SVRQPSO), and SVR with PSO (SVRPSO) models. Clearly, according to Table 2, the SVRCQTS
model is superior to the other SVR-based models. Applying quantum computing mechanics to the TS
algorithm is a feasible means of improving the satisfied, and thus improving the forecasting accuracy
of the SVR model. The Cat mapping function has a critical role in finding an improved solution when
the QTS algorithm becomes trapped in local optima or requires a long time to solve the problem of
interest). For example, for the central region, the QTS algorithm is utilized to find the best solution,
(σ, C, ε) = (12.0000, 1.0000 × 1010, 0.2800), with a forecasting error, MAPE, of 1.6870%. The solution
can be further improved by using the CQTS algorithm with (σ, C, ε) = (6.0000, 1.6000 × 1010, 0.5500),
which has a smaller forecasting accuracy of 1.2650%. For other regions, the QTS algorithm yields
an increased forecasting performance to 1.3260% (northern region), 1.3670% (southern region) and
1.9720% (eastern region). All of these models can also be further improved to increase the accuracy of
the forecasting results by using the Cat mapping function (the CQTS algorithm), yielding a forecasting
accuracy of 1.087% for the northern region, 1.1720% for the southern region, and 1.5430% for the
eastern region.

To verify that the proposed SVRCQTS and SVRQTS models offers an improved forecasting
accuracy, the Wilcoxon signed-rank test, recommended by Diebold and Mariano [71], is used. In this
work, the Wilcoxon signed-rank test is performed with two significance levels, α = 0.025 and α = 0.005,
by one-tail-tests. Table 3 presents the test results, which reveal that the SVRCQTS model significantly
outperforms other models for the northern and eastern regions in terms of MAPE.
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Table 2. Forecasting results (and absolute errors) of SVRCQTS, SVRQTS, and other models (example 1)
(unit: 106 Wh).

Year
Northern Region

SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1997 11,123 (101) 11,101 (121) 11,339 (117) 11,046 (176) 11,232 (10) 11,245 (23)
1998 11,491 (151) 11,458 (184) 11,779 (137) 11,787 (145) 11,628 (14) 11,621 (21)
1999 12,123 (142) 12,154 (173) 11,832 (149) 12,144 (163) 12,016 (35) 12,023 (42)
2000 13,052 (128) 13,080 (156) 12,798 (126) 12,772 (152) 12,306 (618) 12,306 (618)

MAPE (%) 1.0870 1.3260 1.1070 1.3370 1.3187 1.3786

Year
Central Region

SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1997 5009 (52) 5132 (71) 4987 (74) 5140 (79) 5066 (5) 5085 (24)
1998 5167 (79) 5142 (104) 5317 (71) 5342 (96) 5168 (78) 5141 (105)
1999 5301 (68) 5318 (85) 5172 (61) 5130 (103) 5232 (1) 5236 (3)
2000 5702 (69) 5732 (99) 5569 (64) 5554 (79) 5313 (320) 5343 (290)

MAPE (%) 1.2650 1.6870 1.2840 1.6890 1.8100 1.9173

Year
Southern Region

SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1997 6268 (68) 6436 (100) 6262 (74) 6265 (71) 6297 (39) 6272 (64)
1998 6398 (80) 6245 (73) 6401 (83) 6418 (100) 6311 (7) 6314 (4)
1999 6343 (84) 6338 (79) 6179 (80) 6178 (81) 6324 (65) 6327 (68)
2000 6735 (69) 6704 (100) 6738 (66) 6901 (97) 6516 (288) 6519 (285)

MAPE (%) 1.1720 1.3670 1.1840 1.3590 1.4937 1.5899

Year
Eastern Region

SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1997 362 (4) 364 (6) 353 (5) 350 (8) 370 (12) 367 (9)
1998 390 (7) 388 (9) 404 (7) 390 (7) 376 (21) 374 (23)
1999 395 (6) 394 (7) 394 (7) 410 (9) 411 (10) 409 (8)
2000 427 (7) 429 (9) 414 (6) 413 (7) 418 (2) 415 (5)

MAPE (%) 1.5430 1.9720 1.5940 1.9830 2.1860 2.3094

Note: *: The values in the parentheses are the absolute error, which is defined as: |yi − fi |, where yi is the
actual value in period i; fi denotes is the forecast value in period i. SVRCQPSO: support vector regression
chaotic quantum particle swarm optimization; SVRQPSO: support vector regression quantum particle swarm
optimization ; SVRCPSO: support vector regression chaotic particle swarm optimization; SVRPSO: support
vector regression particle swarm optimization.

Table 3. Wilcoxon signed-rank test (example 1).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 0 α = 0.005; W = 0 p-Value

Northern region

SVRCQTS vs. SVRPSO 0 a 0 a N/A
SVRCQTS vs. SVRCPSO 0 a 0 a N/A
SVRCQTS vs. SVRQPSO 0 a 0 a N/A
SVRCQTS vs. SVRCQPSO 0 a 0 a N/A
SVRCQTS vs. SVRQTS 1 1 N/A

Central region

SVRCQTS vs. SVRPSO 0 a 0 a N/A
SVRCQTS vs. SVRCPSO 0 a 0 a N/A
SVRCQTS vs. SVRQPSO 0 a 0 a N/A
SVRCQTS vs. SVRCQPSO 1 1 N/A
SVRCQTS vs. SVRQTS 0 a 0 a N/A

Southern region

SVRCQTS vs. SVRPSO 0 a 0 a N/A
SVRCQTS vs. SVRCPSO 0 a 0 a N/A
SVRCQTS vs. SVRQPSO 0 a 0 a N/A
SVRCQTS vs. SVRCQPSO 1 1 N/A
SVRCQTS vs. SVRQTS 0 a 0 a N/A

Eastern region

SVRCQTS vs. SVRPSO 0 a 0 a N/A
SVRCQTS vs. SVRCPSO 0 a 0 a N/A
SVRCQTS vs. SVRQPSO 0 a 0 a N/A
SVRCQTS vs. SVRCQPSO 1 1 N/A
SVRCQTS vs. SVRQTS 0 a 0 a N/A

Note: a denotes that the SVRCQTS model significantly outperforms other alternative models.

165



Energies 2016, 9, 873

3.2.3. Forecasting Results and Analysis for Example 2

In Example 2, the processing steps are those in the preceding example. The parameters in
an SVR model are computed using the QTS algorithm and the CQTS algorithm. The finalized
models exhibit the best forecasting performance with the smallest MAPE values. Table 4 presents the
well determined parameters for annual electricity load data. To compare with other benchmarking
algorithms, Table 4 presents all results from relevant papers on SVR-based modeling, such as those
of Hong [56], who proposed the SVRCPSO and SVR with PSO (SVRPSO) models and Huang [66],
who proposed the SVRCQPSO and SVRQPSO models.

Table 5 presents the MAPE values and forecasting results obtained using the alternative forecasting
models. The SVRCQTS model outperforms the other models, indicating quantum computing is an
ideal approach to improve the performance of any SVR-based model, and that the Cat mapping
function is very effective for solving the problem of premature convergence and the fact that it is
time-saving. Clearly, the QTS algorithm yields (σ, C, ε) = (5.0000, 1.3000 × 1011, 0.630) with a MAPE
of 1.3210%, whereas the CQTS algorithm provides a better solution, (σ, C, ε) = (6.0000, 1.8000 × 1011,
0.340) with a MAPE of 1.1540%. Figure 3 presents the real values and the forecast values obtained
using the various models.

 

Figure 3. Actual values and forecasting values of SVRCQTS, SVRQTS, and other models (Example 2).
SVRCQTS: support vector regression chaotic quantum Tabu search; SVRQTS: support vector regression
quantum Tabu search.

Table 4. Parameters determination of SVRCQTS and SVRQTS models (Example 2). PSO: particle
swarm optimization; CPSO: chaotic particle swarm optimization; QPSO: quantum particle swarm
optimization; CQPSO: chaotic quantum particle swarm optimization.

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

PSO algorithm [56] 0.2293 1.7557 × 1011 10.175 3.1429
CPSO algorithm [56] 0.2380 2.3365 × 1011 39.296 1.6134
QPSO algorithm [66] 12.0000 0.8000 × 1011 0.380 1.3460

CQPSO algorithm [66] 10.0000 1.5000 × 1011 0.560 1.1850
QTS algorithm 5.0000 1.3000 × 1011 0.630 1.3210

CQTS algorithm 6.0000 1.8000 × 1011 0.340 1.1540
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Table 5. Forecasting results (and absolute errors) of SVRCQTS, SVRQTS, and other models (unit: 106 Wh).

Years SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1995 106,353 (985) 104,241 (1127) 106,379 (1011) 104,219 (1149) 105,960 (592) 102,770 (2598)
1996 110,127 (1013) 109,246 (1894) 109,573 (1567) 109,210 (1930) 112,120 (980) 109,800 (1340)
1997 117,180 (1119) 120,174 (1875) 117,149 (1150) 120,210 (1911) 118,450 (151) 115,570 (2729)
1998 130,023 (1893) 129,501 (1371) 129,466 (1336) 129,527 (1397) 123,400 (4730) 120,650 (7480)
1999 130,464 (1262) 133,275 (1549) 133,646 (1920) 133,304 (1578) 130,940 (786) 128,240 (3486)
2000 144,500 (2087) 140,099 (2314) 140,945 (1468) 140,055 (2358) 136,420 (5993) 137,250 (5163)
2001 144,884 (1260) 141,271 (2353) 145,734 (2110) 141,227 (2397) 142,910 (714) 140,230 (3394)
2002 149,099 (2094) 149,675 (1518) 149,652 (1541) 149,646 (1547) 150,210 (983) 151,150 (43)
2003 157,099 (2281) 161,001 (1621) 161,458 (2078) 161,032 (1652) 154,130 (5250) 146,940 (12,440)

MAPE (%) 1.1540 1.3210 1.1850 1.3460 1.6134 3.1429

Note: *: the value in the parentheses is the absolute error which is defined as: |yi − fi |, where yi is the actual
value in period i; fi denotes is the forecast value in period i.

To ensure the significance of the proposed SVRCQTS model in Example 2, the Wilcoxon
signed-rank test is again considered performed. Table 6 shows that the SVRCQTS model passes
the test and significantly improves on other alternatives.

Table 6. Wilcoxon signed-rank test (example 2).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 5 α = 0.005; W = 8 p-Value

SVRCQTS vs. SVRPSO 2 a 2 a N/A
SVRCQTS vs. SVRCPSO 3 a 3 a N/A
SVRCQTS vs. SVRQPSO 4 a 4 a N/A

SVRCQTS vs. SVRCQPSO 4 a 4 a N/A
SVRCQTS vs. SVRQTS 4 a 4 a N/A

Note: a denotes that the SVRCQTS model significantly outperforms other alternative models.

3.2.4. Forecasting Results and Analysis for Example 3

In Example 3, the modeling processes are the same as in the preceding two examples.
The parameters in the SVR model are calculated using the QTS algorithm and the CQTS algorithm.
Table 7 presents the details of the determined models and the alternatives models for the GEFCOM
2014 data set. Huang [66] used the GEFCOM 2014 load data to forecast the electric load, therefore,
the models of Huang [66] are included in this paper as the alternative models.

The alternative models of Huang [66]—ARIMA(0,1,1), back propagation neural networks (BPNN),
SVRPSO, SVRCPSO, SVRQPSO, SVRCQPSO, and SVRQTS models—are compared herein under fixed
conditions. Figure 4 displays the real values and the forecast results obtained using all compared
models, and demonstrates that the SVRCQTS model outperforms the SVRQTS and SVRQPSO models.
It also reveals that applying quantum computing mechanics to the TS algorithm improves the
forecasting accuracy level for any SVR-based models. The SVRCQTS model has a smaller MAPE value
than the SVRQTS model.

Table 7. Parameters determination of SVRCQTS, SVRQTS, and other models (Example 3).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

PSO algorithm [66] 7.000 34.000 0.9400 3.1500
CPSO algorithm [66] 22.000 19.000 0.6900 2.8600
QPSO algorithm [66] 9.000 42.000 0.1800 1.9600

CQPSO algorithm [66] 19.000 35.000 0.8200 1.2900
QTS algorithm 25.000 67.000 0.0900 1.8900

CQTS algorithm 12.000 26.000 0.3200 1.3200
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Figure 4. Actual values and forecasting values of SVRCQTS, SVRQTS, and other models (Example 3).

Finally, Table 8 presents the results of the Wilcoxon signed-rank test. It indicates that the
proposed SVRCQTS model almost receives statistical significance in forecasting performances under
the significant level, α = 0.05. Therefore, the proposed SVRCQTS model significantly outperforms
other alternatives in terms of α = 0.05.

Table 8. Wilcoxon signed-rank test (Example 3).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 2328 α = 0.05; W = 2328 p-Value

SVRCQTS vs. ARIMA 1621 a 1621 a 0.00988
SVRCQTS vs. BPNN 1600 a 1600 a 0.00782

SVRCQTS vs. SVRPSO 2148 2148 a 0.04318
SVRCQTS vs. SVRCPSO 2163 2163 a 0.04763
SVRCQTS vs. SVRQPSO 1568 a 1568 a 0.00544

SVRCQTS vs. SVRCQPSO 1344 a 1344 a 0.00032
SVRCQTS vs. SVRQTS 1741 1741 a 0.03156

Note: a denotes that the SVRCQTS model significantly outperforms other alternative models.

4. Conclusions

This work proposes a hybrid model that incorporates an SVR-based model, the chaotic cat
mapping function, and the QTS algorithm for forecasting electricity load demand. Experimental
results reveal that the proposed model exhibits significantly better forecasting performance than
other SVR-based forecasting models. In this paper, quantum mechanics is utilized to improve the
intensification and diversification of the simple TS algorithm, and thereby to improve its forecasting
accuracy. Chaotic cat mapping is also used to help prevent the QTS algorithm from becoming trapped
in local optima in the modeling processes. This work marks a favorable beginning of the hybridization
of quantum computing mechanics and the chaotic mechanism to expand the search space, which is
typically limited by Newtonian dynamics.
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