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Preface to “Hybrid Advanced Techniques for 
Forecasting in Energy Sector” 

Accurate forecasting performance in the energy sector is a primary factor in the modern 
restructured power market, accomplished by any novel advanced hybrid techniques. 
Particularly in the Big Data era, forecasting models are always based on a complex function 
combination, and energy data are always complicated by factors such as seasonality, cyclicity, 
fluctuation, dynamic nonlinearity, and so on. To comprehensively address this issue, it is 
insufficient to concentrate only on simply hybridizing evolutionary algorithms with each other, 
or on hybridizing evolutionary algorithms with chaotic mapping, quantum computing, 
recurrent and seasonal mechanisms, and fuzzy inference theory in order to determine suitable 
parameters for an existing model. It is necessary to also consider hybridizing or combining two 
or more existing models (e.g., neuro-fuzzy model, BPNN-fuzzy model, seasonal support vector 
regression–chaotic quantum particle swarm optimization (SSVR-CQPSO), etc.). These advanced 
novel hybrid techniques can provide more satisfactory energy forecasting performances. 

This book contains articles from the Special Issue titled “Hybrid Advanced Techniques for 
Forecasting in the Energy Sector”, which aimed to attract researchers with an interest in the 
research areas described above. As Fan et al. [1] indicate, the research direction of energy 
forecasting in recent years has concentrated on proposing hybrid or combined models, such as: 
(1) hybridizing or combining these artificial intelligence models with each other; (2) hybridizing
or combining with traditional statistical tools; and (3) hybridizing or combining with superior
evolutionary algorithms. Therefore, this Special Issue was interested in contributions to these
recent developments (i.e., hybridizing or combining any advanced techniques in energy
forecasting). The hybrid forecasting models should be with the superior capabilities over the
traditional forecasting approaches, with the ability to overcome some embedded drawbacks,
and with the very superiority to achieve significant improved forecasting accuracy. 

The 14 articles collected in this compendium all display a broad range of cutting-edge 
topics in the hybrid advanced technologies. The preface author believes that the applications of 
hybrid technologies will play an important role in energy forecasting accuracy improvements, 
such as hybrid different evolutionary algorithms/models to overcome some critical 
shortcomings of single evolutionary algorithm/models or direct improvements of these 
shortcomings by innovative theoretical arrangements. 

Based on these collected articles, an interesting emergent issue for future research is how 
to help researchers to employ the proper hybrid technology for different data sets. This is 
because the most important problem for any analytical model (e.g., classification, forecasting, 
etc.) is how to capture patterns in the data and apply the learned patterns or rules to achieve 
satisfactory performance (i.e., the key factor in success is determining how to suitably search for 
data patterns). However, each model has an excellent ability to capture a specific data pattern. 
For example, exponential smoothing and ARIMA models focus on strict increasing (or 
decreasing) time series data (i.e., linear patterns). They even have a seasonal modification 
mechanism to analyze seasonal (cyclic) change. Due to the use of an artificial learning function 
to adjust the training rules, artificial neural networks (ANNs) excel only if a historical data 
pattern has been learned. They lack a systematic explanation of how the accurate forecasting 
results are obtained. Support vector regression (SVR) can achieve superior performance only if 
there is a proper parameters determination for the search algorithms. Therefore, it is essential to 
construct an inference system to collect the characteristic rules to determine the data pattern 
category.  

The next main problem in model development is assigning the appropriate approach to 
implement forecasting: For (1) ARIMA or exponential smoothing approaches, only their 



 x 

differential or seasonal parameters need to be adjusted. (2) In ANN or SVR models, the 
forthcoming problem is how to determine the best combination of parameters (e.g., number of 
hidden layers, units of each layer, learning rate—also called hyper-parameters) to achieve 
superior forecasting performance. Particularly, for the focus of this discussion, in order to 
determine the most proper parameter combination, a series of evolutionary algorithms should 
be employed to test their compatibility with the data pattern. Experimental findings 
demonstrated that those evolutionary algorithms also had merits and drawbacks. For example, 
genetic algorithm (GA) and immune algorithm (IA) performed excellently with regular trend 
data patterns (real numbers) [2,3], SA excelled with fluctuating or noisy data patterns (real 
numbers) [4], Tabu search algorithm (TA) performed well with regular cyclic data pattern (real 
numbers) [5], and ant colony optimization algorithm (ACO) did well in integer number 
searching [6]. 

As mentioned previously, it is possible to build an intelligent support system to improve 
the efficiency of hybrid evolutionary algorithms/models or to make improvements by 
innovative theoretical arrangements (chaotization and cloud theory) in all 
forecasting/prediction/classification applications. Firstly, the original data should be filtered by 
a data base with a well-defined characteristic data pattern rules set (e.g., linear, logarithmic, 
inverse, quadratic, cubic, compound, power, growth, exponential, etc.), in order to recognize 
the appropriate data pattern (fluctuating, regular, or noisy). The recognition decision rules 
should include two principles: (1) the change rate of two continuous data; and (2) the 
decreasing or increasing trend of the change rate (i.e., behavior of the approached curve). 
Secondly, adequate improvement tools should be selected (e.g., hybrid evolutionary algorithms, 
hybrid seasonal mechanism, chaotization of decision variables, cloud theory, and any 
combination of all tools). In order to avoid becoming trapped in local optima, improvement 
tools can be employed into these optimization problems to obtain an improved, satisfactory 
solution. 

This discussion of the work by the author of this preface highlights work in an emerging 
area of hybrid advanced techniques that has come to the forefront over the past decade. The 
collected articles in this text span many cutting edge areas that are truly interdisciplinary in 
nature. 

Wei-Chiang Hong 
Guest Editor 

Reference  

1. Fan, G.F.; Peng, L.L.; Hong, W.C. Short term load forecasting based on phase space reconstruction
algorithm and bi-square kernel regression model. Appl. Energy 2018, 224, 13–33. 

2. Hong, W.C. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting.
Neural Comput. Appl. 2012, 21, 583–593. 

3. Hong, W.C.; Dong, Y.; Zhang, W.Y.; Chen, L.Y.; Panigrahi, B.K. Cyclic electric load forecasting by
seasonal SVR with chaotic genetic algorithm. Int. J. Electr. Power Energy Syst. 2013, 44, 604–614. 

4. Geng, J.; Huang, M.L.; Li, M.W.; Hong, W.C. Hybridization of seasonal chaotic cloud simulated
annealing algorithm in a SVR-based load forecasting model. Neurocomputing 2015, 151, 1362–1373. 

5. Hong, W.C.; Pai, P.F.; Yang, S.L.; Theng, R. Highway traffic forecasting by support vector regression
model with tabu search algorithms. In Proceedings the IEEE International Joint Conference on Neural
Networks, Vancouver, BC, Canada, 16–21 July 2006, pp. 1617–21. 

6. Hong, W.C.; Dong, Y.; Zheng, F.; Lai, C.Y. Forecasting urban traffic flow by SVR with continuous
ACO. Appl. Math. Modelling 2011, 35, 1282–1291. 







energies

Article

Support Vector Regression Model Based on Empirical
Mode Decomposition and Auto Regression for
Electric Load Forecasting

Guo-Feng Fan 1, Shan Qing 1,*, Hua Wang 1, Wei-Chiang Hong 2 and Hong-Juan Li 1

1 Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction,
Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China;
guofengtongzhi@163.com (G.-F.F.); wanghua65@163.com (H.W.); fxzwlihongjuan@163.com (H.-J.L.)

2 Department of Information Management, Oriental Institute of Technology/58 Sec. 2, Sichuan Rd., Panchiao,
Taipei 220, Taiwan; samuelsonhong@gmail.com

* Author to whom correspondence should be addressed; yanls22@163.com;
Tel.: +86-1388-855-2395; Fax: +86-0871-6515-3405.

Received: 28 November 2012; in revised form: 2 February 2013; Accepted: 25 March 2013;
Published: 2 April 2013

Abstract: Electric load forecasting is an important issue for a power utility, associated with the
management of daily operations such as energy transfer scheduling, unit commitment, and load
dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR), this
paper presents a SVR model hybridized with the empirical mode decomposition (EMD) method and
auto regression (AR) for electric load forecasting. The electric load data of the New South Wales
(Australia) market are employed for comparing the forecasting performances of different forecasting
models. The results confirm the validity of the idea that the proposed model can simultaneously
provide forecasting with good accuracy and interpretability.

Keywords: electric load prediction; support vector regression; empirical mode decomposition
auto regression

1. Introduction

Electric energy is an unstored resource, thus, electric load forecasting plays a vital role in the
management of the daily operations of a power utility, such as energy transfer scheduling, unit
commitment, and load dispatch. With the emergence of load management strategies, it is highly
desirable to develop accurate, fast, simple, robust and interpretable load forecasting models for these
electric utilities to achieve the purposes of higher reliability and better management [1].

In the past decades, researchers have proposed lots of methodologies to improve load
forecasting accuracy. For example, Bianco et al. [2] proposed linear regression models for electricity
consumption forecasting; Zhou et al. [3] applied a grey prediction model for energy consumption;
Afshar and Bigdeli [4] proposed an improved singular spectral analysis method for short-term load
forecasting (STLF) for the Iranian electricity market; and Kumar and Jain [5] applied three time
series models—Grey-Markov model, Grey-Model with rolling mechanism, and singular spectrum
analysis—to forecast the consumption of conventional energy in India. By employing artificial neural
networks, references [6–9] proposed several useful short-term load forecasting models. By hybridizing
the popular method and evolutionary algorithm, the authors of [10–13] demonstrated further
performance improvements which could be made for energy forecasting. Though these methods
can yield a significant proven forecasting accuracy improvement in some cases, they have usually
focused on the improvement of the accuracy without paying special attention to the interpretability.

Energies 2013, 6, 1887–1901; doi:10.3390/en6041887 www.mdpi.com/journal/energies1
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Recently, expert systems, mainly developed by means of linguistic fuzzy rule-based systems, allow us
to deal with the system modeling with good interpretability [14]. However, these models have strong
dependency on an expert and often cannot generate good accuracy. Therefore, combination models,
based on the popular methods, expert systems and other techniques, are proposed to satisfy both high
accurate level and interpretability.

Based on the advantages in statistical learning capacity to handle high dimensional data, the SVR
(support vector regression) model, especially suitable for small sample size learning, has become a
popular algorithm for many forecasting problems [15–17]. As a disadvantage of an SVR method, it is
easily trapped into a local optimum during the nonlinear optimization process of the three parameters,
in the meanwhile, its robustness and sparsity are also lacking satisfactory levels. On the other hand,
empirical mode decomposition (EMD) and auto regression (AR), a fast, easy and reliable unsupervised
clustering algorithm, has been successfully applied to many fields, such as communication, society,
economy, engineering, and has achieved good effects [18–20]. Particularly, the EMD method can
effectively extract the components of the basic mode from nonlinear or non-stationary time series [21],
i.e., the original complex time series can be transferred into a series of single and apparent components.
It can effectively reduce the interactions among lots of singular values and improve the forecasting
performance of a single kernel function. Thus, it is useful to employ suitable kernel functions for
forecasting the medium-and-long-term tendencies of the time series.

In this paper, we present a new hybrid model with clear human-understandable knowledge on
training data to achieve a satisfactory level of forecasting accuracy. The principal idea is hybridizing
EMD with SVR and AR, namely creating the EMDSVRAR model, to receive better solutions. The
proposed EMDSVRAR model has the capability of smoothing and reducing the noise (inherited from
EMD), the capability of filtering dataset and improving forecasting performance (inherited from
SVR), and the in capability of effectively forecasting the future tendencies of data (inherited from
AR). The forecasting outputs of an unseen example by using the hybrid method are described in the
following section.

To show the applicability and superiority of the proposed algorithm, half-hourly electric load
data (48 data points per day) from New South Wales (Australia) with two different sample sizes
are employed to compare the forecasting performances among the proposed model and other four
alternative models, namely the PSO-BP model (BP neural network trained by a particle swarm
optimization algorithm), SVR model, PSO-SVR model (optimal combination of SVR parameters
determined by a PSO algorithm), and the AFCM model (an adaptive fuzzy combination model based
on a self-organizing map and support vector regression). This study also suggests that researchers
and practitioners should carefully consider the nature and intention in using these electric load data
while neural networks, statistical methods, and other hybrid models are being determined to be the
critical management tools in electricity markets. The experimental results indicate that this proposed
EMDSVRAR model has the following advantages: (1) simultaneously satisfies the need for high levels
of accuracy and interpretability; (2) the proposed model can tolerate more redundant information than
the original SVR model, thus, it has better generalization ability.

The rest of this paper is organized as follows: in Section 2, the EMDSVRAR forecasting model
is introduced and the main steps of the model are given. In Section 3, the data description and the
research design are outlined. The numerical results and comparisons are presented and discussed in
Section 4. A brief conclusion of this paper and the future research are provided in Section 5.

2. Support Vector Regression with Empirical Mode Decomposition

2.1. Empirical Mode Decomposition (EMD)

The EMD method is based on the simple assumption that any signal consists of different simple
intrinsic modes of oscillations. Each linear or non-linear mode will have the same number of extreme
and zero-crossings. There is only one extreme between successive zero-crossings. Each mode should

2



Energies 2013, 6, 1887–1901

be independent of the others. In this way, each signal could be decomposed into a number of intrinsic
mode functions (IMFs), each of which should satisfy the following two definitions [22]:

a In the whole data set, the number of extreme and the number of zero-crossings should either
equal or differ to each other at most by one.

b At any point, the mean value of the envelope defined by local maxima and the envelope defined
by the local minima is zero.

An IMF represents a simple oscillatory mode compared with the simple harmonic function. With
the definition, any signal x(t) can be decomposed as following steps:

1 Identify all local extremes, and then connect all the local maxima by a cubic spline line as the
upper envelope.

2 Repeat the procedure for the local minima to produce the lower envelope. The upper and lower
envelopes should cover all the data among them.

3 The mean of upper and low envelope value is designated as m1, and the difference between the
signal x(t) and m1 is the first component, h1, as shown in Equation (1):

h1 = x(t)− m1 (1)

Generally speaking, h1 will not necessarily meet the requirements of the IMF, because h1 is not a
standard IMF. It needs to be determined for k times until the mean envelope tends to zero. Then, the
first intrinsic mode function c1 is introduced, which stands for the most high-frequency component of
the original data sequence. At this point, the data could be represented as Equation (2):

h1k = h1(k−1) − m1k (2)

where h1k is the datum after k times siftings. h1(k−1) stands for the data after k−1 times sifting. Standard
deviation (SD) is used to determine whether the results of each filter component meet the IMF or not.
SD is defined as Equation (3):

SD =
T

∑
k=1

∣∣∣h1(k−1)(t)− h1k(t)
∣∣∣2

h2
1(k−1)(t)

(3)

where T is the length of the data.
The value of standard deviation SD is limited in the range of 0.2 to 0.3, which means when 0.2

< SD < 0.3, the decomposition process can be finished. The consideration for this standard is that it
should not only ensure hk(t) to meet the IMF requirements, but also control the decomposition times.
Therefore, in this way, the IMF components could retain amplitude modulation information in the
original signal.

4 When h1k has met the basic requirements of SD, based on the condition of c1 = h1k, the signal x(t)
of the first IMF component c1 can be obtained directly, and a new series r1 could be achieved after
deleting the high frequency components. This relationship could be expressed as Equation (4):

r1 = x(t)− c1 (4)

The new sequence is treated as the original data and repeats the steps (1) to (3) processes. The second
intrinsic mode function c2 could be obtained.

5 Repeat previous steps (1) to (4) until the rn can not be decomposed into the IMF. The sequence rn

is called the remainder of the original data x(t). rn is a monotonic sequence, it can indicate the

3
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overall trend of the raw data x(t) or mean, and it is usually referred as the so-called trend items.
It is of clear physical significance. The process is expressed as Equations (5) and (6):

r1 = x(t)− c1, r2 = r1 − c2, . . . , rn = rn−1 − c n (5)

x(t) =
n

∑
i=1

ci + rn (6)

The original data can be expressed as the IMF component and remainder.

2.2. Support Vector Regression

The notions of SVMs for the case of regression are introduced briefly. Given a data set of
N elements {(Xi, yi), i = 1, 2, · · · , N}, where Xi is the i-th element in n-dimensional space, i.e.,
Xi = [x1i, · · · , xni] ∈ �n, and yi ∈ � is the actual value corresponding to Xi. A non-linear mapping
(·): �n → �nh is defined to map the training (input) data Xi into the so-called high dimensional feature
space (which may have infinite dimensions), �nh (Figure 1a,b). Then, in the high dimensional feature
space, there theoretically exists a linear function, f, to formulate the non-linear relationship between
input data and output data. Such a linear function, namely SVR function, is shown as Equation (7):

f (X) = WT ϕ(X) + b (7)

where f (X) denotes the forecasting values; the coefficients W(W ∈ �nh ) and b (b ∈ �) are adjustable.
As mentioned above, the SVM method aims at minimizing the empirical risk, shown as Equation (8):

Remp( f ) =
1
N

N

∑
i=1

Θε(yi, WT ϕ(Xi) + b) (8)

where Θε(y, f (x)) is the ε-insensitive loss function (indicated as a thick line in Figure 1c) and defined
as Equation (9):

Θε(Y, f (X)) =

{
| f (X)− Y| − ε, i f | f (X)− Y| ≥ ε

0, otherwise
(9)

4
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Figure 1. Transformation process illustration of a SVR model. (a) Input space; (b) Feature space; (c)
ε-insensitive loss function.

In addition, Θε(Y, f (X)) is employed to find out an optimum hyperplane on the high dimensional
feature space (Figure 1b) to maximize the distance separating the training data into two subsets. Thus,
the SVR focuses on finding the optimum hyper plane and minimizing the training error between the
training data and the ε-insensitive loss function. Then, the SVR minimizes the overall errors, shown as
Equation (10):

Min
W,b,ξ∗ ,ξ

Rε(W, ξ∗, ξ) =
1
2

WTW + C
N

∑
i=1

(ξ∗i + ξi) (10)

with the constraints:
Yi − WT ϕ(Xi)− b ≤ ε + ξ∗i , i = 1, 2, ..., N
−Yi + WT ϕ(Xi) + b ≤ ε + ξi, i = 1, 2, ..., N

ξ∗i ≥ 0, i = 1, 2, ..., N
ξi ≥ 0, i = 1, 2, ..., N

(11)

The first term of Equation (10), employing the concept of maximizing the distance of two separated
training data, is used to regularize weight sizes to penalize large weights, and to maintain regression
function flatness. The second term penalizes training errors of f (x) and y by using the ε-insensitive loss
function. C is the parameter to trade off these two terms. Training errors above ε are denoted as ξ∗i ,
whereas training errors below −ε are denoted as ξi (Figure 1b).

After the quadratic optimization problem with inequality constraints is solved, the parameter
vector w in Equation (7) is obtained as Equation (12):

W =
N

∑
i=1

(β∗
i − βi)ϕ(Xi) (12)

5
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where ξ∗i , ξi are obtained by solving a quadratic program and are the Lagrangian multipliers. Finally,
the SVR regression function is obtained as Equation (13) in the dual space:

f (X) =
N

∑
i=1

(β∗
i − βi)K(Xi, X) + b (13)

where K(Xi, X) is called the kernel function, and the value of the kernel equals the inner product of two
vectors, Xi and Xj, in the feature space ϕ(Xi) and ϕ(Xj), respectively; that is, K(Xi, Xj) = ϕ(Xi)ϕ(Xj).
Any function that meets Mercer’s condition [23] can be used as the kernel function.

There are several types of kernel function. The most used kernel functions are the Gaussian radial
basis functions (RBF) with a width of σ : K(Xi, Xj) = exp(−0.5‖Xi − Xj‖2/σ2) and the polynomial

kernel with an order of d and constants a1 and a2: K(Xi, Xj) = (a1XiXj + a2)
d. However, the Gaussian

RBF kernel is not only easy to implement, but also capable of non-linearly mapping the training data
into an infinite dimensional space, thus, it is suitable to deal with non-linear relationship problems.
Therefore, the Gaussian RBF kernel function is specified in this study. The forecasting process of a SVR
model is illustrated in Figure 2.

Figure 2. The forecasting process of a SVR model.

2.3. AR Model

Equation (14) expresses a p-step autoregressive model, referring as AR(p) model [24]. Stationary
time series {Xt} that meet the model AR(p) is called the AR(p) sequence. That a = (a1, a2, · · · , ap)

T is
named as the regression coefficients of the AR(p) model:

Xt =
p

∑
j=1

ajXt−j + εt, t ∈ Z (14)

3. Numerical Examples

In the first experiment, the proposed model is trained by electric load from New South Wales
(Australia) from 2 May 2007 to 7 May 2007, and testing electric load is from 8 May 2007. The employed
electric load data is on a half-hourly basis (i.e., 48 data points per day). The data size contains only
7 days, to differ from the other example with more sample data, this example is so-called the small
sample size data, and illustrated in Figure 3a.
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Figure 3. (a) Half-hourly electric load in New South Wales from 2 May 2007 to 8 May 2007;
(b) Half-hourly electric load in New South Wales from 2 May 2007 to 24 May 2007.

Too large training sets should avoid overtraining during the learning process of the SVR model.
Therefore, the second experiment with 23 days (1104 data points from 2 May 2007 to 24 May 2007) is
modeled by using part of all the training samples as training set. This example is so-called the large
sample size data, and illustrated in Figure 3b.

3.1. Results after EMD

After being decomposed by EMD, the data can be divided into eight groups, which are shown in
Figure 4a–h and the last group (Figure 4h) is a trend term (remainders). The so-called high frequency
item is obtained by adding the preceding seven groups. From Figure 3a,b, the trend of the high
frequency item is the same as original data, and its the structure is more regular, i.e., it is more stable.
Then, the high frequency item (data-I) and the remainders (data-II) have good effect of regression by
the SVR and AR, respectively, and will be described as follow.

7
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Figure 4. For ease of prevention, the graphs (a–h) show our section of plots at different IMFs for the
small sample size.

3.2. Forecasting Using SVR for Data I (The High Frequency Item)

Firstly, for both small sample and large sample data, the high-frequency item is simultaneously
employed for SVR modeling, and the better performances of the training and testing (forecasting) sets
are shown in Figure 5a,b, respectively. The correlation coefficients of training effects are 0.9912 and
0.9901, respectively, of the forecast effects are 0.9875 and 0.9887, accordingly. This implies that the
decomposition is helpful to improve the forecasting accuracy. The parameters of a SVR model for data
I are shown in Table 1.
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Figure 5. Comparison of the data-I and the forecasted electric load of train and test by the SVR model
for the small sample and large sample data: (a) One-day ahead prediction of 8 May 2007 are performed
by the model; (b) One-week ahead prediction from 18 May 2007 to 24 May 2007 are performed by
the model.

Table 1. The SVR’s parameters for data-I and data-II.

Sample size m σ C ε Testing MAPE

The high frequency item (data-I) 20 0.1 100 0.0061 9.85
The remainders (data-II) 20 0.35 181 0.0034 5.1

3.3. Forecasting Using AR for Data II (The Remainders)

Then, according to the geometric decay of the correlation coefficient and partial correlation
coefficients fourth-order truncation for data II (the remainders), it can be regarded as AR (4) model.
The parameters of a SVR model for data II are shown in Table 1.

As shown in Figure 6a,b, the remainders, for both small sample and large sample data, almost
are in a straight line. The good forecasting results are shown in Table 2, and the errors have reached
the level of 10−7 for the small or large amount of data. It has demonstrated the superiority of the
AR model.

Figure 6. Comparison of the data-II and the forecasted electric load by the AR model for the two
experiments: (a) One-day ahead prediction of 8 May 2007 performed by the model; (b) One-week
ahead prediction from 18 May 2007 to 24 May 2007 performed by the model.
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Table 2. Summary of results of the AR forecasting model for data-II.

Remainders MAE Eqution

The small sample size 6.5567 × 10−7 xn = 8417.298 + 1.013245xn−1 + 0.490278xn−2
− 0.011731xn−3 − 0.491839xn−4

The large sample size 1.8454 × 10−7 xn = 8546.869 + 1.000046xn−1 + 0.499957xn−2
− 5.18 × 10−5xn−3 − 0.499951xn−4

4. Result and Analysis

This section focuses on the efficiency of the proposed model with respect to computational
accuracy and interpretability. To consider the small sample size modeling ability of the SVR model and
conduct fair comparisons, we perform a real case experiment with relatively small sample size in the
first experiment. The next experiment with 1104 datapoints is focused on illustrating the relationship
between sample size and accuracy.

4.1. Parameter Settings of the Employed Forecasting Models

As mentioned by Taylor [25], and to be based on the same comparison condition with
Wang et al. [26], some parameter settings of the employed forecasting models are set as followings.
For the PSO-BP model, we use 90 percent of all training samples as the training set, and the rest as
the evaluation set. The parameters used in the PSO-BP are as follows: (i) The first set related to BP
neural network: input layer dimension indim = 2, hidden layer dimension hiddennum = 3, output layer
dimension outdim = 1; (ii) The second set related to PSO: maximum iteration number itmax = 300,
number of particles N = 40, length of particle D = 3, weight c1 = c2 = 2.

Because the PSO-SVR model embeds the construction and prediction algorithm of SVR in the
fitness value iteration step of PSO, it will take a long time to train the PSO-SVR using the full training
dataset. For the above reason, we draw a small part of all training samples as training set, and the rest
as evaluation set. The parameters used in the PSO are as follows: For small sample size: maximum
iteration number itmax = 50, number of particles N = 20, length of particle D = 3, weight c1 = c2 = 2.
For large sample size: maximum iteration number itmax = 20, number of particles N = 5, length of
particle D = 3, weight c1 = c2 = 2.

4.2. Forecasting Evaluation Methods

For the purpose of evaluating the forecasting capability, we examine the forecasting accuracy by
calculating three different statistical metrics, the root mean square error (RMSE), the mean absolute
error (MAE) and the mean absolute percentage error (MAPE). The definitions of RMSE, MAE and
MAPE are expressed as Equations (15–17):

RMSE =

√√√√√ n
∑

i=1
(Pi − Ai)

2

n
(15)

MAE =

√√√√√ n
∑

i=1
|Pi − Ai|

n
(16)

MAPE =

√√√√√ n
∑

i=1

∣∣∣ Pi−Ai
Ai

∣∣∣
n

∗ 100 (17)

Where Pi and Ai are the i-th predicted and actual values respectively, and n is the total number
of predictions.
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4.3. Empirical Results and Analysis

For the first experiment, the forecasting results (the electric load on 8 May 2007) of the original SVR
model, the PSO-SVR model and the proposed EMDSVRAR model are shown in Figure 7a. Notice that
the forecasting curve of the proposed EMDSVRAR model fits better than other alternative models.

The second experiment shows the one-week-ahead forecasting for the large sample size data.
The peak load values of testing set are bigger than that of training set shown in Figure 3b. The detailed
forecasted results of this experiment are shown in Figure 7b. It indicates that the results obtained from
the EMDSVRAR model fits the peak load values exceptionally well. In other words, the EMDSVRAR
model has better generalization ability than the three comparison models.

The forecasting results from these models are summarized in Table 3. The proposed EMDSVRAR
model is compared with four alternative models. It is found that our hybrid model outperforms all
other alternatives in terms of all the evaluation criteria. One of the general observations is that the
proposed model tends to fit closer to the actual value with a smaller forecasting error.

Figure 7. Comparison of the original data and the forecasted electric load by the EMDSVRAR Model,
the SVR model and the PSO-SVR model for (a) the small sample size (One-day ahead prediction of
8 May 8, 2007 are performed by the models); (b) the large sample size (One-week ahead prediction
from May 18, 2007 May 24, 2007 are performed by the models).

The proposed model shows the higher forecasting accuracy in terms of three different statistical
metrics. In view of the model effectiveness and efficiency on the whole, we can conclude that the
proposed model is quite competitive against four comparison models, the PSO-BP, SVR, PSO-SVR, and
AFCM models. In other words, the hybrid model leads to better accuracy and statistical interpretation.
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Table 3. Summary of results of the forecasting models.

Algorithm MAPE RMSE MAE Running Time(s)

For the first experiment (small sample size)

Original SVR 11.6955 145.865 10.9181 180.4
PSO-SVR 11.4189 145.685 10.6739 165.2
PSO-BP 10.9094 142.261 10.1429 159.9

AFCM [24] 9.9524 125.323 9.2588 75.3
EMDSVRAR 9.8595 117.159 9.0967 80.7

For the second experiment (large sample size)

Original SVR 12.8765 181.617 12.0528 116.8
PSO-SVR 13.503 271.429 13.0739 192.7
PSO-BP 12.2384 175.235 11.3555 163.1

AFCM [26] 11.1019 158.754 10.4385 160.4
EMDSVRAR 5.100 134.201 9.8215 162.0

Several observations can also be noticed from the results. Firstly, from the comparisons among
these models, we point out that the proposed model outperforms other alternative models. Secondly,
the EMDSVRAR model has better generalization ability for different input patterns as shown in
the second experiment. Thirdly, from the comparison between the different sample sizes of these
two experiments, we conclude that the hybrid model can tolerate more redundant information and
construct the model for the larger sample size data set. Finally, since the proposed model generates
good results with good accuracy and interpretability, it is robust and effective as shown in Table 3.
Overall, the proposed model provides a very powerful tool to implement easily for forecasting
electric load.

Furthermore, to verify the significance of the accuracy improvement of the EMDSVRAR model,
the forecasting accuracy comparison among original SVR, PSO-SVR, PSO-BP, AFCM, and EMDSVRAR
models is conducted by a statistical test, namely a Wilcoxon signed-rank test, at the 0.025 and
0.05 significance levels in one-tail-tests. The test results are shown in Table 4. Clearly, the proposed
EMDSVRAR model has statistical significance (under a significant level 0.05) among the other
alternative models, particularly comparing with original SVR, PSO-SVR, PSO-BP, and AFCM models.

Table 4. Wilcoxon signed-rank test.

Compared models
Wilcoxon signed-rank test

α = 0.025; W = 4 α = 0.05; W = 6

EMD-SVR-AR vs. original SVR 8 3 a

EMD-SVR-AR vs. PSO-SVR 6 2 a

EMD-SVR-AR vs. PSO-BP 6 2 a

EMD-SVR-AR vs. AFCM 6 2 a

a denotes that the EMDSVRAR model significantly outperforms other alternative models.

5. Conclusions

The proposed model achieves superiority and outperforms the original SVR model while
forecasting based on the unbalanced data. In addition, the goal of the training model is not to
learn an exact representation of the training set itself, but rather to set up a statistical model that
generalizes better forecasting values for the new inputs. In practical applications of a SVR model, if the
SVR model is overtrained to some sub-classes with overwhelming size, it memorizes the training data
and gives poor generalization of other sub-classes with small size. The EMD term of the proposed
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EMDSVRAR model has been employed in the present research, details of which have discussed in the
above section.

The interest in applying the EMD forecast systems arises from the fact that those systems
consider both accuracy and comprehensibility of the forecast result simultaneously. To this end,
a combined model has been proposed and its effectiveness in forecasting the electric load data has
been compared with three other alternative models. In this study, various data characteristics of
electric load are identified where the proposed model performs better than the other algorithms in
terms of its forecasting capability. Based on the obtained experimental results, we conclude that the
proposed EMDSVRAR model algorithm can generate not only human-understandable rules, but also
better forecasting accuracy levels. Our proposed model also outperforms other alternative models in
terms of interpretability, forecasting accuracy and generalization ability, which are especially true for
forecasting with unbalanced data and very complex systems.
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Abstract: Quantum-behaved particle swarm optimization (QPSO) is an efficient and powerful
population-based optimization technique, which is inspired by the conventional particle swarm
optimization (PSO) and quantum mechanics theories. In this paper, an improved QPSO named
SQPSO is proposed, which combines QPSO with a selective probability operator to solve the economic
dispatch (ED) problems with valve-point effects and multiple fuel options. To show the performance
of the proposed SQPSO, it is tested on five standard benchmark functions and two ED benchmark
problems, including a 40-unit ED problem with valve-point effects and a 10-unit ED problem with
multiple fuel options. The results are compared with differential evolution (DE), particle swarm
optimization (PSO) and basic QPSO, as well as a number of other methods reported in the literature
in terms of solution quality, convergence speed and robustness. The simulation results confirm that
the proposed SQPSO is effective and reliable for both function optimization and ED problems.

Keywords: economic dispatch; quantum-behaved particle swarm optimization; valve-point effects;
multiple fuel options

1. Introduction

Economic dispatch (ED) is considered to be one of the key functions in electric power system
operation. The main objective of ED is to determine the optimal scheduling of power outputs for
all generating units that minimizes the total fuel cost while satisfying all the equality and inequality
constraints of units and system. Due to valve-point effects, prohibited operating zones and multiple
fuel effects, the characteristics of power generating units are inherently highly nonlinear [1].

Multiple fuel options problem (coal, nature gas or oil) is one of the important kinds of ED problems
and each part of the hybrid cost function implies some information about the fuel being burned or the
operation cost of units. Taking valve-point effects and multiple fuel options into consideration, the
ED problem can be represented as a non-smooth optimization problem, which causes difficulties in
finding the global or near global optimization solution using conventional approaches.

Over the past two decades, many modern meta-heuristic methods have been applied to ED
problems, such as genetic algorithm (GA) [2], particle swarm optimization (PSO) [3], differential
evolution (DE) [4], ant colony optimization (ACO) [5] and simulated annealing (SA) [6]. Among these
methods, PSO has recently attracted more attention due to its rapid convergence and algorithmic
accuracy compared with other optimization methods.
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PSO is a population based optimization algorithm, which was introduced by Kennedy and
Eberhart in 1995 [7]. PSO is motivated by the simulation of social behaviour of animals such as
fish schooling and bird flocking. In the conventional PSO mechanism, a swarm of individuals
(called particles) fly within the search space. Each particle represents a potential solution to the
optimization problem. The position of a particle is influenced by the best position (pbest) found
by itself (i.e., its own experience) and the position of the best particle in the whole swarm (gbest)
(i.e., the experience of neighbouring particles).

Although PSO can converge quickly towards the optimal solution, it has difficulties in reaching
a global optimum and suffers from premature convergence. Moreover, PSO has several control
parameters. The convergence of the algorithm depends heavily on the value of its control parameters.

Taking advantage of both PSO mechanism and quantum mechanics, in 2004, a new version of
PSO, quantum-behaved particle swarm optimization, named QPSO, was proposed by Sun, Xu and
Feng [8], which is inspired by quantum mechanics and trajectory analysis of PSO. As a quantum
system is an uncertain system that is different from classical stochastic system in which every particle
can appear at any position with a certain probability, the swarm can search in the whole feasible
region [9]. Besides, unlike PSO, there are no velocity vectors for particles in QPSO, and it has fewer
parameters to be adjusted, which makes it easier to implement. In [10–12], convergence analysis and
other varients of QPSO have been presented. As an efficient algorithm, QPSO has been applied to many
optimization problems, such as system identification [13], non-linear programming problems [14],
power system [15], etc. Although Coelho etal. proposed a quantum-inspired HQPSO using the
harmonic oscillator potential well to solve economic dispatch problems [16], Sun and Lu applied QPSO
to ED problems [15], and Chakraborty et al. presented a hybrid QPSO to solve the ED problems [17],
to the best of our knowledge, it has not been used yet to solve ED problems with multiple fuel options.

In this paper, an improved QPSO namely SQPSO is proposed to solve ED problems with multiple
fuel options and valve-points effects. In the proposed SQPSO, a new selective probability operator is
introduced into the updating mechanism of QPSO, which can balance the global and local searching
abilities and enhance the diversity of QPSO. In particular, based on the selective probability operator,
pbest and gbest are used to generate the local attractor of QPSO, with user defined selective probability,
to enhance the local search performance. This modification on the original QPSO together with
a recombination operator will maintain the best information of the swarm and, in the same time,
exchange information between individuals to increase the population diversity.

To show the performance of the proposed SQPSO, five popular benchmark functions and two ED
problems with valve-point effects and multi-fuel options are tested. The results obtained by SQPSO
are analyzed and compared with PSO, DE and QPSO, as well as some other optimization methods
reported in recent literature. The remainder of this paper is organized as follows: Section 2 is the
formulation of the ED problem and Section 3 presents the conventional PSO, QPSO and proposed
SQPSO, respectively. Section 4 gives the experimental results. Finally, Section 5 concludes the paper.

2. Formulation of the ED Problem

The main objective of solving the ED problem is to minimize the total fuel cost of each thermal
generating unit in electric power system while satisfying a variety of equality and inequality constraints.
The total fuel cost function of ED problem is described as:

minFT =
n

∑
i=1

Fi(Pi) (1)

where FT is the total generation cost, n is the total number of generating unit, Pi is the power of the ith
generator and Fi is its corresponding fuel cost, which is defined by the following equation as:

Fi(Pi) = ai + biPi + ciP2
i (2)
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where ai, bi and ci are the cost coefficients and subject to:

n

∑
i=1

Pi = PD, i = 1, 2, ......, n (3)

Pmin
i < Pi < Pmax

i (4)

where PD is the total demand of the power system, Pmin
i and Pmax

i are the minimum and maximum
output of the ith generation unit, respectively.

2.1. The ED Problem with Valve-Point Effects

A valve-point is the rippling effect added to the generation unit curve when each steam admission
valve in a turbine starts to open [2]. This curve poses higher order non-linearity and discontinuity,
which makes the problem of finding the optimum more difficult and increases the number of local
minima in the fuel cost function. Considering the valve-point effects, sinusoidal functions are added
to the quadratic cost function, which is defined by the following equation:

Fi(Pi) = ai + biPi + ciP2
i +

∣∣∣ei sin( fi(Pmin
i − Pi))

∣∣∣ (5)

where ei, fi are the coefficients of generator i, reflecting the valve-point.

2.2. ED Problem with Multiple Fuels and Valve-Point Effects

To give a more accurate description of the ED problem, the effects of multiple fuels resources
(coal, nature gas or oil) should also be considered. Each segment of the hybrid cost function implies
some information about the fuel being burned or the unit’s operation. Since the dispatching units are
practically supplied with multi-fuel sources, each unit should be represented with several piecewise
quadratic functions reflecting the effects of fuel type changes, and the generator must identify the most
economic fuel to burn [2]. The number of non-differentiable points in the objective function increases
when multiple fuels are taken into consideration. The incremental cost functions of a generator with
multi-fuel options are illustrated in Figure 1. The ED problems with both multiple and fuels valve-point
effects can be represented as follows:

Fi(Pi) =

⎧⎪⎨⎪⎩
ai1 + bi1Pi + ci1P2

i +
∣∣ei1 sin( fi1)(Pmin

i1 − Pi1)
∣∣, f uel 1, Pmin

i < Pi < Pi1
ai2 + bi2Pi + ci2P2

i +
∣∣ei2 sin( fi2)(Pmin

i2 − Pi2)
∣∣, f uel 2, Pi1 < Pi < Pi2

aik + bikPi + cikP2
i +

∣∣ei2 sin( fik)(Pmin
ik − Pik)

∣∣, f uel k, Pik−1 < Pi < Pmax
i

(6)

Figure 1. Incremental cost function of a generator with multi-fuel options.
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3. The Proposed SQPSO Algorithm

3.1. Conventional Particle Swarm Optimization

PSO is a population-based stochastic optimization algorithm, which is inspired by the social
intelligence and movements of fishes or birds in the swarm. In PSO, each potential solution is a point
in the search space and is called as ‘particle’. Each particle is assumed to have two characteristics: a
position and a velocity. The target of the particles is to find the best result of the objective function.
Initially, a population of particles is randomly generated within the search space. At each iteration, it
stores memory of best position of each individual and best position of the whole population. By taking
advantages of the particles’ own experience and experience of its neighbours, the particles could fly
towards the optimal solution.

For example, in a n-dimensional search space, the position and velocity of an individual i are
represented as the vectors: Xi = (Xi1, Xi1, . . . , Xin) and Vi = (Vi1, Vi2, . . . , Vin). The best position
for each particle is denoted as: pbesti = (pbest1i, pbest2i, . . . , pbestni) and gbesti is the best solution
found in the whole swarm. In standard PSO, the position and velocity of particles are updated by the
following equations:

V(t+1)
i = w × V(t)

i + c1 × rand()×
(

pbesti − x(t)i

)
+c2 × rand()×

(
gbesti − x(t)i

)
(7)

x(t+1)
i = xt

i + v(t+1)
i (8)

where:

xi
t and vi

t represent the position and velocity of individual i at generation t;
w is the inertia weight parameter that controls the momentum of particles;
c1 and c2 are positive constants, which balance the need for local and global search;
rand() is a random number between 0 and 1.

3.2. Quantum-Behaved Particle Swarm Optimization

In the conventional PSO, a particle moves in the search space by the moments of its position and
velocity. In the quantum model of a PSO, the state of a particle is depicted by wave function Ψ(x,t) [8],
instead of position and velocity. QPSO introduces the mean best position into the algorithm and uses a
strategy based on a quantum delta potential well model to sample around the previous best points
Furthermore, QPSO has only one parameter, which is easier to control than PSO algorithm. Employing
the Monte Carlo method, particles are updated according to the following equations:{

xij(t + 1) = pij(t) + β ∗ ∣∣Mbestij(t)− xij(t)
∣∣ ∗ In(1/u), if k ≥ 0.5

xij(t + 1) = pij(t)− β ∗ ∣∣Mbestij(t)− xij(t)
∣∣ ∗ In(1/u), if k < 0.5

(9)

The following gives the explication of the update Equation (9):

(1) xij (t + 1) is denoted as the position of the jth dimension of the ith particle for the next generation
t + 1.

(2) Pij (t) is the local attractor to make sure SQPSO can converge, which is defined as follows:

pij = φ ∗ Pbestij + (1 − φ) ∗ gbestj (10)
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where φ is a random number uniformly distributed in (0,1); Mbestij is a global point, which can
be calculated by the mean of the Pbest of all particles in the population. The definition is given is
as follows:

Mbestij(t) = (
1
N

N

∑
i=1

Pbesti1(t − 1),
1
N

N

∑
i=1

Pbesti2(t − 1), ...,
1
N

N

∑
i=1

Pbestin(t − 1)) (11)

where N represents the population size and Pbesti is the best position of the ith particle.
(3) In this paper, β is called the constriction-expansion coefficient, and it is linearly decreasing when

the iteration increases:
βt = βmax − βmax − βmin

itNum
∗ t (12)

where itNum is the maximum iteration number, t is the current iteration number βmax = 1.0 and
βmin = 0.5.

(4) u and k are two random numbers uniformly distributed in (0,1).

3.3. The Proposed Quantum-Behaved Particle Swarm Optimization

In the original QPSO, the local attractor is calculated by Equation (10), which means that the
Pij(t) is a random position between the individual best position and the group best position. However,
the drawback is the difficulty in maintaining the best information of the swarm, especially when the
optimal solution is at the boundary of the problem. In [18], Jong-Bae Park proposed an improved PSO,
which introduced a kind of crossover operation. In this operation, particles update the position with
the exchange information of previous generation particle position and the individual best position
of itself. In this paper, a modified QPSO is proposed, called SQPSO, which introduces a selective
probability operator into the update mechanism when calculating the local attractor Pij(t). In SQPSO,
the information of global best position and the whole swarm’s individual best position are used to
update the position for the next generation. The reason behind the inclusion of the selective probability
operator is to enable the use of recombination operator into the original QPSO which will help to
maintain the best solution and, at the same time, exchange information between individuals in the
whole swarm. The pseudo code for the proposed selective probability operator is given in Figure 2.

Figure 2. The pseudo code for the proposed crossover operator of SQPSO.

In Figure 2, PopNum is the number of population and Dim is the Dimensionality for each individual.
RandPop is an individual randomly selected from the swarm. SP is the selective probability, which
can control whether the local attractor P(i,j) is generated from individual best position or global best
position. If rand ≤ SP, then the local attractor P(i,j) will select its value from the Pbest of the individual
RandPop and if rand > SP, then the value of P(i,j) will select the point of global best position. Using the
SP, P(i,j) can not only make use of the previous best swarm information but also increase the population
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diversity and consequently enhance the global search ability. The principle of the modification is
illustrated in Figure 3 and the procedure of the proposed SQPSO is described as follows:

(1) Initialize the population, which are generated randomly within the minimum and maximum output
of each generator, using the following equations:

population =

⎡⎢⎢⎢⎣
X1

X2

...
Xn

⎤⎥⎥⎥⎦
Xi = [xi,1,xi,2, ..., xi,n], xij = Pmin

ij + rand ∗ (Pmax
ij − Pmin

ij )

(13)

where Xi is the ith individual of the population,(xij is the jth data vector of ith individual; Pmin
ij

and Pmax
ij are the maximum and minimum output limit values of the jth control variable.

Figure 3. Principle of the modified of SQPSO.

For the multi-fuel ED problem, the relationship between unit output and fuel type is shown in
Figure 4, taking a 10-generator problem as an example, each unit has its minimum and maximum
output of generation and the sum of the whole power output should satisfy the total output demand,
and as shown in Figure 4, different range of unit output corresponds to different type of fuel.
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Figure 4. Relationship between unit output and fuel type.

(2) Constraint handling for real power balance. Since the individuals of the population are created
randomly and with the evolution of particles, newly generated individual may violate the
constraints. Therefore, it is important to keep all the individual variables within their feasible
ranges. Hence, the following procedure is adopted by the SQPSO to modify the value of new
generated variables to satisfy the power balance constraint.

xij =

⎧⎪⎨⎪⎩
Pmin

ij if xij ≤ Pmin
ij

Pmax
ij if xij > Pmin

ij
xij otherwise

(14)

The amount of power balance violation is calculated by:

pd =
n

∑
i=1

Pi − PD (15)

if pd = 0, go to step 3; if pd 
= 0, the value of pd will be adjusted by allocating it to the output of a unit,
which is chosen randomly from the whole set of generating units, so that the generating constraints
can be satisfied. If the output of the chosen unit goes outside the feasible boundaries, its value should
be modified using Equation (14). The constraints handling procedure is illustrated in Figure 5.
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Figure 5. Procedure of constraint handling of the SQPSO algorithm.

(3) Parameter setting. There are two parameters in SQPSO, one is the constriction-expansion coefficient
which decreases from 1.0 to 0.5 linearly. Another parameter is the introduced selective probability
(SP). In this paper, the SP for SQPSO increases from 0.5 to 0.8 linearly using the following equation:

SPt = SPmax − SPmax − SPmin

itNum
∗ t (16)

where SPt is the value of SP at iteration t. SPmax and SPmin are maximum and minimum selective
probability. At the early stage, the population will select more vectors from the group best
position, which can accelerate the convergence speed. As the iteration number increases, the
population will draw more vectors from the individual best positions to enhance the diversity of
the whole swarm.

(4) Evaluate the objective function value of each particle.
(5) Update pbest. Compare each particle’s objective function value with its pbest. If the current value

is better than the pbest value, set the pbest value to the current value.
(6) Update gbest. Determine best gbest of the swarm as the minimum pbest of all particles.
(7) Calculate the Mbest, constriction-expansion coefficient β according to Equation (11) and Equation

(12), respectively.
(8) Calculate the local attractor according to the Selective probability operator proposed in this paper.
(9) Update the particle’s position using Equation (9)
(10) Check if the stop criterion satis fied?
(11) If not, then go to step 2.
(12) Else, the searching process is stopped.

4. Experimental Results

4.1. Benchmark Functions

To verify the performance of the proposed SQPSO, five benchmark functions (Sphere, Jason,
Griewank, Rosenbrock and Rastrigrin) listed in Table 1 are conducted. These functions are all

22



Energies 2012, 5, 3655–3673

minimization problems with the minimum value to be zero. The results produced by the proposed
SQPSO are compared with that of the EGA, DPSO, HPSO, IPSO and IQPSO in [17]. EGA is a modified
genetic algorithm with elitism and adaptive mutation probability control, and DPSO, HPSO, IPSO are
three types of revised version of PSO. IQPSO is an improved quantum-inspired particle swarm
optimization, which is based on the principle of quantum rotation gates. Additionally, three algorithms
are also used in this paper for comparison, which are PSO, DE and QPSO. For PSO, the acceleration
coefficients c1 and c2 are set to 2, and the inertia weight decreased from 0.9 to 0.4 linearly [19].
The parameter of DE is set to F = 0.4, CR = 0.8 [20].

Table 1. Benchmark functions.

Name Function Dim Range Opt

Sphere f1(x) =
n
∑

i=1
x2

i 40 [−100,100] 0

Jason f2(x) =
n
∑

i=1
(xi − i)2 40 [−100,100] 0

Griewank f3(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
) + 1 40 [−600,600] 0

Rosenbrock f4(x) =
n
∑

i=1
[100(xi+1 − x2

i )
2
+ (xi − 1)2] 40 [−2.048,2.048] 0

Rastrigrin f5(x) =
n
∑

i=1
[x2

i − 10 cos(2πxi) + 10] 40 [−5.12,5.12] 0

For QPSO and SQPSO, the coefficient β decreases from 1.0 to 0.5 linearly and the selective
probability (SP) for SQPSO increases from 0.5 to 0.8 linearly. To compare the solution quality and
convergence characteristics, 50 independent trial runs are performed for each benchmark function
and mean function value and best function value are recorded. In order to make a fair comparison,
the population size is set to 80 and population dimension is 40 for all the five benchmark functions.
The maximum iteration number is set to 5000. All the algorithms are implemented in MATLAB 2008a
and executed on an Intel Core2 Duo 1.66 GHz personal computer.

The numerical results in Table 2 show that the proposed SQPSO can achieve satisfactory
performance. Specifically, both the sphere and Jason function have only one single optimal solution,
so it is usually introduced to test the local search ability of the algorithm. From the results, it can be
seen that the SQPSO outperforms all the other algorithms in terms of mean function value and best
function value, which indicates SQPSO has strong local search ability. Rosenbrock is a mono-modal
function and its optimal solution lies in a narrow area. The experimental results on Rosenbrock show
that the mean function value of SQPSO is better than DPSO, HPSO, IPSO, PSO and QPSO. However,
the best function value is inferior to other algorithms reported in [21]. Griewank and Rastrigrin are
both multi-modal and they are usually used to compare the global search ability of the algorithm.
As to Griewank, SQPSO can hit the minimum value zero and the mean function value is superior to
other algorithms too. For Rastrigrin, both EGA and IQPSO give a better performance than SQPSO and
the results of SQPSO are better than other methods.

23



Energies 2012, 5, 3655–3673

Table 2. Mean value and best value for five benchmark functions with different approaches.

Function f 1 (Sphere) f 2 (Jason) f 3 (Griewank) f 4 (Rosenbrock) f 5 (Rastrigrin)
Algorithm Mean (Best) Mean (Best) Mean (Best) Mean (Best) Mean (Best)

EGA [11] 2.743 × 10−10 (0) 8.865 × 10−8

(3.748 × 10−22)
1.042 × 10−4

(7.952 × 10−13) 0.84 (6.537 × 10−4) 2.257 (6.537 × 10−4)

DPSO [11] 5.403 × 10−7

(4.532 × 10−14)
2.595 × 10−6

(1.173 × 10−12)
1.322 × 10−3

(2.167 × 10−10) 28.094 (1.150 × 10−2) 28.826 (19.899)

HPSO [11] 1.319 × 10−6

(2.824 × 10−10)
6.735 × 10−3

(1.503 × 10−10)
2.546 × 10−3

(5.136 × 10−9) 28.995 (2.346 × 10−2) 29.956 (15.393)

IPSO [11] 1.524 × 10−7

(3.406 × 10−11)
1.350 × 10−5

(2.107 × 10−10)
2.224 × 10−3

(1.454 × 10−10) 27.13 (2.339 × 10−2) 31.906 (15.064)

IQPSO [11] 1.085 × 10−23 (0) 2.078 × 10−23 (0) 3.221 × 10−7 (0) 2.19 × 10−2 (2.717 × 10−9) 0.521 (1.075 × 10−4)

PSO 2.885 × 10−21

(1.774 × 10−23)
1.4526 × 10−21

(4.413 × 10−24) 8.0215 × 10−3 (0) 56.1057 (12.4904) 34.6046 (20.8941)

DE 1.3727 × 10−47

(3.9244 × 10−49) 1.0097 × 10−30 (0) 3.4506 × 10−4 (0) 12.4830 (6.6779) 56.7802 (14.9244)

QPSO 5.054 × 10−26

(7.333 × 10−31) 5.3011 × 10−30(0) 8.1 (0) 48.4957 (25.2717) 25.7895 (13.9294)

SQPSO
6.5759 × 10−74

(1.8122 × 10−89)
(0) (0) 2.217 × 10−7 (0) 32.68016 (14.7115) 13.7105 (3.9798)

In addition, compared with original QPSO without selective probability operator, the proposed
SQPSO demonstrates good performance for all the five benchmark functions in terms of both the mean
function value and best function value, which indicates that the SQPSO is an effective modification
of QPSO.

4.2. ED Problem with Valve-Point Effects

A large-scale power system of 40-generating units with quadratic cost function and valve-point
effects is being considered here. Transmission losses are ignored and the total load demand of this
text system is 10,500 MW. The system data can be found from [1]. One hundred independent
runs are made for each method and population size is set to 80. The stopping criterion is set
to 500. The result obtained from SQPSO is compared with some methods in the literature including
IFEP [1], GA_PS_SQP [22], PC-PSO [23], SOH_PSO [23], NPSO [24] ,NPSO_LRS [24], PSO-GM [25],
CBPSO_RVM [25], ICA-PSO [26], ACO [5], APSO(2) [27], HDE [28], ST-HDE [28] and IQPSO [29].
In addition, in order to compare the performance of the crossover operation in [18] with the proposed
selective probability operator. The crossover operation [18] is introduced into QPSO, namely CQPSO,
and the performance of CQPSO can be seen in the following results. The comparison results of SQPSO
with other methods reported in literature are given in Table 3. The best solution of the SQPSO is
121,434.41 $/H, which is comparatively superior to most of the methods and the mean cost is better
than other methods as well.
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Table 3. Comparison results for ED problem with valve-point effects (40-unit system).

Methods
Generation cost($/H)

Standard Deviation
Minimum Mean Maximum

IFEP [1] 122,624.35 123,382 125,740.63 NR
GA-PS-SQP [22] 121,458.14 122,039 NR NR
PC-PSO [23] 121,767.90 122,461.30 122,867.55 NR
SOH-PSO [23] 121,501.14 121,853.57 122,446.3 NR
NPSO [24] 121,704.74 122,221.37 122,995.10 NR
NPSO-LRS [24] 121,664.43 122,209.32 122,981.59 NR
PSO-GM [25] 121,845.98 122,398.38 123,219.22 258.44
CBPSO-RVM [25] 121,555.32 122,281.14 123,094.98 259.99
ICA-PSO [26] 121,422.17 121,428.14 121,453.56 NR
ACO [5] 121,532.41 121,606.45 121,679.64 45.58
APSO(2) [27] 121,663.52 122,153.67 122,912.40 NR
HDE [28] 121,813.26 122,705.66 NR NR
ST-HDE [28] 121,698.51 122,304.30 NR NR
IQPSO [21] 121,448.21 122,225.07 NR NR
FCASO [30] 121,516.47 122,082.59 NR NR
CASO [30] 121,865.63 122,100.74 NR NR
CPSO-SQP [31] 121,458.54 122,028.16 NR NR
CPSO [31] 121,865.23 122,100.87 NR NR
DE 121,805.56 122,142.97 122,466.75 151.88
PSO 121,956.18 122,459.36 122,785.73 209.12
QPSO 121,487.27 121,750.48 121,991.99 111.68
CQPSO 121,463.39 121,732.98 121,778.74 79.38
SQPSO 121,434.41 121,723.22 121,881.51 104.29

The convergence characteristics of the SQPSO in comparison with PSO, DE, QPSO are shown in
Figure 6. It is shown that PSO converges fastest among these methods while it suffers the premature
convergence. Besides, DE is the slowest among the four methods, as DE involves a series of mutation,
crossover and greedy selection operators, which leads to low convergence speed and increases the
computational time as well. QPSO and SQPSO converge at nearly the same speed, however the
SQPSO can produce a better solution as iteration increases, which indicates stronger searching ability.
In addition, compared with CQPSO, SQPSO can outperform it almost in all aspects, which indicates
that the proposed elective probability operator is improved compared with the crossover operation
in [18].
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Figure 6. Convergence characteristics for total generation costs (40-uint system).

The distribution of generation costs of the four algorithms for 100 runs is shown in Figure 7 which
reflects the robustness of each algorithm. The curve of the SQPSO is at the bottom of the figure and
stabilizes at a relatively intensive region, which means the distribution of the solution of SQPSO is
much better than other methods. The detailed results of the best solution of DE, PSO, QPSO and
SQPSO, for ED problem with valve-point effects are given in Table 4.

Figure 7. Distribution of generation costs of the four algorithms for 100 runs (40-unit system).
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Table 4. Detailed results of the best solution of DE, PSO, QPSO and SQPSO, for ED problem with
valve-point effects (40-unit system).

Unit
Methods

DE PSO QPSO CQPSO SQPSO

P1 111.8012 113.9945 113.6426 113.9999 110.9173
P2 111.5734 110.9343 111.9581 113.9999 111.7807
P3 95.79661 100.748 97.56082 120.0000 97.56128
P4 182.4958 179.1588 179.7457 179.7333 179.7005
P5 87.27856 97.0000 88.53738 96.9999 93.37496
P6 140.0000 140.0000 139.9981 140.0000 139.9862
P7 300.0000 300.0000 299.989 300.0000 259.8548
P8 285.2077 300.0000 284.9879 299.9999 284.9466
P9 286.9856 299.9040 284.7968 293.3932 284.5976
P10 130.0000 130.0000 130.0093 130.0000 130.0493
P11 94.25143 94.0000 94.02522 94.0000 168.807
P12 94.61699 94.0000 94.0286 94.0000 94.00315
P13 125.7718 125.0000 125.0323 125.0000 214.7713
P14 393.1819 393.9392 394.2728 394.2794 394.2986
P15 395.1001 394.1116 394.2987 394.2794 304.61
P16 393.7253 304.3765 394.3071 304.5196 394.2632
P17 487.6391 500.0000 489.3179 489.2794 489.363
P18 491.819 490.6004 489.2953 489.2795 489.5688
P19 512.8806 513.8928 511.3082 511.2794 511.2797
P20 511.7995 514.1406 511.3473 511.2794 511.3193
P21 524.2502 524.3505 523.3044 523.2796 523.2616
P22 523.9075 523.4735 523.3182 523.2796 523.3642
P23 519.8336 529.2841 523.3638 523.2796 523.2587
P24 527.6248 547.3133 523.3677 550.0000 523.3996
P25 523.9776 522.9096 523.2928 523.2795 523.2836
P26 523.2693 524.9206 523.3083 523.2798 523.2817
P27 10.3912 10.0000 10.01133 10.0000 10.00975
P28 10.0000 10.0000 10.08587 10.0000 10.0344
P29 10.0335 10.0000 10.00228 10.0000 10.00645
P30 92.73803 91.53567 90.21066 96.9999 88.52085
P31 187.1519 190.0000 189.9984 190.0000 189.9972
P32 189.9415 190.0000 189.9968 190.0000 189.9834
P33 189.4094 190.0000 189.9988 190.0000 189.9822
P34 197.3705 199.9374 199.9794 199.9999 165.321
P35 199.2062 198.4492 199.9942 200.0000 199.9666
P36 198.9157 200.0000 199.9942 200.0000 200.0000
P37 109.5043 110.0000 110.0000 110.0000 110.0000
P38 110.0000 110.0000 109.9926 110.0000 109.9984
P39 108.1849 110.0000 109.9915 110.0000 109.992
P40 512.3655 512.0254 511.3299 511.2794 511.2849

Total Demand 10,500 10,500 10,500 10,500 10,500
Total Cost 121,805.5647 121,956.1827 121,487.2762 121,463.3942 121,434.4071

4.3. The ED Problem with Multi-Fuel Option and Valve-Point Effects

In this section, the proposed SQPSO is applied to multi-fuel economic dispatch problem
with valve-point effects. Transmission losses are ignored and system date can be found in [29].
The experimental results are also compared with other algorithms reported in literature, including
CGA_MU [2], IGA_MU [2], ACO [5], ED-DE [32], ARCGA [33], PSO-GM [25], NPSO [24],
NPSO-LRS [24], PSO-GM [25], CBPSO-RVM [25], APSO [27], GA [34], DSPSO–TSA [34], which are
given in Table 5.
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Table 5. Comparison of calculation results for multiple fuel ED problems with total demand of
2700 (MW).

Methods
Generation cost ($/H)

Standard Deviation Average CPU times
Minimum Mean Maximum

CGA_MU [2] 624.7193 627.6087 633.8652 NR 26.64
IGA_MU [2] 624.5178 625.8692 630.8705 NR 7.32
ACO [5] 623.9000 624.3500 624.7800 NR 8.35
ED-DE [32] 623.8290 623.8807 623.8894 NR NR
ARCGA [33] 623.8281 623.8495 623.8814 NR NR
NPSO [24] 624.1624 625.2180 627.4237 NR NR
NPSO-LRS [24] 624.1273 624.9985 626.9981 NR NR
PSO-GM [25] 624.3050 624.6749 625.0854 0.1580 NR
CBPSO-RVM [25] 623.9588 624.0816 624.2930 0.0576 NR
APSO [27] 624.0145 624.8185 627.3049 NR 0.52
GA [34] 624.5050 624.7419 624.8169 0.1005 18.3
TSA [34] 624.3078 635.0623 624.8285 1.1593 9.71
DSPSO–TSA [34] 623.8375 623.8625 623.9001 0.0106 3.44
DE 623.9280 624.0068 624.0653 0.0271 0.625
PSO 624.0120 624.2055 624.4376 0.0889 0.308
QPSO 623.8766 623.9639 624.4163 0.0688 0.315
CQPSO 623.8476 623.8652 623.8885 0.0151 0.318
SQPSO 623.8319 623.8440 623.8605 0.0107 0.324

It can be seen that SQPSO can get a minimum generation cost of 623.8319($/H), which is the
best solution among all the methods. For the mean cost, SQPSO outperforms most of the methods
expect for the ARCGA, which is slightly better than SQPSO, however the CUP times of ARCGA is
almost three times that of SQPSO. When considering the average CPU time, the computational time
for PSO, QPSO and SQPSO are at the same level, while the results of SQPSO is better than the other
two methods. The detailed results of the best solution of DE, PSO, QPSO, CQPSO and SQPSO, for the
multiple fuel ED problem with total demand of 2700 MW is given in Table 6.

Table 6. Detailed results of the best solution of DE, PSO, QPSO and SQPSO, for multiple fuel ED
problem with total demand of 2700 MW.

Unit

CQPSO DE PSO QPSO SQPSO

Output Fuel Output Fuel Output Fuel Output Fuel Output Fuel
(MW) type (MW) type (MW) type (MW) type (MW) type

P1 217.567 2 220.8058 2 220.8058 2 218.587 2 218.5939 2
P2 211.7117 1 211.7154 1 211.7154 1 210.4723 1 211.2166 1
P3 279.6489 1 280.7032 1 280.7032 1 280.7087 1 281.6653 1
P4 240.5800 3 239.7713 3 239.7713 3 239.3708 3 238.9676 3
P5 276.3749 1 277.2203 1 277.2203 1 279.6347 1 279.9345 1
P6 239.6394 3 238.9671 3 238.9671 3 240.7144 3 239.2363 3
P7 290.0985 1 289.0121 1 289.0121 1 290.1244 1 287.7275 1
P8 240.8488 3 240.175 3 240.175 3 239.6396 3 239.6394 3
P9 427.6622 3 425.4145 3 425.4145 3 423.8487 3 427.1502 3
P10 275.8686 1 276.2151 1 276.2151 1 276.8994 1 275.8686 1

Pd 2,700 2,700 2,700 2,700 2,700
Total
Cost 623.8476 623.928 624.012 623.8766 623.8319

The convergence characteristics and the distribution of generation costs of the SQPSO in
comparison with PSO, DE, QPSO are shown in Figures 8 and 9. Clearly, SQPSO converges to the
optimal solution faster than other three methods. It can reach the optimal region only in a few iterations,
which shows powerful global search ability.
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Figure 8. Convergence characteristics for total generation costs (multiple fuel options system).

Figure 9. Distribution of generation costs for 100 runs (multiple fuel options system).

The results of different methods for the multiple fuel ED problems with total demand range from
2400 to 2600 MW are summarized in Table 7. It again shows that the SQPSO outperforms all the
other methods.
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Table 7. Comparison of calculation results for multiple fuel ED problem with total demand range from
2400–2600 MW.

Demand Method
Generation cost ($/H) Standard

Deviation
Average

CPU timesMinimum Mean Maximum

2400

DE 481.9030 481.9527 482.0231 0.0285 0.4781
PSO 482.0807 484.1717 491.5540 2.5598 0.3625

QPSO 481.9235 483.4540 492.6059 2.2612 0.3562
CQPSO 481.7469 481.7711 481.7974 0.0180 0.3683
SQPSO 481.7320 481.7440 481.7591 0.0068 0.3390

2500

DE 526.4154 526.4771 526.5379 0.0244 0.5156
PSO 526.4849 527.5594 535.1762 1.3761 0.3578

QPSO 526.3758 527.5720 534.9611 1.4797 0.3328
CQPSO 526.2537 526.2839 526.3229 0.0187 0.3453
SQPSO 526.2447 526.2556 526.2897 0.0079 0.3500

2600

DE 574.5489 574.6371 574.9653 0.0916 0.5984
PSO 574.6194 576.0185 589.1900 2.5451 0.3515

QPSO 574.5857 575.7198 589.1281 2.0467 0.3315
CQPSO 574.4492 574.6538 574.7928 0.1439 0.3576
SQPSO 574.3866 574.5076 574.7659 0.1640 0.3484

5. Conclusions

An improved quantum-behaved particle swarm optimization called SQPSO is proposed in this
paper, which introduces selective probability operator into the basic QPSO. The proposed SQPSO has
been tested on five classic benchmark functions, as well as two ED problems with valve-point effects
and multiple fuel options. It shows superior optimization performance in terms of the convergence
rate and the robustness, compared with DE, PSO, CQPSO and QPSO. Additionally, SQPSO also shows
competitive ability over other algorithms from the literature.
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Abstract: The accuracy of annual electric load forecasting plays an important role in the economic
and social benefits of electric power systems. The least squares support vector machine (LSSVM) has
been proven to offer strong potential in forecasting issues, particularly by employing an appropriate
meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic
algorithms have the drawbacks of being hard to understand and reaching the global optimal solution
slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm
(FOA) has the advantages of being easy to understand and fast convergence to the global optimal
solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based
annual electric load forecasting model that uses FOA to automatically determine the appropriate
values of the two parameters for the LSSVM model. By taking the annual electricity consumption
of China as an instance, the computational result shows that the LSSVM combined with FOA
(LSSVM-FOA) outperforms other alternative methods, namely single LSSVM, LSSVM combined
with coupled simulated annealing algorithm (LSSVM-CSA), generalized regression neural network
(GRNN) and regression model.

Keywords: annual electric load forecasting; least squares support vector machine (LSSVM); fruit fly
optimization algorithm (FOA); optimization problem

1. Introduction

With the rapid development of China's electric power industry, electric load forecasting technology
has aroused widespread concerns among practitioners and academia. An effective and accurate electric
load forecast can provide the basis for the decision-making of electric power system planners. To a
certain extent, the annual electric load forecasting can affect the development trends of the electric
power industry. With the construction and development of the “Strong Smart Grid” in China, the
renewable distributed energy generation capacity is growing rapidly, which may influence the stability
of power system operation. In view of this, more accurate annual electric load forecasting is needed
for maintaining the secure and stable operation of the electric power grid. However, annual electric
loads have complex and non-linear relationships with some factors such as the political environment,
human activities, and economic policy [1], making it is quite difficult to accurately forecast annual
electric loads.

To improve the accuracy of annual electric load forecasting, many approaches have been proposed
by scholars and practitioners in the past decades, such as time series technology and regression
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models [2–6]. However, it is difficult to achieve significant improvements in terms of forecasting
accuracy with these forecasting methods due to their poor non-linear fitting capability. In recent years,
many artificial intelligence forecasting techniques have been applied in annual power load forecasting
to improve the forecasting accuracy. Niu et al. [7] proposed a combined forecasting method based
on a particle swarm optimization method, which can improve the forecasting stability and reliability.
Wang et al. [1] proposed a hybrid model combining support vector regression and a differential
evolution algorithm to forecast the annual power load, which was proven to outperform the SVR
model with default parameters, regression forecasting model and back propagation artificial neural
network (BPNN). Xia et al. [8] developed a medium and long term load forecasting model by using
a radial basis function neural network (RBFNN), and the computational results indicated that this
proposed model has a higher forecasting accuracy and stability. Hsu and Chen [9] formulated an
artificial neural network model by collecting empirical data to forecast the regional peak load of
Taiwan. Abou El-Ela et al. [10] proposed the artificial neural network (ANN) technique for long-term
peak load forecasting, which was applied at the Egyptian electrical network based on its historical data.
Meng et al. [11] applied the partial least squares method which could simulate the relationship between
the electricity consumption and its influencing factors to forecast electricity load, and the empirical
results revealed that this method is effective. Chen [12] proposed a collaborative fuzzy-neural approach
for forecasting Taiwan’s annual electricity load, and this approach could improve the forecasting
accuracy. Kandil et al. [13] implemented a knowledge-based expert system to support the choice of
the most suitable load forecasting model, and the usefulness of this method was demonstrated by
a practical application. Hong [14] proposed an electric load forecasting model which combined the
seasonal recurrent support vector regression model with a chaotic artificial bee colony algorithm, and
this method could provide a more accurate forecasting result than the TF-ε-SVR-SA and ARIMA model.
Pai et al. [15] used support vector machines with a simulated annealing algorithm to forecast Taiwan’s
electricity load, and the empirical results revealed this model outperforms the general regression
neural network model and the autoregressive integrated moving average model. These methods, to a
certain extent, all improve the annual electric load forecasting accuracy.

The least squares support vector machine (LSSVM) is a reformulation of the support vector
machine (SVM) which leads to solving a linear KKT system [16,17]. The LSSVM can approach
the non-linear system with high precision, making it a powerful tool for modeling and forecasting
non-linear systems [18]. The LSSVM model has been successfully used to solve forecasting problems
in many fields, such as CO concentration [19], gas [20,21], short term electric load [22–24], revenue [25],
precipitation [26], wind speed [27], hydropower consumption forecasting [28], and so on. However,
it is very regretful to find that the LSSVM model has rarely been applied to annual electric load
forecasting. This paper examines the feasibility of using the LSSVM model to forecast annual electric
loads. The forecasting performance of the LSSVM model largely depends on the values of its two
parameters. Currently, several meta-heuristic algorithms have been used to determine the appropriate
values of these two parameters, including particle swarm optimization [20], genetic algorithm [22],
chaotic differential evolution approach [29], artificial bee colony algorithm [30], and simulated
annealing algorithm [31]. However, these optimization algorithms have the drawbacks of being
hard to understand and reaching the global optimal solution slowly. The fruit fly optimization
algorithm (FOA) proposed by Pan in 2011 [32], is a novel evolutionary computation and optimization
technique. This new optimization algorithm has the advantages of being easy to understand due to
the shorter program code compared with other optimization algorithms and of reaching the global
optimal solution fast. Therefore, this paper attempts to use the FOA to automatically determine the
appropriate values of the two necessary parameters in order to improve the performance of the LSSVM
model in annual electric load forecasting.

The rest of this paper is organized as follows: Section 2 introduces the LSSVM model and FOA,
then a hybrid annual electric load forecasting model (LSSVM-FOA) that combines LSSVM model and
FOA is discussed in detail. Section 3 introduces the sample data processing procedure used in this
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paper, and the computation, comparison and discussion of a numerical example is presented. Section 4
concludes this paper.

2. Methodology of the LSSVM-FOA Model

2.1. Least Squares Support Vector Machine (LSSVM) Model

The LSSVM is an extension of SVM which applies the linear least squares criteria to the loss
function instead of inequality constraints [33]. The basic principle is as follows [34]: given a set of
samples {xi, yi}m

i=1, where xi ∈ Rn is the input vector and yi ∈ R is the corresponding output value for
sample i. By a nonlinear function ϕ, the data are mapped from the original feature space to a higher
dimensional transformed one, thus, to approximate it in a linear way as follows:

f (x) = wTϕ(x) + b (1)

where w denotes the weight vector; and b denotes the error.
In the primal space, the LSSVM formulation with the equality constraints can be described as:
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where C is the regularization parameter; and ξi is the slack variable.
The Lagrangian function L can be constructed by:
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where ai is the Lagrange multiplier. The Karush–Kuhn–Tucker (KKT) conditions for optimality are
given by:
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Eliminating the variables w and ξi, the optimization problem can be transformed into the following
linear solution:
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where Q = [1, . . . ,1]T, A = [a1,a2, . . . ,am]T, Y = [y1,y2, . . . ,ym]T. According to the Mercer’s condition,
the Kernel function can be set as:

K(xi,xj) = ϕ(xi)
Tϕ(xj) (6)

Then, the LSSVM model for regression becomes:

1
( ) ( , )

m

i i
i

f x a K x x b
(7)

There are several different types of Mercer kernel function K(x, xi) such as sigmoid, polynomial
and radial basis function (RBF). The RBF is a common option for the kernel function because of fewer
parameters that need to be set and an excellent overall performance [35]. Therefore, this paper selected
the RBF [as shown in Equation (8)] as the kernel function:

2 2( , ) exp 2i iK x x x x
(8)

Consequently, there are two parameters that need to be chosen in the LSSVM model, which are
the bandwidth of the Gaussian RBF kernel “σ” and the regularization parameter “C”. In this paper,
the FOA is used to determine the optimal values of these two parameters.

2.2. Fruit Fly Optimization Algorithm (FOA)

The fruit fly optimization algorithm (FOA) is a new swarm intelligence algorithm, which was
proposed by Pan [32] in 2011. It is a kind of interactive evolutionary computation method. By imitating
the food finding behavior of the fruit fly swarm, the FOA can reach the global optimum.

Fruit flies are a kind of insect, which live in the temperate and tropical climate zones and eat
rotten fruit. The fruit fly is superior to other species in vision and osphresis. The food finding process
of fruit fly is as follows: it firstly smells the food source with its osphresis organ, and flies towards that
location; after it gets close to the food location, its sensitive vision is also used for finding food and
other fruit flies’ flocking location, and then it flies towards that direction. The FOA has been applied to
several fields including traffic incidents [36], export trade forecasting [37], and the design of analog
filters [38]. Figure 1 shows the food finding iterative process of a fruit fly swarm.

Figure 1. Food finding iterative process of a fruit fly swarm.
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According to the food finding characteristics of fruit fly swarm, the FOA can be divided into
several steps, as follows:

Step 1: Parameter Initialization
The main parameters of FOA are the maximum iteration number maxgen, the population size

sizepop, the initial fruit fly swarm location (X_axis,Y_axis), and the random flight distance range FR.
Step 2: Population Initialization
Give the random flight direction and the distance for food finding of an individual fruit fly by

using osphresis:
Xi = X_axis + Random Value (9)

Yi = Y_axis + Random Value (10)

Step 3: Population Evaluation
Firstly, the distance (Dist) of the fruit fly to the origin needs to be calculated. Secondly, the smell

concentration judgment value (S) needs to be calculated. Suppose that S is the reciprocal of Dist:

Disti +
(

X2
i + Y2

i

)1/2
(11)

Si = 1/Disti (12)

Then, we calculate the smell concentration (Smelli) of the individual fruit fly location by
substituting the smell concentration judgment value (Si) into the smell concentration judgment
function (also called Fitness function). Finally, find out the individual fruit fly with the maximal
smell concentration (the maximal value of Smelli) among the fruit fly swarm:

Smelli = Function (Si) (13)

[bestSmell bestIndex] = max (Smelli) (14)

Step 4: Selection Operation
Keep the maximal smell concentration value and x, y coordinates. Then, the fruit flies fly towards

the location with the maximal smell concentration value by using vision. Enter iterative optimization
to repeat the implementation of step 2–3. When the smell concentration is not superior to the previous
iterative smell concentration any more, or the iterative number reaches the maximal iterative number,
the circulation stops:

Smellbest = bestSmell (15)

X_axis = X (bestIndex) (16)

Y_axis = Y (bestIndex) (17)

2.3. LSSVMFOA Forecasting Model

The diagram of procedure structure of the LSSVM-FOA forecasting model is illustrated in Figure 2.
The details of FOA for parameter determination of the LSSVM model are as follows:

Step1: Initialization Parameters
The maximum iteration number maxgen, the population size sizepop, the initial fruit fly swarm

location (X_axis,Y_axis), and the random flight distance range FR should be determined at first. In this
study, we suppose maxgen = 100, sizepop = 20, (X_axis,Y_axis)

..
y [−50, 50], FR ⊂ [−10,10]. In the

LSSVMFOA program, we set X_axis = rands(1,2), Y_axis = rands(1,2), where rands() denotes the random
number generation function.

Step2: Evolution Starts
Set gen = 0, and give the random flight direction rand() and the flight distance for food finding

of an individual fruit fly i. In the LSSVMFOA program, we employ two variables [X(i,:),Y(i,:)] to
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represent the flight distance for food finding of an individual fruit fly i, and set X(i,:) = X_axis + 20 *
rand() − 10, Y(i,:) = Y_axis + 20 * rand() − 10, respectively.

Figure 2. Diagram of the procedure structure of the LSSVM-FOA forecasting model.

Step3: Preliminary Calculations
Calculate the distance Disti of the fruit fly i to the origin, and then calculate the smell concentration

judgment value Si. In the LSSVM-FOA program, we employ (D(i,1),D(i,2)) to represent Disti, and
set D(i,1) = (X(i,1)ˆ2 + Y(i,1)ˆ2)ˆ0.5, D(i,2) = (X(i,2)ˆ2 + Y(i,2)ˆ2)ˆ0.5, respectively. Similarly, we use
(S(i,1), S(i,2)) to represent Si in the LSSVM-FOA program, and set S(i,1) = 1/D(i,1), S(i,2) = 1/D(i,2),
respectively. Then, input Si into the LSSVM model for annual electric load forecasting. In the
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LSSVM-FOA program, the parameters [C,σ] of LSSVM model are represented by [S(i,1),S(i,2)], and
we set C = 20 * S(i,1) and σ2 = S(i,2), respectively. According to the electric load forecasting result,
the smell concentration Smelli (also called the fitness function value) can be calculated. The Smelli
is employed by the root-mean-square error (RMSE), as shown in Equation (18), which measures the
deviations between the forecasting values and actual values:

2
1
( )n

i ii
f f

RMSE
n

 
(18)

where n is the number of forecasting periods; fi is the actual value at period i; f i denotes the forecasting
value at period i.

Step4: Offspring Generation
The offspring generation is generated according to Equations (9–14). Then input the offspring

into the LSSVM model and calculate the smell concentration value again. Set gen = gen + 1.
Step5: Circulation Stops
When gen reaches the max iterative number, the stop criterion satisfies, and the optimal parameters

of LSSVM model are obtained. Otherwise, go back to Step2.

3. Example Computation and Discussion

3.1. The Preprocessing of Sample Data

The sample data were selected from the annual electricity consumption of China between 1978
and 2011, shown in Table 1. Before the calculation, the sample data were normalized to make them in
the range from 0 to 1 using the following formula:

min

max min

{ } , 1,2,3i i
i

i i

x xZ z i
x x

 
(19)

where ximin and ximax denote the minimal and maximal value of each input factor, respectively.
The sample data were divided into the training data and testing data. Different from the short

term electric load forecasting, the annual electric load forecasting is not suitable for selecting the factors
such as temperature, moderate [1]. Therefore, this paper selected the last three load data (Ln−3, Ln−2,
Ln−1) as the input variables of the LSSVMFOA model, and the output variable is Ln. Due to using
the last three electric load data as the input variables to forecast, the training data started in 1981 and
ended in 2005, and the testing data were from 2006 to 2011.

In the training stage, a roll-based data processing procedure was used. Firstly, the top three load
data (from 1978 to 1980) of the sample data were substituted into the LSSVM-FOA model, and then
the electric load forecasting value of 1981 could be obtained. Secondly, the next roll-top three load data
(from 1979 to 1981) were fed into the LSSVM-FOA model, and the forecasting value of 1982 could be
produced. In this step, the electric load value of 1981 which was fed into the proposed LSSVM-FOA
model should employ the actual electric load value of 1981. Similarly, the forecasting processes were
cycling until all the electric load forecasting values (from 1981 to 2005) were obtained. Because of the
roll-based data processing procedure, the value of n in Equation (18) equals to 25.
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Table 1. Annual electricity consumption of China between 1978 and 2011 (unit: 109 kWh).

Year
Electricity

consumption
Year

Electricity
consumption

Year
Electricity

consumption

1978 246.53 1990 623.59 2002 1633.15
1979 282.02 1991 680.96 2003 1903.16
1980 300.63 1992 759.27 2004 2197.14
1981 309.65 1993 842.65 2005 2494.03
1982 327.92 1994 926.04 2006 2858.80
1983 351.86 1995 1002.34 2007 3271.18
1984 377.89 1996 1076.43 2008 3454.14
1985 411.90 1997 1128.44 2009 3703.22
1986 451.03 1998 1159.84 2010 4199.90
1987 498.84 1999 1230.52 2011 4690.00
1988 547.23 2000 1347.24 - -
1989 587.18 2001 1463.35 - -

Sample data sources: the data of 1978–2010 come from reference [39]; the data of 2011 comes from reference [40].

3.2. The Selection of Comparison Models

To compare the annual electric load forecasting result, several other electric load forecasting
models were selected. From Table 1, we can discern that the annual electric load series shows an
increasing approximately linear trend. Therefore, the regression forecasting model was employed.
In the meantime, the single LSSVM model, LSSVM model combined with coupled simulated annealing
algorithm (LSSVM-CSA) [41], and generalized regression neural network (GRNN) model were also
employed for comparison. GRNN is a kind of radial basis function (RBF) networks which is based
on a standard statistical technique called kernel regression, and it has excellent performances on
approximation ability and learning speed [42,43]. In GRNN model, there is only one parameter σ that
needs to be determined.

The experimental environment includes Matlab 2010a, LSSVMlabv1.8 toolbox [44,45],
GRNN toolbox, self-written MATLAB programs and a computer with an Intel(R) Core(TM)2 T2450 2
GHz CPU, 1.5 GB RAM and the Windows 7 Professional operating system.

3.3. FOA Result for Parameter Determination of the LSSVM Model

In LSSVM-FOA model, the values of the two parameters of LSSVM model were dynamically
tuned by the FOA. Figure 3a shows the fruit fly swarm flying route for parameter optimization. It can
be seen that the fruit fly swarm flying route is relatively stable, and the fruit fly swarm moves straight
to the food location. The fruit fly swarm fixes the food location accurately and fast. The iterative RMSE
trend of the LSSVM-FOA model when searching for the optimal parameters is shown in Figure 3b.
After 100 evolution iterations, the convergence can be seen in generation 17 with the coordinate of
(441,362), and the optimal values of the parameters σ and C are 0.7051, 17.3571, respectively.

40



Energies 2012, 5, 4430–4445

Figure 3. (a) The fruit fly swarm flying route for parameter optimization; (b) The iterative RMSE trend
of the LSSVM-FOA model searching for optimal parameters.

3.4. Forecasting Result and Discussion

According to the result of the FOA tuning the parameters of LSSVM model, the values of σ and C
were chosen as 0.7051 and 17.3571, respectively. In the single LSSVM model, the values of σ and C
were chosen as 5 and 10, respectively. In the LSSVM-CSA model, radial basis function was chosen
as the kernel function. According to the result of CSA optimizing the parameters of LSSVM model,
the optimal values of σ and C were 10.8494 and 12185.8, respectively. In the GRNN model, the spread
parameter value was chosen as 0.2.

With the LSSVM-FOA, single LSSVM, LSSVM-CSA, GRNN and regression model, the training
times of the data are 17, 13, 36, 14 and 8 s, respectively. The training time of these five models on
disposing of the training data are different. The LSSVM-FOA and LSSVM-CSA use longer times than
the single LSSVM, GRNN and regression model because they need to determine the parameters in the
each generation. However, the LSSVM-FOA uses 19 s less than the LSSVM-CSA computation.

Table 2 lists the annual electric load forecasting results with the LSSVM-FOA, LSSVM,
LSSVM-CSA, GRNN, and regression model. Figure 4 describes the relative errors of the forecasting
results of these five models. From Table 2 and Figure 4, the deviations between the forecasting
results of these five forecasting models and the actual values can be captured. The relative error
ranges [−3%,+3%] and [−1%,+1%] are always considered as a standard to assess the performance
of a forecasting model [46]. Firstly, the relative errors of annual electric load forecasting points of
LSSVM-FOA model are all in the range [−3%,+3%], and the maximum and minimum relative errors
are 2.265% in 2008 and −0.603% in 2009, respectively. In addition, two out of six points means that 33%
of the forecasting points are in the scope of [−1%,+1%], which are −0.603% in 2009 and −0.811% in
2011. Secondly, the single LSSVM model has two forecasting points that exceed the relative error range
[−3%,+3%], which are 3.139% in 2008 and 4.412% in 2009, respectively. However, all the forecasting
points exceed the scope of [−1%,+1%], and the maximum and minimum relative errors are 4.412% in
2009 and −1.863% in 2011, respectively. Thirdly, the LSSVM-CSA model has one forecasting point that
exceeds the relative error range [−3%,+3%], which is 3.529% in 2008. For LSSVM-CSA model, there is
one forecasting point in the scope of [−1%,+1%], which is −0.632% in 2007, and the maximum and
minimum relative errors are 3.529% in 2008 and −0.632% in 2007, respectively. Fourthly, the GRNN
model has three forecasting points that exceed the relative error range [−3%,+3%], which are 3.355% in
2006, −3.664% in 2007, and 3.509% in 2009. All the forecasting points of the GRNN model exceed the
scope of [−1%,+1%]. Finally, the regression model has four forecasting points that exceed the relative
error range [−3%,+3%], which are 7.354% in 2008, 3.017% in 2009, −3.119% in 2010, and 3.477% in
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2011, and one forecasting point in the scope of [−1%,+1%], which are −0.410% in 2007. The maximum
relative error of regression model is 7.354%, which is the largest among these five forecasting models.

Table 2. Forecasting results of LSSVM-FOA, single LSSVM, LSSVM-CSA, GRNN, and regression model
(unit: 109 kWh).

Year Actual value LSSVM-FOA LSSVM LSSVM-CSA GRNN Regression

2006 2858.80 2896.83 2914.43 2915.69 2954.72 2794.15
2007 3271.18 3218.18 3180.73 3250.50 3151.32 3257.77
2008 3454.14 3532.38 3562.55 3576.02 3522.79 3708.16
2009 3703.22 3680.91 3866.61 3763.08 3833.16 3591.50
2010 4199.90 4250.26 4282.43 4301.53 4247.11 4068.92
2011 4690.00 4651.95 4602.62 4616.40 4572.24 4853.09

Figure 4. The relative errors of the forecasting results of the different forecasting models.

The mean absolute percentage error (MAPE), mean square error (MSE), and average absolute
error (AAE) were also used to assess the performances of different forecasting models in this paper.
The values of MAPE, MSE, and AAE can be calculated by:
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where A(i) is the actual electric load value at time i; and F(i) is the forecasting value at time i.
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Comparisons of the values of MAPE, MSE, and AAE for the LSSVM-FOA, LSSVM, LSSVM-CSA,
GRNN and regression model are listed in Table 3. It can be seen that the MAPE value of LSSVM-FOA
model is 1.305%, which is much smaller than that obtained by single LSSVM, LSSVM-CSA, GRNN
and regression model (which are 2.682%, 1.959%, 2.692%, and 3.273%, respectively). The MSE value
of LSSVM-FOA model is 2,476, which is dramatically smaller than that obtained by another four
models (which are 10,695, 6,308, 10,210, and 20,853, respectively). The AAE value of LSSVM-FOA
model is 0.0126, which is much smaller than that obtained by single LSSVM, LSSVM-CSA, GRNN and
regression model (which are 0.0265, 0.0196, 0.0261, and 0.0333, respectively). Meanwhile, the values of
MAPE, MSE, and AAE of LSSVM-CSA model are much smaller than that of single LSSVM, GRNN
and regression models. These indicate that the meta-heuristic algorithms for parameter selection have
the potential to be employed for the LSSVM-based annual electric load forecasting model to improve
the forecasting accuracy. In this paper, the LSSVM-FOA model has better forecasting performance than
the LSSVM-CSA model. Furthermore, because the values of MAPE, MSE, and AAE are the largest,
the regression model has the lowest forecasting accuracy, which reveals its poor non-linear fitting
capability. The MAPE value of the single LSSVM model is smaller than that of GRNN model, but the
MSE and AAE values are much larger. So, it is still unclear when the LSSVM-based annual electric
load forecasting model performs better than the GRNN-based annual electric load forecasting model
in this paper.

Table 3. The values of MAPE, MSE, and AAE for LSSVM-FOA, single LSSVM, LSSVM-CSA, GRNN
and regression model.

Model LSSVM-FOA LSSVM LSSVM-CSA GRNN Regression

MAPE (%) 1.305 2.682 1.959 2.692 3.273
MSE 2476 10695 6308 10210 20853
AAE 0.0126 0.0265 0.0196 0.0261 0.0333

In conclusion, the proposed LSSVM-FOA model greatly narrows the deviations between the
forecasting values and actual values, and outperforms the single LSSVM, LSSVM-CSA, GRNN, and
regression model in the annual electric load forecasting.

4. Conclusions

With the construction of the “Strong Smart Grid” and the increasing generation capacity of
renewable distributed energy, accurate electric load forecasting is a guide for effective implementations
of energy policies in China of greatly importance. However, the non-linear relationship of annual
electric load with its influencing factors makes electric load forecasting very complicated. Thus,
how to improve the annual electric load forecasting accuracy is worthy of study. The least squares
support vector machine has been widely applied to a variety of fields, but it is regretful to find that
the LSSVM have rarely been applied to the problem of annual electric load forecasting. The fruit
fly optimization algorithm (FOA) is a new swarm intelligence algorithm which has the advantages
of being easy to understand due to its shorter program code compared with other meta-heuristic
algorithms, and reaching the global optimal solution fast. In this paper, we hybridized the LSSVM and
FOA, in the so-called LSSVM-FOA model, to examine its potential for annual electric load forecasting.
To validate the proposed method, four other alternative models (single LSSVM, LSSVM-CSA, GRNN,
and regression model) were employed to compare the forecasting performances. Example computation
results show that the relative errors of annual electric load forecasting points of LSSVM-FOA model
are all in the range [−3%,+3%], and the values of MAPE, MSE and AAE are much smaller than that
obtained by single LSSVM, LSSVM-CSA, GRNN, and regression model. These indicate the proposed
LSSVM-FOA model has significant superiority over other alternative forecasting models in terms of
the annual electric load forecasting accuracy. The hybridization of the least squares support vector
machine and fruit fly optimization algorithm is feasible. The LSSVM-FOA model uses 19 s less than
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the LSSVM-CSA computation, which testifies to the FOA’s advantage in reaching the global optimal
solution fast compared with other meta-heuristic algorithms. Although the LSSVM-FOA model is a
little time consuming compared with single LSSVM, some attentions should be paid to this new hybrid
forecasting model. The proposed LSSVM-FOA model which uses the FOA to automatically determine
the appropriate values of the two parameters for the LSSVM model can effectively improve the annual
electric load forecasting accuracy. We also conclude that the artificial intelligence forecasting models
have much better performance than the regression models, which reveals that artificial intelligence
forecasting models have good non-linear fitting capacity. Meanwhile, the meta-heuristic algorithms
for parameter selection have the potential to be employed for the LSSVM-based annual electric load
forecasting model to improve the forecasting accuracy.
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Abstract: Bidding competition is one of the main transaction approaches in a deregulated electricity
market. Locational marginal prices (LMPs) resulting from bidding competition and system operation
conditions indicate electricity values at a node or in an area. The LMP reveals important information
for market participants in developing their bidding strategies. Moreover, LMP is also a vital indicator
for the Security Coordinator to perform market redispatch for congestion management. This paper
presents a method using a principal component analysis (PCA) network cascaded with a multi-layer
feedforward (MLF) network for forecasting LMPs in a day-ahead market. The PCA network extracts
essential features from periodic information in the market. These features serve as inputs to the
MLF network for forecasting LMPs. The historical LMPs in the PJM market are employed to test the
proposed method. It is found that the proposed method is capable of forecasting day-ahead LMP
values efficiently.

Keywords: locational marginal price; forecasting; principal component analysis

1. Introduction

There are two main transaction modes in a deregulated electric power industry, namely,
competitive bidding and bilateral contract. Competitive biddings are used in the energy, spot,
firm-transmission-right and ancillary service markets while bilateral contract is adopted outside
the competitive market for any two individual entities, buyer and seller [1,2]. For either transaction
mode, the electricity price information serves as an essential signal for all entities to adjust their
offers/bids and/or contract prices. In particular, locational marginal pricing (LMP) is one of the most
popular modes for pricing electricity in a deregulated electricity market. LMPs can reflect the electricity
value at a node and may be discriminated at different nodes in a power network [3]. LMPs provide
information that is helpful to market participants in developing their bidding strategies. It is also
a vital indicator for the Security Coordinator to mitigate transmission congestion [4]. LMPs reveal
important information for both the spot market and entities with bilateral contracts.

Past studies have investigated short-term System Marginal Price (SMP) forecasting [5,6].
Because the SMP is irrelevant to transmission constraints, forecasting LMPs subject to transmission
constraints is more difficult than forecasting Market Clear Prices (MCPs). Current methods for
short-term LMP forecasting can be classified at least into three groups: hour-ahead, day-ahead and
week-ahead forecastings.

The recurrent neural network integrated with fuzzy-c-means was proposed for hour-ahead LMP
forecasting in [7]. Linguistic descriptions in the PJM market were transformed into fuzzy membership
functions associated with the recurrent neural network for forecasting volatile hour-ahead LMP
variations when contingency occurs [8]. This paper investigates the more difficult problem related to
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the day-ahead price forecasting, which may be applied to the day-ahead market and will be discussed
in the next paragraph.

In recent years, Contreras et al. [9] used the ARIMA model and Nogales et al. [10] used the
dynamic regression approach and transfer function approach to predict the next-day (day-ahead)
electricity prices. However, there is no discussion on extracting the market features for usage of these
approaches in [9,10]. Li et al. [11] integrated the fuzzy inference system with least-squares estimation
to conduct the day-ahead electricity price forecasting. The “week day”, “yesterday price” and “local
demand” were considered in the 18 antecedent (premise or condition) parts of the fuzzy rules in [11].
Giving the membership functions of these three linguistic variables is quite heuristic. Moreover, the
“local demand” for the fuzzy rules is not a forecasted but an actual value, which is generally not
available in the day-ahead market. Amjady and Keynia [12] combined a mutual information technique
(MIT) with the cascaded neuro-evolutionary algorithm (NEA) for the day-ahead electricity price
forecasting. In [12], 14 features in the market were selected by MIT for 24 feedforward neural networks
trained by the NEA. No reasonable explanation was found for these 14 features. Moreover, many (24)
neural networks make the method impractical for industrial application. Garcia et al. [13] presented an
approach to predicting next-day electricity prices using the Generalized Autoregressive Conditional
Heteroskedastic (GARCH) methodology, which is an extended auto-regressive integrated moving
average (ARIMA). Amjady [14] presented a fuzzy neural network with an inter-layer and feedforward
architecture using a new hypercubic training mechanism. The proposed method predicted hourly
market-clearing prices for the day-ahead electricity markets. Again, there is no discussion on extracting
the market features for usage of the GARCH in [13,14]. Coelho and Santos [15] proposed a nonlinear
forecasting model based on radial basis function neural networks (RBF-NNs) with Gaussian activation
functions. Partial autocorrelation functions (PACF), which relies on the mutual linear dependency
among studied parameters, was used to identify the market features. However, the relation among
power market features is very nonlinear.

The problem of week-ahead price forecasting is generally easier than that of day-ahead price
forecasting because the price pattern of a day is similar to that of its corresponding week-ahead
day. Catalao et al. [16] proposed a wavelet-based Sugeno type fuzzy inference system to predict the
electricity price in the electricity market of mainland Spain. However, the selection of numbers of
membership functions in [16] is a trade-off between refining and sparseness. Che and Wang [17]
presented a method based on support vector regression and ARIMA modeling; however, only the
MCPs of California electricity market were used to examine the accuracy of the proposed method.
The method has not been applied to forecasting LMPs, whose pattern is more nonlinear than MCPs’.

Because LMPs vary dramatically, it is difficult to analyze the related data with traditional
techniques (e.g., regression analysis). Like other forecasting problems [18–20], the LMP forecasting
needs feature extraction incorporating a powerful approach. As described above, the neural network
is suitable for nonstationary time-series prediction, providing satisfactory results. In this paper, a
principal component analysis (PCA) neural network cascaded with the multi-layer-feedforward (MLF)
neural network is proposed for day-ahead LMP forecasting. The PCA neural network is used to
extract essential features in the electricity market. It also helps reduce high-dimensional data into
low-dimensional ones, which serve as inputs for the MLF neural network.

The rest of this paper is organized as follows: the PJM real-time market data will be described in
Section 2. The proposed PCA neural network cascaded with the MLF neural network for forecasting
day-ahead LMPs will be given in Section 3. Simulation results obtained using the PJM data are
presented in Section 4. Concluding remarks are provided in Section 5.

2. Volatile LMPs in a Day-ahead Market

The PJM energy market comprises day-ahead and real-time markets. The day-ahead market is a
forward market in which hourly LMPs are calculated for the next operating day using generation offers,
demand bids and scheduled bilateral transactions. The real-time market is a spot market in which

48



Energies 2012, 5, 4711–4725

current LMPs are calculated at five-minute intervals according to actual grid operating conditions.
PJM settles transactions hourly and issues invoices to market participants monthly. Figures 1 and 2
illustrate the LMPs in Fisk (4 kV) and Byberry (13 kV), respectively, on 1–7 July 2008. As can be seen,
LMPs vary dramatically over a wide range.

Figure 1. Daily LMPs in Fisk (4 kV) on 1–7 July 2008.

Figure 2. Daily LMPs in Byberry (13 kV) on 1–7 July 2008.

3. The Proposed Method

The hybrid PCA neural network is developed by combining the unsupervised PCA and
supervised MLF neural networks to conduct day-ahead LMP forecasting. The PCA neural network
is employed to extract essential features in the electricity market. The PCA neural network can also
reduce high-dimensional data into low-dimensional ones, which serve as inputs of the MLF neural
network to reduce the training CPU time.
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3.1. Principal Component Analysis Neural Network

The purpose of the PCA neural network is to find a set of P orthonormal vectors (OVs) in a
Q-dimensional space (Q ≥ P), such that these OVs will account for as much variance of the input data
as possible. OVs are actually P eigenvectors associated with the P largest eigenvalues of the E(xxt),
where x denotes the Q-dimensional input column vector, i.e., x = (x1 x2 . . . xQ)t. The direction of the
q-th principal component will be along the q-th eigenvector, q = 1, 2, .., Q.

Let symbol t be the training index. This paper used Sanger’s method [21] to update the weightings
between the neurons of the PCA network as follows:

Δwp(t) = η(t)vp(t)

(
x(t)−

p

∑
pj=1

vpj(t)wpj(t)

)
, p = 1, 2, . . . , P (1)

where η(t) is a parameter of learning rate and vpj(t) = wt
pj(t)x(t) is the output. Equation (1) is

employed to train a neural network consisting of P linear neurons so as to find the first P principal
components. More specifically, Generalized Hebbian Algorithm was able to make wp(t), p = 1, 2, . . . ,
P, converge to the first P principal component directions, in sequential order: wp(t) → ±vi, where
vi is a normalized eigenvector associated with the i-th largest eigenvalue of the correlation matrix. It
was shown that if wpj(t), pj = 1, 2, . . . , p − 1 have converged to vpj(t), pj = 1, 2, . . . , p − 1, respectively,
then the maximal eigenvalue λp and the corresponding normalized eigenvector vp of the correlation
matrix of xp, i.e., Cp ≡ E(xpxt

p), are exactly the p-th eigenvalue and the p-th normalized eigenvector vp

of the correlation matrix of x, i.e., C ≡ E(xxt), respectively. Consequently, neuron p can find the p-th
normalized eigenvector of C. Detailed explanations can be found in [21].

It was shown that η(t) should be smaller than the reciprocal largest eigenvalue of E(xxt) to ensure
the convergence of training a PCA neural network. When the training process is convergent, wp, p = 1,
2, . . . , P, converges to the p-th eigenvector of E(xxt).

Figure 3 shows the configuration of the hybrid PCA neural network: The left part of Figure 3 is
the unsupervised PCA neural network while the right part is the supervised MLF neural network.
Because the training time of unsupervised PCA neural network is trivial while that of supervised MLF
is considerable, PCA neural network is adopted to reduce both the dimension of training data and the
training time for the cascaded MLF network trained by the back-propagation algorithm, which is well
known and ignored here.

In the proposed hybrid PCA, the new hidden layer consists of 20 neurons. The number (p) of
orthonormal vectors is 24 or 48, depending on the numbers of inputs. After training the unsupervised
PCA, the supervised MLF is trained, using the frozen weights of the unsupervised PCA. The training
sets are identical for both unsupervised and supervised NNs.
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Figure 3. The proposed hybrid PCA neural network.

3.2. Features for Inputs of PCA Neural Network

The performance of a neural network depends strongly on the adopted features at the input
layers. As shown in Figures 1 and 2, variations of system load affect LMPs. Assume that the h-th LMP
is to be forecasted. Let P(h) and L(h) be the LMP and MW demand at hour h, respectively.

Below are 4 alternatives for considering input features x1, x2, . . . , xQ:

(1) The features of the past 2 days: F1(h) ≡ (P(h − 47), P(h − 46), . . . , P(h − 25), P(h − 24) and
L(h − 47), L(h − 46), . . . , L(h − 25), L(h − 24)). That is, Q = 48.

(2) The features of the same day of the last week and those of the past 2 days: F2(h) ≡ (P(h − 168),
P(h − 167), . . . , P(h − 146), P(h − 145), P(h − 47), P(h − 46), . . . , P(h − 25), P(h − 24) and
L(h − 168), L(h − 167), . . . , L(h − 146), L(h − 145), L(h − 47), L(h − 46), . . . , L(h − 25), L(h − 24)).
That is, Q = 96.

(3) The features of the past 2 days and the designated day: F3(h) = F1(h) ∪ (D|D is one of the seven
days in a week). This implies Q = 49.

(4) The features of the same day of the last week, those of the past 2 days and the designated day:
F4(h) = F2(h) ∪ (D|D is one of the seven days in a week). This means Q = 97.

The symbol D for the designated day here means Monday, . . . , Saturday or Sunday. Because
the neural network cannot deal with symbols, 30, 50, . . . , 150 stand for Monday, . . . , Saturday and
Sunday, respectively, in this paper.

3.3. Moving Data Windows for Forecasting

P(h) at the output layer is paired with F1(h), F2(h), F3(h) or F4(h). More specifically, assume that
F1(h) is considered and the 24 LMPs on Wednesday (next day) are forecasted. Figure 4 illustrates the
moving data window corresponding to the forecasted LMP. Hence, the paired training data are as
follows: (F1(h), P(h)), (F1(h + 1), P(h + 1)), . . . , (F1(h + 23), P(h + 23)). In Figure 4, the first data set
involves only Monday and Wednesday. The last 23 data on Monday and the first data on Tuesday will
be paired with P(h + 1) for the second data set. Restated, forecasting 24 LMPs on Wednesday will be
completed at 23:00 p.m. on Tuesday.

When the proposed hybrid PCA neural network is used in the day-ahead market or in the testing
stage, the input data for the past day (e.g., Monday in Figure 4) and this day (e.g., Tuesday in Figure 4)
are known and output (forecasted) data for the next day (e.g., Wednesday in Figure 4) is unknown.

51



Energies 2012, 5, 4711–4725

Figure 4. Moving data window (F1(h)) corresponding to forecasted P(h).

Assume that this day is Tuesday and LMPs on Wednesday are to be forecasted. Figure 5 shows
the moving data window for F2(h) paired with P(h). The paired training data are as follows: (F2(h),
P(h)), (F2(h + 1), P(h + 1)), . . . , (F2(h + 23), P(h + 23)). As shown in Figure 5, the first data set involves
only the last Wednesday, Monday and Wednesday. The time index h will be increased by one at a time
until h + 23. Restated, forecasting 24 LMPs on Wednesday will be completed at 23:00 p.m. on Tuesday.

Figure 5. Moving data window (F2(h)) corresponding to forecasted P(h).

3.4. Numbers of Neurons in Different Layers

The numbers of input, output, second, and fourth layers are discussed as follows:

(1) The numbers of input neurons for the hybrid PCA neural networks are 48, 96, 49 and 97 for F1(h),
F2(h), F3(h) and F4(h), respectively. That is, subscript Q in Figure 3 can be 48, 96, 49 or 97.

(2) The number of neurons in the MLF output layer is one (i.e., P(h)), regardless of F1(h), F2(h), F3(h)
and F4(h) being considered.

(3) Because the purpose of the PCA neural network is to find a set of P orthonormal vectors (OVs) in
a Q-dimensional space, P is expected to be smaller than the corresponding number of inputs. It
is intuitive to consider P in Figure 3 to be 24 for the studied problem with Q = 48 or 49 because
there are 24 hours in a day. Similarly, P = 48 while Q = 96 or 97.

(4) The common number of neurons for the fourth (hidden) layer is (P + number of output neurons)/2
or (P × number of output neurons)0.5. The simulation results show no significant difference
between these two alternatives.

4. Simulation Results

In order to demonstrate the applicability of the proposed hybrid PCA neural network, the LMPs
for the Fisk (4 kV) and Byberry (13 kV) areas in the PJM system were studied. Two sets of 366 × 24
data (1 January–31 December 2008) for Fisk and Byberry from the PJM web site were employed to
train/validate and test the proposed hybrid PCA neural network. The entire data set includes four
seasons. The data of each season are further divided into three groups: training data, validation data
(in total 2/3), and test data (1/3). The training data were used for training the neural network and
updating the biases and weights. The validation data were utilized to monitor the training process.
The remaining data were employed to test the proposed hybrid PCA neural network after they were
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well trained. A C++ code was developed using a PC equipped with a Pentium(R) Dual-Core E5200
2.5 GHz CPU and 4-GB RAM for showing the applicability of the proposed method.

4.1. Comparison between Hybrid PCA and Back Propagation-Based Neural Networks

In this subsection, the performance of the proposed hybrid PCA neural network is compared with
that of traditional back propagation-based (BP-based) neural network for the Fisk area. The traditional
BP-based neural network can be taken as a neural network in which there are no second and third
layers as seen in Figure 3. Tables 1–4 display the CPU time (minute: second), correlation coefficient
(R2) and mean absolute error (MAE, $/MWh) obtained by these two methods for Fisk. The correlation
coefficient represents the resemblance between the actual and the forecasted values. The value of
one for the correlation coefficient indicates that the actual values are identical to the forecasted ones.
The average value and corresponding standard deviation (sd, $/MWh) of actual LMPs in each season
are also shown in the second and third columns of Tables 1–4 . Figure 6 shows the comparisons among
actual, BP-based and hybrid PCA-based LMPs for Fisk (1–7 July 2008).

Table 1. Performance comparison between the proposed hybrid PCA and BP-based neural network
(Fisk, spring).

Dimension of
input vector

LMP ($/MWh) Hybrid PCA Network BP-based Network

Q average sd time R2 MAE time R2 MAE

48

52.89 25.17

03:50 0.749 14.96 04:21 0.707 15.85
49 03:36 0.814 13.11 04:28 0.777 14.72
96 06:20 0.838 14.19 07:05 0.767 15.19
97 06:34 0.838 13.78 08:19 0.769 15.10

Table 2. Performance comparison between the proposed hybrid PCA and BP-based neural network
(Fisk, summer).

Dimension of
input vector

LMP ($/MWh) Hybrid PCA Network BP-based Network

Q average sd time R2 MAE time R2 MAE

48

55.61 40.52

04:06 0.793 21.35 04:35 0.759 21.36
49 04:39 0.823 20.68 04:50 0.800 21.42
96 08:48 0.826 21.15 12:00 0.824 21.16
97 08:53 0.843 20.51 12:59 0.829 20.74

Table 3. Performance comparison between the proposed hybrid PCA and BP-based neural network
(Fisk, fall).

Dimension of
input vector

LMP ($/MWh) Hybrid PCA Network BP-based Network

Q average sd time R2 MAE time R2 MAE

48

53.23 32.43

03:45 0.840 15.57 04:50 0.840 16.42
49 03:55 0.858 15.34 04:55 0.847 15.81
96 13:41 0.901 13.06 14:34 0.875 16.22
97 13:55 0.904 13.66 14:44 0.876 15.42
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Table 4. Performance comparison between the proposed hybrid PCA and BP-based neural network
(Fisk, winter).

Dimension of
input vector

LMP ($/MWh) Hybrid PCA Network BP-based Network

Q average sd time R2 MAE time R2 MAE

48

42.36 19.15

03:53 0.706 11.02 04:16 0.683 12.19
49 03:57 0.765 10.69 04:24 0.725 12.58
96 08:03 0.818 10.13 12:26 0.786 10.71
97 08:21 0.822 10.03 12:40 0.780 11.28

Figure 6. Comparisons among actual, BP-based and hybrid PCA-based LMPs for Fisk.

According to Tables 1–4 , the following comments can be made:

(1) The most volatile LMPs with an average of 55.61 $/MWh and a standard deviation of
40.52 $/MWh occurred in summer. The most steady LMPs with an average of 42.36 $/MWh and
a standard deviation of 19.15 $/MWh occurred in winter.

(2) For the same neural network, the R2 obtained by 49 inputs is better (larger) than that by 48 inputs;
for the same reason, the neural network with 97 inputs has better performance than that with
96 inputs in terms of R2.

(3) For the same neural network, the R2 obtained by 96 (97) inputs is much better (larger) than that
by 48 (49) inputs; however, the CPU times required by 96 (97) inputs are longer.

(3) For the same number of inputs, the R2 and MAE $/MWh obtained by the hybrid PCA neural
network are better than those obtained by the BP-based neural network.

(4) For the same number of inputs, the CPU time required by the hybrid PCA neural is shorter than
that required by the BP-based neural network.

Tables 5–8 show the comparison of performance between the proposed hybrid PCA neural
network and the traditional BP-based neural network for the Byberry area. The same conclusions can
be made for both Byberry and Fisk areas. Figure 7 shows the comparisons among actual, BP-based
and hybrid PCA-based LMPs for Byberry (1–7 July 2008).
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Table 5. Performance comparison between the proposed hybrid PCA and BP-based neural network
(Byberry, spring).

Dimension of
input vector

LMP ($/MWh) Hybrid PCA Network BP-based Network

Q average sd time R2 MAE time R2 MAE

48

73.95 42.05

03:28 0.681 25.89 04:01 0.634 28.15
49 03:39 0.734 25.41 04:05 0.669 28.56
96 06:00 0.784 24.60 07:05 0.673 28.40
97 06:07 0.793 24.22 07:35 0.681 29.22

Table 6. Performance comparison between the proposed hybrid PCA and BP-based neural network
(Byberry, summer).

Dimension of
input vector

LMP ($/MWh) Hybrid PCA Network BP-based Network

Q average sd time R2 MAE time R2 MAE

48

87.22 52.73

03:41 0.797 28.06 04:32 0.789 28.15
49 03:52 0.842 26.36 04:58 0.827 26.96
96 08:25 0.859 25.10 14:47 0.852 25.73
97 08:30 0.868 24.37 14:51 0.848 26.50

Table 7. Performance comparison between the proposed hybrid PCA and BP-based neural network
(Byberry, fall).

Dimension of
input vector

LMP ($/MWh) Hybrid PCA Network BP-based Network

Q average sd time R2 MAE time R2 MAE

48

88.41 50.30

03:08 0.765 25.01 04:15 0.725 25.66
49 03:15 0.769 24.73 04:36 0.761 25.24
96 08:06 0.848 23.48 11:41 0.823 23.59
97 08:11 0.874 23.17 11:54 0.864 23.62

Table 8. Performance comparison between the proposed hybrid PCA and BP-based neural network
(Byberry, winter).

Dimension of
input vector

LMP ($/MWh) Hybrid PCA Network BP-based Network

Q average sd time R2 MAE time R2 MAE

48

56.73 25.26

03:28 0.725 14.72 04:29 0.688 14.98
49 03:58 0.779 13.94 04:53 0.709 15.24
96 09:53 0.830 12.96 11:22 0.754 13.62
97 09:58 0.837 12.99 11:54 0.757 16.03
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Figure 7. Comparisons among actual, BP-based and hybrid PCA-based LMPs for Byberry.

4.2. Investigation of Number of Output Neurons for PCA Network

The second layer of the proposed hybrid PCA neural network shown in Figure 3 denotes the
features of the electricity market. The number (i.e., P) of neurons at this layer hence plays a crucial role
in developing the proposed method. Tables 9 and 10 show the impact of different P’s at the second
layer on R2 and MAE for Fisk and Byberry areas, respectively, in fall. In order to show the effectiveness
of the proposed method, only 97 inputs (i.e., Q) in Figure 3 were studied. The following remarks can
be made according to Tables 9 and 10:

(1) The larger the P, the longer the CPU time is required due to the supervised MLF neural network
at the third, fourth and fifth layers in Figure 3.

(2) A larger P will result in a better performance in terms of R2 and MAE obtained. Hence, there is a
trade-off between performance and CPU time. In general, performance is more important.

Table 9. Comparison between different P’s when Q = 97 (Fisk, fall).

P CPU R2 MAE

48 13:55 0.904 13.66
36 04:28 0.896 13.86
24 03:37 0.890 13.91
12 02:48 0.863 15.01

Table 10. Comparison between different P’s when Q = 97 (Byberry, fall).

P CPU R2 MAE

48 08:11 0.874 23.17
36 07:47 0.840 23.94
24 06:25 0.826 23.95
12 05:52 0.811 23.99

4.3. Comparison between Hybrid PCA Network and ARIMA

Traditional nonstationary time-series prediction method using ARIMA [9] is employed to study
the same PJM day-ahead market. Because the hybrid PCA neural network with 97 inputs gained
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the best performance as described in Section 4.1, it was compared with the ARIMA. The general
ARIMA formulation was given as follows [9]: ϕ(B)P(h) = θ(B)ε(h) where P(h) is the LMP at time h,
ϕ(B) and θ(B) are functions of the backshift operator B: BkP(h) ≡ P(h − k), and ε(h) () is the error term.
This paper adopted the functions ϕ(B) and θ(B) given in [9] for comparisons. In [9], the load factor
was not considered as a regressor in the ARIMA. Twenty four LMPs were used as lagged regressors
in the ARIMA. Tables 11 and 12 show the correlation coefficient (R2) and mean absolute error (MAE,
$/MWh) obtained for all four seasons by the two methods.

The following comments could be made according to the results shown in Tables 11 and 12:

(1) For either Fisk or Byberry, the performances of the proposed hybrid PCA neural network are
always better than those of the ARIMA in terms of both R2 and MAE obtained.

(2) The R2’s obtained by the ARIMA for both Fisk and Byberry in winter are very low (0.488 and
0.419) while those obtained by the proposed method are much higher (0.822 and 0.837).

(3) The LMPs in the Byberry area are more volatile than those in the Fisk area in terms of average R2
(0.566 with respect to 0.725). However, the proposed method is more reliable regardless of the
studied areas; that is, 0.843 for Byberry is close to 0.852 for Fisk.

Table 11. Comparison between the proposed hybrid PCA and ARIMA [9] (Fisk).

Seasons
Hybrid PCA Network ARIMA [9]

R2 MAE R2 MAE

Spring 0.838 13.78 0.808 15.89
Summer 0.843 20.51 0.757 21.33
Autumn 0.904 13.66 0.846 16.31
Winter 0.822 10.03 0.488 11.68

Average 0.852 14.50 0.725 16.30

Table 12. Comparison between the proposed hybrid PCA and ARIMA [9] (Byberry).

Seasons
Hybrid PCA Network ARIMA [9]

R2 MAE R2 MAE

Spring 0.793 24.22 0.578 28.10
Summer 0.868 24.37 0.743 27.81
Autumn 0.874 23.17 0.522 26.86
Winter 0.837 12.99 0.419 15.04

Average 0.843 21.19 0.566 24.45

4.4. Diebold and Mariano Test

Diebold and Mariano proposed and evaluated explicit tests of the null hypothesis of no difference
in the accuracy of two competing forecasts [22]. The loss function does not need to be quadratic, and
even to be symmetric, and forecast errors can be non-Gaussian, nonzero mean, serially correlated, and
contemporaneously correlated in this method. This subsection utilizes Diebold and Mariano test to
evaluate the performance of the proposed hybrid PCA network, the BP-based network, and ARIMA.
The loss function used in this paper is based on “mean squared error” (MSR) [23].

Let H0 be the null hypothesis of no difference in the accuracy of the proposed hybrid PCA network
and the BP-based network. The alternative hypothesis is the union of H1 and H2, which mean that the
proposed hybrid PCA network is significantly better than the BP-based network and that the BP-based
network is significantly better than the proposed hybrid PCA network, respectively. Under the null
hypothesis, the test statistic S1 defined in [22] and used to test H0, H1 and H2 has an asymptotic
standard normal distribution. Let the confidence level be 95%. If S1 is greater than 1.96, than H1 is
accepted and H0 is declined. If S1 is smaller than −1.96, than H2 is accepted and H0 is declined. When
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S1 is within [−1.96, 1.96], H0 is accepted and there is no significant difference in forecasting accuracy
between the two models. According to Tables 13 and 14, the proposed hybrid PCA network has better
performance in 9 out of 16 tests while 7 tests accept H0. H2 has never been accepted.

Similarly, Diebold and Mariano test is conducted to compare the performance between the
proposed hybrid PCA network and ARIMA. Based on the same comparisons given in Tables 11 and 12,
Table 15 shows that the proposed hybrid PCA network is significantly better than ARIMA.

Table 13. Diebold and Mariano test between the proposed hybrid PCA and BP-based neural
network (Fisk).

Seasons Number of Input Q S1 Results

spring 48 2.8701 accept H1, decline H0
96 3.2559 accept H1, decline H0

summer 48 1.5524 accept H0
96 0.2173 accept H0

fall
48 0.7640 accept H0
96 3.4976 accept H1, decline H0

winter
48 3.1032 accept H1, decline H0
96 3.1033 accept H1, decline H0

Table 14. Diebold and Mariano Test between the proposed hybrid PCA and BP-based neural
network (Byberry).

Seasons Number of Input Q S1 Results

spring 48 2.7228 accept H1, decline H0
96 3.2615 accept H1, decline H0

summer 48 0.7169 accept H0
96 1.5594 accept H0

fall
48 0.5016 accept H0
96 0.8247 accept H0

winter
48 2.7702 accept H1, decline H0
96 4.1360 accept H1, decline H0

Table 15. Diebold and Mariano Test between the proposed hybrid PCA and ARIMA [9].

Seasons
FISK Byberry

S1 Results S1 Results

Spring 3.2055 accept H1, decline H0 6.5186 accept H1, decline H0
Summer 3.5084 accept H1, decline H0 4.2310 accept H1, decline H0
Autumn 3.1485 accept H1, decline H0 10.000 accept H1, decline H0
Winter 7.3961 accept H1, decline H0 11.678 accept H1, decline H0

5. Conclusions

In this paper, a new method using the hybrid principal component analysis (PCA) neural network
for the day-ahead LMP forecasting in a deregulated market is proposed. The purpose of the PCA
neural network is to find a set of 24 or 48 orthonormal vectors in a Q-dimensional space (24 for
Q = 48, 49, and 48 for Q = 96 and 97 in this paper). The PCA can extract more essential features of the
power market and hence reduce the training time required for the cascaded multi-layer feedforward
neural network.

Simulation results show that the features of the same day of the last week and of the designated day
provide crucial information serving as inputs of the PCA neural network. Simulation results also show
that the performance of the proposed method is always better than that of the back-propagation-based
neural network and ARIMA by evaluating R2 and MAE. The results of the Diebold and Mariano test
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show that the proposed method is better than the back-propagation-based neural network for most of
the studied cases. The proposed hybrid PCA network is significantly better than the ARIMA according
to the Diebold and Mariano test.
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Abstract: A new short-term probabilistic forecasting method is proposed to predict the probability
density function of the hourly active power generated by a photovoltaic system. Firstly, the probability
density function of the hourly clearness index is forecasted making use of a Bayesian auto regressive
time series model; the model takes into account the dependence of the solar radiation on some
meteorological variables, such as the cloud cover and humidity. Then, a Monte Carlo simulation
procedure is used to evaluate the predictive probability density function of the hourly active
power by applying the photovoltaic system model to the random sampling of the clearness index
distribution. A numerical application demonstrates the effectiveness and advantages of the proposed
forecasting method.
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1. Introduction

In recent years, power systems have been undergoing radical changes and in the near future their
planning and operation will be undertaken according to the Smart Grid (SG) vision. The SG initiatives
aim at introducing new technologies and services in power systems to make the electrical networks
more reliable, efficient, secure and environmentally-friendly [1].

Increasing the exploitation of renewable energy sources (such as wind and solar energy) is
certainly one of the most important goals of SGs. Indeed, the random behavior of such energy
sources introduce challenging issues in the design of advanced tools and techniques for the optimal
SG operation and control. In tackling these issues, forecasting is a fundamental task for an efficient
utilization of the available distributed energy resources and for a secure and economic behaviour of
the power system [2].

In general, the power system operator can use accurate forecast information about renewable
power generation and load consumption to guarantee a balance between generation and demand at
all the time with reduced capacity and costs of the operating reserves [3,4]. From the perspective of
the producers, forecasting the renewable power output can be very useful for decision making on the
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energy market. In this way, not only the deviation between scheduled and actual generation can be
minimized, but also the revenues are increased, thus reducing the penalties related to regulation costs
and enhancing the competitiveness of renewable energies in comparison with dispatchable energy
sources [5]. Finally, prosumers can use prediction models to plan their consumption patterns so as to
match the power they generate on-site thus maximizing their benefits [6].

In the relevant literature, various forecasting methods have been proposed to estimate the expected
power generated from a renewable energy source, which essentially differ in the type of the information
characterizing the predicted output and in the time horizon of their application.

Concerning the type of information, two main forecasting methods can be adopted, referred to as
deterministic and probabilistic forecasting. In the former one, a single value of the renewable power
generation is provided and no uncertainty of the prediction is considered. In the latter one, the output
value is accompanied with information on its intrinsic unpredictability and, then, it is more appropriate
to solve problems of management and control in future SGs [3,5,7]. Probabilistic forecasting methods
can be distinguished in two further categories according to the adopted approach: the prediction
error or the direct approach. While the first one provides the uncertainty of the error deriving from
the application of a deterministic forecasting method, the second one directly yields the statistic
representation of the predicted output.

Concerning the time horizon, renewable generation forecasting can basically be divided into
different time intervals, depending on the time frames corresponding to the tasks of grid operation and
control and to the sessions of electricity markets. Short-term forecasting covers time intervals ranging
from less than 1 hour to few hours ahead and is very useful for frequency regulation and load balancing.
Medium term forecasting, up from several hours to few days ahead, is needed for unit commitment
and energy trading. Finally, long-term forecasting can be required to support system planning and
economic analyses in seasonal and annual horizons. However, recent renewable integration studies
have shown that it is the short term forecasting that gains the most in a SG [3].

One of the most promising renewable energy conversion system to be integrated in SGs is the
PhotoVoltaic (PV) power generation, due to the expected cost reduction and the increased efficiency
of both PV panels and converters [8]. The power generated by a PV power system varies according
to the solar radiation on the earth’s surface, which mainly depends on the installation site and the
weather conditions. While the dependence on the specific location can be essentially predicted on a
deterministic way, the atmospheric conditions (such as cloud cover, ambient temperature, relative
humidity) are the main causes of the randomness of the solar radiation and it is very important to
consider them when short-term forecasting is concerned [9,10].

Several methods have been proposed in the relevant literature for forecasting the PV power
generated in a short time horizon. In [11] a recurrent neural network has been proposed to perform a
short term forecasting of the PV power production using meteorological data of the last 16 days and
has been compared with a feed-forward neural network. A method to predict PV power output has
been presented in [12] by deriving hourly site-specific irradiance forecasts from data provided by a
weather forecasts center. In [13] an advanced Grey-Markov chain model has been applied to predict
the daily power production of grid-connected PV systems using operating data collected at 15 minute
intervals. A two-stage method to predict hourly value of the PV power for time horizon up to 36 hours
has been proposed in [14]. In [15] Kalman filters are applied to predict sub-hourly and hourly PV
power production using solar irradiance as input. First studies on the application of Bayesian theory
for PV power production forecasting are shown in [16,17].

In this paper, extending and improving the approach based on the Bayesian theory outlined
in [16–18], a new method for short-term probabilistic forecasting is proposed, that directly yields to the
statistic representation of the predicted PV power output. The proposed method forecasts at the generic
hour h the probability density function (pdf) of the active power produced by a PV power system
at the hour h + k with k = 1, ..., K, starting from the evaluation of samples of the pdf of the hourly
clearness index at hour h + k. The forecast of the pdf of the hourly clearness index is obtained firstly
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selecting for the pdf an analytical expression and, then, evaluating the pdf parameters by applying
the Bayesian Inference (BI). To this aim, an Auto Regressive (AR) time series model, representing the
relationship between the pdf parameters, the clearness index and some explanatory meteorological
variables, is used together with appropriate sets of historical measurements of the random variables
involved in the AR model. Finally, a Monte Carlo (MC) simulation procedure is applied to generate
the predicted pdf of the PV active power: a random sampling of the pdf of the hourly clearness index
is performed and, using the PV system model, the PV power samples are obtained.

The key steps of the proposed method are: (i) the choice of the analytical expression of the pdf
modeling the hourly clearness index; (ii) the definition of an adequate AR time series model so as to
consider only the meteorological variables that most affect the hourly clearness index behaviour; and
(iii) the selection of appropriate data vectors from historical measurements collected before the time of
the forecast.

The peculiarity of the method is that it takes into account the dependence of the terrestrial solar
radiation on some explanatory atmospheric variables and combines probabilistic techniques, such as
BI and MC simulation, to provide a probabilistic forecasting of the PV power generation useful for
optimal SG operation and control.

This paper is organized as follows: Section 2 briefly recalls the probabilistic forecasting method
based on the Bayesian approach. In Section 3 the probabilistic method is applied to forecast the power
production of a PV system. Finally, numerical simulations are reported in Section 4 to give evidence of
the effectiveness of the proposed approach.

2. Probabilistic Forecasting method based on the Bayesian approach

The probabilistic forecasting method based on the Bayesian approach predicts at the generic
hour t = h the pdf of a random variable Xt at the hour t = h + k, with k = 1, . . . , K. For the sake of
simplicity, in the following the analysis is referred to the case of k = 1.

In applying this method, the starting point is the knowledge of the analytical expression of the
pdf fXt(Xt) of the random variable to be forecasted. Usually, the analytical expression of the pdf is
characterized by some distribution parameters and it is modeled as a conditional pdf. For the sake of
conciseness, reference is made to only one distribution parameter (i.e., the mean value), generically
referred to as ϑt, and the conditional pdf is indicated as fXt(Xt|ϑt ) .

Forecasting at t = h the pdf fXhh+1(Xh+1|ϑh+1 ) requires an estimation of ϑh+1. To this aim, a
first order AR time series model can be used, representing the relationship between ϑh+1 and both the
measurements xh and (v1,h, . . . , vM,h) collected at the hour h of, respectively, the random variable Xt

to be forecasted and the M explanatory random variables V1,t, . . . , VM,t influencing Xt:

ϑh+1 = α1xh + β1v1,h + ... + βMvM,h + α0 (1)

where α0, α1, β1, . . . , βM are the coefficients of the AR model. Explanatory variables are variables
such that changes in their value are thought to cause changes in another variable.

In the classical statistics, α0, α1, β1, . . . , βM are assumed to be constant. Indeed, when Bayesian
approach are adopted, such coefficients are modeled as random variables, known as prior random
parameters, and the BI [19] allows to estimate the conditional pdf p(α0, α1, β1, . . . , βM

∣∣ SXh) of the
parameters α0, α1, β1, . . . , βM given the set SXh = (xs1 , ... , xsNh

) composed of Nh measurements of
Xt observed before the hour h. The pdf p(α0, α1, β1, . . . , βM

∣∣ SXh) is known as a posteriori distribution
of the prior random parameters and it is very difficult to obtain its expression in closed form. Actually,
only a simplified expression, known as unnormalized a posteriori distribution of the prior random
parameters, and indicated as q(α0, α1, β1, . . . , βM | SXh ), can be provided. Fortunately, the knowledge
of the unnormalized a posteriori distribution of the prior random parameters is sufficient for developing
algorithms that provide information about the normalised a posteriori distributions.
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The unnormalized a posteriori distribution of the prior random parameters is derived from the
application of the Bayes’ rule assuming the independency of the prior random parameters so that:

q(α0, α1, β1, . . . , βM |SXh) = p(SXh|α0, α1, β1, . . . , βM )
1

∏
i=0

p(αi)
M

∏
j=1

p(β j) (2)

where p(SXh |α0, α1, β1, . . . , βM ) is the likelihood function; and p(αi) and p(β j) are the a priori
distributions of the prior random parameters.

The a priori distributions are the initial pdfs of the prior random parameters which are not
conditional on observed data. Their expressions can be vague or informative and reflects the knowledge
that we have in advance about the pdfs that we are interested in.

The likelihood function is the conditional data distribution, that is the pdf modeling Xt,
whose realizations are contained in SXh , given the prior random parameters. Its expression can
be derived making use of the fXt(Xt|ϑt ) for the set SXh and assuming that xs1 , ... , xsNh

are
independent realizations of Xt. Substituting for ϑt the AR time series model and using the vectors
SV1,h =

(
v1,s1 , ..., v1,sNh

)
, . . . , SVM,h =

(
vM,s1 , ... , vM, sNh

)
of the Nh measurements of the explanatory

variables V1,t, . . . , VM,t corresponding to SXh , it obtains:

p(SXh|α0, α1, β1, . . . , βM ) =
Nh

∏
i=2

fXt(xsi |ϑsi = α1xsi−1 + β1v1,si−1 + ... + βMvM,si−1 + α0) (3)

Once the unnormalized a posteriori distribution of the prior random parameters is known, it is
trivial to evaluate the normalised a posteriori distributions of each parameter by applying the theory
of the joint pdfs [20]. Then, the Monte Carlo Markov Chain (MCMC) simulation method based on
the Metropolitan-Hasting algorithm [21] can be directly applied to the unnormalized distributions
of every parameter to obtain samples of their a posteriori distributions. In the MCMC approach, a
Markov chain is constructed, characterized by a transition probability matrix reflecting the a posteriori
distributions of the prior random parameters. Then, the Markov chain is simulated until the samples
are representative of the a posteriori distributions of every parameter.

Eventually, incorporating the AR time series model in this procedure, the samples derived from
the a posteriori pdfs of α0, α1, β1, . . . , βM can be used together with the measurements xh and
v1,h, . . . , vM,h collected at the hour h to obtain samples of ϑh+1. Finally, for each simulated sample of
ϑh+1, the samples of the random variable Xt are drawn from the analytical expression of the pdf so as
to provide the full predictive distribution fXhh+1(Xh+1|ϑh+1 ).

3. Probabilistic Forecasting of the Photovoltaic Generation

In the following, the probabilistic forecasting method described in Section 2 is applied to predict at
hour h the pdf of the PV power production at hour h + 1, starting from an estimation of the terrestrial
hourly solar radiation, expressed in terms of the pdf of the hourly clearness index at hour h + 1. The
next four subsections dealt with:

– The description of the adopted model for the PV system;
– The description of the pdf modeling the hourly clearness index;
– The definition of the AR time-series model including meteorological variables; and
– The probabilistic characterization of the prior random parameters.

3.1. PV System Model

The hourly active power produced by a PV system depends on the availability of the solar
radiation at the installation site. The solar radiation in a given locality cannot be exactly predicted
owing mainly to the irregular presence of clouds. The sky conditions are often taken into account by

64



Energies 2013, 6, 733–747

representing the terrestrial solar radiation in terms of clearness index that is defined as the ratio of the
surface radiation to the extraterrestrial radiation for a given period [22].

When the PV system is equipped with a maximum power point tracker, an analytical relationship
exists between the PV active power PPVt at the hour t and the corresponding hourly clearness index
Kt, [22–24] that is defined as the ratio of the hourly total solar radiation on an horizontal plane It to the
extra-terrestrial hourly total solar radiation I0; it results:

PPVt = SCη
(

TKt − T′K2
t

)
(4)

where SC is the array surface area; η is the efficiency of the PV system; and T and T′ are defined as:

T =

[(
Rb + ρ

1 − cos γ

2

)
+

(
1 + cos γ

2
− Rb

)
p
]

rd
H0

3600
(5)

T′ =
(

1 + cos γ

2
− Rb

)
qrd

H0

3600
(6)

where Rb is the ratio of beam radiation on a tilted surface to that on a horizontal surface at any time;
ρ is the reflectance of the ground; γ is the inclination of the array surface to the horizontal plane; rd is
the ratio between diffuse radiation in hours and diffuse radiation in a day; Ho is the extra-terrestrial
total solar radiation; and p, q are coefficients reported in [23], which link the diffuse fraction of the
hourly total solar radiation on horizontal plane with the hourly clearness index.

The analysis of the relationship (4) clearly reveals that Kt is the only variable affecting PPVt ,
once the hour of the day, the installation site and the technical characteristics of the PV system are
assigned. The hourly clearness index Kt is a random variable modelling the uncertain behaviour of
the terrestrial solar radiation. The hourly PV active power PPVt , as function of Kt, is itself a random
variable and its pdf can be determined by the pdf of the hourly clearness index.

In this paper, a MC simulation procedure is used to generate at the hour t = h samples of the
predictive pdf of the hourly PV active power fPPVh+1

(
PPVh+1

)
by performing a random sampling of

the pdf of the hourly clearness index fKh+1(Kh+1) estimated for the hour t = h + 1 and applying
Equation (4).

3.2. Probability Density Function of the Hourly Clearness Index

The analytical expression of the pdf of the hourly clearness index can be experimentally obtained
by a statistical analysis of historical solar measurements collected in the site in which the PV system
is installed. In the literature, starting from the fitting of the hourly clearness index data collected
in a specific location, the investigation has often resulted in the individuation of pdfs characterized
by standard distributions. In [25] the hourly clearness index measurements recorded at various
locations in Algeria are conveniently described by Beta distributions. In [26] bimodal distributions
are considered more adequate to model clear and cloudy sky conditions of hourly clearness index
measurements collected in different cities in the U.S.A. On the other hand, several attempts have been
made to find universal standard pdfs that are independent of the location and the time period used to
define the clearness index [27–29]. Following the latter approach, in this paper the model proposed
in [29] has been adopted and the following modified Gamma distribution fKt(Kt|Ct, λt) is used to
model the pdf of the hourly clearness index Kt:

fKt(Kt|Ct, λt) = Ct
ku − Kt

ku
eλtKt (7)
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where ku is the upper bound of the observed values of Kt; and Ct and λt are the distribution parameters,
defined as:

Ct =
λ2

t ku(
eλtku − 1 − λtku

) (8)

λt =

(
2Ft − 17.519e−1.3118Ft − 1062e−5.0426Ft

)
ku

(9)

with:

Ft =
ku

ku − μKt

(10)

where μKt is the mean value of the hourly clearness index Kt at hour t. Assuming the knowledge of ku,
the distribution parameters Ct and λt only depend on the mean value μKt and the pdf in Equation (7)
can be rewritten as:

fKt(Kt|μKt) = Ct(μKt)
ku − Kt

ku
eλt(μKt )Kt (11)

3.3. AR Time-Series Model

To predict at the hour t = h the pdf fKhh+1(Kh+1|μKh+1) at the hour t = h + 1 an estimation of the
mean value μKh+1 is required, as shown in the Subsection 3.2. To this aim, an AR time series model can
be used to define the relationship among such mean value and the measurements of the clearness index
and of some meteorological variables influencing the solar radiation, such as the ambient temperature
AT, the relative humidity RH, the wind speed WS and the cloud cover CC , where the cloud cover is
defined as the ratio in % of the sky hidden by all visible cloud. In this paper, the following first order
AR time series model is adopted:

μKh+1 = α1kh + β1ath + β2rhh + β3wsh + β4cch + α0 (12)

where kh, ath, rhh, wsh, cch are the measurements of, respectively, the clearness index, the ambient
temperature, the relative humidity, the wind speed and the cloud cover, which are collected at the
hour t = h.

The inclusion of meteorological variables in the AR model significantly increases the
computational efforts in the application of the proposed forecasting method. Despite of the
highest complexity of the procedure, taking into account the dependence of the clearness index
on the meteorological variables allows to perform a more accurate forecasting [10,30]. To reduce
computational efforts, a correlation analysis can help to individuate the meteorological variables
presenting the highest influence on the solar radiation. Such analysis is performed “off-line” and
correlates historical measurements collected in the specific site in which the PV system is installed.
In this way, only the meteorological variables presenting the highest correlation value with the
clearness index are selected so as to found a good compromise between results’ accuracy and
computational efforts.

3.4. Probabilistic Characterization of the Prior Random Parameters

In this paper, the coefficients α0, α1, β1, β2, β3, β4 of the AR time series model in Equation (12)
are assumed to be the prior random parameters of the BI. The a priori pdfs of the prior random
parameters p(α0), p(α1), p(β1), p(β2), p(β3), p(β4) are usually chosen with a large variance so that
the data, rather than the a priori distributions, determine the relevant parameters values in the a
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posteriori distributions [19–21]. In this paper the a priori pdfs are assumed to be Gaussian with a mean
value μ = 0.5 and a standard deviation σ = 0.5 so as:

p(αi) =
1

σ
√

2π
e
(μ−αi)

2

2σ2 =
1

0.5
√

2π
e

−α2
i

2(0.5)2 i = 0, 1 (13)

p
(

β j
)
=

1
σ
√

2π
e
(μ−βj)

2

2σ2 =
1

0.5
√

2π
e

−β2
j

2(0.5)2 j = 1, . . . , 4 (14)

The likelihood function p(SKh|α0, α1, β1, β2, β3, β4 ) is the pdf in Equation (11) specified for the

set SKh =
(

ks1 , ..., ksih , ..., ksNh

)
of Nh measurements of kt observed before the hour h:

p(SKh |α0, α1, β1, β2, β3, β4 ) =
Nh

∏
i=2

fKt(ksi |μKsi ) =
Nh

∏
i=2

C
(

μKsi

) ku − ksi

ku
eλ(μKsi

)ksi (15)

where:
μKsi

= α1ksi−1 + β1atsi−1 + β2rhsi−1 + β3wssi−1 + β4ccsi−1 + α0 (16)

Relationship (15) is obtained by substituting for μKsi
the AR time series model in

Equation (16). The generic measurements ksi−1 , atsi−1 , rhsi−1 , wssi−1 , ccsi−1 are contained in the

sets SKh =
(

ks1 , ..., ksi , ..., ksNh

)
, SATh =

(
ats1 , ..., atsi , ..., atsNh

)
, SRHh =

(
rhs1 , ..., rhsi , ..., rhsNh

)
,

SWSh =
(

wss1 , ..., wssi , ..., wssNh

)
, SCCh =

(
ccs1 , ..., ccsi , ..., ccsNh

)
, including Nh measurements collected

before the hour h of, respectively, the clearness index and the meteorological variables.
According to Equation (2), the a posteriori unnormalized distribution q

(
α0, α1, β1, β2, β3, β4 , SKh

)
of the prior random parameters is equal to

 
(17)

and the samples of the individual a posteriori distributions are evaluated by applying the MCMC
simulation method based on the Metropolitan-Hasting algorithm. The samples of the a posteriori pdfs
of α0, α1, β1, β2, β3, β4 are used in Equation (12) together with the measurements kh, th, rh, wh, cch
collected at the hour h to provide samples of the mean value μKh+1 . Finally, for each samples of μKh+1 ,
the samples of the hourly clearness index Xh+1 are drawn from the analytical expression of the pdf in
Equation (11). The simulated samples of Xh+1 describes the predictive distribution fKh+1(Kh+1

∣∣μKh+1) .
It should be noted that the choice of the measurements contained in the sets

SKh , SATh , SRHh , SWSh, SCCh represent a key issue in the BI, since they are used to make inference about
the prior random parameters α0, α1, β1, β2, β3, β4 . In general, these sets contain Nh measurements
recorded before the hour h of the forecast. Actually, these data are not necessarily the ones collected
from the hour h − 1 to h − Nh − 1, but can be selected with adequate criteria thus improving the
accuracy of the proposed forecasting method. In [16] the homologue and the coded group criteria have
been proposed. In the first one, the sets contain measurements at the hour h which are collected
Nh days before the forecast (e.g., if the forecast has to be performed at h = 10:00, the sets include
measurements recorded Nh days before at 10:00). In the second one, the sets contain a coded group of
measurements around the hour h collected some days before the forecast (e.g. if the forecast has to
be performed at h = 10:00, the sets include measurements from the 8:00 to 10:00 recorded Nh/3 days
before). In addition, the measurements contained in SKh , SATh , SRHh , SWSh, SCCh can be collected at
time intervals different from an hour. In [17] the data of the clearness index and of the meteorological
variables contained in the vectors are extracted from measurements registered at time intervals of 15

67



Energies 2013, 6, 733–747

minutes. If this is the case, the application of the proposed forecasting method will provide at the hour
h the predictive distribution of the clearness index at the first 15 minutes of the hour h + 1. To estimate
the pdf at the hour h + 1 the following approach is adopted in this paper:

fKh+1

(
Kh+1|μKh+1

)
= fKh+15′ (Kh+15′

∣∣∣μKh+15′ ) (18)

that is the pdf forecasted at h + 1 is assumed to be equal to the pdf forecasted at the first 15 minutes of
the hour h + 1. Eventually, Figure 1 shows a block diagram describing the main steps applied in the
proposed Bayesian approach.

Figure 1. Block diagram describing the main steps applied in the proposed Bayesian approach.

4. Experimental Section

In this section, the proposed Bayesian forecasting method is applied to a 75-kWp PV system,
presenting an array surface SC = 600 m2 and an efficiency η = 0.09. Measurements of the clearness
indexand of the meteorological variables cited in the Section 3.4 (air temperature, relative humidity,
wind speed and total cloud cover) are available at the website of the National Renewable Energy
Laboratory. In particular, a meteorological station in Colorado (39.742◦ N, 105.18◦ W) has been selected
and measurements referred to the time interval [8 a.m., 8 p.m.] and collected every 15 minutes
are chosen.

In the following, at first a correlation analysis is performed to individuate the meteorological
variables to be included in the time series AR model; then, the proposed method is used to forecast the
pdf of the hourly active power produced by the PV system.

To individuate the most suitable AR time series model, an “off-line” correlation analysis between
the clearness index and the meteorological variables is carried out, on the basis of measurements
recorded from January to December 2010. Figure 2 reports the time evolution of the correlation
coefficient between the clearness index and the meteorological variables. To avoid excessive
computational efforts, only the meteorological variables furnishing the highest values of the correlation
coefficient are taken into account. As such, the analysis of the Figure 2 clearly reveals that the total
cloud cover and the relative humidity are the meteorological variables presenting the highest influence
on the clearness index; consequently, the AR time-series model in Equation (12) reduces to:

μKh+1 = α1kh + β1rhh + β2cch + α0 (19)
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To make inference about the prior random parameters α0,α1, β1 and β2, the sets SKh , SCCh , SRHh

(see Section 3.4) contain Nh = 144 measurements collected at time intervals of 15 minutes recorded
before the hour h of the forecast.

Figure 2. Time evolution of the correlation coefficient between the clearness index and the selected
meteorological variables.

The application of the proposed approach to forecast the hourly PV active power is performed
referring to the four seasons of the 2011. Figures 3–6 show, respectively, the actual measured values of
the PV active powers (red lines), the mean value (blue line) and the range between the 5th and 95th
percentile values of the forecasted pdfs of hourly PV active power. In particular, the results refer to the
Recommended Average days of winter (Figure 3), spring (Figure 4), summer (Figure 5) and autumn
(Figure 6). In [22] Recommended Average Days are days which have the extraterrestrial radiation
closest to the average value in the month. A similar behavior characterizes the vast majority of the
considered days (in almost all considered days).

Figure 3. Actual measures of the hourly PV active power (red line); mean values (blue line) and
range between 5th and 95th percentile values of the forecasted pdfs of the hourly PV active power.
(a) 17 January; (b) 16 February; and (c) 10 December.
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Figure 4. Actual measures of the hourly PV active power (red line); mean values (blue line) and
range between 5th and 95th percentile values of the forecasted pdfs of the hourly PV active power.
(a) 16 March; (b) 15 April; and (c) 15 May.

Figure 5. Actual measures of the hourly PV active power (red line); mean values (blue line) and range
between 5th and 95th percentile values of the forecasted pdfs of the hourly PV active power. (a) 11 June;
(b) 17 July and; (c) 16 August.

Figure 6. Actual measures of the hourly PV active power (red line); mean values (blue line) and
range between 5th and 95th percentile values of the forecasted pdfs of the hourly PV active power.
(a) 15 September; (b) 15 October and; (c) 14 November.

From the analysis of the figures, it appears that the actual values of the hourly PV active power
are always comprised between the 5th and 95th percentile values. In addition, it should be noted that
the mean value appears in most cases a good estimator for the forecasted pdfs, particularly in the
range of hours between 11 a.m. and 3 p.m. At the beginning (end) of the period characterized by the
presence of solar radiation, usually higher (lower) percentiles appear the most adequate estimators.
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Anyway, if the mean value of forecasted pdf would be used as the only estimator of the forecasted PV
power, the Mean Absolute Relative Error (MARE), defined as:

MARE =
1
N

N

∑
h=1

∣∣∣PPVh − P∗
PVh

∣∣∣
PPVh

(20)

is estimated between 14.5% (winter season) and 18.0% (autumn season).
Finally, Figures 7 and 8 show the forecasted (represented by a blue histogram) and the analytical

(represented by a continuous red line) pdfs of the hourly PV active power in March (Figure 7a),
April (Figure 7b), August (Figure 8a) and September (Figure 8b). The analytical pdf is obtained
applying the fundamental theorem for the function of a random variable to Equation (9) proposed
in [31]. From the analysis of Figures 7 and 8 it is evident that in different conditions of solar radiation
the forecasted pdfs are close to the analytical distributions.

Figure 7. Forecasted (histogram) and analytical (red line) pdfs of PV power. (a) h = 1 p.m. of 16 March;
and (b) h = 11 a.m. of 15 April.

Figure 8. Forecasted (histogram) and analytical (red line) pdfs of PV power. (a) h = 2 p.m. of 16 August
and; (b) h = 1 p.m. of 15 September.

5. Conclusions

A new method based on the Bayesian inference has been proposed to perform a short-term
forecasting of the active power produced by a photovoltaic system starting from an estimation of
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the hourly clearness index. It takes into account the dependence of the terrestrial solar radiation on
some explanatory atmospheric variables, including the cloud cover and humidity. The combination of
probabilistic techniques, such as Bayesian inference and Monte Carlo simulation, allows to provide the
predictive probability density function of the photovoltaic generated power, which is very useful for
the optimal operation and control of the smart grids of the future.

However, if only a value is requested as estimator of the forecasted photovoltaic power, arises the
problem of individuate which pdf parameter (mean value, percentiles ...) is the most representative
for the distribution. Moreover, the non-linear relationship between the clearness index and the
photovoltaic power output can reflect in not negligible errors in the forecasted distributions of
the photovoltaic power. Then, future works will investigate the direct application of the proposed
probabilistic forecasting method to the active power produced by the PV system, even if the application
of the Bayesian inference in this case seems to be arduous. The research will also focus on the choice
of the best parameter to be extracted from the predicted probability distribution so as to test the
performance of the proposed method in terms of traditional measures of the forecasting accuracy; in
this case comparison with ARIMA and neural networks methods will be affected.

Acknowledgments: This paper has been developed in the context of the Italian project PON Research and
Competitiveness 2007–2013, Action II-PON 01_02864 “FC SMART GEN”—Fuel cell and smart hybrid generation
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Abstract: Many models have been developed to forecast wind farm power output. It is generally
difficult to determine whether the performance of one model is consistently better than that of another
model under all circumstances. Motivated by this finding, we aimed to integrate groups of models
into an aggregated model using fuzzy theory to obtain further performance improvements. First,
three groups of least squares support vector machine (LS-SVM) forecasting models were developed:
univariate LS-SVM models, hybrid models using auto-regressive moving average (ARIMA) and
LS-SVM and multivariate LS-SVM models. Each group of models is selected by a decorrelation
maximisation method, and the remaining models can be regarded as experts in forecasting. Next,
fuzzy aggregation and a defuzzification procedure are used to combine all of these forecasting results
into the final forecast. For sample randomization, we statistically compare models. Results show that
this group-forecasting model performs well in terms of accuracy and consistency.

Keywords: wind power forecasting; LS-SVM; ARIMA; fuzzy group

1. Introduction

Along with science and technology in general, wind power technology has also developed rapidly.
Because wind power technology is mature, many medium- and large-sized wind farms have been
built and put into operation. Wind power has become an important source of the entire power system;
worldwide, the installed wind power capacity was 157.9 GW in 2009, representing an annual growth
of 20% over the preceding 10 years. Wind energy resources available in China are estimated at 1000
GW, ranking the country third after Russia and the U.S. In recent years, wind power has experienced
rapid development in China, as the capacity increased from 0.34 to 25.8 GW between 2000 and 2009. In
2020, the total installed capacity of wind power is expected to reach 150 GW [1].

Wind power is always fluctuating because wind is volatile and intermittent. When the power
output exceeds a certain value, it significantly affects power quality, power system security and the
stability of operations. If an accurate short-term wind power output forecast is available, the power
dispatching department can adjust scheduling in accordance with changes in wind power output
to ensure power quality and reduce the system’s excess capacity and power system cost. Therefore,
short-term wind power forecasts are of key importance [2–4].

Modern wind farms usually incorporate remote monitoring systems in wind turbines so that all
turbines can capture and record all signals. The real-time output data from wind generators can be used
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directly for wind power forecasts without any additional cost, which reduces the cost and improves the
quality of data collection, as well as increases forecast accuracy. The existing forecasting methods can be
classified into two groups. The first group consists of univariate forecasting models based on historical
and real-time power data, in which changes in wind speed are not considered. The second group
consists of multivariate models, in which forecasts are based on the relationship between weather
data and output power [5]. The numerical weather prediction (NWP) model is popular for short-term
wind power prediction with advantages in accuracy, but, it needs more weather information [6].
Detailed algorithms include time series methods, such as the auto-regressive moving average (ARMA)
and the auto-regressive conditional heteroskedasticity (ARCH) models [7,8], the linear regression
model [9], the grey theory model [10,11], the support vector machine (SVM) [12,13], adaptive fuzzy
logic algorithms [14,15] and artificial neural networks (ANNs) [16,17], among others [18].

In the above-mentioned individual models, it is difficult to determine whether the performance
of one model is consistently better than that of another model under all circumstances. Typically,
a number of different models are utilised, and the model with the most accurate results is selected.
However, the selected model may not necessarily be the best for future use because of potentially
influential factors, such as sampling variation, model uncertainty and structure change. It is almost
universally agreed upon in the forecasting literature that no single method is best in every situation,
primarily because a real-world problem is often complex in nature and because any single model may
not be able to capture different patterns equally well. Therefore, there is a certain optimal combination
of forecasts to be studied, such as an adaptive combination of forecasts [19] and an optimal combination
of wind power forecasts [20]. Motivated by this finding, we aimed to integrate multiple models into
an aggregated model to obtain further performance improvement. Therefore, certain intelligent SVM
forecasting models were developed. The models are selected by a decorrelation maximisation method,
and the remaining models can be regarded as experts in forecasting. Then, the fuzzy theory is used to
combine all of these forecasting results into the final forecast.

The remainder of this paper is organised as follows: Section 2 describes three group models. In
Section 3, real datasets are statistically used for the testing of these models. Finally, conclusions are
presented in Section 4.

2. The Forecasting Model

2.1. Principle of Least Squares SVM (LS-SVM)

In this study, SVM was selected as the basic algorithm with which to construct forecasting models
because this algorithm is often viewed as a “universal approximator”. It has been proven to provide
a good arbitrary approximation of any continuous function. Therefore, the model is used here to
simulate mutual relationships between historical data and the forecast power output. The models have
the ability to provide flexible mapping between inputs and outputs. The SVM model of a data set is
given by the formula described below.

Consider an n set of data{(x1, y1), . . . , (xN, yN)}, where xi is the ith input vector and yi is the
corresponding desired output. Because i = 1, 2, . . . , N, where N is the size of the sample, the estimating
function assumes the following form:

f (x) = w · φ(x) + b (1)

where w is the weight vector, b is the bias and φ(x) is the high-dimensional feature space nonlinearly
mapped from the input space, and (·) represents the inner product.

This leads to the optimisation problem associated with standard SVM:

minRstr =
1
2
‖w‖2 + γRemp (2)
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where γ is a positive real constant that determines the penalty for estimation errors and

Remp(w, b) = 1
N

N
∑

i=1
|yi − f (xi)|δ is the estimation error measured by the experimental risk and loss

function. Usually, the ε- insensitive loss function is adopted because of its excellent sparsity:
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(3)

For least-squares SVM (LS-SVM), the two norms of the estimation error are adopted as the loss
function in the objective function and equality constraints instead of inequality constraints. Therefore,
the optimisation problem is described as:
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where ξi is a slack variable, ξi ≥ 0. It is a variable added to an inequality constraint to transform it to
equality. It is non-negative number in this paper.

After the introduction of Lagrange multipliers αi, the Lagrange function is constructed as:
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According to KKT conditions which can transform inequality constraints into equality constraints,
defined as:
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The following equation can then be obtained:
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After eliminating w and γ, we obtain:
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(8)

where Θ = [1, . . . , 1]1×N, I is a unit matrix, Ω is a square matrix and the element of Ω is expressed as:
Ωij = φ(xi)T φ(xj). In the equation (8), α = [α1, . . . , αN], y = [y1, . . . , yN].

By solving Equation (7), values of α and b are obtained. According to Mercer's condition,
there exists a kernel function with a value that is equal to the inner product of the two vectors
xi and xj in the feature spaces φ(xi) and φ(xj); that is, K(xi, xj) = φ(xi)T φ(xj). Then, the LS-SVM model
for regression is expressed as:

y(x) =
N

∑
i=1

αiK(x, xi) + b (9)

2.2. Group Model Based on LS-SVM

2.2.1. Group 1: Diversified Univariate LS-SVM Model

The first group is the univariate forecasting model. It is based on historical and real-time power
data; other weather data, such as wind speed, are not considered. Many experimental results have
shown that the generalisation of individual networks is not unique. Even for some simple problems,
different SVMs with different settings (e.g., different network architectures and different initial
conditions) may result in different generalisation results. Diverse models are generated by selecting
different core learning algorithms, such as the steep-descent algorithm, the Levenberg-Marquardt
algorithm and other training algorithms [21]. Finally, 10 different univariate least squares support
vector machine (LS-SVM) models are formulated [22,23]. All of these models use the Gaussian
function as the kernel function, and the output is the one-hour-ahead forecasted wind power output.
Other parameters are shown in Table 1.

Table 1. Ten univariate LS-SVM models.

Models Inputs γ σ2

LS-SVM-1 3 previous observations 10 5
LS-SVM-2 4 previous observations 20 5
LS-SVM-3 5 previous observations 30 5
LS-SVM-4 6 previous observations 40 5
LS-SVM-5 7 previous observations 50 5
LS-SVM-6 3 previous observations 50 2
LS-SVM-7 4 previous observations 50 4
LS-SVM-8 5 previous observations 50 6
LS-SVM-9 6 previous observations 50 8
LS-SVM-10 7 previous observations 50 10

2.2.2. Group 2: Diversified Univariate Hybrid Model of ARIMA and the SVM Model

2.2.2.1. Brief Introduction of the Hybrid Model

Because real-world time series are rarely purely linear or nonlinear, researchers have revealed
that hybrid models that hybridise two or more different algorithms can produce forecasts of higher
accuracy than those produced by individual models. ARIMA and LS-SVM models have different
capabilities of capturing data characteristics in linear and nonlinear domains; therefore, the hybrid
model proposed in this study is composed of an ARIMA component and an LS-SVM component.
Thus, the hybrid model is expected to capture linear and nonlinear patterns with improved overall
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forecasting performance. Experimental results with real data sets indicate that the hybrid model can
be an effective means by which to improve forecasting accuracy over that achieved by either of the
models separately. In this section, a type of hybrid approach using both ARIMA and LS-SVM models is
proposed. Because ARIMA is a linear model [24] and LS-SVM [22,25] is a nonlinear model, the hybrid
approach is expected to capture both linear and nonlinear patterns in wind park power time series.

Based on the structure proposed by [26], the hybrid model (yt) can be represented as:

yt = Lt + Nt (10)

where Lt denotes the linear component and Nt denotes the nonlinear component.
These two components must be estimated from the data. First, ARIMA is used to model the linear

component, resulting in the residuals from the linear model containing only the nonlinear relationship.
The residual at time t (from the linear model) is denoted as et, and then:

et = yt − L̂t (11)

where L̂t is the forecast value at time t from the ARIMA models. Specifications of the (1, 0, 0) × (0, 1, 1)
model are as described in Equation (11):

Yt = δ + YT−4 + φ1(Yt−1 − Yt−5) (12)

Residuals are also important. By modelling residuals using LS-SVM, nonlinear relationships can
be discovered. With n input nodes, the LS-SVM model for residuals will be:

et = f (et−1, et−2, . . . et−n) + Δt (13)

where f is a nonlinear function determined by the LS-SVM model and Δt is its corresponding random
error. Therefore, the forecast of the hybrid model is:

ŷt = L̂t + êt (14)

2.2.2.2. Generating the Diversified Hybrid Model from the ARIMA and LS-SVM Models

The proposed hybrid method is applied to forecast wind power output, i.e., the LS-SVM model
is used to model the nonlinearity of residuals obtained from the ARIMA models. As mentioned
in Section 2.1, to generate the diverse models, the structure of the above LS-SVM can be varied by
changing the number of nodes in the input layer and the second layer. Because the number of input
layers is changed, there should be different training data. These data can be acquired by re-sampling
and pre-processing the data. There are many techniques that can be used to obtain diverse training
data sets, such as bagging noise injection, cross-validation and stacking. With these different training
datasets and structures, 10 diverse hybrid models are generated using ARIMA and LS-SVM models as
described in Table 2. For all of these models, the linear parts use ARIMA (Yt = δ + YT−4 + φ1(Yt−1 −
Yt−5) and the nonlinear parts use different LS-SVMs. All of these LS-SVM models use the Gaussian
function as the kernel function, and the output is the forecasted error. Other parameters are shown in
Table 2.
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Table 2. Ten diverse hybrid models using ARIMA and LS-SVM.

Models Inputs γ σ2

H-AR-LS-1 3 previous observations 10 5
H-AR-LS-2 4 previous observations 20 5
H-AR-LS-3 5 previous observations 30 5
H-AR-LS-4 6 previous observations 40 5
H-AR-LS-5 7 previous observations 50 5
H-AR-LS-6 3 previous observations 50 2
H-AR-LS-7 4 previous observations 50 4
H-AR-LS-8 5 previous observations 50 6
H-AR-LS-9 6 previous observations 50 8
H-AR-LS10 7 previous observations 50 10

2.2.2.3. Group 3: Diversified Multivariate LS-SVM model

In this group of multivariate methods, the relationship between weather data and power output
is considered. There are five fundamental variables that impact wind power output. The first, w1, is
the wind speed, measured in metres/second (m/s); the second, w2, is the wind direction, measured as
the angle between the incoming wind and the north; the third, w3, is the air temperature, measured
in ◦C; the fourth, w4, is the atmospheric pressure in Pa; and the fifth, w3a, is the relative humidity.
These five fundamental variables are used as input data, and the wind power output is the output of
the LS-SVM model.

To generate the diverse models, the structure of the above LS-SVM model is varied by changing
the number of nodes in the second layer. Different initial conditions can also create diversity in models;
these initial conditions include random weights, learning rates and momentum rates from which each
network is trained. With these different initial conditions and structures, 10 diverse LS-SVMs are
generated. All of these models use the Gaussian function as the kernel function, and the output is the
one-hour-ahead forecasted wind power output. Other parameters are shown in Table 3.

Table 3. Ten diverse multivariate LS-SVMs.

Models Inputs γ σ2

DLS-SVM-1 w1; w2; w3; w3; w4; w5; 2
previous observations 10 5

DLS-SVM-2 w1; w2; w3; w3; w4; w5; 2
previous observations 20 5

DLS-SVM-3 w1; w2; w3; w3; w4; w5; 2
previous observations 30 5

DLS-SVM-4 w1; w2; w3; w3; w4; w5; 2
previous observations 40 5

DLS-SVM-5 w1; w2; w3; w3; w4; w5; 2
previous observations 50 5

DLS-SVM-6 w1; w2; w3; w3; w4; w5; 3
previous observations 50 2

DLS-SVM-7 w1; w2; w3; w3; w4; w5; 3
previous observations 50 4

DLS-SVM-8 w1; w2; w3; w3; w4; w5; 3
previous observations 50 6

DLS-SVM-9 w1; w2; w3; w3; w4; w5; 3
previous observations 50 8

DLS-SVM-10 w1; w2; w3; w3; w4; w5; 3
previous observations 50 10
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2.3. Group Model Based on LS-SVM

As mentioned above, each group consists of 10 forecasting models. We need to select a subset
of representatives to improve ensemble efficiency. It is clear that it is a necessary requirement of
diverse models for making fuzzy group decisions. In this study, a decorrelation maximisation method
was used to select the appropriate number of ensemble members. As noted previously, the basic
starting point of the decorrelation maximisation algorithm is the principle of ensemble model diversity;
that is, the correlations between the selected models should be as small as possible. If there are p
models (f 1, f 2, . . . , f p) with n forecast values, an error matrix (e1, e2, . . . , ep) of p predictors can be
represented by:

11 12 1

21 22 2

1 2

...

...

...

p

p

n n np n p

e e e
e e e

E

e e e
 (15)

From the matrix, the mean, variance and covariance of E can be calculated as:
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n
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Variance: 2
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Covariance: 
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n
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(18)

Considering Equations (17) and (18), we can obtain a variance covariance matrix:

Vp×p = (Vij) (19)

Based on the variance-covariance matrix, correlation matrix R can be calculated using the
following equations:

R = (rij) (20)

rij =
Vij√
ViiVjj

(21)

where rij is the correlation coefficient, representing the degrees of correlation classifiers fi and f j.
Subsequently, the plural-correlation coefficient ρfi|(f 1, f 2, . . . , fi−1, fi+1, . . . , fp) between classifier

fi and other p − 1 classifiers can be computed based on the results of Equations (20) and (21).
For convenience, ρfi|(f 1, f 2, . . . , fi−1, fi+1, . . . , fp) is abbreviated as ρi, representing the degree of
correlation between fi and (f 1, f 2, . . . , fi−1, fi+1, . . . , fp). To calculate the plural-correlation coefficient,
the correlation matrix R can be represented by a block matrix; that is:

1
i i

T
i

R rafter transformationR
r

 
(22)
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where R − i denotes the deleted correlation matrix. It should be noted that rii = 1(i = 1, 2, . . . , p).
Next, the plural-correlation coefficient can be calculated by:

ρ2
i = rT

i RT
−iri(i = 1, 2, . . . p) (23)

For a pre-specified threshold θ, if ρi
2 > θ, then model fi should be removed from p models.

Otherwise, model fi should be retained. Generally, the decorrelation maximisation algorithm can be
summarised in the following steps:

Computing the variance-covariance matrix Vij and the correlation matrix R with Equations (19)
and (20). For the ith classifier (i = 1, 2, . . . , p), the plural-correlation coefficient ρi can be calculated
using Equation (23).

For a pre-specified threshold θ, if ρi < θ, then the ith classifier should be deleted from the ρ

classifiers. Conversely, if ρi > θ, then the ith classifier should be retained. For each group of models,
we select eight as the representative for the subsequent step.

2.4. Fuzzy Group Prediction

For a specified forecasting problem, different experts usually give different estimations based
on a set of criteria X = (c1, c2, ..., cm). Some experts give optimistic estimates, some prefer pessimistic
estimates, and others present the most likely estimates. To incorporate these different judgements into
the final forecasting result and to make full use of the different estimates, a process of fuzzification is
used. In this paper, a typical triangular fuzzy number can be used to describe the forecasting results
provided by the experts; that is:

Z̃i = (zi1, zi2, zi3) = (the lowest forecast value; the most likely forecast value; the highest
forecast value), where i represents the numerical index of experts.

Like human experts, individual LS-SVM forecasting groups can also generate different forecasting
results by using different parameter settings and training sets. For example, the first forecasting group
(univariate LS-SVM model group) generates eight different forecasting results from the eight models
(selected from the first 10 models; Section 2.3) of different hidden neurons or different initial weights.
The entire first group can be considered an expert in forecasting. Assume that this expert produces
k different results, f i

1(XA), f i
2(XA), . . . f i

k(XA), for a specified applicant “A” over a set of models of
different hidden neurons or different initial weights in this group. To make full use of all of the
information provided by these results, without loss of generalisation, we use the triangular fuzzy
number to construct the fuzzy opinion for consistency; that is the smallest, average and largest of
the k forecasting results are used as the left-, medium- and right-membership degrees, respectively.
In other words, the smallest and largest scores are seen as optimistic and pessimistic evaluations,
respectively, and the average forecasting result is considered to be the most likely score. Of course, the
median can also be used as the most likely score to construct the triangular fuzzy number. However,
that approach can cause the loss of certain useful information because some other scores are ignored.
Therefore, the average is selected as the most likely power output to incorporate the full information
from all of the models into the fuzzy judgement. Using this fuzzification method, the expert can make
a fuzzy forecast for each point. More precisely, the triangular fuzzy number used for forecasting can
be represented as:

1 2 3 1 2

1 2
1

( , , ) min( ( ), ( ),..., ( )) ,

( ) / , max( ( ), ( ),..., ( ))

i i i
i i i i A A K A

k
i i i i
j A A A K A

j

Z z z z f X f X f X

f X k f X f X f X
(24)
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Suppose there are p experts, and let Z̃i = ψ(Z̃1, Z̃2, . . . Z̃p) be the aggregation of p fuzzy
judgements, where ψ() is an aggregation function. Many methods have been developed to determine
the aggregation function. Usually, fuzzy judgements of the p group members are aggregated by using
a common linear additive procedure; that is:

1 2 3
1 1 1 1

, ,
p p p p

i i i i i i i i
i i i i

Z w Z w z w z w z
 (25)

where wi is the weight of the ith fuzzy judgement, i = 1, 2, ..., p. The weights usually satisfy the
following normalisation condition:

p

∑
i=1

wi = 1 (26)

At this point, the goal is to determine the optimal weight wi of the ith fuzzy expert. In this study,
three groups of models are used as experts, and we give them the same weight of 1/3 each. After
completing aggregation, a fuzzy group consensus can be obtained using Equation (25). To obtain
a crisp value of the credit score, we use a defuzzification procedure to obtain the crisp value for
decision-making purposes. According to Bortolan and Degani, the defuzzified value of a triangular
fuzzy number Z̃i = (z1, z2, zi3) can be determined by its centroid, which is computed by:

3

1

3

1

1 2 3
( )

3( )

z

zz
z

zz

x x dx z z zz
x dx

 (27)

At this point, a final group consensus has been computed using the above process. To summarise,
the proposed intelligent-agent-based fuzzy group forecasting model is comprised of five steps:

(1) Three forecasting groups are presented, and each group has eight models with varied structures
and initial data, for example.

(2) Based on the datasets, each forecasting group can produce eight different forecasting results from
the different models.

(3) For the different forecasting results, Equation (25) is used to fuzzify the judgements of intelligent
agents into fuzzy opinions.

(4) The fuzzy opinions are aggregated into a group consensus, using the optimisation method
proposed above, in terms of the maximum agreement principle.

(5) The aggregated fuzzy group consensus is defuzzified into a crisp value. This defuzzified value
can be used as the final forecasting result.

To illustrate and verify the proposed intelligent-agent-based fuzzy group forecasting model,
the following section presents an illustrative numerical example of real-world data. The flow chart of
the entire procedure is shown in Figure 1.
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Figure 1. Procedure flow chart.

3. Empirical Analyses

3.1. Forecasting Results

In this study, we collected wind power output data from the Changshun wind park in Huade
County, Inner Mongolia Autonomous Region, China. This wind park is located on the slopes of
hills and mountains within an area of 260 km2. Details of the park’s geographical information are
provided in Table 4. This wind park was completed in May 2010 and has a capacity of 49.5 MW.
Its wind power-out data from 1 January 2011, to 31 December 2011, were collected as shown in
Figure 2. The short-term forecasting model for predicting hourly power output over a 24-hour horizon
was tested. Other input data, such as the actual climate information, were collected from local
environmental stations.

Table 4. Wind park geographical information.

Latitude
(North)

Longitude
(East)

Elevation
(m)

Wind speed (m/s) Temperature (◦C)

Mean Max Mean Min Max

41◦10'–41◦45' 113◦49'–114◦03' 1500 4.8 29 2.2 −35.9 35.5

Note: The very low minimum temperature is the extremely low temperature in this area, the lowest temperatures in
this wind park is −27 ◦C in January. There is no stop in 2011 due to low temperature.
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Figure 2. Time series plots of hourly wind power output.

The data from 1 January 2011, to 31 October 2011, are used for constructing and training the
models. The data from November 2011 are used to test the models and select the group modes
according to Section 2.3. The results are presented in Table 5.

The data from December 2011 are used in the testing of the models and in the model analysis.
There are 24 points for each day. To judge the accuracy of the model, individual models and the
combined fuzzy forecasting model are compared using the following MAPE:

1

ˆ1 100%
N

i i

i i

p pMAPE
N p

 
(28)

where p̂i is the forecast data, pi is the real-time data, and N is the number of time points used in
determining the forecast.

Also the relative error is adopted to evaluate the models performance. The error is calculated as
the follows:

RE =
pi − p̂i

pi
× 100% (29)

The MAPEs of the individual models and the combined fuzzy forecasting model are calculated.
The results are shown in Table 5.
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Table 5. The MAPEs of individual models and the combined fuzzy forecasting model.

Group 1 Group 2 Group 3

model MAPE model MAPE model MAPE

LS-SVM-1 19.71% H-AR-LS-1 17.26% DLS-SVM-1 18.06%
LS-SVM-2 24.03% H-AR-LS-2 21.22% DLS-SVM-2 21.91%
LS-SVM-3 24.75% H-AR-LS-3 21.85% DLS-SVM-3 20.65%
LS-SVM-4 19.52% H-AR-LS-4 18.05% DLS-SVM-4 17.62%
LS-SVM-6 18.94% H-AR-LS-5 17.46% DLS-SVM-5 20.85%
LS-SVM-7 25.36% H-AR-LS-6 18.50% DLS-SVM-6 16.71%
LS-SVM-9 22.45% H-AR-LS-7 16.99% DLS-SVM-9 18.31%
LS-SVM-10 18.08% H-AR-LS-10 19.01% DLS-SVM-10 22.35%

Average 21.61% Average 18.79% Average 19.56%
GFSVM 15.27%

3.2. Statistical Test

The best individual model is DLS-SVM-6, and the second best is H-AR-LS-7 in terms of MAPE,
Statistical test is carried out among the GFSVM model and those two models. According to the
methods mentioned in reference [27], comparison in made between the GFSVM model and the best
individual model DLS-SVM-6.

{yit}T
t=1 is the history data series, {ŷit}T

t=1 is the results from the GFSVM model,
{

ŷjt
}T

t=1 is

the result from the DLS-SVM-6 model. {eit}T
t=1 is the error of GFSVM model and

{
ejt

}T
t=1 is the

error of DLS-SVM-6 model. The loss function will be a direct function of the forecast error, that is
g(yt, ŷit) = g(eit). The loss differential is dt = [g(eit)− g(ejt)]. Empirically, the forecast error has many
features: 1. zero mean 2, Gaussian 3. Serially correlated 4 contemporaneously correlated. The null
hypothesis is a positive median loss differential: med(g(eit) − g(ejt)) < 0. So, we introduce two test
statistics in reference [27], S1 and S2a as the follows:

0,2 0d
dT d N f  

(30)

1

1 T

it jt
t

d g e g e
T

 
(31)

10
2df

(32)

t tE d d
(33)

1 ˆ2 0d

dS
f
T

 

(34)

where f̂d(0) is a consistent estimate of fd(0):

85



Energies 2012, 5, 3329–3346

2
1

T

t
t

S I d
(35)

2
1

T

t
t

S I d
(36)

where I+(dt) = 1 if dt > 0; I+(dt) = 0 otherwise:

S2a =
S2 − 0.5T√

0.25T
a→ N(0, 1) (37)

The comparison result between the GFSVM model and DLS-SVM-6 the model is shown as Figure 3
and Table 6.

The same comparison is made between the GFSVM model and the H-AR-LS-7 model, and the
result is shown as Figure 4 and Table 7.

In Tables 6 and 7, T is sample size, ρ is the contemporaneous correlation, and θ is the serial
correlation. All tests are at the 10% level. We perform 260 replications.

For comparison between the GFSVM model and the DLS-SVM-6 model, we obtain S1 = 11.74,
S2a = 10.67 which implying a p-value= 0.089, 0.076. Thus, for sample at hand we do not reject at
conventional level the hypothesis of the accuracy of the GFSVM model is better than the DLS-SVM-6
model. In the similar way, we can also statistically conclude that the GFSVM model is better than the
H-AR-LS-7 model.

From above, we can draw a statistical conclusion that the GFSVM model is better than the
DLS-SVM-6 model and the H-AR-LS-7 model.

Figure 3. Loss Differential (GFSVM - DLS-SVM-6).
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Table 6. Empirical Size under Quadratic Loss, Test Statistic S1, S2a (GFSVM—DLS-SVM-6).

S1 S2a

T ρ θ = 0 θ = 0.5 θ = 0.9 θ = 0 θ = 0.5 θ = 0.9

168 0 11.47 11.72 11.89 10.93 10.96 11.06
168 0.5 11.26 11.62 11.41 10.84 10.94 11.11
168 0.9 11.53 11.08 11.17 10.41 11.03 10.92

Figure 4. Loss Differential (GFSVM - H-AR-LS-7).

Table 7. Empirical Size under Quadratic Loss, Test Statistic S1, S2a (GFSVM—H-AR-LS-7).

S1 S2a

T ρ θ = 0 θ = 0.5 θ = 0.9 θ = 0 θ = 0.5 θ = 0.9

168 0 11.45 11.69 11.78 10.87 10.91 11.13
168 0.5 11.23 11.61 11.37 10.81 10.97 11.12
168 0.9 11.54 11.11 11.15 10.38 10.92. 10.97

3.3. Result Discussions

From Table 5, it can be observed that the fuzzy group forecasting model (GFSVM) performs best
in terms of MAPE, with a MAPE of only 15.27%. The average MAPEs of these 8 models for groups 1, 2
and 3 are 21.61, 18.79 and 19.6%, respectively; all of these MAPEs are higher than those of the GFSVM.
The best and second best individual models are DLS-SVM-6 and H-AR-LS-7, and their relative errors
for total testing points are shown in Figures 5 and 6 respectively. From these two figures, it can be
observed that the range of the relative errors from the fuzzy group forecasting model GFSVM is smaller
than that for DLS-SVM-6 and H-AR-LS-7. This means that the GFSVM is much more reliable than
the other models. Table 8 represents the number of predictions between ±10%, ±20%, ±30% and
±40% for DLS-SVM-6, H-AR-LS-7 and GFSVM. For example, for the GFSVM model, 47.3% of the
predictions have errors between ±10%, whereas for the DLS-SVM-6 model, 34.1% of the errors are
in the same error margin, and for H-AR-LS-7 model, only 30.5% of the errors are in the same error
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margin. Obviously, the accuracy of GFSVM model is the best among these three models. From Figure 7,
we know that the GFSVM can imitate the actual wind power output with high accuracy.

Figure 5. Wind power forecast relative errors of GFSVM model and DLS-SVM-6 model.

Figure 6. Wind power forecast relative errors of GFSVM model and H-AR-LS-7model.
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Table 8. Wind power forecast errors distribution for three models (% of errors in each margin).

GFSVM DLS-SVM-6 H-AR-LS-7

±10% 47.3% 34.1% 30.5%
±20% 81.4% 76.6% 74.3%
±30% 98.2% 92.2% 91.6%
±40% 100.0% 100.0% 100.0%

Figure 7. Forecasts derived from the fuzzy model (2011, 12, 01-2011, 12, 07).

It is found that there is correlations among the current wind power output and those 1 h before
and later. It is feasible to use them for predicting. From the Statistical test, it can be proved that the
performance of the GFSVM model is better than that of DLS-SVM-6 model and H-AR-LS-7 model.
It is the best in terms of accuracy and reliability among the models of these three groups. Also its
Robustness is higher than those of the LS-SVM, ARIMA LS-SVM, DLS-SVM models. The overall
prediction of the proposed method is better, but there is still individual prediction with large error,
which needs further research.

4. Conclusions

In this study, we integrated groups of models into an aggregated model by using fuzzy theory
to improve forecasting performance. The fuzzy group model overcame the intrinsic defects of single
models, obtained information from various single models, and then created the optimum combination.
Therefore, in most cases, we can achieve the purpose of improving forecasting results by combination
forecasting, which obviously improves accuracy. Combination forecasting can be used to forecast wind
power output over short time horizons. Through imitation computation and comparison, we proved
that the forecasting accuracy is improved. Our approach thus offers a new and effective method for
wind power forecasting.
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Abstract: This paper presents a new, accurate load forecasting technique robust to fluctuations due
to unusual load behavioral changes in buildings, i.e., the potential for small commercial buildings
with heterogeneous stores. The proposed scheme is featured with two functional components: data
classification by daily characteristics and automatic forecast model switching. The scheme extracts
daily characteristics of the input load data and arranges the load data into weekday and weekend
data. Forecasting is conducted based on a selected model among ARMAX (autoregressive moving
average with exogenous variable) models with the processed input data. Kalman filtering is applied
to estimate model parameters. The model-switching scheme monitors the accumulated error and
substitutes a backup load model for the currently working model, when the accumulated error
exceeds a threshold value, to reduce the increased bias error due to the change in the consumption
pattern. This switching reinforces the limited performance of parameter estimation given a fixed
structure and, thus, forecasting capability. The study results demonstrate that the proposed scheme is
reasonably accurate and even robust to changes in the electricity use patterns. It should help improve
the performance for building control systems for energy efficiency.

Keywords: load forecasting; data pattern classification; model-switching scheme (MSS); Kalman filtering;
accumulated error; autoregressive moving average with exogenous variable (ARMAX)

1. Introduction

Buildings in every shape and size are envisioned to be a huge potential for the efficiency
improvement of the power grid, especially because residential and commercial buildings are
responsible for about 30- to 40-percent of primary energy consumption worldwide. A rich body
of literature for developing high performance energy management systems (EMS) for buildings can be
found to achieve significant energy savings [1–3]. Among the enabling technologies, load forecasting,
in particular, short-term hourly load forecasting [4,5], should be the front-end application of the EMS,
because it helps to better understand energy behavior and provides the baseline estimate of future
real savings, especially under dynamic pricing. It helps analyze the load shape and variability and
determine proper controls or demand response under a grid emergency, as well. The central aim of
this paper is thus to develop an accurate and robust scheme for predicting the hourly power use of
a building.

Several load forecasting techniques have been studied [6–8]. These studies can be categorized
into three types: regression techniques [9,10], artificial neural network (ANN)-related methods [11–13]
and time series approaches [14–16]. In regression techniques, linear representations are applied as the
main forecasting function, where mathematical relationships among electrical load demand, weather
and exogenous variables are intended. This technique has a test-feasibility and short handling of
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non-stationary temporal cases as an advantage and disadvantage. The ANN uses historical load and
weather data to identify the load model and, therefore, has good approximation capabilities for a wide
range of nonlinear models. However, the ANN often converges slowly in training mode and needs to
manually determine the network structure and parameters.

In time series techniques, load demands are treated as time series signals. This technique predicts
load demand using time series analysis. Among these approaches, stochastic time series techniques
have the advantage of finding models with a minimum mean square forecasting error. However, the
gradient search-based technique used by the basic stochastic time series (STS) approach is prone to
finding local optimal points that build an insufficient forecasting model, because the forecasting error
function of this approach possesses multiple minimum points. In summary, this approach is sufficient,
but involves computational risk caused by numerical instability.

In the case of buildings, the increase of an accumulated error from load characteristic change,
caused by consumption patterns and business and working hour changes, can occur. The Figure 1
shows that accumulated errors of the fixed model and our proposed model in load forecasting are
increased dramatically when the load characteristic is changed. Figure 1 illustrates a case where the
forecasting scheme using a fixed model fails to perform best, and thus, the accumulated error increases
dramatically when the load characteristics are changed. It also includes a desired performance obtained
through proposed model switching, as detailed in Section 3. Motivated by the observation that many
of the previous forecasting methods using a fixed model do not perform well, as the above dynamic
change may occur, we propose an accurate load forecasting technique that combines proven forecasting
models with different model structures in order to improve the limited performance of existing
techniques. In this research, the autoregressive moving average with exogenous variable (ARMAX)
model with temperature as the exogenous variable is selected to represent the load behavior [13,17].
Our scheme has two core components: data pattern classification according to weekday and weekend
characteristics and model switching in response to the significant change in the accumulated error. The
improved robustness and resulting forecasting accuracy should help advance smart grid technologies,
including energy management, security analysis, economic dispatch and power scheduling, by
forecasting more accurate energy usage.

Figure 1. Trends of increasing accumulated error.
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The remainder of this paper is organized as follows. Section 2 describes the ARMAX model and
Kalman filtering as the forecast model and a tool for estimating parameters of the model. In Section 3,
we propose the scheme for improving the accuracy and robustness by changing the model structure
and reducing the accumulated error. Section 4 provides numerical study results using MATLAB
simulations. Section 5 presents concluding remarks.

2. Background

The load pattern possesses nonlinear and dynamic characteristics, seasonal and diurnal variations
and different weather conditions. The ARMAX model selection technique has been extensively studied,
because it can describe the relationship between load and extra variables, including weather. In the
ARMAX model, the load is denoted as a linear function that has an inaccessible white-noise input and
an accessible exogenous input series. The characteristics of the load model are identified based on the
variables in the function. The remaining problem becomes finding the proper values of variables in the
model, namely parameter estimation.

By adequately constructing the load model and estimating parameters in the function, we can
forecast the future load. Thus, an ARMAX-based load model and Kalman filtering for parameter
estimation are introduced below as the processes of load forecasting.

2.1. ARMAX-Based Load Model

In this paper, the ARMAX model is used to define the relationship between load and temperature
that is regarded as the exogenous variable influencing the load demand, because load demand in
a building is susceptible to weather and the number of people in the building. The notation of the
ARMAX model for this paper is represented as follows:

A(q)L(t) = B(q)u(t)+C(q)e(t)
(1)

where L(t), u(t) and e(t) are the load, the exogenous variable and the white noise at time t, respectively;
A(q), B(q) and C(q) are the autoregressive (AR) part, the exogenous input part and the moving average
(MA) part. Each part has a back-shift operator, q and an order parameter and can be represented
as follows:

A(q) = 1 + a1q−1 + · · ·+ anq−n, B(q) = b1 + b2q−1 + · · ·+ bmq−m+1, C(q) = 1 + c1q−1 + · · ·+ crq−r

(2)
where a1, · · · , an, b1, · · · , bm and c1, · · · , cr are parameters of the autoregressive part, the exogenous
input part and the moving average part; and n, m and r are the AR order, input order and MA order.

In determining the order number of each part, the sample autocorrelation function (ACF),
the sample partial autocorrelation function (PACF) and the cross-correlation function (CCF) are
employed [18]. In general, it is challenging to select appropriate model orders, and it is therefore
essential to use a technique derived from experience.

In this paper, we modify the ARMAX model for our research. First, we divide the back-shift
operator into day and time back-shift operators. Because we concentrate on forecasting energy
consumption, and since time and date are important factors in load forecasting, we use the day and
the 24 h factor as follows:

q−n => d−jt−k (3)

where d and t are the day and time back-shift operator, respectively; and j and k are their respective
order. Each order has the following definition:

n = 24 ∗ j + k (4)
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where j is a natural number; and k is a number from 0 to 23. For example, n = 55 means that j is 2 and
k is 7. Thus, q−55 = d−2t−7, and it means two days and seven hours ago. Second, we define the load,
the exogenous variable and the noise term. For the load term, we use the electrical consumption (kWh)
of building in an hour. The exogenous variable is defined as outdoor temperature (◦C). The last term
(noise) is assumed to be white Gaussian noise.

2.2. Kalman Filter for the Parameter Estimation

This research briefly reviews the recursive discrete Kalman filter used for estimating parameters
of the ARMAX model in line with the algorithm development. Details of the Kalman filtering approach
to estimating parameters can be found in [19,20].

In order to define Kalman filtering, we have to consider the following discrete state equations:

x(k) = F(k)x(k − 1) + v(k − 1) (5)

z(k) = H(k)x(k) + n(k) (6)

where x(k), F(k), z(k), H(k), v(k − 1) and n(k) are vectors of n × 1 system states, the n × n dimensions
of the state transition matrix, m × 1 measurement vectors, the m × n output matrix, n × 1 system error
and m × 1 measurement error, respectively. The noise vectors, v(k − 1) and n(k), are drawn from white
Gaussian noise that has a mean of zero and no time correlation, as shown below.

E[v(k)] = E[n(k)] = 0 (7)

E
[
v(i)vT(j)

]
= E

[
n(i)nT(j)

]
= 0 f or i 
= j (8)

Q1 and Q2, covariance matrices, are defined as follows:

Q1 = E
[
v(k)vT(k)

]
, Q2 = E

[
n(k)nT(k)

]
(9)

Given the a priori estimate of the state vector, x̂(0) = x̂0, and its error covariance matrix, P(0) = P0,
we set k = 0 and then apply the basic Kalman filter algorithm to estimate the next state by recursively
computing the following equations:

K(k) =
[

F(k)P(k)HT(k)
][

H(k)P(k)HT(k) + Q2

]−1
(10)

x̂(k + 1) = F(k)x̂(k) + K(k)[z(k)− H(k)x̂(k)] (11)

P(k + 1) = [F(k)− K(k)H(k)]P(k)[F(k)− K(k)H(k)]T + K(k)Q2KT(k) (12)

where K(k) is the Kalman gain. In this Kalman filter algorithm, it is important to choose an a priori
estimate of the state x̂0 and its covariance error P0, because an intelligent choice improves the accuracy
and decreases the computational complexity of the algorithm. A few measurement vector samples can
be considered as initial values for x̂0 and P0 as follow:

x̂0 =
[

HTQ−1
2 H

]−1
HTQ−1

2 z0 (13)

P0 =
[

HTQ−1
2 H

]−1
(14)

For our model, the discrete state equations in Equations (5) and (6) are defined for our forecasting
model as follows:

1. The state transition matrix, F(k), is a constant identity matrix;
2. The error covariance matrices, Q1 and Q2, are constant identity matrices;
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3. The state vector, x(k), has some parameters based on Equation (2);
4. The time-varying output matrix, H(k), is derived from the load demand and temperature.
5. The observation value, z(k), represents the load at time k. z(k) = H(k)x(k) takes the following

form, defined by Equations (1–3):

L(t) =
[
−a1 ··· −a24∗j1+k1 b1 b2 ··· b24∗j2+k2

]
×
[

L(t − 1) · · · L(t − 24 ∗ j1 + k1) u(t) u(t − 1) · · · u(t − (24 ∗ j2 + k2) + 1)
]T

+
[

1 c1 · · · c(t − 24 ∗ j3 + k3)
]
×

[
e(t) e(t − 1) · · · e(t − 24 ∗ j3 + k3)

]T

(15)

3. Enhanced Robustness of the Proposed Load Forecasting Scheme

Figure 2 shows the six steps of the proposed robust load forecasting. The first important step is
data pattern classification. If the input data are well classified, we can determine a suitable model and
reduce forecasting error. The second step, model selection, determines the structure of the forecasting
model, model order and load and weather factor using the ARMAX model. The third step is model
parameter estimation, during which optimal parameters of the forecasting model are estimated using
the Kalman filter and database of past and present load and weather data. The third step leads
to a forecast of the load at the next instant of time in the fourth step. The fifth and sixth steps are
feedback processes.

Figure 2. Steps for proposed load forecasting scheme.

In the fifth process, an accumulated error is obtained by summing up the absolute errors. If it
exceeds the reasonable threshold value, K, the sixth step, model-switching scheme (MSS), is executed
to replace the model structure. Through this process, we can respond to an increase of accumulated
error and reduce total accumulated error. If it does not exceed the threshold value, the fourth step is
executed. In this section, we describe data pattern classification for identifying the load model based
on day characteristics and a model switching scheme for enhancing forecasting accuracy.

3.1. Data Pattern Classification for Selecting the Load Model

The main purpose of defining a forecasting model is to determine its order and the variables that
have effects on the load. As mentioned in Section 2, we use the ARMAX model, which depends on
load and temperature. Thus, we collected hourly load data for a building in March 2012, as well as
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temperature data, in order to reflect day characteristics of input data. Each data point is categorized
into two databases, one for the weekday and the other for the weekend.

Figures 3 and 4 show the load shape over 24 hours of weekdays and weekends in the building.
These data were collected by Korea Energy Management Corporation (KEMCO) during March 2012 in
Korea. As shown in Figures 3 and 4, the graph shape differs for weekdays and weekends. Because
people usually work on weekdays, the load characteristic of weekdays differs from that of the weekend:
this research does not consider the holiday case on account of its irregularity. Temperature is also an
influential factor. Based on the tendencies of loads due to weather and time, the input data sequences
are divided as in Figure 5.

Figure 3. Sample of hourly electrical demand during the weekday.
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Figure 4. Sample of hourly electrical demand during the weekend.

Figure 5. Sample of hourly electrical demand for i weeks.

Thus, in the weekday case, this model uses data, including days from Monday to Friday, such as
{mon1, tue1, wed1, · · · , thui, f rii}. Similarly, the weekend case uses data composed only of Saturday
and Sunday: {sat1, sun1, · · · , sati, suni}. The value i of the data sequence represents the ith week
data. Also, each datum has a 24-hourly load datum. In this data pattern classification, we reflect the
characteristic of two data by using a general load model. By using Equations (1) and (2), this general
model can be expressed as:

L(t) = − (a1L(t − 1) + · · ·+ anL(t − (24 ∗ jl + kl))

+ (b1T(t) + b2T(t − 1) + · · ·+ bmT(t − (24 ∗ ju + ku) + 1))
+ (e(t) + c1e(t − 1) + · · ·+ cre(t − (24 ∗ je + ke)))

(16)
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where at any instant, t, L(t) is the load; T(t) is the temperature and e(t) is the noise; L(t − (24 ∗ j + k))
is the previous load at time; 24 ∗ j + k, where j is a day and k is a time; Similarly, T(t − (24 ∗ j + k) + 1)
and e(t − (24 ∗ j + k)) are the previous temperature and noise at time, 24 ∗ j + k, respectively. This
basic load model illustrates the characteristics of weekday and weekend cases by using the categorized
input data. In this paper, we define the order of the load model by the following equation:

L(t) = − a1L(t − 1) + a2L(t − (24 ∗ 7)) + a3L(t − (24 ∗ 7 + 1))
+ b1T(t − 1) + b2T(t − (24 ∗ 7)) + b3T(t − (24 ∗ 7 + 1)) + e(t)

(17)

Each term of the equation is labeled as follows: L(t) is the forecasted load at the next step;
L(t − 1) is the load value one hour before on the same day; L(t − (24 ∗ 7)) is the load during the same
hour 7 days prior; L(t − (24 ∗ 7 + 1)) is the load one hour before the hour of 7 days prior; T(t − 1),
T(t − (24 ∗ 7)) and T(t − (24 ∗ 7 + 1)) follow the same rule of load term. The last term, e(t), represents
total noise.

3.2. Division of Input Data Sequences

Most previous studies of load forecasting only dealt with estimating parameters of the load
structure. Hence, this aspect tends to face increasing accumulated error caused by changes of input
data characteristics. To overcome this problem, we substitute a candidate model for the current
model when accumulated error exceeds a threshold value in our model. Therefore, candidate models
reduce accumulated error as a back-up model. The candidate load models used in this paper and
those characters are shown in Table 1. Finding the proper threshold value is important for defining
scheme characteristics. Too small of a threshold may cause unnecessary model switching, but too
large of a value may not provide the desired robustness to the behavioral change in load in time.
The determination of the optimal threshold value should be different for different cases and may
require considerable experience. However, it may be advised to set a value with some margin,
calculated when reasonably accurate forecasting performance is observed during the initial calibration
period. In this research, this value is assumed to be 250 kWh. The proposed scheme also provides two
operation modes in order to help determine the appropriate model. The first is an initial mode and the
second is an executing mode. Details of these modes are presented in the following subsections.

Table 1. Candidate load models.

Name Model Note

Candidate 1 L(t) = a1L(t − 1) + b1T(t − 1) + e(t) Use data, an hour ago
Candidate 2 L(t) = a1L(t − (24 ∗ 7)) + b1T(t − (24 ∗ 7)) + e(t) Use data, a week ago

Candidate 3
L(t) = a1L(t − 1) + a2L(t − 2) + b1T(t − 1)+

b2T(t − 2) + e(t) Use data, an hour and two hours ago

3.2.1. Initial Mode

The initial mode of MSS aims to provide a new structure quickly. When accumulated error
exceeds a threshold value, there are not enough data to select the best candidate model. Because it
needs two weeks at least in order to obtain sufficient data, MSS activates training mode to reduce
accumulated error until the system collects sufficient load data. As shown in Figure 6, when this mode
activates, our system generates estimated load data based on past data and chooses a model randomly
or empirically among a set of models. Then, the basic model for load forecasting is substituted by
the structure that was selected from the candidate models. Our scheme then forecasts the next time
load using this model. Although there is a possibility that the accumulated error of the selected model
again reaches the critical value, the initial mode plays a role in the lack of load data.
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Figure 6. Process of the initial mode.

3.2.2. Executing Mode

While the purpose of the initial mode is to provide a model quickly in the case of a lack of load
data, the executing mode aims to select the most accurate of the candidate structures by using sufficient
data. When this mode activates, the system starts collecting sufficient load data to estimate the model
coefficient for two weeks. This mode then simulates all candidates by using collected data, as shown
in Figure 7. Then, our system selects the candidate that has a minimum error. Finally, the model with
the least accumulated error during this period replaces the current forecasting model. Though it takes
a longer time when we have more models, this can provide the best one.

Figure 7. Process of accurate mode.

4. Simulation Studies

Simulation studies are conduced to demonstrate the efficacy of the proposed load forecasting
scheme with actual hourly load data as the basic input data. By using our basic load model, the
accumulated and average errors of data pattern classification are evaluated with reference to errors
without the proposed classification. The proposed scheme for enhancing the model robustness is also
implemented and evaluated. Simulations for two modes are carried out to evaluate performance for
the same scenarios. The scenario includes a changing load characteristic so that accumulated error
increases. The weather data is obtained from the Korea Meteorological Administration [21].

4.1. Data Pattern Classification

To forecast the load, initial parameters, such as x0, a set of a, b, c and P0 in Equations (13–15)
must be defined. In this simulation, we set those parameters arbitrarily. Using these parameters, load
demand and temperature obtained from measuring the Kalman filter is applied to estimate coefficients
of the basic load model for each data pattern classification case (Table 2).

The actual daily load for the week is shown in Figure 8. By using the above values, the forecasted
loads with data pattern classification are presented in Figure 9. In particular, Figure 9 illustrates
weekday and weekend cases simultaneously. Table 3 compares the performance of the models with
and without data pattern classification in terms of max, min and average errors. It clearly indicates
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that data classification helps prevent interference between the weekday load and weekend load and
improves the forecasting accuracy.

Table 2. Estimated coefficients for the load model.

a1 a2 a3 b1 b2 b3 c1

Weekday case 0.6626 −0.2632 0.5300 −0.0090 0.1803 −0.1357 0.0223
Weekend case 0.1136 0.1548 0.6464 −0.0218 0.0696 0.0105 −0.0207

Whole-week case 0.6052 −0.1872 0.5173 0.0090 0.1932 −0.1642 0.0078

Figure 8. Actual load demand.
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Figure 9. Forecasted load demand with data pattern classification.

Table 3. Error performance for data pattern classification.

Max error Min error Average error Accumulated error

Included 0.9705 0.0169 0.3914 9.3928
Not included 1.3230 0.0430 0.5752 13.8044

Difference 0.3525 0.0261 0.1838 4.4116

4.2. Performance of the Model Switching Scheme

This subsection demonstrates the performance of the MSS. It is important to note that forecasting
error is unavoidable and the accumulated error tends to increase continuously. Thus, our algorithm
initializes the accumulated error to an initial value every regular checking period, e.g., one week
in this paper. The threshold value of accumulated error is empirically chosen to be 250 kWh.
Candidate forecasting models are selected, as shown in Table 1. We then investigate numerical
simulations using new weekly data in Figure 10 to address the load characteristic change.
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Figure 10. Weekly load as new incoming data.

When the characteristics of input data change, the accumulated error of the load model increases,
as shown in Figure 11. This figure shows that accumulated error is sharply increased after characteristic
change and exceeds a threshold value. Because the accumulated error exceeds the threshold value,
MSS starts one of the modes to substitute for the basic load model.

In the case of the initial mode, there are not sufficient load data. Thus, the system starts generating
estimated load data and chooses the first candidate randomly. In the executing mode, our system has
two weeks of data. Then, this mode simulates every candidate model using those data. Figure 12
indicates the improved performance of the executing mode in the proposed scheme. In this figure, the
gray area means the difference between two modes. The consequent accumulated errors for initial
and executing modes are 186.78 kWh and 104.64 kWh, respectively. As you can see, executing mode is
superior to the initial mode in reducing the error. However, that mode has a disadvantage, because it
cannot control accumulated error for two weeks, because the current model must be used until data
collection is finished. The initial mode randomly chooses one of the candidates and uses estimated
load data in order to estimate the coefficient of the load model. Even though the initial mode has lower
performance than the executing mode, it is a significant operation mode, because it is able to decrease
accumulated error until the system collects enough load data.
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Figure 11. Trend of the accumulated error.

Figure 12. Comparison between initial and executing modes.

5. Conclusions

To improve the accuracy and robustness of the load forecasting, this paper has presented a new
load forecasting strategy incorporating data pattern classification and automatic model switching and
demonstrated the enhanced performance through case studies using the real energy consumption
data. Specifically, this research improved accuracy by processing the input load data in terms of daily
characteristics and reinforced the robustness against the structural bias error due to any change in
electricity consumption pattern in the building by allowing the forecast model change. The proposed
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strategy has adopted ARMAX models with the Kalman filter for estimating their parameters, because
they are easily implementable on top of their proven performance in time series analysis. However,
it is worth noting that the forecasting model is not limited to the ARMAX models, as this study has
investigated. Several candidate models with complementary structures should work with flexible
and scalable architecture and interfaces, allowing for seamless transition from one model to the other
in order to improve the accuracy and robustness. Accuracy and robustness against any uncertainty
this research provides should help understand the energy behavior of buildings and enable the
potential savings through proper load controls and demand responses, which should contribute to the
cost-effective operation and stabilization of an entire generation and distribution systems, as well.
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Abstract: In the deregulated energy market, the accuracy of load forecasting has a significant effect
on the planning and operational decision making of utility companies. Electric load is a random
non-stationary process influenced by a number of factors which make it difficult to model. To achieve
better forecasting accuracy, a wide variety of models have been proposed. These models are based on
different mathematical methods and offer different features. This paper presents a new two-stage
approach for short-term electrical load forecasting based on least-squares support vector machines.
With the aim of improving forecasting accuracy, one more feature was added to the model feature
set, the next day average load demand. As this feature is unknown for one day ahead, in the first
stage, forecasting of the next day average load demand is done and then used in the model in the
second stage for next day hourly load forecasting. The effectiveness of the presented model is shown
on the real data of the ISO New England electricity market. The obtained results confirm the validity
advantage of the proposed approach.

Keywords: short-term load forecasting; least-squares support vector machines; average daily load;
two-stage approach

1. Introduction

With the deregulation of the energy market and the promotion of the smart grid concept, load
forecasting has gained even more significance. Generation capacity scheduling, coordination of
hydro-thermal systems, system security analysis, energy transaction planning, load flow analysis and
so on are all tasks which rely on accurate short-term load forecasting (STLF) [1]. On the other hand,
electric load is a random non-stationary process which is influenced by a number of factors, including:
economic factors, time, day, season, weather and random effects, all of which leads to load forecasting
being a challenging subject of inquiry.

During the past few decades, a wide variety of models have been proposed for the improvement
of STLF accuracy. Conventional methods include: linear regression methods [2], exponential
smoothing [3] and Box–Jenkins ARIMA approaches [4] which are linear models which cannot properly
represent the complex nonlinear relationships between loads and their various influential factors.
Artificial intelligence-based techniques are employed because of the good approximation capability for
non-linear functions. These methods include: Kalman filters [5], fuzzy logic [6,7], knowledge-based
expert system models [8], artificial neural network (ANN) models [9,10] and support vector machines
(SVMs) [11,12]. No single model has performed well in STLF and hybrid approaches are being
proposed to take advantage of the unique strength of each method. An adaptive two-stage hybrid
network with a self-organized map and support vector machines is presented in [13]. A hybrid
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method composed of a wavelet transform, neural network and evolutionary algorithm is proposed
in [14]. A combined model based on the seasonal ARIMA forecasting model, the seasonal exponential
smoothing model and weighted support vector machines is presented in [15] with the aim of effectively
accounting for the seasonality and nonlinearity shown in the electric load. Another seasonal model
which combines the seasonal recurrent support vector regression with a chaotic artificial bee colony
algorithm is proposed in [16] to determine the appropriate values of three parameters of SVRs.

In spite of all the performed research in the area of STLF, more accurate and robust load
forecast methods are still required. One can also highlight some interesting works in this area,
especially in recent years. A combined aggregative STLF method for smart grids which obtain a
global forecasting by summing up the forecasts on the compounding individual loads is introduced
in [17], with three new approaches proposed: bottom-up, top-down and regressive aggregation. A
new singular value decomposition based exponential smoothing method is presented in [18], where
it is applied to the intraweek cycle, which leads to a simpler and potentially more efficient model
formulation. The new method is similar to the Holt-Winters exponential smoothing method, but both
were outperformed by the unrestricted form of intraday cycle exponential smoothing. A combined
forecast model constructed as the simple average of the weather-based method, the Holt-Winters
exponential smoothing and proposed method, obtained the best results at all horizons. Also, these
univariate methods outperformed a weather-based method up to about five hours ahead. In [19] an
integrated approach which combines a self-organizing fuzzy neural network method with a bilevel
optimization method is proposed for STLF. The proposed approach uses self-organizing fuzzy neural
network advantage to automatically determine both the model structure and parameters, and bilevel
optimization method advantage to automatically select the best pre-training parameters to ensure that
the best fuzzy neural networks are identified. In [20], the comparison between the frequently used
radial basis function network in STLF and the modified radial basis function network with a genetic
algorithm for weight estimation and a nonsymmetrical penalty function with different penalties for
over-forecasting and under-forecasting is presented. The obtained results show the efficiency of the
proposed method with the new forecasting metric which is the extension of the conventional sum of
the squared error metric. Two methodologies for bus load forecasting, i.e., multimodal load forecasting
are proposed in [21], where one individually forecasts the local loads while the second forecasts the
global load and then individually forecasts the load participation factors to estimate the local loads. In
both methodologies a modified general regression neural network with automatic feature selection to
reduce the number of inputs of the artificial neural networks is used.

In order to improve forecasting accuracy, in this paper emphasis is placed on model features in the
context of machine learning models. It is well known that the balance between the size of the feature set
and the quality of the chosen features is important, regardless of which method is used for modeling.
A small feature set cannot provide enough information about the load and, on the other hand, too
many features do not necessarily provide more information, but may bring noise to the model. The
selection of appropriate model features which carry the right information about load behavior is one
of the most important tasks. An analysis of what kind of information should be included in the model
for mid-term load forecasting was done in [11] and a winning model feature set consists of calendar
weekday features and time-series past load demand features. The approach in [22], in addition to
the weekday calendar features, proposed using the hour of the day feature in STLF problems, and
also suggested the use of temperature as the most important weather variable because of the strong
correlation between temperature and load. Other weather variables (wind velocity and cloud cover)
are also analyzed but in the end are neglected. The final feature set consists of an hour indicator, day
indicator and estimated temperature at the hours k, k − 1 and k − 2, without using time-series past
load. As load time series indicated a clear daily and weekly seasonality, in [23] the effects of the days of
the week and special days, such as holidays, are included in the model. To model these effects, several
features are introduced besides weekday features such as holidays, working days after or before a
holiday, work only during the mornings or only during the afternoons, the Saturday after a holiday,
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special holidays and so on. Also, in order to choose the appropriate feature subset which best describes
the load, in some papers the choice of features is not done manually, and it is common to use some
of the algorithms for feature selection. In [24], ant colony optimization is applied to yield optimal
feature subsets. The initial feature set is composed of 38 features which are selected to describe hourly
and weekly load behavior and the correlation with weather variables. Some included features are the
maximum, minimum and average temperatures during the last seven days, six temperature points on
the forecasted day, forecasted day rainfall, wind speed, humidity, cloud cover, month, season, week,
whether the day is a holiday or not, whether the day is a weekend or not and so on. At the end of the
feature selection, 21 features were dropped from the initial set. The features have been selected by
using a cross-correlation analysis in [25]. The feature set is composed of the previous hour load, the
load of the previous day, load of the previous week and the load from two weeks ago.

It may be noted that the list of used features is wide and varies from work to work but they all
have the same goal, to improve the model and achieve the best forecast accuracy. With the same aim, in
this paper a new approach to STLF is proposed. An additional feature, next day average load demand,
is appended to the STLF model feature set. As this feature is unknown for the next day, in the first
stage, the forecasting of the average daily load is carried out. Then, in the second stage, the forecasted
average daily load is incorporated into the STLF model and the forecasting of the hourly load for the
next day is carried out. It is important to emphasize here that the proposed approach is distinguished
from others by the use of the average load in the model, such as for example the Box-Jenkins approach,
in terms of using it in the context of the machine learning model, more concretely the LS-SVM. In
this way this feature has direct influence in the training phase of the model formation. The results
obtained from experiments on the real electricity market data indicate the validity and advantage of
this approach.

The rest of the paper is organized as follows: Section 2 presents the basics of least-squares support
vector machines (LS-SVM) used in the regression. Next, Section 3 shows electrical load data features
and presents the proposed STLF approach. Section 4 includes a variety of experiments to verify the
proposed approach. Finally Section 5 outlines the conclusions.

2. Least Squares Support Vector Machines Model

The brief basic concepts of LS-SVMs are introduced. SVMs were proposed by Vapnik in [26], and
are widely used for load forecasting, in addition to ANNs which also show a good approximation
capability for non-linear functions. However, SVMs are based on the structural risk minimization
principle in order to minimize the upper limit of the estimation error, rather than the empirical risk
minimization which minimizes the training error used by ANNs. Consequently, by solving the quadric
programming (QP) optimization problem, SVMs always manage to achieve the global optimum
solution, instead of possibly stocking the local optimum like ANNs models. This approach, by using
nonlinear kernels, leads to a very good generalization performance and sparse solutions. LS-SVMs,
defined in [27], as reformulations of standard SVMs instead of solving the QP problem, which is
complex to compute, obtain a solution from a set of linear equations. Therefore, LS-SVMs have a
significantly shorter computing time and they are easier to optimize.

Let us consider a given training set {xk, yk}, k =1, . . . , n with inputs
p

kx R∈ and outputs  ky R∈ .

The following regression model can be built by using a non-linear mapping function ( ) : hPpR Rφ →⋅
which maps the input space into a high-dimensional feature space and constructs a linear regression in
it. The regression model in primal weight space is expressed as follows:

( ) ( )Ty x x bω φ= +  (1)

where ω represents the weight vector and b is a bias term.
LS-SVM formulates the optimization problem in primal space presented as follows:
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( ) 2
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J e eω ω ω γ
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= +
(2)

subject to equality constrains expressed as follows:

yk = wT f (xk) + b + ek, k = 1, . . . , n (3)

where ek represents error variables; γ is a regularization parameter which gives the relative weight to
errors and should be optimized by the user.

In order to solve the optimization problem defined with Equations (2) and (3), it is necessary
to construct a dual problem using the Lagrange function. Once the mathematical calculations were
carried out, described in detail in [27], the following linear system was obtained:

1

0 1 0

1 I

T b
y

ν

ν α−
=

+
 

(4)

In Equation (4), [ ]1, , T
ny y y= … ,, [ ]1 1, ,1 T

ν = … , [ ]1, , T
nα α α= … , there are Lagrange

multipliers, I is an identity matrix and ( ) ( )( ) , ,  , 1, ,T
kl k l k lx x K x x k l nφ φ= = = … denotes the

kernel matrix.
Once the system defined in Equation (4) is solved, the solutions for α and b are obtained. It is

shown in [27] that usually all Lagrange multipliers are non-zero, which means that all training data
participate in the solution, i.e., every data point represents a support vector. Compared with SVM, the
LS-SVM solution is not sparse.

The resulting LS-SVM model for function estimation in dual form is defined as follows:

( ) ( )
1

,
n

k k
k

y x K x x bα
=

= +
(5)

The dot product ( ) ( ) ( ), T
k kK x x x xφ φ= is known as a kernel function. Kernel functions that

satisfy Mercer’s condition enable computation of the dot product in a high-dimensional feature space
by using data inputs from the original space, without explicitly computing ϕ(x).

A commonly used kernel function in non-linear regression problems, one that is employed in this
study, is a radial basis function represented as follows:

( ) 2

2

,
kx x

kk x x e σ
−

−
=  

(6)

where the kernel parameter σ2 denotes the squared variance of the Gaussian function.
When choosing the RBF kernel function with the LS-SVM, the optimal parameter combination (γ,

σ) should be established, where γ denotes the regularization parameter and σ is a kernel parameter.
It can be noticed that only two additional parameters (γ, σ) need to be optimized, instead of three (γ,
σ, ε) as in SVM. Parameter selection is the most significant part during the formation of the LS-SVM
regression model, because it has a significant effect on the performance, both in terms of accuracy and
computing time. Accordingly, for this purpose, a grid search algorithm in combination with k-fold
cross validation was used in this study.
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3. Model Formation

3.1. Features of Electric Load

The electric load is a random non-stationary process influenced by a number of factors which
makes it difficult to model. Choosing appropriate input features to build the model is an important
task in load forecasting. There is no general approach to conduct this problem, but load curve analyses
and statistical analyses can be helpful for choosing key features to build a good load forecasting model.

The real-life STLF test case is considered in this paper to evaluate the performance of the proposed
forecast approach. This STLF test case is related to the ISO New England power system, which is an
electricity market in the U.S. The employed data for the load in this test case are publicly available
data obtained from a website [28]. Figure 1 shows the power load curves for four months, which are
typical representatives of each quarter of the year.

Figure 1. Power load curves. (a) February 2011; (b) May 2011; (c) August 2010; (d) November 2010.

In Figure 2, the hourly load during the week is presented for four weeks in February, May, August
and November. It is obvious that the daily load on work days is greater than the load on weekends.
The reasons for this are people’s behavior during the week, and this pattern is periodically repeated
each week. All this imposes using the day of the week for the features in the model.

Figure 3 shows hourly load during the day for each day in one week in February, May, August
and November. This curve is influenced and shaped by people’s daily habits. The load changes from
hour to hour during the day, indirectly following consumer behavior. This brings one more important
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variable to the feature set, and that is the hour of the day. Also, it can be noticed that the curves have a
similar shape but different magnitude from day to day in the week. This also confirms the validity
of using the day of the week for the model feature with the aim of mapping this property. However,
from Figures 2 and 3 it can be observed that the daily load curve is different for the four given months.
This difference is reflected not only in load magnitude but also in the shape of the load curves.

Figure 2. Hourly load during the week in (a) February 21–27; (b) May 16–22; (c) August 16–22;
(d) November 15–21.
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Figure 3. Hourly load during the day. (a) February 21–27; (b) May 16–22; (c) August 16–22;
(d) November 15–21.

In Figure 4, the average daily loads in February, May, August and November are presented.
The start of the week (Monday) is marked with dashed vertical lines.
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Figure 4. Average daily load in (a) February 2011; (b) May 2011; (c) August 2010; (d) November 2010.

It is clear that the average daily load on the weekends is smaller than on week days. It also can be
seen that power consumption on Tuesday and Wednesday is much greater than on the other days.

3.2. The Proposed Approach

As previously described, electric load is a nonlinear, time variant and multi-variable function.
It is very difficult to capture the correct mapping function of such a signal in all the time spans.
To solve this problem, a new two-stage STLF approach based on least squares support vector machines
with the architecture shown in Figure 5 is proposed in this paper. Beside the Figure 5 which shows
graphical representation of the proposed approach, a step-by-step procedure of two-stage LS-SVM
model training and forecasting is given in algorithm 1.
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Figure 5. The proposed two-stage model architecture.

In the first prediction stage, Stage I, forecasting of the next day average load is done. This is
performed by Model I, whose inputs consist in total of t + s features, where t is the number of past
average daily load time-series features and s is the number of non-time series features. The past
average daily load time horizon is set to t = 7, i.e., the model uses the last seven average daily loads

from the prediction moment (
d

k iP − , i = 1, . . . ,7). To map the weekly load behavior, the day of the week

feature ( kD , { }1,2,...,7kD ∈ where 1 corresponds to Monday, 2 to Tuesday and so on) is included in
the feature set and this feature is the only non-time series feature, i.e., s = 1.

Algorithm 1. The two-stage LS-SVM model training and forecasting procedure

1. Stage I

1.1. Model I training set formation using daily average load data for the past three years.
This training set contains 1095 vectors in total and each vector is composed of features
from seven past average daily loads and the current day of the week indicator. Normalize
all of the features in the [0–1] range by using min-max normalization,

1.2. Based on this training set and grid-search algorithm with a k-fold cross validation
procedure (k = 10), obtain the optimal parameters γ and σ for the LS-SVM Model I,

1.3. Using Equations (5) and (6) and the previously optimized parameters γ and σ train the
LS-SVM forecasting Model I,

1.4. In order to predict the average load for one step ahead, i.e., for the next day, seven past
average daily loads and the next day of the week indicator form the input test vector for
model I,
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1.5. At the end of stage I, the average load for the next day is obtained and passed on to
Stage II.

2. Stage II

2.1. Model II training set formation using hourly load data for the corresponding months from
three previous years. This training set contains 2016 vectors in total and each vector is
composed of features from 24 past hourly loads, the current day of the week indicator, the
current hour of the day indicator and the current average daily load. Normalize all of the
features in the [0–1] range by using min-max normalization,

2.2. Based on this training set and grid—search algorithm with a k-fold cross validations
procedure (k = 10) obtain the optimal parameters γ and σ for the LS-SVM model II,

2.3. Using expressions (5) and (6) and the previously optimized parameters γ and σ train the
LS-SVM forecasting Model II,

2.4. Now, the input test vector is formed from the 24 past hourly loads, the next day of the
week indicator, the next hour of the day indicator and the average load for next day,
obtained from Model I in Stage I,

2.5. Employ model II with the test vector for the prediction of the hourly load for one step
ahead, i.e., for the next hour,

2.6. Update the test vector, first shift the 24 past hourly loads one place to the left and then add
the prediction for the past hour in last place, then, update the hour of the day indicator
(the day of the week indicator and the daily average load remains the same),

2.7. Go to Step 2.5. until the prediction of the hourly loads for the 24 steps ahead are obtained,
2.8. At the end of stage II, the hourly load for next day is obtained.

When the structure of the inputs is defined, the training set which contains an n number of
inputs is formed. For Model I training, the total number of inputs is set to n = 1095, i.e., the training
set contains inputs for the previous three years before the prediction moment. As the experiment
results will show, this value is sufficient to catch the evolving nature of the average load pattern.
After establishing the training set, the training of the LS-SVM forecasting of Model I is performed.
In order to have an optimal training of the model, the data set has to be normalized before training.
This prevents the dominance of any features in the output value and provides faster convergence and
better accuracy of the learning process. Accordingly, all of the features are normalized within the range
[0–1]. After that, the optimal (γ, σ) pair is determined on a training set using a grid search with k-fold
cross validations, as mentioned in Section 2.

The training set is randomly subdivided into k disjoint subsets of approximately equal size and
the LS-SVM model is built k times with the current pair (γ, σ). Each time, one of the k subsets is used
as the test set and the other k-1 subsets are put together to form a training set. After k iterations, the
average model error is calculated for the current pair (γ, σ). The entire process is repeated with an
update of the parameters (γ, σ) until the given stopping criterion (e.g., Mean Squared Error) is reached.
The parameters (γ, σ) are updated exponentially in the given range using predefined equidistant steps,
according to the grid-search procedure. After obtaining the optimal (γ, σ) combination, values for α
and b are obtained from Equation (4), and the LS-SVM Model I is formed according to Equations (5)
and (6). The test vector is constructed in regard to the previously defined feature set structure and
Model I is then employed for the prediction of the average load for one step ahead, i.e., for the next
day. When the next day average load is obtained, it is passed to Stage II where the forecasting of the
next day hourly loads is done. The Model II feature set is also composed of both time-series and non
time-series types of features. The past hourly load time horizon used for this model is t = 24, i.e., the

model uses the last 24 hour loads from the prediction moment (
h

k iP − , i = 1, . . . , 24). In addition to
these time-series parts, the model feature set contains three non time-series features (s = 3): the hour
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of the day Hk, { }1,2,..., 24kH ∈ , the day of the week kD , { }1,2,...,7kD ∈ and average daily load
day

kP . In the training phase of Model II, the last mention feature is obtained as an average from the
history of hourly loads, and therefore has an exact value, while in the prediction phase this value is
obtained in Model I, and therefore represents a predicted value. After defining the structure of training
inputs, the Model II training set is formed from approximately m = 2016 inputs, i.e., the training set
contains hourly inputs from three months in the past three years, e.g. if the hourly loads for each day
in February 2012 need to be predicted, the training set consist of the inputs from February 2009, 2010
and 2011. This is not necessary but it is shown in [11] that the training set calendar congruence with
the predicted period produces better forecasting accuracy and reduces the time needed for model
formation. After establishing the training set, training of the LS-SVM forecasting Model II is performed
in the same manner as the training of Model I. After Model II is trained, it is then committed with
the test vector which is formed in regard with the previously defined feature set structure, and the
prediction of load for one step ahead, i.e., for the next hour is done. After that it is necessary to update
the test vector for the next prediction step, i.e., for the next hour. The update is needed because the
exact values of the load for the past 24 hours are available only for the first prediction step. After that,
for the next predictions, the predicted values from the previous steps are used instead of the exact ones,
which are unknown at that moment. Accordingly, the test vector is first shifted left for one place, the
hour feature is updated (the day and average load features remain for the current day) and prediction
from the previous step is placed in the final position. The whole process is repeated 24 times and in
the end, hourly predictions for the next day will be obtained.

4. Experimental Results

For the evaluation of the proposed STLF approach, the forecasting of hourly loads for four typical
month representative of each quarter of the year was done for each day. The results are obtained
for August 2011, November 2011, February 2012 and May 2012. This implies that the results from
the Stage I forecasting model for the prediction of the next day average load, must first be obtained.
Also, the evaluation of these results is important, because they directly influence final STLF accuracy
and provide insight into the extent of this dependence, and that is a useful indicator of new feature
contributions to STLF accuracy.

The prediction quality is evaluated using the Mean Absolute Percentage Error (MAPE), Maximum
Error (ME) and Absolute Percent Error (APE) as follows, respectively:
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where Pi and P̂ are the real and the predicted value of the load demand in the ith hour and n is the
number of hours.

Real and predicted average daily loads are shown in Figure 6 for August, November, February
and May respectively. In the same Figure, daily APEs are given to illustrate the deviation in the
prediction of next day average load.
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Figure 6. Real and predicted average daily load with APE. (a) August 2011; (b) November 2011;
(c) February 2012; (d) May 2012.

In Table 1, minimum, average and maximum APE values of entire test sets are shown to also give
an indication of the range of APE values in addition to the graphic representations. The first column
indicates the test month set, while the second to forth indicate minimum, average and maximum
monthly APE values. These APE values fall within scope of interest not because the development and
evaluation of the next day average load forecasting model was carried out here, but because we are
interested in how the proposed STLF model will behave using the predicted next day average load
values in that range.

Table 1. Daily APE for next day average load prediction.

Set
APE

Minimum Average Maximum

August 0.14 6.12 30.47
November 0.06 2.72 13.73
February 0.08 2.52 6.32

May 0.05 2.02 7.88

Figure 6 and Table 1 give as a sense of the range of the forecasted average load APE for each
day in test sets. Thus the days that do not have a satisfactory average load forecasting accuracy can
be identified with the aim of monitoring the results of hourly load forecasting on these days. It is of
interest because the forecasted average load at stage I is used as input at stage II, where hourly load
forecasting is done, as stated above.
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To examine the STLF model behavior when it uses the next day average load feature with different
APE values, three sets for two test month of next day average loads were artificially generated using
the reverse process of calculating APEs with respect to APE values of 2.5, 5 and 7.5%. This resembles a
prediction of next day average loads, where the obtained values are in the range of 2.5, 5 and 7.5 of the
APE for each day in the test set. When these artificially generated values are collected, they are used as
a feature in the input vector for Model II and the forecasting of the next day hourly loads are carried
out. In Table 2, the STLF results obtained using artificially generated values for next day average loads
are shown. The first column indicates the test month set and the second, the artificially generated
value in the input vector, where I2.5 means an artificial next day average load with 2.5 APE, I5 with 5
and I7.5 with 7.5 APE. The remaining columns contain values for minimum, average and maximum
monthly values of MAPE and ME. From this table it can be observed that the MAPE and ME values,
regardless of whether they are minimum, average or maximum values, increase with the rise in the
APE of the next day average load artificially generated values used in the input vector. Thus, it can
be noted that the accuracy of the proposed STLF model will increase with an increase in the next day
average load forecasting model accuracy, i.e., if the next day average load predicted value is closer to
the real value, then the STLF model will also give accurate predictions.

Table 2. Average, max and min daily MAPEs and MEs, obtained with artificial inputs during Stage II.

Set Input
MAPE ME

Minimum Average Maximum Minimum Average Maximum

February
I2.5 2.43 2.92 4.38 0.58 0.96 2.05
I5 4.48 5.33 7.04 0.92 1.55 2.14

I7.5 6.57 7.43 8.58 1.49 2.1 2.91

May
I2.5 2.26 3.16 5.71 0.63 0.98 1.6
I5 4.14 5.12 6.14 0.88 1.44 2.26

I7.5 5.81 7.32 9.77 1.18 1.99 2.81

To give a graphic representation of the STLF accuracy of the proposed approach, from its obtained
results for test sets, daily MAPEs are calculated and shown in Figure 7. In this figure, five curves for
each test month can be seen, each corresponding to the LSSVM-I, LSSVM-TSTL, LSSVM-TS, DS-ARIMA
and DS-EST model respectively. The LSSVM-I (least square support vector machines initial) model
curves represent daily MAPEs for initial model forecasting, i.e., a model whose feature set consists
of 26 features: days of the week, hours of the day and 24 past load time-series features. In addition
to the features in the LSSVM-I model, models LSSVM-TSTL (least square support vector machines
two-stage true average load) and LSSVM-TS (least square support vector machines two-stage) have
one more feature, the next day average daily load. Although the LSSVM-TSTL and LSSVM-TS models
share the same model structure, they have different inputs in the prediction step. The LSSVM-TSTL
model in the input vector for next day average load feature uses exact values, which cannot be used in
the real scenario because this value is not known for the step forward, while the LSSVM-TS model
uses previously predicted values from Stage I. In addition, due to the verification of performance of a
proposed method, the double seasonal ARIMA model (DS-ARIMA) proposed by Taylor et al. [29] and
the double seasonal exponential smoothing model (DS-EST) proposed by Taylor [30], are also involved
in the comparison.

Bearing in mind the obtained results for average daily load in Figure 6, the days characterized by
higher MAPEs can be recognized. This refers to the days when the MAPEs are at least twice the values
of the average daily MAPEs for a given month. As can be seen in Figure 7, on these days daily MAPEs
for the proposed model LSSVM-TS are higher compared to the model LSSVM-TSTL which uses a true
next day average load, i.e., prediction accuracy is reduced as a result of inaccurate next day average
load forecasting at stage I. This behavior is especially pronounced in several days in each test month,
so for example on days 1, 9, 16, 23, 28 in August, 1, 7, 24, 30 in November, 1, 6, 12, 19, 22, 24, 28 in
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February and 5, 7, 14, 16, 17, 26, 27, 29 in May. On these days the difference in MAPEs is significantly
expressed compared to the LSSVM-TSTL model, but on the other hand on days when the predicted
average daily load is nearly equal to the real average daily load, there was a significant improvement
in the forecasting accuracy at stage II. This does not mean that the on previously mentioned days
with a slightly larger MAPE at stage I there was no improvement compared to the initial LSSVM-I
model, which does not use next day average load in the feature set. Also, it should be noted that there
are days for the proposed LSSVM-TS model with obtained MAPEs greater than those of the initial
LSSVM-I model. These are for example the following days: 1, 7, 17 in August, 15 in November, 5, 6, 19,
24 in February and 5, 6, 7, 14 in May. The reason for this is that on these days the inaccurate next day
average load was used in stage II, i.e., as can be seen in Figure 7 on these days in the LSSVM-TSTL
model with real next day average load gain, better MAPEs were determined compared to the proposed
LSSVM-TS model, but also compared to the initial LSSVM-I model. This is not entirely true for days 7
in August, 6 in February and 6 in May where the initial LSSVM-I model obtained better MAPEs than
the LSSVM-TSTL model. That can be expected in some situation when the hourly load curve is not
strongly correlated with the daily average load, which then gives faulty information to the model.

Figure 7. Daily MAPEs for all of STLF models. (a) August; (b) November; (c) February; (d) May.

Table 3 shows the minimum, average and maximum values of MAPEs and MEs in the third to the
fifth, i.e., in the sixth to the eighth column, respectively, where the first column indicates the test set
and the second column indicates the model. Table 3 provides a general overview of the behavior of the
proposed LSSVM-TS model compared to not only the initial LSSVM-I model and LSSVM-TSTL model,
but also compared to the DS-ARIMA and DS-EST models which take into account the time series
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trend and seasonality. The proposed LSSVM-TS model has smaller MAPE values than the LSSVM-I,
DS-ARIMA and DS-EST models for all the test months. It should be noted that in Figure 7 there are
days when the DS-ARIMA and DS-EST models gain better accuracy than the proposed LSSVM-TS
model but on a monthly average the LSSVM-TS model is superior. The reasons why the proposed
LSSVM-TS model has obtained smaller MAPEs can be found in several facts: the nonlinear mapping
capabilities and structural risk minimization of LS-SVM model itself, the recurrent mechanism with
superior capability to capture more data pattern information from the past load data and the indirect
trend adjustment with an introduction of average daily load in the feature set. However, the proposed
model prediction accuracy can be distorted because of these aforementioned facts, due to the using
inaccurate prediction of the next day average load at Stage II.

Table 3. Average, max and min daily MAPEs and MEs.

Set Model
MAPE (%) ME (GW)

Min. Avr. Max. Min. Avr. Max.

August

LSSVM-I 2.1 8.31 48.73 0.7 2.74 10.92
LSSVM-TSTL 0.85 3.73 17.47 0.4 1.29 3.95
LSSVM-TS 1.55 7.09 32.06 0.63 2.29 7.99
DS-ARIMA 1.38 8.44 30.1 0.59 2.17 6.6

DS-EST 2.55 12.22 46.14 1.06 3.22 10.23

November

LSSVM-I 2.09 5.56 18.62 0.62 1.64 5.41
LSSVM-TSTL 1.2 3.67 11.46 0.45 1.17 3.42
LSSVM-TS 1.59 4.69 13.96 0.44 1.5 4.25
DS-ARIMA 1.5 4.94 16.83 0.51 1.34 4.52

DS-EST 3.42 6.95 13.11 1.06 1.81 2.69

February

LSSVM-I 1.73 3.42 7.28 0.51 0.98 2.11
LSSVM-TSTL 0.53 1.63 3.22 0.23 0.64 1.63
LSSVM-TS 1.07 2.9 6 0.39 0.94 1.97
DS-ARIMA 1.22 2.97 6.15 0.39 1 2.01

DS-EST 1.87 4.16 7.53 0.59 1.31 2.32

May

LSSVM-I 0.71 3.35 8.33 0.26 1.01 2.93
LSSVM-TSTL 0.48 1.89 4.51 0.24 0.67 1.83
LSSVM-TS 0.71 2.82 7.1 0.21 0.85 2.24
DS-ARIMA 1.22 3.71 9.44 0.12 0.96 1.74

DS-EST 1.15 3.86 8.02 0.47 1.21 2.63

5. Conclusions

Electric load forecasting is a complex problem and electric load data present nonlinear data
patterns caused by influencing factors. In order to overcome this, one approach for improving
short-term load forecasting is presented in this paper. The proposed approach is based on two LS-SVM
prediction models, in two stages, where the first stage introduces a new feature, average daily load,
into the second stage. The introduction of the average load into the feature set for the next day hourly
load forecasting model is done with aim to examine its potential in the electric STLF. Moreover, this
paper studied and revealed the influence of a new type of feature on STLF accuracy, besides the widely
used calendar, climate and time-series features, and provided an efficient method for forecasting it.

Three other alternative models, LSSVM-I, DS-ARIMA and DS-EST models are used to compare
the forecasting performance. The experiment results indicate that the proposed LSSVM-TS model has
significant improvements among other alternatives in terms of forecasting accuracy. Furthermore, it
has been shown that the quality of the proposed LSSVM-TS model directly depends on the quality
of the next day average load predictions. As the experiment results have shown, by generating
artificial average load samples, the accuracy of forecasting at stage II increases with an increase in the
forecasting accuracy in stage I. Also, despite the usage of predicted or true value for next day average
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load, i.e., LSSVM-TS or LSSVM-TSTL models, in both cases the generated STLF models generally
performed better than the initial LSSVM-I model. Of course, usage of the exact next day average load
in the STLF model input obtained the best forecasting results. However, this value is unknown and
attempts should be made to obtain a value as close to the true value as possible, which would improve
STLF accuracy.

Although the results are promising, further work could consider the development of a more
advanced model for the prediction of average daily load for one day ahead in order to make it more
accurate and thus improve STLF accuracy even more.
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Abstract: Electricity is indispensable and of strategic importance to national economies. Consequently,
electric utilities make an effort to balance power generation and demand in order to offer a good
service at a competitive price. For this purpose, these utilities need electric load forecasts to be as
accurate as possible. However, electric load depends on many factors (day of the week, month
of the year, etc.), which makes load forecasting quite a complex process requiring something
other than statistical methods. This study presents an electric load forecast architectural model
based on an Artificial Neural Network (ANN) that performs Short-Term Load Forecasting (STLF). In
this study, we present the excellent results obtained, and highlight the simplicity of the proposed
model. Load forecasting was performed in a geographic location of the size of a potential microgrid,
as microgrids appear to be the future of electric power supply.

Keywords: artificial neural network; distributed intelligence; short-term load forecasting; smart grid;
microgrid; multilayer perceptron

1. Introduction

One of the most remarkable characteristics of the traditional energy production and distribution
system is that most power is generated at large plants located far from the end-use points. This causes
losses during transport and hinders the possibility of decentralizing power generation, resulting in a
high dependence on large generation plants. In recent times, a conceptual change has been proposed
so as to make the current supply system more sustainable in economic and environmental terms, as
reflected for instance in the Lisbon Treaty [1].

According to these new concepts, and in order to increase sustainability and optimize resource
consumption, electric utilities are constantly trying to adjust power supply to the demand. Taking
into account that it is extremely difficult to store energy at a large scale, power generation has to
be adjusted to demand in real time. Accordingly, it is important that electric load forecasting be as
accurate as possible.

However, electric power demand depends on many factors, as the day of the week, the month of
the year, etc., which makes electric load forecasting quite a complex process that involves more than
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Energies 2013, 6, 1385–1408

only statistical methods. In recent years, electric load forecasting is being performed using several
prediction algorithms, and among them, Artificial Neural Networks (ANNs) are one of the most popular
options due to their ability to automatically learn from experience and adapt themselves [2].

On the other hand, the need for achieving a balance between electric power generation and
demand has added to the emergence of smaller electric power generation and demand environments
called microgrids, in which adaptation of production to load can be performed much more dynamically
due to their distributed smaller elements and the geographical proximity of all elements (which in
addition helps reduce transport loses). The load curve for a microgrid disaggregates electric power
consumption data, making traditional methods (designed for nation- or region-wide forecasting)
unsuitable for its direct application because of two main reasons. In microgrids, not only the aggregated
consumption figure is several times smaller than in region-wide areas, but the load curve presents a
much higher variability and does not always conform to the same shape. Some examples of typical
load curves for different environments are presented in Figure 1 in order to illustrate the differences. It
is easy to realize that the typical load curve is noisier and presents abrupter changes as the environment
is more disaggregated.

This paper presents an ANN-based architectural model for Short-Term Load Forecasting (STLF)
in small microgrid scenarios. After this introduction, Section 2 briefly presents the global concept of
Smart Grid (SG) and microgrid (which represents an evolution of traditional grids into more localized
power generation systems) and new distributed-intelligence technologies, which are expected to
be incorporated into different components of the grid. Section 3 reviews the state of the art of the
application of ANNs in load forecasting. Section 4 describes a new proposal for an ANN-based
architectural model for STLF in microgrid environments. Section 5 presents the validation of the model
with real world data. Section 6 analyzes the results obtained and, finally, Section 7 summarizes the
conclusions of this study.

Figure 1. (a) Country; (b) substation (potential microgrid); (c) industrial park (potential microgrid);
(d) home consumption.
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2. Evolution of Power Supply Systems: Smart Grids and Microgrids

2.1. Smart Grids and Microgrids

In recent years, national administrations and international institutions are adopting strategic
plans to accelerate the development and deployment of low carbon technologies, putting in place
several initiatives to concentrate, promote and reinforce efforts aimed at reducing carbon emissions in
Europe. Some examples are the European Strategic Energy Technology Plan (SET-PLAN) [3], the Spanish
platform FutuRed [4], or the European technological platform Smartgrids [5]. Public and private efforts
are leading to a transition from the traditional grid to new electric power supply models based on
SG. The term SG is used to describe a “smart” electric power supply system that uses Information and
Communications Technologies (ICT) to optimize electric power generation and distribution, and achieve
a balance between electric power generation and demand. SGs are based on the usage of Smart Meters
(SM) to retrieve real time data from users and elements of the grid and the application of intelligent
algorithms to adapt the behavior of the nodes so as to improve the performance of the network at
various levels.

On the other hand, a microgrid is a localized physical space consisting of distributed power
generation, storage and consumption. According to the Consortium for Electric Reliability Technology
Solutions (CERTS), a microgrid is an “aggregation of loads and micro-power units jointly operating as a single
system to provide both electric power and heat, includes power units, energy storage and interconnected loads
that can operate both connected to the bulk power system and in isolation from the grid in case disturbances
may arise”. Therefore, microgrids have the potential to become autonomous and independent energy
systems capable, while they are still connected to the global network to allow higher level interactions.

When ICTs are incorporated into a microgrid, it becomes a SG of a specific size. In this case, in
order to adjust electric power production of its generation elements, disaggregated load forecasting is
required within the microgrid.

2.2. New Distributed Intelligence Elements in the Grid

The imminent deployment of SM at end-points will enable utilities to accurately identify demand
patterns. Microgrid operators will get more reliable values from disaggregated profiles, which will
enable them, for example, to perform more reliable Demand Response (DR) and make more accurate
aggregated forecasts based on disaggregated data.

The new concept and physical distribution of SG and microgrids will require the deployment
of Distributed Intelligence (DI) in traditional sites where to date there were no distributed electronics.
This intelligence will control the behavior of the different smart elements of the grid. Figure 2 shows
a hypothetical microgrid including DI, Distributed Generation (DG), end-point and storage elements.
One of the most important inputs to this DI scenario is the disaggregated load forecasting, which
allows smart elements in the grid to react in advance to the demand. Microgrids use techniques with
Multi-Agent Systems for island mode operation [6,7] and for strategic control [8]. Similarly, [9] present
a new nonintrusive energy monitoring method using ANN.
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Figure 2. Microgrid example.

3. Artificial Neural Networks for Electric Power Load Forecasting in Microgrids

3.1. Background

Load forecasting is a challenging task, as there are a large number of influential relevant
variables that must be considered, and several strategies have been used to deal with this complex
problem. Forecasting models can be classified according to the factors considered as time series
models (univariate) and causal models. The former methods model energy load on the basis
of past data [10–14], while the latter model electric load on the basis of exogenous and social
factors [15–22]. Intelligence-based forecasting techniques have also been employed as those based on
expert systems [23,24], fuzzy inference [25] and fuzzy-neural [26,27].

However, one of the most popular methods for load forecasting are ANNs, in all their different
flavors. There are ANNs based on the MultiLayer Perceptron (MLP) developed by Rumelhart [28];
others employ Radial Basis Functions Networks (RBF), proposed by Bromhead and Lowe [29]; recurrent
networks, such as those proposed by Elman [30,31], and other models are based on Self-Organizing
Maps (SOM), which were introduced by Kohonen [32]. Cascade combinations of some of the models
above and others have also been employed for a wide array of tasks related to data analysis, prediction,
estimation, etc. [33,34].

In the work reported by Park et al. [35], an ANN system with one output neuron is employed
for hourly, total and peak load forecast. Ho et al. [36] perform a peak load forecast 24 h ahead; the
same forecast is used by Ho et al. [23], as input to an expert system that performs 24-hour ahead
load forecasting. ANNs with one output can be repeatedly used to forecast load curves, as in [37,38]
or by using a 24-hour parallel system, as shown McMenamin et al. [39]. Lee et al. [40] present a
day divided into three periods having one ANN forecasting the load for each period. Lu et al. [41]
conducted an experiment with three ANN models of two utilities, and conclude that systems are
dependent and must be adjusted to each of the utilities. With Papalexopoulos et al. [42], temperature
is represented by non-linear functions, which are used as input, and suggests a set of measures to
improve load performance in public holidays. Barkitzis et al. [43] present an improved model that
considers public holidays.
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Some publications present systems where a set of ANNs work together to compute a forecasting.
Alfuhaid et al. [44] use a small ANN that pre-processes a data set and produces peak, valley and total
load forecasts; these forecasts, in combination with other data, are used as input to a larger ANN
to obtain next-day load forecast. Lamedica et al. [45] present 12 ANNs—one for each month of the
year—where load curves are classified using Kohonen’s Self-Organized Map.

Artificial intelligence techniques as fuzzy logic have been combined with ANNs.
With Srinivasan et al. [46], quantitative and qualitative data are presented to a “front-end processor”,
which assigns four fuzzy numbers measuring the expected load change to each of the four periods
of the day. Each number together with temperature data are presented to the ANN, which produces
a load forecasting. In the work of Kim et al. [47], an ANN produces a provisional load forecast, then,
a fuzzy expert system is used to modify the provisional load forecast on the basis of temperature
data and day type (workday/holiday). Daneshdoost et al. [48] classify data into 48 fuzzy subsets by
temperature and humidity, then each subset is modeled by its own ANN. Senjyu et al. [49] present a
hybrid correction method where fuzzy logic, based on “similar days”, corrects the neural network
output to obtain next-day load forecast.

Basically, [35–39,49,50] present peak load or aggregated daily predictions, which is a very useful
parameter for instance for plant operations planning, but not detailed enough to perform other precise
activities such as DR. For these, more detailed approaches calculating several predictions a day are
required, in order to identify the nuances of the predicted load.

References [51–53] describe complex models capable of hourly prediction 24-hour in advance,
but they use between 40 and 50 input variables and a hidden layer with a number of neurons ranging
from 24 to 50. A similar case is presented in [44], where 30-minute predictions are provided 24 h in
advance, but using more than 50 input variables. These works are prone to the curse of dimensionality
effect as reported in [54]: the number of training patterns required to properly train the network
increases exponentially with the dimension of the input space. This means that the high dimensional
input of these solutions will take more measures to be properly trained, and as such, when installed in a
new environment, a solution with a smaller number of inputs will start to output better results sooner.

3.2. Geographical Area in Load Forecasting

There is a variety of experiments reported which apply load forecasting methods to very different
geographical areas: nations, regions and big metropolitan areas. In the work by Hsu et al. [50],
peak and valley loads are forecasted for the city of Taiwan, which presents 5500–9000 MW loads.
Taylor et al. [55] present load forecasts for England and Wales, with 30,000–45,000 MW consumption.
In Chu et al. [56], the Taiwan Power Company (Taipower)—through Heat Index (HI)—perform peak
load forecasting with values over 33,000 MW. In [51,57,58], the chosen areas for load forecasting
are large provinces, which present high electric power consumption. Rejc et al. [52] apply a novel
short-term active-power-loss forecast method for Slovenia, which has a consumption of 950–1550 MW.
Nose-Filho et al. [59] analyzed a New Zealand distribution subsystem and performed forecasting using
data from several nodes in an electrical network system; consumption data, however, are still high:
150–300 MW. Kebriaei et al. [53] present a forecasting method based on fuzzy logic and an ANN, and
proposes a modified RBF, which uses genetic algorithms to estimate the weights for the network in a
Mazandaran area in Iran, with consumption ranging 800–1550 MW.

However, all the publications examined so far [35–59]—regardless of the forecast model and
target—have in common that the prediction is calculated for a large geographical area where the
electric power load is aggregated and very high.

However, as shown in Figure 1, the features of the aggregated load curve of a large (metropolitan,
regional or national) area are much different from the aggregated load curve of a microgrid, and
therefore, their results cannot be directly extrapolated to microgrid environments. While the solutions
studied in the literature [35–53,55–59] present sometimes good prediction efficiency figures (normally
their MAPEs are around 2%), they deal almost exclusively with big areas, and mainly entire countries,
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and they are never applied to smaller environments of the size of small cities or microgrids. Therefore,
they do not give any evidence of how will they behave when applied to highly variable load curves.

Works regarding load curve data processing in microgrids have started to appear only recently,
such as clustering of load curves in [60], which helps extracting meaningful information by finding
groups of similar patterns. Strictly speaking about load forecasting, [61] presents a STLF model
for a microgrid based on Multiple Classifier Systems (MCS), using data from a similar microgrid-sized
environment with a similar load curve. MCSs are systems combining a set of basic classifiers offering
a better performance when operating together than on their own. The base classifiers can include
different classification approaches or be trained differently, with different algorithms and data sets,
and then combined with a fusion method. This specific work employs four base classifiers (MLP or
RBF are used due to its good generalization ability), dividing the training set into several parts: 24 h, 3
days, 1 week and 1 month before the predicting hours. Dynamic weighting is selected as the fusion
method. With a dataset collected from the aggregated load in the city of Hong Kong from September
2008 to August 2010, the MAPE found for this model is 15.66% with a Generalized Regression Neural
Network (GRNN-MLP) and 15.12%, with a Radial Basis Function Neural Network (RBFNN). These errors
are sensibly higher than those reported in works applied to national/regional environments.

4. An Architectural Model for Load Forecasting in Microgrids

A microgrid is capable of controlling electric power loads that will range between thousands of kW
to hundreds of MW. Consequently, while traditional grids supply electric power to a whole country,
microgrids supply electric power to small cities and villages. Disaggregated data are known to produce
load peaks and valleys that are more difficult to forecast, and thus traditional methods are not directly
applicable if accurate results are required. This section presents not only a prediction algorithm, but a
complete ANN-based system for forecasting electric load in microgrids. For implementation and testing
of this system, real world electric load data from Soria, a small Spanish city with a size that could be
considered similar to that of a microgrid, has been employed.

4.1. Dataset

The real data used in this study were provided by the Spanish electric power utility company
Iberdrola (Bilbao, Spain). The historical record provided spans from 1 January 2008 to 31 December
2010 (for a total of 1096 daily records sliced in 15-minute reports) corresponding to a substation located
in Soria, Spain, that supplied electricity to this small city. The data provided included information
about day of the month, month, year and hourly electric loads making up the daily load curve. This
dataset has been enriched with calendar information (day of the week, day type—workday/public
holiday) and daily aggregated load. Loads ranged between 7 and 39 MW, which is a load similar to
that of a microgrid, rather than to a large area or country. A total of 70% of the data available were
employed for ANN training, and the remaining 30% were used for the validation/testing phase.

4.2. Top Level Architecture of the Forecasting System

The aim of the system is to operate in real time within a microgrid environment, receiving data
from data concentrators connected to smart meters and other smart data sources present in the grid.
The architecture of the predictor is shown in Figure 3.
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Figure 3. System architecture.

The different components are:

1. Historical Data: a database containing all the data handled by the system. This includes raw
and filtered load data (processed by modules 2 and 3) in periods of 15-minute and 1 h, and the
forecasting reports produced by the ANN.

2. Data Processing: this module implements three algorithms carrying out the following operations:
a) to detect missing data produced by faults in the data retrieval system, completing them
via interpolation when possible; and b) to cluster 15-minute samples so as to get hourly and
daily loads.

3. Outlier Detection: this module tries to identify faulty data (potentially caused by malfunctions
in sensors or communications) and remove them from the database. To complete this task, the
outlier detector searches for abnormal data (meaning data which is outside the typical values
of a given magnitude). Therefore, it is necessary to distinguish between abnormal values that
are correct—as in the case of low electric power demand in a public holiday as compared to the
demand in a workday—and errors that might be caused by a technical failure, which are the
ones that must be identified and removed. For the detection of outliers, the Principal Component
Analysis (PCA) is employed [62], which is a mathematical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of values
of uncorrelated variables called principal components. Figure 4 shows the results yielded by PCA
with components (components are the eigenvectors of the correlation matrix and are different
from the covariance matrix) 8 and 9. Out of the 1096 daily patterns available in the dataset, a total
of 53 patterns were marked as outliers.

4. ANN: the ANN receives data from 1 and, once forecast is performed, the information obtained
is sent to 5 to be distributed among the different elements of the grid and to 1 to be stored for
future use.

5. Output: this module is called after forecast in 4 is completed. Its main task is to send data to
different devices where it is displayed, as an operator’s screen, a mobile device, etc.

Figure 5 shows the on-line operation scheme of the predictor. Internal processes are distinguished
from external processes. Internal processes are those performed by a predictor during operation.
External processes are those dependent on external events or on interaction with external devices.
In this figure we can see that in order to perform a forecast for day d, the information stored in the
Historical Data are presented to the trained ANN, which produces an hourly forecast for day d.
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Figure 4. (a) PCA Analysis of the dataset showing components 8 and 9; (b) Example of identified outlier
daily consumption patterns: Blue and red are faulty data; Green is a correct (but abnormal) pattern.

Figure 5. On-line operation of the predictor.

4.3. Artificial Neural Network Design

The ANN-based system presented works over the hypothesis that the daily electric load pattern is
related to the pattern of the previous day and other calendar data. More specifically:

� Electric consumption highly depends on the hour of the day, and the load curve of the previous
day. This previous day load curve actually packs a lot of information about other conditions
(season and weather, as shown by Hernández et al. [63]) that are not explicitly fed into the system
in this work.

� There are many next-day total-load forecasting models, the 24 h-ahead forecast of the aggregated
total load for the day. This is a very valuable input data for the ANN which packs a lot
of information.

� Therefore, load forecasting is performed on the basis of previous-day hourly load curve,
aggregated daily load forecast, and calendar variables (day of the week, month, etc.)

� Periodic variables are supplied to the network in the form of values of sines and cosines, as it
has been demonstrated that this transformation significantly improves the performance of the
ANN, as shown Drezga et al. [64]. Day of the week and month, which are essential for the ANN to
detect weekly, monthly and seasonal patterns, are entered as sine and cosine, because the cyclical
variables are best understood by ANN, as shown in [65,66].

� While previous studies on load patterns—as the Red Eléctrica de España (REE) study [67]—have
demonstrated that the type of day—workday or public holiday—has a clear effect on electric
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load, during the testing phase it was found that the accuracy of the forecast did not improve with
the information provided by the type of day. The reason for this could be that the input variables
used for the load curve of the previous day and the aggregated load forecast for the forecast day
are enough for the network to understand the type of forecast day.

� Electric load highly varies between workdays and weekends; electric demand in a public holiday
is similar to that on Sundays.

� The seasonality of electric demand is evident, as it significantly varies throughout the year.

The architecture employed in this study follows the next model: to perform a load forecasting for
day d, when day d − 1 ends and the data for that day are available, the system can perform the load
forecast for day d. The architecture implemented is shown in Figure 6, a three-layer MLP: an input
layer, a hidden layer, and an output layer.

Figure 6. MLP architecture. The Figure shows the variables of the input and output layers.

Input:

� L(d−1)1, L(d−1)2, L(d−1)3, . . . , L(d−1)24: represent the 24 values for the load curve of the previous day.
� Day of the week d − 1: this variable is presented as two variables expressed as sine and cosine

by sin[(2·π·day)/7](d−1) and cos[(2·π·day)/7](d−1), with day from 0 to 6 (Sunday = 0, Monday = 1,
Tuesday = 2, Wednesday = 3, . . . , Saturday = 6).

� Month d − 1: this variable is presented as two variables expressed as sine and cosine by
sin[(2·π·day)/12](d−1) and cos[(2·π·day)/12](d−1), month from 1 to 12 (January = 1, February =
2, . . . , November = 11, December = 12).

� NDTLd: Next Day’s Total Load, which can be easily estimated with an error ranging ±2% using
for instance the model proposed by Hsu et al. [68].

Output:

� Ld1, Ld2, Ld3, . . . , Ld24 represent the 24 values of the load curve for the forecast day.

Hidden:

� The neurons of the hidden layer are fully connected with input and output layer neurons.
� There are 16 neurons in the hidden layer.
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Prior to operation, the ANN has to be trained. During this training stage, the ANN network is
confronted with a series of inputs coupled with the real expected output, that is, a set of inputs is
associated to the real load curve that the system would have had to forecast. During this training, the
internal weights of the ANN are adjusted to produce the appropriate outputs.

ANN optimization—both to determine the number of neurons in the hidden layer and to establish
the best training algorithm—is usually performed by a heuristic method. In our case, we decided to
use an automated script where all parameters were modified (number of neurons in the hidden layer,
training function, network performance function during training, etc.), calculating the estimation error
for several test runs for each combination of parameter values. The best results were obtained with a
total of 16 neurons in the hidden layer, the Bayesian Regulation Backpropagation training function and
the Sum Squared Error network performance function.

4.4. Error Calculation

Models and forecast accuracy were validated by MAPE, which is widely recommended in the
field of research and is expressed as:

MAPE = 100 ×

n
∑

i=1

∣∣∣ L(i)−L̂(i)
L(i)

∣∣∣
n

(1)

where L(i) represents the measured value for t = i, L̂(i) represents the estimated value and n represents
the test sample size.

Once the MAPEd for each of the days of the testing set is obtained, the mean error for all days is
estimated by means of:

ERROROP =

k
∑

i=1
MAPEd

k
(2)

To examine how the prediction error is reflected on the load curve, error is displayed on a graphic
including all forecasted days in the testing set; using this method, the forecast mean error for each of
the 24 h is obtained by means of:

MAPE_hi = 100 ×

n
∑

k=1
MAPEi,k

n
(3)

with i = 1, 2, . . . , 24; n stands for the sample size in the testing set and MAPEi,k the hourly error i for
the day k.

5. Results

This section provides the errors per day, Probability Density Function (PDF) curve errors, errors
per hour, PDF curve errors per hour, and the forecasts of several days with low mean error, when our
system is running.

5.1. Results

Once the network is trained, a forecast is performed for the testing set; a forecast load curve
is generated for each datum and the daily average error is estimated; average errors are displayed
in Figure 7 together with the mean value, mean ± standard deviation and mean ± 2× standard
deviation. The mean error of the whole testing phase yielded a value of 2.4037%. The figure uses a
specific nomenclature with the format “A B/C – D E”. A represents the day type of the previous day
(2: workday, 1: holiday); B is the month number; C is the day of the month; D is the day of the week
(Monday, Thursday), and E the day type (workday/holiday).
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Figure 7. Errors per day (without bad measures). In the x-axis are the days. In the y-axis are the errors
by Equation (1).

In Figure 8 errors are expressed as PDF, where the intervals between the mean and
mean ± standard deviation, and mean and mean ± 2× standard deviation are displayed. As the figure
shows, most errors (72%) correspond to the first interval, as shown in the percentages displayed in
Table 1. Over and below that interval, errors have a similar distribution.

Figure 8. Curve errors data. In the x-axis are the errors by Equation (1). In the y-axis are the
probability densities.
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Table 1. Error distribution per day.

Variable Value Percentage

Mean 0.024 2.40%
Standard deviation (Std.) 0.0095 0.95%

No. of errors above ×1 Std. 42 14.73
No. of errors between ×1 Std. 206 72.28%

No. of errors below ×1 Std. 37 12.99%
No. of errors above ×2 Std. 12 4.21%

No. of errors between ×2 Std. 273 95.79%
No. of errors below ×2 Std. 0 0.00%

Figure 9 displays errors per hour occurred during the testing phase. Most errors occur in specific
parts of the load curve, which normally follows the same topology: from hour 4 to hour 7, the curve
starts rising from the first valley; from hour 10 to hour 15, the curve rises until reaching the first peak;
the curve starts to drop into the second valley; from hour 18 to hour 21, the curve starts rising again
towards the second peak; at the end of the day the curve starts to drop.

Figure 10 displays errors per hour expressed as PDF and shows the intervals between the mean
and mean ± standard deviation; and mean and mean ± 2× standard deviation. Most errors are
concentrated in the first interval—62%—as evidenced by the percentages shown in Table 2. A total of
21% and 17% of errors are above and below the first interval respectively.

Figure 9. Errors per hour (without bad measures). In the x-axis are the 24 h. In the y-axis are the errors
by Equation (3).
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Figure 10. Curve errors per hours. In the x-axis are the errors by Equation (3). In the y-axis are the
probability densities.

Table 2. Error distribution per hour.

Variable Value Percentage

Mean 0.024 2.40%
Standard deviation (Std.) 0.0030 0.30%

No. of errors above ×1 Std. 5 20.83%
No. of errors between ×1 Std. 15 62.50%

No. of errors below ×1 Std. 4 16.67%
No. of errors above ×2 Std. 0 0.00%

No. of errors between ×2 Std. 23 95.83%
No. of errors below ×2 Std. 1 4.17%

Figure 11 shows load curve forecasts for three days with a low daily mean error, where (a)
represents the forecast for 2/15/2010 with a mean error of 1.20%; (b) represents the forecast for
5/18/2010 with a mean error of 1.10%; and (c) represents 12/21/2010 with a mean error of 1.13%.
As we can see, the forecast load curve coincides almost completely with the real load curve.
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Figure 11. Forecasts with low mean error: (a) 2/15/2010; (b) 5/18/2010; (c) 12/21/2010.

5.2. Computational Cost

As indicated above, MatLab was employed to implement the ANN and the rest of scripts
developed for additional tasks (error estimation, figures, etc.). We used a desktop computer with an
Intel Core2 vPro 3.4GHz 2GB RAM processor.

The computation method is as follows: the training set is imported to the Historical Data database,
as shown in Figure 3; then ANN training is initiated. For this work, the computer used 70% of all data
available and took 16 min and 43 s to train the ANN model.

When the network is trained as shown in Figure 5, then the data obtained are used to predict the
load curve for the forecast day. The computer took 2 min and 49 s to process the testing set (outliers
excluded), display the load curves and complete the database. Therefore, approximately, the computer
needs 0.59 s to produce a forecast for one day.

6. Result Analysis

6.1. Error Distribution

As shown in Figure 7, and as supported by the results displayed in Figure 8 and Table 1, the daily
mean error is within the mean ± standard deviation range, which means that errors ranged between
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1.45% and 3.35%, which are fairly good results. Figure 7 also shows that the days with high daily mean
errors (above 4%) were special days; further details on this regard are provided below.

By observing the hourly mean error shown in Figure 9, the data displayed in Figure 10 and
Table 2, we can see that the most significant errors occur at the turning points of the forecast load curve.
This coincidence may suggest that additional information on the form of the curve should be used to
improve forecasts and prevent the most serious errors.

6.2. Errors per Day of the Week and Month

Figure 12 represents the evolution of the daily mean error per day of the week. The reason why
the highest mean errors occur on Fridays, Saturdays and Sundays is that the training set (load curve)
is more scattered; as a result, data uncertainty is higher in weight adjustment after training, and errors
increase. In addition, as regards Saturdays and Sundays, their load curves significantly differ—both in
demand and form—from those of other days of the week. Fridays are also a special day, as it marks
the beginning of the weekend and electric power demand is lower than in the rest of the days.

Figure 13 shows the evolution of daily mean errors by month. October and November include
fewer days because of the removed outliers; the mean error per month approximately ranges between
2% and 3%, which evidences the accuracy of forecasts.

6.3. Error Analysis

The purpose of this Section is to present the most significant forecast errors and analyze the reason
underlying such errors; finally, this Section summarizes the conclusions drawn from this experience.

The forecast for 4/2/2010, with a mean error of 4.34%. 2 April 2010 is Good Friday (Holy Week)
and the previous day is also a public holiday; consequently, a small number of pattern pairs with the
same characteristics had been previously fed to the network in the training phase.

The forecast for 5/1/2010, with a mean error of 4.77%. The load in this holiday Saturday is similar
to that in the working Saturdays of the same month; as compared with the previous day, the Friday
before the holiday Saturday presents half the load; the shape of the curve is irregular, especially at the
origin of the curve; however, towards the end, the load is similar to other Fridays of the same month.

Figure 12. Errors per day. The y-axis represents the forecast error by Equation (1). The x-axis represents
each of the forecast days.
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Figure 13. Errors per month. The y-axis represents the forecast error by Equation (1). The x-axis
represents the days of the month.

The forecast for 6/24/2010, with a mean error of 3.92%. That Thursday is a local holiday called
Jueves la Saca, and the load is clearly lower than in other holiday Thursdays; in addition, though the
Wednesday before Jueves la Saca is not a local holiday, it is included in the holidays and the load is
clearly atypical.

The prediction for the 12/8/2010 with a mean error of 4.73%. That day is a holiday Wednesday
where the load is lower than in working Wednesdays of the same month; there was only one similar
Wednesday in 2008; nevertheless, the ANN model predicts a demand rise and the curve starts to rise
before the real curve, causing an error. The Tuesday before the holiday Wednesday is lower than that
for other Tuesdays of the same month; for this reason, the forecast curve starts low to prematurely
drop; the end of the curve is atypical, and is much lower than the real load curve.

The forecast for 12/25/2010, with a mean error of 8.04%. That day is a Christmas Saturday, the
load is lower than in other Saturdays of the same month, and the first peak occurs later than usual.
The previous day is Christmas Eve, which is a working day; consequently, the load curve is lower
than the average load curve for the whole month and than previous years. Although Christmas Eve is
not a public holiday, demand is much lower than in normal working days, which leads to significant
forecast errors.

The forecast for the 12/31/2010 with a mean error of 4.78%. That day is New Year’s Eve, and it
was a working Friday; that year, there were only two working Fridays with a similar load curve; that
Friday’s curve is lower than that of other working Fridays and slightly higher than that of Sundays of
the same month. The day before New Year’s Eve is a low-profile day as compared to other Thursdays
of the same month, and it presents an atypical shape between 11 and 16 h; all these factors together
caused the forecast error.
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6.4. Association between Errors and Availability of Training Patterns

The association between the mean error obtained during the testing phase, and the number of
patterns fed to the ANN during the training phase has been analyzed. For such purpose, different
numbers of patterns were presented to the same model during the training phase: initially, 150 patterns
were fed to the model, then the number of patterns was gradually increased (in steps of 50) until
reaching 700 patterns. A forecast was produced for each of the days in the testing set; the optimum
architecture for each network was achieved by the following method: firstly, a script was used to test
all training and performance functions of a network with three neurons; then, the number of neurons
in the hidden layer was increased to four and the network’s training and performance functions were
tested again; then, the number of neurons was increased to five and so forth, until the network had 9
neurons. The reason for using this method is that the model’s architecture is entirely dependent on the
number of input patterns, as shown in Table 3.

The data above were entered in MatLab, which yielded a cubic polynomial, as follows:

Y = −1e−0.08 × X3 + 2.2e−0.05 × X2 − 0.017 × X + 6.8 (4)

where Y is the mean error of the Testing phase, and X is the number of patterns used in the training
phase. The association between mean error and the number of patterns is evidenced in Figure 14. Red
dots stand for the real error value of the ANN, while green dots represent error values according to
the polynomial function for a specific number of patterns. Figure 13 evidences that, at some point,
the architecture cannot further improve the mean error by increasing the number of training patterns.
The ANN presented reached its maturity phase, as additional patterns did not appear to improve
the mean error. It is worth noting that the mean error for the 730 days in the testing set was 2.40%.
The improvement with respect to the results of the test including 700 training patterns is irrelevant.
By means of Equation (4), we can estimate that by using 750 and 800 patterns we would obtain a
mean error of 2.38% and 2.33% respectively; this improvement is far from being as significant as the
improvement achieved between the beginning and middle of the test, as shown in Table 4. To assess
how error was improved by increasing the number of neurons, we used Equation (5):

Δerrornetworks_patterns =

∣∣errori − errorj
∣∣

patternsi − patternsj
(5)

where i = 2, . . . , 12; j = 1, . . . ,11; with data in Table 4 errori, errorj, patterni and patternsj. High values
obtained by Equation (5) suggest a significant error improvement against the number of patterns.

Table 3. Correlation between errors and the number of training patterns.

Network number Patterns Neurons Error

1 150 3 4.78%
2 200 4 4.18%
3 250 4 3.94%
4 300 4 3.48%
5 350 6 3.26%
6 400 6 3.04%
7 450 12 2.82%
8 500 12 2.65%
9 550 13 2.62%

10 600 13 2.58%
11 650 15 2.48%
12 700 16 2.41%
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Figure 14. Evolution of mean error in the testing phase with respect to the number of patterns employed
in the training phase. Fitting curve is red line and real curve is blue line.

Table 4. Error variation between networks with respect to the number of patterns.

Networks i–j Patterns added Indicator given by Equation (5)

2–1 50 0.01199
3–2 50 0.00478
4–3 50 0.00428
5–4 50 0.00428
6–5 50 0.00455
7–6 50 0.00440
8–7 50 0.00340
9–8 50 0.00060
10–9 50 0.00080
11–10 50 0.00200
12–11 50 0.00140

6.5. Comparison with Other Solutions

In principle, the results of this work can be only compared directly to other load curve forecasting
methods also validated in microgrid-sized environments. Like [61], this work also presents a MLP-based
prediction model. The approach followed in this work employs load curves from day d − 1 as an input
to predict load curves for day d in the output, which allows a more intimate input-output relationship
and a more efficient internal weight adjustment than the models in [61], which use as inputs groups of
curves up to three days before the day to forecast. This could explain the better MAPE results obtained
by the solution employed in this work: 2%–5% against figures around 15%.

When compared to the large-area load forecasting methods studied in Section 3, several differences
can be extracted. References [35–39] and [49,50] offer generally short prediction horizons, normally
forecasting values in the next hour. While this work employs 29 input variables and 16 neurons in the
hidden layer, [44,51–53] use high dimensional input spaces (with a number of input variables ranging
from 40 and 50 and neurons in the hidden layer between 24 and 50) and therefore require a bigger
training database to reach similar results.
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Finally it is worth mentioning that most of the works in the literature only study daily MAPEs. In
this paper, however, a detailed hour-by-hour MAPE is presented which allows hourly error studies as
presented in Section 5.

7. Conclusions and Future Studies

This paper proposes an ANN-based model for short-term load forecasting in disaggregated,
microgrid-sized environments using a simple MLP-based architecture. For such purpose, relevant input
variables were selected in order to minimize forecast errors. As remarked above, forecasting is more
complex in a microgrid due to the increased variability of disaggregated load curves. An accurate
forecasting in a microgrid will depend on the variables employed and the way they are presented to
the ANN. This study also shows numerically that there is a close relationship between forecast errors
and the number of training patterns used, so it is necessary to carefully select the training data to be
employed with the system. Finally, this work demonstrates that the concept of load forecasting and
the ANN tools employed are also applicable to the microgrid domain with very good results, showing
that small errors around 3% are achievable. This demonstration is backed up by a detailed database
containing real information of load curves disaggregated up to city/microgrid level running for three
entire years.
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Abstract: Wind power forecasting techniques have received substantial attention recently due to the
increasing penetration of wind energy in national power systems. While the initial focus has been
on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme
ramp events has led to an interest in producing probabilistic forecasts. Using four years of wind
power data from three wind farms in Denmark, we develop quantile regression models to generate
short-term probabilistic forecasts from 15 min up to six hours ahead. More specifically, we investigate
the potential of using various variability indices as explanatory variables in order to include the
influence of changing weather regimes. These indices are extracted from the same wind power
series and optimized specifically for each quantile. The forecasting performance of this approach
is compared with that of appropriate benchmark models. Our results demonstrate that variability
indices can increase the overall skill of the forecasts and that the level of improvement depends on
the specific quantile.

Keywords: wind power forecasting; wind power variability; quantile forecasting; density forecasting;
quantile regression; continuous ranked probability score; quantile loss function; check function

1. Introduction

Wind power is one of the fastest growing renewable energy sources (Barton and Infield [1]).
According to the European Wind Energy Association (EWEA), the wind industry has had an average
annual growth of 15.6% over the last 17 years (1995–2011). In 2011, 9616 MW of wind energy capacity
was installed in the EU, making a total of 93957 MW, which is sufficient to supply 6.3% of the European
Union’s electricity. These figures represent 21.4% of new power capacity showing that wind energy
continues to be a popular source of energy.

However, due to the large variability of wind speed caused by the unpredictable and dynamic
nature of the earth’s atmosphere, there are many fluctuations in wind power production. This inherent
variability of wind speed is the main cause of the uncertainty observed in wind power generation.
Recently, scientists have been directly or indirectly attempting to model this uncertainty and produce
improved forecasts of wind power production.

According to Boyle [2], the most important application for wind power forecasting is to reduce
the need for balancing the energy and reserve power which are needed to optimize the power plant
scheduling. Moreover, wind power forecasts are used for grid operation and grid security evaluation.
For maintenance and repair reasons, the grid operator needs to know current and future values of
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wind power for each grid area or grid connection point. Wind power forecasts are also required for
small regions and individual wind farms.

The length of the relevant forecast horizon usually depends on the required application.
For example, in order to schedule power generation (grid management), forecast horizons of several
hours are usually sufficient, but for maintenance planning forecast horizons of several days or weeks
are needed [3].

Since there is no efficient way to store wind energy, the wind power production decreases to zero
if wind speed drops below a certain level known as the “cut-in speed”. On the other hand, excessively
strong winds can cause serious damage to the wind turbines, and hence they are automatically shut
down at the “disconnection speed”, leading to an abrupt decline of power generation. In addition,
the wind power generated is limited by the capacity of each turbine. Therefore, it is important to
produce accurate wind power forecasts for enabling the efficient operation of wind turbines and
reliable integration of wind power into the national grid.

The literature of wind power forecasting starts with the work of Brown et al. [4] where they used
autoregressive processes to model and simulate the wind speed, and then estimate the wind power
by applying suitable transformations to values of wind speed. Most of the early literature focuses on
producing wind power point forecasts, directly, or indirectly in the sense that the focus is on modelling
the wind speed and then transforming the forecasts through a power curve [5,6]. The approach of
modelling the wind speed series is found to be quite useful because in many situations researchers
do not have access to wind power data due to its commercial sensitivity. This approach has as an
advantage the fact that the wind speed time series is much smoother than the corresponding wind
power time series. An obvious disadvantage is that, since the shape of the power curve may vary with
the time of year and different environmental conditions, it is much more difficult to model this type
of behaviour.

Recent research has focused on producing probabilistic or density forecasts, because the point
forecast methods are not able to quantify the uncertainty related to the prediction. Point forecasts
usually inform us about the conditional expectation of wind power production, given information up
to the current time and the estimated model parameters. Only a fully probabilistic framework will
give us the opportunity to model the uncertainty related to the prediction, and avoid the intrinsic
uncertainty involved in a point forecasting calibrated model. Up to now, the number of studies on
multi-step quantile/density forecasting is relatively small compared with point forecasting.

Moeanaddin and Tong [7] estimated densities using recursive numerical methods, which are
quite computationally intensive. Gneiting et al. [8] introduces regime-switching space¨Ctime (RST)
models which identify forecast regimes at a wind energy site and fit a conditional predictive model for
each regime. The RST models were applied to 2-h-ahead forecasts of hourly average wind speed near
the Stateline wind energy center in the U.S. Pacific Northwest. One of the most recent regime-based
approaches is the one used by Trombe et al. [9], where they propose a general model formulation based
on a statistical approach and historical wind power measurements only. The model they propose is
an extension of Markov-Switching Autoregressive (MSAR) models with Generalized Autoregressive
Conditional Heteroscedastic (GARCH) errors in each regime to cope with the heteroscedasticity.

Pinson [10], by introducing and applying a generalised logistic transformation, managed to
produce ten-minute ahead density forecasts at the Horns Rev wind farm in Denmark. Pinson and
Kariniotakis [11] described a generic method for the providing of prediction intervals of wind
power generation and Sideratos and Hatziargyriou [12] proposed a novel methodology to produce
probabilistic wind power forecasts using radial basis function neural networks. Taylor et al. [6] used
statistical time series models and weather ensemble predictions to produce density forecasts for five
wind farms in the United Kingdom. This is a relatively new approach for wind power forecasting that
uses ensemble forecasts produced from numerical weather prediction (NWP) methods [6,13]. Moreover,
Lau and McSharry [14] produced multi-step density forecasts for the aggregated wind power series in
Ireland, using ARIMA-GARCH processes and exponential smoothing models. Jeon and Taylor [15]
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modelled the inherent uncertainty in wind speed and direction using a bivariate VARMA-GARCH
model and then they modelled the stochastic relationship of wind power to wind speed using
conditional kernel density (CKD) estimation. This is a rather promising semi-non-parametric model
but unfortunately cannot be used as benchmark in this article because we aim to make predictions
using only wind power data.

The quantile regression method [16] has been extensively used to produce wind power
quantile forecasts, using a variety of explanatory variables among which are wind speed, wind
direction, temperature and atmospheric pressure. Recent literature includes papers by Bremnes [17],
Nielsen et al. [18], and Moller et al. [19]. More specifically, Bremnes [17] produced wind power
probabilistic forecasts for a wind farm in Norway, using a local quantile regression model.
The predictors used for the local quantile regression were outputs from a NWP model (HIRLAM10),
and used lead times from 24 to 47 h. Nielsen et al. [18] used an existing wind power forecasting system
(Zephyr/WPPT) and showed how the analysis of the forecast error can be used to build a model
for the quantiles of the forecast error. The explanatory variables used in their quantile regression
model include meteorological forecasts of air density, friction velocity, wind speed and direction
from a NWP model (DMI-HIRLAM). Moreover, Moller et al. [19] presented a time-adaptive quantile
regression algorithm (based on the simplex algorithm) which manages to outperform a static quantile
regression model on a data set with wind power production. In addition, Pritchard [20], discussed
ways of formulating quantile-type models for forecasting variations in wind power within a few hours.
Such models can predict quantiles of the conditional distribution of the wind power available at some
future time using information presently available.

Davy et al. [21], proposed a new variability index that is designed to detect rapid fluctuations of
wind speed or power that are sustained for a length of time, and used it as an explanatory variable in
the quantile regression model they constructed. Bossavy et al. [22] extracted two new indices that are
able to recognize and predict ramp events (A ramp event is defined as a large change in the power
production of a wind farm or a collection of wind farms over a short period of time.) in the wind
power series, and used them to produce quantile estimates with the quantile regression forest method
as their basic forecasting system. Finally, Gneiting [23] studied the behaviour of quantiles as optimal
predictors and illustrated the relevance of decision theoretic guidance in the transition from a predictive
distribution to a point forecast using the Bank of England density forecasts of United Kingdom inflation
rates, and probabilistic predictions of wind energy resources in the Pacific Northwest.

This article does not have as a purpose to develop models that can compete with the commercially
available models that focus on forecast horizons greater than six hours (and are using NWPs). This is
also the main reason we chose a very short forecast horizon (six hours), since it has been shown
that statistical time series models may outperform sophisticated meteorological forecasts for short
lead times within six hours [24]. In fact, NWPs are not even available (for some regions) for lead
times shorter than three hours. So, as mentioned above, our choice of such a short forecast horizon
is particularly useful for the assessment of grid security and operation. We would like to investigate
the extent to which the use of quantile regression models with endogenous explanatory variables can
improve the forecasting performance of probabilistic benchmarks such as persistence and climatology.

In this article we use wind power series from three wind farms in Denmark, to produce very
short-term quantile forecasts, from 15 min up to six hours ahead. In order to produce quantile forecasts,
we will use a linear quantile regression model, with explanatory variables extracted from the same
wind power time series. Modelling the wind power series directly is preferable to a method based
on wind speed forecasts because we avoid the uncertainty involved in transforming wind speed
forecasts back to wind power forecasts using the power curve. The fact that we use only endogenous
explanatory variables is also a very important practical consideration that we have taken on board
to ensure the ability to apply our model to all wind farms. Power systems operators will require an
approach to forecast a wide range of sites, where a collection of different wind farm owners implies that
the only variable that they are guaranteed to have access to is the wind power generation over time.
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Four new variability indices will be produced (extracted from the original wind power time
series), which serve to capture the volatile nature of the wind power series. These indices, together
with some lagged versions of the wind power series, will be used as explanatory variables in the
quantile regression model. As for any regression model, we need predictions (point forecasts) for the
future values of the explanatory variables in order to produce future quantile estimates. To produce
these predictions we will use time series models that are able to model both the mean and the variance
of the underlying series.

The motivation behind the chosen model structure is based on understanding the way that
the underlying weather variability can affect the conditional predictive density of the wind power
generation. We would like to keep the model structure as simple as possible and therefore assume that
the probability of observing a value of wind power below a certain level can be written as a function
of some local mean plus the local variability involved in observing the specific wind power value.
A linear combination of recently observed wind power values seems to be the easiest way to identify a
function that can forecast the expected value of a specific quantile, given recent information. It is worth
noticing that the model may be linear in parameters but the nonlinearity is attained in the explanatory
variable themselves, and especially in the variability indices. In addition, the variability indices can
capture the underlying weather variability, and hence help to improve the probabilistic forecasts given
a certain weather regime.

The three Danish wind farms were chosen according to their monthly wind power capacity
and standard deviation. We choose one high, one low, and one average variability wind farm,
in order to understand better the ability of each model to produce probabilistic forecasts under
different circumstances.

The indices used will be independently optimized for each of the three wind farms, using a
one-fold cross validation technique. In fact, two different optimizations will take place for each wind
farm: The first one will aim to minimize the Check Function Score (defined in Section 4.2) produced by
a 1-step ahead quantile regression forecast, for each of 19 different quantiles. The second one will aim
to minimize the averaged Check Function Score, produced by taking the average over all 24 predicted
lead times (equal to six hours), for each quantile. The final forecast results will be compared with those
of some widely used benchmark models (persistence distribution and unconditional distribution).

The remainder of the article is presented as follows. In Section 2 we will introduce the wind
power data, and the new variability indices will be derived in Section 3. Section 4 will present the
methodology behind the various models and explain ways to evaluate the resulting quantile forecasts.
In Section 5 we will present the four competing quantile regression models and optimize their quantile
forecast performance on the in-sample testing set. In Section 6 the out-of-sample quantile and density
forecast performance of the competing quantile regression models will be assessed, and Section 7 will
conclude the article.

2. Wind Power Data

We use wind power data recorded at three wind farms in Denmark summarized in Table 1.
These wind farms were chosen to have different amounts of wind power variability, located in different
geographical regions (The 446 wind farms in Denmark are assigned to 15 different geographical
regions, but no further information about the actual locations of the wind farms is disclosed), and
have the smallest percentage of missing values among all available wind farms. The percentage of
missing values (mostly isolated points) is found to be less than 0.025% for all three wind farms, and
missing values were imputed using linear interpolation. For such a small percentage of missing
values, the smoothing effect caused by using linear interpolation to impute the missing values is
practically negligible.
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Table 1. The Danish wind farms used in this study.

Wind farm station name Wind power variability Wind farm rated capacity (kW)

DØR Low 1000
ALB Medium 25,500
VES High 2195

Our data sets contain wind power measurements recorded every 15 min for four years,
from 1 January 2007 to 31 December 2010. The data of each wind farm is bounded between zero
and the maximum capacity of the wind farms. The zero value is attained in the case of excessively
strong wind, where the turbines shut down in order to prevent them from damage, or in the case
of very weak wind (the cut-in wind speed, usually 3–4 ms−1 according to Pinson [10]). In order to
facilitate comparisons between the data sets of different capacities, we normalize the wind power
data of each wind farm by dividing by the total (rated) capacity, which is constant over the four years
period. Hence, the data is now bounded within the interval [0,1].

We dissect the data of each farm into a set of exactly two years (2007 and 2008) for in-sample model
training and calibration, and an out-of-sample testing set (the remaining two years) for out-of-sample
testing and model evaluation. The in-sample set is dissected again into two sub-sets, a training set and
a testing set. For the in-sample training set we use the first 1.5 years and for the in-sample testing set
the remaining half year. This way, we can use a one-fold cross validation technique to optimize the indices
introduced in Section 3, and test the performance of our final chosen model using the out-of-sample
testing set.

The time series plots for the year 2010, together with the monthly mean power output and
standard deviation, are shown in Figure 1. The monthly mean power output and monthly standard
deviation were generated by taking the mean and standard deviation of wind power, respectively,
for each month over the entire four year period. As we observe, the three wind farms have different
wind power variability. More specifically, the first and last wind farms of Figure 1 have the lowest
and highest possible wind power variability for all four years (from all the available wind farms in
Denmark), without having any significant changes (Wind power variability may change from year
to year by addition of new turbines or removal (maybe for maintenance) of existing ones.) in the
capacity from year to year. The second wind farm of Figure 1 was chosen to have an average (medium)
wind power variability compared with the other two farms, but again without having any significant
changes in the monthly capacity from year to year.

3. Indices of Wind Power Variability

Davy et al. [21] proposed a variability index that is designed to detect rapid fluctuations of wind
speed or power that are sustained for a length of time. They defined this variability index as the
standard deviation of a band-limited signal in a moving window, and they constructed such an index
for a wind speed time series. This variability index depends on four parameters: the order of the filter
(integer greater than one), the upper and lower frequencies of the extracted signal, and the width of
the moving window. We would like to use such an index as an explanatory variable in our quantile
regression, but a proper optimization of this is too computationally expensive because of the number
of parameters involved.
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Figure 1. Time series plots of normalized power data for the three chosen Danish wind farms, for the
year 2010. Please note that the point on the time axis labelled Jan refers to 00:00 on 1 January and
similarly for every month.

Instead, we propose a parsimonious variability index which depends only on two parameters,
(m, n) where m, n ∈ N0�{1}, and is constructed as follows. Firstly we smooth our original wind
power series using an averaging window of size m, in order to obtain the smoothed wind power series,

rt =

⎧⎨⎩ 1
m

m
∑

i=1
yt−i+1 ifm > 1

yt ifm = 0
(1)

for t ≥ m. Note that this series behaves in a fully retrospective way, in the sense that each point of the
series depends only on the historical values of the original series. Since the smoothed series is m − 1
points smaller than the original series, we set rt = rm, for t = 1, 2, ..., m − 1.

Finally, the new variability index is just the standard deviation of the extracted smoothed wind
power series in a moving window of width n. So, if rt is a given point of the smoothed series, we define
the new index as

SDt =

⎧⎨⎩
√

1
n−1 ∑n

i=1

(
rt−i+1 − 1

n ∑n
j=1 rt−j+1

)2
ifn > 1

rt ifn = 0
(2)

for t ≥ n. Again, we impute the first n− 1 points of the series by setting SDt = SDn, for t = 1, 2, ..., n− 1.
This index can be optimized much more easily than the one proposed by Davy et al. [21], since it has
only two parameters: the smoothing parameter m, and the variability parameter n.
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By similar reasoning, we create another three variability indices. We create the smoothed wind
power series, rt, as defined by Equation (??), and then instead of finding the standard deviation we
find the sample interquartile range (IQR), the 5% and the 95% sample quantiles of the smoothed series
over a moving variability window (different for each series) of width n.

There are many different ways to define the quantiles of a sample. We use the definition
recommended by Hyndman and Fan [25] and presented as follows. Let Rt = {rt−n+1, ..., rt−1, rt}
for t ≥ n > 1, denote the order statistics of Rt as

{
r(1), ..., r(n)

}
and let Q̂Rt(p) denote the sample

p-quantile of Rt with proportion p ∈ (0, 1). We calculate Q̂Rt(p) (for a chosen proportion p) by firstly
plotting r(k) against pk, where pk = k−1/3

n+1/3 and k = 1, .., n. This plot is called a quantile plot and pk a

plotting position. Then, we use linear interpolation of
(

pk, r(k)
)

to get the solution
(

p, Q̂Rt(p)
)

for a
chosen 0 < p < 1. Therefore, the three new indices can be defined as:

IQRt=

{
Q̂Rt(0.75)− Q̂Rt(0.25) ifn > 1

rt ifn = 0
(3)

Q05t=

{
Q̂Rt(0.05) ifn > 1

rt ifn = 0
(4)

Q95t=

{
Q̂Rt(0.95) ifn > 1

rt ifn = 0
(5)

for t ≥ n. We also impute their values for t = 1, ..., n − 1 in a similar way as we did for the SD index.
An example of the construction of the three variability wind power indices is shown in Figure 2. A
first observation is that the IQR and SD indices behave similarly, but the IQR index has higher peaks
than the SD index, and hence gives more emphasis to the high variability regions of the wind power
series. Moreover, the Q05 and Q95 indices also behave quite similarly, capturing the two tails of the
wind power distribution over a predefined window.

These indices will be properly optimized and will be used, together with some lagged values of
the original power series, as explanatory variables in the quantile regression introduced in the next
section. It is worth mentioning that the choice of firstly smoothing the wind power series is taken in
order to take into consideration the fact that any noise may hide or alter the pattern of the underlying
weather regime we wish to capture. By choosing m = 0 we do not remove any of the underlying noise,
and hence we assume that the weather variability is fully captured by using the original wind power
time series.

152



Energies 2013, 6, 662–695

Figure 2. Wind power time series plot of the low variability farm, together with the four variability
indices (Q05, Q95 on upper plot, and SD, IQR on lower plot). The parameters are chosen to be the same
for all indices to facilitate comparison (m = 30 and n = 30).

4. Quantile Regression, Forecasting, and Evaluation Methodology

In order for the paper to be self-consistent, we include the theory of linear quantile regression in
Section 4.1. In Section 4.2 we introduce the methodology we will use to evaluate the produced quantile
and density forecasts.

4.1. Quantile Regression

Given a random variable, yt, and a strictly increasing continuous CDF, Ft(y), the αi-quantile,
q(αi)

t (y), with proportion αi ∈ [0, 1] is defined as the value for which the probability of obtaining values

of yt below q(αi)
t is αi:

P

(
yt < q(αi)

t

)
= αiorq(αi)

t = F−1
t (αi) (6)

Note that the notation yt is used for denoting both the stochastic state of the random variable at time
t = 1, 2, ..., T, and the measured value at that time for a training set of size T.
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Quantile regression, introduced by Koenker and Bassett [16], models q(αi)
t for αi ∈ [0, 1], as a

linear combination of some given explanatory variables (also called regressors or predictors). So, the
αi-quantile is modelled as:

q(αi)
t = γ

(αi)
0 + γ

(αi)
1 xt,1 + ... + γ

(αi)
p xt,p

= γ
(αi)
0 +

p
∑

j=1
γ
(αi)
j xt,j

(7)

where γ
(αi)
j are unknown coefficients depending on αi, and xt,j are the p known explanatory variables.

In quantile regression, a regression coefficient estimates the change in a specified quantile of the
response variable produced by a one unit change in the corresponding explanatory variable.

We define the quantile loss function [16], also known as the check function, for a given proportion
αi ∈ [0, 1] as:

ραi (u) =
(

αi − 1{u<0}
)

u

=

{
αiu, u ≥ 0

(αi − 1)u, u < 0

(8)

where u is a given value. Then, the sample αi-quantile can be calculated by minimizing ∑T
t=1 ραi (yt − q)

with respect to q. Hence, we can estimate the unknown coefficients, γ
(αi)
j , by replacing q with the

right-hand side of Equation (7):

γ̂(αi) = argminγ

T

∑
t=1

ραi

{
yt −

(
γ0 + γ1xt,1 + ... + γpxt,p

)}
(9)

where γ̂(αi) is a vector containing the unknown coefficients. Usually, these estimates are calculated
using linear programming techniques as in Koenker and D’Orey [26].

In this article we will use quantile regression to forecast the values of quantiles with nominal
proportion αi = {0.05, 0.10, ..., 0.95}, for forecast horizons k = 1, 2, ..., 24, measured in time steps of
15 min. We denote the forecast for the quantile with nominal proportion αi issued at time t for forecast
time t + k, by q̂(αi)

t+k|t(y). In order to produce these forecasts, we use Equation (7), and the estimated

coefficients, γ̂(αi):
q̂(αi)

t+k|t(y) = γ
(αi)
0 + γ

(αi)
1 x̂t+k|t,1 + ... + γ

(αi)
p x̂t+k|t,p

= γ
(αi)
0 +

p
∑

j=1
γ
(αi)
j x̂t+k|t,j

(10)

where x̂t+k|t,j for j = 1, ..., p denote the forecasts of the explanatory variables xt,j, issued at time t with
lead time t + k.

The random variable yt will represent the normalized wind power time series, (yt), and the
explanatory variables will be represented by time series,

(
xt,j

)
, extracted from the normalized wind

power series. In order to produce the forecasts, x̂t+k|t,j, we will fit suitable time series models to the
variables

(
xt,j

)
, and then predict from these models up to t + k values ahead.

It is worth mentioning that by producing quantile forecasts using quantile regression, we may
end up with some quantile forecasts crossing each other. This is a not very common phenomenon
for so few quantile forecasts (19 in our case), but monitoring its occurrence is very important. In our
analysis, whenever this phenomenon happens (it occurs very rarely because we fit the models to a
large amount of data) we just shift the crossing quantile forecasts in order to keep F̂t+k

(
q̂(αi)

t+k|t
)
= αi,

for αi = {0.05, 0.10, ..., 0.95}, a strictly increasing function.
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4.2. Quantile and Density Forecast Evaluation

The evaluation of the quantile forecasts, for each quantile, αi = {0.05, 0.10, ..., 0.95}, will be
undertaken using the quantile loss function:

The quantile loss function, also known as the check function [3,27] is used to define a specific
quantile of the distribution and was defined in Section 4.1, Equation (8). Hence, given a testing set of
size N, we can estimate a particular quantile, q̂(αi), with proportion αi, using

q̂(αi) = min
q

N

∑
t=1

ραi (yt − q) (11)

and therefore we can evaluate a series of quantile forecasts, q̂(αi)
t+k|t, issued at time t with lead time t + k

and nominal proportion αi, using:

QL(k, αi) =
1
N

N

∑
t=1

ραi

(
yt+k − q̂(αi)

t+k|t
)

(12)

This is the average over the whole testing set of the check function score, ραi

(
yt+k − q̂(αi)

t+k|t
)

, for the
quantile αi, for a k-step ahead prediction. From now on we will call this function the Check Function
(CF), and the its score the Check Function Score (CFS) .

Using the different quantile forecasts we can also reconstruct the whole probability / cumulative
forecasted distribution. We use the Continuous Ranked Probability Score (CRPS) in order to evaluate
the density forecasts for each forecast horizon:

The crps [28] is computed by taking the integral of the Brier scores for the associated probability
forecasts at all real valued thresholds,

crps
(

F̂t+k|t(y), yt+k

)
=

∫ +∞
−∞

(
F̂t+k|t(y)− 1{y≥yt+k}

)2
dy

=
∫ 1

0 QSαi

(
F̂−1

t+k|t(αi), yt+k

)
dαi

where F̂t+k|t(y) corresponds to the CDF forecast, and yt+k to the corresponding verification. 1{y≥yt+k}
is an indicator function that equals one if y ≥ yt+k and zero otherwise. The quantile score, QSαi [29], is
defined by

QSαi (q, y) = 2
(

αi − 1{y<q}
)
(y − q) (15)

Hence, the average of these crps values over each forecast-verification pair gives the CRPS for
each forecast horizon k:

CRPS(k) = 1
N

N
∑

t=1
crps

(
F̂t+k|t(y), yt+k

)
= 2

∫ 1
0 QL(k, αi)dαi

where QL(k, αi) is CF defined in Equation (12). Representation (17) is useful to produce a rough
estimate of the in-sample CRPS for each forecast horizon, using the CFS for each quantile. This is
a rather poor approximation of the CRPS, because the number of quantiles used in this article
(19 quantiles), is not large enough to produce an accurate approximation of the integral in Equation (17).

In order to find the out-of-sample CRPS for each k, we will use the following alternative
representation of the crps, introduced by Gneiting and Raftery [29]:

crps
(

F̂t+k|t(y), yt+k

)
= E F|X−yt+k|− 1

2
E F

∣∣X − X′∣∣ (18)
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where X and X′ are independent copies of a random variable with CDF F̂t+k|t. This representation is
particularly useful when F̂ is represented by a sample, as in our case. Then, the CPRS for each forecast
horizon k is given by Equation (16).

Moreover, it will be necessary to quantify the gain/loss of some forecasting models with respect
to a chosen reference model. Following McSharry et al. [3], this gain, denoted as an improvement with
respect to the considered reference forecast system, is called a Skill Score and is defined as:

SkillScore(k) =
SCOREref(k)− SCORE(k)

SCOREref(k)
= 1 − SCORE(k)

SCOREref(k)
(19)

where k is the lead time of the forecast and SCORE is considered the evaluation criterion score (such
as CRPS or CFS). By using the above definition we can also introduce the Average Skill Score. This is
just the Skill Score with the scores of the competing and reference models averaged over all forecast
horizons. It is defined as:

AverageSkillScore = 1 − ∑kmax
k=1 SCORE(k)

∑kmax
k=1 SCOREref(k)

(20)

So, when we are talking about Score, the lower the value the better the performance; but, when
we are talking about Skill Score (or Average Skill Score), the higher the value the better, since we are
comparing the candidate model to the reference model. Please note that the reference model will be
different each time, and chosen according to the comparison we wish to make.

In order to formally rank and statistically justify any possible difference in the CRPS and CFS of
the competing models with respect to the reference models, we will use the Amisano and Giacomini
test [30] of equal forecast performance. This test is based on the statistic

tN,k =
√

N
SCORE(k)− SCOREref(k)

σ̂N,k
(21)

where SCORE again is considered the evaluation criterion score such as the CRPS or CFS, N is the
out-of-sample size, and

σ̂2
N,k =

1
N − k + 1

k−1

∑
j=−(k−1)

1+N−k−|j|
∑
t=1

δt,kδt+|j|,kwhereδt,k = S(t + k|t)− Sref(t + k|t) (22)

The functions S and Sref represent the before averaging scores (such as the crps of Equations (13) or
(18) and check function score defined just after Equation (12)) of the competing and reference models,
respectively. Assuming suitable regularity conditions, according to Amisano and Giacomini [30],
the statistic tN,k is asymptotically standard normal under the null hypothesis of zero expected score
differentials. Small p-values of this test provide evidence that the difference in the forecast performance
of the two forecasting (given a specific evaluation score) is statistically significant.

5. Optimization of the Variability Indices

In this section we will introduce four different quantile regression models, and using one-fold
cross validation try to optimize their probabilistic forecasting performances. Our main goal is to
evaluate whether or not the four variability indices (introduced in Section 3) can help to provide
trustworthy quantile forecasts of wind power, when used as explanatory variables in the quantile
regression model (7). For this purpose, we have to find the optimal set of parameters (m, n) of these
indices, which provides the best quantile forecast performance, for each individual quantile. We do
that using the following procedure.

For each index, we sample different combinations of parameters from the range
m, n = {0, 8, 16, ..., 192}, in order to produce 625 different realizations of each index, for each wind
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farm. A preliminary analysis showed that creating a moving window larger than 192 time-points wide
(2880 min i.e., 2 days) did not increase the performance of the indices.

Then, for each set of parameters, we fit the following four different quantile regression models on
the in-sample training set (of each wind farm), for each of the 19 quantiles αi = {0.05, 0.1, ..., 0.95}:

SDmodel :qt =γ01 + γ11yt−1 + γ21yt−2 + γ31yt−3 + γ41SD(αi)
t

IQRmodel :qt =γ02 + γ12yt−1 + γ22yt−2 + γ32yt−3 + γ42 IQR(αi)
t

Q05model :qt =γ03 + γ13yt−1 + γ23yt−2 + γ33yt−3 + γ43Q05(αi)
t

Q95model :qt =γ04 + γ14yt−1 + γ24yt−2 + γ34yt−3 + γ44Q95(αi)
t

(23)

where qt ≡ q(αi)
t is defined in Equation (6), γhl ≡ γ

(αi)
hl are the regression coefficients, and yt−j are

lagged wind power series. The choice of the number wind power series lags used as explanatory
variables was taken by considering the AIC (a prediction based criterion according to Akaike [31]) of
different quantile regression models which have different numbers of lags as explanatory variables.
We also investigated the improvement obtained by adding to the right hand side of Equation (23) a
combination of variability indices. Due to collinearity effects, the SD and IQR indices cannot coexist
in the same equation. Any other combinations of the variability indices did not provide reduction to
the AIC for more than 14 out of 19 quantile regression equations, at any of the three wind farm sites.
Hence, we considered examining the effect that each individual variability index will provide by being
included as an explanatory variable to the quantile regression equations, as defined by Equation (6).

Moreover, we also considered adding to the right hand sides of Equation (23) a trigonometric
function (also introduced in Equation (24) below) which uses two pairs of harmonics to regress wind
power quantile, qt, on the 15 min time step of the day. The addition of this function, which is used to
model the diurnal component of each quantile of the wind power production at each wind farm, was
not found to provide reduction to the AIC of 17 out of 19 quantile regression equations, at any of the
three wind farm sites. Hence, in order to obtain parsimonious models we excluded these functions
from the final models. Nevertheless we must acknowledge the fact that a diurnal effect may be relevant
and very important for wind farms in other locations or countries.

The models in Equation (23) are regression models, and hence, in order to predict their responses,
q(αi)

t , we need predictions for their explanatory variables. These are just lagged versions of the original
wind power series, and the different variability indices. All of these explanatory variables have similar
characteristics as they result from the original wind power series. The lagged versions of the wind
power series are certainly non-stationary and all 4 × 625 different realizations of the variability indices
(for every wind farm), even though they can be much smoother (for large values of m, n) than the
original wind power series, are also non-stationary.

The predictions (point forecasts) of the explanatory variables are produced using ARIMA and
ARIMA (in mean)-GARCH (in variance) models. By modelling the mean of the series using an ARIMA
model, we allow for its non-stationary nature, and by modelling the variance using a GARCH process
we allow for its heteroskedastic nature. Due to the fact that the wind power series (and the resulting
variability indices) is bounded and does not follow any known parametric distribution, one may argue
that an ARIMA or an ARIMA-GARCH model may not be appropriate. A modified (This version of
ARIMA-GARCH model limits the forecasts to be bounded between two specific values (zero and one in
our case) ARIMA/ARIMA-GARCH model with limiter (as proposed by Chen et al. [32]) is used to deal
with the problem of the data being bounded. Moreover, the empirical density of the differenced series
is close to a Student’s t-distribution density. Hence, we fit an ARMA/ARMA-GARCH model to the
transformed series, (wt) (or differenced variability index), assuming those data come from a Student’s
t-distribution whose parameters are estimated for each series. We incorporate this distributional
assumption by assuming the resulting residual series (white noise) follows a Student’s t-distribution.
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The next step is to produce point forecasts from 15 min up to 6 h ahead (k = 1, 2, ..., 24), from
each point of the in-sample testing set, by fitting ARIMA(1, 1, 1) models to each realization of the four
variability indices of the above regressions. Our choice of ARIMA(1, 1, 1) model may seem unappealing
and arbitrary, but was made mainly for simplicity after exploring the forecast performances of various
time series models. Choosing the best ARIMA-GARCH model (according to AIC) for each of the 625
different realizations of each index (for each wind farm) is extremely computationally expensive and
hence we have to make some simplifications in order to make our optimization process computationally
feasible. An ARIMA(1,1,1) is able to capture the non-stationary nature of the indices, and avoid
overfitting at the same time. In order to assess the goodness of the fits, we use the Ljung–Box test, and
restrict our selection to the fits that do not reject the null hypothesis of this test (so the corresponding
residuals are consistent with white noise).

Modelling the variance of the indices using ARCH/GARCH models (in combination with an
ARIMA model for the mean) does not provide a consistent and significant improvement of the RMSE
(We used the Root Mean Square Error to evaluate the point forecast performance of various time series
models.) of the point forecasts. This is mainly because of the very small forecast horizon we have,
and hence it suffices to use a simple ARIMA model with limiter. In order to produce point forecasts
of the lagged wind power series, the model solution using AIC (results are also the same using BIC)
identified an ARIMA(0, 1, 2) - GARCH(1, 1) model for the low variability farm, an ARIMA(1, 1, 3) -
GARCH(1, 1) for the medium variability farm, and an ARIMA(2, 1, 1) - GARCH(1, 1) for the high
variability farm. These models have the ability to capture the heteroskedastic effects that the wind
power series have, taking into account the non-linear nature of the variations. Also, these forecasts are
calculated only once for all different realizations of the quantile regression models, and hence there is
no point in this case to sacrifice the (small) accuracy gain for simplicity and computational efficiency.
Table 2 shows the selected time series models for each wind farm and the two tests that assess their fit.

Table 2. Best fitted models for the three wind power time series according to the AIC, with Ljung–Box
and LM tests p-values.

Wind farms Selected model LM test p-values LB test p-values
time series based on AIC for lags 5, 15, 25 for lags 5, 15, 25

Low Var. ARIMA(0, 1, 2)-GARCH(1, 1) 1.00, 1.00, 1.00 0.87, 0.99, 1.00
Medium Var. ARIMA(1, 1, 3)-GARCH(1, 1) 1.00, 1.00, 0.95 0.53, 0.98, 1.00

High Var. ARIMA(2, 1, 1)-GARCH(1, 1) 1.00, 1.00, 1.00 1.00, 1.00, 1.00

After producing quantile forecasts for 24 different forecast horizons, we evaluate them (i) using
the CFS of only the first step ahead forecasts; and (ii) using the CFS averaged over all forecast horizons.
The results justify our inspection of better forecast performance for the models with small (smoothing
and variability) moving windows. We repeat the above procedure by restricting the range of our
parameters even more for each variability index, and sample every different combination of parameters
from the range m, n = {0, 1, 2, ...50}.

We end up with distinct sets of parameters (for each model and wind farm) that minimize the
averaged and 1-step ahead CFS of each different quantile. The CFS minimization results are shown in
Tables 3–6. In general, we cannot distinguish any particular parameter pattern, but there are some
features that are worth mentioning. For all the models, it is more common to have the smoothing
window width (m) smaller than the variability window width (n), especially for quantiles less than or
equal to the median. This pattern changes for the upper quantiles (larger than the median) where we
do not observe a clear pattern. Also, on average, the parameters for the averaged over 24-steps ahead
optimization are smaller than the corresponding ones of the 1-step ahead optimization.
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Table 3. 1-step and averaged over 24-steps CFS optimization results for the SD model of Equation (23).

Low Var. Med Var. High Var. Low Var. Med Var. High Var.

m n m n m n m n m n m n
αi 1-step optimization of SD model 24-steps optimization of SD model

0.05 0 9 0 18 2 7 2 5 3 3 2 7
0.10 0 4 0 20 2 7 0 6 3 2 2 4
0.15 0 4 0 21 0 7 0 4 2 2 3 2
0.20 0 4 0 21 0 7 3 2 2 2 2 2
0.25 2 3 0 21 2 4 2 2 0 3 2 2
0.30 2 3 2 4 2 4 0 2 0 2 0 2
0.35 2 3 2 2 0 7 0 2 0 2 0 2
0.40 5 3 2 2 5 3 0 2 0 2 0 3
0.45 5 3 0 4 6 3 0 2 0 2 7 0
0.50 28 2 6 3 9 0 0 0 7 0 7 0
0.55 14 2 0 0 2 2 0 0 0 0 0 3
0.60 0 8 13 2 2 2 0 0 0 12 0 2
0.65 0 8 2 11 2 2 5 3 0 3 0 2
0.70 0 9 0 12 3 2 5 3 0 2 0 2
0.75 0 9 0 12 0 2 5 3 2 2 2 2
0.80 0 15 0 9 0 2 3 2 2 2 2 2
0.85 0 8 0 12 0 2 2 3 3 2 3 2
0.90 0 9 2 9 0 3 0 12 3 2 3 2
0.95 2 8 0 12 0 10 3 7 0 15 0 14

Table 4. 1-step and averaged over 24-steps CFS optimization results for the IQR model of Equation
Equation (23).

Low Var. Med Var. High Var. Low Var. Med Var. High Var.

m n m n m n m n m n m n
αi 1-step optimization of IQR model 24-steps optimization of IQR model

0.05 2 4 0 9 0 5 2 6 2 4 2 4
0.10 0 4 0 5 0 4 2 3 3 2 2 3
0.15 0 3 0 5 0 4 2 3 2 2 3 2
0.20 0 4 0 5 0 4 3 2 2 2 2 2
0.25 2 3 0 4 0 4 2 2 0 3 2 2
0.30 2 3 0 4 2 3 2 2 0 2 0 2
0.35 2 3 2 2 5 3 0 2 0 2 0 2
0.40 5 3 2 2 5 3 0 2 0 2 0 3
0.45 5 3 0 3 6 3 0 2 0 2 7 0
0.50 28 2 6 3 9 0 0 0 7 0 7 0
0.55 14 2 0 0 2 2 0 0 0 0 0 3
0.60 11 2 13 2 2 2 0 0 0 7 0 2
0.65 2 4 0 4 2 2 5 2 0 3 0 2
0.70 0 11 0 7 3 2 5 3 0 2 0 2
0.75 0 11 0 7 0 2 5 2 2 2 2 2
0.80 0 11 0 7 0 2 3 2 2 2 2 2
0.85 0 11 0 2 0 2 2 3 3 2 3 2
0.90 0 11 0 12 0 3 0 9 3 2 3 2
0.95 2 7 0 12 4 2 5 4 0 7 0 4
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Table 5. 1-step and averaged over 24-steps CFS optimization results for the Q05 model of Equation
Equation (23).

Low Var. Med Var. High Var. Low Var. Med Var. High Var.

m n m n m n m n m n m n
αi 1-step optimization of Q05 model 24-steps optimization of Q05 model

0.05 0 18 48 48 2 10 0 14 0 14 7 4
0.10 0 14 15 4 2 10 0 12 3 6 3 9
0.15 0 11 25 3 2 7 0 8 0 7 0 7
0.20 0 11 35 6 2 7 0 6 0 7 0 7
0.25 0 11 24 3 0 11 0 6 0 6 0 5
0.30 0 17 24 2 2 7 0 6 0 3 0 5
0.35 2 11 24 3 2 7 0 6 0 3 0 5
0.40 2 17 25 2 0 8 0 6 0 3 0 7
0.45 2 16 24 3 2 5 0 6 0 3 5 3
0.50 2 16 13 12 6 2 0 6 0 2 5 3
0.55 21 0 0 0 6 2 2 5 0 0 5 3
0.60 21 0 2 14 9 0 0 0 7 0 0 18
0.65 17 0 2 14 0 7 2 5 7 0 0 16
0.70 16 0 2 11 0 7 2 5 7 0 0 15
0.75 16 0 2 11 0 5 2 5 0 18 0 15
0.80 15 0 2 12 0 5 2 5 0 14 0 15
0.85 16 0 0 5 0 5 14 5 0 14 0 15
0.90 12 0 0 5 0 4 14 7 0 14 0 15
0.95 12 0 0 4 0 4 0 4 0 11 0 3

Table 6. 1-step and averaged over 24-steps CFS optimization results for the Q95 model of Equation (23).

Low Var. Med Var. High Var. Low Var. Med Var. High Var.

m n m n m n m n m n m n
αi 1-step optimization of Q95 model 24-steps optimization of Q95 model

0.05 0 4 0 6 0 4 0 4 0 4 0 8
0.10 0 6 0 6 0 4 0 6 0 5 0 5
0.15 0 6 0 6 0 5 0 6 0 5 0 5
0.20 0 8 0 6 0 5 0 10 0 10 0 8
0.25 0 9 2 18 0 7 0 10 0 10 0 8
0.30 0 10 2 13 0 7 0 10 5 19 2 8
0.35 0 45 2 13 0 7 17 0 3 22 2 8
0.40 0 45 12 14 8 0 4 6 6 3 3 7
0.45 21 0 16 11 8 0 4 6 6 3 6 2
0.50 21 0 32 3 9 0 4 6 5 3 6 2
0.55 0 18 0 0 9 0 0 0 5 3 0 6
0.60 0 18 0 0 0 10 3 7 5 3 0 6
0.65 0 11 0 16 0 9 2 8 5 3 0 4
0.70 2 11 2 9 0 9 3 7 3 5 0 4
0.75 0 15 2 9 0 11 2 8 3 5 0 4
0.80 0 15 2 9 0 11 0 12 3 5 0 6
0.85 3 7 2 9 0 11 0 12 3 5 0 6
0.90 3 7 2 10 2 11 0 12 3 6 0 10
0.95 2 13 3 10 2 11 2 11 2 9 0 14

6. Out-of-Sample Forecast Performance Results

In this section, after fitting the four optimized models of Equation (23) to the whole two years
in-sample learning set (for each farm), we will produce quantile forecasts from 15 min up to six hours
ahead from each point of the out-of-sample forecasting set, and assess their forecast performance using
the CFS, and the CRPS. In short, the CFS will be used to assess the skill of individual quantile forecasts,
and the CRPS to assess the skill of the density forecasts (produced by using all 19 quantile forecasts).
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In order to facilitate the comparison of forecast performance across different models, we will
introduce two widely used probabilistic benchmarks:

• Persistence distribution: It is defined as the distribution of the last n observations. The persistence
benchmark is independently optimized (by estimating n) for each wind farm, by using the same
optimization methods as for the variability indices: 1-step ahead CFS minimization, and averaged
over 24-steps CFS minimization. So, when the persistence is optimized using one of the two CFS
minimization methods, different values of n are chosen to forecast each quantile.

• Unconditional distribution: We construct this benchmark by using all the past observations of the
time series. This benchmark assumes that the time ordering of the observations is not relevant
when attempting to predict the distribution of the response. It is also referred to as climatology.

The third benchmark used in this article is the quantile regression model with only the three
lags of wind power series as explanatory variables. This benchmark will help us to identify the gain
in forecast performance acquired by using the four variability indices and is defined as the 3-lagged
series benchmark.

Predictive distributions are often taken to be Gaussian even though the wind power series is
bounded and non-negative. Moreover, in our record of wind power measurements we have values
of exactly 0 and 1 and hence the predictive distributions may require point masses at 0 and 1. A
convenient way to embed this property is through the use of cut-off normal predictive distributions as
achieved by Sanso and Guenni [33], Allcroft and Glasbey [34], Gneiting et al. [35] and Pinson [10]. The
fourth benchmark of this article uses a cut-off normal predictive density, N 0,1

(
μt+k|t, σ2

t+k|t
)

, and a
fitted diurnal trend component to the three wind power series. The parameters μt+k|t and σt+k|t > 0 for
k = 1, ..., 24 are called the location parameter (or predictive centre) and scale parameter (or predictive
spread) of the cut-off normal density with point masses at 0 and 1. Please note that a truncated normal
predictive distribution (with cut-offs at 0 and 1) has also been considered, with results very similar but
worse than those of the cut-off normal predictive distribution benchmark.

The procedure to construct the fourth benchmark used in this article (also described in
Gneiting et al. [35] and Gneiting et al. [8]) is as follows. At each of the three sites we firstly fit a
trigonometric function,

yt = a0 + a1 sin
(

2πd(t)
96

)
+ a2 cos

(
2πd(t)

96

)
+ a3 sin

(
4πd(t)

96

)
+ a4 cos

(
4πd(t)

96

)
(24)

where yt represents the normalised wind power for each farm at time t, and d(t) is a repeating function
that numbers the time variable (in 15 min steps) from 1 to 96 within each day. We then remove the
ordinary least square (OLS) fit from each wind power series and use the resulting residual series,
denoted by εr

t , to determine the predictive centre and predictive mean of the cut-off normal predictive
distribution.

More specifically we introduce the following linear autoregressive system

εr
t = b0 + b1εr

t−1 + b2εr
t−2 + b3εr

t−3 (25)

and use this to determine the forecasts ε̂r
t+k|t in a straightforward way, for each k = 1, ..., 24 (from 15

min up to 6 h ahead). Then, the predictive centre of the cut-off normal distribution is modelled as

μt+k|t = ŷt+k|t + ε̂r
t+k|t (26)

where ŷt+k|t is the forecast issued at time t with forecast horizon k for the fitted diurnal trend of
Equation (24).
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Finally, in order to model the predictive spread we introduce, following Gneiting et al. [8], the
volatility function at time t:

vt =

(
1
2

1

∑
i=0

(yt−i − yt−i−1)
2

) 1
2

(27)

So this benchmark allows for conditional heteroskedasticity by modelling

vt = c0 + c1vt−1 (28)

and setting the predictive spread as the forecast of vt issued at time t for a forecast time t + k:

σt+k|t = v̂t+k|t. (29)

These four benchmarks will be used as the reference models mentioned in Section 4.2. In the
following tables we will present the evaluation results of the four models, for each evaluation criterion
and optimization type. As the relative performances of the methods are similar for each of the three
locations, following Taylor et al. [6], we will present the averaged results over the three wind farms.
Moreover, we will present only the Skill and Average Skill Scores of each evaluation criterion, as we
are particularly interested to quantify and statistically test (using the Anisano–Giacomini test [30])
the relative increase in forecast performance of the four competing models with respect to the four
benchmarks (reference models).

6.1. Out-of-Sample Model Comparison and Evaluation-Quantile Forecasting

In this subsection we compare the out-of-sample forecast performance of the competing models
for each quantile and model optimization method. We have a total of 19 quantile forecasts for each
model and for two different optimization methods. Please note that in order to avoid presenting any
unnecessary information, we summarise the results on the forthcoming tables by including results of
11 out of 19 quantiles (0.05, 0.10, 0.20,...,0.80, 0.90, 0.95 quantiles). Firstly, we present the results obtained
using the 1-step ahead CFS optimization, followed by the results obtained using the averaged over 24-steps
CFS optimization. For both optimization methods, the scores will be averaged over the three wind
farms because the relative performance of the models is similar across the wind farms.

6.1.1. Quantile Forecasting: 1-Step Ahead CFS Optimization

Since the models in this subsection are optimized using a 1-step ahead CFS optimization method,
it makes sense to present results for the first lead time only, for each quantile and for each model.
Table 7 shows the Skill CFS (as defined by Equation (19)) of the best performing model among the
four competing ones and its percentage gain/loss with respect to the four reference (benchmark)
models, for each quantile. Moreover, the asterisks next to the scores indicate the level of statistical
significance (obtained using the Amisano–Giacomini test of Section 4.2) of the corresponding gain/loss
in performance with respect to the four reference models.
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Table 7. The best performing model among the four competing ones, and its performance gain/loss
with respect to the four reference (benchmark) models, for each quantile. Reference models: 3-lagged
series (column 3), Cut-off normal (column 4), Persistence (column 5) and Climatology (column 6). These
results are outcomes from a 1-step ahead CFS optimization, and we use the CFS only for the first predicted
step. The asterisks indicate the statistical significance of the gain/loss according to the Amisano and
Giacomini test with the following significance codes for the p-value of the test: ***: p ≤ 0.01, **:
0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Skill CFS (%)

Best 3-lagged Cut-off Persistence Climatology
αi model series normal benchmark benchmark

0.05 Q95 4.01∗∗∗ 88.04∗∗∗ 54.82∗∗∗ 65.63∗∗∗
0.10 Q95 2.57∗∗∗ 81.70∗∗∗ 53.25∗∗∗ 71.89∗∗∗
0.20 Q95 1.23∗∗ 73.88∗∗∗ 55.61∗∗∗ 78.14∗∗∗
0.30 SD 0.81 69.53∗∗∗ 57.81∗∗∗ 81.56∗∗∗
0.40 SD 0.22 67.07∗∗∗ 59.18∗∗∗ 83.70∗∗∗
0.50 Q95 −0.21 65.93∗∗∗ 59.82∗∗∗ 85.18∗∗∗
0.60 Q05 −0.15 65.84∗∗∗ 59.53∗∗∗ 86.17∗∗∗
0.70 Q05 0.59 67.21∗∗∗ 58.62∗∗∗ 86.79∗∗∗
0.80 SD 2.74∗∗∗ 71.12∗∗∗ 57.57∗∗∗ 87.20∗∗∗
0.90 Q05 2.38∗∗∗ 78.00∗∗∗ 54.48∗∗∗ 86.46∗∗∗
0.95 Q05 3.44∗∗∗ 84.64∗∗∗ 54.46∗∗∗ 85.05∗∗∗

A general observation is that for almost all quantiles (except the 0.50–0.60 quantiles scores which
have negative signs), the best forecast performance is achieved by one of the four competing models
and not by the four benchmarks. The 0.05–0.10 and 0.90–0.95 quantiles form the two tails of the
predictive density, and represent the rare events (such as ramps, cut offs) of a wind power series.
As we observe from this table, both tails of the predictive density are quite well captured by the Q05
and Q95 models. Out of the four competing models, the lower tail of the predictive density is better
predicted by the Q95 model and the upper by the Q05 model, but assuming the structure of the two
variability indices used in these models, we might intuitively expect the opposite to happen.

This phenomenon can be explained by having a look at Figure 3. Figure 3(a) shows the probability
density function (PDF) of the medium variability wind farm, together with the function values when
the normalized wind power is equal to zero and one. Figure 3(b) shows an example of a wind power
curve as presented by McSharry et al. [3]. On this plot we mark the “cut-in speed” (w1), the “nominal
speed” (w2) and the “disconnection speed” (w3). So, for very low wind speeds (<w1) the wind power
production is almost zero, for wind speeds greater than w2 but less than w3 the normalized wind
power production is equal to one, and for wind speeds greater than w3 the turbines shut down in order
to prevent damage, and hence the wind power production falls again to zero. By combining these two
plots, we can plot a rough estimate of the normalized wind power PDF versus the wind speed.
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Figure 3. (a) Histogram of normalized wind power data (b) Deterministic power curve (c) Probability
density function of normalized wind power data (PDF) versus wind speed. The equations used to
reproduce (b) and (c) were taken from McSharry et al. [3].

We expect the 0.95 quantile of the unconditional density (not to be confused with the predictive
density) to be close to the nominal (normalized) wind power value of one. But the produced wind
power is driven by the actual wind speed at any given time, and hence falling from the nominal wind
power production (one) to zero can happen unexpectedly (Exceeding w3 can happen unexpectedly,
given that we do not have any information about the wind speed at any given time.) if we exceed
the disconnection speed w3 (Figure 3(b)). This results in a sudden jump from the 0.95 quantile to
the 0.05 quantile of the unconditional probability density and is represented by the lower tail of the
predictive density. Hence, the Q95 index which captures this sort of events can provide some extra
information about the lower tail of the predictive distribution that the 3-lagged series and the Q05
index do not describe. Similarly, if the wind speed falls below w3, we are suddenly jumping from the
0.05 to the 0.95 quantile of the unconditional density and these kind of rare events (jumping from low
to high values) are represented by the upper tail of the predictive density. Therefore, the Q05 index can
provide some extra information about the upper tail of the conditional predictive distribution.

In addition, Table 7 shows that the strongest benchmark for all quantiles is the 3-lagged series
model. The biggest and statistically significant improvement with respect to this benchmark is
achieved near the tails of the predictive density, and decays as we move towards the median. This has
important practical applications because it is exactly these extreme fluctuations that are of interest to
transmission system operators (TSOs). More specifically, we get a performance gain of up to 4.01%
(for the 0.05 quantile, achieved by the Q95 model), which is certainly not negligible. Unfortunately,
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the performance gain by using one of the competing models with respect to this benchmark in order to
forecast the quantiles 0.30–0.70 is negligible (statistically insignificant), and is in the range of −0.21%
to 0.81%. Furthermore, there is no gain for the quantiles close to the median of the predictive density
(0.50–0.60).

Since the 3-lagged series model is our strongest benchmark and the performance gain with respect
to it is only worth mentioning near the tails of the predictive density, it makes sense to focus on the
performance gain achieved with respect to the last two benchmarks only for quantiles near the tails.
Table 7 shows that the increase in forecast performance with respect to the cut-off normal benchmark is
at least 78%, which shows that the cut-off normal is not capturing the tails of the predictive distribution
as well as our competing models.

Moreover, we get more than 53.25% increase in the forecast performance with respect to the
persistence benchmark when we use one of the four competing models. At the tails, where the Q05
and Q95 models are more suitable, we have a gain with respect to the persistence benchmark of up
to 54.82%. By using the climatology benchmark as reference model, we observe that the maximum
performance gain at the tails goes up to 86.46% (for the 0.90 quantile, achieved by the Q05 model),
and in general the Q05 and Q95 models manage to maintain the performance gain (at the tails)
above 65.63%.

6.1.2. Quantile Forecasting: Averaged over 24-Steps CFS Optimization

This subsection has similar structure to the preceding one, but now we present the results for
the models which minimize the averaged (over six hours) CFS. Because the models are optimized on
their forecast behaviour over all 24 forecast horizons, it makes sense to present results with the scores
averaged over the 24 horizons, for each of the 11 selected quantiles.

Table 8 is analogous to Table 7, but here we provide the averaged over 24-steps CFS optimization
results. It presents the Average Skill CFS (instead of Skill CFS) as defined by Equation (20). Once more,
a general observation is that for almost all quantiles (except the first two and the median), the best
forecast performance is achieved by our competing models and the strongest benchmark is the 3-lagged
series model.

Table 8. The best performing model among the four competing ones, and its performance gain/loss
with respect to the four reference (benchmark) models, for each quantile. Reference models: 3-lagged
series (column 3), Cut-off normal (column 4), Persistence (column 5) and Climatology (column 6). These
results are outcomes from an averaged over 24-steps CFS optimization, and the CFS are also averaged
over all 24 forecast horizons. The asterisks indicate the statistical significance of the gain/loss according
to the Amisano and Giacomini test with the following significance codes for the p-value of the test: ***:
p ≤ 0.01, **: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Average Skill CFS (%)

Best 3-lagged Cut-off Persistence Climatology
αi model series normal benchmark benchmark

0.05 Q95 0.71 43.82∗∗∗ −102.14∗∗∗ −103.89∗∗∗
0.10 IQR 1.99∗∗ 31.81∗∗∗ −29.08∗∗∗ −29.91∗∗∗
0.20 IQR 5.95∗∗∗ 22.46∗∗∗ 14.54∗∗∗ 21.00∗∗∗
0.30 SD 4.57∗∗∗ 15.25∗∗∗ 18.86∗∗∗ 38.16∗∗∗
0.40 IQR 2.56∗∗∗ 10.22∗∗∗ 20.47∗∗∗ 46.64∗∗∗
0.50 Q95 −0.11 6.03∗∗∗ 20.13∗∗∗ 50.95∗∗∗
0.60 Q05 0.07 5.27∗∗∗ 20.05∗∗∗ 53.81∗∗∗
0.70 IQR 1.67∗∗∗ 7.15∗∗∗ 19.48∗∗∗ 54.67∗∗∗
0.80 SD 3.71∗∗∗ 11.94∗∗∗ 17.86∗∗∗ 52.16∗∗∗
0.90 SD 2.66∗∗∗ 19.55∗∗∗ 12.86∗∗∗ 38.12∗∗∗
0.95 Q05 1.09∗∗ 28.78∗∗∗ 8.29∗∗∗ 11.94∗∗∗
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Table 8 also shows that the lower tail of the predictive density is quite poorly captured by our
competing models, and the last two benchmarks (persistence, climatology) are performing much better
than any other model. On the other hand, for all the other quantiles, the SD and IQR models have
quite similar performances and manage to outperform all the benchmarks. Moreover, the performance
gain by using one of the four competing models to forecast the quantiles near the median (0.50–0.60)
is statistically negligible or does not exist. A final general observation is that, as mentioned for
the previous optimization method, the 0.05 quantile is better predicted by the Q95 model and the
0.95 quantile by the Q05 model.

By using one of the SD or IQR models (which perform almost identically) we get a performance
gain with respect to the 3-lagged series benchmark of up to 5.95% (for the 0.20 quantile, achieved
by the IQR model), which is statistically significant with a p-value less than 0.001. In addition all
the competing models are outperforming the cut-off normal model by at least 5.27% and attain the
maximum increase in forecast performance near the tails of the predictive density (up to 43.82%
achieved by the Q95 model for the 0.05 quantile).

Table 8 also shows that we have up to 20.47% (for the 0.40 quantile, achieved by the IQR model)
increase of the forecast performance with respect to the persistence benchmark. The SD and IQR
models maintain the gain over the persistence benchmark above 8.29% for all quantiles larger than 0.10.
By using the climatology benchmark as reference model, we observe that the maximum performance
gain goes up to 54.67% (for the 0.70 quantile, achieved by the IQR model), and in general the SD and
IQR models can maintain the percentage performance gain with respect to the climatology benchmark
above 11.94% for all quantiles larger than 0.10.

6.2. Out-of-Sample Model Comparison and Evaluation-Density Forecasting

In this subsection, we evaluate the out-of-sample density forecast performance of the competing
models, for each optimization method. We will use the quantile forecasts obtained from each
optimization method to reconstruct the whole predictive density, and assess its skill using the Skill
CRPS or the Average Skill CRPS. Firstly, we present the results obtained using the 1-step ahead CFS
optimization, followed by the results obtained using the averaged over 24-steps CFS optimization.
Moreover, because the relative performance of the models is similar across the wind farms, the scores
will be averaged over the three wind farms.

6.2.1. Density Forecasting: 1-Step Ahead CFS Optimization

In this subsection, the models’ forecast performance is optimized for only the first predicted step,
so it makes sense to focus (initially) on the first lead time and present the out-of-sample Skill CRPS for
the first step ahead.

Table 9 presents the out-of-sample Skill CRPS (%) for the 1-step ahead CFS optimized models,
together with significance codes for the Amisano–Giacomini test of equal forecast performance.
This table shows that the best benchmark model is the 3-lagged series. That was expected because
this benchmark was also the strongest one (for most quantiles) when we were looking at the quantile
forecast results for the same optimization method (Section 6.1.1). The SD and IQR models behave
almost identically and manage to outperform all the other benchmarks. The SD model performs
slightly better than the IQR model, and managed to outperform the 3-lagged series model by 1%, the
cut-off normal model by 1.48%, the persistence benchmark by 58.38% and the climatology benchmark
by 84.23%.

Table 10 shows the best performing model among the four competing ones, and its performance
gain/loss with respect to the four reference (benchmark) models, for a collection of forecast horizons.
For simplicity, we present the results for seven of the 24 forecast horizons. The SD model is
outperforming the 3-lagged series for the first 16 forecast horizons (except for the second one) where
the improvements in forecast performance are also statistically significant for a 90% significance level.
For the second forecast horizon we get the maximum forecast performance gain over the 3-lagged
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series model (equal to 1.96%) achieved by the IQR model. The SD model also manages to outperform
the cut-off normal benchmark for all forecast horizons, with all improvements in forecast performance
being statistically significant for a 99% significance level.

Table 9. Out-of-sample Skill CRPS (%) (averaged over all wind farms) for the 1-step ahead CFS optimized
models. The scores are just for the first lead time. The asterisks indicate the statistical significance of
the gain/loss according to the Amisano and Giacomini test with the following significance codes for
the p-value of the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Performance Gain/Loss - Skill CRPS (%)

Reference model SD model IQR model Q05 model Q95 model

3-lagged series 1.00∗∗ 0.93∗∗ 0.29 0.20
Cut-off normal 1.48∗∗∗ 1.41∗∗∗ 0.77∗ 0.69∗
Persistence 58.38∗∗∗ 58.35∗∗∗ 58.08∗∗∗ 58.04∗∗∗
Climatology 84.23∗∗∗ 84.22∗∗∗ 84.12∗∗∗ 84.11∗∗∗

Table 10. The best performing model among the four competing ones, and its performance gain/loss
with respect to the four reference (benchmark) models, for forecast horizon k (measured in 15 min
steps). Reference models: 3-lagged series (column 3), Cut-off normal (column 4), Persistence (column
5) and Climatology (column 6). These results are outcomes from a 1-step ahead CFS optimization. The
asterisks indicate the statistical significance of the gain/loss according to the Amisano and Giacomini
test with the following significance codes for the p-value of the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05, *:
0.05 < p ≤ 0.1.

Skill CRPS(%)

k Best model 3-lagged series Cut-off normal Persistence Climatology

1 SD 1.00∗∗ 1.48∗∗∗ 58.38∗∗∗ 84.23∗∗∗
2 IQR 1.96∗∗∗ 6.79∗∗∗ 44.59∗∗∗ 76.78∗∗∗
3 SD 1.81∗∗∗ 13.02∗∗∗ 37.00∗∗∗ 71.34∗∗∗
4 SD 1.71∗∗∗ 14.09∗∗∗ 31.97∗∗∗ 66.73∗∗∗
8 SD 1.15∗∗∗ 13.95∗∗∗ 20.88∗∗∗ 51.62∗∗∗

16 SD 0.63∗ 15.12∗∗∗ 10.94∗∗∗ 27.55∗∗∗
24 SD 0.40 15.70∗∗∗ 5.87∗∗∗ 8.24∗∗∗

When the persistence and climatology benchmarks are used as reference models, Table 10 shows
that the gain in forecast performance by using the SD model is at least 5.87% and 8.24%, respectively.
Moreover, the noted density forecast improvements are statistically significant for all forecast horizons,
for a 99% level of significance.

In addition to the above results, we carried out a marginal calibration analysis and investigated
how the CRPS evolves conditional to some wind power levels. More specifically, Table 11 presents
the marginal Skill CRPS (%) conditional to the normalized wind power being ≤0.20 or ≥0.80, for
a collection of seven forecast horizons. We choose to focus on these specific wind power levels,
because these form the two tails of the unconditional wind power density (not to be confused with the
predictive density).
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Table 11. The best performing model (according to the Marginal Skill CRPS) among the four competing
ones, and its performance gain/loss with respect to the four reference (benchmark) models, for forecast
horizon k (measured in 15 min steps). Reference models: 3-lagged series (column 3), Cut-off normal
(column 4), Persistence (column 5) and Climatology (column 6). These results are outcomes from
a 1-step ahead CFS optimization. The asterisks indicate the statistical significance of the gain/loss
according to the Amisano and Giacomini test with the following significance codes for the p-value of
the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Marginal Skill CRPS(%) conditional to the normalized wind power being ≤ 0.20

k Best model 3-lagged series Cut-off normal Persistence Climatology

1 Q05 1.32∗∗∗ 3.44∗∗∗ 60.21∗∗∗ 84.09∗∗∗
2 IQR 1.81∗∗∗ 7.44∗∗∗ 44.92∗∗∗ 75.51∗∗∗
3 IQR 1.83∗∗∗ 11.68∗∗∗ 36.81∗∗∗ 69.40∗∗∗
4 IQR 1.63∗∗∗ 13.28∗∗∗ 31.48∗∗∗ 64.29∗∗∗
8 IQR 1.04∗∗ 14.71∗∗∗ 20.74∗∗∗ 47.64∗∗∗
16 IQR 0.56 17.94∗∗∗ 11.58∗∗∗ 20.09∗∗∗
24 IQR 0.36 19.27∗∗∗ 6.40∗∗∗ −4.30∗∗∗

Marginal Skill CRPS(%) conditional to the normalized wind power being ≥ 0.80

1 IQR 4.95∗∗∗ 1.31∗∗∗ 57.74∗∗∗ 93.52∗∗∗
2 IQR 3.04∗∗∗ 13.51∗∗∗ 48.16∗∗∗ 91.11∗∗∗
3 SD 3.44∗∗∗ 18.99∗∗∗ 44.76∗∗∗ 89.57∗∗∗
4 SD 2.40∗∗∗ 22.23∗∗∗ 41.11∗∗∗ 87.88∗∗∗
8 SD 2.25∗∗∗ 19.97∗∗∗ 32.79∗∗∗ 81.42∗∗∗
16 SD 1.60∗∗∗ 17.60∗∗∗ 23.59∗∗∗ 68.09∗∗∗
24 SD 1.75∗∗∗ 15.42∗∗∗ 15.47∗∗∗ 53.93∗∗∗

Given that the normalized wind power is less than or equal to 0.20, the IQR seems to be the best
performing model for all except the first forecast horizon (where the Q05 model is performing better).
For small forecast horizons we observe statistically significant improvements over all competing
models. These improvements (with the exception of the cut-off normal benchmark) are getting smaller
as we move to larger forecast horizons, which is perfectly reasonable because the results are the
outcome of a 1-step ahead optimization. Conditioning on power levels which belong to the upper tail
of the unconditional wind power density, we observe that the IQR and SD models seem to provide
the largest performance gain according to the CRPS. These two models are outperforming all the
benchmarks with improvements that are also statistically significant for all forecast horizons, for a 99%
level of significance.

6.2.2. Density Forecasting: Averaged over 24-Steps CFS Optimization

Now we would like to assess the out-of-sample density forecast performance of the four competing
models, for the averaged over 24-steps CFS optimization method. Our assessment criterion will be the
out-of-sample Skill CRPS or Average Skill CRPS.

Initially, it makes sense to have a look at the out-of-sample Average Skill CRPS (Equation (20))
with the four benchmarks as reference models (Table 12). The IQR model outperforms the 3-lagged
series benchmark by 2.45%, a considerably larger improvement than for the 1-step ahead results given
in Table 9. This model also outperforms the cut-off normal benchmark by 16.13%, the persistence
benchmark by 12.77% and the climatology benchmark by 39.15%. Moreover, the density forecast
performance of the SD model is quite close to that of the IQR model.

168



Energies 2013, 6, 662–695

Table 12. Out-of-sample Average Skill CRPS (%) (also averaged over all wind farms) for the averaged
over 24-steps CFS optimized models. The asterisks indicate the statistical significance of the gain/loss
according to the Amisano and Giacomini test with the following significance codes for the p-value of
the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Performance Gain/Loss - Average Skill CRPS (%)

Reference model SD model IQR model Q05 model Q95 model

3-lagged series 2.37∗∗∗ 2.45∗∗∗ −0.07 0.42
Cut-off normal 16.06∗∗∗ 16.13∗∗∗ 13.96∗∗∗ 14.38∗∗∗
Persistence 12.70∗∗∗ 12.77∗∗∗ 10.51∗∗∗ 10.96∗∗∗
Climatology 40.91∗∗∗ 40.96∗∗∗ 39.43∗∗∗ 39.73∗∗∗

Since our optimization considers all 24 forecast horizons, it will be interesting to investigate
how the four competing models perform in producing density forecasts for each forecast horizon, k,
from 15 min up to 6 h ahead. As for the 1-step ahead optimization case, we present the results for
only a collection of seven out of 24 forecast horizons. The best competing model together with the
performance gain obtained for each forecast horizon k with respect to the four benchmarks can be
found in Table 13. Clearly, the best performing benchmark is the 3-lagged series model, and the IQR is
the best performing model out of the four competing models.

The competing models’ performances are disappointing for the first lead time, where the 3-lagged
series benchmark offers a performance gain (of at least 1.57%) with respect to these models. On the
other hand, for predictions larger than 30 minutes ahead (second predicted step), Table 13 shows
that the IQR model manages to maintain the gain in density forecast performance with respect to
the 3-lagged series model above 2.14%, with a recorded maximum of 3.59% (achieved at the fourth
predicted step). Moreover, all the scores (except the first two) produce p-values which give strong
evidence to reject the null hypothesis of equal forecast performance between the competing and
reference model. Hence, the observed gain in forecast performance is statistically significant for a 99%
significance level. The gain in forecast performance with respect to the cut-off normal model is at least
4.96% (excluding the first lead time) and attains a maximum of 17.18% for the 24th predicted step.

Table 13. The best performing model among the four competing ones, and its performance gain/loss
with respect to the four reference (benchmark) models, for forecast horizon k (measured in 15 min steps).
Reference models: 3-lagged series (column 3), Cut-off normal (column 4), Persistence (column 5) and
Climatology (column 6). These results are outcomes from an averaged over 24-steps CFS optimization.
The asterisks indicate the statistical significance of the gain/loss according to the Amisano and
Giacomini test with the following significance codes for the p-value of the test: ***: p ≤ 0.01, **:
0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Skill CRPS(%)

k Best model 3-lagged series Cut-off normal Persistence Climatology

1 Q95 −1.57∗∗∗ −1.07∗∗ 59.08∗∗∗ 83.82∗∗∗
2 IQR 0.03 4.96∗∗∗ 44.84∗∗∗ 76.32∗∗∗
3 IQR 3.28∗∗∗ 14.33∗∗∗ 38.53∗∗∗ 71.77∗∗∗
4 IQR 3.59∗∗∗ 15.74∗∗∗ 33.21∗∗∗ 67.37∗∗∗
8 IQR 3.34∗∗∗ 15.86∗∗∗ 20.02∗∗∗ 52.69∗∗∗

16 IQR 2.59∗∗∗ 16.79∗∗∗ 6.80∗∗∗ 28.98∗∗∗
24 IQR 2.14∗∗∗ 17.18∗∗∗ -0.44 9.85∗∗∗

If we consider the persistence benchmark as the reference model (column 4 of Table 13), we
note that the Skill CRPS of the best model starts at 59.08% (Q95 model) and then decays to meet
approximately the performance of the persistence benchmark for the last forecast horizon. When the
climatology benchmark is used as a reference model (column 5 of Table 13), we again observe a decay
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of the skill scores, with the performance gain remaining above 9.85% for all forecast horizons (for the
IQR model).

From the results presented we conclude that this optimization method is found to produce
models (mainly the IQR model) that can substantially outperform the density forecast performance
of the widely used benchmarks (persistence, climatology) and fully parametric models such us the
cut-off normal benchmark. Moreover the gain used by including a variability index such as the (IQR)
improves considerably the performance (up to 3.59%) of a quantile regression model which uses only
autoregressive terms as explanatory variables (3-lagged series benchmark).

Finally, as for the 1-step ahead optimization case, we present some marginal calibration analysis
results by investigating how the CRPS evolves conditional to some wind power level. Table 14 presents
the marginal Skill CRPS(%) conditional to the normalized wind power being ≤0.20 or ≥0.80, for a
collection of seven forecast horizons.

Given that the normalized wind power is less or equal to 0.20, the IQR model is outperforming
all the benchmarks for forecast horizons larger than two steps ahead (except the last forecast horizon
of the persistence and climatology benchmarks). The Q05 seems to be the best performing model for
the first two steps ahead, but still cannot outperform the 3-lagged series benchmark for the first step
ahead. The second part of this table shows that, given normalized power levels greater or equal to
0.80, the SD model is the overall best model among all the others. It manages to outperform all the
benchmarks for all forecast horizons, with improvements that are also statistically significant using a
99% level of significance.

Table 14. The best performing model (according to the Marginal Skill CRPS) among the four competing
ones, and its performance gain/loss with respect to the four reference (benchmark) models, for forecast
horizon k (measured in 15 min steps). Reference models: 3-lagged series (column 3), Cut-off normal
(column 4), Persistence (column 5) and Climatology (column 6). These results are outcomes from
an averaged over 24-steps CFS optimization. The asterisks indicate the statistical significance of the
gain/loss according to the Amisano and Giacomini test with the following significance codes for the
p-value of the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Marginal Skill CRPS(%) conditional to the normalized wind power being ≤ 0.20

k Best model 3-lagged series Cut-off normal Persistence Climatology

1 Q05 −0.13 2.02∗∗∗ 59.10∗∗∗ 83.86∗∗∗
2 Q05 1.20∗∗∗ 6.87∗∗∗ 42.75∗∗∗ 75.36∗∗∗
3 IQR 3.45∗∗∗ 13.14∗∗∗ 34.89∗∗∗ 69.90∗∗∗
4 IQR 3.93∗∗∗ 15.32∗∗∗ 29.05∗∗∗ 65.13∗∗∗
8 IQR 3.81∗∗∗ 17.10∗∗∗ 15.50∗∗∗ 49.10∗∗∗

16 IQR 3.12∗∗∗ 20.06∗∗∗ 1.77∗∗∗ 22.15∗∗∗
24 IQR 2.71∗∗∗ 21.18∗∗∗ −6.61∗∗∗ −1.84∗∗∗

Marginal Skill CRPS(%) conditional to the normalized wind power being ≥ 0.80

1 SD 6.27∗∗∗ 2.68∗∗∗ 66.58∗∗∗ 93.61∗∗∗
2 SD 4.92∗∗∗ 15.18∗∗∗ 58.01∗∗∗ 91.28∗∗∗
3 SD 1.78∗∗∗ 17.60∗∗∗ 52.60∗∗∗ 89.39∗∗∗
4 SD 1.33∗∗∗ 21.38∗∗∗ 49.18∗∗∗ 87.75∗∗∗
8 SD 1.95∗∗∗ 19.73∗∗∗ 39.04∗∗∗ 81.36∗∗∗

16 SD 1.95∗∗∗ 17.89∗∗∗ 27.42∗∗∗ 68.20∗∗∗
24 SD 2.13∗∗∗ 15.75∗∗∗ 17.99∗∗∗ 54.11∗∗∗

7. Conclusions

In this paper we showed how to produce wind power quantile and density forecasts, for lead
times from 15 minutes up to six hours ahead, using three different univariate wind power series.
This was achieved by introducing innovative variability indices, which are able to capture the volatile
behaviour of the wind power series.

170



Energies 2013, 6, 662–695

We used linear (in parameters) quantile regression as our main tool for producing quantile
forecasts for 19 different quantiles, with three lagged versions of the wind power series as the main
explanatory variables. Four models were proposed, each one having as a fourth explanatory variable
one of the four extracted variability indices.

In order for the final results to be consistent, we used data from three wind farms in Denmark,
each one chosen to have different wind power variability (low, medium and high). We investigated
four years of wind power data, with a 15 min resolution, for each wind farm. The first two years
were used for estimating the parameters of the models, and the final two years for out-of-sample
forecast evaluation.

All four quantile regression models were optimized using the in-sample training data set, in order
to find their specific set of indices’ parameters, (m, n), which minimizes (i) the first lead time CFS and
(ii) the Average CFS over all forecast horizons, for each individual quantile.

Our main goal was to evaluate how well these models performed compared with the cut-off
normal, persistence and unconditional distribution (climatology) probabilistic benchmarks. It is worth
mentioning that persistence is a strong yet simple benchmark for very short forecast horizons, and
was optimized using the same cost (optimization) functions as the four regression models. The use of
a cut-off normal benchmark provided a good comparison between a fully parametric model (as the
cut-off normal model) and the non-parametric quantile regression models used in this article.

The fourth and strongest benchmark used was a quantile regression model with three lags of
the original series as explanatory variables. The comparison of the competing models with this
benchmark provides evidence of how useful our extracted variability indices are for forecasting wind
power production. The individual (out-of-sample) quantile forecasts were evaluated using the Skill
or Average Skill CFS for direct comparison between the competing models and the benchmarks. The
density forecasts of the models were evaluated using the Skill or Average Skill CRPS.

In the following we summarize the quantile and density forecasts results found using the two
different types of model optimization:

Quantile forecasting: 1-step ahead CFS optimization

• The best competing models are the Q05 and Q95 models, which outperform our best benchmark
(3-lagged series) by a maximum of 3.44% (0.95 quantile) and 4.01% (0.05 quantile), respectively.

• The largest gain in performance with respect to the best benchmark is noticed when forecasting
the quantiles which form the tails of the conditional predictive density. In addition, the Q05 model
performs better for the upper tail, and the Q95 model for the lower tail.

• The best quantile regression models for each forecast horizon manage to maintain the performance
gain with respect to the cut-off normal, persistence and climatology benchmarks above 65.73%,
53.25% and 65.63%, respectively.

Quantile forecasting: Averaged over 24-steps CFS optimization

• The SD and IQR models have the best quantile forecast performance, with similar CFS. They
manage to maintain the performance gain with respect to the best benchmark (3-lagged series)
above 1.99% for 11 out of 19 quantiles. The maximum Skill CFS is 5.95%, and is achieved by the
IQR model for the 0.20 quantile.

• The SD and IQR models maintain the performance gain with respect to the cut-off normal,
persistence and climatology benchmarks above 5.25%, 12.86% and 21.00%, respectively, for 15
out of 19 quantiles. The performance gain by using one of the two quantile models over the
persistence and climatology benchmarks is much lower (or does not exist) for predicting the
tails (0.05, 0.10,0.90, 0.95 quantiles) than for predicting the quantiles close to the median of the
conditional density.
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Density forecasting: 1-step ahead CFS optimization

• The best competing model is the SD model, which has almost equal density forecast performance
with the IQR model. It manages to outperform the best benchmark (3-lagged series) by 1.00%
(improvement which is statistically significant for a 95% significance level), for the first lead time.
All four competing models manage to outperform the cut-off normal, persistence and climatology
benchmarks by at least 0.69%, 58.04% and 84.11%, respectively, for the first lead time.

• Across all 24 forecast horizons, the average gain in forecast performance using the SD or IQR
model with respect to the best benchmark is statistically significant (using a 90% significance level)
for the first 16 forecast horizons. Moreover, these two models manage to outperform the cut-off
normal persistence and climatology benchmarks by at least 1.48%, 5.87% and 8.24%, respectively.

Density forecasting: Averaged over 24-steps CFS optimization

• The IQR model is the best competing model, and manages to outperform the best benchmark
(3-lagged series) by, on average (over all forecast horizons), 2.45%. It also outperforms the
cut-off normal, persistence and climatology benchmarks by, on average, 16.13%, 12.77% and
40.96%, respectively.

• Across all 24 forecast horizons (excluding the first two lead times), the IQR model manages to
maintain a performance gain over the best benchmark by more than 2.14%. Moreover, the noted
improvements in density forecast performance are statistically significant for 22 out of 24 forecast
horizons, for a 99% significance level.
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Abstract: Forecasting and modeling building energy profiles require tools able to discover patterns
within large amounts of collected information. Clustering is the main technique used to partition data
into groups based on internal and a priori unknown schemes inherent of the data. The adjustment
and parameterization of the whole clustering task is complex and submitted to several uncertainties,
being the similarity metric one of the first decisions to be made in order to establish how the distance
between two independent vectors must be measured. The present paper checks the effect of similarity
measures in the application of clustering for discovering representatives in cases where correlation
is supposed to be an important factor to consider, e.g., time series. This is a necessary step for the
optimized design and development of efficient clustering-based models, predictors and controllers of
time-dependent processes, e.g., building energy consumption patterns. In addition, clustered-vector
balance is proposed as a validation technique to compare clustering performances.

Keywords: clustering; time-series analysis; similarity measures; pattern discovery; building energy
modeling; cluster validity

1. Introduction

The classification and modeling of buildings’ energy behavior is a core point to improve several
emerging applications and services. For instance, the existence of databases with building energy
profiles in connection with BIM models (Building Information Modeling) points out to be a key factor
to achieve more sustainable building designs as well as more energy efficient urban development [1]
(the more accurate and realistic energy profiles are, the better building energy performance calculations
become).

A different but obviously related application area is the electricity market, which claims solutions
and proposals that bestow flexibility on it. Expected enhancements must allow to smooth the frequent
peaks and imbalances that are detrimental to all links in the energy chain, from suppliers to users [2].
Within this scope, demand or consumption habits can be abstracted by energy models that lead us to
customized, more effective and fair relationships between energy providers and customers [3,4]. As
further examples, energy use models are also found relevant to enhance the exploitation of renewable
energy sources [5], or to achieve smart grid operation enhancement [6].

In the introduced scenarios, buildings—or buildings’ energy behaviors—are usually represented
as time-based profiles or patterns to cluster. Indeed, the modeling and classification of building energy
demand and consumption becomes one of the most representative application fields with regard to
the clustering of time arranged data. As a general rule, in this scope clustering is commonly used to
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classify energy consumers [7], predict future energy demand [8,9], or detect distinguished, habitually
undesired, behaviors (i.e., outliers) [10].

In addition to the purposes referred before, the identification of building energy patterns is also
useful to provide context awareness capabilities to home and building control systems. Actually, the
present work is motivated by the search of reliability and accuracy in the design of clustering-based
controllers, models and predictors that operate with time-related information, which play a very
important role in the fields of home and building automation, e.g., [11,12]. The selection of the building
energy case is due to the wide scope of its application and the fact that the presented experiments could
also be conducted with publicly available data.

Therefore, looking for the improvement of clustering-based applications, this paper develops
a novel cluster validation method—clustered-vector balance—to be the basis of sensitivity analysis
for the adjustment of clustering parameters, metrics and algorithms. The selected parameter under
test is the similarity measure used to establish resemblance between two isolated samples, as it is a
determining factor to assume in time series clustering. Since cluster validity methods also use similarity
measures to check clustering solutions, the undertaken task is submitted to bias and uncertainty. The
conducted experiments try to cope with such a problem performing a set of tests where similarity
distances for clustering, as well as for evaluation and validation, are repeatedly switched. In addition
to cluster-vector balance, classic cluster validity techniques are also utilized, as well as evaluations
using non-clustered data. The cross comparisons let us infer some hypothesis related to the usage of the
selected similarity measures for model discovery in univariate time series clustering.

2. Embedding Clustering in Real Applications

The application of clustering or cluster analysis usually covers one or more of the following aims:
data reduction, hypothesis generation, hypothesis testing or prediction based on groups [13]. Indeed, the
problem scenario that clustering has to face can take thousands of different shapes, but they usually
share a common problem description: given a certain amount of input data vectors, characterized by a
set of features or variables, an unsupervised knowledge abstraction of the data is required in order to
allow its classification and representation.

It means that we always begin from certain ignorance concerning how the available or potential
set of data can be internally arranged or structured. On the other hand, clustering adjustment and
parametrization demand a deep understanding of the problem nature and domain in order to overcome
several significant uncertainties [14]. Otherwise, the blind application of clustering techniques leads to
trivial, erroneous or inefficient solutions. Therefore, the more previous knowledge about the nature of
data exists, the better the clustering solution will be. As you can see, it entails a certain circularity that
emphasizes the complex background of clustering.

There are several works intended to support the design of clustering-based applications (e.g., [15]).
In addition, it is rather common that the continuous refinement of such applications leads practitioners
to progressively reach some better knowledge of the data nature, being hypothesis generation an almost
unavoidable companion in the careful design of clustering-based processes.

Some of the difficulties or uncertainties to face in the clustering task involve the selection and
adjustment of clustering criteria, clustering algorithms, initial number of clusters, the most suitable
features, outlier definition and handling, proximity measures, validation techniques, etc. Among
them, a basic question remains in the proximity measure, i.e., similarity or resemblance between two
independent vectors. Euclidean distance is de facto the most applied similarity metric and usually
appropriate for applications that do not present directly or necessarily correlation among distinct
features. However, time series clustering deploys vectors where the information are time arranged,
thus considering correlation in the similarity measures points out to be suitable, or better, even leading
to more accurate solutions.
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3. Clustering for Pattern Discovery in Time Series

The task of clustering time series for pattern discovery has the aim to find out a set of model
profiles or patterns that represent as faithfully as possible the original data set, in a way that every
independent vector of this original data can be considered as one of the models submitted to acceptable
deviations or drifts, or an outlier at the most.

The difference between time series and normal clustering is that, in the time series case, the shape
of input vectors entails features that are arranged in time. Hence, in univariate time series an input
vector is usually the succession of values that a certain variable takes throughout a specific time scope.

Clustering time series is usually tackled twofold: (a) feature-based or model-based, i.e., previously
summarizing or transforming raw data by means of feature extraction or parametric models, e.g.,
dynamic regression, ARIMA, neural networks [16]; so the problem is moved to a space where clustering
works more easily; (b) raw-data-based, where clustering is directly applied over time series vectors
without any space-transformation previous to the clustering phase. Several works concerning each
kind of time series clustering are referred to in detail in [17].

Beyond the obvious loss of information due to feature-based or model-based techniques, they can
also present additional drawbacks; for instance, the application-dependence of the feature selection,
or problems associated to parametric modeling. On the other hand, characteristic drawbacks of
raw-data-based approaches are: working with high-dimensional spaces (curse of dimensionality [18]), and
being sensitive to noisy input data.

In any case, we focus on the raw-data-based option for two reasons: (1) conclusions and hypothesis
can be more easily generalized for other behaviour modeling applications (e.g., individual or
community profiles for energy, occupancy, comfort temperature, etc.); (2) this is the best option
to clearly analyze correlated data in clustering. Indeed, selecting the correct distance measure able to
evaluate correlation is the main difficulty in this kind of time series clustering.

4. Similarity Measures

We consider similarity as the measure that establishes an absolute value of resemblance between
two vectors, in principle isolated from the rest of the vectors and without assessing the location inside
the solution space.

Considering continuous features, the most common metric is the Euclidean distance:
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Note that Euclidean distance is invariant when dealing with changes in the order that time
fields/features are presented; it means that it is in principle blind to capture vector or feature correlation.
For time series data comparison, where trends and evolutions are intended to be evaluated, or when the
shape formed by the ordered succession of features (i.e., the envelope) is relevant, similarity measures
based on Pearson’s correlation:
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have also been widely utilized, although it is not free of distortions or problems [19].
Mahalanobis distance,

dM(
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′

(3)

can be seen as an evolution of the Euclidean distance that takes into account data correlation. It utilizes
the covariance matrix of input vectors C for weighting the features. Mahalanobis distance usually
performs successfully with large data sets with reduced features, otherwise undesirable redundancies
tend to distort the results [20].
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An interesting measure specially addressed to time series comparison is the Dynamic Time
Warping (DTW) distance [21]. This measure allows a non-linear mapping of two vectors by minimizing
the distance between them. It can be used for vectors of different lengths:

→
x = x1, ..., xi, ..., xn and→

y = y1, ..., yj, ..., ym. The metric establishes an n-by-m cost matrix C which contains the distances (usually
Euclidean) between two points xi and yj. A warping path W = w1, w2, ..., wK, where max(m, n) ≤ K <

m + n − 1, is formed by a set of matrix components, respecting the next rules:

• Boundary condition: w1 = C(1, 1) and wK = C(n, m);
• Monotonicity condition: given wk = C(a, b) and wk−1 = C(a′, b′), a ≥ a′ and b ≥ b′;
• Step size condition: given wk = C(a, b) and wk−1 = C(a′, b′), a − a′ ≤ 1 and b − b′ ≤ 1.

There are many paths that accomplish the introduced conditions; among them, the one that
minimizes the warping cost is considered the DTW distance:

dW(
→
x ,

→
y ) = min

⎛⎝
√√√√ K

∑
k=1

wk

⎞⎠ (4)

The main drawback of the measure remains in the effort dedicated to the calculation of the path
of minimal cost, in addition to the fact that, actually, it cannot be considered as a metric, i.e., it does not
accomplish the triangular inequality.

In the current work, we focus on these four general-purpose popular distances, in spite of the
fact that there exist many additional similarity measures. A survey of distance metrics for time series
clustering can be found in [17]. Other noteworthy options are the cosine measure [22], which is good for
patterns with different or variable size or length; or Jaccard and Tanimoto similarity measures, that can
also be intuitively understood as a combination of Euclidean distances and correlations assessed by
means of the inner product [23].

5. Cluster Validation

We can say that the validation of the results obtained by a clustering algorithm tries to give us a
measure about the level of success and correctness reached by the algorithm. Here, we differentiate
two ways of checking clustering solutions:

• On one hand, we have cluster validity or clustering validation methods, which try to evaluate results
according to mathematical analysis and direct observation of solutions based on the inherent
characteristics owned by the input data set. In a way of speaking, it consists of idealistic analysis
methods as they focus on the definition given to a cluster irrespective of the reason that lead us to
deploy clustering (i.e., the final application);

• On the other hand, sometimes clustering solutions can be benchmarked and checked directly by
the application or an environment that simulates the application (entitled clustering evaluation).
It is a practical (or engineering) approach, which mainly covers application-based tests. Here,
generalizations are riskier; note that we carry corruption and deformations introduced by the
application, the boundary conditions and the specific data used for testing.

In both cases, the value of such quantitative measures is always relative, it means that they “are
only tools at the disposal of the experts in order to evaluate the resulting clustering” [13].

With regard to clustering validation, three different kinds of criteria are usually considered:
external criteria, evaluations of how the solution matches a pre-defined structure based on a previous
intuition concerning the data nature (e.g., the adjusted Rand index [24]); internal criteria, which
evaluate the solution only considering the quantities and relationships of the vectors of the data set
(e.g., proximity matrix); and relative criteria, carried out comparing clustering solutions where one or
more parameters have been modified (e.g., cluster silhouettes [25]).
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In [26], some of these validation methods are introduced, concluding that they usually work
better when dealing with compact clusters. This reasoning yields an interesting point that remarks the
uncertainty also related to cluster validity; i.e., as it happens with clustering that usually imposes a
structure on the input data, cluster validation methods also impose a rigid definition of what a good
cluster is and develop their assessments according to this particular definition.

Uncertainties, commitments and discussions also appear concerning the foundations of the cluster
validity measures, as they must fix some essential concepts. To refer some examples: how clusters
must be represented, how to calculate the distance between two clusters, how to calculate the distance
between a point and a cluster, or even which kind of metric must be used for the distance measurement.
Beyond these aspects, there exists lot of work that compares clustering solutions by distinct techniques.
To give some instances: in [27] clustering methods are benchmarked utilizing Log Likelihood and
classification accuracy criteria. In [28], popular algorithms are analyzed from three different viewpoints:
clustering criteria, or the definition of similarity; cluster representation and algorithm framework, which
stands for the time complexity, the required parameters and the techniques of preprocessing. In [29]
the criteria are mentioned “stability (Does the clustering change only modestly as the system undergoes
modest updating?), authoritativeness (Does the clustering reasonably approximate the structure an
authority provides?) and extremity of cluster distribution (Does the clustering avoid huge clusters and
many very small clusters?)”.

6. Clustered-Vector Balance

In this paper, we start on the definition of clustering provided by [30], i.e., a group or cluster
can be defined as a dense region of objects or elements surrounded by a region of low density. From
here, a consequent step is to consider that any output group can be represented by a model individual
(existent or nonexistent), which usually will correspond to the gravity center of the respective cluster,
named centroid, discovered pattern, representative or model.

Our intended applications mainly use clustering for pattern or representative discovery, so we
find suitable validity methods that focus on representativeness or give an important role to the
representatives [31]. Therefore, we have developed a validity measure called clustered-vector balance (or
simply vector balance) based on the clustering balance measurement introduced in [32]. The clustering
balance measurement finds the ideal clustering solution when “intra-cluster similarity is maximized
and inter-cluster similarity is minimized”. In order to extend the comparison to partitioning clustering
with other parameters under test in addition to the number of clusters, we introduce substantial
modifications to the original equations.

In the clustered-vector balance validation technique, every solution is expressed by a representative
clustered-vector, which takes Λv and Γv (intra-cluster and inter-cluster average distance per vector) as
component values (Figure 1). The expressions for Λv and Γv rest as follows:

Λv =
1
n

k

∑
j=1

nj

∑
i=1

e(p(j)
i , p(j)

0 ) (5)

Figure 1. Symbol for a representative clustered-vector. The short segment with the concave arc
stands for the average intra-cluster distance, the long segment with the convex arc for the average
inter-cluster distance.
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where n is the total number of input vectors, nj stands for the vectors embraced in cluster j and k is the

number of clusters. p(j)
i refers to the input vector i that belongs to cluster j, whereas p(j)

0 is the centroid

or representative of cluster j. e(
→
x ,

→
y ) stands for the error function or distance between the vectors

→
x

and
→
y . Note that the subindex v denotes the postscript “per vector”.
The main differences with respect to [32] remain in the definition of Γ, which now is not related

to the distance to an hypothetical global centroid, but to the distances among centroids, individually
weighted according to each cluster population. In addition, Λ and Γ are now expressed in connection
with a single, representative vector for the whole solution, and this makes both magnitudes comparable.
Therefore, Λv is the average distance between a clustered vector and its centroid, whereas Γv is the
average distance between a clustered vector to other clusters (more specifically, to other centroids).

Directly relating Λv and Γv can lead to doubtful, meaningless absolute indexes. In [32], authors
introduce an α weighting factor to achieve a commitment between Λ and Γ. The parameter seems to
be arbitrarily defined just to relate to both indexes, being adjusted to 1/2 by default without providing
an appropriate discussion. In our case, we can obviously expect that the best solutions will tend to
show lower Λv and higher Γv, but the relationships among both values, their possible increments
and the performance evaluation are not linear and have a high scenario-dependence. Since we lack
a priori additional knowledge, the final clustered-vector balance index is proposed to be obtained
by relating Λv and Γv using a previous Z-score transformation (i.e., z = x−μ

σ ). Means and standard
deviations of both Λv and Γv are obtained considering the total set of solutions to compare. Finally,
the best solution maximizes:

Ev(X ) = Γvz − Λvz (7)

We no longer require α. However, we can consciously add it again if we have a previous biased
opinion with respect to what a good clustering solution is according to the final application, i.e., whether
we want to favor solutions where clusters are compact or we prefer that they are as different/far as
possible. Hence it would remain:

Ev(X ) = αΓvz − (1 − α)Λvz (8)

7. Experiments

The conducted experiments have two main objectives:

• To check clustered-vector balance as a clustering validity algorithm by means of comparisons with
other relative clustering validity criteria;

• To obtain a precedent for the selection of the most appropriate similarity metric for our application
case—building energy consumption pattern discovery—which is a significant use case of time
series clustering.

To do that, real cases are clustered using different similarity distances. Later on, each clustering
solution is validated by means of different validation techniques (the similarity measure of the validation
algorithm is switched as well). In addition, test vectors (selected at random and not processed by
the clustering tool) are utilized to evaluate the representativeness of the main patterns of the cluster
or centroids, measuring the average distance between the test vectors included in a cluster and the
representative of the respective cluster [Equation (9)]. The evaluation also uses all of the diverse
similarity distances under test.

V =
1
m

k

∑
j=1

mj

∑
i=1

e(q(j)
i , p(j)

0 ) (9)
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m is the total number of vectors put aside for evaluation, mj stands for the vectors embraced in cluster j.

q(j)
i refers to the evaluation vector i that belongs to cluster j. The membership of the evaluation vectors

is established according to the proximity to the found patterns p0. e represents the distance used for
evaluation.

In the trivial situation that all similarity measures affect the clustering solution in the same way, or
in the hypothetical case that each distance is the most successful at finding a clustering solution with
specific characteristics, we should expect that clustering carried out using a specific distance obtains
the best results when the same distance has been used for validations or evaluations. Otherwise, we
will have arguments to establish better and worse similarity measures for our specific application case.

7.1. Database

For the experiments, information concerning energy consumption of five university buildings has
been collected. The buildings are located in Barcelona, Spain, and data cover hourly consumption from
29 August 2011 to 1 January 2012. Data is publicly available in (http://www.upc.edu/sirena). The
selected buildings belong to the “Campus Nord”, they are: “Edifici A1”, “Edifici A4” and “Edifici A5”
(university classrooms and laboratories), “Biblioteca” (a library) and “Rectorat” (an office building for
administration and rectorship). In Table 1 and Figures 4–6, B1, B2, B3, B4 and B5 identify the presented
buildings in the introduced order. The usable spaces of the buildings have the following dimensions:
B1, 3966.59 m2; B2, 3794.95 m2; B3, 3886.12 m2; B4, 6644.4 m2; B5, 5927.21 m2.

Each building presents 124 days of information, 100 days taken for training and for the cluster
validity analysis, and 24 days employed in the evaluation. Input vectors are time series with 24-fields
of hourly information concerning the energy consumption in kWh (Figure 2).

Figure 2. Example of three consecutive consumption days (“Rectorat”).

Analysis prior to the clustering processes confirms notable data correlations in all the buildings.
Table 1 displays, for each building, statistical data concerning correlation. Taking a daily profile at
random, the values of the table show the number of other daily profiles of the same database with
which the selected profile will present a Pearson’s correlation index higher than 0.8 on average.
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Table 1. Given a building, evaluation of the number of daily profiles (x ± σx) that keep c ≥ 0.8
(Pearson’s correlation index) with a daily profile selected at random.

B1 B2 B3 B4 B5

28.0 ± 22.3 31.2 ± 23.0 20.6 ± 15.9 81.6 ± 36.1 47.0 ± 18.1

7.2. Tests and Parameters

The similarity measures under test have been explained in Section 4, they are: (a) Euclidean
distance, (b) Mahalanobis distance, (c) distance based on Pearson’s correlation and (d) DTW distance.
In the first step, the training data is processed by a Fuzzy clustering module that uses the FCM
algorithm to compute clusters. As referred to above, the FCM algorithm uses the four distance
measures to state vector proximity. In each case, the initial number of clusters has been fixed according
to clustering balance and Mountain Visualization [33], as well as maintaining the final scenario purposes
(i.e., allowing a maximum of 8 energy consumption models).

Since all features correspond to the same phenomenon (electricity consumption), normalization
is not carried out feature by feature, but based on the mean μ and standard deviation σ of the whole
dataset (i.e., a simple uniform scaling). Failing to ensure that all features move within similar ranges
has been addressed as a problem for similarity measures like Euclidean distance, as “features with
large values will have a larger influence than those with small values” [34]. In any case, for univariate
time series we are confident that the multi-dimensional input space is not distorted and the relationship
among features keep the same shape and proportionality.

The clustering solutions are validated using: (a) clustering balance with α = 1/2 [32],
(b) clustered-vector balance (Section 6), (c) Dunn’s index [35], (d) Davies–Bouldin index [36],
and evaluated by means of (e) Equation (9), which checks how representative discovered patterns
are by means of data separated for testing.

Therefore, the test process results in: 5 builds.× 4 clust.(metrics)× 4 indices× 4 index(metrics) =
320 validations/evaluations. With all the obtained outcomes the next comparisons are carried out: (a)
best clustering solution (best validation), (b) best evaluation, (c) soundness of validation algorithms,
and (d) best independent clusters.

The last point refers to the capability of finding good clusters (i.e., dense, regular high similarity)
irrespective of the global solution. The best clusters obtain minimum values in the next fitness function:

f j = (1 − mj)× Λj (10)

where mj stands for the membership or amount of population embraced by cluster j (0: none; 1: all
input samples) and Λj for the intra-similarity of cluster j. Clusters must overcome a membership
threshold to be taken into account (mj ≥ 0.08, i.e., at least 8% of total population). This limit is a
trade-off value established according to the application purposes, which requires a minimum level of
representativeness for the discovered patterns.

8. Results

The high number of generated indices leads us to condense results in a meaningful way in some
figures and tables. We discuss the obtained findings in separated points.

8.1. Characteristics of the Scenario Under Test

Experiments face quite a demanding scenario where to identify clear clusters is not an easy task
and the selection of the similarity measure affects the shape of obtained models. It is obvious when
the solution patterns are compared, e.g., Figure 3 shows the representative pattern corresponding to a
specific discovered cluster according to every one of the clustering solutions in the case of building
“Edifici A1”. Note that patterns are similar in shape, but different enough to have a relevant influence
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in subsequent applications. For instance, a control system that uses the predicted patterns to adjust the
supply of energy sources in advance would perform differently in each case, resulting in distinct levels
of costs and resource optimization. Moreover, the patterns displayed in the figure represent a different
percentage of the input population (Euclidean: 17%, Mahalanobis: 20%, Correlation: 13%, DTW: 24%).

In addition, the demanding nature of the problem is also noticeable in the disagreement detected
by the validation techniques (see next point).

Figure 3. Representative pattern of a specific cluster for building “Edifici A1” according to every
clustering solution: using Euclidean (blue circles), Mahalanobis (red squares), based on Pearson’s
Correlation (green triangles) and DTW (yellow diamonds) similarity metrics.

8.2. Best Validation and Best Evaluation

To establish which similarity measure involves the best clustering performances, we must check
all the tests together but separate validation from evaluation due to the different nature with which they
approach the assessment task (see above).

For the evaluation, we use four different validity methods. In order to gain an overall, joined
perspective of the obtained results and indices, we ensure that they (validity methods) assign points to
the similarity distance that they consider the best for every conducted test for every test, each validity
method gives 1/4 points). For example, in building “Rectorat” (B5), in the test where validity methods
deploy DTW distance for validation last test in Figure 4), Dunn’s index and clustered-vector balance
index find that the Euclidean metric is the best, whereas Davies–Bouldin’ index bets for Mahalanobis
metric, and finally, clustering balance supports the solution based on the DTW distance. Hence, in this
example the Euclidean metric gains 1/2 = 1/4 + 1/4 points, Mahalanobis metric 1/4, DTW distance
also 1/4 and 0 for Correlation. This way of summarizing results leads to Figure 4. In the figure, tests
are ordered from the building “Edifici A1” (B1) to the building “Rectorat” (B5), and starting with
Euclidean metric for validation (left area), and finishing with DTW measure for validation (right area).
In every test, the clustering solutions using the four different similarity measures are compared and
points are given as described above.

What Figure 4 displays is that validity methods are prone to consider clustering solutions based
on Euclidean metric as the best, irrespective of the measure used for validation. Moreover, note that
the coincidence between the distance for clustering and the distance for validation has no significant
influence in the assessments.
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Figure 4. Joined assessment carried out by clustering validity methods.

The case of validation is analogously checked, but here only Equation (9) is used for the
assessments. Results are shown in Figure 5. Using data put aside for testing, evaluation reveals
that DTW and Euclidean distances compete for the best scoring as measure of similarity for clustering,
whereas Mahalanobis and Correlation metrics always perform worse. Curiously enough, DTW
distance obtains the worst records in the validation analysis; this issue is dealt with later when validity
methods are compared.

Figure 5. Assessment carried out using data saved for testing.

In short, as far as distances for clustering are compared, validation analysis set Euclidean as
the best metric for time series clustering, whereas evaluation tests favor both DTW and Euclidean
similarity distances.
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8.3. Validation Algorithms

To review validation algorithms is not an easy task, note that the purpose here is to audit the
performance of algorithms that are usually used for checking. In any case, we can reach some
conclusions comparing their results to one another as well as looking at the evaluation outcomes.
Table 2 displays the trends that validity techniques show when comparing clustering solutions that use
different similarity measures. Considering all the tests together, the Mode represents the most typical
position taken by the clustering solution that uses the marked distance, standing “1st” for the best
evaluation and “4th” for the worst. The Mean contributes to the assessment and gives an impression
about how stable the typical scoring is. Therefore, the next points can be reasoned from Table 2:

Table 2. Validity techniques evaluations, statistical Mode and Mean.

Dunn D-Boul. Clust.b. Vect.b.

Mode – Mean Mode – Mean Mode – Mean Mode – Mean

Clustering (Euclidean) 1st – 1.4 1st – 1.6 1st – 1.8 1st – 1.3
Clustering (Mahalanobis) 2nd – 2.3 3rd – 2.1 4th – 2.9 4th – 3.2
Clustering (Correlation) 3rd – 2.5 3rd – 2.5 4th – 3.0 4th – 3.2
Clustering (DTW) 4th – 3.9 4th – 3.9 3rd – 2.4 2nd – 2.4

• All methods are in agreement over the measure that achieves the best clustering in general terms,
i.e., Euclidean metric;

• Later on, two groups appear:

– Group 1: Dunn’s and David–Bouldin’s indices usually scorn solutions based on DTW
distance and put it in the worst place, finding that Mahalanobis and Correlation metrics
are more suitable for the intended clustering;

– Group 2: Otherwise, clustering balance and cluster-vector balance give credibility to the
DTW distance, placing it before Mahalanobis and Correlation.

The validation tests favors the assessments given by Group 2, so we have arguments to believe that
clustering balance and clustered-vector balance are techniques more appropriate to evaluate time
series clustering solutions, at least for the current application case. If we look again at Table 2 and
compare these two techniques with each other, vector balance seems to be more stable judging distance
measures, whereas result comparisons of clustering balance are more variable and case-dependent.
In short, there are three factors that opt for clustered-vector balance instead of clustering balance:
clustered-vector balance (1) shows higher coincidence with the rest of validity methods, (2) is more
stable in the assessments and (3) matches the validation test outcomes better.

Now it is possible to clarify why DTW distance gained such a low score in validation tests, in
part due to the rejection of Dunn’s and David–Bouldin’s indices, but also because of the fact that,
although usually showing a very little difference in the evaluations, clustered-vector balance rarely
places DTW-based clustering before Euclidean-based (note that in Figures 4 and 5 only the 1st solution
obtains points; the 2nd, 3rd and 4th solutions gain no points).

8.4. Best Independent Clusters

Grouping all the clusters generated by the diverse clustering solutions together, the three best
clusters according to Equation (10) are highlighted. Again a competition among similarity measures
is carried out, and results are displayed in Figure 6. Here, results show no evidence to state that a
specific distance measure obtains better compact clusters as a general rule. Again, the type of distance
for validation does not significantly affect this measure (except for perhaps the case of Euclidean
clustering); instead, the specific case (building) exerts a decisive influence for the selection of the
measure to discover compact clusters (low internal dissimilarity). In any case, although results are not
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discriminative, it is at least worth considering the advantage of DTW and Correlation distances, and
the fact that Euclidean metrics receives the lowest results in this aspect.

Figure 6. Comparison of the capability to discover the best individual clusters.

9. Discussion

In short, the developed experiments place Euclidean distance as the best similarity metric to
obtain good general solutions in raw-data-based time series clustering. In other words, using Euclidean
distance as a similarity metric, the best trade-off, balance solutions are obtained, as it is the most
appropriate option to deal with the input space as a whole. Therefore, we hypothesize that Euclidean
distance actually considers data correlation in an indirect and fair enough way, suitable for the general
clustering solution.

The weights that Mahalanobis provides in the measures in order to favor the appraisal of
correlations also introduces a questionable distortion in the input space that causes loss of information
or structure and can be even seen as an unnecessary redundancy. On the other hand, distances based
on Pearson’s correlation, intended to indicate the strength of linear relationships, have trouble correctly
interpreting the distribution and relationship of vectors that present low similarity, in addition to being
more sensible facing outliers, whether they are vectors or feature values. In the end, Mahalanobis
and normal correlation seem to perform well the detection of certain nuclei, but have more problems
dealing with intermediate vectors, i.e., the background clouds of vectors with low, variable density. In
short, we can consider that these two metrics are biased to find a specific sort of relationship, losing
capabilities to manage the space as a whole.

DTW distance deserves a special mention as it has been the most successful in the evaluation test
and in finding the best clusters. We can expect that in related prediction applications it performs as
good as the Euclidean distance and sometimes even better. If both similarity measures are compared
based on the conducted test, the reasons for the different performances can be inferred (Figure 7 shows
an example of discovered patterns and embraced input clusters for both clustering solutions, using
DTW and Euclidean similarity measures).
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On one hand, using DTW distance for clustering also entails a deformation of the input space
in order to better capture the representative nuclei. It ensures that the clusters’ gravity centers move
toward areas where high-correlated samples (or parts of the samples) are better represented, sacrificing
capabilities to represent or embrace samples that do not show such high-correlation or coincidence.
But, compared with Mahalanobis or Correlation distances, the induced deformation is more respectful
with the overall shape or structure that forms the input samples all together. Figure 7 is a good example
to check Euclidean clustering, not only compared with DTW, but with all the considered measures
that somehow estimate correlation (where DTW has proved to be the most suitable). At first sight, to
visually compare between the two clustering solutions is not easy, both seem to capture the essential
patterns with minimum variation. DTW distance favors samples that show parts that really match
one another, being more lax if the rest of the curve does not fit such coincidence. This can be seen in
Figure 7. Note that, as a general rule, the DTW solution shows more dark zones (curves are closer)
as a result of the obsession to find correlated parts. The two equivalent patterns labeled “3a" and
“3b" are a good example to assess this phenomenon. Here, in the DTW case, the effort made to fix
the high-correlated first part of the profile is significantly spoiled by the less-coincidental last part
of the profile. Otherwise, the group found by the Euclidean solution may display a better trade-off,
balanced solution.

In short, and according to the test results, the DTW distance usually better defines the important
clusters, losing representativeness in the less correlated ones; otherwise, Euclidean metric could result
in main cluster representatives that are not so good, but better in order to define the lower-density
ones and to summarize the input space as a whole.

Finally, even though a priori computer resources are not a limiting factor in the introduced
application case, the time required by the clustering process in every one of the tested configurations
is worthy of consideration. Only by changing the similarity measure, the required time by the
clustering task shows a different order of magnitude: Euclidean similarity takes hundredths of seconds
(0.0Xs); Mahalanobis metric, tenths (0.Xs); Correlation needs seconds (Xs); and DTW distance, tens of
seconds (X0s). These values must not be taken as absolute measures, but only to compare clustering
performances with one another. Please, note that the processing time depends on the machine used
for computation.
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Figure 7. Patterns discovered using DTW and Euclidean measures in “Rectorat” building, and
embraced samples.

10. Conclusions

The present paper has introduced and successfully tested clustered-vector balance, a validation
measure for comparing clustering solutions based on clustering balance foundations. This technique
is not only useful to improve the adjustment and selection of parameters, algorithms and tools for
clustering, but also useful to provide information about the reliability of models obtained from
clustering, improving context awareness of predictors and controllers.

On the other hand, popular similarity distances—Euclidean, Mahalanobis, Pearson’s correlation
distance and DTW—are compared in a time series clustering scenario related to building energy
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consumption. Although data show strong correlations among vectors and also among features,
Euclidean distance is the measure that obtains the best, balanced general solutions. However, DTW
distance can be considered as an improved alternative in applications that make the most of a better
representation of the high-similar nuclei (or parts of the samples), and where losing capabilities
to capture and average the not-so-similar samples is not a critic factor. In short, unlike classic
considerations, we hypothesize that only a strong correlation in time series clustering does not justify
the use of similarity distances that consider data correlation rather than the Euclidean metric.

Seeking for the implementation of accurate controllers and predictors, part of the current ongoing
work consists of checking metrics after outlier removal. Here, an outlier is seen as an element that
pertains to a group of non-grouped samples or background vectors. Therefore, annoying elements
are temporarily removed in order to get a clearer classification. Later on, outliers are relocated in
the solution space, identified as background noise or just definitively removed. The definition of
outlier itself is a confusing issue. Dealing with outliers entails additional uncertainties and trade-off
decisions and also requires improvements in the validation techniques to evaluate the distinct
possible performances.
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Abstract: Short-term load forecasting (STLF) in buildings differs from its broader counterpart
in that the load to be predicted does not seem to be stationary, seasonal and regular but, on
the contrary, it may be subject to sudden changes and variations on its consumption behaviour.
Classical STLF methods do not react fast enough to these perturbations (i.e., they are not robust) and
the literature on building STLF has not yet explored this area. Hereby, we evaluate a well-known
post-processing method (Learning Window Reinitialization) applied to two broadly-used STLF
algorithms (Autoregressive Model and Support Vector Machines) in buildings to check their
adaptability and robustness. We have tested the proposed method with real-world data and our
results state that this methodology is especially suited for buildings with non-regular consumption
profiles, as classical STLF methods are enough to model regular-profiled ones.

Keywords: short term load forecasting; artificial intelligence; statistical methods

1. Introduction

Load forecasting is an essential part of the scheduling, management and operation of a power
system. Since electrical energy cannot be stored, it is important to deliver an accurate prediction in
order to avoid dispatch problems due to unexpected loads. Moreover, energy market stakeholders
also require trustworthy information in order to be more competitive when purchasing electricity.
In addition, the use of the data recorded in smart-meters and software tools may help prevent demand
peaks in a reliable and efficient fashion.

Short-term load forecasting (STLF) is the prediction of energy demand in a time-span ranging
from minutes to several days, being crucial for several smart grid applications. As discussed above,
it is important for the economic and secure operation of power grids, but several factors should be
considered as well. For instance, the publication of the energy consumption and its conversion to
equivalent CO2 emissions decreases the load that affects future predictions due to its influence on
social consciousness. Moreover, it also helps the energy retailer in order to negotiate a better price.
In the end, an accurate forecast results in higher savings while helping to maintain the security of
the grid.

There exists a large bibliography on STLF (see [1–3] for a comprehensive survey). Most of
the methods used can be divided into two main groups depending on the strategy followed:
Statistical Methods, which estimate the present value of a given variable depending on the values
in the past (i.e., consumption records [2,4,5]), and Artificial Intelligence methods, which have been
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applied successfully to a wide variety of real-world applications, demonstrating their ability to learn
the relationships between input and output variables. Moreover, the later have been proven to be
ideal when dealing with risk and uncertainty (the main aspects behind prediction). This approach,
however, involves the need of an expert whose knowledge can be incorporated into the system capable
of making accurate forecasts. The most popular algorithms, according to their efficiency, are Support
Vector Machines (SVM) [6,7] and Neural Networks (NN) [8,9]. Note that in this paper we will only use
SVM since we have not been able to replicate the results from the literature involving NNs. Moreover,
our tests have proven that NNs are slower and do not obtain better results than other techniques
(see for example [10]).

Despite the accuracy they provide on forecasting, Artificial Intelligence methods suffer from a
great number of disadvantages such as difficult parametrisation, non-obvious selection of variables and
the requirement of more historical data to learn than any of the Statistical Methods [2]. Furthermore,
they rely on a tedious trial-and-error process to tune them up properly.

This paper focuses on building STLF, a particular case dealing with issuing day-ahead energy
consumption predictions in non-residential buildings such as schools, universities, public buildings
or companies’ facilities. The ideal to reach is the so-called zero energy building, (i.e., any construction
presenting annually zero net energy consumption and carbon emissions), and, with this objective in
mind, there are a number of technologies that must be integrated:

• Weatherproofing, insulation and automatic HVAC (heating, ventilation, and air conditioning).
• Energy re-utilisation (as in co- or tri-generation).
• Use of renewable energy sources and energy storage systems.
• Demand response controllers attached to the HVAC and other loads.

Clearly, STLF is crucial in the last two points. Indeed, maximising the efficiency of the demand
response controller requires an accurate forecast for both energy consumption and energy generation
(as well as a reliable storage controller).

This branch presents different features. For instance, in normal country-wide STLF,
the non-linearity of the load becomes smoothed: expected consumption that does not take place
is compensated by non-expected consumption that does (i.e., the consumption curve tends to be
seasonal and regular). In contrast, the load profile of a building is more chaotic coinciding with
the times it is used. Hence, there is no consumption at night (or it is negligible) and there exists a
notable difference between idle and active times. Furthermore, some of these buildings are not yet
fully-automated: either the HVAC is manually controlled or it is switched on and off remotely, issues
that affect greatly on energy consumption. Another critical aspect is that there is usually scarce (if any)
historical data on hourly load and the load profile is sure to vary and evolve over time (just think of
the gadgets an office used to have ten years ago compared with nowadays fully-equipped on-line
ones). This makes it very difficult to extract the trend component and/or use forecasting methods that
need long learning windows (such as ARIMA and their derivatives).

While operating in real environment, it is vital that the forecasting method adapts to changing
conditions. If the system cannot react to these changes, the predictions obtained from the system will
fail. In order to achieve an optimal prediction, we need a method that evolves over time and is not
subject to fixed laws so as to conform to recent data. This is the reason that explains why some models
present very good records in a certain situation but fail in others. Meta-learning models address this
issue: they belong to a well-established procedure for improving forecasting accuracy [11] and have
already been applied in other disciplines (see [12] for a broad survey).

Analysing the buildings’ electricity consumption series, we can observe the presence of atypical
values that digress from the typical model. They significantly degrade the accuracy of conventional
day-ahead estimation even if they appear in a reduced number. These atypical values present
two natures:
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New Pattern: Some days show a different consumption pattern due to reasons of diverse nature
(e.g., long weekends, sport events, election polls, strikes, etc.). In the end, the load of these days
consists of a new day-type on its own (see Section 3 for more details) and it should be removed from
the learning set or classified beforehand.
Scaled Pattern: On the other hand, some days follow profiles similar to those from existing day-types
but scaled down or up. Again, these changes can be due to diverse causes (e.g., sudden weather
changes, long weekends, special events, works, etc.). The load in these days does not consist of a new
day-type but can be just an extreme statistical fluctuation or simply represent an underline change
in the building (such as new equipment) that may be extended along the time. In the first case, there
should be no action, but in the second one, the learning window should be restarted.

Thus, the data series should be treated in a robust way, namely, the forecasting method should
recognise these atypical values and treat them accordingly in order to avoid burst errors that worsen
the overall forecast.

Against this background, we present here a comparison of several robust methods based on
threshold values over the errors. We aim at assessing them in order to evaluate whether they can
correctly distinguish between the two types of anomalies explained above and fulfil the premises
required by a robust algorithm.

The remainder of the paper is organised as follows. Section 2 discusses the related work. Section 3
presents the different algorithms used in the prediction, the features of the used datasets, an explanation
of the method and its validation. Section 4 describes the datasets used. Section 5 details the tests and
comments the obtained results. Finally, Section 6 summarises our contribution and draws the avenues
of future works.

2. Related Work

As previously mentioned, there exists a remarkable work on STLF but, comparatively, not so
much related to buildings and the use of meta-learning to provide an appropriate solution in this scope.
We have previously researched on this field [13]. Nevertheless, it was not focused on the robustness of
the prediction but on the evaluation of model combination and other model-selection methods.

STLF in buildings provides a whole new overview on the paradigm, giving way to several
important works such as using a SVM to predict the load of a building complex [14,15], where a
NN is tuned up by Automatic Relevance Determination in order to optimise the selected input. In
addition, [8] used the temperature data in a feedback NN obtaining a remarkable Mean Absolute
Percentage Error (MAPE) of 1.945% (Section 4.3 details the mathematical definition of this type of
error measure), but this result was obtained measuring only a single week in a whole year, which is
not statistically representative. Finally, all artificial intelligence methods waste most of their efforts in
modelling non-linear behaviour of the work calendar [16,17].

In the case of meta-models for normal STLF, research has taken two main directions. The first
uses a meta-heuristic to calculate the best set of parameters of a SVM or a NN [18–20], but these
works suffer from the same flaw in the single models. The second area has explored the optimal way
of combining the output of the single models, usually by assigning weights (see [21] for different
approaches to this end). For instance, a very simple but effective approach consists in defining equal
weights, which has shown to be surprisingly effective [22,23]. More sophisticated approaches include
linear combination [24], dynamic optimal weight combination [25], a genetic algorithm as best model
selector [26] or rule-based best model selection [27].

Assessing the robustness of STLF has received very little attention [9,28] and all the efforts focus
on the detection of outliers (new patterns of atypical values in our nomenclature) in the time series of
national loads.
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3. Adaptive STLF in Buildings

3.1. Overall Methodology

In order to ensure the required standard of security and quality in a power system, we need a very
reliable and robust forecast. This paper focuses on assessing an adaptive forecasting that tries to mimic
the consumption behaviour. Since all methods need a learning period of time, new consumption habits
lead to prediction inaccuracies that increase both economic and technical costs.

In this work, we have used the following methodology; we repeat the next steps for every day
in the dataset except for the first day of every day-type. Figure 1 shows a sequence diagram of the
methodology. Please note that the meter is virtually connected to a real-time processing network as
described in [29], to which we will refer from now on as the Platform.

Figure 1. Sequence diagram of the proposed methodology.

Data Distribution Service (DDS): A meter sends a new measure to the Platform through the DDS
bus. This measure is stored to then be used to issue a forecast.
Classificator: In this step, the Platform sends the new data to the Classificator and queries it for
the prediction of the day-type for the next day. In previous works [30], we have compared several
clustering techniques with the use of the local work calendar. Our results conclude that the best option is
to use the work calendar if it is available. Hence, buildings may present different number of day-types.
Specifically, in our tests, there are buildings presenting:

- Two day-types: (Weekday and Weekends) such as c59 or ashrae (see Section 4 for more
information on the datasets). This building is characterised by the lack of consumption on
Saturdays. An example of this behaviour can be seen in Figure 2.

- Three day-types: (Weekday, Saturdays and Sundays) such as the four donosti datasets, bilbao1,
bilbao3 or bilbao4. They present a very similar consumption to commercial or service buildings.
An example of this behaviour can be seen in Figures 3 and 4.

- Four day-types: (Weekday, Saturdays, Sundays and Bank Holidays) such as bilbao2.
This building shows a special behaviour in Bank Holidays. In Figure 5 can be seen an example
of this behaviour.

Forecasters: In the next step, the Platform sends the data of the previous days of the same day-type to
the Forecasters. They will adjust the model parameters and then issue a forecast. Note that we have a
different model for every day-type, and therefore we must re-train the model for every day.
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In this work, we have used AR and SVM models, since according to our experiments [10,30] they
produce the best results using this methodology. Moreover, in these works we have optimised the free
parameters by means of a grid search following the advice given in [31] and we used the results of these
test here.

Figure 2. Typical load for the dataset with two day-types. Average daily load (kW h). Error bars
denotes ±σ. (a) Dataset c59; (b) Dataset ashrae.

Post-processes: Finally, in this stage the Platform sends the forecasts issued by the forecasters to the
post-processes in order to improve the results. Examples post-process are:

- Bias Correction: some models produce forecast that are systematically biased. We can measure
that bias and compensate it. In [10] we have assessed the performance of this post-process.

- Model Selection: some models issue a more reliable forecast at certain hours or day-types than
others. In [13], we presented a comparison of different strategies to select the best model in
every moment.

- Model Combination: another option is to group all the predictions issued by the forecasters in
order to build a more robust forecast. We have addressed this strategy in [13,32].

Please note that in this work we have not used these three post-processes as we have assessed their
performance in previous works. In Section 3.2 we will present two more examples of post-processes
that we will analyse in this paper.
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Figure 3. Typical load for the dataset with three day-types. Average daily load (kW h). Error bars
denotes ±σ. (a) Dataset donosti1; (b) Dataset donosti2; (c) Dataset donosti3; (d) Dataset donosti4.
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Figure 4. Typical load for the dataset with three day-types. Average daily load (kW h). Error bars
denotes ±σ. (a) Dataset bilbao1; (b) Dataset bilbao3; (c) Dataset bilbao4.

Figure 5. Typical load for the dataset with four day-types. Average daily load (kW h). Error bars
denotes ±σ. Dataset bilbao2.

3.2. Proposed Post-Process Methods

Despite all the post-process methods, we have detected that some days in the datasets are
very different from what their normal profile should be according to their day-type. This abnormal
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behaviour causes burst errors to appear in the forecast until the algorithms manage to adapt to these
changes. Thus, we need a faster method in order to avoid large errors in such days.

In this paper, we introduce two post-process methods that check whether the prediction error is
bigger than a given threshold value k. Please note that we can use whatever error we define provided
that the threshold value is in the same units as the error. As in this paper we are using MAPE error
(see Section 4.3 for details), k should be a percentage. Moreover, this value can be fixed a priori or have
an adaptive value like:

k :=

√√√√ c
24q ∑

d∈Q

24

∑
h=1

(ed,h − ê)2 (1)

where Q denotes the set of days in the learning window at that moment, q is the number of days in
the learning window, ed,h denotes the residuals of the model in day d and hour h and ê denotes the
mean error of the model in the entire learning window. Note that this value is just the variance of the
residuals multiplied by the fixed constant c. Please note that this value should be tailored specifically
to every dataset. In this work we have made a grid search for this value and found that the best option
is c := 3.

In case the error in one day is above the threshold value k, one of the two post-processes acts.

Learning Window Re-Initialization: In this case, we reboot the learning windows in order to avoid
anomalies of the scaled pattern type (i.e., we completely delete the data in the dataset and replace
it with the newest value). Since the learning windows are very short (just three days in this test,
see [10,13] for a broad comparison in this matter) and the models used are sufficiently robust to tailor
this degenerated training set, we are able to issue a new forecast in this situation. Moreover, the
forecast produced is the obvious one, just the values observed the previous day (i.e., acts like a Random
Walk Model), so this adjustment quickly adapts to changes in the dataset.
Skipping Anomalies: In this case we avoid introducing the new pattern in the training data in order
to avoid anomalies of the new pattern type.

Note that we have not used both methods simultaneously. Moreover, we only present here the results
of the Learning Windows Re-Initialization method without using the adaptive threshold value, as both
the Skipping Anomalies and the Adaptive Threshold Methods produce much worse results (in any
combination).

3.3. Forecasting Models

All models used can be classified as regression models. Namely, they follow the equation:

LOAD(h) := f (h) + ε (2)

where h ∈ [0, 23) denotes time, LOAD(h) denotes the load at time h, f is the model used and ε is a
random variable.

3.3.1. Time Series Model

The first model is an Autoregressive Model commonly used for modelling univariate time series.
For every day-type d we have:

sd(h) =
q

∑
i=1

ϕd
i rd(h, i) (3)

where ϕd :=
(

ϕd
1, . . . , ϕd

q

)
are the model parameters and rd(h, i) denote the real load measured at

time h of the i-th previous day of day-type d. Namely, in the adjusting step, we have retrieved the
q last values of the same day type (e.g., with q = 3, from a Tuesday, the previous Monday, Friday,
Thursday) and not the q last chronological values (e.g., from a Tuesday, the previous Monday, Sunday,
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and Saturday) and then we have made a convex combination with the model coefficients ϕd. In order to
give a higher priority to the latest data against the oldest values, the model coefficients are drawn by a
polynomial or an exponential method. The polynomial method produces the following parameters

ϕi =
(q − i)l

∑
q
i=0(q − i)l (4)

whereas the exponential method produces

ϕi =
l(q−i)

∑
q
i=0 l(q−i)

(5)

where q is the length of learning window and l can take integer values. In this work, we has chosen the
exponential method with parameter l := 2. This value has been taken based on empirical experience.
Please note that, with this nomenclature, we have fixed the number of learning days to q := 3 as
previously stated.

3.3.2. Support Vector Machines Model

A SVM constructs a hyperplane, or a set of hyperplanes, in a high or infinite dimensional space,
which can be used for classification or regression. SVMs have been previously used for load forecasting
in buildings [14]. Here, we have used a ν-SVR. Note that, as we have explained before in Equation (2),
the function we regress is the load curve of all day taking only the time as input. As in the previous
case, we take a model for every day-type and train every model with the last q days of the same type.
The rest of the free parameters are: radial basis function as kernel, threshold ν := 0.9, soft margin
parameter C := 10 and kernel parameter γ := 1. The explanation of these parameters is out of the
scope of this paper; we encourage the reader to see [33] for an in-depth explanation.

4. Datasets

This study comprises several datasets in order to provide the most representative result possible:
ten datasets from seven different buildings’ consumption data records and five from Transmission
System Operators (TSO) records from different countries. Tables 1 and 2 summarise the main
characteristics of these datasets. These tables also contain an estimation of the expected value of
the error for every dataset under the hypothesis that ε follows a Gaussian Random Variable (column
Expected MAPE), which according to our experiments is a fair assumption. Please note that in [32] we
present a detailed description of the estimation process. Moreover, some TSOs publish their own STLF
so we can calculate their error in the same way as with our predictions. Column MAPE from Operator
of Table 2 contains this value.

Table 1. Summary of the buildings’ features. N/A denotes unknown values.

Building HVAC Number of day-types Expected MAPE (%)

donosti1 NO 3 6.01
donosti2 NO 3 8.22
donosti3 YES 3 13.60
donosti4 YES 3 8.74
bilbao1 NO 3 5.89
bilbao2 YES 4 7.22
bilbao3 Partially 3 4.82
bilbao4 NO 3 5.95
ashrae N/A 2 4.98

c59 N/A 2 3.74
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Table 2. Summary of the region’s features. N/A denotes no available values. Note that TSOs use
forecasting models especially tailored to their respective consumption profiles.

Region Expected MAPE (%) MAPE from Operator (%)

REE 5.87 1.08
EUNITE 9.20 N/A

AP 7.45 5.02
NYC 6.95 1.64

NORTH 2.04 3.57

4.1. Buildings

4.1.1. University of Deusto

We have recorded the energy consumption of several buildings of the University of Deusto in
both of its campuses: Donostia-San Sebastián and Bilbao (Basque Country). We have downloaded
these data directly from the meter, placed by the Spanish law (54-1997) directly at the transformer,
using the IEC 60870-5-102 standard protocol [34].

These buildings present different patterns as each one has its own special features. For example,
we have measurements from the Donostia-San Sebastián building complex since March 2009 but
it presents three different periods. From March to September, there was only one building with a
regular and homogeneous consumption since (among other things) its heating system is not regulated
according to the weather: from autumn to spring, it is manually turned on every day at approximately
the same time and it works until the building closes at night; therefore, meteorological conditions
do not show notable influence on the electricity consumption (season, on the contrary, does) or it is
somehow dissolved in the data. These data forms the dataset donosti1.

On July 2009, the construction of two more buildings started but this event did not have an impact
on the load profile until September 2009 due to the summer holidays. As the behaviour of these three
building together are essentially different (a lot more noisy), we have split the dataset and created the
donosti2 dataset.

Finally, we created the third and fourth dataset (donosti3 and donosti4) with the rest of the data.
Both datasets present the same characteristics but there is a big gap in the records since the utility
changed the meter from a GSM based one to an IP based one. The new buildings have an HVAC
system for cooling so weather changes might influence the consumption, explaining in this way the
high spikes in their loads; however our previous experiments do not show any relationship [30].
The donosti3 dataset has a length of 12 months (September 2010–September 2011) while the donosti4
dataset has a length of 8 months (April 2012–January 2013)

All builds show quite a regular profile in working days with consumption from 7:00 a.m. to
10:00 p.m. (opening hours go from 8:00 a.m. to 9:00 p.m.). On Saturdays, it shows a peak at noon and
on Sundays it is almost flat.

On the other hand, we have also measured the electrical consumptions from four different
buildings in the Bilbao Campus of the University of Deusto from September 2012 to January 2013.
Three of them, bilbao1, bilbao3 and bilbao4, gather the records from standard university buildings
(i.e., classrooms and offices), while bilbao2 contains the data of the campus main library. It presents a
more hectic activity until late at night as well as during Saturdays and this fact is reflected in the load
profile. The rest of the buildings present a similar profile as the ones in the Donostia Campus.
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4.1.2. Ashrae competition

The Ashrae competition ([35] dataset ashrae in Figure 2b) comes from an unknown building;
the data present a quite similar profile as the dataset donosti1 and has a length of only 6 months
(September 1989 to February 1990) with consumption from 9 a.m. to 9 p.m.

4.1.3. Casaccia Research Centre

Dataset c59 contains the consumptions records from the C59 Building in the Casaccia Research
Centre, Rome, Italy, during the months of September to November 2009 [36]. As with the ASHRAE
competition data, no information has been provided about the building but the profile is also quite
similar to the donosti1 dataset, except that there is no consumption on Saturdays.

4.2. Regions

We have also downloaded public data from several TSO in order to contrast whether
this post-process methodology works well when forecasting large regions. We have taken the
information from:

REE: the Spanish TSO [37], from January 2007 until October 2011.
AP: the Pennsylvania, Jersey, and Maryland Interconnection (PJM) [38], more accurately from the
Allegheny Power (AP) zone, from November 2008 until December 2010.
NYC and NORTH: the New York Independent System Operator (NYISO) [39], more accurately from
the NYC and NORTH substations. The former contains data from February 2005 until October 2011,
the latter from June 2001 to October 2011.
EUNITE: from the Eastern Slovakian TSO (Eunite competition dataset [40]), from January 1997 to
December 1998.

As it can be seen in Figure 6, these datasets are essentially different from those of the buildings;
they present homoscedasticity and only have two slightly-different patterns: one for weekdays and
another for holidays. Table 2 presents a summary of the regions’ characteristics.
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Figure 6. Average daily load (kW h). Error bars denotes ±σ. (a) Dataset REE; (b) Dataset AP; (c)
Dataset NYC; (d) Dataset NORTH; (e) Dataset EUNITE.

4.3. Test-Bed and Validation Measurements

In this study, we have tailored the Leave-One-Out Cross-Validation (LOOCV) procedure [41] that
tries to mimic the performance in real conditions. In this spirit, for each day in the dataset we have
issued a prediction using the last q days’ values. Normally, this method cannot be used for the first q
days of every day-type but, as we have explained in Section 3, we can already forecast with only one
training day.

We use MAPE as error measurement to evaluate performance of the models since it is unit free,
which allows comparisons between forecasting errors from different measurement units. Moreover,
it is the error measurement most widely used in forecasting despite their problems (see [42] and
references therein for an extensive discussion and several solutions to these problems). It is calculated
as follows:

MAPE :=
1

days

days

∑
i=1

(
1

24

24

∑
h=1

|r(h, i)− p(h, i)|
r(h, i)

)
× 100 (6)

where p(h, i) is the predicted value of the load for the hour h of the day i, r(h, i) refers to the real value
and days represents the amounts of days in that particular datasets.
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Regarding the validation of the post-process, we follow two steps to check the performance of
the method. First, we validate the dataset computing the MAPE committed in the whole dataset.
The robust method is compared with the normal one in order to assess which one works better over
time. Second, we take a closer view by measuring the errors only in the days where the post-process
has worked.

5. Experimental Results

The experiments have been carried out on a Core i7 2600 CPU with 16 GB RAM and a Gentoo
Linux up-to-date. The AR model has been implemented by means of a home-made java class, whereas
the SVM model uses the libSVM library [43].

Please note that this format has been chosen to assess the suitability of the post-process methods
defined in Section 3.2 with the two proposed forecasting algorithms, not to compare the AR and SVM
models (for such a comparison we refer the readers to [10,13,30,32]).

Figure 7 shows the percentage of days detected as anomalous by the AR and SVM model.
These days represent the number of days whose MAPE error is larger than the threshold value k.
As expected, the higher the margin error, the lower the amount of anomalous days detected. Further,
we can observe a big difference between the number of anomalous days in the two types of datasets:
TSO-based ones show much less anomalies than building-based ones. This behaviour stems from
their smoother load profile. Note that we cannot expect the method to improve the forecast when it
is used often. Finally, as the AR model produces more accurate forecast than the SVM model, it has
less anomalies.

Table 3 displays the MAPE results for the day-ahead forecast. The best result for each dataset is
shown in bold; grey values correspond to experiments that obtained the same result as the normal
method because the dataset did not contain any anomalous days with that parameter configuration.
As expected by our previous results, AR outperforms the SVN method globally. In the building
datasets, the post-process (slightly) improves the results in almost all of the cases (80% of the cases
when using the AR method and 60% when using the SVM). In contrast, only in two of the TSO datasets
does the post-process method improve, mainly because these datasets are very regular and large. Still,
the difference between the two methods is very small.

202



Energies 2013, 6, 2110–2129

Figure 7. (a) Percentage of anomalous days using the AR model; (b) Percentage of anomalous days
using the SVM model.

Note that these tables present the MAPE results for the whole datasets; therefore, the results
are dominated by the number of normal days, and the differences are hence not very significant. In
addition, we can observe that the MAPE values start increasing below some threshold value k because
the post-process considered a normal statistical fluctuation as an error when it was not. Finally, for
large values of the k threshold, the error obviously converge to the errors without the post-process as
there would not be any anomalous day.

Table 4 displays the MAPE results solely taking into account the records registered when the
post-process is working, (i.e., the next two days of the same day-type after an anomalous day is
detected). The Post-process column lists the MAPE results of the anomalous days when using the
post-process method whereas the Normal column presents the MAPE result when using the normal
method (i.e., without applying any post-process). We only show the results where there has been
any improvement.
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Table 3. MAPE result for the whole dataset (%). Columns represent the type and the value of the
threshold k. The last column has the results without the post-process method. Bold results denote the
best results; grey, the absence of anomalous day on that threshold. (a) MAPE results of the AR model
forecasting (%); (b) MAPE result of the SVM model forecasting (%).

Datasets 5 10 15 20 25 30 40 Norm

donosti1 6.42 6.08 6.05 6.03 6.05 6.1 0 6.1
donosti2 13.1 12.79 12.52 12.61 12.51 12.34 12.35 12.48
donosti3 13.1 12.65 12.19 12.1 12.16 11.97 11.95 12.33
donosti4 13.31 13.02 12.85 12.91 12.89 13.02 12.88 12.86
bilbao1 10.59 10.23 9.86 9.77 9.85 9.95 9.95 9.95
bilbao2 11.68 11.53 11.48 11.57 11.51 11.7 11.96 12.04
bilbao3 11.91 11.41 11.18 11.14 11.47 11.07 11.07 11.07
bilbao4 11.5 11.18 10.79 10.49 10.49 10.49 0 10.64

c59 12.11 11.97 11.69 11.14 11.1 11.1 11.1 11.24
ashrae 4.8 4.63 4.63 4.65 4.65 4.65 0 4.66

AP 7.23 7.26 7.25 7.23 7.21 7.2 7.19 7.19
NYC 6.21 6.34 6.38 6.39 6.39 6.39 0 6.37

NORTH 2.82 2.8 2.8 2.8 2.8 2.8 2.8 2.77
REE 3.71 3.63 3.63 3.62 3.62 0 0 3.62

EUNITE 5.54 5.86 5.94 5.93 5.93 5.93 0 5.93

(a)

Datasets 5 10 15 20 25 30 40 Norm

donosti1 7.14 6.68 6.64 6.64 6.72 6.82 0 6.38
donosti2 13.68 13.56 13.34 13.44 13.31 13.05 13.09 12.99
donosti3 13.19 12.37 12.41 12.65 13.26 12.36 12.36 12.74
donosti4 13.33 13.29 13.23 13.48 13.8 14.06 13.59 13.72
bilbao1 10.97 10.82 10.73 10.37 10.8 10.85 10.85 10.62
bilbao2 13.84 13.42 13.61 13.51 13.78 14.67 14.73 13.29
bilbao3 12 11.47 11.22 10.91 11.66 10.88 10.78 10.45
bilbao4 11.87 11.52 11.06 10.89 10.84 11.24 0 11.24

c59 11.91 11.84 11.88 11.3 11.26 11.26 0 11.74
ashrae 5 4.62 4.64 4.73 4.73 4.73 0 4.8

AP 7.49 7.95 7.88 7.91 7.87 7.81 7.8 7.78
NYC 6.14 6.22 6.3 6.32 6.32 6.33 6.33 6.31

NORTH 2.92 2.91 2.91 2.91 2.92 2.92 2.92 2.88
REE 3.88 3.84 3.83 3.83 3.84 0 0 3.79

EUNITE 5.73 6.69 6.75 6.74 6.74 6.74 0 6.75

(b)

Table 4. MAPE results taking into account only the days when the post-process is working. Column
Post-process shows the results using the post-process, while Column Normal shows the results without it.

Datasets
AR SVM

k Post-process Normal k Post-process Normal

donosti1 20 5.74 9.04 – – –
donosti2 30 24.53 25.91 – – –
donosti3 40 12.81 22.86 30 18.87 27.68
donosti4 – – – 15 15.69 16.59
bilbao1 20 5.54 7.92 20 8.06 12.7
bilbao2 15 10.96 12.52 – – –
bilbao4 20 9.7 11.29 25 10.52 17.83

c59 25 8.01 11 25 7.97 18.04
ashrae 10 8.83 9.08 10 7.93 9.51
NYC 5 6.68 7.07 5 7.1 7.59

EUNITE 5 6.18 6.71 5 6.28 7.76
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As we can see, regarding anomalous days alone, the differences become larger. In this case, the
post-processing method performs significantly better, especially in datasets whose loads present large
variations as donosti3, where we reduce the error by 50% in those days.

6. Conclusions

In this work, we have assessed a new robust post-processing method for STLF in buildings based
on checking whether the prediction error is bigger than a given threshold value. The methodology
consists of the use of the work schedule as a helping tool, plus the reinitialisation of the learning set
when the MAPE error is bigger than a given threshold value.

We have shown that this methodology prevents burst-errors and manages to adapt quickly
to changes in the load curve. Moreover, we have empirically proven that this method improves
the building consumption forecast. These results become clearer when examining the error of
anomalous days. Unfortunately, this method does not scale very well and our experiments show
that the forecasting performance on TSO load curves does not improve (but also does not worsen).
Thus, we may conclude that this methodology only pays off in building STLF and other units with
non-regular profiles.

Given these results, further works will include trying to improve the results by the combination
of STLF algorithms for building, like the ones described in [13], with the robust method explained
herewith and test its adaptability to very short-term load forecasting.
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Abstract: This paper proposes a new model for short-term forecasting of electric energy production
in a photovoltaic (PV) plant. The model is called HIstorical SImilar MIning (HISIMI) model; its final
structure is optimized by using a genetic algorithm, based on data mining techniques applied to
historical cases composed by past forecasted values of weather variables, obtained from numerical
tools for weather prediction, and by past production of electric power in a PV plant. The HISIMI
model is able to supply spot values of power forecasts, and also the uncertainty, or probabilities,
associated with those spot values, providing new useful information to users with respect to
traditional forecasting models for PV plants. Such probabilities enable analysis and evaluation
of risk associated with those spot forecasts, for example, in offers of energy sale for electricity markets.
The results of spot forecasting of an illustrative example obtained with the HISIMI model for a
real-life grid-connected PV plant, which shows high intra-hour variability of its actual power output,
with forecasting horizons covering the following day, have improved those obtained with other two
power spot forecasting models, which are a persistence model and an artificial neural network model.

Keywords: power forecasting; solar energy; data mining; genetic algorithm

1. Introduction

The expansion of power plants based on renewable energy sources has experienced an important
boost in recent years. Increases in prices of traditional energy sources, the threat of climate change,
and policies implemented by national governments have propelled expansions of this kind of power
plants. Renewable energies with greater integration in electric power systems are wind energy and
solar photovoltaic energy, and they are increasing their integration with time: in 2050, wind energy
is expected to provide 12% of the global electricity consumption [1], while PV energy is expected to
provide 11% [2]. The integration of the electric energy generated by these power plants into electric
power networks is not exempt from problems, which are mainly due to the variability and volatility
of renewable resources. Accurate forecasts of power production at wind farms or at PV plants have
direct implications on the economic operation of power systems [3,4] and on the economic results of
the plants whose generated energy is sold in electricity markets [5]. These economic reasons have
driven the development of short-term power forecasting models for wind farms or for relatively large
grid-connected PV plants.

The development of numerical weather predictions (NWP) tools has helped in the advance of
new power forecasting models for electric plants based on renewable resources, providing new input
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variables. These NWP tools have the objective, from a set of initial conditions, to supply information
regarding the state of the atmosphere for a given time horizon. Models underlying NWP tools
can be classified into global models and regional/mesoscale models. Global models simulate the
behavior of the atmosphere to a global (worldwide) scale, and regional/mesoscale models simulate
the behavior of the atmosphere for more limited areas such as continents, countries or regions. The use
of weather forecasted variables, mainly radiation and temperature, can help to improve short-term
power forecasting models for PV plants.

PV systems are the most direct way to convert solar radiation into electric power. Traditionally,
small PV systems have been used to produce electricity for low power applications in isolated areas
(isolated from electric power networks). Installation cost reductions, subsidies, and attractive feed-in
tariffs, have propelled constructions of relatively large PV plants connected to electric grids. PV plants,
connected to medium (or high) voltage electric networks, can have capacity of tens (or, in some cases,
even a few hundred) of MW.

In countries with an operative day-ahead electricity market, large power plants based on
renewable energies can act, as any other electricity producer, providing power generation sale offers to
electricity markets. Obviously, producers corresponding to power plants based on variable renewable
resources, such as wind or solar radiation, use forecasts of hourly energy generation to prepare energy
sale offers. The use of these forecasts presents a risk: in electricity markets, when power producers
are not following their schedule (that presented to the Market Operator), they are penalized with
retributions lower than those established in markets for those hours with deviation between the energy
actually produced and that presented in offers, so for a PV power producer, high quality forecasting
systems are needed for reducing penalties in electricity markets, and for optimizing profits.

In the last decade, tens of short-term wind power forecasting models have been described in the
international literature. Nevertheless, despite the fact that future contributions of PV plants to the
global electricity consumption will be comparable to that corresponding to wind farms, short-term
forecasting models for PV plants are in their early stages. Most of the published works corresponding
to short-term forecasting models for PV plants are oriented to solar radiation predictions [6–9], while
only a few works describe models aimed at directly forecasting the hourly power production in PV
plants [10–17]. Most of these published models are based on artificial neural networks (ANNs). A
hybrid approach with the combination of a data filtering technique based on wavelet transformation
and ANNs is presented in [10] and used to obtain one-hour-ahead power output forecasts. Several
forecasting techniques are evaluated and compared in [11] for predicting the power output of a PV
plant with forecasting horizons of 1 and 2 h ahead; the best results are obtained with models based
on ANNs optimized with Genetic Algorithm (GA). A model based on recurrent neural networks to
forecast hourly insolation and temperature for the next 24 h is described in [12]; both forecasts are
used to calculate the hourly power generation in the PV plant. Support vector machines are used
in [13] and [14] to forecast directly the hourly power generation for the next 24 h. In [15] a multilayer
perceptron ANN optimized with GAs is used to provide hourly power generation in a PV installation
for the 24 h of the next day. In all these works describing forecasting models with horizons covering 24
h, some forecasted weather variables (such as global solar radiation, temperature, relative humidity
or cloudiness, obtained from a NWP tool), are used as inputs in the forecasting model. Even these
forecasted weather values are used in [16] to forecast the hourly power production for all PV plants in
a local or regional scale. Genetic programming of evolution of fuzzy rules has been proposed in [17] to
estimate the output of a PV plant, allowing the selection of the best forecasting model.

But in all the referenced works, the proposed forecasting models only provide the electric power
point (spot) forecasts. They do not supply any additional information that enables the evaluation of
the risk associated with the use of such forecasted values. Although several wind power forecasting
models published recently deal with this evaluation, none have been applied to PV plants.

This paper presents a new short-term power forecasting model for PV plants, named HIstorical
SImilar Mining (HISIMI) model, which provides the user with useful dimensions of electric power
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forecast. Thus, this forecasting model, based on transitions (in the past time) between different power
intervals of electric generation in the PV plant, is able to achieve the point forecast, and also the
uncertainty associated with that value. HISIMI model uses a database comprised of historical values
of weather variables forecasted by a mesoscale NWP tool and the corresponding historical real power
production in the PV plant. Spot (point) forecasts obtained with the HISIMI model have been compared
with those obtained from a multilayer perceptron based model, and the “persistence” model, with the
same input database: the HISIMI model has shown lower forecasting errors. Furthermore, this model
also provides the uncertainty associated with the point forecast, increasing the value of the forecasting
information. This uncertainty is provided by the HISIMI model in the form of the probability value
that the PV power production is included in each one of the above mentioned power intervals.

The paper is structured as follows: Section 2 presents the structure of the proposed power
forecasting model (HISIMI); Section 3 describes the methodology followed in the development of the
HISIMI model, which structure is optimized with a genetic algorithm; Section 4 shows the results
obtained with the HISIMI model in the forecast of PV power production (point or spot forecast) in a
grid-connected PV plant; Section 5 analyses the additional and useful forecasting information supplied
by this new model in the form of uncertainty representation; lastly, Section 6 presents the conclusions.

2. PV Power Forecasting Model

In this paper, the PV power forecasting model uses historical data collected from the PV plant
under study; this model performs a “kind of search” of this historical database aimed at utilizing
similar historical cases regarding electric power transitions in order to forecast the electric power
generation. The proposed search mechanism is based on data mining techniques. Thus, the model was
named HIstorical SImilar MIning (HISIMI).

The data, that comprises the model’s historical database, are forecasted values for weather
variables obtained with a mesoscale NWP tool and the corresponding electric power generation
measures obtained from the PV plant using a Supervisory Control and Data Acquisition (SCADA)
system. In order to extract information regarding electric power transitions between consecutive past
time instants, the historical similar mining mechanism is applied to the cases in the historical database.
Thus, good power forecast results require the use of a database with historical cases of good quality,
with a high volume of reliable information, which also implies the need to find mechanisms to deal with
such information, capable of searching the most relevant historical cases of power transitions to forecast
the electric power corresponding to the current case. After obtaining the power transition information,
an array called Probability Matrix (PMt+k) is created, which contains power transition probabilities
between the future instants t+k−1 and t+k, where t is the instant when the forecast is generated -present
instant-; and k is the number of time steps of the forecast (forecasting horizon). Thus, the HISIMI
model provides valuable forecast information, using probability values: prediction of uncertainties,
associated with electric power forecasted values, and electric power forecasts (point or spot forecasts).
The following subsections contain more detailed explanations regarding the HISIMI model.

2.1. Database of the Forecasting Model

The model uses a database that contains records with the historical values of variables
corresponding to the PV plant. Thus, a record constitutes a historical case which contains values
forecasted by a NWP tool, for several weather variables (two values for each variable, which correspond
to instants c−1 and c); the value of the solar hour for both instants; and also the two corresponding
real PV power production values (Pc−1 and Pc) of the PV plant. The pairs of past instants c−1 and
c are necessary to model power transitions. The index c ranges from 2 to present instant t and it is
expressed in hours. At this point, notice that the size of the records depend on the number of forecasted
weather variables and the number of the remaining variables related to the short-term forecast of
power generation in the PV plant.
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2.2. Mechanism Based on Data Mining (MDM)

This mechanism used to process electric power transitions information plays a key role in the
success of the developed model. The purpose of the MDM is to examine historical cases, and to
assign different weight values to such cases according to similarity between them and the current
case. This allows selecting—via weights—only information concerning historical cases relevant to the
current case.

The proposed MDM is based on a local Gaussian function (Figure 1) that is expressed in
Equation (1):

g(v, μ, σ) = 1
σ
√

2π
e−(

(v−μ)2

2σ2 ) v ∈ � (1)

where v represents the prospection variable; μ represents the “mean or central” value assigned to the
prospection variable; σ represents the “standard deviation” assigned to the prospection variable, that
defines a width of the range of exploration; and g represents the weight function corresponding to a
value of the prospection variable v.

Figure 1. Graphical representation of local Gaussian function.

Note that, in Figure 1, the proposed local Gaussian function allows the selection of the central
or mean value (μ) and the standard deviation value, σ. The selected central values for the Gaussian
functions correspond to the current case values, and the standard deviation values can be chosen by
an optimization process, as explained later. With these two parameters (μ and σ), which determine
the Gaussian function, the weight values can be obtained according to the neighborhood or similarity
between the historical cases and the current case. Thus, the MDM identifies historical cases with the
highest similarity to the case for which it is intended to provide the electric power forecast, that is, the
MDM determines higher weight values for a series of cases of electric power transitions that will be
used to provide the forecast information.

Because an optimization process (to be explained later) can select the best inputs (variables from
records) to be used by the model, assuming a HISIMI model that uses l variables, the associated value
that defines the “similarity” with the current case, FHc, is defined in Equation (2):

FHc =
l

∏
i=1

gi,c (2)

where gi,c represents the weight value associated with the local Gaussian function corresponding to
the input variable i.

2.3. Power Intervals

The objective of the model is to achieve a representation of power transitions that occurred in
the past with similar input variable values. Even with a reduced database, there could be a large
set of different power transitions. Thus, transitions between specific electric power values are not
considered, but transitions between intervals of electric power values (power intervals) of the PV plant
are considered.
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This aspect requires defining a set of power intervals that allows transforming the electric power
continuous variable into a discrete variable. So, a total of n non-overlapped power intervals with the
same width, covering all possible values for the electric power generation in the PV plant, are defined.
Each interval is defined by its minimum and maximum power values (in kW), a and b, respectively.
The average value of the interval m is defined in Equation (3), where am and bm correspond to the
minimum and maximum values of that interval:

Im =
1
2
(am + bm) (3)

With the average values of all the power intervals, the average power values vector, [AP], is
created, as shown in Equation (4), where I1< I2< . . . < In:

[AP] =

⎡⎢⎢⎢⎢⎣
I1

I2
...
In

⎤⎥⎥⎥⎥⎦ (4)

This technique groups power values in a neighborhood that will be represented by the average
power value of the corresponding interval.

2.4. Probability Matrix (PM)

We define two discrete random variables: X associated with the interval corresponding to electric
power value at future instant t+k−1, and Y associated with the interval corresponding to electric
power value at future instant t+k. Thus, the electric power interval x ∈ X varies (and also the interval
y ∈ Y) from 1 to n. Probabilities of transition of the power interval from instant t+k−1 to the next
one, t+k, can be expressed by a square matrix with n rows and n columns applying the mechanism
MDM. This matrix, named as the pseudo-probabilities matrix for hour t+k, PPMt+k, is shown in Table 1.
Each element in this matrix represents the pseudo-probability of a power transition from one power
interval in instant t+k−1 (interval x, that is, row x in the matrix) to another power interval in instant
t+k (interval y, that is, column y in the matrix). The element PPMt+k (x, y), corresponding to row x
and column y, is calculated using the sum of values FHc from Equation (2) considering all cases in
the database.

The “normalization” of values of the matrix of Table 1 to values between 0 and 1, leads to the
matrix PMt+k, which contains the bivariate distribution of power transitions, from one power interval
x (associated with instant t+k−1) to another power interval y (associated with instant t+k). Note that
results are obtained after applying the mechanism MDM, which defines the space of global events of
power transitions.

The elements of the PMt+k matrix can be associated with a joint probability distribution fXY (x, y)
(Table 2), that satisfies Equation (5):

fXY(x, y) ≥ 0
∑
x

∑
y

fXY(x, y) = 1 (5)

where fXY (x, y) represents the probability that the interval of the electric power variable is x in a given
instant, and y in the following one, i.e., P(X = x, Y = y).
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Table 1. Representation of a pseudo-probabilities matrix for n power intervals.

Pseudo-probabilities
Power interval in t+k

1 2 . . . n

Power interval
in t+k−1

1 . . . . . . . . . . . .
2 . . . . . . . . . . . .

. . . . . . . . . . . . . . .
n . . . . . . . . . . . .

Table 2. Power transition probability matrix.

fXY (x, y) y

1 2 . . . n

x

1 fXY (1, 1) fXY (1, 2) . . . fXY (1, n)
2 fXY (2, 1) fXY (2, 2) . . . fXY (2, n)

. . . . . . . . . . . . . . .
n fXY (n, 1) fXY (n, 2) . . . fXY (n, n)

Then, two marginal probability functions fm1 and fm2 can be defined, for each transition in t+k, by
Equations (6) and (7) respectively:

fm1(x) = fX(x) = P(X = x) = P(X = x, Y = 1) + · · ·+ P(X = x, Y = n) = ∑
Rx

fXY(x, y) (6)

where Rx denotes the set of all fXY (x,y) for which X = x:

fm2(y) = fY(y) = P(Y = y) = P(X = 1, Y = y) + · · ·+ P(X = n, Y = y) = ∑
Ry

fXY(x, y) (7)

where Ry denotes the set of all fXY (x,y) for which Y = y.
Note that for each new forecast (for future time instant t+k), a probability matrix is created and

therefore also a bivariate distribution.

2.5. Model Outputs

2.5.1. Uncertainty Prediction

Some of the main outputs of the HISIMI model are the probability values of power transitions
for each future instant t+k (transition from instant t+k−1 to the instant t+k). This information can be
processed in order to obtain different types of useful predictions. In order to obtain predictions of
forecast uncertainty, a new discrete probability distribution for each instant can be obtained as the
product of two discrete distributions, fm1 and fm2, obtained for two consecutive forecasting instant,
t+k−1 and t+k, denoted as fm1;t+k−1 and fm2;t+k.

We define an “uncertainty vector” for instant t+k, [u]t+k, for the uncertainty prediction, as the
product of the values of the marginal probability functions defined in Equations (6) and (7), as is given
in Equation (8).

[u]t+k =

⎡⎢⎢⎢⎢⎣
fm1;t+k−1(1)× fm2;t+k(1)
fm1;t+k−1(2)× fm2;t+k(2)

...
fm1;t+k−1(n)× fm2;t+k(n)

⎤⎥⎥⎥⎥⎦ (8)

Afterwards, the values of the vector [u]t+k, defined in Equation (8), are normalized (to values
between 0 and 1), leading to a new vector, [un]t+k, in which each element of this new vector,
corresponding to a power interval, is associated with the probability that the forecasted electric
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power value belongs to that interval; thus, this vector gives a measure of uncertainty associated with
electric power forecasts.

2.5.2. Point Forecast

The point forecast PFt+k (in kW) can be obtained by computing the expected power value for a
future instant t+k as seen in Equation (9):

PFt+k = ∑
y

un,t+k(y)× AP(y) (9)

where AP(y) is the element of the vector [AP] corresponding to the power interval y, and un,t+k (y) is
the element of the vector [un]t+k corresponding to the power interval y.

3. Optimization of the PV Power Forecasting Model

The proposed HISIMI model includes a set of parameters whose values can be optimized. These
parameters correspond to the number of power intervals, and the standard deviation of the Gaussian
functions used for the prospection variables. In order to optimize the values of these parameters,
an optimization process ruled by a genetic algorithm (GA) [18] was developed. In this process, the
selection of the best input (prospection) variables, among those available ones, was also included. All
available input variables must be normalized in the range 0 to 1. This normalization allows using the
same range in the standard deviation of all the prospection variables.

Binary encoding with 1 and 0 is used to store the value of these parameters in the chromosome
that defines the solution stored in each individual. The structure chosen for the chromosome used by
the GA is shown in Figure 2. The chromosome is composed of three or more genes, each one with a
fixed size. First p bits, which compose the first gene, correspond to the inputs (prospection) variables
used by the HISIMI model among those available (we suppose a total of p available variables in the
historical database), that is, an “1” value in the bit bij means that the input j is used by the model as
prospection variable, while a “0” value means that the input j is not used by the model. At least one
of these first p bits must be activated (value “1”) because the model represented by the individual
needs one or more inputs (prospection variables). The second gene, with a 6 bits size, corresponds to
the number of intervals minus two, expressed in binary, used by the model: a value “000000” means
2 intervals, while a value “111111” means 65 intervals. The third gene corresponds to the standard
deviation of the Gaussian function for the first input (prospection) variable, σ1 (the first variable
selected as input); it is composed of 16 bits, and its value is equal to the binary number contained in
the 16 bits plus one and divided by 32,768. So, the standard deviation can take values from 2−15 to
2 (remember that input variables are normalized). The fourth gene, if available, corresponds to the
standard deviation of the Gaussian function of the second (prospection) variable selected as input, and
so on for the following genes. In Figure 2, the standard deviation of the Gaussian function for the last
input variable selected is σl, assuming that l inputs have been selected in the first gene. The maximum
number of genes is equal to the number of available input variables plus the two first genes.

Figure 2. Structure of the chromosome used in the optimization of the HISIMI model.

As a first step in the optimization process, an initial population is created randomly: the value
of each bit in each individual is randomly assigned. After creating the two first genes, the remaining
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genes that compose the individual are completed according to the number of variables selected (as
inputs of the HISIMI) in the first gene.

The fitness function for the GA optimization was the inverse of the RMS error with the data set
used in the construction of the HISIMI model. RMS (root mean square) error is defined in Equation
(10), where N represents the number of data evaluated, Pi the real power generation value and P̂i the
value obtained (forecasted) with the model, and the index i covers all instants corresponding to the
data set which error is evaluated:

RMS =

√
1
N ∑

i

(
Pi − P̂i

)2 (10)

So, individuals that represented better forecasting models would achieve greater fitness values. In
the creation of a new population, roulette wheel selection, elitism (only the best individual), two-point
crossover and mutation were used. After a sufficient number of generations, the parameters of the best
HISIMI model were obtained, that is, the optimization process selected the inputs used for the best
model, among those available inputs, the number of power intervals for the electric power generated
by the PV plant, and the values of the standard deviations of the Gaussian functions used in the
MDM mechanism.

In order to prevent over-fit of the HISIMI model to the data used to build the model, we used
5-fold cross-validation [19]: The data set used to develop the model was divided into 5 subsets of
approximately equal size. The evaluation of the model is carried out in five stages; in each stage, one
subset is taken as the cross-validation data set, while the other four subsets are used to build the model.
The RMS error of the studied model is the average of the RMS errors with the cross-validation data
sets in the five stages.

4. Model Testing

The methodology described in the previous two sections was applied to develop a short-term
forecasting model for a grid-connected PV plant. The plant, with ground mounted fixed panels and a
capacity of 2.8 MWp, is located in Spain. The data available to develop the model include the hourly
power generation in the PV plant for a whole year. The data show high intra-hour variability of
the power output of the PV plant. Figure 3 illustrates the percentage of hours with power output
variations of more than 10%, 20%, etc., with respect to power rating of the PV plant, in a monthly
basis, for the period between 09:00 to 14:00 (solar hour). In that figure, the vertical axis represents the
percentage of hours, in which the absolute difference (variation) for the power output of the PV plant,
from one hour to the following one, is greater than 10%, 20%, etc., of the power rating. Notice that at
least 30% of hours presents variability over 10% (280 kW) of power rating (2.8 MW) for all the months.
Furthermore, for the data of the whole year, 43% of hours in the considered period presents variability
over 10% of the power rating.
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Figure 3. Percentage of hours with power output variations with respect to power rating of the
PV plant.

The available data also include forecasted values for the hourly average surface shortwave
radiation (v1) and temperature (v2) obtained with an NWP tool. This tool was the Weather Research
and Forecasting (WRF) model [20], a mesoscale NWP model that can simulate atmospheric dynamics
and provide numerical predictions for a wide set of weather variables in a selected geographic zone.
The hourly average surface shortwave radiation and temperature values correspond to those forecasted
(with the NWP tool) with the data assimilation (moment when real weather measures were supplied
to the model to predict the future values) of the hour 00:00. The forecasted hourly average values
include all the values for the next 24 h, making that forecasting horizons for the HISIMI model range
from 1 to 24 h. Obviously, the maximum forecasting horizon with the HISIMI model coincides with
that of the weather variables forecasted with the NWP tool (24 h in our case).

Because the production in a PV plant is very dependent on the solar hour, we included two
variables in the historical database to represent it (named v3 and v4). These two variables are expressed
in Equation (11), where h corresponds to the solar hour for the location of the PV plant for the
corresponding instant: ⎧⎨⎩ v3 = sin

(
2π h−12

24

)
v4 = cos

(
2π h−12

24

) (11)

So, a record in the database contains ten values: two values for the forecasted hourly surface
shortwave radiation, two values for the hourly average surface temperature, two values for variable
v3, two values for variable v4, and two values for the hourly power production in the PV plant. The
two values of each variable correspond to two consecutive instants, c−1 and c.

The database with the historical cases was divided into two sets: 80% of the records were used
as the training set, while the remaining 20% of the records were used as the testing set. Only the
training set was used to build the HISIMI forecasting model, while the testing set was only used for
comparative purposes with other forecasting models. Figure 4 shows the variations in the power
output of the PV plant during the diurnal period of 9:00–14:00 (solar hour) for both data sets of training
and testing. The percentages of hours with variations over 10% of the power rating are quite similar
for such data sets.
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Figure 4. Percentage of hours with power output variations with respect to power rating of the PV
plant, for the data sets of training and testing.

The structure of the HISIMI model was optimized with a genetic algorithm (described in Section 3).
The population size was 50 individuals and the number of generations 50. The crossover rate was 90%
and the mutation rate 2%. Elitism was applied copying the best individual from one generation to
the following one. The fitness function was the inverse of the RMS error with the data of the training
set using 5-fold cross-validation. The model obtained after the optimization process used the input
variables v1 (forecasted hourly average surface shortwave radiation), v2 (forecasted hourly average
surface temperature), and v4. The number of power intervals was 9 and the range of any interval
was 314 kW. The two extremes of the last interval (ninth) were centered on the maximum value of
the power output of the PV plant for the training data set (2512 kW in our case) and the ones of first
interval were centered on the minimum power output, i.e., they were centered in 0 kW. Thus the first
interval spanned from −157 to 157 kW, the second from 157 to 471 kW, and so on until the ninth
interval from 2355 to 2669 kW. The standard deviations for the three used inputs of the HISIMI model
were 0.314453125 (for v1), 0.193359375 (for v2) and 0.076171875 (for v4). Figure 5 plots the RMS error
with the data of the training set, using the 5-fold cross-validation, throughout the optimization process
for the best individual in each generation and the average value of RMS error for all the individuals in
each generation.
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Figure 5. RMS error of the best individual and average RMS error of all the individuals in
each generation.

Lastly, the obtained HISIMI model was applied to the testing set. The RMS error for all the data
in the testing set (forecasting horizons from 1 to 24 h) was 283.89 kW, just 10.14% with respect to the
total capacity of the PV plant.

In order to evaluate the HISIMI model performance, two other forecasting models were built for
comparative purposes. The first one was a variation of the persistence model. The classical persistence
model offers, as forecast for any horizon, the last known value, i.e., the average power generation
value in the last hour. In our case, we have modified the persistence model so that it offers the power
generation in the PV plant in the previous day at the same hour as that corresponding to the forecasting
horizon; this variation of the persistence model was used in [15] for comparative purposes. The second
model was an artificial neural network based model: a multilayer perceptron neural network, MLP,
with one hidden layer, which could use any of the available variables as inputs, and offered only one
output: the hourly average power production in the PV plant. 75% of the cases in the training data set
was used to train the network, while the remaining 25% of the cases was used as the cross-validation
set. The structure of the MLP based model was also optimized with a genetic algorithm. The transfer
function for the neurons in the hidden layer was the hyperbolic tangent and a linear hyperbolic tangent
function was used for the output neuron. In the optimization process, the number of neurons in the
hidden layer, the inputs used by the network, and the parameters of the back-propagation training
algorithm (learning factor and momentum) were selected. The population size was 50 individuals and
50 generations were completed. The final MLP neural network obtained after the optimization process
had 15 neurons in the hidden layer. Table 3 summarizes the main parameters of the optimization of
the HISIMI and MLP models.

Table 3. Main parameters of the optimization of the HISIMI and MLP models.

Model HISIMI MLP

Population size 50 50
Number of generations 50 50

Crossover rate 90% 90%
Mutation rate 2% 1%

Inputs selected v1, v2,
v4

v1, v3, v4

Power Intervals 9 -
Neurons in hidden layer - 15
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Once these comparative models were built, they were applied to forecast the PV plant’s hourly
power generation for the data of the testing data set. RMS errors were 286.11 kW for the MLP based
model, and 445.48 kW for the persistence model. Therefore, the optimized HISIMI model obtained
better results than the other two models (since the HISIMI model achieved the aforementioned 283.89
kW). The improvement in RMS error with respect to the results obtained with another model is
calculated by Equation (12), where RMSreference corresponds to the RMS error obtained with the model
used as reference, and RMSmodel corresponds to the RMS error of the compared model. The RMS
forecasting error for the HISIMI model was 0.8% better than that obtained with the MLP model, and
36.3% better than that obtained with the persistence model. Table 4 summarizes the forecasting results
obtained with the three models:

Improvement (%) =
RMSreference − RMSmodel

RMSreference
· 100 (12)

Table 4. Summary of forecasting results.

Forecasting Results HISIMI MLP Persistence

RMS error (kW) 283.89 286.11 445.48
Normalized RMS (%) 10.14 10.22 15.91

Improvement with respect to Persistence (%) 36.3 35.8 -
Improvement with respect to MLP (%) 0.8 - -

Figure 6 shows real power production and the corresponding hourly PV power spot forecast
obtained with the HISIMI and MLP models for three consecutive days (in the testing data set), which
are cloudy and rainy days. Power forecasts, from the studied models, were carried out in the first hour
in the morning, covering all hours of the day. Figure 7 represents the scatters plots of forecasted values
versus actual values of power output for HISIMI and MLP models.

Figure 8 shows the histograms of the absolute forecasting errors, for both models (HISIMI and
MLP), for all diurnal hours in the testing data set. Absolute errors are expressed, in the horizontal axis
of Figure 8, in percentage with respect to the power rating of the PV plant. The vertical axis represents
the percentage of diurnal hours in the testing data set. Absolute errors for both models are quite
similar, although the HISIMI model presents more hours with lower errors. For example, in 37.65% of
the hours, the absolute forecasting error of the HISIMI model remains under 2.5% of the power rating,
while for the MLP model this percentage of hours is 36%.

Figure 6. Forecasts of the hourly power production for three cloudy and rainy days in the testing set.
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Figure 7. Scatter plots of forecasted values versus actual values of power output for HISIMI and
MLP models.

Figure 8. Histograms of absolute errors for the HISIMI and MLP models in the testing data set.

Thus, spot forecasting results obtained by HISIMI model are better than those obtained with
the other two models (MLP model and persistence model); furthermore, a key advantage of the
HISIMI model is the uncertainty prediction (probabilities) associated with the numerical point (spot)
forecasting value (analyzed in the following Section 5). The two other forecasting models are not
capable of providing such useful forecasting information (probabilities).

5. Analysis of Information Provided by the PV Power Forecasting Model

Most of forecasting models described in the literature only provide spot power forecasts (point
forecasts), while the HISIMI model provides more complete information based on power transitions
for each forecasting time: spot forecasts and uncertainty predictions are computed using discrete
probability functions.

In our case of a real-life grid-connected photovoltaic plant, the daily PV power production forecast
was carried out with the data of 00:00, with forecasting steps of one hour. The uncertainty associated
with each point forecast can easily be calculated using the primary output of the HISIMI model, that is,
the discrete probability distribution associated with the electric power transition for each step in the
forecasting horizon, i.e., for each one of the hour periods from 00:00 to 23:00.
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Figure 9a plots the real hourly PV power production values as well as the spot forecasted values
of electric power from the HISIMI model, for a sunny day belonging to the testing data set. The vertical
axis shows limits of the power intervals for the HISIMI model: the first interval corresponds to values
between −157 and 157 kW (in Figure 9a only the positive half of the interval is represented); the
second interval corresponds to power output values between 157 and 451 kW; and so on. Figure 9b
gives the probability distributions, corresponding to the uncertainty of the point forecast, for central
hours of the day (from 9:00 to 14:00). The horizontal axis of Figure 9b shows the power intervals,
while the corresponding probability values are represented in the vertical axis. Thus, for example,
the hour 9 (period between 9:00 and 10:00) presents two intervals with significant probabilities: the
sixth and the seventh. Notice that for a solar hour containing only two consecutive power intervals
with significant probabilities (above the value 0.1), the uncertainty is relatively low (with respect to
solar hours containing three o more power intervals with significant probabilities), because the point
forecast should correspond mainly to a weighted average value of the powers represented by both
intervals. For the day represented in Figure 9a, the uncertainty about the spot forecasts of electric
power is very low, because there are few power intervals with significant probabilities in each hour
(only one or two consecutive power intervals).

Figure 10a plots the real hourly PV power production values and the forecasted ones of the
HISIMI model for a partly cloudy day belonging to the testing data set. In this case, the forecasts differ
from the actual values of power output, especially in hours from 7:00 to 10:00, and in hours from 12:00
to 15:00. Figure 10b shows the uncertainty associated with the spot forecasts for those hours: only for
the hour from 12:00 to 13:00 there are two power intervals with significant probabilities. The other five
hours present at least three power intervals with significant probabilities.

Figure 11a plots the values of the real hourly PV power production and the forecasted ones of
the HISIMI model for a rainy day (most of the hours with rain) belonging to the testing data set. Spot
forecasts present significant errors. Figure 11b shows the uncertainty associated with the spot forecasts
for the hours between 9:00 and 14:00. All hours in the represented period have at least three power
intervals with significant probability. For example, there are five power intervals with probability over
10% for hour 9:00; this also occurs for the four selected hours between 9:00 and 13:00; and four power
intervals can be identified in the selected last hour (from 13:00 to 14:00). The uncertainty (associated
with the spot forecasts) provided by the HISIMI model is notably high for the day represented in
Figure 11a.

Figure 12a shows the values of forecasted and real hourly power output for a cloudy and rainy
day (cloudy day with showers). In that figure the spot forecasts obtained with HISIMI model are
represented, as well as the spot forecasts obtained with the MLP model. Both models provide quite
similar spot forecasts, with significant errors with respect to the actual power output value. Figure 12b
represents the uncertainty prediction for six central hours of that day, obtained with HISIMI model.
There are at least three power intervals with significant probability for six hours represented in the
figure, denoting a high uncertainty. So, although the HISIMI model and the MLP model provide
very similar spot forecasts, the HISIMI also provides information to help in the evaluation of the risk
assumed using those values of spot forecasts.

Analyzing the information produced by HISIMI model we highlight the differences between
the results provided by our model and those offered by common short-term power point (spot)
forecasting systems. With the model described in this paper, the user has access to more comprehensive
information, including that related to predictions of uncertainty. The modeling of the uncertainty in the
spot forecast, in the form of probability distributions, provide the possibility of analyzing the associated
risk when the spot forecasted values are used to prepare energy sale offers for electricity markets.
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Figure 9. Forecasted hourly power production (a) and uncertainty prediction for six central hours; (b)
(from 9:00 to 14:00) on a sunny day.

Figure 10. Forecasted production of hourly power (a) and uncertainty prediction for six hours; (b) on a
partly cloudy day.
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Figure 11. Forecasted hourly power production (a) and uncertainty prediction for six central hours;
(b) (from 9:00 to 14:00) on a rainy day.

Figure 12. Forecasted hourly power production (a) and uncertainty prediction for six central hours;
(b) (from 9:00 to 14:00) on a cloudy and rainy day.
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6. Conclusions

A new short-term power forecasting model for PV plants, HISIMI, has been described in the
paper. This model presents an innovative set of characteristics, which are:

• The HISIMI model allows a stochastic modeling based on similarity between input values in a
database of historical cases. This similarity focuses mainly on variables forecasted by NWP tools.

• A database with a significant number of historical cases is used to model stochastic forecast, by
creating discrete probability distribution functions.

• A genetic algorithm optimizes the structure of the HISIMI model, allowing the selection of the
best inputs (variables) to be used by the model as well as the optimal values of basic parameters
that define the model.

• The stochastic modeling of electric power transitions allows for the estimation of uncertainties in
point (spot) forecasts of electric power. Uncertainty results obtained from HISIMI provide the
probability distributions associated with the spot values.

• Spot forecasts are calculated using such discrete probability distributions.

Another useful characteristic of the HISIMI model is its ability to easily update the database
used by this model. As soon as new past values are available, they can be included in the database.
If window techniques are used, i.e., the database is limited to the last period defined by a time window
(for example, last six months), even the HISIMI model could be easily be adapted to a new NWP tool
that would provide the prospection variables.

The forecasting model of this paper has been tested using real-life data which show high intra-hour
variability of the power output of a photovoltaic plant. This model has improved spot forecasting
results with respect to the ones from the persistence model and the MLP model (non-stochastic models).

The new model presented in this paper overcomes common short-term forecasting models:
besides the value for spot forecasts, provided by conventional forecasting models, the proposed model
achieves uncertainty values of the spot forecasts. This new forecasting result (i.e., uncertainty) allows
for integration of the HISIMI model into applications where there is a risk associated with forecasting
errors. This risk is evident in electricity markets where forecasting errors, and the consequent deviations
between values of real power generation and offered (forecasted) power, can lead to economic penalties:
in the case of these penalties, the information regarding the uncertainty is very useful to advance an
expected value of penalty, so the market agent can plan to cover the risk.
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Abstract: The accurate forecasting of energy production from renewable sources represents an
important topic also looking at different national authorities that are starting to stimulate a greater
responsibility towards plants using non-programmable renewables. In this paper the authors use
advanced hybrid evolutionary techniques of computational intelligence applied to photovoltaic
systems forecasting, analyzing the predictions obtained by comparing different definitions of the
forecasting error.

Keywords: hybrid techniques; PV forecasting; artificial Intelligence; neural networks

1. Introduction

As a consequence of the high increase in the installed capacity of grid-connected PV plants in
recent years, it is quite difficult to plan the growing amount of energy from renewable sources fed
into the grid, which is up to now non-programmable. This factor cannot be ignored any longer in the
management and control of the load in the transmission network and distribution.

Moreover, considering that the distribution networks are now becoming from passive to active
and that production or consumption plants [1] are gradually becoming more and more important
actors in the management of the global electrical system, it is necessary to wonder what is the reliability
and accuracy level of the forecasting systems, with particular reference to wind and solar plants [2].

In this perspective, it is easy to understand how the reliability factor of the forecast becomes a
key issue in the set of rules for the identification of incentives or penalty mechanisms, in particular in
finding the best mix between programmable and non-programmable sources (as defined in [3]).

In this case, a different definition of prediction error potentially triggers a significant impact in
the economy for the share of the daily energy actually produced every day in comparison with the
relevant declared forecasting.

For the system management in the areas of regulation, as regards the operators of transmission
networks, in addition to real-time and accurate detection of the power fed into the grid, a precise
prediction of energy supply in the short and medium term is also of the utmost importance.

In recent years, the national European regulatory authorities (particularly in Italy [4]) began
to define a number of law provisions aimed at improving the prediction of the input power from
renewable sources that cannot be planned, increasing gradually producers’ responsibility. In addition,
several transmission networks managers will rely on the operators in the field of monitoring of
photovoltaic systems for the prediction of energy generation from solar energy [5].

In this context the need for a one-day ahead forecasting of the energy production on an hourly
basis, by means of soft computer techniques starting from weather forecast provided by meteorological
service, can play a fundamental role and becomes extremely useful for optimal management of the
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energy system. For example the same problem with different approach has been studied in [6] where a
MPC-based (Model Predictive Control) strategy is performed in real-time with accurate short-term PV
power predictions.

Usually the complex nature of many practical problems involves an effective use of Artificial
Neural Networks (ANNs) to solve them. ANNs are useful tools when it is necessary to understand
the complex and nonlinear relationships among data, without any previous assumption concerning
the nature of these correlations. The training is one of the most critical phase. In this step the weights
of the neural connections have to be properly set in order to have an appropriate simulation of the
performance of a PV plant. Recently, even in other application fields like for example traffic flows,
hybrid evolutionary algorithms have been applied to obtain more appropriate parameter combination
to achieve more accurate forecasting [7]. In this paper the parameters of a neural network is optimized
in order to reach a good and accurate output using a different kind of hybrid technique.

The ANN learning process should result in finding the weights configuration associated to the
minimum output error, namely the optimized weights configuration. Usually problems are associated
to an objective function to be optimized. Thus this function, called also “fitness”, cost or energy function,
provides the interface between the physical problems and the optimization algorithm itself. The huge
number of variables is the first difficulty when dealing with one of these optimizing issues. Secondly,
there are lots of configurations with different values of the objective function that are quite similar
each other and very close to the global optimum case, even if these configurations are sub-optimal.
Generally finding a solution in an optimization process means to reach a balance among different and
often conflicting goals; as a consequence such a search could be extremely difficult.

Among the various renewable energy sources, this study refers specifically to photovoltaic plants,
without precluding the applicability of the proposed methods to other energy sources.

In this context the paper introduce a specific hybrid evolutionary algorithm to artificial neural
networks in order to speed up the convergence when applied to ANN training phase and reduce the
overall error in PV plant production forecasting applications. ANN and its training with combination
of other computational intelligence (CI) techniques are nowadays very well established, nevertheless
the paper does not aim to present a pure theoretical contribution, but introduces a novel application in
PV power forecasting to be potentially used by power plant management operators and institutions.
The whole forecasting flow is shown in Figure 1. The next sections describe in detail implementation of
such technique showing the advantage in integrating evolutionary algorithms (EAs) in ANN models.

Figure 1. Forecasting flow process.

2. Hybrid Evolutionary Techniques Combined with ANN

Error Back Propagation (EBP) algorithm is a well-known analytical algorithm used for neural
networks training. In literature, there are several forms of back-propagation, all of them requiring
different levels of computational efforts; the conventional back-propagation method is, however, the
one based on the gradient descent algorithm. The strong dependence upon the starting hypothesis
that severely affects the result is one of the drawbacks of this method. A bad choice of the starting
point may result in the possibility to get stuck in a local minimum and consequently to find a solution
that is not the best one. Besides, most of the typical requiring optimization problems often have
non-differentiable or/and discontinuous regions in the solution domain therefore some difficulties

227



Energies 2013, 6, 1918–1929

interfere in the application of these traditional methods based on derivatives calculations. These
aspects are often overcome by evolutionary methods. The most effective evolutionary algorithm
developed until now is Genetic Algorithm (GA), which is now quite familiar to the engineering
community and widely used ([8,9] and references therein). Genetic algorithms are very efficient at
exploring the entire search space, but are relatively poor in finding the precise local optimal solution in
the convergence region. Some additional operators can be introduced for GA in order to get a better
predictive power of ANNs selecting an optimal combination of input variables. Moreover, in recent
years also the Particle Swarm Optimization (PSO) algorithm is gaining increasing attention for the
integration in the training phase of ANNs [10,11].

Recently hybrid evolutionary techniques have been developed in order to combine the best
properties of classical GA and PSO to overcome the problem of premature convergence. Some
comparisons of the performances of them [12] emphasize the reliability and convergence speed of
both methods, but still keep them separate. These procedures show a marked application driven
characteristic for any respective technique: PSO seems to have faster convergence in the first runs, but
often it is outperformed by GA for long simulations, when the last one finds better solutions. Some
attempts to exploit the qualities of the two algorithms have been done in the last ten years with a
kind of integration of the two strategies [13], but the authors aimed to reach a stronger co-operation
of the two techniques stressing its hybrid nature and maintaining the GA and PSO integration for
the entire run of the algorithm. Thus in the last years the authors have developed an innovative
hybrid strategy called GSO, Genetical Swarm Optimization, which proved to improve traditional
evolutionary mechanisms for a wide range of applications by means of an effective combination of
natural selection and knowledge sharing. In particular, in [14], some comparisons of GSO and classical
methods performances were presented, emphasizing the reliability and convergence speed of the first
one and applying it to different case studies.

The basic concepts of GSO have been presented in [15]: in every iteration, the population is
randomly divided into two parts that are evolved with GA and PSO techniques respectively. Then
the fitness of the newly generated individuals is evaluated and they are recombined in the updated
population, which is again divided into two parts in the next iteration for the next run of genetic or
particle swarm operators. The population update concept can be easily understood thinking that a part
of the individuals is substituted by new generated ones by means of GA, while the remaining are the
same of the previous generation but moved on the solution space by PSO. The driving parameter of
GSO algorithm is the so called hybridization coefficient (hc); it expresses the percentage of population
that in each iteration is evolved with GA with respect of PSO technique. GSO has been tested on
problem of different dimensions: while for a small number of unknowns GSO performance is similar
to GA and PSO ones, if the size of the problem increases, GSO behavior improves and outperforms
GA and PSO during iterations. Moreover, the best hc value found in that preliminary study does
not depend on the dimension of the problem, as it has been reported also in [14]. Furthermore, the
obtained best hc value between 0.2 and 0.3 means that for a big-sized problem, the basic PSO can be
strongly improved by adding a small percentage of genetic operators on the population. In further
studies a convenient value was found to be in the same range for several fitness functions, but the
authors extended the class of GSO algorithms by considering several variation rules for hc, in order to
explore different hybridization strategies for the GSO algorithm and to compare new approaches with
others already present in literature. The full set of hybridization rules considered by the authors is also
reported in [16].

In [15] the authors introduced new rules for varying the hc value during the run, to combine more
efficiently the properties of GA and PSO, in order to have a general procedure. In fact for engineering
optimization problems the best mix of GA and PSO operators cannot be known a priori. In particular
there are situations where a fixed hc is the right choice, and others where a variable hc(k) during
the run is better. This means that also the “amount” of hybridization plays a role in affecting the
performances of this procedure. Therefore the authors chose to let the procedure adjust the hc(k) value
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by itself during the iterations, according to a predefined set of rules defining two different approached
defined as dynamical and self-adapting, where the rule implemented comes in part from the very
simple and reliable swarm techniques.

The overall results reported by the authors in cited papers show that, although the static
GSO is generally the faster and more robust strategy in order to optimize multi-modal functions,
a self-adaptive approach is a suitable and reliable solution especially when the proper hc value is not
known for a specific problem. The overall results reported by the authors in cited papers show that
GSO is a good candidate to be used in classical neural networks to replace training procedure as for
example the common EBP (Error Back Propagation).

In this work a dynamic GSO was combined with a classical EBP in order to improve the speed of
convergence of the neural network training phase and, at the same time, to improve the performance
of the predictive system. In [17] the authors started to apply hybrid evolutionary learning algorithm to
increase the accuracy of the daily forecast finding the best neural weights configuration. Here a similar
mixed approach is used to optimize the neural weights in a more complex predictive model where the
one-day ahead production estimation is performed on a hourly base [18].

Before showing how such a technique has been applied to a specific real case study, in the next
section we will discuss some error definitions in order to identify the most appropriate formula
that better describes the gap between declared and really produced energy in the context of future
incentives or penalty mechanisms. (e.g., according to Italian regulation Authority [4]).

3. Error Definitions

The application of the technique described in the previous paragraph to the problem of PV
production forecasting requires a proper and shared definition of the error estimation with the aim to
assess the amount of the daily produced and declared energy. In order to correctly define the accuracy
of the prediction and the relative error, it is necessary to analyze different definitions of error. The
starting point reference is the hourly error eh, defined as the difference between the average power
produced in the hour Pm,h and the given prediction Pp,h [4] provided by the neural model:

eh = Pm,h − Pp,h [Wh] (1)

From this basic definition, other definitions can be introduced:

• Absolute hourly error eh,abs, which is the absolute value of the previous definition (eh can give
both positive and negative values):

eh,abs = |eh| [Wh] (2)

• Daily error ed, given by the summation extended to 24 hours eh time error:

ed = ∑
h

eh [Wh] (3)

• Daily absolute error ed,abs, given by the summation extended to 24 hours of the Absolute
Hourly Error:

ed,abs = ∑
h
|eh| [Wh] (4)

• Time error percentage based on the rated power of the photovoltaic (Pr):

e%,r =
|eh|
Pr

[%] (5)
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• Time error percentage based on the hourly output expected power (Pp,h):

e%,p =
|eh|
Pp,h

[%] (6)

Following Italian regulation authority, the penalties concerning the transitional period of the year
2013 will be calculated on its basis.

• Daily time error percentage, based on the hourly output expected power (Pp,h):

e%,d,p = ∑
h

|eh|
Pp,h

[%] (7)

Moreover some considerations on the accuracy of measurements related to the plant available
instrumentation affecting the input raw datasets and dispersion evaluation on these data from
the expected values should be considered in a validation phase before starting the ANN training
process itself.

4. Case Study

After a trial campaign, the network architecture that has provided better results presents two
hidden layers. In particular, the number of neurons in the input layer is 7, as shown in Figure 2, which
describes the meteorological parameters provided from the weather forecast service.

Figure 2. Simplified view of the implemented feed-forward ANN with details on input, output, and
hidden layers.

This network structure is less complex than the one proposed by another comparative study on
power forecasting methods in PV plants [18], where the authors used neural networks with hidden
layers and a number of neurons in a higher range (from 11 to 15); in our work in fact we use two
hidden layers with, respectively, 9 and 7 neurons, while the output layer is composed by 1 neuron. The
authors, in fact, performed preliminary simulations for different photovoltaic power plants in order to
test their method at various scale, with different productive capacities, to make this procedure more
general [19].
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Different time horizons can be considered in power forecasting: short term (day and several days),
medium term (week and several weeks), long term (year and several years), and forecasts for different
lead time can be used for different aims. Here, we chose a very short term time base for this specific
application, giving one-day ahead forecasting on an hourly basis in accordance with [20], since this is
the typical resolution requested by power plant operators. In this work the neural network optimized
by GSO exhibit good predictive performances in all the operative conditions, in a complete sunny day,
a partly cloudy one and even a plant maintenance day. Here a combination of GSO and EBP was used
for the hybrid learning process of the artificial neural network, as described in [19], and weights values
of the ANN were changed to reach the minimum error in the network output in a faster way compared
with standard EBP alone. In literature other evolutionary procedures as standard PSO and GA were
compared with the classical EBP in order to perform a comparison in terms of convergence rate and
final obtained result (e.g., [21]), but GSO has already proven to outperform both GA and PSO [14].

In particular, here the GSO-based training phase is first conducted for 9000 iterations (with
a population of 50 individuals) over a period of one year, to process a global search of weights
values; the EBP training is then used for additional 5000 iterations to refine the optimal weights
configuration. To show the effectiveness of this hybrid approach, results are then compared with those
obtained by running a standard EBP learning for a comparable amount of computational time, i.e., for
500,000 iterations.

5. Data Validation and Training

The neural network has to be calibrated with previously collected data on the energy production,
along with the weather forecasts, for a sufficiently long time (a full calendar year would be an
appropriate reference). On the basis of the actual measurements, the error is calculated after applying
different criteria for defining it as discussed in the next section. The previously described method has
been applied to the production forecast of a PV test plant managed by the Department of Energy of
Politecnico di Milano.

The considered input parameters are the following physical quantities provided by the weather
forecast service:

• environmental temperature (◦C);
• atmospheric pressure (hPa);
• wind speed (m/s);
• humidity (%);
• cloud coverage (%).

In particular, since we cannot have a forecast of the temperature for each specific module in a plant,
we take into account factors that are correlated with that value, i.e., the environmental temperature,
wind speed and humidity.

The average hourly power (Pp,h) forecast in the “h” hour is then calculated as the output value for
the next day.

This value is compared with the following meteorological and physical quantities:

• Pp,h is the average hourly power produced by the PV plant in the “h” hour (W);

• GHI is the Global Irradiance on the horizontal plan (W/m2);
• GTI is the Global Irradiance on the tilted plan (W/m2) (as defined in [22]);
• cvg% is the percentage of the cloud coverage (%) (as defined in [23]).

The irradiance data are compared with the theoretical values on the tilted plan Irr,Th.Tilt assessed
by a deterministic algorithm on the basis of the geographical coordinates with the aim to validate
the forecast data. The input data have been validated in order to verify their true significance or to
provide the proper training to the network. For example all irradiation samples by night were omitted
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to exclude a high rate of forecasting elements that could highly affect the resulting error (irradiance
forecasts during the night are zero). All the missing data have been excluded not contributing to the
forecast. Starting from the comparison between the actual produced power and the predicted one, it is
calculated for each day:

• the hourly error eh;
• the error percentage, based on the rated power e%,r;
• the error percentage on the hourly power forecast e%,p;
• the daily error percentage based on the hourly power forecast e%,d,p.

6. Results and Discussion

The described forecasting technique has been applied over a one year production period. Two
days are displayed hereunder, the first one showing good weather conditions (Figure 3), the second
day showing bad ones (Figure 4). Table 1 reports detailed energy production and error calculation for
the two sample days.

Figures 5 and 6 respectively report the comparison between the forecast results and errors
obtained by the hybrid training (GSO + EBP) and the standard EBP alone, showing an improvement of
performances using the hybrid approach for the same computational time. In particular, these results
are summarized in Table 2, where the two training approaches are compared considering some of the
error definitions previously introduced in Section 3.

Figure 3. Daily detail of the curves of radiation (theoretical, forecast and actual) with the calculation of
the error values during a clear sky day.
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Figure 4. Daily detail of the curves of radiation (theoretical, forecast and actual) with the calculation of
the error values during day with bad weather conditions.

Figure 5. Daily produced and predicted energy comparison.

Figure 6. Daily absolute error ed,abs comparison.
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Table 1. Production data and error calculation for two-day examples.

Physical quantities
Clear sky

day
Cloudy day

Daily Production 28.37 kWh 19.16 kWh
Daily Forecast 27.68 kWh 19.65 kWh
Daily Error ed 684 kWh −491 kWh
Daily Error percentage on the base of the daily production 2.41% −2.56%
Daily Error absolute ed,abs 2.29 kWh 5.96 kWh
Daily Error percentage on the base of hourly forecast power e%,d,p 8.08% 30.31%

Table 2. Main production data and error calculation with reference to the entire period.

Forecast error definition EBP Hybrid (GSO + EBP)

Nr. Samples 2879 2879 h
Average Hourly Abs. Error avg

(
eh,abs

)
0.338 0.317 kW

Yearly Total:

Overall Production Em =
∫

year Pm,h 4512.3 4512.3 kWh
Overall Forecast Ep =

∫
year Pp,h 4852.6 4562.4 kWh

Overall Yearly Error Em − Ep −340.3 −50.12 kWh
Error abs. tot ∑ ed,abs 973.2 912.98 kWh
Error abs.% tot ∑ ed,abs

Ep
·100 20.06% 20.01%

Daily Averages:

Average Daily Production Em/365 12.36 12.36 kWh
Average Daily Forecasting Ep/365 13.29 12.50 kWh
Average Daily Error

(
Em − Ep

)
/365 −0.932 −0.137 kWh

Average Daily Abs. Error avg
(
ed,abs

)
2.666 2.501 kWh

The developed model allows an accurate prediction generally for clear days as well as for
permanently covered days. However, as shown in Figure 4, there was a lower precision in the days
characterized by a strong and rapid variability. In fact, since data provided by the weather service are
on hourly basis, we lose information that is particularly important in days with highly variable cloudy
conditions. In particular, this problem could be also due to the slowness of cvg% forecast with respect
to the actual fluctuations of the other meteorological parameters: probably this index is averaged
over several hours and, therefore, it is unable to represent accurately the real variability of the actual
cloudy coverage.

Additional considerations can also be made with regard to the formulation of the forecasting
error. For example the error percentage on the hourly power forecast is always high in correspondence
of values of low solar radiation. This event occurs both during cloudy days and during sunrise and
sunset of any day. As in these periods of time the power generation is relatively small, the forecasting
error should not be counted in the same way as the forecasting error calculated during the hours with
high level of solar radiation. In these conditions, the authors suggest a threshold of solar radiation
under which the data have not to be considered. Besides, in this error definition, the measured power
data should be adopted instead of the forecast power ones.

7. Conclusions

Due to the increase of renewable energy penetration in the electric grid, it is quite important to
estimate the amount of energy from such non-programmable sources.

In this paper a novel hybrid evolutionary approach is used for training artificial neural network in
order to achieve more accurate forecasting of photovoltaic systems based on weather forecast as input
data. Moreover, analyzing all test results obtained by comparing different definitions suggested for the
forecasting error, a sensible reduction of the error itself can be achieved by increasing the time range
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of observation and of course the quality and resolution of the data provided from the local weather
forecast service.

The developed model allows both better predictions and potential novel applications in PV power
plant management operations.
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