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Preface

Soil ecosystem services include people’s direct and indirect benefits from soils. These include

provisioning services, such as food, feed, fiber, and fresh water; regulating services, such as flood and

disease control and climate regulation; and supporting services, such as soil formation, water and

nutrient cycling, the production of atmospheric oxygen, and the provisioning of habitats.

Utilizing soil for agriculture inevitably changes soil properties, such as nutrient status, pH,

organic matter content, and physical characteristics. In many cases, changes that are beneficial for

food production are detrimental to other ecosystem services. Core farming practices, such as soil

tillage, crop residue management, nutrient management, and pest management, impact a range of

soil functions and ecosystem services, including water availability for crops, weed control, insect

and pathogen control, soil quality and functioning, soil erosion control, soil organic carbon pool,

environmental pollution control, greenhouse gas emissions, and crop yield productivity.

Since prevailing farming paradigms perceive high crop yields and low environmental impact as

being in conflict, it is crucial to define an environmentally sound range of agronomic activities that

would be considered tolerable at a certain extent of intensity. Sustainable agriculture mainly focuses

on increasing the productivity of the soil and reducing the harmful effects of agricultural practices on

climate, soil, water, environment, and human health. Increases in soil fertility, water protection, and

biodiversity protection need to be considered.

Following sustainable agriculture principles, soil must be protected and developed, water and

water resources must be protected, natural control of pests and diseases should be adopted, and

different agricultural products should be cultivated. Managing soil organic carbon is central because

soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop

growth.

Chiara Piccini and Rosa Francaviglia

Editors
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Abstract: Land evaluation has an important role in agriculture. Developing countries such as Egypt
face many challenges as far as food security is concerned due to the increasing rates of population
growth and the limited agriculture resources. The present study used multivariate analysis (PCA and
cluster analysis) to assess soil capability in drylands, Meanwhile the Almagra model of Micro LEIS
was used to evaluate land suitability for cultivated crops in the investigated area under the current
(CS) and optimal scenario (OS) of soil management with the aim of determining the most appropriate
land use based on physiographic units. A total of 15 soil profiles were selected to characterize
the physiographic units of the investigated area. The results reveal that the high capability cluster
(C1) occupied 31.83% of the total study area, while the moderately high capability (C2), moderate
capability (C3), and low capability (C4) clusters accounted for 37.88%, 28.27%, and 2.02%, respectively.
The limitation factors in the studied area were the high contents of CaCO3, the shallow soil depth, and
the high salinity and high percentage of exchangeable sodium (% ESP) in certain areas. The application of
OS enhanced the moderate suitability (S3) and unsuitable clusters (S5) to the suitable (S2) and marginally
suitable (S4) categories, respectively, while the high suitability cluster (S1) had increased land area, which
significantly affected the suitability of maize crop. The use of multivariate analysis for mapping and
modeling soil suitability and capability can potentially help decision-makers to improve agricultural
management practices and demonstrates the importance of appropriate management to achieving
agricultural sustainability under intensive land use in drylands.

Keywords: soil capability index; PCA; GIS; land capability and suitability; cluster analysis;
sustainable agriculture

1. Introduction

Worldwide food insecurity is currently one of the most significant challenges facing
humanity. Demand for food is expected to rise by 70.00% by 2050, and agricultural pro-
ductivity is a crucial component of global food security [1]. Rapid population growth
has exacerbated global human food insecurity, thus necessitating long-term evaluation of
natural resources. It is thought that the world population will be more than nine billion
by 2050 [2,3]. As such, it is anticipated that there might be shortages in both agricultural
resources and land [4,5]. One possible solution to compensate for this shortage is to encour-
age increasing crop yields. However, this entails using pesticides and fertilizers that may
affect the environment negatively. Another possible solution is to import more crops to fill

Land 2022, 11, 1027. https://doi.org/10.3390/land11071027 https://www.mdpi.com/journal/land
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the food gap [4,6]. If properly managed, soil is one of the most significant natural resources
that can abet in bridging the food demand gap to achieve food security [7]. Agricultural
fields in the Nile Valley and Delta, Egypt, account for about 4.00% of the country’s total
land area [8]. The growth of the agricultural sector in Egypt is considered an important
long-term development backbone. The agricultural sector contributes about 14.50% of the
gross national product in Egypt and 30.00% of foreign revenue from the export of agricul-
tural products, and has led to a 41.00% decrease in unemployment [9]. Agricultural growth
on arable land strives to accomplish long-term agricultural development by the integration
of soil, water, and environmental factors [10,11]. The term “land evaluation” refers to the
performance rate of the land and its ability for crop production, with the capacity varying
according to climate, geographical location, and physiochemical characteristics [12]. Land
evaluation can enable decision-makers to select the best-performing crops based on soil
properties [11,13]. The soil limiting factors for crop suitability vary in different areas in
Egypt, with soil salinity, poor drainage, and compaction as the most common factors in the
northern Nile Delta [14–17]. Agriculture is the greatest user of water in Egypt, especially
in the northwestern Nile Delta; thus, determining and controlling surface water quality
in such areas is vital for protecting water resources and ensuring long-term sustainable
agriculture [18]. Soil property characterization, modeling, and mapping at various spatial
and temporal scales are required for the study of diverse environments [19] The Geographic
Information System (GIS) technique has accelerated spatial variability studies of different
environmental phenomena [20]. Thus, integrating GIS and geostatistical analysis to map
and detect the spatial variation of soil parameters in previously unstudied areas might be
beneficial. For instance, inverse distance weighted is an interpolation procedure that uses
known values with corresponding weighted values to estimate unknown values in a study
location [21]. Land capability assessment has a vital role in adequate planning, particularly
in arid climate zones [22]. Combining the properties of soil in order to evaluate its capability
is limited by the intricate nature of the soil system. Consequently, multivariate analysis
has been identified as an appropriate tool for soil capability zone evaluation owing to its
ability to perform systematic modeling in unclear and indistinct scenarios [23–25]. PCA
and cluster analysis are multivariate procedures that are widely used for soil data recogni-
tion, classification, and modeling [26]. Models of soil evaluation, theoretical agricultural
management scenarios, and spatial analyses are valuable tools used by land managers and
decision-makers to achieve sustainability of land use and management for different studied
areas [27,28]. The Micro Land Evaluation Information System (Micro-LEIS) has been widely
used to assess land suitability around the world [29]. The Micro-LEIS system is based
on an integrated soil, climate, and agricultural management databases for assessing land,
and contains two models related to land vulnerability and suitability [30]. The Almagra
model was designed for land suitability assessment and is one of the major components of
Micro-LEIS DSS [31]. The main aim of this work is to use multivariate analysis to assess
soil capability in the dryland areas of the northwestern Nile Delta in Egypt. In addition,
land suitability for cultivated crops in the study area under CS and OS of soil management
was evaluated to determine the most appropriate land use based on physiographic units.

2. Materials and Methods

2.1. The Site Description

The study area was in the northwest Nile Delta in Egypt. It lies between longitudes
30◦15′0′′–30◦40′0′′ E and latitudes 31◦7′15′′–31◦30′45′′ N, with a total area of 797.00 km2

(Figure 1). The area is categorized by a Mediterranean climate based on the mean climatic
parameters for a period of 50.00 years from 1960 to 2011 [32]. A relatively high average
maximum temperature of 30 ◦C is usually recorded during the dry season in August. The
mean minimum temperature in January is 13 ◦C. Precipitation is naturally light and drizzly
from November to February, with a mean rainfall of about 17.23 mm/year. The lowest
evaporation rates are noticed in January and December owing to low temperatures, while
the highest rates are observed in June and September owing to relatively high temperatures.
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The annual mean rate of evaporation ranges from 3.3 to 4.8 mm/day. The lowest percentage
of relative humidity of 51% is observed in April, while the highest proportion of 58.4% is
observed in December. The area has a torric and thermal soil moisture and temperature
regime [33]. Geologically, the western Nile Delta is formed from sedimentary deposits that
vary in age from the Late Cretaceous to Quaternary. The eastern and western parts of the
study area are covered with Holocene clay and Quaternary sediments, respectively [34].
Surface irrigation is the most commonly used system, in which water is pumped from
irrigation canals and drained in furrows and basins [18].

Figure 1. Location of investigated area.

2.2. Extraction of Physiographic Units

In this study, a SENTINEL-2 image acquired in August 2020 under clear-sky conditions
was utilized to create landforms and digital soil map features of the study area with
the aid of a digital elevation model (DEM). The Sentinel application platform (SNAP)
and Environment for Visualizing Images (ENVI 5.4) software were used to process the
spectral subset, radiometric calibration, atmospheric, and geometric corrections of the
image [35]. Remote sensing (RS) and geographic information system (GIS) are effective for
identifying geomorphological units [36]. Thirteen geomorphological units were recognized
as representing different geomorphological features within the study area. Subsequently,
the image obtained was used as the base map, and each geomorphic unit was homogeneous
with the natural land properties [37]. The stepwise methodology for evaluating soil relied
on the integrated soil data, remote sensing data, and GIS utilizing multivariate analysis, as
illustrated in Figure 2.

3
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Figure 2. Flow chart illustrating methodology of current work.

2.3. Sample Collection and Lab Analysis

A total of 15 soil profiles were geo-referenced based on geomorphological field map-
ping of the research area using the Global Positioning System. These profiles were selected
from three sampling areas spanning about 80 km2 to represent the identified geomorphol-
ogy and landscape units of the area in Figure 3. Morphological description and classification
of soil profiles were carried out according to FAO [12] and USDA [33], respectively. Soil
profiles were dug to 150 cm depth or until the water table appeared. Thus, the soil profiles
range from 80–150 cm depth. The soil physiochemical parameters (61 soil samples) were
analyzed in an ISO/IEC 17025 (2017)-compliant and accredited soil, water, and plant labo-
ratory at the Faculty of Agriculture, Tanta University. Chemical analyses, including salinity
(EC), soil reaction (pH), cation exchange capacity (CEC), calcium carbonate percentage
(CaCO3), exchangeable sodium percentage (ESP), and trace elements (As, Co, Cu, Ni,
and Zn), were conducted to determine the Irrigation Water Quality Index (IWQI). Trace
elements and heavy metals in irrigation water are responsible for soil contamination, and
are key indicators of irrigation water quality [38]. In addition, analysis of soil physical
characteristics, including bulk density, particle size distribution, and fertility as defined by
percentage soil organic matter content (SOM%) and available soil nitrogen (N), phosphorus
(P), and potassium (K) was conducted [39–43].
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Figure 3. The distribution of soil profiles and sampling areas in this study.

2.4. Determination of IWQI Values

The nature and severity of problems caused by poor irrigation water quality are widely
considered to differ based on a variety of factors, such as soil type and crops, the regional
environment, and how water is used by farmers. Generally, five measures are used to
assess irrigation water quality, including salinity level, infiltration and permeability hazard,
and the level of toxic chemicals in water [44,45].

The proposed IWQI, which evaluates the mutual effect of quality parameters, was
calculated using Equations (1) and (2):

G =
w
N

N

∑
k=1

rk (1)

where k is an incremental index, w is the weight of each hazard, N is the total number of
parameters, and r is the rating value of each parameter.

IWQindex = ∑5
i=1 Gi (2)

where i is an incremental index and G is the contribution of each water quality parameter,
(salinity, infiltration, specific ion toxicity, trace element toxicity, and miscellaneous effects).

2.5. Statistical Analysis

Descriptive statistics of the studied soil characteristics, including the minimum, maxi-
mum, arithmetic mean, standard deviation, and coefficient of variation, were computed
using SPSS version 25. PCA was used to reduce the dataset into principal component (PC)
variables and to avoid multi-collinearity between the original variables. Prior to PCA, the
Pearson correlation coefficient was utilized to verify linear relationships among the soil
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variables. The Kaiser–Meyer–Olkin (KMO) method was used to assess adequacy of samples
for the whole data set, with KMO values larger than 0.5 indicating the suitability of the data
for PCA. In addition, data fitness was determined using the Bartlett test, and the results
revealed a p < 0.05, which further confirmed the data fitness for PCA [46]. SPSS software
version 25 was used to perform all statistical analyses. The soil profiles were considered
as objects for evaluating soil capability, and were divided into dissimilar clusters utilizing
agglomerative hierarchical clustering (AHC) in PCA.

2.6. Soil Capability Assessment Based on PCA

The Weighted Additive method was used according to Equation (3):

WAI =
n

∑
i=1

Wi × Si (3)

where WAI is the Weighted Additive index, Si is the score, n is the number of indicators,
and Wi is the weight of indicators.

All parameters were weighted based on the communality of indicators, which were
computed statistically or obtained using factor analysis (IBM, SPSS Statics 25). The weighted
value of each parameter was either calculated by dividing each parameter value by the over-
all sum of their values or reported as a ratio [47]. Each parameter was analyzed using four
indicators, namely, chemical (CI), physical (PI), fertility (FI), and environmental (EI) indices,
and scores ranging from 0.2 to 1.0 were obtained (Table S1). The final index values were
classified into high capability (C1), moderately high capability (C2), moderate capability
(C3), and low capability (C4) categories (Table S2). The range of values for each index was
divided by the number of categories obtained (4), and the results were subsequently used
as the width of each category. The resulting values were successively added to the lowest
values of each index to obtain the upper limits of each category. Soil capability assessment
depends on defining soil properties and their relationship with agricultural suitability. In
this context, PCA classifies the capability of soil by harmonizing soil properties within each
class. In addition, PCA provides a visual representation of the main clustering patterns for
identifying similarities and differences among soil characteristics [48].

2.7. Mapping Soil Properties Using Inverse Distance Weighted (IDW)

The IDW tool in ArcGIS10.7 software was used to produce interpolation maps of chem-
ical, fertility, physical, and environment parameters. This approach works by computing
the grid note by considering neighboring locations within a user-defined search radius.
The IDW is widely used in soil investigations because it is easy to implement [49–54]
The local impact of the measurement point decreases with distance, as illustrated in the
following equation:

zp =
∑n

I=1

(
zi
di

)

∑n
i=1

(
1
di

) (4)

where zp is the value predicted at point P, zi is the z value at measured point i, and di is the
distance between point 0 and point ‘i’.

Based on SPSS results, the geometrical interval classification method was used to
produce most of the interpolation maps, because these data were not distributed normally,
whereas natural breaks classification (Jenks) was used for EC, ESP, and CaCO3 maps, as the
data used for these maps were normally distributed.

2.8. Determination of Land Suitability

The Almagra model defines soil suitability in five different clusters, namely, optimum
(S1), high (S2), moderate (S3), marginal (S4), and unsuitable (S5), for five traditional annual
crops, including wheat, maize, and potato, as well as for semiannual and perennial crops
such as alfalfa and citrus, respectively. The model was implemented in Micro-LEIS and
uses soil variables and favorable crop conditions to evaluate suitability [29,31,55]. The
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variable generalization levels were determined based on crop requirements for each soil
parameter using the most limiting factor method to define soil suitability classes. In this
study, the Almagra model was implemented to assess the CS of soil suitability for five crops
that are predominantly cultivated within the study area. The OS was based on manageable
soil parameters, such as EC, ESP, and CaCO3, without considering the interaction between
them. Other soil parameters such as texture and depth were not considered owing to the
difficulty in their modification.

The suggested OS was calculated based on Equation (5) [30]:

OS = CS − URs (5)

where OS, CS, and URs represent the optimal scenario, the current scenario, and the units
of reduction, respectively.

The reduction units were defined by assessing CS to meet the suggested fixed value of
OS to raise the final soil suitability class. Notably, when the soil under CS was unsuitable
(S5) or marginally suitable (S4), higher URs were required relative to those of moderate
suitability (S3), which required lower URs to meet the fixed OS value for each soil variable.
Under OS, EC classes were reduced and the values varied from slightly to highly saline,
with a fixed value of 2 dSm−1, which represents nonsaline soil. For ESP, the projected value
of OS was 5%. Finally, OS decreased the CaCO3 values from 9.04% to <2.

3. Results and Discussion

3.1. Geomorphology of the Study Area

The geomorphological units of the study area were determined using Sentinel-2
satellite imagery, DEM, and field truth points (Figure 4). The study area included flood
plain, lacustrine plain, and marine plain as the three main landscape features. These
features are very common in the north of the Nile Delta and the southern areas of lakes
such as Idku in Egypt [1,56]. The flood plain (713 km2) formed from deposits of the Nile
before the high dam’s construction. There are many landforms under this landscape, i.e.,
river terraces, overflow basins, decantation basins, river levees, and meandering belt. The
lacustrine plain (40 km2) is formed from Holocene-era lacustrine sediments. This landscape
includes fish farms, dry and wet sabkha, and coastal sand dunes. The marine plain (40 km2)
is located in the north zone of the study area, and includes sand sheet landforms. Water
bodies (Lakes) represent 4 km2 of the total area.

3.2. Spatial Analysis and Soil Physiochemical Properties
3.2.1. Chemical and Physical Soil Capability Indicators

Chemical soil capability indicators (CSCI) are dynamic indicators that vary over time as a
result of land management. The CSCI were chosen based on their sensitivity to disturbance and
their ability to execute soil ecosystem functions. CSCI included EC, pH, ESP, CaCO3, and CEC
as well as physical indicators including depth, as represented in Figure S1.

The spatial trends of EC and ESP increased in the upper part of the northwest of the
study area (around 12–20 dS/m and 18–25%), respectively. The high values of ECe in
certain areas of the study area may have resulted from the high salinity of the water table
and the effects of lake water and seawater. This agrees with the common pattern of the
northern delta, where most of the soil is categorized by high soil salinity [15,57]. This high
sodium percentage can negatively affect soil properties such as soil structure and hydrology,
consequently reducing crop productivity [7]. The highest values of pH (approximately
8.6–8.9) were found in sites in the northeast and southeast of the study area. The highest
values of CaCO3 (roughly 6–9%) were found in the middle and southwest of the studied
area due to shell fragments, which can lead to solid layer formations impermeable to crops
of plants and water in addition to fixation of P fertilizer [7,58]. From the interpolation map,
the highest value of CEC (around 37–42 cmolc/kg) was found in sites in southwest and
middle of study area. The profile depth ranged from 80–150 cm.

7



Land 2022, 11, 1027

Figure 4. Geomorphological map illustrating the study area.

3.2.2. Fertility and Environmental Soil Capability Indicators

The spatial distribution map for available N, P, K, and SOM in Figure S2 shows that
the trend of both N, with values ranging from 7.50 to 81 mg/kg, and P, with values ranging
from 6.30 to 22.3 mg/kg, increased from north to south across the study area. On the other
hand, the spatial trend of K, with values ranging from 9.30–457.1 mg/kg, increased in sites
in the upper north and lower south of the study area. The highest values of SOM (0.9–1.22%)
were found in the middle of the northeast and northwest of the study area. The IWQI map
(Figure S3) is thought to be a useful tool in future agricultural management plans [18].

3.3. Multivariate Statistical Analysis
3.3.1. Descriptive Statistics of Soil Indicators

Fifteen soil characteristics were analyzed as prospective soil capability indicators. The
descriptive statistics obtained based on the weighted mean of parameters of investigated
soil profiles are provided in Table S3. The skewness and kurtosis of the tested soil properties
revealed a normal distribution in EC, ESP, and CaCO3, while other properties had skewed
distribution. The normality test using the Anderson–Darling method obtained p values < 0.05
for all the tested soil properties.

3.3.2. Correlations of Soil Physicochemical Indicators and Principal Component Analysis

The Pearson correlation coefficient plot revealed both positive and negative coefficients
at both p < 0.01 or p < 0.05 (Figure 5). A significant positive association was observed
between depth and both EC and ESP, with r = 0.38 and 0.41, respectively. Similarly,
significant positive coefficients of r = 0.55, 0.56, 0.57, 0.5, and 0.34 were observed between
depth and AK, AN, AP, CEC, and OM, respectively. In addition, positive significant
correlations of r = 0.87 between EC and ESP and 0.46 between EC and AP were detected. In
contrast, negative correlation coefficients were observed between pH and other properties,
except for ESP and CaCO3. Notably, higher positive correlations were observed between OM
and CaCO3, AN, AP, AK, and CEC, with coefficients of r = 0.48, 0.80, 0.71, 0.82, and 0.89,
respectively. In addition, a positive significant correlation between CEC and AN (r = 0.94),
AP (r = 0.84), and AK (r = 0.95) was observed.
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Figure 5. Correlation plot showing coefficients between soil properties. Note: p < 0.01 and/or p < 0.05.
AK, AP, and AN represent available potassium, phosphorus, and nitrogen, respectively.

The factor loading results revealed the acceptable clustering of soil properties and
confirmed the reliability of PCA for defining soil characteristics in different clusters [59].
PCA was used to assess land capability based on the variation in soil physicochemical
properties and environmental conditions. The method uses eigenvalues, proportions of
variance, and cumulative variance of PCs to estimate clusters based on soil characteristics.
In this study, PCs with eigenvalues > 1 were retained, while those with values <1 were
screened out. As a result, the first four groups with eigenvalues >1 were selected. The
soil indicators and these four PCs are shown in Table 1. Notably, a cumulative variance of
91.24% for all the tested variables was observed, with PC1, PC2, PC3, and PC4 explaining
about 51.12%, 18.37%, 12.48%, and 9.27% of the total variance, respectively. The factor
loadings and component score coefficient outputs from the varimax method showed higher
factor loads. The most representative physical and chemical indicators for PC1 based on
their close correlation included AN, AP, AK, OM, CEC, and CaCO3, which might be due to
the association between natural conditions and the soil formation processes in the study
area [60]. In contrast, PC2 was correlated with soil depth, pH, and IWQI. In addition, PC3
was linked with EC and ESP, while PC4 was attributed to ESP.

Table 1. Summary of PCA.

PC Parameters PC1 PC2 PC3 PC4

Eigenvalue 5.62 2.02 1.37 1.02
Variability (%) 51.12 18.37 12.48 9.27

Cumulative (%) 51.12 69.49 81.96 91.24

Component score coefficients

Indicator PC1 PC2 PC3 PC4

Depth 0.64 0.47 −0.44 0.04
EC (dSm−1) 0.49 0.70 0.36 −0.24

pH −0.41 0.20 0.60 0.58
ESP 0.48 0.69 0.51 0.02

CaCO3 0.28 −0.76 0.52 0.06
AN 0.96 −0.15 0.02 −0.01
AP 0.93 −0.05 −0.00 −0.23
AK 0.97 −0.13 0.04 −0.07

CEC 0.96 −0.17 0.04 0.10
OM 0.83 −0.34 0.06 0.24

IWQI 0.42 0.20 −0.41 0.71

Table 2 shows the acceptable level of p values for the Bartlett sphericity and the KMO
tests at p = 0.05. The Bartlett sphericity test revealed a p value of <0.0001, which confirmed
the suitability of PCA for defining soil clusters based on their characteristics.
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Table 2. The Kaiser–Meyer–Olkin (KMO) and Bartlett sphericity tests.

KMO and Bartlett Tests

KMO Measure of Sampling Adequacy 0.692

Bartlett Test of Sphericity
Chi-square (approx. value) 138.160

Degree of freedom (DF) 55
p value 0.0001

The cluster analysis revealed two dissimilar clusters based on PC scores. A dendrogram
showing hierarchical clustering of the four groups based on soil properties was obtained, with
each group sharing soil profiles that contained a set of similar characteristics (Figure 6).

Figure 6. Agglomerative hierarchical clustering dendrogram showing clustering based on soil properties.

3.3.3. Assessment of Land Capability Based on PCA

Soil characteristics classification and its correlation with soil capability and crop
suitability is an unprecedented soil analysis approach that can overcome the challenge of
classifying soils into clusters based on similarities in their properties, which relies on the
intricate determination of increasing and decreasing soil characteristics. The investigated
area land capability map was constructed using PCA results; the map reflected the four
previously identified groups (Figure 7). The statistical analysis of soil parameters for land
capability clusters (C1–C4) are shown in (Table 3). The high capability cluster (C1) occupied
31.83% of the total investigated area, with the soils of this class being identified by moderate
salinity, ESP, IWQI, and CaCO3 values. The moderately high capability class (C2) accounted
for 37.88% of the total study area. The limiting factors of this class were high CaCO3 content
of 9.04% and shallow soil depth of 80 cm. The moderate capability class (C3) accounted for
28.27% of the total study area, and the unit was characterized by a number of limitations,
such as high pH and salinity values, which represented the major limiting factors for soil
capability, and low SOM%. In addition, the soils of C3 showed a moderate ESP content of
14.01%. The low capability class (C4) represented a small area of 2.02% of the total study
area. The soil chemical analysis of this class illustrated high salinity values and moderate
ESP and SOM contents.
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Figure 7. Land capability classes within study area.

Table 3. Statistical summary of soil properties in the four land capability clusters.

Classes Depth EC (dS/m) pH ESP CaCO3 AN AP AK CEC OM IWQI

C1 108 2.22 8.58 7.01 2.80 13.55 8.43 14.18 9.34 0.38 30.67
C2 80 1.50 8.37 4.73 9.04 63.00 17.40 413.30 36.84 1.17 26.50
C3 123 5.32 8.67 12.76 3.97 43.60 12.53 272.13 32.26 0.93 37.40
C4 150 7.92 8.37 14.01 3.77 68.16 19.41 409.80 39.42 0.97 34.28

3.3.4. Soil Suitability

Soil profiles were evaluated based on their suitability for crop production by consider-
ing the specific soil property requirements of each crop to achieve maximum yield. The
results showed that soil suitability of selected crops could be categorized into S2–S5 classes,
with different limiting factors being identified in each class based on geomorphological
units. The soil suitability was examined with five horticultural and field crops, namely,
wheat, maize, alfalfa, potato, and citrus (Figure 8). Overall, cultivating field crops in the
area demonstrated good potential for sustainable agricultural development (Figure S4);
however, improved quality of irrigation water is highly necessary [18].

3.3.5. Soil Factors under Current and Optimal Scenarios

The key soil limiting factors in the study area were identified to be high salinity,
increased sodium saturation, poor drainage, calcium carbonate, and rough soil texture
(Figures S5 and S6). Reducing the manageable soil limiting severity of factors, such as
EC, ESP, CaCO3, and drainage, where possible, resulted in enhanced soil suitability for
all selected crops under OS. In addition, under OS, soils in all suitability classes showed
decreased salinity contents to 2 dSm−1, which correspond to non-saline soil levels. No
detectable change in salinity content was observed in nonsaline soil (<2 dSm−1), while
10–18 reduction units were observed in highest-salinity soils with contents of 12–20 dSm−1.
Numerous soil management options have been proposed to decrease soil salinity, such
as using low-salinity water to enhance the leaching of salts from the soil root zone [61].
The rate of plant growth under salt stress strongly varies among plant species [62,63].
Sodium saturation values can be reduced to low sodium levels of 5% with 4–20 reduction
units. Previous studies have demonstrated that the addition of gypsum can lower high
soil sodium saturation content [64–66] owing to its ability to absorb calcium instead of
sodium in soil particles, directly leading to improved aggregation and decreased pH [65,67].
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In addition, low values of SOM may affect the soil structure negatively [68]. Thus, it is
recommended to raise the SOM level by adding organic amendments and residues of crops
such as leguminous plants [69]. Similarly, about 1.6–7 reduction units are necessary to
improve calcium carbonate content to the optimum <2% level. The best practice in the study
area is to cultivate different seasonal crops and to avoid replanting the same plants in the
same sites in order to maintain soil fertility and increase the SOM level [68–76]. This helps
to maintain soil quality over the long run, which leads to an increased degree of crop yield
and soil sustainability for different varieties of crops [68]. The spatial distribution of salinity,
sodium saturation, and calcium carbonate under CS and their projected reduction units in
each suitability class are shown in Figure 9. The status of the agricultural drainage system
in the investigated area ranged from excessive to poor (Figure S6) and was predominantly
poor under CS.

Figure 8. Cont.
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Figure 8. Maps showing soil suitability classes (S1–S5) for selected field and horticultural crops.
Lowercase letters represent main soil limiting factors in each class; s, salinity; t, texture; a, sodium
saturation; d, drainage; c, carbonate content; p, profile depth.

Figure 9. Cont.
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Figure 9. Spatial distribution of soil factors under CS and their projected reduction units under OS:
soil salinity (a,b), sodium saturation (c,d), and carbonate content (e,f).

3.3.6. Evaluation of Soil Suitability under CS and OS

Geomorphic features such as coastal sand dunes, wet sabkha, and fish farms, which
cumulatively account for 4.52% of the total study area, were not considered in the suitability
evaluation. In addition, water bodies (lakes), which account for 0.5% of the total study area,
were not considered in the suitability evaluation. Under CS, subclasses 8–20 represented
the main soil suitability subclasses, covering suitability classes S2, S3, S4, and S5 for most
evaluated crops (Figure 8). With the application of OS, the moderate suitability class (S3)
and the unsuitable class (S5) were enhanced to the suitable (S2) and marginally suitable
(S4) classes, respectively, while the high suitability class (S1) showed increased area, which
had significant effects on the suitability of maize crop (Table 4).

Table 4. The soil suitability for the five crops evaluated.

Class

Crops

Wheat Maize Potato Alfalfa Citrus

A B A B A B A B A B

S1 _ _ _ 39.9 _ _ _ _ _ _
S2 31.8 82.6 31.8 42.7 51.0 82.6 31.8 82.6 2.0 39.9
S3 39.9 _ 39.9 _ 20.7 _ 39.9 _ 17.4 17.4
S4 17.4 17.4 17.4 17.4 17.4 17.4 27.8 17.4 69.7 42.7
S5 10.9 _ 10.9 _ 10.9 _ 0.5 _ 10.9 _

Total 100 100 100 100 100 100 100 100 100 100

Note: (A) Current situation and (B) optimal scenario.

4. Conclusions

Integrated PCA and AHC analysis were used to classify soil capability within the
study area, relying on the associations and interactions between soil characteristics. The
study area could be classified into four classes relying on PCA. The main limiting factors
within the study area included shallow depth, high salinity, and high CaCO3 content in
certain sites. Subsequently, multivariate analysis was used to assess soil capability based
on its properties under different conditions. The observed crop suitability under CS can
provide valuable information to decision-makers about key limiting factors. Moreover,
evaluation of crop suitability under OS could potentially be used to predict the degree of
improvements necessary to achieve agricultural sustainability. Similarly, remote sensing
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data are useful for extracting geomorphologic units, which are considered the base map for
soil evaluation studies. GIS techniques are vital tools for mapping soil capability and crop
suitability in order to achieve the best land use and food security in arid zones.
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(CEC: cmolc/Kg), and (f) depth (cm); Figure S2; Spatial distribution of fertility soil properties:
(a) (Available N: mg/kg), (b) (Available P: mg/kg), (c) (Available K: mg/kg), (d) Soil Organic Matter
(SOM %); Figure S3:The IWQ index map of the study area Figure S4: Cultivated orchards (a) Mango
and (b) Orange in the study area; Figure S5: Saline soils near the fish ponds south of Idku lake in the
studied area; Figure S6: Very poorly drained soil in the study area; Table S1: Scores of all parameters;
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Abstract: The presence of a noticeable rate of degradation in the land of the Nile Delta reduces the
efficiency of crop production and hinders supply of the increasing demand of its growing population.
For this purpose, knowledge of soil resources and their agricultural potential is important for
determining their proper use and appropriate management. Thus, we investigated the state of soil
fertility by understanding the effect of the physical and chemical properties of the soil and their
impact on the state of land degradation for the years 1985, 2002 (ancillary data), and 2021 (our
investigation). The study showed that there are clear changes in the degree of soil salinity as a result
of agricultural management, water conditions, and climatic changes. The soil fertility is obtained
in four classes: Class one (I) represents soils of a good fertility level with an area of about 39%.
Class two (II) includes soils of an average fertility level, on an area of about 7%. Class three (III)
includes soils with a poor level of fertility, with an area of about 17%. Class four (IV) includes soils
of a very poor level of fertility with an area of about 37% of the total area. Principal component
analysis (PCA) has revealed that the parameters that control fertility in the studied soils are: C/N,
pH, Ca, CEC, OM, P, and Mg. Agro-pedo-ecological units are important units for making appropriate
agricultural decisions in the long term, which contribute to improving soil quality and thus increasing
the efficiency of soil fertility processes.

Keywords: El-Beheira–Nile Delta; fertility parameters; physical-chemical properties; soil fertility;
soil degradation

1. Introduction

Soil salinization, and physical and biological degradation are among the most promi-
nent global environmental challenges because they have a negative impact on agricultural
output and fair development. The agriculture of Nile Delta has many problems related to
productivity [1], yet it remains the main economic activity and source of field crops for the
population [2,3]. The assessment of soil fertility and degradation is therefore fundamental
in order to help find the optimal conditions for plant growth [4]. Both organic and mineral
components of soil create an interactive natural environment that fosters plant growth [5].
Its physical, chemical, and biological characteristics enable it to supply nutrients in ade-
quate proportion and balance for plant growth [6–8]. This serves as the foundation for all
input-based high-production systems. [9]. The demand for land for agricultural production
has also increased due to Egypt’s rising population. However, detailed information on the
level of soil fertility/degradation in Egypt is still quite limited [10–13]. For the purpose
of guiding agricultural management decisions, Egyptian farmers need the most recent
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information on soil quality [14]. The main economic activity is agriculture as a source of
field crops for the population. Soil fertility and degradation are among the most important
productivity problems facing agriculture in the Nile Delta. Therefore, it is still necessary
to evaluate the state of the land and the dynamics of its changing properties to suggest
optimum conditions for plant growth as one of the most important inputs to increase
productivity [11–13].

Currently, technological advancements in the geospatial field have introduced greater
ease for choice makers by presenting a list of alternatives for problem structuring [15,16]
of actual global issues of a multidimensional nature, and evaluating alternatives by out-
lining the link between input and output maps [17]. The ever-growing availability of
earth observation data and the well-established use of GIS leads to the development of
automated workflows and toolboxes for environmental management [18–20]. They enable
time savings, objective and non-biased judgments, and a systematic and spatially clear
evaluation framework. [18,19]. With the fast development of GIS and computer technol-
ogy, this approach has been widely employed in research programs. Currently, the most
significant uses of GIS are in assessment, providing ecological capability maps, land man-
agement, and land planning [20]. This integrated strategy allows for the incorporation of
expert judgments into geographical data. This integrated strategy has been employed in a
number of research projects to deal with situations in which multi-criteria judgments were
evaluated using geographical data [21]. Mapping soil deterioration is a time-consuming
and labor-intensive process. Modeling degradation processes allows for the prediction of
deterioration [22,23]. El-Beheira Governorate is one of the area’s most vulnerable to land
degradation [24].

Soil is the deposit factor for fertility, which is the fruit of the interaction between
climate and vegetation, and since the soil cannot be restored to become rich in nutrients
through time, knowing the causes of the actual degradation can accelerate the appropriate
agricultural management related to improving soil fertility through good management of
soil quality determinants. Thus, the identification of areas with low values of soil fertility
indicates the long-term progression of degradation. Based on the foregoing, this study
intends to assess fertility and degradation for sustainable land management.

2. Materials and Methods

2.1. Study Area

El-Beheira Governorate is located in the west of the Delta. It is bordered to the north
by the Mediterranean Sea, to the east by the Rashid branch, to the west by the governorates
of Alexandria and Matrouh, and to the south by the Giza governorate. According to Khalil
et al. [24] the landscape of the newly cultivated soil in El-Beheira governorate is low to flat
land and the maximum ground elevation is 30 m above sea level. Ground surface elevation
is below sea level in Abu EL Matamir and Hush Isa counties, north of the governorate.
Geomorphology characterization of the governorate is characterized by two major units:
tablelands and alluvial plains. Tablelands are extended towards the southwest of the coastal
plains and its surface is covered by sandy limestone on the western and southern sides.
Tablelands are distinguished by three landforms which are ridges, depressions, and erg
plain. The alluvial plains have a young alluvial plain and an old alluvial plain. The young
alluvial plain represents a portion of the oldest cultivated land in the northwest of the Nile
Delta. Its surface is covered with clay beds alternated with a thin band of silt where it lies
between the Abu Mina Depression in the west and the Rosette branch of the Nile in the
east, while the old alluvial plain lies in the south of the young alluvial plain toward the
northern and eastern areas of Wadi El Natrun [25]. These plain slopes are toward the north
and northeast and vary in elevation between 20 and 60 m. A sandy deposit has covered the
northern part surface, whereas gravelly deposits dominate in the southern part, Figure 1.
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Figure 1. Location of the study area, Geology after Conoco [25].

Figure 2 gives indications of typical climate patterns and expected conditions (tem-
perature, precipitation, sunshine, and wind). The diagram indicates that the soil moisture
regime is torric and the soil temperature regime is thermic. The historical data (2004–2021)
showed a mean yearly temperature of 21.2 ◦C and mean monthly temperatures ranging
from 13.7 ◦C in January to 27.8 ◦C in August, while 34.5 ◦C in July and 7.8 ◦C in January
were the highest and lowest temperatures, respectively, for the past ten years. Between
52% in May and 70% in November and December, the average monthly relative humidity
varied. At around 2 p.m., the relative humidity reaches its lowest point (approximately
30%). In December and January, the wind blows at 11 km/h, while in May and June, it
blows at 20 km h−1. Last but not least, winds that are generally present are those that
originate in the north, northwest, and northeast.

Figure 2. The climate diagrams are based on 30 years of hourly weather model simulations.
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2.2. Soil Sampling and Analysis

Ancillary data for the years 1985 and 2002 were collected from [26,27]. The field cam-
paign in 2021 consisted of a soil survey by digging profiles with a thickness ranging from
about 40–150 cm, with a detailed study of the agricultural horizon. Then, soil samples
were taken from different layers and horizons along the crop profile. These samples were
taken from the different identified soil groups, taking into consideration the morphology
of each soil group. A total of 121 soil samples were collected from 35 soil profiles dis-
tributed in the region to cover the existed landform units. Once the samples were taken,
they were taken to a laboratory where physical and chemical analyses were performed.
Chemical analyses included: soil organic carbon (OC), total nitrogen (N), available P, total P,
exchangeable cations (Ca, Mg, K, Na), cation exchange capacity (CEC), and pH. OC was ex-
tracted by oxidation with potassium dichromate in a highly acidic solution and quantified
using a TOC-5000A analyzer (Shimadzu, Japan). Total N was determined by the Kjeldahl
method [28]. The available P and total P were determined by the Bray II method [29],
and exchangeable cations were extracted by ammonium acetate (C2H3O2NH4) buffered
at pH = 7, and quantified using an atomic absorption spectrophotometer (AAnova 350
Analytic Jena GmbH, Thuringia, Germany) [30]. CEC at pH 7 was determined using the
ammonium acetate method [31]. The soil pH was determined in a 1:2.5 soil suspension
with demineralized water. Physical analyses performed were bulk density (BD) and par-
ticle size distribution. The bulk density (BD) was obtained using the Koppeki cylinder
method [32]. With regard to the particle size distribution was determined by the hydrom-
eter method [33,34]. Binary and ternary diagrams models were used [35–37] to establish
balances between soil textural, pH and nutrient concentrations These diagrams display
various soil texture grades in connection to their agronomic significance. The poles of
relative richness in a given cation in the equilibrium of the cationic balance (Ca/Mg/K) are
shown in the triangular diagram of Dabin [36].

The SSI (structural stability index) is a physical parameter that determines the degree
of degradability and erodibility of soil. It is defined by Pieri [38] according to the report:

SSI =
1.724 × OC

L + A
× 100; 0 ≤ ISS ≤ ∞ (1)

with OM: soil organic matter content, A: clay content in the soil. L: Silt content in the soil.
SSI > 9% indicates soils with a stable structure; 7% < SSI ≤ 9% indicates soils with a low
risk of structural degradation; 5% < ISS ≤ 7% indicates soils with a high risk of structural
degradation; 5% < ISS indicate soils with a degraded structure.

The beat index (BI) indicates the risk of erosion in compaction of one. Remy et al. [39]
formula for estimating the risks of beating is written:

BI =
(1.5 × Lf) + (0.75 × LG)

(A − 10 × OM)
− C (2)

with C = 0.2 × (pH-7), LF = Fine silt, LG = coarse silt, A = clay, OM = organic matter. BI <
1.4% indicates non-beating soils; 1.4% < IB ≤ 1.6% indicates low-beating soils; 1.6% < BI ≤
1.8% indicates beating soils; IB > 1.8% indicate very beating soils.

The Forestier index [35] indicates the reserve in bases exchangeable in the ground.

FI =
S2

(A + Lf)
(3)

When this index is above 1.5 (FI > 1.5) the reserve in exchangeable bases is good and
when FI < 1.5 the reserve in the base is low.

The balances between certain physical-chemical properties have been established and
reported on the diagrams according to the models used by other authors [27–30]. The
different textural classes are given from the FAO textural diagram, thus characterizing
the different groups of soils of north El-Beheira and its surroundings on the agro-pedo-
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ecological level. The Ca-Mg-K ternary fertility diagram after Dabin [36] highlights the
thresholds of deficiency and a relative deficiency in a given cation in the equilibrium of the
cationic balance. Dabin’s [36] diagram on the N-pH equilibrium highlights the nitrogen
contents carried on the abscissa and the pH carried in the ordinate. The limitations are
defined by the pH values carried in ordinate, which define horizontal lines and show only
the influence of the pH on the total nitrogen reserve. It defines four levels of chemical
fertility (low, poor, medium, and good) of soils according to their degree of pH. Dabin’s
diagram [36] makes it possible to highlight this antagonism or synergy between K-Mg
cations in the soil. The Ca/K diagram relating to the binary fertility diagram of Martin [37]
establishes the balance between calcium and potassium in soils. The data obtained, after
analysis of the samples in the laboratory, were processed statistically using SPSS (IBM
SPSS Statistics for Windows, Version 25.0. Armonk, NY, USA: IBM Corp.). A descriptive
statistical analysis of 15 variables was used to compare mean and standard deviations
by soil group in the study area. Principal component analysis (PCA) determined the
parameters that control fertility in the investigated soils.

According to FAO-ISRIC [23] guidelines, a quantitative assessment of soil degradation
was performed with an emphasis on salinization and nutrient loss. The weighting of
criteria and sub-criteria was carried out using the AHP method. In fact, AHP and the
GIS in an integrated technique were used for mapping vulnerable areas to degrade. This
process was done in three main steps. In the first step, the most important criteria and
sub-criteria that affect vulnerability to degradation were determined. The initial criteria
and sub-criteria were chosen based on the study area’s conditions, expert comments, and a
literature review. Five criteria were elected and weighted using AHP. Pairwise comparison
was used to allocate weights to criteria rating (Table 1) and sub-criteria and the Consistency
Ratio also was calculated to verify the coherence of the judgments [40].

Table 1. Pair wise comparison matrix of criteria in AHP.

Clay EC ESP OM CaCO3 Weightage

Clay 1 3 3 5 5 0.43
EC 0.33 1 3 4 4 0.26
ESP 0.33 0.33 1 3 3 0.15
OM 0.2 0.25 0.33 1 4 0.10

CaCO3 0.20 0.25 0.33 0.25 1 0.05
Note: n = 5, λ_max = 5.45, RCI = 1.12, CI = 0.08; CR = 0.10. n: no. of parameters, λ_max: maximum eigenvalue,
RCI: random consistency index, CI: consistency index, CR: consistency ratio.

For weighting (criteria and sub-criteria), a questionnaire was delivered, which was
associated with a group of experts who were aware of the area and degradation perception.
Experts used Saaty’s scale of pairwise comparisons to evaluate the importance of criteria
and sub-criteria [40]. Relative weights for the functions were calculated based on input
from the experts.

The research indices’ weight values, which are absolute integers between zero and
100%, indicate the priority given to them. This implies that the total weights applied to
all parameters should equal 100%. Table 1 summarizes the degradation factors and how
they were ranked in terms of their impact on degradation occurrences in the research
region, Table 1. The weights assigned to each criterion/index are frequently based on a
professional understanding of each parameter’s relevance and are occasionally based on
analytical techniques and literature.

The steps involved in soil assessment in the study area are shown sequentially in
Figure 3. The figure shows the steps followed in the Model Builder in the GIS program.
It started with building a database of various analyzes, then the rating and the creation
of intermediate maps, then working and producing for all the factors, then getting the
final results of the used indices and degradation rate which combined to produce agro-
pedological zones.
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Figure 3. Methodology flowchart.

3. Results

Soil taxonomy contains 11 units, as shown in Figure 4. The alluvial soil texture is
fine textured (clay loam to clay) and the water table is between 90 and 160 cm. The depth
varies from the south of the alluvial soil, which is characterized by the depth of the soil
profile being the deepest, and the depth decreases in the north of the alluvial soil, especially
in the areas adjacent to Lake Edko, less than (70 cm) with low to moderate depth level.
Overall, the majority of the alluvial areas have a high clay texture (44 to 65%). Concerning
the coastal lands, with clay content (13 to 42%) with texture sandy to clay-loam. Soils are
affected by salinity (EC > 4.0 dS m−1) while the pH varies from being near neutral (pH = 7)
to an alkaline value of 8.83.

3.1. Variation of Soils Physical Properties

The results show significant variability across different soils (Tables 2–4). The beating
index (BI) shows that, with the exception of which has very flappy soils (BI > 1.8%), all old
alluvial plain soils are non-beating (i.e., BI < 1.4), therefore, have a beating crust on their
surface, thus increasing the cohesion of the soil and therefore its resistance to detachment.
In theory, the beating crust should reduce the rate of erosion. However, even if it increases
the soil’s resistance to detachment, it greatly decreases the rate of water infiltration and
increases the rate of runoff.
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Figure 4. Soil taxonomy of the study area.

Table 2. Summary statistics of soil characteristics of study area.

Year 1985 Depth Clay CaCO3 OM EC ESP CEC AN AP AK pH

Count 18 18 18 18 18 18 18 18 18 18 18
Min 90 40 0.8 0.3 1.8 11.2 7.2 38.9 1.4 65.8 7.6
Max 130 52.3 12.81 1.9 42 20.5 46.2 87.35 5.9 92.3 8.37

Mean 105.6 45.1 4.3 1.2 18.9 14.4 28.2 58.7 3.1 79.4 8.1
Median 100 45.2 3.7 1.5 7.5 14.6 32.8 59.7 2.4 76.2 8.1
Stdev 13.4 3.5 3.1 0.6 17.2 2.3 13.2 17.2 1.3 9.0 0.2

Variance 179.1 12.4 9.6 0.4 297.3 5.5 174.0 296.1 1.8 80.9 0.1
Skewness 0.6 0.5 1.3 −0.6 0.3 0.9 −0.5 0.3 0.8 0.1 −0.7
Kurtosis −0.8 −0.2 2.0 −1.3 −2.0 1.3 −1.3 −1.5 −0.5 −1.6 −0.3

Coefficient of variation 0.13 0.08 0.72 0.48 0.91 0.16 0.47 0.29 0.43 0.11 0.03

Table 3. Summary statistics of soil characteristics of study area.

Year (2002) Depth Clay CaCO3 OM EC ESP CEC AN AP AK pH

count 35 35 35 35 35 35 35 35 35 35 35
Min 90 39.3 0.8 0.3 1.2 8.5 30.1 38.9 1.2 54.5 7.7
Max 150 62.4 5.9 2.3 4.6 15.4 53.6 91.0 8.6 112.3 8.4

Mean 119.4 48.1 3.0 1.7 2.5 12.6 40.3 68.8 3.8 89.2 8.0
Median 120 47.3 3.2 1.7 2.3 12.5 39.5 73.6 3.3 89.4 8.0
Stdev 17.5 4.7 1.2 0.4 0.9 1.8 6.0 15.5 2.2 15.5 0.2

Variance 305.5 22.4 1.5 0.2 0.9 3.2 35.4 239.8 4.6 240.6 0.0
Skewness 0.1 0.7 0.2 −1.2 0.6 −0.3 0.3 −0.6 0.9 −0.5 0.9
Kurtosis −1.0 1.1 −0.4 2.4 −0.7 −0.7 −0.9 −1.0 −0.1 −0.4 0.3

Coefficient of variation 0.15 0.10 0.41 0.25 0.38 0.14 0.15 0.22 0.57 0.17 0.02
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Table 4. Summary statistics of soil characteristics of study area.

Year (2021) Depth Clay CaCO3 OM EC ESP CEC AP AK pH

count 35 35 35 35 35 35 35 35 35 35
Min 90 3.5 1.2 0.3 0.8 8.5 30.1 1.2 54.5 6.8
Max 150 77.0 15.0 3.1 10.7 15.4 53.6 8.6 112.3 8.4

Mean 129.3 39.3 6.4 1.0 2.9 12.6 40.3 3.8 89.2 7.7
Median 130 43.4 5.8 0.9 2.5 12.5 39.5 3.3 89.4 7.7
Stdev 17.7 20.4 3.4 0.7 1.9 1.8 6.0 2.2 15.5 0.4

Variance 312.0 416.8 11.6 0.4 3.7 3.2 35.4 4.6 240.6 0.1
Skewness −0.4 −0.5 0.7 1.8 2.4 −0.3 0.3 0.9 −0.5 −0.1
Kurtosis −0.7 −0.8 −0.3 4.1 7.5 −0.7 −0.9 −0.1 −0.4 0.0

Coefficient of variation 0.14 0.52 0.54 0.63 0.67 0.14 0.15 0.57 0.17 0.05

The beating crust of its soils may exhibit mechanical resistance to root growth and
stem expansion. It thus creates anaerobic conditions for the roots [41]. This beating crust
is due to the significant presence of the clay fraction in the soil. Soils with the shoreline
showed a high risk of structural degradation (5% < SSI < 7%) due to the lower organic
matter content in these soils and a high clay content [42]. The rest of the soil groups show
soils with a stable structure. Soils with a high risk of structural degradability have a high
fertility probability of erodibility [43]. They reduce the rate of water infiltration, which
determines the availability of water for plants, unlike soils with a stable structure that
facilitates water infiltration. Soils rich in organic matter have physical phases favorable to
plant development [42,43] because organic matter plays a physical role in the soil cohesion,
structure, porosity, water retention or storage. All the soils in the study area have a neutral
pH range than 6.8 to 8.4. The pH is a key element of the chemical composition of the soil
and determines the availability of nutrients for plants and soil microorganisms [44].

3.2. Variation of Chemical Properties in Soil Groups

Chemically, except for south part soils which show the fertility index (FI) below 1.5
due to the low exchangeable base rates in their soils, the rest of the soil groups have an
average IF above 1.5; this suggests that these soils have a good reserve of exchangeable
bases and therefore good chemical fertility [45]. The CEC is a relative indicator of the
fertility power of soil [46]. According to Chapman [47], CEC depends on the organic matter
and clay content of the soil. Soils with a high CEC can retain more cations and has a high
capacity to exchange them. This soil has a high CEC (39.47 ± 3.68 meq/100 g), this would
be due to its very high clay content (77 ± 3.48%) and high organic matter rate (3.1 ± 0.49%).
The presence of organic matter in soil significantly increases CEC in soil (e.g., 1% of OM
contributes 2 meq/100 g of CEC matter to soils) [48]. Given the low presence of organic
matter in the rest of the soil groups, the CEC remains average, and therefore they do
not have a good ability to retain and exchange cations. This reflects a very high rate of
exchangeable cations in these soils. For the rest of the soil groups, exchangeable cations
are medium to high. The high level of exchangeable cations is linked to the heavy clay
complex, which is rich in organic matter and therefore humus [49].

Biochemically, soils in the study area have medium to high levels of organic matter
(OM) in soils. This justifies the richness of these soils’ nutrients [50,51]. As clay and organic
matter are the basis of the areas with heavy clay, their deficiency would largely contribute
to the degradation of the fertility of these soils [51,52]. Nitrogen levels range from low to
medium in all soils. The C/N mineralization rate is greater than 20 for all soils. This reflects
a very low rate of mineralization caused by the low total nitrogen content. Mineralization is
slow in this soil group and allows only a small amount of mineral nitrogen to the soil [53,54].
The P content is medium in young and old alluvial plains and low in all other soils. This
reflects a rate not high enough to ensure proper nutrition of the plant [46]. Phosphorus
deficiency in these soils is influenced by the high fixing power of soils due to the presence
of iron oxides and hydroxides [55,56].
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There is a correlation between the fertility indicators and the physicochemical parame-
ters of the studied soil samples. The partial components (OM, C/N, pH, N, Mg, CEC, Ca,
K) show the affinity between chemical characteristics of the soil ranges between 26 and 42%.
These variables are positively correlated with the soil fertility components. The variables
(exchangeable cations, Ca2+, Mg2+, K+, P, total N, pH, CEC) are closely correlated, with a
positive coordinate, while the variables C/N ratio and OM are very closely correlated.

Agronomically, the physical-chemical properties that control the fertility of alluvial
soils are C/N, pH, Ca, CEC, MO, Mg, and P. Almost similar results for soil fertility indicators
have been obtained by [54–57]. Organic restitutions through long-term fallows restore
fertility soils depleted by several years of successive cropping [56–58].

According to the FAO textural diagram, the area soils are grouped into two categories:

1. Soils with a clay texture; poorly permeable and poorly aerated, preventing the smooth
penetration of roots and soil micro-organisms. However, high clay contents in soils
condition the fixation of the mineral elements of the adsorption complex [59–63].

2. Balanced textured soils; very suitable for development because they are very perme-
able and easy to work [64,64] and are therefore ideal for growing maize and rice [65].
Soils with balanced textures are excellent and suitable for most crops [57,66–68].

The calculation of the equilibrium of the cationic balance (Ca/Mg/K) shows that these
soils are close to the optimal equilibrium. This testifies to a balance in absorption and
good assimilation by the roots of plants [69,70] while the remaining soils show deficits in
potassium and magnesium. This means that the texture complex is essentially dominated
by calcium. This richness of the texture in calcium may explain the low pH of these soil
groups [59].

This binary fertility diagram or N-pH diagram from [45] divides the soils of El-Beheira
and its surroundings into two fertility classes: soils with poor fertility and soils with
medium fertility. The limitation of the soils with poor fertility, and medium fertility is due
to pH levels between 6.8 and 7.3. They are characterized by low to medium reserves in
exchangeable bases and medium to high exchangeable base reserves.

The Dabin [36] K/Mg diagram shows that all soils in the study area are above the
potassium and magnesium deficiency thresholds. For the most part, they have a good
K-Mg balance (1 < Mg/K < 4). This reflects a nutritional balance between Mg and K. This
reflects an excess of assimilation of Mg in the soil by the roots of plants, compared to K.
There is an excess of assimilation of K by plants, compared to Mg. Too high a K/Mg ratio
in light soils causes magnesium deficiency and therefore decreases yields, while in clay
soils, too low a K+/Mg2+ ratio slows down the rate of potassium uptake, thus limiting
yields [57].

According to this Ca/Mg binary diagram, all alluvial soils and their surroundings are
above the magnesium (Mg = 0.3 meq/100 g) and calcium (Ca = 1 meq/100 g) deficiency
and deficiency thresholds. According to the work of [54,71], the decrease in calcium and
magnesium in a nutrient solution would be due to the increase in potassium contents.
The south-western part has a deficiency of Mg compared to Ca (Ca/Mg > 5) therefore a
nutritional imbalance which indicates an excess of Ca in the soil compared to Mg. The rest
of the soils in the study area have a perfect Ca-Mg (1 < Ca/Mg < 5) balance. This means
that these soils are satisfactory and reflect a nutritional balance between Ca and Mg [72,73].

The balance between the saturation rate and pH makes it possible to highlight the
influence of pH on the evolution of exchangeable bases in the soil. It was obvious in the
soils with a good saturation rate (CEC > 50%). This reflects a low level of pH in these soils.
Soils with an average saturation rate are located within the sure line and east and southern
parts. This means that these soils are moderately (6.8 < pH < 8) with medium exchangeable
cation contents. The pH values showing moderately pH soils are a limiting factor for plant
nutrition [73–76].
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3.3. Criteria for Assessing the Fertility of Soils

The statistical analysis of the fertility parameters as well as the balances between these
parameters made it possible to assess the current fertility status (Table 5, Figure 5) of the
soils. Then, they were grouped into fertility classes according to [61] modified by [36,45].
This made it possible to define four levels of fertility of soils.

Table 5. Criterion for assessing soil fertility classes [61] modified by [36,45] for the year 2021.

Characteristic
Level I (No
Limitation)

Level II (Moderate
Limitation)

Level III (Severe
Limitation)

Level IV (Very Severe
Limitation)

OM (%) >2 1–2 0.5–1 <0.5
N (%) >0.08 0.045–0.080 0.030–0.045 <0.03

P (ppm) >20 10–20 5–10 <5
K (meq/100 g) >0.4 0.2–0.4 0.1–0.2 <0.1

EC(dS m−1) >4 4–8 8–15 <16
CEC (%) >60 40–60 15–40 <15

CEC(meq/100 g) >25 10–25 5–10 <5
pH >5.5 5.1–5.5 4.75–5.1 <4.75
BI ≤1.4 1.6–1.4 1.8–1.6 ≥1.8
FI >1.5 - - <1.5
SSI >9 7–9 5–7 <5

CaCO3 (%) <10 10–20 20–40 >40
ESP <13 - - >13

Level I: soils with no or low limitations; Level II: soils with no more than three moderate limitations associated
with low limitations; Level III: soils with more than three moderate limitations associated with severe limitation;
Level IV: soils with more than one severe limitation.

 
Figure 5. Soil fertility of the study area.
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According to the soil fertility assessment (Table 5), four soil fertility classes can be
differentiated. Class (I) include groups together soils with a good level of fertility such as
Vertic Torrifluvents. They present medium limitations in pH and phosphorus. This means
that these soils necessarily need the addition of CaO in order to be improved. Class (II
includes soils with a medium level of fertility, such as Typic Torrifluvents. These soils have
medium limitations in FI, pH, CEC, and moderate limitations in phosphorus. It is necessary
to provide these soils with agricultural inputs rich in phosphate fertilizer, without forgetting
the practice of fallowing for a long period of time in order to allow a reconstitution of the
soil properties. Class (III), which includes soils with a poor level of fertility, such as Typic
Haplocalcids, Typic Calcigypsids, Typic Haplogypsids, Typic Quartizipsamments. They present
severe to very severe limitations in FI, SSI, BI, pH, CEC, and medium to severe limitations
in P. This means that these soils need organic fertilizer inputs to repair the seemingly very
poor physical properties in order to facilitate good soil aeration and sufficient retention of
infiltration water. The practice of fallowing for a long period of time is essential for the
good fertility of these soils. Lime is important to improve the acidity of these soils, which
present high toxicity risks. A calcium amendment would favor the availability of P and Mg
to the plant, which would facilitate the installation of the roots. Class (IV) groups together
soils with a good level of fertility, such as Typic Torripsamments, rock escarpment (Calcic
petrocalcids), and rock land (Typic petrocalcids). They present severe limitations in nutrient
depletions. This means that these soils necessarily need the addition of all fertilizers
depending on the crop requirements in order to be improved.

3.4. Spatial Distribution of Fertility of El-Beheira Soils

The soil fertility spatial distribution map (Figure 5) shows that poorly fertile soils are
located north (surrounding the Idku lake, costal area and west and south of the study area).
They cover 57% of the study area. Average fertility soils are located to the west of the study
area. They cover 7% of the study area. Soils with good fertility spread over the entire study
area. They cover 66.65% of the study area or an area of about 39% of the total area.

3.5. Quantitative Assessment of Land Degradation

From Table 6 and Figures 6–8 soil quality degradation is one of the main causes of
land degradation. Soil can be severely degraded due to compaction, salinization and
sodification, and the use of chemical fertilizers that prevent the land from regenerating,
and soil quality also declines as a result of chemical fertilizers for agriculture, increasing
the pollution of water and land and thus reducing the value of the land.

Table 6. Area of different weighted values for the years 1985, 2002, and 2021.

Weighted Value Area (Hectares) Area %

Year 1985 7 8427.24 1.04
8 613,254.24 75.44
9 191,219.31 23.52

Year 2002 7 1157.67 0.14
8 15,566.94 1.91
9 788,877.72 97.04
10 7298.46 0.90

Year 2021 4 3144.51 0.39
5 27,734.31 3.41
6 121,162.14 14.90
7 143,513.01 17.65
8 257,577.75 31.69
9 259,769.07 31.96
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Figure 6. Outranking multi-criteria analyses (year 1985).

  
Figure 7. Cont.
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Figure 7. Outranking multi-criteria analyses (year 2002).

  

  

Figure 8. Cont.
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Figure 8. Outranking multi-criteria analyses (year 2021).

From Figure 9, the nature of the land covers changed as the result of changes in the
environmental conditions between 1985 and 2021. These changes in the physiochemical
properties lead to the deterioration of land areas and vegetation cover. The changes in all
features are included, i.e., water bodies, cultivated lands, wetlands, dry lands, and bare
soils. The study showed that the area of water bodies was not significantly affected; inverse
with the area of cultivated lands and wetlands, and its effect is directly on the area of dry
and bare soils. This was directly affected by anthropogenic activities.

   

Figure 9. Outranking multi-criteria evaluation for quantitative land degradation in 1985, 2002,
and 2021.

The estimations of degradation are made without taking the salinity and alkalinity of
the groundwater into account and are based solely on the calculated climatic index. The
study area is at a low to very high risk of salinization (Figure 9). Higher results for the
current state and risk of degradation by salinization are a result of the soil, topography,
and human activities. This emphasizes the value of good management and solid agricul-
tural practices through effective drainage and irrigation methods. In the research area,
sodification levels range from negligible to severe. Higher values are attributed to the
soil, topography, and human activities for the current condition and risk of sodification
degradation (Figure 10). Soil compaction risk, which is determined based on bulk density,
is referred to as physical degradation risk (Figure 11). Biological degradation is calculated
upon the organic matter deterioration (Figure 12).
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Figure 10. Assessment of excess of salts degradation.

   
Figure 11. Assessment of physical degradation.

   
Figure 12. Assessment of biological degradation.

By combining the degree and relative extents of the various degradation classes, the
Arc GIS spatial model generated the quantification of total land degradation (Figure 13).
More than 50% of the units have deterioration rates that range from moderate to very high.
Landforms and soil degradation severity levels are found to be related. Particularly in
the north and clay-covered areas, it is at high levels, although it is only experiencing mild
levels of degradation in sandy soils and river terrace soils wadi deposits, however, were a
severely deteriorated area.
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Figure 13. Assessment of overall land degradation rate.

To be successful in combating land degradation, a better awareness of its origins, effect,
degree, and familiarity with climate, soil, water, land cover, and socioeconomic aspects is
required. As a result, assessing land degradation is a fundamental aim of a decision support
system for reversing deterioration. The study intends to use a neural network approach
to measure the dynamic of land degradation in the north delta over a 50-year period. The
research region is in Egypt’s north delta (El-Beheira Governorate). Spatial models for
overall qualitative land deterioration were constructed in 1985, 2002, and 2021 using the
Model Builder tool in ArcGIS 10.3 (spatial analyst extension) for land degradation mapping.
Land degradation variables (salinization, alkalinization, compaction, lime concentration,
and water logging) were collected in a raster and each data set was rated on a scale of 1 to
5 (very low, low, moderate, high, and very high scale). The data sets were then weighted
based on their impact on the overall model (more weight = greater effect). From 1985 to
2021, the total degradation change for highly degraded soil grew, whereas it dropped for
very highly degraded soil. However, the low deteriorated soil grew over time, at the cost
of the highly degraded soils, as a result of the reclamation process and soil management.

4. Discussions

The majority of the agricultural soils in these areas are saline and have low produc-
tivity due to the predominance of soluble salts because of the dry, arid climate [77]. In
addition, the use of low-quality irrigation wastewater to meet the increasing irrigation
water requirements is a result of the scarcity of surface water resources [78]. This leads,
under harsh climatic conditions, to an increase in the concentration of salts in the upper
horizon through evaporation, especially in clay soils.

The groundwater table depths of the old agricultural lands were typically between 120
and 130 cm, which is deep, with some parts having (80 cm), which had a moderate depth
level. Most soils have a high clay texture overall (45 to 68%), and some additionally have a
sandy clay loam texture (40–50%). According to reports, the former reclaimed agricultural
area in the north of Egypt had a deep groundwater table that ranged in depth from 100 to
150 cm and was of fine texture (clay loam to clay). Going toward the Mediterranean Sea,
these soils were stated to have more clay [79]. Furthermore, it has been noted that soils in
arid and semi-arid areas have a higher build-up of calcium and magnesium carbonates
and sulphates and have pH values that are somewhat alkaline (7.8 to 8.6) [80]. Due to
the nature of the parent material from which these soils were created and the insufficient
and limited leaching, it has been observed that soils along the northwestern coast are very
calcareous. Additionally, due to the limited translocation of carbonates, the predominance
of the arid climatic conditions may have aided in the creation of zones or horizons. These
soils, which are equivalent to fluvio-marine plain soils in the area, contain low gypsum
content (0.10–1.45%), CaCO3 content (0.35–2.30%), and organic matter at the top layer that
ranged between 1.11 and 2.55% [81]. The El-Beheira governorate’s reclaimed soils, which

34



Land 2022, 11, 1256

had been irrigated with drainage waters since the 1960s, were reported to have a texture
that ranged from sandy, silty loam to clay, a calcium carbonate content between 2 and 20%,
and very little organic matter [82]. However, it was shown that these soils’ acquired organic
matter concentration was adequate for agricultural productivity despite the existing arid
circumstances [82].

These old, reclaimed lands have a clay texture (30–60% clay) and a non-saline character
(EC ≤ 4.0 dS m−1), which may be related to the fact that the soil is from an old flood
plain [12]. Due to poor drainage, these soils have a moderate level (100 cm) and rather
deep-water table [83]. There is a second stratum of sandy clay loam in this soil as well.
These soils had a pH that varied from 7.2 to 8.1, and possess a sandy clay loam area with a
major clayey texture (50 to 69%). The pH was in the desired range (7–8). The maximum
EC value was 21.13 dS m−1, which indicates that salinity is only moderately affecting the
EC range [83]. The pH of some reclaimed sandy soils west of the Nile delta and calcareous
soils inside El-Beheira Governorate lands was alkaline (7.5 to 8.5), according to other
studies [78–80,82–85].

As a result, the parent material from which some of these soils are generated may
be to blame for the alkaline soil pH of these lower soil layers [83,85–87]. Old reclaimed
agricultural areas may have EC values as high as 15 dS m−1 [83,86]. Additionally, fluvio-
marine plain soils were said to have an EC varying from 2.24 to 25.09 dS m−1 to the north
of Egypt [81]. These values were comparable to the EC of flood plains (clayey agricultural
soils) to the north of the delta, where salinity ranged from 1.6 to 20.5 dS m−1 [88]. Overall,
some soils’ lower levels showed a noticeable rise in salt. The upward migration of salts
from lower strata during dry periods, during irrigation intervals, and during the period
without irrigation at the end of the season may explain this occurrence [87]. The loss of
moisture from the top layers through evaporation and, in some regions, the capillary rise
of salty fluids from the shallow water table may also be contributing factors to the increase
in soil salinity values [87].

The majority of coastal lands were clayey (25–57%), with sandy clay loam everywhere.
Salinity (EC 4.0 dS m−1) affects coastal soils [13]. These soils’ pH varies from the top layer
to the lower level, with the top layer having a small area of near neutrality (pH = 7.5).
However, the majority of the land was found to have an alkaline pH, with a value of
8.81 from 60 to 80 cm. This range is found naturally in reclaimed desert soil that had
an alkaline (pH) throughout its layers and profile, and these results are consistent with
other research [83,87] that claimed coastal region soils and recently reclaimed soils have a
pH range of 7.9–8.5. Furthermore, according to [87], soils from recovered lakes had a pH
that was slightly alkaline (8.0–8.31). However, it has been claimed that a soil pH above
8.70 indicates that CaCO3 predominates and that MgCO3 or Na2CO3 is present in these
soils [89]. From another angle, the inflow of lake water at these soils may be the cause of
this pH increase [87]. Some of these soils have increased salinity, which may be the result of
poor drainage, seepage from low-quality lake water, or intrusion of seawater [81]. Overall,
higher EC values were demonstrated, possibly as a result of the limited permeability of
the clayey soils next to the lake [87]. Higher EC values for the top layer of these soils may
be a sign of seawater intrusion causing waterlogging [79,87]. However, it was noted that
the arid natural regions to the north of Egypt had soil salinities that varied from 6.5 to
31 dS m−1 [88]. Additionally, some recently recovered alluvial/marine soils near northern
lakes may have EC values as high as 30 dS m−1 [83]. The prolonged exposure of these soils
to lake seawater may be to blame for the rise in soil salinity. In addition, the lake is shallow,
with a depth range of 10 to 90 cm, with the eastern and central portions of the lake having
the deepest depths reported [90]. Furthermore, it has been noted that a shallow saline water
table can cause salt to flow through the soil by capillary rise and evapotranspiration [78–96].
This can result in salt buildup on the surface of the soil. Additionally, the high groundwater
table may be a contributing factor to the limited leaching capacity and salinity of these
soils [79–87]. Furthermore, it was claimed that elevated Mg2+ concentrations indicated that
these soils were primarily of marine origin [89].
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ESP ranges between 6.3 and 10.5%, cation exchange capacity is rather low as it ranges
between 2.4 to 6.8 meq/100 g soils, and the available nitrogen, phosphorous, and potassium
are ranges from 0.3 to 0.7, 0.9 to 1.6, and 5.8 to 9.3 ppm, respectively. In the southern part
of the study area, the soil texture is sandy, with profile depths ranging from 60 to 120 cm.
The findings show that the aeolian plain (sand ripples of varied elevations and almost
flat to undulating sand sheets), table land (almost flat and gradually slope areas), and old
deltaic plain are the primary physiographic units in the examined area (sequence of old
river terraces) [91,92,94].

Soil erosion is also a major threat for soil degradation that directly affects biodiver-
sity [97,98]. Soil erosion occurs slowly in a discontinuous process in small parts of the
northern region (coastal and lacustrine deposits) by precipitation, while wind erosion
occurs at the same rate in the southern part of the region (aeolian and wadi deposits).
Although the erosion process is not at an alarming rate (non to slight), it does lead to the
loss of topsoil and ecological degradation.

The study area is classified into five agro-pedo-ecological zones (SQ1, SQ2, SQ3, SQ4,
and SQ5) as shown in Figure 14. Qs1 (alluvial deposits) areas produce mainly rice, cotton
and wheat, but water shortages and soil degradation have undermined agriculture in the
region. The nature of rice cultivation, which consumes large amounts of water, helps to
improve the quality of the land by ridding the soil of the salts in it. The study area is
already experiencing a water crisis; given the existing environmental problems, water
scarcity imposes limits on the economic development. The area is characterized by high
land quality and soil fertility, despite the problems of deterioration in it, such as salinization,
compaction, and waterlogging.

  

Figure 14. Agro-pedo-ecological zones of the study area, associated with geomorphology and landform.

SQ2 (aeolian deposits) would increase the cultivated area, especially since the types of
lands there are good, the fertility rate and their quality are moderate, and there are all kinds
of crops such as wheat, corn, vegetables, and fruits. There is an area 50–70 cm away from a
mud flat, that was an historic passage for the Nile River that helped to develop agriculture
in the area, resulting in a high quality of crops.

SQ3 (lacustrine deposits) and SQ4 (costal deposits); the most important problems
inherent in these two areas are salinity, alkalinity, and soil waterlogging, and only salinity-
tolerant plants such as rice are present in them. Sabkha is a morphological feature in the
area along with salt crust on soil surface.

SQ5 (wadi deposits); lands are marginal, in addition to the exposure of the roots by
the effect of the wind on the crops. It also has wetlands, where groundwater resides from
the surface of the soil, impeding the growth of plants

Since landform is a key component of soil formation and a soil mapping criterion [94],
it is practical to employ landform when arranging soil data. Geomorphology enhanced
the results and enabled us to employ computer-assisted techniques by combining them
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with satellite data, field observations, and geomorphology. The ever-growing availability
of earth observation data and the well-established use of GIS lead to the development of
automated workflows and toolboxes for environmental management [99–101].

5. Conclusions

A considerable amount of the Nile Delta’s northern region is degraded physically
and excessively by salts. Additionally, the processes of salinization, sodification, and soil
compaction range from extremely low to very high in various soil units. The objective of
this study was to assess the soil fertility of the northern half of the El-Beheira Governorate
based on physical-chemical properties and fertility parameters. The data obtained in the
laboratory were processed by the statistical method using the SPSS software and it appears
that soils have four fertility classes: the class of soils with good fertility with an area of
about 39%; the class of soils with average fertility with an area of about 7% and the classes
of soils with poor fertility (class III + IV) with an area of about 54%. Principal component
analysis (PCA) has revealed that the parameters that control fertility in Foumban soils
are: C/N, pH, Ca, CEC, MO, P, and Mg. The fertility assessment makes it possible to
understand that the major problem of the soils in the study area is the risk of high acidity
and phosphorus. To overcome this major problem, it would be wise for farmers to use
lime (CaO) to reduce the risk of toxicity overall, and to use calcium fertilizers that would
promote the availability of P and Mg to plants. Soils with medium and poor fertility have a
poor physical phase. An amendment of these soils with organic fertilizer (fluent, compost,
manure) would facilitate the formation of the clay-humic complex, thus allowing good
retention of water in the soil. Finally, an amendment in mineral fertilizer would correct the
CEC and would bring a high rate of exchangeable cations to the soils, thus increasing the
sum of the bases. We recommend a detailed study for each agro-pedo-ecological zone, for
better management planning to protect the soils from continuous deteriorations.
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Abstract: Knowledge of the spatial distribution of soil organic carbon (SOC) is of crucial importance
for improving crop productivity and assessing the effect of agronomic management strategies on
crop response and soil quality. Incorporating secondary variables correlated to SOC allows using
information often available at finer spatial resolution, such as proximal and remote sensing data,
and improving prediction accuracy. In this study, two nonstationary interpolation methods were
used to predict SOC, namely, regression kriging (RK) and multivariate adaptive regression splines
(MARS), using as secondary variables electromagnetic induction (EMI) and ground-penetrating radar
(GPR) data. Two GPR covariates, representing two soil layers at different depths, and X geographical
coordinates were selected by both methods with similar variable importance. Unlike the linear model
of RK, the MARS model also selected one EMI covariate. This result can be attributed to the intrinsic
capability of MARS to intercept the interactions among variables and highlight nonlinear features
underlying the data. The results indicated a larger contribution of GPR than of EMI data due to
the different resolution of EMI from that of GPR. Thus, MARS coupled with geophysical data is
recommended for prediction of SOC, pointing out the need to improve soil management to guarantee
agricultural land sustainability.

Keywords: SOC spatial distribution; regression kriging (RK); multivariate adaptive regression
splines (MARS); secondary variables; electromagnetic induction technique (EMI); ground-penetrating
radar (GPR)

1. Introduction

Soil organic carbon (SOC) is one of the most important indicators for assessing soil
quality and overall soil health [1]. SOC plays a key role in unveiling soil structure develop-
ment, nutrient turnover and stability, soil water retention, regulation of greenhouse gases,
and susceptibility or resilience to land degradation [2]. SOC stock is thus a main factor
in soil health, fertility, quality, and productivity [3] and supports important soil-derived
ecosystem services (ESs) including water filtration and erosion control, soil strength and
stability, nutrient conservation, and climate change adaptation and mitigation by seques-
tration of atmospheric CO2 [4]. By selecting key soil indicators under different land use
and management practices, Shukla et al. [5] concluded that SOC was the main soil quality
indicator and suggested using SOC to monitor soil quality changes [6].
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SOC distribution is influenced by many factors, including climate variables (tempera-
ture and rainfall), topographical features, soil texture, parent material, vegetation, land-use
types, and human management at different spatial scales [7].

Agronomic management strategies, with particular regard to fertilization, soil tillage,
and irrigation, may significantly modify SOC content and its labile fractions, mainly in
the shallower soil layers [6,8–10]. Because of the interaction of the factors described, SOC
spatial variation is often wide and complex, and the knowledge of its spatial distribution is
the key information in agricultural productivity to improve food security, enhance crop
production [11], and predict the effects of different agronomic management strategies.
Among these strategies, irrigation with treated municipal wastewater can be considered
important for saving limited freshwater resources and protecting the environment, but its
effects should be monitored to avoid soil fertility decline in the medium to long term [9].

Conventional laboratory methods for quantifying this soil variable are destructive,
time consuming, expensive, and hazardous for the environment. In addition, because of
the associated costs, soil is sampled at relatively few spatial locations, which are often irreg-
ularly distributed over the study area. The small sample size does not allow meeting the
criteria for soil quality assessment for precision farming or for using statistical methods tak-
ing into account residual autocorrelation [12]. Making a short review, a number of samples
ranging from 50 [13] to 100 [14] is considered well suited for an accurate spatial analysis.

A strategy to enhance the quality of the estimation of SOC content and to reduce the
spatial sampling intensity consists of incorporating secondary information correlated to
the primary variable [15,16]. This multivariate approach allows utilization of secondary
information, such as that derived from proximally and remotely sensed data, that is often
much more abundant than information deriving from the primary target variable [17,18].

Proximal sensing data could provide strong support for characterizing the spatial
variability at the field or even regional scale. These data are very attractive because of their
high resolution, their noninvasive nature, the relatively low cost of data acquisition, the
possibility for a mobile survey configuration, and their three-dimensional (3D) information,
although their outcome is not a direct measurement of soil properties [19].

Among the geophysical methods, electromagnetic induction (EMI) and ground-
penetrating radar (GPR) have been widely applied. EMI methods measure apparent
electrical conductivity (ECa), an integrated value of soil physical, chemical, and biological
properties [20] that can capture soil spatial variability and characterize soil organic car-
bon distribution [21,22]. However, since soil properties vary in both the horizontal and
vertical domains, soil needs to be described in three dimensions, and EMI sensors may
have limitations when highly contrasting horizons are present [23]. Ground-penetrating
radar (GPR) technology allows overcoming this limitation by measuring large volumes
of soil (about cubic decimetres to cubic meters). Thus, GPR is suggested for field-scale
determinations rather than for pointwise measurements, provides higher resolution of
subsurface features, and is particularly suited to visualizing soil in two or three dimen-
sions [24]. One of the most useful presentations of GPR data is to display horizontal maps
of recorded reflection amplitudes, called “time slice” (or depth slice) maps [25]. There
have been several studies involving GPR to determine thickness and characterize depths of
organic soil materials [26,27], but few studies have been devoted so far to the potentiality
of GPR to study the spatial variation of soil organic carbon.

The use of geophysical proximal sensor data as auxiliary information to effectively
support an irregularly sampled target variable is not free from practical difficulties and
experimental limits. This is because proximal sensing data are often massive, need to be
collected on different spatial and temporal scales, and use different measurement supports.
Several statistical methods are able to incorporate secondary information; for example, a
multivariate extension of kriging, known as cokriging, is used for improving the prediction
of a primary variable by using secondary information [28,29]. This technique assumes in-
trinsic stationarity, both of the target variables and of more intensively measured secondary
variables, supposing a strong correlation between primary and secondary information [30].
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These conditions are not always verified. Another way of taking into account the secondary
variable is by checking for a spatial trend in the primary variable with respect to the sec-
ondary variable(s) and combining the deterministic part and the stochastic component, as
in “hybrid methods” [29], or by adopting complex multivariate nonlinear approaches. In
recent times, a number of hybrid interpolation techniques, which combine kriging with
methods that use auxiliary information (covariates), have been developed and applied. Sev-
eral authors have compared some of the techniques to incorporate trends and account for
nonstationarity [31,32]. Two possible methods of nonstationary interpolation are regression
kriging (RK) [28,33] and multivariate adaptive regression splines (MARS) [34]. In many
cases, these techniques have been proven superior to common geostatistical methods, yield-
ing more detailed results and higher accuracy of prediction, because they take advantage
of being linear hybrid (RK) or nonlinear (MARS) [35]. MARS is a nonparametric predictive
method that intrinsically models nonlinearities and interactions between variables, suitably
managing local nonstationarity [34]. This method has been successfully applied in vari-
ous fields, such as estimating the collapse potential for compacted soil, underground gas
storage in bedded salt formations, and lateral spreading induced by earthquakes [36,37].

The regression kriging (RK) method is of straightforward use and often performs
better than cokriging [38–40].

In this study, we compared the performance of RK and MARS to achieve the following
objectives: (i) to prove that there are preferential nonlinear relationships between SOC and
geophysical measurements, and (ii) to compare the performance of two nonstationary inter-
polation methods to effectively model SOC at the field scale. Machine learning techniques
may open new perspectives to modelling SOC spatial distribution at the field and regional
scales. The study was performed on a dataset deriving from a field experiment in which
water of different qualities was used for irrigation.

To the best of authors’ knowledge, no comparison between these methods has been
presented before; therefore, it can be considered a novelty.

2. Materials and Methods

2.1. Study Area

Soil data were derived from a field experiment carried out in an olive grove located
in Fasano (Apulia region, Southern Italy). The climate of the study area is “accentuated
thermo-Mediterranean”, as classified by UNESCO FAO [41,42], characterized by rather
mild and rainy winters and warm and dry summer months. The soil of the experimental
site is classified as loam (USDA classification), with an average content of silt, clay, and
sand fractions of 35.28%, 21.74%, and 42.98%, respectively.

Olive trees were irrigated with treated municipal wastewater (TWW), and the fol-
lowing treatments were applied: irrigation with fresh water and full fertilization supply
(FW); irrigation with TWW and full fertilization supply (R1); and irrigation with TWW
and fertilizer supply reduced by the amount provided by TWW (R2) [10]. Treatments were
arranged in a randomized complete block design (RCBD) with four replicates (Figure 1).
Unit plot size was 108 m2, with 3 plants per plot and a plant spacing of 6 m × 6 m; field
size was 1296 m2 (whole experimental area was 1728 m2).

2.2. Soil Sampling and Soil Analysis

Soil samples with absolute coordinates were collected on a regular grid (April 2017)
at 6 locations (subreplicates) per plot at a 0–0.20 m depth for a total of 72 observations
(Figure 1); only 71 were used in this study. Soil organic carbon (SOC) was quantified
on air-dried and sieved samples through dry combustion [43]. Further details about the
experimental trial were reported by Barca et al. [44] and Stellacci et al. [10].
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Figure 1. Location of the field experiment (Google Earth Pro, 2021) the soil sampling locations (black
dots), and the electromagnetic induction (EMI) and ground-penetrating radar (GPR) acquisitions
along transects (red lines).

2.3. Acquisition and Preprocessing of Auxiliary Information

A geophysical survey was carried out using an EMI sensor (EM38DD, Geonics Limited,
Mississauga, ON, Canada) and a Georadar (RIS 2k-MF Multifrequency Array Radar-System,
manufactured by IDS SpA, Italy) connected to the DGPS along 6 parallel transects by sliding
the sensors on the surface (Figure 1) on the same day as soil sampling.

EMI soil survey is based on the principle that a transmitter coil in contact with the soil
surface produces a time-varying primary magnetic field in the subsoil. The eddy currents
induced in the soil generate a secondary magnetic field, which is recorded by a receiver
coil in the EM unit. The apparent conductivity near the receiver is determined by the ratio
of the magnitude of the secondary magnetic field to that of the primary magnetic field [22].
The EMI sensor used herein consisted of two perpendicularly superposed EM38 sensors
that simultaneously measured apparent electrical conductivity (ECa, expressed in mSm−1)
near the soil surface (0–0.75 m depth) with the horizontal mode (ECa-H) and up to 1.5 m
depth with the vertical mode (ECa-V) [22]. Before operation, the instrument was set to zero
at a height of 1.5 m, according to the manufacturer’s instructions, and at the end of the
survey, the zeroing was checked to detect possible drift. The survey was performed using a
nonmetallic platform with wood cover, and the sensor was towed behind a tractor/The ECa
was recorded every second, with spatial resolution of 0.5 m, on average, along each transect.

Immediately after the EMI survey, the GPR survey was carried out by sliding the
sensor along the surface. GPR data were collected with the common offset reflection
method, using a monostatic system (the transmitting and receiving antenna placed in the
same box) with two central frequencies of 600 and 1600 MHz (IDS Ing-manufactured, RIS
2k-MF Multifrequency Array Radar-System). The GPR worked with a time window of 60 ns
and a temporal sampling interval of 0.05 ns; successive traces were collected every 0.024 m.
GPR used electromagnetic pulse energy in the frequency range of 10 MHz to 1000 MHz.
The transmitter component of the GPR system allowed the passage of generated pulse
energy, which propagated through the subsurface materials, and the interactions with the
material were sensed by the receiver component. Traditional surveys employ reflections of
electromagnetic waves from boundaries between environments of different electromagnetic
properties [45]. Theoretical aspects and working principles of radar components can be
found in detail in Davis and Annan [46].

Both the data quality check and cleaning procedure characterized the preliminary data
analysis. For EMI data, the points at which the instrument was stationary and any negative
values were removed.

Processing the raw GPR data consisted of extracting quantifiable variables, such as
attenuation, and displaying GPR data in horizontal maps at a specified time (or depth),
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called amplitude maps or time slices. The preprocessing of GPR signal amplitude data
included the application of a set of filters [47] and the extraction of quantifiable variables.

The enveloped amplitude maps (time slices) were built by averaging the amplitude
(or the square amplitude) of the radar signal, expressed in digital number (DN), within
overlapping time windows of width Δt equal to the order of the dominant period of each
antenna (2 and 1 ns for the 600 and 1600 MHz antennas, respectively). The total time
interval was of 10 ns for the 600 MHz antenna because this time was comparable with the
depth of the soil, and it was 6 ns for 1600 MHz because of the attenuation of radar signal.
The time slices were then transformed in depth slices using the velocity of the radar waves
determined through the analysis of hyperbolae [48]. Data preprocessing was performed
with ReflexW Software [49].

In order to estimate the geophysical covariates at the same locations as the SOC
measurements, geostatistical procedures were separately applied to EMI and GPR data
by using a multivariate approach and fitting a linear model of coregionalization (LMC)
to the experimental variograms. Each group of geophysical data was interpolated with
ordinary cokriging (ck) on a 0.5 m × 0.5 m grid. The estimated covariates, migrated at
the sample locations, were: the ECa in horizontal (ECaH) and vertical (ECaV) modes; the
amplitude for the 600 MHz antenna at ten depths from 0.05 m to 0.50 m with a step of 0.05 m
(Amp600MHz_0.05 m-Amp600MHz_0.50 m); and the amplitude for 1600 MHz frequency
antenna at eleven depths from 0.025 m to 0.275 m with a step 0.025 m (Amp1600MHz_0.025
m-Amp1600MHz_0.275 m).

Finally, 25 covariates were considered, namely, the 23 geophysical covariates plus the
(two) geographical coordinates expressed in the WGS84 coordinate system.

2.4. Regression Kriging (Residual Kriging)

In the present paper, kriging combined with linear regression (RK), a hybrid inter-
polation technique, was applied [35,39] (see Figure 2). In mathematical terms, RK can be
described as the sum of a deterministic (regression) component and kriging as shown in
the following equation:

ẑ(s0) =
ˆ

m(s0) + ê(s0) =
p

∑
k=1

ˆ
βk·qk(s0) +

N

∑
i=1

λi·e(si) (1)

where s0 is the spatial location associated with the desired prediction,
ˆ

m(s0) is the trend,

ê(s0) is the interpolated residual,
ˆ
βk are the estimated regressive coefficients, qk are the

covariates, p is the number of coviariates, λi are kriging weights, N is the number of
observations, and e(si) is the residual (i.e., the difference between the regression estimation
minus the observation) at the generic observational location si.

From a practical standpoint, once the trend component has been estimated, the resid-
ual can be interpolated with kriging and then added to the previously estimated component.
The prediction of the residual is a very critical step, because in principle, only the auto-
correlated components should be estimated, neglecting the purely random component.
Unfortunately, it is very difficult to separate the overall residual into the autocorrelated and
the noncorrelated components. There are many different opinions about the best way to
accomplish this issue [50,51]. In the present paper, the variography directly performed on
the residuals provided results that did not depart much from those obtained with more
sophisticated statistical methods; in other words, this approach did not significantly bias the
final predictions. Therefore, the more straightforward approach, which brutally separates
observations from trend values to obtain residuals, was preferred [29,52]. The validation
of the RK method is usually carried out by means of the cross-validation procedure, and
specifically the leave-one-out method [53]. Cross-validation is structured as a two-stage
procedure. In the first stage, a leave-one-out method is applied, which consists of dropping
an observation from the dataset and predicting this omitted value using the remaining
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data. Leave-one-out is iterated for each value in the dataset, and each time, a residual is
computed as the difference between the observed and predicted values. The second stage of
the cross-validation consists of making inferences about the residuals’ distribution [54,55].
The R library [56] used to perform the aforementioned analysis was {Automap version
1.0–14}.

Figure 2. An example of the regression-kriging approach shown by means of a cross-section of the
spatial random field (after Hengl, [35]).

2.5. Multivariate Adaptive Regression Splines (MARS)

MARS is a nonparametric and nonlinear predictive method that automatically models
nonlinearities and interactions between variables managing suitably local nonstationar-
ity [34]. Datasets are split into piecewise curves (splines) of differing slopes. Splines consist
of two branches, i.e., left-sided (Equation (2)) and right-sided (Equation (3)) truncated
functions, separated by a point called the knot [57].

b−
q (x − t) = [−(x − t)]q+=

{
(t − x)q if x < t

0 otherwise
(2)

b+
q (x − t) = [+(x − t)]q+=

{
(x − t)q if x > t

0 otherwise
(3)

b−
q (x − t) and b+

q (x − t) are splines describing the regions on the right and left sides of the
knot (t), respectively, and q is the degree of the polynomial. The subscript “+” indicates that
the result of the function is 0 outside the local definition domain. For each of the covariate
variables, MARS selects the couple of splines and the knot location more in accordance
with the response variable. In a next stage, the different splines are added up in a single
multivariate model, which describes the response as a function of the covariates. The result
is a nonlinear model assuming the form:

ŷ = a0

M

∑
m=1

amBm(x) (4)

where ŷ is the prediction of the response variable; a0 is the known term; M is the number of
basic splines; and Bm and am are the m-th basic spline and its coefficient, respectively [58].

Overall, a MARS analysis consists of three stages. Specifically, (i) the variable that
best describes the response by means of the splines in terms of R2 is selected. Afterwards,
(ii) other covariates are added stepwise, always using splines, to build a multivariate model
(i.e., the global MARS model). The aim of this addition is the improvement of model
in terms of performance (R2). The performance is computed on the training set. Since
the global MARS model is usually affected by overfitting, it needs to be “pruned” in a
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further stage, for which iterations of the generalized cross-validations (GCV) alternated
with 10-fold cross-validation are used [59]. The GCV index is a sum of squared errors
(observations minus predictions) adjusted by embodying a penalty for reducing the model
complexity. This criterion is used to prevent overfitting derived from an excessively
accurate model with respect to the training set:

GCV =

1
n ∑n

m=1

(
yi − f̂m(xi)

)2

(1 − C(M)/n)2 (5)

where C(M) is a parameter that penalizes models involving a large number of splines,
defined as follows:

C(M) = (M + 1) + dM (6)

where M is the number of nonconstant splines (i.e., all terms of Equation (4) except a0) in the
MARS model and d is a user-defined penalty value for each spline optimization. Increases
in the cost d cause the exclusion of splines. Substantially, d is increased during the pruning
step in order to obtain smaller models. Besides its use during the pruning phase, GCV index
is essential to rank covariates based on their importance in the model. The definition of the
final model is reached in a third phase. This phase (iii) is performed by cross-validation
or a new independent test set. The R library used to perform the aforementioned analysis
herein is {earth} [59].

3. Results

3.1. Exploratory Data Analysis

Descriptive statistics showed that SOC data were normally distributed as confirmed
by skewness and kurtosis values (Table 1) and by Shapiro–Wilk test (p = 0.656); for this
reason, they were not subjected to a normal transform. The reported bubble plot (Figure 3)
shows the spatial distribution of the SOC observations, evidencing some clusters of similar
values.

Table 1. Summary statistics for SOC (g 100 g−1).

Variable N Mean Std Min Max Skewness Kurtosis

SOC 71 1.85 0.28 1.19 2.43 −0.21 −0.29

Figure 3. Bubble plot of spatial distribution of SOC values (g 100 g−1).

The global Moran index provided an assessment of the spatial autocorrelation strength
over the study area and is reported in Table 2. The result (I = 0.42) indicated a significant
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spatial autocorrelation (p = 0.00034). In addition to the global Moran index, the peak of the
Moran index (local Moran index) was estimated by means of the computation of the mean
of nearest neighbours. Afterwards, a lagged scatterplot provided the Moran computation
at such distance lag. For the considered case, the mean of nearest neighbours was 2.63 m,
and Figure 4 shows the Moran value corresponding to that distance, indicating a greater
spatial correlation at short range (r = 0.75).

Table 2. Assessment of the global Moran index.

Spatial Autocorrelation Analysis (Original Data)

Moran I Variance Expectation p-Value

0.42 0.017 −0.014 0.00034

Figure 4. h-scatterplot for assessing local Moran I.

3.2. Linear Model Outcomes

The correlation matrix between SOC and the 25 covariates (23 geophysical variables
plus the geographical coordinates) was first computed, and different sets of highly corre-
lated covariates were derived and used to fit SOC data.

The following equation shows the first attempt to model SOC with the most correlated
variables:

SOC ~ ckAmp0.05m_600MHz+ ckAmp0.1m_600MHz + ckAmp0.4m_600MHz

The five-point summary statistics and the coefficients of the linear model are reported
in Tables 3 and 4. The outcomes seemed to indicate a larger contribution of the GPR data
than of the EMI sensor data. The covariates related to the higher frequency antennae
(1600MHz frequency) were therefore excluded.

Table 3. Five-point table of the linear model’s residuals.

Min 1Q Median 3Q Max

−0.47 −0.16 0.01 0.15 0.63

In particular, the GPR data representations for both frequencies showed a first dis-
continuity in the radar signal at 0.1 m depth, a high level of spatial continuity along the
soil profile at least to 0.30 m, and a second discontinuity after 0.30 m depth. Therefore, the
selected covariates were representative of information derived by two different layers.
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Table 4. Coefficients of the linear model.

Estimate Std_Error t_Value Pr(>|t|)

(Intercept) −7.056e−01 1.14e+00 −0.62 0.54
ckAmp0.05m_600MHz 4.63e−06 7.06e−05 0.07 0.95
ckAmp0.1m_600MHz 2.07e−04 8.12e−05 2.55 0.013 *
ckAmp0.4m_600MHz −6.34e−04 1.51e−03 −0.42 0.68

Signif. codes: 0.01, “*”; 0.05, “.”.

The model was significant (F-statistic: 4.80 on 3 and 67 DF, p-value: 0.004) and showed
a residual standard error of 0.26 with 67 degrees of freedom; multiple R-squared and
adjusted R-squared were 0.177 and 0.14, respectively. Analysing Table 4, it was evident
that there was a unique significant covariate, ckAmp0.1m_600MHz. The result showed the
distribution of SOC to be significantly affected by the shallower layer, probably because it
was comparable with the portion of sampled soil.

After many other attempts (not reported), a model was developed with the following
optimal arrangement of the covariates:

SOC ~ X + Y + ckAmp0.35m_600MHz

This model included the geographical coordinates and a unique geophysical covariate,
ckAmp0.35m_600MHz (see Tables 5 and 6). This model was better that the aforementioned
one, with all the covariates significant, a better value of R-squared (multiple R-squared:
0.26, adjusted R-squared: 0.22), and a more significant F-statistic p-value (F = 7.9 on 3 and
67 DF, p-value: 0.00018). Residual standard error was 0.24 with 67 degrees of freedom.

Table 5. Five-point table of the second linear model’s residuals.

Min 1Q Median 3Q Max

−0.47 −0.16 −0.02 0.13 0.66

Table 6. The second linear model’s coefficients with related statistics.

Coefficients Estimate Std. Error t Value Pr(>|t|)

(Intercept) 7.3e+04 2.1e+04 3.4 0.00153 **
X −1.0e−02 3.9e−03 −2.7 0.01270 *
Y −1.4e−02 4.1e−03 −3.5 0.00118 **

ckAmp0.35m_600MHz −2.4e−03 6.0e−04 −4.0 0.00018 ***
Signif. codes: 0, “***”; 0.001, “**”; 0.01, “*”; 0.05, “.”.

The model’s residuals were then analysed. The Shapiro–Wilk Gaussianity test showed
a nonsignificant departure from the normal distribution (W = 0.98567, p-value = 0.598);
as a consequence, the Gaussian hypothesis was accepted. Afterwards, spatial autocorre-
lation analysis was performed to check at what extent the linear model filtered out the
autocorrelation present in the raw data.

From Table 7, it was evident that in the linear model’s residuals, there was still a
significant quantity of spatial autocorrelation (p-value = 0.0012). Therefore, it made sense
to apply regression kriging (RK) to exploit the residual autocorrelation with the aim of
improving the goodness of fit.

Table 7. Linear model coefficients with related statistics.

Spatial Autocorrelation Analysis (Linear Model’s Residuals)

Moran I Variance Expectation p-Value
0.29 0.01 −0.014 0.0012
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3.3. Regression Kriging (RK)

Geostatistical analysis was then applied to the linear model’s residuals with the aim of
finding in them a structure that could represent their spatial variability.

The goodness of fit between the selected variogram model and the empirical variogram
was evaluated by means of the SSErr index, which provides a value that helps user to judge
the quality of the final model. For the case at hand, the value was SSErr = 0.00050, which
appeared to be a satisfactory result. Moreover, by analysing the variogram parameters,
reported in Table 8, it was possible to figure out the strength of the model by computing
the nugget-to-sill ratio index [60], also called the spatial dependence index (SDI; [61]). For
the case at hand, the observed value was 0.075, indicating high descriptive capability for
the variogram model.

Table 8. Variogram model and parameters.

Model Psill * Range

Nugget 0.0042 0.0
Spherical 0.056 8.64

* Psill = Partial sill.

In Figure 5, the experimental variogram and the fitted nested model (nugget + spheri-
cal) are reported.

Figure 5. Experimental variogram and fitted variogram model.

Cross-validation statistics showed an MAE to RMSE ratio of 0.76, indicating a very
good outcome. Mathematically, RMSE is always larger than MAE, because large errors
are magnified by the square contained in the formula; therefore, the ratio between MAE
and RMSE is always less than 1. However, the closer to 1 the ratio is, the fewer large errors
made are by the model. This positive result was confirmed by a MAPE value far lower than
10% (Table 9). Computing the Lin coefficient (CCC) between observations and predictions,
the outcomes were 0.65 for overall CCC, 0.68, for overall precision, and 0.95 for overall
accuracy. The scatterplot of predicted versus observed values qualitatively showed the
adequacy between the two data series (Figure 6).

Table 9. Accuracy metrics to assess the goodness of fit of the RK model.

Metric MBE MAE RMSE MAE/RMSE MAPE MIN MAX

value 0.0013 0.15 0.20 0.76 8.47% −0.49 0.42
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Figure 6. Scatterplot of predicted (RK model) vs. observed values.

The spatial distribution of SOC obtained through RK is reported in Figure 7.

Figure 7. Map of SOC obtained with regression kriging. The black polygons indicate the four blocks
in the RCB experimental design.

3.4. MARS Model Assessment

The original dataset was split into two complementary subsets, namely, training and
test, corresponding to 80% and 20% of the original data, respectively.

Since the model is calibrated by means of the training dataset with the aim to predict
the test data, the two subsets should be (statistically) similar at some extent. For this reason,
after the splitting, subsets were subjected to the t-test for mean homogeneity and the Levene
test for variance homogeneity. In addition, a univariate cluster analysis, carried out to
assess the presence of clusters among data, showed that observations could be split into
four groups. This represents another constraint about the splitting that has to be taken
into account, i.e., the training and test subsets should be formed by a balanced quantity
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of elements extracted from all the clusters. Subsets were both checked for Gaussianity by
means of Shapiro–Wilk test; results showed for both subsets a nonsignificant departure from
normal distribution (W = 0.99, p-value = 0.90, for the training set; W = 0.97, p-value = 0.81,
for the test set).

A Welch two-sample t-test showed that the means of the two subsets were not statisti-
cally different (t = −0.25, df = 20.36, p-value = 0.81). In addition, a boxplot confirmed the
equality of the two means of the SOC variable subsets (Figure 8).

Figure 8. Boxplot for SOC comparison between training and test sets.

A Levene test, based on the absolute deviations from the median with a modified
structural zero removal method and correction factor, showed the homogeneity of the
group variances (test statistic = 0.059, p-value = 0.81). In Figure 9, the placement of the
observations for the training (red points) and the test (green points) sets is reported.

Figure 9. Spatial distribution of training and test sets points.

In summary, the two subsets could be considered similar according to the distribution,
mean value, and variance comparisons. Therefore, the training set seemed to be appropriate
to calibrate the model and the test set to check for overfitting.

The MARS model selected only 4 out of 25 predictors, namely, ckAmp0.35m_600MHz,
X, ckECaVer, and ckAmp0.1m_600MHz.
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The model included the main GPR covariates selected previously. Regarding EMI data,
only the apparent electrical conductivity measured in vertical polarization was selected
because the two electrical conductivity variables were strongly correlated and therefore
redundant. In addition, the sensor in vertical polarization had a maximum sensitivity
approximately at a depth of 0.40 m, which was comparable with the time slices of GPR
repeatedly selected (0.35 m).

From Table 10, it can be drawn that the MARS model was formed by four terms; apart
from the intercept, the first was linear, and the remaining two were interactions between
couples of covariates. After importance analysis was applied, by using the GCV and raw
residual sum of squares (Rss) indices, the selected predictors were ranked accordingly
(Table 11).

Table 10. MARS model structure.

MARS Terms Coefficients

(Intercept) 2.0
h(ckAmp0.35m_600MHz-408) −1.12e−02

h(13011-ckAmp0.1m_600MHz)*h(408-ckAmp0.35m_600MHz) −5.87e−06
h(704990-X)*ckECaVer −2.68e−03

Table 11. Covariates of the MARS model listed according to their importance rank with respect to
GCV (generalized cross-validation) and Rss (raw residual sum of squares).

GCV Rss

ckAmp0.35m_600MHz 100.0 100.0
X 63.4 66.5

ckECaVer 63.4 66.5
ckAmp0.1m_600MHz 48.2 47.9

As first step, the Gaussianity of the residuals after the training was tested using
the Shapiro–Wilk test; the residuals distribution could be considered Gaussian with a
distribution ~ N(0.0, 0.036) (W = 0.98, p-value = 0.50).

By applying a blind cross-validation with k-fold = 10, the resulting R2 was 0.51, but
it should be borne in mind that this was a pessimistic result, as the extractions of blocks
of 10 elements (k-fold with k = 10) from the original dataset was performed 200 times in
a purely random fashion, neglecting similar subsets. Moreover, the original dataset was
relatively small and represents a not-very-homogeneous reality. Finally, the results in terms
of goodness of fit were averaged.

The first step consisted of checking the correlation between predicted and observed
values for the training set; the results showed a certain agreement (r = 0.72, p-value ≈ 0.0).
In addition, correlation between residuals and predicted values of training subset was
checked and was close to zero, as expected.

Afterwards, the MARS model calibrated on the training set was applied to predict SOC
data from the test set, which was independent from the model calibration (training) set.

As a first step, the correlation between observations and (test set) predictions was
analysed. This resulted in a highly significant correlation (r = 0.87, p-value ≈ 0.0). The value
gained after the validation step surprisingly outperformed that of the training set, which is
a rare event. The correlation between residuals and (test-set) predicted was not significant.

The residuals, according to the Shapiro–Wilk test, were Gaussian, with a distribution
~ N(0.027, 0.025) (W = 0.93, p-value = 0.23).

Computing the Lin coefficient (CCC) between observations and predictions, the out-
comes showed very good agreement (overall CCC, 0.81; overall precision, 0.88; overall
accuracy, 0.93).

Since the observations were available, it was possible to compute the error metrics,
which are reported in Table 12.
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Table 12. Accuracy metrics to assess the goodness of fit of the MARS model.

Metric MBE MAE RMSE MAE/RMSE MAPE MIN MAX

value −0.03 0.13 0.16 0.80 6.7% −0.42 0.19

The error indices were good overall; in particular, MAPE was below 10%, which value
has been indicated in literature as a critical threshold. Another very interesting result
concerned the ratio between MAE and RMSE, which was larger than that obtained with
regression kriging (0.8 vs. 0.76). In conclusion, the MARS model could be considered
effective whenever the coefficients of the covariates were not constant over the study
domain and the covariates were intertwined in more complex ways than additively.

By comparing the error indices and Lin’s coefficients of both methods, it became
evident that MARS performed better than RK. The two methods were linear (RK) and
nonlinear (MARS), respectively. The main difference concerns the interaction terms, since
the MARS model has one linear term and two multiplicative terms (interactions) that
represent the added value that allowed improving the predictive capability of MARS with
respect to that of RK.

In Figure 10, the map of SOC predictions obtained with the MARS model is reported.
Comparing the RK and MARS maps, they showed overall agreement, with a cluster of
lower values in the northern part of the study area, a central part with the lowest values,
and finally, a southern part with two clusters of larger values and a cluster of lower values.

Figure 10. Map of SOC obtained with MARS model. The black polygons indicate the four blocks in
the RCB experimental design.

Finally, to quantitatively compare the maps obtained by the two methods, a cross-
correlogram was computed. The result was a value of 0.67 at the distance 0. Therefore, the
map gained from RK can be considered a first approximation of that from MARS. This result
underlines the reliability of the SOC spatial distribution predicted by the MARS model.

4. Discussion

Spatial prediction of SOC is critical for assessing the effect of agronomic management
strategies on soil quality and crop productivity. In this scope, the sample size is a value
that plays a key role in SOC prediction. Thus, it needs to be balanced between economic
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and predictive constraints. In fact, increasing the sample size may allow the application
of statistical methods that take residual autocorrelation into account and thereby reduce
the probability of inflation of the type I error rate [12], but at large cost. Regression kriging
and MARS, incorporating covariate information often available at a finer resolution than
primary data, such as proximal and remote sensor data, may improve the quality of SOC
estimation without increasing the sampling size of the primary variable [62,63].

Outcomes obtained from linear models seem to highlight a larger informative contri-
bution of GPR than of EMI data. From a physical standpoint, this result can be explained
by the different nature of sensors’ outcomes. In fact, GPR information results are more
sensitive to near-surface effects than EMI data, which are integrated values over all soil
layers [15]. However, unexpectedly [64], the covariates related to the higher-frequency
antenna (1600 MHz frequency) were excluded, probably because they did not add further
information or were redundant in this study case.

Two GPR covariates, namely, ckAmp0.35m_600MHz and ckAmp0.1m_600MHz, were
selected by the MARS model. The same variables were also chosen by the final RK model
(ckAmp0.35m_600MHz) and the preliminary RK model (ckAmp0.1m_600MHz). Similar
importance was also assigned to the selected variables by both statistical methods, as shown
by the ranking defined by GCV and Rss in MARS model, suggesting that their significance
was physically based. In fact, the selected covariates were representative of information
derived by two soil layers with different physical properties influencing radar signal and
soil organic carbon distribution. The two methods also had the X geographical coordinate
in common, indicating a larger continuity along this direction.

The main difference between the two approaches concerned the selection of the EMI
covariate in vertical polarization performed only by the MARS model, indicating the
different explanatory power of information brought by the two sensors. This result was tied
to the intrinsic capability of the MARS model to intercept the interactions among variables
and highlight nonlinear features underlying the data [34]. In addition, the coefficients
of the MARS model were not constant but piecewise linear (splines), and therefore, their
gradient varied over the studied domain [57]. This explains the larger descriptive capability
of the MARS model and its ability to select hidden features with respect to regression
kriging. Although MARS is not explicitly a spatial method, its capability of modelling
covariate coefficients by means of flexible functions allows, when the geographic variables
are included in the analysis, filtering out the spatial autocorrelation contained in the data,
which makes it substantially a spatial method [65]. A confirmation of this was the statistical
nonsignificance of the Moran I index obtained from the MARS residuals.

Studies on the spatial variability of SOC in agricultural soils remain a central theme in
assessing the environmental sustainability of agricultural systems [66], because agronomic
inputs could be rationalized in order to not impoverish the soil’s fertility. Therefore,
our results represent a knowledge contribution for future studies aimed at detecting
the spatial distribution of soil organic carbon at the field scale. Geophysical methods
show new applicative potentialities for environmental sciences (see, among others, [67])
and can represent support for research in this field. However, because of the complex
interactions with soil properties, the use of geophysical measurements as covariates needs
to be investigated in more detail to draw more precise conclusions. A limit of the present
work could be its potential site-specificity, which could not be quantified in advance.
Therefore, further experiments in different study areas and agroenvironments should be
performed to test the performance of the methods under different conditions.

5. Conclusions

The results of our investigation showed that MARS outperformed RK in predicting
SOC spatial distribution. The nonlinearity of MARS evidenced the contribution of EMI
variables neglected by linear approaches. That result would have to be deepened in future
works in consideration of the fact that EMI measures are more easily achievable than
GPR ones.
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The accuracy reached in mapping SOC with the support of MARS was remarkable
and opens interesting perspectives in applying other, more powerful machine learning
methods (e.g., deep learning) to even better exploit proximally sensed data. In the future, it
is hoped that these machine learning methods will be successfully associated with mapping
procedures and then applied at the regional and national level.

The use of relatively easy, accurate, and inexpensive geophysical methods for SOC esti-
mation, together with application of advanced statistical techniques for SOC spatialization,
can represent a viable solution to investigate agroecosystem sustainability.
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Abstract: In order to improve the sustainability and productivity of modern agriculture, it is manda-
tory to enhance the efficiency of Nitrogen (N) fertilizers with low-impact and natural strategies,
without impairing crop yield and plant health. To achieve these goals, the ZeOliva project conducted
an experiment using a zeolite-rich tuff as a soil amendment to improve the efficiency of the N fertiliz-
ers and allow a reduction of their inputs. The results of three years of experimentation performed in
three different fields in the Emilia-Romagna region (Italy) are presented. In each field, young olive
trees grown on zeolite-amended soil (−50% of N-input) were compared to trees grown on unamended
soil (100% N-input). Soils and leaves were collected three times every year in each area and analyzed
to monitor the efficiency of the zeolite treatment compared to the control. Vegetative measurements
were performed along with analysis of pH, Soil Organic Matter and soluble anions in soil samples,
whereas total C and N, C discrimination factor and N isotopic signature were investigated for both
soils and leaves. Besides some fluctuations of nitrogen species due to the sampling time (Pre-Fert,
Post-Fertilization and Harvest), the Total Nitrogen of leaves did not highlight any difference between
treatments, which suggest that plant N uptake was not affected by lower N input in the zeolite
treatment. Results, including vegetative measurements, showed no significant differences between
the two treatments in all the observed variables, although the control received twice the N-input from
fertilization. Based on these results, it is proposed that zeolite minerals increased the N retention
time in the soil, allowing a better exploitation by plants which led to the same N uptake of the control
notwithstanding the reduction in the N inputs. The use of zeolite-rich tuff in olive growing thus
allows a reduction in the amount of fertilizer by up to 50% and improves the N use efficiency with
many environmental and economic benefits.

Keywords: sustainable agriculture; soil; natural zeolite; chabazite; soil amendment; olive; nitrogen

1. Introduction

The low Fertilizer Use Efficiency (FUE) is one of the main causes of the altered equi-
librium of agro-ecosystems [1] and it is responsible for relevant economic losses for farm-
ers [2,3]. The role of N-based fertilizers is to provide an adequate amount of N to the
plants and grant a good yield. However, after the addition of fertilizers to the soil, N is
generally not efficiently uptaken by the plant, but it is lost in the surrounding environment
through several pathways, causing the degradation of the soil, water and atmospheric
compartments [4,5]. As pointed out by Drechsel et al. (2015) and Chien et al. (2016) [2,6],
the apparent recovery efficiency (RE) of N by crops is lower than 55%. For this reason, to
guarantee a crop yield able to sustain the future demands in terms of food for the popu-
lation, there is an urgent need to: (1) improve the efficiency of agricultural practices, (2)
reduce the N losses in the environment as harmful greenhouse gasses or leacheates, and (3)
reduce the use of N based fertilizers [7–10]. Moreover, reducing the amount of fertilizers,
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especially those produced by synthetic processes such as urea [11], represents a great saving
in terms of energy and exploitation of non-renewable resources. Improving FUE would also
have great value for organic farming, which is known to have a limited set of products with
low-N content available for fertilization purposes. The reduction of chemical fertilizers
and pesticides is one of the biggest issues on which the EU council (Green Deal plan) is
working. New strategies are being studied to decrease, by 2030, the amount of soil for
crops, increase the biodiversity, grow up organic farming by +25% and preserve soil, water
and human health. Bremmer et al. (2021) [12] reported that if the Green Deal objectives are
not reached, the future scenario will be characterized by lower production, price increases,
fewer European exports and more imports of agricultural products from outside Europe.

Thereby, the development of eco-friendly practices to reduce the use of fertilizers
while improving their efficiency is necessary to increase the production in terms of quality
and quantity and to guarantee human and environmental health, accordingly to the UE di-
rections (Water Framework Directive 2000/60/CE, Directive 2009/128/CE for the pesticide
use and Nitrates Directive 91/676/EEC). To reduce the leaching losses and increase the
efficient use of the N-fertilizers, the N retention in the soil represents the key to limit the
amount of N lost in the environment by giving “more time” to the plants to exploit the N
reservoir.

Zeolite minerals are aluminosilicate with an open 3D structure formed by linked
tetrahedra of [SiO4]4− and [AlO4]5− (the framework) and open cavities in the form of
channels and cages, which are generally occupied by weakly bounded exchangeable cations
and H2O molecules. These highly reactive minerals have unique properties such as high
cation exchange capacity (CEC), reversible dehydration and molecular sieve, which makes
them very useful for many purposes, including agriculture [10,13–16]. Natural zeolites can
be constituents of volcanic tuffs [17], and, from a geological point of view, a rock can be
defined as “zeolitite” when it is constituted by more than 50% of zeolite minerals. When
used as a soil amendment, zeolitites are useful for improving the capacity of the soil to
retain nutrients and water, improving plant growth [18–24]. With this method, plants can
uptake nitrogen more efficiently and the nitrogen losses in the surrounding environment
can be significantly reduced [25–28]. In this context, their use as an inorganic amendment
is becoming popular in many crops, such as maize, apple trees, sorghum, bean, aloe vera,
corn and soy to cite some examples [26,29–37].

Many works have been conducted about nitrogen management in olive growing
and its effects on plant growth [38–42], although only a few of them deal with zeolitite
application [19,43]. Excessive dosing of mineral fertilizers is often observed as claimed
by Fernández-Escobar (2011) [42] who reported that up to 200 kg-N/ha can be applied
to adult olive trees. This quantity can satisfy their N demand for years, thus N fertilizers
reduction in olive growing is an issue that needs to be deeply investigated.

This work aims at testing the use of zeolitite in olive-growing as a soil amendment for
granting lower inputs of N-based fertilizers. It is expected that the zeolite minerals may
influence the N dynamics in the soil, promoting a prolonged permanence of this nutrient
and reducing the losses in the surrounding environment. This should be reflected in a
more efficient uptake by plants and therefore in the possibility to significantly reduce the N
inputs while maintaining crop quality and yield.

In this framework, the results of three years of experimentation in three different
experimental sites are presented. An Italian chabazite-rich zeolitite was used as a soil
amendment in olive growing to reduce the fertilizer N input by 50% with respect to
common practices. During the experimentation, vegetative measurements were performed,
and samples of soil and leaves were collected three times every year in order to measure a
series of chemical parameters (including soil basic parameters, inorganic anions, nitrogen
speciation and N-C stable isotopes), to account for differences between treatments and to
evaluate the efficiency of this practice.
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2. Materials and Methods

2.1. Zeolitite

The zeolitite (NZ) used in this experiment is a volcanic tuff quarried in Sorano
(42◦41′20.65′′ N; 11◦44′26.29′′ E, Grosseto, Italy). This specific zeolitite has been widely
studied in open-field and laboratory tests [26,31,44–46]. The NZ was composed of nearly
70% of zeolite minerals, mainly K-rich chabazite, which gives this NZ a very high CEC
(Table 1). The NZ was employed in a granular form, with a particle size ranging between 3
and 6 mm. The main characteristics of the NZ are reported in Table 1.

Table 1. Apparent density (DA), water retention (WR) and cation exchange capacity (CEC) of the
zeolitite used in the project; Quantitative Phase Analysis of the zeolitite. TZC refers to “total zeolitic
content”, i.e., the total content of zeolite minerals (chabazite, phillipsite and analcime). Data from
Malferrari et al. (2013) [47].

Phase % St.dev

DA (g cm−3) 0.56 chabazite 68.5 0.9
HR (%) 34.2 phillipsite 1.8 0.4

analcime 0.6 0.3
CEC (meq g−1) TZC 70.9
Ca2+ 1.46 mica 5.3 0.6
Mg2+ 0.04 K-feldspar 9.7 0.7
Na+ 0.07 plagioclase -
K+ 0.6 pyroxene 2.9 0.4
Total 2.17 calcite -

volcanic glass 11.2 1.0

2.2. Experimental Set-Up

To evaluate the effects of the NZ in increasing the efficiency of fertilizers and allowing
a reduction in fertilizer input, two treatments were compared in 5-year old olive trees:

(1) CNT: 100% fertilizer N input and unamended soil (common practice);
(2) ZEO: 50% fertilizer N input and addition of natural zeolitite as soil amendment (500 g

added to each plant at planting phase in 2016–2017 at a depth of 30–40 cm).

The fertilization reduction was performed according to the fertilization plan adopted
at each field by the owner company. Different fertilizers were used in each field as well
as slightly different amounts (see detailed description for each site). The experimentation
started in February 2019. The monitoring lasted three years and was replicated in three
different experimental fields located in various provinces of the Emilia-Romagna region,
suited to olive growing (Figure 1).

At each site, three olive trees were selected randomly per each treatment (ZEO and
CNT) to serve as replicates. Soil and leaf samples were collected three times each year
(2019, 2020 and 2021): 1st before the fertilization (Pre-Fert) during the vegetative rest, 2nd
after the fertilization (Post-Fert) during the vegetative recovery and 3rd at the olive harvest
(Harvest) at each site (Figure 2). Soil samples were collected from the 0–30 cm soil layer and
about 10 cm from the plant stem with an Eijkelkamp (Ø 30 mm × 500 mm) auger. Three
subsamples were collected for each tree and mixed to form a single representative composite
sample. For each tree, more than 20 leaves were randomly collected at each sampling.
The total number of samples processed every year was 108 (considering 2 treatments,
3 experimental sites, 3 time points, resulting in 54 soil and 54 leaf samples); over the 3 years,
a total of 324 samples was processed.
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Figure 1. Geographical location of San Lazzaro (SL), Brisighella (BG) and Bertinoro (BN) experimental
fields in Emilia-Romagna Region (Italy).

 

Figure 2. Experimental set-up of the experimental site of San Lazzaro (SL), Brisighella (BG) and
Bertinoro (BN). At each site ZEO and CNT treatments were tested. Samples were sampled three
times per year (Pre-Fertilization, Post-Fertilization and Harvest).

2.2.1. Site 1: San Lazzaro di Savena (SL)

The “SL” experimental field is located within the Bologna province and belongs to
the “Azienda Agricola Bonazza” (organic regime). According to the soil map of the Emilia
Romagna Region (GeoViewer—Geoportale) [48], the soil belongs to the unit CDV1 that is
mainly represented by Hypocalcic Vertic Calcisol soils according to the World Reference
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Base for Soil Resources (2022) [49,50]. The orchard consists of 6 rows of olive trees: 3 rows
of Cv Montecapra, Montebudello and Farneto whose soil was treated with zeolitite before
planting (ZEO) and 3 rows of the same Cv whose soil was left untreated (CNT). Then, 500 g
of NZ were added to the ZEO treatment at transplanting (in March 2017) assuring contact
with plant roots. Since 2019, organic fertilization has been halved (50% of fertilizer/year)
only in the zeolite thesis (ZEO), whereas 100% of fertilizer was applied in the CNT.

In 2019, the fertilization was completed with an NP organic fertilizer (Phoenix NP, N
6%, C 2%) followed by a manure application in June for a global input of approximately
40 kg N/ha which corresponds to 118 g of N per tree in the CNT. Half of these dosages
were used in the ZEO treatment.

In May 2020, Biouniversal fertilizer (N 11% and C 40%) was applied at a dosage of
37 kg N/ha in the CNT, corresponding to 55 g of N per tree, whereas half of the dosage
was applied in the ZEO treatment.

In March 2021, Agriazoto11 (N 11% and C 39%) was applied in the same quantity as
2020. The olive grove was rainfed. The mean temperature for the overall period (2019–2021)
was 15.3 ◦C and precipitation was approximately 635 mm, with the maximum rainfall
recorded in 2019 (866 mm) and 570 mm and 468 mm for 2020 and 2021, respectively [51–53].
Three plants per treatment were randomly selected for soil and leaf sampling.

2.2.2. Site 2: Brisighella (BG)

The “BG” experimental field is located within the Ravenna province and belongs
to “Azienda Agricola Giorgia”. BG soil belongs to the cartographic unit BAN3/SOG
according to the Emilia Romagna Region soil map that is mainly represented by Haplic
Regosols (World Reference Base for Soil Resources (2022)) [49,50]. The olive grove consists
of two olive rows of Cv Nostrana di Brisighella and three plants of both CNT and three ZEO
treatments were selected for the sampling of soils and leaves. As in the SL area, 500 g of
zeolitite per olive tree were added to the soil of the northern row (in May 2016) to create
the ZEO treatment. Since the transplant, chemical fertilization has been halved (50% of
fertilizer/year) in the ZEO treatment, whereas CNT received 100% of fertilizer.

In March 2019, the fertilization was performed using an organic-mineral fertilizer
(Cosmo N 13%) using 100 kg N/ha in the CNT which corresponds to 185 g of N per tree
and half of the dosage in the ZEO treatment. In June 2020, 50 kg N/ha of NH4NO3 (N,
34%) were applied to the CNT corresponding to 93 g of N per tree while half of the dosage
was applied in the ZEO treatment. In March 2021, 37 kg N/ha of Urea (N, 46%) per tree
were used in the CNT (corresponding to 69 g of N per tree) while half of the dosage was
applied in the ZEO treatment. The orchard was irrigated with no differences between CNT
and ZEO. The BG site showed the highest precipitation in 2019 (1072 mm), whereas during
2020 and 2021, precipitations were between 600 and 650 mm. The average temperature
was 13.7 ◦C (2019–2021) but in July 2020 and August 2021, peaks of 40 ◦C were reached,
surpassing the average temperature for that period in the last decade [51–53].

2.2.3. Site 3: Bertinoro (BN)

The “BN” experimental field is located within the Forlì-Cesena province and be-
longs to the “Azienda Agricola Tenute Unite”. The soil belongs to the cartographic unit
DEM/BAN3/DOG0 that is mainly represented by Haplic Cambisol according to the World
Reference Base for Soil Resources (2022) [49,50]. The orchard is made up of different olive
cultivars among which Colombina, Correggiolo Pennita and Capolga di Romagna were chosen
to conduct the experiment. The set-up was similar to SL and BG sites: three plants were
selected for CNT and three for ZEO treatments for soil and leaf sampling; in November
2016 the soil was amended with 500 g of zeolitite (ZEO treatment).

The BN site was managed with a considerably lower N input with respect to the
other 2 sites. In 2019, Dermazoto (N 11% o, C 80%) was applied in March. The second
fertilization was completed in June 2019 under the same conditions for a total of 7.5 kg N/ha
(corresponding to 11 g per tree) while half of the dosage was used in the ZEO treatment.
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The same fertilizer was applied also in May 2020 and March 2021, respectively at
dosages of 5.6 and 6.7 kg N/ha, corresponding to 16.5 g and 19.8 g of N per tree, whereas
half of the dosage was used in the ZEO treatment. The orchard was rainfed. BN recorded a
mean temperature of 14.6 ◦C, aligned with the average temperature of the previous years.
The mean precipitation for 2019–2021 was 595 mm, with the highest values recorded in
2019 (823 mm) and slightly lower than 500 mm in 2020 and 2021 [51–53].

2.3. Textural Analysis

Particle size analyses of four samples per area were conducted to characterize the
soil texture. Samples were manually divided into quarters and opposite quarters were
chosen for the analyses. To remove the organic matter, soils were treated with H2O2 and
left to settle for 24 h. The sandy fraction was separated from the silty-loam fraction by a
63 μm sieving. The coarser fraction was dried at 105 ◦C for 24 h and weighted while the
finest fraction was quantified with an X-ray sedigraph (Micromeritics 5100) at standard
conditions, a dimensional range from 0.0884 mm to 0.00049 mm. A standard density value
of 2.7 g/cm3. 0.5 L of Sodium Esamexaphosphate with a low concentration (0.5%) was
added to the finest fractions to simplify the grain scatter. All data obtained from the textural
analyses were used for the USDA classification by Sedimcol software.

2.4. Chemical Analyses

Soil samples were air-dried and sieved at 5 mm before further analysis. Leaf samples
were dried at 60 ◦C for 72 h and grounded with an electric grinder until obtaining a
fine powder.

Soil samples were extracted with H2O Milli-Q (high purity) at 1:10 ratio (weight/volume),
to measure soluble anions and pH. After shaking for 1 h at 150 rpm in closed plastic tubes,
the supernatant was separated by centrifugation at 4000 rpm for 4 min and filtered with
0.45 μm Cellulose Acetate Abluo syringe filters (GVS Filter Technology). The pH was
measured with a pH electrode connected to an automatic titrator unit 877 Titrino-Plus
(Methrom, Italy). Soil H2O extracts were analyzed by Ion Chromatography (IC) with an
ICS-1000 Dionex equipped with AS9-HC 4 × 250 mm anion column, AG9-HC 4 × 50 mm
guard column, ADRS600 suppressor and AS-40 autosampler for the determination F−, Cl−,
NO2

−, Br−, NO3
−, PO4

3−, and SO4
2−. Calibration was performed with certified Thermo

Fisher Scientific standards. Concerning anions, only the most significant results are shown
in this paper, whereas all additional data are reported in Supplementary Material Table S1.

The Soil Organic Matter (SOM) was estimated by calculating the weight loss after
heating 0.5 g of oven-dried soil at 550 ◦C according to [54].

The Total Nitrogen and Carbon (respectively, TN and TC) and the respective iso-
topic signature (δ15N and δ13C) of soil and leaf samples were acquired with a Vario Micro
Cube Elemental Analyser (EA) (Elementar, Langenselbold, Germany) connected to an
Isoprime 100 Isotope Ratio Mass spectrometer (IRMS) (Isoprime, Cheadle, UK) operating in
a continuous-flow mode. The EA-IRMS was calibrated with synthetic Sulfanilamide (pro-
vided by Isoprime Ltd.) and Carrara Marble (cross-calibrated at the Institute of Geoscience
and Georesources of the National Council of Researches of Pisa) standards.

2.5. Vegetative Measurements

At all sites, one-year-old olive plants were provided by IBE nursery thus ensuring
their growth uniformity, genetic correspondence and health status. The choice to study
seven different cultivars is motivated by their different growth response (vigor). Vegetative
growth parameters (plant height, number and length of branches including one-year shoots)
were measured on 15 plants for each treatment and for each cultivar one year after the
transplant. The sum of branch lengths for each plant was calculated. It is important to
conduct these measurements during the first years of planting when the plant is left to
grow without applying pruning techniques.
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2.6. Statistical Analysis

All data were elaborated with R Studio 4.1.1 version. To address significant differences
between the treatments due to the zeolite application, parametric and non-parametric
tests were applied. Normality and homoscedasticity were tested through Shapiro–Wilk
and Barlett tests (p = 0.05) for each variable. Data following normal distribution and with
homogeneous variance were tested with a 1-way ANOVA and multiple comparison tests
(Tukey HSD) at p = 0.05 in order to evaluate statistical differences for a whole three years. If
normality or homoscedasticity were not reached (even after log or ln transformation), a non-
parametric test (Kruskal–Wallis) was applied instead of ANOVA. Furthermore, Principal
Component Analysis (PCA) was applied to discriminate groups of samples depending on
the treatment variable (ZEO or CNT). “Ggplot2”, Agricolae”, “Ggally”, “ggbiplot” and
“ggfortify” [55–59] R-packages have been used for data analyses and figures in this paper.

3. Results and Discussion

Soils from BN and BG experimental sites are mainly characterized by silty-clay-loam
textures, with a slightly higher silty fraction in BG (Figure 3). SL soils are characterized by an
important sand fraction and were classified as sandy-loam and sandy-clay loam (Figure 3).

 

Figure 3. Particle size analysis and textural classification (USDA) of the soil samples from SL, BG and
BN experimental fields.

3.1. Dynamics at Each Experimental Site

Given the large dataset, in the following we will discuss only annual trends and 3-year
average significant observations. The complete dataset is available as Supplementary
Material (Table S1).

In Table 2, the 3-year average of soil pH and SOM at each experimental site are
reported. These basic parameters are indicators of soil quality and plant growth: SOM is
the primary source of essential nutrients (N, P and S) and influences bulk density, water
retention and soil temperature as well as biological activity, and buffers pH [60].

In the BG site, a slight decline in soil pH was observed in Post-Fert samples (Table 3),
probably due to chemical fertilizer addition. In BG and BN, SOM is generally higher than
in SL site, due to the different soil texture. The presence of silt and clay in fact maintains
more C from primary production and increases SOM under certain environments [60].
SOM could be influenced by fertilization and irrigation of soil, and they are correlated with
SO4

2−, PO4
3− (Figure 4), δ15N (Figure 5) and Total Carbon (TC) (Figure 6). However, in SL

and BN, SOM was higher in Post-Fert than in Pre-Fert and Harvest, while BG showed an
opposite trend (Table 3). Moreover, Total Carbon (TC) in BG and BN sites confirmed the
higher trend of SOM explained above, while SL showed an opposite trend (Figure 6). As

67



Land 2022, 11, 1471

far as pH and SOM are concerned, no significant effects related to the zeolitite addition to
soil were observed over the 3 years of experimentation. The nutrient input reduction of
50% every year in ZEO treatment suggests a more favorable balance between inputs and
outputs of SOM in the zeolitite-added soils.

Table 2. pH and Soil Organic matter (SOM) at each site (San Lazzaro, SL; Brisighella, BG; Bertinoro,
BN). Data are divided by time of sampling (Pre-Fertilization, Post-Fertilization and Harvest) and
treatment (ZEO and CNT). Average values represent a 3-year average (3 replicate/treatment per
sampling, 3 sampling per year, 54 samples in total per site). Means in the same column followed by
different letters are significantly different (p < 0.05) as a result of ANOVA and Tukey (HSD) tests. The
complete dataset is shown in Supplementary Material Table S1.

SL BG BN
pH SOM (%) pH SOM (%) pH SOM (%)

Pre-Fert
CNT 8.01◦ ±0.09 3.59◦ ±1.12 8.83◦ ±0.29 4.76ab ±1.32 8.84◦ ±1.21 6.44b ±0.03
ZEO 7.93◦ ±0.37 4.04◦ ±0.48 8.77◦ ±0.22 5.51ab ±2.04 8.86◦ ±1.24 6.30b ±0.33

Post-Fert
CNT 7.71◦ ±0.43 5.05b ±0.80 8.66b ±0.19 5.26b ±0.30 8.65◦ ±0.92 6.97◦ ±0.38
ZEO 8.27◦ ±0.55 3.18b ±2.72 8.67b ±0.08 5.22b ±0.94 8.45◦ ±0.96 7.64◦ ±0.63

Harvest
CNT 7.56◦ ±0.24 3.21c ±0.62 8.77ab ±0.05 5.91◦ ±0.51 8.47◦ ±1.11 5.35b ±2.37
ZEO 7.56◦ ±0.48 3.02c ±0.51 8.84ab ±0.13 6.16◦ ±0.25 8.43◦ ±1.09 4.79b ±3.32

Table 3. Vegetative measurements of olive trees grown on soil treated with natural zeolite rich tuffs
(ZEO) versus plants grown on unamended soil (CNT). Data are expressed as a mean of 15 replicates
per thesis.

Tree Height
(cm)

Number of
Branches

Average
Branches Length (cm)

∑ Branches
Length (cm)

Cv. Nostrana
di Brisighella

ZEO 141.48 63.39 30.63 1918.05
CNT 134.09 51.78 30.09 1597.65

Figure 4. Box-plot of SO4
2− (A), PO4

3− (B) content of soil samples. The graphs are divided by
experimental site (BG, BN, SL) and treatment (CNT and ZEO). Box-plot of SO4

2− (C), PO4
3− (D)

content of soil samples from SL site. The graphs are divided by sampling (Pre-Fert, Post-Fert and
Harvest) and Treatment (ZEO and CNT). (A,B): The graphs are constructed considering a 3-year
average based on 27 samples per treatment at each site. (C,D): The graphs are constructed considering
the site specific 3-year average (9 observations at each sampling time per each treatment, 54 total
observations). Different letters represent significant differences (p < 0.05) as a result of ANOVA and
Tukey (HSD) tests.
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Figure 5. Box-plot of δ15N (A) of soil samples of the three sites. The graph is divided by the
experimental site (BG, BN, SL) and treatment. Boxplots of δ15N of San Lazzaro (SL) (B), Brisighella
(BG) (C) and Bertinoro (BN) (D). The graphs are divided by agronomic season (Pre-Fert, Post-Fert
and Harvest) and treatment (CNT and ZEO). (A): the graph is constructed considering a 3-year
average based on 27 samples per treatment at each site. (B–D): the graphs are constructed considering
the site specific 3-year average (9 observations at each sampling time per each treatment, 54 total
observations). Different letters represent significant differences (p < 0.05) as a result of ANOVA and
Tukey (HSD) tests.

Figure 6. Box-plot of Total Carbon (TC) of soil samples in San Lazzaro (SL), Brisighella (BG) and
Bertinoro (BN). The graphs are divided by treatment (CNT and ZEO). Data are the results of 3 years
of experiment: For each year, 3 samplings with 3 replicates per treatment were sampled (54 samples
per each site, divided in 27 samples per treatment). Different letters represent significant differences
(p < 0.05) as a result of ANOVA and Tukey (HSD) tests.
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Due to the different kind of fertilizer used, the SL site showed SO4
2− and PO4

3−
values remarkably higher than BG and BN fields. The chemical fertilizer applied in SL in
fact contained phosphate and sulfate, unlike the fertilizers used in BG and BN. Being both
SO4

2− and PO4
3− negatively charged, they are unsuitable for cation exchange by natural

zeolites, which led to non-significant differences in the retention of these ions in the soil
between CNT and ZEO. However, given the lower amount of fertilizers applied to ZEO, a
lower values of SO4

2− and PO4
3− were expected in this treatment, at least after fertilizer

application. SL highlighted its highest values Post-Fertilization (Figure 4C,D), while BG
and BN values showed no differences during the agronomic year.

The different kind of chemical fertilizers adopted in the experimental sites also influ-
enced the N isotopic composition in the soil, as clearly shown in Figure 5A. On average, the
δ15N of SL soil is higher than in the other sites due to the use of organic fertilizers, which
generally have higher 15N content than the synthetic ones [61], but no significant variation
over the agronomic year occurred (Figure 5B). At the BG site, after the addition of chemical
fertilizers the δ15N of soil tended to decrease (Figure 5C) while at the BN site, no differences
were detected (Figure 5D). In natural ecosystems, soil δ15N ranges from −6‰ to 16‰ [62]
and this high variability can be related to climate gradients and different atmospheric
conditions. An inverse and a direct correlation between mean annual precipitation (MAP)
and mean annual temperature (MAT) can be in fact observed with δ15N [63]. BG presents
the highest MAP, while both BG and BN sites show the lowest MAT during 2019–2021.
An increase in the δ15N values at BG is also observed in concomitance with the harvest
(Figure 5C), probably due to the temperature peaks recorded during the summers of 2020
and 2021. The lower δ15N values of BG and BN with respect to SL could thus result both
from different N sources and climatic conditions.

To evaluate the influence of irrigation, the Carbon Discrimination Factor (Δ13C) was
calculated from δ13C data. Figure 7 shows the Δ13C for leaves of each site, which means
the δ13C normalized for changes in atmospheric CO2 concentration through Equation (1),
where a and p refer to air and plant [64].

Δ =
∂a − ∂p
1 + ∂p

(1)

Figure 7. Box-plot of Δ13C of leaves divided by area and treatment. The figure is constructed
considering a 3-year average based on 27 samples per treatment at each site. Different letters
represent significant differences (p < 0.05) as a result of ANOVA and Tukey (HSD) tests.

According to Riehl et al. (2014) [65] a 1‰ Δ13C variation can be used to distinguish
stressed from well-watered plants without accounting for soil fertility effects. Water stress
conditions in fact causes a decrease in photosynthesis, transpiration and leaf conductance
which in turn modify the carbon isotopic composition [64,66,67]. As it is known, zeolites can
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adsorb water molecules in their structure, which means an increase in the overall soil water
holding capacity and the consequent possibility to reduce irrigation [68]. Nevertheless, no
significant variations between ZEO and CNT treatments were highlighted by the Δ13C data.
This fact is partially in contrast with the results obtained by [26] where a change in Δ13C
in maize and wheat grown in soil amended with the same natural zeolite- rich tuff was
observed. Although in that case, the authors ascribed the Δ13C variations to the manuring
effect. In our case, a significant difference in Δ13C was observed in BG only, likely due to
the additional water provided to the plants’ trough irrigation. This site in fact is the only
one which underwent artificial irrigation, added to the highest MAP over the three years of
experimentation.

N is one of the most important nutrients for plants. Thus, analyses of its different
inorganic speciation were performed to address the effects of natural zeolites on soil N
cycling in the three experimental fields. Nitrite (NO2

−-N) usually does not accumulate
in soils because it is an intermediate product of nitrification (that transforms NH4

+ into
NO3

−-N), or it is denitrified to NO and N2O and N2 gases. On the other hand, nitrate
(NO3

−-N) is one of the main forms of N used by plants and can also be exploited by
microbes to satisfy their N needs (immobilization processes) [69]. Nitrate, however, can
follow various transformation pathways which may also lead to N losses in the atmosphere
(as nitrous oxides due to incomplete denitrification) and/or can be leached into the water
system as a result of anionic repulsion by soil particles.

The results of TN analyses of soils and leaves and NO3
−-N and NO2

−-N of soils are
shown in Figures 8–10 for SL, BG and BN sites, respectively (3-year average).

Figure 8. Box-plot of NO2
−-N (A), NO3

−-N (B) content of soil samples, Total Nitrogen (TN) of
soils (C) and leaves (D) in San Lazzaro field (SL). Graphs consider the site specific 3-year average
(9 observations at each sampling time per each treatment, 54 total observations). Different letters
represent significant differences (p < 0.05) as a result of ANOVA and Tukey (HSD) tests.
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Figure 9. Box-plot of NO2
−-N (A) and NO3

−-N (B) content of soil samples, Total Nitrogen (TN) of
soils (C) and leaves (D) in Brisighella field (BG). The graphs are constructed considering the site
specific 3-year average (9 observations at each sampling time per each treatment, 54 total observations).
Different letters represent significant differences (p < 0.05) as a result of ANOVA and Tukey (HSD) tests.

Figure 10. Box-plot of NO2
−-N (A) and NO3

−-N (B) content of soil samples, Total Nitrogen (TN) of
soils (C) and leaves (D) in Bertinoro field (BN). The graphs are constructed considering the site specific
3-year average (9 observations at each sampling time per each treatment, 54 total observations). Different
letters represent significant differences (p < 0.05) as a result of ANOVA and Tukey (HSD) tests.
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In SL no differences were observed between the different treatments, although the N
input in CNT treatment was twice that in ZEO treatment. NO2

−-N of soil (Figure 8A) did
not show any difference between treatments (ZEO and CNT) or sampling time (Pre-Fert,
Post-Fert and Harvest) among the 3 years of the project, showing values always below
10 mg kg−1. Even NO3

−-N in soil samples (Figure 8B) showed no significant variations
among the treatments. A remarkable difference between CNT treatment Post-Fertilization
and Harvest can be observed, probably due to NO3

−-N removing processes (gaseous losses,
leaching, microbial immobilization or Dissimilatory Nitrate Reduction to Ammonium).
This evidence is partially sustained by a tendency to a lower N storage in olive leaves at
the Harvest in the CNT (although not significant). Soil TN (Figure 8C), reflects the same
trend for nitrate, showing no significant differences between treatments. The seasonal
fluctuations of these N species (with higher values after fertilization) are related to the input
of N brought by fertilizers. The TN of leaves (Figure 8D) likely supports this hypothesis
because the leaves have shown no differences in N content due to treatments or time.
However, they showed an opposite trend to that of soils, due to the different availability of
N during the agronomic year in different environmental compartments. Immediately after
fertilization, TN is concentrated in the soil, and it is lower in leaves while at the harvest the
trend was opposite.

In the BG site, TN did not show any significant difference due to the treatment and
sampling time for both soils (Figure 9C) and leaves (Figure 9D), coherently to the SL site.
The NO2

−-N (Figure 9A) and NO3
−-N (Figure 9B) of BG soils showed a trend similar to

SL and no differences were accounted for between ZEO (50% of fertilizer) and CNT (100%
of fertilizer). However, sampling time significantly affected the amounts of N in the soil.
NO2

−-N (Figure 9A) in Post-Fertilization ZEO samples showed significant differences with
respect to ZEO at Harvest, suggesting lower nitrite production (or improved consumption)
in this treatment. The NO3

−-N (Figure 9B) content in CNT treatment at Harvest was
significantly lower than Post-Fertilization, but an increase in N uptake of plants is not able
to explain the NO3

−-N reduction in soil. This decrease is probably due to a N loss in the
surrounding environment which did not happen for ZEO treatments, as suggested by the
tendency of ZEO leaves to have higher TN amounts for all sampling stages, although not
statistically significant.

The BN samples showed a trend similar to the SL and BG areas during the three
years of monitoring. NO2

−-N (Figure 10A) and NO3
−-N (Figure 10B) of soils showed no

significant differences between ZEO and CNT. NO2
−-N showed significant differences

between Pre-Fertilization and Post-Fertilization samplings, with higher values at Pre-
Fert. NO3

−-N followed the trend linked to the fertilization, with higher values at Post-
Fertilization right after the N input. The ZEO treatment in Pre-fertilization is similar to the
CNT in Post-Fertilization (where twice the amount of fertilizer was applied with respect
to the ZEO treatment), indicating that zeolite probably helped the soil to retain more N
available to the plant during time. TN of soils (Figure 10C) revealed no variations due to
the treatments or sampling time, and no other differences were highlighted neither for TN
of leaves (Figure 10D) nor for the SL and BG sites. As for BG, also in BN a tendency for a
higher N content of leaves was recorded although not significant from a statistical point
of view.

In general, the results of N dynamics over the 3 years of monitoring in the 3 experimen-
tal sites indicate that notwithstanding 50% fewer N inputs, the soil N content was similar
between CNT and ZEO. Given that no differences in N uptake by plants were observed,
this evidence leads to the hypothesis that zeolite minerals helped to reduce N losses and
promoted N storage in the soil, augmenting the fertilization efficiency.

3.2. Vegetative Measurements

The analysis of variance of the data collected in the BG field did not reveal any
difference between the two treatments (Table 3), while some differences between ZEO and
CNT were highlighted in both SL and BN fields. In the SL site, tree height, number and
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length of shoots were higher for Cv Montebudello and Farneto for ZEO treatment than for
CNT (Table 4). The number of shoots was greater in the ZEO thesis for Cv Colombina, while
other measurements exhibited no significant difference compared to CNT. The Cv. Capolga
in the BN field showed no differences in the level of growth of the aerial part, while in the
other two cultivars (Colombina and Correggiolo), a significantly greater development in the
plants treated with natural zeolite-rich tuffs was observed, despite the reduced dose of
fertilizer applied (Table 5).

Table 4. Vegetative measurements of olive trees grown on soil treated with natural zeolite rich tuffs
(ZEO) versus plants grown on unamended soil (CNT). Data are expressed as a mean of 15 replicates
per thesis. The bold font indicates statistically significant differences between the groups (p < 0.05).

Tree Height
(cm)

Number of
Branches

Average Branches
Length (cm)

∑ Branches
Length (cm)

Cv.
Montebudello

ZEO 121.14 49.86 24.71 1193.14
CNT 92.00 20.00 22.39 441.86

Cv. Farneto
ZEO 114.31 69.69 22.75 1592.50
CNT 84.54 44.38 20.37 972.15

Cv.
Montecapra

ZEO 104.50 62.63 22.71 1368.38
CNT 99.29 47.00 21.55 1060.50

Table 5. Vegetative measurements of olive trees grown on soil treated with natural zeolite rich tuffs
(ZEO) versus plants grown on unamended soil (CNT). Data are expressed as a mean of 15 replicates
per thesis. The bold font indicates statistically significant differences between the groups (p < 0.05).

Tree Height
(cm)

Number of
Branches

Average
Branches Length (cm)

∑ Branches
Length (cm)

Cv. Capolga ZEO 86 20.76 14.65 392.18
CNT 83.1 18.95 13.92 347.18

Cv. Colombina
ZEO 74.88 10.53 15.63 233.82
CNT 63.77 6.46 11.33 141.58

Cv.
Correggiolo

ZEO 102.38 9.25 21.04 291.38
CNT 80.43 7.79 15.76 204.39

The only field where no differences were observed between the two treatments is BG,
the irrigated field. It is possible that the action of the zeolite, in addition to reducing N
leaching and increasing the Nitrogen Use Efficiency (NUE), takes place at the water level
(although no differences were observed by Δ13C), so in orchards without any water deficits,
it is harder to account for differences in plant development.

These results are in agreement with those of Prisa (2020) [70], that found an increase
in agronomic characteristics in plants of Ranunculus asiaticus treated with zeolites, and with
Choo et al. (2020) [71] that found an increased number of fruits and greater fruit yield in
papaya plants treated with zeolites.

3.3. Global Considerations

To evaluate the benefits of using zeolitite in olive growing, the general comparison of
treatments year by year is presented in this chapter. pH, SOM and TC of soils are shown in
Figure 11, while in Figure 12 each of the investigated N species is shown.
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Figure 11. pH, Soil Organic Matter (SOM) and Total Carbon (TC) are shown for the three years of
the project. Data are divided by year (2019, 2020 and 2021) and treatment (with zeolite and control
for (A) pH, (B) Soil Organic Matter (SOM) and (C) Total Carbon (TC). The graphs are constructed
considering the year specific average for all three sites (27 observations at each year per each treatment,
54 total observations per year). Different letters represent significant differences (p < 0.05) as a result
of ANOVA and Tukey (HSD) tests.

Figure 12. Box-plot of NO2
−-N (A) and NO3

−-N (B) content of soil samples, Total Nitrogen (TN)
of soils (C) and leaves (D) divided by years and treatment. The graphs are constructed considering
the year specific average for all three sites (27 observations at each year per each treatment, 54 total
observations per year). Different letters represent significant differences (p < 0.05) as a result of
ANOVA and Tukey (HSD) tests.
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In all experimental fields, pH did not undergo any significant difference between CNT
and ZEO treatments. A global trend towards an acidification of the soil from 2019 to 2021
can be however observed (Figure 11A), which can be a consequence of the leaching of
exchangeable bases such as Mg2+, K+ and Ca2+ because of intense precipitation or irrigation
practices. No significant differences were accounted between SOM and TC and they did not
change in relation to different treatments and during time (Figure 11B,C). Although SOM
and TC could be influenced by fertilization and irrigation practices, we did not observe
any significant variation. At the same time, SOM, as well as TC, did not decrease over
the 3 years of experimentation, proving that the use of zeolitite did not influence these
parameters in soil but helps preserving SOM even with a reduced amount of nutrient
inputs while maintaining or even improving the plant development.

The only difference that occurred in nitrogen species was linked to the time and to
the type and amount of fertilizer applied to each field: (1) NO2

−-N showed a significant
difference among years, with concentrations that increased from 2019 to 2021; (2) NO3

−-N
in soil was significantly different during 3 years, with the lower values recorded in 2019
and the higher values recorded in 2020 and 2021; (3) TN in soil showed a very similar
pattern to that of NO3

−-N with an increase after the first experimental year (2019) and (4)
The TN of leaves was lower in 2020 (opposite trend to the NO3

−-N). For each N species, no
differences were accounted for between CNT and ZEO treatments (notwithstanding the
50% reduction of fertilizers), as already demonstrated in detail for each experimental site.

TN of leaves strongly indicate that plants did not uptake more N in CNT than in ZEO
treatment, although ZEO leaves showed a slight tendency in higher N uptake in 2020 and
2021 (not statistically significant), which can be caused by an augmented availability of N
among the years.

Principal Component Analysis (PCA), which is often used to discriminate the groups
of samples, reducing the dimensionality of the dataset without a large loss of information,
was applied only to the data related to the ZEO and CNT treatments during the three years
of the project.

PC1 and PC2 axes explained 48.59% of the total variance, divided into 30.61% of the
First Principal Component (PC1) and 17.98% of the Second Principal Component (PC2).
All the data showed a positive correlation in PC1, except Soil Organic Matter (SOM), Total
Carbon (TC) and pH. Instead, in PC2 only Carbon Discrimination Factor (Δ13C) had a
positive correlation, while all other parameters highlighted a negative correlation with PC2.
This low value of total variance does not allow for distinguishing between the different
treatments, thus further supporting the hypothesis that CNT and ZEO treatments were not
different, notwithstanding the fertilizer input reduction of 50% in the ZEO treatment.

The similar N uptake recorded by the leaves in the three different experimental sites,
as well as the tendency for a better development of plants grown on zeolite-amended
soil, notwithstanding the 50% N input reduction, strongly suggest that in CNT treatment
larger N losses occurred, leading to negative environmental and economic effects. On the
other hand, the presence of zeolitite in the soil maintained the nutrient for a longer time
contributing to a healthier condition for plants and yield production.

It is well known that zeolitite as a soil amendment reduces N leaching and increases
Nitrogen Use Efficiency (NUE) and crop yield [72]. Since the addition of zeolitite probably
influenced several pathways of N losses, it also allowed a more sustainable use of N
fertilizers. Furthermore, the N in the topsoil is strongly related to agricultural practices and
is influenced by the amount and form of the fertilizers used. This N can be easily lost by
leaching, NH3 volatilization and other N gas losses. Chemical fertilizers, such as urea, can
lose even more than 30% of the applied N as NH3 in the few hours after the spreading, if
the conditions for volatilization are met [8]. Ferretti et al. (2017) found evidence of a higher
FUE in zeolitite-amended soil after performing an isotopic tracing in the soil-plant system.
In another study, it was demonstrated that in similar conditions, NH3 emissions can be
reduced up to 60% using the same type of zeolitite used in this work [26]. Consequently,
the application of zeolitite to soil can be the key to reducing N losses in the environment,
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allowing a significant reduction in fertilizer N inputs (50%), maintaining or even increasing
the vegetative development.

The mechanism through which zeolitite is able to maintain the nutrients in the soil for
longer periods of time is, however, still a matter of debate. Ferretti et al. (2021) employed the
15N pool dilution technique to measure gross N transformation rates in zeolitite-amended
soil and found no evidence of increased ammonification in soil treated with natural zeolites
in the short-term. Thus, the efficiency of zeolitites (at natural state) cannot be explained by
an increased production of new mineral N from organic matter decomposition. However,
from the same study emerges a slight “delay” effect on gross nitrification. Apparently,
in zeolitite-amended soil, the ammonium is more slowly converted into nitrate. Thus,
the mechanism that might be responsible for the improved NUE in the treated soil is the
perturbation of various abiotic parameters after the addition of zeolite minerals (CEC,
water retention) that is reflected in different biotic processes in the short-term, probably
altering the quantity of N available for plant uptake. In another short-term incubation
study at laboratory scale, it was observed that the exchange of N between minerals and
the surrounding environment is very fast. Thus, N is accessible to microbial biomass in
the short-term but only mild effects on the microbial community (fungal/bacterial ratio)
and on N transformation rates were observed [73]. Thus, it is likely that the zeolites reduce
the N mobility in the short-term and delay the transformation of ammonium into nitrate,
resulting in “more time” for plants to uptake N and, by consequence, in a lower demand
for N fertilizers and N losses.

4. Conclusions

Thanks to a 3-year experiment conducted in three sites within the Emilia-Romagna
region, the efficiency of zeolite minerals in reducing the fertilizer N input up to 50% in olive
growing was demonstrated.

N dynamics and all the observed variables were influenced by the fertilizer manage-
ment (type, amount and timing of application), time, soil texture and irrigation.

However, no differences were observed owing to the different treatments (ZEO and
CNT), neither in the detail of each experimental site nor from the general point of view,
although in ZEO the fertilization had been reduced by 50%.

The vegetative measurements highlighted a greater development of the olive aerial
parts in ZEO treatments compared to CNT. The vegetative measurements conducted in
the first year indicate that the plants treated with zeolitite, despite the 50% reduction in
fertilizers, have developed similarly to the CNT. In the two rainfed orchards (SL and BN),
the ZEO-treated olive plants were characterized by a greater canopy development. Further
studies are under way to evaluate the effects, in the long term, of the una tantum zeolitite
addition as well as the influence on the fruit development and the chemical and sensorial
quality of the oils.

In conclusion, the use of this specific Italian chabazite zeolitite in olive growing can
allow a significant reduction in fertilizer N input, reducing the N losses and improving the
plant’s physiological status, with meaningful benefits under agronomic, environmental,
economic and health aspects. It is indeed very important to specify that the effects of these
minerals in the soil are long-lasting due to their long-term structural stability at an ambient
temperature and pressure. Moreover, the reduction in the application of N fertilizers can be
performed repeatedly over the years, with significant economic and environmental benefits
which last forever.
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Abstract: Urbanization results to a wide spread of Technosols. Various materials are used for
Technosols’ construction with a limited attention to their ecosystem services or disservices. The
research focuses on the integral assessment of soil-like materials used for Technosols’ construction in
Moscow megalopolis from the ecosystem services’ perspective. Four groups of materials (valley peats,
sediments, cultural layers, and commercial manufactured soil mixtures) were assessed based on the
indicators, which are integral, informative, and cost-effective. Microbial respiration, C-availability,
specific respiration, community level physiological profile, and Shannon’ diversity index in the
materials were compared to the natural reference to assess and rank the ecosystem services and
disservices. The assessment showed that sediments and low-peat mixtures (≤30% of peat in total
volume) had a considerably higher capacity to provide C-sequestration, climate regulation and
functional diversity services compared to peats and high-peat mixtures. Urban cultural layers
provided ecosystem disservices due to pollution by potentially toxic elements and health risks from
the pathogenic fungi. Mixtures comprising from the sediments with minor (≤30%) peat addition
would have a high potential to increase C-sequestration and to enrich microbial functional diversity.
Their implementation in urban landscaping will reduce management costs and increase sustainability
of urban soils and ecosystem.

Keywords: urban soil; organo-mineral materials; ecosystem disservices; MicroResp technique;
functional microbial diversity; fungi; Moscow megalopolis

1. Introduction

Urban ecosystems are to a great extent artificial by genesis and human-driven regard-
ing their functions and services, and therefore highly variable and dynamic [1–3]. Consid-
ering the degree of anthropogenic impact, urban soils are identified as man-influenced,
man-changed, or man-made [4]. From a variety of urban soils, soil constructions (con-
structed Technosols) are likely the most attractive and challenging for environmental
assessment and modeling. Annually, thousands of tons of organic and mineral mate-
rials are imported into a big city and utilized for Technosols’ construction [5–7]. The
technologies and materials used for Technosols’ construction are selected considering the
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81



Land 2021, 10, 1185

management purposes, e.g., for reclamation, landscaping, establishment, and maintenance
of urban green infrastructures [8–11]. A literature survey shows high diversity of mate-
rials used in urban soil engineering, including technic (e.g., rubble, sludge, wastes, and
industrial by-products) and natural (e.g., peat, relocated topsoil, biosolids, and dredged
(bottom) sediments) materials [9,12–15]. Various commercially manufactured materials
are available on the market for landscaping and greening purposes. A variety of mate-
rials results in a unique diversity of chemical, physical, and biological properties of the
constructed Technosols.

The quality of materials is usually legally regulated by state or municipal standards,
which differ between countries and cities. For example, the mixture of agricultural topsoil,
silt, clay, and sand is applied for greening public areas in Parma, Italy [16]. A mixture of
compost, peat, and sand is recommended for planting trees at the roadsides in Rome [17].
In France, topsoil removed from agricultural and forest lands remains a key material
for urban greening [15], whereas reusing the industrial by-products, wastes, and fine
sediments is suggested as an environmentally friendly alternative [12,18]. In the United
States, particularly in Chicago, biosolids and dredged sediments are implemented for
renovation and greening works [9,14]. In Moscow, Russia, there are at least 50 companies,
supplying about a hundred of different materials for greening, mainly comprised of peat,
sand, compost, and excavated topsoil in different proportions [5,8].

Although the quality standards of materials for the Technosols’ construction differ
between the cities, most of them are focused on several chemical properties (e.g., pH or
content of potentially toxic elements, PTE), whereas their capacity to provide the ecosystem
services remains overlooked [19,20]. Soil microorganisms are responsible for such impor-
tant ecosystem’s service as nutrients’ cycles [21], pollutants’ biodegradation [22–24] and
climate regulation [25]. The provisioning of these services can be projected based on the
microbial functional indicators, e.g., specific microbial respiration, community-level phys-
iological profile, abundance of metabolic genes or enzymatic activity [26–29]. Microbial
diversity contributes to ecosystem resistance to external stress; however, the presence of
pathogenic species evokes substantial health risks and shall be considered as an eco-system
disservice [30,31].

The research aimed to analyze soil-like materials used for Technosols’ construction
in Moscow megalopolis (Russia) and assess their quality based on chemical and micro-
bial properties. The study outcomes shall allow re-thinking the existing soil quality
standards and regulations from the ecosystem services’ perspective to support urban
sustainable development.

2. Materials and Methods

2.1. Materials Used for Technosols’ Construction in Moscow

Moscow megalopolis extents over 2500 km2 and with the population above 12 million
people is the largest city in Europe. Moscow is located in the Central part of East-European
plain (56◦ N; 37◦ E) and has a temperate continental climate. Taiga and mixed forests on
the Retisols dominating the natural areas of the region, in Moscow city, are to a great extent
substituted by ornamental plants and green lawns on man-changed or man-made soils
with a considerable portion of constructed Technosols [32,33]. More than 1 million m3 of
soil-like materials (e.g., organic and mineral components and commercially manufactured
mixtures) are annually imported into the city for the needs of civil engineering and green
infrastructures’ development [5,8,34]. A major part of the commercially manufactured
mixtures available on the market composes from the similar components: valley peat,
topsoil from meadow or arable lands, urban topsoil, and subsoil excavated before building
construction, excavated river valley topsoil, compost, sand, dredged sediments, and sludge
from water treatment stations. For this study, the most representative groups of the
materials were purchased and collected: valley peats, sediments, urban cultural layers, and
commercially manufactured mixtures (Table 1).
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Table 1. The origin, suppliers, and implementation of the studied materials for Technosols’ construction (PTs, valley peat
(n = 4); SDs, sediments (n = 2); CLs, cultural layers (n = 4); MIXLPT, mixture (n = 3) with low peat content; MIXHPT, mixture
with high peat content (n = 3)).

Material Origin Suppliers Implementation

PTs peatlands peat mining companies high
SDs water body water management companies low
CLs urban subsoil

producers of soil mixtures for gardening and landscaping
low

MIXLPT man-made
high

MIXHPT high

The valley peats group included four samples from the major supplying companies.
The sediments group was represented by sludge from surface water treatment stations
(i.e., solid and non-soluble particles mechanically filtered prior the water supply) and
bottom sediments (i.e., dredged sediments excavated from a lake bottom). Cultural layers
included subsoil urban sediments accumulated during a long-term residential activity
and frequently excavated during building and infrastructure constructing [35,36]. The
commercially manufactured mixtures comprised from several components, including
valley peat. Based on the portion of the valley peat in the mixtures’ composition, they were
subdivided to low-peat (≤30% of peat in total volume) and high-peat (≥75% of peat in
total volume) (Table 2). All the materials are available on the market and were collected
from the official suppliers—from two to four materials per group and three mixed samples
(50 L bags) for each material. The topsoil (0–10 cm) of Retisols sampled in the four mixed
forested parks of Moscow was considered as a natural soil reference.

Table 2. The composition of the investigated commercial mixtures.

Mixture Number Composition Volume Portion, %

Low peat content
I peat/excavated urban topsoil/sand/excavated river valley topsoil 30/30/30/10
II excavated urban topsoil/peat/compost/sand 25/25/25/25
III excavated urban topsoil/valley peat/sand 50/30/20

High peat content
IV peat/sand 75/25
V peat/compost/sand 80/10/10
VI peat/sand 95/5

2.2. Integral Assessment of the Materials’ Quality

To assess the quality of the materials and project the ecosystem services they can
provide, sub-samples (300 g) were taken for each material and the natural soil reference.
Sub-samples were sieved through a 2-mm mesh and subdivided into two parts. The first
part was air-dried for chemical analysis. The second part was adjusted to 60% water-
holding capacity and preincubated (150 g, 22 ◦C, 7 d) in the thermostat in a plastic bag with
air exchange. The preincubation stage eliminated initial variation in materials’ temperature
and moisture, and excluded possible CO2 efflux from the preparation procedures [37–39].
After preincubation, the sub-samples were analyzed for microbial properties.

2.3. Chemical Analysis

Total carbon (C) and nitrogen (N) contents were determined by spectrometry (CHNS-
932, LECO Corp, USA) after oxygen combustion (1100 ◦C). The pH of peats, cultural
layers, high-peat mixtures (the high organic material:water = 1:10) and soil, sediments,
low-peat mixtures (material:water = 1:2.5) was measured by pH-meter (Basic Meter PB-11,
Germany) [40]. Total contents of nickel (Ni), zinc (Zn), lead (Pb), cadmium (Cd) were
measured by X-ray fluorescence spectroscopy (Spectroscan Max-GVM, Russia).
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2.4. Microbiological Analysis

In the subsamples, the microbial respiration (MR) was evaluated by CO2 production
rate after its incubation for 24 h at the standardized condition at 22 ◦C [38,41]. The
measurement of CO2 was carried out by a gas chromatograph with a thermal conductivity
detector (KrystaLLyuks 4000 M, Yoshkar-Ola, Russia). Microbial biomass carbon (MBC)
was measured by substrate-induced respiration (SIR) method, which is based on the
registration of the highest initial microbial CO2 production after glucose addition [37,38].
The subsamples (1.0 g each) were placed in a vial (15 mL volume) and a glucose solution was
added dropwise (10 mg glucose g−1, volume was 0.1 mL). The vial was tightly closed and
incubated at 22 ◦C during 3.5 h. The measured SIR was converted to MBC units (μg C g−1)
by the following equation: SIR (μL CO2 g−1 h−1) × 40.04 + 0.37 [37]. The MBC:C and
MR:MBC ratios were calculated to estimate microbial C-availability and specific respiration
(qCO2), respectively [25,42].

Community level physiological profile (CLPP) was measured by MicroRespTM tech-
nique [27,28,43]. Briefly, samples were put to the 96-deep well (945 μL volume each)
and solutions of four C-substrates’ groups were added: amino acids (glycine, L-arginine,
L-leucine, α-aminobutyric, L-aspartic acids), carbohydrate (D-galactose, D-fructose, D-
glucose), carboxylic acids (L-ascorbic, citric, oxalic acids), and phenolic acid (vanillic and
syringic acids). The response of microbial community was detected by CO2 production by
colorimetric method after 6 h of incubation with detection gel at 25 ◦C. The absorbance
by the detection gel was analyzed at 595 nm wave length (microplate spectrophotometer
FilterMax F5, USA) before and after incubation and expressed as μg C g−1 h−1 [28]. Mi-
crobial functional diversity was assessed through Shannon index: H’ = −∑pi × lnpi [44],
where pi is the ratio of CO2 response on the addition of single C-substrate to the sum of
responses for all studied substrates.

The fungi species were cultivated on Getchinson’s and Czapek’s solid media, that
allowed to cover the widely distributed fungi in materials consuming the cellulose and
carbohydrates, respectively [45]. The Getchinson’s solid medium consisted 2.5 g NaNO3,
1.0 g K2HPO4, 0.3 MgSO4, 0.1 g CaCl2, 0.1 NaCl, 0.01 g FeCl3, 7.5 g agar L−1 water. The
Czapek’s medium included 30 g sucrose, 2.0 g NaNO3, 1.0 g K2HPO4, 0.5 g MgSO4, 0.5 KCl,
0.01 g FeSO4, 15 g agar L−1 water. Streptomycin sulfate (100 mg L−1) was added to the
media for bacterial growth inhibition. Briefly, sterile water (90 mL) was added to each 10 g
soil and each subsample materials’ group, and shaken for 10 min [46]. Serial dilutions (from
10−2 to 10−9) were prepared by sequentially transferring 1 mL supernatant into glass tubes
with 9 mL of sterile water. Subsamples (0.1 mL) at selected three dilutions were pipetted on
the surface of three Petri dishes with each solid medium. The Getchinson’s medium was
covered by filter paper then. The dishes were incubated at 25 ◦C during 10 d [47]. Fungi
genus and species identification was based on their morphological characteristics using the
manual [48]. The occurrence of the fungi was calculated as the ratio of the number of Petri
dishes with an identified species to their total number for each subsample. Occurrence was
measured as follows: >83% is frequent, 33–83% is medium, and <33% is rare. Pathogenic
potential was identified according to the atlas of clinical fungi [49].

2.5. Interpretation of Soil-like Materials’ Properties from the Ecosystem Services’ Perspective

The ecosystem services’ assessment was based on the studied microbial properties,
which are often used as soil quality indicators [26,50]. The organic matter decomposition
rate based on MR was used to assess the nutrients’ cycle service. The higher value could
indicate a better performance of the service, however, could also show the acceleration
of CO2 production rate. Hence, the qCO2 value was considered to indicate the balance
between CO2 production and C involved into microbial cells. The ratio of MBC to C
determines C-availability to microbes and together with qCO2 was used as indicators of the
C-sequestration and climate regulation service. The microbial response to specific organic
acids (e.g., phenolic) was considered as the capacity to biodegradation of organic pollutants,
which include a benzene ring. Shannon functional diversity index was considered to
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assess the functional biodiversity supporting service. All the selected indicators were
standardized to the natural soil reference values, which potential to provide the ecosystem
services was considered the highest. The disservices of the materials were assessed based
on PTE content compared to the health threshold level and pathogens occurrence in
comparison to the natural soil reference. The ecosystem services’ performance was ranked
from 0 to 1 (where 1 is the best performance). The ecosystem disservices’ performance was
ranked by the same scale, where 1 means the minimal disservices provided.

2.6. Statistical Analysis

All measurements were performed in three replicates and calculated for the dry weight
of subsamples. One-way analysis of variance and subsequent multiple comparisons by
Tukey’s test were performed for comparing the chemical and microbial properties among
the materials’ groups. The comparison between the materials’ groups and the natural
soil reference was done based on Dunnett’s test. The relationships between chemical and
microbial properties were analyzed using Spearman’s correlation. Redundancy analysis
(RDA) was used to examine the relations of fungal community composition to pH, nutrients
(C, N), and PTE (Ni, Zn, Pb, Cd) contents among the studied materials. Data on fungi
species occurrence were processed with Hellinger transformation [51]. Prior to RDA, a
forward selection was performed to identify the best set of non-collinear explanatory
variables with the highest adjusted multiple determination coefficient.

Significance level was accepted as 0.05. Statistical data analysis and visualization
were processed in RStudio [52]. Data visualization was done by ggplot2 package [53].
Correlation matrix was visualized with the ‘Performance Analytics’ package. The RDA
was performed using the ‘vegan’ package.

3. Results

3.1. Chemical Properties

The pH of all the materials was close to neutral with non-significant difference between
the groups or with the natural soil reference (Table 3).

Table 3. Average pH and bulk of potentially toxic elements (PTE) (mg kg−1) in the soil-like materials
(PTs, valley peat); SDs, sediments; CLs, cultural layers; MIXLPT, mixture with low peat content;
MIXHPT, mixture with high peat content).

PRP PTs (n = 4)
SDs

(n = 2)
CLs (n = 4)

MIXHPT

(n = 3)
MIXLPT

(n = 3)
THL

pH 6.4 ± 0.5 a 6.9 ± 0.5 a 7.2 ± 0.0 a 6.5 ± 0.6 a 6.7 ± 0.1 a 6.0–7.5
Ni 23 ± 6 a 23 ± 5 a 12 ± 1 b 29 ± 10 a 27 ± 2 a 80
Zn 215 ± 158 b 140 ± 12 b 563 ± 212 a 54 ± 14 c 53 ± 3 c 220
Pb 9 ± 3 a 12 ± 8 a 22 ± 3 a 15 ± 7 a 15 ± 2 a 130
Cd 0.5 ± 0.1 a 0.3 ± 0.0 b 0.6 ± 0.0 a 0.5 ± 0.1 a 0.2 ± 0.0 b 2.0

PRP, properties. Values are reported as mean ± standard error, different letters indicate a significant (p < 0.05)
difference between the groups. Bold value represents the exceeding of threshold level (THL) for PTE
(HS-514-11 regulation).

In contrast, C and N contents ranged more than one order of magnitude with the
highest values in cultural layers and valley peats (Figure 1). Peat soil is widely recognized
as the remarkable natural C stock, whereas high C and N content in cultural layers have
an anthropogenic origin. They result from a long-term deposition during the residential
activity and include organic wastes, wooden cheeps and other artifacts [35,54]. Only the
low-peat mixtures contained a similar amount of C and N as a natural soil, whereas in all
the other materials C and N contents exceeded the natural reference values 5 to 15 times.
The C:N ratio for all the materials ranged between 10 and 20, indicating a balanced of C and
N input. Compared to the other materials, cultural layers had higher contents of Cd and Zn,
whereas Pb and Ni contents didn’t differ significantly among the groups and were lower
than the maximal permissible level recommended by Moscow’ municipal regulations.
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Figure 1. Mean (circles) and standard errors (bars) of total carbon (A) and nitrogen (B) in peats (PTs),
sediments (SDs), cultural layers (CLs), high-peat (MIXHPT) and low-peat (MIXLPT) mixtures. Dotted green
line represents the mean for the natural soil reference. Letters indicate the significantly different groups
(Tukey’s test). Means with * indicate a significant difference from the natural soil (Dunnett’s test).

3.2. Microbial Properties

An extremely high MR obtained for the cultural layers was two orders of magnitude
above other materials and the natural soil reference (Figure 2A). The highest specific
respiration was reported for the materials rich in easily mineralizable organic matter (peats,
cultural layers and high-peat mixtures), whereas sediments and low-peat mixtures were
not significantly different from the natural soil (Figure 2B). Assuming a balanced specific
respiration in natural soils as (i.e., qCO2), sediments and low-peat mixtures were balanced
as well, whereas the other substrates were not. The C-availability in the natural soils was
significantly higher than in any soil-like material, and the lowest values were obtained
for the peats and high-peat mixtures (Figure 2C). High qCO2 and low C-availability in
peats and high-peat mixtures indicate their low capacity for C sequestration. Only the
small part of C stored in these materials could be consumed by microbes for anabolism
and accumulated in microbial cells, whereas the major part was released as CO2.

Figure 2. Microbial respiration (MR, A), microbial metabolic quotient (qCO2, B) and ratio of microbial
biomass carbon to total carbon (MBC:C, C) in soil-like materials. Dotted green line represents the
mean for the natural soil reference. Letters indicate the significantly different groups (Tukey’s test).
Means with * indicate a significant difference from the natural soil (Dunnett’s test).

The CLPP results showed that microbial structure in the peats was mostly shifted to
groups consuming the ascorbic acid, whereas in the cultural layers and sediments, the
highest response was obtained on the citric and ascorbic acids (Figure 3A). The response of
microbial community on the arginine addition was found only for the peats and high-peat
mixtures. For all materials except cultural layers, the capacity of microbial community to
decompose complex organic compounds with benzene ring such as phenolic acids (vanillic
and syringic) was lower compared to the natural soil. The highest microbial diversity was
also reported for the natural soils, for which the Shannon index was considerably higher
than in any of the soil-like materials. Among the materials, the index increased in a row:
high-peat mixtures, sediments, peats, cultural layers, low-peat mixtures (Figure 3B).
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Figure 3. Community level physiological profile (A) expressed by contribution of respiration on
addition of individual substrates to total substrate-induced respiration in the natural soil and soil-like
materials. The Shannon diversity index (B) presents as mean (circles) are standard error (bars) for
materials, dotted line represents the mean for the soil. Means with * indicate significantly differences
from the natural soil (Dunnett’s test).

A more detailed analysis of the fungal diversity in the materials allowed identifying
31 species from 16 genera (Table 4). Between 8 and 11 fungi species were identified in
soil, peats, and mixtures, which was 1.6–4.0 times more than in the sediments and cultural
layers. The identified species differed between the natural soil and soil-like materials, as
well as among the materials’ groups. The highest frequency of the opportunistic fungi
genera (e.g., Aspergillus, Chaetomium and Geomyces) and plant pathogenic fungi genera
(e.g., Verticillium genus) were found in cultural layers. These species could cause mycoses
in individuals having a weakened immunity. They are also harmful for the plant leaves
and stems. Considering the potential risks for human and plant health, the implementation
of cultural layers for urban greening purposes is questionable. Some opportunistic fungi
genera were also found in low-peat mixtures and in the natural soil reference; however, the
frequency of occurrence was less compared to the cultural layers.

3.3. Relationships between Microbial and Chemical Properties

The difference in microbial properties between the investigated materials was partly
driven by C and N contents and the polluting level by Cd and Zn (Figure 4). A positive
significant strong correlation was shown between MR, C, N, Zn, and Cd contents, whereas
a significant negative effect of contaminants on microbial properties was not shown.

The negative effects of the PTE on the microbial community (reflected in high MR)
were reported for urban soils before [54,55] and indicated stressful conditions for micro-
biome; however, the opposite effect of C and N input was expected. Apparently, C and
N contents in some materials (e.g., in valley peats and high-peat mixtures) were so high
that they could not be taken due to the exceeded capacity of their assimilation by microbial
community, and therefore resulted in a qCO2 increase. The most optimal microbial func-
tional capacity (low qCO2) was found at a range of 1.6 to 8.0% for C and 0.1 to 0.6% for N
(Figure 5A,B).

Based on the RDA ordination of fungi species in the studied materials (Figure 6),
the forward selection indicated that the best fitted model included Pb and Ni as factors,
which explained 51.3% of the variance in fungal composition. Among these factors, Pb
content was significant, explained 30.2% of variance, and was considered as gradient for
RDA1 (pseudo F = 1.7, p = 0.006; 999 permutations). The ordination showed that fungi
of cultural layers were more exclusive and less diverse compared to the other studied
materials. The occurrence of Verticillium and Aspergillus niger pathogens increased along
the Pb contamination gradient and associated with cultural layers.
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Table 4. The occurrence of the fungi in the natural soil and soil-like materials and the potential health risks from the
pathogenic fungi. Bold font represents the opportunistic fungi according to risk groups 1, which indicates the dangerous of
fungi’s impact on immunocompromised people (de Hoog et al., 2019).

Fungi Abbreviation Health Risks Soil PTs CLs SDs MIXHPT MIXLPT

Acremonium strictum Gams Astr pulmonary, pleuritis,
fungemia - - - - - ++

Aspergillus niger Tiegh. Anig otomycosis,
aspergillosis - - ++ - - +

Aspergillus sp. Asper - + - - - -
Acremonium charticola Lindau Achar - - - - - ++

Chaetomium globosum Kunze Cglob onychomycosis,
cutaneous lesions - + - + - -

Chaetomium indicum Corda Cind - + - - - -
Chaetomium spiralliforum Bainier Cspi - - - + - -

Chaetomium spirale Zopf Cspir - - - + - -
Chaetomium sp. Csp ++ + - +

Geomyces pannorum Link Gpan onychomycosis ++ - - - - -
Gliocladium catenulatum

Gilman & Abbott Gcat - - - + - -

Gliocladium roseum Bainier Gros - - +++ - - -
Monocillium sp. Mon - + - - - -

Monocillium pygmaea Chalab. Mpyg ++ - - - - -
Mortierella polycephala Coem. Mpol + - - - - -

Mortierella sp. Mor + - - - - ++
Mucor sp. Muc - + - - - -

Paecilomyces farinosus Holm Pfar - - +++ - - -
Penicillium islandicum Sopp Pisl - - - - + -

Penicillium steckii Zaleski Pst - - - - + -
Penicillium sclerotiorum Beyma Pscl - - - - - ++

Penicillium rubrum Stoll Prub - - - - ++ -
Penicillium terlikowskii Zaleski Pter - - - - ++ -

Penicillium sp. Pen - + - - - ++
Stachybotrys parvispora Hughes Spar - - - - + -

Stachybotrys lobulatus Berk. Slob - + - + - -
Trichoderma sp. Trich ++ - - - - -
Verticillium sp. Vert plant diseases - - + - - -
Moniliaceae sp.1 Mon1 +++ +++ - + + -
Moniliaceae sp.2 Mon2 + ++ - + +++ +++

Micelia sterilia dark-colored Msdc - ++ - - - +

Occurrence was measured as follows: +++, frequent (>83%); ++, medium (33–83%); +, rare (<33%); –, no.

3.4. From Properties towards Ecosystem Services

Chemical and microbial properties of the analyzed soil-like materials were integrated
and interpreted to assess the ecosystem services or disservices, which they can provide. A
high capacity to provide functional biodiversity and nutrient cycles’ services was shown for
all the materials. For the cultural layers, however, the biodiversity service was hampered
by the health risk disservice induced by the occurrence of the pathogenic fungi. At the
same time, only a few materials (sediments and low-peat mixtures) had the potential to
provide C-sequestration and climate regulation services. For all the other materials with
very high contents of easily mineralizable organic matter, the risks of CO2 emissions were
much higher than in the natural soils, considered as a reference for the ecosystem services’
assessment. In result, the capacity of cultural layers, peats, and high-peat mixtures to
provide the service was assessed 20% lower than for sediments and low-peat mixtures
and 80% lower than for the natural soil. An opposite pattern was shown the pollutants’
biodegradation services, which was performed by peats and high-peat mixtures 20 to 30%
better than by the sediments with low C and N contents. For cultural layers, an optimal
performance of the pollutants’ biodegradation services coincided with the disservice
evoked by PTE pollution; therefore, cultural layers can be considered quite an ambiguous
material for Technosols’ construction. Services’ and disservices’ assessment aggregated on
Figure 7 clearly illustrate the multi-functionality of the materials. Likely, the preliminary
idea of the target service to obtain (or disservice to avoid) shall be developed prior to
selecting the particular material for Technosols’ construction.

88



Land 2021, 10, 1185

Figure 4. Relationships between microbial (MR, qCO2, MBC:C, H’) and chemical (C, N, pH, Ni, Zn, Pb, Cd) properties of
the soil-like materials (n = 16). Significant correlation coefficients are indicated with * α ≤ 0.05; ** 0.01; *** 0.001.

Figure 5. Scatter plot for microbial (qCO2) and carbon (A) and nitrogen (B) of the soil-like materials.
The gray ‘bands’ represent the standard error of the regression line.
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Figure 6. Ordination biplot of redundancy analysis for the fungi composition explained by Pb and
Ni contents for the natural soil and soil-like materials. Non-pathogenic and pathogenic fungi are
plotted as black and red arrows, respectively (fungi species abbreviations see in the Table 4).

Figure 7. Estimation of ecosystem services (1 is the highest) and disservices (1 is the lowest) provided
by different groups of materials: peats (PTs), sediments (SDs), cultural layers (CLs), high-peat
(MIXHPT), and low-peat (MIXLPT) mixtures in relation to soil.

4. Discussion

4.1. Advantages and Disadvantages of the Soil-like Materials from the Ecosystem Services’ Perspective

A comprehensive analysis of chemical and microbial properties of the materials pro-
jected into the ecosystem services’/disservices’ assessment allowed ranking their quality
and applicability for Technosols’ construction. A high rank of the sediments, which
balanced most of the analyzed services, is one of the principal and unexpected research out-
comes. So far, dredged sediments are frequently used in agriculture as amendments [56–58],
but in urban greening and landscaping, preference is traditionally given to C-rich ‘dark’
materials, which are supposed to be more fertile [5]. In fact, dredged sediments combined
with biosolids can considerably improve soil fertility and support plant growth as it was
shown for Chicago [9]. Technosols constructed from water treatment station sediments
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and composts had high nutrient contents and showed a positive dynamics in formation of
stable aggregates [18,59]. Mixing sediments with clay loam, sand, and peat in volumetric
proportions 25/30/40/5 or 15/40/40/5 at the pilot project in Moscow allowed constructing
Technosols, whose quality satisfied governmental ecological and health standards [59–61].
These examples confirm our conclusion that non-polluted sediments could make a good
alternative for the excavated natural and arable soils in composed mixtures for Technosols’
construction, especially in the regions where the sedimentation in the water reservoirs is
an important problem and dredging activities are needed.

In comparison to sediments, a considerably lower capacity to provide climate regula-
tion and C-sequestration services was shown for the valley peat and high-peat mixtures,
which so far dominate the greening markets of Moscow [5,34] and many other cities in
Europe [62]. Although the nutrient content in peat materials is high, their vast implemen-
tation for Technosols’ construction can result in a dramatic increase in CO2 release to the
atmosphere due to intensive mineralization of easily mineralizable organic matter [63,64],
which can be even more facilitated by urban heat island effect [65]. We do not appeal
for a complete ban for peat implementation in Technosols’ construction; however, the
proportions shall be thoroughly verified. Based on the research outcomes, a minor addition
(≤30%) of peat in the mixture composition didn’t have a negative impact on the climate
regulation and C-sequestration services and contributed to microbial functional diversity,
which is in agreement with the previous studies [66].

Urban cultural layers were probably the most “exotic” group of materials we tested,
due to specific genesis, properties, and limited implementation for greening and landscap-
ing needs. Cultural layers include various deposits that reflected the anthropogenic activity
in the past: wood chips, wastes, excavated bedrock, bricks, and gardening traces [67].
We are not aware of a widely spread practical application of the cultural layers in soil
engineering; however, the nutrients’ richness could make them attractive for this purpose.
Urban cultural layers showed high microbial activity and C-availability indicated by a high
potential to accumulate C in microbial cells. As a result, the high capacity in pollutants’
biodegradation, C-sequestration, and functional biodiversity was also observed. However,
the intensive mineralization of organic matter increases the risks of CO2 emission and
depletes the climate regulation service. Presence of pathogens (Aspergillus niger and Verti-
cillium genera) and pollution by PTE (copper, zinc, lead), likely inherited from the historical
land-use [35] are the principal disservices of cultural layer, which limit their application for
Technosols’ construction and urban greening.

4.2. Microbial Properties of the Materials in Relation to Nutrients and PTE Contents

Chemical and microbial properties in the studied materials were interrelated, and
therefore, the variation in microbial indices and the values of corresponding ecosystem
services were partly explained by nutrients’ and PTE contents. Commonly, soil C and N
contents stimulate microbial biomass growth [68,69]; however, in our study, a positive
correlation between C and N contents and qCO2 was shown. Apparently, the energy costs
for microorganisms to maintain their biomass under intensive input of C and N are too
high. There is a threshold level of saturation, above which an additional input of organic
matter doesn’t stimulate microbial activity [70]. Apparently, in peats, cultural layers and
high-peat mixtures this threshold was exceeded. This outcome doubts existing municipal
regulations, which allow or even recommend the high content of organic matter in the
materials used for soil construction. For instance, the permissible content of organic matter
in materials used for landscaping in Moscow range from 10 to 25% [60], which is completely
unsustainable and can result in intensive CO2 emission.

Soil microbial properties are quite sensitive to pollution by PTE. However, in our study,
such a negative effect was not evident, that is likely due to relatively low concentrations
of the pollutants (for most of the materials, their contents were below health thresholds,
Table 3). Moreover, based on the correlation analysis, MR was positively related to Cd and
Zn contents. This unexpected outcome is likely explained by the specific properties of the
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cultural layers, where considerable contents of heave metals coincide with a very high C
and N contents, and correspondingly, which a high microbial activity.

4.3. Perspectives of Microbial Indicators for the Materials Quality Control

Existing material quality standards often ignore the fundamental view on soil quality
and ecosystem services [71,72]. For instance, Moscow government regulates the permissible
values of organic matter, pH, nutrients, as well as pollutants’ content, pathogens, and weed
seeds in the soil-like materials used for Technosols’ construction and urban greening [60].
City of Evans municipality (Colorado, CO, USA) regulates pH, nitrogen, phosphorus,
organic matter contents, bulk density, texture, moisture, and soluble salt concentration
in the amendments used in landscaping [73]. The British standard for topsoil cut and
translocated in building construction considers texture, nitrogen, phosphorus, potassium,
organic matter contents, and a wide range of pollutants for quality control [74]. None of
these and other reviewed regulations consider microbial properties as an important criteria
of urban soil quality. Today, even a shortlist of microbial indicators within the standardized
protocols includes microbial (basal) respiration [41], microbial biomass [75], enzymes
activity [76], nitrogen mineralization, and nitrification in soils [77]. Partly, implementation
of these microbial indicators in urban soils’ assessment is constrained by high temporal
dynamics, especially during the first years after Technosols’ construction [78,79]. From
the other perspective, monitoring dynamics of these indicators can reflect the evolution
and pedogenesis processes in the constructed soils. For instance, a positive dynamics of
microbial biomass carbon in Technosols constructed from the mining wastes to remediate an
industrial barren indicated their effectiveness for the ecosystem restoration [11]. Assessing
microbial properties of soil-like materials could be a promising tool to project functions
and ecosystem services of the constructed Technosols’ and therefore shall not be ignored in
urban landscaping, planning, and management.

5. Conclusions

An artificial origin of the constructed Technosols gives a unique opportunity to project
their functions and ecosystem services based on selecting soil-like materials with particular
chemical and microbial properties. Assessment of the materials used for Technosols’
construction in Moscow showed the highest performance for the sediments, which so
far are almost completely ignored in urban greening. Regarding nutrient contents and
balanced microbial functioning, they can be recommended as a promising replacement of
native soils in organo-mineral mixtures used in soil constructions. Much lower ranks were
given to peats due to very high risks of CO2 emissions. Their implementation in Technosols’
constructions shall be limited to minor (≤30%) amendments to mixtures composed from
the sediments or native soil. Cultural layers were exposed to high biological (pathogens)
and chemical (PTE) pollution, which was considered an ecosystem disservice. Therefore,
they shall not be recommended for urban greening and landscaping. Although the research
outcomes and recommendations are based on the analysis obtained for Moscow megapolis,
they are applicable for many other world cities since most of the investigated materials
(e.g., peat, sediments, and organo-mineral mixtures) are universal and widely spread. Our
study showed the efficiency of microbial properties for testing the quality of materials and
their potential to contribute to the ecosystem services provided by constructed Technosols
already at the planning stage. Assessment of microbial functional capacity can be an
important factor for developing recommendations on materials and technologies to enhance
ecosystem services of urban soil constructions and support urban sustainable development.
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Abstract: South Florida’s agricultural soils are traditionally low in organic matter (OM) and high
in carbonate rock fragments. These calcareous soils are inherently nutrient-poor and require man-
agement for successful crop production. Sunn hemp (SH, Crotalaria juncea) and velvet bean (VB,
Mucuna pruriens) are highly productive leguminous cover crops (CCs) that have shown potential
to add large quantities of dry biomass to nutrient- and organic-matter-limited systems. This study
focuses on intercropping these two CCs with young carambola (Averrhoa carambola) trees. The objec-
tive was to test the effectiveness of green manure crops in providing nutrients and supplementing
traditional fertilizer regimes with a sustainable soil-building option. Typically, poultry manure (PM)
is the standard fertilizer used in organic or sustainable production in the study area. As such, PM
treatments and fallow were included for comparison. The treatments were fallow control (F), fallow
with PM (FM), sunn hemp (SH), SH with PM (SHM), velvet bean (VB), and VB with PM (VBM). Sunn
hemp and VB were grown for two summer growing seasons. At the end of each 90-day growing
period, the CCs were terminated and left on the soil surface to decompose in a no-till fashion. The
results suggest that SH treatments produced the greatest amount of dry biomass material ranging
from 48 to 71% higher than VB over two growing seasons. As a result, SH CCs also accumulated
significantly higher amounts of total carbon (TC) and total nitrogen (TN) within their dry biomass
that was added to the soil. Sunn hemp, SHM, and FM treatments showed the greatest accumulation of
soil OM, TC, and TN. Soil inorganic N (NH4

+ + NO3
− + NO2) fluctuated throughout the experiment.

Our results indicate that generally, VB-treated soils had their highest available N around 2 months
post termination, while SH-treated soils exhibited significantly higher N values at CC termination
time. Sunn hemp + PM (SHM)treatments had highest soil N availability around 4 months after CC
termination. Soil enzyme activity results indicate that at CC termination, SHM exhibited the highest
levels of β-1-4- glucosidase and β-N-acetylglucosaminidase among all treatments. Overall, SH, SHM,
and FM treatments showed the greatest potential for supplementing soil nutrients and organic matter
in a no-till fruit production setting.

Keywords: sunn hemp (Crotalaria juncea); velvet bean (Mucuna pruriens); carambola (Averrhoa carambola);
soil health; soil enzyme activity

1. Introduction

Conservation agriculture, a sustainable approach to maximize crop production while
preserving environmental quality, has become an increasingly popular subject of research.
This is largely attributable to the lack of applicable information regarding sustainable
agriculture components and their harmony in organic agroecosystems. Cover cropping
is a widely recognized conservation agricultural strategy [1–3], specifically for low-input
agricultural systems. The soil ecosystem services provided by cover crops are substantial,
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specifically in the form of organic carbon additions [4]. No-till (NT) farming, combined
with cover cropping, is often considered as an ideal system for judicious resource utilization
in maximizing return on investment (ROI) and maintaining soil biodiversity [5]. Fruit
orchards are traditionally NT systems once trees are planted, as mechanical tillage would
cause damage to surface feeder roots that remain in the top centimeters of the soil. Therefore,
soil surrounding perennial tree crops is often left unstimulated, leaving trees to ultimately
experience a reduction in productivity, as crop rotation and tillage is not possible in most
cases [6]. Perennial NT systems can significantly benefit from cover crop species that
produce large amounts of dry biomass to achieve high C inputs to soil [7].

In tropical fruit production settings, farmers face various challenges which stem from
land management in warm and wet climates. This phenomenon is reflected through quick
decomposition of organic matter [8–10] and higher pressure from pests and diseases [11].
Leguminous cover crops, specifically varieties suited for tropical climates, have great
potential to ameliorate these issues by improving soil resilience and enhancing farmland
diversity [12]. Sunn hemp (SH, Crotalaria juncea) and velvet bean (VB, Mucuna pruriens),
two commonly used leguminous cover crops, have been shown to fix 40 to 80 kg N ha−1 in
tropical climates [13,14]. No-till organic ecosystems can significantly benefit from cover crop
species such as SH and VB which produce large amounts of dry biomass to achieve high C
inputs to soil [7]. Previous studies found that SH and VB can significantly increase soil C and
N fractions, improve soil aggregate stability, and influence the abundance of beneficial soil
microbes in no-till tropical production [15–18]). Consequently, it is of great importance to
study soil nutrient cycling in harmony with soil microbiota. Microbial functional diversity
is a driver for a plethora of ecological and environmental interactions [19]. Soil enzymes
are directly related to soil microbial activity and overall soil fertility [20], making them a
dynamic indicator for the effectiveness of soil amendments in stimulating nutrient cycling
and mineralization rates.

The popularity of organic agriculture has increased more than 550% worldwide within
the last couple of decades [21]. Consumers are more interested in ‘healthy food habits’ and
relate that concept to products coming from organic farms. Although organic consumables
are becoming increasingly more available, sustainable production of organic commodities
can be challenging. Additionally, due to rapid integration of organic farming into large
commercial food-production systems, small and medium-size organic growers are strug-
gling to make a minimum profit. Certified organic farms in the US saw a ~39% increase
from 2012 to 2017, while Florida’s organic farms only increased by ~4.5% within the same
time frame [22]. However, the numbers of small and mid-size farmers in South Florida are
decreasing, and currently, fewer than ten certified organic vegetable growers can be found
in Miami–Dade [23], the major fruit- and vegetable-producing county in South Florida.
In addition, soils in South Florida are predominantly porous sandy loam with very low
organic matter content (less than 2%, [24]), which often causes production problems for the
local growers.

Cover-cropping practices combined with low-cost organic nutrient sources could
potentially help small and mid-size farmers achieve better economic return and promote
environmental and economic sustainability. Composted poultry manure (PM) is commonly
applied as a fertilizer in organic production systems [25,26]. Nutrients such as C and N
in poultry manure are in organic forms [27,28] and are released slowly as the materials
decompose. This process is similar to that employed in commercially available slow-
release fertilizers that have become standard for reducing nutrient leaching and protecting
water quality.

Carambola (Averrhoa carambola), more commonly known as starfruit, is a tropical
fruit tree native to Southeast Asia. The carambola tree is small to medium in height
and produces fruit mainly in the mid-canopy area. Carambola is accustomed to hot,
humid weather, making it ideal for growth in (sub)tropical climates, and consequently,
South Florida is the only location in the contiguous US where carambola is produced
commercially [29]. Carambola production has been estimated to contribute ~$3.7 million
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to Florida’s economy, most of which comes from South Florida [30]. Carambola has
huge potential for South Florida growers as a lucrative cash crop. For many years, the
avocado has been the staple tropical fruit crop for Miami–Dade County growers (over
6000 planted acres, [31]). However, within the last decade, the aggressive emergence of a
devastating fungal pathogen, commonly known as laurel wilt (Raffaelea lauricola), has led to
the mandatory eradication of many infected avocado groves [32–34]. As such, many local
growers are looking towards alternative tropical crops to populate their groves. Carambola
is a promising candidate, as its current individual tree value is highest for all maturity
increments (1–3 years: $567, 4–6 years: $860, 7+ years: $984) as compared to avocado and
other feasible alternatives [35].

In an effort to target current concerns within the Miami–Dade County agricultural
scope and to explore solutions to improve management practices for sustainable production
of tropical fruits worldwide, we developed a study to test the effectiveness of SH and VB as
cover crops. The goal was to quantify the response of dynamic soil characteristics to cover
crop incorporation in a young carambola grove by exploring responsive soil parameters.
The specific objectives of this 2-season study were to (1) assess carbon and nitrogen inputs
from cover crops and poultry manure incorporated into an organic carambola grove,
(2) monitor physiochemical soil responses to these inputs in a no-till setting, and (3) assess
soil enzymatic activity in response to these added amendments.

2. Materials and Methods

2.1. Site Location and Characteristics

This 2-season (May 2018 to December 2019) field experiment took place in a certified or-
ganic (as listed by USDA-AMS) fruit orchard (6.07 ha) located in the Redlands Agricultural
Area (RAA) of South Florida, United States. The RAA is subtropical and located in plant
hardiness zone 10b [36] (USDA, 2012). This subtropical climate is characterized by a typical
wet summer season (May–October, 26.6 ◦C average temperature, and 18 cm average annual
rainfall) and a dry winter season (November–April, 21.1 ◦C average temperature, 4.6 cm
average annual rainfall) with warm weather year-round (23.6 ◦C average temperature) [37].

The USDA NRCS National Cooperative Soil Survey categorizes the soil in the RAA
as Krome series soil, high in calcium carbonate (CaCO3) rock fragments and generally
recognized as gravelly loam [38]. The soil profile is shallow, with a plowed layer ranging
from 0 to 18 cm. The limestone parent material has resulted in well-drained and slightly
alkaline soil. As a result of this shallow soil profile, rock plowing is a common practice in
agricultural fields to create enough depth (10–20 cm) for root growth and establishment. In
addition to rock plowing, tropical fruit managers typically trench their land (46 to 61 cm
deep and 41 to 46 cm wide) to ensure enough depth for tree root growth and anchoring for
protection during tropical cyclones [39].

2.2. Experimental Design

One year before the start of the experiment, two rows of young carambola trees were
planted, extending 122 m long with 7 m spacing between rows (Figure 1). The trees used
for this study were ~three-year-old ‘Hawaiian Super Sweet’ trees grafted onto ‘Golden
Star’ seedling rootstocks. Carambola saplings were planted with 3.8 m between each
tree, resulting in 30 trees per row, and 54 trees were randomly selected for treatment.
Experimental sites were arranged in a completely randomized design (CRD) with two
cover crop treatments: sunn hemp (SH) and velvet bean (VB); two cover crop + manure
treatments: sunn hemp + poultry manure (SHM) and velvet bean + poultry manure (VBM);
and two fallow control treatments: fallow (F) and fallow + poultry manure (FM). The
design included six treatments with nine replications for each treatment, involving a
total of 54 trees. Twenty-seven trees were treated with an organic composted fertilizer
amendment (5N-3P-2K USDA Organic Certified poultry manure), and the other 27 trees
did not receive any fertilizer treatments. Details about the experimental timeframe and
treatments can be found in our other published work [40].
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Figure 1. (A) The location of the experiment was a multi-use tropical fruit grove (experimental area
highlighted in red), (B) seeding cover crops around carambola trees in a circular fashion, (C) velvet
bean established in experimental plots, (D) sunn hemp established in experimental plots.

2.3. Field Sampling and Laboratory Analyses
2.3.1. Field Methodology

Weeds were physically removed from each plot before the start of the experiment in
preparation for cover crop seeding. A planting area of 8.8 m2 was established, and CCs were
seeded directly in a concentric pattern starting at the dripline (approx. 0.5 m radius from
the trunk) and circling around the tree in a 1.25 m radius (Figure 1). Carambola trees treated
with cover crops received either 33 kg ha−1 (89 g/plot) of SH (Crotalaria juncea L. cv. ‘Tropic
Sun’) seed or 25 kg ha−1 (67 g/plot) VB (Mucuna pruriens var. ‘pruriens’) seed. Seeding
rates were calculated following the Miami–Dade County Extension recommendations for
CC seeding in vegetable crop scenarios and adjusted to a 33% grove coverage rate. The
CC coverage used for this study was determined based on size of trees, spacing, and
management equipment. Cover crop seeds were treated with OMRI-certified Guard’n Seed
Inoculant (Verdesian Life Sciences, Cary, NC, USA), which contains a variety of rhizobium
species (Bradyrhizobium japonicum, Bradyrhizobium sp. (Vigna), Rhizobium leguminorsarum
biovar viceae, and Rhizobium leguminosarum biovar phaseoli), to facilitate root nodulation and
N fixation.

Sunn hemp and VB treatments were planted simultaneously. All plots were irrigated
for one hour per day via sprinkler system. Sunn hemp and VB were terminated 90 days
after germination. Sunn hemp was terminated mechanically via hedge trimmer, and VB
was hand clipped, leaving root systems intact. The cover crop biomass was laid around
the base of each respective tree to decompose on the soil surface. Following termination,
fertilizer treatments (1.4 kg poultry manure per tree) were applied every two months except
for the CC growing season (4 times per year), resulting in 120 kg ha−1 N added per year
from PM, as per recommendation by Crane, 2001 [41]. The carbon content of the poultry
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manure was 33.76 ± 0.29%, and the N content was 5.53 ± 0.13%. The cover crop treatments
were planted and terminated two times over this study period. Individual treatments for
each tree remained the same for both years.

Composite soil samples (0–15 cm depth, four per plot per sampling time) were col-
lected over the course of the experiment from the planting area of each tree. Soil samples
were taken before cover crop planting, before termination, and every 2 months following,
except for the last 4 months in which sampling occurred once per month. Temperature,
moisture percentage, and electrical conductivity (EC) (STEVENS Hydraprobe, Portland,
OR, USA) were measured once per month and at corresponding soil-sampling times. At
90 days after cover crop seed germination, a 40 cm2 area of plant matter (cover crop and
weed) was collected from each plot, including control plots. Aboveground biomass was
measured to determine organic matter and nutrient additions to the soil.

2.3.2. Soil Physicochemical Properties

Composite soil samples were oven-dried (30 ◦C for 72 h), sieved (2 mm), and ground
to prepare for analysis of chemical properties. Soil organic matter (SOM) was determined
through the standard loss-on-ignition method (550 ◦C for 4 h). Soil total carbon and nitrogen
(CN) were measured via dry combustion using a Truspec Carbon/Nitrogen analyzer (LECO
Corporation, St. Joseph, MI, USA).

Inorganic N was extracted using a 2M KCl extraction method. Extracts were then ana-
lyzed for nitrate (NO3

−) and nitrite (NO2
−) following USEPA Nitrate-Nitrite by Automated

Colorimetry Method 353.2, Revision 2.0 (1993) [42]. These same extracts were used for
ammonium (NH4

+) determination following USEPA Method 350.1, Revision 2.0 (1993) [43].
All readings were quantified with a SEAL Analytical AQ2 Discrete Auto Analyzer (Mequon,
WI, USA).

Soil moisture content was determined via the gravimetric method (dried at 105 ◦C for
24 h) and bulk density via cylinder method. Soil textural analysis was performed using
the standard hydrometer method. All analysis was conducted at Florida International
University within the Soil–Plant–Microbiology Laboratories (Miami, FL, USA).

2.3.3. Soil Enzyme Activity

Soil enzyme analysis was conducted for determination of β-1-4-glucosidase (C) and
β-N-acetylglucosaminidase (N). A methodology adopted from Sinsabaugh et al. (1997),
Hoppe (1993), and Chróst and Kambeck (1986) [44–46] was utilized to determine soil en-
zyme activity using differences in concentration of fluorescent substrate released during
incubation time compared with no incubation. Soil slurries with a 2:1 water-to-soil ratio
(4 g distilled deionized water to 2 g fresh soil) were made, and pH readings were taken.
Substrates were prepared using morpholinoethanesulfonic acid (MES) in combination
with 4-methylumbelliferone (MUF) β-D-glucosidase (MUF-C) and MUF-N-acetyl- β-D-
glucosaminide (MUF-N). Soil floc was prepared at varying dilutions according to concen-
tration. For C and N, 10−2 dilutions were analyzed using a Synergy HT Multi-Mode 96
Well Plate Reader (Biotek Inc., Winooski, VT, USA).

2.3.4. Statistical Analyses

Statistical analyses were conducted using IBM SPSS Statistics for Windows (IBM Corp.,
1968. Version 25.0, Armonk, NY, USA) and SAS (SAS Institute Inc., 1976. Base SAS® 9.4.
SAS Institute Inc., Cary, NC, USA) software. Data was analyzed via one-way ANOVA to
distinguish differences between treatments at each sampling time. Repeated measures
(two-way ANOVA) were run to determine significant interactions between individual
parameters and sampling time for appropriate groupings. Duncan’s post hoc test was used
to distinguish differences and considered significant at p < 0.05.
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3. Results and Discussion

3.1. Background Soil Characteristics, Climatic Conditions, and Cover Crop Contributions

Soil at the experimental site was a sandy loam (73% sand, 17% clay, and 10% slit)
with an average pH of 7.6. The experiment was conducted at a certified-organic farm
where the average SOM content was ~17%, fairly high compared to the mineral soils
(average < 2%; [24]) in the same region. Additionally, at the start of the experiment, inor-
ganic N levels were also higher than expected for the area at 34.24 g kg−1. These values are
unusual for soils within the Redland area and can be explained by land use practices by
the farm manager. Prior to carambola being planted, mature sapodilla trees were growing
in this area. These trees were treated with the same 5–3–2 poultry manure (N–P–K) as used
in our experiment at a rate of ~224 N kg ha−1 per year, nearly double the amount added to
juvenile carambola for our study. Mature trees also contribute leaf litter, which can add
supplemental OM and N to soil as it decomposes [47]. As a result, these cultural practices
had a great impact on soil health parameters and as such were reflected through enhanced
OM and nutrient content within the soil at the start of the experiment and throughout
season 1.

The average air and soil temperatures were 26.4 ◦C and 28.8 ◦C, respectively, for
summer and 21.4 ◦C and 23.7 ◦C, respectively, for winter months (Figure 2). Precipitation
trends were highest from July to August (18 to 23.7 cm average) in both years (Figure 2),
as expected for South Florida, given climatic trends that result in wet summers and dry
winters [37]. As such, a reduction in precipitation can be observed beginning in the fall
months (September to November) and continuing throughout the year until summer. The
first-year cover crop growing season (May 2018 to August 2018) received 64% higher
rainfall than the second season (May 2019 to August 2019). Relative humidity (%) remained
consistent (range 81 to 86%; average ~83% per month) throughout the experiment except
for March 2019 to May 2019, when increased temperature and low rainfall resulted in lower
humidity (average 78%).

 

Figure 2. Climatic conditions of the sampling sites over the 1.5-year trial period. This graph represents
average relative humidity (%), air temperature (◦C), soil temperature (◦C), and rainfall (cm). Months
with (*) indicate cover crop planting in May and termination in August of each season.

102



Land 2022, 11, 932

Our results indicate that SH (with or without manure) produced significantly higher
(p < 0.05) dry shoot biomass (range 10.7 to 5.4 Mg ha−1) than VB (with or without manure;
range 5.0 to 1.9 Mg ha−1) for both growing seasons (Table 1). Consequently, SH biomass
produced 33% more C than VB treatments throughout the experiment [40]. As a non-wood
fiber crop, the SH stem can become strong and woody in its later growth stages, providing
higher C additions over time [48]. As such, on average throughout our experiment, SH leaf
material had a C:N ratio of 11.05, while stem material had a C:N of 32.44, which explains
the higher carbon inputs to the system. Additional information on carbon inputs and
accumulation related to cover crop biomass from this study can be found in our previously
published work [40].

Table 1. Above-ground cover crop biomass, total N cover crop residue added to soil through-
out season 1 and season 2, and total weed biomass. Three cover crop treatments (F = fallow,
SH = sunn hemp, and VB = velvet bean) and three manure treatments (FM = fallow + poultry
manure, SHM = sunn hemp + poultry manure, and VBM = velvet bean + poultry manure) were ana-
lyzed for these parameters. Values within a column followed by different letters denote statistical
difference at p < 0.05 within the same season.

Season 1 Season 2

Treatment
Biomass

(Mg ha−1)
N

(kg ha−1)

Weed
Biomass
(kg ha−1)

Biomass
(Mg ha−1)

N
(kg ha−1)

Weed
Biomass
(kg ha−1)

F - - 9475 a - - 6496 a
FM - - 7802 a - - 6531 a
SH 8.8 a 177 ab 1778 b 9.4 a 213 a 1930 b

SHM 10.7a 238 a 2322 b 5.4 b 135 b 3302 b
VB 4.5 b 88 c 3928 b 2.7 c 84 bc 2742 b

VBM 5.0 b 136 bc 2384 b 1.9 c 65 c 3156 b

When comparing total N contributed by cover crop dry matter, the SH treatments
contributed up to ~92% (238 kg ha−1) more biomass N than VB (88 kg ha−1) treatments
in season 1 (p < 0.05). Sunn hemp treatments produced up to 106% more biomass N
than VB treatments (p < 0.05) in season 2. The difference in N accumulation by cover
crops was a direct result of biomass production. There was a large variation in biomass
production between SH and VB, likely attributable to their growth habits. Once SH is
established, it grows and develops vertically, which is conducive to producing high biomass
in confined spaces. Velvet bean produces large quantities of biomass through its vining
growth habit and spreading surface roots [49]. As our experimental growing area around
the carambola trees was limited to 8.8 m2, VB produced less biomass than it would have if
grown in a typical vegetable field setting. When comparing biomass production in a tomato
production setting, Wang et al. (2009) [38] found that SH and VB produced similar quantities
of biomass for both growing seasons in a 2-year study within the same region. However,
when comparing SH and VB in a potted study within the RAA, Wang et al. (2006) [50]
found that VB produced less biomass and TC when compared to SH for two consecutive
growing seasons, findings that align with our study.

In addition to cover crop biomass rates, Table 1 reports weed biomass in the form of
shoot dry matter production. The results reveal that weed biomass was up to 81% higher in
the fallow plots where cover crops were not planted (F and FM). Weed biomass quantities
reflect the ability of SH and VB to suppress weed growth and proliferation, a common
environmental benefit of CC usage [51]. In general, CCs and weeds accumulated greater
biomass in season 1 when compared to season 2, as reflected by shoot dry matter quantity
(Table 1). Increased biomass in season 1 may have been the result of higher rainfall amounts
during the seeding and germination period (May 2018) when compared to season 2 (April
2019) and throughout growing season 1 overall (Figure 2). Additionally, legumes tend to
be more successful in non-amended soil. This phenomenon occurs because their nitrogen-
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fixing capacity is enhanced, correlating directly with plant productivity and, in turn, dry
biomass production [52]. This is a possible explanation for lack of CC biomass production
in season 2, particularly for SHM and VBM which were treated with PM throughout the
previous season.

3.2. Effect of Cover Crops on Soil Chemical Properties

Precise CC management has been shown to improve soil quality through increasing
soil organic matter (SOM), providing nutrients to cash crops, and enhancing overall physi-
cal, chemical, and biological properties without the addition of synthetic inputs [53]. In
our experiment, when considering soil pH within treatments, FM plots had significantly
lower pH than all other treatments, remaining slightly alkaline throughout the experiment
(7.75–7.83, p < 0.05, Table 2). This is likely the result of PM being added directly to the
soil surface without the hindrance of CC residue. Conversely, the F plots had the highest
pH consistently throughout the experiment (8.03–8.08, p < 0.05, Table 2), which can be
attributed to the lack of OM residue added to the soil. All CC treatments remained similar
to one another within the moderately alkaline range for both seasons, fluctuating from
7.85–8.03 (p > 0.05). Organic matter addition from the CCs may have played a role in acidi-
fying soil in the short-term but was not reflected by data grouped by season. Calcareous
soils generally have a high pH-buffering capacity; however, long-term fertilization can
reduce the calcium carbonate (CaCO3) content of naturally calcareous soils, ultimately
lowering the buffering capacity [54]. While there were not obvious changes in soil pH
throughout the study period, it is possible that over time, the loss of CaCO3 and the increase
of SOM could result in the acidification of soil with cover crop and manure additions.

Table 2. Displays average soil pH, organic matter percentage (SOM%), total carbon (TC), total
nitrogen (TN), and C:N ratios throughout the experiment (n = 40 for each treatment). Three
cover crop treatments (F = fallow, SH = sunn hemp, and VB = velvet bean) and three ma-
nure treatments (FM= fallow + poultry manure, SHM = sunn hemp + poultry manure, and
VBM = velvet bean + poultry manure) were analyzed for these parameters. Values within a column
followed by different letters denote statistical difference at p < 0.05.

pH SOM% TC (g kg−1) TN (g kg−1) C:N (mol:mol)

Treatment Season 1 Season 2 Season 1 Season 2 Season 1 Season 2 Season 1 Season 2 Season 1 Season 2

F 8.03 a 8.08 a 15.00 bc 13.99 b 158.63 c 159.81 c 7.08 b 7.10 bc 26.55 a 26.88 ab
FM 7.75 b 7.83 b 17.86 a 16.45 a 183.63 a 181.37 a 9.17 a 8.31 a 23.38 a 24.93 b
SH 7.98 ab 8.03 ab 17.32 ab 15.64 a 175.32 ab 169.67 abc 8.95 a 7.86 ab 24.27 a 25.18 ab

SHM 7.85 ab 7.99 ab 17.45 a 15.48 ab 188.05 a 170.79 abc 9.25 a 7.41 abc 24.55 a 27.37 ab
VB 7.95 ab 7.93 ab 16.31 abc 14.14 b 178.11 ab 173.89 ab 7.70 ab 6.55 c 26.52 a 28.10 a

VBM 7.87 ab 7.87 ab 14.70 c 15.48 ab 166.42 bc 168.94 bc 7.89 ab 6.98 bc 25.38 a 24.91 b

Soil treated with FM and SHM accumulated the highest SOM% (17.45–17.86%, p < 0.05,
Table 2), while the F and VBM (14.70–15%) treatments exhibited the lowest SOM% within
season 1. Total carbon results also reflected this trend for season 1 which aligns with high
input of aboveground shoot biomass and PM additions to the soil for the SHM treatment
and direct addition of PM to the soil surface as applied in the FM treatment (Tables 1 and 2).
The significant contribution of OM to the soil by SH treatments suggests that SH was
effective for rapid addition of SOM during season 1, when CC biomass production was
highest. Relatively lower SOM% and TC is expected for the F treatment with no manure
or CC addition, and that treatment yielded consistently less C throughout the experiment
when compared to other treatments. The comparably lower SOM% and TC within the
VBM treatment throughout the experiment is likely attributed to a lesser contribution of
cover crop biomass (as compared to SH treatments) along with the possibility of high
decomposition/volatilization rates resulting from no-till management [55].

Soil organic matter results varied between treatments during season 2, as FM (16.45%)
and SH (15.64%) had the highest SOM%, with that of SHM being marginally lower (15.48%,

104



Land 2022, 11, 932

p < 0.05, Table 2). This was also reflected in high soil TC levels for FM when compared
to CC treatments. As previously mentioned, it is possible that because FM plots received
manure treatments without the hindrance of CC mulch, change in SOM was more obvious
in the short-term. Additionally, plots without CCs planted had a significantly higher degree
of weed establishment throughout the experiment (Table 1). Mowing of weeds around
plots occurred approximately every three months, making it possible for decaying weeds
to contribute to soil building and nutrition for both fallow treatments. Fallow land within
the F and FM treatments was advantageous for weed growth throughout the study, which
may have contributed carbon to the soil through above- and belowground activities. High
SOM values in SH plots are based on large contributions of CC biomass during season
2 growth (9.4 Mg ha−1, p < 0.05). Overall, in regard to CC treatments, SH- and VB-treated
soil were similar in TC to each other, yet lower than the FM treatment for season 2, which
may have been a result of reduced CC biomass production from season to season.

Soil TN results from season 1 indicated that soil treated with F (7.08 g kg−1) had the
lowest TN. The FM, SH, and SHM treatments had the highest TN (p < 0.05, 9.17, 8.95,
9.25 g kg−1, respectively), which corresponds with N inputs from biomass (Table 1). Soil
TN was highest within soils treated with FM (8.31 g kg−1) and lowest in those treated with
VB (6.55 g kg−1), with all other treatments being similar during season 2. Total N results for
VB are likely a reflection of less successful biomass contribution by VB treatments during
the second growing season (Table 1). These soil TN findings are consistent with other
studies that have shown VB treatments add lower quantities of TN to soil than do SH
treatments within the RAA subtropical climate [50,56]. Generally, although not statistically
significant, in most cases (p > 0.05), a trend can be seen throughout both seasons in which
treatments that received PM reflected higher TN.

Throughout season 1, there was no significant difference between treatments for soil
C:N ratios (p > 0.05). Season 2 showed significantly lower C:N ratios for soils treated with
FM (24.93) and VBM (24.91), indicating an environment more conducive to OM breakdown
and nutrient cycling by microorganisms when compared to other treatments [57] (Eiland
et al., 2001). The FM treatment consistently had the highest contributions of TC and TN to
the soil throughout both growing seasons, which coincides with these results.

3.3. Soil Inorganic Nitrogen

Soil nutrient cycling, specifically nitrogen mineralization, is critical to crop health, as
plant metabolism and vital processes are fueled by uptake of N [58]. When utilizing legume
CCs for the purpose of green manure, residue added to the soil after termination adds N as
a food source for soil organisms and subsequent crops [59].

When comparing soil inorganic N in the form of ammonium (NH4
+) + nitrate (NO3

−)
+ nitrite (NO2) throughout the experiment, significant variability was observed at numerous
sampling points and between treatments (Table A1, Figure 3). Soil inorganic N was highest,
regardless of treatment, at the October 2018 (38.26 g kg−1) sampling time and lowest in
September 2019 (4.03 g kg−1, p < 0.05). These results show a trend in which, two months
after cover crop termination, inorganic N increases; this can also be observed in season 2,
where N increases from September 2019 to October 2019 (Table A1, p < 0.05). During both
growing seasons, air and soil temperature remained elevated from August–September
during termination and throughout the first month of organic matter decomposition. These
climatic conditions are characteristic of South Florida, as significant rainfall and high
temperatures are conducive to organic matter decomposition and N mineralization [60].
Furthermore, the few months after CC termination are crucial for decomposition and N
mineralization, which is apparent, as CC treatments showed significantly higher N at these
time points.
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Figure 3. Displays average soil inorganic N concentrations by season (n = 4 for each treatment at
each time point) with ambient soil temperature and WFPS. Three cover crop treatments (F = fallow,
SH = sunn hemp, and VB = velvet bean) and three manure treatments (FM= fallow + poultry manure,
SHM = sunn hemp + poultry manure, and VBM = velvet bean + poultry manure) were analyzed for
these parameters. Error bars denote standard error.

At the September 2019 sampling period (1 month after the second CC termination), the
average inorganic N was low, corresponding with lower water-filled pore space (WFPS)% as
compared to other sampling periods (Figure 3). Water-filled pore space played a significant
role in the N mineralization process throughout the experiment. In general, it was observed
that as WFPS% increases, so does available N content and vice versa (Figure 3). Soils under
no-till management are typically less aerobic and can have higher WFPS than those that
undergo traditional tillage [61]. Tillage practices have a large influence on N2O emissions,
which are generally higher in soil under no-till management, as anaerobic conditions are
more common for such soil [62]. A water-holding capacity around 60% is the threshold for
maximum aerobic activity ideal for ammonification and nitrification [63]. Plant-available
N can be compared with WFPS, as previous studies have shown a link between WFPS,
soil moisture, and N2O emission [64–66]. Results indicated that inorganic N content was
elevated even when WFPS surpassed the 60% threshold at the October 2018 sampling time,
although generally, high inorganic N was observed with WFPS at ~60%, ideal conditions
for this parameter. This finding suggests that anerobic bacteria may have played a role in
nutrient cycling throughout the study when WFPS% was high.

There are two groups of organisms responsible for N transformations in soils: ammonia-
oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) [67,68]. The population
size and response of AOA and AOB are highly related to soil type and management strate-
gies. Traditionally, it has been found that AOB are more likely to contribute N additions in
agricultural soils, as their populations are generally more elevated when N supply is higher,
enhancing nitrification potential, while AOA are more commonly dominant in soils from
more natural or diverse ecosystems [69]. Shen et al. (2008) [70] compared the abundance
of AOB and AOA communities in an alkaline sandy loam (similar to the tested soil type)
with various fertilizer treatments. They found significantly higher communities of AOB in
soils treated with traditional N fertilizer when compared to organic manure treatments,
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which is possibly explained by competition with heterotrophic bacteria, commonly present
in soils amended with carbon (green or organic manures) [71]. Although not measured
in this study, it is possible that an increased presence of AOA contributed significantly to
N cycling in the present experiment, as these organisms are highly adaptable to extreme
environmental conditions like low oxygen levels and are more common in diversified
soils [72]. Because additions of OM to soil are favorable for microbial diversity, it is likely
that the combination of CC inputs, paired with occasional anerobic soil conditions, created
a diversified microbial environment that facilitated N fixation and mobilization.

While WFPS may have played a role in N mineralization, it is probable that BNF
had a significant impact on soil inorganic N content at the time of CC termination. At the
August 2018 termination time, all soils treated with CCs had significantly higher inorganic
N (p < 0.05) than the F soils (Table A1). Specifically, both SH and SHM exhibited the highest
levels (32.15 and 30.94 g kg−1, respectively). This sampling time is specifically interesting
because this was before any PM fertilizer was applied, indicating successful N fixation due
to the legume treatments. Legume symbiosis with rhizobium bacteria works to reduce
N2 to NH4+ and NO3- in ideal climatic soil conditions [73]. Biological nitrogen fixation
is dependent on many factors and can vary by species and effectiveness of rhizobium
type/inoculation success [74]. Nezomba et al. (2008) [75] found that Crotalaria spp. had
high potential to fix N in sandy soil. Specifically, Crotalaria juncea (SH) was estimated
to have a 90% N fixation rate, resulting in 58 kg ha−1 N provided to soil. Within our
experiment, both SH and VB seeds were inoculated with the recommended cowpea-type
rhizobium before planting to encourage nodulation. Genus Crotalaria (SH) has been shown
to create symbiotic relationships with many strains of rhizobium bacteria, resulting in
high potential for N fixation and biomass accumulation [76]. Conversely, much less is
known about the genus Mucuna (VB) and its rhizobial-host-plant interactions. Cowpea-
type rhizobium is compatible with genus Mucuna; however, successful nodulation has
not been shown with a wide variety of rhizobium species [76]. These factors may have
had an impact on the differences in N content in soil between the SH and VB treatments,
specifically during and directly after the CC growing seasons (August 2018 and August
2019) in which SH-treated soil showed more success in providing available N.

In addition to termination, there were multiple sampling times in which significant
differences in soil inorganic N were observed between treatments. At the October 2018 sam-
pling time, two months after CC termination, VB-treated soil had higher inorganic N
(49.74 g kg−1, p < 0.05) than the F treatment, with all other treatments being similar to one
another. The VB treatment also received higher biomass contribution in season 1 than VBM
(~9% higher), which may have contributed to significantly higher levels of inorganic N. It is
apparent that at this sampling time (two months after termination and first PM application),
N from CC residue and PM application was in various stages of decomposition, and N
was being utilized by the carambola tree, as it was readily available. Generally, we saw
that VB/VBM residue had a significantly lower C:N ratio than SH [40], which enhanced
N cycling from VBM treatments soon after CC incorporation. This pattern can be seen
again at the October 2019 sampling time, where the VBM-treated soils had significantly
higher levels of inorganic N than all other treatments (6.23, p < 0.05), which was a reflec-
tion of PM addition and the low C:N ratio of the residue contributing to higher levels of
N mineralization.

At the December 2018 sampling time, soils treated with SHM (29.00 g kg−1, p < 0.05)
were higher in inorganic N than the F-treated soils (15.71 g kg−1), with all other treatments
being statistically similar to one another. This result also corresponds to season 2 results
at the November 2019 sampling time in which SHM (13.63, p < 0.05) soils showed sig-
nificantly higher N than all other treatments (Table A1). These results indicate that, 3 to
4 months after cover crop termination, plots that received SH and PM combined had the
greatest capacity for N mineralization. This corresponds with the findings of Rao and Li
(2003) [60], who observed that SH had the highest level of cumulative N mineralization
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in calcareous Krome soil at 16 to 20 weeks after CC residue was added at ambient South
Florida temperature conditions.

At six months (February 2019) and eight months (April 2019) after termination, the
impact of CC residue on soil inorganic N begins to taper off, and added PM becomes the
main source of plant-available N. At six months after termination (February 2019), the
FM-treated soils (30.94 g kg−1, p < 0.05) had the highest levels of inorganic N compared
to F-treated soil (12.96 g kg−1), with all other treatments being similar to one another
(28.23–14.71 g kg−1). However, at the April 2018 sampling time, eight months after termi-
nation, a distinct difference can be seen between treatments that received PM and those
that did not. Figure 3 shows this distinct phenomenon, in which FM, SHM, and VBM had
higher levels of inorganic N (36.49, 30.50, and 20.90 g kg−1, respectively, p < 0.05) when
compared to treatments that did not receive any PM additions. These results suggest that
at six to eight months after termination, CC residue ceases to contribute to N availability in
the soils at our research site.

3.4. Soil Enzyme Activity

We chose to study two enzymes, β-1-4-glucosidase, which is associated with C cy-
cling, and β-N-acetylglucosaminidase, which is associated with N cycling [77]. Soil β-1-
4-glucosidase rates differed over time and between treatments (Figure 4). Throughout
the sampling times, with all treatments considered, the August 2019 time (second CC
termination) had the highest rates of β-1-4-glucosidase. There was no significant difference
between treatments at individual sampling times except for the August 2018 (the end of
cover crop growing season 1) and August 2019 (the end of cover crop growing season 2). At
both August times, the SHM treatment had the highest β-1-4-glucosidase level (0.0386 and
0.1393 μmol m 2 s, respectively), with the levels of all other treatments significantly lower
(p < 0.05), which may be indicative of sunn hemp excreting carbon into the rhizosphere,
enhancing overall microbial diversity. Overall, soils treated with SHM reflected the highest
numeric β-1-4-glucosidase, although no significant difference was discernable (p > 0.05,
Figure 4).

Figure 4. Displays average soil β-1-4-glucosidase rates (n = 4) over a two-season period af-
ter cover crop growth and termination. The lines at each sampling time represent three
cover crop treatments (F = fallow, SH = sunn hemp, and VB = velvet bean) and three ma-
nure treatments (FM= fallow + poultry manure, SHM = sunn hemp + poultry manure, and
VBM = velvet bean + poultry manure). Error bars denote standard error.

The enzyme β-N-acetylglucosaminidase reflects N cycling by microbial biomass and
overall breakdown of OM [78]. Soil β-N-acetylglucosaminidase results indicated change
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over time, regardless of treatment. Like β-1-4-glucosidase, the highest occurrences were
in August 2019 (0.0094 μmol m 2 s), at the second CC termination (Figure 5). There was
no significant difference in β-N-acetylglucosaminidase between treatments at any of the
individual sampling times except for August 2019. At the August 2019 time, soils treated
with SHM (0.0169 μmol m 2 s) showed significantly higher β-N-acetylglucosaminidase
activity than the rest of the treatments (Figure 5).

Figure 5. Displays average β-N-acetylglucosaminidase rates (n = 4) in soil over a two-season
period after cover crop growth and termination. The lines at each sampling time represent
three cover crop treatments (F = fallow, SH = sunn hemp, and VB = velvet bean) and three
manure treatments (FM= fallow + poultry manure, SHM = sunn hemp + poultry manure, and
VBM = velvet bean + poultry manure). Error bars denote standard error.

These enzyme activity results can be reflective of two processes. After the 90 days of
the second growing season, it appears that the SHM treatment was effective in providing
belowground stimulation to soil, and as such, the breakdown of glucose and transfor-
mation of N occurred, as shown by increased enzyme activity in this sampling period
(August 2019). These results coincide with higher concentrations of inorganic N in the
corresponding sampling period in which SHM had the highest levels (Figure 3, p < 0.05).
A study conducted by Maltais-Landry (2014) [79] concluded that legume CCs had high
β−glucosidase activity in the rhizosphere by the end of their growing season when com-
pared to non-legumes, which was especially apparent when legume cover crops were
combined with composted poultry manure. Our study shows that this is true in a no-till
field setting for SH treated with PM (SHM). Shoot and root contributions supplied by
cover crops are specifically important in no-till systems, as root exudates added during
the growing season and organic material added after termination stimulate soil microbial
communities [80].

4. Conclusions

Cover crops have rarely been explored as a soil management method for tropical
fruits. This study shows that tropical leguminous cover crops have potential as beneficial
soil amendments to add OM and nutrients and promote nutrient cycling by stimulating
microbial activity. This experiment was conducted in an organic production farm where
cover crops were intercropped with young carambola trees. Carambola trees require
~90–270 N kg ha−1 per year [41]. With the seeding rate utilized in this experiment, SH and
VB treatments potentially provided sufficient amounts of total dry matter N to supply
carambola trees with the N that they require. The results suggest that SH treatments
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produced the greatest amount of dry biomass material, ranging from 48 to 71% higher than
VB treatments over two growing seasons. Consequently, SH also accumulated significantly
higher amounts of TC and TN within its dry biomass that was added to the soil. Sunn hemp,
SHM, and FM treatments showed the greatest accumulation of soil organic matter, TC,
and TN. Soil inorganic N fluctuated throughout the experiment. Our results indicate that,
generally, VB-treated soils had their highest available N around 2 months post termination,
while SH-treated soils exhibited significantly higher N values at CC termination time.
Sunn hemp + PM treatments had highest soil N availability around 4 months after CC
termination. Soil enzyme activity results indicate that at CC termination, SHM exhibited
the highest β-1-4-glucosidase and β-N-acetylglucosaminidase levels among all treatments.

With all results considered, SH and VB both have the potential to act as soil enhancers
for fruit production in tropical and subtropical settings. Applying the findings to tropical
fruit production, these cover crops can provide chemical and biological benefits to enhance
soil for the successful growth of tropical fruit trees. These cover crops can be utilized
in combination with PM or other organic fertilizers for ideal crop development and soil
improvement. With the growing issues of soil erosion and organic matter depletion, it is
imperative that farmers consider these matters and incorporate management strategies that
ensure the long-term sustainable productivity of their land.
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Appendix A

Table A1. Displays average soil inorganic N concentrations at each sampling time (n = 4 for each
treatment at each time point). Three cover crop treatments (F = fallow, SH = sunn hemp, and VB
= velvet bean) and three manure treatments (FM= fallow + poultry manure, SHM = sunn hemp +
poultry manure, VBM = velvet bean + poultry manure) were analyzed for these parameters. Different
uppercase letters denote statistical difference between sampling times, different lowercase letters
denote statistical differences between treatments at each individual sampling time (p < 0.05).

Soil Inorganic N (g kg−1)

Season 1 Overall F FM SH SHM VB VBM

August 2018 25.48 B 20.32 c 21.04 bc 32.15 a 30.94 ab 22.16 bc 23.08 abc
October 2018 38.26 A 24.22 b 31.15 ab 45.70 ab 37.62 ab 49.74 a 35.82 ab

December 2018 23.42 B 15.71 b 26.76 ab 25.18 ab 29.00 a 20.83 ab 22.93 ab
February 2019 20.90 B C 12.96 b 30.94 a 21.76 ab 28.23 ab 14.71 ab 21.77 ab

April 2019 17.58 C 6.32 b 36.49 a 9.55 b 30.50 a 6.97 b 20.90 ab
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Table A1. Cont.

Soil Inorganic N (g kg−1)

Season 2

August 2019 16.30 CD 14.89 ab 16.39 ab 17.28 ab 20.70 a 16.10 ab 11.19 b
September 2019 4.03 F 2.45 b 3.90 b 4.23 b 3.94 b 3.41 b 6.23 a

October 2019 11.54 DE 9.81 a 14.02 a 13.56 a 11.67 a 10.51 a 10.24 a
November 2019 9.25 EF 4.82 c 7.65 bc 8.27 bc 13.63 a 11.69 ab 9.24 abc
December 2019 16.36 CD 9.76 a 21.83 a 17.43 a 19.52 a 9.87 a 18.30 a

Table A2. Displays bivariate correlations for recorded parameters throughout the study.

SOM a TC b TN c C:N
Inorganic

N d MUFN e MUFC f Moisture g

pH −0.326 ** i −0.165 * −0.315 ** 0.299 ** −0.511 ** −0.273 ** −0.171 ** −0.240 **
SOM 0.690 ** 0.764 ** −0.541 ** 0.506 ** 0.081 0.130* 0.294 **

TC 0.740 ** −0.353 ** 0.404 ** −0.034 0.060 0.234 **
TN −0.783 ** 0.532 ** 0.055 0.124 0.410 **
C:N −0.346 ** −0.101 −0.141 −0.268 **

Inorganic N 0.243 ** 0.212 ** 0.613 **
MUFN 0.430 ** 0.313 **
MUFC 0.214 **

a Soil organic matter. b Soil total carbon. c Soil total nitrogen. d Soil inorganic nitrogen. e β-N-
acetylglucosaminidase. f β-1-4-glucosidase. g Soil moisture. i Representing Pearson’s correlation coefficient (r)
significant at p ≤ 0.05 (*) or p ≤ 0.01 (**).
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Abstract: Reinforcing the small water cycle is considered to be a holistic approach to both water
resource and landscape management. In an agricultural landscape, this can be accomplished by
incorporating agricultural conservation practices; their incorporation can reduce surface runoff,
increase infiltration, and increase the water holding capacity of a soil. Some typical agricultural
conservation practices include: conservation tillage, contour farming, residue incorporation, and
reducing field sizes; these efforts aim to keep both water and soil in the landscape. The incorporation
of such practices has been extensively studied over the last 40 years. The Soil and Water Assessment
Tool (SWAT) was used to model two basins in the Czech Republic (one at the farm-scale and a second
at the management-scale) to determine the effects of agriculture conservation practice adoption
at each scale. We found that at the farm-scale, contour farming was the most effective practice at
reinforcing the small water cycle, followed by residue incorporation. At the management-scale,
we found that the widespread incorporation of agricultural conservation practices significantly
reinforced the small water cycle, but the relative scale and spatial distribution of their incorporation
were not reflected in the SWAT scenario analysis. Individual farmers should be incentivized to adopt
agricultural conservation practices, as these practices can have great effects at the farm-scale. At the
management-scale, the spatial distribution of agricultural conservation practice adoption was not
significant in this study, implying that managers should incentivize any adoption of such practices
and that the small water cycle would be reinforced regardless.

Keywords: small water cycle; agricultural conservation practices; BMPs; SWAT

1. Introduction

The small water cycle is the local cycling of water, wherein water should fall as rain in
the same geographic area from which it evapo(transpi)rates. The small water cycle also
greatly emphasizes a reduction in surface runoff generation in a landscape, and the cycle’s
reinforcement is considered to be a holistic approach to managing water resources at the
catchment scale [1–3]. In an agricultural landscape, certain conservation techniques can
greatly improve the water holding capacity of a soil and can, in turn, strongly reinforce the
small water cycle, making an agricultural landscape more resilient in the face of climate
change.

Agricultural conservation practices have been extensively studied over the last 40 years
and have been shown to significantly improve a soil’s infiltration capacity and, conse-
quently, significantly decrease the surface runoff in a landscape [4–8]. The most common
agricultural conservation practices in modern literature include reduced/no-tillage, mulch
cover/crop residues and cover crops, and reduced application of herbicides. The goal
of conservation agriculture is to make soils “self-sustainable” by: maintaining sources of
organic matter above and below the soil’s surface, recycling water and nutrients within the
system, and ensuring that the infiltration rate of a soil is greater than the predicted rainfall
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rate [9]. To maximize the benefits of implementing agricultural conservation practices,
managers must maintain year-round organic matter cover, minimize soil disturbance, and
diversify crop rotations [9–11]. The transition from conventional or reduced tillage to
no-tillage has been shown to reduce surface runoff by upwards of 20% at the plot-scale [12].
A no-tillage management scheme can increase the infiltration capacity of a soil in two ways:
by minimizing soil disruption and by preserving the highest percentage of crop residue
cover. No-tillage has also been shown to reduce soil loss, splash erosion, and surface runoff,
while increasing direct infiltration [10,13,14]. Maintaining adequate plant cover year-round
provides numerous benefits, including improving soil quality, controlling soil erosion, and
increasing soil water availability [15]. Plant cover percentage has a significant, negative
relationship with final runoff rate, indicating that the greater the plant cover percentage,
the lower the expected hourly runoff [16]. While cover crops and crop residues provide
year-round soil coverage, they also provide an even-coverage mulching, which has been
found to be a more successful mulching strategy in real-life scenarios when compared to
artificial mulching with wheat straw, grass clippings, wood chips, etc., [13].

The Intergovernmental Panel on Climate Change (IPCC) predicts that in the face
of future climate change, Central Europe will encounter more frequent, intensive storm
events, which will magnify landscape management issues in the Czech Republic [17]. The
Czech Republic is a highly agricultural country, with nearly 40% of its land area being
arable. Agricultural intensification in the Czech Republic began in the 1970s when the
landscape was publicly managed. Large fields, subsurface tile drainage systems, and
artificially lined and straightened streams were incorporated across the landscape in an
effort to increase crop production [18]. Unfortunately, these practices resulted in increased
soil loss and reduced deep percolation and groundwater recharge. Since privatization in
1991, some small Czech farms have begun incorporating agricultural conservation practices
and IPA (integrated pest management for agriculture) guidelines; however, much of the
Czech agricultural landscape is managed by large agricultural conglomerates driven by
profit [1,18]. By working to reinforce the small water cycle through the incorporation
of agricultural conservation practices, the effects of extreme precipitation events (e.g.,
huge spikes in surface runoff ratios as well as extreme soil loss events) may be mitigated
at the basin-scale, which should incentivize their incorporation to land managers and
farmers [17].

The two basins of interest have been monitored for a number of years. The farm-scale
basin (Nučice) is equipped to monitor localized basin processes, and previous studies have
primarily focused on rainfall–runoff mechanisms and temporarily variable soil proper-
ties [19–23]. Sediment transport and erosion have been extensively studied in Vrchlice
(the basin utilized for management-scale analysis), especially regarding the sediment trap
efficiencies of the nearly 140 reservoirs across the basin [24–27]. The Soil and Water As-
sessment Tool (SWAT) has been previously utilized at both basins to assess the effects of
land use changes on in-basin water balance [26,27], but since the Czech Republic is likely
to remain quite agricultural for the foreseeable future, it is of great interest to assess the
impacts of agricultural conservation practice incorporation at each of these scales. While
sometimes data intensive, hydrologic models are a relatively easy and non-invasive way
to run scenario analyses in a landscape. SWAT is a semi-distributed, semi-physically
based, basin-scale hydrologic model. SWAT divides a basin into smaller elements called
hydrologic response units (HRUs) that are each comprised of the same soil type, slope
class, and land use classification [28–31]. SWAT was selected for this study because of
its flexibility and applicability to agricultural catchments. SWAT makes running scenario
analyses simple, and there is significant precedent for its incorporation of agricultural
conservation practices [32,33].

The purpose of this study is to investigate the following questions: (i) do the incorpo-
ration of agricultural conservation practices impact the small water cycle proportionally
at various scales? (ii) Which practice is most effective at reinforcing the small water cycle
at the farm-scale? (iii) Does the spatial distribution of agricultural conservation practices
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affect their impacts on the small water cycle at the management scale? (iv) What do these
results imply regarding catchment management and incentivizing farmers to adopt these
practices?

2. Materials and Methods

2.1. Study Watersheds

Both study watersheds are located in the Central Bohemia region of the Czech Re-
public (Figure 1). This region is characterized by a humid continental climate and receives
approximately 600 mm of precipitation per year. The rainy season in this region occurs
from May through August, and the driest month is usually February. These two basins
were selected for this study because they are typical of an intensively agricultural Czech
landscape. Nučice is a simply-shaped catchment and represents the farm-scale, containing
three large fields, each with very similar crop rotations and management. Vrchlice repre-
sents the management-scale. It is much larger (~100 km2), with a more diverse landscape,
and its water resources are managed to meet municipal needs. It is valuable to land owners
as well as basin managers to determine the effects of agricultural conservation practice
adoption at each scale.

Figure 1. (a) A map of the Czech Republic. Prague is highlighted for reference as well as the outlet
locations of the two study watersheds, Nučice (b) and Vrchlice (c).

The Nučice experimental catchment (“Nučice”) has been monitored since 2011 by the
Landscape Water Conservation Department (in the faculty of Civil Engineering) of Czech
Technical University in Prague. It is a small watershed (~0.52 km2) consisting of three fields
that are managed by two farmers and is appropriate for modeling at the “farm-scale” in
the Czech Republic. Its outlet is located at 49◦57′49.230′ ′ N, 14◦52′13.242” E (Figure 1b).
The soils in Nučice are classified mainly as Luvisols and Cambisols overlaying siltstone
and sandstone. The average slope in Nučice is 3.9% but ranges from 1 to 12%. Nučice is
primarily cropland, with a very narrow riparian/brush zone around the stream; the basin
is bisected horizontally by a 2-lane road (Table 1).
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Table 1. Land use percent cover over the experimental basins.

Land Use Nučice Vrchlice

Impervious 2 3
Brush 2 4
Forest - 25

Grassland - 8
Cropland 95 54

Water 1 2
Gardens - 4

The Vrchlice Basin (“Vrchlice”) is much larger than Nučice, at ~97 km2 (Figure 1c).
Vrchlice also has a more diverse land use, with large areas of forested land as well as
many townships (Table 1), but it is still primarily cropland. The Vrchlice Reservoir provides
drinking water to the nearby town of Kutná Hora, serving approximately 40,000 inhabitants.
Its outlet is located at 49◦55′37.211” N, 15◦13′37.07” E. The basin is covered in clayey
soils classified as Cambisols overlaying a metamorphic bedrock [24]. Vrchlice contains a
network of nearly 140 reservoirs, mostly small fish ponds, that serve cultural and hydrologic
significance. The discharge at the outlet of the Vrchlice Reservoir has been monitored by
the Elbe River Authority since 1979. The Vrchlice Basin is considered to be an appropriate
size for modeling at the “management-scale” in the Czech Republic.

2.2. Soil and Water Assessment Tool (SWAT)

SWAT requires the following as its bare minimum regarding data requirements: soils,
slopes, land uses, and daily weather data. The input data used for each of the models
present in this study are outlined in Table 2.

Table 2. Input variables and their sources used for Soil and Water Assessment Tool (SWAT) modeling.

Input Data Basin Description Source

Meteorological
Data

Extreme Daily
Temperatures

Nučice 2011–2019
On-site:

107 Temperature Probe (Campbell Sci.,
Logan, UT, USA)

Vrchlice 1996–2019 Czech Hydrometeorological Institute

Precipitation
(Total Daily)

Nučice 2011–2019 On-site: MR3-01s Tipping Bucket
(Meteo Servis, Vodnany, Czech Republic)

Vrchlice 1996–2019 Czech Hydrometeorological Institute

Spatial Data

DEM
Nučice 3 m resolution LiDAR Survey: Czech Institute of Geodesy

and Cartography

Vrchlice 5 m resolution LiDAR Survey: Czech Institute of Geodesy
and Cartography

Soils
Nučice 1:5000 soil map State Land Office of the Czech Republic

Vrchlice 1:5000 soil map
Czech Research Institute of Soil

Conservation & the State Land Office of the
Czech Republic

Land Use
Nučice Digitized from detailed

orthophoto UAV Survey: Czech Technical University

Vrchlice 1:10,000 land use map
ZABAGED (Fundamental Base of

Geographic Data of the Czech Republic) &
LPIS (Land Parcel Identification System)

The daily meteorological data for the Nučice SWAT model was obtained from on-site
gauges (Table 2). The climate data for this model was obtained from the Climate Forecast
System Reanalysis (CFSR) database; these data are used in case there are any gaps in the
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observed weather dataset. The digital elevation model (DEM) was obtained from the fifth
generation of the digital relief model of the Czech Republic (DMR5G) and was point-cloud
processed to obtain a 3 m spatial resolution. The SWAT model for Nučice was developed
using the field boundary method [34]. In the field boundary method scheme, each field is
defined as its own HRU by aggregating the primary soil type and elevation class for each
field. This method was selected in order to incorporate reduced field sizes at the farm-scale
and was accomplished through the use of soil dummy variables. The SWAT model for
Nučice was run during the growing seasons (~April through October) from 2014 through
2019, using 2013 as a warmup period. Calibration and validation procedures followed
those outlined in Noreika et al. 2020 [26].

The Vrchlice SWAT model was developed originally for Noreika et al. 2021 to study
the effects of land use and management changes over time in the basin [27]. The model
itself has not been edited further. This model was run at the monthly timestep from 2001
through 2019 with a 5-year warmup period (1996–2000). The monthly timestep was chosen
to minimize daily effects due to reservoir processes that are not publicly available and
therefore unable to be represented in SWAT. The model was calibrated (2001–2012) and
validated (2013–2016) at the monthly timestep with discharge data from the basin’s outlet.
The basin boundaries and stream network were largely DEM-based, but ground-truthed to
existing data. Vrchlice was divided into 63 sub-basins, containing 1058 HRUs that were
defined by their unique combinations of land use, slope class, and soil type. For further
detail, parameterization, and intricacies of the model setup, please refer to Noreika et al.
2021 [27].

2.3. Scenario Analysis
2.3.1. Literature Review

Contour farming results in a reduction of surface runoff by impounding water in small
depressions, as well as a reduction of sheet and rill erosion by reducing the erosive power
of surface runoff and preventing or minimizing the development of rills. This practice
is represented by adjusting the Soil Conservation Service (SCS) curve number in SWAT.
Residues are meant to slow down surface and peak runoff by increasing surface roughness.
They also increase infiltration and reduce surface runoff by decreasing surface sealing and
slowing down overland flow. Finally, residues reduce sheet and rill erosion by reducing
surface flow volume. In SWAT, there is significant literature precedent to incorporate
these practices; conservation tillage and residue management are typically represented
by adjusting the curve number and Manning’s roughness coefficient for overland flow,
respectively. In order to incorporate these practices appropriately, a literature review
was conducted using the following keywords: SWAT, best management practice, and
conservation agriculture [35–67]. A total of 33 articles were downloaded and narrowed
down to 25 based on relevance. The 25 remaining papers addressed the incorporation
of conservation tillage operations, contour farming, and residue management into SWAT
(Figure 2). Of the 25, 12 took place in the Midwest (of US and Canada), 1 in Texas, 6 in
Europe, 1 in Africa, and 6 in Asia. Overwhelmingly, 17 of the 25 papers referenced Arabi
et al. 2008 and Neitsch et al. 2011 publications [32,33], meaning that conservation practices
were incorporated via the curve number (CN) method. Three publications introduced
tillage operation changes and no CN edits (TO). Two introduced tillage operation changes
along with the CN edits (CN + TO). Two modified the CN by a percent change, and two
did not specify (NS) how the practices were incorporated into SWAT. We then conducted a
scenario analysis at the Nučice basin to determine whether it is necessary to incorporate
both CN shifts and tillage operation changes. We found no significant differences between
water balance variable outputs (discharge at the basin’s outlet, subsurface lateral flow,
surface runoff, evapotranspiration, and soil water content, p > 0.05) when only the CN
method was utilized versus shifting both the CN and the tillage practices. We concluded
that the CN method is appropriate to incorporate agricultural conservation practices and is
also more efficient in the modeling process.
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Figure 2. Literature review results of 25 articles outlining the incorporation of agricultural conserva-
tion practices into SWAT.

2.3.2. Scenarios Outlined

Five scenarios were run at the farm-scale for this study (Table 3). These scenarios
incorporate contour farming, small residues (0.5–1 t/ha), large residues (1–9 t/ha), con-
servative tillage, and field size reductions at Nučice. To incorporate field size reductions,
instead of three fields averaging 17 ha each, Nučice was divided into 52 fields averaging
1 ha each through the use of dummy soil variables. The other scenarios were incorporated
as presented in Table 4.

Table 3. Outline of scenarios implemented in the Nučice and Vrchlice Basins.

Scale Practice

Farm-Scale:
Nučice

Conventional Tillage (Conv)
Conservation Tillage * (Cons)

Contour Farming (Cont)
Small Residues (Res1)
Large Residues (Res2)

Field Reductions (SmFld)

Management-Scale:
Vrchlice

Conventional Tillage *
Full Adoption

Lower Adoption
Lower Extended
Middle Adoption
Upper Adoption
Upper Extended

Random Adoption
* denotes the original calibrated model for each

In Vrchlice, only the “General Measures” agricultural conservation scenario was
adopted (Table 4) at various scales across the basin (Table 3, Figure 3). The “General
Measures” outlined in Table 4 are considered to be “best case scenarios” to represent
conditions if the practices were incorporated properly and if the landscape responds as
expected, but it is likely that any real-world result would fall somewhere between the
calibrated model without any conservation practices and the “General Measures” scenarios.
Vrchlice was divided into three regions based on location in the basin and percent area
cropland (Figure 3). Each area (Upper, Middle, Lower, Random) comprises approximately
1/3 of the cropland cover in the Vrchlice Basin. Additionally, the Upper Extended and
Lower Extended scenarios encompass the Upper + Middle and Lower + Middle areas,
respectively, to encompass approximately 2/3 of the cropland cover in the Vrchlice Basin.
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A requirement for the Random scenario is that no selected sub-basins should be adjacent.
The Random scenario controls for the effects of connectivity of agricultural conservation
practices to determine if individual farm adoption is “enough” or if regional adoption is
necessary to more greatly reinforce the small water cycle. These scenarios were outlined
so that the individual impacts of agricultural conservation practice continuity and spatial
adoption within the basin could be evaluated.

Table 4. Agricultural conservation measures applied to the Nučice Basin and how they are parameter-
ized in SWAT. The Soil Conservation Service (SCS) Curve Number (CN) and Manning’s Roughness
values represent a relative change from the respective calibrated model [32,33].

Scenario CN USLE P
Manning’s
Roughness

Conventional Tillage * +2 - -
Contour Farming −1 0.5 -

Small Residues - - +0.07
Large Residues - - +0.15

General Measures † −3 0.5 +0.15
* Conventional tillage is present because the Nučice model was calibrated based on conservation tillage, and this
is how the effects of conservation tillage will be compared to conventional tillage. † These general measures are
applied to the Vrchlice scenarios at various levels of incorporation across the basin.

Figure 3. A map of the Vrchlice Basin, color coded to represent the various scenarios analyzed.

3. Results

According to the global sensitivity analysis that was conducted, three parameters
significantly influenced the modeled discharge flowing out of the Nučice experimental basin
(Table 5). RCHRG_DP is the deep aquifer percolation fraction; this value should fall between
0 and 1 as it is the fraction of percolation past the root zone which recharges the deep aquifer.
Since this value is very close to 0, this indicates that a very small fraction of water entering
the Nučice Basin recharges the deep aquifer. Saturated hydraulic conductivity (SOL_K)
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and the available water capacity of the soil (SOL_AWC) govern how water is infiltrated
and retained in a soil, respectively, were also significantly sensitive parameters.

Table 5. Sensitive parameters and their calibrated (adjusted) values.

Parameter Method
Calibration Values

Minimum Adjusted Maximum

RCHRG_DP V 0.001 0.001 0.999
SOL_K R −0.5 −0.11 0.5

SOL_AWC R −0.90 0.88 0.90
V: replace, A: absolute, and R: relative.

Calibration (2016–2018) and validation (2019) for the Nučice basin were conducted
with SWAT-Cup 2019, which is a semiautomatic calibration methodology [28]. Table 6
presents the selected model performance indicators during the calibration and validation
periods for the Nučice SWAT model. Figure 4 presents a scatterplot, correlating the modeled
discharge values with the observed discharge values at Nučice during the calibration and
validation periods.

Table 6. Model performance indicators for the calibration and validation periods of the Nučice SWAT
model.

Calibration Performance Indicator Validation

0.76 p-factor 0.80
0.46 r-factor 0.21
0.77 R2 0.52
0.77 NSE 0.48
6.9 PBIAS 12.1

0.80 KGE 0.64

Figure 4. Correlation of modeled and observed discharge values at Nučice’s outlet during the
calibration and validation periods; a 1:1 line is included for reference.
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There were significant shifts across water balance parameters with the incorporation
of agricultural conservation practices at the Nučice scale (Figure 5). The incorporation
of residues and contour farming reinforced all of the small water balance parameters
when compared to the calibrated scenario, which included generalized conservation
tillage. Resorting to conventional tillage from conservation tillage was consistently
contradictory to the goal of reinforcing the small water cycle. Field size reductions
resulted in the highest amount of streamflow contribution from subsurface lateral flow,
but the model indicated that otherwise the adoption of smaller fields does not reinforce
the small water cycle.

 

Figure 5. A ranking of each scenario (in the Nučice basin) according to its reinforcement of specific
small water cycle parameters. All values are significantly different from the calibrated scenario
(parameters in red, bold) unless indicated by *. † indicates a significant difference between Res1 and
Res2.

All small water cycle parameters, except for discharge at Vrchlice’s outlet, were sig-
nificantly affected by the incorporation of agricultural conservation practices across the
basin. Interestingly enough, neither the scale of adoption nor the spatial distribution of
agricultural conservation practices significantly affected any small water cycle parame-
ters at this scale; further figures presented compare only Vrchlice’s conventional tillage
(calibrated model) and the full adoption scenario. Both the available water content and
evapotranspiration in the conventional tillage scenario are consistently lower than the full
conservation adoption across the entire year (Figures 6 and 7). Both the surface runoff
ratios and subsurface lateral flow were significantly higher throughout the year in the con-
ventional tillage scenario when compared to the General Measures full adoption scenario
(Figures 8 and 9). Generally surface runoff in the conventional tillage scenario is greater
than 2× that of the conservation scenario (Figure 9).
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Figure 6. Average monthly evapotranspiration rates (mm) across the modeled time period in Vrchlice.

Figure 7. Average soil water content (mm) by month across the modeled time period in Vrchlice.

Figure 8. Average monthly percentage subsurface lateral flow contribution to streamflow across the
modeling period in Vrchlice.
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Figure 9. Surface runoff ratios between full agricultural conservation practice adoption and the
default conventional tillage scenario. The histogram bars represent the cumulative probability that a
value falls at or below the respective ratio.

4. Discussion

4.1. Hydrological Modeling with SWAT

There are several possible sources of error in any hydrologic model; the first is input
parameter uncertainty, which is the largest possible source of error and also influences
uncertainties associated with output data. Model parameterization and model structural
uncertainties are additional possible sources of error [62,68]. Furthermore, since SWAT is
neither fully physically based nor fully distributed, some processes may not be properly
represented, such as temporal changes in topsoil hydraulic properties, preferential flow, or
the influences of the spatial distribution of fine-scale land management [28,69,70]. While
there are some drawbacks to the SWAT model (as stated above), it is a very useful tool
for hydrologic modeling, especially regarding scenario analysis. Currently, Nučice is
equipped to model generalized processes rather than more spatially distributed processes
(piezometer clusters and a cosmic-ray neutron sensor are currently being installed). The soil
data at this scale is fairly coarse and is nearing the lower spatial range of SWAT’s modeling
capabilities, but SWAT was still able to model Nučice effectively with “good” or “very
good” performance across the selected indicators [71–73]. The uncertainties associated with
the Vrchlice model primarily include generalized reservoir processes and crop rotations [27].
Vrchlice was able to be effectively modeled at the monthly timescale, also with “good” and
“very good” performance indicators [71–73]. While SWAT was able to model significant
shifts in water balance parameters with the incorporation of agricultural conservation
practices in Vrchlice, it was unable to represent significant differences at varying scales and
distributions of incorporation across Vrchlice. This could be due to the fact that Vrchlice,
while primarily cropland, contains significant areas of forested areas and riparian zones,
which may disguise the effects of agricultural conservation adoption. Additionally, since
Vrchlice is of significant size and SWAT is not fully distributed, the effects of the scale of
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agricultural conservation practice adoption may be aggregated across the basin, leading to
insignificant changes across the agricultural conservation practice adoption scenarios.

4.2. The Small Water Cycle at the Farm-Scale

At the farm-scale, SWAT was able to model significant differences in water balance
parameters across agricultural conservation practice scenarios. According to SWAT, residue
incorporation and contour farming were the most effective at reinforcing the small water
cycle and should be prioritized by farmers to aid the holistic management of their land
in the face of future climate change [17]. Although it was not in the scope of this study
to investigate the effects of crop changes in addition to the incorporation of agricultural
conservation practices, the previous SWAT study of the Nučice basin indicated that crop
changes also have significant impacts on the small water cycle [26]. For instance, winter
wheat reinforces the small water cycle to a greater degree than rapeseed in the Czech
landscape. The incorporation of contour farming and crop residues may be able to mitigate
water balance issues that arise from less-sustainable crop choices, and the interaction should
be studied further.

SWAT was not able to effectively model the impacts of incorporating smaller field
sizes at Nučice. This may be due to several factors: SWAT is not fully distributed and
cannot model the spatial effects influenced by smaller field incorporation, crop changes
were not incorporated across the smaller fields, and SWAT does not model true border
effects between fields. To replicate this in future studies, a trap efficiency would need to be
applied to each HRU to simulate flow disruption between fields. The field boundary HRU
method may be more useful to identify “hotspot” fields that may be susceptible to erosive
events due to their slopes, crops, and soil types [28,30,34,69,70].

4.3. The Small Water Cycle at the Management-Scale

The adoption of agricultural conservation practices in at least 33% of the cropland
across Vrchlice had significant effects on the small water cycle within the basin. Neither the
distribution nor the scale of adoption (anything above 33%) significantly affected the small
water cycle variables at Vrchlice any further. While Vrchlice is a very agricultural basin
(>50% cropland), there are also very large forested and riparian areas that may mask the
effects of various intensities of agricultural conservation practice adoption. It may also be
due to SWAT’s model structure, being semi-distributed and semi-physically based, that
some effects at this scale may be lost due to HRU aggregation or generalizations due to
using the curve number method [34,74,75]. While SWAT models significant impacts on the
small water cycle due to the adoption of agricultural conservation practices, SWAT cannot
represent realistic effects when additional spatial distribution and connectivity scenarios
are introduced; a fully distributed model would be necessary for this purpose. However,
SWAT was able to model general trends and could represent significant differences between
conventional agricultural practices and full conservation adoption.

When compared to the effects of land use changes at Vrchlice [27], average soil water
content and subsurface lateral flow shifts fell in similar ranges to that of agricultural con-
servation practice incorporation scenarios. However, the modeled adoption of agricultural
conservation practices reduced the proportion of surface runoff at the management scale by
up to 30×, which greatly outweighs the effects of the land use change scenarios previously
modeled [27]. These findings indicate that, at the management-scale, the incorporation of
agricultural conservation practices can have similar effects to land use changes on the small
water cycle and can greatly reduce the overall proportion of surface runoff contribution to
streamflow.

4.4. Implications for Agricultural Conservation Practice Incorporation in the Czech Republic

The incorporation of agricultural conservation practices tend to reinforce the small
water cycle regardless of scale of incorporation. These effects are more obvious at the
farm-scale than at the management-scale, which should motivate individual farmers to
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adopt such practices. At the management-scale, the effects of agricultural conservation
practices were still significant but the scale and the spatial distribution of adoption were not.
This implies that managers should incentivize any willing famers/conglomerates within
their management area to adopt such practices. In addition to agricultural conservation
practices, other land and crop management factors can also have significant effects on
the small water cycle and their interactions should be studied further [26,27]. While soil
erosion and sediment transport were not explored in this study, agricultural conservation
practices have also been shown to have positive effects concerning these issues and can
lead to increased soil conservation [14–16,76,77].

5. Conclusions

This study reinforces SWAT’s applicability to the Czech landscape at both the farm-
and management-scales. SWAT is very effective in its ability to model various management,
land use, and crop change scenarios. While likely exaggerated by the scale, agricultural
conservation practice adoption at the farm-scale has significant effects on the small water
cycle. The most effective practice modeled at this scale was the incorporation of contour
farming. The effects of small field incorporation at the farm-scale tended to have signif-
icantly negative impacts on the small water cycle, but this result is likely an artifact due
to the HRU processing in SWAT. At the management-scale in the Czech Republic, any
degree of incorporation of agricultural conservation practices makes significant impacts
on the small water cycle, according to the Vrchlice SWAT model. SWAT was able to model
that the incorporation of agricultural conservation practices in a primarily agricultural
landscape can have significant effects on the small water cycle, especially regarding surface
runoff ratios. While SWAT is not fully distributed and real-world effects would likely vary,
this study indicates that managers should encourage agricultural conservation practices,
regardless of scale or spatial distribution. As this study only focuses on the effects of
agricultural conservation practices on the small water cycle, further studies should be
conducted to model their effects on erosion as well as the interactions between agricultural
conservation practices and land use/management changes in the Czech landscape.
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Abstract: Shallow slope failures due to erosion are common occurrences along roadways. The use of
deep-rooted vegetative covers is a potential solution to stabilize newly constructed slopes or repair
shallow landslides. This study compared species that may provide slope stabilization for sites in
the Piedmont region of the southeastern USA. Six species were tested on experimental plots under
natural rainfall conditions, and vegetation health and establishment were monitored. Two methods
were used to measure surface erosion, measurement of total suspended solids in collected runoff
and erosion pins. While measurement uncertainty was high for both methods, differences were
evident between species in the spatial distribution of surface erosion that was related to the quality of
vegetation establishment. For three species that established well, soil cores were collected to measure
root biomass at depths up to 40 cm. Vetiver grass (Vetiveria zizaniodies) had substantially higher mean
root biomass (3.75 kg/m3) than juniper shrubs (Juniperus chinensis; 0.45 kg/m3) and fescue grass
(Lolium arundinaceum; 1.28 kg/m3), with the most pronounced difference in the deepest soil layers.
Seeding with turf grass such as fescue is a common practice for erosion control in the region but
replacing this with vetiver on steep slopes may help prevent shallow landslides due to the additional
root reinforcement. Additional work is needed to measure the magnitude of the strength gain.

Keywords: erosion; vegetative covers; root biomass; erosion pins; vetiver grass

1. Introduction

Shallow slope failures due to erosion are common occurrences along roadway slopes
in regions where high intensity rainfall is prevalent [1,2]. These instabilities are usually
relatively small in size, but the consequences can cause major economic and social dis-
ruption [3,4]. Sediment from erosion can also have significant environmental impacts [5].
Many factors can impact roadside erosion, such as rainfall characteristics, slope gradient,
rutting caused by lawn maintenance equipment, roadside construction, soil type, and the
presence and type of vegetation [6].

The establishment of vegetation on newly constructed slopes can prevent erosion and
increase slope stability [2,7–10]. Well-developed aboveground vegetation prevents surface
erosion by intercepting rainfall and wind, increasing surface roughness, binding loose soil
particles, and creating a physical barrier to sediment movement [11–14]. There is a non-
linear relationship between precipitation and sediment yield, with precipitation driving
erosion while also increasing vegetation growth up to the point where vegetation is no
longer water-limited [15]. Plant root systems provide belowground support and can prevent
shallow slope failures by increasing soil strength through reinforcement [16–19]. Roots are
strong in resisting tension forces while soil is strong in resisting compression forces [20],
so root-permeated soil creates a mixed material that can withstand both forces [21]. Roots
perpendicular to the soil surface reinforce the soil mass on the sheared surface while roots
growing parallel increase in-plane tensile strength [22,23]. Additionally, plants remove
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water from the soil through transpiration, which prevents slope failures by reducing the
unit weight of the soil and increasing apparent cohesion from matric suction [3,24–26].

Plant species and functional types differ in the traits that determine their suitability
for use in vegetative covers on steep slopes. Recent reviews of vegetation traits and their
effects on slope stability have been published by [8] and [10]. Rapid growth after planting
and abundant, evenly distributed aboveground biomass are key to preventing surface
erosion [6,27]. Generally, herbaceous vegetation performs better than woody species during
the establishment phase [28]. Some vegetation types have specific characteristics, such as
grasses that can grow in hedgerows [29,30] and ferns that form rhizome mats [31], which
make them particularly effective in binding soil and forming physical barriers to erosion.
High root length density [32] and fine-root content [33] are important to soil strength, and
these are typically associated with herbaceous vegetation. However, woody vegetation
tends to have deeper roots to prevent slope failures [18], though deep rooted grass species
do exist [34,35]. These traits must be weighed against practical concerns, such as suitability
for local conditions, ease of planting, and maintenance requirements [6,27,36–38].

In the southeastern USA., turf grasses grown from seed are the most common vege-
tative erosion control [6]. These perform well on relatively flat terrain, where deep root
structure is not needed for stabilization [39]. However, turf grasses require mowing. On
steeper terrain, mowing can cause ruts that increase erosion (Figure 1) and may expand
into shallow slope failures during rain events [4]. There is interest among transportation
management agencies in finding alternatives to turf grass that would provide deeper soil
stabilization while still establishing quickly and preventing surface erosion. The goal of
this study is to evaluate the field performance of several candidate species in experimental
plots in the Piedmont region of Alabama. This area is especially prone to shallow slope
failures and erosion along slopes due to mowing activities [4,5] (Figure 1a).

 
(a) (b) 

Figure 1. Eroded slopes along (a) US-280 near Waverly, Alabama (photo from Google StreetView) and
(b) Alabama Highway 69 near Tuscaloosa, Alabama (photo provided by Jacob Hodnett, ALDOT).

Previous experimental plot studies of erosion and slope stability have found sub-
stantial differences between vegetation types. In a study of very steep (42.5◦) slopes in
central China, a mix of grass and shrubs reduced runoff and surface erosion, and had
deeper roots than grass alone [2]. Plots with any type of planted vegetation performed
better than those that were allowed to revegetate naturally. Studies in a semi-arid region
of Spain found differences in erosion rate between species that were mainly driven by
quality of establishment [40,41]. A previous study in the southeastern USA found a plot
planted with a mix of native grass seed had a lower sediment yield than an exotic seed
mix [42], though the difference was not statistically significant. A study by [43] exam-
ined combining biochemical surface treatments with vegetation and found that using

132



Land 2022, 11, 1739

seeded biochemical treatments on slopes was effective for both short- and long-term sta-
bilization against erosion. Recent work by [44] highlighted the potential for vetiver grass
to support resilient transportation systems by mitigating slope failures and improving
stormwater quality, but this study also highlighted the relative lack of use of vetiver in the
United States.

To determine the efficacy of a species for slope stabilization, both prevention of surface
erosion and stabilization of deeper soil layers must be assessed. Previous studies have
measured sediment yield by collecting runoff and measuring total suspended solids (TSS)
in the collected runoff [2,42]. While this method is well-established, constructing runoff
collection infrastructure is costly and adequate replication for statistical analysis is difficult
to achieve. The method is also prone to missing data [42], especially during periods of
high intensity rainfall when most erosion occurs. Methods that directly measure changes
in the elevation of the vegetated surface are an alternative that have the advantage of
characterizing spatial patterns in surface erosion. Some techniques that are common for
bare soil surfaces, such as total station surveys and lidar scanning, do not work well on
vegetated surfaces [45,46]. Erosion pins offer a simple, low-cost alternative that provides
point-based measurements of erosion or deposition through a manual measurement of
surface height relative to the fixed reference point of the pin head. In this study, both runoff
collection and erosion pins are used to assess surface erosion. For deeper soil stabilization,
the measurement of root biomass and morphological characteristics in soil core samples is
an accepted and established method [2,47].

This study has the following objectives:

• Select vegetation types that may provide erosion control and slope stabilization for
priority sites and compare them to the current management practice of planting turf
grass from seed.

• Determine which species establish and grow well on moderately steep roadside slopes
in the Piedmont region of the southeastern USA using experimental plots. This
includes vetiver grass, which has not previously been used in this region.

• Compare surface erosion rates from the experimental plots based on whole-plot sedi-
ment yield determined from runoff collection and point-based erosion or deposition
measured with erosion pins.

• Estimate the contribution of each species to increased slope stability by measuring
root biomass and diameter distribution in soil cores collected from the
experimental plots.

This study addresses processes on small (<50 m) constructed slopes in humid environ-
ments over short time scales (<2 years) post-construction. Recent research on vegetation-
sediment interaction has emphasized the importance of orographic effects on precipitation
that occur over large elevation gradients [48] and ecogeomorphic coevolution of landforms
that occurs over centennial scales in arid and semi-arid environments [49], and these are
outside the scope of the current research. Based on erosion control strategies that were
successful in previous studies [40,41], we focus on planted vegetation rather than allowing
for vegetation to establish naturally after disturbance. Therefore, the variation in species
prevalence associated with slope, aspect, soil type, and other factors is not considered.

2. Materials and Methods

The materials and methods for this study are summarized in the flow chart shown
in Figure 2.
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Figure 2. Flow chart illustrating the materials and methods for this study.

2.1. Study Site

This study focuses on the Piedmont region of the southeastern USA, and particularly
the state of Alabama. Shallow slope failures and erosion on highway cut slopes are a
common occurrence in this region due to the prevalence of high-intensity rainfall [50] and
hilly terrain. The Piedmont region is one of the fastest growing areas of the United States
in terms of population and land-use change [51] and there is a need to identify sustainable
solutions to managing soil erosion in this region. This area has a humid subtropical climate
with mean annual rainfall of 132 cm and mean annual temperature of 17.9 ◦C. Most rainfall
occurs as localized convective thunderstorms occurring in the summer and as widespread
frontal precipitation, including tropical storms that occur in the fall through spring. Class
A annual pan evaporation is 122 cm [52]. While vegetation growth is generally not water-
limited, droughts do occur, particularly in the fall.

The experimental plots were established on a roadside slope along the National Center
for Asphalt Technology (NCAT) Test Track in Opelika, AL, USA (32.595390◦, −85.296363◦).
The plots have a 25–30◦ slope. Particle size analysis of study area soil was performed with
the Integral Suspension Pressure method [53] using a Pario device (Meter Environment,
Pullman, WA). The surface soil layer (0–25 cm) is clay loam (29% sand, 40% silt and 31%
clay) and deeper layers (>25 cm) are silt loam (23% sand, 65% silt and 12% clay). The plots
are on a north-facing slope, so conditions are slightly cooler with less radiation than the
local average. Daily precipitation data were collected onsite by NCAT using an automated
weather station.

2.2. Experimental Plot Design

The experimental plot design was based on [2] and [42]. The plots were prepared,
built and planted in May 2020. Existing vegetation was treated with Round-Up herbi-
cide (Bayer, Germany) and removed with a small excavator. Each plot consisted of a
1.5 m × 3 m wooden frame built from pressure-treated lumber (Figure 3). The outlet of each
plot was tapered to a 45 cm exit to create a total surface area of 5.23 m2. The four corners
of all the frames had rebar installed to keep the plots stable on the slope and maintain the
shape of the 45 cm outlet. The planks at the end of all the frames were wrapped with plastic
sheeting and the ground between them had sheeting shingled under the earth to create a
smooth path. A trench was dug 2 m above the frames, creating a berm directly above the
plot to divert water coming from the slope above the plots. An erosion fence was erected at
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the top of the frames and below the berm to prevent sediment movement from the slope
above the plots.

 
(a) (b) 

Figure 3. Completed experimental plot after installation and planting with plots 1–5 shown left to
right (a) and plot dimensions (b).

2.3. Vegetation Planting and Maintenance

Prior to planting, the area was tilled with a mechanical rototiller. Vegetation and seeds
were planted according to the providers’ instructions. Seeding straw was spread over plots
where plants were grown from seed and in bare areas of plots with potted plants. Plots
were watered regularly for three weeks after planting. Six vegetation types were selected
for testing based on previous literature on vegetative covers for erosion control:

• Grass Control: One plot was planted with turf grass typical of what would be used for
erosion control under current management practices in Alabama [6]. The Kentucky-31
cultivar of fescue grass (Lolium arundinaceum) was planted from seed. This plot was
used to compare the other species with the status quo.

• Deep-rooted Grass: Vetiver grass (Vetiveria zizaniodies) is a deep-rooted grass na-
tive to southeast Asia that has been used for decades to improve slope stability,
improve streambank establishment, and decrease sediment run-off in agricultural
areas [44,54–56]. The grass is planted as a slip rather than as a seed and is generally
sold sterile so it will not flower and be invasive to the surrounding native flora [30].
Slips were planted in four hedgerows parallel to the slope.

• Woody Shrub: Juniper is a deep-rooted, drought tolerant woody shrub that grows
well on steep slopes [56]. It was grown from potted plants. Either Juniperus chinensis
or Juniperus horizontalis was planted based on availability. The two species have
similar characteristics.

• Perennial Legume: Hairy vetch (Vivica villosa) is a winter-active legume species used
for erosion control and as an agricultural cover crop due to its ability to fix atmospheric
nitrogen. It has a fast above- and belowground growth rate and high transpiration
rate [57]. Hairy vetch grows best when planted in the fall so it can be beneficial for
fall/winter construction projects when other species are typically dormant [56]. It was
planted from seed in this study.

• Fern: Ferns are useful in erosion control practices as they create dense, long-lasting
ground cover and naturally grow in disturbed areas with low nutrient and moisture
access [58]. Maidenhair fern (Adiantum pedatum) is native to the southeast and is able
to grow on near-vertical faces [31]. They were planted from potted plants.

• Native Prairie Grass: Native species are generally preferred in landscaping because
they are adapted to local conditions and can enhance native biodiversity [59–61].
Unlike non-native deep-rooted grasses, they can be grown from seed. Switchgrass
(Panicum virgatum), which has a deep and fibrous root system and is climatically
adapted throughout the USA [27], was planted from seed.
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Initially, each species, except switchgrass, was planted in one randomly assigned plot.
There were problems with the establishment of maidenhair fern and hairy vetch. One was
replaced with switchgrass and the other with a mix of juniper and fescue grass after the
first year of the study. The species used and planting dates are summarized in Table 1. The
vetiver grass was trimmed from a height of 2 m to a height of 1 m in April 2021. Weeds
were a persistent problem. A broad-spectrum herbicide (Spectracide, United Industries, St.
Louis, MO, USA) was applied and weeds were manually removed from all plots in July
2020 and late June and early July of 2021.

Table 1. Species planting dates in experimental plots. Plot numbers are described in Figure 3.

Species Plot Planting Date Termination Date

Juniper 1 1 May 2020 August 2022
Vetiver 2 May 2020 August 2022
Fescue 3 May 2020 August 2022

Maidenhair Fern 4 May 2020 July 2021
Hairy Vetch 5 May 2020 April 2021

Juniper 2 and Fescue 4 July 2021 August 2022
Switchgrass 5 April 2021 August 2022

1 Juniperus chinensi; 2 Juniperus horizontalis.

2.4. Runoff and Erosion

Two methods were used to estimate erosion: runoff collection with TSS measurements
and erosion pins. The runoff collection method was applied from June 2020 to March
2021, and erosion pins were applied from August 2021 to April 2022. Previous studies
have traditionally only used one of these methods [2,16,62], but we found them to be
complimentary to obtain both the spatial distribution of erosion and deposition and the
total settlement yield.

2.4.1. Runoff Collection with TSS

A hole was dug at the base of each plot, and a 68-L plastic bin was placed in the hole.
The bins were positioned with the plastic sheeting at the base of each plot flowing into the
bins. Bins were partially covered with lids to minimize water loss due to evaporation. In
each bin, a U20L HOBO water level logger (Onset, Bourne, MA, USA) was suspended from
the lid with wire and submerged in water. The loggers were deployed on October 7 2020
and were set to record pressure and temperature every 15 minutes. Prior to this date, water
depths were measured manually once per week. An additional logger was placed outside
of the bins to record atmospheric pressure. Measured pressures were converted to change
in water level at 15-min intervals using software HOBOware V3.7 analysis software (Onset,
Bourne, MA, USA). Change in water level was converted to change in volume using the
dimensions of the bin.

Once per week, a well-mixed sample of water from each bin was collected. TSS in
each sample was measured by filtration following US Environmental Protection Agency
method 160.2 [63]. After sampling, the bins were emptied and cleaned and filled with a
known volume of clean water such that the water was above the measurement threshold of
the water level logger. Assuming TSS of the clean water is negligible, sediment yield (SY)
in g for each one-week collection period was determined by multiplying the measured TSS
(g/L) by the total volume in the bin (L) at the end of the week. The volume was divided by
the surface area of the plot (5.23 m2) to give runoff depth (mm, after unit conversion).

2.4.2. Erosion Pins

Erosion pins estimate erosion and deposition at point locations by indicating the
change in height of the land surface relative to a fixed reference [64]. EasyFlex 8-inch
(20 cm) nylon anchoring spikes (Dimex, Marietta, OH, USA) were used as erosion pins
and were installed perpendicular to the ground. Three erosion pins were installed in each
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plot on 12 April 2021. Pins were installed 0.3 m inside the left boundary of the plots.
This distance minimizes edge effects while making it possible to measure the pin height
without requiring foot traffic in the plot. The pins were placed 0.6, 1.5, and 2.4 m away
from the upper boundary of the plot. These pins are considered upslope, midslope, and
downslope, respectively, for analysis. After the first erosion pins produced reasonable data,
four additional pins were added to each plot to increase statistical power. Three were added
inside the right boundary of the plot in the same configuration as the previous pins. One
additional upslope pin was added in the middle of the plot 0.3 m from the top boundary.

A ruler with 1 mm gradations was used to measure the visible height of the erosion
pins above the ground. Values that are greater than the baseline value indicate erosion is
occurring at the point, while values less than baseline indicate that deposition is occurring.
The erosion pins were monitored and measured biweekly or after any large rain event from
12 April 2021 to 15 April 2022. Due to soil disturbance from installation of the erosion pins,
data were not collected during a one-month stabilization period after installation [65]. The
first measurement after this period was used as the baseline height for the study. Thus, the
first set of pins was analyzed from 25 May 2021 to 15 April 2022 and the second set of pins
was analyzed from 12 October 2021 to 15 April 2022.

Some studies have suggested that the absolute value of change in erosion pin height is a
better indicator of erosion when multiple pins are considered, because it differentiates plots
with both erosion and deposition [65]. In this study, we are interested in overall sediment
yield from the plots, so actual change in pin height is used for analysis. Linear regression
analysis with either time in days or cumulative rainfall based on daily measurements is the
independent (X) variable and change in erosion pin height is the dependent (Y) variable.
Time and cumulative rainfall are strongly correlated, so they were considered in separate
single-variable regression models rather than a multivariate model. The measurement on
12 October 2021 was used as the baseline because all pins were installed and stabilized
by that date. A statistically significant positive slope indicates erosion is occurring at the
pin location while a negative slope indicates deposition. One-way ANOVA was used
to determine if change in erosion pin height from 12 October 2021 to 15 April 2022 was
significantly different among plots. An unpaired t-test was used to determine if the mean
change in erosion pin height over the same time period was different for upslope and
downslope pins. A significance level of 10% was used for statistical analyses due to the
inherently high variability in erosion data. All statistical analyses were performed in
Microsoft Excel V16.

2.5. Root Biomass Analysis

Samples for root biomass testing were collected from the three plots that were planted
at the beginning of the study and had established well: fescue, vetiver, and juniper. Samples
were collected in February 2022 after nearly two years of growth. Sampling was carried
out when the soil was moist, for best results [66]. A fixed-volume soil core sampler (AMS,
American Falls, ID, USA) was used to collect the samples. Cores were collected with a slide
hammer until the point of resistance, which was reached at 40 cm depth. One upslope and
one downslope sample was collected 0.6 m and 1.8 m from the upper plot boundary.

The soil cores were cut into 5 cm sections to determine the distribution of root biomass
with depth. Due to dry soil near the bottom of the soil profile, the core could not be
sectioned below 30 cm depth, so 30–40 cm depth is analyzed together. Methods from [67]
were used to determine root biomass. The samples were dried at 110 ◦C for 24 h and
weighed before and after drying to determine moisture content. After drying, samples
were soaked in tap water for 30 min to break down soil aggregates. Roots were collected by
washing the samples through a 2 mm (#10) sieve followed by a 600 μm (#30) sieve under
running tap water. The roots collected on the sieves were dried at 60◦C for 24 h. Roots were
weighed after drying to determine dry root biomass in each sample (g) and converted to a
soil root biomass (g/m3) by dividing by the volume of the core section.
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3. Results

3.1. Vegetation Growth and Establishment

After the initial planting, all five of the plant species were able to grow and establish
successfully. However, native weeds and plants in the surrounding area began to encroach
and quickly took over the plots, and weeding was required. After weeding, the two plots
containing the hairy vetch and maidenhair fern were overwhelmed by the disturbance and
showed little new growth. The plots were overtaken by fescue grass from the adjacent plot,
as well as white clover (Trifolium repens) and ground-ivy (Glechoma hederacea). Fescue grass
grew well if it had direct sun. The small amount of shading caused by the silt fence resulted
in poor establishment at the top of the plot. The height of the fence was reduced after the
first year of the study.

During the first year of the study, vetiver and juniper were the most successful at
general establishment. The area surrounding the junipers was overgrown by similar weeds
as the other plots, but this did not impact the growth of the juniper. A mix of juniper and
fescue grass was planted at the start of the second year (Table 1) as a potential strategy
to improve the weed resistance of the area surrounding the juniper. However, weeds
were still an issue. By September 2020, the vetiver was nearly at its full height (2 m) and
the hedgerows developed an almost impenetrable layer that was resistant to weeds. In
November 2020, the vetiver reverted to a dormant stage but remained healthy and regrew
the next year. The switchgrass that was planted in the second year of the study did not
grow well as it was planted off season due to issues with obtaining seeds. Thus, switch-
grass is excluded from further analysis. Juniper, vetiver, and fescue are compared in the
subsequent analyses due to their good establishment and consistent growth throughout the
study (Figure 4).

 

Figure 4. Final condition of the three plots where vegetation established well, photographed in April
2022. Shown from left to right are juniper, vetiver, and fescue.

3.2. Runoff and Erosion
3.2.1. Runoff Collection Method

The time series of runoff for the three plots is shown in Figure 5 for two representative
rainy periods, one during the first year after planting and one almost one year after
planting. The juniper had the lowest runoff volumes while vetiver and fescue had similar
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values during most of each rain event. While subtle differences between plots in slope or
underlying soils cannot be ruled out, this difference was consistent across rain events.

(a) (b) 

Figure 5. Daily precipitation and hourly change in runoff volume from three erosion plots during
rainy periods: (a) six months after planting; and (b) ten months after planting.

Based on the runoff collection and TSS method, the plot with fescue grass had the
highest sediment yield over the first nine months of the study while the plot with the
juniper shrubs had the lowest (Figure 6). The initial spike in sediment yield in June was
collected one month after planting and shows that the grass provided the least amount of
initial surface-soil stabilization. All three species showed similar spikes in sediment during
rain events at the end of November and the end of March.

 

Figure 6. Cumulative sediment yield during the first year of the study measured using the runoff
collection with TSS method.

3.2.2. Erosion Pins

As previously discussed, a single-variable regression model was used to assess changes
in erosion pin height during the study period. The linear regression models with time
and cumulative rainfall as the independent variables produced similar results in terms
of which subsets of the data had the best model performance. However, R2 values were
consistently higher for models with time as the dependent variable, so this is considered for
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analysis. Linear regression between time and erosion pin height showed spatial variability
in erosion and deposition among the species tested. For juniper (Figure 7) the slopes for
upslope, midslope and downslope positions are 0.018, 0.006 and −0.02 respectively. This
indicates erosion from the top pins, almost no erosion at the middle pins, and deposition
at the bottom pins. The juniper showed more growth at the base of the plot, which may
have slowed water flow leading to deposition. For fescue grass (Figure 8), the slopes for
upslope, midslope and downslope positions are 0.011, −0.007 and 0.013, respectively. There
is deposition and erosion evident at the midslope and downslope, respectively. While
the slope was positive for the upslope pins, the high variability in the data for this area
makes it difficult to draw conclusions about the dynamics. For vetiver (Figure 9), the slopes
for upslope, midslope and downslope positions are 0.001, 0.011 and 0.018, respectively.
The vetiver established uniformly across the plot but was not present near the plot outlet
because it was not possible to plant slips in this small area. For a uniform surface, the flow
velocity is expected to be highest at the bottom of the plot because of the accumulation
of rainfall over the plot. This could be why the vetiver shows little to no erosion at the
upslope and midslope and erosion at the downslope. The denser growth of the vetiver may
also change the overland flow patterns and velocities [68], but these flow patterns were not
measured in this study.

Figure 7. Linear regression for the plot with juniper between time in days and erosion pin height
relative to the measurement on 12 October 2021, when all erosion pins were installed and stabilized.
Solid blue lines and markers show the trajectory of measurements for each erosion pin and dashed
red lines show the regression line. Regression slope is given in each plot with * indicating a regression
p-value less than 0.1. Regression lines are calculated separately for upslope (top), midslope (middle),
and downslope (bottom).
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Figure 8. Linear regression for the plot with vetiver between time in days and erosion pin height
relative to the measurement on 12 October 2021, when all erosion pins were installed and stabilized.
Solid blue lines and markers show the trajectory of measurements for each erosion pin and dashed
red lines show the regression line. Regression slope is given in each plot with * indicating a regression
p-value less than 0.1. Regression lines are calculated separately for upslope (top), midslope (middle),
and downslope (bottom).

The regression analysis summary (Table 2) shows that the R2 value for every species
is less than 0.5, indicating that the independent variable (time) is explaining only a small
amount of the variation in the dependent variable (erosion pin height). Other potential
sources of variation include spatial variability in erosion patterns and measurement errors.
The species differed in which positions showed significant erosion or deposition. However,
where erosion or deposition was occurring, the rates were similar, as indicated by over-
lapping 90% confidence intervals of the slope values. An exception to this is between the
vetiver and juniper. These do not overlap at the upslope or downslope locations, though it
should be noted that the R2 and p values for vetiver upslope indicate that time was not a
significant predictor of change in erosion pin height (Table 2).

One-way ANOVA analysis of the effect of species on change in erosion pin height did
not show a significant effect (F = 0.55, p = 0.58), indicating similar mean change among plots
(Figure 10a). Thus, the differences between plots were primarily in the spatial distribution
of erosion and deposition due to differences in the uniformity of vegetation establishment.
The influence of slope position indicated a clear pattern of positive change in pin height
for upslope pins, indicating erosion negative values, and deposition in downslope pins
(Figure 9b). A t-test demonstrated a significant difference between upslope and downslope
pins (t = 1.48, p = 0.08).
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Figure 9. Linear regression for the plot with fescue grass between time in days and erosion pin height
relative to the measurement on 12 October 2021, when all erosion pins were installed and stabilized.
Solid blue lines and markers show the trajectory of measurements for each erosion pin and dashed
red lines show the regression line. Regression slope is given in each plot with * indicating a regression
p-value less than 0.1. Regression lines are calculated separately for upslope (top), midslope (middle),
and downslope (bottom).

Table 2. Slope of the regression line with 90% confidence interval between time in days and change
in erosion pin height in mm and regression statistics for each plot and slope position.

Species Position Slope (90% CI) R2 p-Value

Juniper Upslope 1 0.018 (0.009, 0.026) 0.28 <0.01
Juniper Midslope 0.006 (−0.001, 0.013) 0.09 0.13
Juniper Downslope 2 −0.020 (−0.031, −0.009) 0.29 <0.01
Fescue Upslope 0.011 (−0.004, 0.026) 0.05 0.22
Fescue Midslope 2 −0.007 (−0.013, −0.001) 0.16 0.04
Fescue Downslope 1 0.013 (0.006, 0.021) 0.30 <0.01
Vetiver Upslope 0.001 (−0.005, 0.007) 0.00 0.76
Vetiver Midslope 1 0.011 (0.000, 0.021) 0.11 0.09
Vetiver Downslope 1 0.020 (0.014, 0.027) 0.36 <0.01

1 Significant erosion (p < 0.10); 2 Significant deposition (p < 0.10).
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(a) (b) 

Figure 10. Boxplots showing the change in erosion pin height between 12 October 2021 and
15 April 2022, as grouped by (a) species planted on the experimental plot (data from all slope
positions included); and (b) slope position of the erosion pin (data from all plots included).

3.3. Root Biomass

Vetiver had the highest overall root biomass in the top 40 cm of soil (3.75 kg/m3),
followed by fescue (1.28 kg/m3) and juniper (0.45 kg/m3). In the upper layers of the soil,
the amount of root biomass is very similar among the species (Figure 11). However, the
root biomass of vetiver increases with depth and shows higher amounts of root biomass
than the other species in the deeper soil layers. Total root biomass was substantially higher
for vetiver while juniper was lower than the other species (Table 3). Root biomass was
generally higher in the upslope core, though this was most pronounced for juniper. It
should be noted that roots could not be identified by species, so some of the roots sampled
from the juniper and fescue plots are likely from weeds. Very few weeds were present on
the vetiver plots.

(a) (b) 

Figure 11. Root biomass by layer for three species in the (a) upslope core; and (b) downslope core.
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Table 3. Root biomass by species in the top 40 cm of soil for the upslope core, the downslope core,
and the mean of the two cores.

Species Upslope (kg/m3) Downslope (kg/m3) Mean (kg/m3)

Juniper 0.65 0.24 0.45
Fescue 1.33 1.23 1.28
Vetiver 4.00 3.51 3.75

Vetiver produced roots with a larger diameter than both the fescue and juniper
(Figure 12). Root tensile strength, which is assessed per unit area, is inversely propor-
tional to diameter [20,69], so a dense, fibrous root system with many small diameter roots
is better for slope stability [18,70,71]. Given the similar biomass abundance in upper soil
layers and prevalence of small diameter roots, fescue may be a better choice than juniper
if only surface stabilization is needed. However, the root biomass analysis (Figure 11)
demonstrated that vetiver is clearly better for deeper slope stabilization due to the greater
abundance of deep root biomass. Additional work is needed to directly measure the impact
of these roots on the strength of the slopes.

(a) (b) 

Figure 12. Histograms of root diameter measured at the midpoint of roots extracted from the
(a) upslope core; and (b) downslope core.

3.4. Results Summary

This study addressed four research objectives. The first objective was to select veg-
etation types that may provide erosion control and slope stabilization for priority sites
and compare them to the current management practice of planting turf grass from seed.
Five vegetation types were tested—deep-rooted (vetiver) grass, woody shrubs, perennial
legume, fern, and native prairie grass—and were compared to fescue grass grown from
seed. The second objective was to determine which species establish and grow well on
moderately steep roadside slopes in the Piedmont region of the southeast USA. Of the
species tested, vetiver grass and juniper shrubs grew well (Figure 4). The third objective
was to compare surface erosion rates from the experimental plots. Juniper and vetiver both
had slightly lower sediment yield than fescue grass when sediment yield from the whole
plot was considered (Figure 6). Erosion pins indicated that there was more spatial variabil-
ity in erosion and deposition within the juniper and fescue plots due to uneven vegetation
establishment (Figures 7–9). The final objective was to estimate the contribution of each
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species to increased slope stability by measuring root biomass and diameter in soil cores.
Vetiver grass had substantially higher root biomass than the other species, particularly in
deeper soil layers (Figure 11).

4. Discussion

Vetiver grass and juniper shrubs both established well on the experimental slopes
and present possible alternatives to seeding with turf grasses such as fescue on high-
priority sites. The failure of the perennial legume (hairy vetch) and maidenhair fern
demonstrate the importance of weed resistance in species used for erosion control and slope
stabilization in the study region. Vetiver showed the best weed resistance of the species
tested while juniper may be suitable if a weed resistant species is planted in the interspace
between plants.

The plot containing juniper had the lowest runoff amounts and sediment yield based
on the runoff collection with TSS method (Figures 5 and 6). The erosion pin data suggest
that this is because deposition is occurring at the base of the plot, as measured by the
downslope pins (Figures 7–9), where aboveground vegetation establishment was strong
(Figure 4). This suggests that the vegetation near the bottom of the plot was slowing
runoff and allowing for deposition. If runoff was ponding as it slowed, it could increase
infiltration [14], causing the lower runoff volumes observed. The highest rates of erosion
were observed on the upslope pins in the juniper plot (Figure 10a), but the plot had the
lowest total sediment yield (Figure 6). This demonstrates the high potential of juniper to
create a barrier to sediment movement with good establishment.

In the other plots, with more even vegetation establishment, erosion and deposition
rates were more consistent across the plot. This agrees with previous studies that empha-
sized the importance of good vegetation establishment in preventing erosion [41,42]. This
study used two methods to compare surface erosion: runoff collection with TSS, which
measures total sediment yield, and erosion pins, which measure the spatial distribution
of erosion and deposition. The methods proved to be complimentary, as information on
the spatial pattern of erosion was helpful in relating vegetation establishment to observed
runoff and sediment yield. We did not directly quantify the effects of vegetation density
on overland flow velocities or patterns and this remains an important topic for future
research [68,72–75].

Despite the issues with establishment, the overall erosion rates observed in this study
were within the limit of 2–7 mm/yr. This is much lower than a previous study conducted
on a completely bare steep slope which had erosion rates of 20 mm/yr [62]. This study,
which was conducted over a 10-year period, also recommended longer monitoring duration
than was possible in the current study for erosion pins. Overall, the changes observed in
the erosion pin heights were very small relative to the measurement precision (± 1 mm) of
a manual ruler. Longer monitoring until higher erosion or deposition values are observed
may allow for more robust statistical analysis. Another difference with studies on bare
slopes was in the pattern of erosion. On bare slopes, higher erosion rates are typically
observed near the bottom of the slope, because that is where sheet flow velocities are
highest [76]. The vetiver plot showed this same pattern. The pattern of higher erosion rates
in the upslope pins observed for this study in the juniper and fescue (Figure 10b) was also
found in a large study of vegetated streambanks slopes using erosion pins [77].

Slope stability also depends on root biomass, diameter distribution, and architec-
ture [8]. Vetiver grass added substantially more belowground biomass than the other
species tested (Figure 11). In general, fine roots (roots < 3 mm in diameter) are considered
more important to soil stabilization than coarse roots [18]. Most of the biomass sampled
from the plots, including vetiver, would be considered fine roots. While juniper and fescue
had a slightly higher abundance of small diameter roots in upper soil layers, the deeper
biomass of vetiver is key for increasing soil strength [20,24]. A previous study of vetiver
grass in Brazil found similarly high levels of root biomass [78]. Based on the outcomes of
this study, vetiver grass is a promising alternative to the current practice of seeding with
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turf grass that should be explored by managers. This study is one of the first to examine the
use of vetiver grass in Alabama and the Piedmont region of the southern USA. and so this
strong establishment and growth should be encouraging to those considering using vetiver.
Future research should also measure additional factors that can influence slope failures,
such as soil moisture and soil organic matter content [79–81]. Given the weak predictive
power of daily rainfall as a predictor of change in erosion pin height, future studies should
also measure sub-daily rainfall for the calculation of rainfall intensity as this is a better
predictor of erosion than rainfall depth [82].

The performance of a vegetative cover must be weighed against practical concerns,
such as ease and cost of planting and maintenance requirements. Vetiver is a non-native
species that must be planted from slips that have been sterilized so they will not produce
seeds. This is more costly and labor intensive than planting from seed. Future work should
consider other native grasses, such as switchgrass, that are deep-rooted and can be planted
from seed. However, to grow vegetations from seed, seeds need to be planted during the
season recommended and do require some care, such as watering and reseeding of bare
patches. Future studies could also consider applying seeded biochemical solutions such as
those used by [43] to combine temporary biochemical surface stabilization with the benefits
of native grasses.

5. Conclusions

This study compared several vegetation types for erosion control and slope stabiliza-
tion on roadside slopes in the Piedmont region of Alabama. The focus was on deep-rooted
species that could be an alternative to planting turf grass from seed, the prevailing slope
management practice in the region. The test plots were established on a relatively steep cut
slope (25–30◦) at the NCAT Test Track in Opelika, AL, USA. The response of the plots was
monitored for over two years using erosion pins and TSS measurements.

Vetiver grass and juniper shrubs established well. Juniper and vetiver both had
slightly lower sediment yield than fescue grass when sediment yield from the whole
plot was considered. Erosion pins indicated that there was more spatial variability in
erosion and deposition within the juniper and fescue plots, likely due to uneven vegetation
establishment. Selecting a species with strong and even establishment is important to
preventing surface erosion. Vetiver grass had more abundant and deeper root biomass than
the other species in the study, suggesting it will be best for slope stabilization. This was the
first study to test vetiver grass in the Piedmont region of the southeast and demonstrates
that it is a promising option for slope stabilization. Future work is needed to directly
measure the impact of vetiver roots on slope stability and to investigate effects of vegetation
density and planting arrangement.
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Abstract: Sentinel-2A multi-spectral remote sensing image data underwent high-efficiency differential
processing to extract spectral information, which was then matched to soil organic matter (SOM)
laboratory test values from field samples. From this, multiple-linear stepwise regression (MLSR) and
partial least square (PLSR) models were established based on a differential algorithm for surface
SOM modeling. The original spectra were subjected to basic transformations with first- and second-
derivative processing. MLSR and PLSR models were established based on these methods and the
measured values, respectively. The results show that Sentinel-2A remote sensing imagery and SOM
content correlated in some bands. The correlation between the spectral value and SOM content was
significantly improved after mathematical transformation, especially square-root transformation.
After differential processing, the multi-band model had better predictive ability (based on fitting
accuracy) than single-band and unprocessed multi-band models. The MLSR and PLSR models
of SOM had good prediction functionality. The reciprocal logarithm first-order differential MLSR
regression model had the best prediction and inversion results (i.e., most consistent with the real-
world data). The MLSR model is more stable and reliable for monitoring SOM content, and provides
a feasible method and reference for SOM content-mapping of the study area.

Keywords: soil organic matter; Sentinel-2A; remote sensing; differential algorithm; multispectral
modeling; PLSR

1. Introduction

Soil organic matter (SOM), as an extensive component of soil, is an important indicator
to measure the fertility, status and degradation degree of cultivated soil [1]. It plays a role
in increasing moisture retention and, consequently, the drought tolerance of crops [2,3].
SOM also constitutes a huge organic carbon pool in terrestrial ecosystems [4,5]. It is of great
practical significance to estimate the soil organic pool by mastering the spatial distribution
information of large-scale soil organic matter content instantaneously [6]. Estimating soil
organic matter pools has a significant impact on ecology and sustainable land use in the
long term. Precision agriculture and long-term regional land development are aided by
timely monitoring of SOM data [7]. Traditional biochemical analysis methods are time-
consuming and labor-intensive, in addition to being ineffective and unsuitable for gathering
information such as soil organic matter content over a large expanse [8,9].

Soil-reflection spectroscopy has successfully enabled rapid and cost-effective SOM
estimation, assisting in fulfilling regional to global soil evaluation and monitoring require-
ments [10]. The majority of research has concentrated on soil spectral studies in controlled
indoor environments. There are concerns with test parameters, including light-source
power, light-source distance, and irradiation angle during the test. The majority of soil
samples used in the tests are stabilized soils. As a result, the spectral data is more unclear,
making it harder to share the results of known inverse models of soil characteristics. The
advantages of remote sensing technology include a vast coverage area for ground object
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information, as well as periodicity, currency, precision, and reliability [11]. The quantitative
description of soil organic matter by remote sensing technology has always been a research
hotspot of many scholars. According to research, the spectral characteristics of SOM are
primarily reflected in the absorption of incident light energy by organic matter, and soil
reflectance decreases as organic matter content increases [12,13].

There are still image factors, such as mixed pixels, water content, and spectral resolu-
tion in remote-sensing data, that must be taken into consideration for soil organic matter
analysis. Therefore, the theoretical underpinning of using existing remote-sensing data
for SOM mapping involves extracting adequate information from soil spectral data and
generating a soil spectral index [14]. Researchers have made some progress in related fields.
The application of traditional spectral index inversion theory was used to improve the
estimation model’s accuracy. Spectral indices could quantify the interrelationships between
the SOM’s characteristic bands utilizing spectral indices, enhancing weak band connections
and reducing model complexity. Preprocessing transformations used to remove image-
specific reflectance include soil moisture and particle size to transform soil spectral data,
remove signal noise, and highlight features for quantitative model estimation [15]. The
derivative algorithm is one of the common preprocessing transformations that reduces spec-
trum interference by eliminating baseline drift and improving spectral resolution, resulting
in increased separation of overlapping peaks and less spectral interference [16]. Although
a large number of studies have been carried out in related fields using differential spectral
technology [17], relatively few studies have explored the predictive ability in monitoring
soil nutrient content.

Previous studies have demonstrated that spectral preprocessing is an important com-
ponent of multivariate modeling analysis and would improve the predictive performance of
models [18–21]. A prediction model based on soil spectral information can effectively and
rapidly estimate soil physical and chemical parameters. MLSR (multiple linear stepwise
regression) has been developed on the basis of multiple linear regression. Considering the
advantage of avoiding collinearity, MLSR has been used to develop models that estimate
soil properties [22,23]. The regression equation was introduced using stepwise regression
based on the effect, significance or contribution rate of global independent variables on the
dependent variable. A linear regression model generates predictions about the dependent
variable by eliminating independent variables that are not important to the dependent
variable. PLS (partial least squares) is a widely used linear multivariate regression method
in the field of soil spectroscopy [18,24,25]. PLS was more accurate than principal compo-
nent regression or multiple linear regression in predictions of soil salinization using soil
conductance in the semi-arid region of Brazil [26]. In PLS, the correlation between principal
components is relatively insignificant, while the correlation with the dependent variable is
the largest. At the same time, PLS can overcome the strong interpretation of independent
variables by principal component analysis. It can effectively extract the comprehensive
variables with substantial explanatory power to the system and improve the estimation
ability of the model. Therefore, mathematical models are conducive to relate reflectance
spectra to SOM content to predict soil nutrients [27,28].

Sentinel-2A is a high-resolution multispectral imaging satellite that covers 13 spectral
bands. The bands vary in wavelength from 433 to 2280 nm, including ten bands in the
visible near-infrared spectrum and three in the short infrared band. Sentinel-2A has an
imaging bandwidth of 290 km, a spectral resolution of 15–180 nm and spatial resolutions
including 10, 20 and 60 m. Compared with Landsat TM and other remote-sensing images,
Sentinel-2A remote-sensing imaging has higher spectral and spatial resolutions and a
shorter revisit cycle (the cycle is five days); it is primarily utilized in global ecological
environment monitoring [29]. Morteza Sadeghi investigated soil moisture approaches using
Sentinel-2 and Landsat-8 satellites and discovered that Sentinel-2 was more appropriate for
the task [30]. Sentinel-2 is suitable for monitoring and mapping soil organic matter, but not
soil texture (clay, silt, and sand content) [31]. Qi Gao presented two methodologies for the
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retrieval of soil moisture from remotely sensed SAR images, with a spatial resolution of
100 m [32]. However, few studies have used Sentinel-2A imagery to monitor soil nutrients.

Given the enormous range of remote-sensing imagery available due to periodic up-
dates, a comprehensive grasp of image characteristics is critical when selecting which image
to employ. Different researchers come to different conclusions in terms of the reflectance
band and estimation model used to calculate organic matter content [33,34]. In order
to comprehensively understand the prediction ability and feasibility of differential spec-
troscopy in soil nutrient content, the trial used differential processing of the high-resolution
Sentinel-2A spectral data based on mathematical transformations to develop models to
predict soil organic matter content in the study area.

On the basis of the above, the research aims to construct a SOM evaluation model
based on spectral indices and compare the prediction accuracy of different methods in the
study region, using Sentinel-2A remote-sensing images as the data source and measured
test data of SOM content as analysis data. The objective of this research is: (1) to investigate
the use of Sentinel-2A remote-sensing images as a reference for estimating soil organic
matter; (2) to analyze the correlation of mathematical transformation (reciprocal, reciprocal
logarithm, square root, and square and cubic transformation) with the first- and second-
order differential of reflectance and SOM; (3) to construct single-band and multi-band MLSR
and PLSR inversion models and evaluate the spectral indices and model performance in
SOM estimation.

2. Materials and Methods

2.1. Experimental Site

The study area, Daqing, is located in the southwest of Heilongjiang Province in
northeast China (45◦46′–46◦55′ N and 124◦19′–125◦12′ E). The region is located in the
middle of the Songnen Plain, a Mesozoic subsidence area with a flat, slightly undulating,
small ground slope. The landform in the region gradually declines from north to south
and is generally plain, with a relative height difference of 10 to 35 m. It connects with the
Suihua area in the east, faces Jilin Province (Songhua River) in the south, and borders the
city of Qiqihar in the west and north. Winters are cold and snowy, whereas spring and
autumn monsoons are more humid. The frost-free season lasts only a few weeks each year.
With mean annual precipitation of 427.5 mm, a mean annual temperature of 4.2 ◦C, and
a mean evaporation amount of 1635 mm; rain and heat are in the same season, which is
beneficial for crop and forage grass growth. The cultivated land area of Daqing accounts for
roughly 20% of the whole area and consists of an established farming industry (Figure 1).

 

Figure 1. Distribution area diagram of the soil sampling area.
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2.2. Soil Sampling

In this study, soil sampling was conducted in Daqing in July 2021, and 19 soil samples
were randomly obtained. Five surface soil (soil depth of 20 cm) samples were collected
and mixed within a 1 m radius of a specific sampling location, and approximately 500 g of
soil per sampling site from the mixed models was used for chemical analysis. The actual
longitudes and latitudes of the samples were recorded using a global positioning system
(GPS) at the time of field sampling in order to obtain the reflectivity of the sampling point in
the remote-sensing image. In the laboratory, all samples were air-dried and ground to pass
through a 2-mm sieve to remove impurities such as gravel and animal and plant residues.

Chemical analysis was used to determine the SOM content. The concentrations of all
soil samples from each sample point were measured through the potassium dichromate
method [35]. The SOM content varied from 13.42 to 22.04 g kg−1. The coefficient of
variation (CV) was 0.15, indicating that SOM showed medium variability across all samples
(i.e., 0.1 CV 1.0). To ensure the rationality of model establishment and validation, the data
were randomly divided into 14 prediction sites and 5 validation sites. (Table 1).

Table 1. Descriptive statistics of SOM (g/kg).

Sample Set Max. Min. Range Mean SD CV

Calibration 22.02 13.42 8.60 17.59 2.70 15.4%
Validation 17.33 14.48 2.85 15.49 0.75 4.9%

Total 22.02 13.42 8.60 17.04 2.57 15.1%
Notes: SD, standard deviation; CV, coefficient of variation.

2.3. Remote-Sensing Image Processing

Based on region size, we selected six Sentinel-2A images in July 2021 for the experi-
ment. Ten visible bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12), which are near-infrared
and short-wave infrared bands with a resolution of 10 m, were selected from the images
(Table 2). The preprocessing of remote-sensing images mainly included radiometric cor-
rection, atmospheric correction, geometric correction, image mosaic, and image clipping.
Sentinel-2A remote-sensing images were processed with Sen2cor software for radiometric
and atmospheric correction, an ESA plug-in dedicated to the creation of L2A level data
that is used to reduce radiometric inaccuracies caused by atmospheric influence and to
invert the true surface reflectance of objects. Compared with the typical atmospheric correc-
tion software (SMAC and 6S), Sen2cor operation is more straightforward, without human
input parameters. The geometric correction of Sentinel-2A remote-sensing imaging was
completed with ENVI software, and the geometric correction error was less than 1 pixel.
The boundary of the research area was classified in ArcGIS software, and remote-sensing
images were clipped and arranged as a mosaic. Remote-sensing images of the original
research region were obtained by clipping remote-sensing image data of six scenes with
vector boundary data from the research area.

To properly manipulate the data from the sample points, a vector map of the adminis-
trative divisions of Daqing was obtained using the BIGEMAP map loader. Furthermore,
ArcMap and ArcGIS software were used to complete the longitude and latitude distribution
map of sampling points by clicking add data and the directory window. Then ArcMap
and ENVI were used in combination to extract Sentinel-2A images for each sampling point
corresponding to a DN (digital number) value of each band.
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Table 2. The relevant parameters of Sentinel-2A.

Sentinel-2A

Band Band Name Central Wavelength/nm Spectral Width/nm Spatial Resolution/m

1 Coastal Aerosol 433 20 60
2 Blue 490 65 10
3 Green 560 35 10
4 Red 665 30 10
5 Vegetation Red edge 705 15 20
6 Vegetation Red edge 740 15 20
7 Vegetation Red edge 783 30 20
8 NIR 842 115 10

8A Narrow NIR 865 20 20
9 Water Vapour 945 20 60

10 SWIR-Cirrus 1375 30 60
11 SWIR 1610 90 20
12 SWIR 2190 180 20

2.4. Statistical Modeling
2.4.1. Differential Algorithm

Differential spectral technology, which is a common spectrum processing approach,
can effectively dig spectral effective information and provide better resolution than the
original spectral reflectance. It also improves the correlation between spectral data and soil
parameters, allowing for better monitoring of progress in soil nutrient content research and
improved prediction accuracy. The reference formula is as follows [36].

The first derivative can be described as:

FDR(λ) =
[

R(λi+1)
− R(λi)

]
/[λi+1 − λi] (1)

The second derivative (SDR) can be described as:

SDR(λ) =
[

R′
(λi+1)

− R′
(λi)

]
/[λi+1 − λi] (2)

where λi is the wavelength of the i-th band, R(λi+1)
, R(λi)

are the reflectance at bands
λi+1, λi, and R′

(λi+1)
, R′

(λi)
are the first derivative at bands λi+1, λi, respectively.

2.4.2. Multiple Linear Stepwise Regression

MLSR is mainly a comparative analysis of all independent variables according to
influence or contribution size to all dependent variables through the F test [23]. Variables
significant by the sum of squares are selected for the regression equation. Only one variable
is introduced for each step. When a variable is introduced, the partial regression sum of
squares of each variable is then tested. If the introduced variable is found to be insignificant,
it is removed from the partial regression equation. If more than two variables are introduced
in successive steps, it is determined whether or not any existing variables can be removed.
Further, when no independent variables can be eliminated, a new independent variable
with significant influence is selected for evaluation. This process is repeated until none of
the introduced variables can be removed. The original independent variable is also tested,
and the gradual regression equation ends.

The formula of the gradual regression equation is:

SOM = a0 + ∑n
i=1 aiRλi (3)

where a0, a1 = 1, n is the regression coefficient, i is the number of bands used for modeling, λi
is the wavelength of the ith modeling band, and Rλi is the reflectance value at wavelength λi.
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2.4.3. Partial Least Squares Regression

PLSR adopts the idea of extracting principal components from principal component
analysis, which can simplify the data structure [25]. There are p dependent variables and
m independent variables considered. The basic practice is to extract the first component
xi in the independent variable set and the first component ui in the dependent variable
set, requiring maximum correlation between xi and ui. The regression of the dependent
variable with xi is then established, and the algorithm is terminated until the equation
reaches satisfactory accuracy. Otherwise, the extraction of the second pair component
continues to achieve satisfactory accuracy. If the n components are finally extracted from
the independent variable set from the independent variable set, the partial least squares
regression will establish the regression equation between the dependent variable and
x1, x2 , . . . , xn. This represents the regression equation between the dependent variable and
the original independent variable: the partial least squares regression equation. In PLS
calibration, significant wavelengths can be assessed on the basis of variable important in
projection (VIP), If the VIP score of a specific wavelength exceeds 1, then the wavelength is
considered important [37,38].

2.5. Construction of Spectral Indexes

SOM exhibits unique spectral response properties in visible and near-infrared bands,
and the soil spectral reflectivity and SOM content are generally significantly negatively
correlated [39,40]. The increase and decrease of SOM content can be reflected from the
soil reflection spectrum to a certain extent. The determination of soil spectral reflectance
becomes a novel approach to assessing SOM content due to the particular response relation-
ship. Furthermore, the soil spectrum and SOM content show a nonlinear variation caused
by the interaction of soil structure and the spectral measurement environment, making
the absorption belt and reflection belt of the spectral curve not visible. On the other hand,
low-order (first-order, second-order) differential transformation of the spectrum is less
sensitive to noise, eliminating some of the background and noise influence and improving
the correlation between spectral data and organic matter content.

Therefore, the spectral data are processed by conventional mathematical transforma-
tion and differential processing to increase sensitivity to the SOM content of the spectral
index. The original spectrum was subjected to six different types of traditional mathemat-
ical transformations and respective first and second derivatives. Spectral characteristic
indicators were screened using the Pearson correlation analysis method. SOM content
measured in the laboratory is the dependent variable of the function, with the characteristic
spectral index as the independent variable. The model was constructed between SOM con-
tent and the transformed spectral data of the reflection spectrum. The correlation between
SOM content and the reflectance of remotely sensed images was analyzed in SPSS. The
correlation coefficient was calculated by Formula (4):

r = ∑n
i=1(xi − x)(yi − y)/

√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2 (4)

where r is the correlation coefficient of SOM and reflectence, and xi and x are the measured
value and mean value of reflectivity, respectively; yi and y are the measured value and
mean value of SOM content, respectively. When r > 0, reflectivity is positively correlated
with SOM, and when r < 0, reflectivity is negatively correlated with SOM. The closer r is to
1, the more stable the model is and the better the fit is [41].

The prediction of SOM model stability is measured by the determination coefficient R2;
the larger the R2, the more stable the model; the accuracy is tested by RMSE. The smaller
the RMSE, the higher the model accuracy [42,43].

The calculation formula is shown in (5) and (6):

R2 = ∑n
i=1 (yi − ŷi)

2/ ∑n
i=1 (yi − y)2 (5)
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RMSE = 1/n ∑n
i=1 (yi − ŷi)

2 (6)

where ŷi indicates the values estimated by the model; yi indicates the measured values; y
indicates the average of the measured values; and n is the number of observations of the
variable to be modelled.

2.6. Flow Chart

Figure 2 shows the flowchart of the research to estimate the model between SOM
content and spectral index with differential transformations.

Figure 2. Conducting SOM prediction models.

3. Results and Analysis

3.1. Differential Analysis of the Multispectral Data

The first-order differential and second-order differential are processed by IDL soft-
ware, with a remote-sensing third band image as an example (Figure 3). The image can
better express the real situation of the object, and the first-order differential image better
distinguishes the water body from the soil. Raw remote-sensing images contain much
information, including noise, which can be excluded by differential image processing
of remote-sensing images. However, the meaning of the information in the differential
processing image cannot be seen directly, so it needs to be further analyzed based on
actual data.
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(a) (b) (c) 

Figure 3. Derivative processing of remote image. (a) Original remote-sensing image; (b) First derivative
processing of remote-sensing image; (c) Second derivative processing of remote-sensing image.

3.2. Correlation between SOM Content and Spectral Metrics

The remote-sensing estimation and inversion of site parameters are based on the
relationship between remote-sensing data and site parameters. The correlation between
multispectral reflectance data and measured SOM data was analyzed in SPSS to clarify the
relationship and to find the spectral information sensitive to SOM content. All original
remote-sensing bands exhibited a high degree of correlation (Table 3). According to the
first-derivative image data, B3′ and B4′ have a higher correlation to SOM (Table 4), whereas
the overall correlation was relatively low in the second-derivative image data (Table 5). In
general, many bands have a high correlation with the original remote-sensing data, and the
correlation value of the band is relatively large.

Table 3. The correlation between original image data and SOM.

B3 B4 B5 B6 B7 B8 B8A B11 SOM

B3 1 0.993 ** 0.934 ** 0.708 ** 0.670 ** 0.636 * 0.485 * 0.459 −0.738 **
B4 1 0.960 ** 0.822 ** 0.705 ** 0.674 ** 0.531 0.514 −0.779 **
B5 1 0.947 ** 0.866 ** 0.843 ** 0.730 ** 0.706 ** −0.852 **
B6 1 0.972 ** 0.964 ** 0.895 ** 0.868 ** −0.854 **
B7 1 0.995 ** 0.953 ** 0.905 ** −0.763 **
B8 1 0.960 ** 0.919 ** −0.762 **

B8A 1 0.982 ** −0.635 *
11 1 −0.640 **

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

Through the correlation table of each dataset and SOM content, the correlation of
each band of original image data is more significant than 0.6, with B5 and B6 reaching
0.8. However, the first-derivative image data was less-associated with SOM content, with
only 0.7 in the B3 band. No sensitive band exists with the SOM after the second-derivative
image data. The correlation was significantly reduced compared to the original data
in the differential image. According to the aforementioned relationship, the differential
processing single-band model results in significant spectral information loss, and the
relationship between multispectral data and SOM analysis is not ideal.
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Table 4. The correlation between first-derivative image data and SOM.

B3′ B4′ B5′ B6′ B7′ B8′ B8A′ B11′ SOM

B3′ 1 0.428 −0.364 −0.016 0.144 0.184 −0.108 0.193 −0.770 **
B4′ 1 0.286 0.210 −0.313 0.364 0.420 0.252 −0.595 **
B5′ 1 0.847 ** 0.142 0.633 * 0.687 ** 0.066 −0.058
B6′ 1 0.400 0.753 ** 0.589 * 0.113 −0.354
B7′ 1 0.721 0.880 0.685 −0.177
B8′ 1 0.570 * −0.038 −0.209

B8A′ 1 0.643 * −0.095
B11′ 1 −0.263

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

Table 5. The correlation between second-derivative image data and SOM.

B3” B4” B5” B6” B7” B8” B8A” B11” SOM

B3” 1 −0.847 ** −0.336 0.695 ** −0.276 0.156 −0.627 ** 0.758 ** −0.485
B4” 1 0.077 −0.617 * 0.132 0.053 0.432 −0.626 * 0.504
B5” 1 −0.742 ** 0.087 −0.135 0.355 −0.517 −0.292
B6” 1 −0.335 0.153 −0.530 0.749 ** −0.088
B7” 1 −0.911 ** 0.490 −0.237 0.394
B8” 1 −0.494 0.139 −0.202

B8A” 1 −0.873 ** 0.089
B11” 1 −0.109

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

3.3. Single-Band Inversion Model

The spectral reflectance of the different variation processing was correlated with SOM
content to determine the sensitive bands according to the magnitude of the correlation
coefficient using SPSS software (Figure 4). SOM exhibited significant spectral response
properties in the visible and near-infrared wavelengths and was negatively correlated with
spectral reflectance in Sentinel-2A remote-sensing images. The correlation coefficient of the
original spectral reflectance peaked at around 740 nm (r = −0.854, p < 0.001). The fifth and
sixth bands had remarkable correlation coefficients for the transformed converted spectral
index. The correlation between the spectral index of the first-order differential (R′) and
SOM content was significant in the third waveband, with the weakest correlation coefficient
(r = −0.770, p < 0.05). Differential processing significantly reduces the correlation com-
pared to the other forms of the spectral index, which were linked considerably with SOM
(|r| > 0.800, p < 0.001). Square root processing (R1/2) showed the most-significant correla-
tion occurring at 705 nm (r = −0.858, p < 0.001).

Figure 4. Correlation statistics of organic matter content and reflectivity (R represents reflectance
spectra, 1/R represents inverted transformation, eR is exponential transformation, logR−1 is logarithm
the reciprocal of reflectance, R1/2 is square-root transformation, R2 is square transformation, R3 is
cubic transformation).
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The bands with a correlation r > 0.5 with SOM were employed as independent vari-
ables to develop separate SOM prediction models, while the measured SOM contents
were used as the dependent variable (Table 6). The correlation coefficient of calibration
determination (R2

c ) and root mean square error of calibration (RMSEC) were used as an
assessment indicator. The prediction coefficient of determination (R2

p) and the root mean
square error of the validation (RMSEP) set were used to assess accuracy of the final model.
The single-band model based on the original spectrum’s sensitive band reflectance and
SOM produced satisfactory accuracy. In addition, the model with square root processing
(R1/2) had the best modeling efficiency (R2

c = 0.74, RMSEC = 1.50), but in validation sets
performed poorly (R2

p = 0.69, RMSEP = 1.31). The single-band model based on the R′ and
1/R processed spectra with SOM had inferior modeling (R2

c = 0.60 and 0.61, RMSEP = 1.86
and 1.75, respectively). The other five models (1/R, log R−1, R1/2, R2, R3) all showed
stronger modeling (R2

c > 0.68, RMSEP < 1.66). Compared to the original reflectivity, the
R′ transformation showed the best prediction, with an increase in R2 of 0.03 (R2

p = 0.82),
but showed extreme uncertainty (RMSECP = 3.72). The modeling of the organic matter
single-band model was enhanced, but not dramatically, by spectral processing. Preprocess-
ing of the original spectrum was used in the best suitable model utilizing the single-band
(R2

p = 0.79, RMSEP = 2.18).

Table 6. Single-band inversion model of soil organic matter content based on spectral index.

Spectral
Index

Sensitive
Band

Correlation
Coefficient

Inversion Model
Calibration Validation

R2
c RMSEC R2

p RMSEP

R 6 −0.854 ** Y = −34.206R + 25.651 0.71 ** 1.52 0.79 ** 2.18
1/R 5 −0.800 ** Y = 0.832/R + 12.289 0.61 ** 1.75 0.74 * 1.66

logR−1 5 −0.853 ** Y = 14.507 logR−1 + 6.375 0.70 * 1.53 0.71 1.35
R1/2 5 −0.858 ** Y = 30.729 − 31.491R1/2 0.74 ** 1.50 0.69 * 1.31
R2 6 −0.847 ** Y = −67.546R + 79.856R2 + 26.838 0.72 ** 1.55 0.77 * 2.40

R3 6 −0.822 ** Y = −12.333R − 261.662R2 +
642.675R3 + 24.151

0.68 * 1.66 0.75 * 2.66

R′ 3 −0.770 ** Y = −149.981R + 18.636 0.60 ** 1.86 0.82 3.72

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

3.4. Performance of Multiple Linear Stepwise Regression

MLSR models were utilized to evaluate the correlation between SOM content and
spectral index, referring to the results of the single-band correlation analysis. Table 7
showed the sensitive band combinations used in the regression analysis. A variable variance
significance level of 0.05 was set as the criterion for variable selection and exclusion. The
maximum variance invasion factor (VIF) of each spectral band was less than 10, indicating
no multicollinearity between bands. By comparing model accuracy, six better models
were selected.

The band reflectance in the basic mathematical transformation was excluded as an
opt-in variable to conduct the MLSR model, except for the raw spectra. However, the
modeling is well-based on the differential treatment of mathematical transformations
(Figure 5). The multi-band model demonstrated better predictive results than the single-
band model in terms of accuracy and stability. Predictions of raw spectral data under MLSR
models outperformed all single-band models (R2

c = 0.78, RMSEC = 1.32) in the calibration
set. The raw and first-order differential processing (R′) of the spectral indices resulted
in a significantly improved model, but the effect of validation was poor and unstable
(R2

p = 0.16 and 0.55, respectively). The MLSR models based on (1/R)′ and (1/R)” showed
better performance than the original spectrum. The inverse first-order differential (1/R)′
verification set, on the other hand, was poor at predicting and hence was not taken into
account (R2

p = 0.37). The MLSR model constructed by (logR−1)′ and (logR−1)” were slightly
less effective than the original spectrum modeling in terms of modeling performance
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(R2
c = 0.71 and 0.69, RMSEC = 1.51 and 1.71, respectively), but the accuracy and stability of

validation sets were significantly improved (R2
p = 0.93 and 0.76). Overall, the second-order

differential (1/R)” model performed the best (R2
c = 0.91, RMSEPC = 1.54). However, the

validation model performed a little worse (R2
P = 0.84, RMSEP = 1.23), but was considered

to be unsuccessful at prediction. The validation of the model based on (logR−1)′ performed
incredibly well, with the R2 improving by 0.09 and the RMSE reducing by 0.43 compared
to the (1/R)” transformation, even though it did not get the best match and model stability
(R2

c = 0.71, RMSEC = 1.51, R2
p = 0.93, RMSEP = 1.11). The pre-processing method of the

reciprocal logarithm first-order differential spectrum was used in the best suitable model
utilizing the MLSR.

Table 7. Multi-band inversion model of soil organic matter content based on spectral index.

Sensitive
Band

Spectral
Index

Inversion Model
Calibration Validation

R2
c RMSEC R2

p RMSEP

R6, R8A R Y = −34.206a − 57.592b + 25.651 0.78 * 1.32 0.16 2.55

R3, R6, R8, R4 R′ Y = −146.835a − 75.734b + 184.192c
− 110.819d + 24 0.89 ** 0.92 0.55 * 2.04

R6, R11 (1/R)′ Y = −3.179a + 0.159b + 13.273 0.80 ** 1.27 0.37 1.29
R8A, R3, R4 (1/R)” Y = 1.53a − 1.138b − 1.157c + 14.502 0.91 ** 0.87 0.84 ** 1.23

R8A, R7 (logR−1)′ Y = 46.497a − 69.465b + 11.418 0.71 * 1.51 0.93 ** 1.11
R8A, R4 (logR−1)” Y = 47.412a − 43.495b + 13.005 0.69 * 1.71 0.76 * 1.86

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

3.5. Performance of Partial Least Square Regression

PLSR was established for the eighteen spectral transformations using the Unscrambler
software. The results showed that the number of factors obtained by PLSR analysis varies
considerably. We performed a full cross-validation before establishing a predictive model.
Cross-validation is a method of predicting how well a model will fit the hypothesis valida-
tion set. The number of PLSR factors based on the original reflectance was three, increasing
to nine after reciprocal transformation. The correlation coefficient of cross-validation de-
termination (R2

cv) and root mean square error of cross-validation (RMSECV) were used
as assessment metrics to optimize various spectrum post approaches. R2

p and RMSEP
were used to assess the final effect [22,44]. PLSR regression models based on mathematical
transformation with differentiation gave disappointing outcomes.

Among the basic processing, the R2 model showed the most prediction accuracy in
cross-validation (R2

cv = 69, RMSECV = 1.62) and in independent validation (RMSEP = 11.93),
in which the prediction stability was not reliable (Table 8). Similarly, the PLSR model based
on 1/R method also performed well in cross-validation (R2

cv = 0.68, RMSECV = 1.65) but
had poor accuracy in independent validation (R2

p = 0.51). Prediction was worst using the
R3 method (R2

cv = 0.50, RMSECV = 2.06). A PLSR model based on logR−1 yielded the best
prediction results (R2

cv = 0.66, RMSECV = 1.70, R2
p = 0.79, RMSEP = 1.55).

For the first-order derivative processing method, the accuracy and stability were re-
duced to varying degrees compared to the basic processing (Table 9). The prediction when
using the (1/R)′ method was best in cross-validation (R2

cv = 0.65, RMSECV = 1.8) and in in-
dependent validation (though with poor prediction stability) (R2

p = 0.67, RMSEP = 0.84). In
terms of the prediction results of the six calibration models, the (logR−1)′ model validations
performed the best (R2

cv = 0.62, RMSECV = 1.80, R2
p = 0.90, RMSEP = 0.51). Furthermore,

PLSR regression models based on second-order derivative processing against SOM content
had no practical significance (R2

cv < 0.60). The model based on (logR−1)” performed best
among the processed sets (R2

cv = 0.57, RMSECV = 1.92, R2
p = 0.83, RMSEP = 1.28), suggesting

that the PLSR model was not suitable for estimating the organic matter content of the region
(Table 10).
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Figure 5. Model validation. (a) Original multi-band measured value; (b) First derivative of the multi-
band measured value; (c) First derivative of reciprocal multi-band measured value; (d) Second derivative
of reciprocal multi-band measured value; (e) First derivative of the reciprocal logarithm multi-band
measured value; (f) Second derivative of the reciprocal logarithm multi-band measured value.
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Table 8. Results of partial least squares regression analysis of the original spectral data and soil
organic matter content.

Spectral
Index

PLR Factors
Cross-Validation Validation

R2
cv RMSECV R2

p RMSEP

R 0.63 * 1.78 0.78 * 1.81
1/R 0.68 ** 1.65 0.51 1.65

logR−1 0.66 1.70 0.79 * 1.55
R1/2 0.63 1.76 0.78 ** 1.63
R2 0.69 * 1.62 0.87 * 11.93
R3 0.50 2.06 0.61 2.98

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

Table 9. Results of partial least squares regression analysis of first-derivate transformation and soil
organic matter content.

Spectral
Index

PLR Factors
Cross-Validation Validation

R2
cv RMSECV R2

p RMSEP

R′ 0.56 1.93 0.91 * 2.57
(1/R)′ 0.65 ** 1.72 0.67 * 0.84

(logR−1)′ 0.62 * 1.79 0.90 ** 0.51
(R1/2)′ 0.33 2.38 0.89 * 2.58
(R2)′ 0.64 * 1.75 0.22 3.14
(R3)′ 0.54 * 1.98 0.05 3.66

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

Table 10. Results of partial least squares regression analysis of second-derivate transformation and
soil organic matter content.

Spectral
Index

PLR Factors
Calibration Validation

R2
cv RMSE R2

p RMSEP

R” —— 2.26
(1/R)” 0.25 2.52 1.07 0.90

(logR−1)” 0.57 * 1.92 1.41 0.83 1.08
(R1/2)” 0.26 2.50 1.08 0.01 0.35
(R2)” ——
(R3)” ——

Notes: * represents the confidence level at 0.05.

The PLSR model under the reciprocal logarithm first-order differential spectrum
transformation showed the best correlation with SOM among the three methods. The
information above indicates that 1/R transformation performed satisfactorily in data
representing spectral features and quantitative inversion models. The results of multi
spectral model conducted by PLS show that the prediction capability of PLSR modeling is
high using different spectral pretreatment methods.

3.6. Spatial Pattern Analysis of Soil Organic Matter Content

The accuracy of the above single-band, MLSR and PLSR inversion models was in-
vestigated. The models created by MLSR and PLSR both had satisfactory prediction
performance. The accuracy using PLSR is higher than that of MLSR, with excellent pre-
diction. According to the validation sample detection model, the accuracy and stability
of the MLSR model are relatively stable. This shows that MLSR regression is more stable
and meets the application needs in predicting the SOM content in Daqing. Reciprocal
logarithm first-order differential by MLSR regression model is the optimal model. The
SOM content-inversion model based on the Sentinel-2A image spectral index was selected
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to invert and map the SOM content in the study area to obtain the SOM spatial distribution
in Daqing (Figure 6).

Figure 6. Inversion result of model.

4. Discussion

The inversion results are in line with the actual spatial distribution of SOM. The SOM
content in the study area was generally low and uneven, with large spatial differences. The
content was gradually distributed from northeast to southwest, and the SOM content in
the northeast was generally higher than that in the southwest. According to the soil field
survey, surface runoff accumulates in low-lying areas to form intermittent and permanent
puddles due to concentrated precipitation. Poor drainage accelerates the process of salt
accumulation, and the complex micro-topography causes uneven evaporation of soil water.
The salt above the micro-topography is aggravated by strong evaporation and rainfall
and irrigation water containing a certain amount of salt flow from high places to places in
areas with poor soil permeability. Soil salinization occurs in low-lying areas after fraction
evaporation. In addition, the Daqing area is located in a seasonally frozen soil area, and the
freezing and thawing of the soil promotes the accumulation of salt. These aspects combined
can lead to serious soil salinization. The high salt content of the soil is not conducive to
the survival of vegetation, and the small amount of vegetation means that the content of
humus is low and is not conducive to the survival of general decomposers [45]. Higher
salinity in soil masks the spectral signature of SOM, resulting in a low inversion value of
SOM content in the southwest of the study area [46,47].

The above results showed that Sentinel-2A remote-sensing images had a good cor-
relation with SOM content in visible and near-infrared bands. The effect of multi-band
modeling is better than that of single-band modeling. It is found that there is a sensitive
band in the correlation between the first-order differential data and SOM content. The
original remote-sensing data had the highest correlation in Band 6 (r = −0.730). In single-
band modeling, the correlation between square root transformation and SOM is best, but
the modeling is not as good as the original spectrum. The results of differential process-
ing in the PLSR model are not satisfactory, probably because the differentially processed
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image eliminates some of the information of the original image. The correlation between
reflectance and SOM is improved after basic transformation and differential processing in
MLSR models. The single-band model only uses a very small amount of information, while
for remote sensing, the data-rich multi-spectral band can only express extremely limited
SOM information in a single band, which can easily cause the loss of some key information.
The MLSR and PLSR models achieve convincing results, and the MLSR model has better
predictive ability (based on fitting accuracy). The PLSR model, based on second-order
differential processing, is ideal and relevant in practice. Reciprocal transformation will
improve model prediction in MLSR and PLSR regression. Based on the reciprocal logarithm
first-order derivative MLSR regression model, the inversion of SOM in the study area was
carried out. The inversion result is in accordance with the actual situation, which is suitable
for spectral inversion of soil organic matter content in a certain geographical area.

Compared to direct contact, remote sensing has advantages in the estimation of SOM
content, such as predicting soil fertility without direct contact with the object of study,
forecasting crop yields from visible and near-infrared bands, accessing the information
on the surface of the earth more efficiently and affordably, and updating soil databases in
many fields. The previous study found that for most places, the forecast accuracy based
on high-resolution satellite was satisfactory for SOM content prediction, and mapped the
soil organic matter more precisely than the airborne sensors [32]. The univariate model
only considers a single variable to participate in the modeling [48], and the current research
is mainly aimed at soil and crops. In this study, the single-band model built using the
original spectra worked best—the mathematical transformed form reduced the model
prediction—indicating the applicability of Sentinel-2A for predictions. The accuracy of
SOM estimation using the MLSR model established by simple mathematical transforma-
tion and derivative transformation is higher than that of univariate model. Differential
transformation is more beneficial to extract sensitive features in the soil spectrum [49].
The multivariable model integrates the features of multiple sensitive bands, alleviates the
“multicollinearity” to a large extent, and improves the applicability and stability of the
model. In previous studies, there have been inconsistencies between PLSR models and
MLSR predictions [22,23,50,51]. The MLSR model possesses better prediction results than
the PLSR model in this study, and high soil salinity in the study area may be a significant
factor. In future work, we intend to develop the method further, for example, by expand-
ing the number of soil samples, diversifying the soil types, and taking into account soil
moisture and microorganisms. The multispectral examination of SOM by Sentinel-2A has
received little attention and has not been thoroughly investigated. Future spectral modeling
of the SOM could be integrated with different spectrum indices (e.g., salinity indices) to
screen high-precision spectral parameters. Furthermore, indoor light sources can be used to
generate reflectance spectra and provide a complete set of measurement data to eliminate
the weather impact of spectral acquisition.

5. Conclusions

To maximize the correlation between spectral metrics and soil organic matter content,
MLSR and PLSR modeling were applied to establish the SOM content model based on
Sentinel-2A remote-sensing images. The effective and predictive capacities of different
models, which combined basic transformation with differential processing, were validated.
Sentinel-2A remote-sensing images had a good correlation with SOM content in visible and
near-infrared bands. MLSR and PLSR models of SOM in the study area were established
based on different processing and measured values, respectively. The correlation between
SOM content and spectral data was improved by multi-spectral modeling after differential
processing. However, the correlation between SOM content and reflectance was reduced
after first-order differential, indicating that spectral information was partially lost due
to differential treatment, and the relationship between spectral data and SOM was not
ideal. Multi-band modeling made superior predictions compared to single-band. SOM
content could be well-estimated using MLSR models. The MLSR model is more accurate
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and stable than PLSR, verified by the calibration and validation samples. The accuracy
of the modeling results is high and can meet research requirements. These findings give
a theoretical foundation and technological support for utilizing spectroscopy to estimate
soil organic matter concentration, and indicates this method can substitute traditional
experimental methods for measuring organic matter, thus enabling a larger scale of long-
term monitoring of changes in soil organic matter content. In this study, Sentinel-2A
images made it possible to retrieve surface soil organic matter with a high spatial and
temporal resolution. For soil ecosystem observations, these prediction models will need to
be assessed, optimized, and used more broadly.
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Abstract: Extensive application of mineral fertilizers resulted in high soil acidity, which is one of the
major problems for crop production and soil degradation. Industrial solid waste, such as lime kiln
dust and wood ash, can be used as alternative liming materials to benefit sustainable agricultural
development. In this work, pelletized lime kiln dust with and without wood ash was utilized as
liming material and the results of the three-year field study were compared with conventional mineral-
based liming materials. It was determined that pelletized lime kiln dust satisfies the requirements
posed by the recent European Union regulations to qualify as liming materials. The application of
2000 kg/ha Ca equivalent pelletized lime kiln dust increased soil pHKCl by ~0.55 pH units. Moreover,
pelletized lime kiln dust significantly increased spring wheat grain yields ranging from 33.6% to
40.4%, depending on the pellet size. The usage of these liming materials not only increased crop
yield but also decreased heavy metal concentration in soil. Due to high alkalinity, carbonate content,
easy handling, and the transportation of pelletized lime kiln dust with and without wood ash, the
materials have the potential to be used in agriculture as liming materials to reduce soil acidification
and increase crop productivity or be used as soil amendments.

Keywords: lime kiln dust; pellets; soil chemical properties

1. Introduction

High soil acidity is a significant problem impeding crop production and is associated
with soil degradation globally. The total area of topsoils affected by soil acidity range
from 3.78 to 3.95 billion ha [1]. While soil acidification is a natural process, it can be
exacerbated by human factors, such as acid rain, leaching of nutrients, and human activities
such as using acidic fertilizers or harvesting plant materials without returning them to
the soil. The emerging cause of soil acidification due to nitrogen (N) fertilizers has been
of increasing concern worldwide [2,3]. Ammonium salts strongly acidify soils through
their nitrification [4]. In particular, acidification takes place when ammonia is converted to
nitrites followed by nitrates that are then leached [5]. For example, in Chinese farmland
areas, soil pH decreased by 0.3 pH units from 1981 to 2012 due to increased mineral fertilizer
application, while a critical N fertilizer application amount of 200 kg/ha per year was
also reached [6]. Soil acidification changes biodiversity and increases nutrient losses, such
as potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), via leaching, thus
reducing plant productivity and increasing greenhouse gas emissions [7]. Decreasing soil
pH harms the productivity of many crops (barley, rapeseeds, clover, and sugar beet). For

Land 2022, 11, 521. https://doi.org/10.3390/land11040521 https://www.mdpi.com/journal/land
169



Land 2022, 11, 521

most plants, the optimum soil pH ranges from 5.5 to 7.0. Additionally, soil pH affects
the availability of nutrients and enhances the solubility of toxic metals causing nutrition
imbalance in plants. Soil acidification was behind increased cadmium (Cd), lead (Pb), and
zinc (Zn) levels, while manganese (Mn) and aluminum (Al) solubility can often reach a
toxic level with decreasing soil pH [4]. Soil acidification not only affects the availability of
nutrients but also soil physical properties.

Various bioclimatic zones are associated with certain soil formation pathways result-
ing from the decomposition of primary minerals and secondary mineral formation, as
well as the formation of secondary complex organomineral compounds followed by their
accumulation and transport [8]. Water-soluble Ca and Mg cations in the upper layers
of these minerals can leach out into the watershed, resulting in overall soil acidification.
In this manner, Ca- and Mg-rich soils across the globe in localities associated with high
precipitation amounts become more acidic. These soils with a higher propensity to acidify
are chiefly Retisols and Luvisols comprising carbonates within the 2-meter depth; hence, it
is intrinsically prone to acidification due to temporal and environmental factors. Liming
has been shown as one of the most economical methods of decreasing soil acidity. Liming
improves soil structure, oxygen infiltration, and aeration [9,10]. It also enhances biological
N fixation and the mineralization of phosphorus (P) and sulfur (S) [11–13]. Several studies
have shown that liming remarkably decreased Cd mobility in soil and accumulation in
plants [14,15]. The application of liming materials not only reduces the solubility of heavy
metals but also enhances the availability of phosphorus to the plants [16,17]. Finally, in-
creasing soil pH has a direct effect on N-related greenhouse gas emissions. Khaliq et al.
showed that the application of dolomite and lime can reduce N2O emissions from the
soil by 44% and 37%, respectively, in upland and 52% and 44%, respectively, in paddy
soils [18]. Additionally, previous studies demonstrated that liming decreased N2O pro-
duction under some conditions in fluvial soils [19]. To mitigate the acidification processes
in soil, limestone and dolomite (CaMg(CO3)2)—widely available natural minerals—are
often applied and utilized for the dual purpose of acidity neutralization as well as soil
fertilization [20]. Furthermore, other liming materials include those comprised of Ca- and
Mg-containing oxides, hydroxides, carbonates, and even silicates [21,22]. Lime industry
processing waste, such as lime kiln dust (LKD), has recently been proposed as a potential
liming material to improve acid soil quality since it contains large amounts of calcium
(Ca) and magnesium (Mg) [23]. Much less work has been carried out on comparing actual
soil property enhancement when utilizing LKD in field experiments in comparison with
different types of natural minerals on spring barley or spring wheat growth properties. This
is particularly important since the granulation of powders is critical in economically and ef-
ficiently converting and transporting them into usable and recyclable raw materials [24–26].
Pelletization provides the benefits of slower nutrient release and the ease of handling these
bulk materials. In particular, pelletization alleviates various problems associated with dust
handling during transport and field applications. In particular, there are very few examples
of compacted, granulated, and pelletized lime kiln dust [27] and biomass ash [28–30]. Sell
and Fischbach described the pelletization of the cement kiln dust with the resulting pellets
returned to the clinker-making process [31]. Yliniemi et al. granulated peat-wood ash using
potassium silicate and sodium aluminate to produce lightweight aggregates suitable to use
in civil engineering or lightweight concrete [32]. Other researchers granulated bioenergy
production waste (fly ash and biochar) with organic-rich lake sediments for the sustainable
reuse of waste materials and the possibility to use granules in agriculture [33].

Understanding whether the benefits of traditional soil liming materials, as well as
those from industrial waste, originate due to the improvement in soil pH, increased Ca
availability, or enhancement in soil structure is of great concern. Since approximately 51.0%
of Eastern Lithuanian and 66.0% of Western Lithuanian agricultural land have soil pH
values less than or equal to 5.5, fertilizer use in these acid soils is inefficient. The purpose
of this study was to investigate the effects of recovered waste from lime processing plants
as soil liming materials on soil properties and crop yield. In particular, pelletized LKD with
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and without biomass ash were utilized and their liming properties were compared to those
of natural minerals, such as ground chalk and crushed dolomite.

2. Materials and Methods

2.1. Materials and Reagents

Liming materials after anthropogenic processing were obtained from industrial man-
ufacturers in Lithuania. Specifically, ground chalk was obtained from JSC Baltijos Klintis,
Lithuania while crushed dolomite from SC Dolomitas, Lithuania. LKD was obtained from
JSC Naujasis Kalcitas, Naujoji Akmene, Lithuania, while the pelletization of LKD powders
into several fractions (namely 0.1–2, 2–5, and 5–8 mm) was performed by JSC Mortar
Akmene. PLKDWA was also obtained from JSC Mortar Akmene using lime kiln dust (LKD)
and wood ash (WA), and pellet sizes vary from 2 to 5 mm.

These samples were stored in plastic containers. All chemicals for chemical analysis
were obtained of reagent grade from Fischer Sci and used as received. Double distilled
water was used in all experiments. All liming materials are summarized in Table 1.

Table 1. Sample description.

Abbreviation Sample Preparation

GC Ground chalk

CD Crushed dolomite

PLKD 0.1–2 Pelletized LKD of 0.1–2 mm

PLKD 2–5 Pelletized LKD of 2–5 mm

PLKDWA 2–5 Pelletized LKD with wood ash of 2–5 mm

An evaluation of the chemical composition of the liming materials was performed. The
samples were ground, and the elements were extracted using aqua regia and analyzed with
Perkin Elmer Optima 2100 DV ICP-OES spectrometer. Atomic Absorption Spectroscopy
(AAS) was used to find the concentration of Al, Fe, Ca, and Mg. The amount of Si was
found using a gravimetric method.

The neutralizing value of liming materials was determined by treating a sample with
0.5 N HCl heated for 10 min and later potentiometrically titrated with 0.25 N NaOH u pH
reached 7.0 for 1 min. The neutralizing value was estimated as follows:

NV =
0.014 × (V1 − 0.5 × V2)× 100

m
(1)

where NV—Neutralizing value (%);
V1—the volume HCl (mL);
V2—the volume NaOH (mL);
m—sample mass (g).
Reactivity was determined by treating the sample with water and quickly potentio-

metrically titrating with 5.0 N HCl until pH reached 2.0, and titration was finished after
10 min keeping pH 2.0. The reactivity was estimated as follows:

rac =
cHCl × 14.02 × 100

m × NV
(2)

where rac—reactivity (%);
CHCl—the volume of 5.0 N HCl (mL);
NV—neutralizing value of liming material (%);
m—sample mass (g).
Water content was determined gravimetrically according to the standard LST

EN 12048:2003.
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2.2. Field Experiments

Field experiments were conducted from 2017 to 2019 at the Lithuanian Research Centre
for Agriculture and Forestry Vezaiciai Branch, West Lithuania, on naturally acidic moraine
loamy soil (Bathygleyic Distric Glossic Retisol) [34]. The agrochemical characteristics of the up-
per soil layer were as follows: pHKCl—5.06 ± 0.541; soluble Ca—899 ± 30.0 mg/kg; soluble
Mg—127 ± 3.9 mg/kg; soluble K2O—199 ± 4.6 mg/kg; soluble P2O5—164 ± 7.1 mg/kg;
soluble Al—24.4 ± 14.07 mg/kg.

The field trial was set up in a randomized design with four replicates. The following
experimental design was used. Namely, (1) control (without liming material), (2) 2000 kg
Ca/ha ground chalk, (3) 2000 kg Ca/ha crushed dolomite, (4) 2000 kg Ca/ha pelletized
lime kiln dust outer diameter (OD) 0.1–2 mm, (5) 2000 kg Ca/ha pelletized lime kiln dust
OD 2–5 mm, and (6) 2000 kg Ca/ha pelletized lime kiln dust-wood ash OD 2–5 mm. The
experimental plot size was 48 m2 (12 × 4 m). The experimental site was limed (except for
the control treatment) with liming materials in May 2017 before planting the seeds. The
liming rate (2000 kg Ca/ha) was calculated using the amount of active element Ca in liming
materials. Mineral fertilizers were added every year before sowing. The mineral fertilizer
application rate for spring barley and spring wheat was 60 kg/ha N, 60 kg/ha P2O5, and
60 kg/ha K2O before sowing and 60 kg/ha N at the bushing stage of spring barley and
wheat. The mineral fertilizer application rate for pea was 20 kg/ha N, 40 kg/ha P2O5, and
60 kg/ha K2O. On the day of sowing, the pea seeds were coated with bacterial product
Rizogen and sown immediately. Liming materials and fertilizers were applied manually,
e.g., spread by hand on the soil’s surface and incorporated into the soil by the cultivator.
Spring barley cv. ‘Louke A’ was grown in 2017, spring wheat cv. ‘Granary’ was grown in
2018, and peas cv. ‘Respect’ was grown in 2019.

2.3. Soil and Plant Sampling and Chemical Analyses

Soil samples for agrochemical analysis (pHKCl, soluble P2O5, soluble K2O, soluble
Ca, soluble Mg, soluble Al, and total heavy metals) were collected from 0 to 20 cm depth
of the topsoil layer. The sample for chemical analyses was collected from 10 to 15 spots
via a “W” shaped pattern across the sampling area. Soil samples were taken from four
replicates of each treatment every year during the spring and fall after harvest. Soil soluble
K2O, P2O5, Ca, and Mg were determined according to the Egner–Riehm–Domingo (A-L)
method [35]. Soil soluble K2O, P2O5, Ca, and Mg were extracted using a 1:20 (wt/vol) soil
suspension of ammonium lactate–acetic acid extractant (pH = 3.7). The suspension was
shaken for 4 h. Soluble P2O5 was determined in the extract using ammonium molybdate
via the spectrometric method with a Shimadzu UV 1800 spectrophotometer, while soluble
K2O was determined using flame emission spectroscopy with a JENWAY PFP7 flame pho-
tometer; soluble Ca and soluble Mg were determined using atomic absorption spectrometer
AAnalyst 200. Soil soluble Al was determined by the Sokolov method [36] via extraction
from 1:2.5 (wt/vol) soil suspension in the 1 M KCl, shaken for 1 h, and later measured
using the titrimetric method.

The determination of soil pH was performed using a 1:5 (vol/vol) soil suspension
in the 1 M KCl. The mixture was shaken for 60 min and left to sit for 1 h. The pH of the
suspension was measured at 20 ± 2 ◦C stirring with a pH meter.

The heavy metal (Cd, Cr, Ni, and Pb) content in soil was determined by extraction in
aqua regia and analyzed with a Perkin Elmer Optima 2100 DV ICP-OES spectrometer and
AAnalyst 200 AAS spectrometer. Heavy metals in soil were determined according to ISO
11466:1995, ISO 11047:1998, and ISO 22036:2008: Soil pH-ISO 10390:2005.

The crops were harvested at full maturity. Barley, wheat grain, and peas seeds proper-
ties were determined as follows: grain/seed yield (t/ha, calculated on a 14% grain/seeds
moisture basis), grain/seeds number per spike/pod, and 1000 grain/seed weight (g). The
thousand grain/seed weight was determined using an automatic seed counter.
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2.4. Meteorological Conditions

The data presented in Figure 1 for the study period from 2017 to 2019 suggest dif-
ferences in weather conditions relative to the standard climate norm (SCN). Averaged
across the growing seasons, the air temperature was higher in the 2018 and 2019 years of
the study compared to SCN (4.0 ◦C in May 2018 1.8 ◦C in June 2018, 2.1 ◦C in July 2018,
2.6 ◦C in August 2018 and 4.6 ◦C in June 2019, and 1.2 ◦C in August 2019). However, total
precipitation during the plant growing seasons showed significant variations, especially
during May 2017, when a 41.9 mm decrease in total precipitation compared to SCN was
reported, and during the May 2019 growing season, when the total precipitation increased
by 30.0 mm compared to the standard climate norm. In summary, for temperature and
precipitation regimes, the weather conditions in 2017 were cool and wet; in 2018 and 2019,
the conditions were warm and dry.

Figure 1. Mean monthly air temperature (◦C) and precipitation (mm), according to the meteorological
data from the Lithuanian Hydrometeorological Service under the Ministry of Environmental.

2.5. Statistical Analysis

A one-way analysis of variance was used to compare the soil characteristics and crop
yield before and after soil liming. Means were compared using Fisher’s least significant
difference test at p ≤ 0.05 and p ≤ 0.01 and Duncan’s multiple range test at p ≤ 0.01. The
statistical software package SAS [37] was used for analysis.

3. Results and Discussion

3.1. Chemical Composition of Liming Materials

Table 2 shows the physical properties of liming materials used in these field studies.
Pelletized lime kiln dust (PLKD) alone and with wood ash was of highly alkaline pH (12.8–
12.9) when compared to natural liming materials (GC and CD), which were less alkaline
with a pH of 8.9 and 9.3, respectively. The water content in PLKD and PLKDWA varied from
11.9% to 6.36%, while in natural liming materials CD and GC, it varied from 9.3% to 8.9%.
Water in the pelletization process was used as a binder, while pellets were dried afterward at
25 ◦C for 48 h. The neutralizing value measures the ability of the liming materials to reduce
acidity, while reactivity indicates the rate of liming material to reduce the acidity of the soil.
Hoşten and Gülsün showed that particle size and the dolomite content in the limestones
were the most influential parameters in the reactivity of limestones [38]. According to
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EU Regulation 2019/1009 for liming materials [39], the minimum reactivity (based on the
hydrochloric acid test) cannot be less than 10% or neutralizing value (equivalent CaO) less
than 15. As observed in Table 2, pelletized lime kiln dust (PLKD 0.1–2, PLKD 2–5, and
PLKDWA 2–5) meets these requirements. The pellet strength may have a strong effect on
the reactivity of granulated liming materials. PLKDWA 2–5 pellets were the hardest (51 ±
13.1 N/pellet), while PLKD 0.1–2 pellets were the weakest (18 ± 7.5 N/pellet). Effectively,
pelletized liming materials can be hypothesized to contain different liming properties due
to the more controlled release of nutrients, as opposed to CD, GC, LKD, and WA, which
were applied as powders.

Table 2. Physical properties of liming materials and pelletized LKD.

CD GC
PLKD
0.1–2

PLKD
2–5

PLKDWA
2–5

LKD WA

1-8
pH 9.3 ± 0.21 8.9 ± 0.07 12.8 ± 0.14 12.9 ± 0.07 12.8 ± 0.21 12.7 ± 0.07 12.9 ± 0.14

Water content, % 4.52 ± 0.141 0.10 ± 0.081 9.66 ± 0.162 11.9 ± 0.13 6.36 ± 0.219 1.25 ± 0.007 0.04 ± 0.021
Reactivity, % 10.0 ± 0.09 99.5 ± 0.49 24.8 ± 0.28 10.4 ± 0.42 19.3 ± 0.35 96.7 ± 0.35 42.2 ± 0.35

Neutralizing value, % 50.3 ± 0.21 52.2 ± 0.35 44.6 ± 0.42 41.5 ± 0.28 18.0 ± 0.42 45.4 ± 0.28 32.9 ± 0.14
Pellet strength,

N/pellet - - 18 ± 7.5 37 ± 6.2 51 ± 13.1 - -

Note: Colored columns for the table represent parent materials, which were used for pelletized liming materials.

LKD chemical composition typically varies and depends on the source and the process
of lime being processed [40]. The typical composition of LKD varies from 31 to 55%
CaO, 0–26% of free lime, 1.7–9.9% SiO2, 0.7–4.1% Al2O3, 0.03–0.22% K2O, and 0.5–25%
MgO [41]. Figure 2a shows the chemical composition of the main nutrients present as well
as alumosilicates measured in liming materials. The liming materials chiefly comprised
Ca-containing compounds, with Ca accounting for 20% to 41% by weight of the measured
nutrients. Other major plant nutrients, such as Mg and K, did not contribute significantly
to the overall composition in CD reaching up to ~10%. Fe is an important micronutrient
in small amounts needed to sustain plant growth and reproduction [42]. Alkaline soil,
however, binds Fe and causes plant iron deficiency as it is immobilized and unavailable for
plants [43]. The concentration of heavy metals in liming materials is shown in Figure 2b.
Low levels of Cd were obtained in GC, CD, and PLKD without WA. In PLKDWA, the
amount of Cd was 2.63 ± 0.120 mg/kg, and it slightly exceeded the allowable limit of
2 mg/kg according to EU Regulation 2019/1009. The higher Cd content in PLKDWA
was due to the high concentration of 5.21 ± 0.134 mg/kg Cd in wood ash. The highest
concentration of Pb (25.8 ± 0.21 mg/kg) compared to other liming materials was found
in CD but did not exceed the 120 mg/kg allowable limit. Ni and Cr contents in liming
materials also did not exceed allowable limits. Summarily, this work showed that most of
the heavy metals measured were detected within concentrations lower than those defined
in the regulatory documents describing fertilizers as well as liming materials for soil use.
Hence PLKD and PLKDWA can be utilized as a source of liming material.
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(a) (b) 

Figure 2. (a) Main nutrients and alumosilicates measured comprising liming materials. (b) Heavy
metal concentration in liming materials.

3.2. Measured Soil Chemical Composition after the Liming Material Application

Liming has been widely recommended to manage soil acidification and improve plant
yield and soil agrochemical parameters. The available reports suggest that crop yield can
be increased using liming due to the improvement in the resulting soil’s physical, chemical,
and biological properties [44–46]. The soil pHKCl in all experiments was ~5 before liming.
The optimal soil pHKCl range needed for plant growth is provided in Figure 3 and is
between 5.5 and 7 [47,48]. Table 3 shows the pHKCl values after liming.

 
Figure 3. Measured soil pH values of different liming material treatments.
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Table 3. pHKCl values after 27 months of liming.

Treatment pHKCl Value ± SD

Control 5.1 ± 0.42 a

CD 5.1 ± 0.53 ab

GC 5.8 ± 0.38 cd

PLKD 0.1–2 5.7 ± 0.36 bcd

PLKD 2–5 5.4 ± 0.35 abcd

PLKDWA 2–5 6.0 ± 0.28 d
Note: different lowercase letters indicate a significant difference according to Duncan’s multiple range test (DMRT
p ≤ 0.05).

Our results shown in Figure 3 suggest that different liming materials did not have the
same effect on the neutralization of soil pHKCl. The fastest and the highest increase in soil
pHKCl was with applied ground chalk (GC). GC increased soil pHKCl from 5.08 to 6.15 after
4 months when applied at 2000 kg Ca/ha. However, after 27 months the pHKCl decreased
to 5.75, possibly due to the leaching of Ca2+ ions from the soil due to the high amount of
rainfall in 2017, as shown in Figure 1. In agreement, long-term research in soil sorption
complex of forest soils showed that soil pHKCl decrease is related to H+ increase and Ca2+

and Mg2+ ion decrease in soil sorption complex [49]. This is also supported by a strong
positive correlation shown in Figure 5a (vide infra) between soluble Ca content in soil and
soil pHKCl (r = 0.875). In general, the fastest soil pHKCl increase was observed when the
milled GC was applied; the slowest was observed when the crushed CD was applied, while
pelletized liming materials (PLKD 0.1–2; 2–5, PLKDWA 2–5) exhibited liming properties
that were in between. Pelletized lime kiln dust (PLKD) 0.1–2 and pelletized lime kiln dust
with wood ash (PLKDWA) 2–5 increased soil pH by ~0.5 after 3 years of liming. This
corroborates the earlier studies on using ash as a liming material to increase soil pH [50,51].
Liming with 2000 kg Ca/ha of CD resulted in a very slightly statistically not significant
increase in soil pHKCl. This can be explained by the much faster removal of calcium
compounds present in GC than those in dolomite due to the increased reaction kinetics
and complex surface-limited reactions [52]. The hydrated calcium compounds in LKD can
release calcium faster when in contact with the soil when compared to limestone and result
in an efficient pH change of the soil [53]. de Vargas in a long-term field experimental study
determined calcitic lime exhibits much more facile soil neutralization properties when
compared to dolomite [54].

Soluble Ca concentration in soil was measured four times during the three years. Solu-
ble Ca content in soil was ~900 mg/kg in all treatments before liming. The concentration of
soluble Ca in soil depends on carbonating layer depression depth, which is rich in Ca- and
Mg-carbonates. In Western Lithuania, this layer is at 1.5–3.0 m depth. Liming significantly
(p ≤ 0.01) increased soluble Ca content in the soil, as shown in Figure 4a. The application of
PLKD 0.1–2 corresponding to 2000 kg Ca/ha increased soluble Ca concentration ~2.5 times
more when compared to control after 4 months of liming. This is possible since the hydrox-
ide amount in pelletized liming materials is higher, rendering it more reactive than calcium
carbonate [55]. Moreover, PLKD 2–5 showed a statistically significant effect on soluble
Ca content in the soil, but it was less than GC or PLKD 0.1–2. Liming with CD showed a
statistically significant (p ≤ 0.01) increase in soluble Ca in the soil, but the increase was the
smallest of all tested materials. After 3 years of liming, the highest content of soluble Ca in
the soil of 1500 mg/kg was measured after liming with PLKDWA 2–5. Importantly, when
comparing liming performance among the materials after 3 years of liming, PLKD 0.1–2,
2–5 and PLKDWA2–5 had a statistically significant (p ≤ 0.01) effect on soluble Ca, which
was higher than that of CD. Ultimately, soluble Ca level was assessed as low before liming
and after three years, different liming materials increased this from low to average [56]. To
this extent, the results presented here for Lithuanian Retisol are in agreement with previous
work where various liming material powders of natural and industrial origin, including
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lime mud, carbide lime, wood ash, cement kiln dust, and natural calcitic and dolomitic
lime, increased soil exchangeable Ca amount and enhanced microbial activity in soil [57,58].
Annually, soluble Ca from the soil is leached at about a rate of 200–300 kg/ha, which
depends on the amount of rainfall, soil texture, the amount of CO2 produced from plant
roots, and other factors [59]. Due to the high precipitation from September 2017 to February
2018 shown in Figure 1, a large decrease in soluble Ca was observed after 15 months of
liming compared to 4 months after liming (Figure 4a). This suggests that the addition of Ca
ions in acid soils with liming was necessary.

  
(a) (b) 

  
(c) (d) 

Figure 4. (a) Soluble Ca, (b) soluble Mg, (c) soluble P2O5, and (d) soluble K2O in the soil during the
3-year liming experiment. Soluble is defined as being available for plants. Lowercase letters indicate a
significant difference according to Duncan’s multiple range test (DMRT p ≤ 0.01).
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Before liming, soluble Mg content in soil was low at around 130 mg/kg, as shown
in Figure 4b. The largest increase in soluble Mg in the soil after liming was found with
applied CD because it has the highest Mg content of 10.3%. However, liming with PLKD
0.1–2 and PLKDWA 2–5 also resulted in a statistically significant (p ≤ 0.01) increase in
soluble Mg in the soil after 4 months and significant (p ≤ 0.01) after 15 months. Similar
to Ca, after 27 months of liming with PLKD and PLKDWA 2–5, a statistically significant
(p ≤ 0.01) increase in soluble Mg was observed when compared to GC. Notably, soluble
Mg is best absorbed by plants when the ratio of soluble Ca and soluble Mg is 1:5–8. When
CD was applied, this ratio was 1:6 and was suitable for plants to absorb the soluble Mg.
For other liming materials, the ratio was higher than 1:8 and the absorption of soluble Mg
was blocked by Ca ions due to the antagonistic competition between Ca2+ and Mg2+ ions
for cation exchange sites [60].

In acidic soil where there is an abundance of soluble Al and Fe, any P forms insoluble
Al and Fe orthophosphates [61]. Before the field experiments, the soluble P2O5 concen-
tration in soil was ~165 mg/kg. The further analysis of soluble P2O5 in soil showed that
without liming, the amount of soluble P2O5 decreased throughout the experiment, as
shown in Figure 4c. Only the application of 2000 kg Ca/ha with CD did not have a signifi-
cant effect on soil soluble P2O5 concentration. Liming with PLKDWA 2–5 and PLKD 2–5
significantly (p ≤ 0.01) increased soluble P2O5 content in soil compared to the control by
85 mg/kg and 71 mg/kg, respectively, after 4 months of application. Moreover, this soluble
P2O5 increase was statistically significant (p ≤ 0.01) when compared to GC and CD, not
only to the control. Comparing PLKD with natural liming materials (GC, CD) after 3 years
of application, PLKD 2–5 and PLKDWA 2–5 had a statistically significant (p ≤ 0.01) effect
on soluble P2O5 increase. An increase in soluble or available phosphorus amounts in acid
soils after the application of liming materials was obtained in some other studies [44,62].

Measured soluble K2O in the soil is shown in Figure 4d. Soil soluble K2O varied from
194 mg/kg to 236 mg/kg before liming. After 4 months of liming with 2000 kg Ca/ha
of PLKD 0.1–2 and PLKDWA 2–5, soil soluble K2O content increased statistically and
significantly (p ≤ 0.01) by 26 mg/kg and 28 mg/kg, respectively. Additionally, application
with PLKD 2–5, GC, and CD changed soil soluble K2O statistically and insignificantly. After
27 months of liming, the overall highest soluble K2O increase was observed in treatments
with PLKD 0.1–2 and PLKDWA 2–5. For PLKDWA 2–5, these results may be related to the
relatively high K2O concentration of 2.9%. K in wood ash may be soluble and available
to plants, and previous studies showed that the application of wood ash can increase K
content in the soil [50,63].

Soluble Al concentration in the soil before the liming experiments was high or very
high and varied in a wide range from 17.1 mg/kg to 52.14 mg/kg. The average soluble
Al concentration before the application of liming materials was 24.4 ± 14.07 mg/kg. For
the control treatment with no liming, the soluble Al content in the soil after 27 months
increased from 24.4 ± 14.07 mg/kg to 37.2 ± 18.97 mg/kg. After liming in treatments
where pHKCl changed to 5.0 or higher, no soluble Al in soil was detected. Hence, liming
reduced soluble Al content in the soil. Soluble Al concentrations were strongly affected by
liming and exhibited a high negative nonlinear (polynomial) correlation with soil pHKCl,
as shown in Figure 5b. Soluble Al has a toxic effect on plant roots. The roots become poorly
developed and weak. When there is an excess of soluble Al in the soil, plants hardly absorb
P, Ca, S, and other elements. The relationship between soluble P2O5 and soluble Al was also
found in this work to be described with a negative polynomial curve (r = 0.836) (Figure 5c).
Similarly for other soils, Mrvić et al. observed a strong negative (r = 0.952) non-linear
correlation between exchangeable Al and soil pH values in Stagnosols [64]. Moreover,
Moir and Moot’s research showed similar results to the relationship between exchangeable
plant-available Al and soil pH in Brown soils [65].
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(a) (b) 

 
(c) 

Figure 5. (a) Relationship between soluble Ca and pHKCl, (b) between soluble Al and pHKCl, and
(c) between soluble P2O5 and soluble Al.

3.3. Grain Yield and Yield-Related Parameters

The effects of liming on grain yield improvement of crops in rotation are shown
in Figure 6. In the first year, a statistically significant yield improvement was observed
for spring barley in treatments with GC, PLKD 2–5, and PLKDWA 2–5. The biggest
yield improvement of 10.4% and 9.9%, when compared to control, was obtained when
liming with GC and PLKD 2–5, respectively. The highest statistically significant (p < 0.01)
1000th-grain mass of 54.4 ± 0.95 g was observed in the PLKD 2–5 treatment. However,
liming with PLKD 0.1–2 did not improve spring barley yield. Grain yield was likely limited
by the lower content of soil soluble P2O5 (Figure 4c) and pHKCl in PLKD 0.1–2 treatment,
although soil soluble P2O5 content was very similar to that obtained with GC.
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(a) (b) 

Figure 6. (a) The yield of spring barley, spring wheat and peas; (b) 1000-grain weight of spring barley,
spring wheat and 1000-seed weight of peas. * and ** indicate significant differences according to
Fisher’s least significant difference test. Statistically significant at * p < 0.05 and ** p < 0.01 level.

The water deficit in 2017, shown in Figure 1, that occurred during barley booting
could have influenced the number of grains per spike and spring barley grain yield. After
15 months of liming, a statistically significant (p < 0.01) spring wheat yield improvement,
when compared to the control, was obtained in all treatments. However, the lowest
statistically significant (p < 0.01) yield improvement of 21.9% of spring wheat was obtained
in the treatment with CD while the smallest 1000th grain mass 42.9 ± 0.39 g was observed
for the same treatment. The highest increase in spring wheat grain yield of 40.4% was
obtained after liming with LKDWA. This result may be related to pH, which increases
the availability of nutrients in the soil. Patterson et al. found that a 6 t/ha application of
wood ash with nitrogen fertilizer increased barley and canola grain yield when compared
to the control [66]. Moreover, other studies have shown an increase in oat biomass using
pelletized wood ash [50] and an increase in oilseed productivity but a decrease in the
quality of seed production [67]. In the third year of crop rotation, when the peas were
grown, the liming increased yield for all treatments by about 4.5% compared to the control
but the increase was not statistically significant. However, liming with CD was statistically
significant (p < 0.01) for the reduced peas‘ 1000th seed mass.

Different crops exhibit significantly different tolerance to soil acidity and sensitivity to
soil pH [20], as exhibited by various resulting properties such as plant height, plant density,
germination, and reproductive performance [68,69]. The results of the number of plants
per square meter are shown in Figure 7a. In 2017, when liming materials were applied,
spring barley plants per square meter positively responded with CD (296 no. per m2) and
PLKD 0.1–2 (299 no. per m2) compared to the control (283 no. per m2) treatment. The
second-year after liming spring wheat plants per square meter negatively responded to all
treatments compared with the control. The lowest number of wheat plants per m2 were
obtained in treatments with CD and PLKD 2–5. It may be due to the higher than usual
amount of precipitation in 2017 Fall and Winter, which caused high nutrient losses from
soil. Additionally, a lower amount of rainfall and higher air temperature compared to SCN
in 2018 may have an influence. After three years of liming, in 2019, liming had a positive
effect on pea plants per square meter. It may be related to the pH increase and soluble

180



Land 2022, 11, 521

Al decrease in the soil after liming, which favors root proliferation. In agreement, other
researchers reported a positive response of wheat plants per square meter with other liming
material applications [70,71].

  
(a) (b) 

 
(c) 

Figure 7. (a) The number of plants per square meter of spring barley, spring wheat, and peas; (b) the
spike length of spring barley, spring wheat, and plant length of peas; (c) the number of grains per
spike of spring barley, spring wheat, and the number of seeds per pod and number of pods per plant
of peas. * and ** indicate significant differences according to Fisher’s least significant difference test.
Statistically significant at * p < 0.05 and ** p < 0.01 level.

The corresponding data for the pea plant height, spring barley, and wheat spike length
are shown in Figure 7b. Plant height can potentially be improved due to the effect of
liming. Liming increases soil pH, which affects root proliferation and increases nutrient
availability, which can contribute to plant height. The application of 2000 kg Ca/ha of GC
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and PLKDWA 2–5 had a statistically significant effect on pea plant height when compared
to control. In particular, pea plants limed with GC and PLKDWA 2–5 were 5.2 cm and
3.6 cm higher, when compared to the control. Moges et al. also showed that the application
of 4 and 6 t/ha of lime significantly increased plant height [72]. However, the application
of CD and PLKD 0.1–2 reduced plant height by 3.8 cm and 4.7 cm when compared to the
control. Spring barley spike length and the number of grains per spike (Figure 7c) were
greater with GC and PLKD 2–5 treatments compared to the control. The application of
PLKD 2–5 also increases spike length and the number of grains per spike for spring wheat.
Spike length and number of grains per spike were only affected by various environmental
factors to a small degree since they strongly depend on the genotype [73].

3.4. Heavy Metals in the Soil

Changes in heavy metal (Cd, Cr, Ni, and Pb) concentrations in the soil during the
liming period are shown in Figure 8. The total Cd content in the soil before liming was
1.95 ± 0.140 mg/kg (Figure 8a). According to The EU Commission Council Directive
86/278/EEC [74], the Cd content in the soil before liming does not reach the maximum al-
lowable limit. After 15 months of application of liming materials, the total Cd content in soil
was reduced 3 times from 0.45 ± 0.140 mg/kg to 0.14 ± 0.013 mg/kg. Cd concentration in
the control treatment (unlimed) increased 1.3 times in 27 months, from 0.43 ± 0.035 mg/kg
to 0.55 ± 0.040 mg/kg. Cd content after liming decreased because liming neutralized
H+ ions and reduced Cd bioavailability. Additionally, pH change can increase negative
surface charge, which in turn could result in Cd adsorption and precipitation as Cd car-
bonates, reactions to Cd(OH)2, and the reduction of Cd2+ to Cd0. Cd content in unlimed
soil–control increased due to the pH decrease, which may increase the enhanced solubility
and mobility of cadmium in soil. Ramtahal et al. field and laboratory studies showed that
liming reduced bioavailable Cd in soil and Cacoa beans [75]. Shaheen and Rinklebe used
different low-cost alternative amendments to show that the application of cement kiln dust
decreased soluble and exchangeable Cd content in the soil [76]. Total Cr content before the
application of liming materials ranged from 9.77 mg/kg to 10.4 mg/kg and averaged at
10.1 ± 0.26 mg/kg (Figure 8b). The application of natural liming materials (GC and CD)
slightly reduced Cr amounts in the soil while PLKD 0.1–2, PLKD 2–5, and PLKDWA 2–5
increased Cr content. In general, the amount of Cr in the soil can vary depending on the
heterogeneity of soil and fertilization, and mineral fertilizers (especially phosphorus) can
increase it. After 27 months of liming, the amount of Cr in soil increased 55% in the control
treatment and 52% in the limed treatment with PLKDWA 2–5, while the smallest increase
was obtained when limed with PLKD 0.1–2. This is due to H+ competition for binding sites
enhancing metal release from the soil matrix.

For GC and CD, the Cr content reduced after 4 months, while after 27 months, the
amount increased by 31% and 36%, which is consistent with the change in soil pH values
shown in Figure 3. Liming had a significant effect on reducing total lead (Pb) and total
nickel (Ni) concentrations in soil (Figure 8c,d). The application of liming materials after
27 months reduced total Ni and total Pb amounts in soil by 1.5 as well as 1.3 times compared
to untreated soil. Ni availability in the soil was reduced by increasing base-cation saturation,
which consequently raises the soil’s pH. Moreover, Ni solubility decreases when soil pH
increases. Shaheen et al. showed that cement kiln dust and limestone decreased the water-
soluble and soluble contents with exchangeable Ni concentration in the soil as a result of an
increase in the sorbed and bound carbonate fraction [77]. Total heavy metal concentration
in soil depends on the nature of the soil, its organic matter concentration, texture, and
depth. As a consequence of adsorption of soil organic matter or atmospheric deposition, the
highest concentration of some elements, such as Cd and Pb, are found on the soil’s surface;
for other elements (Ni, Fe, and V) that are associated with clays and hydrous oxides, they
are concentrated in lower soil depths [78]. Liming changes not only the chemical properties
of soil but also the morphological features, thus altering the size distribution of clay and
silt with the soil’s profile. Soil pH also has a direct effect on the availability of heavy metals
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by affecting their solubility and capacity to form chelates. An increase in soil pH after
liming causes an increase in cation adsorption onto soil particles [79]. Tlustoš et al. pot and
Rhizobox experimental results also showed that liming reduces 50% Cd, 20% Pb, and 80%
of Zn and is effective for the immobilization of Cd, Pb, and Zn [80]. The efficiency of PLKD
and PLKDWA in decreasing the mobilization of heavy metals may be explained by their
high alkalinity and carbonate content, surface area, and oxide contents. The metals might
decrease due to sorption and precipitation reactions.

  
(a) (b) 

  
(c) (d) 

Figure 8. (a) Total Cd, (b) Cr, (c) Pb, and (d) Ni concentrations in the soil during the liming experiment.
Regulatory limit values according to the EU Commission [74] standards are also shown.

4. Conclusions

• Application of 2000 kg/ha Ca of PLKD 0.1–2 and PLKDWA increased soil pHKCl
0.58 and 0.50 pH units after three years of liming.

• Moreover, increased soil soluble Ca, Mg, P2O5, and K2O contents and reduced soluble
Al concentration in soil.
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• After two years of application, PLKD (0.1–2; 2–5) and PLKDWA statistically signifi-
cantly increased spring wheat grain yield by 33.6%, 32.1%, and 40.4%, respectively.
After three years of liming, peas yield increased in all treatments ~4.5% compared to
the control.

• Usage of these liming materials also decreased heavy metal concentration in soil.
Liming reduced total Cd, Ni, and Pb contents in soil by 3, 1.5, and 1.3 times compared
to unlimed treatment. However, liming did not reduce the total Cr content in the soil.

• Due to high alkalinity, carbonate content, easy handling, and the transportation of
pelletized lime kiln dust and pelletized lime kiln dust with wood ash, the materials
have the potential to be used in agriculture as liming materials.
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Composted Sewage Sludge Sustains High Maize Productivity
on an Infertile Oxisol in the Brazilian Cerrado
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Abstract: Mato Grosso do Sul State in Brazil is characterized by the ‘Cerrado’ ecoregion, which is
the most biologically rich Savannah globally. In agricultural terms, the region produces several
commodities that are exported around the world. This level of productivity has been achieved
through the large-scale use of synthetic fertilizers, which has created several economic and environ-
mental concerns. New approaches in soil fertility management are required to avoid environmental
degradation, pollution, and socio-environmental damages. A field experiment, lasting two years,
was conducted to investigate the composted sewage sludge (CSS) effects on an infertile acidic soil
(Oxisol) planted to maize (Zea mays L.). The following complete randomized complete block design
with a 4 × 2 + 2 factorial scheme (four replications) was applied: four CSS increasing rates (from
5.0 to 12.5 Mg ha−1, w.b.) following two application methods (whole area and between crop rows).
A control, without CSS or synthetic fertilizers, and conventional synthetic fertilization without CSS
were also investigated. Evaluated parameters were: (i) soil and leaf micronutrient concentrations;
(ii) maize development, yield, and production. The CSS application increased: (i) the concentration
of micronutrients in both soil and leaves; and (ii) the crop yield. Both were particularly true at the
higher CSS applied rates. Such organic fertilizer can be safely used as a source of micronutrients for
crops as an important low-cost and environmentally friendly alternative to mineral fertilizers, thus
safeguarding soil health.
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1. Introduction

Savannahs cover approximately 20% of the global land surface and provide several
ecosystem services, including storage of over 15% of terrestrial above-ground carbon [1] and
support of the livelihoods of millions of people through agriculture, resource extraction,
and tourism. Consequently, research aiming to improve soil use and management is
critically important from an environmental and socio-economic perspective.

The Cerrado is a vast tropical Savannah ecoregion of Brazil, accounting for 23.3% of
the country’s land area. With approximately 10,000 plant species, it is classified as the
most biologically rich Savannah globally [2]. Despite the presence of highly weathered
soils, with low natural fertility in terms of both macro- and micronutrients [3], the efforts
of researchers (from the beginning of the 90 s) to develop well-adapted cultivars for
several tropical commodity crops have resulted in the Cerrado today providing more
than 70% of beef in Brazil, in addition to large amounts of coffee (Coffea spp.), soybean
(Glycine max (L.) Merr.), beans (Phaseolus sp.), and rice (Oryza sativa L.). In fact, the Cerrado
is one of the most productive agroecosystems in the world [2].

Maize (Zea mays L.) yield in Brazil set a record of 87,000 thousand tons in 2020, making
Brazil the third (after the US and China) and second (after the US) largest maize producing
and exporting country in the world, respectively [4]. There are several reasons for this
rise, including new maize varieties, increased demand for ethanol, and the expansion of
production in Mato Grosso do Sul State [4], a region considered pivotal for the agricultural
development of the entire world. The amounts of nutrients required for maize growth
depend, in part, on soil and environmental conditions as well as yield expectations [5].
Consequently, all these factors must be considered when estimating nutrient needs for
maize. For instance, Simão et al. [6] and Dias Borges et al. [7] claimed that B, Cu, Fe, Mn,
and Zn are all indispensable for maize growth in the Cerrado ecoregion; however, the
amounts and importance of these micronutrients at different growth stages depend on the
aforementioned factors as well the maize variety.

One of the greatest challenges facing growers in the Cerrado is the low fertility status of
soils in the region, thus strongly limiting crop productivity. Most of these soils are Oxisols
and Ultisols low in SOM and plant available nutrients, limiting crop productivity [8].
Consequently, there is a strong reliance on synthetic fertilizers as well as in Cerrado
cropping systems [9]. This management paradigm is responsible for several environmental
and socio-economic concerns [10]. New approaches should be proposed that consider a
circular economy perspective, i.e., the possible reuse of unconventional sources of fertilizers,
such as by-products, leading to a change in the paradigm from a waste problem to a
resource solution.

The inappropriate handling, storage, and disposal of human-produced waste generate
severe environmental and human health concerns. Among these wastes, sewage sludge
(SS) has garnered serious interest among scientists, policymakers, and the public because it
supplies considerable amounts of organic matter [9,11] and both macro- [9,12] as well as
micronutrients [13]. When used in agriculture, it has been shown to successfully replace
commercial NPK mineral fertilizers by [14]: (i) maintaining soil fertility; (ii) enhancing
microbial biomass and soil enzymatic activities; and (iii) preventing contamination and
degradation of water resources [15,16].

Composting SS is a technique that significantly decreases pathogenic concentration,
increases organic matter stabilization, and thus reduces the mobility of potentially toxic
elements (PTE). Additionally, composted sewage sludge (CSS) is safer than SS in both
agricultural and forestry applications [14,15] and is applied by many wastewater treatment
plant (WTP) companies since it can reduce SS management costs [17]. The CSS can signifi-
cantly improve the chemical quality of tropical soils [9,15]. In Brazil, CSS is considered an
organic fertilizer if it meets the standards imposed by the national Normative [18].

We conducted a two-year field experiment on a low-fertility intensively cultivated
Cerrado Oxisol with the aim of understanding how and to what extent CSS can influence
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soil properties and maize performance. The relationship and feedback between soil and
plants were investigated as well through the application of multivariate statistics.

2. Materials and Methods

2.1. Study Area

The research (Figure 1a) was conducted for two consecutive crop seasons in 2017/18
and 2018/19 (Figure 1b,c). Investigated soil was a Rhodic Hapludox [19] with physical-
chemical properties, as reported in Supplementary Material Table S1. Analyses were
conducted on Ø ≤ 2.0 mm soil samples collected in the Ap horizon (0.0–0.2 m); Brazilian
official procedures were applied [20,21].

 

Figure 1. Experimental area at the Selvíria County (a: 20◦20′35′′ S, 51◦ 24′04′′ W; 358 m asl; Mato
Grosso do Sul State—MS, Brazil); (b) aerial view of the entire experimental area and (c) randomized
plots; (d) schematic representation of a single plot with the individuation of the “useful area” for soil
and plant data collection.

Experimental units were 3.15 × 10 m, with each maize row spaced at 0.45 m (Figure 1d).
The three central rows were used to collect soil and plant data (Figure 1d). Before the exper-
iment, maize was the only crop for ten consecutive years; during that period, conventional
mineral fertilization and agronomic management were applied.
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2.2. Field Experiment

The experimental design was set up according to a randomized complete block design
following a 4 × 2 + 2 factorial arrangement: 1. CSS application rates: 5.0, 7.5, 10.0, and
12.5 Mg ha−1 on a wet basis; 2. application method: whole area (WA, hereafter) or between
rows (BR); 3. two additional treatments: (a) a control where neither CSS nor mineral
fertilizers were applied, (b) an area treated with conventional fertilization (CF) only (i.e., N,
P, K, B, and Zn).

Soil was tilled to 0.30 m depth, and maize was planted in plots with four replications
(Figure 1c).

2.3. Sewage Sludge Features

Sewage sludge was generated, during a process lasting approximately one year, in
a common municipal wastewater treatment plant of the São Paulo State (Brazil). It was
composted to reduce the pathogenic agent concentration and increase solid biomass by
up to 25%. The whole process is made up of (i) periodic mixing and air drying, through
a forced aeration system, for three consecutive months; (ii) a plaster and limestone ad-
dition to increase porosity and pH, respectively; (iii) a mixture cleaning to reach approx-
imately 40% in moisture content. Finally, it was carefully sieved, and maturation was
achieved during the final 15 days. Thus, it was fully characterized from a bio-physico-
chemical viewpoint, as required by the Brazilian legislation [22]. For the sake of brevity,
the following features are here reported (mean ± SE, n = 3): pH-CaCl2: 7.0 ± 0.1; to-
tal moisture (%): 45.5 ± 0.2%; SOM: 309 ± 10 g kg−1; total N: 139.0 ± 0.3 g kg−1; C/N:
12.0 ± 0.8; CEC: 520 ± 20 mmolc kg−1; total P: 12.3 ± 1.4 g kg−1; total K: 6.0 ± 2.2 g kg−1;
B: 94.0 ± 4.5 mg kg−1; Cu: 237.0 ± 16.5 mg kg−1; Fe: 16400 ± 1300 mg kg−1; Mn:
246 ± 37 mg kg−1; Zn: 456 ± 8 mg kg−1. Based on its chemical and biological proper-
ties, CSS was permitted for use as an amendment/fertilizer in agriculture, according to
CONAMA [18].

2.4. Soil and Plant Preparation

Before the experiment began, 2.2 Mg ha−1 of lime (base saturation increased to 70%)
and 1.8 Mg ha−1 of gypsum were applied [23].

Weed control was conducted by using 1.8 kg ha−1 (a.i.) of Glyphosate and 0.67 kg ha−1

(a.i.) of 2,4-Dichlorophenoxyacetic acid were applied; thus, CSS was applied seven days
before and after sowing for WA and BR methods, respectively.

Maize seed (hybrid AG 7098, treated with insecticides and fungicides) was sown at
approximately 73,333 plants per ha−1 (recommended rates; [24]).

Conventional fertilizer was applied at maize planning, with rates based on soil fea-
tures, climatic conditions, maize hybrid, and research experience in the area. The following
amounts were applied: 26 kg ha−1 of N (urea, 42% N), 90 kg ha−1 of P2O5 (triple super-
phosphate), 51 kg ha−1 of K2O (KCl, 60% of K2O), 1.0 kg ha−1 of B (boric acid), 2.0 kg ha−1

of Zn (zinc sulfate). An automatized irrigation system was designed for the whole in-
vestigated area to mitigate nutrient losses (volatilization processes) starting after the first
CF application.

Weather conditions were recorded using a permanent daily-recording weather station
installed in the field. The monthly rainfall, humidity, and temperature were recorded daily
during all experimental periods (from November 2017 to October 2019). The highest rainfall
(>300 mm per month) was observed in November and February, while lowest in June–July
(<50 mm). Temperatures reached the highest values in September–October (>35 ◦C), while
minimum values were observed in July–August (15 ◦C).

Before the experiment began, the soil was fully characterized for baseline conditions
(Supplementary Material Table S1).
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2.5. Soil and Plant Analysis

Five samples, collected at the end of the crop cycle, were randomly selected from
the surface horizon (0–0.2 m) from each investigated plot. Micronutrient (bio)available
concentrations were then assessed. In particular, Cu, Fe, Mn, and Zn were extracted with
the DTPA-TEA method [20] and then analyzed by ICP–OES (inductively coupled plasma
atomic emission spectroscopy). The barium chloride extraction method was used for B,
with its concentration quantified by ultraviolet-visible (UV-Vis) spectroscopy. Analyses
were performed in triplicates with blank samples to ensure accuracy. A standard refer-
ence material (SRM 2709a—San Joaquim) was used to test the precision of the applied
analytical methods.

Ten different leaves were randomly collected from each investigated plot during the
full bloom (R1) period [25]. Leaf micronutrient concentrations were determined according
to Malavolta et al. [25]; HNO3 and HClO4 were used for dry material wet digestion. The
azomethine-H colorimetric method for B determination. Atomic absorption spectrometry
for Cu, Fe, Mn, and Zn.

2.6. Plant Development

The following plant parameters were assessed: plant height (PH), height from ear
insertion (HEI), stem diameter (SD, all evaluated during the (R4) pasty grains phase), grain
per ear (NGE), number of rows (NRE), and 1000 seed weight (SW, evaluated during the
(R6) harvest period). Maize was harvested 143 days after seedling emergence and was
reported at 13% moisture.

2.7. Statistical Analysis

The R statistical software [26] was used for univariate and multivariate statistics. The
analysis of variance (ANOVA) for testing differences among mean values for both CSS
rates and application method (WA or BR). In particular, in the case of F-test significance, a
Tukey’s test (p ≤ 0.05) was applied. Significant differences (p ≤ 0.05) among CSS vs. Control
and CF were tested by the Dunnett test. Interactions or effects of CSS applied rates were
evaluated through polynomial regression analysis. Bivariate and multivariate relationships
were investigated by means of a Pearson’s correlation matrix (CM) and factor analysis (FA),
respectively. Before entering the multivariate statistic data, they were pretreated according
to the method proposed by Capra et al. [27].

3. Results and Discussion

3.1. Soils

There was a CSS application rate by method interaction on soil micronutrient concen-
tration, except for Cu and Mn after the first harvest year (Supplementary Material Table S2;
Table 1). Specifically, at the end of the 2018 and 2019 harvests, CSS application in the WA
showed a linear increase in Zn and B soil concentration, while the same held true only for
B with CSS application under BR (Supplementary Material Table S2). For the 2018/2019
crop, a linear decrease was observed for Mn for CSS applied in the WA. Applications under
BR promoted a B quadratic adjustment, while the peak (0.36 mg dm−3) reached the highest
(12.5 Mg ha−1) CSS application rate (Table 1). This increase in B and Zn concentration with
increasing CSS application rates was expected since this by-product was characterized by a
higher concentration of both elements (vide supra).
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Table 1. Boron, Cu, Fe, Mn, and Zn concentration (mg dm−3) in soils at the end of the investigated
crop seasons.

Treatment
B Cu Fe Mn Zn

WA BR WA BR WA BR WA BR WA BR
______________________________________________________________ 2018 ___________________________________________________________________

Control 0.27 κ 1.9 κ 20 κ 18.7 κ 0.7 κ

CF 0.47 # 2.1 κ# 19 κ# 21.0 κ# 1.7 #

5.0 CSS 0.33 abA κ 0.27 bB κ 2.3 aA # 2.4 aA 22 abB κ 25 aA 20.4 κ# 21.8 κ# 1.5 abA # 1.3 aA #

7.5 CSS 0.32 bA κ 0.35 aA 2.3 aA # 2.1 aA κ# 21 abA κ# 21 bA κ# 22.1 κ# 21.6 κ# 1.0 bA κ 1.2 aA κ#

10.0 CSS 0.34 abA 0.31 abA κ 2.4 aA 2.5 aA 20 bB κ# 25 aA 19.4 κ# 23.3 # 1.7 aA # 1.1 aA κ

12.5 CSS 0.38 aA 0.36 aA 2.3 aA 2.4 aA 25 aA 20 bB κ# 21.4 κ# 23.1 # 1.7 aA # 1.1 aA κ

F-test

AM 3.82 NS 1.08 NS 0.76 NS 6.84 * 8.38 **
CSS rates 8.61 ** 4.11 * 2.32 NS 0.71 NS 2.73 NS

(AM) × (CSS) 3.21 * 1.94 NS 13.55 ** 2.22 NS 3.86 *
CV (%) 8.5 6.0 7.4 8.1 21.3

___________________________________________________________________2019____________________________________________________________________

Control 0.17 κ 1.1 κ 13.7 κ 12.0 κ 0.4 κ

CF 0.40 # 1.2 # 12.0 κ# 12.7 κ# 1.1 #

5.0 CSS 0.28 cA 0.28 bA 1.3 bB # 1.4 bA 17.0 aA 14.7 bB κ 13.7 aA κ# 13.7 aA κ# 1.2 cA # 1.2 cA #

7.5 CSS 0.24 cB 0.35 aA 1.7 aA 1.2 cB κ# 18.5 aA 11.0 cB κ# 12.4 abA κ# 10.6 bB κ 1.9 bA 1.1 cB #

10.0 CSS 0.39 bA# 0.37 aA # 1.4 bB 1.6 aA 14.3 bB κ 17.7 aA 11.1 bB κ# 15.1 aA 2.0 bA 2.0 aA
12.5 CSS 0.49 aA 0.34 aB 1.6 aA # 1.3 bcB # 18.0 aA 10.5 cB # 10.7 bA κ# 8.2 cB 3.1 aA 1.6 bB

F-test

AM 2.30 NS 29.41 ** 90.83 ** 0.08 NS 74.93 **
CSS rates 61.52 ** 7.06 ** 4.75 ** 32.93 ** 59.21 **

(AM) × (CSS) 41.90 ** 51.37 ** 52.96 ** 19.27 ** 30.28 **
CV (%) 7.0 4.8 6.9 7.8 11.7

Interpretation limits (1)

Low 0–0.20 0–0.2 0–4 0–1.2 0–0.5
Medium 0.21–0.60 0.3–0.8 5–12 1.3–5.0 0.6–1.2

High >0.60 >0.8 >12 >5.0 >1.2

*, ** for p ≤ 0.05, ≤ 0.01, respectively; NS = not significant; WA = whole area; BR = between rows. Different
lowercase and uppercase letters indicate significant differences between CSS rates (see from 5.0 till to 12.5 Mg ha−1,
wet basis) or application methods (WA vs. BR), respectively. The absence of letters is for non-significant differences
(p < 0.05). Different κ and # symbols along the same column show significant differences among treatments. wb =
wet basis. (1) [21].

There was a significant increase in soil concentrations of Mn-Zn and Cu-Fe-Zn after
the first and second crop years, respectively, when CSS was applied along WA (Table 1). In
general, applying increasing CSS rates, particularly 12.5 Mg ha−1, resulted in an increase
in most soil micronutrients for both years (Table 1), regardless of the application method.
By the end of 2018, soil B, Cu, and Fe concentrations were higher than in control plots. At
an application rate of 12.5 Mg ha−1, these elements reached their highest values. Most
micronutrient concentrations were lower or statistically similar to CF plots. Additionally,
soil in plots treated with CF received supplemental B and Zn and were thus already
enriched with these elements. Additionally, CSS application resulted in an increase in B in
these infertile Oxisols of the Cerrado ecoregion, which is noteworthy since these soils are
usually poor in B due to their low SOM content [3,6].

In terms of “interpretation limits” (Table 1; [21]), we observed a significant increase
in (bio)available concentration of all investigated micronutrients from the control (usually
characterized by “low” and “medium” values) vs. CF and CSS treated soils (“high” values).

Our findings strongly support the application of CSS in maize cultivation since it
increased soil micronutrient concentration, following both WA and BR methods. We also
demonstrated that the WA method should be preferred, as it is more practical and cost-
effective than BR, while resulting in strong crop performance.
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3.2. Plant
3.2.1. Leaf

When the CSS application method was compared with the CSS applied rate, several
interactions on leaf micronutrient concentrations at the end of both years of maize cultiva-
tion (Supplementary Material Table S3) were observed. Particularly, at the end of the first
agronomic year, as CSS rates increased, a linear decrease of Cu concentrations in maize
leaves (R2 = 0.95) was observed if the WA method was applied. Iron showed a negative
quadratic adjustment (ŷ = 208.825 − 23.030x − 1.260x2; R2 = 0.47 **) at the end of the first
year using the WA method. Conversely, B, Cu, and Mn concentrations showed a negative
quadratic adjustment, in both agronomic years, by using the BR method. A linear increase
in leaf Zn levels was only observed at the end of the first year. The reduction in B, Cu, and
Mn concentrations with a concomitant increase in Zn concentration, may be attributed to
well-known competitive/inhibition processes among these nutrients [28].

No significant differences were observed in micronutrient concentrations in maize
leaves sampled in the plots treated with CSS, CF, or the control, regardless of application
method (Table 2).

Table 2. Boron, Cu, Fe, Mn, and Zn concentration (mg dm−3) in leaves (1).

Treatment
B Cu Fe Mn Zn

WA BR WA BR WA BR WA BR WA BR
_______________________________________________________________ 2018 ________________________________________________________________________

Control 23 κ 19 κ 115 κ 66 κ 35 κ

CF 18 # 16 κ# 118 κ 76 # 39 #

5.0 CSS 14 aB 17 aA # 23 aA κ 21 aA κ# 121 aA κ 113 bcB κ 71 κ# 66 a κ 41 # 39 ab #

7.5 CSS 16 aA # 14 aA 21 abA κ# 14 bB κ# 119 aA κ 120 abA κ 73 κ# 66 a κ 40 # 36 b κ#

10.0 CSS 16 aA # 14 aA 16 bcA κ# 13 bA # 93 bB 108 cA κ 67 κ 57 b 39 # 39 ab #

12.5 CSS 17 aA # 16 aA # 15 cA κ# 18 abA κ# 122 aA κ 125 aA 71 κ# 68 a κ# 41 # 42 a #

F-test

AM 0.24 NS 7.24 * 4.48 * 20.54 ** 3.43 NS

CSS rates 1.77 NS 9.84 ** 57.59 ** 7.25 ** 4.52 *
(AM) × (CSS) 4.34 * 4.95 ** 12.97 ** 1.38 NS 2.85 NS

CV (%) 11.4 15.1 3.2 5.7 4.6
___________________________________________________________________2019____________________________________________________________________

Control 5 κ 6 κ 87 κ 36 κ 28 κ

CF 6 κ 7 κ 90 κ 37 κ# 24 κ#

5.0 CSS 5 aB κ 13 aA 6 aA κ 6 bA κ 99 bA # 88 bB κ# 28 aA 22 cB 24 κ# 27 κ#

7.5 CSS 5 aA κ 5 cA κ 7 aA κ 7 bA κ 90 bB κ# 104 aA 29 aA 30 abA κ 27 κ# 26 κ#

10.0 CSS 4 aB κ 9 bA 6 aB κ 11 aA 117 aA 102 aB 27 aB 35 aA κ# 29 κ# 29 κ#

12.5 CSS 5 aA κ 5 cA κ 7 aA κ 6 bA κ 89 bB κ# 99 abA # 29 aA 25 bcA 28 κ# 27 κ

F-test

AM 37.77 ** 6.33 * 0.06 NS 0.03 NS 0.07 NS

CSS rates 11.78 ** 7.46 ** 14.08 ** 6.94 ** 3.78 *
(AM) × (CSS) 13.03 ** 8.22 ** 13.51 ** 9.11 ** 1.15 NS

CV (%) 24.6 16.4 5.8 10.1 8.4
OCR (2) 10–25 6–20 30–250 20–200 15–100

For letters and symbols after mean values, see legend in Table 1; (1) Collection: full bloom (R1) period);
OCR = optimal concentration range according to (2) Raij et al. [21].

When such values were compared with those (optimal concentration range, OCR;
Table 2) suggested by Raij et al. [21], we observed that for all micronutrients, there were
neither deficiencies nor toxicities, as all concentrations were within the proposed ranges.
In fact, no visual symptoms of deficiencies or toxicities were observed in maize during
the study.

Overall, the CSS application method by rate interactions on leaf micronutrient concen-
trations was micronutrient-dependent, suggesting that soil-plant feedbacks and micronutri-
ent interactions through competitive/inhibition processes play a pivotal role in investigated
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micronutrient uptake. Most of the investigated micronutrients were within the adequate
range [21], indicating that maize was not negatively influenced even at 12.5 Mg ha−1 CSS
rate. Our findings suggest that CSS application promotes: (i) an adequate concentration
of micronutrients, thus avoiding their deficiencies while (ii) avoiding toxicity problems.
As for soils, few significant differences between application methods were observed in
terms of maize micronutrient concentrations; thus, the WA application method must be
recommended since it is the most cost-effective and less time-consuming to be implemented
relative to BR.

3.2.2. Plant Parameters

A clear interaction between CSS rate and WA application method on the number of
rows per ear (NRE) and crop yield (Supplementary Material Table S4) was observed at the
end of the first year. A positive quadratic adjustment and a linear increase were respectively
observed. Conversely, the BR method did not show significant residual effects.

We found that with CSS application, regardless of application method, mean values
for all investigated parameters (PH, HEI, SD, NRE, NGE, SW, and Yield) were significantly
higher than means under the control or similar means with CF (Table 3).

Table 3. Plant parameters and yield at the end of the investigated crop seasons.

Treatments
PH HEI SD NRE NGE SW Yield

WA BR WA BR WA BR WA BR WA BR WA BR WA BR

_______________________ cm _______________________ _______ g _______ ________ kg ha−1 ________

______________________________________________________________ 2018 ______________________________________________________________________

Control 187 κ 114 κ 2,0 κ 17 κ 465 κ 233 κ 5304 κ

CF 215 # 131 # 2,5 # 17 # 621 # 267 # 7767 #

5.0 CSS 211 # 207 # 128 # 125 # 2.3 2.3 17 bB κ 18 aA # 581 # 608 # 266 # 264 # 6359 bB κ 7493 aA #

7.5 CSS 212 # 205 # 129 # 130 # 2.4 # 2.4 # 17 aA # 17 aA # 631 # 633 # 267 # 269 # 7466 aA # 7523 aA #

10.0 CSS 214 # 212 # 128 # 131 # 2.3 2.4 # 17 aA # 18 aA # 621 # 614 # 270 # 266 # 7706 aA # 7424 aA #

12.5 CSS 209 # 213 # 131 # 129 # 2.4 # 2.4 # 17 aB # 18.0 aA # 616 # 646 # 277 # 273 # 7921 aA # 7717 aA #

F-test

AM 1.10 NS 0.00 NS 0.95 NS 18.51 ** 1.30 NS 0.21 NS 0.86 NS

CSS rates (wb) 0.98 NS 1.42 NS 2.27 NS 3.32 * 2.26 NS 1.14 NS 3.93 *
(AM) × (CSS) 1.43 NS 0.85 NS 0.72 NS 4.86 ** 0.62 NS 0.12 NS 2.97 *

CV (%) 2.7 3.2 2.4 2.0 5.4 4.1 7.4

___________________________________________________________________ 2019 ____________________________________________________________________

Control 214 κ 128 κ 1.8 κ 16 κ 523 κ 256 κ 8143 κ

CF 232 # 143 # 2.2 κ 16 κ 550 κ 290 # 9524 κ#

5.0 CSS 221 κ# 224 κ# 135 κ# 138 # 2.1 κ 2.0 κ 16 κ 16 κ 524 κ 555 κ 287 # 284 κ# 9722 κ# 8707 κ#

7.5 CSS 222 κ# 229 κ# 138 # 138 # 2.2 κ 2.2 κ 17 κ 17 κ 540 κ 563 κ 282 κ# 294 # 9373 κ# 10176 #

10.0 CSS 228 κ# 227 κ# 136 κ# 137 # 2.1 κ 2.0 κ 17 κ 16 κ 553 κ 529 κ 302 # 290 # 9473 κ# 10224 #

12.5 CSS 228 κ# 230 κ# 139 # 139 # 2.1 κ 2.1 κ 16 κ 16 κ 556 κ 663 κ 294 # 299 # 9696 κ# 9963 #

F-test

AM 1.16 NS 0.34 NS 1.04 NS 0.07 NS 0.51 NS 0.01 NS 0.42 NS

CSS rates (wb) 1.72 NS 0.62 NS 1.06 NS 1.06 NS 0.57 NS 1.33 NS 0.94 NS

(AM) × (CSS) 0.49 NS 0.18 NS 0.13 NS 1.06 NS 0.91 NS 1.18 NS 1.84 NS

CV (%) 6.5 3.0 8.7 3.9 6.6 4.7 9.3

For letters and symbols after mean values, see legend in Table 1; PH = plant height; HEI = height from ear
insertion; SD = stem diameter; NRE = number of rows per ear; NGE = number of grains per ear; SW = 1000 seed
weight; wb = wet basis.

These results demonstrated that infertile, dystrophic, acidic Tropical Oxisols could
receive several benefits when CSS is applied. As a matter of fact, it can be a possible
alternative to conventional fertilizers for maize production in the Cerrado ecoregion. While
previous research has demonstrated higher maize productivity with SS [29,30], this research
firstly demonstrated how maize productivity could be positively influenced after just two
years.

It must be emphasized that even low CSS rates positively impacted maize performance.
Our results indicate that CSS could be used in infertile Oxisols for maize, even at low rates,
with several benefits. Barbosa et al. [31] observed a positive residual effect on maize yields
when 36 Mg ha−1 of SS was applied; however, we observed more positive results at lower
application rates.
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3.3. Multivariate Statistics

The CM revealed the following results (Table 4): (i) only leaf B concentration (vide infra)
seems to have a negative effect on most of the investigated plant parameters, confirming
that with an increase, especially with the BR method (vide supra), a negative effect on
plants occurred; (ii) most of the other investigated elements in leaves did not affect plant
parameters, with the exception of Zn, in which an increase resulted in elevated values for
most plant parameters; (iii) an increase in most soil parameters (Fe excluded) favored an
increase in all of the investigated plant parameters, particularly for B, Cu, and Zn.

Table 4. Correlation matrix according to Pearson’s correlations coefficients.

B_L Cu_L Fe_L Mn_L Zn_L B_S Cu_S Fe_S Mn_S Zn_S

PH −0.53 *** NS NS NS 0.58 *** 0.45 ** 0.51 *** NS NS 0.53 ***
HEI −0.54 *** NS NS NS 0.36 * 0.36 * 0.33 * NS NS 0.40 *
SD −0.46 ** NS NS NS 0.53 *** 0.55 *** 0.47 ** NS NS 0.49 **

NRE NS NS NS NS NS NS 0.46 ** NS NS NS

NGE −0.46 ** NS NS NS 0.45 ** 0.38 * 0.44 ** NS NS 0.38 *
SW −0.55 *** NS NS NS 0.41 ** 0.39 * 0.49 ** NS 0.37 * 0.37 *

Yield −0.38 * −0.40 * NS NS NS 0.52 *** NS NS 0.34 * 0.37 *
*, **, *** for p ≤ 0.05, ≤0.01, ≤0.001, respectively; NS = not significant; _L, green = micronutrients concentration in
leaf; _S, orange = micronutrients concentration in soils; Plant parameters are reported in grey: PH = plant height;
HEI = height from ear insertion; SD = stem diameter; NRE = number of rows per ear; NGE = number of grains per
ear; SW = 1000 seed weight.

The aforementioned results should be interpreted in the context of soil–plant rela-
tionships and feedbacks. Such mechanisms are not always easily explainable without
additional analyses, such as scanning electron microscopy-based energy-dispersive X-ray
spectroscopy, particle-induced X-ray emission, X-ray fluorescence microscopy, laser abla-
tion inductively coupled plasma-mass spectrometry, nanoscale secondary ion mass spec-
troscopy, etc. [32]. Thus, further investigations will need to investigate such specific aspects,
which are beyond the scope of the current research. However, some early outcomes can be
outlined. First, looking at nutrient plant concentration and behavior, the reduction in B, Cu,
and Mn concentrations with a concomitant increase in Zn, may be attributed, as previously
reported, to well-known competitive/inhibition processes among these nutrients [33]. For
example, Zn is extremely active in biochemical processes with other elements [34]. In plants,
it can interfere with the control of ion absorption, causing a decrease in plant accumulation
of other elements. This was particularly true, among other elements, for B, Cu, and Mn,
whose uptake was especially depressed in the case of Zn presence in leaves. Such antago-
nistic interactions, in which the uptake of one element was competitively inhibited by the
other, might indicate the same carrier sites in the absorption mechanisms of these metals.
Thus, Zn presence in plants would be expected to reduce uptake of most nutrients, Fe and
P included. Indeed, Zn vs. Fe antagonism is widely known, with its mechanism similar to
the depressing effects of other trace metals [33]. There are two possible mechanisms for
this interaction [35]: (i) the competition between Zn and Fe in uptake processes; (ii) the
interference in chelation processes during the Fe-uptake and roots to shoots translocation.
On the other hand, Zn–Fe can be featured by a synergistic interaction in the cases of ade-
quate P supply; indeed, a relatively high accumulation of P and Zn in roots could promote
the precipitation of FePO4 in root tissue, thus accounting for Fe uptake [36]. In terms of
micronutrient behavior in the soil, it is well-known that the addition of sewage sludge
to soil modifies the distribution pattern of several nutrients (e.g., B, Cu, and Zn), with a
significant increase in easily assimilable and exchangeable forms [33]. This seems to be a
major reason why improvements in most plant parameters (PH, HEI, SD, NRE, NGE, and
SW) were observed (Table 4).

Through the factor analyses (FA; Table 5), five significant (eigenvalues > 1) factors
were produced. The obtained five-component model accounts for more than 65% of all data
variation. The F1 (variance: 19%) showed that most soil micronutrients were positively
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related to each other, confirming that these elements increased in the soil at increasing
rates of their main sources with particular reference to CSS. This factor clearly showed that
an increase in soil micronutrient concentrations was mainly due to CSS sources. Factors
from F2 up to F5, even of minor importance, reported important correlations that: (i) were
already explained through CM (F2, F4, and F5); (ii) emphasized the soil Zn role in increasing
maize yield (F3). Overall, these four factors underline the pivotal role of some soil/plant
micronutrient concentrations on selected plant parameters (for example, F3 represents the
key role of soil Zn in increasing maize yield).

Table 5. Factor analysis (FA) was extracted through the principal factor analysis (PFA) and rotation
method (bold loadings > 0.5).

Parameters
Factors

F1 F2 F3 F4 F5

PH −0.029 −0.010 −0.080 0.132 −0.872
HFP 0.140 −0.261 0.035 0.840 −0.063
NPP −0.106 −0.849 0.050 0.128 −0.081
NGP −0.014 −0.917 0.070 −0.067 −0.054
SW 0.214 0.187 0.376 0.103 −0.225
FPP −0.184 0.374 0.316 0.695 0.072

Yield 0.126 −0.108 0.889 −0.093 0.077
B_L −0.129 0.135 0.134 0.307 0.634

Cu_L 0.132 0.035 −0.299 0.706 0.047
Fe_L 0.118 0.156 −0.093 0.090 0.126
Mn_L 0.131 0.340 −0.268 0.129 0.510
Zn_L 0.126 0.005 0.225 0.104 −0.078
B_S 0.878 −0.039 0.122 0.098 0.016

Cu_S 0.884 0.107 0.141 0.031 0.055
Fe_S 0.695 0.125 −0.344 0.018 −0.269
Mn_S 0.313 0.159 −0.482 −0.032 0.014
Zn_S 0.613 −0.036 0.636 0.038 0.127

Variance (%) 19 14 14 10 8
Cumulative
variance (%) 19 33 46 57 65

Eigenvalues 3.180 2.387 2.306 1.778 1.405
Plant parameters are reported in grey (see Legend in Table 4); leaf micronutrient concentration in green; and soil
micronutrient concentration in orange.

Overall, the factor analysis confirmed the pivotal role played by some specific mi-
cronutrients in the observed variability. These elements, which were more concentrated
in CSS treatments and more effective with the WA method, exert a strong influence on
plant parameters; in particular, they improved plant performance with specific reference to
crop yield. Our results showed that low fertility Tropical Oxisols, cultivated with maize
and treated with CSS following the WA application method, had higher B, Cu, and Zn
concentrations than commercial treatments with mineral fertilizers.

Our outcomes warrant further investigation from a soil health perspective, too. Soil
health, i.e., the continued capacity of soil to function as a vital living ecosystem that
sustains plants, animals, and humans [36], is dramatically under threat, in part due to
the misuse of synthetic fertilizers. As recently well summarized by Pahalvi et al. [37],
managing soil health is a pivotal way of improving sustainable agricultural productions,
thus safeguarding the overall biodiversity and ecosystem quality. Soil health is regulated
and can be monitored by investigating physical-chemical properties. Thus, comparing soil
physical-chemical properties in areas cultivated for maize production and treated with
synthetic fertilizers vs. the same areas treated with increasing application of CSS provides
important information on how soil health can be affected. Modern agriculture as practices
in Brazil is largely dependent on the massive use of synthetic fertilizers [38]. Indeed, even
if increasing soil crop productivity, their continuous application can bring (i) a decline
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in SOM; (ii) crust formation and pH alteration with particular emphasis for acidification;
(iii) increase in pests, microbial activity, and diversity decrease; (iv) soil, air, and water
pollution as well as greenhouse gas emissions. Thus, as demonstrated in the present
research, a net decrease in the use of synthetic fertilizer application can be achieved by
applying low-cost, environmentally friendly by-products that align with a circular-economy
perspective [39–41]. By using CSS instead of CF, we obtained statistically comparable maize
yields (Table 3) of c.a. 7400–7700 kg ha−1; however, and extremely important, this is true
also at the lowest CSS applied rate (5.0 Mg ha−1; Table 3), meaning that even if a low
amount of CSS is applied the same crop yield observed in soils treated with the common
amount of CF used for the Cerrado unfertile soils, can be achieved. Additionally, using CSS
instead of CF, we reached maize yields ranging from 6300 (by applying 5.0 Mg ha−1 of CSS)
to 10,200 kg ha−1 (10.0 Mg ha−1), meaning an increase ranging from +18% to +88% in maize
yield when compared with the mean productivity for Brazilian agricultural areas treated
with conventional commercial fertilizers (~5400 kg ha−1; 2019–2020 harvest period [4]).
Overall, this has been achieved without neither negatively affecting soil physical-chemical
properties or creating soil pollution issues (vide supra). Substituting CF with CSS can enable
economic benefits, while also enhancing soil health in the Cerrado.

4. Conclusions

Considering the global agricultural importance of the Cerrado, improving soil fertility
while safeguarding its health represent a key socio-economic strategy for the entire world.
This is particularly true for an area suffering from natural unfertile soils that have been
intensively cultivated in part due to the availability of synthetic fertilizers, thus creating
important environmental concerns. We demonstrated that CSS could efficiently replace
conventional mineral fertilizers for the growth of a pivotal crop, such as maize. Our results
demonstrated that CSS application led to excellent plant and agronomic performance
without creating soil pollution issues, thus additionally safeguarding soil health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11081246/s1, Supplementary Material Table S1. Soil surface
(Ap; 0.0–0.25 m) main physical and chemical properties before the experiment started (mean ± SE,
n = 3); Supplementary Material Table S2. Equation for micronutrient behavior in soils; function was
obtained considering soil elements concentration after 2 years of maize cultivation vs. CSS applied
rates. Supplementary Material Table S3. Equation for investigated micronutrient behavior in leaves;
function was obtained considering leaf element concentration after 2 years of maize cultivation vs.
CSS applied rates; Supplementary Material Table S4. Equation for investigated plant parameters;
function was obtained considering investigated plant parameters after 2 years of maize cultivation vs.
CSS applied rates.
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Abstract: Intensive agricultural practices have led to intense soil degradation and soil fertility
losses. Many soil-borne diseases affect these intensive agricultural soils, worsening the physical-
chemical and fertility imbalances. Among the numerous pathogens, the genus Fusarium includes
members that destroy many crops, including Crocus sativus L., which also impairs the composition
and functions of the microbial communities. This work aimed to investigate, for the first time, the
bacterial communities of the rhizosphere of saffron in the presence and absence of fusariosis. The
rhizosphere of the saffron fields in the territory of L’Aquila (Italy) with and without fusariosis was
sampled and subjected to a microbiological analysis. Culture-dependent methods characterized the
fusariosis. The dehydrogenase activity assay was estimated. The metabarcoding of the 16S rRNA
gene, a metagenome functioning prediction, and a network analysis were also carried out. The results
showed that fusariosis, when it is linked to intensive agricultural practices, causes alterations in
the microbial communities of the rhizosphere. The culture-dependent and independent approaches
have shown changes in the bacterial community in the presence of fusariosis, with functional and
enzymatic imbalances. The samples showed a prevalence of uncultured and unknown taxa. Most
of the known Amplicon Sequence Variants (ASVs) were associated with the Pseudomonadoa (syn.
Proteobacteria) lineage. The composition and richness of this phylum were significantly altered by
the presence of Fusarium. Moreover, pathogenesis appeared to improve the ASVs interconnections.
The metagenome functions were also modified in the presence of fusariosis.

Keywords: saffron; fusariosis; soil microbial diversity; DHA assay; 16S metabarcoding; PICRUSt 2;
rhizosphere

1. Introduction

The growing demand for healthy food from a growing human population requires
intensive and efficient land management practices and crop control to reduce the disease
losses [1]. However, intensive farming practices are leading to the degradation of agricul-
tural soils and a gradual loss of their fertility [2]. Soil degradation leads, in turn, to the loss
of its functions. Climate change also increases the uncertain and complex management
of agricultural soil, jeopardizing its long-term viability, its biodiversity, and consequently,
its functions. The use of chemical fertilizers is considered to be the fastest way to increase
agricultural production. However, their cost and other constraints are increasingly discour-
aging farmers from using them [3]. These products also cause environmental pollution
with negative consequences for human health [4].

A lack of knowledge about soil biodiversity has been identified as the main limitation
to its management. The diversity of soil microbial communities can be critical for soil
resilience to various abiotic and biotic stressors [5]. Microorganisms in agricultural soils
have a significant impact on soil fertility, on the availability of nutrients for the plant and
on the suppression of soil-borne plant diseases [6]. The conservation and sustainable use of
soil microbial diversity are crucial for increasing agricultural productivity [7]. The loss of
biodiversity has a detrimental impact of productivity, stability, and services [4]. According
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to a recent meta-analysis, fields that undergo organic management practices had between
32% and 84% higher soil microbial biomasses (carbon, nitrogen, total phospholipid fatty
acids) and enzymatic activities (dehydrogenase, urease, protease) than the conventional
systems do. Crop rotation, legume intercropping, and organic inputs have all been linked
to an increased microbial richness in agricultural soils [8,9].

The loss of soil biodiversity is also linked to the increase in soil-borne diseases, es-
pecially in agricultural ecosystems, resulting in higher production costs [6]. Among the
numerous pathogens, the genus Fusarium includes members that cause diseases in many
plants. Fusarium diseases are mainly associated with vascular wilt, but several species
can cause the seedling wilt, crown, lower stem, root and seed rot, and head and seed
plague [10]. Fusarium spp. live saprophytically on the roots, stems, leaves, flowers, and
seeds of diseased and dead plants [11]. The fungus can survive on seeds (internal and
external) or as spores or mycelium in the dead or infected tissues [12]. Within the Fusarium
genus, Fusarium oxysporum is responsible for wilting of plants in nurseries and field crops,
causing significant losses [11].

Saffron (Crocus sativus L.) is one of the valuable crops that is affected by F. oxysporum.
Several fungal species belonging to Fusarium, Rhizoctonia, Penicillium, Aspergillus, Sclerotium,
Phoma, Stromatinia, Cochliobolus, and Rhizopus genera affect saffron [13]. Fusarium corm
rot, which is caused by F. oxysporum, is the most destructive disease [14]. Infected plants
die early, thus reducing the corm yield, quality, and flower and stigma production [15].
F. oxysporum causes vascular wilt, as shown by yellowing of the leaf, the loss of turgidity,
necrosis, wilting, and the plant’s death.

A Fusarium infection occurs when the mycelium or germinating spores penetrate the
plant’s roots, enter the xylem, and produce microconidia. Vascular vessels become clogged
by the accumulation of mycelium, spores, and the oxidation of the degradation products of
enzymatic lysis. Toxins can cause vein clearing (the loss of chlorophyll production along
the veins), a reduction in the photosynthesis rate, and tissue damage that leads to exces-
sive water loss through transpiration [16]. Fusariosis also harms microbial communities’
composition and functions. The recent study by Wang and collaborators highlighted the
increase in the carbon cycle, the Calvin cycle, and the expression of hemicellulose and
chitin degradation genes in watermelon soil in the presence of Fusarium [17].

The literature lacks studies which investigate the effect of Fusarium on the quality
of the saffron rhizosphere. We hypothesized that Fusarium is closely associated with
microbial biodiversity loss and a loss of the soil enzymatic activity. This work is aimed
at investigating the bacterial communities of the saffron rhizosphere in the presence and
absence of fusariosis. The rhizospheres of four saffron fields in the L’Aquila area (Italy)
with different extensions of fusariosis were sampled. We performed the metabarcoding of
16s rRNA and the dehydrogenase activity assay. The same analyses were also carried out
on the rhizosphere of six saffron fields without fusariosis.

2. Materials and Methods

2.1. Soil Sampling

Ten saffron fields in the L’Aquila territory (Abruzzo region) were subjected to rhi-
zosphere sampling at 20 cm depth in March 2021. Four fields showed evident fusariosis
(ZF1, ZF2, ZF3, and ZF4) and six fields showed no evident pathogenesis (ZB1, ZB2, ZB3,
ZB5, ZB6, and ZB7). Field ZF3 presented a less evident presence of the pathogen. Figure 1
shows an example of an evident fusariosis. Five soil sub-samples were collected per field
following a non-systematic pattern. The soil samples were sieved (<2 mm) to remove large
particles and plant debris. Fresh homogeneous aliquots of each soil sample were immedi-
ately processed for culturable approaches and enzymatic activity estimations. Ten aliquots
of each soil sample were stored at −80◦ until they were processed for DNA extraction.
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Figure 1. Geolocalization map of the sampling area and examples of a field and a corm with an
evident Fusarium pathogenesis.

2.2. Fusariosis Pathogenesis Confirmation

The Fusarium pathogenesis was confirmed by the corms inspection and microbial
culturable approaches. Three aliquots of each rhizosphere were processed in saline with 1%
of Tween 20 (1:10 ratio) in a bag mixer for 30 min. After centrifugation at 4000 for 10 min,
the supernatants were subjected to serial dilutions up to 1 × 10−7. One hundred μL of
each serial dilution were plated on Selective Fusarium Agar (SFA) [18] and incubated at
25 ◦C for five days. We confirmed the presence of Fusarium by macro- and microscopic
observations of hyphae and spores and by spores sub-culturing on Potato Dextrose Agar
PDA (Sigma-Aldrich, St. Louis, USA).

2.3. DNA Extraction and 16S rRNA Metabarcoding

The genomic DNA was extracted using 500 mg of homogenous samples according to
the manufacturer’s protocol (NucleoSpin®Soil, Macherey Nagel, Germany). The DNA con-
tent and purity were verified using a Nanodrop spectrophotometer (Thermo ScientificTM,
Waltham, MA, USA) and a Qubit fluorometer (Thermo ScientificTM, Waltham, MA, USA).
For each sample, the individual replicates were combined in an equimolar ratio. We per-
formed paired-end 16S rRNA community sequencing on the Mi-Seq Illumina technology
(Bio-Fab Investigation, Rome, Italy), focusing on the V3 and V4 regions of the 16S rRNA
gene [19]. The filtering was performed, and the readings were evaluated for reliability, and
they were counted. Using QIIME2 (qiime2-2020.2 version), the DADA2 plugin was used to
build ASV (Amplicon Sequence Variant) [20]. The V3–V4 specific area was taken from the
16S file that was obtained from the SILVA database (https://www.arb-silva.de/ accessed
on 14 October 2021) and used to train the classifier using the fit-classifier-naive-Bayes
plugin.

2.4. Prediction of Metagenomic Functions

PICRUSt 2 (Phylogenetic Investigation of Communities by Reconstruction of Unob-
served States) was used to predict the functional abundances based on 16S rRNA gene
sequencing data [21]. Pathways (PWYs), Enzyme on (EC) numbers and KEGG Orthologs
(KOs) were predicted based on the Amplicon Sequence Variants (ASVs) sequence pro-
files/abundances (BIOM file format obtained from qiime2). PICRUSt 2 was run as a plugin
of qiime2 with default parameters. We used the ALDEx2 (ANOVA-like differential ex-
pression) to perform the differential abundance testing between the two conditions with
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1000 Monte Carlo samples and a One-way ANOVA test. An effect size that is greater than 1
was used as a significance cutoff with or without the BH correction of the raw p values.

2.5. Network Analysis

The network analyses were performed following Barberán et al. [22]. Briefly, the
network was inferred by all of the possible Spearman rank correlation comparisons be-
tween the ASVs with more than 5 sequences (Spearman’s correlation coefficient > 0.6 and
statistically significant p value < 0.01). The networks were reconstructed with 90% identity
ASVs as nodes and strong and significant correlations between the nodes as edges. The
network topology was estimated by a metrics calculation (i.e., average node connectiv-
ity and path length, diameter, cumulative degree distribution, clustering coefficient, and
modularity) [23]. All of the statistical analyses were performed in the R program using the
Igraph [24] package. The networks were investigated and visualized using the interactive
platform Cytoscape v 3.9.1 [25] and the Network analyzer v 4.4.8 tool [26].

2.6. Dehydrogenase Activity of Soil Samples

The soil dehydrogenase activity (DHA) was estimated using fresh soil samples [27]:
Three aliquots of each soil sample (6 g) were placed in test tubes and mixed with 4 mL
of distilled water. Each mixture was supplemented with 120 mg of CaCO3 and 1 mL of
2,3,5-triphenyltetrazolium chloride (TTC 3% v/w) and incubated at 30 ◦C for 20 h. The
samples were filtered, and triphenylformazane (TPF) was extracted using ethanol. The
samples were then mixed and placed in the dark for 1 h. After incubation, the supernatant
was recovered by centrifugation and analyzed at λ = 485 nm (Multiskan GO™—Thermo
Scientific, Waltham, MA, USA). The results are expressed as μg TPF g™1 min™1 using a
calibration curve (y = 0.0132x + 0.0083, R2 = 0.999) [28].

2.7. Statistical Analysis

The data were analyzed by One-way Analysis of Variance (ANOVA) using the XLSTAT
2016 software (Addinsoft, Paris, France). Significant differences were calculated with
Tukey’s post hoc test at p < 0.05. The Primer 7 and PAST 4.03 software allowed the
realization of the taxonomic bar plots of ASVs at the phylum (1%) and genus (1.5%) level
and the calculation of alpha-diversity metrics (i.e., Simpson, Shannon, and Chao1 indices)
of the different samples.

3. Results

3.1. Fusariosis Pathogenesis Confirmation

The presence of Fusarium spp. was confirmed by the microbiological approaches in all
of the field where the pathogenesis was evident (ZF1-ZF4). Culturable fungal microflora
that were developed on SFA showed a huge presence of Fusarium. Based on the morphology
of the colonies that were observed, many species of Fusarium were present. Some of the
isolates were allegedly identified as Fusarium oxysporum based on the shapes and sizes
of the macro- and microconidia, the presence or absence of chlamydospores, the colony
pigments, and the growth rates on PDA. No Fusarium isolates were observed from the
fields where a pathogenesis was not evident.

3.2. DNA Extraction and 16S rRNA Metabarcoding

The 16S rRNA gene metabarcoding results were used to investigate the diversity of
the samples. As shown in Table 1, a high diversity was present both in the presence and
absence of Fusarium (Shannon H values higher than 3.5). Sample ZB1 showed more taxa
numbers (1454), individuals (36,299), and a high diversity index (Chao-1) when it was
compared to the other field with fusariosis. Sample ZF3 presented the highest taxa values,
individuals, and diversity indices.
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Table 1. Diversity indices calculated on 16S rRNA metabarcoding results using PAST 4.03 software.
Soil samples were labelled as follows: ZB1–ZB7 labels refer to saffron soil samples without evident
Fusarium pathogenesis; ZF1–ZF4 labels refer to saffron soil samples with Fusarium pathogenesis.

ZB1 ZB2 ZB3 ZB5 ZB6 ZB7 ZF1 ZF2 ZF3 ZF4

Taxa_S 1454 1283 1141 1309 958 1345 1155 1270 2078 1440
Individuals
(Richness ASVs level) 36,299 32,009 27,465 28,502 19,823 27,429 25,296 25,719 54,646 33,625

Shannon_H 6.657 6.538 6.41 6.594 6.281 6.657 6.501 6.587 6.994 6.761
Evenness_eˆH/S 0.5354 0.5385 0.5329 0.5583 0.5577 0.5788 0.5765 0.5711 0.5248 0.5996
Chao-1 1455 1285 1142 1310 958.7 1347 1156 1271 2080 1444

In the Table: ASVs, Amplicon Sequence Variants.

The 16S rRNA metabarcoding results were also investigated for their structure and
abundance. Figure 2 depicts the ASVs composition and abundances at the phylum level.
Most of the ASVs were associated with Pseudomonadota (syn. Proteobacteria), which was
followed by Actinobateriota. Latescibaterota and Entotheonellaeota were only present in
ZB1 and ZB3, respectively. Firmicutes was only present in ZB2, ZB3, ZB6, and ZF2. Except
for ZF1, Nitrospirota was absent in all of the ZF samples. Patescibacteria was not found
in ZB3 and all of the ZF samples (except for ZF3). Except for ZB2, Planctomycetota was
always present. The other phyla were shared by all of the samples.

Figure 2. Taxonomic bar plot of the relative abundances of bacterial phyla associated with individual
soil samples.

Given the relevance of the Pseudomonadota phylum within the bacterial communities
in all of the fields, we carried out a comparison of the abundances and the composition of
the ASVs based on the Fusarium presence/absence variable. Figure S1 shows the stacked
boxplot of the comparison. In the presence of Fusarium, the abundances of the ASVs were
lower than those that were observed in the absence of pathogenesis. This finding suggested
a strong impact of the pathogenesis on richness of the ASVs associated with this phylum.

At the genus level, the common ASVs were those that were associated with uncultured
and unknown taxa, which was followed by Sphingomonas. (Figure 3). Vicinamibacteraceae,
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WD2101_soil_group, RB41, and Rubrobacter were also present in almost all of the samples.
However, the occurrence of some genera was absent in the presence of Fusarium pathogen-
esis, i.e., Streptomyces, Bacillus, Pseudomonas, 67-14, Nitrospira, Nocardioides, Adhaeribacter,
Flavisolibacter, Flavobacterium, Gaiella, KD4-96, MB-A2-108, Stenotrophomonas, Terrimonas,
and UTCFX1. Ellin6067 and Massilia were only present in the samples under the Fusarium
pathogenesis condition.

Figure 3. Taxonomic bar plot of the relative abundances of bacterial genera associated with individual
soil samples.

3.3. Prediction of Metagenomic Functions

Some of the metabolic predictions showed differential abundances in the presence of
fusariosis. Figures 4–6 show the Bland–Altman and Effect plots that shows the relationship
between the effect size and the BH-adjusted p values (0.05 and 0.01) in the tests that were
carried out for the ECs, KOs, and PWYs. Among the ECs (Figure S2), the most significant
differences were observed for feature 1 (EC:1.1.1.21—aldose reductase) and 10 (EC 1.12.2.1—
cytochrome-c3 hydrogenase), which were higher in the presence of Fusarium, and 11
(EC:1.3.1.87—3-(cis-5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate dehydrogenase) and
61 (EC:4.3.1.29—D-glucosaminate-6-phosphate ammonia-lyase), which were higher in the
absence of fusariosis.
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Figure 4. The panel on the left displays the Bland–Altman plot that shows the relationship between
Abundance and Difference of the predicted pathways (PWYs) in the presence (lower part) and
absence (upper part) of fusariosis. The panel on the right displays the Effect plot that shows the
relationship between Difference and Dispersion of the PWYs between Fusarium and not Fusarium
groups. In both of the plots, the ‘not significant’ features are shown in grey and black. Features that
are statistically significant are in red.

Figure 5. Network analyses carried out on saffron rhizosphere samples in the absence (on the left)
and presence (on the right) of fusariosis. Jaccard similarity coefficient: 4.
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Figure 6. Dehydrogenase activity expressed as μg TPF g−1 DW. Results followed by the same case
letter (a-c) are not significantly different according to Tukey’s HSD post hoc test (p > 0.05).

Among the KOs (Figure S3), in the presence of Fusarium, higher counts were recorded
for features 2 (K00011—aldehyde reductase), 24 (K02205—arginine/ornithine permease),
63 (K11601—manganese transport system substrate-binding protein), and 65 (K11638—two-
component system, CitB family, response regulator CitT). In the absence of pathogenesis,
the higher counts were recorded for the features 28 (K02791—maltose/glucose PTS system
EIICB component), 32 (K03078—3-dehydro-L-gulonate-6-phosphate decarboxylase), and
35 (K03290—MFS transporter, SHS family, sialic acid transporter).

Among the PWYs (Figure 4), the features 9 (PWY-922—mevalonate pathway I) and
10 (THREOCAT-PWY—L-threonine metabolism) showed higher values in the presence of
fusariosis. The pathogenesis altered the other PWYs, with low counts for features 1 (P124-
PWY—fructose 6-phosphate pathway), 2 (P125-PWY—superpathway of (R,R)-butanediol
biosynthesis), 3 (P161-PWY—acetylene degradation—anaerobic), 4 (PWY-5415—catechol
degradation I), 5 (PWY-5529—superpathway of bacteriochlorophyll a biosynthesis), 6 (PWY-
5531—3,8-divinyl-chlorophyllide a biosynthesis II—anaerobic), 7 (PWY-7254—TCA cycle
VII—acetic acid-producers), and 8 (PWY-7315—dTDP-N-acetylthomosamine biosynthesis).

3.4. Network Analysis

The DNA sequencing results were also processed through a network analysis. Figure 5
shows the networks that were obtained for the soil samples with the presence and absence
of Fusariosis. At a Jaccard similarity coefficient of four, the samples without Fusarium had a
total number of 270 nodes and 989 edges, with an average number of neighbors of 7647. In
the presence of pathogenesis, higher counts of all of the features were observed (295 nodes;
2750 edges; 19,010 average number of neighbors). A complete dataset of both groups was
also processed, creating a network with the sample distribution base on the ASVs features.
Figure S4 shows the interconnections among all of the samples based on shared ASVs
occurrences, highlighting a close relationship among all of the samples.

3.5. Dehydrogenase (DHA) Activity

The results of the dehydrogenase activity analysis are presented in Figure 6. The
samples without fusariosis showed the highest values of DHA (p < 0.05), with results of up
to 79.43 μg TPF g−1 DW. Conversely, the samples with Fusarium pathogenesis recorded the
lowest values (p < 0.05). No significant values among the fields with Fusarium pathogenesis
were recorded (p > 0.05), with an average value of 36.84 μg TPF g−1 DW. Moreover, these
samples presented the lowest values when they were compared to those from the field
without the presence of Fusarium.
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4. Discussion

The microbial diversity of the rhizosphere of numerous plants, including saffron, has
been thoroughly studied using culture-dependent and -independent methodologies [29–32].
In this study, we investigated the changes that occur in the saffron rhizosphere in the pres-
ence of the Fusarium pathogenesis. The L’Aquila territory (Abruzzo, Italy) and the “Zafferano
dell’Aquila” (a fine saffron variety with a protected designation of origin) were taken as a
case study. Overall, the results suggest that pathogenesis does not affect the rhizosphere
microbiota diversity and richness. However, the microbial communities’ composition,
structure, and functions were altered in the presence of the Fusarium pathogenesis.

A presence of uncultured and unknown taxa were found by the 16S rRNA gene
metabarcoding. Uncultured microorganisms are widespread in many environments. They
play a crucial role in the biodegradation of various pollutants [33]. They constitute a buried
group with a genetic resource encoding for unique valuable functions [34]. The uncultured
microorganisms are detected in numerous degradation processes, allowing for efficient
bioremediation by targeting specific eco-physiological niches [33]. The metagenomic
analysis of chronically polluted coastal sediments revealed the presence of aromatic-ring-
hydroxylating oxygenase, which is related to the biodegradation of polycyclic aromatic
hydrocarbon as reported by Loviso et al. [35]. Likewise, the genus Sphingomonas is a part of
the rhizospheric population, and it is linked with several biogeochemical cycles in soil and
different metabolic processes [36].

In addition to the uncultured and unknown taxa, most of the ASVs were associated
with Proteobacteria. In the presence of fusariosis, the abundances and taxa associated
with this phylum were lower than they were in the healthy soils. Proteobacteria is one
of the major phyla in soil ecosystems [37–40], with them having crucial roles in fixing
the atmospheric nitrogen and mineralizing numerous soil nutrients [36]. This decrease in
Proteobacteria is in line with the findings of Zhou et al., who described the same behavior
for the banana rhizobacteria microbiota that were infected by Fusarium [41]. Proteobacteria
have been closely associated with fungal pathogenesis in other plant species. Shen et al.,
for example, found that the prevalence of Proteobacteria is linked to the epidemic stage of
wheat take-all disease [42]. In our case, this phylum is the most prevalent in the saffron
rhizosphere, with it comprising up to 54% of the population [43].

At the genus level, the exclusive presence of Bacillus, Nitrospira, Pseudomonas, and
Streptomyces in the healthy rhizospheres may indicate the presence of beneficial bacteria.
These genera are usually associated with plant growth-promoting rhizobacteria (PGPR),
with important biostimulant and biocontrol abilities [44–47]. Conversely, the exclusive
presence of Massilia in the rhizospheres of samples with the pathogenesis indicates an
unhealthy status. This lineage exploits the succession of communities within niches [48]
and colonizes fungal hyphae with biocontrol effects [49]. A similar situation has been
described by Bejarano-Bolívar et al., who described the presence of genera with biocontrol
abilities (e.g., Myxococcus or Lysobacter) in the rhizosphere of an avocado that was affected
by Fusarium oxysporum [50].

Metabolic predictions have highlighted interesting differences between the two groups.
Among the most relevant, the increase in the mevalonate pathway I shows the increase
in isoprenoids production. These compounds induce plant growth and development and
improve the plant’s response to environmental stresses [51]. The increase in the metabolic
pathway of L-threonine indicates a high functionality of the community in the degradation
of this amino acid [52]. These aspects suggest an attempt to counteract the pathogenesis by
the microbial community of the rhizosphere.

Conversely, low counts of the other pathways related to the degradation of sugars,
aromatic compounds, and hydrocarbons, the production of acetic acid and chlorophylls,
and the production of sucrose metabolites were found. In line with previous reports,
these decreases show less functionality in the presence of pathogenesis. The study by
Wu et al., for example, described a higher carbohydrate and energy biosynthesis and
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secondary metabolites in the Panax notoginseng rhizosphere in the presence of root-rot
fungal pathogens [53].

The network analyses also confirmed the attempt to counter the pathogenesis by the
rhizosphere microbial community. Pathogenesis appeared to improve the ASVs intercon-
nections. As reported by the recent review by Siles et al. [54]. Conversely, in the presence
of pathogenesis, the organic matter increases due to the plant’s degradation. This organic
supply can increase the saprotrophic and symbiotrophic interactions, producing a more
interconnected network [54].

Estimating the soil enzymatic activity is another approach to studying soil micro-
bial community alterations [55–58]. Among the soil enzymes, dehydrogenase converts
hydrogen from an organic material to inorganic acceptors, oxidizing the soil organic sub-
stances [59,60]. Soil DHA is an early indicator of alterations in the biological activities of the
soil [55]. In the presence of Fusariosis, we found a significant decrease in DHA, which is in
line with the results of the literature. Low DHA values have been described for the tomato
rhizosphere in the presence of fusariosis by Dukare et al. [61]. A negative correlation be-
tween the DHA and pathogenesis was also found in the tomato rhizosphere in the presence
of Ralstonia solanacearum pathogenesis [62]. This finding confirms the lower metabolic
functions of the saffron rhizosphere in the presence of fusariosis which is underlined by the
prediction of metagenome functions.

5. Conclusions

In this study, we investigated changes in the saffron rhizosphere in the presence of
Fusarium pathogenesis. The territory of L’Aquila (Abruzzo, Italy) and Zafferano dell’Aquila
were taken as a case study. We found alterations in the microbial communities’ composition,
structure, and functions in the presence of the Fusarium pathogenesis. Conversely, the
diversity and richness of the rhizosphere microbiota were not affected. A predominance
of uncultured and unknown taxa was reported using 16S rRNA gene metabarcoding,
and most of the ASVs were attributed to Proteobacteria. Additionally, the taxa that are
associated with this phylum were less abundant in the presence of fusariosis when they
were compared to those in the healthy soil. A noteworthy presence of beneficial bacteria
in the healthy rhizospheres and genera with biocontrol activity in the samples with the
pathogen was signaled. The microbial taxa interconnections have also improved to face
the pathogen attack. To our knowledge, this is the first study on the saffron rhizosphere.
Therefore, our findings help to enrich the knowledge on the subject. These results can be
used as a starting point for future investigation on the microbial taxa of the rhizosphere that
are involved in the suppression of Fusarium wilt disease to be used as sustainable disease
control agents. Intensive agricultural practices are the most common reasons for fusariosis.
Intensive managements, that are associated with agrochemical use and mechanizations,
unbalance the soil microbiota and lead to outbreaks of fungal pathogenesis. For this reason,
future studies should also investigate the agricultural practices that are used in fields to
highlight the possible variables that induce Fusariosis and to develop strategies to avoid or
control Fusarium outbreaks early.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11112048/s1, Figure S1: Stacked bar plot that shows the
comparison of the abundances of ASVs associated with Pseudomonadota (syn. Proteobacteria)
phylum of the group with Fusarium pathogenesis (on the left) and without (on the right). In the
bar plot, the main classes and orders of the phylum are shown. Figure S2: Comparisons of the
enzymes (ECs) predicted in the presence (lower part) and absence (upper part) of fusariosis. The
panel on the left displays the Bland–Altman plot that shows the relationship between Abundance
and Difference of the ECs. The panel on the right displays the Effect plot that shows the relationship
between Difference and Dispersion of the ECs. In both plots, the ‘not significant’ features are shown
in grey and black. Features that are statistically significant are in red. Figure S3: Comparisons of the
gene copies (KOs) predicted in the presence (lower part) and absence (upper part) of fusariosis. The
panel on the left displays the Bland–Altman plot that shows the relationship between Abundance
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and Difference of the KOs. The panel on the right displays the Effect plot that shows the relationship
between Difference and Dispersion of the KOs. In both plots, the ‘not significant’ features are shown
in grey and black. Features that are statistically significant are in red. Figure S4: Co-occurrence
network analysis of sample carried out on the complete dataset of saffron rhizospheres with the
absence and presence of fusariosis. Maximum Jaccard similarity coefficient.
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Abstract: Meeting the growing demand for agricultural production while preserving water regulation
ecosystem services (WRES) is a challenge. One way to preserve WRES is by adopting multifunctional
landscape approach. Hence, the main objective was to evaluate the role of forest patches (FP) in
preserving WRES in tropical landscapes dominated by oil palm plantations. The SWAT model was
used to evaluate the essential WRES, such as water yield (WYLD), soil water (SW), surface runoff
(SURQ), groundwater recharge (GWR), and evapotranspiration (AET). Due to a compaction, soils
in monoculture plantation have higher bulk density and lower porosity and water retention, which
decrease WRES. Conserving FP among oil palms evidently improves WRES, such as decreasing SURQ
and rain season WYLD and increasing GWR, SW, AET, and dry season WLYD. FP has sponge-like
properties by storing water to increase water availability, and pump-like properties by evaporating
water to stabilize the microclimate. Mature oil palm also has pump-like properties to maintain
productivity. However, it does not have sponge-like properties that make water use more significant
than the stored water. Consequently, a multifunctional landscape could enhance WRES of forest
patches and synergize it with provisioning ecosystem services of oil palm plantations.

Keywords: evapotranspiration; groundwater recharge; soil compaction; surface runoff; soil water retention

1. Introduction

Local, countrywide, and global consumption of processed palm oil products, such
as food, bioenergy, and oleochemicals, is growing along with population growth. This
phenomenon implies changing the tropical landscapes into oil palm plantations (Elaeis
guineensis Jacq.) that are intensively cultivated in monocultures [1]. The area of oil palm
plantations has rapidly grown and is expected to increase in the coming years [2,3]. On
the one hand, the development of oil palm plantations rapidly contributes to the local,
regional, and national economies [4]. In addition, oil palm plantations also positively
impact increasing access to the basic needs of local communities, such as school facilities,
health facilities, road networks, and electricity networks. However, if the development of oil
palm plantations is not appropriately managed, it can cause the degradation of ecosystem
services, and reduce the ecological function of a landscape and harms the socio-economic
community [5].

Previous research has examined the transformation of natural ecosystem into agroe-
cosystem, especially monoculture plantations on ecosystem services changes [2]. One of the
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noticeable changes in ecosystem services in agroecosystem is the change in water regulation
ecosystem services (WRES) caused by soil compaction due to intensive land management.
These phenomena encompass a decrease in infiltration [6], an increase in surface runoff
in the rainy season [3], and a decrease in groundwater availability in the dry season [5].
Therefore, meeting the growing demand for oil palm production while maintaining WRES
is a challenge faced by a landscape of oil palm plantations related to sustainable and cli-
mate smart agriculture. Ecosystem services support human well-being through provision,
regulation, and culture formed by natural and manufactured ecosystem structures and
processes. WRES are essential ecosystem services in sustainable development, referring
to the quantity, quality, and time of water stored in and out of an ecosystem [7]. WRES
benefits are freshwater supply, flood and drought protection, electrical power generation,
irrigation, and aquatic ecosystem maintenance.

One way to balance landscape WRES is by applying a multifunctional landscape
approach through preserving the remnants of forest patches among oil palm plantations.
These forest patches can be in secondary dryland forests, riparian vegetation, or agro-
forestry systems designated as high conservation areas (HCV). A multifunctional landscape
is a landscape that can serve multiple ecosystem services simultaneously, not only for
provisioning services, but also for regulation, cultural, and support services [8]. The multi-
functional landscape is a more realistic soil and water conservation approach to optimize
ecosystem services, where forest patches serve water regulation and the other regulation ser-
vices, while oil palm plantations serve crop production. Furthermore, the multifunctional
landscape maps the potential trade-offs and win-win synergies between each ecosystem
service, especially provisioning services, which often conflict with regulation, cultural, and
support services [9].

Since forest patches are essential to maintain the balance of landscape-scale WRES, it
is necessary to model and evaluate WRES on oil-palm-dominated landscapes assisted by
dynamic models, such as the Soil and Water Assessment Tools (SWAT). The strength of
SWAT in WRES simulation is that SWAT has complex parameters and model structures,
which can simulate the influence of physical processes in the soil–plant–atmosphere contin-
uum that affects WRES on the watershed scale. However, field observation cannot measure
several SWAT parameters, so the uncertainty that arises from parameter justification needs
to be evaluated and considered in selecting the output model to be interpreted. In addition,
previous research on oil palm ecosystem services generally does not differentiate between
mature and young oil palms, especially in the same tropical landscape [3,6]. Oil palm
growths affect the WRES changes through soil compaction due to intensive cultivation
activities and canopy development that affect hydrological parameters at the hydrologic
response unit (HRU) scale.

Because of soil compaction, WRES evaluation in this study needs to consider the
soil hydrological characteristics and soil water retention curve (SWRC) at the smallest
analysis unit, which significantly affect the WRES due to different land use and crop
dynamics. The relationship between SWRC and WRES occurs at the HRU scale, where
the information from SWRC is inputted into the .sol database to update the HRU value.
SWRC was closely related to calculating the retention parameter of curve number and
the range of soil moisture dynamics that affect surface runoff, evapotranspiration, and
soil water storage. When the HRU as the smallest unit of analysis is updated, the sub-
basin parameters are automatically updated through the routing mechanism. Therefore,
this study answers the main research question: how do forest patches preserve WRES in
landscapes dominated by oil palm plantations? Consequently, two objectives can be drawn
in this study: (i) analyze the soil water retention characteristics of each land use due to
land management, and (ii) evaluate the role of forest patches among oil palm plantations
in preserving landscape-scale WRES.
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2. Materials and Methods

2.1. Study Area

The study area is a tropical lowland located in Jambi Province, Sumatra, Indonesia.
This area has an equatorial rainfall type, characterized by two peaks of the rainy season
(December and April) and one dry season (July) in one year. This area also has the same
soil type, Hapludults, with a sandy clay loam texture (50% sand, 30% clay, and 20% silt)
with small topography variations. The land use is dominated by oil palm plantations
that are cultivated in monoculture, both mature plants (MOP) and young plants (YOP)
(Figure 1). Among oil palm plantations, there are remnants of forest patches (FP) in the
form of secondary dryland forest, riparian vegetation, and agroforestry plot separated from
their primary ecosystem. The agroforestry plot (AGF ex-MOP) was planted in 2013 from
former mature oil palm plantations.

 
Figure 1. Study area.

A micro-watershed with 13 sub-basins is delineated as a system boundary for WRES
modeling. The micro-watershed has an area of 19.1 square kilometers, and lies between
1◦55′38.7′′–1◦58′48.3′′ S and 103◦11′50.1′′–103◦15′34.8′′ E, with an elevation range of 27–106 m
above sea level. An automatic water level recorder (AWLR) is installed in the watershed
outlet to support model simulation. The water level data are converted into streamflow
through river morphometry measurements and derived into a rating curve equation using
an exponential regression model. The rating curve equation obtained from the measure-
ment is Q = 0.091 exp (2.309 H), where Q is the river discharge and H is the water level.
In addition, an automatic weather station (AWS) is installed to record hourly and daily
meteorological parameters. Meteorological measurements were carried out from January
2015 to January 2021 as model input, while river discharge measurements were carried out
from November 2020 to January 2021 for model calibration and validation.

2.2. Soil Water Retention Characteristics

Undisturbed soil samples at a 0–15 cm depth were collected using soil ring samples
with a 7.5 cm diameter and 5 cm height. The total sample for each land use was 8, consisting
of 4 different locations and 2 replications for each location. There is a 20 × 20-m plot at
each location divided into four quadrants with a size of 10 × 10 m. The soil was sampled in
quadrants II and IV, which were diagonal to each other so that, at each location, there were
two replications. Because the landscape tends to be homogeneous in terms of elevation,
topography, and soil types, we assume that differences in ecosystems are only caused by
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land use, so that differences in land use can represent different ecosystems at the landscape
level. The undisturbed soil samples were used to determine soil hydrological properties,
such as bulk density and porosity, and soil water retention characteristics at a particular
suction matrix, such as pF 0 (saturated water content), pF 1, pF 2, pF 2.54 (field capacity),
and pF 4.2 (permanent wilting point). Analysis of variance (ANOVA) at the 95% level
was used to analyze differences in soil hydrological properties between land uses in the
study area. The post hoc test with Duncan’s multiple range test (DMRT) is conducted if the
ANOVA showed a significant difference (p-Value < 0.05).

The observed soil hydrological properties are then used to model the soil water reten-
tion curve (SWRC). SWRC is a curve that describes the characteristics of soil water retention
by defining the relationship between volumetric water content (θ) and matrix suction (ψ).
SWRC is generally defined using a mathematical equation or pedotransfer function (PTF).
The most used mathematical equation for SWRC modeling is the van Genuchten equation,
as follows in Equation (1) [10]. The modeled SWRC was then calibrated using the observed
moisture content at the pF 1, pF 2, pF 2.54, and pF 4.2.

θ(h)= θr+
θs − θr

(1+ |αH|n)m (1)

where θ(h) is the soil moisture content (%v/v), θr is the residual water content (%v/v), θs is
the saturated water content (value equal to the total porosity) (%v/v), α is the parameter
related to the air entry value into the saturated soil (pF) (ψα = suction where the saturated
soil goes through desaturation or air begins to enter the soil pores), H is the matrix suction
in a logarithmic scale (pF), and n and m are parameters related to the slope of the curve at
the inflection point (ψ > ψα). The slope of the curve (S) (1/pF) as a function of n and m can
be calculated based on Equation (2) [11]:

S = −n (θs − θr)
[

1+
1
m

]−(1+m)

(2)

Furthermore, soil data obtained from sampling and laboratory analysis besides SWRC,
such as soil permeability, texture, and soil organic matter, were used as inputs for the
.sol database inside the SWAT model. The observed soil data are beneficial for WRES
simulation, such as determining the initial abstraction, curve number calculation, soil
moisture modeling, and evapotranspiration modeling.

2.3. Evaluation of Water Regulation Ecosystem Services
2.3.1. Simulation of Water Regulation Ecosystem Services Using SWAT Model

The Soil and Water Assessment Tools (SWAT) is a physically based, computationally
efficient, spatially semi-distributed, and temporally continuous watershed-scale ecosystem
services model [12]. This model was developed to simulate various essential ecosystem
services related to soil and water in the watershed system, such as water regulation, nu-
trient retention, and erosion prevention [13,14]. Compared to other WRES models, SWAT
integrates the hydrological model with soil and land management attributes, such as ir-
rigation, drainage, fertilization, tillage, and pesticides, and integrates the hydrological
model with the crop growth model to simulate dynamic WRES related to crop growth
phases [15]. SWAT also simulates various soil and water conservation options and ecologi-
cal disturbance scenarios, such as land-use change and climate change (LUCCC), that affect
ecosystem services [16]. It makes the SWAT results widely used as decision-making tools
related to natural resources and environmental management, such as flood and drought
mitigation, hydroelectric power generation, and LUCCC impact assessment [15].

SWAT simulates WRES, such as soil moisture (SW), surface runoff (SURQ), lateral flow
(LAT), baseflow (BFO), and actual evapotranspiration (AET) from observed precipitation
(PRECIP) data based on conservation of mass [14], as described by the Equation (3):

220



Land 2022, 11, 818

SWt = SW0 +
t

∑
i=1

(PRECIP − SURQ − AET − LAT − BFO) (3)

The WRES simulation follows three stages: (i) preprocess, (ii) run model, and (iii) calibration,
validation, and sensitivity analysis, and (iv) model uncertainty test.

(i) Preprocess

The preprocess stage includes watersheds, sub-basin, and river networks delineation
from elevation data and defining HRU from land cover, soil type, and slope class. This
stage resulted in a 19.1 km2 study area enclosed within the micro-watershed boundary.
SWAT divides a basin into sub-watersheds and divides a sub-watershed into hydrological
response units (HRU) as the smallest unit of analysis. The defined HRUs are 105 HRUs,
consisting of four land covers, one soil type, three slope classes, and thirteen subbasins
combinations. HRU explains the spatial heterogeneity of WRES within the watershed
and improves the accuracy of WRES modeling for any combination of land use, land
management, vegetation type, soil, topography, and climate [17–19].

The spatial data needed to run the SWAT model is a digital elevation model (DEM)
with a resolution of 8 m from the Indonesian Geospatial Information Agency, land use
derived from Landsat-8 OLI with a resolution of 30 m, and soil map unit with a scale
of 1:50,000 from Indonesian Center for Agricultural Land Resources Research and Devel-
opment. The temporal data needed are daily meteorological data, including rainfall, air
temperature, solar radiation, wind speed, and humidity. The preprocessing stage also
includes attribute data input, which includes land cover (.mgt), soil physical properties
(.sol), rainfall (.pcp), and potential evapotranspiration (.pet).

(ii) Run Model

• Rainfall–Runoff Modeling

SWAT simulate WRES on each HRU and accumulate the WRES from HRU-scale
to landscape-scale by a flow routing mechanism [20]. SWAT provides several methods
for modeling WRES and flow routing, where users can choose which combination of
methods best suits the characteristics of the study area and the availability of input data.
One commonly used method for rainfall –runoff modeling related to WRES is the Soil
Conservation Services-Curve Number (SCS-CN) [21]. SCS-CN is a powerful method of
generating surface runoff, calculated based on Equation (4):

SURQ =
(PRECIP − I a)

2

(PRECIP − I a +S)
, where S = 254

(
100
CN

−1
)

(4)

where SURQ is surface runoff (mm), PRECIP is precipitation (mm), S is retention parameter
(mm), and Ia is an initial abstraction (mm). Initial abstraction is generally assumed 0.2 of
the retention parameter, and SURQ only occurs when P > Ia (SURQ = 0 if P ≤ Ia). The three
main processes considered in initial abstraction are rainfall interception, surface depression
storage, and infiltration before the surface runoff. The retention parameter (S) can be
approximated as the curve number (CN) function.

Due to land use, hydrologic soil group, and land management differences, the CN
value varies spatially. The daily CN value will also vary temporally by considering the
antecedent moisture condition (AMC): CN1—dry (wilting point), CN2—average moisture,
and CN3—wet (saturated). The CN2 value for each land use, HSG, and land management
was taken from the reference table [22], while CN1 and CN3 were calculated from CN2 [14].
SWAT provides two CN methods, original CN and modified or plants evapotranspiration
curve number. In a previous study, [23] concluded that these two methods simulated
streamflow with equally good performance but differed in simulating soil moisture and
evapotranspiration in the lowland tropical landscape. The original CN was chosen in this
study because it has a better performance in simulating various elements of WRES than
CN-ET, including river discharge, soil water storage, and evapotranspiration.
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• Evapotranspiration Modeling

Evapotranspiration as WRES also plays an important role in managing water re-
sources, such as irrigation, soil–vegetation–atmosphere interactions, and spatial–temporal
ecosystem productivity. The calculation of evapotranspiration by SWAT is based on the
water continuity equation (Equation (3)) and potential evapotranspiration (PET). The
PET model used to derive the actual evapotranspiration (AET) is the Penman–Monteith
equation [14,24]. The PET calculation is automatically carried out by the SWAT model,
which requires a database of maximum and minimum air temperature (.tmp), solar radia-
tion (.slr), wind speed (.wnd), air humidity (.rhu), and crop parameters, such as leaf area
index (LAI). The above meteorological datasets (.tmp, .slr, .wnd, and .rhu) were obtained
from direct measurements in the field through weather monitoring with AWS. In addition,
LAI data were also obtained from sampling using a hemisphere camera. After PET calcula-
tions, SWAT estimated AET as the sum of the canopy evaporation, soil evaporation, and
plant transpiration [25]. Plant transpiration was calculated as a function of LAI, canopy
evaporation was calculated as a function of rainfall interception, and soil evaporation was
calculated as soil moisture [14].

(iii) Calibration, Validation, and Sensitivity Analysis

Simulations were carried out from 2015 to 2021, where 2015 was used to warm up
the model. Calibration and validation are based on observed streamflow because they
are easy to measure and cost-effective compared to soil moisture and evapotranspiration
measurements [26]. The first half discharge data are used for the calibration, and the
rest are used for validation. The calibrated parameters are parameters that cannot be
measured directly in the field, such as groundwater and routing parameters. In contrast,
parameters that can be measured directly, such as soil parameters and leaf area index are
not calibrated. Compared with manual calibration, which takes a long time and fails to
identify parameter sensitivity, this study uses automatic calibration based on the sequential
uncertainty fitting-2 (SUFI-2) algorithm using SWAT-CUP software [27]. Sensitivity analysis
was conducted to determine the response of changes in SWAT parameters to the significance
of output changes and explore all possible combinations of model parameters to investigate
output responses related to interactions between parameters [28]. The combination of
model parameters and possible outputs are paired and sampled using the Latin hypercube
sampling (LHS) to map their interactions and measure the output uncertainty caused by
each parameter combination [27].

The Nash–Sutcliffe efficiency (NSE) is a selected model reliability indicator for the
objective function during the parameter calibration. NSE value is used to measure how
accurately the model’s simulation results can describe the observation data. The NSE
values range from -∞, which indicates that the model is highly inaccurate, to 1, which
indicates that the model is highly accurate.

NSE = 1 −

⎡
⎢⎣∑n

i=1 (Y
obs
i − Ysim

i

)2

∑n
i=1 (Y

obs
i − Yobs

)2

⎤
⎥⎦ (5)

where Yobs is observation data and Ysim is simulation data.
The model’s reliability can also be evidenced by the coefficient of determination

(R-squared) value. R-squared values range from 0, indicating that the model is highly
inaccurate, to 1, which indicates that the model is very accurate. There are no absolute
criteria for assessing the reliability of the hydrological model described in the literature.
However, some criteria are commonly used, such as the NSE criteria by Moriasi [29] and
R-squared criteria by Ayele [30].

(iv) Model Uncertainty Test

Evaluation of the model reliability is not enough to ensure that the SWAT outputs are
genuinely accurate and interpreted directly. Furthermore, it is also necessary to evaluate the
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model uncertainty that arises due to the complexity of the SWAT structures and parameters
justification. Therefore, the SUFI-2 algorithm in SWAT-CUP introduces statistical indicators
to investigate the structural uncertainties associated with model simulations [27]. The
uncertainty that arises during the parameter calibration is measured by the p-Factor, which
is the percentage of observed data that is within 95% predictive uncertainty between the 2.5
and 97.5 percentiles (95PPU), and the r-Factor, which indicates the thickness of the mean of
95PPU divided by the standard deviation of the observed data [31]. Besides looking for
high NSE and R-squared, it is also necessary to obtain the largest possible p-Factor and the
smallest possible r-Factor. The uncertainty of the model is acceptable if the p-Factor > 0.7
and the r-Factor < 1.5 [27].

2.3.2. Model Limitation

Parameter optimization during the calibration process can produce identical stream-
flow output with observational data regardless of how the best-fit parameters affect other
WRES imprecision. However, because this research is related to the WRES assessment,
the interpretation of the model is based not only on streamflow outputs, but also on other
WRES, such as soil water storage and actual evapotranspiration. This study obtained
precipitation as WRES input and other meteorological data for ETP calculation from the au-
tomatic weather station. Due to the limitations of time-series observations of soil moisture,
we used soil hydrological properties and soil water retention curve (SWRC) observations
from soil sampling and laboratory analysis. We linked the information from SWRC with the
SWAT model by updating the .sol database for each HRU as soil moisture modeling inputs.

SWAT simulates soil moisture for each HRU as soil water storage (mm) in the range of
available water content (AWC) between permanent wilting point (WP) and field capacity
(FC). To obtain %v/v AWC, SWAT divides the soil water storage (mm) by soil depth
(SOL_Z) and adds this result with WP. Based on the information of FC, AWC, and WP
from SWRC, the results of the soil moisture from the SWAT model are still within the
AWC range following AWC observations on each land use. Finally, we consider the
actual evapotranspiration as the “residual” component of the modeling based on the water
balance equation (AET = PRECIP − Q − ΔSW). Therefore, the reliability of meteorological
observation, SWRC observation, streamflow modeling, and SW modeling would affect the
reliability of AET. If we could appropriately simulate the streamflow and soil moisture,
then the AET value can also be relied upon in the future WRES evaluation.

2.3.3. Water Regulation Ecosystem Services Indicators

One of the further challenges of evaluating WRES is determining the essential indi-
cators based on the SWAT outputs. In general, precipitation is distributed into three flow
elements: surface runoff (SURQ), groundwater recharge (GWR), and actual evapotranspi-
ration (GWR), and the remainder is stored as soil water storage (SW).

PRECIPn = SURQn+GWRn +AETn+SWn (6)

where PRECIP is precipitation (mm), SURQ is surface runoff (mm), GWR is groundwater
recharge (mm), AET is actual evapotranspiration (mm), SW is soil water storage (mm), and
n is land use type. Water yield is also an essential WRES indicator related to the sustainable
management of water resources in the study area and the key to river regime sustainability.
Water yield is the amount of water from each ecosystem that enters the water body. Water
yield has a complex component consisting of surface runoff with a short concentration time
and lateral flow and baseflow with a longer concentration time.

WYLDn= SURQn+LATn+BFOn (7)

where WYLD is water yield (mm), SURQ is surface runoff (mm), LAT is lateral flow (mm),
and BFO is baseflow (mm). This study also assesses WRES on an annual and seasonal
scale. Temporal assessment is significant to rationally allocate water resources, especially

223



Land 2022, 11, 818

in areas with seasonal excess water and drought. SWAT output is separated based on the
monthly rainfall pattern in one year, the wet month when the rainfall is >200 mm, and the
dry month when the rainfall is <100 mm.

3. Results

3.1. Soil Water Retention Due to Soil Compaction

Bulk density and porosity as indicators of soil compaction were observed in the topsoil
because agricultural activities that encourage soil compaction occurred in the topsoil
compared to the subsoil. The results showed that the total pore size had the following
trends: FP (55.6%) > YOP (52.0%) > AGF Ex-MOP (49.3%) > MOP (49.0%), while the
bulk density trends as follows: MOP (1.35 g/cm3) > AGF Ex-MOP (1.34 g/m3) > YOP
(1.12 g/cm3) > FP (0.91 g/cm3). The relationship between bulk density and soil porosity
is reciprocal, meaning that higher bulk density will reduce porosity and vice versa. FP
has the lowest bulk density and highest porosity, while MOP has the highest bulk density
and lowest porosity. Based on ANOVA and DMRT, FP bulk density was significantly the
smallest (p ≤ 0.05), and soil porosity was significantly higher (p ≤ 0.05) than YOP, MOP,
and AGF Ex-MOP (Table 1). YOP bulk density was significantly different (p ≤ 0.05) from
MOP and Ex-AGF, but YOP porosity was not significantly different (p > 0.05) from FP and
MOP. Meanwhile, although slight differences exist, AGF Ex-MOP and MOP bulk density
and porosity were not significantly different (p > 0.05)

Table 1. The mean values of soil porosity and bulk density.

Land Use

Porosity (%v/v)
Bulk Density *

(g/cm3)
Soil Organic
Matter (%)Total Pore

Space *

Dainage Pores Water Holding Pores

pF 1 * pF 2 * pF 2.54 * pF 4.2 n

FP 55.6 ± 1.2 a 48.7 ± 3.4 a 40.0 ± 3.1 a 34.7 ± 3.6 a 17.8 ± 4.9 0.91 ± 0.06 a 5.45 ± 0.82 a

YOP 52.0 ± 3.1 a,b 43.8 ± 6.6 b 36.5 ± 4.6 a,b 31.6 ± 4.8 a 16.8 ± 4.2 1.12 ± 0.12 b 4.15 ± 2.39 a,b

MOP 49.0 ± 5.9 b 39.7 ± 3.9 b 32.8 ± 3.2 b 25.5 ± 2.2 b 17.0 ± 2.8 1.35 ± 0.16 c 2.49 ± 0.15 b

AGF Ex-MOP 49.3 ± 3.6 b 41.7 ± 3.6 b 36.1 ± 3.0 b 26.9 ± 2.7 b 17.9 ± 2.2 1.34 ± 0.09 c 5.19 ± 0.04 a

* Significant at 95% level, n: not significant at 95% level; a,b,c the mean value followed by the same letter does not
differ according to the DMRT.

Due to soil compaction, bulk density and soil porosity changes lead to soil water
retention changes. The soil water retention curve (SWRC) is presented in Figure 2, showing
that the trend of soil water retention in each land use has the same pattern as the soil
porosity: FP > YOP > AGF Ex-MOP > MOP. These results indicate that FP has the highest
soil water retention for the same potential energy, while MOP has the lowest. The best-fit
van Genuchten parameters obtained from adjustments are presented in Table 2. The SWRC
of each land use has high suitability to the observed data, evidenced by a low RMSE and
high R-squared. Parameter n and m are related to the slope of the retention curve after the
inflection point (S) [10]. The S value is often used to describe the level of soil degradation.
The results obtained indicate that MOP has the highest level of soil degradation, while FP
is the lowest.

Table 2. SWRC best-fit parameters and S value.

Land Use
θs

(v/v)
θr

(v/v)
α

(pF)
n m

S
(pF−1)

R-Squared
RMSE
(v/v)

FP 0.556 0.000 0.110 1.142 0.124 0.0533 0.983 0.0151
YOP 0.520 0.000 0.200 1.129 0.114 0.0463 0.976 0.0153
MOP 0.490 0.000 0.437 1.120 0.107 0.0413 0.983 0.0112
AGF 0.493 0.000 0.230 1.123 0.110 0.0425 0.964 0.0172
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Figure 2. Soil water retention curve for each land use.

Precipitation or irrigation that infiltrates the soil column moves freely under gravi-
tational force, and the soil matrix binds the rest by adhesive force. Gravitational water
occupies drainage pores or the range of soil pores between saturated water content and field
capacity (pF 0–pF 2.54). FP has higher saturated water content, field capacity, and drainage
pores (Table 3), which indicates that FP has more gravitational water than YOP and MOP.
Land use with high gravitational water has implications for higher percolation, lateral
flow, and groundwater recharge, evidenced by SWAT simulation. Soil water bound by soil
matrix is divided into available water content (AWC) or water that plant roots can still
absorb and permanent wilting point (PWP) or water that plant roots can no longer absorb.
AWC is the water content occupying the available water pore space (pF 2.54–pF 4.2). In
contrast, PWP occupies the unavailable water pore space (pF ≥ 4.2). FP with high available
water pore space implies that FP holds more soil water as a source for the plant uptake and
evapotranspiration process.

Table 3. Soil water retention characteristic on the same potential for each land use.

Porosity (v/v) FP YOP MOP AGF Ex-MOP

Solid layer 0.45 0.49 0.53 0.52
Total pore space 0.55 0.51 0.47 0.48

pF 1 0.51 0.46 0.40 0.43
pF 2 0.39 0.35 0.31 0.33

Field capacity 0.33 0.30 0.27 0.29
Permanent wilting point 0.19 0.18 0.17 0.18

Residual pores 0.00 0.00 0.00 0.00
Drainage pores 0.22 0.21 0.20 0.20

Fast drainage pores 0.16 0.16 0.16 0.15
Low drainage pores 0.06 0.05 0.04 0.05
Water holding pores 0.33 0.30 0.27 0.29
Available water pores 0.14 0.12 0.10 0.11

Unavailable water pores 0.19 0.18 0.17 0.18

3.2. Evaluation of Water Regulation Ecosystem Services

The performance of the calibrated SWAT was evaluated quantitatively based on
statistical values compared to the criteria recommended by Abbaspour [27], Moriasi [29],
and Ayele [30]. The model’s performance is very good for the calibration period, with
NSE 0.78 and R-squared 0.88, and suitable for the validation period, with NSE 0.67 and
R-squared 0.83. In addition, the p-Factor and r-Factor obtained are 0.93 and 1.09 for the
calibration period and 0.75 and 0.54 for the validation period, which indicates model
uncertainty is acceptable. Based on the literature review, 20 key parameters capable of
capturing the main WRES were selected for calibration and 7 of them were the most
sensitive parameters based on the Latin hypercube sensitivity analysis (Table 4).
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Table 4. SWAT calibrated parameters with their range and best-fit values.

Parameters a
Range Value Sensitivity b

Lower Bound Upper Bound Calibrated Value Initial Value Unit T-Stat p-Value

v_ESCO * 0 1 0.739 - 3.721 0.000
v_EPCO 0 1 0.875 - −0.739 0.460

v_CANMX 0 10 8.67 mm −0.479 0.632
r_CN2 * −0.25 0.25 1.190 [22] - 16.053 0.000
r_OV_N −0.2 0.2 0.842 [32] - −0.138 0.890
r_SOL_Z −0.9 0.9 1.38 Obs. mm −0.014 0.988
r_SOL_K −0.2 0.2 0.948 Obs. mm/h 0.129 0.897

r_SOL_AWC −0.2 0.2 0.932 Obs. % −0.650 0.516
r_SOL_CBN −0.2 0.2 1.159 Obs. % −0.123 0.902
r_SOL_BD * −0.2 0.2 1.139 Obs. g/cm3 −2.500 0.012

v_LAT_TTIME 0 180 63.54 day −0.178 0.854
v_ALPHA_BF 0 1 0.347 1/h 0.230 0.818
v_GWQMN * 0 5000 3615 mm −2.108 0.035
v_REVAPMN 0 500 296.5 Mm 0.435 0.664

v_GW_DELAY 0 300 294.9 day −1.932 0.054
v_RCHRG_DP 0 1 0.197 - −1.888 0.060

v_CH_N1 0 0.3 0.274 - −1.493 0.136
v_CH_N2 * 0 0.3 0.122 - −2.192 0.029

v_ALPHA_BNK * 0 1 0.187 day 22.880 0.000
v_CH_K2 * 0 500 31.5 mm/h −19.43 0.000

a v: replace the initial value with the best fit value, r: multiply the initial value with the best fit value; b parameter
is sensitive when p-value < 0.05 or |T-stat| > Tα. df, sensitive parameters is marked with (*).

All calibrated parameters are CN2 (curve number in average moisture conditions)
and OV_N (manning “n” coefficient for overland flow) that related with surface runoff;
LAT_TTIME (lateral flow travel time) that related with lateral flow; CH_N2 (manning “n”
coefficient for the main channel), CH_K2 (hydraulic conductivity of the main channel),
CH_N1 (manning “n” coefficient for tributary channel), and ALPHA_BNK (riverbank reces-
sion constant) that related with streamflow routing; CANMX (maximum canopy storage),
ESCO (soil evaporation compensation coefficient), and EPCO (plant uptake compensa-
tion factor) that related evapotranspiration; ALPHA_BF (baseflow recession constant) and
GWQMN (baseflow threshold) that related baseflow; and REVAPMN (water level threshold
for “revap”), GW_DELAY (groundwater delay), and RCHRG_DP (deep aquifer recharge
proportion) that related groundwater recharge. Furthermore, all observed parameters are
SOL_BD (bulk density), SOL_Z (soil depth), SOL_AWC (available water content), and
SOL_CBN (soil carbon content) that related with soil water storage; and SOL_K (soil perme-
ability) that related with lateral flow. The initial value of curve number (CN2) and manning
“n” coefficient for overland flow was based on frequently used and reliable literature.

The three parameters related to streamflow routing are sensitive parameters, such
as ALPHA_BNK, CH_K2, and CH_N2. ALPHA_BNK is the most sensitive parameter,
indicated by the highest |T-stat|. The sensitivity of ALPHA_BNK, CH_K2, and CH_N2 in-
dicates that the flow routing mechanism influenced by these parameters greatly determines
the streamflow dynamics. The sensitivity of CH_K2 shows that streamflow is strongly influ-
enced by two-way interactions between rivers and shallow aquifers, where this interaction
only occurs in intermittent rivers. Rivers receive water from shallow aquifers when the
water table level exceeds the riverbed (rainy season) and lose water when the water table
level is less than the riverbed (dry season). The velocity of streamflow filling and loss is
closely related to the hydraulic conductivity of the soil layer (CH_K2) between the riverbed
and the shallow aquifer. CH_N2 is also a sensitive parameter, which means that the flow
velocity greatly determines the streamflow dynamics. Higher CH_N2 is associated with
lower flow rates, while lower CH_N2 is associated with higher flow rates.

The other sensitive parameters are CN2, ESCO, SOL_BD, and GWQMN. As a compo-
nent that dominates streamflow during the rainy period, the magnitude of surface runoff
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calculated from the CN2 value also dramatically determines the streamflow dynamics.
Previous studies have shown that CN2 is always a sensitive parameter when the CN
method is chosen for rainfall–runoff modeling [33]. CN2 has a value range of 0 to 100, but
the often-used values are in the range of 25 to 98. The greater the CN2 value, the higher
the surface runoff generated from rainfall. SOL_BD is a parameter that determines the
soil water retention, which then implies soil moisture dynamics. Soil moisture dynamics
are necessary to determine surface runoff, lateral flow, groundwater recharge, and actual
evapotranspiration. The last, GWQMN, is a parameter that determines the amount of
baseflow, where baseflow only appears if the water table exceeds the GWQMN value.

The SWAT model used for evaluating WRES has been updated by adding soil water re-
tention characteristics in the HRU scale. The soil water retention characteristics are inputted
into soil attributes and affect the WRES value for each HRU after HRU definition. Soil
water retention characteristics are related to calculating curve number retention parameter
and defining soil moisture ranges that affect surface runoff, evapotranspiration, and soil
water storage. Precipitation that reaches soil surface is generally allocated as surface runoff
(SURQ), groundwater recharge (GWR), actual evapotranspiration (AET), and soil water
storage (SW) (Figure 3). In forest patches (FP), 43% of rainfall is distributed as SURQ, 26%
as AET, 25% for GWR, and 6% for SW. On the other hand, on mature (MOP) and young
(YOP) oil palm plantations, rainfall is allocated as SURQ by 56% and 73%, respectively,
AET by 25% and 20%, and GWR 15% and 6%. The temporal WRES of each land use is
presented in Figure 4. The area of agroforestry plots on former oil palm plantations (AGF
ex-MOP) are very narrow (<0.01% of the watershed area) and do not significantly affect the
landscape-scale water regulation. Therefore, these agroforestry plots are not included in
the SWAT simulation.

 
(a) (b) 

 
(c) 

Figure 3. Distribution of water regulation ecosystem service elements in forest patches (a), mature
oil palm (b), and young oil palm (c). Notes: SURQ: surface runoff, AET: actual evapotranspiration,
GWR: groundwater recharge, STORAGE: soil water storage.
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(a) 

 

(b) 

(c) 

Figure 4. Hydrograph of water regulation ecosystem service elements: surface runoff (a), groundwa-
ter recharge (b), actual evapotranspiration (c).

Forest patches have better annual and monthly water regulation ecosystem services
than young and mature oil palm plantation, evidenced by lower surface runoff, higher
groundwater recharge, higher actual evapotranspiration, higher soil water storage, lower
water yield in wet months, and higher water yield in dry months (Figure 5). The annual
water yield of forest patches is 2222 mm, while the average water yield in the wet and
dry months is 220 mm and 95 mm. On the other hand, the annual water yield of young
and mature oil palms were 2465 mm and 2298 mm, wet month water yields were 261 mm
and 237 mm, and dry month water yields were 55 mm and 72 mm. The annual and
seasonal water yield difference between forest patches and young oil palms is very high
and decreases as the oil palm grows [2]. An increasing proportion of surface runoff and
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decreasing lateral flow and base flow to water yield in mature and young oil palm led
to more significant water yield seasonal variability despite the higher annual water yield
(Figure 6). It means that oil palm water yield became concentrated in the rainy season and
decreased in the dry season, while forest patch water yield is less concentrated in the rainy
season and more available in the dry season.

 

(a) 

 

(b) 

 

(c) 

Figure 5. Annual (a) and seasonal mean of water regulation ecosystem services (b) and water yield
(c) elements.

Actual evapotranspiration (AET) is also an essential component of water regulation
ecosystem services because it plays a role in crop production (water use) and microclimate
regulation. The annual actual evapotranspiration of forest patches was 819 mm, with a
monthly average of 77 mm in the wet months and 42 mm in the dry months. Meanwhile,
the annual actual evapotranspiration of young and mature oil palms was 773 mm and
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616 mm, with an average of 73 mm and 59 mm in the wet months and 34 mm and 27 mm
in the dry months. Potential evapotranspiration (PET) and soil moisture at available water
content (AWC) are the main limiting factors for AET. PET limits AET in saturated soil,
while AWC limits AET in unsaturated soil. FP with higher AWC implied higher AET
than YOP and MOP. AET values were also controlled by canopy cover, quantified by the
leaf area index (LAI) by direct measurement using hemispherical photos. FP with LAI
of 3.1 ± 0.63 had a higher AET than MOP with LAI of 1.27 ± 0.19. FP has an AET/PET
coefficient of 0.79, while YOP and MOP are 0.59 and 0.75. This value means that, from 100%
of the potential energy allocated for the evapotranspiration, FP uses 79% of that energy to
evaporate water, while YOP uses 59%, and MOP uses 75% of potential energy.

 
(a) (b) 

 
(c) 

Figure 6. Distribution of water yield elements in forest patches (a), mature oil palm (b), and young
oil palm (c).

4. Discussion

Water regulation through the soil layer is the primary process determining how
much water flows above the soil surface as surface runoff, returns to the atmosphere
through evapotranspiration, percolates into the aquifer, and is stored in the soil pores.
Water regulation is highly dependent on soil quality, which is indicated by soil physical,
chemical, and biological characteristics that vary in response to soil type, land use, and
topography [34]. Water regulation through the soil layer also determines the retention
and movement of dissolved nutrients, such as nitrogen, phosphorus, and other nutrients.
Therefore, good soil quality needs to be maintained to support sustainable agricultural
production. However, a decline in soil quality has led to soil degradation mainly caused by
anthropogenic pressures exerted on the soil beyond its carrying capacity [35].

Soil degradation in the form of soil compaction is a consequence that must be accepted
due to natural ecosystem changes to agroecosystems, especially intensive monoculture-
cultivated agriculture, such as oil palm plantation [34,36,37]. Soil compaction in the oil
palm plantation is characterized by increased soil bulk density and decreased porosity. On
the other hand, ecosystem restoration, such as preserving forest patches or constructing
agroforestry islands inside oil palm plantations, will improve soil structure indicated by
increased porosity and reduced bulk density. Soil compaction in oil palm plantations is
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mainly caused by soil structure detachment by heavy equipment pressure during soil
tillage and harvesting, intensive inorganic fertilization, and decreased soil organic matter
and vegetation cover [38].

Soil compactions have negative effects on the soil hydrological process, such as re-
duction in infiltration capacity, permeability, and soil water retention that are related with
reduction in soil porosity [39]. This phenomenon, in turn, has implications for the WRES
degradation. For example, [5,6] reported that the study area experienced increasing prob-
lems related to water resources due to soil compaction in the oil palm plantations area,
especially the prolonged water shortage during the dry season. Based on soil water reten-
tion curve interpretation in MOP and YOP, the soil is degraded and less structured, has less
organic matter, and has fewer pores. Meanwhile, FP has more structured soil with more
organic matter and pores. According to [10], the SWRC slope (S value) correlates with soil
bulk density, porosity, and soil organic matter content. The S value will decrease along
with the increase in bulk density, decrease in porosity, and decrease in soil organic matter.

The higher the level of soil compaction causes the macropores to be further reduced,
which causes the field capacity, saturated water content, and gravitational water to de-
crease. The decrease in gravitational water can be seen from the reduction in lateral flow,
percolation, and groundwater recharge. On the other hand, soil compaction effect on water
retention characteristics is almost nonexistent at very high matrix suction (pF > 4.2) [40,41].
Water retention at a high matrix suction tends to be influenced by textural pores associated
with clay content. The higher the clay content, the higher the water retained by the textural
pores [42,43]. Soil compaction only changes the structural pores and does not change
the textural pores. For the same soil type, although there are differences in AWC and
gravitational water associated with different land management, the water content in the
high suction matrix tends to be the same [41]. The modeling result proves that each SWRC
in the study area tends to coincide when the suction matrix gets bigger, considering that
the soil in the study area has relatively the same clay content based on soil texture data
from ground survey and laboratory analysis.

The SWAT model assisted in WRES upscaling from plot scale to landscape and time-
series scale. Nevertheless, before further interpretation, it is necessary to evaluate the
reliability and uncertainty of the SWAT model through the NSE, R-squared, p-Factor, and
r-Factor values. The objective function used during the calibration process is NSE, meaning
that the value of each parameter will be optimized from its initial value until it reaches the
desired NSE value. When the system calculates the NSE value, other statistical values, such
as R-squared, will be adjusted automatically. In addition, evaluation of model uncertainty
is vital because SWAT provides various combinations of parameters and different modules
that produce one of the same outputs but produce another very different output. A good
model has a p-Factor value close to 1 and an r-Factor close to 0. However, to achieve a
p-Factor close to 1, it is necessary to sacrifice the r-Factor value away from 0 and vice
versa. Therefore, the best simulation is defined as a balanced p-Factor and r-Factor when it
reaches the highest NSE or R-squared value during the calibration and validation periods.
To obtain a balanced p-Factor and r-Factor, we must arrange each model parameter’s lower
and upper bound.

The calibrated results are still in the reliable category, and the model’s uncertainty is
still acceptable, although the model’s performance for the validation period is not as good
as the calibration period. The high values of R2 and NSE in the calibration and validation
periods indicate that the combination of calibrated parameters can capture the impact of
daily meteorological input variations on daily WRES. Moriasi [29] stated that the model
reliability criteria could be used for model evaluation on a monthly and daily scale. How-
ever, with the same criteria, model evaluation for the daily scale is generally more robust
than the monthly one because daily output captures variations and inaccuracies arising
from parameter uncertainty and daily input data (SWAT input must be daily, while the
output can be daily or monthly). More accurate modeling of WRES for micro-watersheds
can serve as complementary information for environmental restoration planning at a local
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scale. A calibrated and validated SWAT model with acceptable reliability and uncertainty
was then used to evaluate WRES of forest patches among oil palm plantations.

Due to differences in soil water characteristics, WRES varies significantly between
land uses and management, so changes in land use and management will impact the
change in WRES at the landscape scale by routing mechanism. Meanwhile, oil palm is the
dominant vegetation in the study area, so the oil palm WRES dominates the landscape-
scale water balance. In addition, given the dynamic nature of oil palm plantations that
are cleared and replanted every 20–30 years, it is necessary to understand oil palm WRES
when they are young and mature (yielding plants). The transition from YOP to MOP
occurs 8–9 years after planting, when the canopy cover reaches its maximum value. The
simulation consistently shows that preserving forest patches among oil palm plantations has
implications for decreasing SURQ, increasing SW, and increasing GWR. These advantages
have consequences for the FP water yield, which is higher in the dry month and lower in
the wet month so that water is still available in the dry season and does not overflow in the
rainy season. The lower WYLD FP compared to oil palm plantations is supported by [44],
which states that the response to WYLD in agroecosystems, especially oil palm plantations,
tends to be higher than forest.

SURQ occurs when rainfall exceeds infiltration capacity, where lower infiltration ca-
pacity in oil palm due to soil compaction causes more rainfall to turn into SURQ. Two
factors caused the higher SURQ, and more insufficient water storage in oil palm plantations:
(1) decreased canopy and ground cover in YOP and (2) intensive soil compaction due to
MOP harvesting. The decrease in canopy and ground cover causes the SURQ rate to be
faster, time concentration to be shorter, and decreases in interception and evapotranspira-
tion. The rough surface of the FP due to more complex canopy stratification, cover crops,
and forest litter, besides lowering SURQ, also slows the SURQ rate on its way to water
bodies. High infiltration capacity also increases LAT, BFO, and GWR. LAT and BFO are
relatively stable WYLD parts because they have a slower rate to reach water bodies. LAT
and BFO indicate the river regime’s sustainability as it maintains water availability on a
day without rain. An increase in SURQ and a decrease in LAT, BFO, and GWR lead to an
increased risk of flooding, drought, and water scarcity. Changes in local water resources
had become a significant concern for residents in the study area, including the faster shal-
low aquifer depletion during the dry season and high fluctuations in streamflow between
the rainy and dry season [5].

High canopy cover in FP also causes soil water storage to be more compensated for
the AET besides reducing SURQ. High AET increases the initial abstraction and decreases
rainfall proportion for SURQ. Three factors limit AET: PET as an energy source, AWC as a
water source, and stomatal conductance (correlated with LAI) as the water pump from the
soil to the atmosphere. A high AET causes soil moisture to decrease faster so that the soil
water changes more quickly from saturated to unsaturated conditions. Unsaturated soils
have higher infiltration rates and lower SURQ rates than saturated soils, so, in this case,
AET plays a role in reducing runoff. AET is also an essential element of surface energy
balance related to microclimate regulation. A higher AET for the same net radiation will
reduce the proportion of energy for atmosphere heating (sensible heat). The increase in air
temperature in the study area is evidence of the relationship between lower AET in oil palm
plantations (especially YOP) and atmospheric warming. Beside depletion in groundwater,
the residents in the study area also feel the air has become much warmer since oil palm
plantations have dominated the landscape [5]. In addition, the comparison of lower PET
and AET in oil palm plantations (especially in the dry season) indicates that these land uses
have a higher water deficit than FP.

FP has properties like a sponge and a pump in the hydrological cycle. Meanwhile,
MOP only has pump properties, and YOP does not have these two properties. FP act like
sponges by increasing soil water retention and releasing it slowly through LAT and BFO
because it has more soil pores. Water is stored and maintained on days without rain and
even remains available until the dry season through these properties. On the other hand,
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FP also act like pumps by evaporating a large amount of soil water into the atmosphere.
The proof that MOP only has pump properties is that MOP evaporates a large amount
of water, although not as much as FP, but cannot store large amounts of soil water. YOP
does not have sponge and pump properties, indicated by low AET and low soil water
storage. The unavoidable soil degradation due to soil compaction is the leading cause of
oil palm plantations losing their sponge properties. The loss of sponge properties due to
soil compaction has three consequences: a decrease in infiltration leading to an increase in
SURQ, a reduction in the GWR, and a decrease in AWC leading to a reduction in AET.

The anecdotal information that oil palm plantations are “water-greedy crops” [5,45]
because they have higher AET and are associated with water scarcity is inaccurate. The
MOP AET tends to be less than equal to FP [2], while YOP AET is much lower. More
scientific evidence for this water scarcity case is that oil palm plantations encounter soil
compaction so that more rainfall flows become SURQ than stored in soil pores. Oil palm
water use is greater than the stored water because of improper management, where high
AET is not accompanied by high AWC and GWR, as is the case with FP. Higher AET
also reduces shallow aquifers through the capillary water movement to plant roots when
soil moisture is insufficient to compensate for AET, which causes the groundwater to be
dwindled and become unavailable during the dry season.

WRES sustainability is mainly determined by land use and management, which
changes the soil and surface and affects rainfall distribution into SURQ, GWR, and AET [46].
According to locals’ information that there is a groundwater decline during the dry season
as the primary water source, the desired alternative for water management is to reduce
SURQ and increase GWR. Landscape SURQ can be reduced and GWR can be increased
through a multifunctional landscape, i.e., retaining the remaining FP among oil palm plan-
tations. By maintaining FP or agroforestry as a high conservation area with an optimal area,
soil and water conservation becomes a more suitable alternative for improving landscape
WRES while maintaining oil palm productivity. FP with good soil structure and more
complex canopy stratification enhance the WRES, so their existence in a landscape domi-
nated by oil palm plantations is vital to maintaining the watershed’s ecological integrity. In
addition, the presence of FP inside oil palm plantations can synergize the provisioning and
regulating services, where oil palm provides provision ecosystem services and FP provide
regulation ecosystem services. The recommended multifunctional landscape is to maintain
FP or create agroforestry islands separately around oil palm plantations. If oil palm is
mixed with forest vegetation, there will be competition for light and water, which hinders
the productivity of the entire vegetation.

Multifunctional landscapes also enhance other ecosystem services besides WRES,
such as biodiversity conservation and erosion prevention [47]. Multifunctional landscapes
are also an effort to adapt to the negative impacts of climate change. Changes in rainfall
patterns due to climate change, where rainfall is predicted to increase in wet months and
decrease in dry months causes WRES variations to become more extreme [48]. Further
research is needed regarding the spatial configuration of multifunctional landscapes with
the most optimum ecosystem functions and economic benefits based on ecosystem services
trade-offs. Another aspect that needs to be considered is that the chosen multifunctional
landscapes policies must be site-specific and examine the local biophysical characteris-
tics of the landscape, such as soil type, topography, and elevation [49,50]. Even more
broadly, they need to include social and economic factors. For example, soil type in the
study area belongs to the hydrologic soil group (HSG) C based on the observation of
soil permeability, where the runoff coefficient of each land use is higher than HSG A or
HSG B. In addition, the topography in the study area belongs to the relatively flat areas,
where the runoff coefficient is lower than the steeper slope. Environmental planners re-
quire these site-specific quantitative relationships to balance landscape-scale ecological and
socio-economic functions.
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5. Conclusions

Multifunctionality landscapes approach through maintaining forest patches between
oil palm plantations, can improve landscape WRES, shown by a decrease in surface runoff,
an increase in groundwater recharge, an increase in soil water storage, and an increase
in actual evapotranspiration. As a result, water is not concentrated in the rainy season
and remains available in the dry season. The forest patches can improve landscape WRES
because they have good soil hydrological characteristics, so the existence of forest patches
is essential to maintain the ecological integrity of the watershed. Soil hydrological char-
acteristics in forest patches are indicated by the lowest bulk density and the highest soil
porosity compared to oil palm plantations. Good soil hydrological characteristics have im-
plications for increasing soil water retention, imply more soil water is stored and available
to plants (available water content), and flows through soil pore spaces to fill aquifers and
river networks (gravitational water). Meanwhile, soil compaction increases bulk density,
decreases porosity, and decreases soil water retention in oil palm plantation.

The calibrated SWAT is reliable and acceptable model, shown by the high NSE and
R-squared value and balanced p-Factor and r-Factor values. The SWAT model consistently
proves that forest patches have sponge and pump properties in the hydrological cycle.
The sponge properties are related to the optimal distribution of soil porosity so that water
is stored in the rainy season and flows slowly during the dry season. Meanwhile, the
pump properties are related to plant tissue, which plays a role in absorbing and returning
soil water to the atmosphere to maintain microclimate stability. Mature oil palm can only
evaporate large amounts of water like forest patches but cannot retain some soil water
because of degraded soil pores due to soil compaction. The pump properties, which are not
accompanied by the sponge properties, cause the water use to be greater than the stored
water. Therefore, the multifunctional landscape approach by conserving forest patches
between oil palm plantations is one approach that can improve the sustainability of oil
palm plantations. The multifunctional landscape can synergize provisioning services from
oil palm plantations and regulating services from forest patches.
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Abstract: The topsoil seed bank was studied in four types of agricultural bird habitats: fields with
cereals, maize, clover and tilled fields of a Mediterranean plain to determine the potentially richest
habitat based on food supply for the wintering farmland birds. The diversity and abundance of
topsoil seeds differed between seasons but did not differ significantly between habitats. The cereal
habitat was the richest in food supply for the overwintering of farmland birds. The topsoil seed bank
was dominated by Chenopodium album, Polygonum aviculare and Amaranthus retroflexus. The findings
of this study provide insight for low-intensity management of higher-elevation mount agricultural
areas of southern Mediterranean by preserving seed-rich habitats for farmland avifauna.

Keywords: topsoil seed bank; farmland bird diet; agricultural ecosystem; biodiversity; habitat

1. Introduction

The management of agricultural land has greatly changed over recent decades. This
has resulted in different physiognomy and a reduction of agricultural biodiversity and
heterogeneity [1–4]. The depletion of the natural transient soil seed bank during cultivation
was one of the changes (e.g., [5]). Shifts in agricultural management also led to decline of
rural birds [6–13].

Mosaics of low-intensity cultivation in the Mediterranean areas may preserve high
diversity of bird species, but intensification or land abandonment probably do not benefit
biodiversity [4,14]. Reviews identified that agricultural intensification [15] and concomitant
abandonment [16] remain the major threat to agricultural ecosystems of the 21st century
across Europe and elsewhere (e.g., [17]) with many ecological and biodiversity impairments.
As a consequence, investigation of floristic and seed diversity and abundance, along with
the physiognomy of the rural landscape, is necessary for identifying the most interesting
bird habitats. These habitat features, i.e., high quality or food resources or aboveground
floristic components like stubbles or semi-natural with natural habitats suitable for breeding
(low intensity farmland with steppe-like vegetation), which can be proved to be beneficial
for birdlife per case facilitate biodiversity maintenance [6,18].

Approximately 30% of the bird species being “Species of European Conservation
Concern” exploit agricultural ecosystems [19,20]. In rural landscape across Europe, food
availability (plant and seed food items) is reduced especially during winter [3,21], and
nesting habitats in spring are deficient for many bird species that have declined over
recent decades [22]. For instance, seed-eating birds face the risk of limited accessibility to
preferred seeds when vegetation is dense in uncultivated areas close to farmlands [23] or
they feed in stubble of reduced quality due to modernized techniques in cereals harvested
as arable silage [24].

Especially in winter the most important food resource in the rural landscape for birds
is the soil seed bank (e.g., [3,25]). However, research has been focused on the impacts of
agricultural practices on the seed bank composition, abundance and vertical distribution of
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weeds in the rural landscape regarding their persistence (e.g., [26]), fertilization (e.g., [27])
crop rotation or varied tillage systems (e.g., [28,29]). As a result, the seed bank fraction on
topsoil of agricultural habitats that serves as food resource to bird seed-eaters is rarely, if at
all, studied.

Food resource provision [30] is crucial for wintering seed-eaters especially them of
a high conservation interest. However, it is less studied in the Mediterranean regions
compared to northern Europe. For conservation of bird populations which are exclusively
or partially seed foragers, such as Passer montanus (Eurasian tree sparrow), P. domesticus
(house sparrow), Fringilla coelebs (common chaffinch), Carduelis chloris (European green-
finch), C. carduelis (European goldfinch), Miliaria calandra (corn bunting), Turdus merula
(common blackbird) and Emberiza spp. (bunting birds), a precise “instruction” of the most
proper habitat, i.e., seed-rich in winter [31], is not yet defined [32].

A seed-eating bird may have preference on the seeds of particular plant species for
their diet [3,22] thus seed consumption can cause seed limitation of these particular species.
As a result, determination of the value a habitat carries to supply winter food to birds [33]
is critical in decision-making for maintaining diversity in agricultural ecosystems [21,34,35].
Therefore, there is scope for further consideration of how we manage areas of former
traditional low-intensity agriculture in Europe, supported by European subsidies [24],
and principally seed-rich habitats such as cereal stubbles in certain seasons of the year
(e.g., [36,37]).

This study aimed at determining the potentially richest habitat (for food supply) for
the wintering of rural avifauna in the Dolichi plain of Elassona region. To this aim, the
study investigated the effect of the type of crop (habitat for birds) on the topsoil seed
bank in four arable fields undergoing post-dispersal consumption of seeds by farmland
birds. This topsoil seed bank entails a fraction that serves as food source especially to the
seed-eaters.

2. Materials and Methods

2.1. Study Area

The study area covers an area of 40 km2, where the settlement of Dolichi and the
municipality of Livadi are situated. Livadi is located at an altitude of 1100 m. Dolichi lies
5 km from the foothills of Mount Olympus and 21 km from Elassona, at an altitude of
590 m asl. The inhabitants of Dolichi, numbering 473 (in 2001) are principally involved in
land cultivation and animal husbandry.

The settlement of Dolichi is located in the center of a cultivated plain and is surrounded
by hilly and mountainous natural ecosystems. The main crops are cereals, with wheat
(Triticum sp.) dominating over the barley (Hordeum sp.). Previously, the second largest
crop was tobacco, but due to the regime of European subsidies tobacco cultivation was
abandoned, therefore the second rank is currently held by maize crops (Zea mays). Legumes
and vegetables are cultivated on a smaller scale. Clover (Trifolium sp.) in particular is culti-
vated in a mixed agricultural-livestock farming system. In 2005, vetch crops exceptionally
dominated due to compulsory crops rotation in line with the Codes of Good Agricultural
Practice. Ecosystems with a high plant cover such as grasslands, hedgerows, uncultivated
vegetation strips and riparian zones are largely present in the area. The cultivation system
is mechanized, but clearly less intensive than the one of the main plain of Thessaly. In
the area many plantations of locust (Robinia pseudoacacia) have been established through
subsidies of the agri-environmental measure “Afforestation of agricultural land”.

The landscape characteristics in this area were appropriate for the research. Approxi-
mately two thirds (2/3) of the study area are covered by anthropogenic ecosystems and
only one third by natural ecosystems. Among natural ecosystems, grasslands (including
ecotones) hold the largest area. Cereals comprise 90% of anthropogenic ecosystems while
legumes only 5%. The remaining 5% is covered by other types of agricultural ecosystems.

In this area of study, fields are undergoing post-dispersal consumption of seeds by
farmland birds, having thus a potential as feeding sources to them, with non-cultivated
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and cultivated plant species ([38]; Table A1 of Appendix A). The study took place in four
selected habitat types which actually are arable cropped fields: cereals, maize, clover and
tillage, with average surface area of 2.35 ± 0.3 ha ([38]; Table A2 of Appendix A). According
to [38], within this area the above-ground non-cultivated species richness and (%) plant
cover differed from the respective ones of plant species serving as food sources to farmland
birds among the four studied habitats (Table A2). This is not true though for the field
physiognomy (see Table A2).

The avian diversity in this area was also proper for the research aims. Overall, 33 bird
species were recorded in the study area (unpublished data, see Table A3 in Appendix A). A
high majority, that is, 26 bird species comprising 79% of the recorded bird species in the
study area, are classified as seed-eaters and all birds listed in Table A3 are present in all
studied habitat types (namely the crop types: cereals, maize, clover and tillage).

2.2. Research Design

The sampling area is shown in Figure 1. Four types of fields were sampled and
analyzed between September 2006 and March 2007 in the current study: cereals, maize,
clover and tillage (bare soil during winter). Since these fields include ‘micro-sites’ providing
refuge and food resources to rural bird populations, they are referred to here as “habitats”.
There were crops and stubbles in the maize and cereal fields during winter.

Figure 1. Map of Dolichi plain in the area of Elassona (study area). Image and photo sources: The
blank map of Greece (on the top left) is by Lencer, CC BY-SA 3.0, https://commons.wikimedia.org/
w/index.php?curid=4432468. The satellite map image is extracted and edited from Google Earth
(https://earth.google.com/) on 22 November 2017. The landscape photo of the Dolichi plain is taken
from [38].

Plots of approximately 20 m2 each were randomly chosen so that the major species are
represented in the cultivated area. A total of 36 plots, in total 846.7 m2, were recorded and
sampled. The number of studied plots (n) per crop type was: n = 10 in winter cereal fields
(197.5 m2), n = 10 in maize fields (274.5 m2), n = 6 in clover fields (171.5 m2) and n = 10 in
tillage (203.2 m2) (Table A4).

2.3. Topsoil Seed Bank Sampling, Seed Extraction and Identification

During fall-end and winter-start of 2006, within 21 plots (cereal n = 6, maize n = 6,
clover n = 3 and tillage n = 6) randomly selected out of the total of 36, soil cores were
sampled (soil corer of 15 cm diameter, and 1 cm depth). In randomly selected plots (at every
second measurement of plant cover), 10 soil samples were collected (R = 10) across the
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diagonal of the plot and were placed into encoded polyethylene bags that were transferred
to the laboratory. The second soil core sampling took place in spring of 2007 following
exactly the same protocol, though the number of plots differed due to the seasonal change
of landscape in Dolichi plain. A total of 12 plots were totally studied in spring: cereal
(n = 4), maize (n = 2), clover (n = 3) and tillage (n = 3). Seeds up to one centimeter of soil
depth have been sampled. Therefore, the seeds and seed bank are referred in this article
as ‘topsoil’.

Soil core samples were retained at 4 ◦C for 24 h to avoid seed germination. Then
seeds were isolated from soil phase using sieves and were identified at species level in
petri dishes under stereoscope and magnifying lens using a series of keys (Appendix B). In
addition, plant specimens were collected in spring and autumn of 2006 so that all plant
species the seeds of which are potentially present in the topsoil seed bank of autumn 2007,
are included in a reference plant collection that facilitated the seed identification (sources
are listed in Appendix B). Classification of plant species on the basis of their significance to
the farmland bird diet is presented in Tables A1 and A5 of Appendix A.

2.4. Data Analysis

The species richness of the seed bank was estimated as the number of species per
m2. The Shannon index (entropy) was also estimated for the topsoil seed bank. The seed
abundance of the topsoil seed bank was estimated as the average number of seeds per
square meter (m2).

The Shannon index (entropy) and the seed abundance of the topsoil seed bank were
tested by estimating the differences between habitats (cereal, maize, clover and tillage)
and seasons (winter and spring) using generalized linear mixed (GLM) effect models. For
Shannon index, the GLM for Gaussian family with random intercept of plot were used.
For seed abundance, the GLM for Poisson family (with log link function) with random
intercept of plot were employed. For model selection, model with and without interaction
between season and habitat were compared with simple generalized linear model (for
Gaussian family in the case of Shannon Index; for Poisson family (with log link function)
in the case of seed abundance). In each case, all three models were compared using p-value
of ANOVA and Akaike Information Criterion (AIC). Signs of heteroscedasticity (residuals
vs. fitted plot) and normality of residuals (q-q plot) were also tested for identifying the best
performing model. Overdispersion of the Poisson model was also checked and, if needed,
the analysis was reconducted using generalized linear (simple or mixed effect) model with
negative-binomial family with log link function.

Predictions were generated with and without inclusion of random effects. The 95%
confidence intervals were estimated with bootstrapped simulation (n = 1000) using the
bootMer function. Post-hoc (Tukey all-pairs) comparisons were conducted.

The data were processed in R 4.1.0 [39] using the packages: broom.mixed [40],
dplyr [41], ggplot2 [42], lme4 [43], lmerTest [44], MASS [45], multcomp [46], and tidyr [47].

3. Results

3.1. Composition of the Topsoil Seed Bank as Food Source to Farmland Birds

Overall, the soil seed bank sampling and seed identification resulted in a total of
66 plant species, 64 of which are non-cultivated and the other two are the cultivated species
Triticum aestivum and Zea mays. Out of these 66 plant species, 49 species were classified as
having a level of significance as food items to the farmland birds (Table A5).

Soil seed bank sampling during winter in 36 fields resulted in a total of 62 plant
species, 15 of which were present in all habitats while the soil seed bank sampling during
spring in 12 fields resulted in 39 identified species. A total of 26 and 21 species of seeds
serving as food source to farmland avifauna were identified in winter and spring topsoil
seed bank, respectively (Table A5).

The highest number of species with significance as food sources to birds was recorded
in cereals (34 species) while the lowest in tillage (23 species) (see Table A5). The habitats
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can be ranked on the basis of the number of significant species in serving as food sources
to birds as follows: tillage (23) < clover (25) < maize (31) < cereal (34).

The winter seed bank was dominated in all studied habitats by Chenopodium album,
Polygonum aviculare and Amaranthus retroflexus. The last two species also dominated the
spring seed bank. Apart from these two species, the following species predominated in the
spring seed bank: Lithospermum arvense in cereals, Amaranthus albus in maize, Echinochloa
crus-galli in clover and Digitaria sanguinalis in tillage (Table A5).

Commonly, 35 species were present in both spring and winter while only seven
species (Brassica juncea, Sinapis arvensis, Silene dioica, Chenopodium album, Polygonum avicu-
lare, Portulaca oleracea, Amaranthus retroflexus) were present in all habitats in both seasons
(Table A5).

These common and dominant plant species, with the exception of Amaranthus sp. and
P. oleracea, are classified to highest significance as food sources to farmland birds (Table A5).

3.2. Shannon Entropy and Seed Abundance of the Topsoil Seed Bank
3.2.1. Model Selection

Mixed effect model without interaction did not differ significantly from model with
interaction for both seed abundance and Shannon index (entropy). However, it differed
in both cases significantly from model without random intercept. The model without
interaction also performed best in terms of AIC in the case of seed abundance, and similar
to model with interactions in the case of Shannon entropy. Visual inspection showed no
clear signs of heteroscedasticity nor deviation from normality of residuals.

However, in the case of seed abundance, the model showed significant overdispersion
(dispersion ratio = 12.97, Pearson’s Chi-Squared = 2931.16, p < 0.001). Thus, instead of
using Poisson family model, negative binomial family was used for model estimation. The
new model also performed better in case of AIC (Tables 1 and 2). Visual inspection showed
that normality of residuals was slightly worse than in Poisson family model.

Table 1. Generalized Linear Model comparison for Shannon entropy and seed abundance in the
topsoil seed bank.

Shannon Entropy

Variable contrast npar logLik deviance Chisq Df Pr (>Chisq)
season + habitat 6 −127.29 254.57

season + habitat +
(1 | plots) 7 −121.41 242.83 11.7466 1 0.0006095 **

season * habitat +
(1 | plots) 10 −118.27 236.53 6.2956 3 0.0980824

Seed Abundance

Variable contrast npar logLik deviance Chisq Df Pr (>Chisq)
season + habitat 6 −1099.8 2199.5

season + habitat +
(1 | plots) 7 −1054.5 2109 90.5848 1 <2 × 10−16 **

season * habitat +
(1 | plots) 10 −1053.5 2107.1 1.8701 3 0.5998

+ indicates it is additive model (y = spring + winter + tillage + clover + maize + cereals). * indicates there is
interaction between habitat and season (y = spring + winter + tillage + clover + maize + cereals + spring * tillage +
spring * clover + spring * maize + spring * cereals + winter * tillage). ** indicates statistical significance, p < 0.05.
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Table 2. Generalized Linear Model comparison for Shannon entropy and seed abundance in the
topsoil seed bank on the basis of AIC.

Shannon Entropy

Variable contrast df AIC
season + habitat 6 2211.542

season + habitat + (1 | plots) 7 2122.957
season * habitat + (1 | plots) 10 2127.087

Seed Abundance

Variable contrast df AIC
season + habitat 6 2211.542

season + habitat + (1 | plots) 7 2122.957
season * habitat + (1 | plots) 10 2127.087

+ indicates it is additive model. * indicates there is interaction between habitat and season.

The calculated parameters of the model for Shannon entropy and seed abundance are
summarized in Table 3.

Table 3. Model summary for Shannon entropy and seed abundance.

Shannon Entropy

Effect Term Estimate Std. Error Statistic df p Value Conf. Low Conf. High

fixed (Intercept) 4.713 0.442 16.516 34.476 6.01 × 10−18 3.921 5.665
fixed Season winter 0.874 0.080 −1.462 38.114 0.152 0.731 1.047
fixed Habitat Clover 1.019 0.121 0.157 27.754 0.876 0.807 1.287
fixed Habitat Maize 0.877 0.095 −1.211 26.078 0.236 0.709 1.085
fixed Habitat Tillage 0.861 0.096 −1.341 32.468 0.189 0.692 1.071

Seed Abundance

Effect Term Estimate Std. Error Statistic p Value Conf. Low Conf. High

fixed (Intercept) 72.366 18.403 16.837 1.30 × 10−63 43.962 119.123
fixed Season winter 0.434 0.106 −3.415 0.001 0.268 0.700
fixed Habitat Clover 1.444 0.485 1.093 0.275 0.747 2.789
fixed Habitat Maize 1.061 0.327 0.190 0.849 0.579 1.942
fixed Habitat Tillage 0.600 0.182 −1.679 0.093 0.331 1.089

3.2.2. Shannon Entropy of the Topsoil Seed Bank

The Shannon entropy of the topsoil seed bank did not differ significantly between
seasons or between habitats (Table 4).

Table 4. Tukey all-pairs comparisons for Shannon entropy of the topsoil seed bank.

Post-Hoc Comparisons

Term Contrast
Null.
Value

Estimate
Std.

Error
Statistic Adj. p Value

Season Winter—Spring 0 −0.134 0.092 −1.461 0.144

Habitat

Clover—Cereals 0 0.019 0.119 0.157 0.999
Maize—Cereals 0 −0.131 0.108 −1.211 0.619
Tillage—Cereals 0 −0.149 0.111 −1.342 0.535
Maize—Clover 0 −0.150 0.126 −1.188 0.633
Tillage—Clover 0 −0.168 0.128 −1.311 0.554
Tillage—Maize 0 −0.018 0.117 −0.154 0.999

In spring, the estimated Shannon entropy was higher in cereal than in the other three
habitats; while in maize it was the lowest (Table 5). However, these differences were not
statistically different.
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Table 5. Model predictions compared to Shannon entropy (mean and median) of the topsoil
seed bank.

Habitat Season
Mean

Shannon Entropy
Median

Shannon Entropy
Prediction
Adjusted

Predicted
Unadjusted

Cereals spring 1.69 1.63 1.63 1.55
Cereals winter 1.34 1.39 1.37 1.56
Clover spring 1.53 1.58 1.56 1.42
Clover winter 1.47 1.63 1.46 1.40
Maize spring 1.08 1.20 1.29 1.42
Maize winter 1.35 1.37 1.32 1.43
Tillage spring 1.43 1.44 1.41 1.28
Tillage winter 1.21 1.31 1.22 1.27

Table 5 presents the model predictions, both unadjusted (not including random effect)
and adjusted (including random effect), compared to the original-data mean and median.

3.2.3. Seed Abundance of the Topsoil Seed Bank

Significant differences in the seed abundance of the topsoil seed bank were observed
only between seasons (winter-spring; see Post-Hoc comparisons in Table 6). In tillage the
seed abundance was lower than in the other three habitats, and this difference was more
pronounced with clover (Table 7). It is noted, however, that these differences in the seed
abundance between habitats were insignificant and this is also confirmed by the Post-Hoc
comparisons (Table 6).

Table 6. Tukey all-pairs comparisons for seed abundance of the topsoil seed bank.

Post-Hoc Comparisons

Term Contrast
Null.
Value

Estimate
Std.

Error
Statistic Adj. p Value

Season Winter—Spring 0 −0.835 0.245 −3.415 0.0006 *

Habitat

Clover—Cereals 0 0.367 0.336 1.093 0.693
Maize—Cereals 0 0.059 0.309 0.190 0.997
Tillage—Cereals 0 −0.510 0.304 −1.679 0.334
Maize—Clover 0 −0.308 0.356 −0.867 0.821
Tillage—Clover 0 −0.877 0.350 −2.505 0.059
Tillage—Maize 0 −0.569 0.320 −1.775 0.284

* indicates statistical significance, p < 0.05.

Table 7. Model predictions compared to seed abundance (mean and median) of the topsoil seed bank.

Habitat Season
Mean

Seed Abundance
Median

Seed Abundance
Prediction
Adjusted

Predicted
Unadjusted

Cereals spring 89.7 87 87.7 72.4
Cereals winter 41.5 28 39.6 31.4
Clover spring 96.5 90 96.9 104.5
Clover winter 52.7 45 51.9 45.3
Maize spring 125.3 104.5 111.1 76.7
Maize winter 35.1 26 34.5 33.3
Tillage spring 37.2 37 38.6 43.4
Tillage winter 22.1 12 19.7 18.8

Table 7 shows the model predictions, both unadjusted (not including random effect)
and adjusted (including random effect), compared to the original-data mean and median.
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4. Discussion

4.1. Effect of Habitat (Crop) Type on the Topsoil Seed Bank

The differences in Shannon entropy of the topsoil seed bank were insignificant for the
tested samples of this study. The effect of habitat (crop) type in such landscapes require, to
our view, further coordinated research that would also include samples of different size,
and consideration of a soil-property matrix [29].

The winter and spring Shannon entropy were lower in tillage though not significantly.
This difference, although insignificant, could be explained by the widespread practice
of autumn tillage which buries the surface seeds [48] thus reducing their availability in
fields [49]. Tillage techniques prevent vegetation growth, seed germination and seedling
growth [50] and temporarily enrich the topsoil with seeds [51]. Topsoil seeds are easily
depleted from the soil surface also because they are consumed by high numbers of birds
using stubbles as feeding grounds [52]. Moreover, in all studied fields where tillage was
employed the seed abundance of dominant species was very high, as tillage decrease seed
diversity [53]. [29] stressed the significance of such practices to preserve biodiversity in
crop fields, and the complexity of it, as continuous tillage was found to have increased the
soil seedbank diversity and density under specific soil conditions.

The winter topsoil seed bank is dominated only by Chenopodium album, Polygonum ar-
viculare and Amaranthus retroflexus that have long-lived seeds according to [54]. By contrast,
the spring topsoil seed bank reveals a different picture since apart from Chenopodium al-
bum, and Amaranthus retroflexus, four other species are prominently present: Lithosper-
mum arvense, Amaranthus albus, Echinochloa crus-galli and Digitaria sanguinalis in cereal,
maize, clover and tillage respectively. The above species, apart from Lithospermum arvense,
are also reported to have seeds of high longevity [54]. However, note that the seeds of
Echinochloa crus-galli found in clover and Digitaria sanguinalis found in tillage in our case,
are classified as very-short lived for untilled systems by [55].

Since in this study only the topsoil seed bank has been investigated, no conclusion
on seed persistence per species under heavy disturbance can be given. Regarding seed
availability as food sources to farmland birds it should be considered that in no- or low-
tillage fields where the soil is not heavily disturbed, seed predation is enhanced [56,57].

In this study, the genus Amaranthus dominated [58] maize crops. Chenopodium album
dominated the topsoil seed bank of all habitats either in spring or in winter. This is
consistent with the findings of [59], who detected high seed abundances of this annual
broadleaved species in the upper 5 cm of soil irrespective of barley tillage treatments in
Alaska, as well as of other authors [58,60]. Polygonum arviculare was dominant in winter
in the topsoil seed bank, implying that autumn tillage did not bury the bulk of its surface
seeds. [59] detected higher seed density of Polygonum arviculare, only for medium-intensity
tillage treatments (disc once) in the upper 5 cm of soil.

Ref. [61] found in fields of Poland that the base of the winter diet of reed bunting
Emberiza schoeniclus are seeds of Chenopodium album, Amaranthus retroflexus, Setaria viridis,
Stellaria media and Fumaria officinalis. It should be underlined that the aforementioned
differences in dominant seeds are consistent with the high spatial variability of seeds
predated, such as Chenopodium album, given that some birds of the study area may count
on alternate food resources, have preference to specific species and respond differently to
different plant cover [62] and landscape composition in winter [35].

Species present in the aboveground flora and linked to disturbance in agricultural
soils are Amaranthus spp., Chenopodium album and Echinochloa crus-galli, while Digitaria
sanguinalis, of which seeds were dominant in clover, are linked to undisturbed soils [54]
and these species have over 3-year seed longevity [54].

4.2. Agricultural Habitats with a Topsoil Seed Bank Serving as Food Source to Farmland Birds

A total of 26 and 21 species of seeds serving as food source to farmland avifauna were
identified in winter and spring, respectively. Differences between spring and winter seed
abundance are mostly attributed to seed consumption of species with high significance
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to farmland bird diet in this study. The farmland birds use stubbles more frequently in
winter [63,64]. The main food source of seed-eating birds during winter is the soil seed
bank [3,22,25,65].

Cereal seeds would rather show a higher potential to positively impact rural bird
diversity in the studied landscape, while the structural characteristics in clover habitats
might also favor birds’ presence, but these are objectives of future study in a more sys-
tems’ thinking approach, beyond single-farm scales [21]. [66] underlined the importance
of features like hedgerows in diversifying habitats associated with many farmland bird
benefits. [67] proposed that the best option for birds in winter are the seed-rich habitats
while in the summer structurally and floristically rich habitats. The results of this study
would rather support the findings of [18] that highlighted the importance of the presence
of suitable breeding habitats in mixed landscape for farmland birds. Furthermore, in our
case, whether differences between spring and winter seed abundance are attributed to seed
consumption of species with high significance to farmland bird diet needs further investi-
gation. From this viewpoint, more thorough investigation of the relationship between the
richness and abundance of bird fauna and the respective parameters of seeds is necessary
in the future.

Seed-eating birds are important topsoil-seed consumers inferring quantitative and
qualitative changes in soil seed bank, especially in winter when plants serving as food
sources to avifauna are highly reduced, compared to spring in the same fields [65]. Con-
versely, seed predators also have a determining role in plant communities at landscape
level by impacting the abundance of specific plants of their preference, thus inferring
floristic variations even at areas that are distanced in the landscape [68]. Consequently, it
could not be disregarded that reduced seed availability can be a limiting factor to wintering
birds, a fact that highlights the importance of interspecific competition of avian communi-
ties [69]. As such, neither the preference of seed foragers for seeds of varied seed sizes of
specific annual plant species at landscape patches is to be overlooked in current and future
agro-ecological management [70] nor the importance of the minimum distance of available
food-resource patches in the rural landscape [31].

In this respect, as [71] supported, the landscape heterogeneity may benefit generalist
birds but may mean habitat loss and fragmentation for specialists, and therefore man-
agement should not include unique standalone measures. Fragmentation and land-use
changes in rural landscape also influence the soil seed bank in terms of size and com-
position [72]. These, and the current study findings, highlight the importance of habitat
provision for farmland birds during winter and breeding seasons [21].
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Appendix A

Table A1. Presence (+), total species richness and phenology of 61 herb-layer non-cultivated species of 25 families
(11 grasslike species and 50 broadleaf (4 legumes and 46 forbs) herb-layer species) in Cereals, Maize, Clover, and Tillage in
Dolichi plain during the growing season of 2006 (from [38]).

Family Plant Species

Phenology * Habitat

Life-
Cycle

BG (Life-Form) Cereals Maize Tillage Clover

Poaceae Alopecurus myosuroides A G (The) +
Avena spp. A G (The) +

Bromus tectorum A G (The) +
Bromus spp. A G (The) +

Cynodon dactylon P G
(The/Geo/Hem) + + +

Hordeum murinum A G + +
Lolium multiflorum A G (The) +

Lolium rigidum A G + + +
Phalaris brachystachys A G +

Sorghum halepense A G
(Cha/Geo/The) +

Cyperaceae Cyperus glomeratus A or P G (The) +
Amaranthaceae Amaranthus blitoides A F (The) + +

Amaranthus retroflexus A F (The) + +
Asteraceae Anthemis altissima A F (Pha) +

Anthemis arvensis A F (Pha) + +
Sonchus arvensis P F (Geo) + + + +
Sonchus asper A or B F (Hem/The) + +

Sonchus oleraceus WA F (The) + + + +
Taraxacum officinale WA F (Cha/Hem) + +

Tragopogon longifolius P F +
Tragopogon pratensis B F +
Xanthium spinosum A F (The) +

Apiaceae Bifora radians A F + +
Caucalis platycarpos A F (The) +

Scandix pecten-veneris A F (The) +
Boraginaceae Echium italicum B F +

Lithospermum arvense A F (The) +
Brassicaceae Capsella bursa-pastoris A F (Hem/The) +

Cardaria draba A F (The) +
Neslia paniculata A F (Hem) +

Sisymbrium altissimum A or B F (The) +
Sisymbrium irio A F (The) +

Campanulaceae Legusia spegulum veneris A F +
Caryophyllaceae Agrostemma githago A F +

Dianthus armeria var. uniflorus A or B F +
Silene inflate A F (Cry/Hem) +

Chenopodiaceae Chenopodium album var. viride A F (The) + +
Convolvulaceae Convolvulus arvensis P F (The/Geo/Cli) + +
Euphorbiaceae Chrozophora tinctonia A F (The) +

Fabaceae Lathyrus aphaca A L (The/ Cli) +
Trifolium striatum A L (Cha) +

Medicago spp. A L (Hem/The) +
Vicia spp. A or P L (The/Cli) + +

Fumariaceae Fumaria capreolata A F (Cli) +
Fumaria officinalis A F + +

Geraniaceae Geranium purpureum A F (The)
Zygophyllaceae Tribulus terrestris A F (The) +
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Table A1. Cont.

Family Plant Species

Phenology * Habitat

Life-
Cycle

BG (Life-Form) Cereals Maize Tillage Clover

Lamiaceae Lamium amplexicaule A F (The) + +
Malvaceae Malva sylvestris B F (Hem) +

Papaveraceae Papaver hybridum A F (The)
Papaver rhoeas A F (The) + +

Polygonaceae Bilderdykia convolvulus A F (The) + +
Polygonum aviculare A F (Cry/The) + + +

Portulacaceae Portulaca oleracea A F (The) +
Ranunculaceae Adonis aestivalis A F + +

Consolida regalis A F +
Delphinium orientale A F +

Ranunculus spp. A F (The/Hem) +
Rubiaceae Galium spp. A F (The) + +

Scrophulariaceae Veronica persica A F (The) +
Solanaceae Solanum nigrum P F (Hem/The) +

Total number (species richness) of the overall 61 species per habitat: 19 23 8 19

* Phenological classes of herb-layer species: according to life cycle: A = Annual, B = Biennial, P = Perennial; according to biological
group (BG): G = Grass, L = Legume, F = Forb, B = Bulbous (geophyte). Classification of plant life form in line with [73] in parenthesis:
The = Therophyte; Hem = Hemicryptophyte; Pha = Phanerophyte; Cha = Chamaephyte; Cry = Cryptophyte; Cli = Climber. G: Cyperus is
considered grass-like. Related background references: [54,74–77]. In bold are shown species of (least to highest) significance as food items
to rural birds, while significant and highly significant species are besides underlined; classification followed [22,78,79], as well as field
observations.

Table A2. Mean (±Standard Deviation) above-ground variable estimations in the studied habitats
[38]. Plant cover was recorded following [64]. The Field Physiognomy Index estimation followed [80].

Variable 1
Habitat

Cereals Maize Tillage Clover

Field surface area (in habitat) 19.75 ± 3.46 27.45 ± 5.78 20.32 ± 3.95 28.58 ± 14.16
Field Physiognomy Index 0.42 ± 0.22 0.22 ± 0.11 0.04 ± 0.02 0.59 ± 0.41

% bare soil 56.8 ± 1.96 94.3 ± 0.76 98 ± 0.41 76.3 ± 2.04
Number of

non-cultivated species 46.1 ± 1.99 5.61 ± 1.07 17.2 ± 3.5 12.6 ± 1.73

% plant cover of
non-cultivated species 33.8 ± 1.84 2.38 ± 0.55 1.82 ± 0.4 1.74 ± 0.47

Number of species serving as
food items to birds 21 ± 1.26 0.22 ± 0.07 0.95 ± 0.15 0.58 ± 0.35

% plant cover of species serving
as food items to birds 25.9 ± 1.76 0.19 ± 0.11 1.01 ± 0.31 0.01 ± 0

% plant cover of
cultivated species 9.22 ± 0.88 3.32 ± 0.33 0.21 ± 0.1 22 ± 1.97

1 Species richness of non-cultivated species and of species serving as food items to birds differ with habitat
(physiognomy), with the highest values in cereals (1-way ANOVA; LSD; p < 0.001; unpublished data from [38]).

Recordings were conducted using quadrat (1 m2) at sampling points of a plot diagonal
(see also design in Table A4). The recorded variables were: 1. The total number of non-
cultivated plant species. 2. The percentage of the sampling plot area (1 m2) that is covered
by non-cultivated plant species (%) percent of non-cultivated plant cover). 3. The number
of plant species serving as food items (namely species producing seeds where birds feed on)
to rural bird (food resources); this classification was based on [22,78,79] and observations
in the field. 4. The (%) percentage of food items from the total surface non-cultivated plant
cover serving as food items to rural birds (%) percent of non-cultivated plant cover serving
as foot item to birds. 5. The (%) percentage covered by each crop species (cereals, maize,
clover and residue from the previous crop field for tillage), respectively, for cereals, maize,
clover and tillage fields (% plant cover of each crop species).
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Table A3. Bird species recorded in the study area (in bold exclusively or partially seed-eaters). *: The
bird species experienced decline in Europe [6,22]; F = farmland specialist, W = primarily woodland
species that commonly use farmland [6].

Bird Species Habitat
Bern Con-
vention

79/409 EC
Directive

SPEC
Bonn

Convention

Accipiter nisus II
Alauda arvensis * F III II/2 3
Anthus pratensis II

Athene noctua II 3
Buteo buteo II

Carduelis cannabina * F II 4
Carduelis carduelis * F II

Carduelis chloris F II 4
Circus cyaneus II I II

Coccothraustes
coccothraustes II

Corvus corone
Corvus monedula F 4

Dendrocopos syriacus II I 4
Emberiza cirlus II

Erithacus rubecula W II 4 II
Falco columbarius II I

Falco tinnunculus * F II 3 II
Fringilla coelebs W III 4
Galerida cristata III 3

Garrulus glandarius
Melanocorypha calandra II I 3

Miliaria calandra * F III 4
Parus major W II

Passer domesticus *
Passer montanus * F III

Phoenicurus ochruros II
Pica pica

Pluvialis apricaria III I-II/2 II
Prunella modularis * II 4
Streptopelia decaocto III II/2

Sturnus vulgaris * F
Turdus merula * W III II/2 4 II

Turdus philomelos * W III II/2 4 II

1. For the species listed in Annex II, states that have signed the treaty are required to
take the necessary measures for the protection and conservation of these species and their
habitats; for the species listed in Annex III, states that have signed the treaty are required
to regulate the exploitation of wild fauna and prevent illegal means of capture and killing.
2. I: Species that will be subject of special conservation measures taking into account their
habitat to ensure their survival and reproduction in the area of their dispersal; II/1: Species
that can be hunted in the geographical sea and land where this Directive applies; II/2:
Species that can be hunted only in the Member States, having regard to local laws. 3. 1:
Species of global interest for their conservation; 2: Concentrated in Europe and with an
unfavorable conservation status; 3: Not concentrated in Europe, but with an unfavorable
conservation status; 4: Concentrated in Europe and with a favorable conservation status;
w: Category related to winter populations; 4. I: Species with risk of total or at large
extent extinction; II: Species that can benefit from the international cooperation for their
conservation and management.

248



Land 2021, 10, 967

Table A4. Summary of the studied fields, sampling plots and methods [38].

Season Sampling/Parameter
Habitat (i.e.,

Crop)
Number
of Fields

Area
(Hectares)

Replicates (R) Materials Methods

fall/winter
2006

(a)

i. physiognomy
index

ii. plant cover

cereals 10 19.75 20

Quadrat 1 × 1 m2 i. [80]
ii. [64]

clover 6 17.15 20
tillage 10 20.31 20
maize 10 27.45 20

(b)
soil cores

sampling/soil seed
bank abundance &

diversity

cereals 6 19.75 10
i.

Cylindrical
ring, 1 cm
high

ii. Sweep
iii. Squirrel

[64]

clover 3 17.15 10
tillage 6 20.31 10
maize 6 27.45 10

spring 2007

cereals 4 - 10
clover 3 - 10
tillage 3 - 10
maize 2 - 10

Table A5. The total number of seeds per m2 estimated for each species of the topsoil seedbank in each studied habitat for
winter (left columns) and spring (right columns), respectively.

Family Plant Species

Habitat

Cereals Maize Tillage Clover

Winter Spring Winter Spring Winter Spring Winter Spring

Amaranthaceae Amaranthus albus * - 112.99 112.36 10,112.99 56.18 112.99 - 1977.40
Amaranthaceae Amaranthus blitoides * 56.18 - - - 0.00 112.99 1629.21 -
Amaranthaceae Amaranthus retroflexus *,‡ 10,224.72 6271.19 28,146.07 10,000.00 3539.33 4124.29 12,078.65 21,807.91

Asteraceae Lactuca serriola - - - - - - 56.18 -
Asteraceae Sonchus asper - - 11123.60 - - - - -
Apiaceae Aethusa cynapium * 112.36 2316.38 - - - - 0.00 4802.26
Apiaceae Bifora radians * 1460.67 112.99 - - - - - -
Apiaceae Torilis nodosa - - 56.18 - - - - -

Boraginaceae Lithospermum arvense * 2415.73 8644.07 112.36 56.50 112.36 - 1910.11 338.98
Brassicaceae Brassica juncea *,‡ 786.52 1186.44 1460.67 56.50 1235.96 169.49 449.44 1581.92
Brassicaceae Brassica nigra - - - - - - - 1016.95
Brassicaceae Brassica rapa - - 617.98 - - - 280.90 -
Brassicaceae Brassica sp. - - - - 56.18 - - -
Brassicaceae Camelina microcarpa * - 169.49 112.36 - - - - 56.50
Brassicaceae Capsella bursa-pastoris * 112.36 - 56.18 - - - 280.90 56.50
Brassicaceae Sinapis arvensis *,‡ 3483.15 790.96 2191.01 1468.93 3370.79 508.47 617.98 1186.44

Caryophyllaceae Silene dioica *,‡ 1348.31 2881.36 4438.20 903.95 1179.78 225.99 4438.20 1920.90
Caryophyllaceae Stellaria media - - - - - 1468.93 - -
Chenopodiaceae Chenopodium album *,‡ 23,651.69 8135.59 24,887.64 14,689.27 19,157.30 3276.84 22,134.83 6610.17
Chenopodiaceae Chenopodium vulvaria * 2134.83 - 393.26 2259.89 2303.37 1977.40 4213.48 -
Convolvulaceae Ipomoea hederacea - - - - - - 56.18 -
Euphorbiaceae Chrozophora tinctoria 168.54 - - - 56.18 - - -
Euphorbiaceae Euphorbia spp. * 1741.57 790.96 337.08 - 561.80 - 1460.67 -

Fabaceae Juncus sp. * 3707.87 1751.41 - - 561.80 - - -
Fabaceae Medicago mimina 56.18 - - - - - - -
Fabaceae Medicago sativa - - - - - - 168.54 -
Fabaceae Medicago polymorpha 168.54 - - - 112.36 - - -

Geraniaceae Geranium lucidum 674.16 - 56.18 - - - 224.72 -
Geraniaceae Geranium pusillum 56.18 - - - - - - -
Lamiaceae Lamium amplexicaule * 112.36 1129.94 224.72 - 112.36 - 617.98 960.45
Malvaceae Abutilon theophrasti * - 169.49 56.18 395.48 - 56.50 - -
Malvaceae Malva sylvestris - - - - - - 112.36 -

Papaveraceae Papaver rhoeas * 3876.40 4124.29 2640.45 - 1348.31 - 393.26 1412.43
Plantaginaceae Plantago lanceolata - - - - - - 112.36 -

Poaceae Alopecurus myosuroides 168.54 - - - - - - -
Poaceae Alopecurus pratensis - - 56.18 - - - - -
Poaceae Apera spica-venti - - 337.08 - - - - -
Poaceae Avena nuda - 5.00 - - - - - -
Poaceae Avena sterillis 1011.24 - - - 224.72 - - -
Poaceae Cynodon dactylon 56.18 - - - - - - -
Poaceae Digitaria sanguinalis * - 56.50 5112.36 - 337.08 3276.84 - 2824.86
Poaceae Echinochloa crus-galli * - - 674.16 112.99 - - - 16,045.20
Poaceae Zea mays - - 1797.75 - - - - -
Poaceae Panicum repens * 561.80 - - - - - - 56.50
Poaceae Setaria pumila * 56.18 225.99 4213.48 - 280.90 1242.94 337.08 225.99
Poaceae Setaria spp. * - 56.50 1966.29 - 449.44 56.50 - -
Poaceae Sorghum halepence * - - 4269.66 56.50 - - - -
Poaceae Triticum aestivum * 56.18 225.99 - - 56.18 - - -
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Table A5. Cont.

Family Plant Species

Habitat

Cereals Maize Tillage Clover

Winter Spring Winter Spring Winter Spring Winter Spring

Polygonaceae Bilderdykia convolvulus * 6460.67 2542.37 786.52 395.48 730.34 - - 169.49
Polygonaceae Eriogonum racemon - - - - - - 168.54 -
Polygonaceae Polygonum aviculare *,‡ 38,202.25 35,593.22 14,213.48 903.95 6516.85 1129.94 16,629.21 2937.85
Polygonaceae Polygonum lapathifolium - - - - 337.08 - - -
Polygonaceae Polygonum persicaria - 56.50 - - - - - 56.50
Polygonaceae Rumex sanguineus * - 10,677.97 56.18 - - 225.99 - -
Polygonaceae Rumex sp. * 56.18 169.49 112.36 - 617.98 56.50 - 56.50
Portulacaceae Portulaca oleracea *,‡ 9662.92 19,491.53 2921.35 734.46 898.88 564.97 10,224.72 4519.77
Primulaceae Anagallis arvensis - - 1348.31 - - - - -

Rosaceae Rubus spp. 56.18 - 168.54 - 112.36 - - -
Ranunculaceae Consolida regalis * 1910.11 1186.44 - - - - - -

Rubiaceae Galium aparine * 505.62 112.99 56.18 - 168.54 - - -
Scrophulariaceae Veronica arvensis. 56.18 - - - - - - -
Scrophulariaceae Veronica hederifolia. 56.18 - - - - - - -
Scrophulariaceae Veronica persica * 14,719.10 6214.69 393.26 - 1460.67 225.99 3595.51 225.99

Solanaceae Datura stramonium * - 112.99 - - - - 337.08 -
Solanaceae Solanum nigrum * 224.72 960.45 898.88 338.98 1123.60 112.99 337.08 -

Zygophyllaceae Tribulus terrestris - - - - - - 56.18 -

Out of the 66 identified species, 35 were commonly detected in both seasons (winter and spring) and are marked with an asterisk (*);
seven species found across all habitats and seasons are additionally shown with the double cross (‡) indicates absence. In bold are shown
species of (least to highest) significance as food items to rural birds, while significant and highly significant species are besides underlined;
classification followed [22,78,79], and field observations.

Appendix B

List of sources used for seed and plant specimen identification.
Seed identification:

• Flood, R.J. and Gates, S.C., 1986. Seed Identification Handbook, Official Seed Testing
Station. National Institute Agricultural Botany. Publishing, Cambridge, UK.

• Lola P., 2003. Weeds Weed-Herbicides. Fate and behavior in the environment. Publica-
tions Modern Education.

• Seed collection of the Weed Laboratory of Department of Agriculture Crop Production
and Rural Environment. University of Thessaly. (Professor P. Lolas).

• Seeds collected in the field
• Plant specimen and seed collections

Websites:

• Scottish Crop Research Institute
• University of Abertay Dundee
• ASIS Arable Seed Identification System

http://asis.scri.ac.uk/

• The Ohio State University. Department of Horticulture and Crop Science. Seed
IDWorkshop

http://www.oardc.ohio-state.edu/seedid/

• University of Missouri Extension. Missouri Weed Seeds. Department of Agronomy
Fred Fishel Kevin Bradley

http://extension.missouri.edu/explore/agguides/pests/ipm1023.htm

• Seeds of Success Collections at the Bend Seed Extractory

http://www.nps.gov/plants/sos/bendcollections/index.htm

• The seed identification web page. Paleoethnobotany Project

http://www.oldthingsforgotten.com/seeds/seeds.htm

• Visual Identification of Small Oilseeds and Weed Seed Contaminants Grain Biology
Bulletin No. 3
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http://www.grainscanada.gc.ca/Pubs/Grainbio/bulletin3/sows_03-e.htm
Plant specimen identification:

• Kavvadas S., 1956. Illustrated Botany—Botanic Dictionary, Volumes 1–9. Pegasus
Publications, Athens.

• Vardavaki M. Zouzouli D., 2003. Anatomy and Morphology of plants. Ziti, Thessaloniki.
• Lola P., 2003. Weeds Weed-Herbicides. Fate and behavior in the environment. Publica-

tions Modern Education.
• The growers weed identification Handbook. Collective work. Publisher University of

California, Division of Agriculture and Natural Resources.
• Flowers of Greece and the Balkans, A field Guide. Collective work. Publisher

Oxford University.
• Bonnier G., 1989. La Grande Flora En Couleurs, Volumes 1–2. Publications Delachaux

et Niestle.

Websites (online databases):

• SRI Ilinois Council on food and Agricultural Research

http://weedid.aces.uiuc.edu/

• United States Department of Agriculture

http://plants.usda.gov/classification.html

• Weed Identification and Descriptions

http://twig.tamu.edu/weedid.htm

• Utah State University extension. The weed web

http://extension.usu.edu/weedweb/ident/ID.htm

• University of California, Agriculture and Natural Resources, Statewide IPM Program

http://www.ipm.ucdavis.edu/PMG/WEEDS/low_amaranth.html
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