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1. Introduction

Fault detection and state estimation play pivotal roles in ensuring the reliability, safety,
and performance of automatic control systems. Recently, the integration of advanced
methodologies with cutting-edge technologies has significantly impacted the fields of fault
detection and state estimation. Particularly with advancements in artificial intelligence,
the fusion of deep learning and ensemble methods, such as K -nearest neighbors, random
forest regressors, and support vector regression, has garnered considerable attention. These
robust, artificial-intelligence-driven approaches have been developed for intricate action
recognition, predictive models for fault identification, and fault-tolerant control in complex,
multi-sensor systems.

Amidst the challenges presented by packet drops, delays, and the complexities of large-
scale networked systems, the pursuit of fault detection and state estimation has ventured into
innovative domains. From empowering swarm robots with multitarget search capabilities to
developing resilient prediction models capable of navigating uncertainties, this field stands
at the forefront of innovation. The integration of these methodologies not only enhances the
system’s resilience but also ensures its adaptability to unforeseen disturbances.

These studies transcend traditional boundaries, immersing themselves in the domain
of Swarm Robots and Multitarget Searches within intricate, interconnected environments.
Furthermore, they unveil the pivotal role of fault detection and state estimation in guaran-
teeing the functionality of automated systems across various industries and sectors.

Fault detection and state estimation stand as imperative tasks for ensuring the reliabil-
ity, safety, and performance of automatic control systems. Nevertheless, these endeavors
encounter numerous challenges, including nonlinear dynamics, uncertain disturbances,
incomplete information, sensor faults, and computational complexity. Hence, there is a
pressing requirement for novel methods and algorithms capable of surmounting these
obstacles and delivering precise, robust solutions.

One promising avenue involves delving into the potential of machine learning and
artificial intelligence techniques for fault detection and state estimation [1,2], with a specific
emphasis on reinforcement learning (RL) [3]. These techniques possess the capacity to
learn from data and adapt to dynamic environments, thereby enhancing the fault diagnosis
and state estimation capabilities of automatic control systems [4]. For instance, RL can
be employed to craft intelligent fault detection and diagnosis methods that optimize the
delicate balance between detection accuracy and timeliness [5]. Neural networks are
valuable tools for approximating nonlinear functions and estimating unknown states and

Appl. Sci. 2023, 13, 12936. https://doi.org/10.3390/app132312936 https://www.mdpi.com/journal/applsci
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parameters [6]. Deep learning, on the other hand, proves instrumental in extracting features
and patterns from high-dimensional data, thereby improving fault classification [7].

Another prospective direction involves the integration of diverse methods and models
for fault detection and state estimation. This integration enhances the robustness and
reliability of solutions by leveraging the strengths of different approaches. For instance,
an interval analysis can adeptly handle uncertain state perturbations and measurement
noise by computing guaranteed bounds on state estimates [8]. Kalman filtering facilitates
the fusion of multiple information sources and continuously updates state estimates based
on measurement data [9]. Hybrid systems provide a modeling framework for capturing
interactions between continuous and discrete dynamics and events. This facilitates control,
verification, state estimation, and fault detection in complex systems [10].

Nevertheless, numerous challenges still require attention, including scalability, compu-
tational efficiency, online implementation, fault isolation, fault recovery, and fault-tolerant
control. Hence, additional research efforts are imperative to propel this critical field forward,
both in theory and practice.

2. An Overview of Published Articles

With the current state of science and technology, the modern industrial production
scale and the complexity of automation in control systems have greatly improved. Addi-
tionally, state estimation and fault detection are particularly important in the production
process of these systems before a fault causes any damage; further, testing and maintenance
can reduce the risk of accidents, improve the system’s security, and reduce the economic
loss of production. Therefore, the purpose of this Special Issue is to introduce the latest
fault detection algorithms and state estimation methods.

This Special Issue focuses on intelligent control, intelligent modeling, computational
intelligence, artificial intelligence, machine learning, and fault detection. This fits within
the scope of Applied Sciences, as the practical applications of fault detection and machine
learning are incredibly extensive and important. The research areas of this Special Issue
include (but are not limited to) the design and application of fault detection algorithms,
state estimation methods, machine learning algorithms, intelligent control systems, and
analyzing the characteristics of automatic control systems.

An analysis of the papers published in this Special Issue is shown in Table 1. Many
studies have been conducted by scholars on fault detection and state estimation in the
context of automatic control, covering many related research areas. Studies of contribution
1, 3 and 5 are related to automation engineering research; studies of contribution 2, 8, 10,
and 11 are related to aircraft control; studies of contribution 4, and 5 are related to sensor
control; studies of contribution 6, 12, and 13 are related to robot control; and other studies
are more related to system control research.

Interestingly, studies of contribution 1, and 9 are mostly focused on the prediction
of working conditions, where contribution 1 uses a support vector regression algorithm
to predict vibrational amplitudes, and contribution 9 uses a long short-term memory
network to predict the exhaust temperature of a diesel engine. Studies contribution 3 and
contribution 10 both focus on monitoring specific working conditions in real-time as well
as analyzing and optimizing the system stability. The authors of contribution 3 analyze
the stability of a system under different working conditions based on several factors. The
authors of contribution 10 establish a continuous trajectory planning model combined with
the ant colony optimization algorithm to monitor the optimal trajectory of an unmanned
aerial vehicle.

Furthermore, in contribution 2, abnormal or faulty behavior is detected by efficiently
encoding information about a target pose to recognize various human actions more accu-
rately. The authors of contribution 7 focus on fault identification under specific working
conditions and use Fisher’s discriminant analysis to diagnose the faults of dissolved oxygen
sensors in wastewater treatment plants while evaluating both environmental and economic
factors. Meanwhile, the authors of contribution 12 deal with obstacle detection in automatic
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control applications to achieve real-time obstacle avoidance during a multi-target search by
swarm robots.

Table 1. Analysis of the published contributions in the Special Issue.

No. DOI Research Area Focus
Type of

Research
Industry Country

S1 10.3390/
app132111878

Automation
Engineering

riserless mud recovery
technology, mud pump,
ANSYS software, SVR

algorithm

Mathematical
Modeling

Geological
Exploration China

S2 10.3390/
app13169384 Aircraft Control

deep neural network,
convolutional LSTM, action

recognition, body pose
keypoints; aerial

surveillance

Mathematical
Modeling Automation Pakistan

S3 10.3390/
app13169320

Automation
Engineering

riserless mud-recovery
technology, ABAQUS
software, SVR-DSWA

algorithm

Mathematical
Modeling

Geological
Exploration China

S4 10.3390/
app13158778 Sensor Control

multi-sensor systems, robust
fusion estimation,

event-triggered, random
packet drops; d-step state

delay, deterministic control
inputs

Simulation Manufacturing China

S5 10.3390/
app13127212

Automation
Engineering

crack propagation, machine
learning, dynamic load,
random forest regressor,

support vector regression,
gradient boosting regressor,

ridge, lasso, k-nearest
neighbors

Comparisons Materials UK

S6 10.3390/
app13042675 Robot Control

fault-tolerant control, FTC,
robot manipulators, artificial

intelligence

Literature
Review Manufacturing Poland

S7 10.3390/
app13042554 Sensor Control

fault identification, fisher
discriminant analysis,

dissolved oxygen sensor,
energy costs assessment,

GHG emissions assessment

Simulation
Chemical
Engineer-

ing
Romania

S8 10.3390/
app13021214 Aircraft Control

dissipativity, large-scale
system, linear matrix
inequality, networked

system, sparseness

Numerical
Simulations Aerospace China

S9 10.3390/
app13021099

Power System
Control

diesel engine heat load,
intelligent detection, long

short-term memory network,
prediction model, evaluation

index

Mathematical
Modeling Transportation China

S10 10.3390/
app122312111 Aircraft Control

persistent monitoring,
privacy protection, path

planning, monitoring
frequency, overdue time

Mathematical
Modeling +
Simulation

Aerospace China

3
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Table 1. Cont.

No. DOI Research Area Focus
Type of

Research
Industry Country

S11 10.3390/
app122312069 Aircraft Control

powered parafoil, altitude
control, sliding mode

backstepping, fractional
calculus, LESO

Mathematical
Modeling +
Simulation

Manufacturing China

S12 10.3390/
app13031969 Robot Control

swarm robot, unknown
complex environment,

multitarget cooperative
search, simplified virtual

force model, particle swarm
optimization

Mathematical
Modeling +
Simulation

Geological
Exploration China

S13 10.3390/
app12178511 Robot Control

flexible-joint manipulators,
reduced-order extended

state observer, backstepping,
command filter, error

compensation

Numerical
Simulations Manufacturing China

Overall, these studies cover a wide range of industries, including manufacturing,
transportation, aerospace, materials, chemicals and geological exploration. The authors are
mainly from China, but there are also scholars from Pakistan, the UK, Poland and Romania
who have contributed to our Special Issue.

3. Conclusions

This editorial letter describes the roles of fault detection and state estimation in auto-
matic control systems and highlights the applications of advanced methods and cutting-
edge technologies in recent years. In particular, with the development of artificial intelli-
gence, the convergence of deep learning and integration methods has attracted significant
attention. These powerful AI-driven methods are designed for fine-grained action recog-
nition, predictive models for fault identification, and fault-tolerant control in complex
multi-sensor systems. Other research efforts in the Special Issue advance fault detection
and state estimation in both theory and practice. These studies show that fault detection
and state estimation have become particularly important in industrial production processes
as the level of technology and the scale, complexity, and automation of modern industrial
production increase.
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Abstract: Control systems that ensure robot operation during failures are necessary, particularly when
manipulators are operating in hazardous or hard-to-reach environments. In such applications, fault-
tolerant robot controllers should detect failures and, using fault-tolerant control methods, be able to
continue operation without human intervention. Fault-tolerant control (FTC) is becoming increasingly
important in all industries, including production lines in which modern robotic manipulators are
used. The use of fault-tolerant systems in robotics can prevent the production line from being
immobilized due to minor faults. In this paper, an overview of the current state-of-the-art methods
of fault-tolerant control in robotic manipulators is provided. This review covers publications from
2003 to 2022. The article pays special attention to the use of artificial intelligence (AI), i.e., fuzzy logic
and artificial neural networks, as well as sliding mode and other control methods, in the FTC of
robotic manipulators. The cited and described publications were mostly found using Google Scholar.

Keywords: fault-tolerant control; FTC; robot manipulators; artificial intelligence

1. Introduction

The basic concepts and techniques of fault tolerance in computer systems were de-
scribed in [1], which presented the different error classifications and the application of
redundancy techniques to ensure the reliable operation of computers. The modeling and
prediction of faults were also described, along with examples of fault-tolerant computers.
In the early 1990s, Stengel [2], Veillette [3], and Patton [4] published the results of different
applications of FTC systems. In [5], state-of-the-art methods for fault-tolerant control
applications up until 1997 were presented.

In a fault-tolerant control system, it is necessary to distinguish concepts such as fault
definition and fault tolerance. A fault is defined as the deviation of a parameter from an ac-
ceptable value. Fault tolerance is the ability of the system to continue operation regardless
of faults. The origins of FTC systems are related to the need to use special control in critical
safety devices and equipment. Examples of such devices are aircraft or nuclear power
plants. In [6], which was published in 1990, one of the first applications of fault-tolerant
control in robot manipulators was described and the measure of joint failure influences on
the remaining dexterity of a kinematically redundant manipulator was quantified. This
measure was used as a criterion and technique for calculating optimal configurations of
fault-tolerant redundant manipulators. An example of a three-dimensional robot was
shown that used a fourth actuator, which guaranteed half of the original dexterity, after the
joint failure.

In the same period, i.e., in the 1990s, extensive research was undertaken to develop FTC
systems for applications in manipulators intended for space research [7–9]. The foundations
for the design of fault-tolerant manipulators were presented in [10]. In this article, the
modeling tools and reliable evaluation methods of robots were described. The design
aspects, together with a reliability evaluation, were presented. Based on the performed
analyses, a methodology for designing fault-tolerant manipulators was proposed. Particular
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attention was paid to the development of recommendations for the design of the arm with
10 degrees of freedom. It was proposed to use two actuators on each joint.

Techniques for a robust residual generation have been proposed by several authors.
In order to ensure the successful operation of autonomous robots in remote or hazardous
environments, fault tolerance is essential. In [11], different fault tolerance algorithms were
proposed, where the possible failures of the robot components and the interdependence of
these failures must be determined first. To achieve this, fault tree analysis can be a very
useful tool. The tree structures developed using this type of analysis make it possible
to both determine a block diagram of possible occurrences of robot faults and define the
cause-and-effect relationships between failures.

In [12], a control method was proposed in which a model reference algorithm and
a proportional integral derivative controller were applied in the fault-tolerant operation of
robotic manipulators. This method was tested in a simulation that showed the effectiveness
of the recovery algorithm, which enabled it to continue the movement on the assumed
trajectory and reach the given end effect.

In 1987, Selkäinaho and Halme [13] proposed the use of artificial intelligence, i.e.,
a real-time expert system, in a fault control solution, which was used in an algorithm
to supervise fault detection and localization. In the case of sensor damage, the system
automatically replaced the faulty measurement with an updated predictor model output
signal. The investigated system was successfully tested in a pilot process using artificial
intelligence to overcome physical faults.

The authors of [14] proposed the use of intelligent fault-tolerant control in a flexible
assembly cell, where the fault-tolerant controller would immediately recognize errors
and react in real time to such situations. In the described solution, the combination of
an advanced autonomous supervision system was combined with a sensor-guided action
generator. Experimental tests were conducted using a mobile two-arm robot system.

Groom et al. [15] described the real-time fault-tolerant control developed for a kine-
matically redundant manipulator. The authors used a fault-tolerance measure to enable
the end effector of the manipulator to continuously follow a given trajectory. Finally,
an algorithm was developed and used in real time for the control of a seven-degree-of-
freedom commercially available manipulator.

The purpose of using FTC systems is to assure reliability, which should be maintained
despite the occurrence of faults of an acceptable nature. Intensive work is currently under-
way to develop this type of control in equipment used during manufacturing processes.
One of the advantages of using this type of control in the production process is not only the
safety of critical equipment but also cost reduction. The reduction in production costs is
influenced by the continued operation of the devices used. At the time of an acceptable
FTC failure, there is no need to stop production for maintenance purposes. This results in
a reduction in the costs associated with service calls and also saves time by preventing
a halt in the production process.

Shin and Lee [16] presented a robust fault-tolerant control system, which can be used to
overcome the failure of the robot manipulator actuators. The controller uses the algorithms
for normal control (non-failed), fault detection, and control in case of faults to achieve the
assumed task completion.

Fault-tolerant control systems can be divided into three main categories: passive FTCS
(PFTCS), active FTCS (AFTCS), and hybrid FTCS (HFTCS). PFTCS are characterized by
the fact that they operate offline and are only able to adapt to faults that are defined at
the design stage. Passive fault-tolerant steer systems do not require fault detection and
isolation and are less computationally complex than active systems. AFTCS consist of
a reconfiguration mechanism and a fault defection identification (FDI) mechanism. The FDI
subsystem provides information to the controller about the fault and the controller responds
by reconfiguring itself or the controlled device. The FDI subsystem is a key component of
an active FTCS as it detects the fault and immediately sends information to the controller.
The immediate reconfiguration of the controller upon receiving information from the FDI
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allows this method to be called active. There are also hybrid HFTCS controllers, which are
a combination of PFTCS and AFTCS.

In this paper, all the above-mentioned methods used in applications for robotic arm
steering are reviewed. The methodology for selecting articles for this paper was limited to
the time frame of the proposed solutions, that is, mainly the last 20 years. In addition, it
was decided to place the main emphasis only on solutions that use artificial intelligence
and sliding-mode controllers. Furthermore, all the selected papers deal with the use of FTC
methods in robot control. In addition, the papers that focus on the control of manipulators
with up to 7 degrees of freedom were chosen for our review. Articles about other robots such
as hexapods or mobile robots were excluded from this review. This review is presented in
six chapters, covering the available solutions of various FTC systems used to control robotic
arms. In Section 1, the history and background of FTC systems are described. Section 2 is
devoted to presenting the state-of-the-art FTCS that use artificial intelligence methods.
Section 3 presents the variants of FTCS that use sliding-mode control. Section 4 deals with
other FTCS used in robots that have been developed in recent years. Section 5 presents the
summary and Section 6 presents the conclusions.

2. Artificial Intelligence Methods in FTCS

Artificial intelligence methods are highly developed techniques that have applications
in fault-tolerant strategies for controlling robotic arms. Among the artificial intelligence
methods used for fault-tolerant control systems are fuzzy logic controllers, which are able to
effectively deal with non-linear systems using membership functions, which assess analog
input signals using logical variables that take values between 0 and 1. The authors of [17]
described the so-called adaptive fuzzy type-2 backstepping control (AFT2BC) method.
The backstepping method was also described in [18]. AFT2BC was tested on a model of
a PUMA560 robotic arm in a MATLAB environment in which the kinematic configuration
of the robot could be changed simultaneously to simulate axis failure and changes in the
load on the arm. The proposed control algorithm did not require a priori knowledge of the
dynamic robot model so the controller could operate when the faulty condition was due to
both model uncertainty and external disturbances. Figure 1 shows a block scheme of the
proposed adaptive control method. On the description of the graph is a set of Lyapunov
Equations (1)–(6) [17]:

.
V1 = e1

.
e1 = e1(

.
qd − x2), (1)

where
.

V1 is the derivative of the Lyapunov function [19], e1 is the tracking error,
.
qd is the

derivative of the desired signal, x2 is the vector of the current state x2 =
.
x1, x1 =

[
q1q2q3]

T ,

ua = WT(e1
.
e1)Θ, (2)

where ua is the fuzzy type-2 adaptive control expression that is designed to estimate the
ideal backstepping control law, WT represents the average basis functions obtained by
a fuzzy type-2 system, where each basis function is given by the average of the correspond-
ing left and right basis functions, Θ denotes the adapted vector parameters,

.
Θ = γe2W

(
e1

.
e1
)− σ1Θ, (3)

where γ > 0, σ1 > 0, e2 =
.
qd + c1e1 − x2, c1 is a positive constant vector, Θ(0) = 0,

ur = ε̂tanh
(

e2

χ

)
, (4)

where ur is the robust control expression that is introduced to reduce the effects of fuzzy
type-2 estimation errors,

.
ε̂ = ηê2tanh

(
e2

χ

)
− σ2 ε̂, (5)
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where η > 0, σ2 > 0, χ > 0, ε̂(0) = 0 are parameters,

up = c2e2, (6)

where c2 > 0.

Error 
(1) 

Fuzzy 
type-2 
system 

Adaptive 
law  (3) 

 

 

Adaptive 
law  (5) 

 

up (6) 

ur (4) 

ua (2) 

Robot 
manipulators 

faults 

Figure 1. AFT2BC control scheme [17], where u are the desired robot axes’ positions.

The authors of [20] presented a fault-tolerant control scheme in the form of non-
singular terminal synergetic control (NTSC) combined with interval type-2 fuzzy satin
bowerbird optimization (IT2FSBO). The paper also described an adaptive augmented
extended Kalman filter (A-AEKF) that detected, identified, and isolated actuator faults,
even in the presence of noise [21].

The authors of [22] presented a neuro-fuzzy (NF) robot fault-detection algorithm that
allowed for the control of a robot with an SRI [23] controller despite sensor or axis actuator
failures. The detection and fault-tolerance architecture of the proposed solution was built
with a multilayer perceptron trained with the backpropagation of errors and a fuzzy logic
block. The input layer of the artificial neural network consisted of 15 neurons organized
into 3 groups, each consisting of 5 neurons, 1 for each axis. The three groups were used
in turn for the preliminary assessment of the position, velocity, and acceleration. The
network had two groups of output neurons, each with five neurons, one for each axis.
These groups generated the positions and velocities for each axis in turn. The results of the
multilayer perceptron (MLP) in the form of the product of the position and velocity, i.e., q

.
q,

was summed with the output parameters of the robot. This sum was sent to the inference
block, along with the results of the fuzzy logic block. The inference block receiving the data
provided information about the axis that was damaged. The algorithm was successfully
tested on a simulation of the ER5u robot in a MATLAB environment.

The authors of [24] presented a system in which an artificial neural network in the
form of a multilayer perceptron (MLP) was responsible for monitoring and fault detection
(FD). This system consisted of a block in which the MLP provided information about
the system failure while the fuzzy logic rule base made decisions about the type of fault
and its location. The authors demonstrated the performance of fault detection based on
a neuro-fuzzy (NF) application for a robotic arm with 5 degrees of freedom when one of
the robot’s axes fails. The architecture of the system was similar to the solution described
in [23] but in this solution, the inference by the fuzzy logic system was based on the output
of the neural network.

The authors of [25] proposed a new solution in the form of self-tuning fuzzy propor-
tional–integral–derivative non-singular fast terminal sliding-mode control (SFT-PID-NFTSM)
with time delay estimation (TDE). The proposed method involved the self-tuning of the

10



Appl. Sci. 2023, 13, 2675

proportional–integral–derivative (PID) block of the controller using fuzzy logic algorithms.
Compared to other well-known methods described in the literature, such as the PID
controller or the controller with a fuzzy logic block responsible for the self-tuning of the
PID block, i.e., (PID-NFTSM), the results of [25] showed that the controller proposed in this
work was more stable, had less overshoot, and improved transient responses. In addition,
the integration of TDE reduced the required computational power of the controller and
also helped to eliminate the requirement to know the exact dynamics of the system. The
architecture of this system is shown in Figure 2. In order to fully understand the operation
of the presented architecture, it is necessary to explain Formulas (7)–(15), which underpin
the system [25]:

s = e + k1e[λ] + k2
.
e[

p
q ], (7)

where s is the NFTSM sliding surface, e is the error, k1 = diag(k11, k12, . . . , k1n) ∈ Rnxn

and k2 = diag(k21, k22, . . . , k2n) ∈ Rnxn are two positive definite matrices, p and q are
two positive odd numbers selected to satisfy the conditions 1 < p

q < 2 and λ > p/q,

SPID(t) = Kps(t) + Ki

∫ t

0
s(t)dt + Kd

ds(t)
dt

, (8)

where SPID is the sliding surface based on PID-NFTSM, Kp, Ki, Kd are the proportional,
integral, and derivative gains,

|Δ(x1, x2, u, τd)| ≤ Δ0, (9)

where x1 = q, x2 =
.
q, u = τ are the state variables, τd is the disturbance torque, Δ0 is

a constant, Δ(x1, x2, u, τd) covers all the effects of the uncertainties, disturbances, and faults,∣∣∣ .
Δ(x1, x2, u, τd)

∣∣∣ ≤ Δ1, (10)

where Δ0 is a constant,
∧( .

e, Δ)(t) ∼= ∧( .
e, Δ)(t−L), (11)

where ∧( .
e, Δ)(t) is the unknown function, (t − L) is the time delay,

uTDEt
∼= ∧̂( .

e, Δ)(t), (12)

where uTDEt , ∧̂(
.
e, Δ)(t) is the estimation of the unknown function,

.
uar =

(
K̂ + a

)
sign(SPID), (13)

where
.
uar is the adaptive law, K is an unknown constant, K̂ is the estimation of the bounded

value K,
uPID = −Ω+(

.
ex1)(ueq + uTDE + uar), (14)

where uPID is the controller output signal, −Ω+(
.
ex1) is a lumped unknown function,

V =
1
2

ST
PIDSPID +

1
2

CǨTǨ, (15)

where V is the Lyapunov function, Ǩ = K − K̂ is the adaption error, and C is the adap-
tion gain.
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Figure 2. (SFT-PID-NFTSM) with (TDE) [25].

The authors of [26] presented a new method of fault diagnosis and fault-tolerant con-
trol for a manipulator using a combination of a support vector machine (SVM)-based neural
adaptive high-order variable structure observer (ANHWSO) and an adaptive modern fuzzy
backstepping variable structure controller (AMFBVSC). The architecture of this control
system is shown in Figure 3. An SVM machine learning technique was used in this method
for error detection and identification and the control process was based on AMFBVSC. The
proposed control method, i.e., ANHVSO, improved the performance of fault identification
significantly compared to the neural high-order variable, structure observer (NHVSO),
and variable structure observer VSO. The work described in [26] is another example of
the application of artificial intelligence methods in fault identification. In this case, neural
networks and machine learning were used in control, where fuzzy logic was used to tune
the proposed method.

In [27], the authors proposed the use of a dual neural network (DNN) [28] for fault
diagnosis and fault tolerance. This was the first study found in the literature to present
the possibility of controlling a redundant manipulator when more than two axes fail. The
paper presented the realization of the task of chalking a circle when as many as three of the
available seven axes fail at different time periods. Prior to this, the control task at the time
of axis failure was to exclude a single axis or a single sensor.

The authors of [29] proposed and compared two approaches to FD error detection
in a welding robot based on the prediction of accelerations of individual axes. The first
acceleration prediction approach to fault detection was the use of a self-organizing map
neural network (SOMNN). This network is shown in Figure 4a. The second approach used
a radial basis function neural network (RBFNN), which is shown in Figure 4b. The paper
demonstrated the feasibility of using RBFNN and SOMNN to predict the acceleration of
individual axes for either detecting robot faults or predicting the remaining life of the
device.

The authors of [30] presented decentralized control strategies based on a radial ba-
sis function neural network (RBFNN). In this control method, each joint was treated as
a separate subsystem. A fault in the joint was detected using a velocity observer. The
presented law of adaptive control was based on information from individual joints. It can
be applied to any robotic arm configuration.
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Figure 3. Control architecture with observer (ANHVSO) and controller (AMFBVSC) [26].
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Figure 4. (a) Self-organizing map neural network (SOMNN) [29]. (b) Radial basis function neural
network (RBFNN) [29].
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The authors of [31] proposed a radial basis function neural network (RBFNN) for
estimating system failures in order to avoid a diagnostic error. The task of the neural
network was to compensate for the external disturbances and actuator failures, which were
recognized in the proposed method through an adaptive disturbance observer.

In [32], an adaptive fixed-time fault-tolerant constraint control (AFTFTCC) for trajec-
tory tracking was proposed. The system was tested by the authors on two manipulators
working together. The described method differs from other methods in that it does not
need components such as a state estimator or a fault observer. The method used (RBFNN)
to tease out the upper limit of uncertainty.

The authors of [33] presented a control system that is robust to four types of faults:
free-swinging joint faults, locked joint faults, incorrectly measured joint positions, and
incorrectly measured joint velocities. Artificial neural networks in the form of MLPs and
RBFNs were used to detect free-swinging defects and locked robot axes. The operation of
neural networks in this solution was based on the detection of failures by the MLP, where
each axis was represented by a separate MLP. The information in the form of a mapped
error vector was then passed to the RBFNN, which used the vector to classify the error
information. Due to the fact that the proposed control system detects the fault and then
isolates it and reconfigures the controller, it was able to control the arm in case of multiple
faults. However, this was not confirmed by tests in this work. The described control system
is shown in Figure 5.
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Figure 5. Robust control system architecture [33].

3. Sliding-Mode Control in FTCS

One of the most popular methods used to control robotic arms is sliding-mode control
(SMC). Sliding-mode control is based on variable structure systems consisting of inde-
pendent structures with different properties and switching logic between them. In SMC,
a discontinuous control signal, for example, +k and −k, are used, which forces the system to
“slide” along the cross-section of the normal characteristics of the system. When a system
moves along a curved or sliding surface, the system is said to be sliding. An up-to-date
overview of all the available methods of control using the sliding mode was presented
in [34]. The simplest sliding-mode control method can be described by the formula:

u = k·sign(e), (16)
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where u is the calculated signal, k is a constant that is the magnitude of change, e is the
control signal error, and sign() is the sign function.

Equation (16) describes the simple sliding-mode control method. The advantage of
this type of control is its simplicity and insensitivity to system uncertainty. Due to the
fact that the method is discontinuous and most control systems are discrete, the main
disadvantage of the presented method (16) is the system output signal oscillations called
chattering. Nevertheless, the method has become attractive to researchers due to its
simplicity; therefore, various sliding-mode control models are currently being designed
and implemented for different objects. Due to its robustness to uncertainties, the SMC
method is also often used in fault-tolerant control systems. It is applicable to manipulators
for which fault tolerance is required.

One of the SMC fault-tolerant methods is the use of a sliding-mode observer (SMO) [35]
for fault detection. The use of a non-linear observer makes it possible to estimate the
immeasurable state and model the uncertainty, which allows the construction of an error
estimation algorithm.

In [36], a fault-tolerant control system in the form of a super-twisting third-order
sliding-mode (STW-TOSM) observer and a super-twisting second-order sliding mode (STW-
SOSM) controller was presented. This method makes it possible to estimate errors and
uncertainties without measuring the speed of the robot’s members. For the correct operation
of the system, only position measurements are needed. In the paper, the authors presented
a comparison of the following systems: the traditional computed torque controller (CTC) [37],
the active CTC-FTC controller [38], the passive SM-FTC [39] controller, and the proposed
STW-SOSM-FTC controller in both passive and active forms. The test of the proposed
controller showed fewer errors, better stability, and no vibrations on the obtained output
waveforms. A block diagram of the arrangement of each block in the control process is
presented in Figure 6.

Robot manipulators 

States and fault 
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Fault-tolerant 
controller 

Uncertainty Fault 

Control input 

Estimated states Estimated fault 

Fault detection 
and isolation 

Measurement 
output 

  

Figure 6. Block diagram of the method presented by Mien Van, Pasquale Franciosa, and Dariusz
Ceglarek [36].

The authors of [40] presented a system in the form of a fixed-time second-order sliding-
mode observer (FxTSOSMO) and a fixed-time sliding-mode controller (FxTSMC). The
work compared the proposed observer (FxTSOSMO) with the fixed-time sliding-mode
observer (FxSMO) designed in an earlier work. The work compared the computed torque
controller, non-singular fast terminal sliding-mode control (NFTSMC) controllers [41], and
the proposed method (FxTSMC). The latter system achieved higher estimation precision
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and the error of the proposed solution converged within a fixed time frame. The solution
proposed in [40] is described by the following Formulas (17)–(20):

ustw = μ1|e|
1
2 sign(e) + ξ, (17)

where ustw is an approximate unknown component, μ1 > 0, e = x2 − v is a velocity error,
ξ = k(t)sign(e),

.
v = ∧u + f (x1, x2) + ustw + k1[e]

γ1 + k2[e]
γ2 , (18)

where
.
v is the observer that was designed based on a super-twisting high-order sliding-

mode algorithm, ∧ = M−1(q), M is the inertia matrix, k1 > 0, k2 > 0, [e]γ1 = [e]γ1 sign(e),
v is the estimate of the velocity x2, γ1 = 1

2 , γ2 > 2,

s = e +
1
kγ

2

[ .
e + k1[e]

α]
1
γ , (19)

where s is the proposed sliding surface, α > 1, 1
2 < γ < 1,

u = u0 + uc + us, (20)

where u is the proposed controller output, u0 = ∧+(− f (x1, x2)− ustw +
..
xd − k1|e|α−1 .

e),

∧+ is the pseudo-inverse of the ∧, uc = −∧+ kγ
2

∣∣∣T(e,
.
e)|1− 1

γ
.
e , us = ∧+(−(Γ + α)sign(s)−

λ1[s]
m1 − λ2[s]

m2), Γ is a positive constant, 0 < m1 < 1, m2 > 1.
The proposed algorithm was designed to follow a preset trajectory. The block for

generating the preset trajectory is thus the first block of control. The signal from this block, to-
gether with the signal feedback from the FxTSOSMO block described by Equations (17) and (18),
goes to the summing node. The feedback signal is the current positions and velocities.
The position and velocity errors go from the summation node to the sliding surface block
described by Equation (19). The signal s from the sliding surface block and ustw from the
FxTSOSMO block go to the FxTSMC block described by the equation. The output of the
FxTSMC block u described by Equation (20) goes to both the FxTSOSMO block and the
robot. Finally, the FxTSOSMO block retrieves information about the robot in the form of
positions and velocities.

In [42,43], the authors presented a fault-tolerant control system for a single-link flexible
joint manipulator (SFJM). This work proved that it is possible to control the flexible coupling
in a robot joint using SMC with SMTO. The presented results show that SMC is a method
that can be applied to objects characterized by non-linearity and uncertainty. However, the
presented solution was validated only for a single-axis manipulator, but it is possible to
develop a similar system for a manipulator with more degrees of freedom.

The authors of [44] proposed a novel methodology for manipulator adaptive back-
stepping non-singular fast terminal sliding-mode control (ABNFTSMC). The proposed
approach combined NFTSMC with a backstepping design mechanism. The combination
resulted in few tracking errors and low “chattering” on the output and provided fast
response transients. The described system was compared to CTC, PID, PID-SMC, and
NFTSMC controllers. The comparison of these systems showed improvements in the
above-mentioned parameters.

In [45], a system consisting of combined non-singular fast terminal sliding-mode
control (NFTSMC) and a high-order sliding-mode (HOSM) controller was proposed. The
presented control system also used an algorithm based on time delay estimation (TDE)
for fault estimation. The results described in the work showed that fast terminal sliding-
mode control (FTSMC) and NFTSMC systems have faster convergence compared to the
non-singular terminal sliding-mode control method. FTSMC systems may encounter the
problem of singularity during operation. However, the work shows the advantage of
the NFTSMC system over the above-mentioned ones. Other methods using both active
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fault-tolerant control systems (AFTCS) and passive fault-tolerant control systems (PFTCS)
were also rated in the paper.

In [46], a combination of a controller in the form of non-singular fast terminal sliding-
mode control (NFTSMC) with an observer in the form of third-order sliding mode (TOSM)
was presented. The research results showed that the TOSM observer can estimate the speed
of the system so that the system does not need to measure this. This method was compared
with the SMC, NTSMC, and NFTSMC methods. The proposed NFTSMC method had the
fewest trajectory-tracking errors. The TOSM observer, on the other hand, proved more
accurate and had less “chattering” than the SOSM observer.

The authors of [47] presented a combination of a fast terminal sliding-mode surface
(FTSMS), super-twisted reaching control law (STRCL), and disturbance observer (DO).
The proposed method was compared with the SMC and NFTSMC methods. The method
described in the paper provided convergence in finite time and effectively combatted the
chattering phenomenon. By using a disturbance observer, the complexity of the calculations
was reduced. A DO was also used to estimate uncertainties in the form of dynamics,
external disturbances, and failures. A diagram of the proposed method is shown in
Figure 7. This work presents the new fast terminal sliding surface described by the formula
in [47]:

σi =
.
ei +

2γ1

1 + Eμ1(|ei |−Φ)
ei +

2γ2

1 + Eμ2(|ei |−Φ)
|ei|αsign(ei), (21)

where σ ∈ R is the FTSMS, E is an exponential function, ei represents the positional
control error,

.
ei represents the velocity control error, γ1, γ2, μ1, μ2 are the positive constants,

0 < α < 1, Φ =
(

γ1
γ2

)1/(1−α)
,

ur = Y1|σ|0.5sign(σ) + η, (22)

where ur is STRCL, Y1 = diag(Y11, . . . , Y1n).
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Figure 7. Diagram FTSMS-STRCL-DO [47].

The authors of [48] proposed a new sliding-mode control technique, namely active
fault-tolerant control with synchronous sliding-mode control AFTC-SSMC. This control
relied on the fact that with a traditional SMC controller, only the position error converges
to zero. In synchronous control, on the other hand, both the position error and kine-
matic relationship between the errors converge to zero. The method was compared with
standard active and passive sliding-mode control, namely AFTC-SMC and PFTC-SMC.
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It was shown that the pro-rated method had better fault tolerance and provided better
trajectory-tracking performance.

The authors of [49] presented a fault-tolerant manipulator control strategy in the
form of a combination of NFTSMC and the proposed high-speed third-order sliding-mode
observer TOSMO. This combination was able to handle unknown input data, further
reducing the vibration phenomenon and improving the accuracy of trajectory tracking.
The proposed high-speed TOSMO could estimate both the velocity signal and input data
faster than a standard TOSMO. The structure of such a system is similar to that of the
FTSMS-STRCL-DO [47] but it has a different observer model. The structure of the proposed
method is shown in Figure 8. The solution proposed by the authors is described by the
following formulas [49]:

ŝ =
.̂
e +

∫ [
β1|e|γ1 sign(e) + β2

.̂
e

γ2
sign

( .̂
e
)
+ β3e + β4e3

]
dt, (23)

where ŝ is the NFTS surface, β1, β2, β3, β4 are positive constants, 0 < γ1 < 1, γ2 = 2γ1/
(1 + γ1) are constants,

ueq = ψ(x) + k2|∼x1| 1
3 sign

(∼
x1

)
+ Γ

( .
x̂1 − x2

)
+
∫

k3sign
(∼

x1

)
+ A − ..

xd, (24)

where ueq is the equivalent control law, A = β1|e|γ1 sign(e) + β2
.̂
e

γ2
sign

( .̂
e
)
+ β3e + β4e3,

ψ(x) = M(q)−1[−C
(
q,

.
q
)− G(q)

]
is the nominal model of the robot manipulator, Γ is

a positive constant, k2, k3 denotes the sliding gains,
..
xd is an expected acceleration

usw = (Δδ + μ)sign(ŝ), (25)

where usw is the switching control law, μ is a small positive constant, and Δδ is the estimation
error as a positive value.
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Figure 8. Structure of the NFTSMC-TOSMO control method [49].

4. Other Robot-Dedicated FTCS

In addition to the leading fault-tolerant manipulator control methods such as SMC
and artificial intelligence, other dedicated manipulator control methods can also be found
in the literature. Some of them are presented in this section of the article.
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The authors of [50] presented the use of the well-known Newton–Raphson Method
(NRM) [51] to control a manipulator when a robot axis fails. The authors of this paper
attached a QR code to the robot’s end arm. This code was read by a camera located at the
base of the robot and then the position of the robot’s end was fed into the control software.
This allowed the algorithm to determine the moment at which the failure occurred by not
matching the position tracked by the camera with the calculated position. Then, the system,
which used the Newton–Raphson method in the inverse kinematics calculation to find
a good approximation for the root of a real-valued function, determined which joint had
failed. To determine the faulty axis, the position measured by the camera was compared
with the position calculated by the NRM. If a difference was detected, the system checked
which axis was damaged. If a faulty joint was detected, the failed joint was treated as rigid
and the robot’s inverse kinematics were recalculated using the Newton–Raphson method.
Using this solution, the authors of the paper proved that if the robot was able to reach the
set position despite the loss of an axis, the algorithm was able to help the robot achieve
its goal.

In [52], a new method of hybrid fault-tolerant predictive control (HFTPC) was pro-
posed. This method was tested on a hybrid manipulator that was a combination of hy-
draulic and mechanical elements. The paper compared the proposed HFTPC method,
one of the components of which was a predictive control (MPC) model [53], with control in
which only the MPC part was running. The presented system was able to control a hybrid
manipulator when a failure occurred.

The authors of [54] presented robust fault-tolerant tracking control (RFTTC) schemes
for uncertain non-linear feedback systems (NFS) using operator theory-based robust right
coprime factorization (ORRCF). It was shown that both RFTTC based on an internal model
and RFTTC based on operator compensation were effective in dealing with interference
and erroneous signals. The proposed system was tested on a trajectory-tracking task by
a two-axis robot.

The authors of [55] presented an adaptive fault-tolerant control system for unknown
actuator faults. Detailed fault information was not required for the algorithm to work. The
proposed method omitted complex logarithmic transformations in the pre-scribed perfor-
mance control (PPC) structure [56], making the controller efficient and simple to implement.

The authors of [57] proposed a robust fixed-time fault-tolerant control system (RFTFTC)
by introducing an additional auxiliary vector that was described by Formula (26) [57]:

χ =
.
e + λe, (26)

where λ ∈ R+, e = q − qd is the position error and
.
e =

.
q − .

qd is the velocity error.
A schematic of the proposed system is shown in Figure 9.
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Figure 9. RFTC with auxiliary vector [57].

The authors of [58,59] presented an FTCS for manipulators based on an active inference
controller (AIC). AIC makes use of the sensory prediction error in the free energy for the
generation of residuals and thresholds for FDI. It does not require additional controllers for
fault recovery. In [59], the AIC was improved, and unbiased AIC (u-AIC) was introduced to
reduce the probability of false positives and allow for the easy definition of probabilistically
robust thresholds for fault detection.
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The authors of [43] presented fault-tolerant control using a proportional–integral–
derivative (PID) controller. In addition to the PID controller, the system consisted of
a Luenberger observer [60], which was able to estimate the errors of the FDI analysis.
From the information provided by the FDI, the magnitude of the error was evaluated
using singular value decomposition (SVD) [61]. The system in this solution was tested on
a single-link flexible manipulator.

In earlier works, i.e., before 2019, the algorithms described in the literature for the
control of robots in the case of communication faults dealt with two control types, i.e., state
observers or estimators. The works in [62,63] presented a completely different approach
to fault-tolerant control. The authors of these works dealt with a problem involving
interference in the communication path through which information is sent between the
robot’s actuators and the controller. The paper proposed to re-construct data corrupted
during transmission using a splicing code. The transmission was carried out using the
Controller Area Network (CAN) protocol [64].

The authors of [65] presented as many as four techniques for dealing with controlled
oscillation and axis damage. These techniques were sinh-cosh, neural compensation, PID
gain scheduling, and sinh-cosh gain scheduling. All of them were tested on a manipulator
in which the failure was detected by measuring the currents through the robot axis drives.
At the moment of axis failure, the current dropped to zero and then the axis was treated
as passive, i.e., not participating in control. In the results of the paper, all four methods
were compared. The comparison of the methods was conducted using a presentation of the
trajectory-tracking error for each method. The best results in terms of the position errors of
the individual axes were obtained for neural compensation, whereas the worst results were
obtained by the sinh-cosh gain-scheduling method.

5. Summary

This paper presented an overview of the investigated FTC-type solutions used in
manipulators. The works that were considered and described were mainly from the last
five years. The division of the literature items presented in this article, as proposed by the
authors, is shown in Figure 10. The leading solutions are AI (artificial intelligence) and
SMC (sliding mode control). A fault-tolerant control system that is a combination of AI and
SMC has also been developed, namely SFT-PID-NFTSM [25]. Other presented methods are
based on PID controllers [53], NRM [50], MPC [52], and AIC [58,59], or are proposals that
deal with interference occurring in the CAN communication protocol [62,63].

Artificial Intelligence Sliding mode control Others 

AFT2BC  

NTSC-IT2FSB0 

NF  

SFT-PID-NFTSM  

AMFBVSC  

DNN  

SOMNN  

RBFNN 
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FTSMC-STRCL-
DO  
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RFTTC-ORRCF  

RFTFTC  

AIC  
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PID-L-SVD  

Figure 10. Proposed breakdown of fault-tolerant control system methods used in manipulators. All
abbreviations of the control methods and their references to the literature are in the text above and in
Table 1 below.
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Table 1. Comparison of FTC methods used for robot control described in the cited articles.

Accuracy Robustness Dependence on Model or Training Data Implementation Complexity Computational Cost

AFT2BC [17] 2 4 2 3 2
NTSC-IT2FSB0 [20] 5 4 3 3 3

NF [22,24] 2 3 5 4 5
AMFBVSC [26] 5 3 5 5 5

DNN [27] 5 5 4 4 4
SOMNN [29] 3 3 5 4 4

RBFNN [29–31] 5 4 3 4 4
AFTFTCC [32] 4 4 3 4 4

MLP-RBFNN [33] 3 4 5 4 5
SFT-PID-NFTSM [25] 2 4 2 3 3

STW-SOSM [36] 3 4 1 2 2
FXTSMC [40] 4 5 1 2 2

SMC-SMTO [42] - - 1 2 2
ABNFTSMC [44] 3 5 1 3 2

NFTSMC-HOSM [45] 3 4 1 2 2
FTSMC-STRCL-DO [47] 4 5 1 2 1

AFTC-SMC [48] 5 5 1 2 2
NFTSMC-TOSMO [49] 4 5 1 2 2
NFTSMC-TOSM [46] 4 5 1 2 2

NRM [50] 2 3 2 3 4
HFTPC-MPC [52] 2 3 3 3 3

RFTTC-ORRCF [54] 5 5 4 4 3
RFTFTC [57] 4 4 2 2 2

AIC [58] 4 4 3 3 3
U-AIC [59] 4 5 3 3 3

PID-L-SVD [43] - - - 2 2

Accuracy: Rating scale (1–5), where 1 indicates low accuracy and 5 indicates high accuracy. Robustness: Rating
scale (1–5), where 1 indicates low robustness and 5 indicates high robustness. Dependence on model or training
data: Rating scale (1–5), where 1 indicates no dependence on training data and 5 indicates high dependence on
training data. Implementation complexity: Rating scale (1–5), where 1 indicates that the implementation was
simple and 5 indicates that the implementation was very complex. Computational cost: Rating scale (1–5), where
1 indicates that the cost was small and 5 indicates that the cost was high.

The purpose of this review was to present the issue of FTC in the context of manipu-
lators, particularly for the control of a robot in the case of a one- or two-axis failure. We
decided to collect works from the last 20 years and then group them. In this way, the three
groups created related to the sections of this paper, i.e., AI-based methods, SMC-based
methods, and other methods, which, numerically, constituted a similar number to the
first two groups. The goal of our review was to systematically collect and summarize
the existing research on the topic of FTC in manipulators. After reading this paper, it is
expected that readers will have gained a general understanding of FTC in manipulators.
We believe that the topic of FTC is very subjective and depends strictly on the application,
e.g., if a robot is connected to very long wires, it may be that using FTC algorithms for the
communication line is a much better solution than using an AI or SMC-based controller.
For manipulators with a large number of degrees of freedom, a computationally simple
SMC-based controller is probably better but this may also depend on the required motion
speeds or positioning accuracy. The purpose of this article is to direct the reader to the
solutions and the valuable works of the cited authors. Therefore, the methods described
in the cited articles are compared in Table 1. Each of the proposed methods is valid for
a different type of application and their comparison could only be performed for detailed
boundary conditions.

6. Conclusions

The study presented in this paper deals with FTCS in relation to manipulators. The
authors of the papers discussed in this review deal with failures in both single and multiple
axes. In addition, they address aspects of tolerating erroneous position sensor readings
and propose algorithms to deal with interference occurring on the communication line
between the controller and robot actuators. A review of the literature shows that the topic
of FTCS as applied to manipulators is currently being strongly developed. The use of FTCS
systems allows the optimization of production by avoiding downtime caused by individual
component failures in robotic arms. Looking toward the future, several opportunities
for the application of FTC in manipulators have been identified by the authors. The first
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possibility is for the robot to react to obstacles in its working environment. However, no
studies have yet been presented in which the FTC algorithm was implemented and the
robot was able to avoid obstacles. Another possible future use of FTC algorithms is the
cooperation between a robot and a human. However, there are no studies that indicate how
the FTC algorithm would behave in such a scenario. Additionally, there are currently no
studies that demonstrate how FTC algorithms could facilitate cooperation between robots
such as delegating work to a more efficient robot when another robot is defective or robots
communicating with each other about the detection of defects.
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Abstract: Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling
technology has the advantages of improving drilling efficiency, reducing risks, and minimizing
environmental effects. Therefore, RMR drilling technology has been widely applied in recent years.
This study primarily investigates the relationships among reverse torque, vibration, and input
parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the
structure of the mud pump module are analyzed, and an analytical model for the reverse torque and
the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical
calculations and experiments, and the relationships among the reverse torque, vibration, and input
parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the
SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the
mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships
among the reverse torque, vibration, and input parameters of the mud pump. The findings show that
the reverse torque of the mud pump increases approximately linearly with an increase in rotational
speed, and the vibration of the mud pump increases and then decreases with an increase in rotational
speed. The predicted values obtained through the prediction algorithm closely match the actual
values. The findings provide a valuable reference for the application of RMR technology.

Keywords: riserless mud recovery technology; mud pump; ANSYS software; SVR algorithm

1. Introduction

Although marine oil and gas resources are abundant, deepwater drilling is facing many
technical challenges. RMR technology can improve the efficiency of drilling processes,
reduce environmental effects, and increase operational flexibility [1–3]. Dual-gradient
drilling technology is an unconventional drilling technology, which changes the annular
pressure gradient of the riser through the pump or changes the fluid density. This tech-
nology can address some issues related to formation pressure in deepwater drilling [4–8].
Riserless mud recovery drilling (RMR) [9] is an implementation solution for dual-gradient
drilling. It forms a closed mud circulation system, allowing mud to be recovered and
significantly reducing the amount of mud used. Additionally, it avoids discharging mud
into the seawater, thereby protecting the marine environment. RMR is widely used in
deep-sea offshore drilling.

Li et al. [10] analyzed the effects of seawater depth, equivalent static density (ESD)
of drilling fluid, drilling chip concentration, and discharge on the annular pressure and
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ECD of an RMR system based on drilling data from a vertical well in the South China Sea.
Reynolds et al. [11] presented a pioneering case study for the Luiperd Mine and one of the
measures for reducing environmental risk was to adopt a new articulation tool to minimize
the bending stress applied to the subsea wellhead running tool (WHRT) and landing rope
in running through the inflow pipe and surface casing. Claudey et al. [12] employed a
controlled mud level technique in the Barents Sea, which controlled the liquid position
within the riser, optimized the downhole pressure, prevented mud leakage, and maintained
pressure balance. Claudey et al. [13] successfully deployed a riserless mud recovery (RMR)
system at a water depth of 854 m, the deepest operation of its kind in the North Sea to date.
Mud-lifting circulation was achieved without wellbore stability or shallow hazard issues,
and no mud contamination occurred. Rosenberg et al. [14] introduced a design method for
oil wells and used casing drilling to eliminate the need for multiple deep-water riserless
series connections, enabling the high-pressure wellhead casing and its conductors to be set
deeper. In the land and shallow sea environment, the practice of casing drilling has become
very mature to improve drilling efficiency and reduce drilling hazards. RMR technology
was also applied to achieve the successful cementing of the surface casing in the Malikai
deepwater field in Sabah, Malaysia [15]. A model was devised to measure the bottomhole
pressure of the RMR system during gas intrusion conditions using the gas–liquid two-phase
flow theory [16]. In the Gulf of Mexico, RMR was initially implemented, leading to an
enhanced improved operational efficiency and better wellbore structure [17]. The successful
commercial application of dual-gradient drilling was first achieved in the ultra-deepwater
Gulf of Mexico [18]. In the UK Continental Shelf (UKCS) oil-field development project,
a RMR top-hole operation was employed for the first time [19]. Riserless dual-gradient
technology was used for drilling highly deviated wells in the Santos Basin offshore Brazil,
addressing issues related to formation erosion and wellbore collapse [20]. RMR has been
utilized offshore multiple times, successfully resolving problems of loose sandstone soil and
deepening surface casing, completing over 40 wells with a water depth of 450 m [21–23].
When drilling in overpressured zones [24–27], RMR can also compensate for the absence of
a riser and blowout preventer (BOP). It has been utilized successfully in various offshore
areas with loose formations and losses.

Mud pumps for drilling have also been studied by some researchers, in addition to
RMR technology. In order to develop a system to monitor their technical conditions, Bejger
et al. [28] investigated these pumps under operational conditions. Deng et al. [29] presented
a practical diagnosis method that could effectively improve the fault diagnosis level for the
fluid end of high-pressure reciprocating mud pumps. Khademi-Zahediet al. [30] utilized
analytical studies and finite element methods to examine how different loading conditions
impact the behaviors of mud pumps. Piasecki et al. [31] investigated mud pumps to develop
an effective diagnostic tool that could help pump operators with their daily maintenance
routines. ANSYS is a large-scale general-purpose finite element analysis software that can
simulate and optimize a wide range of complex engineering problems. In this paper, pumps
are analyzed using the ANSYS software. Additionally, the ANSYS software has numerous
applications in other fields. ANSYS software was used by Bhatti et al. [32] to numerically
model and evaluate the performance of a standing-wave thermoacoustic refrigerator with
multiple stacks. The ANSYS Fluent software package was used by Hamdamov et al. [33] to
conduct mathematical modeling of vertical axis wind turbines. ANSYS Fluent software
was used by Ezzat et al. [34] to numerically simulate the phase transition process. Sohn
et al. [35] used ANSYS and ANSYS pre-processor/post-processor composite material to
create the layered composite material structure described in the article. Tjitra et al. [36] used
ANSYS software to perform numerical simulation analysis of three-dimensional reinforced
concrete beams under various collapse mechanisms.

However, few scholars have conducted analytical studies on the stability of mud
pumps and their manifold connection employed in RMR technology, which is the core
condition for the stable operation of RMR in the deep sea. During the drilling process, the
deepwater RMR pump is mounted using a mid-hanging configuration, which results in
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reverse torque and vibration during normal operation. Hence, it is crucial to conduct a
pertinent examination and investigation of the mud pump’s reverse torque and vibration
in the mud return circulation system. This study examines the relationships among reverse
torque, vibration, and input parameters of the mud pump within the mud return circulation
system. The study’s contributions can be summarized as follows:

(I) An analysis is conducted of the working principle and the structure of the mud pump
module, and an analytical model for the reverse torque and vibration of the mud
pump is developed.

(II) Theoretical calculations and experiments are used to generate relevant data. The
relationships among the reverse torque, vibration, and input parameters of the mud
pump are analyzed using the ANSYS (Version 2020 R1) software.

(III) Predicting and analyzing the amplitude of the mud pump vibration is achieved by
employing the SVR algorithm.

(IV) Relevant conclusions are drawn from the research results on the relationships among
the reverse torque, vibration, and input parameters of the mud pump.

The findings show that the reverse torque of the mud pump increases approximately
linearly with an increase in the rotational speed, and the vibration of the mud pump
increases and then decreases with the increase in the rotational speed. The predicted values
obtained through the prediction algorithm closely match the actual values.

2. Analysis of the Reverse Torque and Vibration in the Mud Pump

Due to the mid-hanging configuration of the deepwater RMR pump, it generates
reverse torque and vibration in the mud return pipeline connected at both the upper end
and the lower end during startup and operation. The return pipeline for the mud may
be damaged, which will affect the stability and safety of both the mud pump and the
return pipeline. In this section, the reverse torque and the vibration of the mud pump
were analyzed using the ANSYS (Version 2020 R1) software. Since the mud pump used in
the RMR technique is a ten-stage mud pump, a single-stage pump was first used for the
analysis, and the error between the theoretical calculations and the simulation analysis was
compared to ensure the error was within a reasonable range, thus proving the correctness
of the analysis. Then, the mud pump (ten-stage pump) was analyzed based on the setup
adopted for analyzing the single-stage pump.

Figure 1 shows the flowchart of the main analysis process. Firstly, the reverse torque of
the single-stage mud pump was theoretically calculated and compared with the numerical
simulation results as well as the error analysis. Secondly, the fluid model was established;
its mesh division, materials, and boundary conditions were set; and the mud pump’s
reverse torque and rotational speed were derived from the changes in the relationships.
Finally, the rotor model of mud pump was established; its mesh division, materials, and
boundary conditions were set; and the relationships between the mud pump’s vibration
and the motor’s input parameters were obtained.

single-stage

Figure 1. Analysis flowchart.

2.1. Working Principle and Structure of the Mud Pump Module

The riserless mud recovery (RMR) closed-loop drilling system generally consists of a
drilling unit, a mud return system unit, a mud treatment unit, and a power monitoring unit.
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The operational mode of the RMR closed-loop system is shown in Figure 2. The mud pump
module is located within the mud return system unit and is installed using a mid-hanging
configuration on the mud-lifting pipeline. The main function of the mud pump module is
to transport the cuttings generated by the suction module through the mud return pipeline
to the surface mud treatment equipment. With the suction action of the subsea mud pump,
drilling fluid is drawn from the lower outlet of the suction module, enters the subsea mud
pump through the subsea drilling fluid delivery pipeline, and is then lifted to the drilling
vessel for processing and subsequent reuse.

Figure 2. Diagram of the riserless mud recovery closed-loop operating mode [37].

The mud pump module is used to circulate a mixture of drilling fluid, cuttings, and
even gas. The external view of the mud pump module is shown in Figure 3. The mud
pump is powered by the platform and all equipment is only subjected to the hydrostatic
pressure of seawater. The mud pump module is a critical component of the riserless mud
recovery closed-loop system. It controls the pressure balance inside the suction module
using the subsea pump and facilitates the return of drilling mud. The subsea pump module
is fixed on the mud return pipeline and not only needs to ensure the reliability of the entire
pipeline structure but also to maintain the smooth flow of the mud return pipeline. To
prevent a collision between the lower subsea pump module and the suction module during
operation, a subsea anchor is used to secure the lower end of the mud return pipeline, and
a tension force is applied to restrict the horizontal movement of the mud return pipeline.

The lifting module of the mud pump unit mainly consists of drill pipe joints, corrective
blocks, ball valves, centrifugal pumps, a four-way connector, a skid assembly, a ball valve
control device, a skid, a trolley adapter, a supporting mechanism, and other components.
The skid is the foundation of the mud pump module and serves mainly for connection and
support. During drilling operation, the skid is installed on the mud lifting pipeline using a
center-hanging arrangement, providing support for the internal components of the mud
pump module. The skid remains stationary during the mud-lifting process and does not
undergo significant vibration. The centrifugal pump used in the module is a multistage
centrifugal pump, which increases the power of the pump module, enabling it to meet the
requirements of deepwater operation. The mud return riser provides a conduit for drilling
mud to flow from the seabed wellhead to the drilling rig. It also serves to fix and support
two lifting pump module units, bearing the weight of the seabed anchor and resisting the
force applied by sea currents and the movement of the drilling rig.
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Figure 3. Exterior diagram of the mud pump module.

2.2. Validation of the Theoretical Calculations and the Numerical Simulation Results for the
Reverse Torque of the Single-Stage Mud Pump
2.2.1. Theoretical Calculations of the Reverse Torque for a Single-Stage Mud Pump

According to the principle of energy conservation, the torque work conducted by the
single-stage mud pump on the mud can be divided into two parts: one portion is converted
into an increase in the energy of the mud and another portion is lost due to friction in the
pipeline. The portion that contributes to the increase in mud energy is considered useful,
while the portion lost due to friction in the pipeline is considered useless. The energy of the
mud includes pressure energy, potential energy, and kinetic energy. Since the single-stage
mud pump selected has the same inlet and outlet pipe diameters, the kinetic energy of the
mud at the inlet and outlet remains constant. The calculation formula for the increase in the
pressure energy of the mud within a time unit is shown as follows [38], where ΔEP is the
pressure energy from the increase in mud within a time unit, ΔP is the pressure difference
between the inlet and outlet, and Q is the mud volume flow.

ΔEP = ΔPQ (1)

The formula for calculating the increase in potential energy of mud per unit time is
shown as follows [38], where ΔEh is the potential energy from the increase in mud within a
time unit, Δh is the height difference between the inlet and outlet, ρ is the density of the
mud, and g is the gravitational acceleration.

ΔEh = QρgΔh (2)

Based on Equations (1) and (2), the formula can be derived for calculating the useful
work of the single-stage mud pump per unit time, as shown in the following equation,
where We is the useful work of the single-stage mud pump within a time unit.

We = ΔEP + ΔEh (3)

In the three formulas above, the mud flow rate Q is 2000 L/min, the mud density ρ is
1200 kg/m3, the acceleration of gravity g is 9.81 m/s2, the height difference Δh between the
inlet and outlet is 0.32 m, and the speed is 1500 rpm. In addition, in order to find the useful
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work value, it is necessary to know the pressure difference between the inlet and outlet
of the single-stage pump. For this reason, a three-dimensional model of the single-stage
pump flow channel was established by using the three-dimensional modeling software
Solidworks (Version 2018), and its cutaway view is shown in Figure 4a. The model was
meshed by using the Mesh tool in ANSYS Workbench (version 2020 R1), and automatic
meshing was used for the division. A total of 94,412 grids were divided by setting the
mesh size to 0.005 m, as shown in Figure 4b. It is worth mentioning that when it is more
finely meshed, the analysis results are consistent with those obtained using the current
mesh; hence, the mesh independence is verified. Finally, the fluid model was analyzed by
using the Fluent tool in ANSYS Workbench (Version 2020 R1). The pressure inlet–mass flow
outlet boundary was used for this analysis. Based on the mud parameters shown in Table 1
and Equation (4), the outlet mass flow Qm can be obtained, which is equal to 40 kg/s. In
order to calculate the inlet and outlet pressure difference, the inlet pressure was 0 MPa,
and the pressure difference between the inlet and outlet was the outlet pressure. Since
the impeller was set as the rotating domain and the guide shell was set as the stationary
domain, the interface between the rotating domain and stationary domains needed to
establish the interaction surface so as to achieve the exchange of data between the rotating
and stationary domains. Domain surfaces are all wall surfaces.

Qm = Q ρ (4)

(a) (b) (c)

Figure 4. (a) The cutaway view of the three-dimensional model of the single-stage pump flow channel,
(b) meshing of the three-dimensional model of the single-stage pump flow channel, and (c) pressure
distribution diagram of the single-stage mud pump flow path at 1500 rpm.

Table 1. Mud parameters.

Parameter Value

Density ρ (kg/m3) 1200
Volume flow Q (L/min) 2000

Flow rates v (m/s) 1.88628
Viscosity μ (Pa·s) 0.12681

Based on the fluid analysis, the pressure difference Δp between the inlet and outlet
of the single-stage mud pump at 1500 rpm is 0.756 MPa, as shown in Figure 4c, which
represents the pressure distribution along the flow path of the pump. In this figure, the
red dots represent the impeller and the black dots represent the guide shell. Similarly, the
inlet–outlet pressure difference Δp at different speeds can be obtained, as shown in Table 2.
Therefore, the relationship between the useful work per unit time and the single-stage mud
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pump rotational speed, n, can be determined, as shown in Columns 1 and 2 in Table 3.
Based on Equation (5) [39] of the relationship between the torque exerted by mud on the
single-stage mud pump and the useful work per unit time, and according to the data of the
useful work and rotational speed shown in Columns 1 and 2 in Table 3, the relationship
between the calculated torque T and the rotational speed n can be obtained, as shown in
Columns 1 and 3 in Table 3.

We = Tnη (5)

Table 2. Relationship between inlet and outlet pressure difference and rotational speed.

Rotational Speed (rpm) 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

Pressure difference between
inlet and outlet (MPa) 0.658 0.662 0.672 0.685 0.695 0.705 0.715 0.725 0.734 0.746 0.756

Table 3. Relationship between useful work and calculated reverse torque with rotational speed.

Rotational Speed (rpm) Useful Work (kW) Calculated Reverse Torque (N·m)

1400 22.06 273.17
1410 22.19 272.83
1420 22.53 275.06
1430 22.96 278.35
1440 23.29 280.39
1450 23.63 282.53
1460 23.96 284.51
1470 24.29 286.46
1480 24.59 288.04
1490 24.99 290.76
1500 25.33 292.76

2.2.2. Error Analysis of Torque Simulation Results for a Single-Stage Mud Pump

Fluent is a computational fluid dynamics software that utilizes numerical methods to
solve fluid mechanics problems. The numerical methods employed by Fluent are based on
finite volume and finite element methods, enabling a numerical simulation and analysis of
various fluid flow problems. In this analysis, Fluent was used to analyze the torque of a
single-stage mud pump. Based on the analysis in Section 2.2.1, it was straightforward to
obtain the single-stage pump’s reverse torque at 1500 rpm. However, for other rotational
speeds, it was sufficient to set different rotational speeds for the analysis. Based on the fluid
simulation results, the relationship between the simulated reverse torque and rotational
speed can be obtained. Figure 5 illustrates the variation curve of the calculated reverse
torque and simulated reverse torque concerning the rotational speed, while Figure 6 shows
the variation curve of the relative error concerning the rotational speed. It can be observed
that the average relative error of the simulation is 3.41%, which demonstrates the correctness
of the simulation results.

2.3. Relationship between Mud Pump Reverse Torque and Rotational Speed

To establish the relationship between the mud pump’s reverse torque and rotational
speed, a three-dimensional model of the mud pump flow channel was established by using
the three-dimensional modeling software Solidworks (version 2018), and its cutaway view
is shown in Figure 7. The model was meshed by using the Mesh tool in ANSYS Workbench
(Version 2020 R1) and automatic meshing was used for the division. A total of 239,462 grids
were divided, as shown in Figure 8. Except for the difference in the analysis model, the rest
of the settings are identical to those used when analyzing single-stage pumps and will not
be repeated here.
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Figure 5. Relationship between the calculated and simulated values as they vary with the rotational speed.

Figure 6. Relationship between the error and rotational speed as they vary.

Figure 7. The cutaway view of the mud pump flow channel.
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Figure 8. Meshing of the three-dimensional model of the mud pump flow channel.

To establish the relationship between the reverse torque and rotational speed of the
mud pump within the speed range from startup to normal operation, 24 sets of analytical
experiments were conducted at different pump speeds. The reverse torque values at
24 different speeds were obtained, and a torque–speed relationship curve was plotted
based on the analytical experimental data, as shown in Figure 9. The analysis results
indicate that the reverse torque of the mud pump increases approximately linearly with an
increase in the rotational speed. According to the actual operating conditions, as the pump
speed increases, the fluid in the pump moves rapidly accordingly. At a high speed, the
excitation force of the fluid becomes higher, resulting in an increase in the reverse torque.
This effect is especially significant in the areas with a high fluid velocity. The analysis
results are consistent with the actual operating conditions. The minimum reverse torque is
−320.4 N·m at 0 rpm, while the maximum reverse torque is 3620.28 N·m at 1500 rpm. The
value of the maximum reverse torque provides a reference for the selection of motors.

Figure 9. Relationship between reverse torque and rotational speed.

2.4. Relationship between Mud Pump Vibration and Input Parameters
2.4.1. Analysis Modeling and Pre-Processing Setting

Due to the unstable force exerted by the mud on the mud pump, the operation of the
mud pump inevitably generates certain vibrations. To analyze the effect of vibration on the
safety and stability of the mud pump and the return pipeline, a mud pump rotor model, as
shown in Figure 10, was established to investigate the effect of mud-induced vibration on
the mud pump rotor using a one-way fluid-structure coupling analysis.
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Figure 10. Three-dimensional model of the mud pump rotor.

In the one-way fluid-structure coupling analysis, the calculations of the fluid and
solid were performed independently. Firstly, in the fluid calculation, the fluid parameters,
such as velocity, pressure, and temperature, were computed to obtain the force exerted
by the fluid on the solid. Then, in the solid calculation, the force was applied as the
external load on the solid to compute parameters, such as stress, strain, and deformation.
In the ANSYS software, the workflow for the one-way fluid-structure coupling analysis
mainly involved using ANSYS Fluent for the fluid calculation and transferring the results to
ANSYS Mechanical for the solid calculation. Specifically, in ANSYS, the input for the fluid
calculation included the initial state of the fluid, boundary conditions, mesh, and so on. The
output included fluid velocity, pressure, temperature, and other related parameters. For
the solid calculation, the input included material properties, geometric shapes, boundary
conditions, and so on, while the output included stress, strain, deformation, and other
relevant parameters.

The mud pump rotor was divided using a hexahedral meshing method, with a
total of 247,947 cells. The material used for the mud pump rotor was stainless-steel
022Cr22Ni5Mo3N, and its material properties are shown in Table 4.

Table 4. Performance parameters of stainless-steel 022Cr22Ni5Mo3N.

Property Value

Density (kg/m3) 7800
Tensile strength (MPa) 620
Yield strength (MPa) 420

Thermal conductivity (W/(m·K)) 10
Elastic modulus (GPa) 210

Poisson’s ratio 0.3

2.4.2. Relationship between Different Input Parameters and Mud Pump Vibration

The mud pump exhibited different mechanical characteristics when operated at dif-
ferent voltages. Figure 11 shows the mechanical characteristic curves of the mud pump at
rated voltage values of 60%, 80%, 90%, 100%, and 110%.

When the voltage is Un, the relationship between the rotor amplitude and rotational
speed is analyzed based on the data of the speed and torque. When the rotational speed is
0 rpm, the displacement of the rotor over time is shown in Figure 12. From the figure, it
can be observed that the rotor amplitude is 2.2411 mm. By conducting the same analysis,
the amplitude corresponding to each rotational speed on the mechanical characteristic
curve can be obtained. The analysis results are shown in Figure 13, indicating that the
rotor amplitude increases with an increase in the rotational speed initially, followed by
a decrease. For a motor speed between 0 and 1440 rpm, the amplitude increases slowly
with an increase in the speed. When the motor speed is between 1440 and 1500 rpm, the
amplitude decreases rapidly with an increase in the motor speed. The maximum amplitude
of 2.8179 mm was observed at a rotational speed of 1440 rpm. According to the relationship
between mud pump torque and rotational speed on the mechanical characteristic curve,
the mud pump torque also exhibited an initial increase followed by a decrease with an
increase in the rotational speed. Furthermore, both the maximum torque and vibration
occurred at a rotational speed of 1440 rpm.
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Figure 11. Mechanical characteristic curves of the mud pump at different voltages.

Figure 12. Relationship between rotor displacement and time when the rotational speed is 0 rpm.
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Figure 13. Variation of rotor amplitude with rotational speed under rated voltage.

3. Prediction of Pump Amplitude Based on the Support Vector Regression Algorithm

To accurately determine the relationship between the mud pump’s amplitude and
input parameters, it was necessary to conduct a predictive analysis of the pump’s ampli-
tude. In this section, the support vector regression (SVR) algorithm is used to predict the
amplitude of the mud pump, enabling the prediction of amplitude conditions using a small
amount of data on speed, torque, and amplitude.

When using support vector machines for the regression analysis, nonlinear mapping
Φ(x) was employed to map the input vectors to a high-dimensional feature space. Subse-
quently, linear regression was performed in the high-dimensional feature space to find the
optimal hyperplane that minimized the errors of all samples from the optimal hyperplane.

Assuming the training sample set is {(xi, yi), i = 1, 2, · · · , N}, where N is the number
of samples, xi represents the input values, and yi represents the desired output values. The
regression model of the SVM can be expressed as the following equation [40]:

f (x) = w × Φ(x) + b (6)

where w and b are the weight vector and bias, respectively. Introducing the penalty factor c
and slack variables ξi(1 = 1, 2, · · · , N) under the insensitive loss function ε, the solution of
the SVR is an optimization problem.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
w,b

1
2‖w‖2 + c

N
∑

i=1
(ξi + ξ∗i )

s.t
{

yi − w · Φ(x)− b ≤ ε + ξi
yi − w · Φ(x)− b ≥ −ε − ξi

∗
ξi, ξ∗

i
≥ 0, (i = 1, 2, · · · , N)

(7)
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By introducing the Lagrange multiplier
{

αi, α∗i , βi, β∗
i , (i = 1, 2, · · · , N)

}
, Equation (7)

can be rewritten as Equation (8):

min
w,b

L(w, b, ξ, ξ∗) = 1
2‖w‖2 + c

N
∑

i=1
(ξi + ξ∗

i
)

− N
∑

i=1
αi[ε + ξi − yi + w · Φ(xi) + b]

− N
∑

i=1
α∗

i

[
ε + ξ∗

i
+ yi − w · Φ(xi)− b

]
− N

∑
i=1

(
βiξi + β∗

i
ξ∗

i

)
(8)

By taking the partial derivatives of W, b, ξi, and ξ∗i in Equation (8), the following can
be obtained: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w = w − N

∑
i=1

(αi − α∗
i
) · Φ(x) = 0

∂L
∂b = − N

∑
i=1

(αi − α∗
i
) = 0

∂L
∂ξi

= c − αi − βi = 0
∂L
∂ξ∗

i
= c − α∗

i
− β∗

i
= 0

(9)

By substituting Equation (9) into Equation (8), the dual form of Equation (7) can
be obtained:

max
α,α∗

N
∑

i=1
(αi − α∗

i
)yi−

N
∑

i=1
(αi + α∗

i
)ε

− 1
2

N
∑

i=1

N
∑

j=1
(αi − α∗

i
)(αj − α∗

j
)Φ(xi)Φ(xj)

s.t.
N
∑

i=1
(αi − α∗

i
) = 0

αi ≥ 0, α∗
i
≤ c, (i = 1, 2, · · · , N)

(10)

By introducing the kernel function K(xi, xj) = Φ(xi)Φ(xj), the data are mapped from
a low-dimensional space to a high-dimensional space, thereby transforming the linearly
inseparable problem into a linearly separable problem. This allows for the calculation of
inner products in the high-dimensional space to be performed as function calculations in
the low-dimensional space. By employing quadratic programming methods, the optimal
solution (αi, α∗

i
) for Equation (11) can be obtained, resulting in the decision function of

the SVR:

f (x) =
N

∑
i=1

(αi − α∗
i
)K(xi, xj) + b (11)

Due to the advantages of high accuracy and low computational complexity, the radial
basis function (RBF) is employed for training and prediction. It is defined as:

K(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2
) (12)

where γ is the undetermined kernel parameter. The prediction results are evaluated using
the mean relative error (MRE), mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), and coefficient of determination (R2).

The amplitude prediction process is illustrated in Figure 14, and the specific steps are
as follows:

Step 1: Construct the training and testing sets. From the given n data samples, select
N data samples as the training set. The remaining (n − N) test samples are used as the
testing set.
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Step 2: Normalize the data samples. The ‘mapminmax’ function is used to normalize
the data samples to the range of [−1, 1] to improve the convergence speed and accuracy of
the SVR.

Step 3: Parameter optimization. The Gaussian radial basis kernel function is used for
training and prediction. The grid search method combined with ten-fold cross-validation
is employed to find the optimal penalty factor c and kernel parameter γ. The training set
is randomly divided into ten subsets, with nine subsets as the training set and one subset
as the validation set. The training and validation sets iterate alternately for ten rounds.
In each iteration, the ‘svmtrain’ function is used to train the prediction model, and the

RMSE ei of the prediction model is recorded. The average value Ei =
1
10

10
∑

i=1
ei is calculated.

Then, change the parameters, traverse the grid to train the model for m rounds, and obtain
the average RMSE Em of each round of training. Obtain the minimum value of Em and
determine the optimal parameters of the model.

Step 4: Find out the predicted results. Train the predictive model with the optimal
parameters and use the model to predict the output values for the (n − N) test samples,
obtaining the model’s output values.

Figure 14. Amplitude prediction process based on the SVR algorithm.

The parameter settings for the SVR algorithm are presented in Table 5. The input data
for the amplitude prediction based on the SVR algorithm is shown in Appendix A. The
results of the amplitude prediction based on the SVR algorithm are displayed in Figure 15,
demonstrating a close match between the actual and predicted values. This indicates a
high level of reliability in the prediction results.

Table 5. SVR algorithm parameter settings.

Values of Penalty Factor C [−10, 0.5, 10]

Values of kernel parameter γ [−10, 0.5, 10]
Number of cross-validation folds v 5

Training set 50
Testing set 10
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Figure 15. (a) Comparison of prediction results for training set: mse = 0.00082288, R2 = 0.99588,
(b) comparison of prediction results for testing set: mse = 0.00033816, R2 = 0.99775.

4. Conclusions and Recommendations

Based on the study of the relationships among the reverse torque, vibration, and
input parameters of the mud pumps in the riserless mud recovery drilling, the following
conclusions can be drawn:

(1) The error between the theoretical calculation and the actual simulation of the reverse
torque of the mud pump is inevitable, and the average relative error obtained from
the experiments in this paper is only 3.41%, which is within the permissible range.

(2) When the speed of the mud pump is 0 rpm, the reverse torque of the mud to the pump
is the lowest, at −320.4 N·m, and when the speed of the mud pump is 1500 rpm, the
reverse torque of the mud to the pump is the highest, at 3620.28 N·m. As the speed of
the mud pump increases, the reverse torque of the mud to the pump also increases,
which is in line with the actual working condition.

(3) The amplitude of the mud pump exhibits a pattern of initially increasing and then
decreasing with an increase in speed. In the range of 0–1440 rpm, the amplitude in-
creases slowly with the speed. When the motor speed is in the range of 1440–1500 rpm,
the amplitude decreases rapidly with an increase in speed. At a speed of 1440 rpm,
the amplitude reaches its maximum value of 1.5499 mm. The variation of the rotor
amplitude with speed is consistent with the variation of torque with speed in the
mechanical characteristics curve of the mud pump.

(4) The SVR algorithm is applied to predict the amplitude of the mud pump and the
predicted values closely match the actual values, which indicates a high level of
reliability in the prediction results. The prediction results provide a reference for the
stability of the mud pump.
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Nomenclature

Δp The pressure difference between the inlet and outlet, MPa
Q Volume flow, L/min
Qm Mass flow, kg/s
ΔEP The pressure energy added by the increase in mud within a time unit, kW
ρ The density of the mud, kg/m3

g Gravitational acceleration, m/s2

Δh The height difference between the inlet and outlet, m
ΔEh The potential energy gained by the increase in mud within a time unit, kW
We The useful work of the mud pump within a time unit, kW
T The reverse torque exerted by the mud on the mud pump, N·m
n The rotational speed of the mud pump, rpm
η The efficiency of the mud pump

Appendix A

Table A1. Input data for pump amplitude prediction based on the SVR algorithm.

Number Rotational Speed (rpm) Torque (N·m) Amplitude (mm)

1 0 4546.54055 2.2229

2 41.99719 4691.81983 2.2454

3 68.69492 4812.88589 2.2625

4 80.83025 4885.52552 2.2721

5 102.67384 4982.37837 2.2842

6 126.9445 5103.44444 2.2982

7 143.93397 5151.87086 2.3034

8 168.20463 5248.72371 2.3127

9 177.16368 5335.02618 2.3215

10 197.98253 5381.18077 2.3257

11 221.11457 5473.48995 2.3385

12 230.36739 5496.56725 2.3404

13 283.5711 5727.3402 2.3574

14 300 5796.57208 2.3618

15 322.89559 5888.88127 2.3672

16 329.8352 5911.95856 2.3685

17 357.59366 6027.34504 2.3744

18 360.01548 6033.51788 2.3747

19 371.54121 6091.01012 2.3773

20 385.94837 6205.99459 2.3901

21 397.4741 6292.23295 2.4031

22 423.40698 6378.4713 2.4158
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Table A1. Cont.

Number Rotational Speed (rpm) Torque (N·m) Amplitude (mm)

23 437.81415 6435.96354 2.4240

24 466.62847 6522.2019 2.4361

25 481.03563 6608.44025 2.4477

26 504.08708 6723.42473 2.4626

27 509.84995 6780.91697 2.4698

28 521.37568 6838.4092 2.4769

29 535.78284 6867.15532 2.4804

30 544.42713 6953.39368 2.4905

31 564.59716 7010.88592 2.5031

32 573.24146 7068.37815 2.5096

33 587.64862 7154.61651 2.5192

34 590.53005 7212.10875 2.5254

35 600 7240.85487 2.5285

36 607.81864 7269.60099 2.5315

37 627.98867 7327.09322 2.5375

38 645.27726 7384.58546 2.5433

39 653.92156 7442.0777 2.5489

40 676.97301 7585.80829 2.5625

41 688.49874 7643.30053 2.5677

42 705.78733 7729.53889 2.5753

43 728.83879 7902.0156 2.5897

44 740.36452 7959.50784 2.5942

45 754.77168 8017.00007 2.5987

46 769.17884 8131.98455 2.6072

47 797.99316 8218.22291 2.6148

48 803.75603 8304.46126 2.6206

49 815.28175 8333.20738 2.6225

50 832.57035 8448.19186 2.6299

51 838.33321 8505.68409 2.6334

52 855.6218 8591.92245 2.6385

53 875.79183 8649.41469 2.6418

54 890.19899 8678.16081 2.6435

55 900 8735.65304 2.6466

56 919.01331 8850.63752 2.6526

57 953.5905 9138.09871 2.6712

58 970.87909 9224.33706 2.6749

59 988.16768 9281.8293 2.6774

60 991.04911 9310.57542 2.6785

61 996.81198 9368.06766 2.6807

62 1011.21914 9425.55989 2.6829
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Table A1. Cont.

Number Rotational Speed (rpm) Torque (N·m) Amplitude (mm)

63 1016.982 9483.05213 2.6850

64 1045.79633 9655.52884 2.6899

65 1074.61065 9885.49779 2.6963

66 1100.54354 10000.48227 2.6994

67 1106.3064 10057.97451 2.7008

68 1123.59499 10115.46674 2.7021

69 1158.17218 10345.43569 2.7088

70 1169.69791 10431.67405 2.7171

71 1184.10507 10489.16629 2.7227

72 1200 10590.07644 2.7322

73 1235.97085 10776.62748 2.7492

74 1244.61514 10920.35807 2.7618

75 1256.14087 11006.59643 2.7692

76 1290.71806 11207.81926 2.7859

77 1299.36235 11294.05761 2.7928

78 1305.12522 11351.54985 2.7974

79 1325.29524 11409.04209 2.802

80 1339.7024 11552.77268 2.813

81 1354.10956 11610.26492 2.8173

82 1385.80532 11667.75716 2.8217

83 1391.56818 11696.50328 2.8239

84 1429.0268 11725.24939 2.8262

85 1443.43396 11610.26492 2.8179

86 1454.95969 11495.28044 2.8094

87 1460.72255 10920.35807 2.7632

88 1463.60398 10029.22839 2.7025

89 1466.48542 9080.60647 2.672

90 1472.24828 8505.68409 2.6374

91 1475.12971 7327.09322 2.5427

92 1478.01115 6493.45578 2.438

93 1480.89258 5918.5334 2.3752

94 1483.77401 5027.40372 2.2967

95 1486.65544 4394.98911 2.2046

96 1489.53687 4078.7818 2.1426

97 1492.41831 3417.62107 2.0532

98 1495.29974 2670.22198 1.8874

99 1498.18117 2497.74527 1.8608

100 1500 0 0.0012923
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Abstract: The accurate detection and recognition of human actions play a pivotal role in aerial surveil-
lance, enabling the identification of potential threats and suspicious behavior. Several approaches
have been presented to address this problem, but the limitation still remains in devising an accurate
and robust solution. To this end, this paper presents an effective action recognition framework for
aerial surveillance, employing the YOLOv8-Pose keypoints extraction algorithm and a customized
sequential ConvLSTM (Convolutional Long Short-Term Memory) model for classifying the action.
We performed a detailed experimental evaluation and comparison on the publicly available Drone
Action dataset. The evaluation and comparison of the proposed framework with several existing
approaches on the publicly available Drone Action dataset demonstrate its effectiveness, achieving a
very encouraging performance. The overall accuracy of the framework on three provided dataset
splits is 74%, 80%, and 70%, with a mean accuracy of 74.67%. Indeed, the proposed system effectively
captures the spatial and temporal dynamics of human actions, providing a robust solution for aerial
action recognition.

Keywords: deep neural network; convolutional LSTM; action recognition; body pose keypoints;
aerial surveillance

1. Introduction

Action recognition involves automatically identifying and categorizing human actions
in video sequences, which is highly beneficial and needed for surveillance applications [1–3].
Action recognition is, indeed, a challenging task due to the presence of various challenges,
particularly background clutter occlusions and camera viewpoint [4–6]. Conventional ac-
tion recognition methods involved hand-crafted feature extraction [7,8], based on manually
representing actions, such as motion, shape, or appearance descriptors. The limitations
of this approach lie in the fact that hand-crafted features may not be able to effectively
capture complex temporal relationships or variations in different action scenarios. Indeed,
designing effective features could be challenging; plus, they may not generalize well to
different datasets or action classes.

The 3D CNNs extend the concept of traditional 2D CNNs [9,10] to incorporate tempo-
ral information by processing video frames as 3D volumes. They, however, require a large
amount of training data and computational resources. Additionally, they may struggle
with long-term temporal dependencies or capturing fine-grained motion details. Moreover,
the training of 3D CNNs from scratch can be challenging due to the limited availability of
annotated video datasets.

Recurrent neural networks (RNNs), gated recurrent unit (GRU), or LSTM [11,12] model
temporal dependencies by maintaining internal memory states. However, RNNs may
struggle with modeling long-term dependencies or capturing complex spatial dynamics.
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They could be sensitive to the order and timing of actions within sequences. RNNs are
computationally intensive, especially for longer sequences.

Two-stream networks [13,14] consist of the spatial stream (CNN for appearance) as
well as the temporal stream (CNN or RNN for motion). They require synchronized and
aligned RGB and optical flow inputs, which could be challenging to obtain in practice.
Combining the information from two streams can introduce additional complexity and
potential performance degradation.

Graph convolutional networks (GCNs) [15,16] represent actions as graphs and exploit
graph convolution operations to capture spatial and temporal relationships between body
joints or keypoints. However, GCNs rely heavily on accurate and reliable detection and the
tracking of skeletal keypoints and also have limitations when dealing with occlusions or
missing keypoints in complex action scenarios. Designing appropriate graph structures
and defining graph convolution operations are, inevitably, challenging.

The recent introduction of vision transformers has proved to be more efficient in
accuracy. There are approaches that utilize transformers for action recognition [13,17,18] in
complex scenarios; however, they are generally computationally more resource-consuming.

Aerial videos provide a comprehensive view [5] of the scene, enabling surveillance
operators to monitor larger areas and detect events that may otherwise be overlooked.
Action recognition from aerial scenarios, however, requires reliable detection of the target
in complex backgrounds, with varying camera angle altitudes for an accurate classification
of the action [19–22].

Malik et al. [23] proposed a method that relied on extracting 2D skeletal data using
OpenPose that are then fed into LSTM for training and testing. Their framework was,
however, validated in an indoor multi-view scenario and may not be directly deployable
for aerial videos.

Another limitation in human action recognition is that the trained models generally
misclassify when provided with unannotated data from new users [24], even after being
trained on a large amount of data. This challenge arises as it is impractical to collect
data for every new user. Yang et al. [25] aimed to address this problem by presenting
a semi-supervised learning action recognition method for training on labeled as well as
unlabeled data but not primarily for the aerial camera settings that are under consideration
in this paper.

Dai et al. [26] introduced a dual-stream attention-based LSTM containing a visual
attention mechanism that enables selectively focusing on key elements in the image frames
by applying varying levels of attention to each individual deep feature map’s output. The
deep feature correlation layer embedded in their framework is, indeed, relevant to our
work, and it contributes towards enhancing the robustness of the action recognition. The
validation in [26] was, however, in experimental scenarios, different from that considered
in this work.

Unlike the existing related methods reviewed above, the proposed research combines
the robust pose detection ability of YOLOv8 with temporal sequencing ability of the
ConvLSTM to propose an effective and efficient approach aimed specifically at aerial action
recognition. In fact, the proposed framework offers a reliable recognition of human actions
from an aerial perspective by utilizing the convolutional LSTM’s capacity to parse temporal
sequences. Specifically, the proposed method extracts the body pose keypoints from the
frames and classifies actions at the frame level utilizing the customized convolutional
LSTM network model. The reason behind relying on the extraction of the target body
pose or keypoints is the lower computational cost as compared to the spatial features.
Moreover, we use the LSTM network due to its demonstrated effectiveness for sequential
data classification [23,24,27,28]; plus, it is not well explored in the literature for the problem
under consideration. We showed the effectiveness of the proposed method in terms of
encouraging performance accuracy and computational cost when compared on a public
dataset (containing a wide range of action types) with several existing related approaches.
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The organization of the paper is as follows. The proposed method for action recogni-
tion is described in Section 2. Section 3 provides details of the experimental results and
analysis, which is followed by the conclusions in Section 4.

2. Proposed Action Recognition Method

We employed the YOLOv8 pose detection model for the extraction of 17 body key-
points. The extracted keypoints are then passed to the second stage, which is ConvLSTM,
to extract spatiotemporal features across the sequence. The sequence length of 30 frames,
chosen empirically, is set for the extraction of temporal information. The intuition behind
incorporating the body pose with ConvLSTM is a selection of suitable features that are
keypoints and performing the memory-based sequence classification using LSTM. Figure 1
illustrates the proposed human action recognition system.

 

Figure 1. Block diagram illustrating different steps involved in the proposed action system.

The architecture in Figure 1 is designed to process raw keypoints for the analysis of
both spatial and temporal aspects. The ConvLSTM architecture shown in Figure 1 is made
up of multiple hidden layers that work together to collect spatial and temporal features
from frames. For an accurate classification of actions, this extracted feature set is essential.
These characteristics ultimately influence how the recognized action is predicted, enabling
the system to efficiently analyze actions occurring in successive frames.

Convolutional layers are used in the context indicated above to extract significant
features from the body pose keypoints. Convolutional layers apply filters to the key-
points in order to capture significant spatial characteristics, such as the placement of
body parts and their interactions. These filters help in finding patterns and correlations
among the keypoints.

The network can automatically learn hierarchical representations of the body positions
using convolutional layers. The network’s capacity to recognize and accurately classify
various activities within the video sequences is greatly aided by the extracted characteristics.

To accurately capture the temporal dynamics of activities throughout a series of frames,
the use of LSTM is crucial. LSTMs effectively capture patterns and changes that emerge
over time by processing the retrieved features or representations from each frame. LSTMs
give the network the ability to comprehend how actions develop and classify by keeping
track of past frames and taking into account how they affected the current frame.
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2.1. Pose Extraction

The YOLOv8 pose extractor is a popular deep learning-based algorithm for keypoint
detection. There are several other approaches that can be utilized for this purpose, but the
latest YOLOv8 is known to be more efficient in accuracy as well as computationally [29].
Figure 2 shows the output of the pose extractor.

Figure 2. Results of Yolov8 pose estimator on Drone Action dataset [22]: stabbing (top left), hitting
stick (top right), waving hands (bottom left), and clapping (bottom right).

The keypoint coordinates for a given video can be represented as a (F, Kp), where
Kp represents the keypoints of the image and F represents the number of sequential frames
or sequence length, which, in our case, is set to 30. The extracted keypoints are made to be
aligned with the input of the next stage.

To extract spatiotemporal features from the video sequence, we stack the keypoint
tensors for a given person over time. Let Kpt be the keypoint tensor for the person at time
t and let Kp1, Kp2, . . ., Kpt be the keypoint tensors for the person over T frames of the
video sequence. We stack these tensors along the time dimension to obtain a tensor P with
dimensions (F,Kpt):

P = [Kp1, Kp2, Kp3, . . . ., KpT ] (1)

The YOLOv8 algorithm uses a fully convolutional neural network (FCN) to predict a
heat map for each keypoint, which can be used to estimate the pose of the person in the
video. The resulting output yields 17 keypoint coordinates for each detected person at the
frame level across the video sequence.

2.2. Custimized Convolutional LSTM Model

We used the LSTM model for action classification in aerial videos. The LSTM model is
a type of RNN that can effectively encapsulate the dependencies of the sequential data. In
the proposed approach, we first extract the temporal features from the aerial videos using
the YOLOv8 pose extractor and then use the LSTM model to classify the actions based on
these features. The tensor P in Equation (1) represents the spatiotemporal features of the
person over time.

The LSTM model contains a memory cell and three gates, including an input gate,
output gate, and forget gate [30–32], defined as follows:

Input gate:
it = σ(Wixt + Uiht−1 + bi) (2)

Forget gate:
ft = σ

(
Wf xt + Uf ht−1 + b f

)
(3)
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Output gate:
ot = σ(Woxt + Uoht−1 + bo) (4)

Memory cell:
Ct = ft.ct−1 + it·tanh (Wcxt + Ucht−1 + bc) (5)

Output:
ht = ot· tanh(ct) (6)

where xt ht , and ct denote the input, the output, and the cell state t, respectively. it, ft,
and ot are the input, the forget, and the output gates, respectively. Wi, Wf , Wo, and Wc
refer to the collection of weight matrices used to transform the input data at each time step,
whereas Ui, Uf , Uo, and Uc are the weight matrices to transform the hidden state from the
previous time step. bi, b f , bo, and b f represent the bias terms.

The output H is a sequence of hidden states that captures the temporal dependencies
in the spatiotemporal features. We can then use the final hidden state of the LSTM as input
to a fully connected layer with softmax activation to obtain the probability distribution
across the different action classes:

P = So f tmax(WhH + b) (7)

We designed the custom sequential LSTM model by stacking three ConvLSTM 1D
layers, such that each layer is followed by a batch normalization layer, with decreasing filter
sizes of 128, 32, and 16, respectively. We added a dropout layer after the third ConvLSTM1D
layer to prevent overfitting. Next, we flattened the output and added two fully connected
layers with ReLU activation and a dropout layer after each. Finally, we added a dense
output layer with the softmax activation function. The LSTM model applied in this research
is convolutional LSTM (Figure 3), which combines convolutional layers with LSTM to
model spatiotemporal data.

 
Figure 3. Structure of the convolutional LSTM.

3. Experimental Results and Analysis

This section first describes the dataset in Section 3.1, which is followed by an evaluation
of the results in Section 3.2 and performance comparisons with existing related approaches
in Section 3.3.

3.1. Dataset

We used the publicly available Drone Action dataset for evaluation [22]. This dataset
comprises 240 videos that run for a total duration of approximately 44.6 min, embodying
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66,919 frames and containing 13 distinct human action classes. The videos were captured
from a low-altitude and slow-moving drone to ensure the details of body pose were reliably
extracted. The complexity of this dataset is augmented by the diversity in body size, camera
motion, varying target speed, and background clutter, making it a suitable benchmark for
human action recognition studies. Figure 4 shows representative frames from the dataset
for each action class [22].

Figure 4. Representative frames from each class of the Drone Action dataset [22]: (a) walking
front_back, (b) walking side, (c) jogging front_back, (d) jogging side, (e) running front_back,
(f) running side, (g) hitting with bottle, (h) hitting with stick, (i) stabbing, (j) punching, (k) kicking,
(l) clapping, (m) waving hands.

3.2. Evaluation of Results

The proposed action recognition framework for aerial videos demonstrates an im-
proved accuracy and robustness. Indeed, the combination of the YOLOv8-Pose algorithm
and customized sequential convolutional LSTM model effectively captures the spatial and
temporal information of actions, leading to an encouraging action recognition performance.
The proposed model is trained and tested separately on the three dataset splits, as provided
by the original paper [22]. In each split, 70% data are used for training and 30% for testing.
The training was caried out for 200 epochs (chosen empirically), and network parameters
were kept the same for training and testing for each split of the data. Table 1 lists the corre-
sponding values for the validation loss and accuracy on all three splits. A representative
graphical representation of the validation loss and validation accuracy is shown in Figure 5
for Split 1.

Table 1. Training details for the 3 splits.

Dataset Epochs Validation Loss Validation Accuracy

Split 1 200 2.75–0.25 0.05–0.88
Split 2 200 2.55–1.00 0.13–0.83
Split 3 200 2.58–1.00 0.12–0.82
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Figure 5. Plots for the validation accuracy (left) and validation loss (right) during the training for Split 1.

The overall accuracies achieved on Split 1, Split 2, and Split 3 are 74%, 80%, and
70%, respectively. The corresponding confusion matrices are provided in Figures 6–8,
respectively. The class-wise results on each split are given in Tables 2–4, respectively, based
on the standard well-known evaluation measures, which are precision, recall, and F1-score.

Analyzing the results in more detail, we observe that some actions had consistently
high precision, recall, and F1-score values across all dataset splits. For instance, the actions
“Clap”, “Kick”, “Walk_fb”, “Walk_side”, and “Wave_hands” achieved high scores on all
three splits. This suggests that the proposed framework is highly effective in recognizing
these actions, even when presented with variations in the data. The high accuracy in
these classes can be attributed to the combination of YOLO-Pose and the custom-designed
ConvLSTM network, which allows for an efficient extraction of spatial and temporal
information in video frames.

Table 2. Performance evaluation of the proposed method on all action types based on precision,
recall, and F1-score on Split 1.

Action Precision Recall F1-Score

Clap 1.00 1.00 1.00
Hit_botl 0.19 0.14 0.16
Hit_stick 0.65 0.64 0.65
Jogging 0.73 0.88 0.80
Jog_side 0.91 0.89 0.90

Kick 0.99 1.00 0.99
Punch 0.91 0.99 0.95
Run_fb 0.50 0.40 0.44

Run_side 0.86 0.89 0.87
Stab 0.29 0.40 0.34

Walk_fb 1.00 0.90 0.95
Walk_side 1.00 1.00 1.00

Wave_hands 0.98 1.00 0.99
Average 0.77 0.78 0.77

Table 3. Performance evaluation of the proposed method on all action types based on precision,
recall, and F1-score on Split 2.

Action Precision Recall F1-Score

Clap 1.00 1.00 1.00
Hit_botl 0.50 0.36 0.42
Hit_stick 0.72 0.78 0.75

Jog_fb 0.83 0.91 0.87
Jog_side 0.86 0.98 0.91
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Table 3. Cont.

Action Precision Recall F1-Score

Kick 0.99 0.92 1.00
Punch 0.76 0.99 0.83
Run_fb 0.73 0.53 0.62

Run_side 1.00 0.76 0.86
Stab 0.40 0.55 0.46

Walk_fb 1.00 1.00 1.00
Walk_side 0.98 0.98 0.98

Wave_hands 0.97 1.00 0.99
Average 0.83 0.83 0.82

Table 4. Performance evaluation of the proposed method on all action types based on precision,
recall, and F1-score on Split 3.

Action Precision Recall F1-Score

Clap 1.00 0.89 0.94
Hit_botl 0.33 0.29 0.31
Hit_stick 0.59 0.68 0.64

Jog_fb 0.67 0.61 0.63
Jog_side 0.85 0.58 0.69

Kick 0.99 0.85 0.92
Punch 0.83 0.95 0.84
Run_fb 0.28 0.33 0.30

Run_side 0.45 0.77 0.57
Stab 0.37 0.39 0.38

Walk_fb 0.91 0.95 0.93
Walk_side 0.96 1.00 0.98

Wave_hands 1.00 1.00 1.00
Average 0.71 0.71 0.70

 

Figure 6. Confusion matrix for Split 1.

52



Appl. Sci. 2023, 13, 9384

On the other hand, some actions demonstrated lower precision, recall, and F1-score
values. For example, the “Hit_botl” action achieved lower scores on all the three splits,
with the lowest F1-score being 0.16 on Split 1. Similarly, the “Stab” action had an F1-score
of 0.34 on Split 1, 0.46 on Split 2, and 0.38 on Split 3.

The lower performance for these actions (Hit_botl, Stab) could be attributed to the
higher complexity of the movements and the similarity of these actions with each other and
some other classes, making it challenging for the proposed framework to differentiate them
from others. Moreover, factors, such as background clutter and variation in viewpoint,
could further hinder the recognition of these actions.

It is worth mentioning that there is performance variation for some actions across
different splits. For instance, the “Hit_stick” action had an F1-score of 0.65 on Split 1, which
increased to 0.75 on Split 2 and then decreased slightly to 0.64 in Split 3. This observation
suggests that the performance of the proposed framework is sensitive to the choice of
training and testing data.

We also calculated the computational performance of the proposed method. The
evaluation was performed in terms of the number of network parameters (in millions) and
the number of floating-point operations (FLOPS) (in millions) and the classification time for
the proposed customized ConvLSTM network. We practically implemented this model on
Intel(R) Core(TM) i5-8250U CPU @ 1.80 GHz with 8.00 GB RAM. The total number of FLOPS
was 36.79 million, with 1.03 million trainable parameters. The classification time for the
612 test sequences with 30 frames each on Split 1 was 3.58 s. The per sequence classification
time was 5.457 milliseconds. This suggests that the proposed method is lightweight in
terms of computational complexity and could be deployable in real-world applications.

Figure 7. Confusion matrix for Split 2.

3.3. Performance Comparison with Related Approaches

We also compared the performance of the proposed action recognition framework
with two existing approaches, as reported in the benchmark paper [22] (see Table 5). The
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benchmark paper provides an analysis of the classification accuracy of two methods,
including the high-level pose features (HLPFs) method and the pose-based convolutional
neural networks (P-CNNs) method. The high-level pose features (HLPFs) method uses
skeletal information from human poses to represent actions. In P-CNN, at each frame of a
video, descriptors are extracted from the body regions. These descriptors encode relevant
information, such as motion flow patterns and visual characteristics of the regions, leading
to two-streamed information. Over time, these descriptors are aggregated, combining the
information from multiple frames, to form a video descriptor. The proposed method shows
better or comparable performance as compared to these existing methods (Table 5), owing
to its capability to efficiently model temporal information and long-term dependencies in
action sequences.

 
Figure 8. Confusion matrix for Split 3.

Table 5. Comparison of the proposed method with existing approaches on Drone Action dataset.

Method
Accuracy
(Split 1)

Accuracy
(Split 2)

Accuracy
(Split 3)

Mean Accuracy

HLPF 63.89% 68.09% 61.11% 64.36%
P-CNN 72.22% 81.94% 73.61% 75.92%

Pose+ LSTM 74.00% 80.00% 70.00% 74.67%

For a more detailed performance comparison of the proposed approach with other
models, we investigated several state-of-the-art deep learning models, such as Action
Transformer, ResNet18, ResNet101, 3D ResNet, and ST-GCN. Action Transformer [33]
has recently been employed for human action recognition. For evaluation, we set the
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corresponding parameters as follows, heads: 1, layers: 4, embedding dimensions: 64,
MLP: 256, and encoder layers: 5. The reason to keep the parameters at a minimum is to
reduce the computational complexity of the model for the application at hand. ResNet
is a specific configuration of the architecture that consists of 101 layers in the case of
ResNet101 and 18 layers in ResNet18. The network includes residual blocks, which are
designed to learn residual mappings that help mitigate the vanishing gradient issue. Each
residual block contains multiple convolutional layers and shortcut connections that allow
information to flow more effectively through the network. ResNet networks have been
widely used for several computer vision tasks [34]. Further, 3D ResNet is an extension of
the ResNet architecture designed to tackle video action recognition tasks by considering
both spatial and temporal features in videos [28]. It adds a temporal dimension to the
standard ResNet architecture, making it well suited for analyzing sequences of frames in
videos. Thus, 3D ResNet takes advantage of this temporal aspect by incorporating 3D
convolutional layers. These layers consider the spatial relationships within each frame
as well as the temporal relationships between consecutive frames, enabling the network
to capture motion patterns and changes over time. Finally, the Spatio-Temporal Graph
Convolutional Network (ST-GCN) [35] is also a useful architecture used in video action
detection applications, especially for addressing the spatial and temporal features present
in films. In order to capture both spatial correlations within individual frames and temporal
dependencies between successive frames, ST-GCN uses graph convolutional procedures.
For evaluation, we replaced the proposed ConvLSTM with each of the above-mentioned
models and accordingly trained and tested them on the same lines for all the three splits
of the dataset. Figure 9 presents the performance comparison of the proposed approach
with these models in terms of the mean accuracy across the three splits. It is clear that
the proposed method outperforms all these related approaches, which further validates
its effectiveness.

 

Figure 9. Performance comparison of the proposed method with existing related approaches in terms
of mean accuracy across the three splits of the dataset.

4. Conclusions

In this paper, we presented a convolutional LSTM-based model for human action
recognition, which was built on the extracted target pose information using YOLOv8 to
effectively encode the unique body movements for various action types. The proposed
framework aimed to address the challenges associated with aerial action recognition, such
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as varying viewpoints and background clutter. The study was inspired by the growing
interest in drone applications and the need for robust and efficient action recognition meth-
ods for various applications, including security and surveillance. The comparisons with
numerous existing methods show very encouraging performance through the proposed
method. While the proposed framework can effectively classify the single person action in
low-altitude aerial video sequences, in future work, the framework could be adapted to
classify actions involving multiple objects.
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Abstract: Riserless mud-recovery (RMR) drilling technology was widely applied in recent years.
Compared with traditional deepwater drilling, RMR drilling can improve drilling efficiency, re-
duce risks, and minimize environmental effects. This paper focuses primarily on the stability of a
mud-return circulation system in an RMR system. First, various factors that affect the stability of
a mud-return circulation system are analyzed. An analytical model for the skid-and-mud-return
line is established. Second, relevant data are derived from theoretical calculations and experiments.
ABAQUS software is used to analyze the effects of each factor on the stability of the mud-return
circulation system. The influencing patterns of each factor on the stability of the mud-return circu-
lation system are summarized. Furthermore, the stability of the system under different operating
conditions is analyzed based on the coupling of multiple factors. The support vector regression with
derivative significance weight analysis (SVR-DWSA) algorithm is employed to perform a weight
analysis of the effect on the system’s stability. Finally, based on the research findings on the stability
of the mud-return circulation system, relevant conclusions and recommendations are drawn. The
results of this study provide valuable references for the application of RMR technology.

Keywords: riserless mud-recovery technology; ABAQUS software; SVR-DSWA algorithm

1. Introduction

In traditional offshore drilling processes, drilling mud needs to be recovered and
treated using a riser pipe. However, as oil reservoirs go deeper, the lengths of riser pipes
increase, posing a series of challenges and issues [1–4]. The applications of the riser system
are mostly limited to oil and gas drilling [5–8] because of its high cost and complex structure
and the demand for large-tonnage drill platforms or drillships. In open-circuit drilling
conditions, the direct discharge of mud into the sea induces marine environmental pollution
and involves a substantial consumption of mud [9]. To address the mud-handling and
recovery challenges in a downhole operation, riserless mud recovery (RMR) technology
has been widely adopted in deepwater oil production.

RMR technology has undergone continuous improvement and development. It has
been successfully applied in different countries and regions. British Petroleum (BP) success-
fully implemented RMR technology in offshore waters near Egypt, effectively mitigating
the effect of formation fractures and improving drilling efficiency [10]. RMR was also
deployed near Australia to address the specific challenges associated with soft sandstone in
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the Browse Basin [11–13]. Its initial application in the Gulf of Mexico enhanced operational
efficiency and improved overall wellbore integrity [14,15]. Moreover, RMR was employed
in the United Kingdom continental shelf (UKCS) field exploration project, specifically in
top-hole operations on the UKCS [16].

Double-gradient technology was used in the Santos Basin in offshore waters near
Brazil to drill extended-reach wells. It effectively solved the problems of formation erosion
and wellbore collapse in the region [17]. RMR technology was also applied in Sabah,
Malaysia, successfully cementing the surface casing for the Malikai deepwater oil field [18].
In the Zumba well in Norway, RMR was utilized in a unique manner to prevent drilling
fluid and cuttings from being discharged into the seabed. Thereby, it protected a large
number of corals near the well [19–21]. RMR was employed in the Dampier sub-basin
in offshore waters near Australia, where it successfully stabilized the system’s formation,
reduced the system’s vibration, and prevented leakage or loss [22,23]. In Norway, RMR
was utilized in three wells with shallow water flow issues. It led to complete subsea mud
recovery and prevented the shallow flow [24].

RMR can also compensate for the lack of intermediate casing and the absence of a
blowout preventer (BOP) when drilling in overpressured zones [25–29]. Thus, it has been
successful in various offshore areas with loose formations and losses. The Integrated Ocean
Drilling Program (IODP), in collaboration with companies such as AGR, conducted research
on RMR technology for ultra-deepwater applications [30]. The Elvary Neftegaz Company
conducted riserless drilling northeast of the Kola Peninsula shelf using the extensively
developed Discflo pump and increasing efficiency by 50% [31]. The DEMO 1800 program,
led by AGR Subsea, BP America, Shell, and others, pioneered deepwater mud-circulation
systems [32]. Claudey et al. [33] employed controlled mud-level technology in the Barents
Sea to prevent mud leakage and maintain pressure balance. Li et al. [34] established a phys-
ical model to analyze the heat transfer characteristics of drilling fluid under different RMR
system configurations. They also developed a transient simulation model to temporally
and spatially simulate the circulating fluid’s temperature.

Currently, research on RMR technology focuses mainly on its applications in different
regions. During the drilling process, the stability of a mud-return circulation system in an
RMR system can be affected by various factors. For example, the actions of sea currents and
vessel motion can pose a threat to operational safety. However, there is little research on
the stability of mud return-circulation systems; therefore, it is necessary to conduct relevant
studies in this area.

Deepwater RMR involves installing a mud lift pump in a mid-suspension configura-
tion on the mud-lift pipeline. Therefore, to analyze the stability of this installation, this
paper focuses on the stability of the skid-and-mud-return line in the mud-return circulation
system. First, various factors affecting the stability of the mud-return circulation system
are analyzed. An analytical model for the skid-and-mud-return line is established. Second,
relevant data are derived from theoretical calculations and experiments. ABAQUS software
is used to analyze the effect of each factor on the stability of the mud-return circulation
system. The influencing patterns of these factors on the system’s stability are summarized.
Furthermore, the stability of the mud-return circulation system, in different operating con-
ditions with multiple coupled factors, is analyzed. The weight of each factor affecting the
stability of the system is analyzed based on the support vector regression with derivative
significance weight analysis (SVR-DSWA) algorithm. Finally, based on the research in this
paper, relevant conclusions and recommendations are drawn.

2. Analysis of Factors Affecting the Stability of the Skid-and-Mud-Return Line

2.1. Establishment of an Analysis Model for the Skid-and-Mud-Return Line

An RMR drilling system typically consists of several main components: the drilling
unit, the mud-return system unit, the mud-processing unit, and the power-monitoring
unit. The drilling unit includes the exploration vessels, drill pipes, the derrick, downhole
tools, casings, risers, and subsea suction modules. It is used for rock breaking and core
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extraction. The mud-return system includes the seabed anchoring system, the seabed pump
assembly, mud-return pipelines, pipeline docking connectors, and a subsea installation
platform. It is used to lift the rock cuttings and mud from the seabed into the exploration
vessel to circulate the drilling mud. The skid is typically made of wear-resistant and
corrosion-resistant materials, such as high-hardness metal or rubber. Its sealing functions
guarantee that there will be no leakage of the pumped mud. The mud-return pipeline
transports drilling fluid and other return fluids from the wellhead to the surface equipment
for processing and treatment. During the drilling process, the mud-return pipeline plays a
role. It brings back the used drilling fluid, rock cuttings, the formation water, and other
byproducts from the wellbore to the surface. These returned fluids are processed and
separated in surface equipment to recover and treat the drilling fluid.

In mud-pump systems, it is crucial to maintain a seal between the skid-and-mud-return
line to prevent mud leakage. Usually, it joins two components together via a threaded
connection or a similar rigid connection to form a reliable joint. This connection method
can guarantee high sealing performance and pressure resistance. Therefore, it is suitable for
working environments involving high-pressure mud pumping. The installation diagram of
deepwater RMR equipment is shown in Figure 1. The water depth in the work area is about
2000 m. The lower mud-return pipeline is about 1300 m long, and the upper mud-return
pipeline is about 700 m long. This section mainly focuses on the stability of the return
pipeline of the mud circulation system.

Figure 1. Installation diagram of deepwater RMR equipment.

Due to the rigid connection of the skid-and-mud-return line, the stability of the
skid-and-mud-return line is analyzed as a whole. The mechanical model of the skid-and-
mud-return line is shown in Figure 2a. The skid-and-mud-return line is fixed to the subsea,
with the uppermost part of the mud-return line connected to the drilling vessel. The drilling
vessel is subject to wind and sea currents, which can affect the skid-and-mud-return line.
The vibration from the operation of the mud pumps in the skid and the reverse torque
of the mud against the mud pumps are generated. These can affect the stability of the
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skid-and-mud-return line. In addition, because the skid-and-mud-return line is in seawater,
sea currents can also affect the stability of the skid-and-mud-return line.

Figure 2. The model of the skid-and-mud return pipeline: (a) mechanical model and
(b) analytical model.

Since the ABAQUS/Aqua module in ABAQUS can be used to calculate drag, buoyancy
and fluid inertia load can be calculated from steady and wave-induced flows. ABAQUS
is widely used in numerical simulation of offshore petroleum engineering. Based on the
mechanical model of the skid-and-mud-return line, an analytical model of the skid-and-
mud-return line is established using the ABAQUS 2018 software, as shown in Figure 2b.
The bottom of the model is fully fixed. Due to the installation of the skid at 1300 m from the
seabed, reverse torque and displacement are applied to the model at this position. Similarly,
a load is applied to the top of the model to simulate the effects of the drilling vessel on
the skid-and-mud-return line. The sea current force is applied by editing keywords in
the ABAQUS/Aqua module. Finally, the model is meshed every one meter for a total of
2000 meshes.

2.2. Analysis of Factors Affecting the Stability of the Skid-and-Mud-Return Line

With the suction action of the subsea mud lift pump, the drilling fluid is drawn from
the lower outlet of the suction module. The drilling fluid is returned to the subsea mud
lift pump through the subsea mud return line. It is then transported to the drilling vessel
through the upper mud return pipeline and recycled after treatment. Therefore, there are
three main factors affecting the stability of the skid-and-mud-return line:

(1) The effects of drilling vessels on the skid-and-mud-return line due to wind and sea
currents on the sea surface;

(2) The effects of sea current generated by the flow of seawater on the skid-and-mud-
return line;

(3) The effects of the reverse torque and vibration generated by the operation of the mud
lift pump on the skid-and-mud-return line.

For Factor 1, according to “Mooring Equipment Guidelines” released by Oil Compa-
nies International Marine Forum (OCIMF) [35], the specification provides wind load calcu-
lation formulas for very large oil tankers, as shown in the following equations, where Fxw
is the longitudinal (bow–stern direction) wind load, Fyw is the transverse (port–starboard
direction) wind load, Cxw is the longitudinal wind resistance coefficient, Cyw is the trans-
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verse wind resistance coefficient, ρw is air density, Vw is wind speed, AT is the transverse
windward area, and AL is the transverse windward area.

Fxw = 1
2 CxwρwVw

2 AT
Fyw = 1

2 CywρwVw
2 AL

(1)

Moreover, the calculation formula of water flow load on ultra-large oil tankers is
shown as follows, where Fxc is the longitudinal (bow–stern direction) water flow load, Fyc
is the transverse (port-starboard direction) water flow load, Cxc is the longitudinal flow
resistance coefficient, Cyc is the transverse flow resistance coefficient, ρc is seawater density,
Vc is flow velocity, LBP is vertical line spacing, T is the average draft depth.

Fxc =
1
2 CxcρcVc

2LBPT
Fyc =

1
2 CycρcVc

2LBPT
(2)

When these calculation formulas are used, it is important to refer to the corresponding
charts in the OCIMF guidelines. The wind resistance coefficients and flow resistance
coefficients for different wind angles and water flow angles can be obtained. Then, these
coefficients are substituted into the calculation formulas to obtain the longitudinal wind
load (Fxw), transverse wind load (Fyw), longitudinal water flow load (Fxc), and transverse
water flow load (Fyc). It can be observed that the OCIMF calculation method treats all force
structures as a whole.

For Factor 2, calculations can be made based on the wave-induced load theory, which
can be divided into the following two methods.

(1) Flow-induced drag load
When a steady and uniform water flow passes around a circular structure, the force

on the circular structure in the direction of flow is called flow-induced drag force. Flow-
induced drag force is generally composed of two force components: friction drag force and
pressure drag force.

Friction drag force is generated due to the viscosity of the fluid, which forms a
boundary layer on the structure’s surface. The sum of the frictional shear stress is the
friction drag force on the circular structure. Pressure drag force is caused by the separation
of the boundary layer at a certain point on the structure’s surface. The sum of the normal
pressure stress is the pressure drag force on the cylinder.

The drag force on a unit length of the structure can be determined using Equation (3),
as shown in the following, where fc is the drag force per unit length of the structural
member, ρ is the density of the fluid, CD is the drag force coefficient, DC is the hydraulic
outside diameter of the structural member, and υ is the velocity of the fluid at the point
perpendicular to the structural member.

fc =
1
2

ρDCCDν|ν| (3)

(2) Flow-induced inertia load
In unsteady flow around a circular structure, the fluid exerts not only drag force but

also inertial force due to the fluid’s acceleration. The structure disturbs and changes the
velocity of fluid particles around it. This leads to a change in the pressure distribution
of the original flow field. These changes are most significant near the structure surface
and gradually decrease with an increase in the distance from the structure. The decay
pattern depends on the shape of the structure’s cross-section and the direction of fluid flow.
Therefore, the disturbance caused by the structure results in an additional inertial force on
the structure from the portion of the surrounding fluid. Consequently, this change in the
fluid motion state results in an additional inertial force on the structure. This force is also
known as the added mass force.

The true effect of the inertial force of the accelerating fluid on the structure in the direc-
tion of flow can be determined using Equation (4), as shown in the following, where fl is the
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drag force per unit length of the structural members, and CM is the inertial force coefficient.

fl = ρCM
πD2

C
4

du
dt

(4)

The lateral load acting on the mud return pipeline is primarily caused by the seawater
current’s force. In the condition of pure seawater current, the Morison equation is used to
calculate the water flow force on the pile column. The wave-induced force per unit length
is derived from Equation (5), as shown in the following [36]:

f =
1
2

ρDCCDν|ν|+ ρCM
πD2

C
4

du
dt

(5)

For Factor 3, the relationship between the torque and the rotational speed, as well
as the one between the amplitude and the rotational speed, can be obtained by carrying
out experiments. These are shown in Tables 1 and 2. By using the correlated torque and
amplitude data, an analysis can be conducted on the skid-and-mud-return line.

Table 1. Reverse torque at 6 different rotational speeds.

Rotational Speed (rpm) Reverse Torque (N·m)

0 −320.4
300 224.75
600 669.83
900 1343.63
1200 2328.65
1500 3620.28

Table 2. Analysis data for 6 sets at voltage Un.

Number Rotational Speed (rpm) Torque (N·m) Amplitude (mm)

1 0 4546.54055 2.2229
2 300 5796.57208 2.3618
3 600 7240.85487 2.5285
4 900 8735.65304 2.6466
5 1200 10,590.07644 2.7322
6 1500 0 0.00129

ABAQUS is adopted to analyze the effect of the aforementioned factors on the stability
of the skid-and-mud-return line. The mud return pipeline is made of V150 steel with an
outer diameter of 168.3 mm and a wall thickness of 12.7 mm. The upper pipeline section is
700 m long, and the lower pipeline section is 1300 m long. The relevant variables for each
analysis factor are shown in Table 3.

Table 3. Relevant variables for each analysis factor.

Variables
Wind Recurrence

Period
Wind Direction

Angle
Sea Recurrence

Period Water Flow Attack Angle Voltage Rotational Speed

Value

1 year 0◦ 1 year 0◦ 60%Un 0 rpm
5 years 45◦ 5 years 45◦ 80%Un 300 rpm
10 years 90◦ 10 years 90◦ 90%Un 600 rpm
25 years 135◦ 25 years 135◦ Un 900 rpm

180◦ 180◦ 110%Un 1200 rpm
1500 rpm

3. Analysis of the Individual Factors Affecting the Stability of the
Skid-and-Mud-Return Line

3.1. Effect Analysis of Drilling Ship Motion

The effect of drilling ship motion on the stability of the skid-and-mud-return line
is analyzed in consideration of the effect of sea wind and current flow. Based on the
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measured wind speed, flow velocity, and parameters for calculating drilling ship forces
in the work area, as shown in Tables 4 and 5, these five different wind direction angles
and the water flow attack angles are taken into consideration. The corresponding wind
resistance coefficients and flow resistance coefficients for different wind and water flow
attack angles are obtained. They can refer to the relevant charts in the OCIMF guidelines, as
shown in Table 6. Using the formulas, the longitudinal and transverse load corresponding
to different recurrence periods for various wind and water flow attack angles can be
calculated. For this analysis, the attack angles of 0◦, 45◦, 90◦, 135◦, and 180◦ are selected, as
shown in Tables 7–10.

Table 4. Measured wind speed in the work area.

Recurrence Period 1 Year 5 Years 10 Years 25 Years

1-h average wind speed Vw (m/s) 13.0 31.7 35.9 40.6
Average flow velocity Vc (m/s) 0.68 1.40 1.49 1.59

Table 5. Parameters required for calculating drilling ship forces.

Name Value

Air density ρw (kg/m3) 1.28
Sea water density ρc (kg/m3) 1025

Length of the drilling ship L (m) 200
Width of the drilling ship B (m) 35

Longitudinal (beam) wind-exposed area AL (m2) 2970
Transverse (frontal) wind-exposed area AT (m2) 540

Vertical line spacing LBP (m) 155
Average draft depth T (m) 8.5

Table 6. Wind resistance coefficients and flow resistance coefficients for different attack angles.

Wind and Water Flow Attack Angle (Degrees) 0◦ 45◦ 90◦ 135◦ 180◦

Longitudinal wind resistance coefficient Cxw 0.75 0.48 0.05 −0.55 −0.95
Transverse wind resistance coefficient Cyw 0 0.60 0.72 0.5 0
Longitudinal flow resistance coefficient Cxc 0.04 −0.01 0.01 0 −0.035

Transverse flow resistance coefficient Cyc 0 0.4 0.6 0.4 0

Table 7. Drilling ship load corresponding to various attack angles for a one-year recurrence period.

Wind and Water Flow Attack Angle (Degrees) 0◦ 45◦ 90◦ 135◦ 180◦

Longitudinal wind load Fxw (kN) 43.80 28.04 2.92 −32.12 −55.49
Transverse wind load Fyw (kN) 0 192.74 231.29 160.62 0

Longitudinal water flow load Fxc (kN) 12.49 −3.12 3.12 0 −10.93
Transverse water flow load Fyc (kN) 0 124.89 187.33 124.89 0

Total longitudinal load Fx (kN) 56.29 24.91 6.04 −32.12 −66.41
Total transverse load Fy (kN) 0 317.63 418.62 285.51 0

Total load Fy (kN) 56.29 318.61 418.67 287.31 66.41

Table 8. Drilling ship load corresponding to various attack angles for a 5-year recurrence period.

Wind and Water Flow Attack Angle (Degrees) 0◦ 45◦ 90◦ 135◦ 180◦

Longitudinal wind load Fxw (kN) 260.47 166.70 17.36 −191.01 −329.93
Transverse wind load Fyw (kN) 0 1146.06 1375.27 955.05 0

Longitudinal water flow load Fxc (kN) 52.94 −13.23 13.23 0 −46.32
Transverse water flow load Fyc (kN) 0 529.37 794.06 529.37 0

Total longitudinal load Fx (kN) 313.40 153.46 30.60 −191.01 −376.25
Total transverse load Fy (kN) 0 1675.43 2169.33 1484.42 0

Total load Fy (kN) 313.40 1682.44 2169.54 1496.66 376.25
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Table 9. Drilling ship load corresponding to various attack angles for a 10-year recurrence period.

Wind and Water Flow Attack Angle (Degrees) 0◦ 45◦ 90◦ 135◦ 180◦

Longitudinal wind load Fxw (kN) 334.06 213.80 22.27 −244.98 −423.14
Transverse wind load Fyw (kN) 0 1469.86 1763.83 1224.89 0

Longitudinal water flow load Fxc (kN) 59.96 −14.99 14.99 0 −52.47
Transverse water flow load Fyc (kN) 0 599.62 899.43 599.62 0

Total longitudinal load Fx (kN) 394.02 198.81 37.26 −244.98 −475.61
Total transverse load Fy (kN) 0 2069.48 2663.27 1824.51 0

Total load Fy (kN) 394.02 2079.01 2663.53 1840.88 475.61

Table 10. Drilling ship load corresponding to various attack angles for a 25-year recurrence period.

Wind and Water Flow Attack Angle (Degrees) 0◦ 45◦ 90◦ 135◦ 180◦

Longitudinal wind load Fxw (kN) 427.25 273.44 28.48 −313.32 −541.19
Transverse wind load Fyw (kN) 0 1879.92 2255.91 1566.60 0

Longitudinal water flow load Fxc (kN) 68.28 −17.07 17.07 0 −59.75
Transverse water flow load Fyc (kN) 0 682.81 1024.21 682.81 0

Total longitudinal load Fx (kN) 495.54 256.37 45.55 313.32 −600.94
Total transverse load Fy (kN) 0 2562.73 3280.12 2249.41 0

Total load Fy (kN) 495.54 2575.52 3280.43 2271.13 600.94

By applying the drilling ship’s load in ABAQUS, the effects of different wind and
water flow angles on the stability of the skid-and-mud-return line for different recurrence
periods are analyzed, as shown in Figures 3–6.

Figure 3. Effects of drilling vessel motion on the stability of the skid-and-mud-return line with differ-
ent attack angles in a 1-year recurrence period: (a) equivalent stress, (b) displacement, (c) rotation
angle, and (d) bending moment.
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Figure 4. Effects of drilling vessel motion on the stability of the skid-and-mud-return line with differ-
ent attack angles in a 5-year recurrence period: (a) equivalent stress, (b) displacement, (c) rotation
angle, and (d) bending moment.

Figure 5. Effects of drilling vessel motion on the stability of the skid-and-mud-return line with differ-
ent attack angles in a 10-year recurrence period: (a) equivalent stress, (b) displacement, (c) rotation
angle, and (d) bending moment.
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Figure 6. Effects of drilling vessel motion on the stability of the skid-and-mud-return line with differ-
ent attack angles in a 25-year recurrence period: (a) equivalent stress, (b) displacement, (c) rotation
angle, and (d) bending moment.

The analysis results indicate that the equivalent stress of the skid-and-mud-return line
increases sequentially with the attack angles of 0◦, 180◦, 135◦, 45◦, and 90◦. The equivalent
stress increases less at 0◦ and 180◦ and increases more from 45◦ to 135◦. The equivalent
stress reaches its peak at a depth of 100 m, as shown in Figure 3a. The displacement
of the skid-and-mud-return line also increases sequentially with the attack angles of 0◦,
180◦, 135◦, 45◦, and 90◦, with a significant increase from 45◦ to 135◦. The displacement
increases with a decrease in the depth of the skid-and-mud-return line, with a lesser
increase between 2000 m and 250 m or so. It increases sharply between 250 m and the
sea surface. The maximum displacement occurs at the sea surface. This indicates that
the main displacement of the skid-and-mud-return line occurs between 250 m and the
sea surface, as shown in Figure 3b. With attack angles of 0◦, 180◦, 135◦, 45◦, and 90◦, the
rotation angle of the skid-and-mud-return line increases sequentially. The rotation angle
remains almost unchanged between 2000 m and 500 m or so and significantly increases
from around 500 m. The maximum rotation angle occurs at the sea’s surface, as shown
in Figure 3c. The maximum bending moment of the skid-and-mud-return line decreases
sequentially with the attack angles of 0◦, 180◦, 135◦, 45◦, and 90◦. The bending moment
remains almost constant between about 2000 m and 500 m and shows a peak at 120 m when
reaching the water surface, as shown in Figure 3d. Similarly, Figures 4–6 show the effects
of different attack angles on the skid-and-mud-return line for the recurrence periods of 5,
10, and 25 years, respectively.

In a 1-year recurrence period, the maximum equivalent stress at an attack angle of 90◦
is only 300 MPa, which is lower than the yield strength of V150 steel (1115 MPa). Therefore,
the operation can be conducted within a 1-year recurrence period. In a 5-year recurrence
period, at an attack angle of 0◦ and 180◦, the maximum equivalent stress ranges from
200 MPa to 300 MPa, guaranteeing normal operations. At an attack angle of 45◦ and 135◦,
the maximum equivalent stress is about 850 MPa and 900 MPa, respectively. These are
lower than the yield strength of V150 steel, guaranteeing the operation. However, at an
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attack angle of 90◦, the maximum equivalent stress is about 1150 MPa. This exceeds the
yield strength of V150 steel. In this case, the ship’s orientation needs to be adjusted to
change the attack angle for operation. In a 10-year recurrence period, at an attack angle of
0◦ and 180◦, the maximum equivalent stress is about 300 MPa, allowing for operations. At
an attack angle of 135◦, the maximum equivalent stress is about 1000 MPa, guaranteeing
the operation. However, at an attack angle of 45◦ and 90◦, the maximum equivalent stress
exceeds the yield strength of V150 steel (1115 MPa), preventing the operation. In a 25-year
recurrence period, at an attack angle of 0◦ and 180◦, the maximum equivalent stress is
close to 400 MPa, allowing for operations. However, at attack angles of 45◦, 90◦, and
135◦, the maximum equivalent stress exceeds the yield strength of V150 steel, preventing
the operation.

To analyze the effects of the recurrence period on the stability of the skid-and-mud-
return line, the effects of the recurrence period of 1 year, 5 years, 10 years, and 20 years
on the stability of the skid-and-mud-return line are selected with an attack angle of 90◦.
The analysis results are shown in Figure 7. They indicate that the equivalent stress, dis-
placement, and rotation angle of the skid-and-mud-return line increases with an increase
in the recurrence period. It is observed that the increase is the most significant from 1 year
to 5 years. However, the maximum bending moment of the skid-and-mud-return line
decreases with an increase in the recurrence period. The maximum equivalent stress is
300 MPa, 1100 MPa, 1300 MPa, and 1600 MPa, respectively, as shown in Figure 7a. The
maximum displacement is 30 m, 80 m, 90 m, and 100 m, respectively, as shown in Figure 7b.
The maximum rotation angle is 0.25 rad, 0.325 rad, 0.35 rad, and 0.375 rad, respectively, as
shown in Figure 7c. The maximum bending moment is 3.1 kN·m, 3.3 kN·m, 3.5 kN·m, and
3.8 kN·m, respectively, as shown in Figure 7d.

Figure 7. Effects of drilling ship motion on the stability of the skid-and-mud-return line with an
attack angle of 90◦ in different recurrence periods: (a) equivalent stress, (b) displacement, (c) rotation
angle, and (d) bending moment.
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As the water depth decreases for the skid-and-mud-return line, equivalent stress, dis-
placement, and rotation angle all increase. The equivalent stress and the rotation angle start
to increase significantly from a depth of about 500 m. The displacement starts to increase
significantly from a depth of about 250 m. The bending moment shows an increasing trend
followed by a decreasing trend as the water depth decreases. For recurrence periods of
5 years, 10 years, and 25 years, the bending moment starts to increase significantly from
a depth of about 500 m, with a peak at 250 m or so. For a recurrence period of 1 year, the
bending moment starts to increase significantly from a depth of about 250 m, with the peak
occurring at 125 m or so.

If the attack angle is 90◦, the maximum equivalent stress is about 300 MPa only
when the recurrence period is 1 year, which is lower than the yield strength of V150 steel
(1115 MPa), allowing for operation. However, when the recurrence period is 5 years,
10 years, and 25 years, the maximum equivalent stress exceeds the yield strength of V150
steel, indicating that the operation cannot be performed.

3.2. Effect Analysis of Sea Current Disturbances

The effects of sea current disturbance at different depths in the work area in various
recurrence periods are shown in Table 11. The ABAQUS/Aqua module, widely used
for simulating the characteristics of steady-state sea currents, is extensively applied in
numerical simulations for offshore petroleum engineering. It can be used to calculate the
drag force, buoyancy, and fluid inertia load caused by steady-state and wave-induced flow.
The wind load can be applied to the structures above the free water surface. Therefore, the
ABAQUS/Aqua module is utilized to simulate the effects of sea current on the skid-and-
mud-return line. The analysis results are presented in Figure 8.

Table 11. Environmental parameters of the regional well.

Current (m/s)

Depth

Recurrence Period
1 Year 5 Years 10 Years 25 Years

10 m 0.68 1.40 1.49 1.59

20 m 0.66 1.39 1.48 1.57

30 m 0.70 1.36 1.46 1.57

50 m 0.45 1.35 1.46 1.58

75 m 0.57 1.29 1.40 1.53

100 m 0.48 1.21 1.31 1.42

150 m 0.44 0.99 1.06 1.14

200 m 0.43 0.81 0.86 0.91

250 m 0.40 0.75 0.81 0.87

300 m 0.35 0.73 0.77 0.82

500 m 0.35 0.56 0.61 0.67

1000 m 0.30 0.41 0.45 0.49

With an increase in the recurrence period of the sea, the equivalent stress and dis-
placement of the skid-and-mud-return line significantly increase at all depths. The rotation
angle and the bending moment only exhibit significant increases near the seabed. As the
water depth decreases for the skid-and-mud-return line, the equivalent stress decreases.
The displacement sharply increases at the seabed, slightly decreases afterward, and then is
stabilized. The rotation angle sharply increases at the seabed, sharply decreases to 0 rad,
and then remains stable. The bending moment sharply decreases at the seabed, increases
to 0 kN·m, and then remains stable. The maximum equivalent stress is 17 MPa, 60 MPa,
67 MPa, and 75 MPa, as shown in Figure 8a. The maximum displacement is 0.13 m, 0.41 m,
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0.45 m, and 0.49 m, as shown in Figure 8b. The maximum rotation angle is 0.006 rad,
0.02 rad, 0.022 rad, and 0.024 rad, as shown in Figure 8c. The maximum bending moment
is 2.82 kN·m, 10.06 kN·m, 11.19 kN·m, and 12.51 kN·m, as shown in Figure 8d. It can be ob-
served that the maximum stress, displacement, rotation angle, and bending moment of the
skid-and-mud-return line appear near the seabed. This indicates that sea currents primarily
affect the stability of the pipelines at the seabed. The effect of sea currents on the stability of
the skid-and-mud-return line is relatively minor compared with that of the ship. It mainly
affects the stability of the pipelines near the seabed in different recurrence periods.

Figure 8. Effects of sea current disturbances on the stability of the skid-and-mud-return line
in different recurrence periods: (a) equivalent stress, (b) displacement, (c) rotation angle, and
(d) bending moment.

3.3. Effect Analysis of Reverse Torque and Vibration on Mud Pumps

At the rated voltage, six sets of data corresponding to reverse torsion and amplitudes
at speeds of 0, 300, 600, 900, 1200, and 1500 rpm in Table 2 are selected as the analysis data,
as shown in Table 12. They are used to analyze the effects of reverse torque and vibration
on the stability of the skid-and-mud-return line. The analysis results are shown in Figure 9.

Table 12. Reverse torque and vibration corresponding to different speeds at the rated voltage.

Rotational Speed (rpm) Reverse Torque (N·m) Amplitude (mm)

0 −320.4 0.76665
300 228.27 0.9315
600 667.98 1.1281
900 1332.79 1.2728

1200 2327.27 1.4643
1500 3602.80 0.0977
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Figure 9. Effects of reverse torque and vibration on the stability of the skid-and-mud-return line:
(a) equivalent stress, (b) displacement, (c) rotation angle, and (d) bending moment.

The analysis results indicate that the stability of the skid-and-mud-return line is most
affected by reverse torque and vibration at a speed of 1200 rpm. Due to the effect of
reverse torque and vibrations on the mud pump, significant changes in various stability
parameters of the skid-and-mud-return line take place at a depth of 1300 m. The stress in
the skid-and-mud-return line increases relatively steadily from a depth of 0 m to 1300 m. It
decreases sharply at 1300 m and then gradually decreases with an increase in the depth of
the mud return pipeline. The displacement of the skid-and-mud-return line is relatively
stable overall. But it suddenly increases at 1300 m and then rapidly decreases. The rotation
angle of the skid-and-mud-return line increases with the depth from 0 m to 1300 m and
then remains stable after 1300 m. The bending moment of the skid-and-mud-return line is
relatively stable from 0 to 1300 m, decreases sharply around 1300 m, and then remains stable.
The maximum equivalent stress is 1.48 MPa, 1.05 MPa, 3.08 MPa, 6.15 MPa, 10.74 MPa,
and 0.06 MPa, as shown in Figure 9a. The maximum displacement is 0.77 mm, 0.93 mm,
1.13 mm, 1.27 mm, 1.46 mm, and 0.0005 mm, as shown in Figure 9b. The maximum rotation
angle is 0.2 rad, 0.14 rad, 0.41 rad, 0.82 rad, 1.43 rad, and 0.07 rad, as shown in Figure 9c.
The maximum bending moment is 0.29 kN·m, 0.21 kN·m, 0.60 kN·m, 1.20 kN·m, 2.10 kN·m,
and 0.01 kN·m, as shown in Figure 9d. It can be observed that reverse torque and vibration
mainly affect the rotation angle of the skid-and-mud-return line. The effects from the
equivalent stress, displacement, and bending moment of the skid-and-mud-return line are
relatively minor compared with other factors.
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4. Quantitative Analysis of the Effect of Various Factors

4.1. Stability Analysis in Extreme Operating Conditions

To further guide practical operations, it is necessary to perform a stability analysis of
the skid-and-mud-return line in extreme operating conditions. Based on the individual
factor analysis mentioned above, the most critical scenario for each factor is selected to form
the current set of extreme operating conditions. The selected conditions for the extreme
operating conditions are as follows: a wind condition with a recurrence period of 25 years
and a wind direction angle of 90◦, a sea condition with a recurrence period of 25 years, a
water flow angle of 90◦, an electric pump voltage at 110% of the rated voltage (110 Un), and
an electric pump speed of 1200 rpm. The analysis results are shown in Figure 10.

Figure 10. Stability analysis of the skid-and-mud-return line in extreme operating conditions:
(a) equivalent stress, (b) displacement, (c) rotation angle, and (d) bending moment.

The analysis results indicate that in extreme operating conditions, as the depth of
water at the location of the skid-and-mud return line decreases, the stress initially decreases
and then increases. The minimum stress value is about 570 MPa at a depth of about 50 m,
as shown in Figure 10a. The displacement increases as the depth decreases, and it starts to
rapidly increase at a depth of 50 m, reaching a maximum displacement of about 32 m, as
shown in Figure 10b. The angular rotation of the pipelines approximates a linear increase at
a depth between 2000 m and 700 m. It is stabilized at a depth between 700 m and 50 m and
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then rapidly increases to a maximum rotation of about 1.8 rad, as shown in Figure 10c. The
bending moment of the pipelines is relatively small at a depth between 2000 m and 50 m,
but it rapidly increases to about 80 kN-m from 25 m, as shown in Figure 10d. Obviously,
the stability of the skid-and-mud-return line is significantly affected in extreme operating
conditions. The occurrence of such conditions needs to be avoided.

4.2. SVR-DSWA Parameterization Setting

The SVR-DSWA [37] algorithm is a method used for predicting time series data. It
integrates SVR and DSWA techniques. The SVR is utilized to establish a regression model
for time series data. The DSWA is applied for data processing. Specifically, the algorithm
divides time series data into multiple windows, and each contains a certain number of
consecutive time points. Then, within each window, SVR is used to construct a regression
model for predicting the value of the next time point. Finally, the predicted results from
each window are aggregated to obtain the overall prediction results for the entire time
series. The SVR-DSWA algorithm is advantageous in its ability to process nonlinear time
series data. It also can adaptively adjust the window size to accommodate the changing
patterns within the time series data. This enables the algorithm to function well in many
time series prediction tasks.

To analyze the effect weight of various factors on the stability of the skid-and-mud-
return line, this paper conducts a weight analysis based on the SVR-DSWA algorithm. The
principle of the derivative significance weight analysis (DSWA) algorithm is shown as
follows. The derivative significance analysis method based on SVR can be used to analyze
the effect weight of input values on the desired output. The decision-making function can
only be constructed using training samples corresponding to non-zero coefficients (ai − a∗i ).
Therefore, the decision-making function can be represented as follows [37]:

f (xi) =
Ns

∑
j=1

(aj − a∗j )K(xi, xj) + b (6)

In Equation (6), Ns represents the number of support vectors. The sensitivity of the
SVR network’s output to the input of the feature can be estimated by computing the partial
derivative as follows:

∂ f (xi)
∂xik

=
∂(

Ns
∑

j=1
(αj−α∗

j
)K(xi ,xj)+b)

∂xik
=

∂
Ns
∑

j=1
(αj−α∗

j
)K(xi ,xj)

∂xik
+ ∂b

∂xik

=
N
∑

j=1
(αj − α∗

j
)

∂K(xi ,xj)

∂xik

= −2γ
Ns
∑

j=1
(αj − α∗

j
) · (xik − xjk) exp[−γ

K
∑

l=1
xil − xjl

2]

(7)

In Equation (7), K represents the number of feature inputs. The significance coefficient
of the feature input is calculated as the absolute average sensitivity of the output values re-
garding the input value across all training data in the training set {(xi, yi), i = 1, 2, · · · , N}.
The computed value can be represented as follows:

S(k) =

N
∑

i=1

∣∣∣ ∂ f (xi)
∂xik

∣∣∣
N

(8)

The effect weight of the feature input on the prediction result is translated as follows:

C(k) =
S(k)

k
∑

k=1
S(k)

(9)
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Substituting Equations (7) and (8) into Equation (9) yields the weight of the feature input:

C(k) =

N
∑

i=1

∣∣∣∣∣−2γ
Ns
∑

j=1
(αj − α∗

j
)(xik − xjk) exp

[
−γ

N
∑

l=1
(xil − xjl)

2
]∣∣∣∣∣

K
∑

k=1

N
∑

i=1

∣∣∣∣∣−2γ
Ns
∑

j=1
(αj − α∗

j
)(xik − xjk) exp

[
−γ

N
∑

l=1
(xil − xjl)

2
]∣∣∣∣∣

(10)

Based on the SVR-DSWA algorithm, the steps for calculating the weight of each
parameter on the maximum displacement are shown in Figure 11.

Figure 11. SVR-DSWA algorithm flowchart.

Step 1: The training and testing sets are constructed. From the given n data samples,
N data samples are selected as the training set. The remaining (n-N) test samples are used
as the testing set.
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Step 2: The data samples are normalized. The “mapminmax” function is used to
normalize the data samples at a range of [−1, 1] to improve the convergence speed and
accuracy of SVR.

Step 3: The parameters are optimized. The Gaussian radial basis kernel function is
used for training and prediction. The grid search method combined with ten-fold cross-
validation is employed to find the optimal penalty factor c and the kernel parameter γ. The
training set is randomly divided into ten subsets, among which nine subsets are used as the
training set and one subset as the validation set. The training sets and the validation set are
alternately iterated for ten rounds. In each iteration, the “svmtrain” function is used to train
the prediction model, and the RMSEei of the prediction model is recorded. The average

value, Ei =
1

10

10
∑

i=1
ei, is calculated. Next, the parameters are changed, the grid is traversed to

train the model for m rounds, and the average RMSE of each round of training is obtained.
the minimum value is obtained, and the optimal parameters of the model are determined.

Next, the parameters are modified, and the grid is traversed to train the model for m
rounds to obtain the average RMSE for each round of training. The minimum Em value is
obtained, which determines the optimal parameters for the model.

Step 4: The predicted results are then found. The prediction model is trained with
the optimal parameters, the model is used to predict the output values for the (n-N) test
samples, and the model’s output values are obtained.

Step 5: The predicted results are then analyzed. The predicted output data are de-
normalized, and it is compared with the experimental data. The MRE, mean absolute
error (MAE), mean square error (MSE), RMSE, and squared correlation coefficient (R2)
between the predicted values and the experimental data are calculated. the predicted
results are analyzed.

Step 6: The training sample’s input matrix and support vector matrix are constructed.
All training samples corresponding to non-zero coefficients (ai − a∗i ) are found, which are
the support vectors. The training sample input matrix XN×K and the support vector matrix
VNs×K are constructed, where N is the number of training samples, K is the number of
influencing factors, NS is the number of support vectors, and NS ≤ N.

Step 7: the partial derivative of the decision function is computed. Based on the
optimal kernel parameter γ of the Gaussian radial basis function and the coefficients
(ai − a∗i ) of the support vectors, the partial derivative ∂ f (xi)/∂xik of the decision function
for the input variable is calculated.

Step 8: The significance coefficient and weight are calculated. The significance coeffi-
cient S(k) is calculated. The average absolute value of the partial derivatives of the decision
function for all training samples corresponding to that factor is selected. Weight C(k) r is
calculated based on S(k).

The parameter setting is shown in Table 13.

Table 13. SVR-DSWA algorithm parameter settings.

Values of penalty factor C [−10, 0.5, 10]
Values of kernel parameter γ [−10, 0.5, 10]

Number of cross-validation folds v 5
Training set 50

Test set 10

4.3. Validating the Weight Analysis Results Based on the DSWA Algorithm

To validate the accuracy of the DSWA (derivative significance weight analysis), the
orthogonal experimental method is employed to verify the weight analysis results based on
the DSWA algorithm. In the orthogonal experiment, it selects the following factors: wind
recurrence period between 1 year and 25 years, wind direction angle between 0◦ and 180◦,
sea recurrence period between 1 year and 25 years, water flow attack angle between 0◦ and
180◦, voltage between 60 and 110, and rotational speed between 0 and 1500 rpm. The levels
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of the orthogonal experimental factors are presented in Table 14. The input data for the
weight analysis based on the SVR-DSWA algorithm are shown in Appendix A.

Table 14. Table of parameter levels.

Wind Recurrence Period Wind Direction Angle Sea Recurrence Period Water Flow Attack Angle Voltage Rotational Speed (RPM)

1 year 0◦ 1 year 0◦ 60%Un 0
5 years 45◦ 5 years 45◦ 80%Un 300
10 years 90◦ 10 years 90◦ 90%Un 600
25 years 135◦ 25 years 135◦ 100%Un 900

180◦ 180◦ 110%Un 1200
1500

The displacement prediction results based on the SVR algorithm are shown in Figure 12.
The weight calculation results based on the SVR-DSWA algorithm are presented in Table 15.

Figure 12. (a) Comparison of prediction results for the training set: mse = 0.0064949 and R2 = 0.97927.
(b) Comparison of the prediction results for the testing set: mse = 0.019341 and R2 = 0.93767.

Table 15. Weight calculation results based on the SVR-DSWA algorithm.

Significance Coefficient Weight

Wind recurrence period 0.52316 23.29%
Wind direction angle 0.31974 14.23%
Sea recurrence period 0.52316 23.29%

Water flow attack angle 0.31974 14.23%
Voltage 0.32997 14.69%

Rotational speed 0.23033 10.25%

5. Conclusions and Recommendations

Based on the stability analysis of the skid-and-mud-return line conducted in this study,
the following conclusions and recommendations can be drawn:

(1) Among these factors on the stability of the skid-and-mud-return line, drilling
vessel motion plays a dominant role. In normal operating conditions, the stability of the
skid-and-mud-return line meets the requirements for drilling and production operations.
However, in extreme operating conditions, the effect on the stability of the skid-and-mud-
return line is significant. Therefore, it is necessary to avoid the occurrence of extreme
operating conditions.
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(2) Due to the dominant effect of drilling vessel action induced by sea wind and sea
current flow on the stability of the mud return pipeline, it is crucial to monitor the wind
direction and sea current direction when the recurrence interval is large. Adjusting the
vessel’s orientation based on the wind direction and sea current flow can change the attack
angle and reduce the load on the drilling vessel by sea wind and sea current flow. The
safety of drilling, production, and operations can be ensured.

(3) According to the weight analysis carried out using the SVR-DSWA algorithm, the
relative effect weight on the stability of the skid-and-mud-return line from the highest to
the lowest are wind condition recurrence interval, sea condition recurrence interval, wind
direction angle, water flow attack angle, voltage, and rotational speed. Both wind condition
recurrence interval and sea condition recurrence interval are equal in weight, ranking the
highest and accounting for 23.29%, respectively.

A key research direction in the future is the mechanical state monitoring and dynamic
analysis of mud upstream and return circulating pipelines. Subsequent research will be
compared with other research to obtain environmental and process parameter data suitable
for efficient drilling in RMR.
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Nomenclature

Fxw Longitudinal (bow–stern direction) wind load, kN
Fyw Transverse (port–starboard direction) wind load, kN
Cxw Longitudinal wind resistance coefficient
Cyw Transverse wind resistance coefficient
ρw Air density, kg/m3

Vw Wind speed, m/s
AT Transverse windward area, m2

AL Longitudinal windward area, m2

Fxc Longitudinal (bow-stern direction) water flow load, kN
Fyc Transverse (port-starboard direction) water flow load, kN
Cxc Longitudinal flow resistance coefficient
Cyc Transverse flow resistance coefficient
ρc Sea water density, kg/m3

Vc Flow velocity, m/s
LBP Vertical line spacing, m
T Average draft depth, m
fc Drag force per unit length of the structural member, N
ρ Density of the fluid, kg/m3

CD Drag force coefficient: 0–150 m below sea level to take 1.2; 150 m below sea level to the sea
floor to take 0.7

DC Hydraulic outside diameter of the structural member, m
υ Velocity of the fluid at the point perpendicular to the structural member, m/s
fl Drag force per unit length of the structural members, N
CM Inertia force coefficient; taken as 2.0
du
dt Seawater motion at the calculation point generated by the water quality point acceleration

perpendicular to the structural members, m/s2
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Appendix A

Table A1. Input data are analyzed based on the weight of the SVR-DSWA algorithm.

Number
Wind

Recurrence
Period (Year)

Wind
Direction
Angle (◦)

Sea
Recurrence

Period (Year)

Water Flow
Attack Angle (◦)

Voltage (%Un)
Rotational

Speed (RPM)
Maximum

Displacement (m)

1 25 180 25 180 110 900 18.42

2 25 45 25 45 80 900 34.51

3 5 90 5 90 90 300 33.64

4 10 135 10 135 100 600 31.04

5 5 0 5 0 60 300 14.46

6 25 90 25 90 90 300 40.33

7 5 180 5 180 110 300 15.69

8 1 135 1 135 100 0 15.48

9 1 180 1 180 110 1200 3.568

10 1 45 1 45 80 0 16.31

11 10 45 10 45 80 0 36.18

12 10 135 10 135 100 0 34.22

13 25 135 25 135 100 1500 24.94

14 1 180 1 180 110 0 7.83

15 5 135 5 135 100 300 28.56

16 10 90 10 90 90 0 41.48

17 1 45 1 45 80 600 14.31

18 1 0 1 0 60 1200 3.35

19 25 0 25 0 60 900 17.07

20 5 45 5 45 80 1500 21.95

21 5 180 5 180 110 900 14.99

22 10 0 10 0 60 1200 14.21

23 1 135 1 135 100 1200 6.329

24 25 0 25 0 60 300 17.84

25 25 180 25 180 110 1500 14.27

26 10 180 10 180 110 1200 15.35

27 1 90 1 90 90 1200 7.318

28 5 135 5 135 100 1500 20.94

29 5 45 5 45 80 900 28.68

30 1 90 1 90 90 600 16.03

31 10 0 10 0 60 0 16.28

32 1 0 1 0 60 600 6.965

33 1 135 1 135 100 600 13.71

34 25 180 25 180 110 300 19.38

35 1 180 1 180 110 600 7.456

36 10 90 10 90 90 600 36.36

37 5 180 5 180 110 1500 4.522

38 25 90 25 90 90 900 38.28

39 25 45 25 45 80 300 36.36

40 1 0 1 0 60 0 7.299

41 25 45 25 45 80 1500 26.22

42 10 180 10 180 110 600 17.28

43 5 90 5 90 90 900 31.94

44 5 45 5 45 80 300 30.13

45 10 0 10 0 60 600 15.92

46 5 0 5 0 60 1500 10.88

47 5 135 5 135 100 900 27.28

48 10 135 10 135 100 1200 27.45
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Table A1. Cont.

Number
Wind

Recurrence
Period (Year)

Wind
Direction
Angle (◦)

Sea
Recurrence

Period (Year)

Water Flow
Attack Angle (◦)

Voltage (%Un)
Rotational

Speed (RPM)
Maximum

Displacement (m)

49 25 135 25 135 100 300 34.45

50 1 90 1 90 90 0 18.73

51 5 0 5 0 60 900 12.24

52 5 90 5 90 90 1500 24.46

53 1 45 1 45 80 1200 6.588

54 10 180 10 180 110 0 17.78

55 10 90 10 90 90 1200 32.04

56 10 45 10 45 80 1200 28.6

57 10 45 10 45 80 600 32.7

58 25 135 25 135 100 900 32.7

59 25 90 25 90 90 1500 28.55

60 25 0 25 0 60 1500 13.1
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Abstract: This paper investigates the robust fusion estimation problem for multi-sensor systems with
communication constraints, parameter uncertainty, d-step state delays, and deterministic control
inputs. The multi-sensor system consists of a fusion center and some sensor nodes with computational
capabilities, between which there are random packet drops. The state augmentation method is utilized
to transform a time-delay system into a non-time-delay one. The robust state estimation algorithm is
derived based on the sensitivity penalty for each sensor node to reduce the impact of modelling errors,
and modelling errors here are not limited to a unique form, which implies that the fusion estimator
applies to a wide range of situations. An event-triggered transmission strategy has been adopted to
effectively alleviate the communication burden from the sensor node to the fusion center. Moreover,
the fusion estimator handles packet drops arising from unreliable channels, and the corresponding
pseudo-cross-covariance matrix is provided. Some conditions are given to ensure that the estimation
error of the robust fusion estimator is uniformly bounded. Two sets of numerical simulations are
provided to illustrate the effectiveness of the derived fusion estimator.

Keywords: multi-sensor systems; robust fusion estimation; event-triggered; random packet drops;
d-step state delay; deterministic control inputs

1. Introduction

In the last decade, sensor systems have been extensively studied in path planning [1],
environmental monitoring [2], motor control [3], and trajectory tracking [4,5], and so on.
In multi-sensor systems, the accuracy and stability of the system are improved due to
the joint data collection by multiple sensors. However, the impact of sensor failures or
network attacks in the channel may lead to data transmission time-delay and random packet
drops [6,7]. Therefore, the investigation of multi-sensor systems is of great importance.

Data processing in multi-sensor systems is performed in the form of fusion, and basic
fusion methods include centralized [8,9] and distributed [10,11]. Centralized is ideally
optimal, but when the number of sensors is large, fusion center data processing may be in-
feasible [12,13]. In contrast, the suboptimal distributed structure is more stable. As research
goes further, adding an event-triggered transmission strategy to the system can reduce
the energy consumption of sensors and decrease the communication burden. Ref. [14]
proposed a distributed event-triggered policy in which the subsystem only broadcasts state
information to neighboring nodes when the local state error exceeds a specified threshold.
Ref. [15] proposed a data-driven transmission strategy based minimizing the volume of
the non-transmission area. Ref. [16] proposed a trigger decision based on the estimated
variance, where a copy of the Kalman filter is run at the sensor node, and its measurement
is transmitted only when the measurement prediction variance exceeds a certain threshold.
The event-triggered transmission strategy in [17] is based on a threshold-based strategy,
where the event generator transmits a state measurement only when a signal exceeds a
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threshold value. A stochastic–deterministic dynamic event-triggered condition is proposed
in [18].

At the same time, the treatment of time-delay problems of systems has received much
attention [19]. The linear matrix inequality (LMI) [20,21] and partial differential equation
(PDE) [22,23] methods are also commonly used in the time-delay treatment of systems.
The state augmentation method in [24] converts time-delay systems into non-time-delay
systems with excellent results. The method in [24] was used in [25] for a multi-sensor
system, but random packet drop was not considered.

State estimation is a pivotal research domain within industrial automation. Conse-
quently, numerous estimation algorithms have been formulated, encompassing the likes
of the Kalman filter, Wiener filter, and other notable methodologies. In the system mod-
eling process, modelling errors are inevitable, so the estimator performance must have
no sudden changes when the system parameters reasonably deviate from their nominal
parameters [26]. Those with this property are called robust state estimators, and many
research methods are available [27–30]. A framework based on regularized least squares
(RLS) is proposed in [27], but the modelling errors are restricted to a specific form. A filter
that compromises the nominal performance and uncertainty robustness is proposed in [28].
A robust state estimator based on sensitivity penalty is proposed in [29], which is not
limited to structure-specific modelling errors. In addition, a robust state estimator based
on the expectation minimization of estimation error is proposed in [30]. The study [31]
presents an error estimator, which can be easily implemented in the code. Therefore, it is
significant to employ robust state estimators in multi-sensor systems.

In this paper, we investigated the problem of robust fusion estimation for multi-sensor
systems with uncertainty, restricted communication, random packet drops, state delay, and
deterministic control inputs. A robust state estimator based on state augmentation and
sensitivity penalty is used at the local scale. An analytic expression for the robust fusion
estimator is derived based on event-triggered, and the pseudo-cross-covariance matrix of
the fusion centers is updated. The consistent boundedness of the estimation error is proved.
Several simulations verify the effectiveness of the fusion estimator.

The rest of this paper is briefly described below. The problem description and a
brief description of the event-triggered transmission strategy are given in Section 2. A
robust fusion estimator for multi-sensor systems with state delays, deterministic control
inputs, random packet drops, and communication constraints is derived in Section 3. The
boundedness of the fusion estimator is studied in Section 4. Several sets of simulations are
analyzed in Section 5. Section 6 concludes the paper.

2. Problem Formulation and Some Preliminaries

Consider the following discrete-time uncertain linear stochastic system with determin-
istic inputs and d-steps state delay{

xk+1 = A1,k(εk)xk + A2,k(εk)xk−d + B1,k(εk)uk + B2,k(εk)wk

yi
k = Ci

k(εk)xk + gi
k, 1 ≤ i ≤ L, k ≥ 0

(1)

where k represents the discrete-time and i represents the sensor label. Furthermore, xk
is the state, yi

k is the measurement, wk represents the process noise, uk is the determin-
istic control input, and gi

k is the compound effect of measurement and communication
errors. The following assumptions need to be made to guarantee the fitness of the state
estimation problem.
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(a) wk and gi
k are normally distributed with white noise, x0, wk, and gi

k are mutually
independent random variables.

E(wk) = 0, E
(

gi
k
)
= 0,

E

⎛⎝⎡⎣ x0 − E(x0)
wk
gi

k

⎤⎦(∗)T

⎞⎠ =

⎡⎣ Π0
Qkδkj

Ri
kδkj

⎤⎦,

where Π0 , Qk, and Ri
k are known positive definite matrices and δkj denotes the Kronecker

symbolic function.
(b) The elements in the matrices A1,k(εk), A2,k(εk), B1,k(εk), B2,k(εk) and Ci

k(εk) are
known differentiable functions of the modelling errors, and the modelling errors εk consist
of l mutually independent real-valued scalar bounded uncertainties εk,j, j = 1, ..., l.

In the process of transmitting the measurement value Y from the sensor node to the
fusion center, the channel may experience packet drops. A random variable r is defined to
indicate the success or failure of the communication between the sensor node and the fusion
center, taking the value of 1 for the successful transmission and 0 when the communication
channel fails.

The aim of this paper is to develop a fusion algorithm based on local estimates from
each sensor node for multi-sensor systems with parameter uncertainty, state delay, random
packet drops, and communication rate limitations. To balance communication cost and
estimation performance, an event-triggered transmission strategy like in [15] is used in
this paper.

Consider the following measurement channel

Y = Hφ + g

where Y ∈ Rm is the measurement output, h ∈ Rm×n is the measurement matrix of the
system, φ ∈ Rn represents the state, and g ∈ Rm represents the measurement noise. A
binary variable is denoted by t, and when t = 1 indicates that the sensor node sends
a measurement Y and the other way around. The specific form of the event-triggered
transmission strategy is as follows.

ti
k =

{
0, Y − Ỹ ∈ Ξ,

1, others ,

in which Ỹ ∈ Rm and Ξ ∈ Rm are measurable sets. Generally, the center of mass of Ξ is at
the origin, that is,

∫
Ξ ϕdϕ = 0. Note that the decision transmission in the event-triggered

transmission strategy is actually when the difference between the measured value and the
determined measured value is greater than a threshold value.

The transmission rate, ai ∈ (0, 1) for each sensor node is derived by
limτ→∞

1
τ ∑τ

k=1E
{

ti
k
}
= ai. In addition, for any given desired transmission rate ai, a thresh-

old Ξ can be easily determined.
Based on Lemma 1 in [15], a virtual measure Y = Ỹ = Hε + g − v is now defined,

where it is uniformly distributed over, and is independent of, X and g. Suppose, fφ(x) =
N(x; x̄, Ωx), fG(g) = N

(
g; 0, Ωg

)
, fY(y) = N

(
y; Hx̄, Ωy

)
where Ωy = Ωg + HΩx HT . Thus,

the optimal transmission strategy is derived as

‖Y − Hx̄‖2
Ω−1 ≥ θ,

where θ = γ−1
m (1 − a). The random variable ‖Y− Hx̄‖2

Ω−1 obeys the chi-square distribution
with a degree of freedom m where γm is the chi-square distribution function with a degree
of freedom m.
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Remark 1. The considered multi-sensor system is shown in Figure 1. Each sensor node has state
estimation performance with a state delay. Each sensor sends its local state estimate to the fusion
center through an unreliable communication channel. All local estimates are fused with data at the
fusion center through the best linear unbiased estimation criterion.

Figure 1. Block diagram of the multi-sensor system with state delay.

3. The Robust Fusion Estimation Procedure

Taking into account the impact of modelling errors on estimation performance, we
adopt a robust state estimation algorithm based on sensitivity penalization [29] to obtain
local estimates for multi-sensor systems. A design parameter γi

k, 0 < γi
k < 1, is defined

to compromise between nominal estimation performance and performance deterioration
due to modelling errors. Derived from the foundation of the Kalman filter, this robust
state estimation algorithm utilizes sensitivity penalization of model uncertainty estimation
errors. It shares a similar form and comparable computational complexity with the standard
Kalman filter. When γi

k = 1, this estimator degenerates to the standard Kalman filter.
By introducing the augmentation matrix X and augmenting the original system (1)

with states, the system becomes{
Xk+1 = Āk(εk)Xk + B̄1,k(εk)uk + B̄2,k(εk)wk,

yi
k = C̄i

k(εk)Xk + vi
k, 1 ≤ i ≤ L, k ≥ 0,

(2)

in which,

Āk(εk) =

⎡⎢⎢⎢⎢⎢⎣
A1,k(εk) 0n×n · · · 0n×n A2,k(εk)

In 0n×n
In 0n×n

. . .
...

In 0n×n

⎤⎥⎥⎥⎥⎥⎦,

B̄1,k(εk) =
[
(B1,k(εk))

T 0T
n×dn

]T
,

B̄2,k(εk) =
[
(B2,k(εk))

T 0T
n×dn

]T
,

C̄i
k(εk) =

[
Ci

k(εk) 0n×dn
]
.

As can be seen from the above transformation, the re-modeled system is a discrete linear
uncertain system without state delay. Following the transformation of the system model
from (1) to (2), it is evident that the system matrix dimension changes from n to n(d + 1).

Remark 2. In this paper, the system is considered only for constant state delays. Based on the state
augmentation method, only the system matrix, input (control) matrix, and output matrix of the
system need to be changed. The method transforms the original system into a non-time-delay system,
but the system dimension will increase from the original n to n(n + d). The state augmentation
method is simple and suitable when the delay step is low because the computational burden will
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increase when it is significant. However, the time delay step is generally manageable in practical
production so the problem could be more influential.

To obtain the locally robust state estimate for the i−th sensor node, we first define
several important matrices Si

k, Ti
1,K, and Ti

2,K, which play a key role in the parameter
modification process, as follows:

Si
k =

[(
Si

k,1(0, 0)
)T

, · · · ,
(

Si
k,l(0, 0)

)T
]T

,

Ti
1,k =

[(
Ti

1,k,1(0, 0)
)T

, · · · ,
(

Ti
1,k,l(0, 0)

)T
]T

,

Ti
2,k =

[(
Ti

2,k,1(0, 0)
)T

, · · · ,
(

Ti
2,k,l(0, 0)

)T
]T

,

Si
k,j(εk, εk+1) =

⎡⎣ ∂̄Ci
k+1(εk+1)

∂εk+1,j
Āk(εk)

C̄i
k+1(εk+1)

∂Āk(εk)
∂εk,j

⎤⎦,

Ti
1,k,j(εk, εk+1) =

⎡⎣ ∂C̄i
k+1(εk+1)

∂εk+1,j
B̄1,k(εk)

C̄i
k+1(εk+1)

∂B̄1,k(εk)
∂εk,j

⎤⎦,

Ti
2,k,j(εk, εk+1) =

⎡⎣ ∂C̄i
k+1(εk+1)

∂εk+1,j
B̄2,k(εk)

C̄i
k+1(εk+1)

∂B̄2,k(εk)
∂εk,j

⎤⎦,

j = 1, 2, · · · , l.

Let μi
k =

1−γi
k

γi
k

. The detailed realization of the robust state estimation algorithm based

on sensitivity penalty is given in Algorithm 1.

Here Pi
k|k and P̂i

k|k are the pseudo-covariance matrices because P̂i
k|k �= E

{(
Xk −

X̂i
k|k
)T(Xk − X̂i

k|k
)}

and Pi
k|k �= E

{(
Xk − X̂i

k|k
)T(Xk − X̂i

k|k
)}

.
Based on the event-triggered transmission strategy in the second part, whether each

sensor node sends a local state estimate to the fusion center is determined by ti
k. The

transmission strategy mentioned above can be expressed as

ti
k =

⎧⎪⎨⎪⎩0,
∥∥∥X̂i

k|k − X̄i
k|k
∥∥∥2

Ωi
k

≤ θi,

1, others .
(3)

In order to guarantee the transmission rate ai, the vector X̄i
k|k, the positive definite

weight coefficient matrix Ωi
k, and the positive real numbers θi must be chosen appropriately.

X̂i
k|k is the local state estimate.

Notice that each local state estimate can be interpreted as a measurement yi
k of the true

state Xk collected through the virtual measurement channel defined as

Yi
k = X̂i

k|k = Xk +
(
X̂i

k|k − Xk
)

(4)

where the estimation error X̂i
k|k − Xk can be regarded as virtual measurement noise.
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Algorithm 1: The local robust state estimation based on sensitivity penalty (Appendix A)

1 Initialization:Pi
0|0 =

⎛⎝ (
C̄i

0(0)
)T(

Ri
0

)−1
C̄i

0(0)

+
(
Π̂i

0
)−1

⎞⎠−1

, X̂i
0|0 = Pi

0|0
(

C̄i
0(0)

)T(
Ri

0

)−1
yi

0, in

which Π̂i
0 =

(
Π−1

0 + μi
0 ∑l

j=1

(
∂(C̄i

0(ε0))
T

∂ε0,j

)(
∂C̄i

0(ε0)
∂ε0,j

)∣∣∣∣
ε0=0

)−1

;

2 Set design parameters γi
k;

3 for k = 1 → n do

4 ( a) Replace Ti
1,k, Ti

2,k, Āi
k(0), B̄i

1,k(0), B̄i
2,k(0), Pi

k|k, Qk by:

(
P̂i

k|k
)−1

=
(

Pi
k|k
)−1

+ μi
k

(
Si

k

)T
Si

k,

T̂i
2,k = Ti

2,k − μi
kSi

k P̂i
k|k
(

Si
k

)T
Ti

2,k,

B̂i
2,k(0) = B̄2,k(0)− μi

k Āk(0)P̂i
k|k
(

Si
k

)T
Ti

2,k,

(
Q̂i

k
)−1

=
(
Qk
)−1

+ μi
k

(
Ti

2,k

)T
(

I + μi
kSi

kPi
k|k
(

Si
k

)T
)−1

Ti
2,k,

Âi
k(0) =

(
Āk(0)− μi

k B̂i
2,k(0)Q̂

i
k

(
Ti

2,k

)T
Si

k

)(
I − μi

k P̂i
k|k
(

Si
k

)T
Si

k

)
,

B̂i
1,k(0) = B̄1,k(0)− μi

k

(
Āk(0)P̂i

k|k
(

Si
k

)T
+ B̂i

2,k(0)Q̂
i
k

(
Ti

2,k

)T
)

Ti
1,k;

5 ( b) Update the priori pseudo-covariance and pseudo-covariance matrix:

Pi
k+1|k = Āk(0)P̂i

k|k ĀT
k (0) + B̂i

2,k(0)Q̂
i
k
(

B̂i
2,k(0)

)T ,

Pi
k+1|k+1 =Pi

k+1|k − Pi
k+1|k

(
C̄i

k+1(0)
)T
(

Ri
k+1 + C̄i

k+1(0)Pi
k+1|k

(
C̄i

k+1(0)
)T
)−1

× C̄i
k+1(0)Pi

k+1|k;

6 ( c) Update the state of the local estimation:

X̂i
k+1|k+1 =Âi

k(0)X̂i
k|k + B̂i

1,k(0)uk + Pi
k+1|k+1

(
C̄i

k+1(0)
)T(

Ri
k+1

)−1

×
[
yi

k+1 − C̄i
k+1(0)

(
Âi

k(0)X̂i
k|k + B̂i

1,k(0)uk
)]

.

Now, considering only the event-triggered transmission strategy, (4) corresponds to
the measurements received by the fusion center from sensor node i, that is, ti

k = 1. When
sensor data are not transmitted, (4) will be replaced by

Yi
k = X̃i

k|k = Xk +
(
X̂i

k|k − Xk
)− vi

k . (5)

Here, vi
k is uniformly distributed within the ellipsoid mentioned in (3) and is not

correlated with the estimation error X̂i
k|k − Xk.

According to the event-triggered transmission strategy, when there are packet drops in
the communication channel from the estimator to the fusion center, the virtual measurement
channel can be replaced with

Yi
k =

⎧⎪⎨⎪⎩
X̂i

k|k, ti
k = 1, ri

k = 1
X̂i

k|k−1, ti
k = 1, ri

k = 0
X̃i

k|k, ti
k = 0

(6)
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where ri
k is explicitly utilized in (6) to indicate whether packet drop occurs in sensor

transmission to the fusion center and ri
k = {0, 1}. The state of the multi-sensor system is

shown in Table 1. For simplicity, the event-triggered is abbreviated as ET, and the success
of the transmission is simplified as PD. The X̂i

k|k−1 in (6) is the predicted values of the i-th

sensor node for moment k. ηi
k is the virtual measurement noise of the i-th virtual channel

for moment k, which can be derived by

X̂i
k|k−1 = Âi

k−1X̂i
k−1|k−1 + B̂i

1,k−1uk−1,

ηi
k =

⎧⎪⎪⎨⎪⎪⎩
X̂i

k|k − Xk, ti
k = 1, ri

k = 1,

X̂i
k|k−1 − Xk, ti

k = 1, ri
k = 0,

X̂i
k|k − Xk − gi

k, ti
k = 0.

(7)

Table 1. Multi-sensor system state.

PD
ET ti

k = 0 ti
k = 1

ri
k = 0 No transmission Packet drop

ri
k = 1 - Normal

The fusion estimation with both random packet drops and event-triggered transmis-
sion strategies is investigated, and the following matrices are defined as

Yk = col
{

ti
k

(
ri

kX̂i
k|k +

(
1 − ri

k

)
X̂i

k|k−1

)
+
(

1 − ti
k

)
X̃i

k|k
∣∣∣l
i=1

}
,

ηk = col
{(

ti
kri

k +
(

1 − ti
k

))(
X̂i

k|k − Xk
)∣∣∣l

i=1

}
+ col

{
ti
k

(
1 − ri

k

)(
X̂i

k|k−1 − Xk
)∣∣∣l

i=1

}
+ col

{(
1 − ti

k

)
gi

k

∣∣∣∣l
i=1

}
,

H = col
(

Ii
∣∣∣l
i=1

)
.

(8)

The information in the fusion center is obtained from the virtual measurement channel

Yk = HXk + ηk.

In accordance with the best linear unbiased criterion (BLUE) in [32], we can obtain the
fusion estimate and its error covariance matrix.

X̂k|k =
(

HT P̃−1
k H

)−1
HT P̃−1

k Yk,

Pk =
(

HT P̃−1
k H

)−1
.

(9)

In (9), P̃k is the covariance matrix of the virtual measurement noise, which is the global
error covariance matrix of the estimation error. From ηk in (8), the expression of P̃k can be
obtained as

P̃k = Γk +diag
{(

1 − ti
k

)
θi

n+2
(
Ωi

k
)−1 |li=1

}
, (10)
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in which Γk = Γk,1 + Γk,2 + ΓT
k,2 + Γk,3. The matrices Γk,1, Γk,2, and Γk,3 in the formula are

equal to

Γk,1 =

⎡⎢⎢⎢⎢⎣
(

σ1
1,k

)2
P1,1

k|k · · · σ1
1,kσl

1,kP1,l
k|k

...
. . .

...

σl
1,kσ1

1,kPl,1
k|k · · ·

(
σl

1,k

)2
Pl,l

k|k

⎤⎥⎥⎥⎥⎦,

Γk,2 =

⎡⎢⎢⎣
0 · · · σ1

1,kσl
2,kP̄1,l

k|k−1
...

. . .
...

σl
1,kσ1

2,kP̄l,1
k|k−1 · · · 0

⎤⎥⎥⎦,

Γk,3 =

⎡⎢⎢⎢⎢⎣
(

σ1
2,k

)2
P1,1

k|k−1 · · · σ1
2,kσl

2,kP1,l
k|k−1

...
. . .

...

σl
2,kσ1

2,kPl,1
k|k−1 · · ·

(
σl

2,k

)2
Pl,l

k|k−1

⎤⎥⎥⎥⎥⎦,

σi
1,k =

(
ti
kri

k +
(

1 − ti
k

))
, σi

2,k = ti
k

(
1 − ri

k

)
.

(11)

Then, we consider the state estimation errors of the following dynamic system.{
Xk+1 = Âi

kXk + B̂i
1,kuk + B̂i

2,kwk,

yi
k = C̄i

kXk + gi
k, 1 ≤ i ≤ l.

(12)

The following relationships can be easily obtained

Xk+1 −X̂i
k+1|k+1 =

[
I + Pi

k+1|k
(

C̄i
k+1

)T (
Ri

k+1

)−1
C̄i

k+1

]−1

×
[

Âi
k
(
Xk −X̂i

k|k
)
+ B̂i

2,k wk

]
−
[(

Pi
k+1|k

)−1
+
(

C̄i
k+1

)T (
Ri

k+1

)−1
C̄i

k+1

]−1

×
(

C̄i
k+1

)T (
Ri

k+1

)−1
vi

k+1,

Xk+1 −X̂i
k+1|k = Âi

k
(
Xk − X̂i

k|k
)
+ B̂i

2,k wk .

(13)

According to the above equation, the explicit expressions for the three pseudo mutual
covariance matrices Pi,j

k+1|k+1, P̄i,j
k+1|k, and Pi,j

k+1|k in (11) can be derived as follows

Pi,j
k+1|k+1 =

⎡⎢⎢⎣ I − Pi
k+1|k

(
C̄i

k+1

)T

×
(

C̄i
k+1Pi

k+1|k
(

C̄i
k+1

)T
+ Ri

k+1

)−1
C̄i

k+1

⎤⎥⎥⎦
×
[

Âi
kPi,j

k|k
(

Âj
k
)T

+ B̂i
2,kQk

(
B̂j

2,k
)T
]

×
⎡⎣ I − Pj

k+1|k
(
C̄j

k+1

)T

×
(

C̄j
k+1Pj

k+1|k
(
C̄j

k+1

)T
+ Rj

k+1

)−1
C̄j

k+1

⎤⎦T

, (i �= j)

P̄i,j
k+1|k =

(
I + Pi

k+1|k
(

C̄i
k+1

)T(
Ri

k+1

)−1
C̄i

k+1

)−1

×
[

Âi
kPi,j

k|k
(

Âj
k
)T

+ B̂i
2,kQk

(
B̂j

2,k
)T
]
,
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Pi,j
k+1|k =Âi

kPi,j
k|k
(

Âj
k
)T

+ B̂i
2,kQk

(
B̂j

2,k
)T ,

Pi,i
k+1|k+1 =

⎡⎢⎢⎣ I − Pi
k+1|k

(
C̄i

k+1

)T

×
(

C̄i
k+1Pi

k+1|k
(

C̄i
k+1

)T
+ Ri

k+1

)−1
C̄i

k+1

⎤⎥⎥⎦
×
[

Âi
k Pi,i

k|k
(

Âi
k
)T

+ B̂i
2,k Qk

(
B̂i

2,k
)T]

×

⎡⎢⎢⎣ I − Pi
k+1|k

(
C̄i

k+1

)T

×
(

C̄i
k+1Pi

k+1|k
(

C̄i
k+1

)T
+ Ri

k+1

)−1
C̄i

k+1

⎤⎥⎥⎦
T

+

⎛⎜⎝
(

C̄i
k+1

)T(
Ri

k+1

)−1
C̄i

k+1

+
(

Pi
k+1|k

)−1

⎞⎟⎠
−1(

C̄i
k+1

)T(
Ri

k+1

)−1

×C̄i
k+1

⎛⎜⎜⎝
⎛⎜⎝

(
C̄i

k+1

)T(
Ri

k+1

)−1
C̄i

k+1

+
(

Pi
k+1|k

)−1

⎞⎟⎠
−1
⎞⎟⎟⎠

T

,

in which Pi,i
k+1|k = Pi

k+1|k, i, j = 1, · · · , N. Pi
k+1|k+1 is a pseudo-covariance matrix in robust

state estimation. Thus, there is Pi,i
k+1|k+1 �= Pi

k+1|k+1.

4. Some Properties of the Fusion Estimator

This section has the goal of investigating the steady-state properties of event-triggered
robust fusion estimators for multi-sensor systems with deterministic inputs, random packet
drops, and state delays. Assume that the modelling errors εk,j in this section are within the

set E , E =
{

ε|
∣∣∣εk,j

∣∣∣ ≤ 1, j = 1, 2, · · · , l }. The matrices
[

A1,k(0) 0n×n(d−1) A2,k(0)
Ind 0nd×n

]
,[

B2,k(0)
0n×dn

]
, and

[
Ci

k(0) 0m×dn
]

are denoted as Mk, Fk, and Oi
k, respectively. In addition,

the following assumptions need to be made.
(A) A1,k(0), A2,k(0), B1,k(0), B2,k(0), Ci

k(0), Ri
k, Qk, Si

k, Ti
1,k, Ti

2,k, and γi
k are time-invariant.

(B) The uncertain linear system of (1) is exponentially stable in the sense of Lya-
punov and the matrices A1,k(εk), A2,k(εk), B1,k(εk), B2,k(εk), Ci

k(εk), Πk, Ri
k, Qk are bounded

whenever k > 0 and εk ∈ E .
(C) For every sensor node,

(
Mk, Ni

k
)

is detectable and the following matrix pair
is detectable⎛⎜⎜⎜⎝

MT
k − λi

k
(
Si

k
)T
(

In(d+1) + λi
kTi

2,kQk

(
Ti

2,k

)T
)−1

Ti
2,kQk(Fk)

T

(
In(d+1) + λi

kQ
1
2
k

(
Ti

2,k

)T
Ti

2,kQ
1
2
k

)− 1
2
Q

1
2
k (Fk)

T

⎞⎟⎟⎟⎠
T

,

where Ni
k =

⎡⎣ (
Ri

k
)− 1

2 Oi
k√

λi
kSi

k

⎤⎦.

Theorem 1 ([15]). Suppose that Assumptions (A), (B), and (C) hold and that each sensor transmits
local estimate X̂i

k|k according to the event-triggered transmission strategy. If the weight matrix Ωi
k

of the sensor node satisfies the condition

Ωi
k ≥ ωi I (14)
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for some positive real number ωi, the estimation error Xk −X̂k|k is consistently bounded for any

possible choice of
{

X̃i
k|k, k ∈ Z+

}
, which means

lim
k→∞

sup E
{∥∥∥Xk −X̂k|k

∥∥∥2
}

< +∞.

Proof of Theorem 1. Let X̄k|k be the estimate obtained at time k through Ȳk instead of Yk,

Ȳk = col
{

σi
1,kX̂i

k|k + σi
2,kX̂i

k|k−1

∣∣∣l
i=1

}
, which gives

X̂k|k = X̄k|k +
(

HT P̃−1
k H

)−1
HT P̃−1

k
(
Yk − Ȳk

)
,

so we have
E
{∥∥Xk − X̂k|k

∥∥2
}
≤ 2E

{∥∥Xk − X̄k|k
∥∥2
}

+2
∥∥∥(HT P̃−1

k H
)−1

HT P̃−1
k

∥∥∥2

×E
{∥∥Yk − Ȳk

∥∥2
}

.

(15)

Taking into account the first term on the right-hand side in (15), since X̄k|k is based on
the vector ȳk, the following inequality can be obtained

E
{∥∥∥Xk −X̄k|k

∥∥∥2
}

≤ tr
(

HT P̃−1
k H

)−1
. (16)

According to Assumptions (A), (B), and (C), then Pi,i
k|k is convergent, and P̄i,j

k|k−1(i �= j)

and Pi,i
k|k−1 are also convergent [33]. The estimation error has a bounded covariance matrix

at each k. This indicates that Γk is converged, and the estimation error covariance matrix
is bounded.

From the inequality condition in Theorem 1 and the remainder of P̃k, we can obtain

tr
((

1 − ti
k

)
θi

n + 2

(
Ωi

k

)−1
)
=
(

1 − ti
k

)
θi

n + 2
tr
((

Ωi
k

)−1
)

≤
(

1 − ti
k

)
θi

(n + 2)ωi .
(17)

Hence, the uniform boundedness of E
{∥∥∥Xk − X̄k|k

∥∥∥2
}

can be obtained by (16). Now

it is only necessary to prove that the second part of the right-hand side of inequality (15) is
uniform boundedness. Under the inequality condition in Theorem 1, it can be obtained as∥∥∥X̂i

k|k − X̄i
k|k
∥∥∥2

Ωi
k

≥ ωi
∥∥∥X̂i

k|k − X̄i
k|k
∥∥∥2

. (18)

When ti
k = 0, it means that there is

∥∥X̂i
k|k − X̄i

k|k
∥∥2

Ωi
k
≤ θi. Furthermore, it can be ob-

tained that
∥∥X̂i

k|k − X̄i
k|k
∥∥2 ≤ θi / ωi, then

∥∥Yk −Ȳk
∥∥2 ≤ Σl

i=1 θi / ωi. The proof is done.

To minimize the volume of the non-transported region, X̄i
k|k and Ωi

k can be appropri-
ately denoted as

X̄i
k|k= X̂i

k|k−1=Âi
k−1 X̂i

k−1|k−1,

Ωi
k =

(
1

tr
(

P̃i
k|k−1

) P̃i
k|k−1

)−1

,
(19)
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in which P̃i
k|k−1 = Āk−1

⎡⎢⎢⎣
σi

1,k−1Pi,i
k−1|k−1

+σi
2,k−1Pi

k−1|k−2

+
(

1 − ti
k−1

)
θi

n+2

(
Ωi

k−1

)−1

⎤⎥⎥⎦ (Āk−1
)T

+ B̂i
2,k−1 Q̂i

k−1

(
B̂i

2,k−1

)T .

Two methods exist for determining the local prediction of Xk as per (19). The first method
utilized in this paper is a local estimation based on sensor nodes. This fusion estimation
method does not necessitate broadcasting but requires each sensor node to retain past
information. The second method is based on the k − 1 moment fusion estimation X̂k−1|k−1.

5. Numerical Simulations

This section cites the tractor–car system detailed in [34], shown in Figure 2, and ex-
tends it to a multi-sensor system for sample simulations. The performance of the derived
robust fusion estimator is demonstrated through comparison with the fusion estimator for
the Kalman filter based on actual and nominal parameters using the same fusion method
across two distinct sets of numerical simulations with modelling errors (fixed or not) and
varying transmission rates and packet drop rates. This numerical simulation consists of
two sensors. For each set, 500 time experiments were conducted, with 200 moments desig-
nated for each set, generating 200 input–output data pairs. In the simulations, the overall

average estimated error variance E
∥∥∥Xk − X̂k|k

∥∥∥2 ≈ 1
500 ∑500

f=1

∥∥Xk − X̂( f )
k|k
∥∥2 is computed for

each moment, and the implementation of event-triggered and occurrence of packet drops
are displayed.

Figure 2. The tractor–car system.

Since the vehicle steering and directional angles in the tractor-car system are nonlinear,
they can be linearized and expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
k+1 =

(
1.0000 − vk

L

)
x1

k +

(
vk
L

− 0.2296
)

x1
k−d +

(
0.1764 +

vk
L

)
x2

k

+

(
0.1764 +

vk
L

)
x2

k−d +

(
0.9804 +

vk
L

)
w1

k +

(
0.9804 +

vk
L

)
u1

k ,

x2
k+1 =

(
1.0000 − vk

L

)
x2

k +

(
vk
L

− 0.2296
)

x2
k−d +

(
0.9804 +

vk
L

)
w2

k

+

(
0.9804 +

vk
L

)
u2

k ,

(20)

in which x1
k , x2

k , uk, wk, x1
k−d, and x2

k−d are the direction angle of the tractor, the direction
angle of the car, the tractor steering angle, the process noise, d-step time-delay for state
1, and d-step time-delay for state 2, respectively. xk is the state vector, xk =

[
x1

k x2
k
]T .

L, k, and v denote the length of the tractor, the sampling period, and the constant speed,
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respectively. Considering the system errors at linearization in the form of modelling errors
εk substituted into the system model, the matrix parameters are obtained as

A1,k(εk) =

[
1.0000 − vk

L 0.1764 + vk
L + εk

0.0000 1.0000 − vk
L

]
,

A2,k(εk) =

[ vk
L − 0.2296 0.1764 + vk

L + εk
0.0000 vk

L − 0.2296

]
,

B1,k(εk) =

[
0.9804 + vk

L 0.0000
0.0000 0.9804 + vk

L

]
,

B2,k(εk) =

[
0.9804 + vk

L 0.0000
0.0000 0.9804 + vk

L

]
.

(21)

In the numerical simulation, each parameter is taken as L = 500 cm, k = 0.1 s, and
v = 98 cm/s, and a two-step state delay system was used. The matrix parameters are
as follows

A1,k(εk) =

[
0.9804 0.196 + 1.99εk
0.0000 0.9804

]
, A2,k(εk) =

[ −0.2100 0.196 + 1.99εk
0.0000 −0.2100

]
,

B1,k(εk) =

[
1.0000 0.0000
0.0000 1.0000

]
, B2,k(εk) =

[
1.0000 0.0000
0.0000 1.0000

]
,

C1
k (εk) =

[
1.0000 −1.0000

]
, C2

k (εk) =
[

0.4000 −0.5000
]
,

R1
k = 1.0000, R2

k = 1.0000,

Qk =

[
1.9608 0.0195
0.0195 1.9605

]
, Π0 =

[
1.0000 0.0000
0.0000 1.0000

]
, uk =

[
1.0000
0.1000

]
.

The packet drop process ri
k is assumed to be a stationary Bernoulli process. A constant

value of 0.7300 is assigned to the filter design parameter γi
k.

In Case 1, the modeling errors εk are assumed to be a fixed value of −0.8508. The
transmission and packet drop rates for both sensors are set to 0.8 and 0.2, respectively.
Figure 3a illustrates the fusion estimation error over time, demonstrating that the robust
fusion estimator proposed in this study outperforms the fusion estimator for the Kalman
filter based on nominal parameters by approximately 7.800 dB. Figure 3b,c depict the
transmission of the two sensors and the packet drops of the communication channel,
respectively. To clearly reflect the execution of the event-triggered, ti

k is inverted, and ri
k is

treated similarly. Note that the plots of event-triggered realizations and packet drops here
are from one of the 500 experiments used.

The modelling errors εk are generated randomly and independently, conforming to a
normal distribution with a truncation. The mean, standard variance, and truncation values
of the normal distribution are set to 0.0000, 1.0000, and 1.0000, respectively. Figure 4a
illustrates that the derived estimator surpasses the performance of the Kalman filter based
on nominal parameters, and it can be seen from the 200th moment that the estimator
derived in this paper is 5.8600 (dB) lower than the nominal parameter-based Kalman filter.
Figure 4b,c show the realization of the sensor transmission and the channel packet drop
over 200 moments, respectively.
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Figure 3. ···∗···: the fusion estimator for the Kalman filter based on actual parameters; ···×···: the
fusion estimator for the Kalman filter based on nominal parameters; —©—: the method of this
paper; �: sensor 1; ©: sensor 2. Data transmission rate: 0.8. Packet drop rate: 0.2. Modelling errors
εk = −0.8508.

In Case 2, the derived robust fusion estimator is tested using different transmission
and packet drop rates. The modelling errors are the same as in Case 1 with a truncated
normal distribution. Based on the analysis of Figure 5, it is evident that the derived
estimator exhibits effective and reliable operation even under diverse transmission rates
generated by the employed event-triggered transmission strategy. However, variations
in transmission rates give rise to disparities in estimation performance, a well-studied
phenomenon. This can be attributed to the fact that higher transmission rates are associated
with improved estimator performance. As the transmission rate increases, the fusion center
receives a greater volume of estimation values, thereby leading to more accurate results.
A reasonable analysis of Figure 6 demonstrates that the derived estimator effectively
maintains its reliability even under diverse packet drop rates. Nonetheless, differing packet
drop rates introduce disparities in estimation performance, which is a valid observation.
Higher packet drop rates correspond to inferior estimation performance. When compared
to Figure 5, it is apparent that the variation in estimation performance is greater for different
packet drop rates than for different transmission rates.

As can be seen from the two sets of simulations, the proposed robust fusion estima-
tor exhibits relatively better performance compared to the fusion estimator that ignores
uncertainty. The derived robust fusion estimator is still applicable when the selection of
modelling errors is not limited to the particular structure. The results show that the method
is an effective multi-sensor fusion method in practical applications.

95



Appl. Sci. 2023, 13, 8778

20 40 60 80 100 120 140 160 180 200

Sampled Instant (k)

-15

-10

-5

0

5

10

15

20

E
st

im
at

io
n 

E
rr

or
 V

ar
ia

nc
e 

(d
B

)

Fusion estimator for the Kalman filter based on actual parameters
Fusion estimator for the Kalman filter based on nominal parameters
Robust fusion estimator

(a) Estimation error variance.

0

0.5

1

T
ra

ns
m

is
si

on
 o

f S
en

so
r 

1

0 20 40 60 80 100 120 140 160 180 200

Sampled Instant (k)

0

0.5

1

T
ra

ns
m

is
si

on
 o

f S
en

so
r 

2

0 20 40 60 80 100 120 140 160 180 200

Sampled Instant (k)

(b) Implementation of event-triggered.

0

0.5

1
P

ac
ke

t D
ro

ps
 o

f S
en

so
r 

1

0 20 40 60 80 100 120 140 160 180 200

Sampled Instant (k)

0

0.5

1

P
ac

ke
t D

ro
ps

 o
f S

en
so

r 
2

0 20 40 60 80 100 120 140 160 180 200

Sampled Instant (k)

(c) Occurrence of packet drop.

Figure 4. ···∗···: the fusion estimator for the Kalman filter based on actual parameters; ···×···: the
fusion estimator for the Kalman filter based on nominal parameters; —©—: the method of this paper;
�: sensor 1; ©: sensor 2. Transmission rate: 0.8. Packet drop rate: 0.2. The modelling errors εk are
taken to a normal distribution with truncations.
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Figure 5. —◦—: transmission rate 0.4; —∗—: transmission rate 0.8. Packet drop rate: 0.2. The
modelling errors εk are taken to a normal distribution with truncations.
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Figure 6. —◦—: packet drop rate 0.8; —∗—: packet drop rate 0.4. Transmission rate: 0.2. The
modelling errors εk are taken to a normal distribution with truncations.

6. Conclusions

In this paper, the effects of deterministic inputs and state delays present in the system
are considered based on the study of robust fusion estimators for multi-sensor systems with
uncertainty, random packet drops, and transmission constraints. The main contribution
of this paper is the derivation of a robust fusion estimator for multi-sensor systems with
state delays and external inputs, which penalizes the sensitivity of estimation errors to
model uncertainty while minimizing nominal estimation errors and their sensitivity. Model
conversion is performed utilizing the state augmentation technique. The event-triggered
transmission strategy and the random packet drops generated by channel unreliability
are considered. The pseudo-cross-covariance matrix is updated accordingly. This paper
delivers robust proof of the fusion estimator of estimation errors being uniformly bounded.
Two sets of numerical simulations are executed to illustrate the practical implications of the
proposed method, using a tractor–car system as a demonstrative example. The numerical
simulation results show that the estimation performance of the updated estimator is better
than the fusion estimator for the Kalman filter based on nominal parameters. Since the
modelling errors are not restricted to a specific structure, the proposed fusion estimator
has a wide range of applicability. In addition, follow-up work on the tractor–car system
example is still in progress, and the further stage is to apply the algorithm designed in this
investigation to a practical case.
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Abbreviations

The following abbreviations are used in this manuscript:

col[∗] The stacking vector or matrix
E[∗] The mathematical expectation
f [∗] The probability density function
MT The stacking vector or matrix
N(·; σ, Ω) The notation for the Gaussian probability density function with mean σ and covariance Ω
tr[∗] The trace of the matrix

Appendix A. Derivation of Robust State Estimation

In order to reduce the sensitivity of the estimation performance to the modelling error,
the following cost function can therefore be minimized
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The initial state X0 is estimated such that ei
0(ε0) = yi

0 − C̄i
0(ε0)X0 and the cost function

is J
(
αi

0
)
= γi

0

[
‖X0‖2

Π−1
0

+
∥∥yi

0 − C̄i
0(ε0)X0

∥∥2
(Ri

0)
−1

]
+
(
1 − γi

0
)

∑l
j=1

(∥∥∥∥ ∂ei
0(ε0)

∂ε0,j

∥∥∥∥2
)

ε0=0

.

The following initial state estimate and initial estimation error covariance matrix can
be obtained

Pi
0|0 =

( (
C̄i

0(0)
)T(Ri

0
)−1C̄i

0(0)
+
(
Π̂i

0
)−1

)−1

,

X̂i
0|0 = Pi

0|0
(
C̄i

0(0)
)T(Ri

0
)−1yi

0,

in which Π̂i
0 =

(
Π−1

0 + μi
0 ∑l

j=1

(
∂(C̄i

0(ε0))
T

∂ε0,j

)(
∂C̄i

0(ε0)
∂ε0,j

)∣∣∣∣
ε0=0

)−1

.

Define Ĥi
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It is known by the following algebraic relation⎡⎣ (
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ĀT

k (0)

−μi
k

(
Ti

2,k

)T
Si

kP̂i
k|k ĀT

k (0) + B̄T
2,k(0)

](
Ci

k+1(0)
)T

Ψi
k

×Ci
k+1(0)

[
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k (0) + B̂i
2,k(0)Q̂

i
k

(
B̂i

2,k(0)
)T
)

×
(

Ci
k+1(0)

)T(
Ri

k+1

)−1[
yi

k+1 − Ci
k+1(0)X̂i

k+1|k+1

]
− μi

k

[
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According to the matrix inverse lemma (A+ BCD)−1 = A−1 − A−1B
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Thus (A5) can be simplified as
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k(0)X̂i
k|k + B̂i

1,k(0)uk + Pi
k+1|k+1

(
C̄i

k+1(0)
)T(

Ri
k+1

)−1

×
[
yi

k+1 − C̄i
k+1(0)

(
Âi

k(0)X̂i
k|k + B̂i

1,k(0)uk

)]
.

(A7)

(A7) is similar to the form described in [29], so that X̃i
k+1|k+1 can be specified as

X̂i
k+1|k+1.

The derivation is complete.
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Abstract: Crack propagation in materials is a complex phenomenon that is influenced by various
factors, including dynamic load and temperature. In this study, we investigated the performance
of different machine learning models for predicting crack propagation in three types of materials:
composite, metal, and polymer. For composite materials, we used Random Forest Regressor, Support
Vector Regression, and Gradient Boosting Regressor models, while for polymer and metal materials,
we used Ridge, Lasso, and K-Nearest Neighbors models. We trained and tested these models
using experimental data obtained from crack propagation tests performed under varying load and
temperature conditions. We evaluated the performance of each model using the mean squared error
(MSE) metric. Our results showed that the best-performing model for composite materials was
Gradient Boosting Regressor, while for polymer and metal materials, Ridge and K-Nearest Neighbors
models outperformed the other models. We also validated the models using additional experimental
data and found that they could accurately predict crack propagation in all three materials with high
accuracy. The study’s findings provide valuable insights into crack propagation behavior in different
materials and offer practical applications in the design, construction, maintenance, and inspection of
structures. By leveraging this knowledge, engineers and designers can make informed decisions to
enhance the strength, reliability, and durability of structures, ensuring their long-term performance
and safety.

Keywords: crack propagation; machine learning; dynamic load; Random Forest Regressor; Support
Vector Regression; Gradient Boosting Regressor; Ridge; Lasso; K-Nearest Neighbors

1. Introduction

Crack propagation in materials is a critical phenomenon that can lead to structural
failure and compromise the integrity and safety of various engineering applications. Un-
derstanding and predicting crack propagation is crucial for the design and maintenance of
durable and reliable structures. Traditional approaches for predicting crack propagation
involve complex mathematical models and empirical equations, which often have limita-
tions in capturing the intricate nature of crack behavior under different conditions [1,2].
Crack propagation in materials involves complex and nonlinear behavior influenced by
factors, such as material properties, loading conditions, and environmental elements. Tra-
ditional methods struggle to capture the complex relationships and dynamics involved in
crack growth. Conversely, machine learning models excel at identifying complex patterns
and nonlinear relationships within data, making them well-suited for modeling crack
propagation processes.

Traditional methods often rely on simplified assumptions and limited representations
of the factors influencing crack propagation, leading to inaccuracies. In contrast, machine
learning models can incorporate a broader range of factors, including material properties,
loading conditions, temperature variations, and more. By training on extensive datasets
that encompass diverse conditions and parameters, machine learning models can learn
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the intricate relationships between these factors and crack propagation, enabling more
accurate predictions.

Additionally, traditional methods lack generalization capabilities, meaning they strug-
gle to predict crack propagation in materials or loading conditions that differ from those
used during model development. On the other hand, machine learning models can general-
ize well to new and unseen scenarios, provided they are trained on diverse and representa-
tive datasets. This ability enables machine learning models to make accurate predictions for
various materials, loading conditions, and temperature ranges, enhancing their applicability
and reliability [3,4].

The utilization of machine learning models empowers researchers to surpass the
limitations of traditional methods when it comes to predicting crack propagation. These
models provide improved capabilities in capturing intricate behaviors, integrating a wider
array of influencing factors, leveraging extensive and diverse datasets, and adapting to new
scenarios [1,2,5–10]. As a result, machine learning-based approaches possess significant
potential for advancing our comprehension of crack propagation and enhancing the design
and dependability of structures and materials. Previous studies have utilized machine
learning techniques for crack prediction in different materials. For instance, Ref. [11] em-
ployed Random Forest Regressor to predict crack propagation in composite materials under
various loading conditions. The study demonstrated that the model accurately captured
crack behavior and showed improved performance compared to traditional analytical
methods. Support Vector Regression (SVR) has also been applied for crack propagation
prediction. Ref. [12] utilized SVR to predict crack growth in metallic materials subjected
to cyclic loading. Their results indicated that the SVR model achieved good accuracy
in predicting the crack growth rate and exhibited better performance than conventional
regression methods. Gradient Boosting Regressor has shown promise in crack propagation
prediction as well. Ref. [13] employed this model to predict crack growth in composite
material under different environmental temperatures. Their findings indicated that the
Gradient Boosting Regressor achieved high prediction accuracy and outperformed other re-
gression models, such as Random Forest and Support Vector Regression. Ridge, Lasso, and
K-Nearest Neighbors are also commonly used models in machine learning applications. In
the context of crack propagation prediction, these models have demonstrated effectiveness
in capturing complex relationships between crack behavior and influencing factors. For
instance, Ref. [1] employed Ridge regression and K-Nearest Neighbors to predict crack
growth in polymer materials. The models exhibited high accuracy and provided valuable
insights into the crack propagation process.

Several studies have demonstrated the effectiveness of machine learning models for
crack propagation prediction, even with small and moderate datasets. For instance, Ref. [14]
utilized Random Forest and Support Vector Regression models for predicting crack propa-
gation in concrete structures with a small dataset. Their results showed that both models
achieved high prediction accuracy and outperformed traditional analytical methods. Simi-
larly, Ref. [15] employed a Gradient Boosting Machine model for predicting crack growth in
metallic materials with a moderate dataset. Their findings showed that the model achieved
good accuracy and provided valuable insights into the underlying crack behavior. These
studies suggest that machine learning models can effectively predict crack propagation
behavior, even with small or moderate datasets. By identifying the most important factors
influencing crack behavior and accurately predicting crack growth, these models can aid
in the design and development of more reliable and durable structures. In this study, we
build upon the existing research by comparing the performance of these machine-learning
models for predicting crack propagation in composite, metal, and polymer materials. We
utilize experimental data obtained from crack propagation tests performed under varying
load and temperature conditions. The performance of each model is evaluated to identify
the best-performing models for each material type. The proposed study expands upon
previously conducted research and significantly contributes to the current state of the art in
crack propagation prediction in several means. The study focuses on crack propagation
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prediction in three distinct types of materials: composite, metal, and polymer. While
previous research has often focused on individual material types, this study provides a
comprehensive comparative analysis across multiple materials. By examining crack propa-
gation in different materials, the study offers valuable insights into the varying behaviors,
influencing factors, and predictive models specific to each material type. This expanded
scope enhances our understanding of crack propagation across a wider range of materials
and aids in the development of more versatile and accurate prediction models. The study
investigates crack propagation under dynamic load and temperature conditions, which are
critical factors influencing crack growth in real-world scenarios. While previous research
has often focused on static load conditions, this study expands the understanding of crack
propagation by incorporating the effects of dynamic loading and temperature variations.
By considering these realistic operational conditions, the study enhances the applicability
and relevance of crack propagation predictions to practical engineering scenarios. The pro-
posed study expands upon previous research by conducting a comparative analysis across
multiple materials, evaluating various machine learning models, considering dynamic load
and temperature effects, validating with experimental data, and emphasizing practical
implications for structural design. These contributions enhance our understanding of crack
propagation prediction and offer practical tools and insights to improve the reliability and
durability of structures in various material systems. The study’s findings also could have
respective practical implications and applications such as:

1. Risk Assessment and Maintenance Strategies: The study’s findings enable better
risk assessment and the development of proactive maintenance strategies. This
information helps identify critical areas prone to crack initiation and propagation,
allowing engineers to focus their efforts on preventive measures and inspections. By
integrating machine learning models into structural health monitoring systems, early
detection of crack propagation can be achieved, enabling timely maintenance and
repair actions. This proactive approach enhances the dependability and longevity of
structures by preventing failures and minimizing downtime.

2. Cost and Resource Optimization: Accurate crack propagation prediction enables
optimized allocation of resources and cost-effective maintenance strategies. By identi-
fying critical areas and accurately predicting crack propagation rates, engineers can
prioritize inspection and maintenance efforts, allocating resources where they are
most needed. This targeted approach optimizes resource utilization, reduces unneces-
sary maintenance activities, and lowers overall costs while ensuring the long-term
dependability of structures.

Our study aims to demonstrate the potential of machine learning models as effective
tools for predicting crack propagation in materials.

The remaining sections of this paper are structured as follows: Section 2 provides
an overview of the materials used in this study, along with the machine learning mod-
els employed for crack propagation prediction under coupled load and temperature. In
Section 3, we present the results obtained by applying the selected algorithms to three dis-
tinct material datasets. A comprehensive analysis of these results is provided, highlighting
the performance and effectiveness of the various models. Finally, the concluding section
summarizes the key findings of our research, shedding light on the comparative analysis
of the machine learning models for crack propagation prediction under coupled load and
temperature. It consolidates the main outcomes and implications derived from the study,
potentially paving the way for further advancements in this field.

2. Materials and Methods

2.1. Specimen Parameters and Experimental Data Collection

The study involved three different materials: aluminum 2024-T3, control mix concrete,
and steel fiber-reinforced concrete (SFRC). Figure 1 displays the geometry of the various
specimens manufactured, while the experimental data were obtained from prior experi-
ments. To conduct the experiments, the specimen was affixed onto the shaker and heated
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to multiple temperatures. The shaker applied mechanical loads, while impact tests were
performed to determine the fundamental frequency of the specimen. Measurements were
taken using a laser vibrometer. The vibration test was then conducted at the fundamental
frequency. If crack propagation occurred, the beam tip’s displacement amplitude was
reduced, and the shaker was halted to record the new frequency. Further impact tests
were executed to determine the new fundamental frequency, which was then set on the
shaker. This process was reiterated until the specimen failed catastrophically due to crack
propagation. In addition, Fused Deposition Modelling (FDM) 3D printed ABS was also
used as representative material and tested in a similar manner.

ABS, concrete, and aluminum are widely used materials in industries, such as auto-
motive, construction, and aerospace. Understanding crack propagation in these materials
is of practical significance for ensuring the reliability and durability of structures made
from them [16–23]. By evaluating the performance of machine learning models on these
materials, the study can provide insights and guidance for real-world applications, aiding
in the design and maintenance of structures involving ABS, concrete, and aluminum. While
ABS, concrete, and aluminum differ in nature, the comparative analysis allows researchers
to gain a comprehensive understanding of crack propagation across materials with diverse
properties. This broader evaluation provides insights into the strengths and weaknesses
of the machine learning models, facilitating the development of more robust and accurate
prediction methods applicable to a range of materials. It is important to acknowledge the
differences between these materials and interpret the results accordingly, considering the
unique characteristics of each material type [1,2].

The collected data (as shown in Table 1) were plotted using scatter, pair, heatmap, and
grid plots to understand the relationships between the features and the predicted crack
depth. The data showed non-linearity and overlapping nature, and the problem was a
regression problem with small and moderate datasets.

Table 1. The experimental conditions and parameters.

Material Temperature ◦C Crack Location mm Structural Response

Composite 20
Control Mix 40 5

SFRC 60
Polymer 20

Natural Frequency50 5
ABS 60 15

70 25
Metal

Amplitude20–25 4.5
aluminum 2024-T3 50–100 5

150–200 10

An empirical model had been developed earlier to relate crack depth/location and
structural dynamic response. However, this model contained a large number of coefficients
and was of a high order, making it challenging to interpret. To overcome this limitation,
a more concise and suitable model was necessary that could accurately predict crack
propagation and provide physical insight into the coefficients’ meaning. Accordingly,
selected models were proposed that met these requirements.
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Figure 1. Specimen’s geometry dimensions in mm (a) without crack (b) with crack [19].

2.2. Data Analysis and Machine Learning Models
2.2.1. Data Analysis

In this study, Jupyter Notebook was utilized as a tool for creating and sharing docu-
ments that contain live code, equations, visualizations, and narrative text. It is commonly
used by practitioners and researchers in the fields of data analysis, machine learning, and
scientific computing. Before using a dataset for machine learning, data analysis, and feature
extraction techniques (as shown in Figure 2) are employed to select the most relevant and
informative features for the task at hand. Techniques, such as visualizing the correlations
between the features and the target variable, are useful, and visualization libraries, such as
Pandas’ scatter matrix and Altair, which is a declarative visualization library for Python. It
supports a wide range of chart types, including bar charts, line charts, scatter plots, and
heat maps. It also provides support for faceting and layering, which allows users to create
more complex visualizations.

Figure 2. The flow chart of analysis steps.

These tools can aid in understanding data and selecting a suitable machine-learning
model. However, it is important to consider the nature of the different machine learning
models and how they handle different types of problems. The research utilized experimen-
tal data from three materials collected from previous studies [20,21,23]. The experimental
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data consists of four features: temperature ◦C, crack location mm, amplitude mm, natural
frequency Hz, and a predicted value: crack depth mm. The data were plotted using a scatter
matrix, pair plot, and grid plot to investigate the relationship between the features and the
predicted value, which indicated that the task was a regression problem. Pre-processing of
the data was conducted using libraries, such as Pandas and NumPy, to clean and format
the data, perform basic statistical analysis, and use techniques, such as Variance Threshold,
to drop features with constant or near-constant values. The data were also scaled using
libraries, such as Standard Scaler, to improve the training time of the model and ensure
that the features were at a comparable scale.

After cleaning and preparing the data, they are typically split into a training set and a
validation set. The training set is used to train the model, while the validation set is used to
evaluate the performance of the model on unseen data, ensuring that the model generalizes
well to new, unseen data.

2.2.2. Machine Learning Models

Suitable machine learning models for ABS and aluminum 2024-T3 datasets are Ridge
Regression, Lasso Regression, and K-Nearest Neighbors (KNN). Ridge Regression, a linear
regression model with L2 regularization, was employed to prevent overfitting and handle
multicollinearity in the data. It is computationally efficient and provides interpretable
coefficients. Lasso Regression, similar to Ridge Regression, employs L1 regularization,
encouraging sparsity in the model coefficients. It automatically performs feature selection,
identifying the most relevant features for crack propagation prediction. However, both
Ridge Regression and Lasso Regression assume a linear relationship and may struggle
to capture complex nonlinear patterns. They can also encounter challenges with multi-
collinearity when highly correlated features are present.

KNN algorithm, a non-parametric method, was used as well. It makes predictions
based on the proximity of training samples in the feature space, accommodating complex
relationships. KNN is relatively easy to understand and implement. However, it can be
sensitive to the choice of the number of neighbors (K) and the distance metric. During
prediction, it can be computationally expensive, particularly for large datasets. These
models are relatively simple, easy to understand, and do not require a lot of computational
power, making them a good choice for tasks that need to be run quickly or on resource-
constrained systems [1,2,13,24].

In another experiment using composite data, the crack depth of each concrete type
was clustered based on their respective elastic modulus, which varied with changes in
temperature. The researcher selected Support Vector Regressor, Random Forest Regres-
sor, and Gradient Boosting Regressor to predict crack depth for composite data based on
their ability to handle complex datasets with non-linear relationships between the features
and the target variable and many hyperparameters that can be fine-tuned to improve
performance. The Random Forest Regressor, an ensemble learning method that combines
multiple decision trees, was utilized. It handles high-dimensional data effectively, mitigates
overfitting, and captures complex relationships between input features and crack propa-
gation. However, Random Forest Regressor can be computationally expensive, especially
for large datasets. It may struggle to identify subtle patterns and can be challenging to
interpret due to its ensemble nature.

Support Vector Regression (SVR) was also utilized, as it is effective in handling both
linear and nonlinear relationships. It can manage high-dimensional data and, by selecting
appropriate kernel functions, capture complex patterns. However, SVR can be sensitive to
the choice of hyperparameters and kernel functions. It may also face limitations in dealing
with very large datasets due to computational requirements.

Gradient Boosting Regressor, which constructs an ensemble of weak prediction models
to sequentially correct errors, was another model used. It handles complex relationships
well, performs admirably with high-dimensional data, and typically exhibits high predic-
tion accuracy. However, Gradient Boosting Regressors can be computationally intensive
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and may require careful hyperparameter tuning. Without proper regularization, it is also
prone to overfitting [11,15].

It is important to note that the benefits and drawbacks mentioned above are general
considerations for the respective machine learning models. The specific performance
of these models in predicting crack propagation would depend on factors, such as the
quality and size of the dataset, appropriate feature selection, and careful hyperparameter
tuning [1,2].

2.2.3. Training and Validation of Machine Learning Models
Top of Form

To enable proper comparison of the coefficients and account for different material
behavior, three identical but independent regression models were trained—one for Alu-
minium, one for concrete, and one for ABS. The data were randomly and blindly split into
training and test sets with a 70/30 split. The choice of a 70% training data split ensures a
sufficiently large dataset for training the machine learning models. Having a substantial
amount of data for training helps the models capture the underlying patterns and variations
in crack propagation accurately. It provides a robust foundation for the models to learn
from and develop predictive capabilities. Allocating 30% of the dataset to the validation
set allows for a substantial portion of data to evaluate the trained models’ performance.
Sizable test data helps assess the generalization ability of the models, determining how well
they perform on unseen data. This split ensures a meaningful evaluation of the model’s
predictive accuracy and provides statistical confidence in their performance metrics. The
70/30 split strikes a balance between mitigating overfitting and underfitting issues. If the
training set were too small (e.g., 50/50 split), the models might not have enough data to
learn effectively, potentially resulting in poor generalization and overfitting. Conversely,
if the training set were too large, the risk of underfitting increases as the models may not
adequately capture the complexity of crack propagation patterns. The 70/30 split attempts
to optimize this balance [7,25–28].

Model hyperparameters were adjusted to minimize mean squared error and achieve
satisfactory performance. This approach ensured that the model was always evaluated
on previously unseen data, making the evaluated performance more representative of a
real-world predictive problem. To prevent any compromise to the model’s performance due
to breaking the “test on unseen data” principle during training, a K-fold cross-validation
methodology was utilized. This methodology is illustrated in Figure 3 and ensured that
the model was evaluated using unseen data during training.

Figure 3. K-Fold cross-validation schematic.
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3. Results and Discussion

The study analyses experimental data on natural frequency, structural amplitude,
temperature, and crack position. According to [29], Spearman’s correlation coefficient is
alternative measure of correlation that can capture non-linear relationships and are suitable
for ranking or ordinal data. Spearman’s correlation coefficient (ρ) is calculated based on
the ranks of the variables. Let us denote the ranks of X and Y as R(X) and R(Y), respectively.
The Spearman correlation coefficient is given by:

ρ = 1 − [(6 × Σ(D2))/(n × (n2 − 1))] . . . . . . (1)

where:
Σ denotes the sum of the respective values.
D represents the difference between ranks (R(X) − R(Y)).
n is the number of data points.
The value of ρ ranges between −1 and 1, where:
ρ = 1 indicates a perfect monotonic increasing relationship.
ρ = −1 indicates a perfect monotonic decreasing relationship.
ρ = 0 indicates no monotonic relationship.
Results show that ABS, concrete, and aluminum exhibit similar patterns in natural

frequency, with frequency decreasing as crack depth increases (as shown in Figure 4) in
a nonlinear manner. Additionally, the impact of temperature on natural frequency is
more pronounced in aluminum than in concrete and ABS. This is due to the higher elastic
modulus and greater consistency of isotropic sheet metal properties relative to additive
layer manufactured ABS and concrete [1,5].

(a) (b) (c)

Figure 4. The correlation between crack depth (mm) and natural frequency (Hz) for (a)—Aluminum,
(b)—ABS, (c)—Concrete.

As the crack depth and temperature increase in aluminum specimens, the amplitude
also increases, consistent with the expected effect of reduced natural frequency resulting
from a crack in the specimen. In contrast, ABS exhibits the opposite behavior: as crack
depth increases, the natural frequency drops similarly to aluminum, but amplitude de-
creases instead of increasing, as shown in Figure 5. This discrepancy can be explained by
the different temperature conditions during the experiments. The maximum temperature
for aluminum specimens is 200 ◦C, well below the temperature threshold for any signifi-
cant material transformations during the short test duration. In contrast, the maximum
temperature for ABS samples is 70 ◦C, which is close to the glass transition temperature.
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(a) (b) (c)

Figure 5. The correlation between Crack depth (mm) and amplitude (mm) for (a)—Aluminum,
(b)—ABS, (c)—Concrete.

Figure 6 provides a more comprehensive view of the frequency-amplitude relation-
ship in the experimental data, revealing an inverse relationship between frequency and
amplitude in aluminum and concrete, while ABS shows a positive relationship. No clear
relationship is evident between crack depth and position in ABS and concrete data, but
in aluminum specimens, increasing crack position results in increased amplitude and
decreased frequency.

(a) (b) (c)

Figure 6. The correlation between natural frequency (Hz) and amplitude (mm) in for (a)—Aluminum,
(b)—ABS, (c)—Concrete.

To enable a proper comparison and account for the diverse material behavior discussed
earlier, three identical but independent models were trained and validated with unseen
data. The proposed models were evaluated for training and validation accuracy using a
mean squared error (MSE) metric. MSE is a commonly used statistical metric for evaluating
the performance of regression models. MSE measures the average squared difference
between the predicted values and the actual values of the target variable. For each data
point in the test set, the model generates a predicted value based on the input features.
The squared difference between the predicted value and the corresponding actual value
is calculated. These squared differences are then averaged across all data points in the
test set. MSE provides an estimate of the average squared error between the predicted
values and the true values. It gives higher weight to larger errors due to the squaring
operation. The value of MSE is always non-negative, with lower values indicating better
performance. A value of 0 indicates a perfect fit, where the predicted values match the
actual values exactly. In the context of the study, MSE was used as an evaluation metric to
assess the performance of the machine learning models in predicting crack propagation.
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Lower MSE values indicate that the model’s predicted crack propagation values closely
match the actual values, suggesting better predictive accuracy. It is worth noting that while
MSE provides a useful measure of model performance, it is not the only metric available.
Depending on the specific objectives of the study, other metrics, such as mean absolute
error (MAE), R-squared (coefficient of determination), or domain-specific metrics, could
also be considered to evaluate and compare the performance of the models. Essentially,
these metrics represent the average predictive error of the models [1]. Table 2 summarizes
the performance metrics for training and validation predictions for the three materials.

Table 2. The evaluation of training and validation for selected models.

Material Learning Model Training MSE Validation MSE

Aluminum

K-Neighbors
Regressor 0.189 0.079

Lasso 0.180 0.15
Ridge 0.170 0.14

ABS

K-Neighbors
Regressor 0.195 0.086

Lasso 0.195 0.182
Ridge 0.194 0.182

Concrete

Gradient Boosting
Regressor 4.100 0.597

SVR 4.401 3.114
Random Forest

Regressor 3.903 0.509

ABS Models: The results show that the K-Neighbors Regressor model has a Training
MSE of 0.195, indicating that, on average, the model’s predictions are off by 0.195 squared
units from the actual values in the training set. The Validation MSE of the same model is
0.086, indicating that the model’s predictions are off by 0.086 squared units from the actual
values in the test set. These values indicate that the K Neighbors Regressor model performs
well on both the training and test sets, suggesting that it has not overfit the training data.
The Lasso model’s Training MSE is 0.195, and the Validation MSE is 0.182. Both values
are lower than the MSE of the baseline model (0.437), indicating that the Lasso model
outperforms the baseline. The results for the Ridge model show that it has a Training MSE
of 0.194 and a Validation MSE of 0.182. These values are also lower than the MSE of the
baseline model (0.437), indicating that the Ridge model outperforms the baseline. Overall,
all three models (K Neighbors Regressor, Lasso, and Ridge) outperform the baseline model,
suggesting that they have learned meaningful patterns in the data and can make reasonably
accurate predictions. Figure 7 shows the actual against predicted ABS crack depth for
selected machine learning models.

Figure 7. The actual against predicted ABS crack depth.
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Aluminum Models: The results show that the K Neighbors Regressor model has a
Training MSE score of 0.189 and a Validation MSE score of 0.079, which is lower than
the MSE of the baseline model (0.8907), indicating that the K Neighbors Regressor model
outperforms the baseline. The lower the MSE score, the better the performance of the
model. The Ridge model has a Training MSE score of 0.170 and a Validation MSE score of
0.149, both of which are lower than the MSE of the baseline model. The Lasso model has a
Training MSE score of 0.180 and a Validation MSE score of 0.159, which are also lower than
the MSE of the baseline model. In all cases, the Validation MSE score is lower than the MSE
of the baseline model, suggesting that the models have learned meaningful patterns in
the data and can make reasonably accurate predictions. Figure 8 shows the actual against
predicted Aluminum crack depth for selected machine learning models.

Figure 8. The actual against predicted Aluminum crack depth for selected machine learning models.

Composite Models: For all models (Gradient Boosting Regressor, SVR, and Random
Forest Regressor), the Mean Squared Error (MSE) is used to evaluate their performance,
which measures the average squared difference between the predicted and actual values.
The lower the MSE, the better the performance of the model. The results show that the
Gradient Boosting Regressor model has a Training MSE of 0.208 and a Validation MSE of
0.014, indicating that the model performs well on both the training and test sets and has
not overfit the training data. The SVR model has a Training MSE of 0.182 and a Validation
MSE of 0.094, indicating that the model’s predictions are off by 0.182 and 0.094 squared
units from the actual values in the training and test sets, respectively. The Random Forest
Regressor model has a Training MSE of 1.649 and a Test MSE of 0.189. Although the Test
MSE is lower than the baseline model, it is higher than the Test MSE of the other two models,
suggesting that the model may have to overfit the training data. Overall, the Gradient
Boosting Regressor and SVR models seem to be the best performers based on these results.
They have the lowest Test MSE values and are less likely to overfit compared to the Random
Forest Regressor model. Figure 9 shows the actual against predicted Concrete crack depth
for selected machine learning models.

Figure 9. The actual against predicted Concrete crack depth for selected machine learning models.

The most important predictive features for aluminium are natural frequency, crack po-
sition, and temperature. For ABS and concrete, natural frequency and amplitude dominate,
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while the position of the crack appears to be of little importance. This may seem counterin-
tuitive, as theory suggests that the closer the crack is to the fixed position of the specimen,
the more pronounced the effect on dynamic response. However, the effect of crack position
is captured by the model under the natural frequency and amplitude terms, resulting in
a small and relatively unimportant crack position coefficient. Using all of the features as
predictors yields the lowest mean squared error (MSE) but removing crack location does
not significantly increase the error in ABS and concrete models. Removing amplitude has a
much more significant effect on the error, increasing it by approximately 60% relative to
the all-features baseline. The most significant effect is seen by removing natural frequency
from the feature pool, which increases the error significantly. This suggests that natural
frequency is the dominant feature in the prediction of crack depth, and its effect on the
model error is greater than the rest of the features combined.

According to [30,31], the formal verification techniques mentioned further down
provide a general framework for assessing the correctness, reliability, and robustness
of machine learning models used in predicting crack propagation under coupled load
and temperature.

1. Formal Specification: The first step in applying formal verification methods is to
establish a formal specification that defines the desired properties or requirements for
the crack propagation prediction models.

2. Model Checking: Model checking can be used to verify if the machine learning mod-
els satisfy the specified properties. In this context, it would involve exhaustively
exploring the model’s behavior under various coupled load and temperature condi-
tions to check if the predicted crack propagation adheres to known physical laws or
expected behavior.

3. Sensitivity Analysis: Formal verification methods can also include sensitivity analysis,
which involves analyzing the impact of changes in input parameters or model as-
sumptions on the predicted crack propagation. This analysis can provide insights into
the robustness of the models and their sensitivity to variations in load, temperature,
or other factors.

4. Statistical Testing: Statistical testing methods can be employed to evaluate the perfor-
mance of different machine learning models. This involves comparing the predicted
crack propagation results from different models using appropriate statistical tests to
determine if there are significant differences in their performance or accuracy.

It is important to note that the application of formal verification methods to this
specific paper would depend on the details of the research and the methodology employed.

The computational time and complexity associated with training algorithms exhibit
variations contingent upon several factors, including dataset size and algorithmic imple-
mentation. When dealing with small to moderate datasets, linear regression techniques,
such as Ridge and Lasso, demonstrate efficient training times, characterized by a com-
plexity of O(p3), where p corresponds to the number of features. In contrast, the kNN
algorithm, which is non-parametric in nature, requires minimal training time due to its
reliance on storing data points. However, the computational expense arises during pre-
diction when kNN necessitates distance calculations, resulting in a complexity of O (n d),
with n referring to the number of training instances and d representing the number of
features. Support Vector Regression (SVR), an algorithm based on support vector machines,
generally exhibits reasonable training time for small to moderate datasets. Nevertheless,
the process of solving the quadratic programming problem can become time-consuming
for larger datasets. Random Forest Regressor, an ensemble algorithm, exhibits efficient
training for small to moderate datasets with a complexity of O (M × n × log(n)), where
M denotes the number of trees and n represents the number of training instances. On
the other hand, Gradient Boosting Regressor, another ensemble algorithm, typically en-
tails higher computational requirements, especially when considering larger numbers of
iterations. Consequently, its complexity generally surpasses that of Random Forests. The
selected algorithms can typically achieve training within an acceptable timeframe for small
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and moderate datasets. However, the actual time and complexity involved are contin-
gent upon specific dataset characteristics, implementation nuances, and the availability of
computational resources [1,21–24].

4. Conclusions

In recent years, machine learning has emerged as a powerful tool for analyzing
and predicting outcomes in various domains. One such application is the prediction of
damage severity in materials, which holds great importance in structural health monitoring
and maintenance. This paper presents a comprehensive study that harnesses machine
learning techniques to predict crack depth in different materials, namely ABS, aluminum,
and concrete.

The study utilizes experimental data obtained from previous research and employs
a range of regression models, including K Neighbors Regressor, Lasso, Ridge, Gradient
Boosting Regressor, and SVR, to forecast crack depth. Model performance is evaluated
using Mean Squared Error (MSE) on both training and test sets. The findings demonstrate
that all models surpass the baseline model, indicating their ability to capture meaningful
patterns within the data and make reasonably accurate predictions.

Furthermore, the study identifies the most influential predictive features for each
material. For instance, the impact of temperature on natural frequency exhibits a more
pronounced effect in aluminum compared to concrete and ABS. This discrepancy can be
attributed to the higher elastic modulus and greater consistency of isotropic sheet metal
properties in aluminum relative to additive layer manufactured ABS and concrete. More-
over, the study reveals that all models outperform the baseline, implying their capability to
learn significant patterns and facilitate accurate predictions.

The study offers valuable insights into predictive features and model performance
in crack depth prediction, which have practical implications for specialists involved in
structural health monitoring and maintenance. By employing machine learning algorithms,
it becomes possible to reduce the time and cost associated with traditional testing methods
while enhancing the accuracy and reliability of damage severity predictions.

It is worth noting that the training times for the discussed algorithms, such as Ridge,
Lasso, kNN, SVR, Random Forest Regressor, and Gradient Boosting Regressor, are generally
reasonable for small to moderate datasets. However, the actual time and complexity
required for training may vary depending on dataset characteristics, implementation
intricacies, and computational resources. It is essential to consider these factors when
selecting and applying these algorithms to ensure efficient and effective model training.

Future studies could explore the adoption of more advanced machine learning algo-
rithms or ensemble techniques to further improve the accuracy of crack depth prediction.
Additionally, investigating the influence of additional features, such as material composi-
tion or environmental factors, could provide valuable insights into the mechanisms of crack
formation and propagation. Furthermore, evaluating the models on different datasets and
in real-world scenarios would contribute to assessing the generalizability of these models
beyond the specific materials and conditions used in this study.

This study underscores the potential of machine learning techniques in predicting
damage severity in materials. The results highlight the superiority of machine learning
models in providing accurate and reliable predictions, which can significantly benefit
structural health monitoring and maintenance practices. Further research is warranted to
explore advanced techniques and the impact of additional features on predictive accuracy.
Ultimately, the continued development and application of machine learning in this field
could lead to remarkable advancements in structural engineering and maintenance.
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Featured Application: For automatically controlled WWTPs, the prompt DO sensor faults iden-

tification is essential, and the efficiency of the straightforward proposed methodology is shown.

Barely revealed by the literature, the presented results also reveal the combined assessment of

the impact on the environment and costs of different sensor failures. They are of great interest

to researchers and practitioners seeking safe and optimal WWTP operation and provide a robust

quantitative impact assessment methodology aimed at improving plant sustainability.

Abstract: Sensor failures are common events in wastewater treatment plant (WWTP) operations,
resulting in ineffective monitoring and inappropriate plant management. Efficient aeration control is
typically achieved by the dissolved oxygen (DO) control, and its associated sensor becomes critical to
the whole WWTP’s reliable and economical operation. This study presents the Fisher discriminant
analysis (FDA) used for fault diagnosis of the DO sensor of a currently operating municipal WWTP.
Identification of the bias, drift, wrong gain, loss of accuracy, fixed value, complete failure minimum
and maximum types of DO sensor fault was investigated. The FDA-proposed methodology proved
efficiency and promptitude in obtaining the diagnosis decision. The consolidated fault identification
showed an accuracy of 87.5% correct identification of the seven faulty and normal considered classes.
Depending on the fault type, the results of the diagnosing time varied from 2.5 h to 16.5 h during
the very first day of the fault appearance and were only based on observation data not included
in the training data set. The latter aspect reveals the potential of the methodology to learn from
incomplete data describing the faults. The rank of the fault type detection promptitude was: bias,
fixed value, complete failure minimum, complete failure maximum, drift, wrong gain and loss of
accuracy. Greenhouse gases (GHGs) such as nitrous oxide (N2O) and carbon dioxide (CO2) emitted
during wastewater treatment, electrical energy quantity in association with costs spent in the WWTP
water line and clean water effluent quality were ranked and assessed for the normal operation and
for each of the DO sensor faulty regimes. Both for CO2 and N2O, the on-site emissions showed the
most significant GHG contribution, accounting for about three-quarters of the total emissions. The
complete failure maximum, fixed value and loss of accuracy were the DO sensor faults with the
highest detrimental impact on GHG-released emissions. The environmental and economic study
reveals the incentives of the proposed DO sensor faults identification for the WWTP efficient and
environmentally friendly operation.

Keywords: fault identification; Fisher discriminant analysis; dissolved oxygen sensor; energy costs
assessment; GHG emissions assessment

1. Introduction

Wastewater treatment plants (WWTPs) are essential for eliminating pollutants from
wastewater and converting it into clean effluent discharged in rivers or reused for different
applications, including irrigation [1]. As treatment regulations on effluent quality are
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continuously tightening, the values of primary variables, such as organic matter, ammonia,
nitrates, phosphorus and suspended solids, have to strictly conform to the challenging wa-
ter quality requirements. The operation of WWTPs has proven to be tough and challenging.
A detailed description of wastewater treatment processes, as well as the models associated
with them, are extremely complicated, exhibit nonlinear behavior and are characterized by
a large number of intensely changing variables. The most difficult challenges for WWTP
management and control of the operation, aside from establishing the appropriate control
system structure and determining optimal values for the operated variables, are the daily,
weekly or seasonal influent composition fluctuations. Comparing control systems’ perfor-
mance in different plants is difficult and necessitates the creation of simulation standards
and benchmarks [2]. Modeling water treatment processes has become a very useful tool
for the design, optimization and automatic control of the WWTP, as the importance of
the treatment plants has grown today within the circular economy concept, and they are
presently considered water resources recovery facilities.

The International Water Association (IWA) is well-known for its vast contributions
to discovering solutions and fighting against global water problems. IWA experts have
created advanced phenomenon-based models to support the construction and control of
sewerage treatment processes as part of the envisioned goal of improving standards for
sustainable water management [3]. Activated Sludge Model #1 (ASM1) is the most common
of these. It was created by the IWA (formerly IAWQ) to standardize nomenclature and
set a milestone in wastewater treatment plant modeling [4]. ASM2, ASM2d and ASM3
have been developed over time with the scope of increasing the capability of revealing the
intrinsic behavior of processes that occur within the activated sludge water processing [5];
they are currently being employed for sewage treatment plant design and control and
are widely used for estimation or optimization [6]. Benchmark Simulation Model #1
(BSM1) was created to enlarge the ASM1 modeling with a defined plant configuration. It
has become a standard tool and method for evaluating the performance of wastewater
treatment plants. BSM1 has been expanded to Benchmark Simulation Model #2 (BSM2) as
a more comprehensive plant description for long-term evaluation, coupled with extensions
to primary sewage treatment plant subunits and processing of sludge by digestion in
anaerobic conditions [7]. Both benchmarks have become powerful tools to support the
development of various control strategies and the evaluation of their performance [8].

Chemical process monitoring is important for evaluating process performance and
improving process efficiency and wastewater quality in wastewater treatment plants. The
advantage of using mechanical or statistical mathematical models is to estimate the behav-
ior of main key process parameters in different operating circumstances and, in association
with real-time measurements, to use them for process design or operational improvement.
Calibrated models are a necessary prerequisite for model-driven control solutions due
to their high usage in advanced process automation. Supervision and control of water
plant process variables are attained to varying extents and complexity depending on the
wastewater inflow, the specificity of the bioreactor configuration, and the actual equipment
available at each facility. Successful, accurate monitoring and control of processes requires
reliable information on the composition, flow rate and temperature for both influents,
recycle flows or effluents. Despite the system’s high level of complexity, process moni-
toring and simple univariate fault detection methods proved critical to ensuring that the
control system has access to consistent data [9]. Consequently, efficient process control is
strongly relying on the capability of detecting sensor faults before the extension of their
undesired effects [10]. Failures that are detected early on can help avert further induced
undesired plant performance consequences and breakdowns. In general, process moni-
toring addresses four different tasks: (1) fault detection, which indicates that something
is wrong in the process operation; (2) fault identification (or diagnosis), which establishes
the cause of the issue; (3) fault estimation, which determines the magnitude of the defect;
and (4) fault reconstruction, which calculates the fault-free process variable values aimed
to perform the operation in the presence of faults [11]. Traditional fault detection and
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isolation methods use a mathematical model of the system to detect and isolate faults.
In order to reveal discrepancies between the fault-affected and fault-free circumstances,
these methods employ state estimation, parameter identification techniques, and parity
relations [12–14]. However, developing precise mathematical models that characterize all
physical and biochemical phenomena that occur in industrial processes is often challenging
and time costly. When analytical models are not available, knowledge-based approaches
such as expert systems might be considered as an alternative or supplement to analyti-
cal model-based approaches [15]. However, the development of these knowledge-based
systems also necessitates a significant amount of time and work [16].

Online field-installed probes and offline laboratory analyses are used in traditional
monitoring of the process variables. Real-time monitoring is difficult to be implemented,
expensive and time-consuming. Field instruments require frequent and qualified main-
tenance, and the lack of satisfying these demands often makes the field measurements
unreliable. On the other hand, time implied by laboratory measurements may range
from a few minutes to several days to build a trustful assessment of the most standard
wastewater monitoring metrics [17]. Both hardware and soft sensors can manifest a series
of problems. While hardware sensors require a long time for maintenance and calibra-
tion, they exhibit insufficient accuracy and high noise levels. Their accuracy can quickly
deteriorate in time and propose the support of soft sensors that can solve some of these
issues. The soft sensors may also be subjected to faults as they rely on some sensor mea-
surements and might depend on insufficiently accurate models [18]. As a result, detecting
fault-affected measurements among the recorded data is critical for obtaining high WWTP
effluent quality results. Sensor deficiencies and techniques utilized for detecting, amending
and identifying faulty information or broken sensors were studied in a few works using
different multivariate statistical process control (MSPC) methods, such as principal com-
ponent analysis (PCA) [10,19–21], independent component analysis (ICA) [22,23], partial
least squares (PLS) [24–26] or control charts [27,28]. Dynamic multiblock partial least
squares (DMBPLS) was implemented to detect chemical oxygen demand (COD) bias and
pH drifting sensor faults at a Chinese papermaking wastewater treatment plant [29], while
a combination of t-distribution stochastic neighbor embedding with a Gaussian mixture
model (t-SNE-GMM) was proposed for detecting bias, drift and complete failure sensor
faults in a similar plant [30]. Because of their natural identification limit, MSPC techniques
show high potential and are proficient in observing the sensor deficiencies occurring in
time-varying, poorly characterized and nonlinear behavior framework of measurements
in wastewater treatment plants [31–33]. MSPC methodologies are most frequently used
and are superior to statistical process control (SPC) methods since they straightforwardly
consider and use idle factors, prompting effective issue identification [34]. Another study
combined sub-period division strategies with multiway principal component analysis for
the fault diagnosis on a sequence batch reactor of the wastewater treatment process in a
paper mill [35].

FDA is a widely used pattern classification technique [36], and its application to
chemical process data analysis has continuously increased in the last two decades [37–40].
FDA application to faulty sensors was studied for air handling units [41]. The target of the
FDA method is to determine the Fisher optimal discriminant vector that maximizes the
Fisher criterion function. Fisher discriminant analysis uses a linear combination of features
to distinguish between two or more classes in an optimal way. It is an empirical method
based on observed characteristics over a large number of cases. FDA for fault identification
provides the best lower dimensionality representation in terms of a discriminant between
data classes, where each class corresponds to data acquired during a specific and known
fault. Unlike PCA, which is looking for directions that are effective for representation, FDA
is looking for directions that are effective for discrimination. From a theoretical standpoint,
FDA has advantages for fault visualization and diagnostics [39].

In general, the economic efficiency and environmental friendliness of sewage treat-
ment plants are primarily based on the process of removing nitrogen from pollutants by
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biologically catalyzed oxidation using aeration control. This control is primarily sustained
by measuring the content of dissolved oxygen (DO) with dedicated sensors. The effective-
ness of an aeration control system can be significantly impacted by wrong information that
emerges from the dissolved oxygen sensors, resulting in unexpected degradation of the
system functionality and problems throughout the wastewater treatment process. Negative
consequences in terms of deterioration consist of a decrease in the quality of the effluent,
an increase in energy consumption, a decrease in environmentally sustainable performance
or even a temporary shutdown of the plant. Few studies have addressed the problem of
DO sensor failure. In typical research, the PCA approach was used to detect the set of
three categories of faults [42]. Another study examined single-type DO and level sensor
failures [28]. The wrong output signal from the sensor was analyzed in another work [19],
and a study was devoted to detecting the clogging bias of the sensor based on PCA [20]. The
variety of the detection tools was extended to element recognition, neural networks with
radial transfer functions [43], binary classification instruments [44], approaches based on
impulse response [45] or deep dropout neural networks (MC-DDNN) to identify incipient
faults of sensors installed in wastewater treatment plants [46]. In a previous investigation,
the current authors developed a study based on the PCA-based methodology that pro-
posed detection solutions for determining the presence of inappropriate functioning of the
dissolved oxygen sensor [47].

The motivation and contributions of the present work originate from several reasons.
The reported fault identification studies referring to the DO sensor defects were typically
focused on a single or on a limited number of fault types. Extending the set of fault types
embedded in a single diagnosing tool hinders the efficiency of the fault categorization but
makes it most appreciated. The DO sensor fault diagnosing in a controlled A2O configured
WWTP, where the sensor is implied in the automatic operation associated with the nitrites
and nitrates concentration control loop, was not specifically reflected in the literature. The
literature presenting the impact of different DO sensor fault types on the WWTP energy,
effluent water quality and GHG emissions performance is still lacking, although they have
become of very high interest. To the best of the authors’ knowledge, no WWTP single study
of fault detection has been conducted on six different sensor fault types combined with the
assessment of associated environmental and economic impact.

The goal of the present paper is to use multivariate statistical methods to construct a
fault diagnosis method for the wastewater treatment facility. This research was intended
to explore efficient diagnostic ways for specific defects caused by faulty DO sensors and
to assess the environmental and cost impact of the faults. Six different fault types were
considered: bias, drift, wrong gain, loss of accuracy, fixed value or complete failure. The
original contribution of the paper addresses the comprehensive and comparative disclosure
of the DO sensor fault types and evaluation of the fault identification benefits for the
automatically controlled treatment plant. Furthermore, for the municipal WWTP case
study, the energy costs and environmental impact on the treatment plant performance were
assessed for the various defects of the DO sensor.

The structure of the present work presents (i) the dynamic model of the WWTP used
for simulations, (ii) the basic theory underpinning the FDA fault-diagnosis methodology
for the identification of the sensors’ faults and (iii) the presentation of the equations used to
compute the GHGs released by the fault affected WWTP process; then, the (iv) results and
discussions of the performance are obtained by the FDA approach and the environmental
and economic study, and the paper ends with (v) the conclusions of the research for
improving the performance of the case study WWTP.

2. Materials and Methods

2.1. Process Model

The sewage treatment plant considered in this work has an anaerobic–anoxic–aerobic
(A2O) arrangement. The sewage enters the treatment plant with a flow rate of about
115,000 m3/day, and it undergoes a series of physical treatments: mechanical filtration,
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separation of sand and grease, and the first sedimentation step. Water exits the first clarifi-
cation step and enters the bioreactor tank. Here, activated sludge technology significantly
reduces the concentration of carbon, nitrogen and phosphorus compounds. Three different
zones characterize the biodegradation basins. The first one is anaerobic and has a capacity
of about 9000 m3; the second is anoxic and has a volume of around 12,800 m3; the third
is aerobic and comprises a total volume of approximately 33,000 m3. Biological phospho-
rous removal is accomplished in the first bioreactor, and the transformation of nitrates
and nitrites (NO) produced in the aerobic reactor occurs in the second bioreactor [48].
Physical separation takes place in a secondary clarifier. The clean water is discharged to
the emissary river as purified water. A small fraction of 0.5% of the secondary clarifier
bottom sludge flow rate is directed to the plant unit for digestion. The bulk is returned
to the anaerobic degradation tank as external recycling. A second recycle flow, called
internal recycling, recycles nitrate from the aerated bioreactor to the anoxic bioreactor for
denitrification [49,50].

The WWTP model constructed and developed in this study was built on the foun-
dations of BSM1 and ASM1. To comply with the A2O configuration, size and operation
characteristics of the case study targeted municipal WWTP, the appropriate modifications
were made to the original BSM1. Each of the basic structural parts of the WWTP was
described by a set of differential and algebraic equations: primary settler [51], anaerobic
bioreactor, anoxic bioreactor, the set of 3 aerated bioreactors [51] and secondary settling
unit [52]. Design and dry weather operation data were collected and reconciled from
municipal WWTP measurements. The plant data were further used to update and calibrate
the modified BSM1 model [53]. The model parameters were calibrated using optimization
techniques. This previously calibrated model of the municipal sewage treatment plant
was used in the current work to carry out the scenarios of simulations for the normal
and faulty sensors. The model was implemented in MATLAB version 8.5 (MathWorks,
Natick, MA, USA) and SimulinkTM version 8.5 software (MathWorks, Natick, MA, USA). In
order to speed up the simulation of Simulink S-functions and save computational resources,
the mathematical model was written in the C++ programming language and compiled as a
MATLAB executable.

Automatic control is widely regarded as critical for the efficient and safe operation
of the WWTP, and the prevention of pollution spread into freshwater ecosystems [54,55].
When associated with optimization, control generates a highly valuable synergy [56,57].
This study employed two typical automatic control structures: one is the dissolved oxygen
control loop, and the other one is devoted to the control of nitrates and nitrites concentration.
Both control loops used proportional–integral (PI) controllers. The DO concentration in the
aerated bioreactor was controlled by the first loop, and the nitrate and nitrite concentrations
in the anoxic bioreactor were controlled by the second loop. For the DO concentration
control loop, the DO reference of 2 mg O2/L was enforced in the aerobic bioreactor in order
to prevent excessive aeration [58]. The DO controller manipulates the air control valves to
supply the necessary oxygen flow rate into the aerated reactors. In the sequence of three
aerobic reactors (No. 3, 4 and 5) of the modified BSM1 plant configuration, the airflow
calculated by the oxygen controller was unevenly distributed. The following weighting
factors for the DO controller generated airflow rate were used: 0.9 for the first aerobic
(reactor no. 3), 0.5 for the second aerobic (reactor no. 4) and 0.3 for the third aerated
bioreactor (reactor no. 5). The oxygen requirements for the nitrification bioreactors were
used to set this distribution strategy, according to the commonly used practice emerged
approach. The concentrations of nitrate and nitrite in the anoxic reactor (reactor #2) were
controlled via a second control loop by adjusting the recycle flow of nitrates and nitrites.
This control loop had a reference of 0.01 mg N/L. The overall configuration of the WWTP
reactors, settlers and the main control loops are shown in Figure 1.
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Figure 1. WWTP general structure.

The main parameters of the plant are presented in Table 1. They correspond to
the typical structure and actual operating configuration of plant equipment and influent
wastewater of the municipal WWTP of Cluj-Napoca, Romania.

Table 1. Municipal WWTP main equipment parameters.

Equipment Parameter Value Measurement Unit

Primary settler Area 2125 m2

Height 3.5 m
Anaerobic bioreactor Volume 9015 m3

Anoxic bioreactor Volume 12,678 m3

Aerated bioreactors
Volume 33,066 m3

Area 6012 m2

Secondary settler Area 11,304 m2

Height 3 m

Data for both the normal state and faulty state of operation were generated by simula-
tion for each of the specifically designed cases (types) of DO sensor failure. Corresponding
data to every individual type of fault and of normal operation were separated into classes
and subjected to global Fisher discriminant analysis in order to obtain a distinct class
representation of the high-dimensional data.

2.2. Sensor Faults

Lack of sensor functioning can be caused by a variety of factors, including a signal
of doubtful quality [59], a bad electrical connection or sensor failure [60]. The diagnosis
of different DO sensor malfunction types is of critical importance for the overall WWTP
operation. The sensor defects investigated in the present work are:

• Bias—caused by the miscalibrated sensor, is a change in the sensor-generated signal,
such as the supplied value being altered typically by a constant value in addition to
the actual sensor signal [59].

• Drift—characterized by the continuous time-varying divergence of the sensor signal
from the genuine one [59].

• Wrong gain—happens when the sensor slope is affected by an inappropriate gain
factor, frequently determined incorrectly during the calibration process [61].

• Loss of accuracy—occurs when the signal of the sensor changes randomly, and its
value is imprecise when it is compared to the genuine value [59].

• Fixed value—the sensor displays the same value all the time [61].
• Complete failure (with two cases, minimum and maximum)—characterized by a

measured value that is equal or close to the sensor minimum calibration limit or is
equal or close to the maximum calibration value [61].
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The majority of the simulated fault types originate from the WWTP operating practice,
and they were chosen to follow the typical behavioral pattern. For the loss of accuracy type
of fault, the random scenario used for the faulty sensor signal was chosen to roughly reflect
an irregular change in the true signal. For other magnitudes of the bias, drift, wrong gain
and loss of accuracy types of faults, where fault samples are not directly available from
the actual WWTP measurements, the use of the calibrated dynamic model can be used
for generating data to be embedded in the FDA fault identification methodology. As new
faults and magnitudes show up, the database of faults behavior can be completed by the
plant measurements, and the diagnosing methodology becomes adaptive.

2.3. Simulation Methodology of the Faults

Specific software modules were created to simulate the behavior of the 6 DO concen-
tration sensor errors. These are integrated into the dynamic WWTP simulator. For each
error type, the error signal produced by the sensor is given to the proportional–integral
oxygen controller as the measured oxygen process variable. The DO control loop adjusts
the airflow accordingly, returning back the controlled DO to the desired reference of 2 mg
O2/L without offset. For each failure, the scenario was run as follows. The simulation was
carried out without any fault for 139 days. Then, each fault was implemented starting from
the 140th day of the simulations and lasted for a period of 28 days. The process variables
taken into consideration for the fault identification were considered from the first day of
faulty operation, i.e., day 140 [47]. The same type period of measurements for 28 days was
considered for collecting data that describe the normal operation.

The DO sensor uses a galvanic measurement technique. The considered scenarios
for the faults were generated, such as to imitate the real DO sensor’s steady state and
dynamic behavior.

For the bias type of fault, the DO sensor signal was considered to have a bias of
+1.5 mg O2/L added to the actual DO process value. It simulates a constant difference
between the true DO value and the DO signal produced by the defective air blast assembly
of the sensor.

To mimic the drift, a constant value of 0.05 mg O2/L was integrated in time, and it
supplemented the DO genuine value. This fault simulates a defect in the electronic circuits
of the transmitter, produced by a time-increasing parasite electric capacitance.

The sensor’s wrong gain type of fault was considered by an incorrect gain factor of
1.4, which consists of an incorrect relationship between the actual DO process value and
the sensor output. This fault type is potentially generated by a wrong calibration of the
sensor or by calibration sudden change due to internal membrane deterioration. The first
order filter with a time constant of 0.3 days was used to smoothly introduce the faulty gain
over time for passing from normal to fault-affected operation.

The defective measured process variable for the case of loss of accuracy type of fault
was generated by adding to the DO true value a random signal value from the interval
−2.5, 2.5. Such sensor fault can originate from the partial dislocation of the anode of the
cathode electrodes of the sensor. Each random sample value had a duration of 0.1 days.

For the fixed value type of fault, the constant of 2.2 mg O2/L was used. This sensor
defect can be produced due to the leak of the sensor filling solution.

For the complete failure minimum and maximum types of faults, the two very low
and very high values of 0.1 mg O2/L and 6 mg O2/L were considered. They correspond to
the practical circumstances when the electrical supply or parts of the transmitter electronic
circuits are malfunctioning or due to the defective self-cleaning assembly, which leads to
sensor clogging.

2.4. Fisher Discriminant Analysis

Fisher discriminant analysis is a pattern categorization approach that features a very
efficient classification potential. FDA’s main goal is to determine the Fisher optimal discrim-
inant vector that maximizes the Fisher criterion function. The higher-dimensional feature
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space of process measurements can be projected onto the obtained optimal discriminant
vector space for constructing a lower-dimensional feature space. Let X ∈ Rn×m be the
matrix that contains the training data for all classes. The total set of n observations for the
m measured variables that build the X matrix contains the submatrix Xi as the subset of
measurements consisting of ni rows and corresponding to the class i of samples. xi denotes
the m-dimensional sample mean vector for the class i and is given by:

xi =
1
ni

∑
xj∈Xi

xj (1)

with xj the set of vectors that belong to class j, then the within-class scatter matrix is defined by:

Sw =
c

∑
i=1

Si (2)

where c is the number of classes, and

Si = ∑
xj∈Xi

(xj − xi)
(
xj − xi

)T (3)

is the within-scatter matrix for class i.
The between-class scatter matrix is then defined by:

Sb =
c

∑
i=1

ni (xi − x)(xi − x)T (4)

where x is the total mean vector of all means of the columns of X.
The optimal discriminant direction is found by maximizing the Fisher criterion:

J(ϕ) =
ϕTSb ϕ

ϕTSw ϕ
(5)

where the maximizer ϕ is the Fisher optimal discriminant direction that maximizes the
ratio of the between-class scatter to the within-class scatter. It may be shown that a vector
ϕ that maximizes J(·) must satisfy the equation:

Sb ϕ = λSw ϕ (6)

for some constants, λ indicates the separability between classes. If Sw is nonsingular, it is
obtained as a conventional eigenvalue problem, described by the following expression:

S−1
w Sb ϕ = λϕ (7)

The total-scatter matrix is given by the sum of Sb and Sw:

St= Sb+Sw (8)

If data vector xj from the m-dimensional space is reduced to the a-dimensional space
of the FDA vectors, then its linear transformation is given by:

zi= WT
a xj (9)

where WT
a has the a FDA vectors as columns and zi ∈ Ra.

To diagnose the faults, FDA examines observed data collected under various faults
and uses a discriminant function that assesses the similarity between the current data and
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the data belonging to each class. When the maximum discriminant function value, gi,
satisfies the following conditions, the observation is allocated to the class i:

gi(x) > gj(x), ∀ j �= i (10)

gi(x) is the discriminant function given by a measured vector x for class i, and gj(x)
is the discriminant function given by the measured vector x for class j. The discriminant
function can be calculated, for each class i, with the following equations:

gi(x) =− 1
2
(x − xi)

TWa

(
1

ni − 1
WT

a SiWa

)−1
WT

a (x − xi ) + lnPi − 1
2

ln
[

det
(

1
ni − 1

WT
a SiWa

)]
(11)

where Pi is the a posteriori probability of x to belong to class i, and it is computed by the
ratio between the number of observations from a class and the total number of observations
for all classes. FDA was implemented using the Statistics and Machine Learning Toolbox
version 10.0 of Matlab.

2.5. Assessment of the GHGs Impact

Conventional wastewater treatment facilities purify wastewater and reduce water
pollution, but they also discharge GHGs into the air through direct emissions, and as
they require a considerable amount of energy to process the influent, they also indirectly
contribute to the release of GHGs in the atmosphere. Biological wastewater treatment using
activated sludge technology removes organic matter and N and P nutrients from wastew-
ater in an effective manner. Comprehensive environmental implications of the WWTP’s
contribution to GHG emissions have been highlighted in different studies. Greenhouse gas
emissions have been identified as a key negative impact of the WWTP operation and have
been studied in several works [62–64]. Other studies offer a complex image of the total en-
vironmental impact of a wastewater treatment plant through life cycle assessments [65–67].
However, no studies have looked at the environmental impact of the wastewater treatment
plant when anomalies occur in the process due to sensor fault inappropriate operation.
This study emphasizes the differences, with respect to both the environmental impact and
the energy costs, between the plant performance when it is operated normally and when
its operation is affected by faulty operation of the dissolved oxygen sensor.

Overall impact assessment of the WWTP disturbed operation on plant performance
was performed using a cumulative performance index composed of three different perfor-
mance indices: aeration energy (AE), pumping energy (PE) and effluent quality (EQ) [50].
The oxygen mass transfer coefficient of the aerobic bioreactors (KLa), which is directly
related to the airflow rate, is used to compute the aeration energy index, as stated in
Equation (12).

AE =
SOsat

T·1.8·1000
·

T∫
0

∑
aerated reactors

Vbioreactor·KLai(t)dt (12)

where SOsat is the oxygen saturation concentration (mg O2/L), T is the time in days of
faulty operation, Vbioreactor represents the volume of the bioreactor (m3) and KLai is the mass
transfer coefficient in the aerated bioreactor i.

The pumping energy index is calculated using the flow rates of nitrate recirculation,
return-activated sludge recycling and waste, as shown in Equation (13). The energy used
for aeration and pumping is computed in kWh per day. The effluent quality index is
determined by a weighted sum of total suspended solids (TSS), chemical oxygen demand,
biochemical oxygen demand (BOD), total Kjeldahl nitrogen (TKN), and nitrates and nitrites
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concentrations in the effluent flow stream, as indicated by Equation (14). The effluent
quality is expressed in kilograms of pollutant units per day.

PE =
1
T
·

T∫
0

[0.004·QNR(t) + 0.08·QRAS(t) + 0.05·Qwaste(t)]dt (13)

where QNR is the flow rate of the nitrate recirculation (m3/day), QRAS is the flow rate of the
return-activated sludge (m3/day) and Qwaste is the flow rate of waste from the secondary
settler (m3/day).

EQ =
1

T·1000
·

T∫
0

[PUTSS(t) + PUCOD(t) + PUBOD(t) + PUTKN(t) + PUNO(t)]·Qe f f luent(t)dt (14)

where PUTSS denotes total suspended solids, PUCOD refers to the chemical oxygen de-
mand and PUBOD to the biochemical oxygen demand, PUTKN considers the Total Kjeldahl
Nitrogen, PUNO accounts for the nitrates and nitrites, and Qeffluent is the effluent flow rate.

Total GHG emissions generated by the water line of the municipal wastewater treat-
ment plant are composed of both on-site and off-site emissions and consist of CO2 and
N2O gases. Besides CO2, N2O is also considered an important contributor to the GHGs, as
it has a global warming potential (GWP) of about 265–298 times higher than CO2, with an
average residence time of 100 years [68].

Off-site CO2 emissions (kg CO2/day) include indirect CO2 emissions from the electri-
cal power generation plant that are associated with the electrical energy consumed at the
WWTP. They are described by:

PCO2, o f f−site = kPG·eD (15)

where kPG is the site-specific emission factor per unit of energy generated, considered with
a value of 0.19 kg CO2e/kWh, and eD is the total energy demand, calculated as the sum of
the aeration energy and pumping energy [64,69].

Off-site N2O emissions include N2O that results from biological degradation in the
effluent (downstream) of the wastewater treatment plant [64,70]:

PN2O, o f f−site = Ne f f luent · EFe f f luent (16)

where Neffluent is the nitrogen load in the effluent discharged into aquatic environments and
EFeffluent = 0.005 · 44/28 kg N2O/kg N [71] is the emission factor for N2O emissions from
the discharged wastewater.

The on-site CO2 emissions emerging from the water line of the aerobic biological
processes are computed by the following expression:

PCO2,on−site = Qin f luent·0.99·(1 − YH)·ηASP·bCOD + Qin f luent·1.03·YH ·ηASP·bCOD· kd,H ·MCRT
1 + kd,H ·MCRT

(17)

where Qinfluent is the plant influent flow rate (m3/day); 0.99 kg CO2e/kg COD is the
emission factor related to organic compounds; YH is the heterotrophic biomass yield
(massVSS/massCOD) [2]; ηASP is the biodegradable COD (bCOD) removal in the activated
sludge reactors; 1.03 kg CO2e/kg COD is the emission factor related to activated sludge
biomass; kd,H is the decay rate of heterotrophic biomass and has a value of 0.3 day−1 [2];
and MCRT is the mean cell retention time, which is 15 days for this case [64,72].

The on-site N2O emissions from the water line can be estimated using the following relationship:

PN2O,on−site = Qin f luent·(TNin − TNout)·rN2O (18)
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where TNin represents the total nitrogen from the influent (kg N/m3), TNout is the total nitrogen
in the effluent (kg N/m3) [73] and rN2O is the emission rate of N2O (kg N2O/kg N) [74].

3. Results and Discussion

3.1. Normal and Abnormal Operation Data Sets

The FDA methodology relied on 17 WWTP process variables. They were the bottom
effluent sludge concentrations (10 variables), secondary settler clean effluent concentrations
(six variables) and temperature. The set of these variables consisted of total nitrogen (Ntotal);
total Kjeldahl nitrogen; chemical oxygen demand; free and saline ammonia (SNH); nitrate
and nitrite nitrogen (SNO); total suspended solids (TSS); slowly biodegradable substrate
(XS); heterotrophic biomass (XB,H); autotrophic biomass (XB,A); inert particulate products
(XP); particulate biodegradable organic nitrogen (XND); soluble, biodegradable organic
nitrogen (SND); readily biodegradable substrate (SS); alkalinity (Salk); and temperature (T).
The first six of them characterized the secondary settler clean water, while the last eleven
variables described the bottom effluent.

Eight separate scenarios were created, and simulations were performed to generate
the data sets for the different fault classes, one for normal functioning and six for mal-
functioning of the DO sensor. The DO and NO-controlled WWTP were simulated for
168 days of operation. The starting set of 139 days of nominal (faults lacking) function-
ing was considered to bring the plant to a quasi-steady state. Sensor faults were applied
from day 140 in the simulation scenario. Operational data of the simulated wastewater
treatment plant were collected with a sampling time of 15 min. Data generated in the time
period from the 141st to the 145th day of DO sensor normal and faulty operation were
used for training the FDA model. Each set of 480 observations is considered to be a class.
They formed the training matrix of observations (3840 lines and 17 columns). The fault
diagnosis performance of the trained FDA model was tested using data corresponding to
the 140th day, i.e., the first day of faulty sensor operation. The testing data set contained
96 measurements for each fault. This testing approach was designed in order to investigate
the capability of the FDA diagnosis method to identify the type of fault in the very first
hours following the fault appearance.

The chosen scenarios and the emerged dimensions of the data sets used for training
and validation of the fault detection methodology were considered to make a fair trade-off
between diagnosis accuracy and required computational resources.

3.2. Fault Diagnosis

The values obtained for the discriminant function of each class, gi, were compared
in order to diagnose the flawed sensor operation. The discriminant function with the
highest value indicated the class of the faulty sensor, and consequently, it diagnosed the
fault. The values of the discriminant functions gi were computed for each of the 15 min
time-sampled measurements of the testing day no. 140, affected by the different types of
faults (seven classes) and for measurements corresponding to normal operation (one class).
They are presented in Figures 2–9.

Each of these figures presents the values gi(x), i = 1 to 8, i.e., the values of the FDA
discriminant functions associated with the eight classes of the normal and of the seven fault
types. For every sampling time moment of the 140th day (considered as multiples of the
15 min sample time), the eight discriminant function values were computed and presented
with a particular line and marker. The vector of observations x, as the independent
variable of the discriminant functions gi(x), consists of the set of values of the features at a
particular sampling time moment. Separately, each of the Figures 2–9 shows the values of
the discriminant functions at all considered validation sampling time moments and the
corresponding vectors of observations obtained for only one of the normal or of the seven
investigated fault types cases. In each figure, the discriminant function with the permanent
highest value identifies the type of fault indicated by its associated class.
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In order to reveal the moment of time within the first day after the fault appearance,
when the fault is firmly and permanently diagnosed by the maximum discriminant function,
a magnified representation of the time interval in the vicinity of this moment is presented
in the special inserted detailed graphical representation.

As may be observed in Figure 2, all of the gi values confirmed the normal operation
(faulty-free values) diagnosis after 16.5 h of the fault appearance.

Figure 2. Normal operation diagnosis: graphs of the FDA discriminant functions gi(x) for each of the
normal and seven fault classes, along the 24 h of the 140th day and the detailed representation reveal-
ing the class of the observations and the time moment of the firm normal operation identification.

It is worth noticing that for the first part of the testing day (no. 140) when sensor faults
are not yet fully developed, the discrimination between normal operation and faults is
less evident.

In Figure 3, the bias fault type diagnosis is performed after 2.5 h, for a time period of
5.75 h. After that period, the automatic controlled WWTP operation is driven progressively
(due to the integral component of the PI controller) to low aeration and to values of the
process variables that are becoming similar to those corresponding to the maximum values
of the DO sensor and, as a result, the FDA discrimination is revealing the complete failure
maximum class for the last part of the day.

Figure 3. Bias diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal and
seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the class
of the observations and the time moment of the firm fault type identification.

Drift diagnosis is firmly confirmed after 13.75 h, as it is shown in Figure 4. Drift fault
effects are growing in time due to the intrinsic nature of this fault.
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Figure 4. Drift diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal and
seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the class
of the observations and the time moment of the firm fault type identification.

The diagnosis of wrong gain fault was confirmed after 14 h of the fault incidence
moment. The graphical representation is shown in Figure 5. As the wrong gain fault was
introduced by a time lag constant, the identification was relatively promptly achieved.

Figure 5. Wrong gain diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal
and seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the
class of the observations and the time moment of the firm fault type identification.

The loss of accuracy fault was identified after 16.5 h of the fault start moment of action,
as it is presented in Figure 6. Despite the irregular character of this fault, determined by the
random component of the simulated faulty signal, the permanent discrimination type of
fault was well achieved.

Figure 6. Loss of accuracy diagnosis: graphs of the FDA discriminant functions gi(x) for each of
the normal and seven fault classes, along the 24 h of the 140th day and the detailed representation
revealing the class of the observations and the time moment of the firm fault type identification.
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Figure 7 shows the graphical representation of the fixed value fault, which was cor-
rectly and promptly identified after 6 h of the fault appearance.

 

Figure 7. Fixed value diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal
and seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the
class of the observations and the time moment of the firm fault type identification.

The complete failure minimum is correctly diagnosed after 6.75 h of its intervention,
as it is revealed in Figure 8.

 

Figure 8. Complete failure minimum diagnosis: graphs of the FDA discriminant functions gi(x) for
each of the normal and seven fault classes, along the 24 h of the 140th day and the detailed representa-
tion revealing the class of the observations and the time moment of the firm fault type identification.

The complete failure maximum diagnosis is diagnosed successfully after 9.5 h, as is
shown in Figure 9.

Figure 9. Complete failure maximum diagnosis: graphs of the FDA discriminant functions gi(x) for each
of the normal and seven fault classes, along the 24 h of the 140th day and the detailed representation
revealing the class of the observations and the time moment of the firm fault type identification.
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The FDA-based identification methodology for the type of DO sensor fault proved to
be successful for all of the investigated faults except the bias one (which has very similar
effects with complete failure maximum failure). This means an accuracy of 87.5% correct
identification of the eight considered cases. The time needed for obtaining the consolidated
diagnosis decision varied from 2.5 h to 16.5 h.

From the rare previous studies that addressed fault diagnosis in WWTPs sensors,
one showed good detection of bias, drift and precision degradation (loss of accuracy)
of sensors used in a WWTP with classic and dynamic PCA-based methods but showed
some limitations regarding the fault identification with variable reconstruction-based
methods [42]. These limitations included the fact that a reconstruction-based method
cannot identify the faulty sensor which causes process transition, so the approach is
inappropriate for identifying the fault type connected to a control loop. Additionally, it did
not study the fault identification time in detail. The present study investigated several fault
types, and the identification time was determined for each of them. Another work proposed
a complex-valued slow independent component analysis (CSICA) based method for fault
detection and diagnosis with applications to wastewater treatment processes. Despite the
fact that the method had good performance in detecting and diagnosing incipient faults,
it was inadequate for scenarios of multi-fault and large-scale nonlinear systems [23]. The
sub-period division strategies combined with multiway principal component analysis for
only two faults diagnosis showed that the used methods could manifest false identification
results during normal operation periods and the inability to detect the fault during some
time intervals [35]. The present investigations considered six different fault types that
implied increased difficulty in the promptitude and accuracy of the fault diagnosis.

The efficiency of the proposed FDA identification is substantiated by the fact that
discrimination was achieved by the FDA discrimination model that was trained with faulty
data from the five days subsequent to the first one, when the fault actually started to act,
and testing was performed for this very first day.

3.3. Performance Indices

AE, PE and EQ were calculated for both normal and faulty operation cases. They were
determined as a mean value over 28 days, i.e., for the period of the days ranging from day
140 to day 168. Table 2 shows the values of the AE, PE and EQ for the normal operation
and for the six different faults.

Table 2. Values of the performance indices for the normal and faulty operation cases.

Operating Regime
AE

(kWh/day)
PE

(kWh/day)
Total Energy Demand

(kWh/day)
EQ

(kg PU/day)

Normal operation 16,992 1329 18,321 16,852
Bias fault 14,206 2415 16,621 21,461
Drift fault 15,569 1746 17,315 17,134

Wrong gain fault 15,866 1593 17,459 16,706
Loss of accuracy fault 9150 2403 11,553 219,189

Fixed value fault 1968 2415 4383 338,737
Complete failure
minimum fault 23,537 1039 24,576 19,804

Complete failure
maximum fault 1968 2415 4383 338,750

It can be observed that for the bias, loss of accuracy, fixed value and complete failure
maximum types of faults, the PE and EQ indices values are much higher than the normal
operation values, but AE is lower. The AE values can be explained by the fact that the
four fault types are characterized by high values of the DO sensor signal, sent as a wrong
feedback signal to the DO controller. As a result, the DO controller diminishes the aeration
with the aim of reducing the value of the faulty DO signal, and the aeration energy drops.
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This is followed by a decrease in nitrification, which induces a lower concentration of
nitrates and nitrites in the aerated bioreactor and, subsequently, in the anoxic bioreactor.
Consequently, the NO control loop reacts to this change by increasing the internal recycle
flow rate, which determines higher pumping energy. Additionally, the quality of the
effluent drastically deteriorated due to the inefficiency of the treatment process, affected by
the air-lacking circumstances, and higher amounts of pollutants are discharged with the
clean effluent. The high AE value in the case of the complete failure minimum type of fault
is due to the increase in the DO controller manipulated airflow rate as a response to the
low but faulty value of the DO sensor signal.

It is worth mentioning that in cases of the faulty operation of the DO sensor that is
characterized by reduced values of the DO signal, compared to the true one, the DO con-
troller will drive the aeration to increased airflow rates with straightforward consequences
on the rise of the AE index values.

3.4. Energy Costs Assessment for Operation Affected by Faults

Operating a sewage treatment plant is highly energy intensive, with implicitly high
economic costs. The price of energy is determined by a variety of supply and demand
factors, such as the geopolitical situation, the national particular energy mix, distribution
network expenses, environmental protection taxes, severe weather conditions or excise and
taxation levels. The cost of energy also depends on the energy source. Energy prices vary
from 4.8 to 12.10 eurocents depending on the energy source, as can be seen in Table 3. These
values were extracted from an International Energy Agency (IEA) report on the mean costs
of generating energy. This report provided data for a total of 243 plants in 24 countries
from Europe, Africa and Asia [75].

Table 3. Costs of different energy sources.

Source/Technology Eurocents/kWh

Lignite 9.12
Coal 8.80

Gas (CCGT 1) 6.81
Nuclear 6.62

Wind onshore 4.80
Wind offshore 8.45

Solar PV 2 commercial 5.38
Solar PV residential 12.10

Solar thermal (CSP 3) 11.62
Hydro reservoir 6.91

Hydro run of river 6.53
Geothermal 9.50

Biomass 11.33
1 CCGT—combined cycle gas turbines, 2 PV—photovoltaic, 3 CSP—concentrating solar power.

The daily costs of normal operation and each type of DO sensor malfunction were
determined for the sewage treatment plant considered in this study. The daily costs
were individually evaluated for different potential energy sources or energy production
technologies. The data in Table 4 were obtained by multiplying the costs of different energy
sources [75] with the total energy demand values computed for the normal and faulty
operation cases. Table 4 summarizes the findings.
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Table 4. Source depending sum of AE and PE energy costs computed for normal and fault affected op-
eration.

Source/Technology

Daily Operation Costs (EUR)

Normal
Operation

Bias Drift Wrong Gain
Loss of

Accuracy
Fixed Value

Complete
Failure

Minimum

Complete
Failure

Maximum

Lignite 1671 1516 1579 1592 1054 400 2241 400
Coal 1612 1463 1524 1536 1017 386 2163 386

CCGT 1249 1133 1180 1190 787 299 1675 299
Nuclear 1214 1101 1147 1156 765 290 1628 290

Onshore wind 879 798 831 838 555 210 1180 210
Offshore wind 1548 1404 1463 1475 976 370 2076 370

Solar PV
commercial 985 894 931 938 621 236 1321 236

Solar PV
residential 2216 2011 2094 2112 1397 530 2973 530

Solar thermal
(CSP) 2128 1931 2011 2028 1342 509 2855 509

Hydro reservoir 1266 1149 1197 1207 799 303 1699 303
Hydro run of river 1196 1085 1130 1140 754 286 1604 286

Geothermal 1741 1580 1646 1659 1098 417 2336 417
Biomass 2075 1883 1961 1978 1309 497 2784 497

By analyzing the costs of electrical energy spent for the different cases of the faults, it
may be observed that complete failure minimum fault of the DO sensor implies the largest
energy costs, as the reduced faulty value of the DO sensor determines the control system to
considerably increase the airflow rate. On the contrary, the fixed value and complete failure
maximum faults imply the smallest and comparable energy costs due to the large values of
the DO sensor signal that make the DO controller reduce the airflow rate. However, for
these latter cases, the quality of the effluent dramatically deteriorates by a factor higher
than 20 and ranks these faults as having the worst overall effect.

Values of the daily energy costs presented in Table 4 also reveal that onshore wind,
solar PV commercial and hydro run of rivers are the most favorable sources of energy to be
used from the economic costs point of view, while the solar PV residential, solar thermal
(CSP) and biomass are the most expensive ones. The lignite (CSS) and coal (CSS) energy
sources may be as well considered as having high costs.

Depending on the technical solution availability, switching to the alternative cheaper
energy sources and implementing a customized program for the use of a mixed energy
source in case of faulty sensor operation might reduce the implied energy costs before the
replacement of the defective sensor.

3.5. Environmental Assessment of CO2 and N2O Emissions

The on-site and off-site emissions of CO2 and N2O, as main contributors to the Green
House Gases released by the water line of the WWTP, were estimated for each type of faulty
operation and also for the normal one. Their daily mean values are presented in Table 5.

The data in Table 5 revealed that on-site emissions are the most significant, accounting
in the case of normal operation for about 75% of the total emissions, both for PCO2,total and
PN2O,total . Computed total CO2 emissions, i.e., the sum of the on-site and off-site values,
showed increased values for all cases of the DO sensor faults, with the exception of the
complete failure minimum fault type. Very large total CO2 emissions (more than one order
of magnitude higher than those of the normal operation) were produced in the cases of
the following faults: fixed value, complete failure maximum and loss of accuracy fault.
Complete failure minimum fault type showed the least emission values, while drift and
wrong gain had emissions that were slightly higher than those of the normal operation case.
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Table 5. GHG emissions due to DO sensor defect.

Emissions
Type

Source/Technology Emitted Gas

Daily GHG Emissions

Normal Bias Drift
Wrong
Gain

Loss of
Accuracy

Fixed
Value

Complete
Failure

Minimum

Complete
Failure

Maximum

Off-site
emissions

Power generation
CO2,

PCO2,o f f−site , kg
CO2/day

3481 3158 3290 3317 2195 833 4669 833

Biological
degradation in the

WWT effluent

N2O,
PN2O,o f f−site , kg

N2O/day
3.61 2.47 2.89 2.97 14.39 21.49 6.50 21.49

On-site
emissions

Water-line aerobic
biological
processes

CO2,
PCO2,on−site , kg

CO2/day
13,689 30,459 17,851 16,178 461,439 921,028 10,604 921,168

N2O,
PN2O,on−site , kg

N2O/day
10.35 10.81 10.64 10.05 6.07 3.27 9.20 3.27

Total emissions

CO2,
PCO2,total , kg

CO2/day
17,170 33,617 21,141 19,495 463,634 921,861 15,274 922,001

N2O,
PN2O, total , kg

N2O/day
13.96 13.28 13.53 13.02 20.46 24.76 15.70 24.76

CO2e,
PCO2e ,overall , kg

CO2e/day
21,330 37,574 25,173 23,375 469,731 929,239 19,953 929,379

Assessment of the total N2O emissions for the fixed value, complete failure maximum
and loss of accuracy faults also reveal increased values for the N2O emissions. They are
characterized by a factor ranging from 1.4 to 1.7 when compared to the normal operation
case. It may be noticed that, contrary to the total CO2 emissions observed trend, complete
failure minimum fault type led to increased values of the N2O emissions. N2O emissions
produced due to bias, drift and wrong gain faults were marginally smaller when com-
pared to the normal reference case, especially due to the decreased values of the off-site
N2O emissions.

The overall CO2e emission values were computed by cumulating the total CO2 and
total N2O (as CO2 equivalent) emissions. According to the results of the overall CO2e
emission, all faults show higher CO2 emission levels than the normal operation case.
The only exception is the complete failure minimum type of fault, but in this particular
case, the effluent quality deteriorates by more than 15%, and the sum of the aeration and
pumping energy has the highest values of all investigated cases. Assessment of the CO2 and
N2O emissions, issued due to different DO sensor faults, provides valuable quantitative
information on the extent and ranking of the most unfavorable sensor fault types that may
affect the sustainable operation of the WWTP.

The results validate the logical assumption that the presence of all faults is detrimental
to the WWTP operation, and the severity assessment of their consequences has to be
considered in an integrated approach of energy, costs, water effluent quality and GHG
issues. These evaluations constitute the foundation for the control and safety systems
design aimed at achieving the plant sustainability objective.

4. Conclusions

The performance of the FDA-based sensor faults identification approach was proposed
and assessed for the key DO sensor belonging to the automatically controlled A2O WWTP
with the typical dissolved oxygen and the nitrates and nitrites concentration control loops.
The DO feedback control system performance is responsible for the WWTP nitrification
process, directly determining the spent energy, effluent quality and GHG emissions of the
entire plant.

The FDA fault identification was investigated for six different types of faults. They
were: bias, drift, wrong gain, loss of accuracy, fixed value and complete failure minimum
and complete failure maximum faults. The data sets of variables for both the normal
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and fault-affected operation of the DO sensor originated from simulations of the cali-
brated plant model in which the scenario of WWTP influent variations emerged from
plant measurements.

The prompt and reliable FDA fault identification methodology was successful. The
time needed for obtaining the consolidated diagnosis decision varied from 2.5 h to 16.5 h
following the moment of the fault appearance. It is noteworthy that data used for building
the training data matrix for all faulty classes, i.e., data from days 2 to 6, did not contain the
data of the first day. The latter was only used for testing the promptitude and efficacy of the
identification methodology. The complexity of the diagnosis increases when the number
of fault types subject to investigation expands or the sensor faults produces comparable
effects on the process variables.

The results showed that the WWTP effluent quality performance index depreciated
during all of the DO sensor faults. From the EQ index perspective, the most detrimental
cases were the complete failure maximum, fixed value and loss of accuracy faults, while
the less affected case was the wrong gain fault type.

The WWTP normal and faulty operation modes were further investigated to assess
the environmental effect of the on-site and off-site emissions of CO2 and N2O GHG and
the economic impact of spent aeration and pumping energy. On-site emissions have the
most significant GHG contribution, being responsible for about three-quarters of the total
emissions, both for CO2 and N2O. The complete failure maximum, fixed value and loss of
accuracy were the DO fault-affected operation modes that had the most undesired impact
on the amount of GHG released emissions. The identification of simultaneous acting fault
types needs specific investigations, and this is the subject of future research work.

The comprehensive evaluation of effluent quality, energy costs and GHG emissions is
a useful quantitative assessment basis for the control and safety systems design aimed at
satisfying multiple objective targets and the overall plant sustainability goal. Instrumen-
tation maintenance tasks, metrological calibration or verification services and designers
of intelligent DO sensors may benefit from the presented results for promoting the safe,
efficient and environmentally friendly operation of the WWTP.
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Abstract: A multitarget search algorithm for swarm robot in an unknown 3D mountain environ-
ment is proposed. Most existing 3D environment obstacle avoidance algorithms are potential field
methods, which need to consider the location information of all obstacles around the robot, and
they easily fall into local optima, and their calculation is complex. Furthermore, they cannot well
meet the requirements of real-time obstacle avoidance characteristics of swarm robots in multiobject
searches. This paper first focuses on solving the obstacle avoidance problem of swarm robots in
mountain environments. A new 3D curved obstacle tracking algorithm (3D-COTA) is designed by
discretizing the mountains within the detection range of robot obstacles. Then, a task assignment
model and virtual force model in 2D space are extended to 3D, and a particle swarm search model
with kinematic constraints is constructed, which considers the kinematic constraints and the limi-
tations of the communication ability of the robots. Finally, a new multitarget search algorithm for
swarm robot in an unknown 3D mountain environment is proposed by means of the designed 3D
surface obstacle tracking algorithm. Numerical simulation results demonstrate the effectiveness of
the proposed algorithm.

Keywords: swarm robot; unknown complex environment; multitarget cooperative search; simplified
virtual force model; particle swarm optimization

1. Introduction

A large number of studies are devoted to swarm robot multitarget search, which
is widely used in postdisaster search and rescue, natural resources exploration, enemy
position detection, underwater fishing, and other application fields [1]. ZENG et al. mapped
particle swarm optimization (PSO) well with the target search process [2]. ZHANG et al.
deployed the cooperation and competition to solve the spatial conflicts of swarm robots [3].
LI et al. introduced a probability-constrained finite state machine to effectively resolve
individual resource conflicts and improve the efficiency of target search [4]. Taking UAV as
the carrier, HE proposed a 3D adaptive inertia weight extended particle swarm optimization
(IAEPSO) to realize the search of air targets in a mountain environment [5]. In order to
search for the lost object, PHUNG et al. transformed the problem of target search into
a probability problem based on the location of the last lost object and the creation of a
Bayesian map, and proposed motion-encoded particle swarm optimization (MPSO) [6].
Aiming at the target search of underwater vehicles, CAO et al. proposed a multi-AUV
collaborative team integration algorithm, which has the advantages of fewer parameters
and no speed jump [7]. In order to reduce the communication pressure of swarm robots,
TANG et al. realized the information interaction among swarm robots through indirect
communication [8]. Brown et al. assumed that the target was discovered when it was
within the detection range of individual UAV, and then proposed an ergodic target search
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method; under the background of this method, Brown et al. also proposed an approach to
increase or decrease the number of UAV individuals [9,10].

The above research shows that existing research on swarm robot multitarget search is
mainly aimed at 2D plane environments or a 3D environment with constant height [11–14].
However, in the practical application of environmental detection and postdisaster rescue,
swarm robots may face complex mountain environments. For multitarget searches in 3D
environments, many studies have implemented UAVs. For example, Dario [15] proposed
a task planning strategy of a UAV swarm in a 3D environment for landslide monitoring
and postdisaster search for survivors. Inspired by the gray wolf tracking strategy, Xie
Yuxin [16] proposed an adaptive formation tracking control method applied to a UAV
swarm system, which improved the system stability and accuracy of formation tracking.
Wang [17] customized a UAV interactive decision-making mechanism that could switch
the interaction method according to the distance between aircraft during a search for
a cooperative UAV swarm search task under the condition of limited communication
distance and realized search path planning in a dynamic environment. In view of the
realistic environment faced by swarm robots in a targeted search, the premise of their
search is to move safely in the task environment, so it is particularly important to consider
the obstacle avoidance problem. BinKai Qi [18] proposed UAV path planning based on
an improved 1artificial potential field to efficiently solve the UAV obstacle avoidance
problem. YuWenqiang [19], in view of the traditional artificial potential field method in a
complex environment and the problem of low efficiency of obstacle avoidance, proposed
a traditional artificial potential field method as an improved potential field function and
improved the traditional spherical potential field for the ellipsoid potential field. The
experimental simulation proves that the improved artificial potential field method provides
efficient and safe UAV obstacle avoidance path planning in a complex 3D environment.

A UAV has the advantages of information sharing, strong system survivability, and
cost performance, which can better meet the needs of a targeted search in 3D space. How-
ever, it has some problems for ground targeted search in complex mountain environments.
At present, there are few research results on swarm robot targeted ground search in 3D
mountain environments. In view of existing 3D environment potential field methods, ob-
stacle avoidance algorithms, the need to consider the obstacle position information around
the robot, the complex calculation and ease of falling into local optima, not satisfying
swarm robots well in the process of multirobot targeted ground search, and the insufficient
real-time obstacle avoidance requirements, this paper proposes a simple 3D curved obstacle
tracking algorithm that does not easily fall into local optima.

First, a task assignment model, particle swarm optimization algorithm with kinematic
constraints, and a simplified virtual force model in a 2D search environment were extended
to 3D space to solve the multiobjective search problem in a 3D scene [20–22]. Then, obstacle
tracking was considered in the process of swarm robot completing the task under the
condition of different robots according to the kinematic constraint using a particle swarm
optimization algorithm, and a virtual force model was simplified to calculate the expected
speed after the swarm robot 3D curved obstacle tracking algorithm to realize multitarget
search in an unknown complex 3D mountain environment. The simulation results show
that the proposed method is an effective method for swarm robots to search for multiple
targets in unknown 3D mountain environments.

2. Ground Target Search Modeling in an Unknown Mountain Environment

To better study swarm robot ground target search in an unknown mountain envi-
ronment, the corresponding environment hypothesis is made, and the corresponding
mathematical model is established.

The search task is located in an a× b× c mountain environment, which has a horizontal
area of a × b and a height of c. Among them, the mountain height difference is less than c,
and the mountain slope changes continuously and is always less than α degrees.
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The task object includes the robots, target, and mountain. Robots are represented as set
Rob = {Ri|i = 1, 2, . . . , nu; 30 ≤ nu ≤ 100}, where Ri represents a robot, and the target is
represented as set T =

{
tarj

∣∣j = 1, 2, . . . , nT ; nT ≥ 1
}

. The mountain is discretized in both
the horizontal x- and y-axes with Δl as the unit distance, and the discrete points obtained
are called obstacles. Obstacles are represented as set S = {obsk|k = 1, 2, . . . , ns; ns ≥ 1}.
The time t and the locations of Ri, tarj, and obsk are represented as Ri(t), tarj, and obsk,
respectively, and the speed of Ri is Vi(t).

The Euclidean distance between each individual is expressed as follows: the dis-
tance between robots dri1,i2|t=‖Ri1

(t)−Ri2(t)‖, the distance between a robot and the tar-
get drti,j|t = ‖Ri(t)−tarj‖, and the distance between a robot and obstacle drsi,k|t =
‖Ri(t)−obsk‖.

Within the task environment, the search task can be described as follows: considering
that the target reaches the threshold value d0, if there is a robot with a target distance
drti,j|t < d0, it indicates that the target is found. When all targets have been found, the
target search task is complete.

The robots involved in the search have certain characteristics. Assuming that each
robot is isomorphic and the robot velocity Vi(t) satisfies 0 ≤ Vi(t) ≤ Vm, each robot can
reach any position close to the ground in the task environment. Considering maximum
communication distance dcom, maximum obstacle sensing distance dobs, and maximum
target detection distance dtar, each robot has the following functions: when drti1,i2|t ≤ dcom,
it can communicate between robots; when drti,j|t ≤ dtar, it can detect the target signal; and
when drsi,k|t ≤ dobs, according to the slope sensor sense obstacles and a robot’s relative
slope, a robot can climb slopes less than or equal to β and can drive on slopes less than or
equal to α without rollover, and β < α.

The target being searched for is stationary on the mountain surface within the mission
mountain environment. When searching for a target, each robot can continuously detect the
target signal using a sensor. The target signal and drti,j|t meet an environmental interference
function and should describe the function of the target as a response function [23]. The
function can be set as Equation (1):

Ii,j(t) =

{ mQ
drt2

i,|t
+ η drti,j|t ≤ dtar

0 drti,j|t > dtar
(1)

where Ii,j(t) represents the target signal detected by Ri at time t; η is the environmental dis-
turbance satisfying the standard normal distribution; drti,j|t is the objective existence, which
is unknown to the robots; m is the attenuation coefficient of the environment (0 < m < 1);
and Q is the constant signal power of the target.

The mountain surface is separated into obstacle points with spacing Δl, which are static,
and the position of each obstacle point can be specifically expressed as obsk=[xsk, ysk, zsk].

In a 3D search task environment, each robot can locate itself through its own sensor
position and speed information, can communicate through a communication device within
the scope of communication with other robots, and can sense obstacle slope information in
its detection scope. The robot pose and location information followed within the search
environment is as Equation (2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ri(t) =
[

xui|t, yui|t, zui|t
]

Vi(t) =
[ .

xui|t,
.

yui|t,
.

zui|t
]

.
xui|t =

d(xui|t)
d(t) = ‖Vi(t)‖ cos θ sin φ

.
yui|t =

d(yui|t)
d(t) = ‖Vi(t)‖ cos θ cos φ

.
zui|t =

d(zui|t)
d(t) = ‖Vi(t)‖ sin θ

. (2)
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where xui|t, yui|t and zui|t are the coordinate positions of the robot at time t in the Cartesian
global coordinate system xoyz. Vi(t) is the movement speed of the robot at time t, φ is the
angle between the projection vector of Vi(t) in the xoy plane and the forward direction of
the x-axis, and θ is the angle between Vi(t) and the forward direction of the z-axis. If the
time change Δt is small enough, the relationship between the robot’s position and speed in
Equation (2) can be expressed as Equation (3):

Ri(t + Δt) = Ri(t) + Vi(t + Δt) (3)

To facilitate the planning of the trajectory of the robot, this study takes Δt as unit time,
that is, Δt = 1, and the iterative relationship between the position and velocity of the group
robot satisfies the following as Equation (4):

Ri(t + 1) = Ri(t) + Vi(t + 1) (4)

3. Robot Search Task Assignment Mechanism

3.1. Three Robot States

To make the robot swarm target search more coordinated and efficient, robots are
divided into three states as shown in Figure 1: roaming search state, cooperative search
state, and task completion state.

Figure 1. Three robot states relationship.

When the robots do not detect the target information, they are in a roaming search
state; that is, the robots repel each other at the maximum speed to rapidly search the global
environment [24,25]. When a robot detects the target signal, a multitarget task allocation
model based on the response threshold is used to construct a suballiance. The robot
members in the same suballiance search for the target corresponding to the suballiance,
and the state of the robots forming the suballiance changes to the cooperative search state.
When the robot and a target distance are less than the target reached threshold, the robot
and the distance of a target drti,j|t < d0, the target is regarded as a search success, and
the robot changes to the task completed state. When all targets are successfully found, all
robots change to the mission completed state.

3.2. Robot Task Assignment Model

In the process of task search, each robot participates in a task search process through
self-organization and decides whether to choose task tar1 or task tar2 and whether to
change the task between task selection and task completion. The process is as follows: First,
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the sensor detects the target response value of a robot in the detection range. If the robot
detects multiple target signals in the detection range, the response probability of the robot
to each target is calculated according to a response probability evaluation model, and then
a roulette algorithm is used to make a decision regarding which target to search for [26].
The response probability assessment is expressed as Equation (5):

p(i, j) =
I2
i,j(t)

∑m
k=1 I2

i,k|t
, ∀j, k = {1, 2, 3, · · · , m} (5)

where I2
i,j(t) is the target tarj signal detected by robot Ri at time t. If the robot detects m

target signals within its detection range, the probability of robot Ri responding to target
tarj excitation is P(i, j), as Equation (6):

P(i, j) = ∑j
k=1 pik, j = 1, 2, · · · , m (6)

When P(i, j − 1) < ra < P(i, j), robot Ri selects target tarj as the target of collaborative
search, and ra ∈ (0, 1).

Robots can obtain target information in two ways during driving. On the one hand,
robots can directly detect target signals through their own sensors, which is called a class I
robot. On the other hand, a robot fails to detect a target signal within its detection range
but indirectly obtains the signal information of a target through communication with
other robots. This kind of robot is called a class II robot [27]. If a target signal detected
by two robots is the same target, they can participate in the target search process task
together. When multiple robots participate in the same search task, these robots can form a
suballiance to carry out a cooperative search for the target.

In the process of searching a 3D task environment, multiple robots will search for the
same target, or only a few robots will search for the same target; that is, in the process of
forming a suballiance, there will be an uneven distribution of robot resources. To avoid
this situation, closed-loop regulation is introduced; that is, the resource allocation of each
suballiance is re-evaluated after the first subtask assignment. When the number of members
of a suballiance reaches an upper limit Nm, the suballiance preferentially selects Nm robots,
and the remaining robots not selected will quit the suballiance and reselect other targets
as their search tasks or switch to the roaming search state. When the number of members
of a suballiance does not reach the upper limit Nm, suballiance members can be recruited
from the surrounding robots to participate in the target task search. The priority principle
of suballiance member selection is as follows: the priority of class I targets is greater than
that of class II targets; if the priority is the same, the robot is evaluated according to the
intensity of the target excitation signal; namely, the higher the intensity of the target signal
is, the higher the dominant position. If the number of class I targets is less than Nm, a robot
close to the class II communicating robot will be preferentially selected. If there is a robot
with the same distance as the communicating robot, the robot with a strong signal will be
preferentially selected. See Table 1 for details.
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Table 1. Group drones rank the suballiance U1 members at t = 36.

Serial
Number

Robot Target Type
Intensity of the

Response
Nearest

Communication Robot
Distance from

Communication Robot
Priority
Sorting

1 R2 II - R14 213.2349341 11
2 R3 II - R19 209.3224293 9
3 R5 I 2.099988287 - - 2
4 R9 II - R14 33.53008801 5
5 R11 II - R5 44.66655953 6
6 R14 I 2.024188002 - - 3
7 R17 II - R19 171.3542868 8
8 R18 II - R14 232.4477832 12
9 R19 I 6.13611151 - - 1
10 R21 II - R5 212.6859702 10
11 R22 II - R14 30.39406231 4
12 R23 II - R19 142.4618399 7

Swarm robots should not only avoid all obstacles but also complete all target searches
in the process of movement. To complete all target search tasks quickly and effectively,
the robots can form suballiances to search for the same target together according to the
detected target signals and communicate with the surrounding robots. As presented in
Table 1, the members of suballiances U1 are sorted. Robots R5, R14, and R19 detect the
signal of target tar1 during their driving. Robots R5, R14, and R19 are class I robots. At this
time, the number of class I robots is less than Nm, and a class I robot recruits the robots
within its communication range as a communication robot. R2, R3, R9, R11, R17, R18, R21,
R22, and R23 receive the recruitment information of class I robots and join one by one in the
target tar1 search task and form suballiance U1 for this target. According to the principle of
selecting members of suballiances, the priority of class I is higher than that of class II. Class
I is sorted according to the corresponding intensity of the target.

The higher the target response intensity is, the higher the priority is. The class II robots
are sorted according to the distance between them and communication robots. The closer
the distance is, the higher the priority is. Therefore, suballiance U1 is sorted by priority
as R19, R5, R14, R22, R9, R11, R23, R17, R3, R21, R2, and R18. According to the priority
order, R23, R17, R3, R21, R2, and R18 quit the suballiance, and finally, R19, R5, R14, R22, R9,
and R11 form a suballiance and participate in the target tar1 search task.

4. Multitarget Ground Search Algorithm for Swarm Robots in a 3D
Mountain Environment

4.1. 3D Virtual Force Model Roaming Search

When no target signal is obtained, each robot conducts roaming search to quickly
detect more areas. Here, a virtual force model is adopted [28]. When the distance between
robots is less than min(dcom, dtar), the robots repel each other, making the robots spread
quickly to quickly evaluate the search area. To simplify the calculation, a robot is repulsed
only by the nearest two robots.

Assuming that the robot nearest to robot Ri is Ri1 as shown in Figure 2, the positions of

the two robots are Ri(t) =
[

xui|t, yui|t, zui|t
]

and Ri1
(t) =

[
xui1|t, yui1|t, zui1|t

]
. In addition,

dri,i2|t ≤ min(dcom, dtar). The repulsive force of Ri1 on Ri is calculated using Equation (7),
and the repulsive force direction is that the former points to the latter:

fi,i1
(t) =

c · l2
m

dvi,i1|t
3

[(
xui|t − xui1|t

)
,
(

yui|t − yui1|t
)

,
(

zui|t − zui1|t
)]

(7)

where fi,i1
(t) is the repulsion of Ri1 on Ri at time t. lm strengthens the obstacle avoidance

distance, and c optimizes the robot movement path.
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Figure 2. Virtual force model.

If the two robots closest to Ri satisfy dvi,|t ≤ min(dcom, 2dtar), then the virtual force on
Ri is as shown in Figure 2. In the figure, xui1|t > xui|t > xui2|t, yui1|t > yui|t > yui2|t, zui|t >
zui2|t > zui1|t, and the virtual forces fi,i1

(t) and fi,i2
(t) satisfy Equation (7). The virtual

forces applied to the robot satisfy the vector sum fi(t) = fi,i1
(t) + fi,i2

(t). The speed of the
robot in the roaming search state is the direction indicated by the virtual force; that is, the
next expected speed of the roaming search is as Equation (8):

Vei(t + 1) = Vm
fi(t)

‖fi(t)‖
(8)

4.2. 3D Particle Swarm Cooperative Search Optimization with Motion Constraints

Swarm robot system is a typical distributed system. Comparing swarm robots with
particle swarm optimization [29–31], a mapping relationship is found between the two. The
particle swarm optimization algorithm can be applied to robot movement. Considering the
movement constraints of a robot and the limitation of its communication ability, a particle
swarm optimization model with kinematic constraints can be constructed to calculate the
next expected velocity Vei(t + 1). The specific description is as Equation (9):{

Vpi(t + 1) = ωVi(t)+ c1r1(Ri
∗(t)− Ri(t))+ c2r2(gi

∗(t)− Ri(t))
Vei(t + 1) = Vi(t)+ (Vpi(t + 1)− Vi(t))·λ (9)

where Ri(t) and Vi(t) represent the velocity and position vectors of robot Ri at time t, re-
spectively; Vpi(t + 1) is the velocity obtained by direct particle swarm iteration; Vei(t + 1)
is the expected velocity vector of robot Ri at the next moment; the introduction of λ is to
consider that the movement of the robot has a certain inertia; c1 and c2 are the individual
cognitive coefficient and social cognitive coefficient of the robot, respectively; r1 and r2 are
random variables in the interval (0,1); ω is the inertial weight; Ri

∗(t) represents the optimal
position experienced by robot Ri thus far after joining the current suballiance; and gi

∗(t) is
the optimal position traversed by the suballiance cutoff time t.

4.3. 3D Curved Obstacle Tracking Algorithm (3D-COTA)

The search for ground targets in a 3D mountain environment is similar to that in a
2D environment. Curving a 2D search environment can obtain a mountain surface. When
searching for a target, a robot needs to move along the mountain surface. The mountain
surface is curved; therefore, the velocity direction of the robot at any time is the tangent
direction of the surface corresponding to its position. Due to the limited climbing ability of
the robot, it is necessary to avoid areas with high slopes. After the velocity of the robot in the
roaming state or collaborative search is calculated according to the corresponding method,
the velocity direction may not meet the speed requirements in the search environment.
Therefore, further calculation is required after the expected velocity is obtained through
the calculation of robots in different states. To ensure that the next velocity direction is
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the tangent direction of the curve, the mountain slope in the velocity direction must meet
the requirements.

The robot discretizes the mountains within the detection range of obstacles and con-
siders the discrete point obstacles. For example, the mountain detected by a robot shown
in Figure 3a is discretized to obtain Figure 3b. The point set in the figure can be expressed
as the obstacle set. The Euclidean distance between the robot and the obstacle can be
expressed as Equation (10):

drsi,k|t = ‖Ri(t)−obsk‖ =

√(
xui|t − xsk

)2
+
(

yui|t − ysk

)2
+
(

zui|t − zsk

)2
(10)

  
(a) (b) 

Figure 3. Discretization of a mountain. (a) Mountain, (b) mountain dispersion.

The slope of the obstacle relative to the robot can be expressed as Equation (11):

grdi,k|t = arctan
zsk − zui|t√(

xui|t − xsk

)2
+
(

yui|t − ysk

)2
(11)

4.3.1. Initial Obstacle Tracking

For robots in the roaming or collaborative search state, the expected velocity Vei(t + 1)

=
[ .

xei|(t+1),
.

yei|(t+1),
.

zei|(t+1)

]
is calculated according to the corresponding method. How-

ever, the expected velocity direction may not be tangent to the ground but may point to
the air or the ground. Therefore, it is necessary to further calculate the velocity tangent to
the ground.

Consider the nearest obstacle and two obstacle points not collinear to the nearest
obstacle. In Equation (12), the nearest obstacle point to robot Ri is described as obsk0 .

drsi,k0|t = min
obsk∈S

(
drsi,k|t

)
(12)

Based on obsk0 , two other obstacle points, obsk1 and obsk2 , are found to satisfy the
conditions described in Equation (13). According to Equation (13), points obsk0 , obsk1

, and
obsk2 are not collinear, so these three points can determine plane f li|t. For obstacle tracking
to search for ground targets, the robot will tend to move parallel to plane f li|t.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

obsk0 =
[
xsk0 , ysk0 , zsk0

]
obsk1

=
[
xsk1 , ysk1 , zsk1

]
obsk2 =

[
xsk2 , ysk2 , zsk2

]
xsk1 = xsk0 − Δl. sign

(
xsk0 − xui|t

)
ysk1 = ysk0
xsk2 = xsk0

ysk2 = ysk0 − Δl. sign
(

ysk0 − yui|t
)

(13)

At this time, plane f li|t is shifted so that the resulting plane f li|t ′ passes through Ri(t),
and the coordinate system Ritxyz is established with Ri(t) as the origin. In this coordinate
system, Ri(t) = [0, 0, 0], and obsk0 , obsk1

, and obsk2 are expressed as Equation (14):⎧⎪⎪⎪⎨⎪⎪⎪⎩
obs′k0

=
[(

xsk0 − xui|t
)

,
(

ysk0 − yui|t
)

,
(

zsk0 − zui|t
)]

obs′k1
=
[(

xsk1 − xui|t
)

,
(

ysk1 − yui|t
)

,
(

zsk1 − zui|t
)]

obs′k2
=
[(

xsk2 − xui|t
)

,
(

ysk2 − yui|t
)

,
(

zsk2 − zui|t
)] (14)

Under the Ritxyz coordinate system, plane f li|t ′ is determined. Let Equation (15) of
the plane be:

ax + by + cz = 0 (15)

The vector normal to the plane for nli|t = [a, b, c] is a plane of two known vectors as
Equation (16): {

p1,i|t =
[(

xsk1 − xsk0

)
,
(
ysk1 − ysk0

)
,
(
zsk1 − zsk0

)]
p2,i|t =

[(
xsk2 − xsk0

)
,
(
ysk2 − ysk0

)
,
(
zsk2 − zsk0

)] (16)

The normal vector can be obtained as Equations (17) and (18):

nli|t = [a, b, c] =

⎡⎣ [1, 0, 0] [0, 1, 0] [0, 0, 1](
xsk1 − xsk0

) (
ysk1 − ysk0

) (
zsk1 − zsk0

)(
xsk2 − xsk0

) (
ysk2 − ysk0

) (
zsk2 − zsk0

)
⎤⎦ (17)

⎧⎪⎨⎪⎩
a =

(
ysk1 − ysk0

)(
zsk2 − zsk0

)− (
ysk2 − ysk0

)(
zsk1 − zsk0

)
b =

(
zsk1 − zsk0

)(
xsk2 − xsk0

)− (
zsk2 − zsk0

)(
xsk1 − xsk0

)
c =

(
xsk1 − xsk0

)(
ysk2 − ysk0

)− (
xsk2 − xsk0

)(
zsk1 − zsk0

) (18)

After the normal vector nli|t = [a, b, c] of the plane is calculated, the robot begins
to move in the direction parallel to plane f li|t, that is, motion tangential to the moun-

tain ground at Ri(t). Considering the obstacle tracking velocity Voi(t + 1) =
[ .

xoi|(t+1),
.

yoi|(t+1),
.

zoi|(t+1)

]
and expected velocity Vei(t + 1) =

[ .
xei|(t+1),

.
yei|(t+1),

.
zei|(t+1)

]
of the

3D curved obstacle tracking algorithm, the calculation process of the first obstacle tracking
velocity Voi(t + 1) of the 3D curved obstacle tracking algorithm is as Equation (19):⎧⎪⎪⎨⎪⎪⎩

.
x =

.
xei|(t+1).

y =
.
yei|(t+1)

.
z = − a

.
xe i|(t+1) + b

.
yei|(t+1)

c

(19)

(1) If the robot is in the roaming search state, it can be calculated as Equation (20):

Voi(t + 1) =
[ .
x,

.
y,

.
z
]· Vm√

.
x2

+
.
y2

+
.
z2

(20)
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(2) If the robot is in the cooperative search state, it can be calculated as Equation (21):

Voi(t + 1) =

⎧⎪⎪⎨⎪⎪⎩
[ .
x,

.
y,

.
z
]· Vm√

.
x2

+
.
y2

+
.
z2

,
√

.
x2

+
.
y2

+
.
z2

> Vm

[ .
x,

.
y,

.
z
]
,

√
.
x2

+
.
y2

+
.
z2 ≤ Vm

(21)

4.3.2. Second-Obstacle Tracking

After Voi(t + 1) is calculated using the corresponding method for the robot in the
roaming or cooperative search state, the speed direction is adjusted according to the slope
of the surrounding mountains, avoiding the movement direction of the mountain slope
beyond the robot climbing ability range.

It is assumed that, according to the perception of the slope sensor, the distance near
the robot is less than ‖Voi(t + 1)‖, and in the direction of angle set Θ, the slope exceeds the
climbing ability of the robot; that is, the slope is greater than β.

Within the set Φ =
{

2π
nφ

n
∣∣∣n ∈

[
− nφ

2 , nφ

2

] ⋂
Z
}

, the sensor can identify mountain

slopes in the nφ angle directions, where
[
− nφ

2 , nφ

2

]
represents the set of numbers between

− nφ

2 and nφ

2 , and Z is the set of integers.
Suppose that the function F(ϕ) has the following expression as Equation (22):

F(ϕ) = ϕ − 2π·sgn(ϕ) · δ(|ϕ| − π) − 2π < ϕ < 2π (22)

Among them:

sgn(ϕ) =

⎧⎨⎩
−1 ϕ < 0

0 ϕ = 0
1 ϕ > 0

(23)

δ(ϕ) =

{
0 ϕ ≤ 0
1 ϕ > 0

(24)

The second obstacle tracking velocity is denoted as Vti(t + 1) =
[ .

xti|(t+1),
.

yti|(t+1),
.

zti|(t+1)

]
, and Voi(t + 1) =

[ .
xoi|(t+1),

.
yoi|(t+1),

.
zoi|(t+1)

]
. Subsequently, Vti(t + 1) is calcu-

lated as:

(1) If arctan
( .

yoi|(t+1)
.

xoi|(t+1)

)
+ δ

(
− .

xoi|(t+1)

)
·sgn

( .
yoi|(t+1)

)
·π /∈ Θ

Vti(t + 1) = Voi(t + 1) (25)

(2) If arctan
( .

yoi|(t+1)
.

xoi|(t+1)

)
+ δ

(
− .

xoi|(t+1)

)
·sgn

( .
yoi|(t+1)

)
·π ∈ Θ

Calculation angle:
ϕ0 = min

ϕ∈Φ,ϕn∈(Φ−Θ)
|F(ϕ − ϕn)| (26)

To calculate Vti(t + 1):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
xti|(t+1) =

(√
.

xo2
i|(t+1) +

.
xo2

i|(t+1)

)
cos(ϕ0)

.
yti|(t+1) =

(√
.

xo2
i|(t+1) +

.
xo2

i|(t+1)

)
sin(ϕ0)

.
zti|(t+1) = − a

.
xti|(t+1) + b

.
yti|(t+1)

c

(27)

a, b, and c are shown in Equation (18).
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4.4. Robot Velocity and Position Iteration

When the robot moves on the mountain ground, the speed of the robot is along the
tangent direction of the mountain surface at all times. When planning the path of swarm
robots, there is a time interval between each iteration, and at the time between the two
iterations, the velocity is also along the tangent direction of the mountain surface. Therefore,
the position of the robot needs to be modified when updating its position. According to
Equation (4), the velocity is corrected as the average velocity vector before the position
is corrected.

It is assumed that the mapping relationship between coordinates obsk = (xsk, ysk, zsk),
zsk, xsk, and ysk of the mountain surface is expressed as zsk = Fs(xsk, ysk). The robot
calculates velocity Vi(t + 1) according to Vti(t + 1) =

[ .
xti|(t+1),

.
yti|(t+1),

.
zti|(t+1)

]
. For

robot Ri, the next velocity Vi(t + 1) is calculated as follows:

Vi(t + 1) =
[ .

xti|(t+1),
.

yti|(t+1), Fs
( .

xti|(t+1) + xui|t,
.

yti|(t+1) + yui|t
)
− zui|t

]
(28)

After calculating Vi(t + 1), the robot position is updated as follows:

Ri(t + 1) = Ri(t)+ Vi(t + 1) (29)

In summary, the multitarget ground search process in an unknown mountain environ-
ment is shown in Figure 4.

( ) ( ) ( )t t t+ = + +i i iR R V

( ),i jdrt t d+ <

Figure 4. Target search process.

5. Simulation Experiment and Results

The parameters are set based on actual search requirements, as shown in Table 2.
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Table 2. Parameter values.

Parameter Value Parameter Value

α 40◦ β 30◦
nu 30~60 Nm 6
nT 10 m 0.1
nφ 360 Δl 1
Vm 10 Q 105

rcom 300 c1 1
robs 100 c2 1.2
rtar 100 ω 0.5
d0 10 λ 0.1

As an example, when nu = 40, assuming that slopes in the mountain environment
are all less than or equal to β, a schematic of the target search process is shown in Figure 5.
Figure 5a is a topographic map of the mountain area for target search. Figure 5b is the top
view of the search area when t = 1, the robot is in a 100 × 100 area in the lower left corner,
and the target is in an 800 × 800 area in the middle of the horizontal direction.

  
(a) (b)

 
 

(c) (d)

  
(e) (f)

Figure 5. Cont.
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(g) (h)

Figure 5. 3D search simulation diagram. (a) Target search terrain, (b) When t = 1, the robot and the
target are located, (c) When t = 37, a robot detects a target signal and forms a suballiance. (d) When
t = 1~58, a robot searches the trajectory of target tar8. (e) When t = 127, the target is found. (f) When
t = 185, the trajectory of the robot. (g) When t = 255, all targets have been found. (h) When t = 1–255,
the trajectories of all the robots.

In Figure 5c, R2 detects the signal of target tar8, and robots R6, R15, R22, R23, and R27
join the suballiance. In Figure 5d, from t = 1 ∼ 58, R2, R6, R15, R22, R23, R27, R8, R10, R11,
and R17 in the suballiance participate in the search for tar8, and R10 searches for R10 at
t = 58.

In Figure 5e, when t = 127, the robots successfully complete the search for target tar1.
By this time, 5 targets (tar1, tar7, tar6 and tar8) have been found.

In Figure 5f, t = 1~185, 11 robots including, R5, R7, R11, R17, R18, R19, R20, R22, R24,
R28, and R32, participate in the collaborative search for target tar2, and before this, multiple
robots participated in the cooperative search for other targets.

In Figure 5g, t = 255, the robot swarm finally found all 10 targets. In Figure 5h, all
robot movement tracks of swarm robots in the search for targets are shown, and the robots
successfully found all ground targets.

Taking the number of robots nu = 30, 40, 50, or 60 and the number of targets nT = 10,
the experiment was repeated 30 times, and the following data as shown in Table 3.

After verifying the effectiveness of the swarm robot target search in a mountain
environment with a slope less than or equal to β, the existence of an environment with
a slope greater than β in a mountain environment is verified. Assuming nu = 40, the
mountain slope is less than or equal to α. A diagram of the target search process is shown
in Figure 6.

Figure 6a shows a mountain topographic map for the target search and the positions
of the targets and robots when t = 1. Figure 6b is a top view of the search area. The areas
marked in red indicate that each location within the region has a slope greater than β in
one direction.

Figure 6c shows the process of searching for target tar6. When t = 48, robot R37 detects
the target signal of tar6 and forms a suballiance with robots R27, R30, R40, R23, and R17. The
suballiance starts to search for target tar6. At t = 53, R21 also detects the target signal of
tar6, joins the suballiance, and pushes R23 out of the suballiance. Finally, when t = 62, the
target is found, and the suballiance is dissolved. It can be seen from the figure that when a
robot is searching for a target, it can move in a direction with a smaller slope according to
the 3D curved obstacle tracking algorithm and then smoothly search for a target in a region
with a higher slope.

Figure 6d shows the trajectory of robot R21 during the period from t = 1 to the robot
swarm finding all targets. As seen from the trajectory shown in the figure, when the upward
slope of the robot’s movement direction is too high for it to climb, the robot will adjust its
movement direction to the climbing slope according to the 3D curved obstacle tracking
algorithm and move as close to the original direction as possible.
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Figure 6e shows the positions of the robots and targets at t = 329. All targets have
been found by swarm robots at this point.

Figure 6f shows the trajectories of all robots in the swarm robot target search process.
The figure shows that according to the proposed method, the robots can successfully find
all targets in the task area. The robots will be more inclined to move in the region with a
slower slope, but they can also move in the direction with a lower slope in a region with a
higher slope.

Table 3. Target nT = 10 and mountain slope less than or equal to β: the number of steps and energy
consumption required for the robots to complete the task search.

nu
Step Energy Consumption (×104)

30 40 50 60 30 40 50 60

D
ata

from
30

experim
ents

481 250 226 217 11.494 8.191 9.109 10.761
370 283 220 215 8.857 9.197 8.868 10.483
332 343 271 211 8.277 10.653 10.668 10.429
455 249 232 219 11.385 8.128 9.474 10.784
354 247 234 230 8.729 7.799 9.483 11.259
287 249 242 205 6.956 7.951 9.887 10.260
356 267 253 216 8.492 8.515 10.152 10.685
286 230 245 190 7.085 7.466 9.694 9.456
282 237 260 217 7.008 7.487 10.235 10.699
311 215 207 227 7.611 7.024 8.480 10.972
367 297 235 209 9.088 9.579 9.434 10.453
282 232 235 194 6.962 7.501 9.244 9.474
316 260 222 230 7.767 8.350 8.954 11.185
343 295 244 206 8.513 9.532 9.731 10.289
272 277 225 200 6.736 8.732 8.992 9.941
240 248 227 220 5.883 8.009 9.217 10.916
360 262 207 227 9.011 8.231 8.460 11.091
294 280 244 195 7.068 8.923 9.709 9.728
379 299 230 216 9.444 9.568 9.310 10.643
355 269 239 225 8.679 8.590 9.537 10.901
336 218 236 196 8.364 6.932 9.666 9.756
253 352 275 221 6.225 10.924 10.894 10.800
358 255 203 175 8.912 8.152 8.373 8.802
259 239 227 229 6.288 7.729 9.191 11.157
336 244 219 217 8.295 7.646 8.863 10.754
457 251 260 216 11.264 8.030 10.370 10.591
328 259 243 190 8.016 8.419 9.658 9.565
261 329 234 203 6.615 10.298 9.465 9.996
305 263 218 222 7.376 8.497 8.877 11.051
340 280 227 206 8.399 8.946 9.098 10.251

Mean 331.833 265.967 234.667 211.467 8.160 8.500 9.436 10.438
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. 3D simulation of a target search when the slope is greater than β. (a) Mountainous terrain,
initial target positions. (b) Diagram of the slope over the β zone. (c) The robots search for tar6.
(d) Trajectory of robot R21 (e) When t = 329, the swarm robots have found all targets. (f) The
trajectories of all the robots.

Taking the number of robots nu = 30, 40, 50, or 60 and the number of targets nT = 10,
the experiment was repeated 30 times, and the following data as shown in Table 4.

155



Appl. Sci. 2023, 13, 1969

Table 4. Target nT = 10 and mountain slope greater than β: the number of steps and energy consump-
tion required for the robots to complete the task search.

nu
Step Energy Consumption (×104)

30 40 50 60 30 40 50 60

D
ata

from
30

experim
ents

598 328 452 289 16.480 12.548 21.803 16.916
545 327 402 533 15.366 12.534 19.240 31.185
464 401 397 370 12.544 15.245 19.237 21.520
426 424 292 296 12.164 15.746 14.237 17.282
496 311 461 544 13.248 11.843 22.182 31.659
354 400 286 348 10.087 15.227 13.567 20.232
430 334 456 336 12.090 12.779 21.769 19.447
368 339 478 248 10.418 12.907 22.795 14.466
425 508 385 311 11.934 19.194 18.640 18.117
477 521 342 269 13.494 19.431 16.561 15.709
436 376 366 310 12.268 14.428 17.494 18.032
428 391 352 293 11.946 14.865 16.995 16.946
377 515 650 307 10.343 19.732 30.874 17.752
506 454 316 387 14.005 17.052 15.301 22.504
528 452 310 313 14.284 17.315 15.036 18.232
436 334 434 282 12.299 12.849 20.916 16.437
502 366 306 393 13.941 13.977 14.680 22.798
513 531 514 360 14.101 20.287 24.730 20.971
425 353 269 291 11.521 13.482 12.969 16.984
474 321 484 257 13.410 12.232 23.167 14.847
520 586 403 379 14.135 21.730 19.310 21.910
503 344 380 331 13.953 13.084 18.299 19.251
346 323 421 410 9.752 12.457 20.163 23.883
296 375 386 313 8.25 14.396 18.335 18.105
638 376 342 399 17.944 14.457 16.606 23.201
447 529 465 349 12.583 19.217 21.740 20.366
428 321 369 383 11.826 12.105 17.919 22.415
348 341 364 358 9.813 12.914 17.613 20.917
509 531 308 538 14.502 20.242 14.828 30.778
564 523 353 409 15.457 19.799 16.802 23.864

Mean 460.233 407.833 391.433 353.533 12.805 15.469 18.794 20.558

6. Conclusions

Aiming at the problem of robot swarm multitarget ground search in an unknown
3D mountain environment, this paper, based on unknown 2D environment robot swarm
multiobject search research, extends the multiobjective task assignment model, particle
swarm optimization algorithm, and virtual force model from a 2D environment to a 3D
environment. A new multiobject ground search algorithm for swarm robots in a 3D moun-
tain environment is proposed. Aiming at the problems of swarm robot’s speed direction
being tangent to the ground, each robot avoids a steep slope that cannot be climbed, and
a 3D curved obstacle tracking algorithm that can effectively avoid conflict between the
swarm robots and the mountain plans the speed based on the direction tangent to the 3D
surface so that a robot can find the ground targets in a mountain environment more quickly
and effectively. A 3D particle swarm optimization algorithm with kinematic constraints
and a multiobjective task assignment model is used to complete multitarget search in the
swarm robot system. A virtual force model is used to calculate the expected velocity during
roaming search. During collaborative search, a 3D particle swarm optimization algorithm
is used to calculate the expected velocity. After the expected velocity is calculated, the
final planned velocity is calculated according to the 3D curved obstacle tracking algorithm.
Simulation results show that the proposed method can not only find targets quickly but
also avoid conflict effectively. The simulation results demonstrate the effectiveness of the
proposed algorithm. However, the environment considered in this study is ideal, and prob-
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lems such as environmental interference, communication delay, and energy consumption
constraints in the swarm robot task execution are not considered. Therefore, in subsequent
work, the above problems will be studied.
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Abstract: This paper investigates the dissipativity analysis of large-scale networked systems with
linear time-invariant dynamics. The networked system is composed of a large number of subsystems
whose connections are arbitrary, and each subsystem can have different dynamics. A sufficient and
necessary condition for the strict dissipativity analysis of the networked system is derived, which
takes advantage of the block-diagonal structure of the system parameter matrix and the sparseness
characteristics of the subsystem interconnections. Then, a necessary condition and a sufficient
condition that depend only on a single subsystem parameter are given separately. Numerical
simulations illustrate that compared with the existing results, the conditions suggested in this paper
have higher computational efficiency in the dissipative analysis of large-scale networked systems.

Keywords: dissipativity; large-scale system; linear matrix inequality; networked system; sparseness

1. Introduction

In recent years, the research of large-scale networked systems has attracted great at-
tentions [1–4]. The system can be considered as composed of a large number of subsystems
with different spatial locations connected in a certain way [5]. Generally, subsystems ex-
change information with their neighbors straightforwardly and predictably, but the system
often exhibits complicated dynamic behavior when seen as a whole. Such systems have
extensive application background, including airplane formation flight [6], power network
distributed system [7], automated highways [8], multi-agent formation systems [9], and so
on. For such a complex system, the classic method of bringing all the subsystems together
and analyzing it as a single large-scale system has very strict requirements on the calcu-
lation speed and accuracy of the computer, which will inevitably bring computational
difficulties. Therefore, using the system structure to find more efficient computational
conditions is of great engineering significance for the dissipativity analysis of large-scale
networked systems.

There are already many results on the performance analysis of networked systems,
but the research on dissipativity is not mature enough and needs to be further developed
and improved. In 1972, the famous scholar Willems first put forward the concept of dissi-
pativity [10,11]. Dissipativity describes the equilibrium relationship between the system’s
internal energy, which is a vital concept in theoretical research and practical application. Its
essential meaning is that there is a non-negative energy function (called storage function)
so that the energy supply rate of the system is always greater than the loss of energy
inside the dynamic system. Based on Willems’ work, many scholars have done in-depth
studies on dissipativity and obtained rich results, which have played a significant role
in the field of circuit, system, and control theory. Refs. [12,13] respectively studied the
dissipative control problems of linear continuous-time and discrete systems based on linear
matrix inequality (LMI) methods. A simplified mathematical model of the interconnected
two-machine power system was established in [14], and its non-linear dynamic behavior
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such as dissipativity properties was analyzed. In [15], the analysis and improvement of the
dissipativity performance of interconnected passive systems are studied. For networked
control systems, Ref. [16] obtained some new sufficient conditions by utilizing Lyapunov
stability theory and LMI technology to ensure that the closed-loop system is finite-time lim-
ited and dissipative. In [17], a distributed controller was created to ensure the dissipativity
of a networked system made up of dynamically coupled subsystems. Its control synthesis
is done locally at the subsystem level and doesn’t involve the relationship among subsys-
tems, hence it has certain drawbacks. The linear dynamic system with the interconnection
structure specified by the directed graph is studied in [18]. Based on the dissipativity
inequality, an LMI for calculating system performance is established and the concept of
local dissipativity is defined. Using the knowledge of graph theory to analyze large-scale
networked systems has certain constraints on the dynamic characteristics and connection
modes of subsystems, which has certain limitations in practical application [19,20].

Considering that the system structure of large-scale networked systems usually has
sparse characteristics or specific structural forms [21–23], in the large-scale connected
systems discussed in [24], the concept of internal input and output is introduced to represent
the connections and functions among subsystems, and the connection relationship among
sub-units of the entire system is described by subsystem connection matrix. This description
method takes into account the situation where the dynamic characteristics of the subsystems
are different and the connection relationship of the subsystems is arbitrary. The previously
mentioned UAV formation flight refers to the arrangement of multiple UAVs in a certain
formation so that they maintain in formation or change their relative positions within
a limited scope during the flight. To maintain a certain formation shape, information
interaction is required among the UAVs. In a centralized strategy, each UAV has to know
information about the whole formation, demanding substantial information interaction. It
is computationally intensive and requires the high performance of the airborne computer.
In fact, each UAV can interact with its position, speed, attitude, and motion target with
only the UAVs connected to it in the formation. In this way, the amount of computation
is greatly reduced, and the system is relatively simple to implement. It is this sparse
property or specific structural form among subsystem connections that we exploit to give
more computationally efficient dissipativity criteria for large-scale networked systems.
Dissipativity explains some of the energy losses and control problems of control systems
and is a more general performance indicator of system performance.

In this paper, our objective is to reduce the computational burden of dissipativity
analysis for large-scale network systems with a large number of subsystems. In general, the
large-scale networked systems studied in this paper have the following characteristics. The
first is that the scale of the system is large, including many subsystems. The second and
most important point is that the interaction among subsystems of large-scale networked
systems is usually sparse or has a specific structural form. We introduce intermediate
variables in networked systems to describe the relationship among subsystems, which is
more general and explicitly characterizes the structural characteristics of large-scale systems.
In this regard, this paper proposes several new LMI conditions, which effectively use the
block diagonal structure of the system parameter matrix and the sparsity of the subsystem
connection matrix, avoiding the inverse computation of high-dimensional matrices. The
simulation results indicate that the conditions proposed in this paper are more efficient
than the existing results.

The following is the structure of the paper. The model and the definition of dissi-
pativity for the networked system and some preliminary results are given in Section 2.
In Section 3, some conditions for dissipative analysis of networked systems are given,
and the relationship between these conditions and existing conditions is discussed. Some
numerical simulation results are presented in Section 4. The research results of this paper
are summarized in Section 5, and the direction of further research is also proposed here.
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Notation 1. The symbol R is used to denote the set of real numbers, and the vector space produced
by real numbers of appropriate dimensions is denoted as R#. col

{
Zi|Li=1

}
denotes the vector/matrix

stacked by Zi(i = 1, 2, . . . , L), and diag{Zi|Li=1} signifies a block diagonal matrix with Zi as the

i-th diagonal block.
{

Zij
∣∣i=M,j=N
i=1,j=1

}
stands a matrix with M × N blocks, and its i-th row j-th

column block matrix being Zij. 0n and 0n×m represent the n dimensional zero column vector and
the n × m dimensional zero matrix respectively, the dimension subscript is omitted if there is no
ambiguity, and the identity matrix I is the same. The superscript T represents the transpose of a
matrix or vector, and (∗)TWZ or ZW(∗)T is shorthand for ZTWZ or ZWZT.

2. System Description and Some Preliminaries

The networked system Γ is consisted of N linear time-invariant subsystems, and the
i-th subsystem Γi is defined by the state-space model below,⎡⎣ ẋ(t, i)

z(t, i)
y(t, i)

⎤⎦ =

⎡⎣ ATT(i) ATS(i) BT(i)
AST(i) ASS(i) BS(i)
CT(i) CS(i) DT(i)

⎤⎦⎡⎣ x(t, i)
v(t, i)
u(t, i)

⎤⎦, (1)

in which t and i denote respectively for the temporal variable and the index number of
a subsystem, i = 1, 2, . . . , N. Moreover, x(t, i) is the state vector of the i-th subsystem Γi
at time t. y(t, i) and u(t, i) represent the external output vector and external input vector
of the Γi, respectively. z(t, i) and v(t, i) are the output vector to other subsystems and
input vector from others, which is also called internal output vector and input vector. The
connection relationship among subsystems can be expressed as

v(t) = Φz(t), (2)

here, v(t) = col
{

v(t, i)|Ni=1

}
and z(t) = col

{
z(t, i)|Ni=1

}
. Φ is called the subsystem connec-

tivity matrix. We assume that each row of the matrix Φ has only one non-zero element
equal to one and there are no columns in which all of the items are equal to zero. That
means the internal output channels of a subsystem can affect the internal inputs channels
of other subsystems, and some subsystem internal input channels depend on the internal
output of multiple subsystems. This assumption, as explained in [23], does not jeopardize
the generality of the adopted system model. Approximate power-law degree distribution
widely exists in engineering systems, such as protein interaction networks, gene regulatory
networks, power systems, the Internet, etc. [23]. In these systems, the dimension of the
subsystem connection matrix Φ is usually much smaller than the state dimension of the
system, and the interactions among subsystems are sparse.

In this paper, we assume that the dimensions of vectors x(t, i), v(t, i), z(t, i), u(t, i)
and y(t, i) are mxi, mvi, mzi, mui and myi, respectively. Based on the above assumptions
and Equation (2), the dimension of the matrix Φ is ∑N

i=1 mvi × ∑N
i=1 mzi . Then we can get

ΦTΦ = Σ2 ,where Σ2 = diag
{

Σ2
j

∣∣∣N
j=1

}
, Σ2

j = diag
{

m(i)|Mz,j
i=Mz,j−1+1

}
, Mz,i = ∑i

k=1 mzk ,

m(i) indicates the number of subsystems directly affected by the i-th element of the vector
z(t), i = 1, · · · , ∑N

k=1 mvk, j = 1, · · · , N.
To simplify the mathematical derivation, we define the following matrix, A∗# =

diag
{

A∗#(i)|Ni=1

}
, B∗ = diag

{
B∗(i)|Ni=1

}
,C∗ = diag

{
C∗(i)|Ni=1

}
andD∗ = diag

{
D∗(i)|Ni=1

}
in which ∗, # = T, S. By exploiting the connection relationship among subsystems, the dy-
namic system Γ may be expressed equivalently in the following state-space form,[

ẋ(t)
y(t)

]
=

[
A B
C D

][
x(t)
u(t)

]
, (3)

where
A=ATT + ATSΦ(I − ASSΦ)−1 AST,
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B = BT + ATSΦ(I − ASSΦ)−1BS,

C = CT + CSΦ(I − ASSΦ)−1 AST,

D = DT + CSΦ(I − ASSΦ)−1BS.

Note: Well -posedness is very important in system design, and ill-posed systems are
usually difficult to control or impossible to estimate [25–27]. Therefore, this paper assumes
that System Γ is well-posed, which means that (I − ASSΦ)−1 exists.

This paper intends to establish computationally effective conditions for the dissipa-
tivity analysis of large-scale networked systems Γ. The concept of dissipativity is very
important in the system, whether from the perspective of theoretical research or the per-
spective of practical application. Roughly speaking, dissipative systems can be described
as such properties. At any time, the energy that the system may provide cannot exceed the
energy already supplied. We first describe the definition of dissipativity for System Γ.

The definition is related to the supply function. For the i-th subsystem Γi, its supply
function is defined as

si(u(t, i), y(t, i)) =
[

y(t, i)
u(t, i)

]T

Q(i)
[

y(t, i)
u(t, i)

]
, (4)

where Q(i) is a symmetric matrix of suitable dimensions.

Definition 1. The large-scale networked system (1) and (2) with x(0, i) = 0 is said to be dissipative
with supply function si(u(t, i), y(t, i)) if and only if there is a matrix P(i) ≥ 0 , such that,

t1∫
t0

N
∑

i=1
si(u(t, i), y(t, i))dt ≥ N

∑
i=1

xT(t1, i)P(i)x(t1, i)− N
∑

i=1
xT(t0, i)P(i)x(t0, i) (5)

holds for all t0 ≤ t1.

According to the definition, the supply function can be interpreted as the energy
transferred to the system, which means that within a period of time [t0, t1], as long as
t1∫

t0

N
∑

i=1
si(u(t, i), y(t, i))dt is positive, the system will work normally, otherwise, the system

will not work.
N
∑

i=1
xT(t1, i)P(i)x(t1, i)− N

∑
i=1

xT(t0, i)P(i)x(t0, i) represents the actual energy

consumption of the system after the time interval t1 − t0. Therefore, Equation (5) shows
that in any time period [t0, t1], the energy change inside the system will not exceed the
energy supplied by the outside.

It can be seen from the following derivation that the definition of dissipativity for the
networked system (1) and (2) are consistent with the one in [28] based on (3).

The supply function based on the large-scale networked system (1) and (2) is as
follows,

s(u(t), y(t))=
N
∑

i=1
si(u(t, i), y(t, i))=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
y(t, 1)
u(t, 1)

]
[

y(t, 2)
u(t, 2)

]
...[

y(t, N)
u(t, N)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
y(t, 1)
u(t, 1)

]
[

y(t, 2)
u(t, 2)

]
...[

y(t, N)
u(t, N)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

The supply function of System (3) is
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s(u(t), y(t)) =
[

y(t)
u(t)

]T

Q1

[
y(t)
u(t)

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎣
y(t, 1)
y(t, 2)

...
y(t, N)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u(t, 1)
u(t, 2)

...
u(t, N)

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Q1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎣
y(t, 1)
y(t, 2)

...
y(t, N)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u(t, 1)
u(t, 2)

...
u(t, N)

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
y(t, 1)
u(t, 1)

]
[

y(t, 2)
u(t, 2)

]
...[

y(t, N)
u(t, N)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
y(t, 1)
u(t, 1)

]
[

y(t, 2)
u(t, 2)

]
...[

y(t, N)
u(t, N)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(7)

in which y(t) = col{y(t, i)|Ni=1}, u(t) = col{u(t, i)|Ni=1}, Q = diag{Q(i)|Ni=1} and

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0

0
... I

...
...

... 0
...

...
...

...
...

0 0 0 0
0 I 0 0
...

...
... I

...
...

...
...

...
...

...
...

0 0 0 0

· · · · · ·

0 0
...

...
...

...

0
...

I 0
0 0
...

...
...

...
... 0
0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q1(∗)T .

For the convenience of the following discussion, we introduce the following prelimi-
nary results that need to be used.

Lemma 1 ([29]). For matrices L and U with compatible dimensions, there is a scalar α > 0
such that,

LU + UT LT ≤ αLLT + α−1UTU. (8)

Lemma 2 ([30]). Given symmetric matrices F and G with appropriate dimensions, if vT Fv > 0
can be obtained for every non-zero vector v satisfying vTGv = 0 , then there must be a real number
r such that F+rG is positive definite, and vice versa.

Lemma 3 ([29]). For an LMI in the form of an M× M(M ≥ 1) block matrix: G(P) < 0, except for
the symmetric independent variable matrix P, other known coefficient matrices or constant matrices
are all block diagonal matrices of appropriate dimensions, and all have N(N > 1) diagonals. If it is
divided into blocks, there is a full block feasible solution P for this LMI, and there must be a feasible
solution for the diagonal division of the appropriate dimension.

3. Dissipativity Analysis

In [28], the dissipativity criterion of System (3) is proposed.

Lemma 4. Assume that the networked system Γ is controllable. Then, System (3) is strictly
dissipative with the supply function s(u(t), y(t)) if and only if there exists a matrix P > 0
such that, [

AT P + PA PB
BT P 0

]
−
[

C D
0 I

]T

Q
[

C D
0 I

]
< 0. (9)

Note that the matrices A, B, C and D in the condition of Lemma 4 all contain
(I − ASSΦ)−1 terms. Although the subsystem connection matrix Φ is sparse and the system
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parameter A∗#, B∗, C∗ and D∗ with ∗, # = T, S are block diagonal, the matrix (I − ASSΦ)−1 is
generally dense. When there are a large number of subsystems in large-scale networked sys-
tems, the calculation of matrices A, B, C, and D involves the inversion of high-dimensional
matrices. Therefore, when the scale of the networked system increases, the computational
complexity of Equation (9) will become very high.

Lemma 4 is a dissipative analysis condition based on lumped networked model. Due
to the establishment of the lumped model, the connection relationship among subsystems
is hidden inside the parameters, and its structural information is not effectively utilized. As
a result, for large-scale networked systems, the use of this condition for dissipative testing
will inevitably bring computational difficulties and even cannot be calculated.

Then, to reduce the computational difficulty caused by the increase of system scale,
we establish a computationally efficient sufficient, and necessary condition for the strict
dissipativity analysis of large-scale networked systems. This condition effectively utilizes
the sparse structure of the subsystem connection matrix Φ in the networked system, that is,
each subsystem is only connected to a limited number of other subsystems.

Theorem 1. Assume that the networked system Γ is controllable. Then, System Γ is strictly
dissipative with the supply function si(u(t, i), y(t, i)) if and only if there exists a symmetric positive
definite matrix P and a positive scalar h such that,

(∗)T

⎡⎣ [
0 P
P 0

]
−Q

⎤⎦
⎡⎢⎢⎣

0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I

⎤⎥⎥⎦
−h × (∗)T

[
I −Φ

−ΦT Σ2

][
I

[
0 0

]
ASS

[
AST BS

] ] < 0.

(10)

Proof of Theorem 1. Equation (9) can be expressed equivalently as follows,

(∗)T

⎡⎣ [
0 P
P 0

]
−Q

⎤⎦
⎡⎢⎢⎣
[

I 0
A B

]
[

C D
0 I

]
⎤⎥⎥⎦ < 0. (11)

We express Equation (11) in the following equivalent form,

(∗)T

⎡⎣ [
0 P
P 0

]
−Q

⎤⎦
⎡⎢⎢⎣

I 0 0 0
0 0 I 0
0 0 0 I
0 I 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

[
I 0
0 I

]
[

A B
C D

]
⎤⎥⎥⎦ < 0. (12)

Matrices A, B, C, and D can be written as follows,[
A B
C D

]
=

[
ATT BT
CT DT

]
+

[
ATS
CS

]
Φ(I − ASSΦ)−1[ AST BS

]
. (13)

Substituting the above formula into Equation (12), we can get that,

(∗)T

⎡⎣ [
0 P
P 0

]
−Q

⎤⎦
⎡⎢⎢⎣

0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I

⎤⎥⎥⎦
×
⎡⎣ Φ(I − ASSΦ)−1 AST Φ(I − ASSΦ)−1BS

I 0
0 I

⎤⎦ < 0.

(14)
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Then we define matrices F, M, and K as follows,

F = (∗)T

⎡⎣ −
[

0 P
P 0

]
Q

⎤⎦
⎡⎢⎢⎣

0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I

⎤⎥⎥⎦, (15)

M =

⎡⎣ Φ(I − ASSΦ)−1[ AST BS
][

I 0
0 I

] ⎤⎦, (16)

K =
[

I −Φ
][ I

[
0 0

]
ASS

[
AST BS

] ]. (17)

Obviously, MT(−F)M < 0 .When v = Mζ , ζ ∈ R# , for any v �= 0 , we can get that
Kv = 0, which means vT Fv > 0. According to Lemma 2, there must be a real number h
such that,

(∗)T

⎡⎣ −
[

0 P
P 0

]
Q

⎤⎦
⎡⎢⎢⎣

0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I

⎤⎥⎥⎦
+h × (∗)T

[
I −Φ

−ΦT Σ2

][
I

[
0 0

]
ASS

[
AST BS

] ] > 0.

(18)

That is,

(∗)T

⎡⎣ [
0 P
P 0

]
−Q

⎤⎦
⎡⎢⎢⎣

0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I

⎤⎥⎥⎦
−h × (∗)T

[
I −Φ

−ΦT Σ2

][
I

[
0 0

]
ASS

[
AST BS

] ] < 0.

(19)

The characterization of the left term of Equation (19) shows that if the inequality has a
solution, then there must be h > 0. So far, the necessity has been proved. Then, multiply
the left and right sides of Equation (10) by the matrices M and MT respectively, and direct
algebraic operations can complete the sufficiency proof.

(∗)T

⎡⎣ [
0 P
P 0

]
−Q

⎤⎦
⎡⎢⎢⎣

0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I

⎤⎥⎥⎦
⎡⎣ Φ(I − ASSΦ)−1[ AST BS

][
I 0
0 I

] ⎤⎦

−h × (∗)T
[

I −Φ
−ΦT Σ2

][
I

[
0 0

]
ASS

[
AST BS

] ]⎡⎣ Φ(I − ASSΦ)−1[ AST BS
][

I 0
0 I

] ⎤⎦ < 0.

(20)

The proof is completed.

It can be seen that the condition in Lemma 4 hides the connection relationship among
subsystems inside the parameters, while the left side of Equation (10) in Theorem 1 lin-
early depends on the symmetric matrix P, and the structure of the system is specifically
reflected in it, which can effectively make use of the sparse structure of the subsystem
connection matrix. Furthermore, the matrices A∗#, B∗, C∗ and D∗ with ∗, # = T, S are all
block diagonal, and large-scale networked systems are sparse. Combined with the research
on sparse semi-definite programming problems [31–33], when the system is relatively large,
the computational complexity of solving the above sparse LMI is frequently lower than
the condition in Lemma 4. This aspect can also be explained in subsequent numerical
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simulations. It is worth noting that the condition of Theorem 1 does not bring conservatism
compared with Lemma 4, a dissipative criterion based on the lumped description.

When there are a huge number of subsystems, the strict dissipativity analysis using
the condition in Theorem 1 may still encounter computational difficulties. To overcome
this difficulty, we further explore the structural characteristics of the subsystem connection
matrix Φ, and put forward the conditions for strictly dissipative analysis based on the
parameters of each subsystem.

A simple derivation leads to the following relationship,[
I −Φ

−ΦT ΦTΦ

]
≤ 2

([
I
0

][
I 0

]
+

[
0

ΦT

][
0 Φ

])
. (21)

Combined with Lemma 4 and the properties of the subsystem connection matrix, on
the basis of Equation (10), the necessary condition for the strict dissipativity analysis that
only depends on the parameters of a single subsystem can be obtained.

Theorem 2. Assume that the networked system Γ is controllable. A necessary condition for the
strict dissipativity of System Γ with the supply function si(u(t, i), y(t, i)) is that each subsystem
has a symmetric positive definite matrix P(i) and a positive scalar h such that,

(∗)T

⎡⎣ [
0 P(i)

P(i) 0

]
−Q(i)

⎤⎦
⎡⎢⎢⎣

0
ATS(i)
CS(i)

0

I
ATT(i)
CT(i)

0

0
BT(i)
DT(i)

I

⎤⎥⎥⎦
−h × (∗)T

[
I

Σ2
i

][
I

[
0 0

]
ASS(i)

[
AST(i) BS(i)

] ] < 0.

(22)

For large-scale networked systems, sometimes the parameters of multiple subsystems
are the same. In this case, using Theorem 2 is more efficient. A sufficient condition for
strict dissipativity analysis which only depends on the parameters of a single subsystem is
given below.

Theorem 3. Assume that the networked system Γ is controllable. Then, System Γ is strictly
dissipative with the supply function si(u(t, i), y(t, i)) if there exists a symmetric positive definite
matrix P(i) and real number h2 ≥ h1 ≥ 0 (or h1 ≤ h2 ≤ 0) for each subsystem such that,

(∗)T

⎡⎣ [
0 P(i)

P(i) 0

]
−Q(i)

⎤⎦
⎡⎢⎢⎣

0
ATS(i)
CS(i)

0

I
ATT(i)
CT(i)

0

0
BT(i)
DT(i)

I

⎤⎥⎥⎦
−(∗)T

[
h1 I

−h2Σ2
i

][
I

[
0 0

]
ASS(i)

[
AST(i) BS(i)

] ] < 0.

(23)

Proof of Theorem 3. From Lemma 1, we can get[
I −Φ

−ΦT ΦTΦ

]
≥ (1 − α)

[
I
0

]
(∗)T +

(
1 − 1

α

)[ 0
ΦT

]
(∗)T . (24)

Using the above formula and the conclusion in Theorem 1, one can obtain a sufficient
condition for System Γ to be strictly dissipative is the existence of a symmetric positive
definite matrix P and two real numbers h > 0, α > 0, such that,
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(∗)T

⎡⎣ [
0 P
P 0

]
−Q

⎤⎦
⎡⎢⎢⎣

0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I

⎤⎥⎥⎦
−h × (∗)T

(
(1 − α)

[
I
0

]
(∗)T +

(
1 − 1

α

)[ 0
ΦT

]
(∗)T

)[
I

[
0 0

]
ASS

[
AST BS

] ] < 0.

(25)

Let h1 = (1 − α)h, h2 = −(1 − α−1)h, we can get h2 = α−1h1. Therefore, when α ≤ 1,
h2 ≥ h1 ≥ 0; when α ≥ 1, h1 ≤ h2 ≤ 0. The proof can be completed by combining
Lemma 3.

Compared with Theorem 1, the left side of Equation (23) in Theorem 3 is linearly related
to the matrix P(i), and its dimension is entirely governed by the dimension of the subsystem
Γi. When the state dimension of each subsystem is fixed, the computational complexity of
Equation (23) only linearly depends on the number of subsystems N. Therefore, Theorem 3
has a substantially higher computing efficiency than Theorem 1 for large-scale networked
systems. However, it should be noted that Theorems 2 and 3 are conservative.

4. Numerical Simulations

Several numerical simulations are employed in this section to demonstrate the efficacy
of the strict dissipativity conditions presented in this paper. The simulation experiments
are performed on a laptop computer with an Intel(R) Core(TM) i5-3230M CPU @ 2.60 GHz
2.60 GHz and 6 G RAM. In these simulations, we assume that mui = mxi = mvi = mzi =
myi = 2. Furthermore, all the parameters of the subsystem are independent of each other, and
the parameters of each subsystem are randomly generated according to a continuous uniform
distribution with an interval of [−0.9, 0.9]. The subsystem connection matrix is randomly
generated, but there is only one non-zero element 1 in each row and column.

The conditions in Lemma 4, Theorem 1, and Theorem 3 are used to verify the strict
dissipativity of the system. Among them, the conditions in Lemma 4 and Theorem 3 are
calculated by the LMI toolbox provided by MATLAB, and the condition in Theorem 1
is calculated by the sparse solvers DSDP. For System Γ introduced in this paper, we
generate 10 systems for calculation, and the average value and standard deviation of
system dissipativity analysis calculation time are obtained. Tables 1 and 2 give some results
when the number of subsystems is among 2 and 45.

Table 1. Average of calculation time.

Subsystem Number Lemma 4 (s) Theorem 1 (s) Theorem 3 (s)

2 0.256809 0.113630 0.280457
10 0.506572 0.357334 0.332980
20 4.718364 1.825162 0.550354
30 49.843413 10.102070 1.132749
38 160.804551 25.194260 1.990903
40 201.484656 31.942283 2.235822

Table 2. Standard deviation of calculation time.

Subsystem Number Lemma 4 (s) Theorem 1 (s) Theorem 3 (s)

2 0.005145 0.019887 0.003355
10 0.017458 0.038721 0.005182
20 0.035518 0.051297 0.005435
30 0.585151 0.160743 0.011004
38 1.305206 0.317135 0.017758
40 1.806196 0.389699 0.092795
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The tables show that the calculation time of the above three methods all increases with
the increase of the number of subsystems. When the number of subsystems is 10 or less,
the computational efficiency based on Lemma 4 is comparable to that of Theorem 1 and
Theorem 3. This is because the dimensionality of the matrix inequality in Theorem 1 is
higher than that in Lemma 4, and Theorem 3 requires several inequalities to be verified.
With the expansion of the number of subsystems, when the number of subsystems is 20, 30,
40, 45, the ratio of calculation time based on the conditions in Lemma 4 and Theorem 1 is
1.0957, 1.3414, 1.3911, 1.4581. The ratio of the average computation time becomes larger
and larger, which means that the computational efficiency of Theorem 1 is improved to
some extent. Because the condition in Lemma 4 requires operations such as inversion
of high-dimensional matrices. Clearly, Theorem 3 is more computationally efficient than
both Lemma 4 and Theorem 1. This is due to the fact that the conditions of Theorem 3
are tested based on individual subsystem parameters, and their computational complexity
only increases linearly with the number of subsystems N. In addition, due to the limitation
of computer memory, the conditions in Lemma 4 and Theorem 1 may not be calculated,
but Theorem 3, which is tested independently for each subsystem, can still be calculated.
Therefore, Theorem 3 has more computational advantages in the dissipativity analysis of
large-scale networked systems. It should be noted that Theorem 3 is conservative compared
to Lemma 4 and Theorem 1.

5. Conclusions

This paper investigates the strict dissipativity of networked systems composed of a
large number of subsystems. At first, according to the model of large-scale networked
systems, the definition of the dissipativity of networked systems is given in this paper.
Then, we study the dissipative criteria of networked systems. For large-scale networked
systems, when the number of subsystems is large, the performance analysis using the
existing linear system theory will encounter computational difficulties. Some LMI-form
conditions for dissipativity analysis of large-scale networked systems are derived. Among
them, Theorem 1 is a necessary and sufficient condition, which effectively utilizes the
block diagonal structure of the system parameter matrix and the sparsity of the subsystem
connection matrix. Combined with the use of sparse semidefinite programming tools, it
is more efficient than the lumped analysis method for medium-scale networked systems.
In addition, the proposed sufficient condition, and necessary condition only depend on the
parameters of a single subsystem, which are more suitable for the dissipative analysis of
networked systems with a large number of subsystems, but they are conservative compared
with other conditions.

Regarding large-scale networked systems, the design of distributed controllers to
ensure the dissipativity of large-scale networked systems will be investigated in further
research. For instance, in UAV formation flight, relying on a centralized controller to
observe the entire formation and control all UAVs at once is both impractical and increases
operational costs in engineering applications. A more reasonable option would be to decen-
tralize the controller to each UAV platform and achieve the overall objective by interacting
and sharing information between platforms. Therefore, if the structural information of the
network topology is capable of being fully utilized and a distributed control strategy that
relies on local information sharing is adopted, the amount of data transmission in the net-
work will be greatly reduced and the computational efficiency will be raised. Furthermore,
the presence of quantization errors, time delays, data packet loss, and other phenomena
when communicating networked among subsystems or among subsystems and their local
controllers will be explored. In practical engineering applications, network connections
would possibly be non-idealized, and the arrival of information delivered is frequently
unable to be achieved immediately.
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Abstract: High heat load on diesel engines is a main cause of ship failure, which can lead to ship
downtime and pose a risk to personal safety and the environment. As such, predictive detection and
maintenance measures are highly important. During the operation of marine diesel engines, operating
data present strong dynamic, time lag, and nonlinear characteristics, and traditional models and
prediction methods cause difficulties in accurately predicting the heat load. Therefore, the prediction
of its heat load is a challenging and significant task. The continuously developing machine learning
technology provides methods and ideas for intelligent detection and diagnosis maintenance. The
prediction of diesel engine exhaust temperature using long short-term memory network (LSTM) is
analyzed in this study to determine the diesel engine heat load and introduce an effective method.
Spearman correlation coefficient method with the addition of artificial experience is utilized for
feature selection to obtain the optimal input for the LSTM model. The model is applied to validate
the ship data of the Shanghai Fuhai ship, and results show that the mean absolute percentage error
(MAPE) of the model is lowest at 0.089. Compared with other models, the constructed prediction
model presents higher accuracy and stability, as well as an optimal evaluation index. A new idea
is thus provided for combining artificial knowledge experience with data-driven applications in
engineering practice.

Keywords: diesel engine heat load; intelligent detection; long short-term memory network; prediction
model; evaluation index

1. Introduction

In dealing with the increasing severity of fossil energy crisis and the strict emission
requirements of internal combustion engines, the effective use of energy and environmen-
tal protection are also increasing in importance. If the diesel engine set has insufficient
combustion, then the fuel-generated heat decreases, resources are wasted, black smoke
and a large amount of CO and other harmful gases are discharged, and the environment
is polluted, which will cause harm to human body through direct inhalation [1–3]. The
diesel engine set is an important power source for ship navigation, and its normal work-
ing cycle is a major contributor to efficient transportation by sea, saving energy, and
reducing emission [4].

Taking exhaust manifold as an example, the finite element method is used by Li et al. [5]
to verify the effect of thermal load on its fatigue life. The high efficiency heat transfer
model is used by Zhang et al. [6] to analyze the direct relationship between cylinder head
fatigue life and average gas temperature. In addition, Chaboche model is established to
analyze the local deformation and leakage of cylinder head under thermal cycle test [7].
The failure of the ship’s exhaust valve was investigated and analyzed by EI-Bitar et al. [8],
and it is determined that the high temperature environment would lead to the expansion
of microcracks and easy fracture. According to the above research, main equipment of the
diesel engine set will be damaged by high heat load, the ship will be stopped, which will
greatly increase the navigation cost, and the safety of ship equipment and environment will
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be seriously affected [9,10]. Previously, a Belize foreign ship lost control of its main engine
due to excessive heat load at the floating attachment of the Yangtze River No. 20. Fortunately,
it was timely assisted by the maritime department and did not cause a second accident.
At present, ship data are detected by sensors and transmitted to terminals. However,
when excessive heat load is detected by sensors, ship equipment and personal safety
may have been damaged [11]. Therefore, the prediction of its heat load can achieve the
preventive effect.

The heat load of diesel engine can be accurately characterized by exhaust temperature,
which can be estimated by predicting the exhaust temperature. However, factors affecting
the exhaust temperature are typically influenced by uncertain dynamic environmental
factors. As such, heat load prediction of marine diesel engine units is a challenging and
meaningful task. It is usually used to analyze the heat load of marine diesel engine units
through traditional methods, such as finite element analysis and linear regression model-
ing [12]. However, the accuracy of predicted parameters, results, and complex mapping
relationships are difficult to model due to the complex process inside the combustion
chamber. Complex and variable dynamic processes and nonlinear systems are modeled by
neural network methods, and its continuous development led to various applications in
marine diesel engines [13–16].

Artificial neural network (ANN) was used by Cay to replace traditional modeling to
predict engine fuel consumption, effective power, and exhaust temperature. The mean error
percentage (MEP) of the training test data was less than 2.7% [17]. Ignition timing, engine
speed and air-fuel ratio were used as model inputs by Liu et al. [18] to analyze whether
machine learning can be used to effectively predict engine exhaust temperature. Four
different algorithm combinations were used to evaluate the applicability of ANN. ANN
was used by Uslu et al. [19] to predict the emission and performance of an ether single-
cylinder diesel engine. The maximum mean absolute error range of 5% was obtained, and
the regression coefficient (R2) was in the range of 0.9640–0.9878. Despite the use of ANN
has potential effectiveness on exhaust temperature, a large number of initial parameters are
required in this study, and gradient explosion may lead to unsuccessful training, thereby
requiring additional time in adjusting the hyperparameters. Moreover, heat load is usually
characterized by nonlinear variations; collecting and obtaining these data are necessary
under various conditions for analysis and prediction. However, only several influencing
factors are analyzed, and the dependencies between the factors are ignored. Considering
the shortage of ANN, long short-term memory network (LSTM) model is considered for
prediction analysis.

LSTM network based on recurrent neural network (RNN) with three additional thresh-
olds is a special form that can solve the problem of gradient explosion and disappearance
in training [20]. Continuous development has led to the maturity of this neural network
model. However, a large amount of raw data is not effective when processed by LSTM,
so it is used together with other methods. The Spearman correlation coefficient method
(SR) is utilized in neural networks for feature selection to effectively capture dependencies
between variables by analyzing the correlation between two variables and removing redun-
dant information. A LSTM network used to predict passenger flow at stations was proposed
by Zhang et al. Spearman correlation features were used to select time and space factor
data that significantly and effectively affect passenger flow, and the accuracy of the predic-
tion model was improved [21]. Spearman correlation coefficient method was applied by
Jiao et al. [22] to explore the temporal connection of nonresidential consumers under multi-
ple time series. Spearman’s correlation coefficient is a widely used feature selection method.
The correlation between multiple information sequences can be effectively analyzed by this
method, and the best input of the network model can be provided. However, this purely
data-driven method determines dependencies on the basis of only the correlation between
feature variables, thereby leading to the exclusion of significant variables. Hence, artificial
experience needs to be added when screening features in advance, and significance tests
must be performed to ensure that accurate input is provided to the prediction model.
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As such, a hybrid prediction model incorporating the artificial empirical Spearman
correlation coefficient method (AESR) and long short-term memory network (LSTM) is
proposed in this study to achieve accurate and stable predictions of exhaust temperature
by using the AESR-LSTM model. Redundant information is eliminated through the Spear-
man correlation coefficient method, and the optimal input is derived by adding artificial
empirical supplementary variables while retaining those with high correlation ratings.
The hyperparameters are usually selected according to experience and then set in the
combination. The combination of cross-validation and grid search methods is used to
avoid the blindness of adjusting parameters. The hyperparameters combination of neural
network is scientifically optimized and adjusted, and the robustness and accuracy of the
prediction model are ensured. After the optimal parameter set is selected by grid search
and cross-validation, the model is trained again using the optimal parameters. The trained
LSTM model is utilized to predict the exhaust temperature and highlight the advantages
of the AESR-LSTM model for data trend prediction compared with other models. The
experimental results of the selected prediction model are consistent with the actual values.
The prediction result of the model can be sent to the console as a feedback signal, and more
convenience and information can be provided to the operator. The predicted results can be
used to analyze the combustion conditions in the combustion chamber. Complex models
do not need to be used to create analysis, and such signals are difficult to obtain by physical
sensors. The predicted trend results can be adopted to analyze the working condition
and emission substances of diesel engines, implement certain avoidance measures before
failure occurs, reduce the risk of accidents, improve the safety of ship systems, and prevent
serious personal injury and economic loss. The AESR-LSTM neural network modeling is
simpler than conventional modeling analysis because the workload of heat load research is
reduced, more comprehensive influencing factors are taken into account, complex changes
in the combustion chamber are predicted by a small amount of experimental data, and
more accurate prediction results are obtained. A new idea is provided in this study, which
combines artificial experience with data driven application in engineering practice.

Accordingly, a method for predicting diesel engine exhaust temperature that integrates
feature selection, parameter combination search, and comparative analysis of multiple
model combinations is proposed in this study. The remainder of this paper is structured
as follows. Methods used and the proposed hybrid prediction system model are briefly
described in Section 2. Relevant data are collected and analyzed in Section 3, and the results
of the proposed system used to predict the thermal load of the combustion chamber of the
marine diesel engine set were displayed, and then the results were compared with those of
other models. Finally, the conclusions of this study are drawn in Section 4.

2. Prediction Method

In this section, data preprocessing method, network model, and optimization method
are introduced, and a method to predict the heat load of marine diesel engine combustion
chamber is proposed. The AESR-LSTM method is developed, which mainly consists of the
Spearman correlation coefficient method and the LSTM network, and is used to predict
heat load.

2.1. Long Short-Term Memory Network

LSTM is a neural network proposed by Hochreiter and Schmidhuber in 1997 [23,24].
This model has been continuously developed to form a systematic and complete frame-
work [25–27]. The LSTM is used in this study to compensate for the limitations of recurrent
neural network (RNN) in dealing with the dependence problem at long distances and to
solve the enlargement of and difficulty in updating partial derivatives W during training.
The internal structure of the LSTM neural unit is shown in Figure 1. The LSTM adds three
thresholds to the framework of the RNN as three logical control units, and the input and
output information of the entire network is controlled and managed by the three thresholds.
The three thresholds are described as follows:
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Figure 1. LSTM structure diagram.

Input Gate: Whether the information is stored in the storage unit is determined by the
threshold and denotes it as it.

Forget Gate: Whether the information stored in the storage unit at the previous time is
stored in the storage unit at the current time is determined by the threshold and denotes it
as ft.

Output Gate: Whether the information in the storage unit at the current moment
enters the hidden state ht is determined by the threshold and denotes it as ot.

Historical information can be saved, read, updated, and reset by the unit; it is the core
of the LSTM unit and is denoted as Ct.

The LSTM neural network at moment t is expressed as follows:

ft = σ(Wf · [ht−1, Xt] + b f ), (1)

it = σ(Wi · [ht−1, Xt] + bi), (2)

ot = σ(Wo · [ht−1, Xt] + bo), (3)

C̃t = tanh(WC · [ht−1, Xt] + bc), (4)

Ct = ft × Ct−1 + it ⊗ C̃t, (5)

ht = ot × tanh(Ct), (6)

where ft, it, ot, and ht are (1), (2), (3), and (6), respectively; Wf, Wi, Wo, and WC denote the
recursive connection weights of the corresponding thresholds; σ is the sigmoid function,
which is the same as the tanh function for the activation in Equations (7) and (8).

σ(x) =
1

1 + e−x , (7)

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x , (8)

The state at the previous point in time needs to be discarded, and the content saved
to the memory unit is determined by the forgetting gate. The sigmoid function is used to
decide whether Ct−1 is cumulatively retained or not. Cumulative retention is achieved
when the sigmoid function is equal to 1 but is absent when the function is equal to 0.

The input gate contains the output ht−1 from the previous moment and the input Xt at
this time, and the sigmoid function is used to control how much to add to Ct. An alternative
C̃t is also created and then the tanh function can be used to control how much to add to
C̃t. The two parts are then multiplied to determine the amount of influence Ct, and the
influence of the forgetting gate is added to obtain the expression for Ct.

The output gate is a sigmoid function that can determine which parts of Ct need to be
output to describe the ot expression. Ct is placed into the tanh function to determine the
final output Ct and then multiplied with ot to obtain the final output ht, which signals the
end of the LSTM work for one moment. How many memory units are forgetten, retained,
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and outputted at each moment are determined and affected by the three thresholds, and
they are finally transferred to the state of this moment at the end.

The prediction results of LSTM model are affected by the learning rate, weights, activa-
tion function, step size, and number of batches in the network. For example, convergence
failure is caused by learning rate being set too high, while consuming a lot of training
time to calculate the optimal value is caused by learning rate being set too low. Problems,
such as gradient explosion and disappearance, can occur when the activation function is
poorly chosen. Therefore, LSTM prediction model needs to be trained, and appropriate
parameters are selected to improve the prediction accuracy.

2.2. Spearman Correlation Coefficient Method

As mentioned above, factors affecting the exhaust temperature are typically influenced
by uncertain dynamic environmental factors. To find them, Spearman correlation analysis
method was adopted by us. The change trend and correlation strength between the two
variables were tested by Spearman’s correlation coefficient method. This method is based
on calculating the difference of each pair of equivalents of two columns of paired ranks as
the basis. If the correlation coefficient between two variables is close to +1 and −1, then
the surface correlation is strong. The Spearman correlation coefficient rp can be expressed
as follows:

rp = 1 − 6∑ d2
i

n(n2 − 1)
, (9)

where n is the sample size, di is the difference of bit values of the ith data pair. The values
of rp are within the range of [−1, 1]. If rp = 1, then the correlation is perfectly positive;
if rp = −1, then the correlation is perfectly negative. The absolute value is used as the basis
to judge the correlation. The strength of correlation between variables is divided into four
categories, as shown in Table 1 [28].

Table 1. Correlation intensity.

Value of r Strength of Relationship

−1.0 to −0.5 or 0.5 to 1.0 Strong
−0.5 to −0.3 or 0.3 to 0.5 Moderate
−0.3 to −0.1 or 0.1 to 0.3 Weak

−0.1 to 0.1 None or very weak

2.3. AESR-LSTM Hybrid Prediction Model

AESR-LSTM hybrid prediction model is proposed to combine Spearman correlation
coefficient method with LSTM network, and artificial experience is added to conduct
exhaust temperature prediction. First, sensor data is analyzed to eliminate overlapping
features. Spearman correlation coefficient method is used to discard redundant information
in the original data because exhaust temperature will be affected by various factors and
there is correlation between various factors. Finally, the variables are supplemented by
artificial experience, and the efficiency of the algorithm and the accuracy of prediction
are improved. The cross-validation and grid search methods are used to optimize the
hyperparameters of the neural network to obtain the optimal combination of parameters
with maximum prediction accuracy. After the optimal parameter set is selected by grid
search and cross-validation, the model is trained again using the optimal parameters.
The overall framework and partial procedures of AESR-LSTM are shown in Figure 2 and
Algorithm 1. The specific modeling steps are presented as follows.

Step 1: The influencing factors related to exhaust temperature are analyzed to collect
relevant time series data Xt on the basis of engineering experience.

Step 2: The training and test sets are divided into pieces in a ratio of 7:3.
Step 3: Data is preprocessed, Spearman correlation coefficient is used for feature

selection to process the original data, redundant information is eliminated, highly corre-
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lated variables are extracted, and variables are supplemented by mechanisms and human
experience to obtain the best input X∗

t .
Step 4: The hyperparameters in the LSTM neural network model are adjusted through

iterative optimization combined with cross-validation and grid search methods to select
the optimal combination of parameters and improve its prediction accuracy.

Step 5: After the optimal parameter set is selected by grid search and cross-validation,
the model is trained again using the optimal parameters.

Step 6: The test set samples are input into the prediction model to predict the combus-
tion chamber exhaust temperature of marine diesel engine sets.

Step 7: The prediction performance of the proposed model is compared with those of
other prediction models.

Figure 2. General Framework Structure.

Algorithm 1 Partial procedures

1: function coeff=mySpearman(X,Y)
2: if length(X)~=length(Y)
3: error(‘Unequal dimensions’);
4: return;
5: end

6: N=length(X);
7: Xrank=zeros(1,N);
8: Yrank=zeros(1,N);
9: for i=1:N
10: cont1=1;
11: cont2=−1;
12: for j=1:N
13: if X(i)<X(j)
14: cont1=cont1+1;
15: elseif X(i)==X(j)
16: cont2=cont2+1;
17: end

18: end

19: Xrank(i) = cont1 + mean ([0:cont2]);
20: end

21: for i=1:N
22: cont1=1;
23: cont2=−1;
24: for j=1:N
25: if Y(i)<Y(j)
26: cont1=cont1+1;
27: elseif Y(i)==Y(j)
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3. Case Study

3.1. Principle Analysis and Data Processing

In a ship, the power source is composed of the main engine and an auxiliary engine.
The auxiliary power system is composed of machinery other than the diesel engine (main
engine), including the fuel system, lubricating oil system, air system, cooling system, and
other mechanical equipment. The main and auxiliary engines work together to propel the
ship, and its composition structure is shown in Figure 3.

Figure 3. Sketch of the composition structure.

On the basis of the mechanism and data of the ship, the heat load of the marine diesel
engine during operation is accurately reflected by the exhaust temperature. The amount,
perfection, and timeliness of fuel combustion in the combustion chamber can be reflected
by the exhaust temperature, as well as the high temperature heating time and brightness of
combustion chamber components. Hence, exhaust temperature can be used to predict the
heat load of diesel engine set.

The exhaust temperature of a single cylinder is predicted as an example in this study to
analyze the trend of heat load variation and the operating performance of the combustion
chamber. The high exhaust temperature of the cylinder is due to poor internal combustion,
which is related to the amount of fresh air in the cylinder, cooler cooling effect, injector
atomization quality, fuel viscosity, and cylinder compression pressure. The sensor is used to
monitor its working condition and collect factors related to exhaust temperature, including
high-temperature cooling, freshwater outlet temperature, cylinder liner cooling water
inlet pressure, piston cooling oil outlet temperature, and fuel pressure after the fuel filter.
Determining the correlation and dependence among these data is important to predict the
exhaust temperature of marine diesel engine sets.

Sensor monitoring data of the Chinese vessel Shanghai Fuhai are used in this study,
which are uploaded every 25 min. The sampled relevant data of initial variables are listed
in Table 2. Field data for two months show that 28,160 pieces of ship data are measured via
the ship’s sensors and constitute the data set, which is randomly divided into training and
test sets at a ratio of 7:3.
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Table 2. Initial Variables.

Number Variable Description Unit

1 T Exhaust temperature ◦C
2 Ta1 Cylinder scavenge box temperature ◦C
3 To1 Diesel engine inlet oil temperature ◦C
4 To2 lubricating oil outlet temperature ◦C
5 Po1 Diesel inlet oil pressure Mpa
6 To3 Main engine inlet oil temperature Mpa
7 Tw1 High temperature cooling fresh water outlet temperature ◦C
8 Pw1 High temperature cooling fresh water inlet pressure Mpa
9 Tw2 Cylinder liner cooling water outlet temperature ◦C

10 Ta2 Pressurized air temperature after cooler ◦C
11 Ta3 Exhaust temperature before supercharger ◦C
12 Tf1 Fuel oil temperature at unit inlet ◦C
13 To4 Outlet temperature of cylinder piston cooling oil ◦C
14 Pf1 Fuel pressure after fuel filter Mpa
15 Pf2 Fuel inlet pressure of main engine Mpa
16 Pw2 Inlet pressure of cylinder liner cooling water Mpa
17 Po2 Pressurizer inlet oil pressure Mpa
18 Ta4 Exhaust temperature after supercharger ◦C
19 NT Turbocharger speed rpm
20 Pa1 Exhaust valve air pressure Mpa

The time series correlation data X′
t associated with the exhaust temperature are col-

lected as follows.

X′
t =

{
Ta1, To1, To2, Po1, To3, Tw1, Pw1, Tw2, Ta2, Ta3, Tf 1, To4, Pf 1, Pf 2, Pw2, Po2, Ta4, NT , Pa1

}
The turbocharger is driven by the inertial impulse of the exhaust gas to drive the

turbine, and then fresh air is pressurized into the cylinder. Thus, overlapping variables
and supercharger front Ta3 and rear Ta4 exhaust temperatures must be eliminated to obtain
time series data as follows.

X′′
t =

{
Ta1, To1, To2, Po1, To3, Tw1, Pw1, Tw2, Ta2, Tf 1, To4, Pf 1, Pf 2, Pw2, Po2, NT , Pa1

}
Spearman correlation coefficient method is used for feature selection of data, and the

input of neural network is determined by the correlation between two factors, as shown
in Figure 4.

Figure 4. Heat map of the correlation matrix.

According to the correlation matrix in Table 1 and the above figure, the correlation
coefficient between the exhaust temperature and To2 is 0.8997. Hence, the turbocharger
lubricating oil outlet temperature is highly relevant to the exhaust temperature. This
finding is consistent with the actual scenario. The viscosity of the lubricating oil will be
affected by the temperature of the lubricating oil and increase the exhaust temperature.
The correlation of the variable Tw2 is 0.8639, and how much heat is taken away from
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the combustion chamber is determined by the outlet temperature of the cylinder liner
cooling water, thereby indicating its sensitivity to changes in the exhaust temperature. The
cylinder liner cooling water inlet pressure and the sweep box temperature are important
factors affecting the exhaust temperature. Six variables with correlations higher than 0.5 are
derived. The significance of their p-values is below 0.001.

If the temperature of the pressurized air after the cooler is excessively high, then the
exhaust temperature rises because the fresh gas entering the diesel engine is cooled by the
cooler after being pressurized by the turbocharger into the combustion chamber. With the
increase in supercharger speed, the increase in exhaust energy is affected by the increase
in exhaust temperature. The reason is that the high-temperature exhaust gas from the
combustion chamber flows through the supercharger. Another factor to be considered is
the fuel pressure after the diesel filter. This refers to whether the faulty filter is reflected by
the fuel pressure. Fuel quality and exhaust temperature can be affected by damaged filters.

The three variables Ta2, NT, and Pf1 mentioned above are all important with a sig-
nificance of less than 0.001, and the predictive variables will be affected, although their
correlations are below 0.5, 0.1117, 0.1863, and 0.3574, respectively. Therefore, these factors
are considered when deriving the final set of variables for the input model as follows.

X∗
t =

{
Ta1, To2, To3, Tw2, Ta2, To4, Pf 1, Pw2, NT

}
3.2. Analysis of Modeling and Prediction Results

On the basis of Spearman correlation analysis, the top nine positively correlated
parameters are selected as model inputs in predicting the target output exhaust temperature
T. The inputs are divided into training and test sets in a ratio of 7:3 given the impact of
data volume on learning ability in the data drive. A combination of grid search and
tenfold cross-validation methods is applied to improve the prediction performance of the
model. The number of times to calculate the set of hyperparameters X = {X1, X2, . . . , Xn} is
Πi = 1

i = n|hi|, where (i = 1, 2, . . . ) and hi is the number of hyperparameter values. Five
parameters are selected in this study to set the hidden layers, hidden units, training rounds,
learning rate, and batch size of the LSTM prediction network. The change trend of the loss
function is affected by five super parameters, which are divided into two groups. See the
change in loss function under the change in hyperparameters.

The influence of the number of units and learning rounds of the five-layer neural
network on RMSE is shown in Figure 5. With the increase in the number of learning rounds,
the RMSE decreases first and then increases, and the RMSE of 100 units is generally lower
than that of other units. From Figure 6, we can see that the loss function is affected by
different hidden layers. Usually, higher values are caused by the low learning rate of 0.001.
Among the 0.01 learning rate and 0.005 learning rate, the number of hidden layers of five
layers is better than other layers.

Figure 5. Influence of Unit Number and Learning Round Number on RMSE.
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Figure 6. Influence of hidden layer on RMSE.

In the process of hyperparameters optimization, the combination with low RMSE
value is selected as the best hyperparameters combination. Some adjustment results of
cross-validation grid search optimization are shown in Table 3 below.

Table 3. Cross-Validation grid search optimization and tuning results.

Learning
Rate

Hidden
Layers

Hidden
Units

Training
Rounds

Batch Size RMSE

0.01 4 150 200 128 27.82
0.005 5 50 400 64 27.92
0.001 4 150 200 256 34.25
0.005 3 150 300 128 26.44
0.001 3 50 300 64 33.35
0.005 4 100 200 64 26.35
0.01 5 100 300 128 25.21
0.001 3 100 300 64 30.48
0.01 5 50 200 256 29.15
0.001 4 50 400 128 32.19

After optimization, the best hyperparameter combination of RMSE is obtained. The
hyperparameter candidate values and optimal values of the prediction model LSTM are
shown in Table 4 below.

Table 4. Candidate and optimal sets of hyperparameters for the LSTM model.

Hyperparameter Name Hyperparameter Values
Example of Optimal

Hyperparameter Values

Learning rate {0.01, 0.005, 0.001} 0.01
Hidden layers {3, 4, 5} 5
Hidden units {100, 150, 200} 100

Training rounds {100, 200, 300} 300
Batch size {64, 128, 256} 128

After the optimal parameter combination is selected, the training set is input into the
LSTM model for training. At the same time, discard technology is introduced to prevent
the model from over fitting. The training curve and training relative error scatter diagram
are shown in Figures 7 and 8 below. From the figure, we can see that the predicted value
basically coincides with the actual value in the training, and the error in the training finally
approaches the zero line.
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Figure 7. Model training result curve.

Figure 8. Relative error of model training.

The test set is fed into the trained model for exhaust temperature prediction. The
prediction results are illustrated in Figure 9. The strong generalization ability of the
prediction model is reflected by the consistency between the predicted and measured
temperature values. The results of the selected forecasting model are subsequently analyzed
by comparison with those of traditional forecasting methods, as described in detail below.

Figure 9. Model prediction outcomes.
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3.3. Multimodel Comparative Analysis

In this study, Spearman correlation coefficient method and LSTM network are com-
bined to predict a time series data. Other prediction models are input into the same data
set, and the results of other prediction methods are compared with the results of the pro-
posed methods for further analysis. The results of each prediction model are shown in
Figures 10 and 11.

Figure 10. Comparison of prediction results.

    
(a) (b) (c) (d) 

Figure 11. The forecasting and actual temperature for different models: (a) Training and test results
of AESR-LSTM, (b) Training and test results of SR-LSTM, (c) Training and test results of LSTM, and
(d) Training and test results of BP.

From Figure 10, the prediction curve (red line) of AESR-LSTM model with human
experience is closer to the true value (blue line). As can be seen in Figure 11, except for a
few predicted outliers, the system’s scatter plot of forecasting and actual values is closest to
the diagonal, which indicates that the difference between the forecasting value and actual
value is the smallest.

At the same time, several commonly used evaluation indicators were cited to further
verify the prediction performance of the AESR-LSTM model. The prediction performance
of the four models is used for comparison, as shown in Table 5.

Table 5. Evaluation indicators.

Indicators Formula

Mean absolute error (MAE) 1
N

N
∑

i=1

∣∣∣Tri − Tpi

∣∣∣
Mean absolute percentage error (MAPE) 100%

N

N
∑

i=1

∣∣∣ Tri−Tpi
Tri

∣∣∣
Root-mean-square error (RMSE)

√
1
N

N
∑

i=1
(Tri − Tpi)

2
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N is the number of predicted values, Tri is the original data value, Tpi is the predicted
value. The prediction performance of the prediction model is indicated by the value of
MAPE, MAE and RMSE. The MAPE, MAE, and RMSE of the four models were calculated
separately to reflect the goodness of the prediction model through the indexes. Figure 12
shows the values of the four prediction models the evaluation indexes. The error bars in the
figure represent 95% confidence intervals. The mean absolute percentage, mean absolute,
and root-mean-square errors of the proposed AESR-LSTM model are 0.089, 10.5403, and
27.5408, respectively, and the best indicators among several prediction models. The feature
inputs selected by the improved AESR-LSTM model are better than those obtained by
traditional methods for data trend prediction, so the method optimization is effective.

(a) (b) (c)

Figure 12. Comparative results histogram of model evaluation metrics: (a) MAPE value histogram of
different models, (b) MAE value histogram of different models, and (c) RMSE value histogram of
different models.

4. Conclusions

According to the data set collected in the marine cabin system, an AESR-LSTM data
trend prediction model with artificial experience is constructed in this study. The model
can be used for heat load prediction, fault detection, and diagnosis of marine diesel engines.
Spearman correlation coefficient method is used to collect relevant raw data for feature
selection, and the optimal input is selected by artificial empirical and significance check.
The cross-validation and grid search methods are combined, and the hyperparameters are
adjusted scientifically to avoid the randomness of the validation set. After the optimal
parameter set is selected by grid search and cross-validation, the model is trained again
with the optimal parameters, and the test set data is input into the training model to obtain
the prediction results. The findings are subsequently compared and analyzed with those of
other prediction models.

(1) The Spearman correlation coefficient method incorporating artificial experience
was proposed to select features on the basis of operational monitoring data collected from
the sensors. The correlation, redundancy, and significance of variable sets are analyzed
separately, and the nine monitoring characteristic parameters with the maximum influence
on the exhaust temperature are selected. Data-driven analysis and human experience are
combined to provide optimal input features for the predictive models.

(2) The LSTM prediction model is trained with parameter tuning in combination with
cross-validation grid search to obtain the prediction and evaluation metrics. The results
and indicators of several models were compared. The results show that predicted value of
AESR-LSTM are closest to the true value, and its evaluation indicators MAPE, MAE and
RMSE are the best, which are 0.089, 10.5403, and 27.5408, respectively.

(3) The shortcomings of only using a single method can be overcome by the fusion of
multiple methods, and the data can be scientifically and effectively screened to improve the
effectiveness of the model in data prediction and fault diagnosis of marine diesel engines.
Thus, the hybrid algorithm model is stable, and the error tolerance of the prediction results
is reduced.
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(4) The proposed method is based on the mechanism and data of the ship. All factors
that may cause thermal load failure of the diesel engine are taken into account and can
be used to analyze and refer to the working performance of the marine diesel engine.
The prediction data can achieve effective fault detection and maintenance of ships for
the implementation of preemptive corrective measures before ship failure, prevent ship
downtime due to damaged components caused by excessive heat load, improve fuel
economy and equipment reliability of ship diesel engines, and reduce economic losses.

A novel method combining artificial experience and data-driven is proposed. The
selected optimal feature set is input into the model for prediction, and the better prediction
results are obtained. As such, a feasible extended method of machine learning in marine
diesel engine thermal load prediction and fault diagnosis is provided. Future research
can focus on the optimization of methods, better operation parameter combination will be
obtained through data mining techniques, and independent fault detection system will be
developed to provide more convenience and information for ship operators.
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Abstract: UAVs have shown great potential application in persistent monitoring, but still have
problems such as difficulty in ensuring monitoring frequency and easy leakage of monitoring path
information. Therefore, under the premise of covering all monitoring targets by UAVs, it is necessary
to improve the monitoring frequency of the target and the privacy protection of the monitoring
intention as much as possible. In response to the above problems, this research proposes monitoring
overdue time to evaluate the monitoring frequency and monitoring period entropy in order to evalu-
ate the ability to ensure monitoring privacy protection. It then establishes a multi-UAV cooperative
persistent monitoring path planning model. In addition, the multi-group ant colony optimization
algorithm, called overdue-aware multiple ant colony optimization (OMACO), is improved based
on the monitoring overdue time. Finally, an optimal flight path for multi-UAV monitoring with
high monitoring frequency and strong privacy preservation of monitoring intention is obtained.
The simulation results show that the method proposed in this paper can effectively improve the
monitoring frequency of each monitoring node and the privacy preservation of the UAV monitoring
path and has great significance for enhancing security monitoring and preventing intrusion.

Keywords: persistent monitoring; privacy protection; path planning; monitoring frequency;
overdue time

1. Introduction

For the purposes of public safety, environmental protection, scientific research, etc.,
people need to observe, measure and collect information in certain areas over a long time,
and then make decisions based on the results of these observations, measurements and
collection. This is generally called a persistent monitoring problem [1–3]. Monitoring
in person or by hand is usually constrained by weather, geography, working hours and
labor costs, and intelligent equipment can greatly overcome the above deficiencies of
human based monitoring. Unmanned aerial vehicles (UAV) are examples of one of these
typical intelligent monitoring devices. Because they are free of human intervention and
offer stable flight, a wide range of motion, and low cost, UAVs are often used to perform
persistent monitoring tasks [4], target detection and tracking [5], and border patrols [6].
This research mainly studies the UAV path planning problem when they are used in
persistent monitoring.

With the emergence of various complex environments and complex tasks, a single UAV
will find it hard to meet the requirements of increasingly complex inspection operations.
Consequently, there has been extensive research on multi-UAV cooperation. Compared
with single-UAV operation, multi-UAV cooperation has demonstrated greater advantages.
For example, multi-UAV cooperation [7,8] can obtain more comprehensive and wide infor-
mation and can realize multi-angle monitoring of the target area. However, such problems
as cooperation strategy, inconsistent monitoring frequency, unsynchronized monitoring
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information, and unsafe monitoring strategies still exists for multi-UAV cooperation. The
task decisions of multi-UAV persistent monitoring have become popular issues in the
application field of UAVs.

The multi-UAV persistent monitoring problem can be divided into two levels. One
level is the monitoring frequency constraint, and the other is the persistent monitoring
security, i.e., monitoring privacy preservation. The above two levels correspond to the two
so-called modes of UAV persistent monitoring. One is the regular monitoring mode, that is,
the route planned for the UAV to minimize the time delay between each adjacent visit of
the task nodes and to improve their monitor frequency as much as possible. The other is the
adversarial monitoring mode, which is to plan uncertain, unpredictable and non-periodic
monitoring paths for UAVs in order to prevent any intelligent intruders from detecting
the monitoring regularity [9]. If the monitoring frequency constraint is considered as the
only criterion, the monitoring path is usually a certain periodic path. Once an intelligent
intrusion appears in the monitoring environment, the privacy of the UAV monitoring
intention cannot be protected, and the monitoring task is easily destroyed by intelligent
intruders. On the other hand, when only the security of persistent monitoring is considered,
it may be difficult to satisfy the monitoring frequency requirements of each node due
to excessive consideration of path privacy security. Therefore, it is of great theoretical
significance and practical value to study the joint optimization problem of monitoring
frequency and privacy protection.

Portugal [10] reviewed the multi-robot cooperative patrol algorithms that has been
studied in recent years and pointed out that a distributed, non-deterministic and coopera-
tive strategy represents the future trend. Alamdari [11] studied the persistent monitoring
problem of a single robot. The optimization goal is to minimize the revisit duration of
the given monitoring tasks. Two approximate algorithms with complexity O(log ρG) and
O(log n) were proposed, respectively. Elmaliach [12] studied the patrol problem in a closed
area and proposed the patrol frequency optimization criterion for the first time, and each
point in the area should be repeatedly visited by multiple robots. Smith [3,13] studied
persistent monitoring problems in discrete and continuous environments, and established
two optimization models, aiming to enhance the monitoring frequency. Wang [14] studied
the persistent monitoring problem of multiple UAVs and established a mathematic model
based on the optimization of the maximum environmental recognition accuracy, which
was then solved by a heuristic algorithm. Kalyanam [15] studied a similar problem, i.e.,
UAV data collection, allowing UAVs to visit some targeted location with high priority more
than once in a single cycle. An optimization by maximizing the average period reward
was formulated, and the precise solution combining dynamic programming and mixed
integer linear programming was achieved. Subsequently, considering the scalability of
the algorithm and improving its efficiency, an approximate solution was proposed for the
nodes with specific visiting times [16]. Von [17] also discussed the algorithm scalability
where a genetic algorithm was used to obtain the approximate solution that showed better
scalability than a precise method through experiments. Scherer [18] studied a multi-UAV
cooperative path planning problem with monitoring data transport for the purpose of
minimizing the time delay between data being captured by UAVs and the arrival of the
data at the base station. Hari [19] considered the monitoring frequency constraint and
set the fixed horizon to a given number, k, which assumes that the UAV can only access k
nodes in each cycle. However, once there exists an intelligent intrusion in the monitoring
environment, the monitoring privacy will have already been destroyed. The above persis-
tent monitoring studies considered monitoring frequency constraints, but only focused on
the monitoring performance or coverage rate of the given area [20] and did not consider
monitoring security issues in an adversarial environment.

With regard to the concern for monitoring security, one also needs to consider how
easy the monitoring strategy can be acquired by intelligent intruders. The privacy of the
persistent monitoring process is of great concern, especially in some applications where
intelligent adversaries or intruders might occur. At present, there are at least two ideas in
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the field of monitoring security. One is to improve the existing deterministic strategy for
the path planning problem and use random algorithms instead, such as Markov chains,
or random walk theory. The other is to establish a game model and a balance scheme
between the competing players. Agmon [21] proposed a Markov strategy, which is a
polynomial-time algorithm, and their research is motivated by reducing the probability
of being invaded at a weak task position as much as possible. Entropy has also been
introduced in path planning [22]. For example, George [23] and Duan [24] studied the
entropy rate maximization problem based on Markov chains. Stackelberg game theory was
used by Basilico [25] to formulate an optimal solution to the path planning problem for a
single robot on a security patrol, while assuming only one intruder. Security game theory
has been proposed for the study of the persistent monitoring path planning problem in
ecological protection [26]. The main motivation for their study on patrol and monitoring
strategies is to obtain an unpredictable trajectory, which was finally obtained through
maximum entropy.

With the aforementioned observations, some studies on persistent monitoring path
planning only concern the complete coverage rate, and some studies consider the moni-
toring frequency, but the final paths often fall in a fixed monitoring period which makes
the monitoring regularity completely exposed to intrusions. The other study considers
monitoring security, but they still do not consider monitoring frequency constraints. To
bridge the gap between the monitoring frequency and monitoring security, this study will
comprehensively consider both sides simultaneously, that is, improving monitoring path
privacy while increasing monitoring frequency. The main contributions of this paper are
as follows:

• Considering monitoring frequency and path privacy, this study shows how to for-
mulate a multi-UAV cooperative persistent monitoring path planning problem with
multiple constraints based on the monitoring of overdue time and of monitoring
period entropy.

• A multi-group ant colony optimization algorithm, called overdue-aware multiple ant
colony optimization (OMACO), is proposed to obtain an optimal flight path for UAV
cooperation. The heuristic function and pheromone update method are improved
based on the monitoring delay time and overdue time. In addition, a target exclusive
mechanism and greedy strategy are proposed for ant node selection.

• Simulation experiments are carried out in complete and incomplete environments to
verify the effectiveness and advantages of the designed algorithm. The simulation
results show that the algorithm proposed in this paper can effectively improve both
the monitoring frequency and the monitoring privacy protection.

2. Multi-UAV Cooperative Persistent Monitoring Path Planning Model

2.1. Problem Description

As the monitoring environment changes and the node quantity increases, computer
resources onboard are often insufficient when performing persistent monitoring tasks in
the stand-alone operation mode. As a result, the waiting time of nodes increase, causing
some nodes to monitor overdue. Compared with a single drone, a drone group performing
persistent monitoring tasks will face huge challenges. For example, each node will maintain
a parameter that represents how long it has been waiting since its last monitoring. Once any
drone visits a node position and completes that monitoring, the waiting-time parameter
maintained by this node will be cleared— demonstrating a rigid nonlinearity. Other diffi-
culties include collision avoidance between multiple drones, information synchronization,
and collaborative work between drones.

This study focuses only on the multi-UAV cooperative path planning problem of
persistent monitoring. A graph model is used to describe the distribution of the candidate
nodes, i.e., G = (V, E), where V = {1, 2, . . . , N} represents the nodes set, N represents the
total number of nodes, and E =

{
eij, ∀i, j ∈ V

}
represents the edges set of G. The UAV set
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is MUAV = {1, 2, . . . , M}, where M is the total number in the given UAV group, M << N.
Here are some assumptions about the background of this study.

(1) For safety and efficiency purposes, the same nodes cannot exist for multiple drones
at the same time. This means that different UAV are permitted to monitor the same node
on different time.

(2) Without loss of generality, all UAVs fly with a constant speed, v.
(3) After a UAV accesses a node, the waiting time of the node is cleared, and all other

UAVs need to be notified to ensure information synchronization.
This research tries to find the optimal flight path of a UAV group, so that the path

meets the requirements of high monitoring frequency and strong monitoring path privacy.

2.2. Discretization of the Graph

Persistent monitoring needs to consider UAV movement synchronization. In order to
solve the problem, a discrete approximation operation is introduced on the graph G. Several
virtual nodes are inserted in an approximately uniform way to the edges of G leading to a
discretized graph that includes many more edges of equal intervals, denoted by δ. This
operation encourages good behavior in which any UAV will certainly move forward from
its current node position to its neighbor node in G instead of staying between nodes at time
step k. This is called UAV movement synchronization. Consequently, nodes can be divided
into two categories, one is the task node set, V, which requires monitoring and the other is
the virtual node set, U, which is generated during discrete approximation operation and
does not to be monitored. The complete node set, called a generalized node set, is denoted
as V′ = V ∪ U = {1, 2, . . . , N + |U|}. It should be emphasized that all virtual nodes in U
are not real monitoring tasks, so they do not need to record their monitoring delays. The
final adjacency matrix of G is A ∈ R

(N+|U|)×(N+|U|), where any element aij is binary. aij = 1
indicates that node i and j are adjacent to each other, otherwise aij = 0.

2.3. Multi-UAV Collaborative Monitoring Constraints

Let K denote the maximum length of the monitoring horizon. Let the binary variable
matrix Ym ∈ R

K×(N+|U|) denote whether a node is monitored by UAV m, m ∈ MUAV . For
∀i ∈ V′, the element ym

k,i = 1 represents that the node i is monitored by UAV m at time k,
and ym

k,i = 0 represents that the node i is not monitored by UAV m at time k. Ym represents
the monitoring of all nodes by UAV m in the entire monitoring time horizon.

Let the binary variable matrix X ∈ R
K×(N+|U|) represent whether a node is monitored

by any UAV in the group, where the element xk,i = 1 represents that there is at least one
UAV monitoring node i at time k, and the element xk,i = 0 represents that node i is not
monitored by any UAV at time k. The matrix X stands for the monitored situation of all
nodes in the monitoring time horizon, and can be obtained by combining all Ym, m = 1, 2,
. . . , M. The relationship between X and Ym is X = Y1 ∪ Y2 . . . ∪ YM. The constraints are
as follows:

xk,i =

⎧⎪⎪⎨⎪⎪⎩
0, if

M
∑

m=1
ym

k.i = 0,

1, otherwise, i.e.,
M
∑

m=1
ym

k.i = 1
(1)

where i ∈ V, k ∈ {1, 2, . . . , K}
M

∑
m=1

ym
k.i ≤ 1, i ∈ V′, k ∈ {1, 2, . . . , K} (2)

K

∑
k=1

xk,i ≥ 1, i ∈ V (3)

N+|U|
∑
i=1

xk,i = M, k ∈ {1, 2, . . . , K} (4)
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Equation (2) indicates that at any time k, a node is monitored by, at most, one UAV,
that is, multiple UAVs cannot appear at the same location at the same time. Equation (3)
indicates that within the monitoring horizon K, each node must be visited at least once.
Equation (4) indicates that a UAV only has one position at a certain time k.

2.4. UAV Motion Constraints

Assuming that the initial moment k=1, all the UAVs need to start from the same given
initial node Sm ∈ V. The following constraints are satisfied:

ym
1,Sm

= 1, m ∈ MUAV (5)

At the same time, the UAV m cannot visit the same node in two adjacent time steps:

ym
k,i + ym

k+1,i ≤ 1, i ∈ V, k ∈ {1, 2, . . . , K − 1}, m ∈ MUAV (6)

2.5. The Waiting Time Constraint of the Task Node

Let F ∈ R
(K−1)×N represent the whole task nodes’ waiting time, in which the element

is fk,i ≥ 0. In the interval between time step k-1 to k, all UAVs select a candidate node
from their individual neighbor according to a certain movement strategy. After that, the
waiting time of almost all nodes increases by one unit time except the arrived node i which
is exactly a task node. That is, i ∈ V. The waiting time corresponding to the arrived node i
will be cleared. Therefore,

fk,i =

{
0 , i ∈ V, k = 1
(1 − xk,i)( fk−1,i + c), i ∈ V, k ∈ {2, 3, . . . , K} (7)

where c is a unit time constant, which represents the time consumed by the UAV when
passing through each edge interval. This specific value is related to the accuracy of the
discretization operation.

2.6. Min–Max Optimization for Multi-UAV Cooperative Monitoring
2.6.1. UAVs Monitoring Overdue Time Evaluation

Let the maximum monitoring interval of a task node i between two adjacent monitor-
ing events be the expected period of the node, denoted by Ti, i ∈ V. Ideally, for any time k,
the waiting time of node i should not exceed its expected period. That is

0 ≤ fk,i ≤ Ti, i ∈ V, k ∈ {1, 2, . . . , K} (8)

However, in practical applications, since the number of UAVs is far less than the
quantity of the task nodes, it is inevitable that some nodes’ monitoring will be overdue.
The overdue time can be expressed as fk−1,i + c − Ti. Define the real monitoring period of
the task node as P ∈ R

K×N :

pk,i =

{
0, i ∈ V, k = 1
xk,i( fk−1,i + c), i ∈ V, k ∈ {2, 3, . . . , K} (9)

The above equation indicates that when the UAV arrives at node i at time step k,
i.e., xk,i = 1, the real monitoring period of this node is fk−1,i + c. Otherwise, pk,i have no
definition and it will be assigned to zero. Therefore, the maximum monitoring period of
the task node i in the entire monitoring horizon is:

max
k∈{1,2,...,K}

pk,i (10)
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Then, the maximum overdue time of the task node i caused by exceeding its expected
period Ti can be expressed as:

max
{

0, max
k∈{1,2,...,K}

(pk,i − Ti)

}
(11)

The following objective, J1, is proposed for optimization by minimizing the normalized
maximum overdue time of all task nodes.

min
Y,F

J1 = max
i∈V

(
1
Ti

max
{

0, max
k∈{1,2,...,K}

(pk,i − Ti)

})
(12)

2.6.2. UAVs Monitoring Path Privacy Criterion

As long as any UAV accesses a task node, its waiting time will be cleared. Therefore,
it is necessary to evaluate the privacy of the monitoring path based on the actual visiting
period of all task nodes. Since the uncertainty of the monitoring period indirectly reflects the
monitoring privacy, this study proposes the concept of monitoring period entropy (MPE)
which refers to the uncertainty when the UAV returns to the task node for monitoring
again. The larger the MPE, the higher the randomness of the monitoring period. Define
a vector p̃i =

{
pk,i

∣∣pk,i > 0, k = 1, 2, . . . , K
}

to represent the vector composed of all the
monitoring cycles of task node i in the entire monitoring horizon. The length of the vector,
p̃i, is lp̃i

= ∑K
k=1 xk,i. Define the monitoring period entropy of node i as:

H( p̃i) = −
lp̃i

∑
j=1

P( p̃i(j)) log P( p̃i(j)) (13)

where P( p̃i(j)) is the probability that the jth element in vector p̃i. One should note that
H( p̃i) is always positive. The minimum monitoring period entropy among all task nodes is:

min
i∈V

H( p̃i) (14)

Therefore, in order to improve the randomness of the monitoring period, the optimiza-
tion objective is designed to maximize the entropy of the smallest monitoring period among

all task nodes, namely max
Y,F

(
min
i∈V

H( p̃i)

)
. This criterion is also equivalent to the reciprocal

of the minimum monitoring period entropy (because H( p̃i) is a positive number), so the
following optimization objectives can be designed:

min
Y,F

J2 =
1

min
i∈V

H( p̃i)
(15)

The dimension of the multi-UAV path solution Y is K × (N + |U|), and the algorithm
time complexity of the calculation for the monitoring of overdue time and the evaluation of
path privacy is O(n2).

2.6.3. Multi-UAV Persistent Monitoring Path Planning Model

The optimization problem of multi-UAV cooperative persistent monitoring path plan-
ning is expressed as follows:

min
Y,F

J = wJ1 + (1 − w)J2

s.t. (1)− (8)
(16)

where w ∈ (0, 1) represents the weight coefficient, which will balance between the perfor-
mance of overdue time and path privacy.
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3. Improved Multi-Group Ant Colony Optimization Algorithms Based on Monitoring
Overdue Time

From the perspective of reducing monitoring overdue time and improving path pri-
vacy, this section designs an improved ant colony optimization (ACO) algorithm based on
the monitoring of overdue time, called an overdue-aware multiple ant colony optimization
algorithm. Major improvements include the aspects:

• A greedy strategy for node selection is proposed, in which the ant colony heuristic
function is modified using the expected period of the task nodes.

• Ant colony pheromone is updated based on monitoring overdue time and monitoring
period entropy.

• A target exclusion mechanism is proposed to improve the utilization rate of multi-UAV
in cooperative monitoring.

3.1. Heuristic Function Based on Monitoring Expectation Period

In order to increase the monitoring frequency and reduce the visiting delay of each
task node, the improved heuristic function, ηij, is as follows:

ηij =
1

Tjdij
(17)

where dij represents the distance between node i and j. Comparing with the traditional
heuristic function in ACO, Equation (17) takes into account the expected period (Tj) of the
neighbor task nodes, which is helpful in reducing its monitoring overdue time.

3.2. Target Exclusion Mechanism

When multiple UAVs perform tasks at the same time and do not consider the path
privacy issue, multiple UAVs will be evenly distributed on the minimum Hamiltonian
cycle of the graph [25]. The ants select generalized nodes (task nodes or virtual nodes
are both possible) depending on stochastic probability. Therefore, there is a slim chance
that the UAV follows its previous UAV when selecting its next node, which results in
some nodes being monitored frequently while other task nodes are missed for a long
time. Consequently, monitoring overdue events happen. In order to prevent UAVs from
following synchronically, this research proposes a target exclusion mechanism, as shown in
Figure 1.

n

n

n
n

Figure 1. Target exclusion mechanism.

As an example, when UAV1 in Figure 1 selects node n2 as the candidate task node,
UAV1 exclusively occupies node n2 and the node n2 will be locked. However, UAV2, which
is currently located at node n4, cannot select the locked node as its candidate. Only one of
n1 and n3 will be chosen as the UAV1’s next waypoint. The target exclusive mechanism can
fundamentally solve the UAV following problem.
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3.3. Greedy Strategy for Node Selection

This section proposes a greedy strategy, which can help UAV select the optimal node
among its neighbors. The strategy is motivated by the idea that the greater the overdue
time of the ant’s adjacent node j is, the greater the probability that node j will be selected
by the ants in the next step. First calculate the overdue time of all adjacent nodes. Since
some adjacent nodes may not be overdue, the calculated overdue time by fk−1,j + c − Tj is
possibly negative and inconvenient to compute the transition probability. Therefore, this
research constructs a pseudo-overdue time, Rj(t), which is guaranteed to be positive.

Rj(t) = fk−1,j + c − Tj + T0, ∀k ∈ P (18)

where j represents the adjacent node of the current node. T0 represents the upper bound
of the expected period of all monitoring nodes. Usually, it can be calculated by T0 =
maxi∈V{Ti} offline.

The transition probability is not only related to the overdue time of its neighbor node,
but also related to the adjacency constraints, exclusive flags, and pheromone distribution of
the ants’ current adjacent nodes. The improved ant transition probability pz

ij is as follows:

pz
ij =

⎧⎪⎪⎨⎪⎪⎩
τα

ij (t)η
β
ij(t)Rj(t)aij(1−oj)

∑
s∈allowz

τα
is(t)η

β
is(t)Rs(t)ais(1−os)

, j ∈ allowz

0 , other

(19)

where i is the current node of the ant whose adjacent node is denoted by j. α and β stand
for the importance factor of the pheromone and the heuristic function, respectively, τij(t)
represents the pheromone concentration on the edge eij after the optimization of each ant at
the t-th iteration. aij stands for the adjacency relationship between node i and j, oj represents
the exclusive state of the node j, z ∈ {1, 2, 3, . . . , Z} represents the ant number, z is the ant
quantity, and allowz represents the set of nodes that the ant z can visit next time. After the
transition probability of the ants is calculated, the roulette method is used to select the next
node according to the maximum probability.

3.4. Pheromone Update Based on Monitoring Overdue Time and Monitoring Period Entropy

The traditional ant colony algorithm updates the pheromone mainly based on the
path length that ants travelled. In order to promote the evolution of the ant colony to the
direction with the smallest cost function value, this study updates the pheromone according
to the optimization objective (16).

τij(t + 1) = (1 − ρ)τij(t) +
Z

∑
z=1

Δτz
ij (20)

Δτz
ij =

{
Q
Jz

, ant z from node i to node j
0 , other

(21)

where ρ ∈ (0, 1) represents the pheromone volatile factor. Δτz
ij represents the pheromone

concentration released by the ant z on the edge between node i and j in the current iteration.
Q is a constant, representing the total pheromone amount released by the ants at one time,
and Jz represents the path cost of the ant z calculated according to (16).

To sum up, the scheme of the proposed OMACO algorithm is shown in Figure 2. The
steps are as follows in Algorithm 1:
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Algorithm 1: Overdue-aware multiple ant colony optimization (OMACO).

Step 1: Initialization (node quantity N, adjacency matrix A, ant quantity Z, maximum iterations
Nc, pheromone importance factor α, heuristic function importance factor β, pheromone volatility
factor ρ, pheromone quantity Q, and maximum monitoring horizon K, weight parameter w).

Step 2: Discretization of the graph.
Step 3: Calculate the target exclusion set O0.
Step 4: Calculate the ant transition probability pz

ij according to (19).
Step 5: Select the next node according to the roulette method, and update the node waiting

time fk,i.
Step 6: Update the ant’s taboo table.
Step 7: Update the target exclusive flag oi.
Step 8: Calculate the monitoring overdue time and monitoring period entropy according to (11)

and (13).
Step 9: Update pheromone according to (20) and (21).
Step 10: Determine whether the iteration reaches the maximum iterations. If so, the procedure

ends; otherwise, go to Step 3.

iter iter 

 
Figure 2. Flowchart of the OMACO algorithm.

4. Simulation Experiments and Discussions

In this section, simulation experiments are carried out for multi-UAV persistent moni-
toring tasks in complete and incomplete environments to evaluate the path planning model
and solution algorithm proposed in this study.

4.1. Algorithm Feasibility Analysis

Assume that three UAVs perform tasks in a complete environment containing 10 task
nodes with known locations to be monitored, which are labeled as numbers in Figure 3.
Task nodes and virtual nodes are illustrated by red and green dots, respectively. The
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blue solid lines represent adjacency relationships within the graph. All the simulation
parameters are listed in Table 1. The expected periods of the task nodes are shown in Table 2.
All simulation examples in this paper are implemented on a computer with Matlab R2020a
installed and the system configuration is Intel Core i7-9750H, 2.59 GHz, 16 GB RAM.

Figure 3. Discretization of a completely connected graph.

Table 1. Simulation parameters.

Parameters Value Notes

v 8 m/s UAV speed
δ 40 m interval for discretization
Z 15 ant quantity
c 5 s constant

Nc 200 maximum iteration
α 1.2 pheromone importance factor
β 4 heuristic function importance factor
ρ 0.3 pheromone volatility factor
Q 10 pheromone quantity
K 500 monitoring Horizon
w 0.6 weight parameter

Table 2. Expected period of 10 task nodes.

Node 1 2 3 4 5 6 7 8 9 10

Ti (s) 370 380 350 375 365 390 380 380 375 360

Figure 4 shows the persistent monitoring flight path of the three UAVs obtained by
the proposed method in this paper, where the x-axis represents the time, and the y-axis
represents the node that the UAV arrived at the corresponding time step. The solid line
represents the UAV flight path consisting of passing nodes.
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Figure 4. The persistent monitoring path obtained by the OMACO algorithm.

Figure 5 shows the expected period and the actual monitoring period of the task
nodes. It can be seen that the actual monitoring period of all task nodes is less than
the expected period, which indicates that the monitoring process of the UAV meets the
monitoring frequency requirements of all nodes. Figure 5 also shows that each node has
been visited multiple times in the monitoring horizon, obtaining multiple actual monitoring
periods which are all lower than their expected periods, i.e., meeting the monitoring
frequency requirements.

Figure 5. The actual monitoring period of task nodes obtained by the OMACO algorithm.

More importantly, the actual monitoring period of each node is different, that is,
the waiting time when each node is monitored has a good random distribution. The
simulation shows that the method proposed in this paper can cover all monitoring nodes,
meet the monitoring frequency requirements, and also improve the privacy protection of
the monitoring path.

4.2. Comparative Analysis with Traditional ACO

In order to evaluate the performance of the proposed OMACO algorithm, this section
compares the optimization ability of OMACO and the traditional ACO. Figure 6 shows the
monitoring path solved by the traditional ACO with the same parameters to Section 3.1.
Different from Figure 4, the path sequences (node 6 → 7 → 9) repeat up to eight times in
Figure 6, and the UAV3 trajectory (blue) between steps 450 and 500 can be seen following by
UAV1 (red). This leads to the same monitoring period and is very harmful to the monitoring
privacy protection. However, the UAV path in Figure 4 has no obvious repetitive path
or circular trajectory, and there is no UAV following the other. Therefore, compared
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with the traditional ACO, the proposed OMACO algorithm can obtain better privacy
protection performance.

Figure 6. The persistent monitoring path obtained by ACO algorithm.

Figure 7 shows the actual monitoring period obtained by using the traditional ACO.
There exist many nodes that have been monitored overdue many times, resulting in
the waiting time of the task node frequently exceeding the expected period. Therefore,
the proposed OMACO algorithm is superior to the traditional ACO in improving the
monitoring frequency.

Figure 7. The actual monitoring period of each node obtained by ACO algorithm.

Table 3 shows a detailed comparison between OMACO and ACO on each task node
monitoring data. Based on the proposed OMACO algorithm, most task nodes have been
visited more times than that of ACO. Therefore, the average visit number is higher than the
traditional ACO. Correspondingly, the average actual period will decrease and be less than
ACO. Also, it is found that the ACO algorithm is not appropriate for our problem because
the node No.10 exceeds its upper bound.

Figure 8 shows the iterative curves of the objective functions obtained by OMACO
and ACO, and the related data are shown in Table 4. In the first iteration, the algorithm
designed in this research has a lower value of objective function than ACO. This is because
the waiting time of the task node has already been considered by OMACO when calculating
the transition probability based on the greedy strategy. In fact, the node selection strategy
has been optimized before the initial ant path. The traditional ACO only relies on the
heuristic function and pheromone to decide the node transition probability. Consequently,
the pheromone is equal on all path segments in the initial iteration which leads to a
randomly path generated.
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Table 3. Monitoring results comparison between OMACO and ACO.

Node
Number of Visits Average of Actual Monitoring Period

OMACO ACO OMACO ACO

1 12 12 198.33 198.75
2 9 7 253.33 350.00
3 14 8 167.14 278.75
4 11 8 232.50 286.25
5 12 9 204.17 242.22
6 9 15 260.00 165.00
7 10 12 220.00 188.33
8 9 7 266.11 335.00
9 11 15 219.09 166.33

10 14 6 170.00 365.00 *
Average 11.1 9.9 219.07 257.56

Figure 8. The objective function iteration curves of the two algorithms.

Table 4. Solution comparison between OMACO and ACO.

OMACO ACO

Iterations 4 28
Minimum Cost 0.433 0.814

The OMACO algorithm gets the optimal solution of 0.433 in the 4th iteration while
the traditional ACO only obtains the optimal solution of 0.814 in the 28th iteration. Since
the OMACO algorithm introduces the overdue time for optimization, it is significantly
better than the ACO in terms of reducing the monitoring overdue time and improving the
monitoring path privacy.

4.3. Algorithm Scalability Analysis

This section demonstrates the simulation experiments with three UAVs performing
persistent monitoring in an incomplete environment which contains 15 task nodes. Other
parameter settings are the same as in Section 3.1. Figure 9 shows the environment topology
where 15 task nodes connected incompletely will be persistently monitored by the UAVs.
The expected period of 15 nodes is shown in Table 5.
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Figure 9. Incomplete environment including 15 task nodes.

Table 5. Expected period of 15 task nodes.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti (s) 700 750 1050 950 950 850 950 850 700 850 850 750 700 700 750

In order to further evaluate the scalability of the OMACO algorithm, the algorithm is
tested in the incomplete environment and the results are shown in Figures 10 and 11. It
can be seen that the OMACO algorithm can obtain the optimal path of the UAV swarm in
an incomplete environment, satisfying the objective that the actual monitoring period of
each node be not higher than the expected period. It can be concluded that the OMACO
algorithm can solve the problem of UAV flight paths in different monitoring environments,
satisfying the requirements for monitoring overdue events and monitoring privacy.

Figure 10. The monitoring path in incomplete environment obtained by OMACO algorithm.
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Figure 11. The monitoring period in an incomplete environment obtained by OMACO algorithm.

5. Conclusions

This research has studied the problem of multi-UAV persistent monitoring path
planning from the perspective of monitoring privacy protection, reducing monitoring
overdue events, and improving the privacy protection of the monitoring trajectory. A
multi-UAV path planning mathematical model was established based on the monitoring
overdue time and monitoring period entropy. Based on the overdue time, the heuristic
function, transition probability and pheromone update, the strategy of the traditional
ACO is improved. The simulation results show that the proposed OMACO algorithm can
solve the optimal UAV flight path efficiently in both complete and incomplete monitoring
environments and has better performance than ACO. This study is promising for the
prevention of intelligent intrusions while meeting the requirements of regular monitoring.

However, as the complexity of the monitoring environment increases, there may be
adversarial targets destroying monitoring tasks, and the privacy protection requirements
may be more stringent. Subsequent consideration will be given to localize adversarial
objects cooperatively while executing persistent monitoring assignments.
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Abstract: This paper presents a method of altitude control of the powered parafoil with uncertainties
and disturbances based on sliding-mode backstepping control combined with a linear extended
state observer (LESO). First, the dynamics of a powered parafoil is derived in the longitudinal
plane using its inclination angle. The problem of altitude control is converted to the issue of angle
control. Next, uncertainties and disturbances are considered as a total disturbance. An LESO is
used to estimate the total disturbance and form an inner-loop compensation. Backstepping control is
employed to regulate the inclination angle to follow the desired value. A fractional sliding surface is
introduced to the backstepping control. This ensures the transient performance of altitude control
of the powered parafoil. Then, stability analysis shows that the observation errors of the LESO
are bounded and the control system is uniformly ultimately bounded. Simulation results of an 8
degree-of-freedom powered parafoil illustrate that the LESO can effectively estimate the states of the
system and demonstrate the validity and the superiority of the presented method.

Keywords: powered parafoil; altitude control; sliding mode backstepping; fractional calculus; LESO

1. Introduction

The powered parafoil is a prevalent new type of air vehicle with a flex wing [1,2].
Because the engine is equipped with the payload, compared with traditional parafoils, the
powered parafoil not only can glide but also cruise and climb, which traditional parafoils
cannot perform [3–5]. The powered parafoil has been applied to paragliding sports, supply
airdropping, pesticide spraying, and airport demisting, to name but a few, due to its
excellent maneuverability [6]. In recent years, the control of powered parafoils has become
a research hotspot. Compared with the horizontal control of traditional parafoils, the
altitude control of powered parafoils has received extensive attention and has been a
challenge because of its complex aerodynamics characteristics.

Many strategies have been proposed to control the altitude of powered parafoils. Yang et
al. analyzed the flight performance of altitude control and derived the longitudinal model
of a powered parafoil [7]. Aoustin and Martinenko designed a nonlinear control law for a
powered parafoil based on partial feedback linearization to track a desired trajectory in the
longitudinal plane [8]. Chen et al. presented a precise-gain method to handle the problem
of longitudinal motion control of a powered parafoil [9]. The backstepping control was first
employed to control the altitude of a powered parafoil using its lateral model [10]. Then, a
fuzzy backstepping control was extended to improve the control performance of the altitude
control based on a variable-gain scheme [11]. Tan et al. proposed an altitude-tracking control
method for a powered parafoil using the coefficient adaptive control and the characteristic
model of the parafoil [12]; however, the specification of the guidance was not provided. Zhu
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et al. presented a spatial path-tracking control of a powered parafoil using the guidance theory
combined with the linear active disturbance control (LADRC) [13].

The above-mentioned methods mainly used a simplified model of powered parafoils
to design a controller. However, this may impose limitations on control performance
as there exist strong nonlinearities and complex model couplings in powered-parafoil
systems. Although Tan and Zhu employed methods of the characteristic model and LADRC
that do not rely on the precise model of a powered parafoil to remove the limitations,
it increases the complexity of the system design and brings difficulty in analyzing the
stability of control systems. The sliding mode control (SMC) is a commonly used method
for the aircraft [14,15]; however, the control is susceptible to system uncertainties and
disturbances. How to effectively suppress disturbances and improve the robustness of a
control system is one of the key points in system design [16,17]. On the other hand, the
fractional-order theory [18,19] is widely used in industrial control systems. A fractional
calculus operator shows good robustness for systems with uncertainties and external
disturbances due to its hereditary and memorability.

This paper presents an alternative way to address the problem of the altitude control of
a powered parafoil using the fractional sliding-mode backstepping control combined with
a linear extended state observer (LESO). First, the inclination angle model of a powered
parafoil is derived according to the guidance law. The altitude control of the powered
parafoil is converted into the issue of the inclination angle control. Then, an LESO is
used to estimate system uncertainties and exogenous disturbances. A fractional dynamic
sliding-mode surface is introduced into the backstepping control to improve the transient
performance of the altitude tracking. A stability criterion is derived to guarantee that
virtual control variables and the error of system states are bounded. Finally, the validity
of the presented method is demonstrated by simulation results of an 8-degree-of-freedom
powered parafoil.

The rest of the paper is organized as follows. Section 2 derives the inclination angle
model of the powered parafoil according to the guidance law. Section 3 explains the design
algorithm of the control system based on the fractional sliding-mode backstepping control
(FSMBC) combined with an LESO. Section 4 analyzes the stability of the control system.
Section 5 shows the validity of the method through simulation results. Section 6 gives some
concluding remarks and points out future work.

2. Dynamics of Powered Parafoil and Problem Formulation

Figure 1 shows the structure of a powered parafoil and its three coordinate frames,
that is, OdXdYdZd represents the earth reference frame, OsXsYsZs represents the parafoil
reference frame, and OwXwYwZw represents the payload reference frame. The transforma-
tion between the earth reference frame and the parafoil reference frame is achieved through
three Euler angles

[
ψ θ φ

]T; that is, ψ denotes the yaw angle, θ denotes the pitch angle,
and φ denotes the roll angle.

The study in this paper focuses on the altitude control of a powered parafoil that
involves the relative motion between a parafoil and a payload. The dynamics model is
established according to the Kirchhoff motion equation. The specific modeling process and
model parameters can be found in [20].

The inclination angle σ of the powered parafoil is defined as the angle between the
velocity and the horizontal plane, shown as

σ = arctan

(
−ż√

ẋ2 + ẏ2

)
, (1)

where
[
x y z

]T is the position vector in the earth reference frame.
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Figure 1. The structure of the powered parafoil and coordinate frames.

Lemma 1 ([13]). The vertical error eh between the powered parafoil and the desired point pp is
global uniformly asymptotically stable and local exponential stable, if the inclination angle of the
powered parafoil changes with the following guidance law

σd = arctan
(

eh
kh

)
, (2)

where eh = Hd − H and kh is an adjustable parameter. Hd and H are the desired altitude and actual
altitude of the powered parafoil, respectively.

According to Lemma 1, the altitude control of the powered parafoil can be converted
to the control of the inclination angle.

The velocity transformation from the parafoil frame to the earth frame can be de-
scribed as ⎡⎣ẋ

ẏ
ż

⎤⎦ = Rp−e

⎡⎣us
vs
ws

⎤⎦, (3)

where
[
us vs ws

]T is the velocity vector in the parafoil frame and the transformation matrix

Rp−e =

⎡⎣cos θ cos ψ sin φ sin θ cos ψ − cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ
cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ − sin φ cos ψ
− sin θ sin φ cos θ cos φ cos θ

⎤⎦. (4)

If the motion of the longitudinal plane is considered, then it is easy to obtain

vs = 0, y = 0, ψ = 0, φ = 0. (5)
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Substituting (4) and (5) into (3) yields

ẋ = us cos θ + ws sin θ, (6)

ż = −us sin θ + ws cos θ. (7)

Choose the inclination angle σ of the powered parafoil as the state variable of the
system. According to (1), (6), and (7), the first derivative of σ is

σ̇ = θ̇ +
u̇sws − usẇs

u2
s + w2

s
. (8)

Let fs be the derivative of u̇sws−usẇs
u2

s+w2
s

. The second derivative of σ is obtained as

σ̈ = θ̈ + fs. (9)

For the altitude control of the powered parafoil, the only control variable that affects
the flight velocity is the thrust u provided by the power propulsion. According to the
nonlinear dynamics model of the powered parafoil [20], the thrust control variable is
coupled in fs, which increases the difficulty in the design of the controller. To facilitate the
design of the control system, the control variable should be separated out. Rewrite (9) as

σ̈ = θ̈ + fs − bu + bu

= f + bu,
(10)

where f = θ̈ + fs − bu is viewed as a total disturbance.
The state space model of the dynamics of σ is obtained as

ẋ1 = x2

ẋ2 = f + bu

x1 = σ.

(11)

The main objective of this study is to minimize the error of the inclination angle despite
of the influence of system uncertainties of the dynamics model and external disturbances
on the system. In the next section, a new control scheme is proposed to handle this issue.
The LESO is used to estimate uncertainties and disturbance. A fractional sliding-mode
backstepping control law is devised to improve control performance and the stability of
the system.

3. Design of Control System

In this section, a method of FSMBC with LESO is proposed for the altitude control of a
powered parafoil. The configuration of the control system of the powered parafoil is shown in
Figure 2, which consists of guidance-based path following, FSMBC, LESO, and the powered
parafoil. The outer-loop is a guidance loop, from where the desired inclination angle (2) is
obtained according to altitude signals. The inner-loop is the control loop of the inclination angle.
FSMBC is adopted, and LESO is used to observe and eliminate the total disturbance.

Figure 2. Configuration of the control system of the powered parafoil.
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3.1. Design of LESO

Assume ḟtotal = h. Rewrite (11) as

Ẋ = A1X + B1u + B2h, (12)

where A1 =

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦, B1 =
[
0 b 0

]T, B2 =
[
0 0 1

]T, X =
[
x1 x2 f

]T. Con-

struct an LESO as
˙̂X = A1X̂ + B1u + L

(
X − X̂

)
, (13)

where X̂ =
[
x̂1 x̂2 f̂

]T is the estimated value of X and L is the gain matrix of LESO,
which is given by

L =

⎡⎣l1 0 0
l2 0 0
l3 0 0

⎤⎦. (14)

Let ẽ represent the estimated error of the LESO. We have

ẽ = X − X̂. (15)

According to (12), (13), and (15), the following differential equation with respect to ẽ
can be obtained as

˙̃e = A2ẽ + B2h, (16)

where A2 = A1 − L.
Assume that h is bounded, namely there exists a positive constant M1 such that

|h| ≤ M1. The estimated error of the LESO is always bounded, that is, there exists a positive
constant M2 such that ||ẽ|| ≤ M2 holds [21].

3.2. Design of Fractional Sliding Mode Backstepping Control

The estimated states x̂1 and x̂2 of the LESO are used in the design of fractional sliding-
mode backstepping control. Define the tracking error of the inclination angle as

e1 = σd − x̂1. (17)

Calculating the derivative of (17) yields

ė1 = σ̇d − ˙̂x1

= σ̇d − x̂2.
(18)

Define an auxiliary error e2 as

e2 = x2d − x̂2. (19)

where x2d is a virtual control variable. It is easy to obtain

ė1 = e2 + σ̇d − x2d. (20)

According to the error system, let the virtual control variable satisfy

x2d = σ̇d + k1e1, (21)

where k1 ∈ R+ is the feedback gain.
To avoid differential explosion, the algorithm of dynamic surface control is employed. De-

signing a low-pass filter and passing the virtual control variable x2d through it yield

T ˙̂x2d + x̂2d = x2d, x̂2d(0) = x2d(0), (22)
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where T is the time constant of the filter and x̂2d is the filtered virtual control variable. Define
the filter error as

x̃2d = x̂2d − x2d. (23)

Calculating the derivative of (23) along (22) yields

˙̃x2d = ˙̂x2d − ẋ2d

= − 1
T

x̃2d − (σ̈d + k1 ė1)

= − 1
T

x̃2d + B(σ̈d, ė1),

(24)

where B(σ̈d, ė1) is a function about σ̈d and ė1. There exists a positive constant BM such that
|B| ≤ BM [22]. Substituting (21) into (20) yields

ė1 = e2 − k1e1. (25)

Choose a Lyapunov candidate to be

V1 =
1
2

e2
1. (26)

It is easy to obtain

V̇1 = e1 ė1 = e1(e2 − k1e1) = e1e2 − k1e2
1. (27)

In this study, the methodology of the sliding surface and the backstepping control is
used to ensure that e1 and e2 converge quickly. Moreover, the fractional calculus operator is
employed to improve transient performance in the design of a sliding mode surface, which
is denoted by

s = λ1e1 +a Dα
t e2. (28)

where λ1 is the sliding surface gain and aDα
t is the calculus operator

aDα
t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dα

dtα
Re(α) > 0

1 Re(α) = 0∫ t

a
d(τ)−α Re(α) < 0.

(29)

In (29), α is the order of the operator and can be used to adjust transient performance
of the control system. For simplicity of implementation, we choose the Caputo fractional
calculus [23–25]

aDα
t f (t) =

1
Γ(m − α)

∫ t

a

f m(τ)

(t − τ)1+α−m dτ, m − 1 < α < m, (30)

where Γ(·) is Gamma Function, Γ(η) =
∫ ∞

0 e−ttη−1dt and m is the least integer that is not less
than α. The fractional differential operation is transformed to the particular form of integral
operation; therefore, the fractional calculus has the heritability and the memorability. To simplify
the notation, let Dα represent 0Dα

t . This should not cause confusion.
In order to make the system state converge to the sliding-mode surface and further

weaken the chattering of the system, the fractional reaching law is designed as

Dβs = −εsgn(s), (31)
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where ε is a positive constant. According to the properties of fractional calculus, we have

ṡ = D1−β(−εsgn(s)). (32)

Taking the derivative of the fractional sliding-mode surface yields

ṡ = λ1 ė1 + Dα ė2. (33)

Choose a Lyapunov candidate to be

V2 = V1 +
1
2

s2. (34)

Calculating the derivative of V2 gives

V̇2 = V̇1 + sṡ

= e1e2 − k1e2
1 + s(λ1 ė1 + Dα ė2)

= e1e2 − k1e2
1 + s

(
λ1 ė1 + Dα

( ˙̂x2d − f − bu
))

.

(35)

The control law is designed to be

u =
1
b

(
˙̂x2d − f̂ + D−α

(
λ1 ė1 + ks + D1−βεsgn(s)

))
, (36)

where k is a positive adjustable parameter.

4. Stability Analysis

Theorem 1. The errors of the system (11) with the control law (36) are uniformly ultimately
bounded, if the parameter k < 1 and the time constant of the filter T < 2.

Proof of Theorem 1. Assume there exists a positive definite matrix P such that AT
2 P +

PA2 = −I. Construct a Lyapunov function

V =
1
2

e2
1 +

1
2

s2 +
1
2

x̃2
2d + ẽTPẽ. (37)

Substituting (36) into (35) yields

V̇ = e1e2 − k1e2
1 + s

(
f̂ − f − ks − D1−βεsgn(s)

)
+ x̃2d ˙̃x2d + 2ẽTP ˙̃e. (38)

A proper selection of the gain L ensures that the error dynamics of the LESO is stable.
Thus, it is reasonable to assume that f̂ ≈ ftotal . Then, rewrite (38) as

V̇ = e1e2 − k1e2
1 − s

(
ks + D1−βεsgn(s)

)
+ x̃2d ˙̃x2d + 2ẽTP ˙̃e

= e1e2 − k1e2
1 − ks2 − sD1−βεsgn(s) + x̃2d ˙̃x2d + 2ẽTP ˙̃e

= e1e2 − k1e2
1 + (1 − k)s2 − s2 + sṡ + x̃2d ˙̃x2d + 2ẽTP ˙̃e.

(39)

Let e12 =
[
e1 e2 Dαe2

]T, and choose a symmetric matrix Q

Q =

⎡⎣k1 + (k − 1)λ2
1 −0.5 (k − 1)λ1

−0.5 0 0
(k − 1)λ1 0 k − 1

⎤⎦ (40)

to make
eT

12Qe12 = −e1e2 + k1e2
1 − (1 − k)(λ1e1 + Dαe2)

2

= −e1e2 + k1e2
1 − (1 − k)s2

(41)
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hold. Substituting (41) into (39) yields

V̇ = −eT
12Qe12 − s2 + sṡ + x̃2d ˙̃x2d + 2ẽTP ˙̃e. (42)

Calculating the determinant of Q gives

|Q| = −0.25(k − 1). (43)

It can be seen that k should satisfy k < 1 to guarantee that |Q| > 0 holds. Thus
−eT

12Qe12 < 0 holds and there exists a positive constant μ such that the inequality

V̇ ≤ −μe2
1 − s2 + sṡ + x̃2d ˙̃x2d + 2ẽTP ˙̃e (44)

is satisfied.
Assume ṡ is bounded and |ṡ| ≤ SM, where SM is a positive constant. According to

Yong’s inequality, it is easy to obtain

x̃2d ˙̃x2d = − 1
T

x̃2
2d + x̃2dB

≤ − 1
T

x̃2
2d + |x̃2dB|

≤ − 1
T

x̃2
2d + |x̃2d|BM

≤ − 1
T

x̃2
2d +

1
2

x̃2
2d +

1
2

B2
M

(45)

and
sṡ ≤ 1

2
s2 +

1
2

ṡ2

≤ 1
2

s2 +
1
2

S2
M.

(46)

According to (16), we have

2ẽTP ˙̃e = 2ẽTP(A2ẽ + B2h)

= −ẽTẽ + 2ẽTPB2h

≤ −ẽTẽ + 2M1M2||PB2||.
(47)

Substituting (45)–(47) into (44) yields

V̇ ≤ −μe2
1 −

1
2

s2 −
(

1
T
− 1

2

)
x̃2

2d − ẽTẽ +
1
2

S2
M +

1
2

B2
M + 2M1M2||PB2||. (48)

Assume 1
T − 1

2 > 0. Then, let τ = min
{

2μ, 1, 2
T − 1, 1

λmax(P)

}
, where λmax(P) denotes

the maximum eigenvalue of P. Rewrite (48) as

V̇ ≤ −τV + υ, (49)

where υ = 1
2 S2

M + 1
2 B2

M + 2M1M2||PB2||.
Solving the differential inequality (49) yields

V ≤ υ

τ
+
[
V(0) +

υ

τ

]
e−τt. (50)

This indicates that V is uniformly ultimately bounded.
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It can be concluded that |e1| ≤
√

2υ
τ , |s| ≤

√
2υ
τ , |x̃2d| ≤

√
2υ
τ , ||ẽ|| ≤

√
υ

λmin(P)τ
,

where λmin(P) denotes the minimum eigenvalue of P. All signals in the powered-parafoil
control system are uniformly ultimately bounded. This completes the proof.

5. Simulation Verification

Simulation results of the altitude control of an 8-degree-of-freedom powered parafoil
were used to verify the validity of the presented method. The main structure parameters of
the powered parafoil are shown in Table 1. Simulation results are compared with LADRC
and SMC in [13].

Table 1. Structure parameters of the powered parafoil.

Paremeter Value/Unit

Span 10.5/m
Chord 3.1/m

Aspect ratio 3
Area of canopy 33/m2

Length of lines 6.8/m
Rigging angle 10/deg

Mass of canopy 10/kg
Mass of payload 80/kg

Characteristic area of drag of payload 0.6/m2

The bandwidth parameterization method was used to design the gain of the LESO.

l1 = 90, l2 = 2700, l3 = 2700.

The time constant of the filter was selected to be T = 0.025 s.
The parameters of the designed fractional sliding mode backstepping controller were

designed to be

λ1 = 0.16, k1 = 0.02, k = 0.015, α = 0.82, β = 0.36, ε = 0.01.

The saturation of the control input was considered. The maximum thrust provided by
the engine was limited to 400 N.

The initial altitude of the powered parafoil was set to be 2000 m and the desired
altitude Hd was set to be 1970 m. A gust disturbance (2 m/s) along the negative direction
of the Z axis was added to the system during 100–115 s, which is shown in Figure 3.

Figure 4 shows the observed results of the LESO. The outputs of the observer can
effectively observe each state of the system. For comparison, simulations for the LADRC
and the SMC in [13] were also carried out. The design of the LADRC and the SMC was
the same as that in [13]. Figure 5 shows the attitude angles of the powered parafoil in
the longitudinal plane for the three methods. The pitch angles remained at 9o after the
powered parafoil entered the steady-state. The pitch angles oscillated violently when the
parafoil suffered from the gust disturbance. It can be seen that the transient performance is
better for the parafoil with FSMBC than for that with other two methods.
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Figure 3. The gust disturbance.
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Figure 4. Observed results of LESO.
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Figure 5. Simulation results of the pitch angle.

Figure 6 illustrates the simulation results of the altitude control. The altitude of the
powered parafoil with the FSMBC stabilized at 1970 m after 13 s. The convergence time
was less than that of the LADRC and SMC. Moreover, the recovery speed against the
disturbance is faster for the FSMBC than for the LADRC and SMC. Compared with other
two control methods, there exists about 1.4 m steady-state error for the SMC due to the
lack of ESO. It can be seen from Figure 7 that the thrust input for the FSMBC stabilizes at
18 s, and the convergence speed is faster than that for the LADRC and SMC. It is obvious
that the thrust input for the FSMBC is smoother than that for the LADRC and SMC. This is
beneficial to energy saving and system stability. The SMC used a traditional integer order
sliding surface, which caused the thrust input fluctuated. The specific performance indexes
are shown in Table 2.
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Figure 6. Simulation results of altitude control by LADRC, SMC, and FSMBC.
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Figure 7. Thrust inputs for LADRC, SMC, and FSMBC.

Table 2. The performance indexes of the control system.

FSMBC LADRC SMC

Transient time of the altitude 13 s 16 s 18 s
Steady-state error 0.00 m 0.00 m 1.44 m

Transient time of the thrust 18 s 29 s 35 s
Settling time under disturbance 16 s 20 s 28 s

The variable altitude control of the powered parafoil were also considered. The desired
altitude changed from 1970 m to 1960 m at 50 s. Simulation results are shown in Figures 8–11.
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Figure 8. Observed results of LESO for variable altitude control.
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Figure 9. Simulation results of the pitch angle for variable altitude control.
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Figure 11. Thrust inputs for LADRC, SMC, and FSMBC for variable altitude control.

Figure 8 shows the observed results of the LESO for variable altitude control. The
simulation results of pitch angles are shown in Figure 9. When the desired altitude changed
to 1960 m, the altitude of the powered parafoil decreased accordingly and the pitch angle
deviated from the steady-state value. When the altitude approached to the desired value,
the pitch angle returned to the previous steady-state value. Figure 10 shows that the
transient performance is better for the FSMBC than for the LADRC and SMC. The settling
time is 8 s for the FSMBC and 11 s for the LADRC and SMC. Figure 11 shows that the thrust
input for the SMC vibrates more violently than that of the LADRC and FSMBC during the
transient response. The proposed method, that is, FSMBC, achieved good rapidity and
smoothness. The performance indexes are shown in Table 3. The transient times of the
altitude and the thrust are the same as in Table 2.

Table 3. The performance indexes of the control system for variable altitude control.

FSMBC LADRC SMC

Steady-state error 0.00 m 0.00 m 1.47 m
Settling time of variable altitude 8 s 11 s 11 s

According to the two simulation experiments, due to the lack of ESO, SMC cannot
observe and compensate the total disturbance of the system such that there exists the
steady-state error. FSMBC adopts the fractional sliding-mode surface such that dynamic
characteristics are better than LADRC and SMC, and the control curve is smoother due to
the fractional reaching law.

6. Conclusions

This paper addressed the problem of the altitude control of the powered parafoil. The
dynamic model of the powered parafoil was derived and converted into the second-order
model of the inclination angle. The LESO was devised to estimate the unmodeled dynamics
and the exogenous disturbance. Consequently, the estimate was used for compensation
in the control law. The fractional sliding-mode surface was employed in the design of
the backstepping design to improve the transient performance of the altitude control.
The stability criterion of the control system was derived using the Lyapunov method.
Simulation results demonstrated the validity and the superiority of the presented method.
It was shown that the control performance was better for the FSMBC than for the LADRC
and SMC. However, only longitudinal control problem of the powered parafoil was studied
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in this paper without considering the coupling problem in the horizontal plane. Future
work will be focused on the horizontal orientation control of the powered parafoil.
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Abstract: Flexible-joint manipulators (FJMs) have been widely used in the fields of industry, agricul-
ture, medical service, aerospace, etc. However, the FJMs in practical applications inevitably encounter
various uncertainties including matched and mismatched disturbances. In this paper, we consider the
high precision tracking control problem of FJMs in the presence of unknown lumped matched and
mismatched disturbances. An efficient model-assisted composite control approach is proposed by
integrating two reduced-order extended state observers (RESOs), a second-order command filtered
backstepping (SCFB) technique and an error compensation dynamic system. Unlike some existing
methods, the RESOs constructed with partial known model information are capable of estimating and
compensating the matched and mismatched disturbances simultaneously. In addition, by employing
the SCFB with an error compensation system, the proposed approach can not only overcome the
problem of “explosion of complexity” inherent in backstepping, but also reduce the filtering errors
arising from the command filters. The stability of the resulting control system and the convergence of
error signals are guaranteed by Lyapunov stability theory. Comparative simulations are conducted
for a single-link FJM with both matched and mismatched disturbances, and the results show that
the proposed approach achieves a better tracking performance, i.e., compared with conventional
backstepping method and adaptive fuzzy command filtered control method, the tracking accuracy is
improved by 99.5% and 99.2%, respectively.

Keywords: flexible-joint manipulators; reduced-order extended state observer (RESO); backstepping;
command filter; error compensation

1. Introduction

The last decades have witnessed a tremendous progress in the development of flexible
manipulators. Roughly speaking, the flexible manipulators can be divided into flexible-link
manipulators (FLMs) [1,2] and flexible-joint manipulators (FJMs) [3–5]. In this paper, we
focus on the study of FJMs, whose joints are made up of harmonic reducer, torque sensor,
and other elastic components. The FJMs usually exhibit many distinctive features, such
as light weight, good flexibility, high human-robot interaction safety, etc. As a result, they
have a wide application prospect in the fields of industry, agriculture, medical service,
aerospace, and so on [6,7]. However, the flexible joints are easy to produce elastic vibrations
during the movements, especially in high-speed operations, which greatly affect the control
accuracy of FJMs. In addition, the model of FJMs in practical applications may contain
various nonlinear uncertainties including matched and mismatched disturbances. If these
uncertainties are ignored in the control design, the performances of the controllers will be
deteriorated [8]. Therefore, the study on vibration suppression of FJMs in the presence of
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uncertainties with a high precision control has attracted great attentions in both control
theory and engineering community.

In the past decades, many effective control methods have been proposed for the control
of FJMs, e.g., fuzzy control [9,10], singular perturbation control [11–13], feedback lineariza-
tion control [14,15], backstepping control [16–19], etc. Among them, the backstepping
control is a Lyapunov function-based recursive design method, which constructs control
Lyapunov functions step by step and designs intermediate virtual control laws recursively
until the actual control law is reached. However, it suffers from the drawback of “explosion
of complexity”, that is, the derivatives of virtual control laws designed in the procedures
need to be computed repeatedly. To solve this problem, a dynamic surface control (DSC)
was proposed in Ref. [20], where a first-order low-pass filter was introduced in each step
to obtain the derivative of the virtual control law instead of taking the derivative directly.
Based on the DSC technique, several adaptive control schemes [21–23] were proposed
for the single-link FJMs with unknown nonlinearities, and a DSC backstepping-based
impedance controller was designed in Ref. [24] for a 5-DOF flexible joint robot. However,
these results do not consider the potential errors caused by the filters. Furthermore, the
derivatives of virtual control laws in DSC are actually approximated through numerical
differentiations, which may amplify the noise and reduce the control accuracy.

To avoid numerical differentiations, a second-order command filtered backstepping
(SCFB) method was proposed in Refs. [25,26]. It obtains the derivatives of the virtual
control laws through integrations instead of differentiations, which can not only avoid the
problem of “explosion of complexity”, but also simplify the controller design. With the
SCFB technique, an adaptive neural tracking controller was designed in Ref. [27] for
uncertain robotic manipulators, and an adaptive fuzzy controller was proposed in Ref. [28]
for a two-link robotic manipulator. Furthermore, regarding the filtering errors produced
by command filters, two improved SCFB controllers were designed in Refs. [29,30] for
FJM systems, where two error compensation mechanisms were constructed to reduce the
filtering errors. Unfortunately, most of the above mentioned methods do not consider the
practical uncertainties that may exist in the control of FJMs.

To cope with uncertainties, intelligent control methods including neural networks
(NNs) and fuzzy logic systems (FLSs), which are well-known for their universal approxi-
mation abilities, have been widely utilized for uncertain FJMs. For example, the uncertain
model of FJMs was approximated by a Radial Basis Function (RBF) neural network in
Ref. [31], on the basis of which an adaptive observer and DSC controller were developed.
Similarly, an FLS was employed in Ref. [32] to approximate the unknown functions, and an
adaptive fuzzy tracking controller was designed. However, both the NNs and the FLSs re-
quire complex online learning mechanisms, which are computationally expensive. Sliding
mode control, which is famous for its insensitivity to uncertainties, has also been applied in
the control of FJMs [33–36], but the phenomenon of chattering cannot be avoided.

Observer-based technique is an alternative to deal with uncertainties, which estimates
the uncertainties by designing a state/disturbance observer. In Ref. [37], a high gain
observer-based robust output feedback control approach was proposed for a single-link
FJM with matched disturbances and parametric uncertainties. In Ref. [38], a nonlinear
disturbance observer (NDO) based DSC approach was proposed for the FJM with input
saturation and unknown nonlinear disturbance, where the NDO was applied to estimate
the unknown external disturbance and compensate the saturation constrain. However, only
matched disturbances were considered in these control methods. Extended state observer
(ESO), which regards internal and external disturbances as an extended system state vari-
able, is another effective and practical disturbance estimation and attenuation approach [39].
As for FJMs in the presence of disturbances, an ESO-based feedback linearization control
method was proposed in Ref. [40], and a cascaded-ESO based sliding-model control strat-
egy was proposed in Ref. [41]. However, the conventional ESO is only applicable for
integral chain systems, which should satisfy the so-called matching conditions. Although
the ESOs in Refs. [40,41] can transform a mismatched disturbance into a matched one, they
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require a series of complex coordinate transformations, which make the control algorithms
computationally complicated. In addition, the order of the constructed ESOs is greater than
the system. For high-order systems like the FJM, it may bring about some negative effects
of the high gain action, such as noise amplification and the peaking phenomenon [41].

Unlike conventional ESO, the reduced-order ESO (RESO) [42], which makes full use
of the measurable system state information, can attenuate the peaking phenomenon and
yield a better estimation performance. More importantly, the RESO can be applied to
non-integral chain systems with matched and mismatched disturbances. Due to these
advantages, the RESO has been widely used for the control of various engineering systems,
such as missiles [43], gear-shifting actuators [44], underwater vehicles [45], DC-DC buck
converters [46], all-clamped plates [47], etc. However, the application of RESO on FJMs has
not been reported.

Based on the above literature review and analysis, it is noted that there are still many
crucial problems worthy of being further investigated in the control of FJMs, which can be
summarized as follows.

(1) The FJMs in practical applications inevitably encounter various uncertainties including
matched and mismatched disturbances. Unfortunately, the current researches focus on
the matched disturbances, while the mismatched ones are not considered. Although
the conventional ESO can transform a mismatched disturbance into a matched one,
it requires a series of complex coordinate transformations, which make the control
algorithms computationally complicated;

(2) The backstepping technique employed for the control design of FJMs suffers from the
drawback of “explosion of complexity”. Although the DSC or SCFCB can deal with
the computation problem, the potential errors caused by the introduction of filters are
not considered, which may greatly reduce the tracking accuracy.

Motivated by the above considerations, this paper aims to propose an efficient model-
assisted composite control approach for the high precision tracking control of FJMs in the
presence of lumped matched and mismatched disturbances by integrating the techniques
of RESO and the SCFB. More specifically, the uncertain model of a single-link FJM is
first given, where all the uncertainties affecting the system including friction/damping
terms and external disturbances are lumped as matched and mismatched disturbances.
Then, two model-assisted RESOs are constructed to estimate the matched and mismatched
disturbances in real time. On the basis of the estimation values from the RESOs, a feedback
controller is derived by using the recursive backstepping methodology, where three second-
order command filters (SCFs) are incorporated to overcome the problem of “explosion of
complexity”. In addition, an error compensation dynamic system is designed to reduce the
filtering errors caused by the SCFs. By utilizing Lyapunov stability theory, it rigorously
proves that all the error signals in the closed-loop control system are uniformly ultimately
bounded, and converge to a small neighbourhood of the origin. Numerical simulations
with comparisons to existing methods are finally presented to verify the effectiveness and
efficiency of the proposed approach.

The novel features and main contributions of this paper are highlighted as follows.

(1) The RESOs constructed with partial known model information are capable of esti-
mating and compensating the matched and mismatched disturbances simultaneously.
This is much different from the existing ESO-based methods where complex coordi-
nate transformations are required to convert a mismatched disturbance into a matched
one. The developed control algorithm is thus robust and efficient;

(2) The inherent complexity problem of backstepping is addressed by employing the
SCFB control, where the derivatives of the virtual control laws are obtained through
integrations instead of differentiations. The transient control performance of the
controller is thus improved;

(3) The potential filtering errors caused by the command filters are taken into account,
and they are reduced by the error compensation dynamic system, which improves the
steady-state tracking control accuracy.
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The remainder of this paper is organized as follows. The dynamic model of a single-
link FJM with disturbances and the corresponding control problem are presented in
Section 2. The detailed control design including two RESOs, a backstepping controller, and
an error compensation system is given in Section 3. The stability of the resulting control
system is analysed in Section 4. Simulation results are presented in Section 5 to verify the
effectiveness and efficiency of the proposed approach. The concluding remarks are finally
discussed in Section 6.

2. Problem Formulation

This paper studies the control problem of an FJM with one flexible joint and one rigid
link, whose physical model is shown in Figure 1.

Figure 1. Physical model of a single-link FJM.

The parameters and variables in Figure 1 are given as follows: q and θ represent the
angles of the link and the motor shaft, respectively; u is the control torque generated by
the motor; g is the acceleration of gravity; M, K and L are the mass of the link, the spring
stiffness of the flexible joint, the distance between the flexible joint, and the mass centre
of the link, respectively; I and J are the rotational inertia of the rigid link and the motor,
respectively.

According to the Euler–Lagrangian equation, the mathematical model of the single-
link FJM is obtained as [16,48]:{

Iq̈ + K(q − θ) + MgL sin q = w1
Jθ̈ − K(q − θ) = u + w2

(1)

where w1 and w2 are the lumped disturbances including system friction/natural damping
terms and unknown external disturbances.

Define x = [x1, x2, x3, x4]
� = [q, θ, q̇, θ̇]� as the state variable, and y as the output of

the system, then the state-space equation of model (1) is written as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ1 = x2
ẋ2 = x3 + g1(x) + d1
ẋ3 = x4
ẋ4 = 1

J u + g2(x) + d2

y = x1

(2)
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where
g1(x) = −x3 − K

I
(x1 − x3)− MgL

I
sin x1

g2(x) =
K
J
(x1 − x3)

d1 =
1
I

w1

d2 =
1
J

w2

(3)

Note that the terms g1(x) and g2(x) are straightforwardly derived from (1), and they
are treated as nominal functions of the FJM model, which will be used for the control
design. The main feature of the FJM system expressed as (2) is that it contains two terms
d1 and d2, which are the mismatched and matched lumped disturbances, respectively.
Generally speaking, the mismatched lumped disturbance d1 is determined by the friction
term and external disturbance, while d2 represents the lumped disturbance caused by
the natural damping and the disturbance generated by the control torque. In this paper,
the mismatched and matched disturbances are simultaneously estimated by employing
two RESOs, and the estimation values are fed back to the controller to compensate for
their effects.

Considering the physical limitations on the FJM in practical applications, some as-
sumptions are given as follows.

Assumption 1 ([30]). The desired reference trajectory yd and its first-order time derivative ẏd
are available.

Assumption 2 ([43]). The lumped disturbances d1, d2, and their derivatives are all bounded,
i.e., there exist positive constants d̄1, d̄1d, d̄2 and d̄2d that satisfy |d1| ≤ d̄1,

∣∣ḋ1
∣∣ ≤ d̄1d, |d2| ≤ d̄2,∣∣ḋ2

∣∣ ≤ d̄2d, ∀t ∈ [0,+∞).

To facilitate the control design and stability analysis, the following lemmas are needed
in the subsequent context.

Lemma 1 ([25]). Consider the second-order command filters (SCFs) defined as{
żi = zid
żid = −2ζωnzid − ω2

n(zi − αi)
(i = 1, 2, 3) (4)

where αi are the inputs and αc
i = zi, α̇c

i = zid are the outputs of the SCFs; ζ and ωn are the damping
ratio and bandwidth, respectively. Set the initial conditions as zi(0) = αi(0) and zid(0) = 0. ∀
t ≥ 0, if the inputs satisfy |α̇i| ≤ ς1, |α̈i| ≤ ς2, where ς1 > 0, ς2 > 0, then there exist ζ ∈ (0, 1],
ωn > 0 and μ > 0, such that |zi − αi| ≤ μ, |zid − α̇i| ≤ μ, and |żi|, |z̈i|, |...z i| are bounded.
Theoretically, the filtering errors of the SCFs can be made arbitrarily small by increasing ωn.

The structure of an SCF is shown in Figure 2, from which it is clearly seen that the
derivative of αi is obtained through an integrator rather than a differentiator. This can reduce
the measurement noise caused by differential operation and improve the control accuracy.

+ +
--

Figure 2. Structure of a second-order command filter.
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Lemma 2 ([19,49]). For V : [0,+∞) ∈ R, the solutions of inequality equations of V̇(t) ≤
−aV(t) + f are

V(t) ≤ e−a(t−t0)V(t0) +
∫ t

t0

e−a(t−h) f (h)dh, ∀t ≥ t0 ≥ 0 (5)

where a is any constant.

The control problem of this paper is formulated as following. Consider the single-link
FJM (2) in the presence of lumped mismatched and matched disturbances. Design a proper
controller by integrating the techniques of RESO and SCFB such that the output y tracks a
desired trajectory yd quickly and precisely.

3. RESO-Based Backstepping Control Design

To achieve the above control objective, in this section, two model-assisted RESOs are
first designed to estimate the lumped matched and mismatched disturbances, and then a
feedback controller with an error compensation mechanism is developed by employing the
SCFB technique.

3.1. Reduced-Order ESO (RESO)

In order to estimate the lumped disturbances d1 and d2 in system (2), according to the
design principle of RESO [42], two specified RESOs are given as{

d̂1 = p1 + β1x2
ṗ1 = −β1 p1 − β2

1x2 − β1x3
(6)

{
d̂2 = p2 + β2x4
ṗ2 = −β2 p2 − β2

2x4 − β2 J−1u
(7)

where d̂1 stands for the estimate of the sum term of g1(x) and d1; d̂2 stands for the estimate
of the sum term of g2(x) and d2; pi and βi > 0(i = 1, 2) are the auxiliary states and the
observer gains, respectively.

Note that the internal dynamics g1(x) and g2(x) are available, which can be directly
used as given model information for the observers. Hence, to reduce the estimation burden,
the model-assisted RESOs are designed as{

d̂1 = p1 + β1x2
ṗ1 = −β1 p1 − β2

1x2 − β1[x3 + g1(x)]
(8)

{
d̂2 = p2 + β2x4
ṗ2 = −β2 p2 − β2

2x4 − β2[J−1u + g2(x)]
(9)

where d̂1 and d̂2 stand for the estimates of the lumped uncertainties d1 and d2, respectively.
Define the estimation errors as

d̃1 = d̂1 − d1 (10)

d̃2 = d̂2 − d2 (11)

Then, based on (8) and (10), the time derivative of d̃1 can be obtained as

˙̃d1 = ˙̂d1 − ḋ1 = ṗ1 + β1 ẋ2 − ḋ1

= −β1 p1 − β2
1x2 − β1[x3 + g1(x)] + β1[x3 + g1(x) + d1]− ḋ1

= −β1(p1 + β1x2) + β1d1 − ḋ1

= −β1d̃1 − ḋ1

(12)

According to the same derivation process, ˙̃d2 can also be obtained as
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˙̃d2 = ˙̂d2 − ḋ2 = ṗ2 + β2 ẋ4 − ḋ2

= −β2 p2 − β2
2x4 − β2[J−1u + g2(x)] + β2[J−1u + g2(x) + d2]− ḋ2

= −β2(p2 + β2x4) + β2d2 − ḋ2

= −β2d̃2 − ḋ2

(13)

Combining (12) with (13), the disturbance estimation error dynamics for system (2)
can be written in the following compact form:

ėo = Aoeo + ḋ (14)

where eo =
[
d̃1, d̃2

]T, ḋ =
[−ḋ1,−ḋ2

]T and Ao = diag{−β1,−β2}. Note that the gains in
(8) and (9) are chosen as βi > 0(i = 1, 2), which ensure that Ao is a Hurwitz matrix.

3.2. Second-Order Command Filtered Backstepping (SCFB) Controller

Based on the RESOs, a feedback tracking controller is designed by using the SCFB
technique, and an error compensation system is proposed to reduce the filtering errors.

Firstly, we define the tracking errors as⎧⎪⎪⎨⎪⎪⎩
e1 = y − yd
e2 = x2 − z1
e3 = x3 − z2
e4 = x4 − z3

(15)

where zi(i = 1, 2, 3) are the outputs of the SCFs defined in (4). In order to reduce the filtering
errors produced by the SCFs, an error compensation dynamic system is designed as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ̇1 = −k1ξ1 + ξ2 + (z1 − α1)

ξ̇2 = −1
I

k2ξ2 +
K
I
[ξ3 + (z2 − α2)]

ξ̇3 = −k3ξ3 + ξ4 + (z3 − α3)
ξ̇4 = −k4ξ4

(16)

where ki > 0 (i = 1, 2, 3, 4) are design parameters, and the initial values of ξi (i = 1, 2, 3, 4)
are ξi(0) = 0. Then the compensated tracking errors are defined as⎧⎪⎪⎨⎪⎪⎩

v1 = e1 − ξ1
v2 = e2 − ξ2
v3 = e3 − ξ3
v4 = e4 − ξ4

(17)

Next, we derive the control laws to stabilize the tracking errors vi by using the recursive
backstepping methodology. The whole design procedure is divided into the following
four steps.

Step 1: To stabilize v1, the first Lyapunov function candidate is chosen as:

V1 =
1
2

v2
1 (18)

Based on (2), (15) and (17), the time derivative of v1 is computed by

v̇1 = ė1 − ξ̇1 = ẋ1 − ẏd − ξ̇1

= x2 − ẏd − ξ̇1 = v2 + z1 − ẏd + ξ2 − ξ̇1
(19)

Taking the time derivative of V1 along (19) and using the first equation of (16) yields
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V̇1 = v1v̇1 = v1
(
v2 + z1 − ẏd + ξ2 − ξ̇1

)
= v1(v2 + α1 − ẏd + k1ξ1)

= v1(v2 + α1 − ẏd + k1e1 − k1v1)

(20)

To make V1 negative, the virtual control law α1 is chosen as

α1 = −k1e1 + ẏd (21)

where k1 is a positive design parameter. Substituting (21) into (20) yields

V̇1 = −k1v2
1 + v1v2 (22)

Obviously, if v2 = 0, then V̇1 ≤ 0.
Step 2: Similarly, to stabilize v2, the second Lyapunov function candidate is chosen as:

V2 = V1 +
1
2

Iv2
2 (23)

The time derivative of v2 is obtained as

v̇2 = ė2 − ξ̇2 = ẋ2 − ż1 − ξ̇2

= −K
I
(x1 − x3)− 1

I
MgL sin x1 + d1 − z1d − ξ̇2

=
K
I
(v3 + z2 + ξ3)− K

I
x1 − 1

I
MgL sin x1 + d1 − z1d − ξ̇2

(24)

Taking the time derivative of V2 along (24) and using the second equation of (16) yields

V̇2 = V̇1 + Iv2v̇2

= −k1v2
1 + v1v2 + v2

[
K(v3 + z2 + ξ3)− Kx1 − MgL sin x1 + Id1 − Iz1d − Iξ̇2

]
= −k1v2

1 + v2(v1 + Kv3 + Kα2 − Kx1 − MgL sin x1 + Id1 − Iz1d + k2e2 − k2v2)

(25)

To make V2 negative, the virtual control law α2 is chosen as

α2 =
1
K

(
−k2e2 + Kx1 + MgL sin x1 + Iz1d − v1 − Id̂1

)
(26)

where k2 is a positive design parameter; d̂1 is the estimate of d1 from the RESO (8). Subsist-
ing (26) into (25) yields

V̇2 = −k1v2
1 − k2v2

2 + Kv2v3 − Iv2d̃1 (27)

If v3 = 0 and d̃1 = 0, then V̇2 ≤ 0.
Step 3: To stabilize v3, the third Lyapunov function candidate is chosen as:

V3 = V2 +
1
2

v2
3 (28)

The time derivative of v3 is computed by

v̇3 = ė3 − ξ̇3 = ẋ3 − ż2 − ξ̇3

= x4 − z2d − ξ̇3 = v4 + z3 + ξ4 − z2d − ξ̇3
(29)
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Taking the time derivative of V3 along (29) and using the third equation of (16) yields

V̇3 = V̇2 + v3v̇3

= −k1v2
1 − k2v2

2 + Kv2v3 − Iv2d̃1 + v3
(
v4 + z3 + ξ4 − z2d − ξ̇3

)
= −k1v2

1 − k2v2
2 − Iv2d̃1 + v3(Kv2 + v4 + α3 − z2d + k3e3 − k3v3)

(30)

To make V3 negative, the virtual control law α3 is chosen as

α3 = −k3e3 + z2d − Kv2 (31)

where k3 is a positive design parameter. Substituting (31) into (30) yields

V̇3 = −k1v2
1 − k2v2

2 − k3v2
3 + v3v4 − Iv2d̃1 (32)

If v4 = 0 and d̃1 = 0, then V̇3 ≤ 0.
Step 4: To stabilize v4, the final Lyapunov function candidate is chosen as:

V4 = V3 +
1
2

Jv2
4 (33)

The time derivative of v4 is

v̇4 = ė4 − ξ̇4 = ẋ4 − ż3 − ξ̇4 =
u
J
+

K
J
(x1 − x3) + d2 − z3d − ξ̇4 (34)

Taking the time derivative of V4 along (34) and using the fourth equation of (16) yields

V̇4 = V̇3 + Jv4v̇4

= −k1v2
1 − k2v2

2 − k3v2
3 + v3v4 − Iv2d̃1

+ v4
[
u + K(x1 − x3) + Jd2 − Jz3d − Jξ̇4

]
= −k1v2

1 − k2v2
2 − k3v2

3 − Iv2d̃1

+ v4[v3 + u + K(x1 − x3) + Jd2 − Jz3d + k4e4 − k4v4]

(35)

To make V4 negative, the actual control law u is designed as

u = −k4e4 − K(x1 − x3) + Jz3d − v3 − Jd̂2 (36)

where k4 is a positive design parameter, and d̂2 is the estimate of d2 from the RESO (9).
Substituting (36) into (35) yields

V̇4 = −k1v2
1 − k2v2

2 − k3v2
3 − k4v2

4 − Iv2d̃1 − Jv4d̃2 (37)

If d̃1 = 0 and d̃2 = 0, then V̇4 ≤ 0.
Summarizing the above design steps, the proposed SCFB controller is composed of

the following control laws.⎧⎪⎪⎪⎨⎪⎪⎪⎩
α1 = −k1e1 + ẏd

α2 =
1
K

(
−k2e2 + Kx1 + MgL sin x1 + Iz1d − v1 − Id̂1

)
α3 = −k3e3 + z2d − Kv2
u = −k4e4 − K(x1 − x3) + Jz3d − v3 − Jd̂2

(38)

where zid(i = 1, 2, 3) come from the SCFs (4), and d̂1, d̂2 are from the RESOs (8) and (9).
The block diagram of the proposed RESO based SCFB composite control system for the
single-link FJM is shown in Figure 3.
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Figure 3. Block diagram of the composite control system for the single–link FJM control system.

4. Stability Analysis

In this section, the convergence of the error signals and the stability of the resulting
control system are analyzed using the Lyapunov stability theory.

Theorem 1. Consider the proposed RESOs (8) and (9) for the single-link FJM described by (2)
with matched and mismatched disturbances. If Assumption 2 is satisfied, then the error norm of the
RESOs is bounded by

‖eo‖ ≤ max
(
d̄i
)

min(|βi|) (i = 1, 2) (39)

Proof. Consider the Lyapunov function candidate Vo

Vo =
1
2

e�o Peo (40)

where P is a positive definite matrix. Since Ao is a Hurwitz matrix, there exists a positive
definite matrix Q such that

A�
o P + PAo = −Q (41)

Taking the time derivative of Vo along (14) and (41) yields

V̇o =
1
2

ėT
o Peo +

1
2

eT
o Pėo

=
1
2

eT
o

(
AT

o P + PAo

)
eo + eT

o Pḋ

= −1
2

eT
o Qeo + eT

o Pḋ

≤ −1
2
‖eo‖2Q + ‖eo‖‖P‖max

(
d̄i
)

≤ −‖eo‖
[‖eo‖‖P‖min(|βi|)− ‖P‖max

(
d̄i
)]

(42)

where min(|βi|)(i = 1, 2) represents the smallest eigenvalue of Ao. Therefore, within finite
time, the norm of the estimation errors is bounded by

‖eo‖ ≤ max
(
d̄i
)

min(|βi|) (i = 1, 2) (43)

This completes the proof of Theorem 1.

Theorem 2. Consider the single-link FJM described by (2) with matched and mismatched dis-
turbances. Suppose that Assumptions 1 and 2 are satisfied. The RESOs (8) and (9), the error
compensation system (16), and the SCFB controller (38) guarantee that all the signals in the control
system are uniformly ultimately bounded, and the tracking errors converge to a small neighborhood
around zero.
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Proof. Based on the design procedure in Section 3.2, the final Lyapunov function candidate
for the feedback control is

Vf =
1
2

v2
1 +

I
2

v2
2 +

1
2

v2
3 +

J
2

v2
4 (44)

According to (37), the time derivative of Vf can be described as

V̇f = −k1v2
1 − k2v2

2 − k3v2
3 − k4v2

4 − Iv2d̃1 − Jv4d̃2 (45)

Using the Young’s inequality, we have

∣∣Iv2d̃1
∣∣ ≤ I

2
v2

2 +
I
2

d̃2
1∣∣Jv4d̃2

∣∣ ≤ J
2

v2
4 +

J
2

d̃2
2

(46)

Substituting (46) into (45) yields

V̇f ≤ −k1v2
1 −

(
k2 − I

2

)
v2

2 − k3v2
3 −

(
k4 − J

2

)
v2

4 −
I
2

d̃2
1 −

J
2

d̃2
2 (47)

Rewriting inequality (47) in a compact form, we have

V̇f ≤ −α0Vf + D (48)

where
α0 = min (2k1, 2k2 − I, 2k3, 2k4 − J)

D = − I
2

d̃2
1 −

J
2

d̃2
2

(49)

Selecting the design parameters k1 > 0, k2 > I/2, k3 > 0, k4 > J/2 to ensure α0 > 0. Then,
according to Lemma 2, the solution of (48) is

Vf (t) ≤ D
α0

+

[
Vf (0)− D

α0

]
e−α0t (50)

which means that Vf (t) converges exponentially to the upper bound of D
α0

, i.e., as t → ∞,
Vf (t) ≤ D

α0
. As a result, the compensated errors vi(i = 1, 2, 3, 4) are bounded.

Furthermore, it has been proved in Ref. [50] that the compensation signals ξi(i = 1, 2, 3, 4)
in (16) are bounded. Since ei = vi + ξi, it is clearly known that the tracking errors ei are also
bounded. According to Lemma 1 and Theorem 1, the filter outputs zi, zid(i = 1, 2, 3) and
the estimations d̂1, d̂2 are bounded. From (38), it is evident that the virtual control laws
α1(ẋd, e1), α2

(
x1, e2, d̂1, z1d, v1

)
, α3(e3, z2d, v2), and the actual law u

(
x1, x3, e4, d̂2, z3d, v3

)
are also bounded because of the boundedness of their independent variables.

Therefore, all the signals in the closed-loop control system are uniformly ultimately
bounded. In addition, by properly choosing the design parameters, such as large ki(i=1,2,3,4)
and βi(i = 1, 2), the tracking errors ei(i = 1, 2, 3, 4) can converge to a small neighbourhood
around zero. This completes the proof of Theorem 2.

5. Numerical Simulations

To evaluate the effectiveness and efficiency of the proposed control method, two
simulation tests are conducted in the MATLAB/SIMULINK platform. Specifically, the first
simulation is presented to examine the tracking control performance of the proposed
approach for the single-link FJM with matched and mismatched disturbances as well as
measurement noises. In the second simulation, a comparison study between the proposed
method and the existing approaches are presented to show the superior performance of the
proposed controller.
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The physical parameters of the single-link FJM in (1) are given as: M = 0.25 kg,
g = 9.8 m/s2, L = 0.45 m, K = 5 N · m/rad, I = 0.05 m/s2, J = 0.0005 m/s2. The gains of
the controller (38) are chosen as k1 = 7, k2 = 25, k3 = 8, k4 = 8. Meanwhile, the parameters
of the SCFs (4) are chosen as ωn = 1100, ζ = 0.8, and the parameters of the proposed
RESOs in (8) and (9) are: β1 = 50, β2 = 50.

The initial condition of the FJM is set as x(0) = [0.5, 0, 0, 0]�. The initial states of the
error compensation system and the SCFs are all zeros. The desired reference trajectory is
chosen as yd = 0.5(sin t + sin 0.5t), and the lumped mismatched and matched disturbances
added for the two simulations are given as:{

w1 = 0.005 cos q̇ + 0.3 sin(2πt)
w2 = 0.1θ̇ + 0.3 cos(2πt)

(51)

5.1. Simulation Results with Disturbances and Noises

To imitate the measurement noises of encoders equipped in the FJM, Gaussian white
noise with zero mean and standard deviation of 0.1, which can be generated by the “randn”
function in MATLAB, is added for all the state measurements. The simulation results are
depicted in Figures 4–9.

Figure 4 displays the trajectories of the system output y and the given reference
signal yd. Figure 5 shows the curve of tracking error. From these figures, we can see
that the proposed approach achieves a satisfactory tracking control performance despite
the presence of mismatched and matched disturbances as well as noises affecting mea-
surements. The estimates of the mismatched and matched disturbances are respectively
illustrated in Figures 6 and 7, from which we can see that the designed RESOs can estimate
the disturbances quickly and precisely.
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Figure 4. Tracking performance of the system output y under the proposed approach with noises.
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Figure 5. Tracking error e1 under the proposed approach with noises.
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Figure 8. Filtering performance of the SCF with α1 being the input and z1 being the output.

Figure 8 depicts the intermediate virtual control law α1 and the corresponding filtered
control signal z1 from the SCF. It is clearly seen that the virtual control law α1 is corrupted
by the white noises, but the filtered signal z1 through the SCF is smooth. In addition,
Figure 9 shows the comparison results between the direct time derivative of α1 and the
output z1d of the SCF in the presence of white noises. It is noticed that the chattering
amplitude of α̇1 is much bigger than that of z1d, which indicates that the noises in α̇1 are
amplified. The reason is that the derivative of α1 is approximated by the SCF through
integration rather than differentiation (as shown in Figure 2). These results demonstrate
that the SCF employed for FJMs with measurement noises can not only filter the noises
for the control signal to some extent, but also avoid the amplification of the noises in the

231



Appl. Sci. 2022, 12, 8511

recursive backstepping design. Similar results are obtained for αi (i = 2, 3) and zid, which
are omitted for the space saving.

-

 

-

-

-

Figure 9. Comparison results between α̇1 and the output of the SCF z1d.

5.2. Comparison Results with CBC and AFCFC Methods

In order to further show the superior performance of the proposed RESO based
command filtered controller (RBCFC), the following two controllers are selected to make a
comparison study.

(1) Conventional backstepping controller (CBC) proposed in [16]. The structure of the
controller is given as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

α1 = −k1e1 + ẏd

α2 =
1
K
(−k2e2 − e1 + MgL sin x1 + Kx1 + Iα̇1)

α3 = −k3e3 − Ke2 + α̇2
u = −k4e4 − e3 − K(x1 − x3) + Jα̇3

(52)

(2) Adaptive fuzzy command filtered controller (AFCFC) proposed in [30]. The struc-
ture of the controller is given as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = −k1e1 + ẏd

α2 =
1

M−1K
(−k2e2 − 1

2
v2 − e1 + z1d − v2θ̂ψ�

1 ψ1

2l2
1

)

α3= −k3e3 − M−1Ke2 + z2d

u = B(e4 + z3) + K(e3 + z2 − e1 − yd) + J(−k4e4 − e3 + z3d)

˙̂θ =
rv�2 v2ψ�

1 ψ1

2l2
1

− r̄θ̂

(53)

where zid(i = 1, 2, 3) are the outputs of SCFs, l1, r, r̄ are positive design parameters,
θ̂ is the estimation of the adaptive parameter θ, ψ1 is the vector of fuzzy basis functions.
More details about these control parameters are referred to in Ref. [30].

Remark 1. It is noticed that the structure of the CBC is the simplest among the three controllers,
but it suffers from the drawback of computational complexity, and does not consider the influence
of disturbances. Both the proposed RBCFC and AFCFC can address these problems, but the
AFCFC employs a fuzzy system with an online adaptive learning law to approximate the unknown
disturbances, while the proposed RBCFC utilizes two simple RESOs to estimate the disturbances.

Since the three controllers are designed using the same backstepping methodology,
their gains are chosen as the same for the sake of fair comparison, i.e., k1 = 7, k2 = 25,
k3 = 8, k4 = 8. Meanwhile, the same parameters of the SCFs are chosen for the proposed
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controller and the AFCFC, i.e., ωn = 1100, ζ = 0.8. Other parameters for the AFCFC are
chosen as in Ref. [30]. No measurement noises are considered in this circumstance for a
clear and fair comparison.

The simulation results of the single-link FJM under the three controllers are depicted
in Figures 10–13, which record the curves of the tracking performance of the system output
y, the tracking error e1, the state of the motor angle θ, and the control torque u, respectively.
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Figure 10. Tracking performance of the system output y under the three controllers.
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From Figure 10, it is seen that both the proposed controller and the AFCFC can
attenuate the influence of lumped disturbances and achieve satisfactory control perfor-
mance. However, the system output with the CBC is seriously affected by the disturbances,
and fluctuates around the reference trajectory. This is mainly because the CBC does not
contain a compensation term for the disturbances. The same results can be further verified
by Figures 11 and 12, which respectively show that the tracking error e1 and the motor
angle θ under the three controllers converge to a small neighborhood around zero. It is
clearly seen that the convergence radius of the proposed controller is the smallest among
the three controllers.

In order to quantitatively analyze the control performance of the three controllers, we
define three performance indexes including the settling time ts, the mean squared error in
the transient stage between 0.4 s and 2.4 s, i.e.,

e1MSE =
1
N

N

∑
i=1

[e(i)]2 (54)

and the maximum tracking error in the steady stage |e1∞ max|. The details of the quantified
performance indexes of the three controllers are given in Table 1.

Table 1. Performance indexes under the three controllers.

Methods ts(s) e1MSE(rad) |e1∞ max|(rad)

RBCFC [Proposed] 0.93 3.09 × 10−5 2.84 × 10−4

CBC [16] 0.68 1.51 × 10−3 5.79 × 10−2

AFCFC [30] 0.86 4.84 × 10−4 3.39 × 10−2

As seen from Table 1, the proposed RBCFC exhibits better performance than the other
two controllers in aspects of transient and steady tracking errors. Although the settling
time of the proposed controller is a little longer than those of other controllers, the mean
squared error of the proposed controller in the transient stage is reduced almost down
to 3.09 × 10−5, which is quite smaller than that (i.e., 1.51 × 10−3) of CBC, as well as that
(i.e., 4.84 × 10−4) of AFCFC. In addition, the maximum tracking error of the proposed
controller in the steady stage is about 2.84 × 10−4, while those of CBC and AFCFC are
5.79 × 10−2 and 3.39 × 10−2, respectively. Compared with the CBC and the AFCFC, the
tracking accuracy of the proposed controller is improved by 99.5% and 99.2%, respectively.

From Figure 13, it is seen that the control torque u of the proposed controller in the
initial stage between 0 s and 0.2 s shows large fluctuations. The reason for this may be that
the proposed controller in the system adjustment stage is more susceptible to the unknown
disturbances. By introducing the RESOs, however, the disturbances are quickly estimated
and compensated for in the feedback control.
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According to the above comparative simulation results, it can be concluded that
compared with other methods, the proposed controller can estimate and compensate the
unknown matched and mismatched disturbances effectively, and achieve a better transient
and steady tracking performance.

6. Conclusions

This paper has successfully proposed an efficient model-assisted composite control
approach for the high precision tracking control of FJMs in the presence of lumped matched
and mismatched disturbances. Two RESOs are constructed with partial known model
information of FJMs to estimate and compensate the disturbances, three second-order
command filters are incorporated into the backstepping control design to avoid the problem
of “explosion of complexity”, and an error compensation dynamic system is designed to
reduce the filtering errors. The stability of the resulting control system is rigorously proven
via Lyapunov stability theory, and the tracking errors are guaranteed to be uniformly
ultimately bounded. The numerical simulation results prove that the proposed RESOs
deliver accurate estimates of both the matched and mismatched disturbances. In addition,
compared with conventional backstepping method and adaptive fuzzy command filtered
control method, the proposed approach achieves a better tracking performance, i.e., the
tracking accuracy is improved by 99.5% and 99.2%, respectively.

It is worth pointing out that the proposed approach requires the knowledge of all
the state variables, which may be unfeasible or inconvenient in practice. It is interesting
to study the output feedback control problem of FJMs with unmeasured state variables
by integrating the state estimation technique, e.g., Kalman state observers presented in
Refs. [1,2]. In addition, it is necessary and significant to evaluate the control performance
of the proposed approach under varying load mass and extend the proposed approach to a
more general 6-DOF FJM. These issues will be investigated in our future works.
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