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Preface

The idea of a Special Issue focused on “Computational Mechanics of Structures and Materials”

arose from the enormous potential that characterizes different computational methods in many

engineering fields. In particular, these methodologies, due to their ability to facilitate various tasks,

have surely affected the approach to dealing with structures and materials, as can be observed from

the body of pertinent literature, proving not only the attractiveness of this broad topic but also its

potential in developing further advancements.

Therefore, the aim of the Special Issue is to gather innovative investigations dealing with

accurate, reliable, and effective numerical approaches in the field of both structural mechanics and

mechanics of materials. The collected papers present different computational techniques involving

the achievement of solutions characterized by higher accuracy and reliability.

This Special Issue attracted many interesting submissions from many different countries of the

world. Authors who decided to contribute and experts who reviewed the papers are all gladly

acknowledged. The success of the collection has been made possible thanks to the constant support

provided by Ms. Cecilia Zhang, the Section Managing Editor. The Guest Editors would like to thank

her for her commitment to the Special Issue. Finally, the whole editorial team of Materials, including

the Editors-in-Chief, must be mentioned.

Michele Bacciocchi, Angelo Marcello Tarantino, Raimondo Luciano, and Carmelo Majorana

Editors
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Editorial

Special Issue: “Computational Mechanics of Structures
and Materials”
Michele Bacciocchi 1,*, Angelo Marcello Tarantino 2, Raimondo Luciano 3 and Carmelo Majorana 4

1 Department of Economics, Science and Law, University of San Marino, Via Consiglio dei Sessanta 99,
47891 Dogana, San Marino

2 DIEF—Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia,
Via P. Vivarelli 10, 41125 Modena, Italy; angelomarcello.tarantino@unimore.it

3 Engineering Department, University of Napoli Parthenope, Via Ammiraglio Ferdinando Acton,
80133 Napoli, Italy; raimondo.luciano@uniparthenope.it
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Computational methods have always affected many engineering fields due to their
enormous potential and ability to facilitate various tasks. This statement is surely true as
far as the research in structures and materials is concerned. In fact, it can be observed that
the body of literature focused on computational and numerical methods for solving various
structural problems and characterizing different constituents and materials is huge. This
proves not only the attractiveness of this broad topic, but also its potential in developing
further advancements in these contexts.

For these reasons, the Guest Editors decided to organize a Special Issue focused on
“Computational Mechanics of Structures and Materials”, to collect innovative investiga-
tions dealing with accurate, reliable, and effective numerical approaches in the field of
both structural mechanics and mechanics of materials. To this aim, a broad scope has
been defined, accepting not only finite element or finite-element-based methods, but also
different computational techniques involving the achievement of solutions characterized
by higher accuracy and reliability. The innovation demonstrated in dealing with advanced
materials and constituents is a positive feature of all submitted papers that contributed to
their acceptance.

Over several months, this Special Issues constantly proved to be a success, attracting
and collecting many interesting submissions. The first heartfelt thanks is directed to all
the authors from many different countries of the world who decided to contribute to
the collection. Specifically, nineteen papers (out of the twenty-six submitted) have been
published, passing through a meticulous review process. Sincere gratitude has to be
expressed to the experts who reviewed the papers in spite of their many personal and
academic responsibilities.

This great achievement has been made possible thanks to the constant support pro-
vided by Ms. Cecilia Zhang, the Section Managing Editor. The Guest Editors would like to
thank her for the commitment given to the Special Issue. Finally, the whole editorial team of
Materials, including the Editors-in-Chief, must be mentioned. They made the management
of this Special Issue possible.

To celebrate the success of this commitment, a brief review of the works included in
the collection is presented, highlighting the main advancements obtained in the field of
computational mechanics.

Gawryluk presented a discussion on the appropriate choice of boundary conditions in
structures subjected to a failure analysis. In particular, the research is focused on a thin-walled
laminated angle column under compression. The results of both experimental and numerical
tests are presented and compared, taking into account different damage criteria [1].

Materials 2023, 16, 5617. https://doi.org/10.3390/ma16165617 https://www.mdpi.com/journal/materials
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Klimczak and Cecot developed an innovative multiscale finite element method. Their
numerical approach proved to be a fast and flexible technique suitable for dealing with
heterogeneous materials. The results were obtained in the context of the steady-state heat
transfer problem [2].

Bogdan and Radosław employed the finite element method (FEM), including the
Johnson–Cook model and the failure parameters of a peculiar class of steel, to simulate the
resistance of structures to collisions, shelling, and the impact of pressure waves caused by
explosions in water and air in relation to submarines [3].

By means of the finite element method, Wang et al. proposed an investigation on the
bearing capacity of high-strength steel-reinforced concrete composite columns. In particular,
their analysis emphasized the effect of the confinement of stirrups and steel, highlighting
the influence of several parameters and discussing the role of different regulations [4].

Lee and Han studied an infinite isotropic solid embedding different kinds of isotropic
and anisotropic spheroidal inclusions. To this aim, they introduced the volume integral
equation method (VIEM), which has been demonstrated to be a versatile numerical ap-
proach for the three-dimensional elastostatic inclusion problem [5].

Mucha et al. proposed a numerical method to describe a propagating instability
phenomenon that effects metals, known as the Portevin–Le Chatelier (PLC) effect. They
performed several studies varying the model parameters, which was then efficaciously
compared with experimental results [6].

Shi et al. presented a numerical investigation to discuss the effects of the direction
and scale of microstructures on the tension problem of a composite plate with a circular
hole, proving that these features in solids also have a significant influence on the develop-
ment of advanced materials. In this context, a micropolar continuum (Cosserat) model was
considered [7].

Badea et al. highlighted the limitations of usual finite element models in dealing
with tubular structures. By means of a previously developed beam T-junction model, their
results provided some strategies to improve the accuracy of beam-element-type approaches,
taking into account the real junction stiffness [8].

The paper by Sokołowski and Kamiński is focused on the problem of the topological
optimization of corroding structures with uncertainties. They proposed a framework for the
reliability-based design optimization (RBDO) of structural elements, considering a corrugated
web I-girder as an example. Several numerical approaches have been compared in this
context [9].

The work by Bochenek and Tajs-Zielińska also deals with topology optimization.
They proposed the concept of the original heuristic topology generator, combining an
algorithm with a commercial finite element software, characterized by a significant level of
versatility [10].

Chan et al. investigated the mechanics of frozen particle fluid systems by means
of a microscale simulation approach based on the discrete element method (DEM) and
bonded-particle model (BPM) approach. The results provided by their methodology have
been proven to be in good agreement with experimental results [11].

Alrayes et al. developed a numerical approach for simulating crack growth. To this
aim, they used a scaled boundary finite element model (SBFEM), emphasizing the impor-
tance of simulating the fracture process zone when attempting to describe the cracking
behavior of heterogeneous and quasi-brittle materials, taking concrete under monotonic
and cyclic actions as an example [12].

Li et al. analyzed the behavior of a hydraulically expanded joint between a tubesheet
and titanium tube by means of the finite element method. Their results highlighted the
influence of several phenomena with many practical consequences [13].

Alrayes et al. studied mixed-mode crack propagation in concrete through some
numerical simulations. They used the scaled boundary finite element method (SBFEM) to
assess this phenomenon [14].
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Materials 2023, 16, 5617

Kim et al. developed a nonlinear framework based on the modified couple stress
theory to study the axisymmetric bending of circular and annular microplates subjected
to thermal and mechanical loads. Their results, obtained via the finite element method,
highlighted the effects of several parameters on the bending response [15].

Zhang et al. investigated creep at room temperature by means of a mechanical double-
spring steering-gear load table. Their numerical results were successfully compared to
experimental tests [16].

Andreotti et al. proposed a methodology to compute the resultant force of ballistic
impacts resulting in a full fragmentation of the impactor with no penetration of the target.
They discussed the accuracy of different discretization strategies for the corresponding
finite element analysis. The results provide many useful suggestions to deal with this kind
of problem [17].

The paper by Tahani et al. presents an investigation on the overall mechanical prop-
erties of ceramic–metal composites. This was achieved using a computational approach
based on the molecular dynamics method. Their results highlighted the influence of several
parameters [18].

Finally, the work by Giunta et al. deals with the free vibration analysis of variable-
stiffness composite plates. They expanded Carrera’s unified formulation (CUF) plate finite
elements to composite laminates reinforced by curvilinear fibers. The effectiveness of
the solution was proven through a comparison with results available in the literature or
obtained through other commercial codes [19].

The Guest Editors would like to congratulate all the authors for the remarkable
achievements illustrated in these papers.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Determining the appropriate boundary conditions of a structure is a very important
aspect in the failure analysis. In experimental tests, the method of compressing composite samples
significantly influences the obtained results. In numerical studies, there is a problem of correctly
defining the boundary conditions applied in real object. Therefore, many numerical tests on samples
should be undertaken to observe their behavior and to determine ultimate load. The present work
includes study to determine the impact of boundary conditions on the thin-walled laminated angle
column under compression. The phenomenon of buckling and the post-buckling bahavior of columns
were investigated experimentally and numerically. First, the real simply supported angle columns
subjected to uniform shortening are tested. Due to the stress concentration between the real sample
and the grips, a flexible pads were used. Experimental tests are carried out on the universal testing
machine. The deformations of columns were measured using the non-contact Aramis System. The
composite material condition was monitored by acoustic emission using the Vallen Systeme with
piezoelectric sensors. Next, the numerical calculations in Abaqus software based on the finite element
method are performed to validate the empirical results. To determine the influence of the boundary
conditions, two numerical models of the system with and without flexible pads are developed. To
estimate damage initiation load in numerical models a different damage criteria ( Tsai-Hill, Tsai-Wu,
Azzi-Tsai-Hill, Hashin) are used. Based on the results specified that the model with elastic pads more
accurately reflects the actual behavior of the L-profile element under compression. It was supported,
i.e., by good agreement of flanges deflection (the equilibrium paths) with experimental results.
Furthermore, a qualitative and quantitative agreement of damage initiation load were obtained using
Hashin criteria (error 4.61%).

Keywords: flexible pad; laminated angle column; compresion; FEM; experiment

1. Introduction

Loss of stability is an important process during operation of thin-walled structures,
which can lead to the complete damage of the structure. Therefore, a detailed analysis
of the structure failure under the load is extremely necessary from an engineering point
of view. In particular, the problem is encountered in the aerospace industry [1,2], where
isotropic materials are replaced with modern composite materials, which are characterized
by excellent strength parameters with a significant weight reduction of these elements.
An important issue is description the damage process of thin-walled laminated struc-
tures [3,4]. In thin-walled structures with flat walls made of composite material, the system
works after the loss of stability (the system has stable equilibrium paths) [5,6]. This means
that apart from knowledge the critical load value, the behaviour of the structure after
loss of stability also has an important role. In most cases, the analysis of post-critical
states requires taking into account non-linear relationships between displacements and
deformations. Nonlinear calculations are usually performed for structures with initialized
geometrical imperfections corresponding to the selected buckling mode of the structure,
which was determined in the linear stability analysis. This makes it possible to deter-
mine the relationship between the load on the structure and the geometrical parameters

Materials 2021, 14, 2732. https://doi.org/10.3390/ma14112732 https://www.mdpi.com/journal/materials
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determining the displacement of its nodes—i.e., we will obtain post-critical equilibrium
paths [7]. By carrying out nonlinear studies in a post-critical state, the moment of failure
initiation in a composite structure can be determined. This is particularly important as
this phenomenon exhausts the load capacity of the structure. It is quite a complicated
and ambiguous problem, as the failure model depends on many factors, i.e., the type of
load, geometry and size of the analyzed element, mechanical properties of the materials
used, preloads and damages. Moreover, the method of producing the actual structure
significantly influences the course of the destruction process. As a result, it leads to many
failure mechanisms, i.e., matrix/fiber cracking, local buckling of the fibers or the entire
laminate layer, and delamination. In order to describe the respective damage mechanism,
many failure models have been developed and various failure criteria have been introduced
into the literature. The most popular criteria in practical analyses describe the failure of the
first layer: the maximum stress criterion, the maximum deformation criterion, the Tsai-Hill
criterion, the Tsai-Wu criterion, and the Azzi-Tsai-Hill criterion. The destruction process
occurs when at least one criteria is fulfilled [8]. All the above-mentioned criteria provide
information that the moment of damage initiation has caused, but they are not able to
clearly define which element of the structure was destroyed. For this purpose, the Hashin’s
criterion can be used, which determines the destruction of fibers or matrix [9]. Interesting
research describing the influence of boundary conditions on the buckling of beams is
described in [10]. The Cold-Formed Steel beams with staggered slotted perforations were
analyzed. These beams are being used in light gauge steel construction aiming to enhance
both the fire and energy performance. However, these web perforations affect the bending
capacity. In order to determine this effect, numerical and experimental studies were carried
out. It was found that the influence of staggered slotted perforations on local buckling
strength of the CFS beams is relatively small (11%).

In the literature, there are a lot of papers describing destruction process of thin-walled
structures [11].The analytical methods are used for the post-buckling analysis, in which
the thin-walled structure is described with orthotropic material [12]. In order to verify the
theoretical models, it was necessary to conduct laboratory tests [13]. One of the experi-
mental methods allowing a description of the damage process of the laminated structure
is the acoustic emission method, which enables monitoring of the damage initiation and
development of damage up to the complete destruction of the element. Experimental
test of thin-walled chanell section profile subjected to compression are described in the
paper [14]. Six different configurations of the glass fibers arrangement in the epoxy matrix,
considering only symmetrical laminates were investigated. The tests were carried out on
a testing machine with the use of an environment for recording acoustic emissions. This
applied method made it possible to observe the structure’s behaviour, thanks to which
it was possible to estimate the damage initiation load. Similar studies for carbon-epoxy
laminate were presented in the work [6]. The authors experimentally tested four variants
of laminate fiber arrangement. The AE method was used experimentally. From the con-
ducted experimental studies, it was possible to estimate the loads initiating the damage
of structures. Teter et al. [15] presented compression tests of a thin-walled omega profile
made of carbon-epoxy laminate. Experimental tests with the use of acoustic emission
were considered. Additionally strain gauges were used to record deformations of selected
surfaces. This allowed estimating the damage initiation load and post-buckling equilibrium
path.The research carried out in the above works has shown that the acoustic emission
method is effective in monitoring structural damage. In the latest works devoted to the
damage of thin-walled structures, experimental and numerical studies using the finite
element method can be found [16]. Nonlinear buckling analyses have been carried out
to predict the initial buckling loads of the pultruded glass reinforced plastic wide flange
columns under compression in paper [17]. The authors used new criteria for the web-flange
junction, because the failure behaviour of this junction is quite different from web or flanges.
Numerical results were compared with experimental, and good correlation was obtained.
Rozylo et al. [18] described the numerical and experimental tests of thin-walled profiles
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with an omega cross-section under axial compression. The non-linear range of structures
with geometrical imperfection was calculated in the Abaqus environment by the Newton-
Raphson method. The Hashin criterion was used to identify the initiation of structure
failure. A high agreement of numerical and experimental results was obtained. Detailed
research on the post-buckling analysis of thin-walled laminated profiles with a C-section is
presented in [19]. Numerical studies in the Ansys environment and experimental studies
were carried out. A high agreement of the results was obtained. Samples subjected to axial
compression were analyzed. Similar studies on chanell section profiles were presented
in [20], where the Abaqus environment was used, and samples were tested under eccentric
loading. In the experimental tests, acoustic emission was used to determine the damage
initiation. Teter et al. [21] conducted detailed studies of thin-walled angular columns
in various configurations of fiber arrangement under uniform compression. The nonlin-
ear research was carried out with the analytical-numerical and finite element method.
The influence of geometrical imperfection on the value of the smallest buckling load was
determined. The authors proposed the P − ∆ intersection method and the P − ∆n method,
thanks to which it was possible to estimate the value of the buckling load with high and
small amplitude of the initial deflection with high accuracy. Similar numerical studies
were compared with the semi-analytical method (SAM) based on the Byskov-Hutchinson
method in [22]. The load-shortening diagrams of the column in the nonlinear range were
developed as well as the influence of imperfection on the buckling load were determined.

Taking the above-mentioned into account, it can be said that there are still too few
papers with results presenting the behaviour of thin-walled composite structures with
L-profile subjected to compressive load. Therefore, it was decided to conduct experimental
and numerical tests. This articule is a continuation of previous studies described in
paper [23], where the numerical model of the elastic pad was validated and the influence of
its parameters on the obtained results was determined. In the present study, the impact of
boundary conditions on the thin-walled laminated angle column in post-buckling behavior
is analyzed. Therefore, two numerical models with different boundary conditions were
compared with the results obtained experimentally. Linear buckling and nonlinear post-
buckling analysis were considered to investigate the post-buckling behavior of the beam
under uniform compression. In order to estimate damage initiation load in numerical
models a different damage criteria were used. Finally, the equilibrium paths for all analysed
cases were determined. Based on the results, it was found that the model without elastic
pads characterized a much more stiffness then the second one with pads, as shown by: a
greater bifurcation load, damage initiation load in all analyzed criteria, lower shortening
and less deflection of the column in its center. However, model with flexible pads shows
a similar character to the experimental results, i.e., high convergence of the equilibrium
paths and a small error in the damage initiation load (Hashin criteria).

2. Problem Statement

Thin-walled composite channel-section column with L-profile subject to axial com-
pression were considered. Buckling and post-buckling of such beams were analyzed. Those
investigations were mainly aimed at:

• validation of FE model of ideal column with L-profile with results of experimental tests;
• finding advantages and disadvantages of the proposed numerical models of angle

column with and without pad;
• checking an influence of the flexible pad on post-buckling behavior.

The thin-walled profiles under consideration were made of a carbon-epoxy unidirec-
tional prepreg tape using autoclaving technique. The thickness of each ply was approx.
0.045 mm. This column consist of 18 layers with following configuration: [60, 0(2), −60(2),
60(3), −60(2), 0(3), −60(2), 0, 60(2)]T. The considered beam was 300 mm long and the width
of flanges was 40 mm. The material properties of the beams were determined in tensile
and compression tests described in paper [6]. The following material properties (Table 1)
Young’s modulus in two orthogonal directions E1 and E2 , Poisson’s ratio υ12, and the
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shear modulus G12 were determined. Additionally, the limit properties of the composite,
i.e., tensile strength FTU in two orthogonal directions, compression strength FCU in two
orthogonal direction and shear strength FSU were determined. These material properties
are presented in Table 2.

Table 1. Properties of used material.

Composite Material

Young’s modulus E1 (MPa) 170,000
Young’s modulus E2 (MPa) 7600
shear modulus G12 (MPa) 3520
Poisson’s ratio υ12 (−) 0.36

Flexible Pad

Young’s modulus (MPa) 40
Poisson’s ratio (−) 0.49

Table 2. Limit properties of the composite as determined in compliance with relevant ISO standards.

FTU (MPa) FCU (MPa) FSU (MPa)

0◦ 90◦ 0◦ 90◦ 45◦

1601 14.4 1052 117 90.7

To eliminate the effect of stress concentration in experimental test, flexible pads
between the thin-walled profile and the testing machine handle were used. To check an
impact of the flexible pad on post-buckling behaviour of the thin-walled beam under
consideration, numerical model with and without pads were investigated.

3. Laboratory Setup

Experimental tests consisted in static compression of the fabricated L-profiles on the
universal testing machine (Figure 1). In order to eliminate the stress concentration effect
between the sample and handle of testing machine, the flexible pads with a thickness of
5.2 mm were used. Laboratory test were performed at a constant velocity of the cross-bar
equal to 1 mm/min. The tested columns were loaded with the force value from zero to
load, in which damage initiation load was observed. The composite material condition
was monitored by acoustic emission. Signals were recorded using the Vallen Systeme,
provided with a two piezoelectric sensors. In AE method usually uses the following
parameters: the number of hits, the number of counts, the signal amplitude or energy [6,14,15].
In addition, to determine deflection of the sample in the whole range of load, a Aramis
system was employed. The ARAMIS is a non-contact measuring system based on digital
image correlation doing high-precision measurements with a 3D measurement resolution
in the sub-micrometer range, regardless of the specimen’s geometry and temperature.
For this purpose, the system used a series of digital photos done at regular intervals during
measurements time by two cameras positioned at the appropriate distance from the tested
object. I used this system to recording the behavior of the real object, in particular to
calculate the shortening of the sample and its flange deflections. The values of the load
applied to the system were obtained directly from the testing machine. This allowed to
determine a post-buckling equilibrium curves for all tested samples and the value of the
load at which the first layer of the laminate was damaged. The experiments were conducted
under laboratory conditions at room temperature of 23 ◦C.
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Figure 1. Experimental setup.

Additionally, verification of the material constants for the flexible pad was carried out
in experimental tests. Detailed research was described in paper [23]. However, the obtained
substitute material constants are presented in Table 1.

4. Numerical Nonlinear Analyses

The numerical nonlinear stability problem was solved with the finite element method
(FEM)—ABAQUS software [24]. Two models with different boundary conditions were
considered. The first geometrical model (denoted as M-1) consists of only a part of the
column situated between the rigid grips (see Figure 2a). The second one (denoted as M-2)
has flexible pads between sample and rigid grips are additionally included (Figure 2b).
The second assumed model was closer to the structure tested experimentally.

The L-profile laminate column was modelled using S8R shell finite elements. They are
8-node elements with a second order shape function with reduced integration (with six
degrees of freedom in each node). The layup-ply technique is used to define the sequence
of the laminate layers. Each layer is made of a carbon-epoxy unidirectional prepreg with
material parameters presented in the previous section. However, the model of grips are
shown as a rigid body (without predefined material properties), made of 4-node, bilinear
quadrilateral discrete rigid elements (R3D4) with six degrees of freedom in each node.
In the second model (M-2), the flexible pad consists of C3D20R solid element with reduced
integration. These are 20-node 2nd order elements (with square shape function) with three
translational degrees of freedom at each node. The number of elements was assumed on
the basis of the previous experience (e.g., [23]). However, the mesh density was assumed in
such a way as not to limit column deformation. The convergence of the model by selecting
the size of the elements used (especially the column and pad) was investigated numerically.
In the case of the pad, it was determined based on simulations that the number of 3 elements
in thickness is sufficient. In both FE models, the thickness of elements discretizing a part
of the model corresponding to the considered laminated beam is assumed as 0.81 mm.
The system of the L-profile beam with grips was simply supported at two ends. Contact
relations were defined between the rigid plate and the profile edge (M-1) or between the
flexible pads and the profile edge (M-2) in the normal and tangential directions (friction
coefficient set equal to 0.6).

9



Materials 2021, 14, 2732

(a)

(b)

Figure 2. Numerical models of the column: (a) M-1; (b) M-2.
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The top rigid plate was locked at the first reference point (RP1), while the bottom
rigid plate was allowed to move in the Z direction (at the second reference point (RP2)).
The compressive load was realized by displacement of bottom plate along the longitudinal
axis of the column. The displacement in the directions perpendicular to the plane of the
angle column is set to zero in all nodes located on the profile edges (at the contact points).
The specific boundary conditions used in the models are presented in Figure 2.

The above-described numerical models were employed in the numerical calculations
to perform an eigenbuckling analysis and a nonlinear buckling analysis to investigate
the post-buckling behavior of the beam under consideration. To estimate the moment
of the first laminate layer damage, the following initiation criteria were used: maximum
stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criterions. The value of the
damage initiation load and the place where it occurred, according to the above criteria
were determined.

5. Comparison of Results and Discussion

The results of the laboratory tests were used to validate the FE models employed
to determine the post-buckling behavior of thin-walled structures. The results of the
numerical calculations obtained with two models were compared to the results of the
experimental investigations. In the linear numerical analysis, the lowest bifurcation load
and the corresponding mode of buckling were determined. The same buckling mode was
obtained for two models, while the bifurcation load differed by approx 14%. The first
model (M-1) obtained a greater bifurcation load, which proves that this model had greater
stiffness. However, when the stiffness of flexible pads significantly increased (e.g., E ×106),
the same bifurcation load was obtained in both models. Furthermore, the same mode
(along the length of the column one buckling half-wave) in an experimental case was
observed (Figure 3).

(a) (b) (c)

Figure 3. Modes of buckling under axial compression: (a) M-1; (b) EXP; (c) M-2.

The maps of the laminate failure parameter for initiation criteria obtained in the
numerical calculations shows a different qualitative character in M-1 and M-2 models.
Namely, in the first model, due to lack of flexible pads, the damage initiation in all criteria
concerns only areas at the profile edges. However, in the second model the damage
initiation concerns areas at the profile edges and additionally at the corner of the angle
section in 1/2 of its height and in the middle part of one of the flanges. Using the Tsai-
Hill, Tsai-Wu, Azzi-Tsai-Hill, and maximum stress criterions, it is possible to catch the
moment of damage initiation, but it is not possible to determine the failure mechanism
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(i.e., what elements of laminate have been damaged). Therefore, the damage initiation
criteria based on Hashin theory was used,that allow independent assessment of damage
initiation in individual components of the material, i.e., the fibre tensile/compressive
initiation criterion (HSNFTCRT/HSNFCCRT) or the matrix tensile/compressive initiation
criterion (HSNMTCRT/HSNMCCRT). The initiation of damage occurs when any of the
above criteria reaches the critical value of 1. It is used to determine the composite material
damage initiation load. In the analyzed sample, the obtained results demonstrate the
fulfillment of the Hashin criterion when tensile the matrix (HSNMTCRT). Maps of damage
parameter for M-1 and M-2 models are presented in (Figure 4). However, the condition
was not achieved in the other failure parameters.

(a) (b)

Figure 4. Maps of damage parameter for an angle column: (a) M-1; (b) M-2.

The damage initiation in M-2 model occurred mainly in the middle part of one of
the flanges, while the place of damage initiation with the Hashin criterion did not change
in the first model. Additionally, it was checked in the M-1 model whether the damage
mechanism occurring in the M-2 model would appear in further analysis. After completing
the necessary research, it was found that the damage mechanism from second model was
not observed in the first model. From a practical point of view, the angle section under
compression should damage closer to the center than at the edge of the profile. Furthermore,
the maximall deflection in the middle of the column was observed in the experimental tests
(Figure 5a). It was compared with the second numerical model Figure 5b.

Additionally, the deflection curves of two flanges (u1 deflection in the X direction and
u2 deflection in the Y direction) from two numerical models were compared as a function of
the compressive load. Moreover, the above-described curves have been compiled with the
deformations recorded by the Aramis system. The deflection of the angle column near the
middle, recorded from the experimental and two numerical cases are presented in Figure 6.
The deflection of the flange is shown in absolute value, but it should be remembered that
not every variant (real sample or numerical model) has a deflection in the same direction.
The positioning of the test sample did not allow simultaneous observation of two L-profile
column flanges. Therefore, the deflection only one of the sample flanges was recorded.
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(a)

(b)

Figure 5. The deflection of an angle column under axial shortening: (a) EXP; (b) M-2.

Figure 6. The equilibrium paths, i.e., load-flange deflection relations.

The equilibrium paths clearly show that the first numerical model cis haracterized by
a different nature of damage. The deflection in the same node at the damage initiation load
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differed by about 120%. It relate to both X and Y directions. However, comparing the M-2
model with the experiment, a much smaller error in the range of 11–31% was obtained.
Furthermore, the nature of the experimental curves (EXP-1 and EXP-2) complies with
that obtained in the second numerical case. In experimental tests, using the AE method,
the value of the damage initiation load of the first layer was determined. According to
the literature [6,14,15], this type of damage occurs at the first local increase of the acoustic
signal energy, which was significantly greater than the previous ones. In Figure 7, such
a situation was observed for approx. 560 s, where the energy increased almost eightfold.
Thus, the damage initiation load from the load signal at 560s. was assumed. The damage
initiation load for other samples in a similar way were determined. Earlier registered lower
energy readings could occur as a result of matching the sample to the flexible pads.

Figure 7. The load and acoustic energy signal versus time for the second real column (EXP-2): Aramis
signal—red line; energy signal of AEM—blue mark.

All the values obtained from the experimental tests were presented in the collective
diagram together with the results obtained from the numerical tests (Figure 8),where the
following symbols have been adopted: TSAIW—Tsai-Wu criteria, TSAIH—Tsai-Hill’a
criteria, AZZIT—Azzi-TsaiHill’a criteria, MSTRS—maximum stress criteria and HASHIN-
Hashin’s criteria.
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Figure 8. The damage initiation load from numerical and experimental cases.

The results obtained for the first model were about 28 to 34% higher than for the
second one. This confirms the significant influence of the boundary conditions on the
behavior of laminated thin-walled columns. Such a large discrepancy in the results may
indicate that both numerical models do not analyze the same damage mechanism. Hashin’s
criterion on the second model (M-2) almost perfectly defined the damage initiation load
compared to the experimental.Based on the three experimental results, the median was
determined to be 1361N (EXP-2). Next, relative errors for the numerical results with respect
to the median of the experimental results were calculated (Figure 9). The smallest value
overestimation was for model M-1 in the case of the Tsai-Wu criterion, while in the other
criteria the error increased until it obtained the highest overestimation of the value for the
Hashin criteria. However, the smallest underestimation of the value was for the M-2 model
in the case of Hashin criterion (4.61%), while in the other criteria the error increased until
it obtained the largest underestimation of the value for the Tsai-Wu criterion. In the first
case (M-1), the Tsai-Wu criterion allows identifying the damage initiation load, while in the
second model, the Hashin criterion definitely helps to identify the damage initiation load.
It is worth remembering that in two variants this applies to different damage mechanisms.
Considering the above, Hashin’s criterion most accurately describes the actual damage
initiation load.

Figure 9. The relative error between numerical and experimental results: δP = ((PMES −
PEXP)/PMES)× 100 percent.
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Dimensionless equilibrium paths determined from experimental and numerical tests
are presented in Figure 10. A very good agreement of the results was obtained for the M-2
model, while the results from the M-1 model demonstrate a different damage mechanism.
It is also clearly visible in Figure 11, where the equilibrium paths obtained from numerical
models are presented. The shortening of the M-1 model was around 550% lower than for
the second one. Moreover, the damage initiation load obtained in the first model is higher
by about 50% compared to the results of the second model. In addition, it is worth noting
how much influence the flexible pad (i.e., the appropriate stiffness of the support) has
on the behavior of the thin-walled laminate L-shaped column. It can be suspected that,
by increasing the stiffness of the pads, the equilibrium curve should be placed between the
presented results.

Figure 10. Dimensionless equilibrium paths of L-profile column under shortening.

Figure 11. Equilibrium paths of L-profile column under shortening-numerical results.
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6. Conclusions

The main aim of the study was to validate the numerical models (M-1, M-2) with the
results of the experimental tests. The first model M-1 consists of laminated column situated
between the rigid grips, while in the second model the flexible pads between sample
and rigid grips are additionally included.Based on the obtained results, the following
conclusions have been drawn:

• One of the main parameters (the number of half-waves) determining good correlation
of the experimental and numerical results is identical.

• The signals from acoustic emissions method should be carefully analyzed, to catch
those responsible for damage of the first laminate layer.

• The damage initiation in M-1 and M-2 models shows a different qualitative and
quantitative character (Hashin’s criteria), i.e., in the second model occurred mainly in
the middle part of one of the flanges, while in the first model it concerns only areas at
the profile edges.

• The first model (M-1) was characterized by much more stiffness, as shown by: a greater
bifurcation load (about 14%), damage initiation load (up to 34%) in all analyzed criteria,
up to 550% lower shortening and less deflection of the column in its center (up to
120%) then the second model M-2.

• The greater flange deflections obtained in real tests may result from inaccuracies in
the fabrication of the samples, but they are not easy to identify. For this purpose,
a three-dimensional surface analysis should be carried out (using a 3D scanner) and
the quality of the actual columns, before the damage test, should be checked.

• The results obtained in the model with flexible pads show a similar character to the
experimental results, i.e., the equilibrium paths shows a high convergence and a small
error was obtained in the damage initiation load.

Therefore, the model with elastic pads more accurately reflects the actual behavior
of the L-profile element under compression. However, further development in numeri-
cal models (especially checking more detailed boundary conditions) together with their
experimental validation is necessary.
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Abstract: In this paper, we present a new approach to model the steady-state heat transfer in
heterogeneous materials. The multiscale finite element method (MsFEM) is improved and used to
solve this problem. MsFEM is a fast and flexible method for upscaling. Its numerical efficiency is
based on the natural parallelization of the main computations and their further simplifications due
to the numerical nature of the problem. The approach does not require the distinct separation of
scales, which makes its applicability to the numerical modeling of the composites very broad. Our
novelty relies on modifications to the standard higher-order shape functions, which are then applied
to the steady-state heat transfer problem. To the best of our knowledge, MsFEM (based on the special
shape function assessment) has not been previously used for an approximation order higher than
p = 2, with the hierarchical shape functions applied and non-periodic domains, in this problem. Some
numerical results are presented and compared with the standard direct finite-element solutions. The
first test shows the performance of higher-order MsFEM for the asphalt concrete sample which is
subject to heating. The second test is the challenging problem of metal foam analysis. The thermal
conductivity of air and aluminum differ by several orders of magnitude, which is typically very
difficult for the upscaling methods. A very good agreement between our upscaled and reference
results was observed, together with a significant reduction in the number of degrees of freedom. The
error analysis and the p-convergence of the method are also presented. The latter is studied in terms
of both the number of degrees of freedom and the computational time.

Keywords: heat transfer; multiscale finite-element method; homogenization

1. Introduction

Numerical modeling of the heterogeneous materials is a very active research field [1–7].
This is due to the fact that such materials are widely used in many important industry
branches, e.g., civil engineering [1,2,6,7], automotive engineering [3,4], aerospace engineer-
ing [8] and many others. The composite’s superior performance is due to its manifold
mechanisms, among others:

• A specific composite type, e.g., laminate [9,10] or matrix-inclusion [1,5];
• The specific properties, shapes [11] and weight/volume ratios of the constituents;
• A very high adhesion between the constituents [5,11].

The major aspects, listed above, are analyzed at their respective scale, i.e., atomistic,
micro-, meso- or macroscale, in order to optimize the overall composite performance at
the higher scale. The design process of the new composites is enhanced with numerical
analyses that are complementary to laboratory experimentsm and provide an evident
speed-up. A number of numerical methods are used to model composites. The most
frequent applications are based on the finite-element method [1,11], the finite-difference
method [2], the discrete element method [12] and other methods [5,13]. In our research, we
make use of the higher-order, finite-element method. In this paper, only the p-convergence
is studied, i.e., we keep the same mesh and sequentially increase the approximation order
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p within all elements. However, in our previous studies [14], we presented the application
of the automatic hp-adaptivity [15,16] coupled with the multiscale finite-element method.
The automatic hp-adaptivity enhances the whole framework due to its expected exponential
convergence. In this paper, the scope is narrower concerning this aspect. The benefits of
the higher-order multiscale-finite element method with the modified hierarchical shape
functions in the multiscale analysis are demonstrated in Section 4.

A direct numerical analysis of the composite at the heterogeneity scale is frequently
infeasible or unnecessary [17,18]. The analysis itself would be challenging in the context
of the computational resources, as well as time-consuming. When completed, the results
would provide an amount of data that could be impractical to present and demanding to
store. Thus, a variety of upscaling methods was used to reduce the computation cost with
the simultaneous incorporation of the lower-scale information in analyses carried out at
the higher scale. Extensive revisions of the most popular upscaling methods can be found,
for instance, in [19–22]. In our research, we made use of the multiscale finite-element
method (MsFEM) in a form developed in [14,18,23,24]. A concise description of this is
provided in Section 3.1. The outline and the specific features of the method are provided
therein. Selected other multiscale finite-element methods [19] and similar approaches used
for heat transfer analysis (or Poisson equations in general) are also presented in Section 3.1.

We mainly use MsFEM due to its flexibility. In the case of the composites’ analysis,
the method exhibits a very important advantage that should be stressed here. Namely, it
is free of the assumption regarding the distinct separation of the bridged scales. In some
applications (e.g., asphalt pavement), this feature is useful in effective multiscale analysis.
This is due to the relationship between aggregate particle diameters and layer thicknesses.

The natural parallelization, without any special amendments, introduced to the in-
dependent problems solved within neighboring subdomains, guarantees a substantial
speed-up to the computations. A number of observations, which are thoroughly dis-
cussed in Section 3.1, give rise to additional computational time savings, which facilitate
MsFEM implementation.

The main novelty of this paper consists of the application of the higher-order, mul-
tiscale, finite-element method to the steady-state heat transfer problem. The approach is
based on a modified shape function construction. The auxiliary boundary value problem
was introduced, and used for the heat transfer problem. In our previous papers [14,18,23,24],
we applied a higher-order MsFEM to other partial differential equations (PDEs), namely,
to the elasticity and viscoelasticity.

In this paper, we demonstrate an effective MsFEM performance and also test its p-
convergence in order to illustrate the benefits of the higher-order approximation in a steady-
state heat transfer problem. It is additionally discussed in terms of the computational time.

Finally, the proposed method was tested on very challenging numerical problems
with a large contrast in terms of its material parameters (several orders of magnitude).

Ensuring the effective and reliable heat transfer analysis of the composites is one of
the challenging numerical problems. Multiscale methods are the common approach in this
case, due to the reasons given in the above paragraph. State-of-the-art papers devoted to
the review and classification of multiscale methods developed for the heat transfer problem
are present in the literature [25–27]. The main distinction refers to the analysis scale [27];
therefore, one can distinguish:

• The microscale modeling using molecular dynamics (MD) with the motion analysis of
every single atom/molecule in the domain [28,29];

• The particle-based mesoscopic modeling based on a coarse-grained analysis, e.g., Monte
Carlo method, lattice Boltzmann method [30];

• The macroscale modeling with the assumption of the continuum of the domain [2,13,
31,32].

In order to avoid the problem of the excessively large amount of the information
obtained in the direct composite analyses at any scale, a number of hybrid and multiscale
methods are used for the heat transfer problem [27,28,30,31]. They can be classified in a
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manifold manner. In [27], they are mainly grouped according to the scales they bridge,
e.g., molecular dynamics—continuum description, molecular dynamics—particle-based
description. Below, following the distinction used in [27], we briefly present the selected
methods using a description of the respective resolution, in order to subsequently upscale
this. However, it should be noted that the coupling of scales is not exclusively performed
for two neighboring scales. For instance, a hierarchical bridging between several scales can
be performed, as in [33]. Thus, the coupling possibilities are not limited to those presented
in the next section.

In this paper, the focus is only on the macroscale modeling. Namely, at both bridged
scales, the assumption of the continuum of the domain is used. The purpose of describing
the methods referring to lower analysis scales is to place the multiscale, finite-element
method among other approaches. In the case of micro- and mesoscale analysis, we arbitrar-
ily selected the most representative methods. For an extensive review of these, we refer the
reader to [27,28,30,31]. In the case of the macroscale modeling, the description is slightly
different. We present several representative methods, as well as a group of approaches that
share similar concepts, as the multiscale finite-element method used in this study.

1.1. Microscale Modeling

In molecular dynamics, we analyze the motion of every single atom. An atom’s
motion is described by Newton’s second law and interactions between atoms are described
by the potential functions [27,30]. In the case of large domains, this approach is very
time-consuming and provides an excessive amount of information. Thus, the research
interest was to simplify the modeling.

The first coupled MD-continuum analysis was described in [34], and referred to the
flow in a channel. The whole domain was divided into an atomistic and continuum
region with a hybrid solution interface (HSI), where both of the descriptions were valid.
The development of the methodology presented in [34] was mainly associated with the
numerical treatment of the atomistic region and its coupling with the continuum region [35]
(coupling by states). A coupling strength parameter ξ was introduced, due to the constrained
dynamics used to transfer the data at the HSI. The study on this parameter led to further
improvements [36,37] in the methodology presented in [34]. In [38], these two regions
(continuum and MD) were coupled, introducing the fluxes in the HSI (coupling by fluxes).
The USHER algorithm was also proposed [39] for both types of coupling to conserve the
overall energy, momentum and mass by manipulating the number of atoms at the HSI.

The methods presented above constitute a group of hybrid methods, which use two
regions with a different description resolution. Although these approaches are not purely
heat-transfer-oriented, their methodologies can also be applied to the leading problem of
this paper and to other elliptic problems. Due to the necessity of partial MD analysis in the
domain, they remain relatively computationally demanding.

In order to actually bridge the MD scale with the continuum scale, a number of
methods that originated from the heterogeneous multiscale method (HMM) [40] were
developed. The main analysis was carried out at the continuum level with the local transfer
of information from the atomistic scale.

1.2. Mesoscale (Particle-Based) Modeling

Unlike in the molecular dynamics, where we analyze the motion of every single
atom/molecule, mesoscale modeling is based on a coarse-grained analysis [26,27]. This ap-
proach can be regarded as a kind of microscale analysis upscaling. A group of molecules is
represented by the computational particle, and the mechanisms of such particles’ evolution
were assumed. The differences between the main representatives of this group consist of a
description of the particle evolution mechanism. The macroscale description was based on
the continuum assumption at the higher scale, and the microscopic description at the lower
scale is discrete. The mesoscale modeling is situated between these, i.e., the description is
discrete but the scale of analysis (spatial and temporal) is substantially reduced.
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When the particle motion is characterized by a probabilistic description, the direct
simulation Monte Carlo method (DSMC) was established [27,30]. When the hydrodynamic
behavior of the particles was mainly modeled by the addition of the dissipative force,
dissipative particle dynamics (DPD) are used. Two other main representatives of this
approach are the lattice gas automata (LGA) and the lattice Boltzmann method (LBM),
which are based on the simplifications introduced to the collision term in the Boltzmann
equation [27].

For the multiscale techniques bridging the microscale and mesoscale modeling, one
can look at, e.g., the methods transferring the velocities between the scales [41] (MD, DPD
and the continuum) or their distributions [42].

1.3. Macroscale Modeling

As far as the heat transfer modeling is concerned, the continuum assumption is
typically used. It is also the main scale of interest within this paper. The methods which
are most frequently [27] used to numerically solve the heat transfer problem at this scale
are the finite-element method (FEM), the finite-difference method (FDM), the finite-volume
method (FVM) and a number of further modifications. In our research, we make use of the
higher-order finite-element method due to its expected exponential convergence, especially
when combined with the automatic hp-adaptivity, as mentioned in Section 1.

The methods used to bridge between lower observation scales and the continuum
description were mentioned in Sections 1.1 and 1.2. It is natural that the processes occurring
at these scales affect the macroscale response. The scope of this paper is narrower. Namely,
we are only interested in multiscale analysis at the continuum level. The constituent
properties are assumed to be known (e.g., from the laboratory test), but we analyze the
effective response of a composite.

The very basic engineering approach is made to assess the effective properties of the
material (the conductivity, in this case) on the basis of its underlying microstructure. In fur-
ther analysis, the material is numerically modeled as the homogeneous one. For instance,
direct or inverse mixture rule is used for this purpose.

In the case of the periodic domains, a theoretical approach to the asymptotic homoge-
nization [43,44] was primarily used. This is based on the auxiliary BVP solution for a unit
cell. Practically, a number of such BVPs are solved for the increasing unit cell sizes. This
version of the homogenization for the Poisson equation was used, e.g., in [45,46]. Unlike
this method, the improved MsFEM used in this study does not require the periodicity of
the domain. It needs an auxiliary BVP to be solved, but the subdomain (a coarse mesh
element) used for this purpose is typically selected only once.

The most popular approach used in the numerical analyses is the computational
homogenization [5,22], which is based on the representative volume element (RVE) ap-
proach. Using the auxiliary BVP solution for every RVE (typically associated with the
Gauss integration point), the quantities at the macroresolution are assessed using the
Hill–Mandel condition. It is also free of the assumption of domain periodicity. If the finite
element method is used at both analysis levels, the approach is known as FE2 homoge-
nization [47,48]. The advantage of computational homogenization is that we do not need
to assume a constitutive equation at the macroresolution, but can transfer the tangent
stiffness tensor from the lower scale. The main limitation to this is the separation of the
scales’ condition in the RVE analysis. Namely, the ratio of the characteristic dimensions of
the micro- and macroscale should not exceed 0.1. In some structures, this condition does
not hold. The improved MsFEM, used in this study, does not require this condition to be
fulfilled. The computational homogenization for the heat transfer problem is discussed,
e.g., in [49]. In a recursive manner, macro- to microscale transitions are performed. The
pointwise macroscale response is transferred to the lower scale in a form of the boundary
conditions for the BVP solved in the RVE (and associated with this point). From this
microscale level, the averaged quantities are transferred to the macroscale.
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In [13,31], the multiscale seamless-domain method (SDM) is presented. It has some
similarities to both the computational homogenization and the multiscale finite-element
method used in this paper. The macroscale solution is sought at the so-called coarse-
grained point. Its surrounding subdomain is discretized arbitrarily (regardless of the mesh
generated for a subdomain associated with neighboring coarse-grained point). The solu-
tions sought are interpolated within these subdomains. Subsequently, the final solution
is obtained using the SDM scheme to “average” the solutions resulting from the overlap-
ping subdomains. In MsFEM, discretizations for the neighboring subdomains need to be
compatible. Moreover, MsFEM is the FE2 scheme, unlike the SDM or the computational
homogenization, which can be employed for any numerical method at the microscale level.

For instance, using the proper orthogonal decomposition (POD) at the RVE level
constitutes the FEPOD method [50]. Therein, POD is used to reduce the basis and to
speed-up the computations.

MsFEM shares a similar substructuring concept to the superelements [51]. This is
a smart way of obtaining the fine mesh solution, using static condensation and solving
the reduced problem only for the nodes associated with the skeleton. Consequently,
the discretizations within the neighboring superelements need to be compatible. Unlike this
concept, MsFEM first delivers the upscaled coarse-mesh solution, which can be transferred
elementwise to the corresponding fine meshes.

As was noted in [27], not all the multiscale frameworks can be easily classified using
the distinction on the bridged scales. The multiscale finite-element method improved in this
paper does not fall within the above-mentioned classification. Like, e.g., the computational
homogenization [22], it uses the same material description level (continuum) at both
bridged scales.

The similarities between the MsFEM presented in this paper and the heterogeneous
multiscale method (HMH) [40] should be underlined, since, in both cases, the microscale
coupling u and macroscale U variables can be performed mutually by the respective op-
erators. The means of their assessment constitutes the main part of the aforementioned
methods. In HMH, the underlying microstructure is taken into account during the integra-
tion of the respective entries of the macroscale stiffness matrix and load vector. MsFEM
enables the effective computation of these quantities through the multiplication operations
of the assembled (within a coarse element) fine-mesh quantities.

A short comment on the nomenclature is necessary. There is a variety of so-called
multiscale methods. The MsFEM version we use is based on a special shape function
concept. There are also other approaches with a similar name. In [52], for instance,
a multiscale finite-element method, based on the asymptotic expansion, is presented in
applications to a periodic microstructure.

For a comprehensive description of the other existing homogenization methods, we
refer to [20–22].

The remaining part of this paper is organized as follows. Section 2 constitutes a brief
description of the analyzed heat transfer problem. For the sake of clarity, we limit this
paper to the steady-state heat-transfer problem. In Section 3 an outline of the developed
MsFEM version is presented, together with the formulation of the boundary value problem
used to assess the special shape functions. Additionally, some comments on the numerical
implementation are provided. In Section 4, the numerical results are shown to illustrate the
performance of the introduced method. Finally, in Section 5, the findings of this paper are
recapitulated and discussed.

2. Problem Formulation

We selected the steady-state heat-transfer equation as the test problem for the devel-
oped version of MsFEM. Thus, we limit our problem to the resulting Poisson equation of
the following form:

∂qx

∂x
+

∂qy

∂y
+

∂qx

∂z
= f (1)
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Herein, f denotes the internal heat source; qx, qy and qz denote the respective heat flux
components. Using Fourier’s law, the latter can be expressed in terms of the temperature
T(x, y, z), as:

qx = −k ∂T
∂x

qy = −k ∂T
∂y

qz = −k ∂T
∂z

(2)

where k is the thermal conductivity coefficient. We limit this study to the isotropic material,
so k is independent of direction. This assumption is not necessary; therefore, we used it
to simplify the description. Moreover, the materials analyzed in this study exhibit such
behavior. Inserting (2) to Equation (1), we obtain:

− ∂

∂x

(
k

∂T
∂x

)
− ∂

∂y

(
k

∂T
∂y

)
− ∂

∂z

(
k

∂T
∂z

)
= f (3)

for every subdomain with C1-continuous k, with both temperature and normal flux com-
ponent continuity on the subdomain interfaces. In this paper, we use only two types of
boundary conditions, i.e.,

• Dirichlet boundary conditions: T(x, y, z) = TD on ∂ΩD;
• Neumann boundary conditions: qxnx + qyny + qznz = qN on ∂ΩN (n is the unit

outward normal vector, qN denotes the heat flux across ∂ΩN).

3. Upscaling

In this chapter, the MsFEM outline is described and illustrated. Some comments
on the implementation of the presented approach are also provided, to emphasize the
potential benefits of its application in the numerical modeling of composites.

3.1. Idea

As was mentioned in the Introduction, MsFEM shares a similar concept to HMM [40].
Namely, there is a distinct hierarchy of scales. Let us name them the microscale and the
macroscale. Unlike in the Introduction, they both refer to the continuum level, but the
microscale resolves the heterogeneous material structure and the macroscale is the scale
of the analyzed effective material response. The mappings between the micro- (u) and
macroscale (U) degrees of freedom must be determined in the first step. As a result of the
analysis, we obtain the macroscale solution, and the microscale one can be derived in the
post-processing phase.

The construction of the prolongation operator P, which allows us to express the
microscale solution in terms of the macroscale one (u = PU), as well as in the other way
(U = PTu), is the core of the argued methodology.

We proceed with two sets of compatible meshes. The whole domain is discretized at
the macroresolution level with a coarse mesh. Then, each of its elements is substantially
refined in order to capture all the heterogeneities at the microresolution level. In this man-
ner, the coarse mesh is naturally compatible with this set of the corresponding fine meshes.
In [14], we demonstrated the potential of hp-adaptivity application at the macroresolution
level. Thus, this is also used here.

In order to generate the prolongation operator P, we modify the standard coarse-
element shape functions to account for the microstructure, by the solution of the auxiliary
problem in coarse elements [14,23]. In Figure 1, we present a standard bilinear shape
function and its modified counterpart, which was obtained as an exemplary composite.
Knowledge of the operator P is used to compute the effective stiffness matrices and load
vectors. Instead of integrating the modified shape functions over the coarse elements, we
can immediately compute the effective stiffness matrix KH and load vector fH using the
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corresponding fine mesh quantities Kh and fh, which are assembled locally within a single
coarse mesh element, since

KH = PTKhP
f H = PT f h

(4)

(a) (b)

Figure 1. Exemplary bilinear standard (a) and modified (b) shape functions for the unit square coarse element.

For a number of tests on the special shape functions, we refer to [18]. Therein, MsFEM
was used to solve the linear elasticity and viscoelasticity problems.

The general algorithm of the MsFEM application to the steady-state heat-transfer prob-
lem is analogous to the one presented in [18] for the linear elasticity. The difference, beside
the different governing partial differential equation (PDE) to be solved (Equation (3)), con-
sists of the other auxiliary boundary value problem (Equation (5)), which was consequently
used for the special shape function assessment. This is marked in blue in Algorithm 1.

Algorithm 1 Solve a heat transfer problem within a heterogeneous domain.

Require: define the problem (heterogeneous domain and boundary conditions)
Ensure: a coarse mesh and an appropriate refinement of each coarse element

for n=1 to Nel do {loop over coarse mesh elements}
for m=1 to M do {loop over n-th element shape functions}

solve local problem (5) in the n-th element for the m-th shape function
end for
compute KH and f H for the n-th element

end for
solve the coarse mesh problem using the effective matrices KH and vectors f H

3.2. Formulation

The problem formulation for the assessment of the modified shape function is pre-
sented below. This is solved within a subdomain Ωs (occupied by a single coarse mesh
element) of the whole analyzed domain Ω. We need to solve problem (5) for every coarse-
element shape function. The degrees of freedom obtained for the m-th standard shape
function Ψ are the m-th column of the prolongation operator P. The problem presented
below expresses the equality of the residuum of the solution (temperature) interpolant and
residuum of the interpolated function Φm.

Given Ψm, which is a coarse mesh scalar-valued shape function (m = 1, . . . , M), we look for
its scalar-valued counterpart Φm, which is a discrete solution of the following Dirichlet boundary
value problem





∂
∂xi

(
k ∂Φm

∂xi

)
= − ∂2

∂x2
i
Ψm ∀i =1,2,3, x ∈ Ωj

s ⊂ Ωs ⊂ Ω

Φm = Φ̂m on ∂Ωs

+ interface continuity conditions

(5)
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where k is the thermal conductivity of the material at a given location x, Ωj
s denotes the j-th

constituent of the composite.
For the finite-element-method computations, we need a variational formulation, which

is presented below.
Find Φm ∈ V0 + Φ̂ such that
∫

Ω
k∇v ·∇ΦmdΩ =

∫

Ω
v∆ΨmdΩ ∀v ∈ V0 where V0 = {v ∈ H1(Ωs) : v = 0 on ∂Ωs} (6)

This was obtained via the multiplication of (5) by the test function v, and the further
integration of both equation sides over Ωs (integrating by parts was also used at the left-
hand side to transfer the derivative to the test function v). Practically, we additionally
scaled the bubble functions in such a way that the extreme values were equal to 1.

Definition of the Dirichlet boundary conditions Φ̂m needs special treatment regarding
the dimensionality of the problem:

• In 1D, we only solve the reduced Equation (5) (i = 1), obtaining the modified shape
function. For the linear shape functions, we use 0 and 1 as the boundary conditions.
For the “bubble” ones, Φ̂m is equal to zero. Exemplary standard and modified “bubble”
shape functions for this case are shown in Figure 2. The horizontal thick lines represent
the material distribution; thus, the standard shape function (Figure 2a) is the solution
of problem (5) for the material with constant thermal conductivity in Ω1D

s . The solution
presented in Figure 2b was obtained using 50 finite elements, which comply with the
microstructure schematically marked with the horizontal line. The green material is
characterized by a thermal conductivity 10 times larger than the other one;

• In 2D, we first solve the 1D problems along all necessary Ω2D
s edges, as described

above. Then, we use these solutions as Φ̂m for the Equation (5) solved for i = 1, 2. The
exemplary result of such a two-step strategy is presented in Figure 1b;

• In 3D, we need to solve reduced problems (5) along the edges and, subsequently,
within the faces of the domain. Finally, Equation (5) is solved with the Dirichlet
boundary conditions resulting from the lower scales auxiliary computations. A num-
ber of 3D-modified shape function examples for the linear elasticity problem can be
found in [14,18].

(a) (b)

Figure 2. Exemplary “bubble” (a) standard and (b) modified shape functions for the unit 1D coarse element.

3.3. Implementation

We implemented [14,18] MsFEM for the linear elasticity and viscoelasticity problems.
In this paper (Section 4), we present the results of the 2D analysis of the steady-state heat
transfer using modified MsFEM.

To facilitate the multiscale computations, one can take advantage of two approaches,
which are almost equivalent in terms of time saved:
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• For the periodic heterogeneous domains, we compute the effective stiffness matrix
KH once, and use it for every coarse mesh element—the effective load vectors fH are
different in most cases;

• For non-periodic heterogeneous domains, we can parallelize the computations of the
coarse-mesh-element matrices and vectors KH and fH .

The second option is general, and the only time losses are due to the transfer of the
local fine mesh computation (KH and fH) to the global solver.

Another advantage of MsFEM, in the context of computational efficiency, is the
possible low cost of Equation (5) solution. In fact, this is the main computational cost of
the whole approach, since it has to be solved for every standard coarse-element shape
function Ψm. However, it can be observed that Equation (5) leads to a system of algebraic
equations with multiple right-hand sides. Let us denote the number of the functions Ψm as
M, and the time required for the solution of Equation (5) for a single Ψm as tm

Ψ . The overall
computational time TP leading to the full operator P assessment is not, therefore, equal
to M × tm

Ψ but TP � M × tm
Ψ , and it is of the order of tm

Ψ . This is due to the fact that
the computational time necessary to solve the system of linear algebraic equations with
multiple right-hand sides does not significantly exceed the computational time used for a
single system of linear algebraic equations.

In addition to the above discussion, one can observe that the matrix Kh, present in (4),
is the same as the left-hand side of (5) for the arbitrary coarse element. Thus, the assembly
can be performed once and is primarily used for Equation (5), and subsequently for
Equation (4), which can also provide a further speed-up to the computations.

Preserving the global continuity of the solution is necessary in the MsFEM work-
flow. In the case of the irregularly shaped constituents (see Figure 3a), the solution to
Equation (5) along the edges of the coarse elements (denoted with numbers from 1 to 4) is
straightforward. For instance, one of the modified linear shape functions for the common
edge of elements 2 and 4 (marked with a red dotted line) is of the form shown in Figure 3b.

(a) (b)

Figure 3. Exemplary shape function assessment: (a) analyzed domain—colors denote various thermal conductivities of the
constituent, (b) modified linear shape function along the dotted edge.

A situation where the coarse element edge coincides with different material interfaces
needs special attention. When solving Equation (5) along an edge, thermal conductiv-
ity k needs to be used for a given x. Using different values for the common edge in a
loop over coarse elements would not preserve the continuity of the sought function Φ
within a 2D domain. To overcome this problem, we always take the average thermal
conductivity at a given Gauss point ( k(x+ε)+k(x−ε)

2 , where ε is a small vector, orthogonal
to the edge). This operation was performed to provide the continuity of the solution.
If this was skipped, one could observe “jumps” in the solution of the interface (in the
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discussed situation). The accuracy would decrease with the increasing contrast between
the constituents’ parameters.

4. Numerical Results
4.1. Asphalt Concrete

In this test, we analyzed a sample with the dimensions 10 cm × 15 cm, made of
asphalt concrete (AC), as shown in Figure 4b. AC is a standard asphalt mixture that can be
applied for all asphalt layers constituting the flexible pavement structure. It comprises two
main phases: mastic (the asphalt binder mixed with the filler) and the aggregate particles.
The detailed procedure of the AC microstructure generation used for this test is presented
in [24]. Given the prescribed gradation curve in asphalt concrete, we used the approach
based on the shrunk Voronoi cells to generate a microstructure realizing this requirement.
Using the method presented in [24], we generated a non-periodic microstructure in a coarse
element with “periodic boundary conditions”, which enabled us to easily multiply this
geometry. The temperature along the bottom edge was fixed and equal to 15 °C. The upper
edge was subjected to heating with q = 30 W/m. The remaining edges were insulated
(q = 0). Thermal conductivity was equal to 4 W/(mK) for the aggregate particles and
0.8 W/(mK) for the asphalt binder. In this test, we neglected the presence of the air voids.

In Figure 5, we present the temperature distributions obtained using direct FEM
analysis (p = 1) and MsFEM (p = 5). The corresponding cross-section plots, performed at
half the specimen height, are shown in Figure 6. The modified shape functions for the
coarse elements are similar to those presented in Figure 1b. The temperature distributions
for the lower approximation orders, used at the macroscale, were skipped for the sake
of brevity. They are visually indistinguishable from the solution presented in Figure 5b.
Instead, the convergence plots are presented in Figure 7. They illustrate the applicability of
MsFEM with respect to both the number of degrees of freedom and computational time.

We measure the error using the following formula

|Th − TH |
|Th| (7)

where Th is the value of temperature at a given position obtained using the fine mesh and
TH is the corresponding temperature obtained using the coarse mesh. By the fine mesh
solution, we mean the reference solution plotted in Figure 5a. This was obtained using
about 100,000 degrees of freedom.

(a) (b)

Figure 4. Synthetic asphalt concrete microstructure: (a) within a single coarse element, (b) within a whole domain.
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(a) (b)

Figure 5. Temperature distribution [°C]: (a) direct FEM solution, (b) upscaled solution (plotted for p = 5).

Figure 6. Temperature [°C] along the selected segment (at the half of the specimen height).

(a)

(b)

Figure 7. Convergence test for the increasing approximation orders at the macroscale (logarithmic
scale) w.r.t. (a) number of degrees of freedom and (b) relative time (the ratio of the computational
time used for the upscaled and reference solutions).
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The additional modeling error introduced by the upscaling is very small; even for the
bilinear shape functions used at the macroresolution its norm, it is smaller than 0.4%. It
should be noted that, in this case, we used only 12 degrees of freedom. For the approxi-
mation order equal to 5 at this scale, the number of degrees of freedom (NDOF) is equal
to 176 and the error norm drops to about 0.1%. The number of coarse elements is kept
constant and equal to 6. The reduction in degrees of freedom between the reference and
upscaled solutions range from about 570 to about 8300. The results of this test confirm the
p-convergence of MsFEM. The h-convergence was not studied in this paper. The focus was
on the verification of the higher-order approximation applicability at the macroscale. In our
previous papers [14,23], we also tested this type of convergence for the elasticity problem.

In our academic code, we only implemented the approximation of the order p, equal
up to 5, for the heat transfer problem. The code would have to be modified to numerically
verify the further shape of the convergence plot for this example. It should be noted that the
macroscale p-convergence is affected by the microscale, and the corresponding discretiza-
tion at this scale. A theoretical example of p→ ∞ would be cumbersome for this method.
A prohibitively expensive fine mesh would have to be generated in order to approximate,
with linear shape functions (typically used at the microscale level), a macroscale shape
function of a very high order. This would be the case even for a very simple geometry.
Practically, the order p = 5 is very rarely exceeded in numerical applications.

4.2. Metal Foam

In the second test, we present the application of MsFEM in steady-state heat-transfer
analysis of the metal foam. This lightweight material is used in many industry branches.
In the context of the numerical modeling of heat transfer, the metal foam, analyzed with
the application of any upscaling methods, can be regarded as a very challenging problem.
This is due to the large difference between the constituents’ thermal conductivity. In this
test, we analyzed the idealized aluminum foam sample with a matrix thermal conductivity
equal to 236 W/(mK) and the thermal conductivity of the air was set as 0.0262 W/(mK).
The rectangular sample of dimensions 2 cm × 8 cm was heated along the upper edge with
q = 300 W/m. Along the bottom edge, the temperature is equal to 15 °C and the remaining
edges are insulated. The material distribution, as well as the reference and upscaled
solutions, are presented in Figure 8. The corresponding cross-section plots, performed at
half of the specimen height, are shown in Figure 9. The air voids are modeled as circles
with a random radii distribution.

In this test, the reference solution was obtained using more than 69,000 degrees of
freedom. The fine mesh within a single coarse element is shown in Figure 10.

The upscaled solutions were obtained using 10 ÷ 126 degrees of freedom for the
approximation order p = 1 ÷ 5, consecutively. The number of coarse elements is equal to
4. In Figure 11, we present the error convergence plots for the increasing approximation
orders used at the macroscale. The convergence is demonstrated with respect to both the
number of degrees of freedom and the computational time.

In this test, the L2 norm of error (see Figure 11), measured according to 7, is equal to
about 1.6% for p = 1 at the macroscale, and drops below 1.2% for the approximation order
p = 5. The reduction in the number of degrees of freedom spans from about 550 (p = 5) to
about 6900 (p = 1).

In Figure 12, we present the upscaling error distribution for this test (for p = 1, 3, 5). We
compute the error according to Formula (7). The differences span from about 0.76% (p = 5)
to about 2% (p = 1). These discrepancies are acceptable from the engineering perspective.
The character of error distribution around the air voids closest to the boundary is the
result of a small number of finite elements, generated between this boundary and the void
(see Figure 10).
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(a) (b) (c)

Figure 8. Material distribution (a) and temperature maps [°C]: (b) direct FEM solution, (c) upscaled solution (plotted
for p = 5).

Figure 9. Temperature [°C] along the selected segment (at the half of the specimen height).

Figure 10. Fine mesh within a coarse element.
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(a)

(b)

Figure 11. Convergence test for the increasing approximation orders at the macroscale (logarithmic
scale) w.r.t. (a) number of degrees of freedom and (b) relative time (the ratio of the computational
time used for the upscaled and reference solutions).

Both convergence plots were created using the logarithmic scale to demonstrate the
impact of the higher-order approximation at the macroscale on the result correctness.
Technically, the comparisons between the reference and upscaled solutions are justified,
since the mesh was generated as follows. First, the mesh was generated for a single coarse
element. Then, it was copied several times to model the whole domain. In this manner, we
compare the solutions obtained using meshes of the same densities.

A short discussion regarding the error convergence plots shown in Figures 7b and
11b is necessary. Compared to the NDOF reduction in the upscaled solution, the observed
speed-up is not equally impressive. This is due to the additional time necessary for the
prolongation operator P assessment. It should be noted that this is highly affected by
the implementation itself, as well as the discretizations at both scales. Moreover, MsFEM
and other upscaling methods are addressed for problems, where the direct solutions
are prohibitively computationally expensive or unfeasible to obtain. In this latter case,
the computational time is less important than the ability to obtain the solution.
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(a) (b) (c)

Figure 12. Error distribution for the increasing approximation order: (a) p = 1, (b) p = 3, (c) p = 5, consecutively.

5. Concluding Remarks

In this paper, we proposed a higher-order MsFEM for the steady-state heat-transfer
problem. The main novelty consists of the modified shape function assessment for this
problem, presented in Section 3.2, and numerical confirmation of the upscaled solution
p-convergence for a very large material contrast. We demonstrated the convergence of this
method with respect to both the number of degrees of freedom and the computational time.

The proposed approach was verified on two tests, which were performed for the real-
istic materials. The first presents the application of MsFEM to the steady-state heat-transfer
analysis of the asphalt concrete sample. In this example, the focus was on the method
performance for a non-trivial microstructure, and there was not a large difference between
the constituent thermal conductivity. The second test presented the application of MsFEM
to a very challenging numerical problem. The steady-state heat transfer analysis of the
aluminum foam was presented. In order to illustrate the superiority of the method, the air
voids were included in the numerical modeling. Its presence implies the necessity of special
composite modeling. Namely, we deal with a material with constituent parameters varying
by several orders of magnitude. This is a very difficult problem for any upscaling method.

In both of the presented tests, a large reduction in the degrees of freedom was observed
for the upscaled solutions. Compared to the reference fine mesh solutions, this was equal to
570 ÷ 8300 (asphalt concrete sample) and 550 ÷ 6900 (metal foam sample). It should be noted
that, even for the harder test (metal foam) and the bilinear approximation, the maximum
error is equal to about 2%. In both tests, the p-convergence was observed. Considering
the large disproportion of the material parameters and the obtained NDOF reduction, this
result is acceptable.

In terms of the computational time, the applicability of MsFEM was also demonstrated.
The relative time, i.e., the ratio of the computational time necessary for the upscaled and
reference solutions, is much smaller than the unity for both tests. The possible speed-up is
highly affected by the implementation and discretizations at both scales. Thus, this can be
increased. However, this was not the focus of this study.
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Our further research effort is to extend the proposed framework to thermoelastic
analysis. Such an approach is necessary, e.g., in the context of asphalt concrete modeling,
where the thermal effects are very significant.
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Abstract: The paper presents the results of testing the properties of HY 80 steel from the hull
of a Kobben class 207 submarine after 60 years of operation in extreme sea conditions. Steels from
the HY family in the post-war period were used to build American and German submarines. For
the obtained fragment of steel from the hull of the Polish submarine ORP Jastrząb (ORP-Boat of the
Republic of Poland), static tensile tests were performed on an MTS testing machine. Dynamic tensile
tests were carried out on a rotary hammer for the strain rate in the range of 500~2000 s−1. Results:
Based on the obtained results, the Johnson–Cook model and the failure parameters of HY 80 steel
in terms of the finite element method (FEM) were developed. Conclusion: This model can be used
to simulate fast-changing processes such as resistance of structures to collisions, shelling, and the
impact of pressure waves caused by explosions in water and air related to submarines.

Keywords: HY 80 steel; static tensile test; dynamic tensile test; rotary hammer; plastic characteristics;
Johnson–Cook material model

1. Introduction

Steels of increased strength have been used to construct the hulls of submarines, the
structure of which is exposed to high loads caused by water pressure when submerged,
impacts when lying on the bottom, and the effects of explosions of underwater mines and
depth bombs. Commonly used by the United States for shipbuilding in the post-war years
were HY 80, HY 100, HY 130, and HY 200 [1,2]. In 1960, HY 80 steel was used to make the
hull of the first nuclear-powered submarine USS Thresher (SSN-593), which unfortunately
ended its service tragically in April 1963.

The hulls of Los Angeles type units-USS Providence (SSN-719) [3] were made of
HY 80 steel [4]. German shipyards also used this steel for the construction of project 205
submarines and their modifications. Until 2019, there were four Kobben-class (project
207) submarines in operational use by the Polish Navy. These were (S-306 Skolpen) ORP
“Sep”, (S-308 Stord) ORP “Sokol”, (S-309 Swenner) ORP “Bielik”, and (S-319 Kunna) ORP
“Kondor” (Figure 1). The fifth submarine, (S-318 Kobben) ORP “Jastrzab”, is used as a
crew training simulator at the Polish Naval Academy. They are the last ships of this series
worldwide. In 1964–1967, 15 such units were built at the German shipyard Rheinstahl
Nordseewerke to modify the 205 project submarines for Norway’s Navy. Five of them were
transferred to the Polish Navy in 2002–2003 [5]. These ships end their service in the Polish
Navy. Due to the decommissioning, their tactical data can be declassified, and therefore,
their documentation can be used for scientific purposes.

HY 80 (High Yield 80) steel can withstand a load of 80 pounds per square inch which
is equivalent to approximately 551.5 MPa. Their catalogue yield point is 552 MPa [4]. It
is an iron alloy with a content of 0.12–0.2% carbon, 2–3.5% nickel with the addition of
chromium, molybdenum, and copper. Owing to these additives, they are characterised by
increased strength, good plasticity, impact strength, and corrosion resistance. Moreover,
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steels of this type show good weldability, making it possible to build ships in sections and
then join them [2].
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In recent years, the number of accidents to submarines made of HY80 steel has
increased. As a result of this study, submarine engineers have the opportunity to analyse the
strength of submarine hulls. They can decide to allow them for further use. The conducted
tests will allow the properties of the steel to be assessed after 55 years of operation to
discern whether they have changed, or whether the ship’s hull can be further used.

2. Materials and Methods

The adaptation of ORP “Jastrząb” (S-318 Kobben, built: 1966) (Figure 2) as a submarine
simulator at the Naval Academy in Gdynia required numerous modifications to the hull,
including vents and air conditioning connections. The material that had been removed to
make holes for conditioning purposes was obtained as strength test specimens.

The obtained material was used to make standardised samples for the quasi-static
tensile test on the MTS testing machine with a diameter of 8 mm in accordance with EN
ISO 6892-1: 2016 [7] (Figure 3). For the dynamic tensile test on a rotary hammer, round
specimens with a thread with a working part diameter of 5 mm and a length of 40 mm
were made. The samples were made along the ship’s axis–axial.
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3. Results
3.1. Uniaxial Static Tensile Test

Samples were prepared from the obtained material, and a static tensile test was
performed. The test was carried out on four samples. The test results are summarised in
Figure 4.
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3.2. The Study of Dynamic Mechanical Properties Using a Rotary Hammer

The Fundamentals of Technology Laboratory of the Naval Academy in Gdynia has a
unique stand-a rotary hammer (Figure 5) that enables performing the dynamic tensile test
at speeds in the range of 10–50 m/s. With a sample length of 20 mm, this allows the strain
rate to be equal to 500–2000 s−1. The measurement results are presented in Table 1.

At the rotary hammer laboratory stand, the sample breaking force is recorded at a
given strain rate in the range of 0–2000 s−1. The maximum breaking force is then converted
into the stress corresponding to the ultimate strength in dynamic tensile strength. The
strain rate is defined as the ratio of the tearing speed of the sample to its measured length [8]
as follows:

.
ε =

dε

dt
=

d
dt

(
υ·t
l

)
=

υ

l
(1)

3.3. HY 80 True Characteristics

The relationship between the true stresses σtrue and nominal stresses σnom obtained
from the tensile test is obtained assuming that the volume of the stretched sample during
stretching is constant; thus,

l0·A0 = l·A(F) (2)

Hence,

σtrue =
F

A(F)
=

F
A0

l
l0

= σnom

(
l
l0

)
(3)

Since
l
l0

= 1 + εnom (4)

we have, therefore,
εtrue = ln(1 + εnom). (5)

σtrue = σnom(1 + εnom) (6)
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Plastic deformation is the difference between the true deformation εtrue, and the elastic
deformation εel.

εpl = εtrue − εel = εtrue −
σtrue

E
(7)

According to the above formulas, the true and plastic characteristics for the tested
HY 80 steel samples were developed (Figure 6). The basic material constants describing
the tested steel are summarised in Table 2.
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Table 1. Summary of test results on a rotary hammer.

Sample Name ϕ
Measuring

Length
Area
A0

Breaking Force
Fm

Hammer
Rotational Speed

Strain
Rate

Dynamic Ultimate
Strength Rm

mm mm mm2 kN m/s s−1 MPa

HY 80_d1_v10 5.03 18.69 19.86 25.13 10.00 535 1265.28
HY 80_d2_v20 5.03 19.36 19.86 30.35 20.00 1033 1528.10
HY 80_d3_v30 5.02 19.33 19.78 30.76 30.00 1552 1554.92
HY 80_d4_v40 5.07 18.53 20.18 31.41 40.00 2159 1556.62
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.
ε = 0.0001 s−1.

Table 2. Material constants describing HY 80 steel based on Formulas (3)–(7).

Sample
Name

Young
Modulus

Yield
Point

Yield
Strain

Ultimate
Strength

Ultimate
Strain

Proof
Load

E
GPa

Re
MPa

εe
-

Rm
MPa

εm
-

A = σpl = 0
MPa

HY 80_1 208.6 605.9 0.0041 783.9 0.1028 563.9
HY 80_2 210.8 610.5 0.0037 777.5 0.0958 576.0
HY 80_3 214.6 604.4 0.0037 784.1 0.0996 561.2
HY 80_4 210.7 601.7 0.0044 782.6 0.1045 536.0

Average 211.2 605.6 0.0040 782.0 0.1007 559.3

The chemical composition of the breakthrough structure and the material model
proposal was also considered in the paper [2]. However, in CAE programs, functions are
used to describe the plastic characteristic depending on the strain rate and temperature
σtrue = σtrue

(
εpl,

.
ε, θ
)

. In the case of metals, the Johnson–Cook constitutive model has
become the most frequently used standard [9]. In this model, the plastic Huber–Mises–
Hencky (HMH) reduced stresses σpl are described by the following equation:

σpl =
(

A + Bεn
pl

)[
1 + C ln

( .
ε
.
ε0

)][
1−

(
θ − θ0

θmelt − θ0

)m]
(8)

where

A–elastic range of the material σpl=0 (it is often simplified in form A = Re);
B–hardening parameter;
n–hardening exponent;
C–strain rate coefficient;
εpl–true plastic strain;
.
ε –strain rate;
.
ε0–quasi-static strain rate (0.0001 s−1);
θ–current material temperature;
θ0–ambient temperature;
θtmelt–melting temperature;
m–thermal softening exponent.
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The above values for this model are determined based on the static tensile test and
Hopkinson or Taylor tests [10]. However, with strain rates ranging up to 2000 s−1, these
data can be obtained from a rotary hammer tensile test.

The parameters A, B, C, n, and m can be determined in many other ways [11]. One of
the ways is the so-called engineering formula, according to which the parameters of the
first term A, B, and n are determined based on the results of the static tensile test according
to the following algorithm:

Rm, εm, E should be determined from true characteristics, along with the values of the
A point corresponding to σpl=0, εpl=0, which constitute the elastic range of the material
behaviour; then, according to the Formulas (9)–(12), calculate the Re,true, Rm,true, εm,true,
εm,pl values as follows:

A = σpl=0 (9)

Rm,true = Rm(1 + εm). (10)

εm,true = ln(1 + εm) (11)

εm,pl = εm,true −
Rm,true

E
(12)

determine the parameters B, n [11] according to the following Formulas (13) and (14):

n =
Rm,true·εm,pl

Rm,true −A
(13)

B =
Rm,true −A

εn
m,pl

(14)

Taking the average values from Table 2 and using the Formulas (9), (13) and (14),
the coefficients for the first component of the Johnson–Cook constitutive model were
determined, which are the following:

A = 559 MPa;
B = 518 MPa;
n = 0.379.

Figure 7 shows the compilation of the nominal characteristic from the MTS machine
(red), the true characteristic determined from Equations (5) and (6) (blue), and the JC model
(the first part of the Equation (8) (green).
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To determine the C parameter, it is necessary to know the value Rm, true
( .
ε
)

or a given
strain rate determined during the dynamic tensile test on a rotary hammer (Table 3). From
transforming Equation (8), we obtain

C =

(
Rm,true

( .
ε
)

Rm,true
( .
ε0
) − 1

)
/ ln

( .
ε
.
ε0

)
(15)

Table 3. Ultimate strength for various strain rates.

Strain Rate,
.
εεε

.
εεε0 = 0.0001 s−1 .

εεε = 535 s−1 .
εεε = 1033 s−1 .

εεε = 1555 s−1 .
εεε = 2159 s−1

Rm,(
.
εεε), MPa 782.00 1047 1115 1130 1140

C - 0.021873 0.026366 0.026877 0.027108

Based on the calculations, the mean value of the C parameter was determined,
C = 0.0268. In Figure 8, the influence of the C parameter on material behaviour is shown.
Figure 8 shows the behaviour of the material as a function of strain rate in the Johnson–
Cook model (first and second term of Equation (8) against the background of the real
characterisation determined from Equation (6).
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The values for the temperature component can be taken based on the literature [1,4],
and they are similar for most steels; thus,

Ambient temperature θ0 = 293.15 K;
Melting temperature θtop = 1733~1793;
Thermal coefficient m = 0.75 ÷ 1.15.

3.4. HY 80 Steel Failure at Uniaxial Tension

The material failure model used in CAE programs is detailed in several studies [6,8,12–14].
The value of the destructive deformation is a function of the so-called stress state indicator

44



Materials 2021, 14, 4213

ηTRIAX (stress triaxiality). It is the ratio of the pressure being the mean of the principal
stresses to the Huber–Mises–Hencky reduced stress σHMH [12,13]

ηTRIAX =
p

σHMH
(16)

In a three-dimensional state of stress, the pressure is

p =
1
3
(σ1 + σ2 + σ3). (17)

For the uniaxial stretching state, the value of the triaxiality coefficient is equal to 0.33
(Table 4).

Table 4. ηTRIAX values for selected 3D cases [3].

3D Cases
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4. Discussion

The failure mechanism for HY 80 steel is shown in the true characteristic diagram
σtrue-ε true (Figure 9). The elastic range is between points 0 and 1. Between points 1 and 2,
there is a plastic range (hardening). In point 2, the destruction process is initiated. After
crossing point 2 in the material model without failure criteria, the stresses would continue
to increase with the strain increase towards point 5 and further. If the loading forces
disappear in point 2, then the elastic forces will reduce the deformation to point 7 along
path 2~7 and parallel to path 0~1. In the model with failure, point 5 corresponds to point
3 on the curve 2~4, where strength loss (softening) occurs. The 2~4 curve is called the
degradation or failure curve defined by the parameter d, which is the damage evolution
coefficient taking values from 0 to 1. The stress on the degradation curve is appropriate.

σ = (1− d)σ. (18)

The material fracture occurs in point 4 after reaching the value of the fracture deforma-
tion ε

pl
f ailure However, if during the degradation of the material on the curve 2–4 the element

breaks or the forces loading the element disappear, e.g., in point 3, then the remaining
elastic forces will reduce its deformation to point 6 along the 3–6 path, which is not parallel
to the 0–1 path. The evolution of failure determines the degree of degradation at which
failure of the material will occur. The value of d = 0 means that the plastic stress has reached
the value of Rm, but the material has not yet been degraded, while the value of d = 1 means
the complete degradation of the material. The failure evolution is described as a function
of the plastic displacement of the upl, defined as follows [13]:

upl = L·εpl (19)

where L is the characteristic length of the FEM element.
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The rate of evolution of failure describes the path along which material degradation de-
velops. In CAE programs, linear, exponential, and tabular descriptions are adopted. The lin-
ear relationship is expressed as the ratio of plastic displacement to failure displacement [13].

d =
upl

ufailure
(20)

Table 5 lists the points from the diagram in Figure 9, based on which the failure
parameters for tensile strength of HY 80 steel were determined.
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Figure 9. Failure diagram on the true characteristics of HY 80 steel (σtrue-εtrue).

Table 5. The values in Figure 9 used in the calculations.

Point Label Strain Stress Remarks

εel, - σtrue, MPa

1 0.0040 605.6 Yield point Re
2 0.1028 783.8 Ultimate tensile strength Rm
3 0.1768 489.9 Sample fracture
4 0.2280 0.00 d = 1 material total degradation

5 0.1768 836.0 Stresses in the material model without
failure parameters

6 0.1730 0.00 Fracture deformation
7 0.0991 0.00 Deformation at ultimate strength Rm, d = 0

Following these parameters, calculations were carried out for uniaxial stretching
as follows:

ε f ailure = ε4 − ε7 = 0.2280− 0.0991 = 0.1289.

dσ = σ5 − σ3 = 836.0− 489.9 = 346.1. MPa

since σ = (1− d)σ. so d = 1− σ

σ
= 1− 489.9

836
= 0.414.
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E′ = (1− d)E = (1− 0.414)·211 = 124 GPa

u f ailure = 0.1289·L
Summarising the tested HY-80 steel can be described by the following equations:
Young modulus: E = 211 GPa;
Johnson–Cook model:

σ =
(

559 + 518·ε0.379
)[

1 + 0.0268 · ln
( .

ε

0.0001

)][
1−

(
θ − 293.15

1 470

)1.14
]

Failure parameters:

d = 0.414; ε f ailure = 0.1289; ηTriax = 0.33

5. Conclusions

Johnson–Cook HY 80 steel characteristics and material model were developed based
on the static and dynamic tensile tests on the rotary hammer. Tensile tests performed on
a rotary hammer allowed us to determine the mechanical properties of steel in the range
of deformation speed 0–2000 s−1. The knowledge of the behaviour of steel for increased
deformation rates enables the simulation of fast-changing processes such as a collision,
projectile fire, impact of a shock wave (pressure from the explosion) on the tested object, or
modelling of submarine implosion. The obtained data should be verified by an appropriate
simulation and experiment, which will be the subject of the subsequent study.

The results of the tests of HY 80 steel after 55 years of operation show that the
several decades of exploitation of this material in challenging sea conditions did not
adversely affect its mechanical properties. They are close to catalogue values. The yield
point of this steel is catalogued at 80 KSI (552 MPa). From the tests performed, the
yield point of Re = 605.6 MPa (R02 = 444.5 MPa) was obtained, and the strength limit was
Rm = 782 MPa with a deformation of 0.1, which proves that good plastic and strength
properties were maintained.

By analysing the mechanical properties, it can be concluded that the ship’s hull made
of this steel without significant corrosion and operational losses could be used for the next
years. One should be aware that it is still subject to erosive wear, which changes the overall
strength of the hull. That may have an impact on limiting the maximum operational depth
of the submarine.

Tests with a rotary hammer showed an increase in the strength of the steel with
a reduced deformation. Unfortunately, due to the dynamic nature of the test and the
possibility of potential damage to the extensometers, it was not possible to measure the
deformation during the trial. This problem will be solved in the future with the use of
high-speed cameras.

Increasing the strain rate in the range of up to 2000 s−1 increases the strength of the
tested steel to 1140 MPa. That is a typical phenomenon in high-quality steel.

The study determined the failure parameters for the uniaxial tensile case (η = 0.33).
The compression/tensile diagram for steel is symmetrical, which allows for the assumed
failure criterion also for η = −0.33. The obtained amount of material did not qualify for
a greater number of tests in which the failure parameters could be determined for the
remaining characteristic values of the triaxiality coefficient.
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Abstract: To investigate the applicability of the methods for calculating the bearing capacity of
high-strength steel-reinforced concrete (SRC) composite columns according to specifications and
the effect of confinement of stirrups and steel on the bearing capacity of SRC columns. The axial
compression tests were conducted on 10 high-strength SRC columns and 4 ordinary SRC columns.
The influences of the steel strength grade, the steel ratio, the types of stirrups and slenderness ratio
on the bearing capacity of such members were examined. The analysis results indicate that using
high-strength steel and improving the steel ratio can significantly enhance the bearing capacity of the
SRC columns. When the slenderness ratio increases dramatically, the bearing capacity of the SRC
columns plummets. As the confinement effect of the stirrups on the concrete improves, the utilization
ratio of the high-strength steel in the SRC columns increases. Furthermore, the results calculated by
AISC360-19(U.S.), EN1994-1-1-2004 (Europe), and JGJ138-2016(China) are too conservative compared
with test results. Finally, a modified formula for calculating the bearing capacity of the SRC columns is
proposed based on the confinement effect of the stirrups and steel on concrete. The results calculated
by the modified formula and the finite element modeling results based on the confinement effect
agree well with the test results.

Keywords: high-strength steel; steel-reinforced concrete column; axial bearing capacity; confinement
effect; simulation analysis

1. Introduction

Due to enjoying the advantages of strength, plasticity, toughness and weldability,
high-strength steel has become one of the most important building materials. In recent
years, high-strength steel with a yield strength ranging from 460 to 960 MPa has been
used in building structures [1–3], such as the Bird’s Nest and Water Cube in China, and
the Sony Center in Germany [4]. However, the applicability of the current design and
calculation methods to high-strength steel-reinforced concrete (SRC) composite structures
has become challenging since they have gradually been applied to high-rise buildings and
long-span structures.

In 2014, Q460 and Q690 high-strength steel were used to replace Q345 ordinary steel
in SRC composite columns in the upper part of the structure in the high-rise project of
Zhengzhou Greenland Central Plaza in Henan Province, China, to enhance the bearing
capacity and reduce the self-weight of the structures. Thus, it is necessary to develop
the design of SRC structures. However, in Specifications for Structural Steel Buildings
(AISC360-16, the USA) [5], Design of Composite Steel and Concrete Structures (EN1994-1-
1:2004, Eurocode) [6] and Code for Design of Composite Structures (JGJ138-2016, China) [7],
the design methods of SRC composite members are primarily based on the research on
ordinary steel. Yang et al. performed model tests on Q460 high-strength SRC columns with
a circular section to solve this issue and found that Q460 high-strength steel enhanced the
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bearing capacity of the SRC columns remarkably. Nevertheless, the calculation results by
the relevant specifications were only about 60% of the test results, which led to a waste
of materials [8]. Zhao et al. conducted tests on the Q460 SRC-core columns to find the
reason why calculation results are too conservative [9]. It was found that the confinement
effect of steel and stirrups on bearing capacity was neglected in the methods for calculating
the bearing capacity of SRC composite columns in current specifications, and only the
load-bearing capacity of the steel, the concrete and the longitudinal reinforcements was
taken into account. Moreover, the theoretical stress–strain model of confined concrete
on concrete was developed, but neither the full verification of the model nor specific
calculation suggestions was proposed for the bearing capacity of SRC structures.

In recent years, there has been some research on the confinement theory of SRC
members. In 1992, Mirza and Skrabek conducted tests on slender composite beam-columns
with ordinary strength materials [10]. It was found that concrete in a SRC cross-section can
be divided into three parts according to the confining pressure level, that is: unconfined
concrete (UCC), partially confined concrete (PCC) and highly confined concrete (HCC). For
PCC, the confinement effect can be considered as normal reinforced concrete, which has
been extensively studied by Sheikh and Uzumeri, Mander et al. [11,12]. For HCC, Chen
and Wu proposed an analytical method for predicting the axial compressive behavior of
the SRC column using a cross-shaped steel section with flanges [13]. However, Wang and
Su carried out tests on slender SRC columns; 270 MPa~600 MPa steel was used in the
specimens. It was found that when the confinement of steel and stirrup was calculated,
the bearing capacity of slender SRC columns increased by only 2% compared with only
considering the confinement of stirrups [14]. Despite all this research, there are still some
codes for SRC columns which do not take into account the strength of confined concrete,
leading to the calculations being too conservative, such as AISC, Eurocode 4 and JGJ138-
2016. Therefore, more experiments are needed to analyze the confinement of stirrups and
steel on concrete, especially when high-strength steel is used in SRC columns. The codes
also need more suggestions to improve the accuracy of the calculations.

In this paper, structural tests were carried out on SRC columns under an axial load
to verify the applicability of the current specifications to high-strength SRC composite
columns and provide a calculation method considering the confinement effect for such
composite columns. Then, the finite element models were utilized to prove the accuracy of
the prediction method using the theoretical stress–strain model of confined concrete for
engineering applications.

2. Experimental Investigation
2.1. Test Specimens

On the basis of the theory proposed by Zhao et al. [15] and the formulas described
in EN1994-1-1:2004, Eurocode, the strength of steel, the steel ratio, the stirrups and the
slenderness ratio are the primary factors influencing the bearing capacity of SRC columns.
Thus, 10 high-strength SRC columns and 4 ordinary SRC columns were analyzed to verify
the confinement effect and determine the magnitude of the known factors. Table 1 lists the
main parameters of the specimens, and Figure 1 shows the labelling rule of specimens.
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Table 1. Main parameters of specimens.

Specimen
Designation Steel Grade Steel Ratio

to Concrete
Steel Geometric Size

(h × bf × t1 × t2)/mm Stirrup Type Slenderness Ratio Height/mm Stirrups Spacing

C1Q2S4T1R1 (C1) Q235 4.12% 130 × 70 × 5 × 5 1 17 1200 80
C2Q2S4T2R1 (C2) Q235 4.12% 130 × 70 × 5 × 5 2 17 1200 80
C3Q2S5T1R1 (C3) Q235 5.63% 140 × 75 × 5 × 8 1 17 1200 80
C4Q2S7T1R1 (C4) Q235 7.17% 140 × 80 × 8 × 8 2 17 1200 80
C5Q4S4T1R1 (C5) Q460 4.12% 130 × 70 × 5 × 5 1 17 1200 80
C6Q4S4T2R1 (C6) Q460 4.12% 130 × 70 × 5 × 5 2 17 1200 80
C7Q4S5T1R1 (C7) Q460 5.63% 140 × 75 × 5 × 8 1 17 1200 80
C8Q4S7T1R1 (C8) Q460 7.17% 140 × 80 × 8 × 8 2 17 1200 80
C9Q4S7T1R2 (C9) Q460 7.17% 140 × 80 × 8 × 8 1 29 2000 80

C10Q4S7T1R3 (C10) Q460 7.17% 140 × 80 × 8 × 8 2 40 2800 80
C11Q6S4T1R1 (C11) Q690 4.12% 130 × 70 × 5 × 5 1 17 1200 80
C12Q6S4T2R1 (C12) Q690 4.12% 130 × 70 × 5 × 5 2 17 1200 80
C13Q6S5T1R1 (C13) Q690 5.63% 140 × 75 × 5 × 8 1 17 1200 80
C14Q6S7T1R1 (C14) Q690 7.17% 140 × 80 × 8 × 8 2 17 1200 80

Four kinds of sections were selected for this study, as shown in Figure 2. Moreover,
stirrup encryption and reinforcement with carbon fiber cloth were performed within
1/6 height of both ends of the column to prevent local pressure failure at the upper and
lower ends of the columns.
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2.2. Material Properties

Steel sheets of grade Q235, Q460, Q690, with a reinforcement of HRB400, were selected
to manufacture the specimens. Tensile coupon tests were carried out to obtain the material
properties of steel. According to the Chinese Standard GB/T 228-2010 [16], the measured
material properties of the steel presented in Table 2 are the mean values of results.

Table 2. Mechanical properties of steel.

Grade t/mm fy/Mpa fu/Mpa δ/%

Q235 5 277 437 33.7
Q235 8 305 469 32.5
Q460 5 474 558 28.8
Q460 8 507 596 27.9
Q690 5 740 820 16.5
Q690 8 738 818 17.2

HRB400
(stirrups) 8 469 611 28.6

HRB400
(longitudinal

reinforcement)
10 460 609 27.8
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C50 concrete is used in this test. After finishing the preparation work, all the specimens
were poured at one time and maintained for 28 days under the condition of a temperature
no less than 5 ◦C. According to the standard for test methods of concrete structures (GB/T
50152-2012) [17], 9 concrete cubes (150 × 150 × 150 mm) were maintained under the same
conditions as the specimens. The compressive strength test was carried out before the
formal loading began, as shown in Figure 3. The results are listed in Table 3.

Figure 3. Concrete cubes and the failure mode of concrete tubes.

Table 3. Results of compressive strength test.

Grade of Concrete f0
cu f0

cu,m f0
c E0

c

C50

52.6

55.4 40.8 35,736.3

56.1
54.8
53.2
56.6
57.4
57.3
54.9
55.7

f 0
cu is the cubic compressive strength of concrete by the test, respectively; f 0

cu,m is the average cubic compressive
strength; f 0

c is the calculation of the prism compressive strength, which is used in the finite element models; E0
c is

the elastic modulus measured by the test, respectively.

2.3. Test Setup and Procedure

A 30,000 kN servo-hydraulic testing machine was employed for loading, and the
loading device is shown in Figure 4a. The accuracy of the instrument is 1/1000, which
is allowed according to GB50152-2012 [17]. The specimens were subjected to multi-stage
loading, and before formal loading, a 50 kN load was applied in advance to confirm
whether the test apparatus functioned normally. During the formal testing, force-controlled
loading was first conducted at a rate of 200 kN/min. When the load reached 60% of the
estimated ultimate bearing capacity, the loading rate was reduced to 150 kN/min. When
the load reached 80% of the estimated ultimate bearing capacity, the loading mode was
changed from the force-controlled loading to the displacement-controlled loading, and the
loading rate was set as 0.4 mm/min. After the ultimate load (ultimate bearing capacity),
the testing was terminated when the load decreased to 70% of the ultimate bearing capacity.
The arrangement of the measuring points is depicted in Figure 4b. The strain gauges were
arranged on two adjacent sides of the steel, on the surfaces of stirrups and the longitudinal
reinforcement, and four sides of concrete in the middle height of the specimens. The vertical
displacement of the specimens was recorded by a displacement meter in the loading device.
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2.4. Test Results and Analysis
2.4.1. Failure Mode

The specimen was in the elastic deformation stage during the initial loading, and no
cracks formed on its surface. With an increase in the load, apparent longitudinal cracks
appeared in the middle of the specimen and continuously extended to both ends of the
column. When the ultimate bearing capacity was reached, both the steel and longitudinal
reinforcement of the specimen reached the yield strength, the length and width of the cracks
increased rapidly. In addition, the cover concrete at the middle height of the specimen
crushed and peeled off, and the longitudinal reinforcement bulged outward.

Figure 5 illustrates the failure modes of the specimens. As shown in Figure 5a, when
the specimen with built-in Q235 steel failed, it had a relatively low degree of surface crack-
ing. At a steel ratio of 7.17%, when the strength grade of the steel improved from Q235 to
Q460 and Q690, the vertical displacement of the specimen during failure increased from
7.53 mm to 10.5 mm and 11.7 mm, respectively. Furthermore, the cracking and crushing de-
gree of the cover concrete intensified accordingly, as illustrated in Figure 5b,c, respectively.

As presented in Figure 5d, specimen C9 with a slenderness ratio of 29 showed strength
failure characteristics. However, when the slenderness ratio of the specimen increased
to 40, specimen C10 displayed evident instability failure characteristics with a significant
lateral displacement, as shown in Figure 5e.

Figure 6 demonstrates the crushing patterns of the concrete in high-strength SRC
composite columns with different stirrup configurations. Compared with the specimens
with complex stirrups, the concrete crushing depth of specimens C1, C5 and C11 with
standard rectangular stirrups reached the stirrup confinement concrete during failure. On
the contrary, the stirrup confinement concrete of specimens C2, C6, and C12 with complex
stirrups remained almost intact during failure.
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Figure 5. Failure modes of the specimens: (a) failure mode of the specimen with Q235 steel, steel
ratio is 7.17%; (b) failure mode of the specimen with Q460 steel, steel ratio is 7.17%; (c) failure mode
of the specimen with Q690 steel, steel ratio is 7.17%; (d) failure mode of the specimen C9; (e) failure
mode of the specimen C10.
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Figure 6. Concrete crushing modes of specimens with different stirrup configurations. (C1, C5, C11
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2.4.2. Ultimate Bearing Capacity

Table 4 lists the ultimate bearing capacity of the specimens. Compared with the
specimen with built-in Q235 steel, the ultimate bearing capacity of the specimens with built-
in Q460 and Q690 steel increased by 17.1% and 35.3%, respectively, indicating a marked
increase in the bearing capacity of the columns. Figure 7a plots the load–displacement
curves of the specimens at different strength grades of the steel and steel ratios. For
the specimens with the same strength grade of steel, the maximum improvement in the
ultimate bearing capacity of the specimens with a steel ratio of 5.63% and 7.17% was 13.2%
and 28.3%, respectively, compared with that of the specimen with a steel ratio of 4.12%,
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which implied that increasing the steel ratio could noticeably enhance the ultimate bearing
capacity of the members.

Table 4. Comparison of test results with calculation results calculated codes.

Specimens Test Results AISC360-16 ( Nai
Nu
− 1)% Eurocode 4 ( Ne

Nu
− 1)% JGJ138-2016

( Nj
Nu
− 1)%

Nu/kN Nai/kN Ne/kN Nj/kN

C1Q2S4T1R1 4200 2633 37.3% 2713 35.4% 2943 29.9%
C2Q2S4T2R1 4506 2633 41.6% 2713 39.8% 2943 34.7%
C3Q2S5T1R1 4340 2887 33.5% 2968 31.6% 3166 27.1%
C4Q2S7T1R1 4596 3149 31.5% 3230 29.7% 3394 26.2%
C5Q4S4T1R1 4462 3006 32.6% 3107 30.4% 3305 25.9%
C6Q4S4T2R1 5050 3006 40.5% 3107 38.5% 3305 34.6%
C7Q4S5T1R1 4878 3398 30.3% 3505 28.1% 3660 25.0%
C8Q4S7T1R1 5383 3803 29.4% 3912 27.3% 4023 25.3%
C9Q4S7T1R2 5120 3561 30.4% 3778 26.2% 3983 22.2%
C10Q4S7T1R3 4848 3228 33.4% 3617 25.5% 3862 20.3%
C11Q6S4T1R1 4847 3666 24.4% 3810 21.4% 3954 18.4%
C12Q6S4T2R1 5407 3666 32.2% 3810 29.5% 3954 26.9%
C13Q6S5T1R1 5487 4299 21.7% 4461 18.7% 4546 17.1%
C14Q6S7T1R1 6220 4953 20.4% 5126 17.6% 5152 17.2%

Figure 7b delineates the load–displacement curves of the specimens at different slen-
derness ratios. Raising the slenderness ratio from 17 to 29 while keeping the other parame-
ters unchanged reduced the ultimate bearing capacity of the column by 4.9%, implying a
negligible reduction in the bearing capacity of the members. In contrast, when the slender-
ness ratio increased from 17 to 40, the ultimate bearing capacity of the column declined
to 90.1%, indicating a remarkable reduction. Specimen C10, with a slenderness ratio of
40 experienced a small vertical displacement when the load reached the ultimate bearing
capacity. Moreover, the ultimate bearing capacity of the specimen plummeted, and the
specimen presented evident brittle failure characteristics.

Figure 7c draws the load–displacement curves of the specimens with different types
of stirrups. When the type of stirrup was changed from standard rectangular stirrups to
complex stirrups, the ultimate bearing capacity of the column with built-in Q235, Q460
and Q690 steel increased by 7.3%, 13.2% and 11.6%, respectively. The strength grade of
the steel also raised the bearing capacity of the high-strength SRC composite columns
with complex stirrups, which was due to the profound confinement effect of the complex
stirrups, bringing the steel into full play.
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Figure 7. Load–displacement curves of specimens: (a) the load–displacement curves of the specimens
at different strength grades of the steel and steel ratios; (b) the load–displacement curves of the
specimens at different slenderness ratios; (c) the load–displacement curves of the specimens with
different types of stirrups.

3. Modification of Bearing Capacity Calculation
3.1. Current Calculation Methods

In the American National Standard Specifications for Structural Steel Buildings
(AISCI360-16), the wrapped reinforced concrete part is considered to be equivalent to
the steel. Thus, the formula for calculating the axial compression by utilizing the steel
structure design method is defined as:

Pn =





Pn0

(
0.658

Pn0
Pe

)
Pn0
Pe
≤ 2.25

0.877Pe
Pn0
Pe
> 2.25

(1)

Pn0 = Fy As + Fysr Asr + 0.85 f ′c Ac (2)

Pe = π2(EIeff)/L2
c (3)

where As, Asr and Ac are the cross-sectional area of the section steel, longitudinal reinforce-
ment and concrete, respectively. Fy, Fysr and f ′c represent the compressive strength of the
steel, longitudinal reinforcement and concrete, respectively; EIe f f stands for the effective
stiffness of the section; Lc is the effective length of the member.
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The Code Design of Composite Steel and Concrete Structures (EN1994-1-1:2004),
defines the formula for calculating the bearing capacity of biaxially symmetric SRC columns
under axial compression as:

NEd ≤ χNpl,Rd (4)

Npl,Rd = Aa fyd + 0.85Ac fcd + As fsd (5)

where Aa, Ac and As denote the cross-sectional area of the section steel, concrete and
longitudinal reinforcement; fyd, fcd and fsd are the compressive strength of the section steel,
concrete and reinforcement, respectively; χ is the buckling reduction factor considering the
relative slenderness ratio, and is expressed by Equation (7), as described in the Section 6.3
of Eurocode 3: Design of Steel Structures (EN 1993-1-1:2005),

χ =
1

Φ +

√
Φ2 − λ

2
, when χ ≤ 1 (6)

Φ = 0.5
[
1 + α(λ− 0.2) + λ

2
]

(7)

where α is the section type; λ represents the relative slenderness ratio.
The Code for Design of Composite Structures (JGJ138-2016), defines the formula for

calculating the bearing capacity of axially compressed SRC columns under axial compres-
sion as:

N ≤ 0.9ϕ( fc Ac + f ′y A′s + f ′a A′a) (8)

where Ac, A′s and A′a indicate the cross-sectional area of the concrete, reinforcement and
section steel, respectively; fc, f ′y and f ′a are the design value of the compressive strength
of concrete, reinforcement and section steel, respectively; ϕ is the coefficient of axial
compression stability and can be determined according to the slenderness ratio presented
in a specific table in the code JGJ138-2016.

3.2. Comparison between Test Results and Calculations

Table 4 lists the test results and the calculations of the different specifications. Figure 8
compares them at various parameters. Figure 8a,b demonstrate that as the strength grade
of steel improves from Q235 to Q460 and Q690 at a constant steel ratio, the results cal-
culated by the different codes are far smaller than the test results, indicating that the
calculations are too conservative. The results calculated according to code JGJ138-2016 are
the closest to the test results, whereas those calculated according to code AISC360-16 are
the most conservative.

Figure 8. Cont.
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Figure 8. Effect of parameters on bearing capacity of specimens: (a) Comparison of test results and calculations for the
specimens with steel ratio 5.63%; (b) Comparison of test results and calculations for the specimens with steel ratio 7.17%;
(c) Comparison of test results and calculations for the specimens with Q690 steel; (d) Comparison of test results and
calculations for the specimens with different slenderness ratios.

Figure 8c shows that, at a constant strength grade of the steel, the slope of the growth
of the test results is similar to that of the results when the steel ratio enlarges.

As shown in Figure 8d, when the slenderness ratio increases from 17 to 40, the
changing trend of the bearing capacity of the column determined by the test is similar to the
one calculated by code AISC360-16: the higher the slenderness ratio is, the more profound
its impact on the bearing capacity of the SRC composite columns becomes. However, the
calculation results of codes JGJ138-2016 and Eurocode 4 show a small decreasing trend in
the bearing capacity of the SRC columns with an increase in the slenderness ratio.

According to Figure 9, since the influence of the type of stirrups on the bearing capacity
of composite columns is not considered in the methods proposed by different codes, the
calculations according to different codes are generally similar. Changing the types of
stirrups and strengthening the stirrup confinement effect on SRC composite columns can
enhance the ultimate bearing capacity of the high-strength SRC columns more than that
of the ordinary SRC columns. The ultimate bearing capacity of the Q690 SRC composite
columns is relatively low when rectangular stirrups are configurated.

Figure 9. Effect of types of stirrups on bearing capacity of specimens. (C1, C5, C11 are the specimens
with rectangular stirrup; C2, C6, C12 are the specimens with complex stirrup).
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3.3. Modification of Formula for Calculating Bearing Capacity Considering Confinement
Effect of Stirrup

Specifications ignore the confinement effect of the stirrups and steel on concrete when
calculating the bearing capacity of reinforced concrete columns under axial compression.
The bearing capacity calculated by the different specifications is smaller than the measured
bearing capacity, thus they produce a conservative result. At present, there are two types
of methods for analyzing the confinement effect: one only considers the confinement effect
of stirrups [12], and the other takes account of the confinement effect of the stirrups and
steel [15,18].

Figure 10a illustrates the section considering the confined effect of the stirrups on
concrete, and Figure 10b shows the section considering the confinement effect of the stirrups
and the steel on concrete. It is found that the confinement effect of the steel (open section)
on concrete increases the bearing capacity of the composite columns marginally; that is, by
less than about 2% [14]. Hence, this theoretical analysis only takes the confinement effect
of the stirrups on the concrete strength into account. There are two methods to calculate
the stress–strain relationship of stirrup confined concrete.

Figure 10. Effectively confined region and ineffectively confined region of concrete: (a) Ordinary reinforced concrete column;
(b) SRC column with cross-section steel.

One is according to the research of Uzumeri and Mander [11,12], the maximum
restraint stress on the stirrups only plays a role in the core confined area. Thus, Mander
proposed the following calculation formula for the effective restraint stress on the stirrups:

f ′l =
1
2

keρs fyh (9)

where ρs is the stirrup ratio, fyh represents the yield strength of the stirrup and ke indicates
the effective restraint coefficient of the stirrup and is given by Equation (10). The effect
of the stirrup on the core concrete confinement area is regarded as the one on all concrete
areas within the stirrup area.

ke =

(
1−∑ (w′)2

6bcdc

)(
1− s′

2bc

)(
1− s′

2dc

)

1− ρcc
(10)

where ω′ is the net distance between the adjacent longitudinal reinforcement; bc and dc
represent the length and width of the rectangular stirrup, respectively; s′ denotes the
net distance between the stirrups; ρcc stands for the ratio of the area of the longitudinal
reinforcement to that of the confinement area.

Then, Mander developed the calculation method for the peak stress improvement
coefficient k of concrete in the confinement area:

k = −1.254 + 2.254

√
1 + 7.94

f ′l
fc0
− 2

f ′l
fc0

(11)
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where fc0 is the axial compressive strength of concrete.
The other is the calculation method in the Section 7.2.3.1.6 of fib-CEB Model Code

2010 [19].

σ2 = wc fcd(1−
sc

ac
)(1− sc

bc
)(1− ∑ b2

i /6
acbc

) (12)

k =
fck,c

fck
= 1 + 3.5(

σ2

fck
)

3
4 (13)

εc2,c = εc2

[
1 + 5

(
fck,c

fck
− 1
)]

(14)

where σ2(= σ3) is the effective lateral compressive stress at the ULS due to confinement;
fck stands for the characteristic compressive strength of concrete; fck,c is the value of
confined concrete.

In terms of application, the above equations are very complicated, especially for
square section members. To simplify, Yu Xiaolai (a scholar) proposed simplified formulas
through a number of tests based on Mander’s theory [20]. The equations are as follows,

fcc = fc0(2.254
√

1 + 3.85λv − 0.97λv − 1.254) k =
fcc

fc0
(15)

εcc = εc0(1 + 3.5λv) (16)

λv = ρs fyh/ fc0 (17)

where εc0 is the strain corresponding to the peak stress on the unconfined concrete, ρs
indicates the stirrup ratio; fc0 denotes the axial compressive strength of concrete; fyh stands
for the yield strength of the stirrup; λv stands for the stirrup eigenvalue.

Based on the research by Yu, Equations (15)–(17) also apply to circular section members.
The calculations of the simplified formulas are in good agreement with those of the above
two methods, so the method for calculating the bearing capacity of the SRC column of
rectangular section is modified by the simplified formulas.

These test results show that the confinement effect of the stirrup on concrete is no-
ticeable, especially when the high-strength steel is configurated. The influence coefficient
of steel strength is proposed based on Mander’s model. The modified calculation for-
mula for the bearing capacity of SRC columns under axial compression according to code
JGJ138-2016 is as follows:

N ≤ 0.9ϕ(kAc fc + Aa fa + Ay fy) (18)

For the SRC columns of circular or square section, Equations (15)–(17) can be selected
to calculate. When the section is rectangular, Equations (9)–(14) should be used.

Figure 11 compares the bearing capacity of the specimens measured by the test
results, with that calculated by the modified formulas, Equations (15)–(18), and calculations
according to code JGJ 138-2016. The results confirm that the bearing capacity of the column
calculated by Equations (15)–(18) deviates from the test results by only around 10%, and
the bearing capacity calculated by code JGJ138-2016 deviates from the test results by
17–35%, respectively. Thus, the modified formula considering stirrup confinement can
more accurately predict the ultimate bearing capacity of such members.

According to the work of Kim [21,22], it is necessary to ensure that the steel strain
corresponding to the peak stress on concrete is not smaller than the yield strain of steel so
as to achieve the full mechanical performance of high-strength steel in structures, that is:

εcc ≥ fa/Ea (19)

where fa and Ea represent the yield stress and elastic modulus of section steel, respectively.
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Figure 11. Comparison among test results, modified calculation results of formulas and the calcula-
tion results by JGJ138-2016.

According to Equations (16) and (17), when the high-strength steel is applied to SRC
columns with a square section, this study determines the stirrup configuration conditions
to ensure the full utilization of the strength of the steel as follows:

λv ≥
fa − Eaεc0

3.5Eaεc0
(20)

According to Equation (16), the minimum stirrup eigenvalues are, respectively, 0.13
and 0.35, when Q460 and Q690 steel give full play to their strength in this test. When the
rectangular stirrups are configured, the stirrup eigenvalue of specimen C5 is 0.15, which is
higher than the minimum stirrup eigenvalue of the SRC columns with Q460 steel, 0.13; thus,
the yield strength of Q460 steel can be brought into full play. However, for specimen C11,
the stirrup eigenvalue of the rectangular stirrups is far lower than 0.35, thus the effective
strength of Q690 steel is only 55.1% of its yield strength.

When the complex stirrups are configured in the SRC column, the stirrup eigenvalue
of the specimen C6 is 0.34, much higher than 0.13, and the stress on the Q460 steel can reach
the yield strength of the Q460 steel. Nevertheless, the stirrup eigenvalue of the specimen
C12 is still slightly lower than the minimum stirrup eigenvalue, 0.35. The maximum stress
on the Q690 steel can only reach as high as 89% of its yield strength, as shown in Figure 12.
To summarize, the test data collected in this test, the requirements in code JGJ138-2016 and
the calculations of Equation (16) can provide a reference for improving the stirrup design
of high-strength SRC composite columns.

Figure 12. Axial load-strain relationships of C14.
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4. Verification of Finite Element Model and Parametric Study
4.1. Establishment of Finite Element Model

In Section 3.2, the reason for Q690 steel (in the specimen C11) unyielding under
ultimate bearing capacity is well explained, and the design suggestion of the high-strength
SRC column is put forward. However, it is found that not only the type of stirrups but
also the spacing of stirrups affect the value of ρs and λv. In this test, the value of λv was
increased by changing the stirrup type, the contribution of Q690 steel was increased, but
the stirrup spacing was not considered. Therefore, the influence range of stirrup spacing on
the bearing capacity of the specimens was studied by the analysis of expanding parameters
with finite element models.

On the basis of the material property test, the finite element model of the test specimens
was established using ABAQUS software to verify the applicability of the confinement
theory to high-strength SRC columns in this test and study the influence of stirrup spac-
ing on bearing capacity for high-strength SRC columns. Figure 13 displays the typical
specimen models according to the test parameters. Moreover, eight-node hexahedral
linear reduction integral stress element (C3D8R) were used for the concrete and steel in
the finite element model, and two-node three-dimensional truss elements (T3D2) were
employed for the reinforcement. Friction was defined at the interface between the con-
crete and the steel to account for their bonding. The grid was divided according to the
length/Width/depth = 1.0:1.0:2.5, and the confinement effect was imposed according to
the actual loading device.

Figure 13. Typical specimen models.

Table 2 presents the material properties of the steel obtained from the coupon tests.
As for the concrete, three types of confinement effects were considered. Figure 14 also
presents the three types of concrete sections. Figure 14a represents the section with no
confinement; Figure 14b stands the section with the confinement effect of the stirrups
and Figure 14c represents the section with the confinement effect of stirrups and steel.
The uniaxial compression stress–strain curve of the concrete without any confinement
effect was determined using the design of Concrete Structures (GB50010-2010) [23]. The
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stress–strain relationship of the concrete with confinement effect of the stirrups or of both
stirrups and steel was calculated by Equation (21) [12]:

σ =
fccxr

r− 1 + xr (21)

x = ε/εcc·r = Ec/(Ec − Esec)·Esec = fcc/εcc· fcc = k fc0·εcc = [1 + 5(k− 1)]εc0 (22)

where σ is the stress of confined concrete; fcc is the compressive strength of confined
concrete; Ec, Esec are the elasticity modulus and secant modulus of concrete, respectively;
fc0 is the axial compressive strength of the unconfined concrete; k denotes the coefficient of
improvement in the strength and strain.

Figure 14. Three kinds of confinement effect on concrete: (a) the section with no confinement; (b) the section with the
confinement effect of the stirrups (c) the section with the confinement effect of stirrups and steel.

4.2. Verification of Finite Element Model

Table 5 tabulates the ultimate bearing capacity of the specimens simulated by three
finite element models. When the confinement effect is not taken into account, the difference
between simulation data and the test results of the specimens with built-in Q235 steel is less
than 5%. Figure 15a compares the simulation results with test result of C4. Figure 15b shows
the load–displacement of simulation results and test result of C6, which also demonstrates
the difference of specimens with built-in Q460 is between 4% and 8%, according to Table 5.
Based on Table 5 and Figure 15c, the difference between the simulation data and the test
results of Q690 high-strength SRC composite columns is in the range of 9% to 13%.

Table 5. Comparison of three simulation results with test results.

Specimens
ABAQUS Results Test Results

Np/kN Nu/Np Nup/Np Nuh/Np
Nu/kN Nup/kN Nuh/kN

C1Q2S4T1R1 4107 4183 4220 4200 97.8% 99.6% 100.5%
C2Q2S4T2R1 4341 4495 4554 4506 96.3% 99.8% 101.1%
C3Q2S5T1R1 4208 4317 4388 4340 96.9% 99.5% 101.1%
C4Q2S7T1R1 4529 4690 4721 4596 98.5% 102.0% 102.7%
C5Q4S4T1R1 4270 4641 4726 4462 95.7% 104.0% 105.9%
C6Q4S4T2R1 4649 5094 5307 5050 92.1% 100.9% 105.1%
C7Q4S5T1R1 4621 4991 5056 4878 94.7% 102.3% 103.6%
C8Q4S7T1R1 5086 5447 5531 5383 94.5% 101.2% 102.7%
C9Q4S7T1R2 4824 5283 5312 5120 94.2% 103.2% 103.8%
C10Q4S7T1R3 4707 4951 5003 4848 97.1% 102.1% 103.2%
C11Q6S4T1R1 4433 4961 5019 4847 91.5% 102.4% 103.5%
C12Q6S4T2R1 4786 5440 5536 5407 88.5% 100.6% 102.4%
C13Q6S5T1R1 5025 5729 5955 5487 91.6% 104.4% 108.5%
C14Q6S7T1R1 5682 6733 6892 6220 91.1% 108.2% 110.8%

Nu is the simulation result based on no confinement, Nup is the simulation result only considering the confinement effect of the stirrups,
Nuh is the simulation result considering the confinement effect of the stirrups and steel.
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Figure 15. Comparison between test results and the simulation results: (a) the load-displacement curves
of simulation results and test result for C4; (b) the load-displacement curves of simulation results and
test result for C6. (c) the load-displacement curves of simulation results and test result for C14.
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In general, the difference between the simulated data and the test results are both
less than 11% for the models considering only the confinement effect of the stirrups and
the models considering the confinement effect of the stirrups and the steel. The simulated
value of the model considering the confinement effect of both the stirrups and the steel
increases by about 2% compared with that of the model only considering the confinement
effect of the stirrups. Therefore, the confinement effect of the stirrups and the steel on the
bearing capacity of high-strength SRC composite columns cannot be ignored.

4.3. Finite Element Parametric Study

In order to expand the parametric analysis, it is necessary to verify the accuracy and
applicability of the finite element model to high-strength SRC columns; C14 and C6 were
taken as examples to compare the failure mode determined by the numerical simulation
with the tested one, as shown in Figures 16 and 17. It can be seen that when the ultimate
bearing capacity of the SRC column is reached, the maximum stress on the reinforcement
is 460 MPa. However, the maximum stress on the Q690 steel is far from its yield strength,
with slight buckling. The concrete on the buckling side crushes first. For specimen C6 with
complex stirrups and Q460 steel, when the bearing capacity is reached, almost the entire
length of the reinforcement yields with lateral expansion. The strain of the confinement
concrete increases, and it functions well together with steel, which improves the utilization
of the steel, concrete and reinforcement. As a result, the maximum stress on Q460 steel
exceeds its yield strength, but no apparent buckling is noticed. According to the above
comparison, both the bearing capacity and the failure mode obtained from the simulation
show good agreement with the test results.

Figure 16. Stress–field nephogram of specimen C14 (considering only confinement effect of the
stirrups). (a) Stress–field nephogram of C14, (b) Stress–field nephogram of Q690 steel in specimen
C14 and (c) Stress–field nephogram of reinforcement.
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Figure 17. Stress–field nephogram of specimen C6 (considering only confinement effect of the
stirrups). (a) Stress–field nephogram of C6, (b) Stress–field nephogram of Q690 steel in specimen C6
and (c) Stress–field nephogram of reinforcement.

Changing the stirrup type enlarges the contribution of Q690 steel effectively. Another
way to improve the stirrup confinement is to reduce the spacing of stirrups. The parameters
of expanded specimens and the simulation results of bearing capacity are listed in Table 6.

Table 6. Main parameters of the expanded specimens.

Specimen Stirrup
Spacing (mm) Stirrup Type Simulation

Results (kN)
Increasing
Magnitude

C11Q6S4T1R1 80 rectangular 4961 0.0%
Sp70-Q6S4T1R1 70 rectangular 5197 4.8%
Sp60-Q6S4T1R1 60 rectangular 5536 11.6%
Sp50-Q6S4T1R1 50 rectangular 5927 19.5%
C12Q6S4T2R1 80 complex 5440 0.0%

Sp70-Q6S4T2R1 70 complex 5745 5.6%
Sp60-Q6S4T2R1 60 complex 5899 8.4%
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For the four specimens with rectangular stirrups, the increasing magnitude of ultimate
bearing capacity is similar to the increasing trend of λv with the reduction in stirrups
spacing, as shown in Figure 18a. However, although the ultimate bearing capacity of
the three specimens with complex stirrups increases as spacing reduces, the increasing
magnitude of ultimate bearing capacity decreases when the stirrup spacing decreases from
70 to 60 mm, as shown in Figure 18b. In general, if the value of is λv, too much larger than
the minimum stirrup eigenvalues, the increasing magnitude of the bearing capacity will
also decrease.

Figure 18. Influence of stirrup spacing on ultimate bearing capacity of the specimens: (a) specimens
with rectangular stirrup (b) specimens with complex stirrup.

According to the stress Nephogram in Figure 19, the value of λv of the four specimens
with rectangular stirrups does not reach 0.35, and the steel still does not yield under the
ultimate load. However, the increasing value of ultimate bearing capacity includes both
that of confined concrete and steel. For the specimens with complex stirrups, reducing
the spacing from 70 to 60 mm, the increasing value of ultimate bearing capacity is mainly
from the bearing capacity of confined concrete. The contribution of Q690 steel is minimal.
Therefore, when the materials have been selected, the design of high-strength SRC columns
should be carried out in terms of stirrup type and stirrup spacing to ensure material
utilization and save materials.
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Figure 19. Q690 steel contribution of specimens with different stirrup spacing, type. (a) Rectangular
stirrup, spacing = 50 mm (b) Complex stirrup, spacing = 70 mm.

5. Conclusions

An experimental study of SRC columns with high-strength steel was carried out to in-
vestigate the applicability of the formula for the bearing capacity described in specifications
to high-strength SRC columns. It was concluded that the results calculated by the specifica-
tions were too conservative, and a modified formula considering the confinement effect
of the stirrups was proposed. Furthermore, the comparison of the test results with results
calculated according to the modified formula proved that considering the confinement
effect of the stirrups on concrete for calculating the bearing capacity of high-strength SRC
columns was accurate and effective. Finally, the finite element models considering different
confinement levels were established, and their simulation results agree well with the test
results. In general, an accurate calculation and design method for practical application was
provided. The main conclusions that follow from the findings of the current work are that:

1. The bearing capacity of SRC columns can be significantly improved by high-strength
steel. Compared with the bearing capacity of the Q235 SRC columns, the maximum
bearing capacity of the Q460 SRC column and the Q690 SRC column increase by
13.2% and 35.3%, respectively. Further, the bearing capacity of the SRC columns was
significantly improved by increasing the steel ratio.

2. When stirrups satisfy the requirements of the stirrup eigenvalues, the utilization ratio
of high-strength steel increases. The bearing capacity of high-strength SRC columns
with complex stirrups significantly enlarges compared with the high-strength SRC
columns with rectangular stirrups.

3. The bearing capacity of the high-strength SRC columns declines with an increase
in the slenderness ratio. The high-strength SRC composite columns with a large
slenderness ratio experience greater buckling deformation than high-strength SRC
columns with a conventional slenderness ratio.

4. Comparing of the results calculated by codes AISC360-16, Eurocode 4 and JGJ138-2016
with this test results reveals that these codes are too conservative, and the calculation
results of code JGJ138-2016 are closest to the test results. A modified formula for
the bearing capacity of the SRC columns considering the confinement effect of the
stirrups on concrete is derived based on code JGJ138-2016.

5. The simulation results considering the confinement effect of the stirrups show great
agreement with the experimental bearing capacity and failure mode of the SRC
columns. The contribution of high-strength steel can be maximized, and the bearing
capacity can be improved by reducing the stirrup spacing. When the stirrup eigen-
values λv is close to the minimum stirrup eigenvalues, the increasing magnitude of
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bearing capacity is obvious. When the stirrups eigenvalues λv exceed the minimum
stirrup eigenvalues, the improvement of bearing capacity is not apparent.
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Abstract: In this paper, the volume integral equation method (VIEM) is introduced for the nu-
merical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic
spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-
dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single
isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix
under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical,
prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading.
The authors hope that the results using the VIEM cited in this paper will be established as reference
values for verifying the results of similar research using other analytical and numerical methods.

Keywords: volume integral equation method (VIEM); isotropic/anisotropic inclusion problems;
boundary element method (BEM); standard finite element method (FEM)

1. Introduction

The matrix and fibers in composites are usually made of isotropic material. However,
in order to have higher strength and stiffness for commercial use, especially in the aerospace
and automobile sectors, some constituents of metal matrix composites can be anisotropic.
Since anisotropic materials are able to enhance mechanical properties toward orientation,
certain mechanical properties (e.g., tensile strength) of anisotropic materials thus depend
on orientation. As an example, in titanium-silicon carbide (Ti-SiC) composites, the matrix
is nearly isotropic, but the SiC fiber has strong anisotropy and a multilayered structure
including an interphase and a core.

A number of analytical techniques for solving inclusion problems are available when
the inclusions are simple two-dimensional shapes (cylindrical and elliptical) or simple three-
dimensional shapes (spherical and ellipsoidal) and when they are well-separated [1–5].
In particular, Eshelby developed a simple and elegant method for solving the inclusion
problem in isotropic solids in 1957 [1]. Eshelby first pointed out that the resulting elastic
field can be found with the help of a sequence of imaginary cutting, straining and welding
operations [1]. Eshelby also found that the strain and stress field inside the ellipsoidal
inclusion is uniform and has a closed-form solution, regardless of the material proper-
ties and initial eigenstrain [1]. Eshelby’s findings significantly influenced the mechanics
of composites.

In the micromechanical analysis of composite materials, it is often assumed that the
inclusions are periodically distributed in the matrix. Then, the unit-cell model with periodic
boundary conditions is used to evaluate the overall, microstructure-insensitive, material
properties of the composite. However, in real composites, the distribution of the inclusions
is not periodic. Thus, the unit-cell model may not provide accurate estimates of the failure
and damage mechanisms in composites [6–8].

Therefore, stress analysis of heterogeneous solids often requires the use of numerical
approaches based on the standard finite element or boundary element formulations. How-
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ever, both methods present difficulties in dealing with problems involving infinite media or
multiple anisotropic inclusions. In response to this concern, it has been demonstrated that
the volume integral formulation can overcome both of these limitations in heterogeneous
problems involving infinite media [9–11].

In comparison to the boundary element method (BEM), the volume integral equation
method (VIEM) does not require the use of the Green’s function for anisotropic inclusions
and is not sensitive to the geometry of the inclusions. Moreover, as opposed to the standard
finite element method (FEM), where it is necessary to discretize the full domain, the
multiple inclusions only need to be discretized in the VIEM.

In this paper, three-dimensional elastostatic inclusion problems using the volume
integral equation method (VIEM) will be investigated.

In order to introduce the VIEM as a versatile numerical method for the three-dimensional
elastostatic inclusion problem, we first examine single isotropic/orthotropic spherical, pro-
late and oblate spheroidal inclusions in an infinite isotropic matrix subject to uniform
remote tensile loading. Two different prolate and oblate spheroidal inclusions with an
aspect ratio of 0.5 and 0.75 are considered, respectively. The matrix is assumed to be
isotropic. Eight isotropic and five orthotropic inclusions with different characteristics are
considered in the numerical calculation. The normalized tensile stress inside the inclusions
is investigated in two different directions. Next, we examine single isotropic/orthotropic
spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix subject
to remote shear loading. Two different prolate and oblate spheroidal inclusions with an
aspect ratio of 0.5 and 0.75 are considered, respectively. The matrix is assumed to be
isotropic. Three isotropic and two orthotropic inclusions with different characteristics are
considered in the numerical calculation. The normalized shear stress inside the inclusions
is investigated in two different directions.

The authors hope that the present solutions using the parallel volume integral equa-
tion method for the single isotropic/orthotropic spherical, prolate and oblate spheroidal
inclusions with different material properties under uniform remote tensile loading or
remote shear loading will be established as reference values for verifying the results of
other analytical and numerical methods.

Since the VIEM is a combination of two powerful general-purpose numerical methods,
the standard finite element method (FEM) and the boundary element method (BEM), it is
also a highly beneficial tool in the field of numerical analysis and can play a very important
role in solving inclusion problems. Subsequently, the purpose of this paper is to introduce
the parallel volume integral equation method (PVIEM) as an accessible, versatile and
powerful numerical method for solving inclusion problems in the areas of computational
mechanics and mechanics of composite materials.

2. Governing Equations of Volume Integral Equation Formulation

The geometry of the general elastodynamic problem is shown in Figure 1a, where an
infinite homogeneous, isotropic and linearly elastic solid containing a number of isotropic
or anisotropic inclusions of arbitrary number and shape are subjected to prescribed dynamic
loading at infinity.

In Figure 1a, V and S represent the volume and surface of the inclusion respectively,
and n is the outward unit normal to S while Vo and So represent the infinite volume and
surface, respectively.

The symbols ρ(1) and cijkl
(1) denote the density and the elastic stiffness tensor of the

inclusion, while ρ(2) and cijkl
(2) denote the density and the elastic stiffness tensor of the

infinite homogeneous, isotropic and linearly elastic matrix material, respectively. Therefore,
cijkl

(2) is a constant isotropic tensor, while cijkl
(1) can be arbitrary, i.e., the inclusions may,

in general, be inhomogeneous and anisotropic. The isotropic or anisotropic inclusions are
assumed to be perfectly bonded to the matrix.
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Mal and Knopoff [12] showed that the elastodynamic displacement, um(x), in the
composite satisfies the volume integral equation:

um(x) = uo
m(x) +

∫

V
[δρω2gm

i (ξ, x)ui(ξ)− δcijkl gm
i,j(ξ, x)uk,l(ξ)]dξ (1)

where the integral is over the domain V occupied by the isotropic or anisotropic inclusions,
δρ = ρ(1) − ρ(2) and δcijkl = cijkl

(1) − cijkl
(2), and gi

m(ξ,x) is the elastodynamic Green’s
function for the infinite homogeneous, isotropic and linearly elastic matrix material.

In Equation (1), um
o(x,ω)e−iωt represents the mth component of the displacement

vector due to the incident field at x in the absence of the inclusions, while um(x,ω)e−iωt

denotes the same quantity in the presence of the isotropic or anisotropic inclusions, where
ω is the circular frequency of the waves. In what follows, the explicit dependence on
the circular frequency, and the common time factor, e−iωt, for all field quantities will
be suppressed.
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The geometry of the general elastostatic problem is shown in Figure 1b–e. It has been
shown by Lee and Mal [9] that the corresponding elastostatic displacement, um(x), within
the composite, fulfills the volume integral equation as:

um(x) = uo
m(x)−

∫

V
δcijkl gm

i,j(ξ, x)uk,l(ξ)dξ (2)

where the integral is over the space V occupied by the isotropic or anisotropic inclusions
and δcijkl = cijkl

(1) − cijkl
(2). The value gi

m(ξ,x) represents the elastostatic Kelvin’s solution (or
Green’s function) for the infinite homogeneous, isotropic and linearly elastic matrix material.

In Equations (1) and (2), the differentiations are with respect to the integration variable,
ξi, and the summation convention and comma notation have been utilized. The integrand
is non-zero within the isotropic or anisotropic inclusions only, since δcijkl = 0 outside
the inclusions.

If x lies inside the inclusions, then Equations (1) and (2) are integro-differential equa-
tions for the unknown displacement vector u(x) within the inclusions. It should be noted
that an algorithm was developed by Lee and Mal [9,10] to numerically calculate the un-
known displacement vector u(x) by discretizing the inclusions only using standard finite
elements. Once u(x) within the inclusions is determined, the displacement field outside
the inclusions can be obtained from Equations (1) and (2) by evaluating the corresponding
integrals respectively, and the stress field within and outside the inclusions can also be
readily determined.

The volume integral equation method (VIEM) was originated from Lee and Mal [10] in
1995. Since 1995, Lee and his co-workers (e.g., [9–11,13–17]) have been developing a more
engineering-oriented VIEM, while Buryachenko (e.g., [18–20]) has been examining a more
mathematically oriented VIEM since 2000. Additionally, Dong has conducted research on
the volume integral equation method since 2003 [21]. Therefore, the VIEM is broadening
its influence on computational fields of study.

Furthermore, Section 4.3 entitled ‘Volume Integral Equation Method’ of the book
“Micromechanics of Heterogeneous Materials” by Buryachenko [18] also explains further
mathematical formulation of the elastostatic volume integral equation method. In particular,
a general description of the volume integral equation method is presented in Chapter 4
entitled ‘Volume Integral Equation Method (VIEM)’ of the book “Advances in Computers
and Information in Engineering Research, Vol. 2” by Michopoulos et al. (eds.) [22]. In
addition, complete descriptions of the fundamental numerical technique of Equation (2)
can be found in [17] for three-dimensional elastostatic problems.

Although each numerical method has certain advantages, specific disadvantages
have led to further discussion and research. For example, in Section 3.1 of Reference [20],
Buryachenko points out that the VIEM is quite time-consuming. Moreover, no optimized
commercial software exists for its application.

Firstly, in order to resolve this ‘time-consuming’ problem, we propose the parallel
volume integral equation method and implement MPI-based code. Such method allows us
not only to solve the large domain but also to speed up computation in the volume integral
equation method. The FORTRAN 90 (Version 1.1, IBM, Armonk, NY, USA) source code
containing about 9000 lines for the three-dimensional VIEM of the previous paper [17] was
parallelized and optimized for this paper, with support from the Korea Institute of Science
and Technology Information (KISTI, Daejeon, Korea). Figure 2 shows the procedures of a
representative MPI parallelization approach (“pvi3ds01_sm7560xx.f90”) for the sequential
three-dimensional VIEM code (“svi3ds01_sm4320xx.f”). As a result, the program exe-
cution time has been greatly reduced. Furthermore, we could use more finite elements
(31,857 nodes and 7560 elements) in the VIEM model of this paper than those (18,109 nodes
and 4320 elements) in the VIEM model of the previous paper [17]. The parallel FORTRAN
source code for the three-dimensional VIEM is presently being processed in the KISTI-5. It
is referred to as “Nurion”, which is a system consisting of compute nodes, CPU-only nodes,
Omni-Path interconnect networks, Burst Buffer high-speed storage, a Luster-based parallel
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file system and a water-cooling device based on a Rear Door Heat Exchanger (RDHx). The
CPU-only nodes consist of 132 Intel Xeon 6148 2.4 GHz processors (named “Skylake”).
The total theoretical performance is 25.7 petaflops, which ranked 11th in the world in June
2018 (http://www.top500.org, accessed on 3 May 2021). It should be noted that, in order
to investigate three-dimensional stress problems with multiple inclusions, in addition to
parallelization and optimization of the sequential three-dimensional VIEM code, a domain
decomposition method (DDM) was applied to the parallel three-dimensional VIEM code,
with support from the Korea Institute of Science and Technology Information (KISTI). The
domain decomposition method allows decomposition of large-sized problem solutions to
solutions of several smaller-sized problems [23]. Therefore, the parallel volume integral
equation method (PVIEM) using the domain decomposition method enables us to investi-
gate more complicated multiple inclusion problems elastostatically or elastodynamically.
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Secondly, in order to resolve the ‘no optimized commercial software’ problem, we
plan to develop a semi-commercial VIEM software called the “Volume Integral Equa-
tion Method Application Program” (VIEMAP). Table 1 shows the analysis capabilities of
VIEMAP including a pre-processor (ViemMesh), a solver (VIEM) and a post-processor
(ViemPlot) adapted to solve multiple isotropic/anisotropic inclusion problems in a com-
putationally tractable manner. Figure 3 shows the registered trademark for the VIEMAP.
The authors aim to help both university students and researchers create VIEM models
using the VIEMAP more easily than using the standard finite element method (FEM), as
well as solve multiple isotropic/anisotropic inclusion problems in an unbounded isotropic
medium more accurately and conveniently than the boundary element method (BEM).
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Table 1. Capabilities of VIEMAP.

Two Dimensional Three Dimensional

ViemMesh
(Pre-Processor)

(1) 8-node quadrilateral finite element
(2) 6-node triangular finite element

(1) 20-node hexahedral finite element
(2) 10-node tetrahedral finite element

VIEM
(Solver)

Multiple Inclusion Problems Multiple Inclusion Problems
Isotropic Inclusions Anisotropic Inclusions Isotropic Inclusions Anisotropic Inclusions

(1) Elastostatic solver
(2) Elastodynamic solver

(1) Elastostatic solver
(2) Elastodynamic solver

ViemPlot
(Post-Processor)

(1) Displacement contour plot
(2) Stress contour plot

(1) Displacement contour plot
(2) Stress contour plot
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3. Three-Dimensional Elastostatic Problems Using the VIEM

In this section, we first examine single isotropic/orthotropic spherical, prolate and
oblate spheroidal inclusions in an infinite isotropic matrix subject to uniform remote tensile
loading, σo

xx, as shown in Figure 4 (also see Figures 1b and 5). The remote applied load can
be arbitrarily chosen and was assumed to be σo

xx = 143.10 GPa for convenience purposes
only. Two different prolate spheroidal inclusions were considered: (a) a/b = c/b = 0.5 and
(b) a/b = c/b = 0.75 (see Figure 5). Additionally, two different oblate spheroidal inclusions
were considered: (a) b/a = c/a = 0.5 and (b) b/a = c/a = 0.75 (see Figure 5).

The elastic constants for the isotropic matrix and the isotropic inclusions are listed in
Table 2. The elastic constants for the isotropic matrix and the orthotropic inclusions are
listed in Table 3.

We next examine single isotropic/orthotropic spherical, prolate and oblate spheroidal
inclusions in an infinite isotropic matrix subject to remote shear loading, σo

xy, σo
xz or σo

yz,
as shown in Figure 6 (also see Figures 1c–e and 5) [24]. The remote applied load can be
arbitrarily chosen and was assumed to be σo

xy = σo
xz = σo

yz = 75.76 GPa for convenience
purposes only. We considered the same geometry of the single spherical, prolate (with an
aspect ratio of 0.5 and 0.75) and oblate (with an aspect ratio of 0.5 and 0.75) spheroidal
inclusions in an infinite isotropic matrix under remote shear loading (σo

xy, σo
xz and σo

yz).
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remote tensile loading (σo

xx).

Table 2. Material Properties of the Isotropic Matrix and the Isotropic Inclusions.

Material λ (GPa) µ (GPa) E (GPa) ν

Matrix (Iso_01) 67.3401 37.8788 100.0 0.32

Inclusion (Iso_01) 176.060 176.060 440.15 0.25

Matrix (Iso_02) 121.154 80.7692 210.0 0.30

Inclusion (Iso_02) 83.1643 176.724 410.0 0.16

Matrix (Iso_03) 75.0 37.5 100.0 0.3333

Inclusion (Iso_03) 150.0 75.0 200.0 0.3333

Matrix (Iso_04) 75.0 37.5 100.0 0.3333

Inclusion (Iso_04) 375.0 187.5 500.0 0.3333

Matrix (Iso_05) 75.0 37.5 100.0 0.3333

Inclusion (Iso_05) 750.0 375.0 1000.0 0.3333

Matrix (Iso_06) 121.154 80.7692 210.0 0.30

Inclusion (Iso_06) 87.2202 41.0448 110.0 0.34

Matrix (Iso_07) 75.0 37.5 100.0 0.3333

Inclusion (Iso_07) 15.0 7.5 20.0 0.3333

Matrix (Iso_08) 75.0 37.5 100.0 0.3333

Inclusion (Iso_08) 52.5 26.25 70.0 0.3333
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Three different material properties (Iso_01, Iso_05 and Iso_06) in Table 2 were used in
the numerical calculation. The elastic constants for the isotropic matrix and the orthotropic
inclusions are listed in Table 4. Table 5 shows various characteristics of the material
properties used in the numerical calculation. In order to demonstrate the capability of the
volume integral equation method for the three-dimensional anisotropic inclusion problem,
three independent elastic constants, c44 (shear modulus in the yz plane), c55 (shear modulus
in the xz plane) and c66 (shear modulus in the xy plane), were assumed to be different from
each other [25].

Table 3. Material Properties of the Isotropic Matrix and the Orthotropic Inclusions.

Unit: GPa
Orthotropic Inclusions

Isotropic Matrix
Ort_01 Ort_02 Ort_03 Ort_04 Ort_05

c11 139.54 279.08 418.61 41.86 69.77 143.10
c12 = c21 3.90 7.80 11.7 1.17 1.95 67.34
c13 = c31 3.90 7.80 11.7 1.17 1.95 67.34

c22 15.28 30.56 45.83 4.58 7.64 143.10
c23 = c32 3.29 6.59 9.88 0.99 1.65 67.34

c33 15.28 30.56 45.83 4.58 7.64 143.10
c44 5.90 11.80 17.70 1.77 2.95 37.88
c55 5.90 11.80 17.70 1.77 2.95 37.88
c66 5.90 11.80 17.70 1.77 2.95 37.88

Table 4. Material properties of the isotropic matrix and the orthotropic inclusions.

Unit: GPa
Orthotropic Inclusions

Isotropic Matrix
Ort_06 Ort_07

c11 61.11 458.30 143.10
c12 = c21 17.95 134.63 67.34
c13 = c31 20.54 154.02 67.34

c22 32.77 245.78 143.10
c23 = c32 15.05 112.87 67.34

c33 47.89 359.15 143.10
c44 9.97 74.79 37.88
c55 15.16 113.69 37.88
c66 10.99 82.40 37.88
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Table 5. Material Property Characteristics.

Material Characteristics

Matrix (Iso_01) Isotropic No restriction in Poisson’s ratio
E(Inclusion) > E(Matrix)Inclusion (Iso_01) Isotropic No restriction in Poisson’s ratio

Matrix (Iso_02) Isotropic No restriction in Poisson’s ratio
E(Inclusion) > E(Matrix)Inclusion (Iso_02) Isotropic No restriction in Poisson’s ratio

Matrix (Iso_03) Isotropic ν = 1/3
E(Inclusion) > E(Matrix)Inclusion (Iso_03) Isotropic ν = 1/3

Matrix (Iso_04) Isotropic ν = 1/3
E(Inclusion) > E(Matrix)Inclusion (Iso_04) Isotropic ν = 1/3; E(Iso_04) > E(Iso_03)

Matrix (Iso_05) Isotropic ν = 1/3
E(Inclusion) > E(Matrix)Inclusion (Iso_05) Isotropic ν = 1/3; E(Iso_05) > E(Iso_04)

Matrix (Iso_06) Isotropic No restriction in Poisson’s ratio
E(Inclusion) < E(Matrix)Inclusion (Iso_06) Isotropic No restriction in Poisson’s ratio

Matrix (Iso_07) Isotropic ν = 1/3
E(Inclusion) < E(Matrix)Inclusion (Iso_07) Isotropic ν = 1/3

Matrix (Iso_08) Isotropic ν = 1/3
E(Inclusion) < E(Matrix)Inclusion (Iso_08) Isotropic ν = 1/3; E(Iso_08) > E(Iso_07)

Matrix (Ort_01) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_01) Orthotropic c11 > c22 = c33

Matrix (Ort_02) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_02) Orthotropic c11 > c22 = c33; c11(Ort_02) > c11(Ort_01)

Matrix (Ort_03) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_03) Orthotropic c11 > c22 = c33; c11(Ort_03) > c11(Ort_02)

Matrix (Ort_04) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_04) Orthotropic c11 > c22 = c33; c11(Ort_04) < c11(Ort_01)

Matrix (Ort_05) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_05) Orthotropic c11 > c22 = c33; c11(Ort_04) < c11(Ort_05) < c11(Ort_01)

Matrix (Ort_06) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_06) Orthotropic µ (Matrix) > c55 (Inclusion) > c66 (Inclusion) > c44 (Inclusion)

Matrix (Ort_07) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_07) Orthotropic c55 (Inclusion) > c66 (Inclusion) > c44 (Inclusion) > µ (Matrix)

3.1. Single Spherical Inclusion Problems under Uniform Remote Tensile Loading
3.1.1. VIEM Formulation Applied to Isotropic Inclusion Problems

The displacements in the volume integral Equation (2) for isotropic spherical, prolate
and oblate spheroidal inclusions can be expressed in the form:
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u1(x) = uo
1(x)−

∫
V{δ(λ+ 2µ)g1

1,1u1,1 + δλ(g1
1,1u2,2 + g1

2,2u1,1) + δλ(g1
1,1u3,3 + g1

3,3u1,1)

+δ(λ+ 2µ)g1
2,2u2,2 + δλ(g1

2,2u3,3 + g1
3,3u2,2) + δ(λ+ 2µ)g1

3,3u3,3
+δµ[g1

2,3(u2,3 + u3,2) + g1
3,2(u2,3 + u3,2)]

+δµ[g1
1,3(u1,3 + u3,1) + g1

3,1(u1,3 + u3,1)]

+δµ[g1
1,2(u1,2 + u2,1) + g1

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(3)

u2(x) = uo
2(x)−

∫
V{δ(λ+ 2µ)g2

1,1u1,1 + δλ(g2
1,1u2,2 + g2

2,2u1,1) + δλ(g2
1,1u3,3 + g2

3,3u1,1)

+δ(λ+ 2µ)g2
2,2u2,2 + δλ(g2

2,2u3,3 + g2
3,3u2,2) + δ(λ+ 2µ)g2

3,3u3,3
+δµ[g2

2,3(u2,3 + u3,2) + g2
3,2(u2,3 + u3,2)]

+δµ[g2
1,3(u1,3 + u3,1) + g2

3,1(u1,3 + u3,1)]

+δµ[g2
1,2(u1,2 + u2,1) + g2

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(4)

u3(x) = uo
3(x)−

∫
V{δ(λ+ 2µ)g3

1,1u1,1 + δλ(g3
1,1u2,2 + g3

2,2u1,1) + δλ(g3
1,1u3,3 + g3

3,3u1,1)

+δ(λ+ 2µ)g3
2,2u2,2 + δλ(g3

2,2u3,3 + g3
3,3u2,2) + δ(λ+ 2µ)g3

3,3u3,3
+δµ[g3

2,3(u2,3 + u3,2) + g3
3,2(u2,3 + u3,2)]

+δµ[g3
1,3(u1,3 + u3,1) + g3

3,1(u1,3 + u3,1)]

+δµ[g3
1,2(u1,2 + u2,1) + g3

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(5)

where u1(x), u2(x) and u3(x) are the three-dimensional displacements, δcαβ = cαβ(1)− cαβ(2)
(α, β = 1, 6), where cαβ(1) represents the elastic stiffness constants of the isotropic inclusions,
while cαβ(2) denotes those for the isotropic matrix material: δc11 = δc22 = δc33 = (λ1 + 2µ1)
− (λ2 + 2µ2), δc12 = δc13 = δc23 = λ1 − λ2 and δc44 = δc55 = δc66 = µ1 − µ2.

In Equations (3)–(5), gi
m(ξ,x) is the Green’s function for the infinite isotropic matrix

material and is stated by Banerjee [26] and Pao and Varatharajulu [27] as:

g1
1 = 1

16π(1−ν)µr [
(x1−ξ1)

2

r2 + (3− 4ν)]

g1
2 = g2

1 = 1
16π(1−ν)µr [

(x1−ξ1)(x2−ξ2)
r2 ]

g1
3 = g3

1 = 1
16π(1−ν)µr [

(x1−ξ1)(x3−ξ3)
r2 ]

g2
2 = 1

16π(1−ν)µr [
(x2−ξ2)

2

r2 + (3− 4ν)]

g2
3 = g3

2 = 1
16π(1−ν)µr [

(x2−ξ2)(x3−ξ3)
r2 ]

g3
3 = 1

16π(1−ν)µr [
(x3−ξ3)

2

r2 + (3− 4ν)]

(6)

where r = |x − ξ| =
√
(x1 − ξ1)

2 + (x2 − ξ2)
2 + (x3 − ξ3)

2, ν is Poisson’s ratio and µ is
the shear modulus for the infinite isotropic matrix material.

3.1.2. VIEM Formulation Applied to Orthotropic Inclusion Problems

Let the coordinate axes x1(x), x2(y) and x3(z) be taken parallel to the symmetry axes
of the orthotropic material, and c11, c12, c13, c22, c23, c33, c44, c55 and c66 denote the elastic
constants. The displacements in Equation (2) for orthotropic spherical, prolate and oblate
spheroidal inclusions can be expressed in the form:

u1(x) = uo
1(x)−

∫
V{δc11g1

1,1u1,1 + δc12(g1
1,1u2,2 + g1

2,2u1,1) + δc13(g1
1,1u3,3 + g1

3,3u1,1)

+δc22g1
2,2u2,2 + δc23(g1

2,2u3,3 + g1
3,3u2,2) + δc33g1

3,3u3,3

+δc44[g1
2,3(u2,3 + u3,2) + g1

3,2(u2,3 + u3,2)]

+δc55[g1
1,3(u1,3 + u3,1) + g1

3,1(u1,3 + u3,1)]

+δc66[g1
1,2(u1,2 + u2,1) + g1

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(7)
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u2(x) = uo
2(x)−

∫
V{δc11g2

1,1u1,1 + δc12(g2
1,1u2,2 + g2

2,2u1,1) + δc13(g2
1,1u3,3 + g2

3,3u1,1)

+δc22g2
2,2u2,2 + δc23(g2

2,2u3,3 + g2
3,3u2,2) + δc33g2

3,3u3,3

+δc44[g2
2,3(u2,3 + u3,2) + g2

3,2(u2,3 + u3,2)]

+δc55[g2
1,3(u1,3 + u3,1) + g2

3,1(u1,3 + u3,1)]

+δc66[g2
1,2(u1,2 + u2,1) + g2

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(8)

u3(x) = uo
3(x)−

∫
V{δc11g3

1,1u1,1 + δc12(g3
1,1u2,2 + g3

2,2u1,1) + δc13(g3
1,1u3,3 + g3

3,3u1,1)

+δc22g3
2,2u2,2 + δc23(g3

2,2u3,3 + g3
3,3u2,2) + δc33g3

3,3u3,3

+δc44[g3
2,3(u2,3 + u3,2) + g3

3,2(u2,3 + u3,2)]

+δc55[g3
1,3(u1,3 + u3,1) + g3

3,1(u1,3 + u3,1)]

+δc66[g3
1,2(u1,2 + u2,1) + g3

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(9)

where u1(x), u2(x) and u3(x) are the three-dimensional displacements, δcαβ = cαβ(1)− cαβ(2)
(α, β = 1, 6), where = cαβ(1) represents the elastic stiffness constants of the orthotropic inclu-
sions, while cαβ(2) denotes those for the isotropic matrix material: δc11 = c11 − (λ2 + 2µ2),
δc22 = c22 − (λ2 + 2µ2), δc33 = c33 − (λ2 + 2µ2), δc12 = c12 − λ2, δc13 = c13 − λ2, δc23 = c23 − λ2
and δc44 = c44 − µ2, δc55 = c55 − µ2, δc66 = c66 − µ2.

In Equations (7)–(9), gi
m(ξ,x) is the Green’s function for the infinite isotropic matrix

material and is stated in Equation (6). Thus, the VIEM does not require the use of the
Green’s function for the orthotropic material of the inclusion. In general, Green’s function
for an anisotropic material is much more complex than that of an isotropic material [28].
Furthermore, a closed form solution of the generalized Green’s function for an anisotropic
material is not available in the literature.

In contrast, in the BEM, Green’s functions for both the isotropic matrix and the
anisotropic inclusions must be specified in the formulation. In particular, special emphasis
is placed on the fact that Green’s function for the anisotropic material of the inclusions is
not required in the VIEM.

3.1.3. Numerical Formulations in the VIEM

The integrands in Equations (3)–(8) contain singularities with different orders due to
the singular characteristics of the Green’s function at x = ξ (i.e., r = 0). Thus, evaluation
of the singular integrals requires special attention. In general, gi

m(ξ,x) behaves as 1/r,
while its derivatives behave as 1/r2 as r→ 0. It should be noted that only gi

m(ξ,x) for the
isotropic matrix and its derivatives are required in the VIEM. Furthermore, in the BEM,
the Green’s function for anisotropic inclusions and their derivatives must also be specified.
As a result, this may be a critical drawback to the BEM when solving multiple anisotropic
inclusion problems.

In contrast to the BEM, the singularities in the VIEM are integrable (weak). Thus, we
have decided to utilize the direct integration scheme stated by Li et al. [29]. Finally, after
suitable adjustments, we have succeeded in addressing these weak singular integrands in
the volume integral equation formulations.

A comprehensive elaboration for the accurate evaluation of singular integrals using
the tetrahedron polar co-ordinates shown in [29] was presented in [17].

3.1.4. A Single Isotropic Spherical Inclusion

In order to examine the accuracy of the numerical results using the VIEM, the numeri-
cal results using the VIEM for a single isotropic spherical inclusion were first compared
to the analytical solutions [21,30]. We considered a single isotropic spherical inclusion
with a radius of 6 mm in an infinite isotropic matrix subject to uniform remote tensile
loading, σxx

o, as shown in Figure 4a. It should be noted that the length of the radius can
be arbitrarily chosen. In Figure 7, standard 20-node quadratic hexahedral elements were
used in the discretization [31]. The number of hexahedral elements, 7560, was determined
based on a convergence test. For the seven different material properties (Iso_2, Iso_03,
Iso_04, Iso_05, Iso_06, Iso_07 and Iso_08) in Table 2, a comparison was made between the

81



Materials 2021, 14, 6996

numerical results using the volume integral equation method (VIEM) and the analytical
solutions. As shown in Table 5, there was no restriction to Poisson’s ratio in the inclusions
and matrices of Iso_02 and Iso_06. However, Poison’s ratio was 1/3 in both the inclusion
and matrix of Iso_03, Iso_04, Iso_05, Iso_07 and Iso_08. Furthermore, for Iso_02, Iso_03,
Iso_04 and Iso_05, Young’s modulus (E) in the isotropic inclusion was greater than that in
the isotropic matrix. For Iso_06, Iso_07 and Iso_08, Young’s modulus (E) in the isotropic
matrix was greater than that in the isotropic inclusion. Thus, seven material properties
representing a diversity of materials were chosen. Excellent agreement was found between
the analytical and numerical solutions using the VIEM for the seven different materials
considered. It should be noted that the VIEM results represent average values of the
normalized stresses in all the nodes of the VIEM model in Figure 7. It should also be noted
that the normalized tensile stress (σxx/σo

xx) inside the isotropic spherical inclusions was
found to be constant [1,30]. Tables 6–8 show that the percentage differences for the two
sets of results are less than 0.1% in seven cases. Figure 8 shows numerical solution by
the volume integral equation method for the normalized tensile stress (σxx/σo

xx) along
(i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferential direction (0◦ ≤ θ (see
Figure 7) ≤ 360◦) of the isotropic spherical inclusions with a radius of 6 mm under uniform
remote tensile loading.
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Table 6. Normalized tensile stress component (σxx/σo
xx) within the isotropic spherical inclusion due

to uniform remote tensile loading (σo
xx).

Material VIEM (Average) Analytical Solution Error (%)

Iso_01 1.5800 - -
Iso_02 1.2823 1.2822 0.0078

Table 7. Normalized tensile stress component (σxx/σo
xx) within the isotropic spherical inclusion due

to uniform remote tensile loading (σo
xx).

Material VIEM (Average) Analytical Solution Error (%)

Iso_03 1.3090 1.3091 0.0076
Iso_04 1.6171 1.6173 0.0124
Iso_05 1.7582 1.7582 0.0
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Table 8. Normalized tensile stress component (σxx/σo
xx) within the isotropic spherical inclusion due

to uniform remote tensile loading (σo
xx).

Material VIEM (Average) Analytical Solution Error (%)

Iso_06 0.7200 0.7200 0.0
Iso_07 0.3557 0.3556 0.0281
Iso_08 0.8343 0.8343 0.0
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under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06,
Iso_07 and Iso_08.

In most references, the numerical results for this problem were obtained in one direc-
tion. Thus, in order to show the VIEM results more thoroughly, the normalized tensile stress
(σxx/σo

xx) using the VIEM was presented along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 7) ≤ 360◦) of the isotropic spherical
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inclusions. It was determined in Figure 8 that the normalized tensile stress (σxx/σo
xx)

inside the isotropic spherical inclusions is constant in all directions considered.

3.1.5. A Single Orthotropic Spherical Inclusion

In order to show the advantages of the volume integral equation method (VIEM),
we consider a single orthotropic spherical inclusion with a radius of 6 mm in an infinite
isotropic matrix subject to uniform remote tensile loading, σo

xx, as shown in Figure 4a. It
should be noted that the length of the radius can be arbitrarily chosen. In Figure 7, standard
20-node quadratic hexahedral elements were used in the discretization [31]. The number of
hexahedral elements was 7560, determined based on a convergence test. For this problem,
in comparison to the boundary element method (BEM), since the VIEM is not sensitive
to the anisotropy of the inclusions, it does not require use of the Green’s function for the
anisotropic inclusions. Moreover, as opposed to the standard FEM, where it is necessary
to discretize the full domain, the orthotropic inclusion only needs to be discretized in
the VIEM.

Five different material properties (Ort_1, Ort_02, Ort_03, Ort_04 and Ort_05) in
Table 5 were used in the numerical calculation. As shown in Table 5, it was assumed
that c11 > c22 = c33 for five orthotropic inclusions. Additionally, c11 of the inclusion in
Ort_03 > c11 of the inclusion in Ort_02 > c11 of the inclusion in Ort_01. Furthermore, c11
of the inclusion in Ort_04 < c11 of the inclusion in Ort_05 < c11 of the inclusion in Ort_01.
Thus, five material properties representing a diversity of materials were chosen. It should
be noted that the VIEM results represent average values of the normalized stresses in all the
nodes of the VIEM model in Figure 7. Moreover, the normalized tensile stress (σxx/σo

xx)
inside the orthotropic spherical inclusions was found to be constant [1,30]. Table 9 shows
the numerical solution by the volume integral equation method for the normalized tensile
stress (σxx/σo

xx) inside the orthotropic spherical inclusions. For the inclusions in Ort_01,
Ort_02 and Ort_03, the normalized tensile stress (σxx/σo

xx) inside the inclusion was greater
than 1.0. However, for the inclusions in Ort_04 and Ort_05, the normalized tensile stress
(σxx/σo

xx) inside the inclusion was less than 1.0. Figure 9 shows the numerical solution
by the volume integral equation method for the normalized tensile stress (σxx/σo

xx) along
(left) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (right) the circumferential direction
(0◦ ≤ θ (see Figure 7) ≤ 360◦) of the orthotropic spherical inclusions with a radius of 6 mm
under uniform remote tensile loading. It was determined in Figure 9 that the normal-
ized tensile stress (σxx/σo

xx) inside the orthotropic spherical inclusions is constant in all
directions considered.

Table 9. Normalized tensile stress component (σxx/σo
xx) within the orthotropic spherical inclusion

due to uniform remote tensile loading (σo
xx).

Material VIEM (Average)

Ort_01 1.1520
Ort_02 1.4536
Ort_03 1.5910
Ort_04 0.5836
Ort_05 0.8129
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Figure 9. VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis 
inside and (right) the circumferential direction of the orthotropic spherical inclusions (Ort_01, 
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Table 9. Normalized tensile stress component (σxx/σoxx) within the orthotropic spherical inclusion 
due to uniform remote tensile loading (σoxx). 

Material VIEM (Average) 
Ort_01 1.1520 
Ort_02 1.4536 
Ort_03 1.5910 
Ort_04 0.5836 
Ort_05 0.8129 

Figure 9. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (left) the x–axis

inside and (right) the circumferential direction of the orthotropic spherical inclusions (Ort_01, Ort_02,
Ort_03, Ort_04 and Ort_05) with a radius of 6 mm under uniform remote tensile loading.

3.2. A Single Spheroidal Inclusion Problem under Uniform Remote Tensile Loading

In order to introduce the VIEM as a versatile numerical method, we considered a single
isotropic/orthotropic spheroidal inclusion in an infinite isotropic matrix subject to uniform
remote tensile loading, σo

xx, as shown in Figure 4b,c. Figure 5 shows an orientation of the
spheroidal inclusion.

3.2.1. A Single Isotropic Prolate Spheroidal Inclusion

Two different prolate spheroidal inclusions are considered: (a) a/b = c/b = 0.5, where
b = 6 mm, and (b) a/b = c/b = 0.75, where b = 6 mm (see Figure 5). It should be noted that
the length of b (=6 mm) can be arbitrarily chosen.

Figures 10 and 11 show a typical discretized model for the single (a) prolate spheroidal in-
clusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = c/b = 0.75
where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single prolate spheroidal inclusion in
Figures 10 and 11. The number of elements, 7560, was determined based on a conver-
gence test.
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Figure 10. A typical discretized prolate spheroidal model (a/b = c/b = 0.5) in the volume inte-
gral equation method (VIEM). (a) An inside view of a prolate spheroidal model. (b) A prolate
spheroidal model.
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Figure 11. A typical discretized prolate spheroidal model (a/b = c/b = 0.75) in the volume inte-
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Eight different isotropic inclusions (from Iso_01 to Iso_08) in Table 2 were used in
the numerical calculation. It should be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figures 10 and 11.
It should also be noted that the normalized tensile stress (σxx/σo

xx) inside the isotropic
prolate spheroidal inclusions was found to be constant [1,30].

Tables 10–12 show numerical solutions by the volume integral equation method for
the normalized tensile stress (σxx/σo

xx) inside the isotropic prolate spheroidal inclusions.
For the inclusions in Iso_01, Iso_02, Iso_03, Iso_04 and Iso_05, the normalized tensile stress
(σxx/σo

xx) inside the inclusion was greater than 1.0. However, for the inclusions in Iso_06,
Iso_07 and Iso_08, the normalized tensile stress (σxx/σo

xx) inside the inclusion was less
than 1.0. Figure 12 shows numerical solutions by the volume integral equation method for
the normalized tensile stress (σxx/σo

xx) along (i) the x–axis inside (−3 mm ≤ x ≤ 3 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 10) ≤ 360◦) of the isotropic prolate
spheroidal inclusions (a/b = c/b = 0.5 where b = 6 mm) under uniform remote tensile
loading. Figure 13 shows numerical solutions by the volume integral equation method for
the normalized tensile stress (σxx/σo

xx) along (i) the x–axis inside (−4.5 mm ≤ x ≤ 4.5 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 11) ≤ 360◦) of the isotropic prolate
spheroidal inclusions (a/b = c/b = 0.75 where b = 6 mm) under uniform remote tensile
loading. It was determined in Figures 12 and 13 that the normalized tensile stress (σxx/σo

xx)
inside the isotropic prolate spheroidal inclusions is constant in all directions considered.

Table 10. Normalized tensile stress component (σxx/σo
xx) within the isotropic prolate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

a/b = c/b = 0.5 (see Figure 5) a/b = c/b = 0.75 (see Figure 5)

Iso_01 1.4268 1.5028
Iso_02 1.2177 1.2500
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Table 11. Normalized tensile stress component (σxx/σo
xx) within the isotropic prolate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

Iso_03 1.2374 1.2736
Iso_04 1.4502 1.5330
Iso_05 1.5409 1.6477

Table 12. Normalized tensile stress component (σxx/σo
xx) within the isotropic prolate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

Iso_06 0.7613 0.7397
Iso_07 0.4042 0.3780
Iso_08 0.8610 0.8471

3.2.2. A Single Orthotropic Prolate Spheroidal Inclusion

Two different prolate spheroidal inclusions are considered: (a) a/b = c/b = 0.5, where
b = 6 mm, and (b) a/b = c/b = 0.75, where b = 6 mm (see Figure 5). It should be noted that
the length of b (=6 mm) can be arbitrarily chosen.

Figures 10 and 11 show a typical discretized model for the single (a) prolate spheroidal in-
clusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = c/b = 0.75
where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single prolate spheroidal inclusion in
Figures 10 and 11. The number of elements, 7560, was determined based on a conver-
gence test.

Five different orthotropic inclusions (from Ort_01 to Ort_05) in Table 3 were used in the
numerical calculation. It should be noted that the VIEM results represent average values of
the normalized stresses in all the nodes of the VIEM model in Figures 10 and 11. It should
also be noted that the normalized tensile stress (σxx/σo

xx) inside the orthotropic prolate
spheroidal inclusions was found to be constant [1,30]. Table 13 shows numerical solutions
by the volume integral equation method for the normalized tensile stress (σxx/σo

xx) inside
the orthotropic prolate spheroidal inclusions. For the inclusions in Ort_01, Ort_02 and
Ort_03, the normalized tensile stress (σxx/σo

xx) inside the inclusion was greater than 1.0.
However, for the inclusions in Ort_04 and Iso_05, the normalized tensile stress (σxx/σo

xx)
inside the inclusion was less than 1.0. Figure 14 shows numerical solution by the volume
integral equation method for the normalized tensile stress (σxx/σo

xx) along (left) the x–axis
inside (−3 mm≤ x≤ 3 mm) and (right) the circumferential direction (0◦ ≤ θ (see Figure 10)
≤ 360◦) of the orthotropic prolate spheroidal inclusions (a/b = c/b = 0.5 where b = 6 mm)
under uniform remote tensile loading.

Table 13. Normalized Tensile Stress Component (σxx/σo
xx) within the Orthotropic Prolate Spheroidal

Inclusion due to Uniform Remote Tensile Loading (σo
xx).

Material
VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

Ort_01 1.1244 1.1385
Ort_02 1.3546 1.4038
Ort_03 1.4519 1.5202
Ort_04 0.6246 0.6027
Ort_05 0.8375 0.8246
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Figure 12. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (i) the x–

axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions with
a/b = c/b = 0.5 (b = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03,
Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.

Figure 15 shows numerical solutions by the volume integral equation method for the
normalized tensile stress (σxx/σo

xx) along (left) the x–axis inside (−4.5 mm ≤ x ≤ 4.5 mm)
and (right) the circumferential direction (0◦ ≤ θ (see Figure 11) ≤ 360◦) of the orthotropic
prolate spheroidal inclusions (a/b = c/b = 0.75 where b = 6 mm) under uniform remote
tensile loading. It was determined in Figures 14 and 15 that the normalized tensile stress
(σxx/σo

xx) inside the orthotropic prolate spheroidal inclusions is constant in all direc-
tions considered.
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dal inclusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = 
c/b = 0.75 where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 
20-node quadratic hexahedral elements were used for the single prolate spheroidal inclu-
sion in Figures 10 and 11. The number of elements, 7560, was determined based on a con-
vergence test.  

Figure 13. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (i) the x–

axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions with
a/b = c/b = 0.75 (b = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03,
Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.

3.2.3. A Single Isotropic Oblate Spheroidal Inclusion

In this section, two different oblate spheroidal inclusions are considered: (a) b/a = c/a = 0.5,
where a = 6 mm, and (b) b/a = c/a = 0.75, where a = 6 mm (see Figure 5). It should be
noted that the length of a (=6 mm) can be arbitrarily chosen.

Figures 16 and 17 show a typical discretized model for the single (a) oblate spheroidal in-
clusion (b/a = c/a = 0.5 where a = 6 mm) and (b) oblate spheroidal inclusion (b/a = c/a = 0.75
where a = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single oblate spheroidal inclusion in
Figures 16 and 17. The number of elements, 7560, was determined based on a conver-
gence test.
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Figure 14. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (left) the

x–axis inside and (right) the circumferential direction of the orthotropic prolate spheroidal inclusions
(Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with a/b = c/b = 0.5 (b = 6 mm) under uniform remote
tensile loading.
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Figure 16. A typical discretized oblate spheroidal model (b/a = c/a = 0.5) in the volume integral equa-
tion method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate spheroidal 
model. 
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Figure 15. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (left) the

x–axis inside and (right) the circumferential direction of the orthotropic prolate spheroidal inclusions
(Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with a/b = c/b = 0.75 (b = 6 mm) under uniform remote
tensile loading.
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Figure 16. A typical discretized oblate spheroidal model (b/a = c/a = 0.5) in the volume inte-
gral equation method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate
spheroidal model.

Eight different isotropic inclusions (from Iso_01 to Iso_08) in Table 2 were used in
the numerical calculation. It should be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figures 16 and 17.
It should also be noted that the normalized tensile stress (σxx/σo

xx) inside the isotropic
oblate spheroidal inclusions was found to be constant [1,30]. Tables 14–16 show numer-
ical solutions by the volume integral equation method for the normalized tensile stress
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(σxx/σo
xx) inside the isotropic oblate spheroidal inclusions. For the inclusions in Iso_01,

Iso_02, Iso_03, Iso_04 and Iso_05, the normalized tensile stress (σxx/σo
xx) inside the inclu-

sion was greater than 1.0. However, for the inclusions in Iso_06, Iso_07 and Iso_08, the
normalized tensile stress (σxx/σo

xx) inside the inclusion was less than 1.0. Figure 18 shows
numerical solutions by the volume integral equation method for the normalized tensile
stress (σxx/σo

xx) along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferen-
tial direction (0◦ ≤ θ (see Figure 16) ≤ 360◦) of the isotropic oblate spheroidal inclusions
(b/a = c/a = 0.5 where a = 6 mm) under uniform remote tensile loading. Figure 19 shows
numerical solutions by the volume integral equation method for the normalized tensile
stress (σxx/σo

xx) along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferen-
tial direction (0◦ ≤ θ (see Figure 17) ≤ 360◦) of the isotropic oblate spheroidal inclusions
(b/a = c/a = 0.75 where a = 6 mm) under uniform remote tensile loading. It was determined
in Figures 18 and 19 that the normalized tensile stress (σxx/σo

xx) inside the isotropic oblate
spheroidal inclusions is constant in all directions considered.
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Figure 17. A typical discretized oblate spheroidal model (b/a = c/a = 0.75) in the volume inte-
gral equation method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate
spheroidal model.

Table 14. Normalized tensile stress component (σxx/σo
xx) within the isotropic oblate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

Iso_01 2.1363 1.7790
Iso_02 1.4811 1.3599

Table 15. Normalized tensile stress component (σxx/σo
xx) within the isotropic oblate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

Iso_03 1.5251 1.3938
Iso_04 2.2350 1.8413
Iso_05 2.6483 2.0556

3.2.4. A Single Orthotropic Oblate Spheroidal Inclusion

In this section, two different oblate spheroidal inclusions are considered: (a) b/a = c/a = 0.5,
where a = 6 mm, and (b) b/a = c/a = 0.75, where a = 6 mm (see Figure 5). It should be
noted that the length of a (=6 mm) can be arbitrarily chosen.
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Table 16. Normalized tensile stress component (σxx/σo
xx) within the isotropic oblate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

Iso_06 0.6310 0.6793
Iso_07 0.2695 0.3134
Iso_08 0.7733 0.8072
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Figure 18. VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis 
inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with b/a = 
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Figure 18. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (i) the x–

axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with
b/a = c/a = 0.5 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03,
Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.

Figures 16 and 17 show a typical discretized model for the single (a) oblate spheroidal in-
clusion (b/a = c/a = 0.5 where a = 6 mm) and (b) oblate spheroidal inclusion (b/a = c/a = 0.75
where a = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
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quadratic hexahedral elements were used for the single oblate spheroidal inclusion in
Figures 16 and 17. The number of elements, 7560, was determined based on a conver-
gence test.
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Figure 18. VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis 
inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with b/a = 
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and Iso_05. (c) Iso_06, Iso_07 and Iso_08. 

  
(i) x–axis (ii) circumferential direction 

(a) 

  
(i) x–axis (ii) circumferential direction 

(b) 

  
(i) x–axis (ii) circumferential direction 

(c) 

Figure 19. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (i) the x–

axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with
b/a = c/a = 0.75 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03,
Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.

Five different orthotropic inclusions (from Ort_01 to Ort_05) in Table 3 were used in the
numerical calculation. It should be noted that the VIEM results represent average values of
the normalized stresses in all the nodes of the VIEM model in Figures 16 and 17. It should
also be noted that the normalized tensile stress (σxx/σo

xx) inside the orthotropic oblate
spheroidal inclusions was found to be constant [1,30]. Table 17 shows numerical solutions
by the volume integral equation method for the normalized tensile stress (σxx/σo

xx) inside
the orthotropic oblate pheroidal inclusions. For the inclusions in Ort_01, Ort_02 and Ort_03,
the normalized tensile stress (σxx/σo

xx) inside the inclusion was greater than 1.0. However,
for the inclusions in Ort_04 and Iso_05, the normalized tensile stress (σxx/σo

xx) inside the
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inclusion was less than 1.0. Figure 20 shows numerical solutions by the volume integral
equation method for the normalized tensile stress (σxx/σo

xx) along (left) the x–axis inside
(−6 mm ≤ x ≤ 6 mm) and (right) the circumferential direction (0◦ ≤ θ (see Figure 16)
≤ 360◦) of the orthotropic oblate spheroidal inclusions (b/a = c/a = 0.5 where a = 6 mm)
under uniform remote tensile loading. Figure 21 shows numerical solutions by the volume
integral equation method for the normalized tensile stress (σxx/σo

xx) along (left) the x–axis
inside (−6 mm≤ x≤ 6 mm) and (right) the circumferential direction (0◦ ≤ θ (see Figure 17)
≤ 360◦) of the orthotropic oblate spheroidal inclusions (b/a = c/a = 0.75 where a = 6 mm)
under uniform remote tensile loading. It was determined in Figures 20 and 21 that the
normalized tensile stress (σxx/σo

xx) inside the orthotropic oblate spheroidal inclusions is
constant in all directions considered.

Table 17. Normalized tensile stress component (σxx/σo
xx) within the orthotropic oblate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

Ort_01 1.2292 1.1833
Ort_02 1.7864 1.5780
Ort_03 2.1040 1.7745
Ort_04 0.5006 0.5453
Ort_05 0.7570 0.7882
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Figure 20. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (left) the

x–axis inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions
(Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.5 (a = 6 mm) under uniform remote
tensile loading.

From Figures 8, 9, 12–15 and 18–21 and Tables 6–17, it was determined that if the
inclusion is harder than the matrix, the normalized tensile stress (σxx/σo

xx) inside the
inclusion is greater than 1.0. Additionally, the normalized tensile stress (σxx/σo

xx) inside
the prolate spheroidal inclusion (a/b = c/b = 0.75) is greater than that inside the prolate
spheroidal inclusion (a/b = c/b = 0.5). However, the normalized tensile stress (σxx/σo

xx)
inside the oblate spheroidal inclusion (b/a = c/a = 0.5) is greater than that inside the oblate
spheroidal inclusion (b/a = c/a = 0.75). Thus, the normalized tensile stress (σxx/σo

xx)
inside the inclusion can be arranged in ascending order of magnitude: (1) prolate spheroidal
inclusion (a/b = c/b = 0.5), (2) prolate spheroidal inclusion (a/b = c/b = 0.75), (3) sphere,
(4) oblate spheroidal inclusion (b/a = c/a = 0.75) and (5) oblate spheroidal inclusion
(b/a = c/a = 0.5). From Figures 8, 9, 12–15 and 18–21 and Tables 6–17, it was also determined
that if the inclusion is softer than the matrix, the normalized tensile stress (σxx/σo

xx) inside
the inclusion is less than 1.0. Additionally, the normalized tensile stress (σxx/σo

xx) inside
the prolate spheroidal inclusion (a/b = c/b = 0.5) is greater than that inside the prolate
spheroidal inclusion (a/b = c/b = 0.75). However, the normalized tensile stress (σxx/σo

xx)
inside the oblate spheroidal inclusion (b/a = c/a = 0.75) is greater than that inside the
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oblate spheroidal inclusion (b/a = c/a = 0.5). Thus, the normalized tensile stress (σxx/σo
xx)

inside the inclusion can be arranged in ascending order of magnitude: (1) oblate spheroidal
inclusion (b/a = c/a = 0.5), (2) oblate spheroidal inclusion (b/a = c/a = 0.75), (3) sphere,
(4) prolate spheroidal inclusion (a/b = c/b = 0.75) and (5) prolate spheroidal inclusion
(a/b = c/b = 0.5).
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Figure 21. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (left) the

x–axis inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions
(Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.75 (a = 6 mm) under uniform remote
tensile loading.

Both the standard finite element method (FEM) and the boundary element method
(BEM) are powerful general-purpose tools in the field of numerical analysis. Since the VIEM
is a combination of these two methods, it is also highly beneficial to the field of numerical
analysis and can play a very important role in solving “inclusion problems”. The authors
hope that the results using the VIEM cited in this paper will be used as benchmarked data
for verifying the results of similar research using other analytical and numerical methods.

3.3. Single Spherical Inclusion Problems under Remote Shear Loading
3.3.1. VIEM Formulation Applied to Isotropic/Orthotropic Inclusion Problems

The displacements for isotropic spherical, prolate and oblate spheroidal inclusions
can be determined from volume integral Equations (3)–(5), while the displacements for
orthotropic spherical, prolate and oblate spheroidal inclusions can be determined from
volume integral Equations (6)–(8).

3.3.2. A Single Isotropic Spherical Inclusion

We considered a single isotropic spherical inclusion with a radius of 6 mm in an
infinite isotropic matrix subject to remote shear loading, σo

xy, σo
xz and σo

yz, as shown in
Figure 6a [24]. It should be noted that the length of the radius can be arbitrarily chosen.
In Figure 7, standard 20-node quadratic hexahedral elements were used in the discretiza-
tion [31]. The number of hexahedral elements, 7560, was determined based on a conver-
gence test. Three different material properties (Iso_01, Iso_05 and Iso_06) in Table 2 were
used in the numerical calculation. It should be noted that the normalized shear stresses
(σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic spherical inclusions were found to
be constant, respectively [1]. It should also be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figure 7. Table 18
shows numerical solutions by the volume integral equation method for the normalized
shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic spherical inclusions.
For the inclusions in Iso_01 and Iso_05, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) inside the inclusion were greater than 1.0, respectively. However, for the

inclusion in Iso_06, the normalized shear stresses (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) inside

the inclusion were less than 1.0, respectively. Figure 22 shows numerical solutions by the
volume integral equation method for the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferential
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direction (0◦ ≤ θ (see Figure 7) ≤ 360◦) of the isotropic spherical inclusions with a radius
of 6 mm under remote shear loading.

Table 18. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

isotropic spherical inclusion due to remote shear loading (σo
xy, σo

xz and σo
yz).

Material
VIEM (Average)

σxy/σo
xy σxz/σo

xz σyz/σo
yz

Iso_01 1.7109 1.7109 1.7109
Iso_05 1.9231 1.9231 1.9231
Iso_06 0.6636 0.6636 0.6636

In most references, spherical inclusion problems under uniform remote tensile loading
were considered. Thus, in order to show the VIEM results more thoroughly, the normalized
shear stresses, (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz, using the VIEM were presented
along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferential direction
(0◦ ≤ θ (see Figure 7) ≤ 360◦) of the isotropic spherical inclusions.

It was determined in Figure 22 that the normalized shear stresses (σxy/σo
xy, σxz/σo

xz
and σyz/σo

yz) inside the single isotropic spherical inclusions are constant in all directions
considered and are identical to each other. Since isotropic materials have an infinite number
of planes of symmetry, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the single isotropic spherical inclusions turned out to be identical to each other.

3.3.3. A Single Orthotropic Spherical Inclusion

In order to show the advantages of the volume integral equation method (VIEM), we
considered a single orthotropic spherical inclusion with a radius of 6 mm in an infinite
isotropic matrix subject to remote shear loading, σo

xy, σo
xz and σo

yz, as shown in Figure 6a.
It should be noted that the length of the radius can be arbitrarily chosen. In Figure 7,
standard 20-node quadratic hexahedral elements were used in the discretization [31]. The
number of hexahedral elements was 7560, determined based on a convergence test. For
this problem, in comparison to the boundary element method (BEM), since the VIEM is
not sensitive to the anisotropy of the inclusions, it does not require the use of the Green’s
function for the anisotropic inclusions. Moreover, as opposed to the standard FEM, where
it is necessary to discretize the full domain, the orthotropic inclusion only needs to be
discretized in the VIEM.

Two different material properties (Ort_06 and Ort_07) in Table 4 were used in the
numerical calculation [25]. As shown in Table 5, it was assumed that c55 > c66 > c44 for
two orthotropic inclusions. Additionally, c44, c55 and c66 of the inclusion were assumed be
greater than µ of the matrix in the Ort_06 material, while µ of the matrix was assumed to
be greater than c44, c55 and c66 of the inclusion in the Ort_07 material. Thus, two material
properties representing different characteristics were chosen. It should be noted that the
VIEM results represent average values of the normalized stresses in all the nodes of the
VIEM model in Figure 7. Moreover, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and

σyz/σo
yz) inside the orthotropic spherical inclusions were found to be constant, respec-

tively [1]. Table 19 shows numerical solutions by the volume integral equation method for
the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the orthotropic
spherical inclusions. For the inclusion in Ort_06, the normalized shear stresses (σxy/σo

xy,
σxz/σo

xz and σyz/σo
yz) inside the inclusion were greater than 1.0, respectively. How-

ever, for the inclusion in Ort_07, the normalized shear stresses (σxy/σo
xy, σxz/σo

xz and
σyz/σo

yz) inside the inclusion were less than 1.0, respectively. Figure 23 shows numeri-
cal solutions by the volume integral equation method for the normalized shear stresses
(a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along (i) the x–axis inside (−6 mm≤ x≤ 6 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 7) ≤ 360◦) of the orthotropic spher-
ical inclusions with a radius of 6 mm under remote shear loading. It was determined in
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Figure 23 that the normalized shear stresses (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) inside the

orthotropic spherical inclusions are constant in all directions considered and are different
from each other. Since orthotropic materials have three planes/axes of symmetry and
the independent shear moduli in three planes of symmetry are different from each other
(c55 > c66 > c44), the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside
the orthotropic spherical inclusions turned out to be different from each other. Furthermore,
since c55 (shear modulus in the xz plane) is greater than c66 (shear modulus in the xy plane)
and c66 is greater than c44 (shear modulus in the yz plane) in the orthotropic inclusions
of the Ort_06 and Ort_07 materials, it was determined that the normalized shear stress,
σxz/σo

xz, was greater than the normalized shear stress, σxy/σo
xy. Furthermore, σxy/σo

xy
was found to be greater than the normalized shear stress, σyz/σo

yz, inside the orthotropic
spherical inclusions.
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Figure 22. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo
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(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic spherical
inclusions (Iso_01, Iso_05 and Iso_06) with a radius of 6 mm under remote shear loading (σo

xy, σo
xz

and σo
yz).
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Table 19. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

orthotropic spherical inclusion due to remote shear loading (σo
xy, σo

xz and σo
yz).

Material
VIEM (Average)

σxy/σo
xy σxz/σo

xz σyz/σo
yz

Ort_06 1.4006 1.5456 1.3537
Ort_07 0.4356 0.5576 0.4030
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3.4. A Single Spheroidal Inclusion Problem under Remote Shear Loading

In order to introduce the VIEM as a versatile numerical method, we considered a
single isotropic/orthotropic spheroidal inclusion in an infinite isotropic matrix subject to
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remote shear loading, σo
xy, σo

xz and σo
yz, as shown in Figure 6b,c. Figure 5 shows the

orientation of the spheroidal inclusion.

3.4.1. A Single Isotropic Prolate Spheroidal Inclusion

Two different prolate spheroidal inclusions are considered: (a) a/b = c/b = 0.5, where
b = 6 mm, and (b) a/b = c/b = 0.75, where b = 6 mm (see Figure 5). It should be noted that
the length of b (=6 mm) can be arbitrarily chosen.

Figures 10 and 11 show a typical discretized model for the single (a) prolate spheroidal in-
clusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = c/b = 0.75
where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single prolate spheroidal inclusion in
Figures 10 and 11. The number of elements, 7560, was determined based on a conver-
gence test.

Three different isotropic inclusions (Iso_01, Iso_05 and Iso_06) in Table 2 were used
in the numerical calculation. It should be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figures 10 and 11. It
should also be noted that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the isotropic prolate spheroidal inclusions were found to be constant, respectively [1].
Table 20 shows numerical solutions by the volume integral equation method for the nor-
malized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic prolate
spheroidal inclusions. For the inclusions in Iso_01 and Iso_05, the normalized shear stresses
(σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the inclusion were greater than 1.0, respectively.
However, for the inclusion in Iso_06, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) inside the inclusion were less than 1.0, respectively. Figure 24 shows numer-

ical solutions by the volume integral equation method for the normalized shear stresses
(a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along (i) the x–axis inside (−3 mm≤ x≤ 3 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 10) ≤ 360◦) of the isotropic prolate
spheroidal inclusions (a/b = c/b = 0.5 where b = 6 mm) under remote shear loading,
σo

xy, σo
xz and σo

yz. Figure 25 shows numerical solutions by the volume integral equation
method for the normalized shear stresses (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along
(i) the x–axis inside (−4.5 mm ≤ x ≤ 4.5 mm) and (ii) the circumferential direction (0◦ ≤ θ

(see Figure 11) ≤ 360◦) of the isotropic prolate spheroidal inclusions (a/b = c/b = 0.75
where b = 6 mm) under remote shear loading, σo

xy, σo
xz and σo

yz. It was determined in
Figures 24 and 25 that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the isotropic prolate spheroidal inclusions are constant in all directions considered.
Furthermore, since, as shown in Figure 26, the cross-section in the xy plane is identical to
the cross-section in the yz plane in the prolate spheroidal inclusion, the normalized shear
stress, σxy/σo

xy, was identical to the normalized shear stress, σyz/σo
yz, inside the isotropic

prolate spheroidal inclusion under remote shear loading.

Table 20. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

isotropic prolate spheroidal inclusion due remote shear loading (σo
xy, σo

xz and σo
yz).

Material

VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

σxy/σo
xy σxz/σo

xz σyz/σo
yz σxy/σo

xy σxz/σo
xz σyz/σo

yz

Iso_01 1.7619 1.5329 1.7619 1.7490 1.6214 1.7490
Iso_05 1.9935 1.6765 1.9935 1.9772 1.7972 1.9772
Iso_06 0.6538 0.7036 0.6538 0.6565 0.6820 0.6565
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Figure 24. VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) 
σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate sphe-
roidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.5 (b = 6 mm) under remote shear 
loading (σoxy, σoxz and σoyz). 

  

Figure 24. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate
spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.5 (b = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).

3.4.2. A Single Orthotropic Prolate Spheroidal Inclusion

Two different prolate spheroidal inclusions are considered: (a) a/b = c/b = 0.5, where
b = 6 mm, and (b) a/b = c/b = 0.75, where b = 6 mm (see Figure 5). It should be noted that
the length of b (=6 mm) can be arbitrarily chosen.

Figures 10 and 11 show a typical discretized model for the single (a) prolate spheroidal in-
clusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = c/b = 0.75
where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single prolate spheroidal inclusion in
Figures 10 and 11. The number of elements, 7560, was determined based on a conver-
gence test.
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Figure 25. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate
spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.75 (b = 6 mm) under remote
shear loading (σo

xy, σo
xz and σo

yz).

Two different orthotropic inclusions (Ort_06 and Ort_07) in Table 4 were used in the
numerical calculation. It should be noted that the VIEM results represent average values
of the normalized stresses in all the nodes of the VIEM model in Figures 10 and 11. It
should also be noted that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the orthotropic prolate spheroidal inclusions were found to be constant, respec-
tively [1]. Table 21 shows numerical solutions by the volume integral equation method for
the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the orthotropic
prolate spheroidal inclusions. For the inclusion in Ort_06, the normalized shear stresses
(σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the inclusion were greater than 1.0, respectively.
However, for the inclusion in Ort_07, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) inside the inclusion were less than 1.0, respectively. Figure 27 shows numer-

ical solutions by the volume integral equation method for the normalized shear stresses

101



Materials 2021, 14, 6996

(a) σxy/σo
xy, (b) σxz/σo

xz and (c) σyz/σo
yz along (i) the x–axis inside (−3 mm≤ x≤ 3 mm)

and (ii) the circumferential direction (0◦ ≤ θ (see Figure 10) ≤ 360◦) of the orthotropic
prolate spheroidal inclusions (a/b = c/b = 0.5 where b = 6 mm) under remote shear loading,
σo

xy, σo
xz and σo

yz. Figure 28 shows numerical solutions by the volume integral equation
method for the normalized shear stresses (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along
(i) the x–axis inside (−4.5 mm ≤ x ≤ 4.5 mm) and (ii) the circumferential direction (0◦ ≤ θ

(see Figure 11) ≤ 360◦) of the orthotropic prolate spheroidal inclusions (a/b = c/b = 0.75
where b = 6 mm) under remote shear loading, σo

xy, σo
xz and σo

yz. It was determined in
Figures 27 and 28 that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the orthotropic prolate spheroidal inclusions are constant in all directions considered.
Furthermore, even though, as shown in Figure 26, the cross-section in the xy plane is
identical to the cross-section in the yz plane in the prolate spheroidal inclusion, since c55
(shear modulus in the xz plane) is greater than c66 (shear modulus in the xy plane) and
c66 is greater than c44 (shear modulus in the yz plane) in the orthotropic inclusions of the
Ort_06 and Ort_07 materials, the normalized shear stress, σxy/σo

xy, was different from the
normalized shear stress, σyz/σo

yz, inside the isotropic prolate spheroidal inclusion under
remote shear loading.

Table 21. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

orthotropic prolate spheroidal inclusion due remote shear loading (σo
xy, σo

xz and σo
yz).

Material

VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

σxy/σo
xy σxz/σo

xz σyz/σo
yz σxy/σo

xy σxz/σo
xz σyz/σo

yz

Ort_06 1.4239 1.4192 1.3735 1.4180 1.4828 1.3685
Ort_07 0.4258 0.6010 0.3934 0.4282 0.5774 0.3957

3.4.3. A Single Isotropic Oblate Spheroidal Inclusion

In this section, two different oblate spheroidal inclusions are considered: (a) b/a = c/a = 0.5,
where a = 6 mm, and (b) b/a = c/a = 0.75, where a = 6 mm (see Figure 5). It should be
noted that the length of a (=6 mm) can be arbitrarily chosen.

Figures 16 and 17 show a typical discretized model for the single (a) oblate spheroidal in-
clusion (b/a = c/a = 0.5 where a = 6 mm) and (b) oblate spheroidal inclusion (b/a = c/a = 0.75
where a = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single oblate spheroidal inclusion in
Figures 16 and 17. The number of elements, 7560, was determined based on a conver-
gence test.

Three different isotropic inclusions (Iso_01, Iso_05 and Iso_06) in Table 2 were used
in the numerical calculation. It should be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figures 16 and 17. It
should also be noted that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the isotropic oblate spheroidal inclusions were found to be constant, respectively [1].
Table 22 shows numerical solutions by the volume integral equation method for the normal-
ized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic oblate spheroidal
inclusions. For the inclusions in Iso_01 and Iso_05, the normalized shear stresses (σxy/σo

xy,
σxz/σo

xz and σyz/σo
yz) inside the inclusion were greater than 1.0, respectively. How-

ever, for the inclusion in Iso_06, the normalized shear stresses (σxy/σo
xy, σxz/σo

xz and
σyz/σo

yz) inside the inclusion were less than 1.0, respectively.
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Figure 26. Cross-section in the (a) xy plane, (b) xz plane and (c) yz plane of (i) prolate spheroidal 
(with an aspect ratio of 0.5) and (ii) oblate spheroidal (with an aspect ratio of 0.5) inclusions under 
remote shear loading. 
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Figure 26. Cross-section in the (a) xy plane, (b) xz plane and (c) yz plane of (i) prolate spheroidal
(with an aspect ratio of 0.5) and (ii) oblate spheroidal (with an aspect ratio of 0.5) inclusions under
remote shear loading.

Figure 29 shows numerical results using the volume integral equation method (VIEM)
for the normalized shear stresses (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along (i) the x–
axis inside (−6 mm≤ x≤ 6 mm) and (ii) the circumferential direction (0◦ ≤ θ (see Figure 16)
≤ 360◦) of the isotropic oblate spheroidal inclusions (b/a = c/a = 0.5 where a = 6 mm)
under remote shear loading, σo

xy, σo
xz and σo

yz. Figure 30 shows numerical solutions
by the volume integral equation method for the normalized shear stresses (a) σxy/σo

xy,
(b) σxz/σo

xz and (c) σyz/σo
yz along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the

circumferential direction (0◦ ≤ θ (see Figure 17) ≤ 360◦) of the isotropic oblate spheroidal
inclusions (b/a = c/a = 0.75 where a = 6 mm) under remote shear loading, σo

xy, σo
xz and

σo
yz. It was determined in Figures 29 and 30 that the normalized shear stresses (σxy/σo

xy,
σxz/σo

xz and σyz/σo
yz) inside the isotropic oblate spheroidal inclusions are constant in all

directions considered. Furthermore, since, as shown in Figure 26, the cross-section in the xy
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plane is identical to the cross-section in the xz plane in the oblate spheroidal inclusion, the
normalized shear stress, σxy/σo

xy, was identical to the normalized shear stress, σxz/σo
xz,

inside the isotropic oblate spheroidal inclusion under remote shear loading.
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Figure 27. VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) 
σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate 

Figure 27. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate
spheroidal inclusions (Ort_06 and Ort_07) with a/b = c/b = 0.5 (b = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).
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Figure 28. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate
spheroidal inclusions (Ort_06 and Ort_07) with a/b = c/b = 0.75 (b = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).

Table 22. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

isotropic oblate spheroidal inclusion due remote shear loading (σo
xy, σo

xz and σo
yz).

Material

VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

σxy/σo
xy σxz/σo

xz σyz/σo
yz σxy/σo

xy σxz/σo
xz σyz/σo

yz

Iso_01 1.7619 1.7619 1.5329 1.7490 1.7490 1.6214
Iso_05 1.9935 1.9935 1.6765 1.9772 1.9772 1.7972
Iso_06 0.6538 0.6538 0.7036 0.6565 0.6565 0.6820
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Figure 29. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate
spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with b/a = c/a = 0.5 (a = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).

3.4.4. A Single Orthotropic Oblate Spheroidal Inclusion

In this section, two different oblate spheroidal inclusions are considered: (a) b/a = c/a = 0.5,
where a = 6 mm, and (b) b/a = c/a = 0.75, where a = 6 mm (see Figure 5). It should be
noted that the length of a (=6 mm) can be arbitrarily chosen. Figures 16 and 17 show a
typical discretized model for the single (a) oblate spheroidal inclusion (b/a = c/a = 0.5
where a = 6 mm) and (b) oblate spheroidal inclusion (b/a = c/a = 0.75 where a = 6 mm)
used in the VIEM [31], respectively. A total of 7560 standard 20-node quadratic hexahedral
elements were used for the single oblate spheroidal inclusion in Figures 16 and 17. The
number of elements, 7560, was determined based on a convergence test.
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Figure 30. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate
spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with b/a = c/a = 0.75 (a = 6 mm) under remote
shear loading (σo

xy, σo
xz and σo

yz).

Two different orthotropic inclusions (Ort_06 and Ort_07) in Table 4 were used in the
numerical calculation. It should be noted that the VIEM results represent average values
of the normalized stresses in all the nodes of the VIEM model in Figures 16 and 17. It
should also be noted that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the orthotropic oblate spheroidal inclusions were found to be constant, respec-
tively [1]. Table 23 shows numerical solutions by the volume integral equation method for
the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the orthotropic
oblate spheroidal inclusions. For the inclusion in Ort_06, the normalized shear stresses
(σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the inclusion were greater than 1.0, respectively.
However, for the inclusion in Ort_07, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) inside the inclusion were less than 1.0, respectively. Figure 31 shows numer-
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ical solutions by the volume integral equation method for the normalized shear stresses
(a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along (i) the x–axis inside (−6 mm≤ x≤ 6 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 16) ≤ 360◦) of the orthotropic
oblate spheroidal inclusions (b/a = c/a = 0.5 where a = 6 mm) under remote shear loading,
σo

xy, σo
xz and σo

yz. Figure 32 shows numerical solutions by the volume integral equation
method for the normalized shear stresses (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along
(i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferential direction (0◦ ≤ θ

(see Figure 17) ≤ 360◦) of the orthotropic oblate spheroidal inclusions (b/a = c/a = 0.75
where a = 6 mm) under remote shear loading, σo

xy, σo
xz and σo

yz. It was determined in
Figures 31 and 32 that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the orthotropic oblate spheroidal inclusions are constant in all directions considered.
Furthermore, even though, as shown in Figure 26, the cross-section in the xy plane is
identical to the cross-section in the xz plane in the oblate spheroidal inclusion, since c55
(shear modulus in the xz plane) is greater than c66 (shear modulus in the xy plane) and
c66 is greater than c44 (shear modulus in the yz plane) in the orthotropic inclusions of the
Ort_06 and Ort_07 materials, the normalized shear stress, σxy/σo

xy, was different from the
normalized shear stress, σxz/σo

xz, inside the orthotropic oblate spheroidal inclusion under
remote shear loading.

Table 23. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

orthotropic oblate spheroidal inclusion due remote shear loading (σo
xy, σo

xz and σo
yz).

Material

VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

σxy/σo
xy σxz/σo

xz σyz/σo
yz σxy/σo

xy σxz/σo
xz σyz/σo

yz

Ort_06 1.4239 1.5808 1.2798 1.4180 1.5719 1.3175
Ort_07 0.4258 0.5477 0.4465 0.4282 0.5501 0.4226

From Figures 22–25 and 27–32 and Tables 17–22, it was determined that if the inclusion
is harder than the matrix, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the inclusion are greater than 1.0, respectively. It was also determined that if the
inclusion is softer than the matrix, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and

σyz/σo
yz) inside the inclusion are less than 1.0, respectively.

From Figure 26, notable similarities are observed for isotropic inclusions. First, the
cross-section in the xy plane of the isotropic prolate spheroidal inclusion is identical to the
cross-section in the yz plane and is symmetrical to the cross-sections in the xy and xz planes
of the isotropic oblate spheroidal inclusion. Second, the normalized shear stress, σxy/σo

xy,
inside the isotropic prolate spheroidal inclusion is identical to both the normalized shear
stress, σyz/σo

yz, inside the isotropic prolate spheroidal inclusion and the normalized shear
stresses, σxy/σo

xy and σxz/σo
xz, inside the isotropic oblate spheroidal inclusion under

remote shear loading. Third, the cross-section in the xz plane of the isotropic prolate
spheroidal inclusion is symmetrical to the cross-section in the yz plane of the isotropic
oblate spheroidal inclusion. Fourth, the normalized shear stress, σxz/σo

xz, inside the
isotropic prolate spheroidal inclusion is identical to the normalized shear stress, σyz/σo

yz,
inside the isotropic oblate spheroidal inclusion under remote shear loading.

In contrast, certain differences can be seen for orthotropic inclusions. First, although
the cross-section in the xy plane of the orthotropic prolate spheroidal inclusion is still
symmetrical to the cross-section in the xy plane of the orthotropic oblate spheroidal inclu-
sion, it is no longer identical to the cross-section in the yz plane of the orthotropic prolate
spheroidal inclusion. Second, since the cross-section in the xy plane of the orthotropic
prolate spheroidal inclusion is no longer symmetrical to the cross-section in the xz plane of
the orthotropic oblate spheroidal inclusion, the normalized shear stress, σxy/σo

xy, inside
the orthotropic prolate spheroidal inclusion is only identical to the normalized shear stress,
σxy/σo

xy, inside the orthotropic oblate spheroidal inclusion under remote shear loading.
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Third, since the cross-section in the xz plane of the orthotropic prolate spheroidal inclusion
is no longer symmetrical to the cross-section in the yz plane of the orthotropic oblate
spheroidal inclusion, the normalized shear stress, σxz/σo

xz, inside the orthotropic prolate
spheroidal inclusion is not identical to the normalized shear stress, σyz/σo

yz, inside the
orthotropic oblate spheroidal inclusion under remote shear loading.
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Figure 32. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic oblate
spheroidal inclusions (Ort_06 and Ort_07) with b/a = c/a = 0.75 (a = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).

It should be noted that, through numerical analysis using the volume integral equation
method, we could quantitatively verify two qualitative predictions: (1) the normalized
shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the orthotropic spherical inclusions
are different from each other, and (2) for orthotropic spheroidal inclusions, there exists only
one symmetrical cross-section when the remote loadings are shear (σo

xy, σo
xz and σo

yz).
It was determined that values of the normalized tensile stress (σxx/σo

xx) or the nor-
malized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic spheroidal
inclusions differed significantly from those inside the orthotropic spheroidal inclusions. There-
fore, thorough investigation of spheroidal inclusion problems requires stress analysis for both
anisotropic spheroidal inclusion problems and isotropic spheroidal inclusion problems.

We also considered multiple isotropic/anisotropic spheroidal inclusions in an infinite
isotropic matrix subject to uniform remote tensile loading, σo

xx. In a future paper, the
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authors will introduce the VIEM solutions of multiple isotropic/orthotropic spheroidal
inclusions in an infinite isotropic matrix under arbitrary loading conditions. It is ob-
vious that general characteristics of multiple isotropic/anisotropic inclusion problems
cannot be fully analyzed from the basic characteristics of the corresponding single or two
isotropic/anisotropic inclusion problems. Therefore, applying multiple inclusion problems
to a wide class of real composite materials and structures requires extending the analysis
to multiple isotropic/anisotropic inclusions of different shapes.

Both the standard finite element method (FEM) and the boundary element method
(BEM) are powerful general-purpose tools in the field of numerical analysis. Since the
VIEM is a combination of these two methods, it is also highly beneficial to the field of
numerical analysis and can play a very important role in solving “multiple inclusion
problems”. The authors hope that the results using the VIEM cited in this paper will be
used as benchmarked data for verifying the results of similar research using other analytical
and numerical methods.

4. Conclusions

In order to introduce the VIEM as a versatile numerical method for the three-dimensional
elastostatic inclusion problem, it was applied to a class of three-dimensional elastostatic
inclusion problems. We first considered single isotropic/orthotropic spherical, prolate
(with an aspect ratio of 0.5 and 0.75) and oblate (with an aspect ratio of 0.5 and 0.75)
spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading.
Thirteen inclusions with different characteristics were considered in the numerical calcula-
tion. Excellent agreement was found between the analytical and numerical solutions using
the VIEM for single isotropic spherical inclusion problems. It was determined that the
normalized tensile stress (σxx/σo

xx) inside the isotropic/orthotropic spherical, prolate and
oblate spheroidal inclusions was constant in two different directions (x–axis and circumfer-
ential direction). When the inclusion is harder than the matrix, the normalized tensile stress
(σxx/σo

xx) inside the inclusion can be arranged in ascending order of magnitude: (1) prolate
spheroidal inclusion (a/b = c/b = 0.5), (2) prolate spheroidal inclusion (a/b = c/b = 0.75),
(3) sphere, (4) oblate spheroidal inclusion (b/a = c/a = 0.75) and (5) oblate spheroidal
inclusion (b/a = c/a = 0.5).

We next considered single isotropic/orthotropic spherical, prolate (with an aspect
ratio of 0.5 and 0.75) and oblate (with an aspect ratio of 0.5 and 0.75) spheroidal inclusions
in an infinite isotropic matrix under remote shear loading. Five inclusions with different
characteristics were considered in the numerical calculation. It was determined that the nor-
malized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic/orthotropic
spherical, prolate and oblate spheroidal inclusions were constant in two different directions
(x–axis and circumferential direction), respectively. When the inclusion was harder than
the matrix, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the in-
clusion were greater than 1.0, respectively. Furthermore, for isotropic spheroidal inclusions,
there existed two identical or symmetrical cross-sections, while for orthotropic spheroidal
inclusions, there existed only one symmetric cross-section when the remote loadings were
shear (σo

xy, σo
xz and σo

yz).
It is the authors’ hope that the present solutions for various types of inclusions with

different material properties under different loading conditions using the parallel volume
integral equation method will be established as reference values for verifying the results of
other analytical and numerical methods.

It was also determined that applying multiple inclusion problems to a wide class
of real composite materials and structures requires extending the analysis to multiple
isotropic/anisotropic inclusions of different numbers and shapes. The parallel volume
integral equation method (PVIEM) is now generally more applicable and executable than
the standard finite element or boundary element methods. Subsequently, the PVIEM
can be used to calculate other quantities of practical interest in realistic models of com-
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posites containing isotropic or anisotropic inclusions of arbitrary shapes under arbitrary
loading conditions.

It should also be pointed out that, since the VIEM is a combination of the FEM and
the BEM, it may have an unknown advantage that neither the FEM model nor the BEM
model alone possess. For example, although certain VIEM models are incorrect from the
point of view of the standard FEM only, they can be correctly implemented in the VIEM.
In a future paper, the authors will attempt to provide more distinct examples to support
this new finding. Finally, as a new machine learning-based predictive framework has been
proposed for the accurate and efficient evaluation of singular integrals in the boundary
element method (BEM) [32], of particular interest to researchers going forward will be the
development of a general-purpose machine learning framework for predicting singular
integrals [29] in the volume integral equation method.
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Abstract: The purpose of this paper is to develop a constitutive description and to numerically
simulate a propagating instability phenomenon called the Portevin–Le Chatelier (PLC) effect, which
is observed for metallic materials. It manifests itself by moving plastic shear bands in the sample and
serrations in the stress–strain diagram. In this paper, the PLC is modeled by geometrically non-linear
thermo-visco-plasticity with the hardening function of the Estrin–McCormick type to reproduce a
serrated response. To regularize softening, which in this model comes from thermal, geometrical and
strain-rate effects, the viscosity and heat conductivity are incorporated. Plasticity description can
additionally include degradation of the yield strength, and then the model is enhanced by higher-
order gradients. Simulations are performed using AceGen/FEM. Two tensioned specimens are tested:
a rod and a dog-bone sample. The first specimen is used for general verification. The results obtained
for the second specimen are compared with the experimental results. Studies for different values
of model parameters are performed. The results of the simulations are in good agreement with the
experimental outcome and the sensitivity to model parameters is in line with the expectations for the
pre-peak regime. In the presented tests, the gradient enhancement does not significantly influence
the results.

Keywords: PLC effect; visco-plasticity; thermo-mechanical coupling; gradient enhancement; FEM

1. Introduction

The Portevin–Le Chatelier (PLC) effect is an instability phenomenon that manifests
itself in bands of localized plastic strain rate, propagating along a stressed specimen. It is
related to stress jumps (serrations) in the load-displacement diagram, which represents
a specimen response under tension or shear. The source of this behaviour lies in the
microstructure evolution, in particular at the level of dislocation motion. It is specifically
exhibited by steel and aluminium alloys and occurs for a certain range of strain rates and
temperatures. The PLC can reduce ductility and formability of alloys; hence, its analysis is
of both theoretical and practical importance.

The plastic flow in metals and alloys can be explained by nucleation and motion of
dislocations. The motion can be blocked by other dislocations, causing dislocation pile-up
which can be unlocked by a sufficiently large strain. In solid solutions, dislocations can also
be stopped by diffused solute atoms. The dislocation pinning by the solutes, repeatedly
followed by unpinning, produces instabilities in the plastic flow. They occur as serrations
in the stress–strain diagram, related to the motion (or repeated occurrence and vanishing)
of localized strain-rate bands along a stressed specimen.

The micro-structural phenomenon responsible for the PLC effect is so-called Dynamic
Strain Aging (DSA) [1,2]. As explained above, DSA is related to dynamic interactions
between the motion of mobile dislocations and the diffusion of solute atoms. The recur-
ring decrease in the concentration of solute atoms at temporarily arrested dislocations is
represented by a reduction in solute contribution to the flow stress.

Materials 2022, 15, 4327. https://doi.org/10.3390/ma15124327 https://www.mdpi.com/journal/materials
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The PLC effect was first reported by [3]. Experimental studies and analytical models
of propagative instabilities, in particular of Lueders bands and the Portevin–Le Chatelier
effect, were discussed in [4]. An extensive numerical study of the phenomena using small-
strain isothermal elasto-plasticity models is provided in [5,6]. Finite element models of
the PLC effect are analyzed there in the context of regularized dynamics. An overview of
the experiments showing the PLC phenomenon, including a classification of its types, is
presented in [7]. Experimental analysis and modeling of the three types is performed in [8].
A review of modeling options for the phenomenon is provided in [9].

The PLC effect can be described, among others, by the Estrin–McCormick model [10–13].
In [10], the model is derived; in [11,12], it is applied in small-strain FE simulations of the
phenomenon. In [13], the model is implemented within a large strain model of elasto-
plasticity, including parameter identification for an aluminium alloy based on experiments
on tensile specimens under loading with different rates.

In recent years, several scientists have considered the phenomenon in their theoret-
ical, experimental and numerical studies. In particular, steel specimens were examined
in [14–18] (the last paper covers an experimental study of the PLC phenomenon in high-
strength steel) and aluminium alloys in a larger number of works; for instance, [13,19–22].

The majority of specimens used in the studies were rectangular or dog-bone shape ten-
sile plates (see [8,13,15,19,20,23]), sometimes notched (e.g., [17]), and tensile rods with circu-
lar cross-section (see for instance [23]). Some studies concerned shear specimens [21,24,25].
Several papers compare the experimental response (in some cases monitored using the
DIC technique) with simulation results; see, for instance [17,19,22,26–28]. The final failure,
involving necking and fracture, was examined in [15]. Moreover, in some papers, the
influence of loading/strain rate has been examined, see [8,13,20,24,29].

A few studies considered temperature dependence of the PLC effect. These
were [20,25,30,31]. The simulation of the temperature-dependent process zone at the crack
tip was in the focus of [14]. Finally, it is mentioned that a constitutive model of discontinu-
ous plastic flow for materials deformed at cryogenic temperatures was developed in [32]
and further considered in [33]. In fact, these papers and the present one belong to the
broad field of research on thermo-mechanics of heterogeneous/composite materials and
structures. The thermo-mechanical couplings are constantly a subject of intensive scientific
activity; see, for instance [34–41].

In the present paper, the PLC effect is simulated using a formulation of geometri-
cally non-linear thermo-plasticity developed in [42,43]. The model includes full thermo-
mechanical coupling involving thermal expansion, plastic heating, thermal softening in
the plasticity function, and Fourier’s law in the deformed configuration. Following [44,45],
the thermo-elastic coupling is neglected in the energy balance because it is relatively
insignificant for the metallic materials under consideration.

The plasticity description is based on [46] and includes the Huber–Mises–Hencky
yield criterion. This model was recently extended to visco-plasticity and was employed by
the authors to simulate Lueders bands in [47]. The rate-dependent hardening function of
the Estrin–McCormick type, described in [13], is used to simulate DSA and the serrations
induced by strain-rate softening, but it is enhanced with temperature dependence of the
characteristic time of solute diffusion.

The models are implemented in an AceGen code generator developed in [48] within
Wolfram Mathematica. One of the aims of the research is to examine the influence of
temperature and strain rates on the PLC phenomenon, and the importance of regularization
in the models involving recurring strain-rate-softening phases. It is stressed here that the
stabilizing effect is provided by viscosity and heat conduction, but can also be provided by
a gradient enhancement.

The paper is organized as follows. In Section 2, the theory of large strain thermo-visco-
plasticity is summarized and then extended to include the Estrin–McCormick component
of the yield strength, which makes it possible to simulate the PLC effect. Interest is limited
to tension and moderate temperatures (20–200 degrees Celsius). A gradient enhancement
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of the model is optionally incorporated to regularize the softening involved in the model.
In Section 3 the coupled balance equations are presented in local and weak forms, and then
the implementation of the model in AceGen/FEM for Mathematica is briefly discussed.
In Section 4, the simulation results are presented. First, a one-dimensional rod model is
considered and detailed response is shown for one serration. Then, a series of simulations
for a dog-bone specimen under tension is presented. The computed model is based on
the experimental research on aluminium dog-bone-type specimens, presented in [49].
Comparisons with laboratory test results are made, and some parametric studies are
performed. Finally, in Section 5 some conclusions are drawn and directions of future work
are proposed.

2. Brief Description of Constitutive Models
2.1. Thermo-Visco-Plasticity

The material models used in this paper for the simulation of the PLC-type instabilities are
described below. They are based on the large-strain description of elasto-plasticity [13,45,50,51].

The starting point of the formulation is standard. We consider a continuous deformable
body and its material is assumed to be initially isotropic. Vector X identifies the reference
location of a body particle at time t = 0 and in initial temperature T0 (T0 is assumed to be
the reference temperature for a strain-free state), vector x points to the current position of
the particle at time t and in temperature T. The motion of the body is described by function
x = ϕ(X, t, T). The classical definition of the deformation gradient F is recalled:

F =
∂ϕ(X, t, T)

∂X
. (1)

A multiplicative decomposition of F into mechanical and thermal parts denoted by
Fm and Fθ , respectively, is performed [45,52]. In turn, Fm is decomposed into elastic and
plastic factors Fe and Fp (see [53–55])

F = FmFθ = FeFpFθ . (2)

The thermal factor Fθ is assumed to be purely volumetric and defined as

Fθ = (Jθ)1/3I , Jθ = det(Fθ), (3)

where I is the second-order identity tensor. The volumetric deformation caused by the
temperature change T − T0 is represented by [55]

Jθ = exp[3αT(T − T0)], (4)

where αT is the coefficient of linear thermal expansion. Based on Equations (2) and (4) the
mechanical part of the deformation gradient is derived as

Fm = exp[−αT(T − T0)]F. (5)

For the classical thermo-plasticity theory, the Helmholtz potential calculated per
unit volume in the reference configuration is decomposed into elastic, plastic, and purely
thermal components (see [45,50])

ψ(be, α, T) = ψe(be) + ψp(α) + ψθ(T). (6)

The following definitions of the potential parts are employed.

ψe(be) =
1
2

G
[
tr(det(be)−1/3be)− 3

]
+

1
2

Kln(Je)2, (7)

ψp(α) = (σy f − σy0)

[
α +

exp(−δα)

δ

]
, (8)
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ψθ(T) = c
[
(T − T0)− T ln

(
T
T0

)]
. (9)

In Equation (7), G and K are shear and bulk elastic moduli, be = Fe(Fe)T is the elastic
left Cauchy–Green tensor, and Je = det(Fe).

The second component of the free energy represents plastic hardening and is assumed
in the form relevant for saturation-type hardening with a scalar equivalent plastic strain α,
σy0 is an initial yield strength, σy f is a final yield strength, and δ is a saturation constant. In
general, ψp depends on adopted hardening specification. Moreover, in Equation (9), c is

the heat capacity per unit of volume. According to [46] it can be defined as c = −T ∂2ψ
∂T2 and

therefore for the adopted form of free energy, c is constant.
The Kirchhoff stress tensor τ and hardening function h(α) are derived from the free

energy potential

τ = 2
∂ψ

∂be be, h =
∂ψ

∂α
. (10)

The constitutive relation for heat conduction is the classical Fourier law for isotropic
materials. It is formulated according to [46] using the Kirchhoff heat flux vector q

q = −k∇T, (11)

where k is a heat conduction coefficient specified in the reference configuration and∇T is a
spatial gradient of temperature.

Further, the plasticity formulation is specified. The yield function is defined as

Fp(τ, α, α̇) = f (τ)− σy(α, α̇) ≤ 0, (12)

where f (τ) is the Huber–Mises–Hencky (HMH) stress measure and σy represents the
evolving yield strength (flow stress) for the rate-dependent (viscoplastic) model, which is
the starting point of the derivation. The viscoplasticy formulation follows the consistency
concept, cf. [5]. The particular forms of σy will be discussed in the next section for the
Estrin–McCormick visco-plasticity model and a gradient-enhanced version of the model.
The following definitions are used

f (τ) =
√

2J2, (13)

J2 =
1
2

τ2
dev · I, (14)

where τdev is deviatoric part of the Kirchhoff stress tensor and I is the second order
unit tensor.

The yield function presented in Equation (12) has a general form which can easily be
modified to apply another yield criterion. The Huber–Mises–Hencky function is chosen
in the work because it describes the behaviour of metals satisfactorily. This form of stress
measure is independent of the hydrostatic pressure, which implies the isochoric plastic
flow. In this approach, the volumetric-deviatoric split of large-strain measures does not
need to be incorporated in the description. It is worth mentioning that the volume of the
material can change due to thermal expansion and elastic deformation.

Following [50], the associated flow rule is adopted for the Lie derivative of be

− 1
2
Lvbe = γ̇

∂Fp

∂τ
be, (15)

where γ̇ denotes the plastic multiplier satisfying the standard Kuhn–Tucker conditions:

γ̇ ≥ 0, Fp ≤ 0, γ̇Fp = 0. (16)
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According to [56], the plastic multiplier plays the role of the plastic strain measure
according to the relation

α̇ =
√

2/3γ̇. (17)

2.2. Estrin–McCormick Model with Optional Gradient Enhancement

The Estrin–McCormick model (further called the McCormick model or the EMC model
in brief) is a phenomenological description of DSA based on an internal variable called
effective strain aging time ta, cf. [10,12,13]. The evolution of ta introduces repeated nega-
tive strain-rate dependence, causing the serrations related to nucleating and propagating
localization bands.

In this paper, the model is extended to include temperature dependence, cf. [9,25]. The
yield function is defined as

Fp(τ, α, α̇, ta, T) = f (τ)−
√

2/3σy(α, α̇, ta, T) ≤ 0. (18)

It is assumed for simplicity that the standard hardening has a saturation character,
viscosity does not depend on temperature, and thermal softening is linear. The yield
strength σy depends on equivalent plastic strain α, its rate α̇, strain aging time ta, and
temperature T. It has three components related to strain hardening σH , strain rate sensitivity
σV , and dynamic strain aging σB:

σy(α, α̇, ta, T) = σH(α, T) + σV(α̇) + σB(α, ta, T). (19)

The first component represents the saturation hardening scaled by a thermal softening factor

σH(α) =
[
σy0 + (σy f − σy0)(1− exp (−δα)

]
[1− HT(T − T0)]. (20)

The part (1−HT(T− T0)) corresponds to linear thermal softening, and HT is a thermal
softening modulus. Alternative formulae for thermal softening and their discussion in the
context of strain localization simulations can be found in [57].

The second component of the yield strength introduces positive strain rate influence
(ξ is viscosity parameter)

σV(α̇) = ξα̇. (21)

It is noted that the time derivative of α in the viscous term ξα̇ in Equation (21) is
computed using the backward Euler scheme as follows

α̇ =
αn − αn−1

∆t
, (22)

where αn and αn−1 denote the values of the equivalent plastic strain at the current and
previous time moments, respectively, and ∆t is a time step.

The third component represents the influence of the DSA according to [13]

σB(ta, α) = σB0(α)

[
1− exp

(
− ta

t0

)n]
. (23)

The formula particularly expresses the solute concentration at temporarily stopped
mobile dislocations, which involves negative strain-rate sensitivity. It is driven by the
strain aging time ta. Moreover, t0 is the characteristic time for the solute diffusion, which
determines how fast the saturation of hardening component σB is reached. The saturation
factor σB0 (the maximum value of contribution σB) is assumed to depend linearly on the
accumulated plastic strain measure α:

σB0 = σB00 + σ′B00α, (24)

where σB00 and σ′B00 are model parameters as well as exponent n in Equation (23).
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The strain aging time ta is related to a waiting time tw (which a dislocation spends at
an obstacle) by the differential equation:

ṫa = 1− ta

tw
, (25)

where the waiting time is related to the plastic strain rate α̇

tw =
Ω(α)

α̇
, (26)

and the plastic strain increment Ω associated with the motion of dislocations between two
obstacles (pinned configurations) is also assumed to depend linearly on α:

Ω(α) = Ω0 + Ω′0α. (27)

In the above equation Ω0 and Ω′0 are model parameters.
Algorithmically, the evolution of ta depends on the plastic strain increment ∆α and

can be computed for time increments as follows [13]:

ta =
tn
a + ∆t

1 + ∆α
Ω(αn+∆α)

, (28)

where the plastic strain rate α̇ has been approximated according to Equation (22).
Now, the model depends on temperature in a couple of ways: due to thermal expan-

sion, plastic heating and thermal softening. It is assumed that only the basic mechanical
parameters (Young modulus, initial and final yield strength) depend on temperature. Addi-
tionally, to examine the sensitivity of the McCormick model to temperature, the following
dependence of parameter t0 on temperature is assumed:

t0(T) = t02 exp(t01T). (29)

The parameters of this function t01 and t02 have been determined on the basis of
experimental results presented in [25].

It is emphasized that, next to thermal softening assumed in Equation (20) and strain-
rate softening present in Equation (23), geometrical softening due to large deformations is
also present in the description; see, for instance, [58]. This version of the McCormick model
incorporates two regularizing effects, i.e., rate dependence and heat conduction.

In more detailed material modeling, the first component of the yield strength can
additionally include a damage-type reduction to represent an increasing porosity of the
material related to large strains and leading to fracture. This extension of the model is
here based on [51] where a reducing factor exp(−βz) decays from one to zero with in-
creasing material degradation (β is a ductility parameter) and scales the hardening part
of the yield strength. In the local version of the model, z would be taken equal to α;
however, to control the influence of the degradation coefficient on the plastic strain local-
ization process z is rather an averaged plastic strain measure, obtained from the following
averaging equation [59]

z− l2∇2
0z = α, (30)

in which l is an internal length scale and, since so-called Lagrange averaging is employed
according to [60], ∇0 is the gradient operator in the material description. Homogeneous
natural boundary conditions are assumed for Equation (30).

The yield function then reads

Fp(τ, α, α̇, z, ta, T) = f (τ)−
√

2/3σy(α, α̇, z, ta, T) ≤ 0, (31)
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and the flow stress depends on equivalent plastic strain α, its rate α̇, (non-local) degradation
parameter z, strain aging time ta, and temperature T

σy(α, α̇, z, ta, T) = σH(α, z, T) + σV(α̇) + σB(α, ta, T), (32)

where

σH(α) =
[
(σy0 + (σy f − σy0)(1− exp (−δα))

]
exp(−βz)[1− HT(T − T0)], (33)

represents saturation hardening scaled by the degradation coefficient exp(−βz) and by
the linear thermal softening factor 1− HT(T − T0). This last version of the model thus
incorporates the rate and gradient dependence simultaneously; cf., for instance, [61,62].

3. Balance Equations

Due to the distinction between the reference and the current configurations in the
large strain analysis, the governing equations can be formulated in the material or spatial
description; see, for instance, [46,63], respectively. In the described model, spatial quantities
are used, but they refer to the volume or surface in the reference configuration; see [64].

The first governing equation for the analyzed coupled problem imposes static equilib-
rium in the local form

Jdiv(τ/J) = 0. (34)

In Equation (34) div(·) is the divergence computed with respect to spatial coordinates
and body forces have been neglected. The equilibrium Equation (34) is completed with the
boundary conditions for displacement vector u and for traction vector t:

u = û on ∂Bu,
t = τ · n = t̂ on ϕ(∂Bτ),

(35)

where n is the normal to the body surface.
The second governing equation represents the energy balance written in the tempera-

ture form for a non-stationary heat transport, as follows.

c
∂T
∂t
− Jdiv(−q/J)−R = 0. (36)

In Equation (36),R is a heat source density per unit of volume. It includes so-called
plastic heating, i.e., the source density due to plastic dissipation written in the simple
form [45]

R = χσyα̇, (37)

where χ denotes a heat dissipation factor [65], assumed to be constant. The energy balance
Equation (36) is completed with appropriate boundary conditions:

T = T̂ on ∂BT ,
q · n = q̂ on ϕ(∂Bq),

(38)

and an initial condition stating that for t = 0 we have T = T0 in B.
For the gradient-enhanced version of the model, the averaging Equation (30) is an

additional balance equation. The averaged plastic strain z is an additional fundamental
unknown, discretized in addition to displacements and temperature, leading to a three-field
formulation of the coupled BVP.

The weak forms of the governing equations are the basis for the finite element im-
plementation. Multiplication of Equation (34) by test function δu, integration over the
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volume of body B and application of the divergence theorem as well as Neumann boundary
conditions lead to the weak form of the linear momentum balance

∫

B
(∇δu : τ)dV +

∫

ϕ(∂Bτ)
δu · t̂da = 0. (39)

The weak form of Equation (36) is obtained using the standard procedure and the
backward Euler scheme for time integration. As a result, the following integral equation is
required to be valid for the current time

∫

B

[
δT

c
∆t

(T − Tn) + k∇δT · ∇T − δTR
]
dV +

∫

ϕ(∂Bq)
δTq̂da = 0, (40)

where Tn is the value of temperature at the previous time moment and ∆t is the time
increment. Finally, the weak form of Equation (30) is written as follows

∫

B

[
δz(z− α) + l2∇0δz · ∇0z

]
dV = 0. (41)

Equations (39), (40), and optionally (41) are required to be valid for any admissible
weighting functions δu, δT and δz, respectively. After the introduction of finite element
approximations of the two or three fundamental unknowns according to the Galerkin
approach, a set of algebraic equations can be obtained for a monolithic solution algorithm.

4. Implementation and Computational Tool

The numerical implementation and testing of the coupled model is performed in
Wolfram Mathematica packages AceGen and AceFEM, developed by Korelc [66]. The first
package is used to program user-supplied procedures for the finite element method, in
particular the tangent and residual subroutine for the Newton-Raphson algorithm and
the postprocessing subroutine. The code is prepared in a special meta-language and
automatically translated by AceGen. The routine can then be transferred to a chosen finite
element environment (e.g., ABAQUS, FEAP), but an integrated FE engine AceFEM can
also be used, and this is the case here. AceFEM is equipped with convenient pre- and
post-processing tools and perfectly cooperates with AceGen in the computational process.

The main advantage of AceGen, from the researcher’s point of view, is its ability
to perform automatic differentiation of symbolic expressions. It is worth emphasising
that the material model which is developed to simulate the PLC phenomenon results in a
highly non-linear two- (or three-) field problem which is solved using the iterative Newton–
Raphson algorithm which requires linearization of the governing equations. This part of the
model preparation is very often the most challenging part of the implementation process.
The application of automatic differentiation in the AceGen package significantly improves
this step. If the residual (with all explicit and nested dependencies between variables)
is properly defined, then the tangent matrix components are computed automatically as
derivatives of the residual with respect to the unknowns. What is more, the finite element
subroutine produced by AceGen is efficient and robust, since the code generator simplifies
the symbolic expressions and has built-in optimization tools. A detailed description of
AceGen features can be found e.g., in [66].

In fact, following the recommendation of Korelc [66], instead of introducing dis-
cretization into the residual Equations (39), (40) and optionally (41), pseudo-potentials are
formulated for the equilibrium, energy balance and plastic strain averaging, minimization
of which is equivalent to the residual equations. Specific forms of the potentials related
to the governing equations considered in this model can be found in [42]. It should be
mentioned that the model under consideration involves large strain plasticity and requires
a solution of the non-linear set of equations at the level of Gauss points to calculate the
values of internal variables. Thus, the relations between the internal variables and the
global unknown fields are not given as explicit functions and the process of the automatic
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differentiation has to be affected by the definition of appropriate exceptions. For more
details, the reader is referred to [42,66,67].

Discretization is introduced into the pseudo-potentials following the classical Ritz
approach, which yields a more robust solution procedure. An extensive description of the
AceGen implementation of a large strain (gradient-enhanced) thermo-plasticity models can
be found in [42,43]. The codes for thermo-visco-plasticity with the McCormick extension
given in Equation (23) are developed based on the same approach.

The user subroutines in AceGen are prepared for three-dimensional finite elements,
in particular hexahedral elements H8 with linear interpolation of all fields (displacement,
temperature and, if relevant, averaged strain) and eight Gauss points. The linear interpola-
tion is favorable in terms of computational effort, but it is known that plasticity simulations
are affected by volumetric locking if full integration is used. Therefore, the so-called F-bar
enhancement, see e.g., [68], is employed for the mechanical part of the formulation.

5. Simulation of PLC Effect
5.1. Test Description

In the numerical simulations of the PLC effect, two different samples are considered.
First, an example computation for a simple tensile rod sample is made to show how
the propagative instability is reproduced; see Figure 1, left. The rod dimensions are
10 × 10 × 500 mm. One end of the rod is fixed and a longitudinal displacement increasing
to 75 mm (15% of the sample length) is uniformly applied at the other end within 100 s (the
strain rate is 1.5 × 10−3 s−1). Fifty identical hexahedral elements with linear interpolation
of all fields are used and one element is used in the cross section.

Figure 1. Geometry of samples and meshes, rod (left) and bone-shape sample (right).

Then, simulations are performed for a configuration based on the experimental bone-
shape plate sample analyzed in [49]; see Figure 1, right. The dimensions of the computed
configuration are as follows: total length 102 mm, length of the middle part 57 mm,
thickness 4 mm, width of middle part 12.5 mm, radius of fillets 12.5 mm, width of broader
parts 20 mm. The bone-shape sample is uniformly elongated by 14.25 mm in 285 s. The
element size in the central part of the mesh is approximately 2 mm.

For both specimens, insulation thermal boundary conditions are applied. The basic
set of material model parameters for our study are taken from [13,25,49] for room tem-
perature 25 ◦C and listed in Table 1. The results of the simulations are compared with the
experimental results from [49].

The two variants of the material model described in Section 2 are used: the thermo-
visco-plastic model and the thermo-visco-plastic model with the gradient enhancement.
For comparison with experiments, two options for the characteristic time of solute diffusion
t0 (called solute diffusion time in brief) are considered: either constant or depending on
temperature. After the comparison with experiments the parametric study is performed.
For the thermo-visco-plastic model, four sets of computations are made for different values
of viscosity, heat conductivity, solute diffusion time, and maximum tension time. For the
gradient-enhanced model, two sets of computations are carried out for different values of
internal length and ductility parameter.

In Figure 2, the relations between the strain aging time ta and the relative extension
∆L/L are plotted for the two analyzed tests and selected points in the configurations,
showing abrupt jumps of ta according to the McCormick model, representing the DSA
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phenomenon. The left plot is obtained for the tensile rod, and the right one for the bone-
shape sample.

Figure 2. Strain ageing time vs. longitudinal displacement for rod benchmark at the right end of the
sample (left) and for the bone-shape plate in tension at the centre of the sample (right).

To avoid convergence problems, the thermo-plastic model with the gradient enhance-
ment is not used without the viscosity part. Since the McCormick part of the yield strength
introduces recurring strain rate softening stages, the non-linear simulation algorithm fails
without viscosity and it seems the gradient term is insufficient to prevent this.

Table 1. Basic set of mechanical, thermal and McCormick model parameters

Property Symbol Value Unit

Young modulus E 68.56 GPa
Poisson ratio ν 0.3 -

Initial yield strength σy0 367.5 MPa
Final yield strength σy f 488.8 MPa
Saturation constant δ 16 MPa

Viscosity ξ 40 MPa · s
Conductivity k 121 J/(s·K·m)
Heat capacity c 2,423,750 J/(m3·◦C)

Thermal expansion
coeff. αT 23.2 × 10−6 1/◦C

Thermal softening
modulus HT 0.0016 1/◦C

Heat dissipation
factor χ 0.9 -

Solute diffusion time t0 0.125 s
EMC model param. Ω0 13.62 × 10−4 -
EMC model param. Ω′0 7.2 × 10−4 -
EMC model param. σB00 18.9 MPa
EMC model param. σ′B00 567.78 MPa

EMC model exponent n 3−1 -
EMC model param. t01 0.051355 1/◦C
EMC model param. t02 0.03462 s

5.2. Tensile Rod Benchmark Test

To simulate the PLC effect in a one-dimensional tension benchmark a simple 3D rod
test is performed, see Figure 1 left.

In Figure 3 stress vs. the rod extension is plotted for the whole process (left plot) and
the magnification of a one serration (right plot). The place of the arbitrarily chosen serration
is marked by the red box on the left plot. Small serrations are visible at the beginning of the
process and they gradually grow. After the diagram peaks, the serrations grow extensively,
when they actually should vanish. Obviously, the model needs some modification to
prevent this kind of behavior at the final (failure) stage, but proper modeling of this stage is
outside the focus of this work.
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Figure 3. Stress vs. relative longitudinal displacement for rod benchmark: whole process (left) and
one selected serration (right).

In the right diagram in Figure 3 selected states are numbered in red. In Figure 4 two
columns of plots are presented for the serration and those states. Each plot shows the
distribution of equivalent strain rate γ̇ along the rod. For steps 2 and 3 before the peak, the
band has a distributed form, while in the previous step 1, the band is localized. In the steps
after the peak, γ̇ localizes again at a different position.

1

1 2

3 4

5 6

7 8

Figure 4. Distributions of γ̇ at numbered states of selected serration for tensile rod test.
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5.3. Comparison with Experiments for Bone-Shape Sample

The comparisons with experiments from [49] are made for the thermo-visco-plastic
model and for its gradient-enhanced version, for three initial temperatures: 25 ◦C, 100 ◦C,
and 200 ◦C. Table 2 contains the values of the Young modulus, initial and final yield strength
for the three temperatures.

Table 2. Parameters for different temperatures

Property Symbol 25 ◦C 100 ◦C 200 ◦C Unit

Young
modulus E 68.56 65.56 46.62 GPa

Initial yield
strength σy0 367.5 360.3 312.9 MPa

Final yield
strength σy f 488.8 466.2 383.2 MPa

Figure 5 presents the results obtained for the former model and Figure 6 for the latter
one. The EMC material model parameters are fitted for the case without the dependence
of the solute diffusion time t0 on temperature. The small differences in the elastic part of
the response can be caused by neglecting the elongation of the broader sample parts in
the computational experiment. Notice that the level of the yielding initiation is reduced
with temperature, which is related to thermal softening, and the numerical model correctly
reproduces the behaviour.

Figure 5. Stress vs. relative extension for thermo-visco plastic model for 25 ◦C (left, top), 100 ◦C
(right, top), 200 ◦C (left, bottom).

When the constant value of t0 = 0.125 s is assumed according to [13], we can observe
in Figure 5 a good agreement in terms of global load–deformation response for the tempera-
ture equal to 25 ◦C and a partial agreement for higher temperatures. For 100 ◦C and 200 ◦C
the blue lines are close to the experimental black lines at the beginning of the process, but
they do not mimic the failure at the end for a similar extension as in the experiments. The
red line for the model with the solute diffusion time depending on temperature enters soft-
ening a bit earlier for room temperature, but it shows a much softer response, far from the

126



Materials 2022, 15, 4327

experimental diagrams, for higher temperatures. For the temperature equal to 100 ◦C and
200 ◦C the softening stage is entered much earlier than in the experiment. In the latter case,
all serrations have been smoothed, which is similar to the findings presented in [25]. The
values of model parameters t01 and t02, which control the dependence of t0 on tempera-
ture, are based on [25], but obviously the exponential character of function t0(T) is not a
suitable choice.

Figure 6. Stress vs. relative extension for thermo-visco plastic model with gradient enhacement for
25 ◦C (left, top), 100 ◦C (right, top), 200 ◦C (left, bottom).

A similar behaviour as for the thermo-visco-plastic model can be observed for the
variant with the gradient enhancement for the internal length l = 5 mm and ductility
parameter β = 0.1, see Figure 6. It seems that the gradient enhancement of the model with
the assumed material parameters, related to an additional yield strength reduction, has a
minor influence on the simulated stress-relative elongation diagrams. This aspect is further
analyzed in the parametric study, as follows.

5.4. Parametric Study

Parametric studies for the two model variants, without and with the gradient enhance-
ment, are performed. Six parameters are taken into account. For the thermo-visco-plastic
model, the following parameters are varied: viscosity ξ (5, 40, 80 MPa·s), conductivity
k (0, 50, 121, 200 J/(s·K·m)), solute diffusion time t0 (0.01, 0.025, 0.125, 0.5, 5, 1000 s), and
the duration of the elongation process tMAX (28.5, 285, 2850 s).

For the gradient-enhanced model, the ductility β (0.1, 0.5, 1, 2 [-]) and the internal
length l (0, 5, 10, 20 mm) are changed. The parametric studies are carried out for the
reference temperature equal to 25 ◦C; thus, the mechanical material parameters (Young
modulus, the initial and ultimate yield strengths) are appropriate for this assumption
and are taken from [49]. As given in Table 1, the default values of varied parameters are:
viscosity ξ = 40, conductivity k = 121, and solute diffusion time t0 = 0.125. Moreover, the
maximum tension time tMAX = 285.

5.4.1. Thermo-Visco-Plastic Model

In Figure 7, stress–strain diagrams for different values of viscosity (left, top), conduc-
tivity (right, top), solute diffusion time (left, bottom) and maximum tension time (right,
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bottom) are shown. The experimental diagram (black) for 25 ◦C is added for reference.
There are no significant differences between the plots for different values of viscosity in the
examined range of values; however, in the case when the viscosity ξ is equal to zero (not
displayed here), the computation stops at the beginning of the process.

Figure 7. Stress vs. relative extension for different values of viscosity (top, left), conductivity (top,
right), solute diffusion time (bottom, left) and maximum tension time (bottom, right).

In the second plot, it can be observed that the response is more brittle for smaller
values of heat conductivity and no significant differences can be observed for higher values
of k than 50 J/(s·K·m). The conductivity equal to 121 J/(s·K·m) is the value characteristic
for the aluminium alloy used in the experiments described in [49].

The characteristic time of the solute diffusion affects the diagram smoothness and the
load-carrying capacity. For high and low values of t0, the diagrams are smoother and there
are no excessive serrations at the end of the process. The diagrams are ordered from the
largest value of t0 (the most brittle response) to the smallest value (most ductile), which
means the yield strength is lower for higher values of the solute diffusion time.

The last diagram in Figure 7 shows that the response is rate dependent and the higher
the load rate (the smaller tmax is), the smaller the predicted load-carrying capacity. The
diagram for the largest value of tmax is smooth and does not exhibit serrations at the end of
the process contrary to the other diagrams.

The next Figures 8 and 9 are plotted for ξ = 40 MPa·s, k = 121 J/(s·K·m), t0 = 0.125 s
and tmax = 285 s. In Figure 9, two columns with distributions of γ̇ along the central
longitudinal axis of the dog-bone sample are shown for the numbered states in the load–
displacement plot part for the selected serration shown in Figure 8. In Figure 10 the
distributions of γ̇ in the sample are shown corresponding to the results presented in
Figure 9. Before the serration peak, a band is visible on the right-hand side of the sample;
see Figure 9, first row left. Then, when the peak is approached, the band on the right starts
to disappear and a band on the left-hand side appears. After the peak, see Figure 9 third
row left, the traces of the right band vanish completely and only the left band is visible.
The same sequence of states can be observed in Figure 10.
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Figure 8. Stress vs. relative extension for one serration with step numeration (ξ = 40 MPa·s,
k = 121 J/(s·K·m) and t0 = 0.125 s).
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Figure 9. Distributions of γ̇ along the specimen axis at numbered states for ξ = 40 MPa·s, k =

121 J/(s·K·m) and t0 = 0.125 s.

Figure 10. Distributions of γ̇ at numbered states (ξ = 40 MPa·s, k = 121 J/(s·K·m) and t0 = 0.125 s).
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5.4.2. Thermo-Visco-Plastic Model with Gradient Enhancement

In Figure 11, diagrams for different values of the ductility parameter (left) and the
internal length (right) are shown. For comparison, two additional diagrams are added; the
black line is the experimental diagram for 25 ◦C, and the gray line is for the thermo-visco-
plastic model with the following parameters: ξ = 40 MPa·s, k = 121 J/(s·K·m), t0 = 0.125 s
and tmax = 285 s.

Figure 11. Stress vs. relative extension for different values of ductility and l = 5 mm (left) and for
different internal lengths and β = 0.1 (right).

When the value of the ductility grows, the influence of the exponential reduction
factor increases. It can be observed in Figure 11 (left) that for larger values of ductility, the
load-carrying capacity is smaller and softening starts to dominate faster. The diagrams
for different values of the internal length are presented in Figure 11 (right). There are no
significant differences for the values of internal length larger than zero. The diagrams
are close to the diagram obtained for the thermo-visco-plastic model. The diagram for
l = 0 (blue line ) is slightly more brittle and ends for ∆L/L ≈ 22 due to divergence of
the simulation.

In Figure 12, the distributions of the plastic strain rate are compared for a series of
states in the deformation history. The plots on the left are for l = 0 and the right ones
for l = 20 mm. For small deformation, a uniform distribution of γ̇ is observed, then
a localized band is formed, which resembles a cross pattern of shear bands diffused by
regularization and/or re-hardening. The reason can also be a too-coarse finite element
mesh used for the simulation. The band travels through the process zone of the sample in a
similar way irrespective of the assumed internal length. The plots do not show the expected
influence of the length scale on the widths of the propagating localization zones. This
is probably caused by the fact that the viscosity and heat conductivity provide sufficient
regularization and the gradients active on the softening parts of the serrations merely
counteract the additional softening source related to the yield stress degradation involved
in the gradient-enhanced model.

Figure 13 presents parts of the stress-strain diagrams of one selected serration for two
values of internal length l = 0 (left) and l = 20 mm (right). Further, Figure 14 shows the
evolution of the distribution of the plastic strain rate γ̇ for the two values of the internal
length scale within one selected serration presented in Figure 13. The plots for l = 0 show
disappearing and reappearing localization zones, while the plots for l = 20 mm present a
moving band. However, also for one serration the maps show a negligible influence of the
length scale on the widths of the propagating bands.
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Figure 12. Distributions of γ̇ at selected states in the deformation history for l = 0 (left column) and
l = 20 mm (right column). For the rows of figures from top ∆L/L is equal to 3, 5, 7.5, 10, 12.5, 15,
17.5, 20.

Figure 13. Stress vs. relative extension for selected serration and two values of internal length l = 0
(left) and l = 20 mm (right).
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Figure 14. Distributions of γ̇ at selected states in the deformation history, marked by numbers in
Figure 13, for l = 0 (left column) and l = 20 mm (right column).

6. Conclusions

The Portevin–Le Chatelier (PLC) effect has been simulated using two versions of
the large strain thermo-plastic Estrin–McCormick model. The model is capable of repro-
ducing the results of the Dynamic Strain Aging (DSA) phenomenon: serrations in the
load–displacement diagrams (repetitive changes of softening and hardening) and propa-
gating localization zones. The model takes into account visco-plasticity and the second
version also includes a gradient enhancement via an averaging equation for the equivalent
plastic strain.

Two different configurations are used in simulations. A simple rod is considered
first to show how the adopted constitutive model represents the PLC phenomenon. Then,
tension of the experimental bone-shape sample from [49] is simulated, instability formation
and propagation are studied, and a comparison with experimental results is performed.
For both tests, detailed analyses of the evolution of the plastic strain rate for a selected
serration have been presented. It seems that the localization band moves, but it rather
gradually disappears and then reappears at a different position.

Further, a parametric study is performed. Different values of viscosity, conductivity,
the time of solute diffusion in the DSA model, and the maximum tension time (loading
rate) have been considered for the thermo-visco-plastic model. For the model with the
gradient enhancement, the ductility parameter and the internal length have varied.

On one hand, the results of simulations are quite satisfactory: the simulated load–
extension diagrams are quite close to the experimental results and the sensitivity to model
parameters is in agreement with expectations. On the other hand, excessive post-peak
serrations are visible for most of the computation, so a method to reduce them is needed.
The adopted dependence of the parameters of the McCormick model on temperature led
to results far from the experimental ones for higher temperatures, so this aspect requires
further research and model improvement. Moreover, experimental studies are necessary to
compare the shear band evolution in PLC simulations (and not only load–displacement
plots) and to identify material model parameters in a similar way to [13,25].

Finally, the distributions of the equivalent plastic strain rate in the specimen for the
gradient-enhanced model are examined for two values of the internal length scale l = 0 and
l = 20 mm. They are compared for a series of states showing no significant differences in
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the size of the localization bands. This can be caused by the relatively coarse discretization
used, or by the fact that viscosity and heat conduction provide some regularization, which
manifests itself in smoothing of the simulated bands and in a weak influence of gradients.
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29. Darowicki, K.; Orlikowski, J.; Zieliński, A. Investigation of changes in the type B PLC effect of Al–Mg–Cu type alloy for various
strain rates. Mater. Sci. Eng. A 2008, 496, 478–482. [CrossRef]

30. Mazière, M.; Forest, S. Strain gradient plasticity modeling and finite element simulation of Lüders band formation and
propagation. Continuum Mech. Thermodyn. 2015, 27, 83–104. [CrossRef]

31. Xu, J.; Chen, G.; Fu, S. Complexity analysis of the Portevin-Le Chatelier in an Al alloy at different temperatures. Theor. Appl.
Mech. Lett. 2021, 11, 100233. [CrossRef]
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Abstract: It is known that the presence of microstructures in solids such as joints and interfaces has
an essential influence on the studies of the development of advanced materials, rock mechanics,
civil engineering, and so on. However, microstructures are often neglected in the classical local
(Cauchy) continuum model, resulting in inaccurate descriptions of the behavior of microstructured
materials. In this work, in order to show the impact of microstructures, an implicit ‘non-local’ model,
i.e., micropolar continuum (Cosserat), is used to numerically investigate the effects of direction
and scale of microstructures on the tension problem of a composite plate with a circular hole. The
results show that distributions of field variables (such as displacements and stresses) have an obvious
directionality with respect to the microstructures’ direction. As the scale of microstructures increases,
such a direction effect becomes more evident. Unlike the isotropic material where stress concentration
occurs at the vertex of the hole and the stress concentration factor is close to 3, for the microstructured
composite, the stress concentration can be observed at any location depending on the microstructures’
directions, and the concentration factor can exceed 3 to a maximum close to 9 as the increasing
scale of microstructures. In addition, differences in the mechanical behavior between Cosserat and
Cauchy models can be also observed; such differences are more evident for the material showing a
pronounced orthotropic nature.

Keywords: composite materials; microstructure direction; Cosserat continuum; stress concentration;
scale effect

1. Introduction

Microstructure is one of the most critical factors that involves many kinds of materials
such as rock, ceramic, alloy, human cortical bone, etc. [1–4]. As an internal structure,
microstructure can play a crucial role in determining the gross behavior and mechanical
response of materials [5]. However, the microstructures in materials distribute randomly
with different lengths and directions, which complicates the understanding of the material’s
response. In general, materials with microstructure have weaker strength than in intact
materials [6,7]. Guo et al. [8] experimentally investigated the effect of bedding angle
in phyllite under unloading confining pressures, where the rock bedding joints can be
regarded as microstructures. They found that the rock shows different strengths as the
bedding angle changes. Numerical research on the tunnel surrounding rocks with different
inclination angles also shows a directional effect on the distributions of displacements
and stress around the tunnel [9]. By reviewing indentation tests at the micron scale,
Bauer et al. [10] demonstrate that an obvious length scale effect (i.e., non-locality) can be
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found when the material’s intrinsic length scales are comparable with the dimension of
specimens. Therefore, it is of importance to describe the macroscopic response of these
materials by considering the influences of the microstructures.

The existence of microstructure results in the heterogeneity characteristic of materials.
There are various methods that can be used to model the behavior of microstructured
materials. Discrete modeling with interactions of each constituent in materials is a good
option because it can produce an accurate result; however, this approach is often compu-
tationally cumbersome [11–13]. Alternatively, homogenizing the heterogeneous material
as an equivalent continuum could be an efficient approach because it is faster and takes
less computational cost [14]. Nevertheless, the application of this approach depends on
selections of the homogenization method and macroscopic continuum theory that need to
reveal the presence of microstructures. As is known, the classical Cauchy continuum may
have disadvantages in describing the gross behavior of microstructured materials since it
lacks in internal length descriptions [15,16]. This calls for the application of the non-local
continuum theory, as this approach can reveal the presence of internal lengths [17]. In the
non-local theory, internal lengths can be represented by adding extra degrees of freedom
or parameter as internal variables, corresponding to the so-called implicit and explicit
non-local descriptions, respectively [18,19].

The Cosserat continuum theory is a widely used implicit non-local model to investigate
the microstructured material’s behavior. After the completed mathematical foundations of
the micropolar continuum was achieved, this theory became very popular (since the 70s).
The Cosserat model introduces to each material point an extra degree of freedom, termed
microrotation, which is different from the local rigid rotation (i.e., macrorotation). As a
result, the stress and strain fields become asymmetric in this model, which is different from
the classical Cauchy model with symmetric measurements. Moraes et al. [1] found that the
asymmetrical property in the Cosserat model can be helpful to improve the description
of the mechanical behavior of the materials such as rocks. The asymmetric strains also
correspond to the relative rotation between the microrotation and macrorotation. Pau
and Trovalusci [20] found that the relative rotation is significant in anisotropic materials,
whereas it can be negligible in orthotetragonal materials where the internal length trends
to vanish. With the advantage of keeping the memory of the microstructure, the Cosserat
continuum was used to study many kinds of materials such as layered materials [21,22],
fiber-reinforced materials [23,24], granular materials [25], and composites [26–28]. Using a
homogenization process for the Cosserat continuum, Trovalusci and Masiani [29] numeri-
cally and experimentally studied the mechanical behavior of an inclined masonry structure
in which microstructures (interfaces) show a different direction from the ordinary masonry
structure. However, the results of this literature only showed the micropolar effect resulted
from the Cosserat continuum but the effect of microstructures direction was not further
discussed.

In this work, the effects of the microstructure’s direction and length scale in a compos-
ite are studied to extend the understanding of microstructured materials, such as advanced
materials with various microstructured and layered rocks with inclined angles. The com-
posite considered here is made of rectangular blocks interacting with each other through
their elastic interfaces, and it is homogenized as a Cosserat continuum by an energetic-
equivalence-based homogenization technique [30]. Thus, the characteristic of non-locality
is involved in this study. Six directions and four length scales of the microstructure are
investigated by the finite element method (FEM) for a tension problem of a composite
plate with a circular hole. Therefore, this work also focuses on the stress concentration
problem of microstructured materials. This problem has been widely reported in previous
studies [31–34]. Holes in materials can induce stress concentration around it and hence
reduce the mechanical properties [35]. However, a number of solutions have been carried
out for holes in isotropic plates [36]. With the increasing research interests on materials,
especially with microstructures, it is essential to gain a better understanding in modeling
the mechanical behavior of these materials.

138



Materials 2022, 15, 6196

This paper is structured as follows. After the introduction section, Section 2 introduces
the Cosserat theory and its FEM implementation. Section 3 presents the model, parameters,
methods, etc. used in the simulations of the tension problem for a plate with a circular hole.
In Section 4, numerical simulations are conducted and results of displacements, stresses,
and relative rotation are shown. The stress distribution around the hole is discussed and
the simulation results are analyzed in Section 5. In the end, conclusions and remarks are
drawn in Section 6.

2. Cosserat Continuum and Its FEM Implementation

The Cosserat continuum is considered to be a multi-scale tool [37] that can be used
to investigate the mechanical behavior of materials where the microstructures and, in
particular, internal lengths, play a crucial role. As an implicit’ non-local continuum, it is
equipped with additional degrees of freedom revealing the presence of microstructures.
That is, for two-dimensional (2D) Cosserat media, each material point has two translation
degrees of freedom u1, u2 and an additional microrotation degree of freedom ω. The
microrotation ω is an independent degree of freedom and it is different from the macro-
rotation θ which is defined as the skew-symmetric part of the gradient of displacement.
Thus, a peculiar measurement, the relative rotation θ−ω, can be defined in this continuum.
A general displacement vector for the Cosserat material point can be expressed as:

d> =
[
u1 u2 ω

]
=
[
u> ω

]
(1)

where u> =
[
u1 u2

]
. Due to the introduction of ω, the tangential strains in the Cosserat

model are not reciprocal, i.e., ε12 6= ε21, and the microcurvature component is introduced
as an additional strain measure; therefore, the linear strain–displacement relation can be
expressed as: [

ε
χ

]
=

[
L M
0 ∇

][
u
ω

]
(2)

where ε> =
[
ε11 ε22 ε12 ε21

]
contains the normal and tangential strains and χ> =[

χ1 χ2
]

contains the microcurvatures. ∇ is the gradient operator, and

L =

[
∂

∂x1
0 ∂

∂x2
0

0 ∂
∂x2

0 ∂
∂x1

]>
,

M =
[
0 0 1 −1

]>
(3)

With the strain measures, the stresses of the Cosserat continuum can be obtained by a
linear elastic constitutive equation as:

[
σ
µ

]
=

[
A B
B> D

][
ε
χ

]
(4)

where σ> =
[
σ11 σ22 σ12 σ21

]
contains the normal and tangential stresses and µ> =[

µ1 µ2
]

contains the couple stresses. The tangential stress components are also not
reciprocal (σ12 6= σ21). The constitutive sub-matrices A, B, and D collect the constitutive
terms Aijhk, Bijh, and Dij, where i, j, h and k = 1, 2.

A detailed three-dimensional finite element formulation for the Cosserat continuum
can be found in [38]. For the sake of simplicity, the displacement-based finite element imple-
mentation for 2D Cosserat theory is presented here to model the behavior of microstructured
material. Firstly, in the finite element procedure, displacement and microrotation fields
should be approximated by the nodal values of an element. In this study, for avoiding
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the element locking problem, a bi-quadratic (Nu) and a bi-linear (Nω) shape function are,
respectively, used for the displacement and microrotation approximation:

u = Nuũ
ω = Nωω̃

(5)

where ũ and ω̃ are nodal displacement and microrotation values. In the present paper,
nine-node quadrangular elements are considered for an element. All nine node values are
used to approximate the displacements, whereas values at four corner nodes are used for
the microrotation. Nu and Nω can be expressed as:

Nu =

[
N1

u 0 . . . N9
u 0

0 N1
u 0 . . . N9

u

]
,

Nω =
[
N1

ω . . . N4
ω
] (6)

Substituting Equation (5) into (2), the strain vectors become:

ε =
[
LNu MNω

]{
ũ ω̃

}>
= Bεd̃,

χ =
[
0 ∇Nω

]{
ũ ω̃

}>
= Bχd̃

(7)

where Bε and Bχ are the derivatives of the shape functions. d̃ is the unknown nodal values
collecting ũ and ω̃. Substituting Equation (7) into Equation (4), the constitutive relations
become:

σ = ABεd̃ +BBχd̃,
µ = B>Bεd̃ +DBχd̃

(8)

Now, the stress and couple stress measures can be obtained from the nodal values.
Considering a domainA and boundary Γ, the principle of virtual work can be expressed as:

∫

A
δε>σ + δχ>µ dA =

∫

A
δu>b dA+

∫

Γ
δu>t + δω>m dΓ ∀δu, δω (9)

where δ is the variational operator, b is the body force vector. t and m are the traction and
couple-traction vectors applied on the boundary Γ. The components (ti and mi) of t and m
should satisfy the equilibrium at external boundary as ti = σijnj and mi = µjnj, where nj is
the components of the outward unit normal to the boundary. Substituting Equations (5), (7)
and (8) into (9) and excluding body forces, we obtain:

δd̃>
∫

Ae

(
Bε
>ABε + Bε

>BBχ + Bχ
>B>Bε + Bχ

>DBχ

)
dAe

︸ ︷︷ ︸
Ke

d̃ = δd̃>
∫

Γe




Nu
>t

Nω
>m


dΓe

︸ ︷︷ ︸
Fe

∀δd̃ (10)

where Ke and Fe are the element stiffness matrix and the element nodal force vector.
They can be computed numerically by a Gauss–Legendre integration with 3× 3 grid. If
considering arbitrary δd̃, we can obtain the standard finite element formulation as:

Ked̃ = Fe (11)

At the end, the unknown d̃ can be obtained by solving this equation. With this solution,
in the post-processing stresses and strains are firstly computed at Gauss points for each
element and then an extrapolation technique is used to get stresses and strains at element
nodal points.

The above implementations are achieved by an updated MATLAB code based on
codes of a classical 2D Cauchy continuum as presented in [39].
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3. Numerical Simulation

In this section, we intend to numerically investigate the effects of direction and scale
of microstructures for a composite material that can be considered as an assembly made of
rigid rectangular blocks in contact with elastic interfaces (Figure 1), where each rectangular
block has the width of b and height of h. The assembly is arranged as an interlocking
structure and the interfaces of blocks form the microstructures of this composite material.
A homogenization procedure presented in [30] can be used to describe the assembly as
an equivalent Cosserat continuum. In this work, 7-block representative volume element
(RVE) that is highlighted with orange color in Figure 1 is used for the homogenization
procedure to produce the Cosserat constitutive matrix in Equation (4). In the highlighted
RVE, the blocks’ centroids are represented by green crosses, and red lines mean the outward
unit normal vectors of the central block’s interfaces. The direction of microstructures can
be changed by transforming the assembly of an angle β from x − y coordinate system
to X − Y coordinate system as shown in Figure 1. In this study, we select 6 values of
β (0◦, 30◦, 60◦, 90◦, 120◦, 150◦). Furthermore, to obtain various scales of microstructures,
4 different block sizes are used by fixing the height of block h = 0.1 m and changing
the aspect ratio ρ = b/h = 1.5, 3, 7, and 15, where a greater ρ corresponds to a longer
rectangular block, as a consequence, showing more orthotropic nature.

×
×

×

×
× ×

×

RVE

h b

X = X1

Y = X2

x = x1

y = x2

β

Figure 1. Schemes of the considered assembly and RVE.

The blocks interact among themselves through elastic common interfaces. The adopted
spring stiffness at the interfaces is:

K =

[
kn 0
0 kt

]
(12)

where kn and kt are the normal and tangential stiffness per unit length, respectively. Here
we have kn = 576.58 MPa/m and kt = 288.29 MPa/m. The rotation stiffness of interface is
computed kr = kn(d/2)2, where d is the length of interface. Therefore, the Cosserat consti-
tutive matrices of the reference RVE when β = 0◦ can be obtained by the homogenization
technique that is based on an equivalence energy criterion between the material’s discrete
system of and the continuum model [30]. The constitutive matrix of transformed assembly
can be obtained as follows:

C = Q>C0Q (13)

where C0 is the constitutive matrix when β = 0◦, Q is the usual transformation matrix [40].
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For comparison, the Cauchy continuum is also considered here to carry out the same
simulations as performed by the Cosserat continuum. Because of the lack in microstructures,
the constitutive relation of the Cauchy continuum has the form of: σ = Âε, where the
matrix Â is obtained from A and their relationship can be found in the previous literature
as [41]:

Â1111 = A1111

Â1122 = A1122

Â2222 = A2222

Â1112 = (A1112 + A1121)/2

Â2212 = (A2212 + A2221)/2

Â1212 = (A1212 + A2121 + 2A1221)/4

(14)

Tables 1–4 list the constitutive components of all configurations, where components
keeping zero for all configurations are not reported. It can be seen that there are more zero
components when β = 0◦ and 90◦. Actually, only diagonal components of the constitutive
matrix exist and an orthotropic nature of the material is observed for these two transforma-
tion angles. For other angles, all components of matrices A and D appear. Consequently,
materials with these RVEs show a centrosymmetric nature [30]. B = 0 for all configurations,
meaning there is no coupling between stresses/microcurvatures and microcouples/strains.
As the aspect ratio ρ increases, constitutive components change monotonously except for
A2222, A1212 of Cosserat continuum and Â2222 of Cauchy continuum when β = 0◦. Because
of the fixed height of blocks (h), these components stay the same with increasing ρ.

Table 1. Cosserat and Cauchy constitutive parameters for RVE with block parameter ρ = 1.5,
Aijkl , Âijkl [MPa], Dij [MPa·m2].

0◦ 30◦ 60◦ 90◦ 120◦ 150◦

A1111 102.70 80.97 58.45 57.66 58.45 80.97
A1122 0 10.47 10.47 0 10.47 10.47
A1112 0 25.94 13.85 0 −13.85 −25.94
A1121 0 5.66 −6.44 0 6.44 −5.66
A2222 57.66 58.45 80.97 102.70 80.97 58.45
A2212 0 −6.44 5.66 0 −5.66 6.44
A2221 0 13.85 25.94 0 −25.94 −13.85
A1212 28.83 51.01 74.44 75.68 74.44 51.01
A1221 0 10.47 10.47 0 10.47 10.47
A2121 75.68 74.44 51.01 28.83 51.01 74.44
D11 0.57 0.47 0.29 0.19 0.29 0.47
D12 0 0.16 0.16 0 −0.16 −0.16
D22 0.19 0.29 0.47 0.57 0.47 0.29

Â1111 102.70 80.97 58.45 57.66 58.45 80.97
Â1122 0 10.47 10.47 0 10.47 10.47
Â1112 0 15.80 3.71 0 −3.71 −15.80
Â2222 57.66 58.45 80.97 102.70 80.97 58.45
Â2212 0 3.71 15.80 0 −15.80 −3.71
Â1212 26.13 36.60 36.60 26.13 36.60 36.60
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Table 2. Cosserat and Cauchy constitutive parameters for RVE with block parameter ρ = 3, Aijkl , Âijkl
[MPa], Dij [MPa·m2].

0◦ 30◦ 60◦ 90◦ 120◦ 150◦

A1111 237.84 183.34 93.24 57.66 93.24 183.34
A1122 0 9.46 9.46 0 9.46 9.46
A1112 0 85.04 74.12 0 −74.12 −85.04
A1121 0 3.90 −7.02 0 7.02 −3.90
A2222 57.66 93.24 183.34 237.84 183.34 93.24
A2212 0 −7.02 3.90 0 −3.90 7.02
A2221 0 74.12 85.04 0 −85.04 −74.12
A1212 28.83 85.14 178.83 216.22 178.83 85.14
A1221 0 9.46 9.46 0 9.46 9.46
A2121 216.22 178.83 85.14 28.83 85.14 178.83
D11 3.64 2.87 1.33 0.56 1.33 2.87
D12 0 1.33 1.33 0 −1.33 −1.33
D22 0.56 1.33 2.87 3.64 2.87 1.33

Â1111 237.84 183.34 93.24 57.66 93.24 183.34
Â1122 0 9.46 9.46 0 9.46 9.46
Â1112 0 44.47 33.55 0 −33.55 −44.47
Â2222 57.66 93.24 183.34 237.84 183.34 93.24
Â2212 0 33.55 44.47 0 −44.47 −33.55
Â1212 61.26 70.72 70.72 61.26 70.72 70.72

Table 3. Cosserat and Cauchy constitutive parameters for RVE with block parameter ρ = 7, Aijkl , Âijkl
[MPa], Dij [MPa·m2].

0◦ 30◦ 60◦ 90◦ 120◦ 150◦

A1111 756.76 604.96 255.41 57.66 255.41 604.96
A1122 0 −22.97 −22.97 0 −22.97 −22.97
A1112 0 328.47 354.99 0 −354.99 −328.47
A1121 0 −52.27 −25.75 0 25.75 52.27
A2222 57.66 255.41 604.96 756.76 604.96 255.41
A2212 0 −25.75 −52.27 0 52.27 25.75
A2221 0 354.99 328.47 0 −328.47 −354.99
A1212 28.83 225.68 665.32 908.11 665.32 225.68
A1221 0 −22.97 −22.97 0 −22.97 −22.97
A2121 908.11 665.32 225.68 28.83 225.68 665.32
D11 59.06 44.97 16.81 2.72 16.81 44.97
D12 0 24.40 24.40 0 −24.40 −24.40
D22 2.72 16.81 44.97 59.06 44.97 16.81

Â1111 756.76 604.96 255.41 57.66 255.41 604.96
Â1122 0 −22.97 −22.97 0 −22.97 −22.97
Â1112 0 138.10 164.62 0 −164.62 −138.10
Â2222 57.66 255.41 604.96 756.76 604.96 255.41
Â2212 0 164.62 138.10 0 −138.10 −164.62
Â1212 234.23 211.26 211.26 234.23 211.26 211.26
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Table 4. Cosserat and Cauchy constitutive parameters for RVE with block parameter ρ = 15,
Aijkl , Âijkl [MPa], Dij [MPa·m2].

0◦ 30◦ 60◦ 90◦ 120◦ 150◦

A1111 2486.50 2096.86 882.44 57.66 882.44 2096.86
A1122 0 −217.57 −217.57 0 −217.57 −217.57
A1112 0 1189.82 1441.04 0 −1441.04 −1189.82
A1121 0 −389.32 −138.10 0 138.10 389.32
A2222 57.66 882.44 2096.86 2486.50 2096.86 882.44
A2212 0 −138.10 −389.32 0 389.32 138.10
A2221 0 1441.04 1189.82 0 −1189.82 −1441.04
A1212 28.83 722.98 2546.41 3675.70 2546.41 722.98
A1221 0 −217.57 −217.57 0 −217.57 −217.57
A2121 3675.70 2546.41 722.98 28.83 722.98 2546.41
D11 933.59 703.25 242.57 12.23 242.57 703.25
D12 0 398.96 398.96 0 −398.96 −398.96
D22 12.23 242.57 703.25 933.59 703.25 242.57

Â1111 2486.50 2096.86 882.44 57.66 882.44 2096.86
Â1122 0 −217.57 −217.57 0 −217.57 −217.57
Â1112 0 400.25 651.47 0 −651.47 −400.25
Â2222 57.66 882.44 2096.86 2486.50 2096.86 882.44
Â2212 0 651.47 400.25 0 −400.25 −651.47
Â1212 926.13 708.56 708.56 926.13 708.56 708.56

In the following, a classical tension problem of a square plate with a circular hole is
studied for all above-mentioned configurations. Figure 2 shows the sketch of the problem
and its finite element meshing. The plate has a side length of 10 m and the radius of the
hole is 1.25 m. A total of 1440 elements is used for this model. Due to the singular nature
resulting from the presence of the hole, stress concentration is more likely observed around
the hole under tension force. To make sure the results are reliable, a finer mesh is applied
near the hole. Uniform tensile stress σ0 = 1 MPa is applied on the right side of the plate.
The left side of the plate is fixed symmetrically in the x-direction and the bottom left point
is additionally fixed in the y-direction. In the present paper, the direction and scale effect
of microstructure is investigated by setting various β and ρ. The simulation results are
shown below.

Figure 2. Sketch of the plate with hole problem and its finite element mesh.
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4. Results

The results of displacements and stresses for the Cosserat and Cauchy models and
relative rotation for the Cosserat model are presented in this section to show the effects of
microstructure’s direction and scale on the behavior of microstructured composite materials.
Figure 3 depicts the horizontal displacement results u1 of Cosserat and Cauchy models.
It can be seen that change in direction of microstructure has a significant effect on u1 for
both two models. The smallest u1 can be observed when β = 0◦. As β changes from 0◦ to
150◦, u1 increases to the greatest at β = 90◦ and then decreases but this is expected for the
shortest block case ρ = 1.5. In the case of ρ = 1.5, the greatest u1 occurs at β = 60◦ and 120◦

but that is also close to u1 at β = 90◦. For all β representing the directions of microstructure,
u1 has a reduction as ρ increases. For the plate with the shortest blocks, displacement
localization can be observed at the middle of the right side of the plate. However, as ρ
increases, displacement localization reduces and uniform displacement distribution can be
observed at the right side of the plate.

It can be seen from Figure 3 that the difference in u1 between Cosserat and Cauchy
models is not obvious for the orthotropic materials (β = 0◦ and 90◦). Here we take the
difference in the maximum u1 between the two models as ∆u1. For various ρ, ∆u1 is
3.02–8.63 mm when β = 0◦ and 2.13–5.85 mm when β = 90◦. However, the difference is
more evident for the centrosymmetric materials. ∆u1 increases from 20 mm to 69 mm as ρ
increases when β = 30◦, 60◦, 120◦, and 150◦.

(a) (b)

Figure 3. Horizontal displacement u1, mm, (a) Cosserat, (b) Cauchy.

Figure 4 depicts the vertical displacement results u2 for two models. The orthotropic
materials (β = 0◦ and 90◦) show negligible u2 under the horizontal tension stress for both
models. However, the centrosymmetric materials with other transformation angles can
produce clear u2 with more or less directionality.

It should be noted that there is a big difference in u2 between Cosserat and Cauchy
models. u2 of these two models has a similar distribution only when ρ = 1.5. As ρ increases,
u2 distributions of two models become different. When β = 30◦ and 150◦, the Cosserat
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continuum shows high-intensity u2 distribution on the right plate as ρ increases, e.g., the
maximum u2 is up to 117 mm when β = 150◦; however, u2 from the Cauchy continuum
has no clear high-intensity distribution with ρ and the maximum u2 is just 77 mm when
β = 150◦. An opposite difference between two models can be observed when β = 60◦

and 120◦, that is high-intensity u2 distribution can be observed by the Cauchy but not the
Cosserat model.

(a) (b)

Figure 4. Vertical displacement u2, mm, (a) Cosserat, (b) Cauchy.

The horizontal stresses σ11 of the two models are shown in Figure 5. The results show
directionality of distribution of σ11 with respect to the direction β. For orthotropic materials,
the high-stress area is parallel to the x-direction and the peak stress happens at the top
and bottom points of the hole edge (i.e., x = 0). However, for centrosymmetric materials,
the high-stress area is inclined with the x-direction by an angle that can be related to the
direction of microstructure, and the location of peak stress changes. It can be seen the
directionality of σ11 is more evident for greater ρ. As the increase of ρ, the high-stress area
becomes wider. The exception happens at β = 90◦ which shows the opposite behavior. The
existence of the hole as a singularity can result in the concentration of stress around the
hole edge. In the following, the stress concentration at the hole boundary will be discussed.

Vertical stress σ22 (Figure 6) also shows directionality of stress distribution with respect
to β. There can be seen a difference in σ22 between two models for various ρ. For relative
short blocks (ρ = 1.5 and 3), two models produce closed behavior of σ22. However, for
longer blocks (ρ = 7 and 15) especially at β = 60◦, 90◦ and 120◦, σ22 from Cauchy model is
significantly greater than that from Cosserat model.
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(a) (b)

Figure 5. Horizontal stress σ11, MPa, (a) Cosserat, (b) Cauchy.

(a) (b)

Figure 6. Vertical stress σ22, MPa, (a) Cosserat, (b) Cauchy.
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The relative rotation, defined as the difference between macrorotation (θ) and mi-
crorotation (ω), is a peculiar measurement in the Cosserat model. Figure 7 shows the
relative rotation θ − ω for the Cosserat model. The directionality of θ − ω distribution
can be also observed and that is more evident as ρ increases. For orthotropic materials,
θ −ω shows point symmetric behavior with respect to the hole center where positive and
negative θ−ω can be both observed, but the value of θ−ω is close to 0. Thus, the Cosserat
model is very close to the Cauchy one. For β = 30◦ and 60◦, the plate domain mainly
undergoes a positive relative rotation. Oppositely, for β = 120◦ and 150◦, this domain
mainly undergoes a negative θ −ω. The above-mentioned indicates that relative rotation
can be affected by the direction of microstructure. There is less relative rotation when the
microstructures are arranged along parallel and perpendicular to the direction of force,
whereas the microstructures arranged along other directions would result in an obvious
relative rotation acting at a certain orientation.

Figure 7. Relative rotation θ −ω of Cosserat model.

5. Discussions

The problem of stress concentration has always been focused on due to the presence of
singularity [32,42,43]. Under horizontal tension in this study, it can be seen that the stresses
σ11 and σ22 in the plate (Figures 5 and 6) is mainly concentrated around the boundary of
the hole. To better show the stress distribution, in the following, by transforming the stress
state from Cartesian coordinate to polar coordinate, the hoop stress σh at the hole boundary
is depicted for two models in the polar coordinate system as shown in Figure 8. In this way,
σh represents σ22 when the polar angle equals to 0 or π, whereas the hoop stress denotes
σ11 when the polar angle is π/2 or 3π/2. Therefore, the location and magnitude of σh
can be clearly observed. For both Cosserat and Cauchy models, it can be seen that the
distribution of σh at the hole boundary is point symmetric to the center of hole and also
shows directionality that depends on the aspect ration ρ and angle β.
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(a) (b)

Figure 8. Distribution of the hoop stress σh at the hole boundary, MPa, (a) Cosserat, (b) Cauchy.

For the orthotropic materials, the distribution of σh is symmetrical along the vertical
direction (π/2− 3π/2) in the polar coordinate. The highest σh can be observed at the top
and bottom points of the hole boundary (i.e., polar angle equals to π/2 and 3π/2) for the
Cosserat model and Cauchy model when β = 0◦, indicating that the peak stress results
from the horizontal stress σ11. As for the Cauchy model when β = 90◦, it is consistent with
the above results for small ρ. As ρ increases, the highest σh trend to be occurred at the
right and left points of the hole boundary (i.e., polar angle equals to 0 and π). Since we
observed a significant σ22 concentration in the Cauchy model in Figure 6b, the vertical stress
σ22 is able to result in the peak stress for these cases. For centrosymmetric materials, the
distribution of σh is no longer symmetrical along the vertical direction but deviates from it
to more or less of an extent because of the transformation angle of rectangular blocks. Thus,
the highest σh does not occur at these special points, i.e., polar angle equals to 0, π/2, π, or
3π/2. This is consistent with the results by early study [9], which investigates the stress
distribution of the layered surrounding rock tunnel by considering different angles of
rock joints (microstructures). It is also shown that the stress distribution is symmetrical
when angle equals to 0◦ and 90◦. When the angle is 45◦ the stress presents an asymmetric
distribution and the tunnel even comes into being eccentric-pressed.

It should be noted that the effect of β is less for smaller ρ. When ρ = 1.5, the distribu-
tion of σh is close to each other, that is, the highest σh is located near to the top and bottom
point of hole boundary and its value close to 3, whereas the lowest σh near to right and
left points and its value is around 1. Such a result is close to the well-known analytical
solution for an infinite isotropic plate with a circular hole [33,44]. However, as ρ increases,
the directionality of σh distribution becomes more evident and the extreme values of σh
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also vary. For example, when β = 0◦, as increase in ρ the highest value of σh can increase to
9. In addition, the difference between the Cosserat and Cauchy models gets bigger with
increasing ρ. The smallest values of σh are not lower than −3 for the Cosserat continuum,
whereas lower σh to −9 can be obtained from the Cauchy continuum, especially when
β = 60◦, 90◦, and 120◦.

By investigating measurements of displacements, stress, etc, and the stress distribution
of the square plate with circular hole under horizontal tension stress, a direction effect
of microstructures can be found for the present problem. With different transformation
angle β, the plate can produce mechanical behavior showing obvious directionality. Such a
direction effect of microstructures can be also found in previous studies on surrounding rock
roadway and tunnels with different dip angles of surroundings [9,45], where the joints of
surrounding rocks can represent the microstructure interfaces. In this present paper, similar
behaviors are often observed when β = 0◦ and 90◦. That is because the microstructures
in these two cases are both parallel and perpendicular to the x-direction, showing an
orthotropic nature. The difference between these two cases is actually due to the different
values of ρ (ρ < 1 when β = 90◦ whereas ρ > 1 when β = 0◦); therefore, measurements
of these two cases have similar behavior but different intensities under the horizontal
tension stress. As for microstructures not parallel or perpendicular to the x-direction, i.e.,
β = 30◦, 60◦, 120◦ and 150◦, it can be seen from the constitutive matrices (Tables 1–4) that
more coupling in the constitutive components such as dilatancy components [46] appear
for these cases, showing a centrosymmetric nature. The centrosymmetric material can show
different behavior from the orthotropic material by coupling different stresses and strains
as well as the couple stresses and curvatures. As the transformed constitutive matrix is
related to β (Equation (13)), the behavior of the centrosymmetric material depends on β.
Under horizontal tension stress, it is shown that u1 first increases and then decreases with
β. Oppositely, as β increases the maximum σh first decreases and then increases. Such
an effect of β can be compared with the previous study [8] where a similar effect was
found, that is, the strength of phyllite decreases first and then increases with the increase of
bedding angle.

The direction effect of microstructures is more evident for higher ρ. When ρ is small
(e.g., ρ = 1.5), the width of the rectangular block b is close to its height h. Thus, the assembly
made of such blocks can show a nearly orthotetragonal behavior (close to isotropic) that
is less sensitive to change in the microstructure direction. This could also account for the
small differences between Cosserat and Cauchy results when ρ is small since it was known
that orthotetragonal materials are very close to Cauchy continua [30,47].

With the increase in ρ, the assembly becomes more orthotropic and the measurements
can show more obvious directionality with respect to β. As the length of microstructure (i.e.,
internal length) is introduced to the Cosserat continuum, asymmetries are generated for the
shear stress and shear strain fields. Therefore, in the Cosserat model each stress is coupled
with asymmetric shear strains through two constitutive components (Aij12 and Aij21), and
vice-versa. In the Cauchy model, there is just one component (Âij12). When ρ is small, the
difference between Aij12 and Aij21 is not evident. As ρ increases, such difference increases
rapidly, showing a higher degree of asymmetry. However, Âij12 of the Cauchy model is
an arithmetic mean by Aij12 and Aij21 (Equation (14)), which cannot show the asymmetric
behavior of continua. Thus, the difference between the results from Cosserat and Cauchy
models may be induced, especially for higher ρ. Moreover, since the microstructures
are considered in the Cosserat continuum, the additional sub-matrix D is involved in
the Cosserat constitutive relation rather than the Cauchy one. The components of D are
negligible for small ρ but become prominent as ρ increases. It has been found that the stress
can be re-distributed within the Cosserat continuum [34]. For the smaller ρ, the Cosserat
continuum behaves close to the Cauchy continuum as mentioned above. As a result, the
re-distribution of stress can be neglected. However, as the scale of the microstructure
increases, such a re-distribution can be more prominent for higher ρ. This can be used to
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account for the difference in σ22 between the Cosserat and Cauchy continuum, especially
for large ρ.

6. Conclusions

The present paper investigates the mechanical behavior of the microstructured com-
posite treated as Cosserat continuum by considering various microstructure’s directions
(β) and scales (ρ). According to the constitutive parameters obtained from the Cosserat
homogenization procedure, the composite studied here can be classified as orthotropic and
centrosymmetric materials depending on the direction β. The simulations are conducted
for a tension problem of a microstructured plate with a circular hole, so this paper also
focuses on the stress distribution around the hole. The main conclusions are as follows:

(1) The mechanical behavior of microstructured composite changes as the microstructure’s
directions β, thereby showing a directionality of measurement distribution such as
stresses. In general, orthotropic materials show similar behaviors but with different
intensities, and the behavior of centrosymmetric is related to various β.

(2) The increasing microstructure’s scale ρ can results in more evident effect of β and
difference between the Cosserat and Cauchy models. Such an effect of ρ is clearer for
the centrosymmetric materials than orthotropic materials.

(3) The Cosserat continuum is able to better describe the direction effect of microstructures
due to the relative rotation that not only shows the directionality of distribution
but also varies with the microstructure direction. The Cauchy continuum does not
have such advantages because there is no relative rotation and tangential strains
are symmetric.

(4) The extreme value and its location of the hoop stress σh around the hole depend on β.
For smaller ρ, the highest and smallest σh are close to 3 and −1, which is similar with
the classical result of the isotropic material. As ρ increases, a highest σh up to 9 can
be observed.

(5) Difference in the hoop stress σh between the Cosserat and Cauchy model is mainly in
the smallest σh, especially for greater ρ when β = 60◦, 90◦, and 120◦. All the smallest
σh of the Cosserat model are greater than -3, whereas the Cauchy model can have a σh
as low as −9.

From this present study, the effect of the microstructure’s directions on mechanical
behavior of microstructured composite can be found, especially for the composite with
large scale of the microstructure. The area applying the development of this research can
be for microstructured materials with various dimensions (from micromaterials to macro-
materials), where the scale of the microstructure should be comparable to the material’s
dimension. For example, the layered rock with joints has different dip angle due to the
geological formation. The stress distribution can be also used for such composite with
singularity, not only the circular shape used here, but alternative shapes. The rectangular
microstructures with standard interlocking give a basic and important research aspect of
the effect of the microstructure’s direction and scale. As more and more advanced materials
are developed nowadays, various microstructures formations are interesting to be studied
in future research.
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Abstract: The finite element analysis of tubular structures is typically based on models constructed
employing beam-type elements. This modeling technique provides a quick and computationally
efficient option for calculation. Nevertheless, it shows a series of limitations related to the simplicity
of this type of element, among which the inability of accounting for the stiffness behavior at the joint
level is of notable importance when modeling complex tubular structures. Despite these limitations,
the alternative of simulating complex tubular structures with shell- or volume-type elements is
highly costly due to the complexity of the modeling process and the computational requirements.
Previous research has proposed alternative beam models that improve the estimations when modeling
these structures. These research validations were limited to simple models. This paper presents a
validation process utilizing a previously developed beam T-junction model in a complex tubular
structure, intended to be representative for buses’ and coaches’ upper structures. Results obtained
reveal that the accuracy of beam element type models can be significantly improved with the adequate
implementation of elastic elements to account for the real junction stiffness.

Keywords: finite element analysis; structural optimization; beam T-junctions; beam model validation

1. Introduction

The study and analysis of structures using the finite element method (FEM) is key
to the development of complex structural systems [1]. In fact, CAD design and FEM
analysis allow for the quick evolution of a sketch from a design to a structure capable of
withstanding the required stresses, and these methods are widely accepted in the industry.

In FEM programs, it is possible, depending on the model to be represented, to choose
three main types of elements: beam, shell, and volume elements. Although there are
certain rules, the selection of the best type of element for a particular application is a
generally complicated process, in which several factors must be considered. For example,
it is necessary to know the characteristics and complexity of the structures to be simulated,
the limitations of existing computational resources, the type of simulation, and the expected
accuracy of the computational results [2–4].

The analyst’s experience is often key in determining the best path to take in each
case. In the particular case of large tubular structures such as those that can be found in
buses and coaches, it is very common, for example, to use beam-type elements, due to the
flexibility, limited computational need, and speed that they allow in the analysis of complex
structures [5–7]. Models based on beam elements are comparatively simpler than those
based on shell or volume types.

Although beam elements are often the preferred choice for tubular profile structures,
they have some fundamental limitations due to their simple formulation. One of the
main limitations is the impossibility to faithfully reproduce the localized behavior at the
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joint level. In these elements, the attachment with the environment is reduced to a single
infinitely rigid node [8,9], which leads to estimation errors in the calculation [10].

The use of shell and volume elements in tubular element joints makes it possible to
obtain more realistic joint models [1,11]. This is possible because the joint topology at the
joint level can be captured by these element types with higher accuracy. In this way, it is
possible to obtain accurate models that overcome the limitations of beam-type elements
in this type of tubular structures. Previous research has shown that the differences in the
calculation of stiffness of tubular structures modeled with beam elements versus models
made with shell or volume models can vary between 5 and 45% [10,12]. The final error
depends on various parameters of the tubular elements used, such as the shape of the
tube cross-section and its thickness, as well as the complexity of the overall structure. The
greater the complexity of the structure, the greater the difference in stiffness calculation
between models made with different types of elements, since the error induced at each
joint will have a deviating effect in the global response.

Tubular structural elements can be used in many applications, such as buses and
coaches. The stiffness of the structure in buses uses large tubular elements and their
configuration is often considerably complex. It is usual to use beam elements in their
calculation since modeling with shell or volume elements is usually very time-consuming
due to the complexity of the models [9]. In addition, they require a higher computational
power that on many occasions does not compensate the accuracy of the obtained results.

For this reason, it would be desirable for the modeling of this type of structure to have
a calculation methodology that takes advantage of the simplicity of beam-type tubular
structures but improves the results through the altered modeling of the joints. There
can be found several modelling proposals in the bibliography to improve ordinary beam
elements accuracy. For example, B. Horton et al. [13] proposed models with modified
stiffness characteristics at the adjacent elements of the joints. The same methodology was
applied in [14] to account for the local stiffness modification due to crack development in
beam-type structures. Additionally, hybrid models, where shell or volume element types
are used for the joints, and beam elements for the rest of the beam sections, can be found
with significant improvements reported [15,16]. This shell-beam or volume-beam hybrid
modelling technique is still time-consuming since connection elements are to be configured
at zones where the element type is modified, and thus not attractive for larger models
with an important number of joints to be configured. Finally, several approaches can be
found that focus on modifying the stiffness characteristics of the joint by introducing elastic
elements [8,17].

This article presents a complete methodology for comparing different modelling
techniques of beam-type structures. In the study, volume, ordinary beam, and alternate
beam modelling techniques, presented in [8], are analyzed. The results are validated against
a real structure with respect to which the results are compared and the best methodology
to obtain a model based on beam-type joints with improved T-junctions is proposed.

To understand the methodology used, it is important to present the way of modeling
the junctions between tubular elements. For simplicity, two possibilities of T-junctions
between tubular elements are presented, which will be called T1 and T2. Figure 1 presents
graphically the effective connections between these tubular elements.

It is important to note that the type of actual T-joint (either T1 or T2) has a direct
influence on the final behavior of the structure, determining its behavior as a function of
the type, size, and direction of the load applied to it. Regardless of this reality, the pure
equivalent model based on beam elements will in all cases be composed of four nodes and
three beam elements. Therefore, these results in the T1 or T2 junctions are blurred in the
model, resulting in an infinitely stiff joint in all cases and a loss of the starting information.
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Figure 2. Diagrams comparing the behavior of a standard beam T-junction and the alternative beam 
T-junction model for the same load state. (a) Rigid junction (b) flexible junction  

The consequence of the implementation of the junction-specific stiffness is an im-
provement in the accuracy, as it was already shown and validated for simple structural 
components in [8]. Nevertheless, a more realistic validation against a complex structure 
was still pending. This paper covers this aspect, showing the capability of the proposed 
methodology to increase beam-based FEM models’ accuracy and describing some key as-
pects to take into account when scaling from single-joint to complete complex structures. 

Figure 1. T-junctions equivalent beam-type element model. T1 junction with two elements (green
and purple) and T2 with three elements (green, purple and dark blue).

To illustrate how the T-joint model of Figure 1 is modified in [8], Figure 2 presents
two joint schemas, where the junction of both tubular elements is rigid in its left image (a)
and is flexible in the right image (b). This flexibility is represented by the introduction of
stiffness k1 to k6 at the intersection point of both tubular elements. These stiffness values
are experimentally pre-determined to faithfully represent real T-joints. These stiffness
values do not change the dimensions of the structure in any way. The direct effect of them
into the joint causes the displacement δ1 > δ in all cases.
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The consequence of the implementation of the junction-specific stiffness is an im-
provement in the accuracy, as it was already shown and validated for simple structural
components in [8]. Nevertheless, a more realistic validation against a complex structure
was still pending. This paper covers this aspect, showing the capability of the proposed
methodology to increase beam-based FEM models’ accuracy and describing some key
aspects to take into account when scaling from single-joint to complete complex structures.
The application scope of this methodology is limited to the elastic deformation range
of the structure, since the spring elements introduced are linear, i.e., k1 to k6 stiffnesses
are constant. Equivalent methodology could be developed with nonlinear springs and
damping elements to analyze structures responses beyond the elastic range.

In summary, the present work, applied together with the results supplied in [8],
provides a complete methodology for improving beam-type element models accuracy
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for complex structures typically used in buses and coaches, without incurring increased
computational costs and model preparation times.

2. Methodology

The results of the alternative T-junction model were verified for the simple T-junctions
analyzed [8]. In that work, the complete methodology to obtain the proper spring stiffness
values for each type of junction is described. Nonetheless, extrapolating the results to more
complex tubular structures require a specific experimental validation process to assess the
improvement capability of the alternative beam model proposed when crossed influences
take place among the joints of the structure.

As the research carried out was intended to be applied to buses’ and coaches’ upper
structures, it was sought to use structures of these characteristics for the validation experi-
ments. Since these structures are hard to come upon, a validation structure was designed
and built having representative characteristics of buses’ and coaches’ upper structures
(Figure 3).
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The response of the validation structure under the prescribed load is captured by
means of analog dials and later compared to the following finite element models:

- Model constructed with volume-type elements: The most complex and accurate
modeling element type. Although unattractive for practical use in the industry, it was
used as a comparison basis.

- Ordinary beam element type model: used to evaluate the improvement of the alterna-
tive beam models.

- Alternative beam element type: As will be shown in the next section, the assignment
of the joint type (T1 or T2) might not be obvious in some specific cases. To analyze
the influence of choosing between different criteria, three models are presented and
evaluated in the paper.

A further description on the validation structure and the finite element models is
given in the following section.

The measured displacements at the evaluation points are then compared to the predic-
tions of the different models in order to assess the accuracy of the models with respect to
reality and the improvements achieved with the alternative beam models. Results will be
discussed in Section 4.
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3. Experimental Validation
3.1. Validation Structure Description

The tubular validation structure was built with two significantly different sides from a
geometric point of view. One of the sides was configured in a very similar way to what is
commonly found in buses and coaches (Figure 3, number 2), whereas the opposite side had
a significantly asymmetric configuration (Figure 3, number 1), so that a wide range of joint
configurations is analyzed during the tests. Figure 4 shows a detail of the dimensions of
both sides of the structure.

Materials 2022, 15, 6468 5 of 15 
 

 

A further description on the validation structure and the finite element models is 
given in the following section. 

The measured displacements at the evaluation points are then compared to the pre-
dictions of the different models in order to assess the accuracy of the models with respect 
to reality and the improvements achieved with the alternative beam models. Results will 
be discussed in Section 4. 

3. Experimental Validation 
3.1. Validation Structure Description 

The tubular validation structure was built with two significantly different sides from 
a geometric point of view. One of the sides was configured in a very similar way to what 
is commonly found in buses and coaches (Figure 3, number 2), whereas the opposite side 
had a significantly asymmetric configuration (Figure 3, number 1), so that a wide range 
of joint configurations is analyzed during the tests. Figure 4 shows a detail of the dimen-
sions of both sides of the structure. 

 
Figure 4. Geometric configuration of the sides of the tubular validation structure. Unit: mm.  

The experiments with the tubular validation structure were done on a universal test 
bench (Figure 3, number 3). Additionally, a solution had to be found to properly constrain 
the structure during testing to avoid errors introduced by the displacement of the re-
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The experiments with the tubular validation structure were done on a universal test
bench (Figure 3, number 3). Additionally, a solution had to be found to properly constrain
the structure during testing to avoid errors introduced by the displacement of the restriction
points, since these displacements are not accounted for on virtual FEM models. To minimize
these errors, 100 mm × 100 mm × 10 mm L-shaped profiles welded to the base profiles of
the tubular structure (Figure 3, number 4) were used. In all, 8 restriction points were used.
To ensure proper clamping at the restrictions’ points, bolts were tightened to 70% of their
yield strength limit. Figure 5 illustrates welds in one of the base profiles with the clamping
devices and a rectangular profile.
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3.2. Experimental Setup

The following Figure 6 shows an overview of the experimental setup assembly of the
validation structure over the test bench. The structure (Figure 6, number 8) was conceived
to be tested on a universal test bench (Figure 6, number 5) for which clamping devices
had to be used (Figure 6, number 9), which were first welded to the base profiles of the
validation structure and then bolted to the universal test bench with M20 bolts and threaded
metal blocks.
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In order to minimize uncertainties with respect to the force applied, a calibrated weight
was used (Figure 6, number 6) as a load input.

With the objective of achieving a wide range characterization of loading, composed
load states were input to the structure. The direction of the force was accurately selected by
changing the orientation of the pulley (Figure 6, number 1) that conveys the force of the
nylon cord. Additionally, by using H-shaped test bench supports, the height of the pulley
could be changed to modify the vertical angle of the force applied (Figure 6, number 7).
Finally, a deviation in the transverse direction was obtained by changing the position of the
H-shaped test bench supports in that direction.

The load was transferred to the structure by means of a nylon thread (Figure 6,
number 2) tied to the corresponding eyebolts (Figure 6, number 3).

To obtain a complete and representative characterization of the validation structure,
a total of 14 measuring points were defined and distributed throughout its geometry so
that representative information of the global response was obtained. It was also taken into
consideration the necessity to define measuring sections at different distances from the
joints themselves and/or the clamping devices, so that a clearer picture of the behavior
of the beam-type elements could be studied. Figure 7 shows a 3D CAD model of the
validation structure on which the defined measuring sections are indicated.

Two dial gauges were used to capture the displacement at the measuring sections, one
to measure small displacements of 0–5 mm with a 0.001 mm resolution, and another for
larger displacements of 0–25 mm with a 0.01 mm resolution.

Due to the number of sections and their different locations in the validation structure,
specific supports were used to fix the dial gauges depending on the sections measured.

Of the 14 sections defined, in four of them (a3, a4, a8, and a9), only the displacements
in the Y direction were characterized since these sections were in the base profiles of the
structure in regions very close to the clamping devices, so the displacements in the other
directions could be neglected. In the rest of the sections, displacements in the two most
significant directions were characterized. For example, in section a1, the displacements
were measured in directions X and Y, whereas in section a13, the displacements were
measured in directions Z and Y.
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As with the validation experiments for the simple junctions [8], the following set of
criteria was adopted to minimize the sources of error and achieve better-quality results:

1. To attach the dial gauges, the back clamping system was used in order to avoid any
differences in measurement due to friction between the sensor and the standardized
clamping system. By way of example, Figure 8 presents the mounting of the dial
gauge for the displacement measurement of the a2 section.

2. A semi-automatic system was used to read and acquire the data from the dial gauges
by using a high-resolution photographic camera with an external trigger in order to
avoid estimation errors between measurements.

3. The defined sections were cleaned and smoothed using solvents and scouring pads
with rough polymer fibers so the surfaces would not show any defects. Adhesive
strips were also attached to each of these sections. As an example, Figure 9 shows a
detail of the region adjacent to the a13 measurement section.
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The same preparation process was used for each of the sections defined in the vali-
dation structure. To accept the measurements, the same quality criteria were used as for
the experimental analyses of the simple junctions [8]. In this way, the standard deviations
for a set of measurements in the same section were less than 0.005 mm for the 0.001 mm
resolution dial gauges, and less than 0.05 mm for the 0.01 mm resolution dial gauges.
For each of the sections defined, load and unload cycles were carried out by means of a
hydraulic actuator which gave and released support to the calibrated weights during each
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cycle. A total of 15 measurements were taken for each section, which were found to be an
optimal compromise for obtaining precise results with the least number of measurements
per point.
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3.3. FEM Model of the Validation Structure Modeled with Beam-Type Elements

To model the validation structure with beam-type elements, the modeling principles
set out in [8] were adopted. Following the methodology proposed in this sub-section,
the principal axes for each of the tubular profiles of the structure were identified and
extracted. The regions where there were separations between the beam elements were
also identified and corrected. Figure 10 shows the validation structure model built with
beam-type elements.
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Figure 10. Validation structure modeled with beam-type elements. Beam colors refer to the following
sections employed: Light blue: 80 mm × 80 mm × 3 mm, red: 80 mm × 60 mm × 3 mm, purple:
80 mm × 60 mm × 2 mm, green: 80 mm × 40 mm × 3 mm, lilac: 80 mm × 40 mm × 2 mm, dark
blue: 40 mm × 40 mm × 3 mm.

This figure presents two superimposed representations of the validation structure. The
original base model built with beam-type elements is represented with black dotted lines,
to which the model generated by a graphic option of the program was superimposed to
reveal the elements, based on the cross-section properties defined. Key points were defined
at the locations of the measuring sections in order to ensure that a node would be present
in these points and therefore nodal displacement results could be extracted.

The equivalent moments of inertia were calculated in the cross-section of the clamping
devices and were assigned to the beam elements, as shown in Figure 11.
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identifying each of the junctions of the structure in accordance with the analyzed joint 
configurations (T1 or T2). As presented in Figure 13, most of the junctions can be easily 
assimilated with T1 or T2, as is the case with points 1 to 3, but some others cannot be easily 
determined or just have no clear equivalence. Over the 38 joints, 33 of them were easily 
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obvious. 
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cross-section in the regions of the clamping devices.

3.4. Characteristics of the Validation Structure Modeled with Alternative Beam T-Junctions

Implementing the alternative beam T-junction elements in accordance with the devel-
oped methodology requires determining the dimensional characteristics and the configu-
ration of each of the joints (T1 or T2). A total of 38 joints were identified in the validation
structure, as can be seen in the diagram presented in Figure 12. In this figure, each one of
the junctions was identified with a circle and a number; for clarity purposes, one of the
sides has red circles and the other side green circles.
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Implementing the alternative junctions into a complex tubular structure requires
identifying each of the junctions of the structure in accordance with the analyzed joint
configurations (T1 or T2). As presented in Figure 13, most of the junctions can be easily
assimilated with T1 or T2, as is the case with points 1 to 3, but some others cannot be
easily determined or just have no clear equivalence. Over the 38 joints, 33 of them were
easily assimilated to T1 or T2, whereas for 5 joints (4, 8, 16, 20, and 38), this similitude was
not obvious.

To further analyze the junctions with no clear equivalence to T1 or T2 configurations,
different models with various combinations were developed and evaluated. Although a
complete description of all the combinations analyzed is out of the scope of the article, the
best three configurations will be described in the following paragraphs (Figure 14).

For the first variant (a), joint 8 was modeled as a single type T2 joint, whereas for
joints 4, 16, 20, and 38, the modeling characteristics were adhered to (a T1 and a T2) but
changed the direction of application of the type T2 junction. For the second variant (b),
it was decided to model all the type T1 and T2 joints that could be clearly identified in
the structure and to keep all the joints showing uncertainties (8, 4, 16, 20, 38) as normal
junctions. Finally, for the third variant (c), all the conflictive joints were assimilated as type
T1 joints, keeping all the continuous profiles unmodified.
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The stiffness values of the elastic elements used for each of the analyzed joints were
found through comparative simulations using joints modeled with volume-type elements
as reference models, following the recommendations of [8].

It should be highlighted that the stiffness values at the joint levels obtained with the
methodology of [8] are significantly high, ranging between 1 × 105–1 × 106 (N/m). These
stiffnesses in some manner quantify the contribution of the joint to the deformation of the
T-junctions in the linear domain. Ideally, it would be desired to improve each junction
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with sets of elastic elements so that the complex beam structure provides the most accurate
possible results. Despite that the assimilation to a joint type in 5 out of the 38 joints of the
validation structure is not obvious, it was demonstrated in [8] that although between the
T1 and T2 junctions there are significant differences, these differences were comparatively
lower than the ones in comparison to the regular beam junction. In other words, assigning
a junction as T1 when it is a T2 would induce fewer deviations than just having it as a
regular beam.

3.5. Characteristics of the Validation Structure Modeled with Volume-Type Elements

An additional model of the validation structure was constructed using volume-type
elements. Although modeling rectangular beam section structures with volume-type
elements has been demonstrated to be an excessively costly approach, it was decided to
configure this model to be used for comparison purposes, due to its intrinsic high accuracy.

The following Figure 15 illustrates the structure modelled with volume-type elements.
It was modelled using linear hexahedral elements of size 3 mm, which corresponds to the
minimum thickness of the rectangular beams employed in the validation structure. Tube
joints were modeled by means of bonded-type contacts, without considering the weld
seam geometry.
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4. Results and Discussion

Comparative analyses were performed for the evaluation of the improvements be-
tween the validation structure and the different finite element models of the validation
structure. Table 1 summarizes the displacement relative deviations for each of the finite ele-
ment models evaluated with respect to the values measured in the experimentally analyzed
validation structures.

From the observation of the results Table 1, the following aspects can be observed:

1. The best approximations obtained correspond to the detailed volume-type element
model.

2. The beam and the alternative beam models show significant deviations for sections a3,
a4, a8, and a9 (Figure 7). These sections are located at short distances from the clamps,
for which local effects are influencing the results, which cannot be characterized
using beam-type elements. It can also be seen that these sections do not undergo any
significant changes in the alternative beam models.
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3. Focusing on alternative beam models, variant (c) shows the best approximations to
the experimental validation structure and to the detailed volume element model. The
calculations are even better displacement estimations than those of the latter at a5 and
a10 sections.

Table 1. Deflection relative differences of the FEM models with respect to the experimental results.

Exp
Volume

Deviation

Exp
Beam

Deviation

Exp
Alt Beam

Var (a)
Deviation

Exp
Alt Beam

Var (b)
Deviation

Exp
Alt Beam

Var (c)
Deviation

Characterized sections [%] [%] [%] [%] [%]

a1 6.03 43.96 15.80 33.21 13.89
a2 5.93 43.39 15.91 33.87 15.57
a3 15.38 67.35 66.88 65.63 60.54
a4 8.43 97.35 97.34 97.21 97.29
a5 13.46 45.58 13.14 23.15 11.20
a6 6.01 88.95 69.83 64.87 23.54
a7 6.59 35.49 15.43 12.98 9.31
a8 44.64 71.09 81.14 82.46 82.24
a9 21.55 94.57 89.25 82.22 82.25
a10 6.22 40.25 1.16 3.30 2.87
a11 6.68 32.40 15.58 10.73 8.54
a12 12.37 49.23 14.25 13.16 14.21
a13 17.41 56.96 26.81 22.89 23.50
a14 14.46 53.30 48.95 27.48 21.28

Absolute average deviation 13.23 58.56 40.81 40.94 33.30

Absolute average deviation
without clamps (discarding the a3,

a4, a8, a9 values)
9.52 48.95 23.69 24.56 14.39

Since the ultimate objective of the implementation of alternative beam models is to
improve the accuracy of tubular structures modeled in this manner, it was considered
necessary to perform an additional evaluation of the capability of the models to predict
stress distributions.

It was observed in [8] that the stress distributions resulting from analyzing the simple
junctions modeled with beam or alternative beam type elements showed no significant
differences. Nevertheless, it seems interesting to extend the analysis to complex struc-
tures, where the effect of the local stiffness modification at the joint level might show
crossed influences.

Due to the inherent limitation of beam-type elements to account for local stress raisins
at the joint level, the analysis is focused on the comparison of the general stress distribution
maps. The volume element type model was used as a reference for the evaluation, since
this type of model, although discarded for general use due to the high computational costs
that it entails, can predict stress maps with high precision.

The resulting Von Mises stress distributions obtained for volume, ordinary beam, and
the alternative beam with the best results (c) are showed in Figure 16. It is observed that
both ordinary and alternative beam models show rather similar stress distributions, which
are also similar to the reference volume model.

Although a detailed stress analysis of the models is not in the scope of the article, it is
noted that the significant improvement in terms of deflection observed on the alternative
beam model has limited influence on the general stress distribution for complex structures.
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5. Conclusions

In the present paper, a test of specific complex structures was designed and built in
order to conduct the validation of the alternative beam element type modeling technique
presented in [8].

The structure was subjected to a controlled load, and displacements were captured at
a total of 14 measuring sections for comparison purposes.

For such complex structures, the application of the stiffness accuracy improvement
by means of elastic elements becomes less obvious, since the assignation of T1 or T2 joints’
configuration is not evident anymore for some joints. In the case of the validation of the
structure used in this work, a total of five junctions were identified in which the selection
was not clear and so the optimization of those particular junctions implied a detailed
specific analysis for which different configurations were modelled for these junctions and
compared to the experimental data, together with an ordinary beam element type and a
volume element type model.

For the ordinary-type elements, the deviations with respect to the validation structure
were found to be notable, with the beam model being approximately 58% stiffer.

By using the developed alternative T-junctions, it was shown that the characteristics
of beam models’ behavior can be modified. Evaluating the differences between the experi-
mental structure and the models built, and ignoring the measurements corresponding to
the support beams of the structure (sections a3, a4, a8, and a9), a reduction in the average
deviations from almost 49% to 14% was achieved. It was also noticed that these models
are indeed affected by the proper choice of elastic element configuration, ranging from an
average error of 27% to 14%. In any case, even the worst selection of the elastic elements
for the junctions shows a significant accuracy improvement with respect to the ordinary
beam model. Additionally, by analyzing the stress distributions in the different finite
element models, it was found that the elastic elements inserted into the joints did not show
significant influence on the stress distribution.

From the results presented in this work, it can be concluded that the utilization of the
alternative beam T-junction model for the behavioral optimization of tubular structures
represents a feasible methodology throughout which significant improvements of the
analyzed model estimations can be obtained.

The authors would like to remark that, when performing studies throughout finite
element analysis, it is necessary to take into consideration the fact that the beam-type
elements represent a simplified element derived from the shell- and volume-type elements,
which implies a series of intrinsic limitations determined by their own formulation.
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Abstract: This paper proposes the framework for reliability-based design optimization (RBDO) of
structural elements with an example based on the corrugated web I-girder. It tackles the problem
of topological optimization of corroding structures with uncertainties. Engineering restrictions
follow a concept of the limit states (LS) and extend it for stability and eigenfrequency assessment.
The reliability constraints include all the LS; they are computed according to first- and second-
order reliability methods. The RBDO example minimizes the bridge girder cross-section while
satisfying the structural reliability level for the ultimate and the serviceability limit states, stability,
and eigenfrequency. It takes into consideration two uncorrelated random effects, i.e., manufacturing
imperfection and corrosion. They are both Gaussian; the first of them is applied at assembly time,
while the second is applied according to the time series. The example confronts three independent
FEM models with an increasing level of detailing, and compares RBDO results for three concurrent
probabilistic methods, i.e., the iterative stochastic perturbation technique (ISPT), the semi-analytical
method, and the Monte Carlo simulation. This study proves that the RBDO analysis is feasible even
for computationally demanding structures, can support automation of structural design, and that
the level of detailing in the FEM models influences its results. Finally, it exemplifies that reliability
restrictions for LS are much more rigorous than for their deterministic counterparts, and that the
fastest ISPT method is sufficiently accurate for probabilistic calculations in this RBDO.

Keywords: reliability-based design optimization; stochastic perturbation technique; Monte Carlo
simulation; semi-analytical method; topological optimization; corrugated web; corrosion

1. Introduction

Contemporary structural designs require powerful tools for optimization purposes,
which must be effective, fast, and easy to use. Together with an exponential increase
in computational power, the traditional analytical approach to the optimization of Civil
Engineering structures has become significantly outdated. In the majority of designs,
this approach has already been replaced by more accurate deterministic methods, among
which the finite element method plays a crucial role, and they are largely implemented
in commercial software. Such an optimization strategy is applied for example in [1]; its
goal is commonly focused on structural topology [2,3]. The traditional deterministic design
appears to be suboptimal when significant uncertainties must be taken into account, such as
climatic loads, material uncertainties, assembly errors, and corrosion or soil conditions, just
to name a few. They cannot be avoided in structural and especially civil engineering designs.
This is why a new concept called reliability-based design optimization (RBDO) arose, where
the uncertainties are directly included in the design. An acceptable contrast between the
efficiency of deterministic and reliability optimization is given in [4] and an exhaustive
review of the concepts of RBDO is available [5] or in [6]. RBDO is well researched, especially
for steel truss structures e.g., [7,8], and frames e.g., [9,10], where the computation effort of
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each optimization loop is acceptable. They are not so common in more complex problems
involving the plate, shell, or composite structures, where the computation is much more
demanding and the amount of strength and serviceability checks much higher; such
construction is considered in this study. This extreme computational intensiveness is well
depicted in [11] and still constitutes a major issue. Computational intensiveness is caused
not only by the number of limit states but also by the high number of deterministic and
random design variables, whose impact on these states is not always known a priori to
RBDO. This aspect is commonly tackled by an initial sensitivity analysis, which determines
the susceptibility of structural response to a variation of design parameters. It has been
used with success for many years e.g., in [12], and eliminates unnecessary variables from
further computation. Application of the RBDO could also include corrosion effects [13],
which constitute a major topic of this paper.

Although some new concepts are still being put forward [14,15], the RBDO meth-
ods are quite mature now and allow a very efficient (but computationally demanding)
design. What they still lack is the ability to define a reliable life of structures, so that
the optimization is not aimed purely at modifications of the pristine materials, but also
takes into consideration the degradation of its work throughout the service life. This is
what we propose in our concept of RBDO, which allows a service life optimization with a
reliability-based design approach for the determination of the reliable service life of steel
structures that are subject to corrosion. Corrosion affects the strength and serviceability of
steel structures, including their capacity, stability, and durability. Its effects are depicted
for example in [16,17]. It is also a major reason for the careful and costly maintenance of
steel structures [18] and together with fire softening it constitutes the main weakness of
this material. Corrosion affects steel already at erection time, which is quite different from
reinforced concrete where the onset of corrosion is shifted from this initial time [19] and
calculated for example according to Fick’s second law. This is because steel structures are
directly affected by chloride attack and are not covered by other materials. Of course, there
exist a variety of covers such as special paints or chrome plating and various additives (see
for instance weathering steel), but even such techniques do not prevent this phenomenon
completely; they require repetitive application during the service life of steel constructions.
Corrosion especially affects thin-walled structures, where small pitting corrosion placed
in a susceptible place, or a small reduction in thickness may cause serious loss of capacity.
A fine example of such structures are those with sinusoidally corrugated webs currently
applied in girders (also arched ones [20]) and also composite structures, where the deck is
made of concrete and the web of constructional steel [21].

The corrugated web considerably increases rigidity and shear capacity [22], and
decreases sensitivity to a local stability loss in the web [23], thus reducing the occurrence
of local buckling. It also allows for reduced self-weight [24], as compared to conventional
flat web I-girders, and does not increase the complexity of execution, as trusses do. The
usage of these assets has increased, especially in structural applications such as bridges,
pedestrian walkways, hangars, and industrial buildings. Interestingly, corrugated webs also
outperform flat webs in energy dissipation and could be used in anti-seismic structures [25].
The first studies of the SIN web girders were conducted in the late 1990s [26], yet they
are still new in civil engineering applications and have several disadvantages for such
applications. They offer a weaker contribution to bending [27] and cause an additional
normal stress distribution in flanges coming from transverse bending [28] compared to the
regular I-beams; they also have complex bending–shear interaction [29]. To make matters
worse, there still is a lack of design standards or specifications dealing with the behavior of
such webs and SIN web girders.

This is why in recent years there has been intensive research on their basic behavior
connected with stress [30], elastic critical moment, buckling [31,32], and shear [33,34];
they are computed in this study within the concept of limit states. A very interesting
problem is the capacity and serviceability of such constructions in fire conditions [35],
which considerably reduce the bearing capacity of steel structures and also their reliability.
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Reliability-based computations of structural elements with a corrugated web are also
available [36,37] and even a weight optimization could be found [38], but RBDO has not
yet been proposed for such structures; this is especially true when corrosion is the leading
random effect. Consequently, there is a need to develop recommendations that properly
address the reliability issues of such girders, which is also the reason for their choice as an
example for the proposed framework.

The principal objective of this paper is to propose an RBDO framework with a special
focus on structural elements and constructions that must satisfy complex restrictions of
engineering standards. The secondary goal is to successfully apply this framework to a
computationally challenging example of the sinusoidally corrugated web I-girder. The
study assumes the possibility of optimizing the topology of civil engineering structures
subjected to uncertain corrosion evolution and engineering restrictions for a specified
reliable service life. Further, it assumes that FEM modeling accuracy and probabilistic
solver play a crucial role in the accuracy and timing of RBDO results. Next, it assumes the
importance of the steel and environment type as well as the choice of the WLSM weighing
function for the solution.

Therefore, a design optimization framework and additional theoretical background
for time-dependent reliability civil engineering analysis have been presented and applied
for the case study of the steel plate girder with a sinusoidally corrugated I web. The results
obtained in this paper would allow for more optimal designing of such structures and may
be applied to other steel and concrete structures.

2. Theoretical Background

According to the current design codes, the structural elements’ durability period
adopted is 50 years, and this is usually ensured by repeated design trials with the goal
of minimizing weight or cost, alternatively optimization of its capacity for different limit
states. In such terms, a designer solves an optimization problem with a clearly defined
set of restrictions, which are first of all (1) the minimum capacity of the element, sec-
ondly (2) geometrical constraints, (3) material restrictions, (4) maximum deformations, and
(5) other physical constraints. The most tedious work is usually required in the first of
these, i.e., in ensuring a minimum capacity of the element. This is because the element
(and an entire structure) is subjected to multiple loads of different morphology and with
different placement (wind, snow, traffic load, vibrations, self-weight, machinery, etc.),
which may or may not occur at the same time. That is why an engineer must check the
structural capacity for multiple combinations, which almost always require a different
computational approach. This work proposes a framework, according to which such opti-
mization could be utilized with a specified goal of optimization. It takes into consideration
a classical approach of limit states proposed by the Eurocode 0 [39] and also a more refined,
higher-order probabilistic design method directly using the reliability theory, where the
judgment of service life is done based on the reliability indices βg of the designed elements.
Such refinement is advised in Appendices B and C of this design norm [39]. Within this
framework, multiple structural elements may be assessed, and the entire structure could
be optimized. The objective function may be purely topological, as in the below example,
but it may also be cost-oriented, when the total cost of an element is optimized, or may
minimize the difference of all the indices βg. The method selected for optimization pur-
poses is deterministic non-gradient regular search, in which the main loop encompasses
the subsequent steps of (1) deterministic verification of restrictions, (2) verification of the
given limit states, and finally, (3) checks of the reliability indices. This is shown in Figure 1,
where the optimization problem depends on the design time t and input uncertainty ω;
at each step, a new topology W(ω; t) is proposed. A non-gradient approach is selected
because in most civil engineering designs gradient cannot be explicitly computed. This is
because each of the combinations defined in multiple limit states would be different and
movement in any direction of the design domain may give converse results for multiple
combinations. The main objective of this algorithm is structural optimization and the main
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loop depicted in Figure 1 starts with an arbitrary point in the optimization domain (starting
geometry of the element) that should be selected according to the engineering practice.
At first, the most straightforward conditions are checked, i.e., geometrical, material, and
physical constraints. Then, a cross-sectional class is determined, because its change de-
mands different checks of the limit states and the reliability indices. Upon this, the finite
element method is utilized to solve the mechanical problem and its results are used in the
determination of both, the limit states and reliability indices. Verification of the physical
restrictions and cross-sectional class is straightforward and depends strictly on the selected
material, geometry, and static scheme of the specific element. The FEM must be carefully
formulated for each part so that the parameters existent in the objective function could be
easily (or preferably automatically) ameliorated and the subsequent model solved; this will
be explained in detail for the specific context of the example.
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Designing processes requiring a detailed explanation include the ‘Calculate Limit
States’, ‘Calculate Reliability indices’ βg, and ‘Validate stop criteria’. According to a
common definition, a limit state is a state in which the construction element or an entire
structure will fail due to a specified external action. The design codes in their basic form
define the ultimate limit state (ULS) and serviceability limit state (SLS), which describe
either the conditions in which the construction will fail (ULS) or will stop working in an
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acceptable way (SLS); the hierarchy of LS is shown on Figure 2. If the design is made
based on the FEM, not the analytical approach, each element must meet five fundamental
conditions for the linear regime of the structural materials. First, (1) the general stresses
σij and (2) the reduced (commonly Huber–Mises) stresses σred must be lower than the
plastic limit. In the case of the linear civil engineering structures, these are limited to the
longitudinal normal stresses σ11 and the shear stresses σ12 (or τ). Additionally, (3) the
structure must be stable and buckle neither locally nor globally (but local buckling is
sometimes permitted when additional structural elements are added to the designed part);
this constraint is depicted in Figure 2 by ξ (W, t). The last condition in the ULS encompasses
(4) the first eigenfrequencies, which must be high enough not to be triggered by the wind
or traffic; usually, the minimum is set to 5 Hz. In the SLS, (5) deformations of this element
must be limited, which include the deflections u (W, t) and also displacements at its ends
(or borders) and connections to other parts δi (W, t).

Materials 2022, 15, x FOR PEER REVIEW 5 of 31 
 

 

structure will fail due to a specified external action. The design codes in their basic form 

define the ultimate limit state (ULS) and serviceability limit state (SLS), which describe 

either the conditions in which the construction will fail (ULS) or will stop working in an 

acceptable way (SLS); the hierarchy of LS is shown on Figure 2. If the design is made based 

on the FEM, not the analytical approach, each element must meet five fundamental con-

ditions for the linear regime of the structural materials. First, (1) the general stresses σij 

and (2) the reduced (commonly Huber–Mises) stresses σred must be lower than the plastic 

limit. In the case of the linear civil engineering structures, these are limited to the longitu-

dinal normal stresses σ11 and the shear stresses σ12 (or τ). Additionally, (3) the struc-

ture must be stable and buckle neither locally nor globally (but local buckling is sometimes 

permitted when additional structural elements are added to the designed part); this con-

straint is depicted in Figure 2 by ξ (W,t). The last condition in the ULS encompasses (4) 

the first eigenfrequencies, which must be high enough not to be triggered by the wind or 

traffic; usually, the minimum is set to 5 Hz. In the SLS, (5) deformations of this element 

must be limited, which include the deflections u (W,t) and also displacements at its ends 

(or borders) and connections to other parts δi (W,t).  

 

Figure 2. Procedure for the determination of the limit states. 

One may also include requirements for exceptional states, such as collision, fire loads, 

or checks for fatigue, but they are out of the scope of this work; this is important because 

of their rare inclusion in design purposes in civil engineering practice. All the mentioned 

states could be checked implicitly using the results of the subsequent FEM analyses, which 

are static, eigenfrequency, and critical load tasks available in the most common programs 

such as ABAQUS, ANSYS, Catia, or DIANA. Please note, that some of the limit states may 

be checked globally for each part or an entire structure, such as ξ (W,t) or ϖ (W,t), while 

the others must be met for all the points of the structure (in FEM, for all the elements). 

These include the stresses, strains, deflections, deformations, and displacements, all of 

them depending strictly on the objective function—the topology of the element. If all re-

strictions in both limit states are met, the optimization could proceed to the next process—

a check of the reliability indices β
g
. 

A process of the determination of reliability indices β
g
 serves for a final check of the 

restrictions and could be started only if all the previous ones are met. This is because the 

limit functions g are almost directly taken from the limit states and used in the numerator 

of the reliability indices β
g
. This process is depicted in Figure 3, which defines the flow of 

Figure 2. Procedure for the determination of the limit states.

One may also include requirements for exceptional states, such as collision, fire loads,
or checks for fatigue, but they are out of the scope of this work; this is important because
of their rare inclusion in design purposes in civil engineering practice. All the mentioned
states could be checked implicitly using the results of the subsequent FEM analyses, which
are static, eigenfrequency, and critical load tasks available in the most common programs
such as ABAQUS, ANSYS, Catia, or DIANA. Please note, that some of the limit states may
be checked globally for each part or an entire structure, such as ξ (W, t) or v (W, t), while
the others must be met for all the points of the structure (in FEM, for all the elements).
These include the stresses, strains, deflections, deformations, and displacements, all of them
depending strictly on the objective function—the topology of the element. If all restrictions
in both limit states are met, the optimization could proceed to the next process—a check of
the reliability indices βg.

A process of the determination of reliability indices βg serves for a final check of the
restrictions and could be started only if all the previous ones are met. This is because the
limit functions g are almost directly taken from the limit states and used in the numerator
of the reliability indices βg. This process is depicted in Figure 3, which defines the flow
of computations at this stage of optimization. It starts with optimization of the response
function, then it determines the probabilistic coefficients, and finally calculates the reliability
indices serving as the final restrictions. These indices are computed first at time t = 0 with
an initial uncertainty ω0 and only then for t ε (0; td) and ω, where td is designed service
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life. This is because the design may be already unacceptable when no aging (or corrosion)
of the material is included. The checks of reliability are performed for all the restrictions
from the limit states separately and each of them must be met so that the current topology
can be accepted. In this process, neither the amount nor the probability density function
(PDF) is strictly limited, and the total number of uncertainty sources depends upon the
probabilistic methods applied, as does the PDF for each of these.
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Checks for t = 0 are performed for both the first-order reliability method (FORM) and
the second-order reliability method (SORM) in sequential order; this order of analysis is
defined by O in Figure 3. The last computation of reliable service life is computed solely
by the FORM (for O = 1) and plotted in the service time domain. Unlike the majority
of papers that propose only one method of probabilistic calculus (see for example [40]),
we propose three concurrent methods, the iterative stochastic perturbation technique, the
semi-analytical method (AM), and the crude Monte Carlo simulation (MCS). Please note
that the computation of reliability restrictions is not limited to the above methods.

Determination of the response function, the first task in reliability-focused computa-
tions, serves as an inner optimization problem. It is solved at each optimization step just
before the determination of probabilistic characteristics. It is devoted to the determination
of a continuous response function of the capacity of the girder fc(W) from its discrete
representation solved via the FEM. This is required in computations of subsequent limit
functions g defined as the difference of this capacity and the reaction to external action or
an engineering limit fe(W).

g(W) = fc(W)− fe(W). (1)
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Please note that the analytical formula relating the objective function and the functions
of girder capacity cannot be explicitly derived analytically, which is why the FEM is used
for its retrieval. The inner optimization problem is solved by deterministic non-gradient
search in the discrete domain of the order of the response polynomial and the number of
terms in this polynomial. Restrictions include several terms nAi > 0 ε N and the order of
polynomial PO > 0 ε N. The optimization aim is twofold—minimization of the weighted
least squares method (WLSM) variance and maximization of correlation of the polynomial
and the FEM results.

min(Var(r)) ∧max
(

Corr
(

mFEM, Aihi
))

(2)

where higher precedence is set to the correlation. The stop function is generally not required
in this problem because of a finite number of allowable points in the discrete optimization
domain. PO is limited to 10 ÷ 30, firstly because of no real correlation gain for higher order
polynomials, and secondly because of difficulties with its behavior outside or neighboring
to the probing range of the FEM. Such optimization is performed for each of the limit
functions. In the exemplary problem, only umax was taken into consideration, whose an
explicit mathematical formulation is proposed as

u(ω; t) = N · q(ω; t) = N · Ai(t) · hi(ω; t); r2 =
(
mFEM − Aihi)2 : min

(
n
∑

j=1
r2

j

)
→ Aj;

min(Var(r)) ∧max
(
Corr

(
mFEM, Aihi))

(3)

where u(ω;t) is the maximum deflection, N stands for shape function, Ai are defined as the
coefficients of approximating polynomial, hi define the subsequent powers of the design
variable, and r is a residuum coming from a difference of the FEM result mFEM and the
result coming from the polynomial response function Aihi.

The weighted least squares method (WLSM) solved at each optimization step uses the
following polynomial approximation:

u(b) ∼= D(Po)bPo = f (D, b) Po = 1, . . . , s; s < n. (4)

where the polynomial basis of the sth order PO is used and solved around the web thickness
of the current optimization step. This web thickness also serves as a mean value of the main
random parameter included in the probabilistic calculus, indexed here by b. As a result n
different pairs

(
b(α), u(α)

)
for α = 1, . . . , n are returned, whose arguments belong to the

neighborhood of expectation of b itself. The residuals in each trial point are introduced to
get an algebraic condition for these expansion coefficients. They are next minimized. After
relevant modifications, the following regular matrix equations are obtained

(
(J)Tw J

)
D = (J)T w u (5)

Such a system of equations (with the dimensions n x s) is solved symbolically in
MAPLE [41].

The last process in the design loop is a stop condition and it is depicted in Figure 4. It
evaluates if the optimized solution is found or not. Success occurs when at least one step
finds a more optimal solution than W0. Failure is identified when (1) one of the indices
from restrictions is within the margin of βT at design service time td and (2) ns subsequent
steps do not decrease the objective function (fail to optimize the W). An additional stop is
defined for iT,max = 1000 steps to ensure a cutoff of the optimization with weak correlation;
its fulfillment may lead either to optimization success when at least one of the previous W
fulfilled all restrictions or optimization failure. A more elaborate stop condition may also
be applied, but its inclusion would increase the computation time, which proves critical
for engineering purposes. Please note that the solution and optimization convergence
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will depend on the starting structural configuration W0 and it is recommended to repeat
optimization with different W0, using a different kind of initial cross-section for example.

Figure 4. Definition of stop criteria.

The reliability calculus at the initial time is only according to initial imperfections.
A formulation of such a problem could be found in [42]. The final reliable life check is
performed according to two random variables, namely the corrosion penetration depth and
fabrication imperfection. This is possible in the stochastic context with the introduction of
the relevant resulting functions of corrosion penetration depth into both, the web thickness
mean value and its initial variation. Expected value of random web thickness b can be
computed as

E[b] =
+∞∫

−∞

b pb(x)dx ≡ 1
M

M

∑
i=1

b(i) (6)

while its variance as

Var(b) =
+∞∫
−∞

(b− E[b])2 pb(x)dx + Var(d)− 2Corr(b, d)

≡ 1
M−1

M
∑

i=1

(
b(i) − E[b]

)2
+ Var(d)− 2Corr(b, d)

(7)

where E[d] is the expected value of corrosion penetration depth directly affecting the mean
value of web thickness b; the correlation between these two stochastic variables Corr(b, d)
is set to 0.

The reliability indices βFORM and βSORM may serve for initial reliability as well as
structural health monitoring. The first of these could be computed in the following way:

βg, FORM =
E[g]
σ[g]

(8)
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where βg stands for the reliability index of a specific limit function, E[g] is the expectation
of this function g, and σ[g] is its standard deviation. A reliability index βg,FORM assumes a
normal probability distribution of a given random (response) function; βg,SORM is defined
as [37]

βg, SORM = −Φ−1
(

Pf 2

)
(9)

where Pf 2 denotes the probability of failure for the chosen probability distribution of the
function relative to βg, FORM in the following manner:

Pf 2 =
Φ
(

βg, FORM
)

√
1 + βg, FORM·κ

, (10)

where κ is the curvature approximating the primary surface defined by the following formula:

κ =

du(m)

db
k2
0(

1+
(

du(m)

dbk
0

)2
) 3

2
. (11)

3. Numerical Illustration

Let us consider a corrugated web I-beam girder that is suspected of corrosion, as in
Figure 5.

Figure 5. The layout of the girder in [mm].

In such girders, the web is predominantly affected by this phenomenon, which leads
to loss of bearing capacity during its service life. This girder is subjected to topological
optimization, whose goal is to optimize the cross-section that ensures reliability for 50 years
of service according to Eurocode 0, Appendix B [39]. Optimization is performed within the
framework proposed in Figure 1, where the limit states are checked based on three FEM
models; the indices βg are verified for stresses, deflections, eigenfrequencies, and stabilities,
while the final constraints of reliability are based on displacement; the following objective
function W (v; t) is proposed:

W(ω; ω0; t) =
(

Aw(ω; ω0; t) + 2A f

)
· L =

(
tw(ω; ω0; t) · hw + 2A f

)
· L

=
((

tw0(ω0)− 2 ·
(

A(ω) + tB(ω)
))
· hw + 2A f

)
· L

(12)

As a function of v0—the coefficient of variation of the web thickness at time t = 0,
v—coefficient of variation of corrosion as well as of time t; t = 0 stands for an assembly
time, in which exposure to the external environment begins. In this function, Aw and A f
are the cross-sectional areas of the web and the flange, hw stands for the height of the web,
and tw denotes the thickness of the web. Let us note that in common civil engineering
designs the flanges are much thicker than the web and are placed horizontally so that they
are not so susceptible to corrosion. This is why the time dependence of this topology is
generally based on the web, whose thickness decreases with corrosion. This thickness is
uncertain already after its fabrication process, which is imposed by an initial coefficient of
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variation v0 and is then subjected to stochastic corrosion of the form A (v)+tB(v). In this
term tw= tw0(ω0)− 2·

(
A(ω)+tB(v)

)
, where the quotient 2 depicts the susceptibility of tw

to corrosion from both sides. The corrosion function strictly depends on the environment
and steel type, to which it is subjected, and is taken from Melchers 2002. Its coefficients
are shown in Table 1, which summarizes the corrosion parameters for rural, urban, and
marine environments separately for the carbon and weathering steels. This table shows
that the marine environment is specified by the highest CoV, and has expectations a little
smaller than the urban environment, while the rural environment is the least invasive. The
weathering steel is much less affected by corrosion, as both parameters, A and B, have
smaller mean values and CVS than the carbon steel in a corresponding environment type.
Nonetheless, the downside of this type of steel is its cost.

Table 1. Statistical parameters of corrosion for various steel types [43].

Parameters
Carbon Steel Weathering Steel

A (10−3 mm) B A (10−3 mm) B

Rural environment

Expectation 34.0 (model 1) 0.65 33.3 (model 2) 0.498

CoV 0.009 0.10 0.34 0.09

Urban environment

Expectation 80.2 (model 3) 0.539 50.7 (model 4) 0.567

CoV 0.42 0.40 0.30 0.37

Marine environment

Expectation 70.6 (model 5) 0.789 40.2 (model 6) 0.557

CoV 0.66 0.49 0.22 0.10

A corrosion model applied in this work comes from the additional experiments re-
ported in the literature and is applied with the parameters adjacent to the carbon steel in
an urban environment. Its expected value reads

E[D(t)]= 3.52·10−3e2.81·10−24(1.05·1012 +1.00·1011 ln (t))2
(13)

The variance is introduced as

Var(D(t))= 7.57·10−3t1.19e1.12·10−1 ln (t)2 − 5.65·10−4t1.19e5.63·10−2 ln (t)2+3.13

+1.24·10−5t1.19e6.24+5.63·10−2 ln (t)2
.

(14)

They are both truncated by the third vital number for the reader’s convenience.
The principal restrictions for this objective function come solely from the requirements

of the bearing capacity, stability, eigenfrequency, and allowable deformation of the girder,
which are a cross-section within its design service life. This, in turn, is defined in the current
civil engineering design code, Eurocode 0 [39], which in its annexes proposes the limits of
reliability index βg for each of the limit states (LS). They are divided into the ultimate limit
state (ULS), in which the girder must withstand the normal, reduced, and shear stresses,
have high enough first eigenfrequency, as well as not be susceptible to buckling. The
second LS is the serviceability limit state (SLS), in which the deflection of this girder must
be limited by the value of l/250. In such terms, there exist six restrictions for its reliability:

βτ(t)− βτ̂(t) ≥ 0; βσred(t)− βσ̂(t) ≥ 0; βΩ(t)− βΩ̂(t) ≥ 0;
βσcr (t)− βσ̂cr (t) ≥ 0; βumax(t)− βû(t) ≥ 0; βξ(t)− βξ̂(t) ≥ 0; (15)
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Further restrictions are connected to the geometry of the girder, its volume V, and
cross-sectional area A, which must be all positive.

$, hw , tw, t f , h f , A, V > 0 (16)

The geometry of this girder includes the height of the web hw , its width tw as well as
the height h f and width t f of the flange. Let us note that the resulting checks of bearing
capacity required by the Eurocode changes together with an increase of cross-sectional
class and therefore its slenderness must be limited to keep the checks unified in terms of

both, the flange and the web 0 < hw /tw < 72, 0 <
( h f

2 − tw − a
)

/t f < 9. Otherwise,
the procedure of determination of the limit states and the reliability indices would have to
be changed substantially each time the section class changes.

The material selected for the design purposes is constructional steel. This choice
determines all the material restrictions, including the density $ ∈ 7.75–8.05 [g/cm 3]
and the plastic limit of this steel fu, which is here narrowed to the most common steels
available on the international market, i.e., fu ∈ {195, 235, 275, 355, 420, 460}MPa with
corresponding Young modulus E = 210 GPa and Poisson ratio of µ = 0.3. The material
model applied in all the computations for constructional steel is linear with plastic limit fu.

Additional restrictions proceed directly from the external requirements or the investor
and include static schemes and loads. These are the designed length of the girder L = 40 m,
external load in form of a uniform pressure applied on the upper flange q = 150 kN/m,
and degrees of freedom restricted at the ends of the girder as simple supports—although
they are not directly included in the objective function but in the FEM model.

The inner optimization problem is solved here with the order of response polynomial
in the range of 16 > PO > 0 ε N. A maximum polynomial order is set, because previous
optimization problems show that the solution starts to degrade already at P0 > 10.

A shortened version of the results for one of these optimizations devoted to maximum
deflection is given in Table 2. It shows that the accuracy of the WLSM approximation
measured by its total error EWLSM, variance αWLSM, and correlation coefficient of the
response function and the discrete FEM results CWLSM does not necessarily increase with
an increase of the polynomial order or number of terms included. Moreover, the optimum
order is not possible to determine a priori to solving the optimization problem. Interestingly,
the limitation of the terms with a constant PO has a minor influence on CWLSM but increases
both EWLSM and αWLSM. It must be noted that together with an increase of the PO and
nA the computation complexity and length are also increased. Generally, the optimum
order is in the range of PO ∈ {5; 10} and full polynomials are preferred. An additional
problem in this inner optimization is the type of weights in the WLSM WS. The considered
weighting schemes are equal WSE, triangular WST , and Dirac WSD; the last weighting
scheme places greater importance on the realizations around the mean (or middle) of the
uncertain parameter, and the equal weighting scheme puts the same weight on all the
discrete data points but has problems when they are not the smooth and triangular type
of weights, which decreases the importance of the data points with an increase of their
distance from the mean. It is quite efficient for the low PO but for this weighting scheme
EWLSM and αWLSM increase very fast together with an increase in PO. Dirac-type of weight
puts the same importance on the mean as for all the other data points. It ensures the
best CWLSM at the highest order, keeps a very small error and low variance for a high
span of PO, and returns the smoothest approximation. This is why it was selected for
further optimizations and the other weighting schemes were removed from the checks
of a reliable life prediction. From Table 2, it could be also concluded that the optimum
approximation was reached for a full polynomial of the ninth order and WLSM with a
Dirac-type of weighting.
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Table 2. Selected WLSM polynomial approximations of the extreme displacement versus
random input.

Displacement WLSM Polynomial Choice for Different Weights

No. Po
CWLSM EWLSM [10−2] αααWLSM [10−5]

WSD WST WSE WSD WST WSE WSD WST WSE

1 1st, f 0.994 0.9941 0.9941 2.105 2.166 2.124 6.216 6.414 6.554

2 3rd, f 0.9959 0.9959 0.9958 1.722 1.720 1.770 4.282 4.293 4.333

3 5th, f 0.9962 0.4008 0.0016 1.65 50.82 123.6 3.902 3063 18.530

4 6th, f 0.9966 0.0954 0.1556 1.401 202.1 58.01 3.492 66.200 446.5

5 9th, f 0.9969 0.3295 0.3789 1.427 67.29 57.93 3.207 6014 421.3

6 10th, f 0.9954 0.1112 0.3769 1.752 587.1 53.35 4.762 42.935 336.6

7 6th, p5 0.996 0.9958 0.9952 1.754 1.82 1.794 4.184 4.311 4.521

8 11th, p5 0.996 0.996 0.9958 1.748 1.739 1.758 4.111 4.113 4.388

9 15th, p5 0.9958 0.9958 0.9957 1.747 1.751 1.764 4.324 4.337 4.414

10 9th, p4 0.9958 0.9958 0.9958 1.739 1.743 1.758 4.319 4.333 4.389

Such an optimized third-order maximum deflection function valid for the SLS is
given below:

E[RSLS]= 8.09 − 3.13·10−2(E[tw])+2.91·10−4(E[tw])
2 − 9.71·10−7(E[tw])

3. (17)

In this expression, the expectation of web thickness includes an influence of fabrication
error E[tw0] existent at t = 0 and corrosion E[D(t)] so that E[tw]= E[tw0]− 2·E[D(t)]. Let
us note that together with the total allowed deflection this maximum deflection function
serves as a numerator in an expression of βg, FORM as E[gSLS]= L/350− E[RSLS].

A variance of each limit state is available simply as diff(E[g], tw)
2·Var(tw), where

E[g] represents the expected value of each limit state; for SLS it is E[gSLS]. The variance
of web thickness could be obtained as Var(tw) =Var(tw0)+2·Var(D(t)); fabrication error
and corrosion phenomenon are considered here as uncorrelated. An initial coefficient of
variation of fabrication error is assumed as α(tw0)= 0.05.

The indices βσ̂, βσ̂cr , βû, βτ̂ and βΩ̂ define the threshold for each of the reliability
restrictions, while βσred , βumax

, βΩ, βτ , and βσcr denote the indices of reliability computed
according to the first-order reliability method (FORM, see Equation (8)) or second-order
reliability method (SORM, see Equation (9)). They strictly follow the types of checks made
in the limit states of the framework but include the uncertainty disregarded in LS; a detailed
formulation for a FORM and SORM is given in the theoretical background. Restrictions
of βg are always in the form of a difference between the threshold indices β ĝ and the
resulting indices defining the girder βg. The threshold indices are piecewise constant
functions with required service time ts, which by default is 50 years [39]. The minimum
values corresponding to ts= 50 for βσ̂, βσ̂cr , βτ̂ = 3.8 and βû, βΩ̂, βξ̂ = 1.5. This is basically
because the former defines the ULS and the latter the SLS. In its first-order formulation, βg
is a simple quotient of the expected value of the limit function g − E[g] and the standard
deviation of g − σ[g]. In turn, the limit function is a difference between the capacity of
the girder and its response to an external action or an engineering limit; there may exist
multiple limit functions for a single engineering structure (such as for this girder). Owing
to this, there exist also multiple formulations of the limiting indices, whose definition is
very close to the limit states existent in the approach of Eurocode; for the context of this
example, the following indices must be defined:

• βσ—a reliability index for the maximum normal stress;
• βσred—for the maximum stress according to the Huber–Mises criterion;
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• βτ—for the ultimate shear stress;
• βumax—for the ultimate deflection of this girder;
• βΩ—for the eigenfrequency;
• βξ—for the stability defined by the critical load (CL).

In this example βT= 0.3, is= 1, iu= 5, and iT= 100. Additionally, the process of
determination of βg was postponed until the limit states were optimized, which allowed
substantial optimization time savings.

3.1. Numerical Model Description

The FEM simulations are provided by the use of an FEM system ABAQUS [44] with
the use of three 3D full-scale models reported below:

• Volumetric (model 1)—having the highest level of detailing including the ribs and
welds, made with hexa—end tetrahedral elements;

• Shell model with ribs (model 2)—with a moderate level of detailing including inner
and support ribs, based on the quad-dominated shell elements;

• Shell model without ribs (model 3)—with only the basic level of detailing including
solely the web and flanges, based on the quad-dominated shell elements.

Their discretization has been shown in Figure 6. This is done to show the importance
of the FEM models for optimization purposes and to contrast the results coming from
different levels of detailing in the numerical model. The details available in these models
are summarized in Table 3. This table firstly shows the type of elements used in the three
models, their total number, and the total number of nodes. The highest number of nodes
and elements are given in the first model, which is because of the FEM formulation based
on the 3D elements. The third model has more than five times fewer elements and the
second is a little less than the third. This is very close for the number of nodes, which are
also the highest for the first model and the lowest for the second model; the highest level
of detail is provided in the first model. They include the web flanges, ribs, and welds, the
second model does not include welds, and the third postpones welds and ribs. This is
strictly related to the number of parts and instances (provided in brackets of Table 3) created
in these models—only 5 were required in the simplest third model and 563 in the first,
mostly because of the very sophisticated welding required for the SIN web I-beams. This is
also why the quantity of tied connections in the different models differs dramatically—only
6 for the third model and almost 1400 for the first. The latter part of Table 3. summarizes
the constitutive models, analysis types, and the type and number of interactions between
the modeled parts. The constitutive model applied, and the types of analyses performed
for these models are the same, because of the optimization requirements. Static and static
general analyses return stresses σij, Huber–Mises stress σred, and ultimate deflection umax.

Table 3. Details of the full-scale FEM models.

Model
No.

Elements
Number of
Parts in
the Model

Details
Modeled

Constitutive
Model

Types of
Analysis

Interaction
Type, QuantityType

Total
Number of

FEs

Total
Number of

Nodes

1.
C3D8R 573,043

925,741 93 (563)

- Web
- Flanges
- Ribs
- welds

Li
ne

ar
el

as
ti

c
w

it
h

th
e

pl
as

ti
c

lim
it

- Static
- Static,

general
- Buckling
- Frequency

Tie,
1392

connections

C3D10 152,460

2. S4R 77,422 85,777 10 (55)
- Web
- Flanges
- Ribs

Tie,
178 connections

S3 1768

3. S4R 100,800 221,200 5 (5) - Web
- Flanges

Tie,
6

connections
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Figure 6. ABAQUS discretization of the girder, (a) with ribs and welds (volumetric, model 1), (b) with
ribs (shell, model 2), (c) without ribs (shell, model 3).

The buckling analysis outputs the critical load ξ and the frequency analysis returns the
eigenfrequency Ω. All of them are used in the checks of LS and βg. The constitutive relation
is set to linear with a plastic limit to conform to the standard approach of the Eurocode [39].

The topics that require further attention are the details of discretization and features
included in different models. The details of discretization are shown in Figure 6, which
brings us closer to the mesh used in all three studies. The first two shell models (models
2 and 3) have a quad-dominated mesh with a free meshing technique, allowing the best
adaptivity of the elements to the geometry, while the volumetric model—a mixture of
hexahedral and tetrahedral finite elements of both structured and unstructured meshes with
different sizes. This variability is provided to optimize the time effort and computational
accuracy. A structured hexahedral mesh is applied to the web and flanges, while the
unstructured meshing technique is preserved in the welds; this is because of their complex
geometry. The mesh of ribs and webs in the shell models is structured and composed of
quad elements, while one of the flanges is a mixture of quadratic and triangular elements
that adapt to the sinusoidal pattern of the web; this is visualized in Figure 6. Elements
used in all computations are conventional stress-displacement-based FEs. The C3D8 is
a linear brick, with eight nodes, reduced integration, and a single integration point. The
C3D10 is a second-order 10-node tetrahedral element with four integration points at each
tetrahedral vertex. S4R is a shell with four nodes, reduced integration, and a single central
integration point. It has implemented hourglass control and finite membrane strains. S3 is
a three-node triangular general-purpose shell with finite membrane strains. The simple
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support was modeled with linear constraints. They were placed directly below the middle
of the support rib (models 1 and 2) or at the outer edge of the bottom flange (model 3)
along the bottom flange width. On the left side only rotational DOF (UR1) was allowed;
on the right, UR1 and displacement along the length of the girder were allowed (U2). The
load was applied as the equal surface load on the entire upper flange of the girder. Its
magnitude was equal to 107.14 kN/m2 (equivalent to 150 kN/m) including the dead load.
The geometry of this girder was adopted exactly as given in Figure 5.

The latter detail—features modeled—illustrates a development of numerical research.
Each consecutive model made in ABAQUS brings new additional details, namely the ribs
and welds depicted in Figure 7 for the first model. It is also quite important that this
first model consists of three-dimensional elements. This enables not only a more accurate
stress analysis through the thickness of the modeled parts but also makes possible a check
of interaction between the different elements of the girder and its utilization in terms of
internal stress. They both are not available in the simplified models.
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Figure 7. Additional views on the discretization for a volumetric model of the girder (model 1).
(a) the details of the weld discretization; (b) welded connection of the ribs with the sinusoidal web.

3.2. Deterministic Limit States Analysis

Computation of the limit states is performed based on the results taken from the FEM
simulations, which are summarized in Table 4, where σcr, τ, umax, v, and ξ are shown for
the vicinity of the optimal web thickness tw= 56 mm. This table firstly shows that the
stresses and displacements increase together with an increase of tw (an increase of W (tw)),
while the v and ξ increase. All these effects are desirable, because the smaller the stresses
and strains, the lower the usage of the material, and, secondly, the higher the critical loads
and eigenfrequencies, the higher the margin between stability loss and the current state.
Moreover, an addition of the welds has rather a marginal stiffening effect, because the
displacements from the second and the third model are very close, at least in the considered
loading scheme. A slightly higher umax for the first model comes principally from the
addition of the welds and the difference between volumetric and shell FEM formulation.
This is not true for the ultimate stresses and stability, both of which are significantly affected
by the ribs. They decrease the ultimate stresses in the FEM for σcr and τ that are returned
for the models without ribs. Interestingly, the addition of ribs directly connected to the
web does not essentially change the stress flow of shear in the web, yet causes its strong
reduction. This happens especially in the first model, which additionally detects quite a
high shear in the entire web-flange weld, even in the middle of the girder span.
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Table 4. Comparison of the results from the three FEM models.

tw

σcr [MPa] τ [MPa] umax [cm] v [Hz] ξ (CL)

Model No. Model No. Model No. Model No. Model No.

3 2 1 3 2 1 3 2 1 3 2 1 3 2 1

51 484.8 212.0 225.6 127.6 67.45 87.12 7.126 7.206 7.710 1.39 1.37 1.73 4.398 7.304 1.708

52 484.5 211.7 229. 127.2 67.0 89.95 7.117 7.198 7.702 1.39 1.37 1.73 4.409 7.317 1.716

53 484.2 211.4 232.7 126.9 66.69 92.92 7.108 7.191 7.698 1.4 1.36 1.72 4.420 7.329 1.725

54 483.9 211.1 234.2 126.5 66.35 81.78 7.100 7.183 7.686 1.4 1.36 1.72 4.431 7.342 1.737

55 483.7 210.8 236.0 126.1 66.02 82.00 7.091 7.175 7.681 1.4 1.36 1.72 4.442 7.356 1.753

56 483.3 210.6 234.5 125.7 65.70 83.51 7,084 7.168 7.673 1.4 1.36 1.71 4.453 7.369 1.778

57 482.4 210.3 231.6 125.2 65.39 84.06 7.076 7.161 7.669 1.4 1.35 1.71 4.464 7.383 1.776

58 481.7 210.0 235.4 124,8 65.10 84.05 7.069 7.153 7.656 1.39 1.35 1.71 4.475 7.399 1.784

59 481.0 209.7 227.6 124.4 64.78 85.71 7.061 7.145 7.653 1.39 1.35 1.71 4.487 7.414 1.802

60 480.3 209.5 238.9 123.9 64.51 85.22 7.054 7.138 7.651 1.39 1.34 1.70 4.498 7.430 1.810

61 479.6 209.2 229.0 123.5 64.24 84.57 7.048 7.131 7.642 1.39 1.34 1.70 4.510 7.445 1.812

The stresses induced in the middle of the span on the outer surface of flanges are
comparable in all the models, but their placement is at the flange in the shell models and in
the weld of the volumetric model. This placement is also the cause for a little oscillatory
effect of the maximum stresses in the first model, where small changes in the thickness
must also result in a change of the mesh; this effect is not observed in the shell models.
A stress state is determined in the FEM at the post-processing stage, which is the major
cause of its susceptibility to all discretization changes. Such problems are not observed in
displacements, being the direct results of the FEM, nor in the global characteristics of ω
and ξ; the character of stresses and their pattern is considered in a separate study.

Further, it is seen that the critical loads (CL) returned from the three models differ
significantly for the three models. This is first because of the stiffening effect of the ribs
for different global modes of buckling, and secondly because of the volumetric FEM
formulation of the first model. This is evidenced in Table 4, which defines the ratio of the
load at stability loss qmax to the level of loading coming from external actions according to
the Eurocode qinitial with a subtracted initial load:

qmax

qinitial
= CL + 1. (18)

CL is much lower for the first model than for the others. It is because it was the only one
that returned a local buckling of the support rib. Other models returned only the global
losses of stability, the first of which was always rotation-torsional. They occur for quite
a high magnitude of the CL (critical load ratio of over 4.45 or 7.37) for a girder, which is
initially loaded to 88.4% of its ultimate bending capacity according to the assumptions
of the Eurocode. The critical load in the volumetric model is much lower, but all the
critical modes of behavior until the 25th one can be easily avoided by an increase in the
thickness of the support or, preferably, a change in its geometry from plate to corrugated
(insensitive to local buckling). Quite interestingly, the addition of the ribs increased the
CL by about 50% for the shell model. No buckling is detected in the web itself, either by
stiffened or unstiffened models. This proves the high contribution of the wavy web to the
overall stability of the girder and the reasonable significance of its thickness, whose increase
enlarges the critical load. This increase is consistent with an engineering intuition, but it
does not stop the underneath mechanism leading to the buckling of the girder. Contrary to
the results of the critical load, these for eigenfrequency show almost perfect agreement for
models 1–2 and give a slightly lower quantity for the third one. This difference is increasing
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for the higher eigenfrequency modes (see Table 4), which is caused by the change in the
linear dead load of a girder due to the stiffening ribs and welds, yet does not significantly
hinder the character of these modes.

It must be additionally mentioned that a choice of the proper ultimate stress or dis-
placement for purposes of LS and reliability restrictions is not a trivial task, especially when
a complex 3D structure is considered and modeled with the use of shell or volumetric FEM
elements. The global ultimate stress does not necessarily give a proper condition for the
ULS and may turn out to be inappropriate for restrictions. Even for such conceptually
uncomplicated structural elements as a simply supported beam, the ultimate stress may lie
in other places than those distinguished by the beam theory (as happens in this study). In
such conditions, reliability shall be checked not only for the location of the ultimate stress
but also for these other locations detected in the beam theory, because the material in these
places may be susceptible to local instability (as in all plate structures). Because of this,
the ultimate stress allowed in such locations may be highly reduced and conversely, the
material can be locally stronger in a location of ultimate stress predicted by the FEM (e.g.,
when some confinement exists). Therefore, in all complex structures, one should always
first determine its possible weak points and check the reliability for all of these, not only
the one for the ultimate stress or displacement revealed by the FEM results.

3.3. Probabilistic Aspects

The determination of the reliability indices βg and related optimization procedures
have been both programmed and completed in the computer algebra system MAPLE. The
WLSM is based on the discrete results of three FEM models (see Table 3) and for three types
of weights, Dirac, equal, and triangular (see Table 2). The input random parameter is web
thickness with a mean value taken from the objective function W and updated in each loop
of the optimization. The probabilistic density function (PDF) of this thickness is Gaussian
and we treat here two separate random problems. The first is at t = 0 and is connected
with a fabrication error (manufacturing imperfection) of this thickness with coefficient of
variation (COV) in the range of α(ω0) ∈ {0; 0.15}, and a second, where in addition to ω0, a
second random variable is corrosion penetration depth, where time t is a design variable in
a range of t∈ 〈0; 50〉 years. This second check is also a final and most severe restriction in
the optimization loop because it takes into consideration the degradation of the girder with
time. The formulation of the probabilistic moments and coefficients is here threefold:

• First of all, the coefficients are computed by direct differentiation of the random
variable computed from the response function together with its PDF; this is called the
semi-analytical approach (AM);

• Secondly, the generalized iterative stochastic perturbation technique is applied with up to
10th order approximation of the response function by the Taylor expansion—including
the first 10 terms of this expansion; this is called the SPT [42];

• Finally, the crude Monte Carlo simulation (MCS) is used to return these coefficients;
this is called the MCS.

Such an approach is selected for purposes of comparison between these three methods
and also for redundancy so that even if one method fails in a specific optimization step
or for the specific g, the indices could still be calculated and compared. A crude MCS
with 5·105 trials is chosen to dissolve all the doubts about the accuracy of a more refined
Monte Carlo method. The spectrum of the web thickness used in each step is tw, i ± 5 mm
with a difference of 1 mm for each computation, so that the response function is optimized
based on 11 FEM results around the mean value defined at each optimization loop. The
algorithm developed in MAPLE fully encompasses the process of reliability indices β (see
Figures 1 and 3) and βσcr , and for t∈ 〈0; 50〉 only βumax is restricted, which is done for the
computation efficiency and simplicity of this example.
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3.4. Reliability Restrictions βg

The final reliability calculations are shown for the optimized W, for which tw= 56 mm.
The structure of the reliability assessment for this W is divided into three main sections:

• The first of these determines the influence of different types of weighting schemes and
FORM vs. SORM formulations. It takes the manufacturing imperfection as an input
variable, is based on the volumetric FEM model, and is calculated for t = 0.

• The second analysis uses a Dirac-type of weighting scheme and compares the results
of stochastic equations with manufacturing imperfection as a random parameter for
all three FEM models and deterministic results. This is done to highlight the impact of
the FEM and model accuracy on the girder’s output reliability. It is also performed at
t = 0.

• The last study incorporates two random variables, including the fabrication imperfec-
tion ω0 and corrosion penetration depth ω, and serves as the last restriction for the
optimization purposes of this girder.

This is done firstly to show the results for the optimized W and secondly to emphasize
the most important factors in the optimization, i.e., the FEM model, order of reliability
assessment, and type of the weighting scheme in the optimization of the WLSM. Three
independent methods of computation, AM, MCS, and SPT are used for simultaneous
verification of the results. The probabilistic moments and coefficients are shown only for
one, most restrictive limit function and solely relative to the weighting scheme, which is
done to show their general outlook and present relation with an input uncertainty. The
other ones return analogous results.

3.4.1. Initial Restriction of βg—WLSM Weighting Scheme

Computations of reliability-induced restrictions for the girder at t = 0 include the de-
termination of the first four probabilistic moments and coefficients of all the limit functions
considered, i.e., Eg(α(ω0)), αg(α(ω0)), βg(α(ω0)), and κg(α(ω0)), and its reliability index
βg(α(ω0)). They are depicted in Figures 8–17 and are computed relative to the coefficient
of variation of web thickness inflicted by an uncertain fabrication error α (ω0). This ensures
an easy way of check of these restrictions for the chosen level of uncertainty and avoids the
need for repetition of the entire optimization process in the case when its level is slightly
increased. The full results are shown only for the most restrictive condition, which is a
critical load (CL). The results of all other ones are limited solely to the index of reliability
according to SORM; this is done for the brevity of the results.
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The lower probabilistic coefficients for the limit state based on stability criterion
Eξ(α(ω0)) and αξ(α(ω0)) firstly show that they both are highly affected by the uncertainty
caused by the manufacturing error. The expected values (Figure 8) decrease, and the
coefficient of variation (Figure 9) increases together with an increase in this uncertainty
and the rate of this change always increases. Interestingly, the changes in the Eξ are up to
50% and the coefficient of variation is multiple times higher than for the input. The three
methods of computation show a perfect agreement.

The skewness βξ(α(ω0)) and kurtosis κξ(α(ω0)) for the critical load depicted in Fig-
ures 10 and 11 represent a converse character. The skewness is predominantly negative,
while the kurtosis is positive. They both have quite a strong relationship with the input
uncertainty, and they reach very high magnitudes of up to 120 for βξ and 13,000 for κξ . A
scatter of the three stochastic methods is quite high, but still, the AM and MCS demonstrate
a quite comparable trend. The SPT is effective here only up to α = 0.1, but it is the fastest.

The indices of reliability βσ, βσred , βτ , βumax , βΩ, and βξ include all the relevant limit
states and are all shown in Figures 12–17. They principally show a high converse de-
pendence on the input uncertainty of manufacturing error and are also affected by the
WLSM weighting scheme. The lowest initial reliability is reported for the critical load (see
Figures 16 and 17). This is a direct effect of two main factors. The first of these is the fact that
even the deterministic safety is quite small here (function close to one, which constitutes its
lower limit, see Table 4). The second is connected with a magnitude of the CoV, which is
very high for this state function (Figure 9) and has a strong exponential character relative to
the input CoV. With an increasing input uncertainty, this smallest index rapidly decreases,
but still from approx. α (ω0)= 0.07 the lower bound of reliability is governed by the normal
stress shown in Figure 13. The indexes also depend upon the type of weight of WLSM.
This difference is the strongest for the two indices constituting the lower bound of the
reliability, namely the normal stress and the critical load, and additionally for the shear
(see Figures 13, 14 and 16). This is because their first two probabilistic moments show the
highest dependence on the type of weight applied.
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The character of a relationship between the reliability index and an input uncertainty
is not always smooth and without local inflection points. The indices for the ultimate dis-
placement, as well as critical load, show small fluctuations through their course, especially
around α (ω0)= 0.10. Such fluctuations are intriguing, but for now, their cause has not
been determined.

The last comparison is the FORM vs. SORM index of reliability, which is given
based on critical load, the most difficult reliability restriction at t = 0. It is based on
Figures 16 and 17.

The graphs according to both orders have a very similar character. This is expected,
because the applied SORM is based on the Gaussian input probability density and, therefore,
these indices should be comparable. An important observation is that βg according to
SORM is less dependent on the type of weight and has a little higher magnitude for an
extensive input uncertainty. Finally, the SORM approach corrects the errors coming from
the FORM, i.e., the diverging or scattered character of βg for some limit functions. An
additional observation is concerned with the interchangeability of these three probabilistic
methods applied in restrictions of the reliability index; all the methods show an almost
perfect agreement for all the state functions. Due to this, when only one stochastic variable
is taken into consideration, all the methods can be used alternatively. In such conditions,
the most preferable one seems to be the stochastic perturbation method (SPT), which is not
dependent on a direct derivation, does not require a considerable number of trials (as the
MCS), and is also the swiftest.

The last, yet most important, observation is a total limit of input uncertainty coming
from the fabrication imperfection that allows for fulfilling the restriction of reliability βg.
This limit differs for all the state parameters and ranges from α (ω0)= 0.09 to around
α (ω0)= 0.21. The lowest one constitutes a total limit, and therefore the objective function
with optimum tw= 56 mm is α (ω0)= 0.09. This limit corresponds to the limit function of
critical load (ξ). This is a reasonable result because for most of the constructional elements
the fabrication error causes uncertainty in tw lower than (ω0)= 0.05. Nonetheless, reliability
restrictions at t = 0 are not the most rigorous, which undoubtedly are the ones connected
with a joint effect of corrosion and the considered fabrication error. Improving the resistance
of the girder to stability loss would be enough to increase the overall reliability of this girder
at t = 0, but it may not be sufficient to improve reliability in the corrosive environment.

3.4.2. Initial Restriction of βg

The differences in initial reliability restriction fulfillment for the three models are
shown in Figures 18–21. They depict the FORM indices for the four most important limit
states, i.e., βσ, βumax , βΩ, and βξ in the function of the α (ω0) and for t = 0. These plots
are principally presented to highlight the importance of the choice of the FEM model type
and its accuracy in fulfillment of the reliability restrictions for the objective function. They
are all computed with the use of the Dirac weighting scheme and with three alternative
probabilistic methods, MCS, AM, and SPT. These indices perfectly justify the purpose,
being vastly dependent on the model type and almost uniform for all the probabilistic
methods. Therefore, it is highly recommended to put more effort during the modeling
process of the FEM and into the collection of data coming from these simulations than into
the choice and scrutiny of the probabilistic method. The probabilistic coefficients bring no
more information for optimization purposes and therefore they are not included. One may
refer to Figures 8–11 for the required information.
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From Figures 18–21 it is first seen that the reliability margin decreases together with
an increase of α (ω0). It is in the range of 50 ÷ 150 for a small α (ω0) < 0.01, but it
rapidly decreases and reaches zero for α (ω0) ∈ (0.10; 0.14); this is still much higher
than typical uncertainty caused by the fabrication imperfection. The second observation
concerns the inexistence of a limit state setting the reliability restriction for the entire
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α (ω0). For each level of uncertainty, this limit is set in different LS, and therefore the
topological optimization is not trivial—each limit state depends on multiple parameters
of the model. The highest restriction is decisive, which is not unique for the different
models. On the other hand, the first model is also the most restrictive for a majority of
the cases and because it is also the most detailed one, it should be the one taken for the
final optimization. This is because it had the smallest margin in the LS. An alternative
approach is the inclusion of results from all the models for optimization purposes, but
this would cause almost threefold longer computations because the FEM solution is very
computationally-intensive. The correspondence between the three methods is almost
perfect for all the four considered reliability indices and for all the FEM models, with only
one exception of Figure 20 for the third, most simplified model (shell without ribs), for
which neither of the methods converges.

One of the observations which should undoubtedly be highlighted is the fact that for
all the limit states the reliability indices according to different models diverge not only in
their initial value but also in the strength of their relation to α (ω0). A very good example
is an index based on the deflection (Figure 18), which starts very high for the deterministic
model and just over α (ω0) = 0.07 crosses all the other indices to become the lowest (to
constitute a lower limit) for all higher α (ω0). One more interesting relation is unveiled
by the reliability index based on the ultimate normal stress (Figure 19) and computed
according to the shell model (third model) which shows a negative value of the index. This
is a direct outcome of an existence of the unacceptably high stress exceeding the plastic
limit of the construction steel already in the FEM results. The existence of the negative
index is incorrect and should by all means be excluded from further analysis. Nevertheless,
unlike in α (ω0), its negative value gives a piece of important information for optimization
purposes—that the element is not fulfilling restrictions already in the process of the limit
states, and before reliability checks, a new optimization loop with a new value of W should
have been already started.

3.4.3. Durability Analysis with βg

The last and final restriction of the optimization problem is the reliable service life of
the constructional element, which is set as t = 50 years. This restriction is formulated with
the use of the FROM index of βg and presented for the limit state of umax. It is computed
for the joint impact of the corrosion penetration depth and the manufacturing imperfection,
both being random and uncorrelated. Reliability is calculated with three probabilistic
methods, i.e., AM, MCS, and SPT. Corrosion is modeled according to the third model from
Table 1 with two random parameters A and B, while the uncertainty of initial imperfection
is set within the following bounds of α (ω0) ∈ [0.05; 0.25] with a Gaussian PDF. This
imperfection is introduced during the production of the beam and is considered time-
independent, while the corrosion process is described by a time series. The response
function utilized for probabilistic calculations is calculated with an inner optimization
problem and WLSM is based on the Dirac weighting scheme. The result is presented for
the optimized objective function W(tw= 56 mm) and based on the most refined first FEM
model. This final reliability restriction is depicted in Figure 22 as a function of service time
t ∈ (0; 50) years. It firstly shows that the limit of 1.8 is reached at around 60 years, and the
margin of the restriction is within the stop criterion defined for this example as βT= 0.3.
Secondly, the uncertainty of an initial manufacturing imperfection only marginally affects
the final result, and this is why its sole impact was checked in the preceding step of the
optimization loop. This index starts atβg = 60, sharply decreases in a convex manner with
a decreasing slope and has an apparent limit of βg ∼= 0. This index shows a very good
coincidence of the two probabilistic methods, the SPT and MCS. The third, semi-analytical
method (AM) diverges from the others, and this is why it is not reported in Figure 22. This
exemplifies the usability of this triple redundant method, which allows a successful check
of restriction even when one of the probabilistic methods turns out to be unavailable or
divergent for a specific step.
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4. Concluding Remarks

This paper presents an optimization framework for topological problems in the domain
of civil engineering. It is exemplified by a successfully optimized simply supported SIN
web I-girder. The main novelty in this paper is the concept of reliable service life prediction
and its application to a computationally demanding structure. It allows automation of
the reliability-based design of custom structural elements. The principal objective of
the proposed RBDO algorithm is a determination of the best topology that satisfies all
the design restrictions applicable to civil engineering structures during their service life.
Restrictions include the limit states, i.e., the ultimate limit state and serviceability limit state,
stability, and vibrations in the deterministic and reliability context. The limit functions
are applied directly after the FEM results. The optimization loop consists of subsequent
verification of physical and geometrical restrictions, FEM problem solution, verification of
all deterministic design restrictions, and finally verification of reliability-based restrictions.
This is done for a specified service life of construction. It could be applied to a wide
variety of structural elements and entire structures; the limit functions could be obtained
analytically, by BEM, FEM, neural networks, or with the use of any other algorithm that
outputs the required state parameters.

The most critical points of this algorithm include the calculation of the representative
limit functions for local state parameters, such as stresses and strains, FEM detailing, and
interpretation of FEM results. For this reason, three concurrent models were proposed
and shortly contrasted in the optimized solution; in current maturity, the algorithm uses a
deterministic non-gradient search. It is intended for replacement in future works by a more
effective method, such as neural networks.

The proposed algorithm is applied to a practical example of the SIN web I-girder. This
provides additional insight into the reliability of such elements, as well as their susceptibility
to loss of stability, vibrations, and deformability. It also adds some valuable remarks to the
FEM modeling in RBDO problems. The results obtained in this work confirm that numerical
modeling precision significantly affects the optimization outcome. This is because its choice
has a direct effect on the stress state of the girder and its buckling. Different FEM models
applied in this study return important dissimilarities in stress distribution, its maximum
values, and placement of peaks. This is also true for buckling loads and their patterns. It is
also exemplified here that the choice of the FEM formulation (volumetric vs. shell), as well
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as the finite element type and order, significantly affects the optimization. Furthermore, it
is difficult to set the required level of detail in the FEM model and the minimum amount of
FEs before the RBDO. This is because the buckling load together with ultimate stresses and
deflections have no clear correlation to the model accuracy. Therefore, a decrease in the
level of geometric and computational precision may hide significant design problems. They
include low buckling mode or high-stress peaks in the welds that are omitted by simplified
models and lead to an overestimation of the overall reliability of this structure. Importantly,
only the most detailed model revealed additional instabilities in the girder occurring at
much smaller loads than the others and having a local, rather than global character.

The corrosion process affected the considered example in terms of both reliability
and structural capacity. Its evolution increased the internal stresses and decreased critical
loads. The influence of the initial fabrication error on the service life of the exemplary
structure was marginal and may be omitted in future research. On the contrary, steel and
environment type had a much more substantial effect on the service life of an exemplary
structure. This is because of its direct effect on the evolution of corrosion depth and its
uncertainty. Please note that maintenance, such as painting or plating, is not taken into
consideration in the current algorithm. Performed regularly, it will increase the reliable life
of the structure. Its inclusion is planned in future research.

The triple probabilistic calculations applied in this study provided a piece of important
information on the convergence of probabilistic calculations that would be otherwise
unavailable. On the other hand, their mutual application slowed down the optimization
process. Computational time reduction could be achieved by limiting the RBDO to a single
probabilistic method. The ISFEM is the most recommended in this case. It is the fastest and
significantly accelerates the optimization process. Its accuracy is a little lower than that of
the MCS, but the difference proved to be marginal for the considered example.
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Abstract: Needs and demands of contemporary engineering stimulate continuous and intensive
development of design methods. Topology optimization is a modern approach which has been
successfully implemented in a daily engineering design practice. Decades of progress resulted in
numerous applications of topology optimization to many research and engineering fields. Since the
design process starts already at the conceptual stage, innovative, efficient, and versatile topology
algorithms play a crucial role. In the present study, the concept of the original heuristic topology
generator is proposed. The main idea that stands behind this proposal is to take advantage of the
colliding bodies phenomenon and to use the governing laws to derive original Cellular Automata
rules which can efficiently perform the process of optimal topologies generation. The derived
algorithm has been successfully combined with ANSYS, a commercial finite element software package,
to illustrate its versatility and to make a step toward engineering applications. Based on the results
of the tests performed, it can be concluded that the proposed concept of the automaton mimicking
colliding bodies may be an alternative algorithm to other existing topology generators oriented
toward engineering applications.

Keywords: topology optimization; cellular automaton; colliding bodies; heuristic update rules

1. Introduction

As it has been observed over the years, topology optimization has been a dynamically
developing research area with numerous applications to many research and engineering
fields. The researchers community continuously works on innovative, efficient, and versa-
tile topology optimization approaches, methods, and algorithms, whereas the spectrum
of numerous solutions of topology optimization problems ranges from classic Michell
structures to sophisticated contemporary engineering ones. The various approaches to the
generation of optimal topologies have been presented along with emerging concepts which
have been implemented in a broadly understood engineering area. The comprehensive
discussion on various aspects of topology optimization has been provided by many survey
papers: e.g., [1–4] recently complemented by Ribeiro et al. [5] and Logo and Ismail [6]. The
long-lasting development of topology optimization confirms that it still remains one of the
most important research fields within the area of structural and material design.

Along with the research issues of topology optimization, the practical aspects of engi-
neering implementation of topology optimization techniques have become more and more
important. As a result, the topology optimization tools are nowadays present in commer-
cial engineering software. However, the black-box topology generators implemented into
commercial software do not guarantee that the final results are the best available. Therefore,
although remarkable achievements have been already made toward topology optimization
application in engineering, there is still room for further investigations. Recently published
papers [7–11] may serve here only as examples.

In the present study, the concept of the original heuristic topology generator is pro-
posed. The main idea that stands behind this proposal is to take advantage of the colliding
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bodies phenomenon, and use the governing laws to derive original Cellular Automata
rules which can efficiently perform optimal topologies generation process. The inspiration
for this proposal was the series of papers by Kaveh and co-workers [12–15] in which the
concept of Colliding Bodies Optimization for a function minimization has been proposed.
This paper proposes an original technique which is also inspired by the collision of bodies
phenomenon but this time it is oriented toward optimization of structure topology. It is
worth underlining that the rules are built so as to cope also with irregular finite element
meshes. The derived algorithm has been combined with ANSYS 14.0, a commercial finite
element software package, to illustrate its versatility.

As mentioned above, the applied approach is based on the concept of Cellular Au-
tomata (CA). Cellular Automata are built so as to mimic the behavior of complicated
systems in a relatively easy way. From a computational point of view, the special local rules
are implemented with a view to control the performance of a system under consideration.
Hence, the local physical quantities are respectively updated, which allows us to describe
the global behavior of the system. The concept of Cellular Automata has been known since
the late 1940s when von Neumann and Ulam proposed this idea. Henceforth, this approach
has been found interesting by researchers representing various fields but probably for the
first time topology optimization has been discussed within the CA approach only in the
paper by Inou et al. [16]. Many papers have been hereafter published on that subject, and
the majority of them have appeared during the last two decades, see e.g., [17–20] or [21].
The efficient CA algorithm has been also proposed and then developed by Bochenek and
Tajs-Zielińska [22,23] and recently [24,25].

The outline of the paper is as follows. In Section 2, the topology optimization problem
is formulated, then the concept of Cellular Automata mimicking colliding bodies is intro-
duced, and finally the algorithm built based on this idea is described. Its implementation
in the topology generation process is illustrated by an introductory example. Original
examples of topology generation of selected 2D structures are discussed in the first part of
Section 3 presenting performance of the topology generator. Next in this section, utilizing
results of the preliminary computations, the Cellular Automaton is combined with ANSYS
as the efficient structural analysis tool and its application to selected, both plane and spatial,
engineering tasks is presented. With a view to cover a broad area of implementations, the
discussed tasks include also irregular cell lattice. Based on the results of performed tests,
the paper ends with concluding remarks in Section 4.

2. Methods and Concepts

In this section, the topology optimization problem is formulated, the concept of
Cellular Automata mimicking colliding bodies is introduced, and the algorithm built based
on this idea is described. The introductory example illustrates the implementation of the
proposed concept into the topology generation process.

2.1. Structural Topology Optimization

The most commonly formulated structural topology optimization problem is to gener-
ate material layout which within a design domain leads to a minimal value of the structure
compliance c, Equation (1). Hence, one can follow the optimization problem formulated
in a widely recognized paper by Sigmund [26]. The available material volume fraction
κ is defined and treated in the optimization process as the constraint imposed on structure
volume V, Equation (2). The finite element approach has been applied:

minimize c(d) = uTku =
N

∑
i=1

dp
i uT

i kiui (1)

subject to V(d) = κV0 (2)

k u = f (3)
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0 < dmin ≤ di ≤ 1. (4)

The quantity ui denotes the displacement vector, ki stands for the stiffness matrix,
and both are defined for N elements. The design variable di, which represents the relative
material density, is assigned to each element. In Equation (3), k represents the global
stiffness matrix, u stands for the global displacement vector, and f is the vector of forces.
Due to the simple bounds imposed in Equation (4) on the design variables with dmin (e.g.,
10−9) as a non-zero minimum value of relative density, singularity is avoided.

The SIMP (solid isotropic material with penalization) approach (e.g., [27]) in the form
of power law is adapted as the material representation, see Equation (5). The modulus of
elasticity Ei for each finite element is a function of the design variable di:

Ei = dp
i E0. (5)

In Equation (5), the quantity E0 stands for modulus of elasticity, defined for a solid
material, whereas p (typically p = 3) is responsible for penalization of intermediate den-
sities. This allows controlling the design process and leads to obtaining black-and-white
resulting structures. During the topology generation process, a material is redistributed
within the design domain, which results in removing parts unnecessary from design
criteria viewpoint.

2.2. Concept of the Cellular Automaton Mimicking Colliding Bodies

The selection of a proper method of topology generation determines the effectiveness
of the topology optimization process. Heuristic optimization techniques become popular
among researchers because they are easy to implement numerically, gradient information
is not required, and one can easily combine this type of algorithm with any finite element
structural analysis code.

In this paper, the original heuristic topology generator built as Cellular Automaton
which mimics Colliding Bodies (CAmCB) is proposed. The idea is that the design domain
of the structure is decomposed into a lattice of cells which are usually equivalent to finite
elements. For each cell, the surrounding cells form a neighborhood. The bodies are
distributed within this lattice (Figure 1).
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the red circle, is identified around each body/cell. 

Figure 1. The cell lattice. A body is placed in each cell. The neighborhood, which is represented by
the red circle, is identified around each body/cell.

Let us assume that the bodies have masses and velocities. Masses are proportional to
cell areas whereas velocities are related to cell compliances. Furthermore, let us imagine
that the neighboring bodies collide with the central one, which results in changing its status.
In what follows, the central body can either be forced to remain in its position, or is pushed
away (Figure 2).
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From a topology generation point of view, the interpretation is that the central cell
remains solid, or is driven to become a void one (Figure 3).
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2.3. Local Update Rules

While building Cellular Automaton, it is assumed that the interactions between
bodies/cells take place only within the specified neighborhood, where they are governed
by local rules which are identical for all cells, and are applied simultaneously to each of
them. According to the concept of the paper, the local rules are derived so as to mimic
collisions taking place between bodies/cells within each neighborhood. The governing
equations based on the physics laws of momentum and energy are applied. Let us consider
the central cell and a neighboring one colliding with it (Figures 4 and 5).
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The governing equations are as follows:

mkvk1 − m0v01 = −mkvk2 + m0v02 (6)

1
2

mkv2
k1 +

1
2

m0v2
01 =

1
2

mkv2
k2 +

1
2

m0v2
02. (7)

Based on the above, the velocity of the central cell after collision equals:

v02 =
(mk − m0)v01 + 2mkvk1

m0 + mk
. (8)

As stated earlier, velocities are related to cell compliances and masses are proportional
to cell areas. Equation (8) can be rewritten in the form of Equation (9):

F02 =
(Ak − A0)F01 + 2AkFk1

A0 + Ak
, (9)

where A represents the cell area and F is a function associated with local compliances. It is
proposed to select the quantity F02 as the basis for building the update rule. Before that, the
details regarding how to calculate F values are given.

Based on the results obtained from a structural analysis, the values of local compliances
are calculated for all cells/elements. The compliances are sorted then in the ascending order,
and those having the lowest and the highest values are identified. In the next step, N1, N2
are selected and values of F are assigned to cells (i = 1, 2 . . . n) according to Equation (10):

Fi =





−C if i < N1
fi if N1 ≤ i ≤

C if i > N2

N2. (10)

A monotonically increasing function representing cell compliances is selected for the inter-
mediate interval N1 ≤ i ≤ N2 and then function values are assigned to the cells, respectively.
Here, the linear function is selected to fulfill: fi(N1) = −C and fi(N2) = C, thus:

fi = 2C
i

N2 − N1
− C

N2 + N1

N2 − N1
. (11)

The quantity C in Equation (11) is a user-specified parameter, usually equal to 1. The
above described compliance mapping technique, represented by Equations (10) and (11),
has been discussed also in [25].

Having finished with data preparation, the update rule can be built. Hence, repeating
collisions for all neighboring cells, the average quantity F02 can be calculated based on
Equation (12):

F02 =
1
M

M

∑
k=1

F02(k). (12)

Finally, the design variables can be updated according to Equation (13):

d(i)new = d(i) + mF02, (13)
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where m denotes the move limit (e.g., m = 0.2).

2.4. Algorithm

In order to implement the above-proposed design rule, a numerical algorithm was
built. The sequential approach was adapted for the optimization procedure, meaning that
for each iteration, the structural analysis performed for the optimized element is followed
by a local updating process. Simultaneously, for a specified volume fraction, a global
volume constraint is applied. As a result, during the optimization process, the generated
topologies preserve a specified volume fraction of a solid material.

The issue to discuss regards the form of Equation (9). In the case of a regular lattice of
cells/elements, the first component of the numerator vanishes. In order to preserve the
influence of the central cell compliance on the final result during the iteration process, it is
proposed to modify the cells area representation:

Ai = A[1 + b(2r − 1)], (14)

where

b = b0

(
1 − t − 1

tmax − 1

)
. (15)

In Equations (14) and (15), b0 is a small value, r is a random number taken from
[0, 1] interval, t stands for the current iteration number, whereas tmax is a selected number
of iterations. As a result, Ai = A only for t = tmax.

In order to control the topology generation, the threshold values N1 and N2 can be
modified so as to adjust the width of the interval [N1, N2] during the iteration process. It
is proposed to start with a relatively wide interval, and then to reduce it successively. As
a result, at the beginning of the topology generation process, the large design domain is
searched by the Automaton, and the majority of void cells is eliminated. Then, during the
iterative process while reducing the interval [N1, N2], the so-called gray cells of intermediate
densities are eliminated, which finally results in obtaining distinct solid/void structures.

2.5. Introductory Example

The rectangular structure shown in Figure 6 has been chosen as the introductory
example. The mesh of 3200 (80 × 40) square elements/cells has been generated to per-
form structural analysis and topology optimization for the data: E0 = 10 GPa, ν = 0.3,
P = 100 N, a = 40 mm, κ = 0.5, b0 = 0.05. As for the topology generation, the Moore type
neighborhood, i.e., cells having common vertices with the central one, has been applied.
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Figure 6. The rectangular structure with applied load and support.

The CAmCB algorithm found the final topology, which is shown in Figure 7, whereas
the iteration history is given in Figure 8. The strategy of Fi, see Equation (10), implementa-
tion was as follows: one started with N1 = N·0.02, and then from iteration 25 N1 = N·0.5,
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where N is the number of cells. Simultaneously, N2 = N·0.6 has remained fixed for the
entire iteration process.
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The compliance value found for this structure is equal to 13.62 Nmm. This outperforms
the solution reported in [25] where compliance of 14.02 Nmm has been obtained for the
final topology.

3. Results and Discussion

The original examples of topology generation are discussed in this section, presenting
the performance of the algorithm. With a view to cover a broad area of implementations,
the discussed tasks regard plane and spatial structures. The case of irregular cell lattice is
also considered.

In what follows, to illustrate more thoroughly how the proposed CAmCB algorithm
works, some numerical examples have been selected. The algorithm performance is pre-
sented first for plane test structures, and then for plane and spatial engineering structures.
For the test structures, a Matlab-based algorithm has been applied, whereas for engineering
structures, the topology generator has been combined with the ANSYS system, which was
responsible for performing the structural analysis.

3.1. Topology Generation for the Test Structures

The results of topology generation performed for four plane test structures are pre-
sented below.
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3.1.1. Test Structure 1

To perform the first test, the structure shown in Figure 9 has been selected. The mesh
of 60,000 (400 × 150) square elements/cells has been implemented, and structural analysis
and topology optimization have been performed for the data: E0 = 10 GPa, ν = 0.3,
P = 100 N, a = 50 mm, κ = 0.25, b0 = 0.05. The Moore type neighborhood has
been applied.
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Figure 9. The test structure 1 with applied loads and support.

The algorithm found the final topology, which is shown in Figure 10, whereas the
iteration history is given in Figure 11. The strategy of Fi implementation was as follows:
one started with N1 = N·0.02, and then from iteration 25 N1 = N·0.75, and from it-
eration 75 N1 = N·0.9. The quantity N2 = N·0.98 has remained fixed for the whole
iteration process.
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3.1.2. Test Structure 2

For the structure shown in Figure 12, the mesh of 80,000 (400 × 200) square ele-
ments/cells has been generated. The structural analysis and topology optimization have
been performed for the data: E0 = 10 GPa, ν = 0.3, P = 100 N, a = 100 mm, κ = 0.3,
b0 = 0.05. The Moore type neighborhood has been applied.
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Figure 12. The test structure 2 with applied load and support.

The final structure topology found by the algorithm and the illustration of the com-
pliance history are given in Figures 13 and 14, respectively. As for the strategy of imple-
mentation of Fi, one started with N1 = N·0.35, and then from iteration 25 N1 = N·0.5,
from iteration 50 N1 = N·0.75, and finally from iteration 75 N1 = N·0.9. N2 = N·0.98 has
remained fixed for all iterations.
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3.1.3. Test Structure 3

To perform the third test, the structure shown in Figure 15 has been proposed. The
mesh of 80,000 (400 × 200) square elements/cells has been implemented and structural
analysis and topology optimization have been performed for the data: E0 = 10 GPa,
ν = 0.3, P = 100 N, a = 10 mm, κ = 0.3, b0 = 0.05. The Moore type neighborhood has
been applied.
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Figure 15. The test structure 3 with applied load and support.

The algorithm found the final topology, which is shown in Figure 16, whereas the
iteration history is given in Figure 17. The strategy of Fi implementation was as follows:
one started with N1 = N·0.02, and then from iteration 25 N1 = N·0.75, from iteration
50 N1 = N·0.75, and finally from iteration 75 N1 = N·0.9. The quantity N2 = N·0.98
remained fixed for the whole iteration process.
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3.1.4. Test Structure 4

For the structure shown in Figure 18, the mesh of 137,500 (250 × 550) square ele-
ments/cells has been applied. The structural analysis and topology optimization have been
performed for the data: E0 = 10 GPa, ν = 0.3, P = 100 N, a = 50 mm, κ = 0.25, b0 = 0.05.
The Moore type neighborhood has been applied.
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The final structure topology found by the algorithm and the illustration of the com-
pliance history are given in Figures 19 and 20, respectively. As for the strategy of Fi
implementation: one started for N1 = N·0.02, and then from iteration 25 N1 = N·0.5,
from iteration 50 N1 = N·0.75, and finally from iteration 75 N1 = N·0.9. N2 = N·0.98 has
remained fixed for all iterations.
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As can be seen from the above, the original CAmCB algorithm can effectively generate
minimal compliance topologies. It is also worth comparing the obtained results with the
ones which can be found for the considered structures when using other existing and
popular approaches. The top88 algorithm [28] based on the optimality criterion and the
PTOc one [29], utilizing the concept of proportional topology optimization have been
selected for this purpose. The above papers provide Matlab codes of topology generators
and these have been used to perform computations for the test structures defined earlier in
this section. Table 1 gathers the results of these computations.

Table 1. Comparison of minimum compliance values [Nmm] found for the three algorithms.

Algorithm Test Structure 1 Test Structure 2 Test Structure 3 Test Structure 4

CAmCB 151.84 125.07 342.96 22.71
top88 [28] 164.26 139.91 360.90 23.84
PTOc [29] 164.90 127.49 347.93 23.93

One can observe that the CAmCB algorithm proposed in this paper allows us to find
results which can be better in terms of objective function values than the ones obtained
with the use of other approaches selected for this comparison.

3.2. Engineering Applications

A series of illustrative engineering examples has been selected to examine the effec-
tiveness of the introduced concept of the CAmCB topology generator. Both regular and
irregular cell lattices are considered to show the algorithm performance and the versatility
of the approach. As mentioned earlier, the proposed topology generator can be easily
combined with any solver built on finite element methods. Hence, the optimization module
has been linked to the professional system ANSYS to perform structural analyses. It is
worth noting that the proposed algorithm does not require additional density filtering, the
so-called gray elements are eliminated, and the checkerboard effect has not been observed
for generated topologies.

3.2.1. Mechanical Part

The model of a control arm structure presented in Figure 21 has been chosen for
this purpose. The mesh of 16,304 elements/cells has been generated to perform struc-
tural analysis and topology optimization for the data: E0 = 210 GPa, ν = 0.28, κ = 0.4,
b0 = 0.01. The structure consists of a non-optimized region presented in Figure 22 as a
gray area whereas the design domain is presented as a red area. The structure is loaded
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by two concentrated forces: a horizontal force equal to 7000 N and a vertical one equal to
2700 N. The horizontal displacement of nodes in the inner bound of the round hole A are
equal to zero, while all nodes in area B are fixed.
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Figure 22. The design domain, loads, and supports of the control arm.

As for the strategy of Fi implementation: one starts with N1 = N·0.02, and then
from iteration 25 N1 = N·0.5, and from iteration 50 N1 = N·0.75, whereas N2 = N·0.98
remains fixed for all iterations. This strategy has been applied for all presented engineering
examples. It is worth pointing out that in order to complete the optimization process about
50 iterations are needed.

The algorithm found the final topology, which is shown in Figure 23. The resulting
compliance equals 11,949 Nmm. Referring to the prior comparison of the results, the value
of 12,372 Nmm was obtained when the algorithm [28] was utilized.
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The CAmCB algorithm codes for the example considered in this section are provided
in the Supplementary Files.

3.2.2. The Frame Structure-Generation of Topology for Irregular Cell Lattices

The aim of this example is to extend the presentation of the proposed algorithm
toward an irregular grid of cells related to a non-regular mesh of finite elements. Resizing
a traditional uniform grid of cells allows us to obtain flexible solutions, for e.g., extremely
irregular design domains where it is difficult or impossible to cover them with uniform
cells. Additionally, regions with stress concentrations, such as around holes or sharp edges,
should be covered with a fine mesh, which is not necessary for the structure as a whole.
The procedure of refining a mesh in selected regions can be used in order to achieve an
accurate solution without an excessive increase of the number of elements caused by using
a fine mesh implemented for the whole structure.

The example illustrating this case is the portal frame presented in Figure 24. The data
is as follows: E0 = 200 GPa, ν = 0.25, κ = 0.5, b0 = 0.01. The irregular lattice of cells is
distributed according to Figure 25. For the irregular lattice of 14,024 cells (two-dimensional
6-node triangular elements—Plane82) ANSYS software was utilized for static analysis in
the optimization process. The optimization has been performed and the obtained final
topology is presented in Figure 26. Loads of 100 N each have been applied. The resulting
compliance is equal to 5.03 × 10−3 Nmm.

The algorithm found the final topology, which is shown in Figure 26.

3.2.3. The Box Tube-Generation of Topology for Spatial Structure

The box tube shown in Figure 27 has been selected as the final example. The box tube
cross section with 3 mm wall thickness is a square (100 mm × 100 mm), the tube is 250 mm
long. Loads of 1000 N each have been applied as shown in Figure 28. The data is as follows:
E0 = 200 GPa, ν = 0.3, κ = 0.4, b0 = 0.01. A regular mesh of 11,088 three-dimensional
8-node elements (Solid45) has been applied for a static analysis made by ANSYS software
(the length of the element edge is 3 mm). For the example of this section, the algorithm
utilizes the von Neumann type of neighborhood. The resulting topology is presented in
Figure 29, for which the final compliance equals 278.8 Nmm.

The algorithm found the final topology which is shown in Figure 29.
The algorithm performance was additionally tested based on the same example,

repeating computations for low volume fraction κ = 0.25. The resulting topology for which
the final compliance reaches the value equal to 586.3 Nmm is presented in Figure 30.
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4. Concluding Remarks

The discussion regarding the proposed algorithm and its performance is summed
up in this section. In the presented study, the original concept of Cellular Automaton
mimicking Colliding Bodies (CAmCB) has been applied for topology optimization using
the minimum compliance as the objective function. The CAmCB algorithm combines
Cellular Automata heuristic with Colliding Bodies phenomenon to create a fast conver-
gent technique which provides black-and-white topologies, without gray regions and the
checkerboard effect. Moreover, additional density filtering is not necessary and there is
no need to calculate gradients. In order to illustrate the effectiveness of the proposed
CAmCB algorithm, selected numerical examples have been investigated. The algorithm
performance is presented for plane test structures and for plane and spatial engineering
structures. In the latter case, the proposed optimizer was combined with professional FEM
analysis codes. The advantage of the developed algorithm is that it is a versatile technique
which allows implementation of rectangular or triangular lattices, adaptation to highly
non-uniform finite element lattices, as well as consideration of the total volume constraint
with large and small volume fraction which is important especially for lightweight topology
optimization. Preliminary studies reveal the possibility of applying CAmCB algorithm into
uncommon but interesting issues such as the consideration of design-dependent loading
(self-weight) or topology optimization of multi-material structures. The results of the tests
performed so far are encouraging, which allows us to consider the proposed concept of the
automaton mimicking colliding bodies phenomenon as an alternative algorithm to other
existing topology generators suited for engineering applications.
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Abstract: An inventive microscale simulation approach is applied to investigate the mechanics of
frozen particle fluid systems (PFS). The simulation is based on the discrete element method (DEM)
and bonded-particle model (BPM) approach. Discrete particles connected by solid bonds represent
frozen agglomerates. Uniaxial compression experiments were performed to gather data for material
modeling and further simulation model validation. Different typical mechanical behavior (brittle,
ductile, dilatant) were reviewed regarding strain rates, saturation levels, and particle mechanical or
surface properties. Among all these factors, strain rate significantly affects the mechanical behavior
and properties of the agglomerates. A new solid bond model considering strain-dependent and
time-dependent behavior is developed for describing the rheology of the frozen particle fluid systems.
Without alternating Young’s modulus and Poisson’s ratio of the bond material, the developed solid
model provides a suitable agreement with the experimental results regarding different strain rates.

Keywords: discrete element method; bonded-particle model; frozen particle fluid systems; material
modeling; material micromechanics; creep

1. Introduction

Frozen particle fluid systems (PFS), such as frozen agglomerates or frozen soils
(grounds), are classified as composite materials that have been vastly investigated in
academic and industrial fields. Regarding natural science, frozen soils have been studied
for centuries. Due to building projects being developed closer to the arctic region, artificial
ground freezing (AGF) was introduced as a temporary stabilizing technique for mining
and construction projects [1]. In the technical particle field, the exploration of the interplay
of granular and liquid phases at freezing temperature, as well as the resulting microme-
chanical behavior of the final composite, plays an essential role in many processes, starting
from the storing of humid materials at low temperatures in the silo, ending with cryogenic
grinding of temperature-sensitive materials.

A considerable portion of frozen PFS is ice, which has been studied in the academic
field for centuries. Mechanics of ice were well investigated throughout different scopes,
such as the mechanical properties of polycrystalline ice and columnar-grained ice [2,3],
viscoelastic properties [4], creep behavior [5], temperature effects on creep behavior [6], the
influence of surface properties on bond interface performance [7], critical factor influence
the formation of ice bond [8]. Recent research has attempted to develop an artificial neural
network to establish a predictive database for ice mechanical behavior regarding ice type,
temperature, and strain rate [9].

Nonetheless, simulation tools were applied to investigate the mechanical behavior of
ice. For instance, the finite element model (FEM) was used for the high dynamic behavior of
ice [10], the interaction between ship structure with broken ice by the elastic ice model [11],
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or the discrete element method (DEM) used for interaction between a conical structure with
sea ice in the arctic region [12].

Apart from the bond material alone, the composite of frozen PFS has been investigated
for centuries due to different applications related to frozen soils. Available literature has
investigated rheology on frozen soil and the application of AGF [13–15].

Similarly, numerous simulation works have been carried out on frozen soil and
particle-reinforced composite failure progress with FEM and xFEM (extended finite el-
ement method) [15,16]. Resolving crack propagation with xFEM showed promising results.
However, re-meshing was required after every consecutive step due to the changing geom-
etry. FEM coupling with a thermo-hydro-mechanical model has been conducted to tackle
the interaction between thermal, hydraulic, and mechanical loads [17]. Similar works using
DEM to resolve the mechanical problems for frozen soils have been carried out [18,19],
with creditable results revealed from the simulation.

The particle-based mesh-free discrete element method (DEM) is a numerical model
for understanding particle dynamics introduced by Cundall and Strack [20]. The bonded-
particle model (BPM) extends the soft-sphere formulation of DEM [21], in which solid
bonds are created to connect primary particles and form the agglomerates. During the
simulation, each bond is treated as a separate entity and can be removed or created to mimic
fracture or even material sintering. Both BPM and DEM have been applied for tackling
different mechanical problems, including damage progress of concrete or high-performance
concrete [22,23], cemented sand [24], rock mechanics [25], or mechanics of biopolymer
aerogel [26], and many other materials. The main advantages of BPM simulation are:

• Flexibility in agglomerate generation, in which all particles and bonds can have their
unique material or geometrical properties;

• Capability in mimicking the breakage behavior of agglomerate, such as the crack
initiation, propagation, failure plane, etc.;

• Diversity in functional model usage, with numerous choices of rheological models in
the particle-particle, particle-wall relationship, and solid bond models.

The application of BPM demands high computational power due to the massive num-
ber of objects considered in the simulation and the small simulation time step. However,
different parallelization techniques, especially focused on applying graphic process units
(GPU), have efficiently compensated for such deficiencies [27].

In this contribution, a new solid bond model that combines strain-dependent linear
elastic behavior with time-dependent creep behavior has been developed and integrated
into the open-source DEM framework (MUSEN) [27]. The uniaxial compression experiment
has proceeded for material parameter calibration and simulation model validation. Detail
of the solid bond model and comparison between experimental and simulation results are
discussed.

1.1. Ice Rheology

Ice rheology has been investigated for decades, with different literature analyzing
the mechanical properties, viscoelastic properties, and creep behavior. Young’s modulus
of ice ranges between 9.7 and 11.2 GPa and Poisson’s ratio from 0.29 to 0.32, obtained by
the biaxial bending of ice plates at approximately −10 ◦C [28,29]. Ice tensile strength and
compression strength react differently concerning temperature and strain rate. Ice’s tensile
strength ranges from 0.7 to 3.1 MPa, and compressive strength ranges from 5 to 25 MPa.
The temperature-weakening effect on tensile strength is less than compressive strength [30].

Compared to temperature, strain rate has almost no effect on tensile strength but vastly
alternates the compressive strength of ice. From 10−8 s−1 to 10−3 s−1, the compressive
strength increases with an increase in strain rate, surpassing 10−3 s−1 compressive strength
decreases with an increase in strain rate [29].

Apart from mechanical properties, mechanical behavior is crucial to be identified.
Ductile, dilatant, and brittle behavior can be identified in ice, mainly characterized by strain
rate. In the case of high strain rates, brittle behavior prevails. Under tensile stress with a
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high strain rate, the resistance to ice damage can be described by the nucleation and growth
of cracks. The strength is limited by the grain size of the ice, which can vastly alternate the
crack propagation. Under compressive strain, abrupt collapses occur at around 0.5% strain,
in which the shear plane is located around 30◦ to the maximum principal stress plane [31].

Ductile behavior is mainly identified by strain-rate hardening and thermal softening,
in which the activation energy almost doubled above−10 ◦C. The dislocation-based process
dominates the primary behavior under low strain rate deformation. The deformation rela-
tionship is quantified by quasi-static creep [32], where the material experience permanent
deformation under stress, which is well below the yield stress for a prolonged duration.
Three different creep phases can be identified with decreasing, steady, and increasing strain
rates [33]. The power law can be used to formulate a rheological model for the creep
behavior of ice [5]. From this numerical relationship, the main dominance of ice under
low strain rate loading depends on applied stress and temperature [31]. The power law
for creep (Equation (1)) describes the creep strain rate

.
εn,cr, which depends on the applied

stress σ and two model parameters A and m. These parameters should be adjusted to
considered different material and temperatures:

.
εn,cr = A · σm (1)

1.2. Rheology of Frozen Soil

Frozen soil shares remarkable similarities with ice in mechanical behavior, which is
closely related to frozen PFS. Suitable insight into frozen PFS can be given by interpreting
the characteristic of frozen soil. It has four typical mechanical behaviors: brittle failure,
brittle behavior with failure just after the yield point, ductile behavior with strain hardening,
and strain softening [34]. Literature regarding permafrost soil samples and artificially
frozen soil has confirmed such behavior [35,36]. Apart from the strain rate, volumetric ice
content plays a vital role in frozen soil’s mechanical behavior. The ice content influences the
frozen soil’s ductility or brittleness [37]. Furthermore, the temperature, salinity, dynamic
load, and refreezing slightly influence the mechanical strength and behavior of the frozen
soil [38–42].

Regarding the unfrozen water in the frozen soil, various works of the literature showed
a remarkable effect on the frozen soil’s mechanical and creep behavior [43,44]. Due to the
incompressible nature of water, unfrozen water in the frozen soil can transfer both negative
and positive pressure. Still, water can be discharged with drainage, and the frozen soil’s
original form of stress state can be reestablished. However, due to its complexity, unfrozen
water is not considered in both the experimental or simulation stages.

2. Materials and Methods
2.1. Uniaxial Compression Test

A universal texture measurement system, T.A. X.T. plus Texture Analyzer (Stable Micro
System Ltd., Surrey, United Kingdom), was used to perform uniaxial compression tests.
This setup was coupled with a self-constructed climate chamber, which aimed to maintain
the ambient temperature of the inner cavity under the freezing point, thus preventing any
thermal failure of specimens. It consisted of 3D-printed parts, coupled with radiators and
radial fans, connected with a cryogenic unit (IKA Temperature Control, RC2 basic, lowest
temperature: −20 ◦C). The chamber could maintain the ambient temperature at −10 ◦C,
with less than 0.3 ◦C deviations. This experimental setup required a metal punch and base
to protect the load cell and Texture Analyzer base, which were cooled down passively by
the cool air in the climate chamber. Additionally, a 3D-printed fragment container is created
to capture any fragment generated during the experiment, preventing the ice-particle pieces
from being trapped in the radial fan. Three-dimensional CAD drawings of the climate
chamber and coupled configuration are shown in Figure 1.
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Figure 1. Texture Analyzer system equipped with a climate chamber: (Left) Climate chamber coupled
with Texture Analyzer; (Right) CAD design.

2.2. Specimen Preparation

The experiments have been carried out for pure ice samples and afterward for the
frozen PFS. Here, accurate specimen preparation has played a crucial role in the credibility
of the experiment data since undesired defects influence the data’s accuracy. For this
purpose, special molds constructed with silicon have been used for the ice and PFS freezing
process, as silicon is excellent for specimen extraction.

Nevertheless, different challenges have been faced during the preparation of samples.
For example, freezing water in silicon mold was not acceptable. Defects, such as bulging,
have been observed. Bulging was caused due to water expansion, as water decreases
in density during the phase transition stage. The phase transition occurs from outside
to inwards, forming a rigid shell of frozen water surrounding the inner unfrozen part.
As the inner part expands during further freezing, such expansion breaks the outer shell
in different directions. It creates different bulging or defects, leading to the sample’s
unpredictable geometry.

Hence, polycrystalline ice [6] was produced for the experiment based on the method
proposed by [45], formed by the compression of snow in the initial stages. Firstly, crushed
ice (1.12 mm–1.7 mm) formed after the freezing of distilled water was packed into the mold,
and 0 ◦C distilled water was then injected from the bottom. Then, the specimen froze in the
household refrigerator under −18 ◦C. The ice grain inside is randomly oriented to create
a homogeneous structure. In addition, ice specimens produced by such a method were
mainly formed from pre-frozen ice. The expansion rate of the specimen was kept under
control, which allowed more delicate monitoring of stress and strain calculation.

Different particle types were considered for the frozen PFS specimen to cover the
broadest range of interest. Samples of 10 ± 0.05 mm and 8 ± 0.05 mm in diameter were
created, with a height-to-diameter ratio ranging around 1.6 ± 0.1. The 8 mm mold was
designated to achieve higher stress, as the Texture Analyzer load cell can only withstand
500 N. The maximum compressive pressure achieved with the setup is 6.37 MPa (10 mm
diameter) and 9.95 MPa (8 mm diameter), respectively.

An overview of primary particles utilized for sample preparations and their classifica-
tion is provided in Table 1. Agglomerates are constructed by primary natural (obtained from
nature without any shape or surface alternating processing) or technical (manufactured
according to predefined geometry and surface properties) particles.

222



Materials 2022, 15, 8505

Table 1. Classification of primary particles used in experiments according to their properties.

Stiffness Shape Surface Roughness Particle Size (mm)
Soft Hard Spherical Non-Spherical Ra Rz

Polyethene X X 12.808 50.723 1.8
Glass bead X X 1.767 11.462 1.65

Alpha-alumina X X 49.262 187.453 1.72
Quartz sand X X 13.416 49.623 0.5

The saturation level of investigated PFS was either 100% or 75%. The definition of
saturation level is calculated according to the remaining volume, which is not occupied by
particles. The number of particles in the specimen is the same across different saturation
levels. The saturation level governed by what portion of the remaining volume was
occupied by bond material is calculated as follows:

Saturation level =
Volumebond

Volumespecimen −Volumeparticle
·100% (2)

The samples with 100% saturation were prepared as follows. Firstly, primary particles
were poured into the mold. Afterward, deionized water was injected from the mold’s
bottom and passed to the degassing chamber to avoid forming gas bubbles; hence no
undesired defects existed in the agglomerates. For 75% saturation samples, a predefined
amount of water was sprayed onto the particles, and then the particles were thoroughly
mixed and filled into the mold.

Both types of PFS were then frozen overnight in a household refrigerator at −18 ◦C.
PFS specimens were extracted from the silicon molds, and necessary adjustment with a
utility knife blade was applied if the contact surface was not perpendicular to the sidewall.
Two final samples with a diameter of 10 mm are shown in Figure 2.
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Figure 2. Two exemplary samples of frozen PFS: (Left) aggregate with alpha-alumina primary
particles at 75% saturation level; (Right): glass bead PFS with 100% saturation.

2.3. Investigated Parameter Space

Since the strain rate has a decisive influence on the rheological behavior of ice and
frozen soil [1,31], two different strain rates have been tested to review different PFS me-
chanical behavior. A total of 10−3 s−1 was applied for a low strain rate, and 10−2 s−1 was
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used for a high strain rate. The strain rate is controlled by the compression speed, specified
according to specimen height. The compression speed of 0.02 mm/s, which is two times
larger than the minimal compression speed of the Texture Analyzer, was chosen as the
low strain rate for all specimens. For high strain rate, compression speed is calculated by
specimen height× 0.01. All experiments have been performed at a temperature of around
−10 ◦C. The possibility of unfrozen water inside the agglomerate can be minimized with
such a temperature.

2.4. Ice Creep Behavior

The polycrystalline ice specimen was loaded to a particular force, and the applied
pressure was held for 240 s to review the creep behavior. Figure 3 shows the transition from
the primary creep (decreasing in strain rate) to the secondary creep (steady in strain rate)
in the experiment. However, an utterly constant strain rate was not yet achieved, which is
crucial for calibrating the creep parameters for the simulation. In the literature, a steady
strain rate was achieved after 100 min of force holding [32], which was impossible from the
current experimental setup.
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Figure 3. Polycrystalline ice specimen subjected to constant force load for 240 s under three different
forces.

Compressive Young’s modulus was estimated according to the primary loading part,
in which a linear stress-strain relationship was observed. Several demonstration stress-
strain curves are presented in Figure 4. Representative stress-strain curve of polycrystalline
ice during creep experiment (primary loading phase) A linear relationship is fitted and
the slope is obtained from the linear portion of the curve. The fitted curve is marked
with a straight line on the figure. The compressive Young’s modulus estimation does not
consider the primary loading portion. As this portion usually has a lower stiffness. It is
related to the surface of the ice column is not entirely in touch with the punch, and the
punch was deforming the surface rather than compressing the complete column of ice. The
compressive Young’s modulus is 346.575 ± 48.2687 MPa.
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Figure 4. Representative stress-strain curve of polycrystalline ice during creep experiment (primary
loading phase).

2.5. Fracture Patterns of Frozen PFS

Figure 5 shows the breakage pattern of the frozen PFS of different saturation levels
during uniaxial compression under a high strain rate (10−2 s−1). The fully saturated
PFS samples can better transmit the pressure through the specimen. Thus, the cracks
propagate from top to bottom, breaking the specimen into relatively large fragments
containing numerous primary particles. In this case, the complete failure of the specimen
occurred vigorously. In contrast, no large fragments were formed for PFS samples with
75% saturation. Only tiny pieces with several primary particles detached from the main
structure during loading.

One additional phenomenon observed was the inhomogeneity of 75% saturation level
PFS. The PFS is prepared by freezing particle water mixture. As the fridge temperature
is kept at −18 ◦C, the water in the agglomerate cannot be frozen instantly. During the
slow freezing process, part of the water around the particle performs a phase transition,
and the remaining water is concentrated toward the lower portion of the agglomerate,
forming an inhomogeneous specimen. Such a slow freezing process also imposes internal
and bond structure differences concerning different primary particles. As the particle
surface topography, particles’ shape, separation distance, and liquid bridge size influence
the successfulness of liquid bridge formation [46–48]. Thus, only the successfully formed
liquid bridge forms a solid bond. This causes the differences in internal structure and bond
structure to differ concerning different types of primary particles. However, it is impossible
to gather the difference in the bond structure and internal structure in 75% saturation level
PFS between different primary particles with the current experimental setup.
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alpha-alumina PFS (Supplementary material: Video S1); (b) 75% saturation, glass PFS (Supplementary
material: Video S2).

2.6. Mechanical Behavior of Frozen PFS

All possible mechanical behaviors can be observed in the experiments performed
under different conditions, such as varied types of primary particles, strain rate, and
saturation levels.

Figure 6 shows the stress-strain curve of some representative experiments for PFS with
sand and alpha-alumina primary particles under high strain (HS) and low strain (LS) rates.
The results show that the sand PFS under high strain rate loading reveals brittle failure. In
the case of alpha-alumina and high strain rates, brittle behavior with failure is observed
just after the yield point. Finally, ductile behavior with strain hardening is typical for sand
PFS under low strain rate loading and strain softening for alpha-alumina PFS under low
strain rates.
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2.7. Bonded-Particle Model Approach

Open-source GPU-accelerated DEM framework MUSEN was used to describe frozen
PFS behavior. Among others, this system supports calculations with the bonded-particle
model (BPM) [27]. In BPM, the spherical primary particles can be connected through solid
bonds. Every single bond can have its unique dimensions and material properties. Bonds
can be created or destroyed during simulation to mimic sintering or fracture behavior. The
bond is modeled as a virtual cylindrical linkage between the particles. Bonds are treated as
virtual objects with no volume or mass, and the internal force is calculated according to
strain changes; in our case, time is also considered in the solid bond mathematical model.

Agglomerate is generated with two consecutive steps. The packing of primary particles
is generated in a virtual volume according to the force-bias algorithm [26]. The virtual
volume represents the geometry of the specimen. All particles are randomly generated in
this pseudo space, which means no particles were generated outside the virtual volume.
The number of particles is governed by the porosity preset in the particle generation
progress. In each iteration, the overlaps between particles are detected, and force, which
is proportional to the overlap, is calculated. Afterward, the primary particles are shifted
according to this force. Generation completes if the maximum overlap is smaller than the
target value. Finally, to build the agglomerate, particles are connected with solid bonds. The
generation of bonds is governed by the minimum (Lmin

gen ) and maximum distance between
the surface of spheres (Lmax

gen ). If the distance between the surfaces ranges between the preset
value (Lmin

gen and Lmax
gen ), bond is created. As mentioned, the bonds are treated as virtual

objects; thus, overlapping between bonds is allowed. By alternating the limiting value
Lmax

gen , different amounts of bonds can be generated inside the same particle packing. In
most cases, minimum distance (Lmin

gen ) is set to a negative value, as particle overlapping is
allowed during package generation.

2.8. Solid Bond Model Considering Creep Behavior

The newly developed solid bond model aims to tackle the strain rate-dependent
behavior of the bond material. Therefore, the component to consider the creep behavior
has been included in the model. The particle-particle and particle-wall interactions are
calculated according to the Hertz–Mindlin model, whereby the normal force is calculated
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according to Hertzian theory [49], and the tangential force is calculated according to the
model proposed by Mindlin et al. [50].

During simulation, the calculation of bond force is separated into the normal and
tangential directions. The newly developed model coupled the strain-dependent elastic
bond model with the time-dependent creep model. As schematically shown in Figure 6, the
primary deformation stage of frozen PFS is in a linear elastic relationship [51]. The linear
elastic strain-dependent relationship describes the primary loading phases of bonds. The
total strain εn,to in normal direction is calculated based on the initial LI and current bond
length Lc:

εn,to =
Lc − LI

LI
(3)

Total strain in the normal direction can be decomposed into two parts:

εn,to = εn,el + εn,cr (4)

where εn,el is the elastic strain and εn,cr is the irreversible deformation due to creep. The
simulation automatically replaces plastic deformation with creep deformation [52]. Plastic
deformation is regarded as an inelastic deformation, effectively the deformation due to
creep under viscoelastic conditions. Normal bond stress σn is calculated by:

σn =

{
E·εn,el i f σn < σn,y
σn,y i f σn ≥ σn,y

(5)

where E is Young’s modulus of the bond material and the σn,y is the yield strength.
According to Norton [53], the power law describes the creep behavior of solid bonds

(Equation (1)). The power law can provide approximately the same behavior concerning
different applied stresses, which means the equation can provide an approximate same
“shape” regardless of different applied stress [54]. Change of temperature during simulation
is not considered for the model simplicity. The irreversible creep strain in the solid bonds is
calculated iteratively in each time step as:

εn,cr(t + ∆t) = εn,cr(t) + ∆t·A· (σn(t))
m (6)

∆t denotes the simulation time step. The resulting bond force in the normal direction Fn,b
calculated by:

Fn,b (t + ∆t) = E·Ab·(εn,to − εn,cr(t + ∆t)) (7)

where Ab is the bond’s cross-cut area. With strain applied to the bond, normal stress
response increased according to an approximately linear relationship. The calculation of
bond normal stress during the loading part combines the linear strain-dependent relation-
ship with the not linear time-dependent relationship. Bond normal stress increases until
yield strength and holds. If strain remains unchanged after a specific time, force response
decreases gradually, calculated according to the creep parameter and the previous time
step’s bond normal stress. A demonstration of the stress-time relationship for a single bond
is shown in Figure 7.
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Creep behavior is considered in both normal and tangential directions. The same
power law of creep describes the creep behavior in the tangential direction. Unlike the
calculation of strain in the normal direction, the bond deformation in the tangential direction→
δ t in every simulation step is updated according to the previous time step relative motion:

→
δ t(t + ∆t) = T·

→
δ t(t) +

⇀
v t,rel · ∆t (8)

where T is the rotation matrix to consider the motion of connected particles between the
current and previous time step [55], and

⇀
v t,rel is the relative velocity at the contact point in

the tangential direction.
The tangential stress, which is crucial for the calculation of the tangential creep strain

rate, is calculated according to the following:

σt =

∣∣∣
→
δ t

∣∣∣
LI
· E

2 ·(1 + v)
(9)

where v is the Poisson’s ratio of the bond material. The same power law with the same
creep parameters A and m are used for the creep behavior in the tangential direction.
Strain change due to creep in the tangential direction after every consecutive time step is
calculated according to:

→
ε t(t + ∆t) =

→
ε t (t) + εt,cr (∆t) · →r t (10)

where
→
r t is the unit vector of the bond in the tangential direction, which is defined by:

→
r t =

→
δ t(t)∣∣∣
→
δ t(t)

∣∣∣
(11)

The resulting tangential force can be calculated by:

→
F t,b =

→
δ t(t + ∆t)

LI
· E
2 ·(1 + v)

·Ab (12)

Apart from the agglomerate mechanical behavior, the agglomerate fracture is consid-
ered in the model. This is accomplished by comparing the individual bond stresses under
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loading with material properties such as normal σmax and tangential strength τmax as well
as comparing the total strain and critical breakage strain εn,max as:

→
F n,b

Ab
+

→
Mn,b·Rb

I
≥ σmax (13)

→
F t,b

Ab
+

→
Mt,b·Rb

J
≥ τmax (14)

εn,to ≥ εn,max (15)

where Rb is the bond radius,
→
Mn,b and

→
Mt,b are the bending and torsional moments of the

bond, respectively, I is the moment of inertia, and J is the polar (torsional) moment of
inertia of the bond’s cross-section.

Pressure melting and recreation of bonds are not considered in this solid bond model,
as it vastly increases the complexity of the mathematical model, which has to consider the
temperature, pressure, and factors governing the recreation of the bond.

The normal compressive strength alternated according to strain rate [29]. However,
due to the nature of the model, implementing a relationship for calculating normal and
tangential strength according to strain rate causes massive fluctuation in both values. The
newly developed solid bond model has not considered the strain rate-dependent compres-
sive strength relationship. Variance in bond normal strength due to strain rate or particle
surface properties is compensated by alternating the bond normal and tangential strength
concerning PFS constructed by different primary particles under different strain rates.

3. Result and Discussion
3.1. Experimental Result

The overview of Young’s modulus and breakage stresses of frozen PFS under different
saturation levels are presented in Figure 8. A reduction in the proportion of the bond
material in the agglomerates vastly weakens the mechanical structure. This phenomenon
can be observed from the value of the average Young’s modulus and breakage stress,
in which the reduction in saturation level decreases both values, incredibly massive in
breakage stress. The reduction ratio in mechanical strength is significantly higher than the
reduction ratio in the bond material volume fraction.
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Figure 8. Average Young’s modulus and breakage stress of different PFS: (a) Young’s modulus;
(b) Breakage stress.
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For 100% saturation level PFS samples, Young’s modulus increased with the increase
in strain rate, except for the frozen PFS with glass particles. The strain rate of PFS with glass
particles does not significantly influence Young’s modulus. One of the possible reasons for
that is the different creep behavior of ice in the contact zone between particle and bond.
From Table 1, the glass bead has the lowest value in both Ra and Rz, which means the glass
bead has the smoothest surface among all the primary particles. The smooth surface affects
the contact zone behavior. This phenomenon can also be observed for the breakage stress
of glass PFS with a 100% saturation level, where the aggregate reveals the lowest breakage
strength under both strain rates. Overall, for all investigated materials, it can be observed
that with an increased roughness, the strength increases, and the highest strength reveal
aggregates containing non-spherical sand particles.

Young’s modulus for sand PFS samples at different strain rates is also a vast difference.
The surface properties of sand particles are similar to Polyethene particles. The much
higher Young’s modulus at a high strain rate is related to the primary particle’s mechanical
properties but is mainly associated with a lower porosity and, as a result, a more significant
number of contacts for each particle. Consequently, a more compact and refined internal
bond structure is formed inside such samples, which increases stiffness.

On the other hand, the lower value of Young’s modulus at a low strain rate might
be related to the pressure melting phenomenon, when the ice melts under pressure and
then freezes again due to particle realignment. Due to the massive number of bonds in the
sand PFS and the viscoelasticity of ice, this process can escalate, which causes a significant
drop in Young’s modulus at a low strain rate. However, the current experiment setup
cannot prove such an assumption. The strain rate for saturation level 75% only slightly
affects Young’s modulus. However, for an unambiguous conclusion, it is necessary to
conduct more experiments here, especially crucial data regarding the internal structure
under pressure.

The average breakage stress of 100% and 75% saturation level PFS provided additional
information about the mechanical behavior, presented in Figure 8. At 100% saturation
level, an increase in strain rate leads to a higher fracture strength, except for the glass PFS,
since the glass particle reveals a much smoother surface than other particles. The smooth
surface leads to a weak interface between the bond material and the particle surface. At 75%
saturation level, the high deviation within the experiment data does not allow for observing
a clear trend except for the sand PFS, where it can be concluded that strain rate causes
an increase in breakage stress. Apart from quantitative analysis of mechanical behavior,
which is based on breakage stress, strain, and Young’s modulus, the overall rheological
behavior should be considered. Table 2 gives an insight into agglomerate behavior for
different saturation levels, temperatures, strain rates, and particle properties.

Table 2. Mechanical behavior overview concerning saturation levels, temperatures, strain rates, and
particle properties.

Saturation
Level

Strain
Rate

Smooth Particles
(Polymer and Glass)

Rough Particles
(Sand and Alpha-Alumina)

100%
Low Mostly brittle with failure

just after the yield point
Dilatant with slight strain

softening or hardening

High Brittle failure Brittle behavior with failure just
after yield or brittle failure

75%
Low Brittle failure Dilatant with vast strain softening
High Brittle failure Brittle failure

Particle surface properties and strain rate can influence mechanical behavior. Further-
more, the 75% saturation samples yielded more stepwise breakage under loading.
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3.2. Simulation Setup

The agglomerates with 10 mm in diameter and 16 mm in height have been generated
according to the section “Bonded-Particle Model Approach” procedure. The diameter
of primary particles was tailored to the particles used in the experiment. Additionally,
the driving velocity of the upper moving geometry (metal punch) was increased to 200
times (low strain rate: 4 mm/s, high strain rate: 32 mm/s) compared to the experiments
to reduce the total computation time. The increase in moving geometry speed can lead
to emerging of artificial elastic waves propagating through the material. The restitution
coefficient for all particles and particle-wall interactions was reduced to 0.1 to prevent such
a phenomenon. The restitution coefficient controls the amount of kinetic energy dissipated
during simulation. In addition, the creep parameter has been adjusted accordingly.

For the spherical particles (polyethene, glass, alpha-alumina), spheres were used to
represent the particles in the simulation. For non-spherical sand particles, the simulation
has also used spheres to reproduce the particles due to contact detection occupying sig-
nificant calculation power in DEM simulation. Computing the contact for spheres is less
demanding, determined by the center distance being more or less than the distance of
the combined radius. With non-spherical particles, not only is the distance considered,
but also the relative rotation of particles needs to be taken into account. The simula-
tion of non-spherical particles in DEM is tremendously more demanding than spherical
particles [56].

The main model parameters and material properties of primary particles are listed
in Table 3. The polymer particles, glass beads, and alpha-alumina Young’s modulus were
determined from self-performed experiments. Here the force-displacement characteristics
obtained from uniaxial compression tests were used to adjust Young’s modulus by fitting
the Hertz model to experimental results [57]. Additionally, due to the non-spherical nature
of sand particles, a uniaxial compression test for material modeling parameter calibration is
impossible. In contrast, Young’s modulus of sand particles was taken from the literature [58].
Both density and Poisson’s ratio of different particles were taken from the literature [59–62].

Table 3. Main agglomerates properties used for simulation of different types of PFS with 100%
saturation level.

Parameter Polyethene/Glass/
Alpha-Alumina (Spherical)

Sand
(Non-Spherical)

Particle diameter (mm) 1.8/1.7/1.65 0.5
Bond diameter (mm) 1.0 0.3

Particle density (kg/m3) 960/2500/3960 2640
Particle Young’s modulus (GPa) 0.8/72.3/150 72

Particle Poisson’s ratio (-) 0.36/0.22/0.22 0.2
Maximal bond generation distance Lmax

gen (mm) 0.7 0.2
Numbers of particles (-) ≈230 ≈11,200

No. of bonds (-) ≈1100 ≈66,000
Porosity (-) 0.44 0.42

Particle-wall sliding friction (-) 0.45/0.45/0.45 0.45
Particle-wall rolling friction (-) 0.05/0.05/0.05 0.5

Particle-particle sliding friction (-) 0.45/0.4/0.45 0.45
Particle-particle rolling friction (-) 0.05/0.05/0.05 0.5

Restitution coefficient (-) 0.1 0.1

The particle-particle, particle-wall sliding, and rolling friction were referenced from
different literature, with further fine adjustment per trial-and-error procedure [62–64].
According to Gu et al. [65], the non-spherical PFS particle-particle and particle-wall sliding
and rolling friction coefficients have been adjusted. In the DEM simulations, the shape
of particles was neglected, and all investigated particles were modeled as spheres. Due
to such a simplified representation, the value of rolling friction for non-spherical sand
particles was much higher compared to spherical particles.
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The material parameters for ice bonds have been adjusted according to experiments
with 100% saturation. The simulation results are compared to averaged experiment stress-
strain curve.

Young’s modulus maintained the same for all different sets of experiments and was
estimated at 350 MPa. The Poisson’s ratio was taken from the literature as 0.31 [29]. Only
the normal strength, tangential strength, and creep parameters A and m were tuned to
individual experimental sets. The adjusted parameters for different sets of experiments are
listed in Table 4. Particles investigated in this study have been selected due to their signifi-
cant mechanical and surface properties differences. The creep parameters are adjusted by
a trial-and-error procedure. It is related to two reasons. First, the creep parameter in the
works of literature is calibrated concerning pure ice samples. The value cannot be applied
to the simulation, as the contact zone influences the creep parameter concerning different
primary particles. The second is the increased speed of moving geometry. Since the creep
parameter is a time-dependent material parameter, any adjustment toward the simulation
scene related to time influences the creep parameter setup.

Table 4. Material properties for ice bonds used for modeling different agglomerates at different
loading rates.

Primary Particles
Polyethene Glass Alpha-Alumina Natural Sand

Normal and shear strengths
- High strain rate (MPa) 3.5 4.2 20 20
- Low strain rate (MPa) 6 2.7 20 20

Creep parameter A (-) 0.1 0.1 0.3 0.1
Creep factor m (-) 0.1 0.1 0.16 0.1

Similar to the creep parameters, bond normal and tangential strength are tuned by
the trial-and-error procedure. Consequently, the contact zone between ice bridges and
particles was significantly varied. It is expected that the strength of the contact zone for
smooth glass particles was much smaller than the similar strength for rough and highly
porous alpha-alumina particles. Therefore, the bonds’ normal and tangential strengths
were varied to consider that effect. Primary sets of simulations were performed during the
trial-and-error material parameter tuning procedure. Young’s modulus and Poisson’s ratio
have kept unchanged throughout the process. Simulation results were transferred into
the stress-strain curves, which were compared with the experimental result. The material
parameters were then narrowed down to achieve accurate simulation results compared
to the experiment result. Creep parameters concerning different primary particles are
compared to validate the model capability. As shown in Table 4, only alpha-alumina PFS
has a different creep parameter, which is correlated to its aggregated surface topography.

For modeling agglomerates with lower saturation degrees, the same material parame-
ters for solid bonds were taken in Table 4. However, the bond generation parameters were
alternated. New diameter and new maximal generation distance between particles Lmax

gen
were specified.

Compared to the 100% saturation degree, for the bond generation in the case of
agglomerates with a low saturation degree of 75%, the maximal distance Lmax

gen has been
reduced to 0.01 mm. Such a value assumes that an ice bond is only formed when the
particles are in contact or adjacent with a minimal distance. As mentioned, parameters
constraining the successfulness of liquid bridge formation were related to the geometry,
surface topography, separation distance, and size of the liquid bridge. As shown in Table 5,
the total number of bonds for 75% saturation degree was almost halved compared to the
100% saturation level.
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Table 5. Agglomerates bond generation set up for different types of PFS in 75% saturation level.

Parameter Polyethylene/Glass/Alpha-Alumina
(Spherical)

Sand
(Non-Spherical)

Bond diameter (mm) 0.75 0.22
Maximal bond generation distance Lmax

gen (mm) 0.01 0.01
Number of particles ≈230 ≈11,200

Number of bonds ≈550 ≈34,000

The cross-section area was also reduced to mimic the alternation in the internal bond
structure. A quarter facilitates the bond diameter for agglomerates with spherical and
non-spherical primary particles.

The assumption behind such a setup was the ice bridge formation deviation between
particles in 100% and 75% saturation levels. At 100% saturation level, the cavity was
occupied by water or particles, and both are incompressible substances. Solid bonds
can completely enclose all primary particles inside the agglomerates. However, at a 75%
saturation level, due to the volume reduction in bond substance, the individual geometry
of the bonds between particles differs from the 100% saturation level agglomerate. The
ice bridges are formed by the phase transition of the capillary liquid bridges. The starting
geometry of ice bonds before phase transformation at 100% saturation level is entirely
different from the 75% saturation level. Due to the difference in initial geometry, the
deviation of the ice bond after phase transformation was accumulated. The ice bond of the
75% saturation is entirely different from the 100% saturation level. According to such an
assumption, the reduction in bond diameter is applied to the simulation model.

In Figure 9, the agglomerates generated for different initial conditions are shown. The
top part shows the agglomerates with spherical particles, and the lower part only shows
the internal bond structure.
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Figure 9. Representative agglomerate with diameter 10 mm, height 16 mm (upper part: agglomerates
in complete form; lower part: agglomerates’ internal structure).

3.3. Comparison of Simulation and Experimental Results

The simulation and experimental results for the uniaxial compression test for different
agglomerates with varied strain rates are shown in Figure 10. It can be seen that simulation
provides acceptable values in breakage stress, strain, and Young’s modulus compared to
experimental results. The proposed solid bond model can review different mechanical
behavior regarding different strain rates.
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Figure 10. Experimental and simulation results for 100% saturation level for high strain (HS) rates
(10−2 s−1) and low strain (LS) rates (10−3 s−1).

Without the variation of bonds’ Young’s modulus and Poisson’s ratio, the proposed
solid bond model can tackle the strain rate-dependent behavior with compensation of
normal and tangential strength toward the particle surface properties. Last but not least,
using alternated particle-particle and particle-wall friction coefficients to compensate for
the shape deviation of simulation and experiment particles has proven feasible.

Apart from comparing the stress-strain data, the comparison between the experiment’s
average Young’s modulus and breakage stress and simulation result is presented in Fig-
ure 11. All the simulation result lies within or very close to the average experiment value
in both Young’s modulus and breakage stress.
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The deviation between every experimental data was enormous in lower saturation
level PFS. The experimental data and data obtained by simulation were compared by
comparing the values of breakage stress and Young’s modulus.

The comparison of breakage stress and Young’s modulus of agglomerates with lower
saturation degrees is shown in Figure 12. Simulations were not aimed at achieving the exact
value, as the material parameter of particles and bonds for different conditions were not
alternated. Only the internal bond structure is adjusted to compensate for the deviation of
saturation level. Breakage stress obtained from the simulation yielded acceptable agreement
with the experiment, as most of the simulation result lies within or close to the standard
deviation range, except for the alpha-alumina PFS. The internal structure of the lower
saturation level is generated according to arbitrary values, leading to a big difference
compared to the realistic structure. The simulation and experiment comparison shows that
the weakening effect of reducing saturation level differs remarkably toward alpha-alumina
particles.
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Figure 12. Comparison of experimental and simulation results for 75% saturation at −10 ◦C:
(a) Young’s modulus; (b) Breakage stress.

Young’s modulus from simulation reveals more significant deviations to experimental
data than breakage stress. The main reason is the lack of detailed information on the
contact zone between the bond and the particle. Such information is particularly essential
for the particle-bond interface creep behavior, thus alternating the elastic behavior of the
agglomerate.

Contrary to the assumptions made in the model, the internal structures of glass
bead PFS and alpha-alumina PFS might not be the same. The capillary properties of
glass and alpha-alumina are different, leading to the formation of varying bond networks.
Furthermore, another critical role may play in the particle size and shape variability for
the sand PFS. Thus, using the same settings for the bond generation applied for spherical
and non-spherical PFS imposes out-of-range discrepancies in simulation and experimental
results for non-spherical PFS.

4. Conclusions

Both experiment and simulation studies for frozen PFS were performed in this con-
tribution. The experiments presented results that are in suitable agreement with previous
literature. Primary particles with different surface and mechanical properties were con-
structed to validate the influence on the agglomerate mechanical properties and behavior.
The saturation level was alternated during the experiment phase, which reviews a vast
weakening effect on the agglomerate.
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The bonded-particle model, an extension of DEM, has been used to tackle the problem.
A new solid bond model considering creep behavior has been developed and implemented
into the MUSEN simulation framework. The developed model can simulate strain rate-
dependent material, formulating the different mechanical responses under different strain
rates. Nonetheless, particle composite material experiencing creep behavior or damage can
also be simulated.

Throughout all different simulations, the bond Young’s modulus and Poisson’s ratio
have kept the same, with creep parameters, normal and tangential strength tuned according
to primary particles and strain rate. The simulation model has proven to be capable of
considering the strain rate-dependent behavior of the frozen PFS. In the lower saturation
levels of frozen PFS, the bond’s material parameters were kept the same, and only the
internal structure of the agglomerate in the simulation was changed. That shows a more
considerable deviation in Young’s modulus but acceptable values in breakage stress. Lack
of data regarding the internal structure leads to a higher variation of simulation results
under a lower saturation level in PFS experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15238505/s1, Video S1: 100% saturation, alpha-alumina PFS;
Video S2: 75% saturation, glass PFS.
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Abstract: Many concrete structures, such as bridges and wind turbine towers, fail mostly due to
the fatigue rapture and bending, where the cracks are initiated and propagate under cyclic loading.
Modeling the fracture process zone (FPZ) is essential to understanding the cracking behavior of
heterogeneous, quasi-brittle materials such as concrete under monotonic and cyclic actions. The paper
aims to present a numerical modeling approach for simulating crack growth using a scaled boundary
finite element model (SBFEM). The cohesive traction law is explored to model the stress field under
monotonic and cyclic loading conditions. In doing so, a new constitutive law is applied within the
cohesive response. The cyclic damage accumulation during loading and unloading is formulated
within the thermodynamic framework of the constitutive concrete model. We consider two common
problems of three-point bending of a single-edge-notched concrete beam subjected to different
loading conditions to validate the developed method. The simulation results show good agreement
with experimental test measurements from the literature. The presented analysis can provide a
further understanding of crack growth and damage accumulation within the cohesive response,
and the SBFEM makes it possible to identify the fracture behavior of cyclic crack propagation in
concrete members.

Keywords: crack propagation; cohesive zone method; constitutive modelling; cyclic loading; scaled
boundary finite element

1. Introduction

Concrete structural elements very often fail due to fatigue fractures, in which re-
peated loading can lead to the growth of existing cracks [1–4]. To better understand
the fatigue fracturing under cyclic loading, a detailed analysis of the fatigue behavior
and the associated crack propagation is required for economical and reliable design of
concrete structures.

The advanced studies on cyclic crack propagation are mostly empirical, wherein large
number of data samples from experiments are used for fitting the relationship. The most
commonly used approach to predict fatigue life and crack growth rate is the well-known
Paris law [5,6]. This phenomenological law relates the amplitude of the stress state (defined
by stress intensity factor K) and the crack growth rate da/dN, which can be considered a
valuable tool for engineering fatigue analysis. However, it has been shown that Paris law
loses much of its prediction ability when conditions are not ideal, such as with non-constant
amplitude loading and short cracks [7,8]. Nevertheless, advanced numerical models have
been developed widely to capture the phenomena behind the cyclic crack propagation
under subcritical loading levels. Numerical simulations are more flexible in the sense
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that they can predict fatigue life and crack growth under general loading conditions and
geometries. They can be applied to study design variations in early design stages.

Several modeling approaches for crack propagation under cyclic and fatigue loading
are well documented in the literature [9,10]. The cohesive zone model (CZM) has been
implemented in classical fracture mechanics by [11,12] to reduce the mesh quality required
for crack simulation. The CZM is based on elastic damage material for both monotonic
and fatigue crack growth [13,14]. For concrete material, the softening damage, whose
localization is governed numerically by finite element simulation, is aimed at simulating
the propagation of the fatigue fracture in the cohesive process zone [15,16]. However, these
types of models are used to accumulate damage only along the damaged locations of the
loading/unloading paths.

The second type of crack simulation model is the phase field model (PFM). The concept
of the PFM approach is to regularize free energy of degradation, which effectively reduces
material fracture resistance under fatigue loading [17]. It was developed to predict quasi-
static and dynamic fracturing in brittle and ductile regimes considering isotropic and
anisotropic toughness [18]. This method introduces the degradation of the fracture energy
as a function of a local energy-accumulation variable. As a result of repeated loading, the
structural loading history is taken into consideration [19]. Similar approaches have been
published recently in [20], which simulated fatigue crack growth. A nonlinear kinematic
and isotropic hardening were considered. Differently, simulations of molecular dynamics
can be used to evaluate the interfacial strength [21].

Additionally, discrete lattice models have many features of the discrete element
method (DEM) to simulate the heterogeneous microstructure and crack propagation [22].
The formulation combines the damage mechanics and plasticity theory with a cyclic dam-
age evolution law. The model characterizes the critical response of concrete material
undergoing cyclic loading. The behavior obtained by the DEM simulations is a collective
response constituted from all contacts and particles in the domain.

Many models in the literature [23–31] are dedicated to simulating the quasi-brittle
behavior, including a set of constitutive equations for the monotonic, fatigue, and hysterical
material responses. Furthermore, several calculation schemes also exist to predict tensile,
flexural monotonic, and fatigue behavior [32,33]. The established damage law allows
a damage accumulation process for random cycles. The damage model concludes the
primary dissipative phenomenon, which is activated during unloading and reloading.

The scaled boundary finite element method (SBFEM) is a very attractive approach
to modeling crack nucleation and propagation under general loading conditions [34–37].
The cohesive fracture and stress field can be determined using interface elements with
zero thickness, which are inserted directly into the SBFEM [38–40]. The cohesive traction
forces and the stress field close to the crack tip are accurately computed as they are defined
analytically. This enables the onset of crack propagation to obtain the correct load-deflection
response. Yang [41] developed the SBFEM to solve linear crack propagation in brittle
materials under monotonic loading. He benefited from the salient feature of the high
accuracy of the stress intensity factor (SIF) in SBFEM computed directly from singular stress
solutions and flexible substructuring of each domain. The crack simulation of concrete
slabs based on a cohesive zone model in an explicit SBFEM-FEM frame for seismic cyclic
loading was reported in [42] to facilitate dynamic analysis. However, the calculation of
coupled SBFEM-FEM analysis can be very computationally intensive. For cyclic loading,
the crack evolution can also be simulated using quasi-static analysis. The accuracy of the
method was validated by a cyclic damage test with a concrete beam. A fully automatic
modeling methodology characterized by a simple remeshing algorithm was developed, and
the mixed-mode crack propagation problem was efficiently solved. Yang and Deeks [43]
further coupled the procedure of SBFEM with the FEM for quasi-brittle materials. An
extended polygon scaled boundary finite element method [44] was developed to simulate
nonlinear dynamic analysis. A direct remeshing algorithm for crack propagation was
obtained for quasi-brittle materials. The study of dynamic fracture modeling by SBFEM
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was developed in [45] to model the crack propagation of impact-test specimens. The stress
intensity factor, displacement, and stresses were extracted from the dynamic solution.

In the present paper, we further extend the SBFEM for modeling cyclic-damage-
induced cracks’ behavior within the SBFEM framework. The model considers the cumula-
tive crack opening/sliding measure to dominate the damage mechanism at the subcritical
loading levels. Similar approaches have been proposed in [40] for the numerical simula-
tion of concrete under monotonic loading. The novelty of our approach is to establish a
link between the cyclic damage rate and the efficiency of the SBFEM in modeling crack
propagation. By comparing the thermodynamic softening law of the constitutive model for
fracture, several aspects have been provided, which include the loading–unloading path,
the damage evolution during the load cycle, and the crack-opening traction behavior.

The paper is organized as follows. The theoretical formulation of the cohesive crack
model inside SBFEM is represented in Section 2. The behavior of the constitutive material
model is studied at the level of material point (Gauss point) in Section 3. The performance
of the cohesive cyclic crack model within the thermodynamic framework is then reported,
which was applied in [46]. In Section 4, we present the calibration and validation of the
model based on the results of the cyclic flexural bending test of plain concrete published
in the literature. We present numerical investigations focused on the effect of the loading
sequence on the material behavior.

2. Scaled Boundary Finite Element (SBFEM)
2.1. Fundamentals

Figure 1 shows the basic concept of the cohesive crack model in the scaled boundary
method for a typical bounded domain. The mesh is represented by a discretized collection
of arbitrary-sided polygons, or (as in Figure 1a) quadtrees elements. Each element is
maintained by a curve relative to a scaling center (x0,y0). This condition is satisfied by
dividing the domain into many sub-domains, which can be made visible for each boundary.
The boundary is discretized by one-dimensional finite elements with a local coordinate η
in an interval of −1 ≤ η ≤ 1; see Figure 1b. Let (x0,y0) be the scaling center, and ξ is the
radial coordinate with ξ = 0 at the center and ξ = 1 at the boundary. The coordinates on
the boundary are interpolated by xb = [N(η)]{xbn}, and yb = [N(η)]{ybn}, where [N(η)]
is the vector of nodal shape functions, and {xbn}, {ybn} are the nodal coordinates. The
displacement field, u(ξ, η), can be defined semi-analytically as

{u(ξ, η)} = [Nu(η)]{u(ξ)} (1)

We calculate the nodal displacement functions u(ξ) at the radial lines, ξ. Meanwhile,
they are interpolated by the linear shape functions [Nu(η)] in the direction of η, which are
obtained by multiplying a suitable identity matrix with each element in [N]. Thus, the
strain and the stress fields are formulated as:

{ε(ξ, η)} = [B1(η)]{u(ξ)},ξ + (1/ξ)[B2(η)]{u(ξ)} (2)

{σ(ξ, η)} = [D]{ε(ξ, η)} = [D][B1(η)]{u(ξ)},ξ + (1/ξ)[B2(η)]{u(ξ)} (3)

where B1(η) and B2(η) are the strain matrices, and D is the constitutive matrix [39]. The
weak form of the elastic equilibrium of forces is obtained according to the principle of
virtual work [47], or from the weighted residual technique; see ref. [34]. The governing
equations can be written as follows:

[E0]ξ
2{u(ξ)},ξξ + ([E0] + [E1] + [ET

1 ])ξ{u(ξ)},ξ − [E2]{u(ξ)} = 0 (4)

{P(ξ)} = [E0]ξ{u(ξ)},ξ + [E1]
T{u(ξ)} (5)

with {P} being the load vector. Equation (4) includes second-order Cauchy–Euler equa-
tions, called the scaled boundary finite element equation in the displacement with the
coefficient matrices [E0], [E1], [E2]. Furthermore, Equation (4) is a homogeneous second-
order differential Equation (in case there is no side face or body loads) with n unknowns.
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By introducing a new variable [χ(ξ)] with Hamiltonian matrix Z, the system becomes a
first-order ordinary differential equation [48] as

ξ[χ(ξ)],ξ = −[Z][χ(ξ)] (6)

and
[χ(ξ)] = [{u(ξ)}{q(ξ)}]T (7)

where q(ξ) are analytical functions that represent the internal nodal forces vector:

{q(ξ)} = [E0]ξ{u(ξ)},ξ + [E1]
T{u(ξ)} (8)

and the Hamitonian matrix is calculated as a function of [E0], [E1], [E2]:

[Z] =
[

[E0]
−1[E0]

T −[E0]
−1

−[E2] + [E1][E0]
−1[E1]

T −[E1][E0]
−1

]
(9)

An eigenvalue decomposition of [Z] follows [49]:

[Z]

[
[φ

(n)
u ] [φ

(p)
u ]

[φ
(n)
q ] [φ

(p)
q ]

]
=

[
[φ

(n)
u ] [φ

(p)
u ]

[φ
(n)
q ] [φ

(p)
q ]

]
×
[
[λ(n)] 0

0 [λ(p)]

]
(10)

where [λ] is the diagonal matrix of λ(p) and λ(n). The superscripts p and n refer to positive
and negative. [φ

(p)
q ], [φ(p)

u ], and [φ
(n)
u ] are the eigenvectors corresponding to λ(p), [φ(n)

q ],
and [λ(n)], respectively. The solution of Equation (6) yields:

{q(ξ)} = [φ
(n)
q ]ξ−[λ

(n) ]{c(n)}+ [φ
(p)
q ]ξ−[λ

(p) ]{c(p)} (11)

{u(ξ)} = [φ
(n)
u ]ξ−[λ

(n) ]{c(n)}+ [φ
(p)
u ]ξ−[λ

(p) ]{c(p)} (12)

{c(p)} and {c(n)} are the integration constants. For a bounded domain, the boundary
condition at {ξ = 0} produces {c(p)} = 0. In this case, the modes of non-positive real
components of eigenvalue [λ] contribute to the solution of finite displacement at the
scaling center.

The equivalent nodal forces on the boundary and the stiffness matrix of the domain
are formulated, respectively, as

{P} = [φ
(n)
q ]{c(n)} = [φ

(n)
q ][φ

(n)
u ]−1{ub} (13)

[K] = [φ
(n)
q ][φ

(n)
u ]−1 (14)

At the boundaries, the nodal displacements {ub} can be calculated from the global
stiffness matrix K and load vector P.

Meanwhile, substituting Equation (11) into Equation (1) yields the displacement field
in the bulk domain as

{u(ξ, η)} = [Nu(η)]
n

∑
i=1

ξ−λ(n)i ci{φi} (15)

Hence, the stress field is formulated by

{σ(ξ, η)} = [D]
n

∑
i=1

ξ−λ(n)i ([−λ(n)][B1(η)] + [B2(η)]){φi} (16)
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Figure 1. The concept of a cohesive crack model using the scaled boundary finite element method.

2.2. Stress Field at Crack Tip with Cohesive Tractions

The fracture process zone in a quasi-brittle material can transfer the cohesive forces
between the crack faces. This is attributed to the interlocking of the aggregate, in addition
to the surface friction. The cohesive traction representing the crack faces is applied as
side-face forces. The equilibrium condition (Equation (4)) in a polygon containing a crack
tip is augmented to include the load vector containing the side-face tractions, as in [43].

[E0]ξ
2{u(ξ)},ξξ + ([E0] + [E1] + [ET

1 ])ξ{u(ξ)},ξ − [E2]{u(ξ)} − {Ft(ξ)} = 0 (17)

In this work, the cohesive force on the crack faces {Ft(ξ)} will be computed based on
the shadow domain procedure, which has been introduced by [40].

The concept of the cohesive cyclic crack model, as depicted in Figure 1, is shown in
the following steps:

1. The mesh generation of the domain in Figure 1a and the cohesive zone in the sur-
roundings of the crack polygon is defined. In this method, the generic mesh contains
an arbitrarily many sided polygon in boundary regions, master cells far away from
the boundaries, and the crack cells.

2. The crack cell is divided into two SBFEM cells to discretize the crack faces and to
insert the interface elements into the SBFEM system. The local coordinates ξ, η of the
SBFEM system are illustrated in Figure 1b.

3. The shadow domain is generated as shown in Figure 1c. It is implemented in order
to calculate the cohesive tractions (side-face forces) and the nodal displacements
throughout the crack subdomain. This method inserts a node at the crack tip with
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three corresponding edges (two edges, L1 and L2, for each crack face, and one edge,
L3, to split the crack cell into two). Knowing the crack angle, θ, the orientation of L3 is
projected in a way that a straight line is extended from the crack tip with an angle θ.
Then, the node closest to the intersection point at edge of the cracked cell is employed
to split the polygon.

4. The SBFEM is directly coupled with zero-thickness, four node-interface elements
along the crack path (Figure 1d) which are inserted along the lines of the mesh. The
cohesive edges (N1, N2, N3, N4) divide the subdomains into two divisions. The
pair (N1,u N3,u) and (N2,u N4,u) form contact pairs with a set of crack opening (w).
Additionally, the pair (N1,v N3,v) and (N2,v N4,v) form contact pairs with a set of crack
sliding (s). As the crack propagates, the interface element domain is inserted into the
mesh. This can satisfy the compatibility condition in the displacement between the
SBFEM polygons and the interface elements.

5. Along the crack paths, the fracture process zone is characterized using softening laws
of the thermodynamics; see Figure 1e. For concrete, the softening behavior for crack
opening and sliding proposed model is based on [46] and defined in the next section.
The model uses the cumulative measure of slip as a fundamental damage driving
mechanism at the subcritical levels of loading.

In the fracture process zone, cohesive tractions tn, ts are expressed as a function of
relative opening and sliding displacements d. In the local coordinate system, the stiffness
matrix reads:

[kint] =
A
2

ng

∑
i=1

wi Mi
T [k]Mi (18)

where k is the stiffness of the softening laws, A is the crack surface area, wi is the one-
dimensional Gaussian weight, ng is the number of integration points, and Mi is the linear
shape function matrix [40]. The stiffness matrices of the interface element kint can be
assembled attractively. In this case, the local coordinates (ξp, ηp) in the shadow domain are
defined first to obtain the coordinates (x, y) for a new node in the new crack cell. For this
purpose, we use a search algorithm to determine the element in the shadow domain that
includes the point (x, y). In doing so, the nodal displacements and the cohesive tractions
are calculated along the crack. These are then mapped back to the crack cell to calculate the
stress intensity factors required to determine if the crack propagates. The SIF considering
the cohesive forces on the crack face is calculated by representing the cohesive forces as a
power function in ξ following from the form of the side face traction vector Ft(ξ), as in [43].

Linearly varying or constant distributed loads are approaches to representing a force
over a particular distance. According to [47], when the side-face loads are distributed by a
power function, then the modal displacement loads are

{ut(ξ)} = ξt+1{φt} (19)

Substitution of Equation (19) into Equation (17) yields

[(t + 1)2[E0] + (t + 1)([E1
T ]− [E1])− [E2]]

−1{φt}+ {Ft} = {0} (20)

Rearranging will give the nodal displacements for the side-face load mode {φt} as

{φt} = −[(t + 1)2[E0] + (t + 1)([E1
T ]− [E1])− [E2]]

−1{Ft} = [B1(t)]{Ft} (21)

In order to express the cohesive tractions as a power of function, the normal traction
distribution σ(ξ) is assumed to be the summation of M raised to the power of function ξ:

σ(ξ) = ft

M

∑
i=1

eiξ
ti (22)

where ei is coefficient to be calculated. Considering a parameter µ, the exponents ti are
determined as ti = (i− 1 + µ) .
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The tractions at the crack tip, the Gaussian points, and the crack mouth σj(j = 1, M)
are used to generate M number of equations as

σj = σ(ξ j) = ft

M

∑
i=1

eiξ
ti
j (23)

where ξ j = lj/L is the distance from the jth point on the crack to the crack tip lj and the
length of the crack L. The coefficients {e} = {e1 e2 ... eM}T are then calculated as

{e} = [S]T ft
−1{σ} (24)

where {σ} = {σ1 σ2 ... σM}T , and the matrix [S] is

[S] =




ξt1
1 ξt2

1 · · · ξ
tM
1

ξt1
2 ξt2

2 · · · ξ
tM
2

...
...

. . .
...

ξt1
M ξt2

M · · · ξ
tM
M




(25)

The nodal side-face load vector becomes

{Ft(ξ)} =
M

∑
i=1

ξti{Fti} (26)

with
{Ft(ξ)} = A ftei{R1} (27)

and
{R1} = {−sinδ cosδ 0 · · · 0 sinδ − cosδ}T (28)

where A = is the area of crack surface.
The displacement solution is thus expressed by two components: the modes of normal

displacement due to external loading and the modes of side-face displacement due to
cohesive tractions as

{u(ξ, η)} = [N(η)][
N

∑
i=1

ciξ
λi{φi}+

M

∑
i=1

eiξ
ti+1 A ft[B1(ti)]{R1}] (29)

On the subdomain boundary, the nodal displacement ubs is calculated as

{ubs} = [φ]{c}+ [φt]{e} (30)

where [φ] and [φi] are given in Equation (10), and the matrix [φt] is transformed as:

{φt} = A ft[B1(t1) B1(t2) · · · B1(tM)]{R1} (31)

The nodal displacements ubs in Figure 2 are gained by mapping the mesh from the
shadow domain, as shown in Figure 2b. The constants {c} are given by

{c} = [φ]−1({ubs} − [φt]{e}) (32)

Subsequently, Equation (29) is read as:

{u(ξ, η)} = [N(η)]
N+M

∑
i=1

ciξ
(λi−1){φi} (33)

where {
φi = φi, λi = λi for i = 1, · · · , N

φi = φt, λi = ti + 1 for i = N + 1 · · · , N + M
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The stress field can be calculated similarly to Equation (16) as

{σ(ξ, η)} =
N+M

∑
i=1

ciξ
(λi−1){ψi(η)} (34)

where each term in Equation (34) can be interpreted as a stress mode and

{ψi(η)} = [D](λi[B1(η)] + [B2(η)]){φi} (35)

Comparing Equation (15) and Equation (33), and Equation (16) and Equation (34)
shows that when the cohesive traction is evaluated, an extra number (M) of displace-
ment nodes and the same of stress modes are added to the displacement field and stress
field, respectively.

The direction of crack propagation is then determined based on [43]. In order to
consider a perfect crack path prediction, the SIFs of the semi-analytical SBFEM stress
solutions are calculated.

2.3. Stress Intensity Factor (SIF) for Scaling Center at Crack Tip

The SBFEM has the advantage of accurately representing the crack zone’s stress field
without needing a more discretized mesh [38,50]. This tool enables the SIFs to be directly
calculated from the semi-analytical solutions of the stresses. In this work, two SIFs are
determined. The first is obtained from the linear elastic fracture mechanics solution at a
generic load step and is used to determine the crack propagation direction. The side-face
tractions are not considered in this case. The second concerns the crack cell considering
the effect of the cohesive tractions obtained from the shadow domain. In both cases, the
procedure to calculate the SIFs is the same. The only difference is the equation used to
represent the stress field, i.e., Equation (16) in case 1 and Equation (34) in case 2. The
procedure is outlined as follows:

Figure 1c shows the cracked domain modeled by the SBFEM. The location of the scaling
center should be at the crack tip. There is no need to discretize the side faces connected
to the scaling center. The SIF could be accurately computed from the semi-analytical
solutions of the stresses [51]. The stress intensity factors solutions can be extracted from
their definitions as follows.

{
KI
KI I

}
= lim

r→0

{√
2πrσyy|θ=0√
2πrσxy|θ=0

}
(36)

where r and θ represent the polar coordinates. As illustrated in Figure 1, r and θ originate
at the crack tip and are correlated by

r = ξL(θ) (37)

where L(θ) is the distance between any point A at the cracked domain and the crack tip
(L(θ) = L3 in Figure 1c). Substituting Equation (37) in Equation (36) leads to

{
KI
KI I

}
= lim

r→0

{√
2πL(θ)∑n

i=0 ciξ
−λi−1σyy|θ=0√

2πL(θ)∑n
i=0 ciξ

−λi−1σxy|θ=0

}
(38)

From Equation (38), when ξ → 0, all the corresponding stress modes that have λi ≥ 1
will disappear. When λi = 0.5, singular stresses are obtained in mode I and mode II. An
analytical solution of the limits in Equation (38) yields

{
KI
KI I

}
=
√

2πL0 ∑
i=I,I I

(
ci

{
ξ−λi−1σyy|θ=0
ξ−λi−1σxy|θ=0

}

i

)
(39)
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2.4. Crack Growth Criterion

The zero-K condition based on [52] is used to determine crack propagation in the crack
domain. Therefore, when the stress at the crack tip is finite, a cohesive crack propagates,
and accordingly, no stress singularity exists. The crack will propagate in the condition

KI(θ) ≥ 0 (40)

CIEs
CCM

(a) (b)

Scaling Center

Nodes1

δft

ft

ξ

σ (ξ )

n

A

1n

1

1

2

Θ

r
Δa

Figure 2. Calculation of kI using shadow domain method: (a) cohesive crack model (CCM) in SBFEM;
(b) subdomain discretization.

The crack length ∆a and its angle θ are used to define the new location of the crack tip.
Figure 2a displays the discretised SBFEM polygon and cracked subdomains of the cohesive
crack model (CCM) after the first round of growth. In this shadow domain concept, the
crack surfaces is discretized first, and then crack cell elements (CIEs) are inserted into the
mesh. This will partition the crack subdomain S1 into two (S1 and S2 in Figure 2b). The
CIEs are then used to calculate side-face traction along the crack, upon which the SIFs
KI(θ) can be defined to calculate the crack growth criterion. We apply the mesh mapping
technique to calculate the nodal displacements of the cracked subdomain S1. The remeshing
procedure during crack propagation is performed based on [40].

3. Cumulative Damage-Plasticity Based Constitutive Law

The constitutive behavior describing cyclic damage in the process zone is embedded
in the definition of the interface elements. It has been defined using the thermodynamics-
based uniaxial interface model proposed in [46,53,54]. The model assumes that the develop-
ment of cyclic load is dominated by a cumulative level of the inelastic relative displacement
within the interface. The uniaxial model can be applied for the normal behavior (σN − w)
and for the shear behavior (τ − s) of the interface as a unified constitutive model.

3.1. Brief Summary of the Model’s Formulation

The regular formulation of the thermodynamically interface model is described briefly
in this section. The Helmholtz free energy is defined as

ρψ(u, uP, ω, α, z) =
1
2
(1−ω)E(u− uP)2 +

1
2

γα2 +
1
2

Kz2 (41)

where ρ is the density; E is the elastic stiffness; u represents the relative displacement at the
interface (i.e., opening displacement u = w in the normal direction and slip u = s in the
tangential/shear direction); K and γ represent the isotropic and kinematic hardening mod-
uli, respectively. The state variables of the interface model are the inelastic displacement
uP, the damage variable ω, and the hardening variables z, α.

The thermodynamic forces, X and Z, and the related energy release rate, Y, can be
calculated by differentiating Equation (41) with respect to each state variable as follows.

σP = σ = −∂ρψ

∂uP = (1−ω)E(u− uP) (42)

249



Materials 2023, 16, 863

X =
∂ρψ

∂α
= γα, Z =

∂ρψ

∂z
= Kz (43)

Y = −∂ρψ

∂ω
=

1
2

E(u− uP)2 (44)

where σ represents the stress components (i.e., normal stress σN in the case of opening
displacement w, and shear stress τ in the case of slip displacement s). A yield function
similar to plasticity theory, which defines the boundary between elastic and inelastic
domains, is introduced into the effective stress space as follows.

f (σ̃, X, Z) = |σ̃− X| − Z− σ0 (45)

with σ̃ being the effective stress given as σ̃ = σ/(1−ω) and σ0 being the elastic stress limit.
The flow potential determining the damage evolution augments the threshold function
(Equation (45)) with an extra term as

φ = f (σ̃, X, Z) +
S(1−ω)c

(r + 1)

(
Y
S

)r+1
(46)

where S is the damage strength parameter, and c and r are exponential rate parameters.
The evolution equations can be obtained by differentiating (Equation (46))

u̇P = λ̇
∂φ

∂σP =
λ̇

1−ω
sign(σ̃− X) (47)

α̇ = −λ̇
∂φ

∂X
= λ̇ sign(σ̃− X), ż = −λ̇

∂φ

∂Z
= λ̇ (48)

ω̇ = λ̇
∂φ

∂Y
= λ̇ (1−ω)c

(
Y
S

)r
(49)

This model can be implemented as a time-stepping algorithm, as described in [46].
The damage accumulation under both monotonic and cyclic loading is described through
the modified flow potential by [46,54].

3.2. Elementary Studies of the Cohesive Model

To illustrate the phenomenological behavior of the used constitutive model and its
applicability for modeling cyclic and fatigue behavior, a material model of crack behavior
at the point level (Gauss point) under opening and shear displacement is presented in
this section.

The described parameters of monotonic and cyclic response material behavior are
plotted in Figure 3. The exponential parameter c was used to control the dropped-down part
of the crack opening (COD) and sliding (CSD) curve. The parameters c and r were applied
for tuning the accumulation of the damage due to cyclic loading. The damage strength
parameter S, however, could control the brittleness in the response. The model parameters
for a common combination of concrete matrix C30/37 were identified using the parametric
study reported in [46]. The setup of the study is provided in Figure 3 for monotonic loading
and for cyclic loading, as the cohesive model parameters are summarized. The cohesive
model stiffness (E) was set equal to Young‘s modulus of concrete. The parameters σ, K, γ,
S, r, and c were identified using a black line for the monotonic response and a blue line for
the monotonic response.

250



Materials 2023, 16, 863

0.0 0.2 0.4 0.6 0.8 1.0

time

0.000
0.025

0.050
0.075
0.100
0.125
0.150
0.175
0.200

w
 [

m
m

]

  a
) 

  C
ra

ck
 O

pe
ni

ng

0.0 0.2 0.4 0.6 0.8 1.0
time

-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20

s 
[m

m
]

   
b)

   
C

ra
ck

 S
li

di
ng

monotonic loading

cyclic loading

monotonic loading
cyclic loading

0.00 0.05 0.10 0.15 0.20
COD [mm]

0

1

2

3

4

T
ra

ct
io

n 
t n

 [
M

Pa
]

0.00 0.05 0.10 0.15 0.20
COD [mm]

0.0

0.2

0.4

0.6

0.8

1.0

D
am

ag
e

0.2 0.1 0.0 0.10 0.20
CSD [mm]

4

2

0

2

4

T
ra

ct
io

n 
t s 

[M
P

a]

0.2 0.1 0.0 0.10 0.20

CSD [mm]

0.0

0.2

0.4

0.6

0.8

1.0

D
am

ag
e

Figure 3. Characterization of the crack behavior under cyclic loading (blue lines) and monotonic
loading (black lines) at the material-point level: (a) crack opening, (b) crack sliding.

The cyclic loading curves of the crack opening versus cyclic loading can be compared
with the corresponding curves obtained numerically for monotonic loading. The described
model was implemented using zero-thickness interface elements inside the SBFEM frame-
work in Equation (18)). For the monotonic and the cyclic loading, the damage evolution for
the loaded and unloaded responses is depicted in Figure 3 for crack opening and crack slid-
ing. The accumulation of the damage parameter is nonlinear. The traction opening/sliding
cohesive models for two loading scenarios are studied.

4. Numerical Validation
4.1. Test Setup

Three-point bending (TPB) tests were studied to validate the numerical method in this
study. The contributions of both traction modes, kn and ks, in the cohesive zone model,
were investigated. The investigations performed by [8] have shown that the inclusion of
the normal energy dissipation dominated the response of post-peak crack mouth sliding
displacement (CMOD). The nonlinear equilibrium equations were solved using Newton–
Raphson iteration [55], which is characterized by strain softening in the process zone.
The benchmark examples are TPB tests with a single-edge notch (Figure 4). Two sizes
of the beam were considered in the tests: small beams with a cross-section height of
h = 200 mm, and large beams with h = 400 mm. The beam width was b = 100 mm.
The lengths of small and large beams were 600 and 1200 mm, respectively. For the notch
depth, h0 = h/6, whereas the maximum grain size (d0) was 8 mm. The experimental
measurements for the concrete beams were provided by Baktheer and Becks [8], and the
material properties were adopted from [8], as listed in Table 1.

Table 1. Parameters of concrete [8].

Parameter Denomination Value Unit

fc Compressive strength 63.61 [MPa]
fct Tensile strength 4.28 [MPa]
Ec Young’s Modulus 34.468 [GPa]
ν Poisson ratio 0.2 [-]
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h

b

L = 3 h

L0 = 2.5 h

h0 = h / 6

CMOD

F(a)

(b)

Figure 4. A single-notched concrete beam subjected to a three-point load. (a) Geometry, (b) initial mesh.

4.2. Loading Scenarios

Experimentally, the crack opening displacements and the mid span deflection of the
tested beam were recorded, along with the applied force F. The TPB supported beam
was tested symmetrically by displacement-controlled loading at the top edge. The typical
two different loading scenarios are shown in Figure 5. In the SBFEM simulation, an
incrementally increased monotonic load (Figure 5a) was applied with an increment size
of 0.0005; there were 200 load steps. The load was controlled by the crack tip opening
displacement (CMOD) until failure. In the second loading scenario, Figure 5b, a sequence
of loading and unloading cycles was applied to define the CMOD. In this way, detailed
characteristics of the post-peak loading and unloading of the load–CMOD curve were
obtained. This can help to analyze the damage mechanism involved in the cyclic flexural
behavior of concrete.

(a) (b)

CMOD

Time

CMOD

Time

Figure 5. Typical loading scenarios of the studied tested beams: (a) monotonic behavior, (b) cyclic behavior.

4.3. Monotonic Loading

The softening curve parameters to model the fracture process zone are presented, and
a range of values were applied based on the parametric study in Section 3. The material
parameters were calibrated for two examples under monotonic loading. Then, the material
model was validated using the size-effect calculations. The obtained numerical results for
cyclic loading were obtained in additional to validating the method. For this investigation,
the properties of the concrete and cohesive interface element are listed in Table 2.
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Table 2. Model parameters for concrete cohesive interface element.

Parameter Denomination Value Unit

E Elastic cohesive modulus 2800.0 [MPa]
σ Reversibility limit 1.0 [MPa]
K Isotropic hardening modulus 300.0 [MPa]
γ Kinematic hardening modulus 200.0 [MPa]
S Damage strength 2.5 × 10−4 [MPa]
r Damage accumulation parameter 1.0 [-]
c Damage accumulation parameter 0.8 [-]

The tracked points for the notched pattern and the initial mesh were defined as shown
in Figure 4b. For the small beam of cross-section height of h = 200 mm, the mesh consisted
of 481 polygons and 584 nodes. Meanwhile, for the large beam (h = 400 mm), the initial
mesh comprised 1483 polygons and 1628 nodes. Plane stress conditions were assumed.

Figure 6 compares the predicted load-crack mouth opening displacement (CMOD) of
the TBP small beam with the experimental results reported by [8] under monotonic loading.
The corresponding curve of the numerical predictions by SBFEM is depicted in Figure 6,
plotted as a blue dashed line. The numerical results of the load–CMOD curve are in a
good agreement with the experimental measurements. A maximum load of 18.75 kN was
obtained at a CMOD of 0.017 mm. Interestingly, the load–CMOD curve of the numerical
was not influenced by the length of crack propagation.
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Figure 6. Numerical predictions of load–CMOD curves and the corresponding experimental curves
for the single-notched three-point bending test under monotonic loading.

The crack propagation due to increasing load with initial ∆a = 3.0 mm is shown in
Figure 7. Our results show a straight crack path in the direction of the point of external
load (F). Th fracture process zone extends up in the middle of the beam Figure 7b at
peak load before cracking. At a load of 5.763 kN, the crack propagates in the post-peak
region (Figure 7c). For this load level, the cohesive force vanishes. Finally, as the actual
crack’s length is increased, the fracture zone is shortened, as expected, by increasing the
load level; see Figure 7d. The influence of the size of stiffness degradation is depicted for
both small and large tests in Figure 8, which shows the numerical predictions, along with
experimental measurements of monotonic tests based on [8]. The nominal strength (σN)
of SBFEM numerical results were determined in the same way in [8] under monotonic
behavior. It is calculated by [1,52]:

σN =
cnFu

bh
, (50)
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where Fu is the ultimate force and cn = 3L0/(2h− h0) is determined by the bending theory
for notched beams. Figure 8 depicts a log–log plot of the the relative size of the beam
(horizontal axis) and the nominal strength (vertical axis). The numerical results and the
experiments of [8] indicate that the nominal strength is increased by decreasing beam
size. The numerical results of nominal strength and the experimental data have a ratio of
1.01–1.04 for small beams, and a ratio of 0.98–1.02 for large beams. In addition, less scatter
in the predictions of the large beams was obtained.

(a) (b)

(c) (d)
Figure 7. Crack propagation in SBEM subjected to three-point bending tests. (a) Load = 8.347 kN
(pre-peak), (b) load = 18.75 kN (peak load), (c) load = 5.763 kN (post-peak), (d) load = 2.514 kN
(post-peak).
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Figure 8. The effect of the size of the beam on the nominal strength under monotonic behavior.

4.4. Cyclic Loading

Figure 5 shows the numerical predictions and the experimental measurements for
cyclically increasing loading. The loading was controlled by the CMOD for three unloading
cycles and applied until failure. Good agreement of the numerical predictions (Figure 9b)
with respect to the experiment tests (Figure 9a) is obvious.
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Figure 9. Comparison of numerical predictions (a) and experimental measurements (b) of Cyclic-
CMOD curves for the single-notched three-point bending test.

Furthermore, in our analysis we explore the main dissipative mechanisms. For this
purpose, the TPB beams were subjected to a few loading cycles with an incremental increase
in the CMOD values. The obtained cyclic responses for both small and large beams are
plotted in Figure 10a,b, respectively. One of the principal noticeable effects during the cyclic
loading in the post-peak regime is the degradation of the unloading stiffness, which defines
the value of the damage. From the damage evolution, it was observed that the damage
parameter had a value larger than 0.5 at the first post-peak cyclic load for a small beam;
the damage started to progress in the pre-peak subcritical load levels. Furthermore, the
damage parameter ω has a value larger than 0.65 for a large beam.
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Figure 10. Post-peak cyclic behavior of SBFEM analysis and corresponding damage evolution for
(a) a small beam and (b) a large beam.

This is explained by knowing that the developed crack showed a rough surface that is
not fully closed during the unloading of the specimen. This was confirmed for the cyclic
behavior in the simulation of SBFEM and experiment tests. Additionally, the stiffness
degradation and the growth of unclosed crack openings were characterized for both sizes.

Plots of KI-CMOD are shown in Figure 11 for monotonic and cyclic applied loads.
In Figure 11a, the points that represent the initial mesh of Figure 4 were calculated once
KI ≥ 0. Then, the crack opened gradually based on a crack-propagation criterion. The
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numerical calculation of KI by SBFEM with a fewer degrees of freedom (DOFs) manifested
good crack trajectory predictions.
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Figure 11. KI − CMOD and loading-point curves for mode-I bending beam for: monotonic loading
(a) and cyclic loading (b).

Since the goal of the present study was to apply the constitutive law with a cumulative
damage feature within SBFEM, we considered only mode-I cyclic crack propagation in
our analysis. Further studies with applications to mixed modes loading are planned for
future publications, where more advanced constitutive cohesive zone models could be
used, e.g., [14,56].

5. Conclusions

Cracks in concrete can occur when the tensile stresses imposed by actions exceed the
tensile strength of the material. Furthermore, the cracks can also be initiated under repeated
loads with stress levels below the tensile strength. In this work, the cyclic cohesive crack
procedure-based SBFEM was implemented to study the crack propagation in concrete. The
proposed model showed the ability to simulate the monotonic and cyclic behavior of a
cohesive crack interface element, e.g., a concrete interface. It provided a realistic prediction
of cyclic damage behavior for up to several load cycles. The output for the numerical
simulation of monotonic loading analysis showed full agreement with experimental data
from the literature. The results differed 5% for the maximum peak force. Regarding
the nominal strength, the ratio of the numerical results to the experimental data under
monotonic loading varied between 1.01 and 1.04 for small beams. The ratio was 0.98–1.02
for large beams.

Additionally, the proposed procedure has been proved to be an efficient tool for
estimating the damage level. The level of damage accumulation (ω) and material plasticity
variables were calculated based on thermodynamics. The described damage model has been
successfully implemented to describe the cyclic behavior of cohesive interface elements
using SBFEM. The damage parameter ω has a value larger than 0.5 at the first post-peak
cyclic load for a small beam, and has a value larger than 0.65 for a large beam. The cyclic
responses obtained by SBFEM for both small and large beams presented good agreement
with the experimental data.

The predicted load–CMOD responses in the validation examples were within the
range measured in the cyclic and monotonic loading experiments. Testing results demon-
strated that the most important factors for the overall simulation were the thermodynamic
hardening modulus γ and the damage strength parameter S. The simulations executed to
study the effect of the loading sequence offered successful results and demonstrated the
effect of damage accumulation for realistic predictions for concrete structures.
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Nomenclature

η, ξ Local coordinate system of SBFEM
{t} Traction cohesive force vector
r, θ Polar coordinate
∆a Crack propagation length
L Crack length
Kint Stiffens matrix of interface element
[J] Jacobian matrix on boundary
t Crack thickness
N(η) Nodal shape function
k Stiffens matrix of the domain
u Displacement field
d, w, s Displacements on the crack faces
ε Strain field
A Crack surface area
D Material constitutive matrix
wi Gaussian weight function
P Equivalent nodal load vector
n Number of integration points
[E0], [E1], [E2] Coefficient matrices of SBFEM system
Fn, Fs Normal and shear cohesive traction forces
Z Hamiltonian matrix
Ft Nodal side face load
q Internal nodal force vector
KI , KI I Crack mode I & mode II stress intensity factors
λ Eigenvalue matrices
φt Nodal displacement mode
ei Coefficent
φ Eigenvector matrices
c Integration constants of the SBFEM
[B1], [B2] Strain-displacement matrices of SBFEM system
M Number of displacement modes
σ Stress field
{.} Vector
[.] Matrix
[.]T Transpose of Matrix
[.]−1 Inverse of matrix
||.|| Norm of function, vector of matrix
δ Crack angle
ubs Boundary nodal displacement
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Thermodynamic Parameters
ρ Material density
E, ν Elastic stiffness matrix, Possion’s ratio
Y Energy release rate
γ, K Isotropic and kinematic hardening moduli
X, Z Thermodynamic hardening forces
ω Damage variable
α, z Hardening material variables
c, r Exponential damage parameters
S Damage strength parameter
τ Reversibility limit parameter
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Abstract: The performance of a hydraulically expanded joint between tubesheet and titanium tube
was analyzed using a finite element numerical calculation. The connection strength of Q345R
tubesheet and TA2-Q345R clad tubesheet was studied using a tight expansion method. The results
proved that the residual contact pressure and pullout force of the tight expansion joint of TA2-Q345R
clad tubesheet were greater than those of the Q345R tubesheet. However, the residual contact pressure
of the expanded joint without a groove for the TA2-Q345R tubesheet and the pullout force failed to
meet the requirement of connection strength. Hence, the groove was employed on the contact surface.
The influences of groove position and groove width on the connection strength of the expanded joint
with grooves in tubesheet hole were studied. The results show that the residual contact pressure
of the clad tubesheet of grooving in the cladding layer was higher than that of grooving in the
base layer. The effect of the position of groove in the cladding layer and base layer on the residual
contact pressure could be neglected. A wider groove led to a higher residual contact pressure, which
increased significantly when the groove width was 4 mm.

Keywords: TA2-Q345R clad tubesheet; expanded joint; residual contact pressure; groove width

1. Introduction

Titanium is an alloy with low density, high strength, and strong corrosion resistance,
which is widely used in the chemical industry, marine ships, aviation, medical instruments,
automotive industry, livelihood supplies, and other fields [1,2]. Because of its good eco-
nomic and applicability, titanium-steel clad tubeplate structures are applied in titanium
shells and tube heat exchangers.

The joint between the tube and tubesheet is the key part of the shell and tube heat
exchanger, which is also prone to failure. Expansion is an important type of connection
between the tube and tubesheet, which can be divided into hydraulic expansion, mechanical
expansion, and explosion expansion. Among them, hydraulic expansion is a uniform
flexible expansion method. The expansion pressure is easy to control and does not damage
the inner wall surface of the expansion; thus, the joint is of good quality.

How to improve the sealing performance and tensile resistance of hydraulic expanded
joints has always been the focus of research. Therefore, many research achievements
have been made on the influence of material properties [3,4], machining accuracy [5,6],
geometric parameters [7,8], manufacturing process [9,10], and other factors on the per-
formance of joints. In order to improve the connection strength and sealing performance
of the tube-to-tubesheet joints, tubesheet holes are grooved [11,12]. Material properties,
especially plasticity, play a crucial role in obtaining accurate results close to true values [7].
Before finite element analysis, it is important to determine material properties such as
yield stress [13]. Previous studies have shown that strain hardening is an important factor
influencing the accuracy of joint numerical analysis results [14,15]. Previous studies mainly
focused on the combination of a carbon steel tube and low-alloy steel tube sheet, or the
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combination of a titanium tube and single-material tube sheet. For the combination of
titanium tube and titanium–steel clad tubesheet, we can find reports on the stress analy-
sis [16,17], creep of titanium [18], etc. However, there are few reports on the impact of the
titanium–steel clad tubesheet cladding layer and grooving parameters on the performance
of expanded joints. Jawad et al. [7] used experimental methods to study the expanded
joint of titanium–steel clad tubesheet; the best result was obtained when the groove width
was equal to 1.56

√
rot, where ro and t are the outside radius and thickness of the tube,

respectively. The residual contact stress of titanium–steel clad tubesheet with a groove
in the base layer was calculated by numerical simulation [19]. The above studies did not
discuss the influence of groove form on titanium–steel clad tubesheet joint performance. By
means of an experiment, Ma Qiulin [20] found that TA2 had the characteristic of elastic hys-
teresis after loading, and its residual contact pressure decreased with the increase in time
after the completion of titanium tube expansion. Subsequently, the experimental results of
the same research team [21] showed that, under 260 MPa hydraulic expansion pressure,
after 96 h of unloading the expansion pressure, the pullout force of the joint decreased by
60% and 23%, corresponding to the expanded joint without grooves in the tubesheet hole
and with two grooves in the tubesheet hole, respectively. Therefore, the residual contact
pressure at the moment of expansion completion should not be used as the only basis for
analyzing the performance of expanded joints, and the negative effect caused by elastic
hysteresis should also be considered. Therefore, in this paper, the hydraulic expanded tube
joint of a titanium–steel clad tubesheet is taken as the research object. Through numerical
simulation, the sealing performance and connection strength of the tight expansion (joint
without groove) are studied; furthermore, the joint with grooves is analyzed. The influence
of the expansion method and structural parameters, including groove form, groove width,
and groove location in the base, is investigated, which provides a basis for the optimization
of the expansion structure of the clad tubesheet.

2. Finite Element Model Analysis
2.1. Material Performance

The tube was made of commercial pure titanium TA2, and the titanium–steel clad
tubesheet material was TA2-Q345R, in which the base material was Q345R and the cladding
material was TA2. The physical properties of the two materials are shown in Table 1. The
true stress and strain of material were simulated using multilinear isotropic reinforcement
material, and their mechanical property curves are shown in Figure 1.

Table 1. Material properties.

Material Yield Strength, σs
(MPa)

Elasticity Modulus,
E (×105 MPa) Poisson’s Ratio, µ

TA2 380 1.1 0.41
Q345R 347 1.95 0.3
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2.2. Finite Element Model

The tubes were arranged in regular triangles. Due to the periodicity of pipe drainage,
a seven-hole model was adopted, and 1/12 of the circle, i.e., a 30◦ area, was taken as the
research object, as shown in Figure 2a. The size of the tube was ϕ25 mm × 1.5 mm, and
the length of the tube was 180 mm. The diameter of the tubesheet hole was 25.3 mm, the
distance between the tube centers was 32 mm, the outer diameter of the tubesheet was
480 mm, and the total thickness of the tubesheet was 50 mm with a 38 mm base layer and a
12 mm cladding layer, conforming to the recommended scope of the standard [22].
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Because the overall structure of all joints was similar, only the finite element model of
the joint with grooved clad tubesheet holes is shown in this manuscript. The SOLID185
element was used to establish the finite element model of the expanded joint, as shown in
Figure 2b. The mesh was finely divided near the expansion surface. The combination of
the outer wall of the titanium tube and the inner wall of the tubesheet hole was a nonlinear
contact problem. The outer wall of the titanium tube was the contact surface, and the
CONTA173 contact surface element was selected. The inner wall of the tubesheet hole was
the target surface, and the TARGE170 target surface element was selected. The contact
algorithm adopted the Augmented Lagrange method, and the appropriate solution value
was guaranteed by controlling the contact stiffness FKN and the maximum allowable
penetration value FTOLN [23,24].

During expansion, expansion pressure was applied on the inner surface of tube; the
tube end was subjected to axial and circumferential symmetric constraints, whereas the
outer cylindrical surface of the tubesheet was axially constrained, and the remaining
surfaces were free.

After expansion, the expansion pressure on the tube was removed. Under the pulling
condition, the axial displacement constraint of the tube was removed, axial (Z-direction)
displacement was applied, and the other boundary conditions remained unchanged. Dur-
ing calculation, an automatic step and large deformation were chosen, and a linear search
to stabilize the calculation and the complete Newton–Rapson method were used.
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3. Tight Expansion Analysis
3.1. Theoretical Calculation Method

Yan Huigeng’s [25] theoretical calculation method of residual contact pressure based
on the double-cylinder model is widely used for the calculation of residual contact pressure
of the tight expansion, as shown in Equation (1).

p∗c = (1− 2c)pi −
2√
3

σst ln Kt, (1)

Here,

c = 1/
{

K2
t (1− µt) + 1 + µt +

Et(K2
t − 1)

Es(K2
s − 1)

[1− µs + K2
s (1 + µs)]

}
,

where σst is the yield strength of the tube material (MPa), Kt = ro/ri is the diameter ratio
of the heat exchanger tube, ro, ri are respectively the inner and outer diameters of the
heat exchanger tube, Ks = Ro/Ri is the diameter ratio of the equivalent cylinder, Ro, Ri
are respectively the inner and outer diameters of the equivalent cylinder, µt, µs are the
Poisson’s ratios of the tube and tubesheet material, respectively, and Et, Es are respectively
the elastic moduli of the tube and tubesheet material (MPa).

However, Yan Huigeng’s theoretical calculation method assumes that the tube material
is an ideal elastic–plastic material, and σst in Equation (1) is the yield strength of the tube
material without considering the strain strengthening of the material; thus, the theoretically
calculated value of pc

* is greater than the real value. Hao Junwen [13] proposed the concept
of pipe equivalent yield strength σseq according to the research methods of predecessors [25],
i.e., replacing σst in Equation (1) with σseq, as shown in Figure 3.
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Figure 3. Schematic diagram for determining the equivalent yield strength.

As shown in Figure 3, the curve OABCD represents the true stress–strain curve of

the titanium tube. The section OA is the elastic deformation stage, the section
_

AB is the
partial plastic deformation stage, and the section BD is the full strain strengthening stage.
Assuming that the tube contacts the tubesheet when the stress and strain develop to point
C, and that the abscissa Cx = g/ro corresponding to point C is the strain value of the outer
wall of the tube, g is the clearance between the outer wall of the tube and the inner wall
of the hole. By making a straight line with a slope of Et through the Cx point, the straight
line intersects the curve at point Q. Then, the ordinate Qy corresponding to point Q is the
equivalent yield strength of the tube material σseq. According to the tensile curve of TA2 in
Figure 1, σseq = 415 MPa, which is 35 MPa different from the original value of 380 MPa.

3.2. Comparison of Simulation Results and Theoretical Calculation Results

The experiment and numerical simulation results show that the friction coefficient f is
related to many factors such as the accuracy of the machined surface and the properties of
materials. According to the experimental data of the expansion connection between TA2
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tube and Q345R tubesheet in the literature [20], the friction coefficient f was set to 0.28. The
pc

* with tube material TA2 and tubesheet material Q345R was simulated, and the results
were respectively compared with the theoretical results of Yan [25] and Hao [13], as shown
in Figure 4. It can be seen that the simulation value was much smaller than the value of
Yan’s theoretical method, and it was mainly consistent with the result of Hao’s theoretical
method, which is closer to the real situation. Therefore, the parameters of the simulation
and the results were considered reasonable.

Materials 2023, 16, x FOR PEER REVIEW 5 of 14 
 

 

3.2. Comparison of Simulation Results and Theoretical Calculation Results 
The experiment and numerical simulation results show that the friction coefficient f 

is related to many factors such as the accuracy of the machined surface and the properties 
of materials. According to the experimental data of the expansion connection between TA2 
tube and Q345R tubesheet in the literature [20], the friction coefficient f was set to 0.28. 
The pc* with tube material TA2 and tubesheet material Q345R was simulated, and the re-
sults were respectively compared with the theoretical results of Yan [25] and Hao [13], as 
shown in Figure 4. It can be seen that the simulation value was much smaller than the 
value of Yan’s theoretical method, and it was mainly consistent with the result of Hao’s 
theoretical method, which is closer to the real situation. Therefore, the parameters of the 
simulation and the results were considered reasonable. 

280 290 300 310 320
0

5

10

15

20

Re
sid

ua
l c

on
ta

ct
 p

re
ss

ur
e,

 p
* c/M

Pa

Expansion pressure, pi/MPa

 Theoretical calculation results of Yan
 Theoretical calculation results of Hao
 Numerical simulation results

 
Figure 4. Comparison of calculation results [13,25]. 

3.3. Performance Analysis of Tight Expansion Joint  
In order to investigate the influence of the cladding surface on the sealing perfor-

mance of the expansion joint, the expansion and pulling processes of the joints between 
the TA2 tube and Q345R tubesheet, and between the TA2 tube and TA2-Q345R clad 
tubesheet under different expansion pressures were simulated. The average pc* on the con-
tact surface and pullout force F were obtained, as shown in Figure 5. 

 
Figure 5. Tight expansion joints performance of two kinds of tubesheets. 

It can be seen from Figure 5 that pc* and F of expanded joints of different materials in-
creased with the increase in expansion pressure, and pc* and F of the TA2-Q345R clad tubesheet 
were both higher than those of the Q345R tubesheet under the same expansion pressure. 

The pullout force provided by the expanded joint is expressed in Equation (2). 

F > πdl[q]. (2) 

270 280 290 300 310 320
0

5

10

15

20
 TA2-Q345R clad tubesheet(p*

c)
 Q345R tubesheet(p*

c)
 TA2-Q345R clad tubesheet(F)
 Q345R tubesheet(F)

Expansion pressure, pi/MPa

R
es

id
ua

l c
on

ta
ct

 p
re

ss
ur

e,
 p

* c/M
Pa

0

5

10

15

20

25

30

 P
ul

l-o
ut

 fo
rc

e,
 F

/k
N

Figure 4. Comparison of calculation results [13,25].

3.3. Performance Analysis of Tight Expansion Joint

In order to investigate the influence of the cladding surface on the sealing performance
of the expansion joint, the expansion and pulling processes of the joints between the TA2
tube and Q345R tubesheet, and between the TA2 tube and TA2-Q345R clad tubesheet under
different expansion pressures were simulated. The average pc

* on the contact surface and
pullout force F were obtained, as shown in Figure 5.
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Figure 5. Tight expansion joints performance of two kinds of tubesheets.

It can be seen from Figure 5 that pc
* and F of expanded joints of different materials

increased with the increase in expansion pressure, and pc
* and F of the TA2-Q345R clad

tubesheet were both higher than those of the Q345R tubesheet under the same expansion
pressure.

The pullout force provided by the expanded joint is expressed in Equation (2).

F > πdl[q]. (2)

According to GB/T151-2014 “Heat Exchanger” [26], the allowable pullout force [q]
of the steel heat exchange tube of tight expansion is 2 MPa; thus, the pullout force should
satisfy F > 7.23 kN according to Equation (2). For titanium expansion joints, the pullout
force decreases with the time after the expansion due to the elastic hysteresis effect. A
previous study [21] gave the relationship curve between the pullout force and time after the
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expansion of the titanium tube and steel tubesheet. Considering that the pullout force of
the joint decreases by about 75% during the period from the completion of manufacturing
until service, the corresponding pullout force of the titanium tube should be greater than
28.92 kN at the moment of completion of the expansion. As can be seen from Figure 5,
the pullout force of the joint still failed to meet this requirement even when the expansion
pressure exceeded 320 MPa.

Figure 6 shows the contact pressure distribution on the contact surface of the TA2-
Q345R clad tubesheet or Q345R tubesheet after loading and after unloading. According
to Figure 6a,c, when the expansion pressure reached 320 MPa, there were two upper and
lower sealing rings on the contact surface of the two tubesheet conditions, consistent with
the simulation results in [4,27]. When the expansion pressure was unloaded, it can be seen
from Figure 6b,d that there was a residual contact pressure ring on the contact surface of
the tube side, but this was not obvious on the shell side. This is because the stiffness of
the tube on the shell side was greater than that on the tube side; hence, it was not easy
to expand and deform. It can also be found from Figure 6b,d that the residual contact
pressure of the sealing ring of the TA2-Q345R clad tubesheet after unloading was greater
than that of the Q345R tubesheet (57.9 MPa > 24.7 MPa) because the cladding layer of the
clad tubesheet and the tube were the same material TA2. When the expansion pressure
was removed, the tubesheet rebounded with the tube; thus, the contact pressure of the
cladding part could maintain high values. Therefore, although the contact pressure of the
base part decreased substantially because the elastic modulus of TA2 was less than that
of Q345R, the average residual contact pressure in the whole contact range of the clad
tubesheet was higher because the residual contact pressure of the cladding part was high,
and the corresponding pullout force was also higher.
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Three axial paths A–A′, B–B′, and C–C′ (in Figure 6) were taken at 0◦, 15◦, and 30◦

of the circular direction of the contact surface, and the residual contact pressure along
the three paths was extracted as shown in Figure 7. It can be seen from Figure 7 that the
highest contact pressure of the two tubeplates was at the same position in the axial direction
(Z-direction). Compared with the Q345R tubesheet, the effective sealing range of the tube
side of the clad tubesheet was closer to the expansion edge, the pc

* value at the sealing ring
was much higher than that of the Q345R tubesheet, and the pc

* value of the middle and
shell side of the two kinds of tubeplates was similar.
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Figure 7. Axial distribution of residual contact pressure of the two kinds of tubesheets.

Figure 8 indicates the pc
* on the circumferential paths D–D′ (tube side) and E–E′

(shell side) on two sealing rings. The results show that the pc
* of the shell side of the two

tubesheets was low, and the pc
* at some point on the TA2-Q345R clad tubesheet was zero,

indicating that, with the rebound of the TA2 tube after unloading, the sealing ring at some
positions on the contact surface of the shell side gradually disappeared. When the heat
exchanger is in service, the shell side medium would leak along the contact surface and
extend to the pipe side, which would damage the contact surface and cause hidden dangers
to the safe operation of the equipment. Therefore, the method of ungrooved hole tight
expansion was not suitable for the titanium–steel clad tubesheet, and it was necessary to
groove the tubesheet hole for strength expansion to improve the joint connection strength.
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Figure 8. Circumferential distribution of residual contact pressure of Q345R tubesheet and TA2-
Q345R clad tubesheet.

4. Expanded Joint with Grooved Clad Tubesheet Holes

In the standard GB/T 151-2014, the structure and dimension of the circumferential
grooves in clad tubesheet holes are as shown in Figure 9. In order to study the effect
of groove form on residual contact pressure and pullout force, four groove forms were
designed, as depicted in Figure 10. Figure 10a–d feature one groove in the cladding layer
only, one groove in the base layer only, one groove in the cladding layer and one groove
in the base layer, and one groove in the cladding layer and two grooves in the base layer,
respectively. The effects of groove width w, groove distance s, and groove spacing b on the
connection strength and sealing performance are also investigated. The groove dimensions
are listed in Table 2.
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Figure 10. Four schemes for grooving: (a) one groove in the cladding layer only; (b) one groove in
the base layer only; (c) one groove in the cladding layer and one groove in the base layer; (d) one
groove in the cladding layer and two grooves in the base layer.

Table 2. Geometry of the grooves.

Parameter
Level

Groove Width
w1 (mm)

Groove Width
w2 (mm)

Groove Distance
S (mm)

Groove Spacing
B (mm)

1 2 2 4 2
2 4 4 8 4
3 6 6 12 6
4 8 8 16 8
5 10 20 10
6 12
7 14

4.1. Effect of Groove Form

When a single groove was in the base layer or the cladding layer, the groove width
w1 or w2 was 8 mm; when both the cladding layer and the base layer were grooved, the
base layer groove width w2 was 8 mm, and the cladding layer groove width w1 was 6 mm.
Figures 11 and 12 illustrate the residual contact pressure and pullout force at the moment
of the expansion pressure being unloaded.
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Figure 12. Effect of groove location on pullout force.

Figure 11 shows that joints with grooved holes had a higher residual contact pressure
pc

* than those without grooved holes, and pc
* was positively correlated with expansion

pressure. Lines A and B coincided, indicating that grooving in the base layer or the cladding
layer had little effect on the average residual contact pressure. When there was a groove
in the cladding layer, the grooving in the base layer significantly improved pc

*, and the
double grooving in the base layer was best.

As shown in Figure 12, the pullout force F almost increased with pi, and pi had a weak
influence on F when the number of grooves was two or three. Under the same expansion
pressure, the relationship of pullout force at different grooving locations was as follows: F
for one groove in the cladding layer and two grooves in the base layer > F for one groove
in the cladding layer and one groove in the base layer > F for one groove in the cladding
layer only > F for one groove in the base layer only > F for no grooving. The pullout force
of grooved joints was greater than 28.92 kN; therefore, when the strength expansion with a
groove width of 8 mm was applied to titanium tubes, even when considering the decline
in the pullout force caused by elastic hysteresis, it could still meet the requirements of
the standard for the pullout force when the equipment is in service. In addition, during
grooved expansion, the pullout force drop caused by elastic hysteresis is smaller than it is in
the joint without groove [20]; thus, the pullout force value is more conservative. Although
lines A and B coincided in Figure 11, the values of the pulling force in these two cases were
quite different, indicating that the pullout force is related not only to the residual contact
pressure but also to the deformation of the heat exchange tube near the groove.

Figure 13 depicts the distribution of residual contact pressure along the axial path at
the position of circumfluence 0◦ when the expansion pressure was 280 MPa. Only two
cases are considered in Figure 13: a single groove in the cladding and a single groove in the
base. It can be seen from Figure 13 that, at the corner of each side of the groove, the residual
contact pressure was high because deformed tubes sank into the groove during expansion.
Both the tube and the cladding layer were titanium materials, and the rebound step was
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consistent. Therefore, the maximum residual contact pressure between the titanium tube
and the titanium cladding layer was greater than that between the titanium tube and the
Q345R base layer. The titanium pipe sank more deeply in the cladding groove than in the
base groove, and the pullout force was correspondingly greater.
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4.2. Effect of Groove Width

Figure 14 shows the influence of groove width on joint performance when the expan-
sion pressure was 280 MPa, the groove depth was 0.5 mm, and four grooving locations
were considered. If the expansion length allowed, the groove width was as large as possible.
It can be seen from the results in Figure 14 that the groove width had a great influence on
pc

*. With the increase in groove width, pc
* showed an overall upward trend. When the

groove width was 10 mm, pc
* approached the maximum, and the optimal groove width for

uniform expansion was generally 8–10 mm [13]. It is worth noting that, when the groove
width was 4 mm, pc

* increased significantly and peaked earlier. In this paper, the expansion
pressure of 290–320 MPa was also studied. The results show that a larger pc

* was obtained
when the groove width was 4 mm.

Materials 2023, 16, x FOR PEER REVIEW 10 of 14 
 

 

step was consistent. Therefore, the maximum residual contact pressure between the tita-
nium tube and the titanium cladding layer was greater than that between the titanium 
tube and the Q345R base layer. The titanium pipe sank more deeply in the cladding groove 
than in the base groove, and the pullout force was correspondingly greater. 

 
Figure 13. Axial distribution of residual contact pressure. 

4.2. Effect of Groove Width 
Figure 14 shows the influence of groove width on joint performance when the expan-

sion pressure was 280 MPa, the groove depth was 0.5 mm, and four grooving locations 
were considered. If the expansion length allowed, the groove width was as large as possi-
ble. It can be seen from the results in Figure 14 that the groove width had a great influence 
on pc*. With the increase in groove width, pc* showed an overall upward trend. When the 
groove width was 10 mm, pc* approached the maximum, and the optimal groove width 
for uniform expansion was generally 8–10 mm [13]. It is worth noting that, when the 
groove width was 4 mm, pc* increased significantly and peaked earlier. In this paper, the 
expansion pressure of 290–320 MPa was also studied. The results show that a larger pc* 
was obtained when the groove width was 4 mm. 

 
Figure 14. Effects of groove width on residual contact pressure. 

The reasons were as follows: in the expansion process, the external surface of the tube 
and the grooved structure always contacted from the edge of the groove, followed by the 
bottom of the groove, and finally filled the side of the groove. When the groove width was 
2 mm, a small part of the titanium tube “sank” into the groove, the concentrated line con-
tact pressure was generated between the tube wall and the groove edge, and the residual 
contact pressure after unloading increased compared with that without grooving. When 
the width of the groove increased to 4 mm, the “sinking” effect was greater. However, 
because the slot width was smaller, the middle of the depression was not in contact with 
the bottom of the groove, and the titanium tube was close to the edge of the groove. At 

0 10 20 30 40 50
0

50

100

150

200

250

300
R

es
id

ua
l c

on
ta

ct
 p

re
ss

ur
e,

 p
* c/M

Pa

Axial position/mm

 1 groove in the cladding layer only
 1 groove in the base layer only

Interface

0 2 4 6 8 10 12 14

10

20

30

40

50

R
es

id
ua

l c
on

ta
ct

 p
re

ss
ur

e,
 p

* c/M
Pa

Groove width, w1 and w2 /mm

 A-1 groove in the cladding layer only
 B-1 groove in the base layer only
 C-1 groove in the cladding layer & 

              1 groove in the base layer
 D-1 groove in the cladding layer & 

              2 grooves in the base layer
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The reasons were as follows: in the expansion process, the external surface of the
tube and the grooved structure always contacted from the edge of the groove, followed
by the bottom of the groove, and finally filled the side of the groove. When the groove
width was 2 mm, a small part of the titanium tube “sank” into the groove, the concentrated
line contact pressure was generated between the tube wall and the groove edge, and the
residual contact pressure after unloading increased compared with that without grooving.
When the width of the groove increased to 4 mm, the “sinking” effect was greater. However,
because the slot width was smaller, the middle of the depression was not in contact with
the bottom of the groove, and the titanium tube was close to the edge of the groove. At
this time, the pc

* of the outer wall of the tube at the corresponding groove corner increased
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significantly. When the groove width was 6 mm and 8 mm, the titanium tube and the
bottom of the groove contacted, and the corresponding position of the tube outer wall
generated residual contact pressure. At the same time, “bottoming” led to a decrease in
the titanium tube and groove edge line contact pressure, and the overall effect was a slight
decrease in pc

*. When the groove width was 10 mm, with the increase in contact area
between the titanium tube and the groove bottom, the contact was more sufficient, and
the pc

* increased. When the groove width was greater than 10 mm, pc
* showed a slight

downward trend.
The elastic modulus of titanium was small, and the titanium tube could easily “sink”

into the groove. Before contact with the bottom of the groove, the titanium tube contacted
the edge line of the groove. The groove edge produced a high radial force on the outer
surface of the titanium tube, which corresponded to a large pc

*. Figure 15 shows the radial
force of the outer surface of the titanium tube at the joint with a single groove in the base
layer only, and groove widths of 2 mm, 4 mm, 6 mm, and 8 mm. It can be observed that,
when the groove width was 4 mm, the radial force was the maximum.
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As shown in Figure 16, in general, the pullout force increased with the groove width.
This is because, with the increase in groove width, the heat exchange tube “sank” into the
groove more fully, and the shear force against the tube wall increased; hence, the pullout
force increased. However, when the groove width continued to increase, equivalent to the
increase in the initial expansion gap, the pullout force declined.
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4.3. Effects of Groove Location in the Base

Figure 17 represents the influence of the distance from the single groove in the base
layer to the clad interface on pc

*, where w1 was 6 mm and the width of the single groove
in the base layer w2 was 10 mm. As depicted in Figure 17, with the increase in distance
from the single groove in the base layer to the interface, pc

* showed an upward trend. In
engineering practice, the distance from the single groove in the base layer to the interface
can be appropriately increased to improve the performance of the expanded joint.

Materials 2023, 16, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 16. Effects of groove width on pullout force. 

4.3. Effects of Groove Location in the Base  
Figure 17 represents the influence of the distance from the single groove in the base 

layer to the clad interface on pc*, where w1 was 6 mm and the width of the single groove in 
the base layer w2 was 10 mm. As depicted in Figure 17, with the increase in distance from 
the single groove in the base layer to the interface, pc* showed an upward trend. In engi-
neering practice, the distance from the single groove in the base layer to the interface can 
be appropriately increased to improve the performance of the expanded joint. 

 
Figure 17. Effects of groove distance from the single groove in base to interface on residual contact 
pressure of joints. 

Figure 18 shows the influence of double groove space b on pc*. Here, the width of the 
clad groove w1 was 6 mm, the width of the double groove in the base layer w2 was 10 mm, 
and the distance from the first groove in the base layer to the interface was 4 mm. As can 
be seen from the figure, the double groove space b had little influence on pc*. When the 
spacing was 6 mm, pc* exhibited the highest value.  

 
Figure 18. Effects of groove space on residual contact pressure of joints. 

0 2 4 6 8 10 12 14
10

20

30

40

50

60

70

Pu
ll-

ou
t f

or
ce

, F
/k

N

Groove width, w1 and w2 /mm

 A'-1 groove in the cladding layer only
 B'-1 groove in the base layer only
 C'-1 groove in the cladding layer & 

               1 groove in the base layer
 D'-1 groove in the cladding layer & 

               2 grooves in the base layer

4 8 12 16 20
20

22

24

26

28

R
es

id
ua

l c
on

ta
ct

 p
re

ss
ur

e,
 p

* c/M
Pa

Groove distance, s/mm

 pi = 280 MPa
 pi = 290 MPa
 pi = 300 MPa
 pi = 310 MPa
 pi = 320 MPa

2 4 6 8 10
28

29

30

31

32

33

34

R
es

id
ua

l c
on

ta
ct

 p
re

ss
ur

e,
 p

* c/M
Pa

groove space, b/mm

 pi = 280 MPa
 pi = 290 MPa
 pi = 300 MPa
 pi = 310 MPa
 pi = 320 MPa

Figure 17. Effects of groove distance from the single groove in base to interface on residual contact
pressure of joints.

Figure 18 shows the influence of double groove space b on pc
*. Here, the width of the

clad groove w1 was 6 mm, the width of the double groove in the base layer w2 was 10 mm,
and the distance from the first groove in the base layer to the interface was 4 mm. As can
be seen from the figure, the double groove space b had little influence on pc

*. When the
spacing was 6 mm, pc

* exhibited the highest value.
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5. Conclusions

In this study, the finite element method was used to explore the influence of different
expansion parameters on the performance of the expanded joint between a titanium–steel
tubesheet and a titanium tube. The difference between a Q345R tubesheet and TA2-Q345R
tubesheet in tight expansion was analyzed, and the effects of groove position and width
on residual contact pressure pc

* and pullout force F in the TA2-Q345R tubesheet expanded
joint were analyzed. The following conclusions could be drawn:

(1) During tight expansion, the clad tubesheet and the tube were both made of titanium,
the rebound after the expansion was consistent; thus, pc

* and F in the cladding layer
were higher than in the base layer. The connection strength of the TA2-Q345R clad
tubesheet joint was better than that of the Q345R tubesheet joint.

(2) In the case of single groove, the residual contact pressure of grooving in the cladding
layer was equivalent to that in the base layer, while the pullout force of grooving in
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the cladding layer was higher than that in the base layer. When the number of grooves
in the base layer was two, the optimal pc

* and F could be obtained.
(3) The expansion performance of the joint was gradually enhanced with the increase

in groove width within the range of 2–14 mm. When the groove width was 4 mm,
the residual contact pressure increased significantly due to the higher radial force
of the groove edge. The position of the groove had no obvious effect on the joint
performance in the base layer or in the cladding layer.
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Abstract: In quasi-brittle materials such as concrete, numerical methods are frequently used to
simulate the crack propagation for monotonic loading. However, further research and action are
required to better understand the fracture properties under cyclic loading. For this purpose, in this
study, we present numerical simulations of mixed-mode crack propagation in concrete using the
scaled boundary finite element method (SBFEM). The crack propagation is developed based on a
cohesive crack approach combined with the thermodynamic framework of a constitutive concrete
model. For validation, two benchmark crack-mode examples are modelled under monotonic and
cyclic loading conditions. The numerical results are compared against the results from available
publications. Our approach revealed good consistency compared to the test measurements from
the literature. The damage accumulation parameter was the most influential variable on the load-
displacement results. The proposed method can provide a further investigation of crack growth
propagation and damage accumulation for cyclic loading within the SBFEM framework.

Keywords: mixed mode crack propagation; cohesive zone method; cyclic loading; SBFEM

1. Introduction

The application of fatigue fractures is essential in analysing the performance of con-
crete structures. In fracture mechanics, concrete discontinuities also have the most sig-
nificant investigation in the field of engineering [1,2]. To better understand the rapid
failure of concrete structures under cyclic loading, a detailed procedure of fatigue crack
propagation is required. The prediction of the direction of crack propagation and orienta-
tion of quasi-brittle material as concrete is essential for the robust and reliable design of
concrete structures.

In concrete material, modelling of crack propagation and the numerical simulation
of crack growth remains an outstanding issue and a critical topic of ongoing research.
Primarily, the finite element technique is mainly used to simulate the crack behaviour
numerically. Still, discontinuities in material simulation cannot be fully demonstrated,
since the finite element method (FEM) is based on a continuum approach.

The cracks are typically mapped by areas of high strain rates when using the smeared
crack approach, as in Ref. [3]. The division of the crack opening into an equivalent element
length of a finite element causes the effect of smeared crack formation. This method
has a drawback in that it cannot accurately reflect the actual fracture pattern because
the distortion and discontinuity in the displacement field are not mapped. Alternately,
discontinuities are added at the element edges in the discrete crack approach [4]. This
method is affiliated with a high numerical effort since each iteration step has a continuous
re-meshing process.

Based on the extensions of the conventional FEM, cohesive numerical approaches
in modelling crack propagation have been developed to avoid this disadvantage [5–8].
Particular crack tip components were created to reduce the mesh quality essential for crack
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simulation by the FEM [9]. However, many difficulties have been reported by Ref. [10]
for material modelling using the FEM framework. The nodal displacements for finite
elements at the crack tip should be omitted when calculating the stress intensity factor
(SIFs). To determine the crack propagation path, several theories have been put forward [11].
Since it has an approximate explicit solution for the crack growth direction (θ) as a function
of the stress intensity factor under pure tension (KI) and mixed-mode condition (KI I),
the maximum tangential stress criterion is frequently used in FEM simulations of cyclic
crack propagation. In this case, it should be noted that the procedure of mesh refinement is
typically needed in the vicinity of the crack tip. The global or local re-meshing technique
is the most standard method to describe monotonic and cyclic crack propagation under
linear elastic fracture mechanics (LEFM) assumptions [11].

The cohesive zone model of Ref. [12] is most commonly used to model the process
zone. The process zone is often modelled in FEM utilizing the zero-thickness interface
elements. Interface elements are used in a variety of modelling techniques in the litera-
ture, such as placing them along the crack paths [13,14], inserting them along all element
interfaces in the mesh [15–17], and placing them along the crack surfaces as the crack
propagates [18–20]. While some methods are derived based on a priori information of the
crack paths obtained from experiments [13,14,21], sophisticated re-meshing algorithms
to propagate the crack with high mesh densities or particular finite elements were imple-
mented to model the singular stress fields around crack tips [22,23]. High mesh densities
are needed to achieve smooth and precise predicted crack paths, even though the methods
developed in Refs. [15–17,24] do not. An additional nodal enrichment with special stress
functions was included by using the extended finite element method (XFEM) to simulate
singular stress zones around crack tip [25]. The same appealing property that does not
require re-mesh to describe crack propagation is shared by XFEM and embedded crack
models. The cohesive tractions at the crack edges are included in the governing equations
to account for their work. Many research investigations have discussed cohesive crack
propagation for statics and dynamics issues using XFEM [26,27].

Meanwhile, the scaled boundary finite element method (SBFEM) has been proposed
recently to facilitate the dilemma of the computation burdens [28–31]. The SBFEM is
a very efficient method in solving problems with unbounded media and singularities.
The method’s effectiveness in handling singularities and unbounded domain problems
has prompted researchers to extend its applications to solve diverse problems in various
engineering fields, such as fracture mechanics [32,33], dam reservoir interaction [34], elec-
tromagnetic [35] and image-based analysis [36]. In order to minimize computation costs,
the SBFEM assigns no discretization of side-face boundaries [33]. Using polygon elements
created by the SBFEM, Ref. [37] has developed an automatic LEFM-based crack propagation
modelling technique. By utilizing SBFEM’s appealing feature, the particular stress fields
near crack tips were analytically represented [28]. The SBFEM has shown a considerable
efficiency compared to the classical FEM in calculating the stress singularities [38]. Crack-
tip mesh refinement, as in FEM, is avoided since the SBFEM calculates SIFs from the stress
solutions at the edges of subdomains and the nodes on the domain boundary. Furthermore,
a domain can be divided into subdomains in any required way, and the accuracy of the
stress and SIFs solutions is specified based on the re-meshing procedure. Accordingly,
this feature is more flexible in simulation crack propagation than in the FEM. In addition,
the re-meshing procedure can be as simple as used in the boundary element method (BEM).
Egger et al. [39] examined the computational efficiency of the SBFEM for solving linear
elastic fracture mechanics problems. A comparison between the SBFEM, Extended finite
element method (XFEM), and FEM was constructed by introducing different examples for
calculating the SIFs. The output showed that the SBFEM reached the exact solution faster
than XFEM. An extended finite element method by Ref. [40] was developed to simulate
nonlinear dynamic analysis. A direct remeshing algorithm for crack propagation has been
obtained in quasi-brittle materials. However, more investigations are required in modelling
crack propagation for concrete under cyclic and fatigue loading. As the singularities of
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cracks in the material interface are analytically calculated, the initial crack and the stress
state can be easily defined.

In this study, the SBFEM framework developed in Ref. [32] is implemented to model
cohesive crack propagation in quasi-brittle materials under cyclic loading. A new con-
stitutive model based on Ref. [41] is implemented to model the propagating cracks that
depend on the direction of applied loads. This model introduces an efficient simulation of
concrete material under cyclic behaviour. At sub-critical loading levels, the model relies on
the cumulative measure of propagation as a key damage-driving mechanism. The results
of the proposed approach are validated against the methods in Refs. [42,43]. Concerning
the concrete elements’ fracture and material response, analyses are performed using the
thermodynamic constitutive material law for concrete. The material model assumes a
combination of plasticity and damage theory in Refs. [44–46]. Similarly, as in Ref. [47] the
proposed method aims to simulate the crack propagation of concrete under cyclic loading.
However, we further extend the SBFEM framework to simulate the mixed mode crack
damage behaviour under various loading scenarios. As results, two mixed-mode crack
propagation problems are modelled for monotonic and cyclic loading. The results are
discussed and compared with the data available in publications.

The paper is structured as follows. In Section 2, the principle of the constitutive
material model at the cohesive interface element is explained. In addition, the constitutive
material model at the cohesive interface element for mixed-mode material response is
investigated. Section 3 introduces the proposed mixed-mode crack procedure for concrete
material using SBFEM. Additionally, the re-meshing procedure of crack propagation is
introduced. Section 4 introduces a nonlinear crack model for cohesive interactions, and a
flowchart for solving the SIFs is given. In Section 5, two numerical simulations are modelled
to validate the nonlinear model. Based on the findings of the cyclic bending test of plain
concrete that were published in the literature, we provide the calibration and validation of
the proposed model. The effect of the loading sequence on the material’s stiffness was the
main focus of the numerical investigations.

2. Constitutive Relation under Cyclic Loading

The advanced material models define a direct relationship between the invariant of
the strain and stress by linking the damage evolution with the strain, as in Refs. [10,48,49].
In order to reflect the opening/closure and growth of the micro-cracks and/or the frictional
sliding along their length, the formulation of the dissipative mechanisms has been refined by
introducing the internal sliding strain as a damage-driving variable within the framework
of isotropic damage and internal sliding strain. This way, a unified model for monotonic
and low cycle fatigue loads was proposed by Refs. [50,51].

Comparing the thermodynamic softening law of the constitutive model for the fracture,
the proposed model has the ability to simulate the plastic deformation of the experimental
results based on the plasticity and damage variables. Therefore, a numerical approach is in-
troduced in this work to consider monotonic and cyclic behaviour. The proposed approach
considers the cumulative measure of slip as an essential damage-driving mechanism at
the subcritical loading levels, as illustrated in Figure 1. The constitutive behaviour of the
embedded interface elements that represent the fracture process zone has been identified
utilizing the thermodynamic-based interface model [1,47].

A cumulative measure of the inelastic displacement inside the interface governs the
damaged evolution of concrete material. The evolution law in Equation (1) introduces the
cumulative opening and/or sliding as the fundamental source of damage. The adopted
failure criterion is identified based on the evolution law of the threshold function of the
damage plasticty law, as described in Ref. [41]. In a manner similar to how Lemaitre’s
damage potential was presented in Ref. [52], this feature has been introduced through the
modified flow potential in Refs. [50,53].
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Figure 1. Modelling approach of the cohesive concrete zone for both crack opening and sliding.

ω̇ = (1−ω)c+1
(

Y
S

)r( σn

σ̃n −mσ0

)
|u̇P| (1)

with

u̇P =
λ̇

1−ω
sign(σ̃n − X) (2)

where u̇P is a representation of the relative displacement at the interface (i.e., opening
displacement w = COD in the normal direction and slip s = CSD in the tangential/ shear
direction, see Figure 1), Y is the energy release rate related to the damage mechanism,
and X represent the thermodynamic force. The state variables of the damage variable ω, S
are the damage strength parameter, and c, r are the exponential parameters controlling the
accumulation rate of the damage. The σ̃n, σ0 and σn are the effective stress limits.

The introduced material model has been integrated as an implicit time-stepping
method into the Scaled Boundary Finite Element Framework. The return mapping proce-
dure is used to correct the internal variables after an elastic trial step, and the incremental
multiplier at each time step is computed numerically from the consistency condition, ḟ .
The exact process has been applied to the finite element framework by Ref. [41].

The incremental value ∆λ can be obtained by substituting the evolution equations
into the consistency condition as in Refs. [47,51].

∆λ =
f trial
n+1

E/(1−ωn) + γ + K
(3)

where E is the elastic stiffness, K and γ represent the isotropic and kinematic hardening
moduli, respectively. Due to the implicit form of the damage evolution Equation (1),
the iterative Newton scheme is applied to identify an admissible state. For fatigue and
cyclic simulations, this might be too expensive. As a result, we adopt the assumption of a
damage quasi-constant over a time step in Refs. [41,54], which significantly speeds up the
simulation without sacrificing accuracy. The proposed model needs a consistent algorithmic
stiffness to ensure a reliable and effective numerical implementation. The algorithmic
stiffness establishes a relationship between the rates of stress and displacement by

σ̇ = (Ealg)u̇ (4)

The stress rate then can be expressed as

σ = (1−ω)E(u̇− u̇P)− ω̇E(u− uP) (5)
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The algorithmic stiffness is obtained by substituting the evolution equations for dam-
age and displacement with the incremental multiplier in Equation (3) as

Ealg =(1−ω)E− (1−ω)E2

E + (γ + K)(1−ω)

−
(1−ω)cE2(u− up)( σ

σ−mσ0
)(Y

S )
rsign(σ̃p,trial

n+1 − γαn)

(E/(1−ω) + γ + K)

(6)

Following the formulation of the equilibrium condition on a zero-thickness element of
the interface, the described material model is embedded into the initial boundary value
problem of the SBFEM in a usual manner.

3. Modelling Crack Propagation
3.1. Crack Tip Stress Field in the Presence of Cohesive Traction

Fracture in quasi-brittle materials such as concrete involves a process zone [55]. The nu-
merical models and simulations consider the cracking phenomenon that can be detected
physically. Due to surface friction and aggregate interlocking, normal and shear tractions
can be transferred across crack surfaces. In this study, the interface elements are utilized
to model the cohesive cracks that result from mixed-mode loading scenarios. Figure 2
illustrates a typical bounded domain of an interface element at the crack tip. The crack dis-
placement in Figure 2b along the interface elements consists of crack opening displacement
(COD) and crack sliding displacement (CSD). The nonlinear cohesive tractions for normal
traction and tangential cohesion are σ and τ, respectively.

Crack Propagation

Vertices

Scaling Center
a) b) ft

COD
CSD

Δ aσ (ξ )

a
Interface 
element 

L1

L3

L2

r

A

1

n

Figure 2. Crack propagation of interface SBFEM element: (a) interface cohesive model in SBFEM,
(b) distribution of the cohesive forces.

The governing equations of SBFEM for an element containing a crack tip with side
face tractions is motivated by the works in Ref. [38]. Along the radial lines, ξ nodal
displacement functions u(ξ) are used, while the displacement functions in the η direction
are interpolated by the shape functions [N(η)]. The displacement field u(ξ, η) is scaled as
boundary coordinates and expressed including the normal displacement modes and the
sideface displacement modes as

{u(ξ, η)} = [N(η)]
N+M

∑
i=1

ciξ
(λi−1){φi} (7)

where φi is the side-face load mode, ci is the integration constants, and λi is the eigen-
value matrix.

The stress field can be calculated in the presence of cohesive traction as

{σ(ξ, η)} =
N+M

∑
i=1

ciξ
(λi−1){ψi(η)} (8)
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where each term in Equation (8) can be interpreted as a stress mode and

{ψi(η)} = [D](λi[B1(η)] + [B2(η)]){φi} (9)

where [D] is the material constitutive matrix [43], [B1(η)] and [B2(η)] are the SBFEM strain-
displacement matrices. In addition, it indicates that N is the number of displacement
modes and stress modes, where an extra M are added to both fields when the cohesive
traction is considered.

The stress intensity factors for the homogeneous material square root singular problem
are defined as {

KI
KI I

}
=
√

2πL0 ∑
i=I,I I

(
ci

{
ξ−λi−1σyy|θ=0
ξ−λi−1σxy|θ=0

}

i

)
(10)

where L0 = L3 is the distance between the crack tip and the point A at the crack surface
direction on the boundary, see Figure 2a. ci are integration constants. As ξ → 0, two modes
can yield singular stresses with λi = 0.5 . These two stress modes will be considered as
mode I and mode II.

3.2. Crack Propagation

The crack initiation in the SBFEM domain is determined according to the zero-K
condition [56]. Once the stress at the crack tip is finite, a cohesive crack will propagate.
Any crack that satisfies the zero-K condition at the end of each load step will be identified
using the SBFEM-based algorithm created by Ref. [57]. This hypothesis assumes that a
cohesive crack will propagate if there is no stress singularity and finite stress at the crack
tip. The crack propagates under the following condition

KI(θ) ≥ 0 (11)

The procedure of crack propagation is illustrated in Figure 3 and is described as
follows. In order to locate the new crack tip in each crack propagation step, it is necessary
to first identify the crack propagation direction (Θc) and the specified crack propagation
length (∆a). Once the stress intensity factors (SIFs) have been calculated from Equation (10),
the Θc can be computed as in Ref. [58].

 

(a) New crack tip 

  

Δ a
crack tip 

New crack tip 

A

 

(b) Final mesh 
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  V1
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E3 E4
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Figure 3. Crack propagation re-meshing procedure.

The re-meshing procedure is outlined in Figure 3a,b for one crack propagation step.
Given ∆a and Θc, the location of the new crack tip, shown in Figure 3a, is calculated and
located in the cracked subdomain (point A is used to compute the SIFs). Two new vertices
(V1 and V2 in Figure 3b) have been created from the former crack tip. Four new edges
(E1–E4) are constructed along with the creation of two new subdomains (1 and 2). All edges
of the newly cracked subdomain (3) must be visible from the new crack tip, and the new
edges and subdomains are utilized to track the crack path.

The crack propagation criteria are examined when the external load increases. Once
it is satisfied at a particular load, the crack length ∆a and the crack angle θ are utilized to
pinpoint the location of the new crack tip in the mesh as in Ref. [33].

The cohesive tractions along the crack are obtained based on the condition KI ≥ 0.
The crack subdomain is split up into standard subdomains called cell interface elements
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(CIEs). The new CIEs are then coupled with SBFEM normal cells. The system stiffness
matrix can be created by assembling the stiffness matrices and equivalent nodal forces of
the subdomains and CIEs. The SIFs can then be calculated once the nodal displacements
and cohesive tractions along the crack are identified. The material softening is represented
by the constitutive material model, explained in Section 2.

4. Implementation Procedure by SBFEM

The flow chart for the numerical process is shown in Figure 4. A further explanation
of the numerical procedure is presented as follows:

Obtain the crack displacement 
ui  (COD and CSD)

Compute at GP 
local stiffness kn, kt 
cohesive forces tn, ts

material damage ωi

material plasticity αi

Compute
interface element stiffness matrix Kint

polygon element stiffness matrix  Kpol

Determine
stress field of the domain σ( , η)

nodal cohesive traction Fts, Ftn

stress intensity factor SIFs KI, KII

Input-set
Load: [P, N]
Geometry: [L, h, b, a] 
Material: [E, ν, α, z, γ]

N= 1

Po
s t

 p
r o

ce
ss

in
g

Failed

Remeshing

KI > 0 

End

No 

Yes

Yes

No 

Figure 4. Key steps of the stress field domain and stress intensity factor SIFs.

1. Input the geometric dimensions of the specimen including; the span length L, height
h, width b, and initial crack length a, along with the material parameters; the initial
fracture toughness, Poisson’s ratio ν, Young’s modulus E, damage parameter ω,
and the material plasticity α, γ and z under both static and cyclic loading P;

2. Establish the model (SBFEM) with the initial crack length a. Apply the external load
P. Calculate the stress field of the domain, cohesive nodal traction, and the stress
intensity factors (SIFs) KI and KI I . Adjust the applied load until the initial cracking
is reached;

3. Re-establish the SBFEM of the crack angle θ with crack length a. ∆a is the increment
of crack length. If i = 1, the number of cyclic loading N1 = 1. Apply cyclic load Pmax
and the cohesive force according to Equation (13). Finally, the single and mixed mode
KI and KI I for monotonic and cyclic crack propagation process can be calculated
according to Equation (10);
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4. Repeat step 3 until the structure fails and the numerical simulation is terminated.
Output the necessary parameters, such as the crack propagation path, the number of
cyclic loads N, and CMOD and CMSD displacements.

The above modelling methodology has been implemented in a computer program
using MATLAB software. Figure 4 shows a proposed flowchart of the program. The pre-
processing step is to define the input set of the tested problem. The constitutive law is
inserted into the SBFEM framework as an interface element at the crack tip. The nonlinear
consistent interface model is solved using the displacement control algorithm to obtain the
post-processing findings for monotonic and cyclic loading. The cyclic damage accumulation
during loading and unloading is formulated within the constitutive model.

Based on the constitutive model at the material point level, the relative displacement
of the crack surface ui is calculated, including the opening displacement (COD) and the
sliding displacement (CSD) of the crack surface. The key concept behind this method is
the linear superposition of an iterative methodology applied to the relative displacement of
the crack surface in order to solve and estimate the cohesive tractions on the crack surface.

The standard SBFEM solution of the stress intensity factor formula can calculate all
three stress intensity factors.

KI = KP
I + KC

I (12)

where KI is the total stress intensity factor and KP
I and KC

I are the components related to
the external and cohesive forces, respectively. Thus, KP

I > 0 when the crack expands due
to the external force of the model, while KC

I < 0 when the crack tends to close due to the
cohesive force. When force balance is achieved as a result of the aspects covered by the
external and cohesive forces, KI = 0, equivalently. Therefore, KI ≥ 0 can be utilized as the
criterion for considering whether the crack will continue to propagate or not as in Ref. [59].
The solution of the cohesive tractions is summarized with the following steps:

(a) As shown in Figure 4, the linear elastic assumptions of SBFEM can be used to
determine the relative displacement ui of the crack element when the structure is
subject to the external force P. As a result, the corresponding cohesive traction ti
can be acquired;

(b) Both the external force and the cohesive force obtained in the previous step are
applied to the structure, with the cohesive traction ti being applied in the form of a
side-face force and formulated in accordance with Equation (13). Along the fracture
process region, cohesive tractions tn, ts are related to the relative opening and sliding
displacements on the crack faces u

{t} = [k]{u} (13)

where k is the stiffness of the softening laws.
The stiffness matrix of an interface element in the local coordinate system is:

[kint] =
A
2

ng

∑
i=1

wi Mi
T [k]Mi (14)

where A is the crack surface area, wi is the one-dimensional Gaussian weight, ng is
the number of integration points, and Mi is the linear shape function matrix [33].
Based on Equation (14) the solution of the displacement and stress equations is
calculated in Equations (7) and (8), respectively;

(c) Proceed until the variation depicted in Figure 4 is consistent with the relationship
between ti and ui+1.

5. Numerical Simulation and Model Verification
5.1. Three-Point Bending Beam

The mixed mode I-II in the TPB beam under monotonic and cyclic loading was
predicted based on the numerical procedure presented in Figure 4. The experimental test
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results were done by Ref. [60] for concrete beams under mixed mode fracture. Table 1
summarizes the material parameters of the tested concrete specimens. The geometric
dimensions of the specimen; TPB specimen with cross-section height of h = 160 mm.
The beam height was scaled to the beam length and span, as shown in Figure 5. The beam
width is kept constant with b = 80 mm. The notch depth was set to h0 = h/2.

P

h

b

L0 = 4 h

h0 = h / 2

CMOD

(a)

(b)

h / 4

CMOD

Time

CMOD

Time

Figure 5. (a) Loading scenarios used in the simulation. Monotonic loading (left) and cyclic loading
(right); (b) three-point bending beam for mixed mode crack propagation.

In the analyses, two systematic sets of loading scenarios are used. The first loading
scenario introduces a typical monotonically increasing loading Figure 5a. In the second
loading scenario, the sequence of unloading cycles are applied in Figure 5b.

Table 1. The parameters of the material of the experimental test in Ref. [60].

Parameter Denomination Value Unit

fc Compressive strength 44.24 [MPa]
fct Tensile strength 3.35 [MPa]
Ec Young’s Modulus 35.38 [GPa]
ν Poisson ratio 0.21 [-]

The properties of the concrete and cohesive interface element for COD and CSD
responses are listed in Table 2. The proposed constitutive model has a set of plastic parame-
ters γ, K and the damage strength S, as reported in Ref. [47]. In this study, the nonidentical
material response of the proposed model and the experimental data is caused by the unified
parametric prediction of the calibrated material behaviour for both monotonic and cyclic
loading scenarios. In this calibration, the unified parameters of monotonic and cyclic
material response at the Gauss point are plotted in Figure 6. A comparison of the experi-
mental [60] and numerical simulations is depicted in Figure 7 for the traction stress curve
of the mixed-mode crack displacement under monotonic loading. It should be noted that
more advanced cohesive constitutive laws with coupled normal and tangential damage
evolution can be used, e.g., see Ref. [61].
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Table 2. Model parameters for the concrete cohesive interface element.

Parameter Denomination Value Unit

E Elastic cohesive modulus 3000 [MPa]
σ Reversibility limit 2.0 [MPa]
K Isotropic hardening modulus 400.0 [MPa]
γ Kinematic hardening modulus 500.0 [MPa]
S Damage strength 0.25 × 10−4 [MPa]
r Damage accumulation parameter 1.0 [-]
c Damage accumulation parameter 2.0 [-]

(a) (b)

0.00 0.05 0.10 0.15 0.20

COD [mm]

monotonic
cyclic

0.20 0.10 0.00 0.10 0.20

3.0

2.0

1.0

0.0

1.0

2.0

3.0

T
ra

ct
io

n 
t n

 [
M

Pa
]

0.0

1.0

2.0

3.0

4.0

0.5

1.5

2.5

3.5

CSD [mm]

T
ra

ct
io

n 
t s 

[M
Pa

]
monotonic
cyclic 

Figure 6. Cohesive traction response under cyclic loading (blue lines) and monotonic loading (gray
lines) at the material point level: (a) traction-crack opening, (b) traction-crack sliding.
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Figure 7. A comparison between the experimental measurements in Ref. [60] and the modelling
results of the cohesive traction for mixed mode I-II fracture.

The two-dimensional SBFEM modelling was utilized to establish the mesh of the
TPB beam. A total of 205 elements were used. The mesh refinement near the crack tip
was refined, as depicted in Figure 8a. Based on COD and CSD derived from the SBFEM
calculation, the SIFs were computed. Eventually, the complete mixed mode I-II cyclic
and monotonic crack propagation in TPB beam was simulated, as illustrated in Figure 8b.
The crack propagation due to the increasing load is shown in Figure 8b. The results showed
a curved crack path in the direction of the point of the external load (F). The distribution of
the traction forces is shown in Figure 8c.
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(a)

(b)

(c)

Figure 8. Predicted final crack paths of a TPB beam; (a) SBFEM mesh with 313 elements and boundary
conditions, (b) predicted final crack path, (c) cohesive traction distribution.

To demonstrate the effectiveness of the numerical method, the SBFEM results of test
simulation were compared with the experimental results in Ref. [60]. Figure 9 shows the
comparison of the crack propagation paths for monotonic loading, where the shaded region
contains the experimentally measured crack paths. As can be shown, there is a reasonable
agreement between the numerically predicted paths in SBFEM and both numerical FEM,
as well as the experimental results in Ref. [60].

Experiment

SBFEM

FEM

a) b)

Figure 9. Predicted final crack paths of a TPB beam; (a) experimental shadow results in Ref. [60],
(b) SBFEM simulation.
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Figure 10 compares the predicted load-crack mixed-displacement of the TBP beam
with the experimental results reported by Ref. [60] under monotonic loading. The SBFEM
numerical predictions’ related curve is shown in Figure 10, plotted in a black dashed
line. The numerical results of the load-displacement curve are in good agreement with
the experimental measurements. A maximum load of 53.1 kN is obtained at CMOD of
0.027 mm.
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Figure 10. Numerical predictions of load-CMSD curves and the corresponding experimental data in
Ref. [60] for the three-point bending test under monotonic loading.

Figure 11 shows the results of the monotonic SIFs for both mode I and mode II, where
the numerically measured SIFs are plotted. In Figure 11a, the points representing the initial
mesh of Figure 10 are calculated once KI ≥ 0. Then, the crack opens gradually based on
a crack propagation criterion. The numerical calculation of KI by SBFEM with a fewer
number of degrees of freedom (DOFs) manifests good crack trajectory predictions.
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Figure 11 shows the results of the monotonic SIFs for both mode I and mode II, where
the numerically measured SIFs are plotted. In Figure 11a, the points representing the initial
mesh of Figure 10 are calculated once KI ≥ 0. Then, the crack opens gradually based on
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Figure 11. Mixedmode I–II crack displacement for monotonic loading: KI-CMOD (a) and KII-CMSD (b).

The experimental observations and numerical calculations for a cyclically mixed-
mode loading are shown in Figure 12. The loading is controlled by the CMOD/CMSD,
including eight unloading cycles. The results show that the numerical comparison of crack
propagation CMSD is relatively stable while the CMOD increases as the N of the cycle
increases. As a result, there is a good agreement between the experiment results and the
numerical predictions of CMSD in Figure 12.

Figure 11. Mixedmode I–II crack displacement for monotonic loading: KI-CMOD (a) and
KII-CMSD (b).

The experimental observations and numerical calculations for a cyclically mixed-
mode loading are shown in Figure 12. The loading is controlled by the CMOD/CMSD,
including eight unloading cycles. The results show that the numerical comparison of crack
propagation CMSD is relatively stable while the CMOD increases as the N of the cycle
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increases. As a result, there is a good agreement between the experiment results and the
numerical predictions of CMSD in Figure 12.
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Figure 12. Crack displacement versus the number of cycles for experimental data in Ref. [60] and
SBFEM; crack mouth opening CMOD and sliding CMSD.

5.2. Four-Point Bending Beam

The proposed method is next verified using the numerical results of the four-point
bending concrete beam under mixed mode fracture [62]. The geometry, loads, and support
conditions are illustrated in Figure 13. The width and height of the specimen are denoted by
100 × 100 [mm]. The material properties of the concrete beam are summarized in Table 3.

h

b

L = 440

180
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18020 20
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(a)

(b)

Figure 13. A single-notched concrete beam under monotonic mixed-mode loading. (a) Geometry, (b)
initial mesh with boundary conditions.
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Table 3. Parameters of the material in the experimental test by Ref. [63].

Parameter Denomination Value Unit

fct Tensile strength 3.44 [MPa]
G f fracture energy 0.126 [N/mm]
Ec Young’s Modulus 30.0 [GPa]
ν Poisson ratio 0.20 [-]

A particular loading condition is implemented to generate mode II crack initiation
for both monotonic and cyclic loading. The calculation is performed under displacement-
controlled loading. For the analysis of the concrete beam, the following material properties
are used, see Table 4 below.

Table 4. Model parameters for the concrete cohesive interface element.

Parameter Denomination Value Unit

E Elastic cohesive modulus 3500 [MPa]
σ Reversibility limit 2.0 [MPa]
K Isotropic hardening modulus 400.0 [MPa]
γ Kinematic hardening modulus 500.0 [MPa]
S Damage strength 0.25 × 10−4 [MPa]
r Damage accumulation parameter 1.0 [-]
c Damage accumulation parameter 2.0 [-]

The initial mesh of the tested beam is illustrated in Figure 13. The mesh consists of
1069 elements. The crack propagation length of ∆a = 22 mm is adopted in the crack propa-
gation simulation. Figure 14 compares the predicted traction point displacement response
of the developed method with the numerical results of Ref. [62] in the literature. Overall,
there is good agreement between the results of the developed method and the experimental
measurements. The pre-peak response compares very well with the previously reported
numerical results. The numerical SBFEM predicted a maximum load of 36.2 kN and is
closest to both the experimental and FEM predictions of Ref. [62].
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Figure 14. Comparison of the tested beam in Ref. [62] and the proposed cohesive traction for mixed
modes I–II fracture.

Figure 15 represents the predicted crack propagation process. During the simulation,
a crack propagates from the tip notch towards the loading point on the bottom surface of
the four point bending beam. The paths of the crack in the experimental results and SBFEM
are curved. In Figure 15, the predicted crack path of the FEM simulation in Ref. [62] seems
to be more efficient, however, the mesh adaptive procedure of the SBFEM will produce
more efficient results and reduce the computational time costs.
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Experiment

SBFEM

FEM

a) b)

Figure 15. Predicted final crack paths of a tested beam; (a) the experimental shadow results in Ref. [62]
and the numerical results and (b) SBFEM simulation.

Figure 16 compares the predicted load-crack displacement response of the developed
method with the numerical FEM results of Ref. [62]. Overall, the results obtained from the
developed method agree well with the numerical for the monotonic loading. The pre-peak
response compares well with the previously published numerical results. All the numerical
predictions below estimate the maximum load. The SBFEM predicted a maximum load of
34.8 kN and is closest to the FEM predictions.
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Figure 16. Numerical predictions of load-CMSD curves and the corresponding experimental data
in Ref. [62] for the tested beam under monotonic loading.

Figure 17 shows SBFEM numerical predictions and FEM results for a cyclically mixed-
mode loading. The loading is controlled by the CMSD, also including eight unloading
cycles applied until failure. The results in Figure 17a show that the traction forces of SBFEM
have a very good agreement with the numerical results in FEM. In Figure 17b, the crack
displacement of the SBFEM simulation is more underestimated in comparison to the FEM
measurements. The calculation of the mixed crack displacement at the material point,
the number of load steps, and the democratization of the applied mesh have a significant
effect on the SBFEM numerical results. However, more experimental data of cyclic mixed
mode tests are required to validate the proposed numerical method.
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Figure 17. SBFEM numerical predictions of (a) load-CMSD curves and (b) crack displacement of the
corresponding finite element data for tested beam under cyclic loading in Ref. [62].

6. Conclusions

In this paper, a newly developed SBFEM numerical method for mixed mode crack
propagation in concrete under cyclic loading was proposed. The proposed procedure
allowed accurate SIFs to be calculated directly from the SBFEM analytical framework
without more discretization at crack-tip meshes or by using singular elements, as in FEM.
Comparing the thermodynamic softening law of the constitutive model for fracture, several
aspects have been provided, which incorporate the loading-unloading path, the damage
evolution during the load cycle, and the crack traction displacement behaviour.

The cyclic behaviour of interfaces using SBFEM has been successfully described using
the damage accumulation hypothesis. The proposed method showed the ability to simulate
both monotonic and cyclic behaviour of a cohesive crack interface element, e.g., concrete
interface, utilizing a consistent set of material parameters. The cyclic loading simulations’
output agreed well with experimental data from the literature. The proposed method
performed to study the effect of fatigue loading provides promising results and establishes
a damage accumulation hypothesis for the simulation of multiple cohesive cracks under
1000 load cycles.
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Nomenclature

u̇P Relative displacement ω Damage variable
w = COD Crack opening at material point Y Energy release rate
s = CSD Crack sliding at material point S Damage strength parameter
c, r Exponential damage parameters σn, σ Effective stress limit
m Material constant E Elastic stiffness
α Hardening material variable E Elastic stiffness
σ = tn Cohesive normal stress τ = ts Cohesive tangential stress
Elag Element stiffness of the interface γ, K Isotropic and kinematic hardening moduli
η, ξ Local coordinate system of SBFEM λi Eigenvalue matrices
{u} Displacement field D Material constitutive matrix
N(η) Nodal shape function Kpol Stiffens matrix of the domain
φi Eigenvector matrices ci Integration constants of the SBFEM
[B1], [B2] Strain-displacement matrices of SBFEM system M Number of displacement modes
P External applied force N Number of load cycles
θ Crack propagation angle ∆a Crack propagation length
L0 Crack length Kint Stiffens matrix of interface element
A Crack surface area wi Gaussian weight function
CMSD Crack mouth sliding displacement Ft Nodal side face load
CMOD Crack mouth opening displacement KI , KI I Crack mode I & mode II

stress intensity factors{σ} Stress field
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Nonlinear Finite Element Model for Bending Analysis of
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under Thermomechanical Loads Using Quasi-3D Reddy
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Abstract: A nonlinear finite element model for axisymmetric bending of micro circular/annular
plates under thermal and mechanical loading was developed using quasi-3D Reddy third-order
shear deformation theory. The developed finite element model accounts for a variation of material
constituents utilizing a power-law distribution of a two-constituent material, three different porosity
distributions through plate thickness, and geometrical nonlinearity. The modified couple stress theory
was utilized to account for the strain gradient effects using a single material length scale parameter.
Three different types of porosity distributions that have the same overall volume fraction but different
enhanced areas were considered as a form of cosine functions. The effects of the material and
porosity distribution, microstructure-dependency, the geometric nonlinearity, and various boundary
conditions on the bending response of functionally-graded porous axisymmetric microplates under
thermomechanical loads were studied using the developed nonlinear finite element model.

Keywords: nonlinear finite element analysis; axisymmetric plates; quasi-3D Reddy third-order
theory; functionally-graded porous materials; modified couple stress theory

1. Introduction

Functionally-graded materials (FGMs) are advanced engineering materials composed
of two or more constituents with a continuous variation in their compositions. Unlike
FGMs, laminated composites exhibit immediate changes in thermal and mechanical prop-
erties of the constituents, resulting in stress concentrations at the interfaces where two
discrete materials bond together. This leads to delamination problems and the presence of
residual stresses in conventional composites working under severe conditions. FGMs were
developed by researchers in Japan in 1984 to overcome these issues encountered in a ther-
mal coating material requirement of a hypersonic space plane project [1]. Since then, FGMs
have been used in various fields such as aerospace, automobile, electronic, and medical
industries due to their advantages over laminated composites and their flexibility to be de-
signed according to the needs of the application field and working environment. The reader
is referred to the following review articles [2–5] for details of the historical development of
these materials, manufacturing techniques, and optimization of their functionality.

The FGMs have great potential for improving the performance of various components
in engineering structures, especially circular and annular plates. Over the last few decades,
researchers have extensively studied the behavior of functionally-graded (FG) circular
and annular plates under thermal, mechanical, and combined thermomechanical loadings.
Since FGMs were initially designed to withstand extreme thermal environments, most of
the literature focuses on their thermal analysis. Typical FGMs used in these studies are

Materials 2023, 16, 3505. https://doi.org/10.3390/ma16093505 https://www.mdpi.com/journal/materials
295



Materials 2023, 16, 3505

made from a mixture of ceramics for their low thermal conductivity and metals for their
ductility and resistance to fracture caused by stresses likely to occur in high-temperature
gradients. Additionally, the majority of studies on FG plates employ a power law or
exponential distribution of materials through the thickness direction of the plates

In 1998, Reddy and Chin [6] conducted a numerical study to investigate thermome-
chanical responses of FG cylinders and plates under extreme thermal loading conditions
using the first-order shear deformation plate theory (FSDT). In their study, the effects of
thermomechanical coupling on the response of FGMs subjected to thermal shock were
investigated. For the functionally-graded axisymmetric cylinder subjected to high thermal
loading, the temperature distribution obtained from both coupled and uncoupled formula-
tions did not show significant differences. However, it was observed that the radial stresses
were more affected than the hoop stresses in the FG cylinder.

Using the FSDT, exact solutions of the static bending analysis of FG circular and
annular plates having various boundary conditions were presented by Reddy et al. [7].
They derived the solutions of deflections, forces, and the moments of the FG plates based on
FSDT in terms of the associated quantities for the isotropic plates based on the classical plate
theory (CPT). Hence, the bending solutions of the FG circular plate became readily available
whenever the CPT solution was known. Ma and Wang [8] studied the axisymmetric
nonlinear bending and post buckling response of functionally-graded circular plates under
thermal, mechanical and combined thermomechanical loading conditions. In this study,
governing equations were derived using the von Kármán plate theory and the numerical
solutions were obtained with the help of the shooting method. The results of this study
showed that temperature distribution, deflection values, critical buckling temperature, and
post buckling behavior of the functionally-graded circular plates were significantly affected
by the volume fraction index.

Praveen and Reddy [9] introduced the finite element formulations that account for
the transverse shear strains, rotary inertia, and von Kármán nonlinear strains to perform
static and dynamic thermoelastic analysis of the functionally-graded ceramic-metal plates
based on FSDT. In 2000, Reddy [10] presented the formulation and analytical solution
of simply-supported rectangular FG plates using third order shear deformation plate
theory (TSDT) including thermomechanical coupling, time dependency, and von Kármán
geometric nonlinearity. From these two studies, it was concluded that the distribution of
material constituents in the functionally-graded plates had a significant influence on the
resulting thermoelastic response of FG plates. Najafizadeh and Heydari [11] investigated
the thermal buckling analysis of functionally-graded circular plates under both uniform
and non-uniform temperature changes by employing the TSDT.

Prakash and Ganapathi [12] employed the finite element method to carry out asymmetric-
free vibration and thermoelastic stability analysis of functionally-graded circular plates.
Nie and Zhong [13] studied the three-dimensional free and forced vibration analysis of
functionally-graded circular plates and found that the lowest nondimensional frequency
and circumferential wave number of the plate increased as the thickness-to-width ratio in-
creased. They also observed that the magnitudes of the displacements and stresses became
larger as the forcing frequency approached the natural frequency of the FG circular plate.

Efraim and Eisenberger [14] presented the free vibration analysis of variable thickness
thick annular plates using the exact element method and the dynamic stiffness method.
They used FSDT in their formulations and varied Poisson ratio according to the power
law distribution in addition to elastic modulus and mass density. Golmakani and Kadkho-
dayan [15] presented another study that accounted for the gradation of Poisson ratio. They
investigated the nonlinear bending analysis of annular FG plates based on both FSDT and
TSDT. The same authors [16] later performed a large deflection analysis of circular and
annular FG plates subjected to thermomechanical loading within the framework of FSDT,
including von Kármán nonlinearity.
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Saidi et al. [17] employed unconstrained third order shear deformation theory to
analyze the axisymmetric bending and buckling behavior of thick FG circular plates.

Nosier and Fallah [18] reformulated governing equations of the FSDT into interior
and edge-zone equations for functionally-graded circular plates. By introducing two sets
of equations to define the edge-zone problem, they uncoupled the bending and extension
equations, which made it possible to obtain analytical solutions for the asymmetric behavior
of functionally-graded circular plates with various boundary conditions under mechanical
and thermal loading. Later, they included the von Kármán nonlinear strains into their
formulations and investigated the axisymmetric and asymmetric nonlinear bending of
functionally-graded circular plates subject to linearly-varying transverse loading [19]. The
axisymmetric bending analysis of FG circular plates under arbitrary transverse loads was
studied by Yun et al. [20]. They obtained the analytical solutions for the FG circular plates
with elastic simple and rigid slipping supports cases when the material property of the
FG plate was varying with an exponential distribution. Another analytical study was
conducted to solve for in-plane and out-of-plane free vibrations of thick FG circular and
annular plates embedded in piezoelectric layers by Talabi and Saidi [21], employing TSDT.
The effects of both electrical and mechanical boundary conditions, geometrical parameters
of the plate, and in-plane displacements on the middle plane on the natural frequencies
of FG circular and annular plates were discussed. Żur [22] applied the Neumann series
method to investigate the free vibration behavior of discrete-continuous FG circular plates
that may have several ring attachments such as masses, springs and damping elements.

The FG circular and annular plates can be further improved by adding porosity into
their composition to decrease the weight of the structure and/or increase the insulation
properties. Hence, it is important to examine the mechanical and thermal responses of FG
porous plates under different loading and boundary conditions. A general solution of a
porous FG circular plate that is supported by a non-uniform Kerr elastic foundation and
subjected to non-axisymmetric, non-uniform shear and normal tractions, and a magnetic
actuation was developed by Rad and Shariyat [23]. Their results showed that the radial
displacement component was more prone to being affected by the induced magnetic
actuation. Additionally, because of the presence of incompressible fluid in the pores in
this study, as the porosity increased, the plates became stiffer. The buckling behavior of
porous circular plate between piezoelectric layers under thermal loading was investigated
by Jabbari et al. [24]. They showed that, as the porosity increased, the critical temperature
decreased and the plate whose pores were saturated with fluid became unstable. On
the other hand, the critical temperature of the plates can be decreased by increasing the
thermal expansion coefficient of the fluid filling the pores and the piezoelectric layers.
Zhao et al. [25] studied the free and forced vibration analysis of FG porous circular, annular,
and sector plates with general elastic restraints using FSDT.

These extensive studies conducted on FG circular and annular plates show that these
structures have an intrinsic advantage resulting from the non-homogeneity and smooth
variations of the material properties. It is shown that the deflections and tensile stresses
of FG circular and annular plates can be lower and critical buckling loads can be higher
as compared to the homogeneous ones, depending on the predetermined variation of
material properties of FG circular and annular plates. It is also possible to adjust the natural
frequencies of these structures by changing the variation of the material distribution. Hence,
all these conclusions make it attractive to examine the performance of the FGMs for the
micro-scale structures. However, conventional continuum mechanics cannot capture the
size dependency that is experimentally observed at the micro-scale [26–29]. Therefore,
a higher order continuum theory is required for the accurate modeling and analysis of
these structures. Couple stress theories [30–32], Erigen nonlocal elasticity theory [33] and
the strain gradient elasticity theories [26,34,35] are some of the higher order continuum
theories that take the size dependency into account. The modified couple stress theory
is the most commonly employed theory because only a single length scale parameter is
needed to include size effect.
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Ke et al. [36] investigated the bending, buckling, and free vibration analyses of FG
annular microplates with hinged–hinged and clamped–clamped boundary conditions.
Their size-dependent annular microplate model was based on the Mindlin plate theory
and the modified couple stress theory. This study showed that elastic buckling analysis
was more sensitive to size effect than the free vibration analysis. Similar analyses were
presented by Ansari et al. [37] for FG circular and annular microplates. They also employed
Mindlin plate theory, but different to the previous study, size dependency was included
using modified strain gradient elasticity theory. Both studies agreed that the smaller the
dimensionless length scale parameter they had, the smaller the deflection but the higher
the critical buckling load and natural frequencies that they obtained.

Reddy and Berry [38] presented the classical and the first order plate theories for
axisymmetric bending of circular micro-plates including von Kármán nonlinear strains. Size
dependency was captured with the modified couple stress theory. Later, Reddy et al. [39]
used this theory to develop nonlinear finite element models for FG circular plates.

An analytical solution for the free vibration of FG circular and annular nanoplates
was obtained by Hosseini-Hashemi et al. [40] based on Mindlin plate theory and Eringen
nonlocal elasticity theory. Beni et al. [41] studied the same problem for FG cylindrical
nanoshells using FSDT in conjunction with the modified couple stress theory. They pre-
sented the effects of the material length scale, distribution of the FGMs, nanotube thickness,
and length on the fundamental frequencies. Eshraghi et al. [42] studied the bending and
the free vibration analysis of FG annular and circular microplates subjected to thermal
loading using the modified couple stress theory. They unified the displacement fields
such that results for Kirchoff plate theory, Mindlin plate theory, and third order shear
deformation plate theory can be generated. Additionally, not only the mechanical and
thermal properties of the FG plates but also the material length scale parameter were not
kept constant but were changed through the thickness direction, obeying a power law
distribution. The transverse deflections, normalized circumferential and radial stresses,
and the natural frequencies were presented for different thermal loading, material, and ge-
ometrical parameters. Ji et al. [43] developed a plate model capturing the size dependency
for FG circular micro-plates based on the strain gradient theory of Zhou. They analyzed
the bending and free vibration of a simply-supported circular micro-plate and the results
were compared with those obtained by employing the strain gradient theory of Lam, the
modified couple stress theory, and the CPT.

A free vibration and thermal buckling analysis of an FG porous circular micro-plate
was conducted by Shojaeefard et al. [44] based on CPT and FSDT with modified couple
stress theory. The effects of the temperature change, distribution of the material properties,
size-dependency, and porosity on the fundamental frequencies and critical temperature
were investigated. Kim et al. [45] presented the analytical solutions of bending, free
vibration, and the buckling problem for FG porous micro-plates using CPT and FSDT in
conjunction with the modified couple stress theory. Recently, Wang and Zhang [46] studied
the thermal buckling and postbuckling responses of GPL-reinforced nanocomposite beams
using the higher order shear deformation theory with temperature-dependent properties.
Zhang et al. [47] carried out analytical studies on thermo-mechanical responses of porous
functionally-graded, graphene-reinforced cylindrical panels based on a third order shear
deformation theory. The acoustic characteristics of functionally-graded porous graphene
reinforced nano composite plates (FG-PGRC) were studied by Xu et al. [48]. In their study,
a higher order shear deformation theory was utilized to study the vibration and noise
reduction of an FG-PGRC plate.

This study aimed to investigate the behavior of FG porous circular microplates under
thermal and mechanical loadings, which has not been studied in the literature. To this
end, a nonlinear finite element model was developed based on quasi-3D Reddy third-order
shear deformation theory and the modified couple stress theory, taking into account von
Kármán nonlinear strains to consider geometrical nonlinearity. The FGM was composed of
two constituents based on a power law distribution through the thickness direction, and
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three different porosity profiles were considered. Parametric analyses were conducted to in-
vestigate the effects of the distribution of material properties and porosity, size-dependency,
geometric nonlinearity, and different boundary conditions on the static bending analysis of
FG porous circular microplates.

2. Constitutive Models
2.1. Functionally-Graded Porous Materials

The model considers isotropic axisymmetric plates composed of two constituents with
varying material properties and internal porosity through the thickness, modeled using a
power-law distribution and cosine variation, respectively. The typical material properties
of functionally-graded porous materials (FGPM) are thus captured in the model, as shown
in Equation (1).

P(z) = [(Pt − Pb) f (z) + Pb](1− ψ(z)), f (z) =
(

z
h
+

1
2

)n
, (1)

where Pt and Pb are material properties on the top and bottom surfaces of plates, n is power-
index, f (z) is a volume fraction function, and ψ(z) is a porosity distribution function. Three
different types of porosity distributions were considered in this study.

Type 1 : ψ(z) = φ cos
[
π
( z

h

)]

Type 2 : ψ(z) = φ cos
[π

2

( z
h
+ 0.5

)]

Type 3 : ψ(z) = φ cos
[π

2

( z
h
− 0.5

)]
,

(2)

where φ is the maximum porosity value along thickness direction. The distribution of porosity
through the thickness of the plates was normalized to have the same porous volume, and it is
important to investigate the effect of different porosity distributions [45]. Figure 1a displays
the normalized porosity distribution throughout the thickness of the plate. Figure 1b–d
show the effects of porosity distributions on the variation of typical materials properties. As
an example, a porosity value was set to φ = 0.5, three different power-law index values
n = 0, 0.5, and 5.0 were set. The ratio of material properties on the top and bottom surfaces
was assumed to be Et

Eb
= 10. The Type 1, Type 2, and Type 3 porosity distributions are a

symmetric and center-enhanced, a bottom area enhanced, and a top area enhanced porosity
distributions, respectively.

2.2. Modified Couple Stress Theory

The motion of the material particles in classical couple stress theory [30,49] is described
to rotate the material particles in addition to forces in the classical continuum mechanics.
The size-dependent effect was captured using two additional material constants in the
classical couple stress theory. These two material constants are difficult to determine
because of their indeterminacy. Eringen [33] proposed a micropolar theory and defined
the motion of a particle using the location vector and inner product of a rigid vector. A
modified couple stress theory using the concept of the representative volume elements and
a higher order equilibrium condition was proposed by Yang et al. [32]. According to the
modified couple stress theory, the deviatoric part of a couple stress tensor is only associated
with the symmetric part of rotation gradient and it contributes to the total strain energy
along with the classical strain energy. The strain energy potential of an axisymmetric plate
based on the modified couple stress theory can be expressed as

U =
1
2

∫

V
(σ : ε + m : χ)dV

=
1
2

∫ ro

ri

[∫ h
2

− h
2

(σ : ε + m : χ)dz

]
rdr, (3)
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where ri and ro are the inner and outer radii of the plate, σ and ε are the Cauchy stress tensor
and Von Kámán nonlinear strain tensor, m and χ are the deviatoric part of the symmetric
couple stress tensor and the symmetric curvature tensor. Note that the differential volume
element dV can be written as dV = rdrdθdz and 2π from the integration with respect
to θ being omitted in Equation (3). The curvature tensor and the deviatoric part of the
symmetric couple stress tensor are defined as [32]

χ =
1
2

[
∇ω + (∇ω)T

]
(4)

m = 2µ`2χ, (5)

where ω is the rotation vector, ω = 1
2∇ × u, µ is the shear modulus, and ` is a length

scale parameter.
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Figure 1. Distribution of porosity and a typical material property [45]. (a) Distribution of porosity
through thickness. (b) Distribution of typical material property (n = 0.5). (c) Distribution of typical
material property (n = 1.0). (d) Distribution of typical material property (n = 5.0).
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In this study, an isotropic linear elastic material was assumed and the stress and strain
relation [50] for an axisymmetric plate is





σrr
σθθ

σzz
σrz





= Λ




1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 1

2 (1− 2ν)








εrr − α(T − T0)
εθθ − α(T − T0)
εzz − α(T − T0)

εrz





, (6)

where Λ = E/[(1 + ν)(1− 2ν)], E is Young’s modulus , which varies along the plate’s
thickness, ν is a constant Poisson’s ratio in the elastic stiffness matrix. α is the thermal
expansion coefficient, and T and T0 are the temperature at a material point and the reference
temperature of the undeformed body.

The nonzero curvatures and modified couple stresses are
{

mrθ

mθz

}
= 2`2µ

{
χrθ

χθz

}
. (7)

3. Quasi-3D Reddy Third-Order Plate Theory
3.1. Displacement and Strains

The displacement field of quasi-3D Reddy third-order plate theory can be derived from
an assumption of a cubic variation of in-plane displacements and a quadratic variation of
deflection (i.e., out-of-plane displacement) with zero tangential traction on top and bottom
surfaces. The displacement field of cubic variation of in-plane displacement and a quadratic
variation of deflection through thickness direction for axisymmetric plates takes the form of

ur(r, z, t) = u0(r, t) + zθr(r, t) + z2φr(r, t) + z3ψr(r, t)

uz(r, z, t) = w0(r, t) + zθz(r, t) + z2φz(r, t).
(8)

With the assumption of zero tangential traction on top and bottom surfaces, the
displacement (8) can be written in the form of

εrz

(
r,

h
2

, t

)
= εrz

(
r,−h

2
, t

)
= 0. (9)

The form of quasi-3D Reddy third-order plate theory for axisymmetric plates takes

ur(r, z, t) = u0(r, t) + zθr(r, t)− z2

2
∂θz

∂r
− z3c1

[
θr(r, t) +

∂λ(r, t)
∂r

]

uz(r, z, t) = w0(r, t) + zθz(r, t) + z2φz(r, t),
(10)

where u0 is the membrane displacement, θr is the rotation of a transverse normal about
θ direction, w0 is the deflection, θz and φz are the thickness stretch, λ = w0 +

h2

4 φz and
c1 = 4

3h2 .

Based on the assumption of small strains and moderate rotations, nonzero von Kámán
nonlinear strain for the axisymmetric plate is given by [39].

εrr =
∂ur

∂r
+

1
2

(
∂uz

∂r

)2

εθθ =
ur

r

εzz =
∂uz

∂z

εrz =
1
2

(
∂ur

∂z
+

∂uz

∂r

)
.

(11)
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The non-zero strains with the displacement field (10) of quasi-3D Reddy third-order
plate theory are defined as
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, (12)

where c2 = 4
h2 . The symmetric part of the curvature tensor for axisymmetric plates is

defined as

χrθ =
1
2

(
∂ωθ

∂r
− ωθ

r

)

χθz =
1
2

∂ωθ

∂z
,

(13)

where ωθ =
1
2

(
∂ur

∂z
− ∂uz

∂r

)
. Thus, the χrθ and χθz in terms of the displacements in

Equation (10) take the form of
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χθz
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. (14)

3.2. Governing Equations

In this study, the soft-coupled thermoelastical behavior of functionally-graded porous
materials was analyzed using the finite element method. The equations of equilibrium and
the weak form finite element model for static bending problems of axisymmetric plate were
obtained using the principle of virtual displacement.

0 = −
∫

V
(σrrδεrr + σθθδεθθ + σzzδεzz + 2σrzδεrz + 2mrθδχrθ + 2mθzδχθz)dV

+
∫

V

(
f̄iδui + c̄iδωi

)
dV +

∫

S
(t̄iδui + s̄iδωi)dS

+
∫

Ωt

(
qt

i δui + pt
i δωi

)
dΩt +

∫

Ωb

(
qb

i δui + pb
i δωi

)
dΩb, (15)

where σij and mij are the symmetric part of the stress tensor and the deviatoric part of the
couple stress tensor. f̄i and c̄i are the body forces and couples. t̄i, s̄i, and d̄ are the surface
forces and couples on the side surfaces. qα

i and pα
i are the surface forces and couples on top

(α = t) and bottom (α = b) surfaces.
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The governing equations of quasi-3D Reddy third order theory are

0 =
1
r

[
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rN(0)

rr
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θθ

]
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r (16)
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where
{

N(k)
ij , M(k)

ij

}
=
∫ h

2
− h

2
zk{σij, mij

}
dz and F(k)

i =
∫ h

2
− h

2
zk
{

fi +
[
qt

i − 1kqb
i

]}
dz. Note

that the body couple c̄θ is omitted in the governing equation.
The temperature distribution through thickness direction can be determined by solving

the steady state energy equation,

− d
dz

(
k(z)

dT
dz

)
= 0, (21)

where k(z) is heat conductivity and T is the temperature. The effective thermal conductivity
is defined using the Maxwell–Eucken model described by Deng et al. [51]:

k(z) = ks(z)




k f + 2ks(z) + 2Φ
(

k f − ks(z)
)

k f + 2ks(z)−Φ
(

k f − ks(z)
)


, (22)

where ks(z) and k f are the thermal conductivity of the solid and fluid phases, respectively,
and Φ is the porosity. In this study, the thermal conductivity of the solid is obtained using
a power-law distribution described in previous section.

4. Finite Element Model

A weak from Galerkin finite element model for the circular plate bending is developed
using the principle of virtual displacement (15) and a weak form is directly developed from
the energy Equation (21) for steady state heat conduction problem. The details of weak
form Galerkin finite element model can be found in Reddy [52].
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The temperature T and generalized displacements (u0, θr, w0, θz, φz) are approximated
in following form:

T(z) =
n

∑
j=1

Tjψ̂j(z) (23)

u0(r) =
n

∑
j=1

ujψj(r) (24)

θr(r) =
n

∑
j=1

θjψj(r) (25)

w0(r) =
2n

∑
J=1

∆(1)
J φJ(r) (26)

θz(r) =
2n

∑
J=1

∆(2)
J φJ(r) (27)

φz(r) =
2n

∑
J=1

∆(3)
J φJ(r), (28)

where Tj are nodal temperatures through thickness direction; uj, θj, and wj are nodal
displacements in the radial direction; ψ̂j and ψj are the Lagrange interpolation functions;

φJ are the Hermite interpolation functions; ∆(i)
J are generalized deflections and i = 1, 2, 3

correspond to w0, θz, φz, respectively; n is the number of nodes in an element.
The finite element model of the steady state heat conduction problem is given by

[
K̂
]e{Te} =

{
F̂
}e, (29)

where the stiffness matrix and external heat flux are

K̂ij =
∫ h

2

− h
2

k(z)

(
dψ̂i

dz
dψ̂i

dz

)
dz (30)

F̂i = qi. (31)

The finite element model of an axisymmetric plate static bending is given by




K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55




e



{u0}
{θr}
{w0}
{θz}
{φz}





e

=





{
F1}
{

F2}
{

F3}
{

F4}
{

F5}





e

. (32)

The elements of the stiffness matrix, Klm, and the elements of force vector, Fl , are
defined in Appendix A.

The solution of the nonlinear finite element model (32) is obtained using Newton’s
iteration procedure. The linearized element equations take the form of

Te
(

∆(i−1)
)

δ∆(i) = −Re
(

∆(i−1)
)

, (33)

where Te is the tangent stiffness matrix, δ∆(i) is incremental displacements at the ith
iteration, and Re is the residual vector. The tangent matrix and residual are defined as [52]

Te =
∂Re

∂∆e, Re = (Ke∆e − Fe)(i−1). (34)
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By solving the assembled global system equation, the global incremental displacement
vector at ith iteration, δU(i) is obtained.

δU(i) = −
[
T
(

U(i−1)
)]−1

R(i−1). (35)

The total displacement at the ith iteration is obtained by adding the incremental
solution at the ith iteration to the previous solution at the (i− 1)th iteration [39].

U(i) = U(i−1) + δU(i). (36)

In this study, we considered geometrical nonlinearity with elastic material behavior.
For this purpose, the Newton’s iteration is sufficient to obtain the converged solutions.
However, when limit load, softening branches, or snap-through behavior are considered,
another solution procedure, such as the arc length method, should be considered. These
solution procedures can be used in conjunction with various numerical methods such as
isogeometric techniques [53,54] or the Rayleigh Ritz method [55] in addition to the finite
element method.

5. Numerical Results

In the numerical examples, we considered several examples of annular circular plates
with various boundary conditions such as simply-supported and clamped boundary con-
ditions. To validate the developed finite element model, we compared our results with
available studies in the literature. We also conducted convergence studies to obtain optimal
mesh size and different quadrature rules to make sure we avoided any locking phenomena.
In this study, we used 16 elements and full quadrature rules for linear parts of the stiffness
matrix and reduced quadrature rules for shear, nonlinear, and couple stress parts of the
stiffness matrix.

Figure 2 shows the annular plate we studied. The numerical parameters for the
validation study were adapted from the study of Reddy et al. [39]: h = 0.1, ro = 10h,
ri = 0.25r0, E1 = 106, and E2 = 105.

r

z

ro

ri

r

zMaterial 1

Material 2

h FGM

Figure 2. An axisymmetric FGM annular plate [39].

Figures 3–5 show that maximum deflection versus the load parameter P = q0h4

Ecr4
o

at the
free edges, where q0 is a distributed load on the top surface, h is the plate thickness, Ec is
the Young’s modulus of ceramic materials on the top surface, and ro is the outer radius of
the annular plate. The developed finite element model shows a good agreement with the
study of Reddy et al. [39]. In this figure, the effects of the material variations based on the
change of the power-law index, and the effect of length scale parameter are presented with
various boundary conditions.
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Figure 3. Maximum deflection at outer edge with clamped inner edge.
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Figure 4. Maximum deflection at inner edge with clamped outer edge.
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Figure 5. Maximum deflection at inner edge with simply-supported outer edge.

With the validated finite element model, we evaluated the effects of various parameters
such as the length scale parameters, the shape of porosity distribution, power law index,
and boundary conditions. In this study, we considered a porous functionally-graded
material with Monel and zirconia and the material properties of them follow [56]:

Km = 227.24 GPa, µm = 65.55 GPa, αm = 15× 10−6 /K, km = 25 W/mK for Monel

Kc = 125.83 GPa, µc = 58.077 GPa, αc = 10× 10−6 /K, kc = 2.09 W/mK for zirconia,

where Ki is the bulk modulus, µi is the shear modulus, αi is the thermal expansion co-
efficient, ki is the thermal conductivity, and the subscription m and c indicate metal and
ceramic, respectively. We assumed that the porous is filled with the air and the thermal
conductivity of the air is assumed to be ka = 0.025572 W/mK.

To induce thermal load, two different temperatures were applied on the top and
bottom surfaces; 500 K was applied on the top surface and 300 K was applied on the bottom
surface. Figure 6 shows the temperature distribution through plate thickness depending on
the variation of material constituents and porosity distribution. The temperature distribu-
tion was obtained by solving the energy Equation (21). Three different types of porosity
distributions and the variation of material constituents were considered. In the area where
the volume fraction for porosity is larger, the thermal resistance becomes larger and the
temperature change through the thickness is less than the area where the volume fraction
of porosity is lesser. With a larger power-law index, the effective thermal conductivity is
increased and thermal resistance becomes smaller because the volume fraction of metal
is increased.

For illustration purposes, the same plate geometry as Reddy et al. [39] was used, and
the effects of various parameters with clamped and simply-supported boundary conditions
were considered.

Figures 7 and 8 show effects of the length scale parameter on the maximum deflection
of FGM plates. When the power-law index is larger, the volume fraction of Monel is larger
and the FGM plate becomes stiffer. The length scale parameter can capture the stiffening
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behavior in micro scale structures. The deflections of FGM plates with various length scale
parameters are shown in Figures 9 and 10.
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Figure 6. Temperature distribution of porous FGM.
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Figure 7. Maximum deflection of FGM with clamped outer edge with nonzero length scale parameters.

308



Materials 2023, 16, 3505

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Simply supported at outer edge

ϕ = 0, P = qoh
4

Ecr4o

Load parameter, P

M
ax

im
u
m

tr
an

sv
er
se

d
efl

ec
ti
on

a
t
m
id

p
la
n
e,
w
o
/h

n = 0, ℓ/h = 0

n = 0.5, ℓ/h = 0

n = 1, ℓ/h = 0

n = 5, ℓ/h = 0

n = 0, ℓ/h = 0.5

n = 0.5, ℓ/h = 0.5

n = 1, ℓ/h = 0.5

n = 5, ℓ/h = 0.5

Figure 8. Maximum deflection of FGM with simply-supported outer edge with nonzero length
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Figure 9. Deflection of FGM with clamped outer edge with nonzero length scale parameters.
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Figure 10. Deflection of FGM with simply-supported outer edge with nonzero length scale parameters.

The overall volume fraction of porosity in three porosity distributions is the same,
but the enhanced porous areas are mid, bottom, and top surfaces with Type 1, Type 2,
and Type 2 porosity distributions. The porous FGM is softer than non-porous FGM, and
Type 1 results in the stiffest plates because the materials on the top and bottom surfaces
remain. There are no differences in the plate bending stiffness between Type 1 and Type 2
distribution when a homogeneous material is assumed. When the power-law index is
larger than zero, the volume fraction of stiffer material becomes larger in the FGMs. In the
case of Type 2 distribution, the volume fraction of the stiffer material is decreased, and in
the case of Type 3, the volume fraction of the softer material is decreased. Therefore, Type 2
will be softer than Type 3 in the case of FGMs. Figures 11 and 12 show the effects of three
different porosity distributions and material variations on the maximum deflections with
clamped and simply-supported outer edges, respectively. The deflections along the radial
direction are shown in Figures 13 and 14.

Figures 15–18 show a normal stress distribution through the plate thickness. In the
case of the clamped outer edge, the normal stress in the area where the volume fraction of
porosity is larger is smaller than the area where the volume fraction of porosity is smaller
because the area with larger porosity is softer than the other areas. It is clearly shown
that the normal stress at the bottom surface (z = −h/2) with porosity distribution Type 3
is larger than porosity distribution Type 2, which enhances the porosity distribution in
the lower area of the plates. In the case of the simply-supported outer edge, the normal
stress distribution is a parabolic shape unlike the case of the clamped outer edge. This is
because the thickness stretch is not constrained in the case of simply-supported boundary
conditions. Only the mid plane deflection, w0, is constrained. The nonzero length scale
parameters make the FGM plate stiffer, but there are no material property changes, which
results in smaller stresses.
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Figure 11. Maximum deflection of FGM with clamped outer edge with nonzero porosity.
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Figure 12. Maximum deflection of FGM with simply-supported outer edge with nonzero porosity.
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Figure 13. Deflection of FGM with clamped outer edge with nonzero porosity.
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Figure 14. Deflection of FGM with simply-supported outer edge with nonzero porosity.
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Figure 15. Normal stress variation through the thickness of plate with clamped outer edge with
nonzero length scale parameters.
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Figure 16. Normal stress variation through the thickness of plate with simply-supported outer edge
with nonzero length scale parameters.
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Figure 17. Normal stress variation through the thickness of plate with clamped outer edge with
nonzero porosity.
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Figure 18. Normal stress variation through the thickness of plate with simply-supported outer
edge porosity.

Figures 19–22 show transverse shear stress distributions through the plate thickness.
Similar effects of porosity distribution and length scale parameter on the transverse shear
stresses are observed. The length scale parameter makes the FGM plate stiffer and smaller
stress values are obtained. However, the porosity distribution affects the material prop-
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erties and larger stress values are present in stiffer areas. The proposed quasi-3D Reddy
third-order plate theory can capture a parabolic variation of the transverse shear stresses,
and it does not require a shear correction factor that is present in low order shear deforma-
tion theories.
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Figure 19. Transverse stress variation through the thickness of plate with clamped outer edge with
nonzero length scale parameters.
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Figure 20. Transverse stress variation through the thickness of plate with simply-supported outer
edge with nonzero length scale parameters.
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Figure 21. Transverse stress variation through the thickness of plate with clamped outer edge with
nonzero porosity.
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Figure 22. Transverse stress variation through the thickness of plate with simply-supported outer
edge porosity.

Figures 23–26 show the effect of thermal load. The thermal load is induced by temper-
ature boundary conditions; 500 K is applied on top surface and 300 K is applied on bottom
surfaces. In the case of the clamped outer edge, the deflection is due to thermal load in the
negative direction because the plate bends down due to the thermal load. This is clearly
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shown in Figure 25. In the case of the simply-supported outer edge, the plate bends down
due to the thermal load at the same place; the plate rotates about the outer edge which
results in the positive deflection due to the thermal load.
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Figure 23. Maximum deflection of FGM under thermal load with clamped outer edge.
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Figure 24. Maximum deflection of FGM under thermal load with simply-supported outer edge.
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Figure 25. Maximum deflection of porous FGM under thermal load with clamped outer edge.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Simply supported at outer edge

ℓ/h = 0, n = 0, P = qoh
4

Ecr4o

Load parameter, P

M
ax

im
u
m

tr
an

sv
er
se

d
efl
ec
ti
on

at
m
id

p
la
n
e,
w
o
/h

ϕ = 0
ϕ = 0.5 Type 1
ϕ = 0.5 Type 2
ϕ = 0.5 Type 3
ϕ = 0, Thermal load
ϕ = 0.5 Type 1, Thermal load
ϕ = 0.5 Type 2, Thermal load
ϕ = 0.5 Type 3, Thermal load

Figure 26. Maximum deflection of porous FGM under thermal load with simply-supported
outer edge.

6. Conclusions

In this study, a nonlinear finite element (FE) model for axisymmetric circular/annular
plates was presented. The developed finite element model accounts for geometric nonlin-
earity, variation of material constituents, microstructure size effects, and effects of porosity
distributions. Using the developed FE model, the bending behavior of functionally-graded
axisymmetric annular plates under thermomechanical loads was analyzed.
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Numerical analysis results for an axisymmetric annular plate with various boundary
conditions were presented. A parametric study was conducted to understand the effects
of porosity distributions, the variation of material properties, and microstructure size on
the bending behavior of axisymmetric annular plates. In summary, the following results
were observed:

• The presence of pores results in higher thermal resistance and reduces the tempera-
ture variation;

• With a larger power law index, the plate becomes stiffer because the stiffer material is
placed on the bottom surface;

• The length scale parameter can capture stiffening effects in microstructures. The
stiffening effect does not change the material properties, so stress values are decreased
with nonzero length scale parameters;

• The thermal and mechanical behavior of FGM plates highly depends on the porosity
distribution type. The presence of pores makes the plate softer by reducing the moduli,
resulting in smaller stress values;

• Depending on the boundary conditions, thermal loads can result in opposite deflec-
tions due to constrained rotational degrees of freedom.

The presented finite element model can be extended to an asymmetric circular/annular plate.
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where
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for k = 0, 1, 2, 3, 4, 6, ξ = r, θ, z, and σT
ij is the thermal stress due to the temperature

difference (T − T0).
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Abstract: In this paper, creep at room temperature is studied using a mechanical double−spring
steering−gear load table, and the results are used to determine the accuracy of theoretical and
simulated data. A creep equation at room temperature, based on the parameters obtained by a new
macroscopic tensile experiment method, is used to analyze the creep strain and creep angle of a
spring under force. The correctness of the theoretical analysis is verified by a finite−element method.
Finally, a creep strain experiment of a torsion spring is carried out. The experimental results are 4.3%
lower than the theoretical calculation results, which demonstrates the accuracy of the measurement,
with an error of <5% achieved. The results shows that the equation used for the theoretical calculation
is highly accurate and can meet the requirements of engineering measurement.

Keywords: load simulator; double spring; pre-compression; creep effect; prototype experiment

1. Introduction

During flight, a missile control system gives instructions to control the wing of the
steering gear to rotate at a certain Angle, which changes the direction and magnitude of the
gas force acting on the missile, thus changing the missile’s flight trajectory [1]. Therefore,
the performance of its steering gear greatly influences the performance of a missile [2].
As steering gear is an integral component of an aircraft system, it is impossible to carry
out a steering gear test after the design and manufacture of the system [3]. Therefore, it is
necessary to test the performance of steering gear during its manufacture. A simulation
load table is mainly used to simulate the force of steering gear during actual use in the
environment [4].

At present, large-scale servos are mainly tested using electric and electro-hydraulic
servo load simulators [1], while mechanical load simulators are widely used in small servo
testing because of their high loading accuracy, small residual torque [5,6], small size, low
manufacturing cost, simple structure, and easy maintenance.

For a mechanical load table, a spring torsion bar is generally used as the core com-
ponent to provide load force. A spring torsion bar has the advantages of small error and
high reliability [7]. In order to eliminate the non-linearity of spring reverse loading and
the change of stiffness, and to reduce the zero balance range of a spring due to residual
stress, friction, zero hysteresis, and other factors, Zhang [8] has proposed a mechanical load
table with a structure of a double-spring coaxial reverse arrangement and pre-compression,
which can effectively reduce the zero balance range. Because of the moment produced by
the pre-compression of a spring, the spring will creep.

Zhu [9] studied the creep process of a precision helical tensile spring, which provided
a method for measuring the creep of a tensile spring at room temperature. T. H. Alden [10]
studied the strain hardening of 304 stainless steel during low temperature creep and pro-
posed a theory that can be used to predict the creep curve and the hardening effect caused
by creep. A. Oehlert [11] studied the room-temperature creep of high strength steel and
found that creep can occur at lower stresses and that creep strain increases with creep
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time and stress, but decreases with an increase of number of cycles. B. Alfredsson [12]
conducted low-temperature creep experiments on martensite and bainite microstructures
of high-strength rolling bearing steel, and found that the two exhibited different primary
creep behaviors. The research results have certain guiding significance for the design and
application of high-strength steel. Paul R. Barrett [13] developed a modified Coble creep
model to describe the experimental low-stress creep rates in alloys with thermally stable
precipitate structures. Brian K. Milligan [14] has studied the creep behavior of Al-Cu alloys
at certain temperatures, and found that increasing the thermal stability of the precipitates
in Al-Cu alloys can significantly improve their creep properties. Hu [15] explained how
the evolution of microstructure affects the creep properties of a material physically, and
evaluated several secondary phenomena in the curve of creep rate versus time of 316H
stainless steel, which is vital to the realistic life assessment of critical engineering compo-
nents. Wu [16] established the creep constitutive equation of a stainless steel spring to
study the creep of a spring, and found that the higher the ambient temperature, the greater
the creep strain of a stainless steel spring. When the service temperature increases from
25 ◦C to 320 ◦C, the 24h creep strain increases by five times.

At present, the research on creep mainly focuses on the creep behavior of materials, or
the establishment of creep models under high temperature, but the research on creep at
room temperature is relatively scarce. Most of the research on the creep behavior of springs
has been carried out at high temperature and mainly focus on the stress relaxation of a
spring [17–22]. In this paper, the influence of creep effect of a spring due to pre-compression
is studied. The specific research contents are as follows: Through deconstruction and
reorganization, using the original room-temperature creep constitutive equation as a basis, a
room-temperature creep constitutive equation of a torsion spring with relevant parameters
is obtained based on a macro-tensile test, which is then compared and verified by a
finite-element simulation. The stress and strain of a spring are analyzed, and an accurate
stress expression of the spring is obtained. Experiments are designed to verify the creep
performance of a spring, and the error between the theoretical calculation results of spring
creep strain and experimental data is obtained.

2. Creep Equation and Experimental Method of a Spring at Room Temperature
2.1. Creep Equation of a Spring at Room Temperature

In room-temperature creep, the creep deformation increases logarithmically with time,
which is consistent with the first stage of typical creep. Strain hardening and fatigue models
are usually used in creep theory at room temperature. The fatigue model is more accurate
in fast loading, while the strain hardening model can be used in room-temperature creep
under arbitrary loading [23].

According to the microscopic situation of room-temperature creep, Schoeck [24] pro-
posed the constitutive equation of room-temperature creep:

.
εc = NAVν exp

(
− U

KT

)
, (1)

where:
.

εc—room-temperature creep rate; N—dislocation density; A—the area of disloca-
tions swept after passing an obstacle; V—activation volume; ν—vibration frequency of the
dislocation line; U—thermal activation energy required to pass obstacles; K—Boltzmann
constant; T—experimental temperature.

U can be expressed as the product of the thermal activation energy, U0, minus the
effective stress, σeff, acting on the dislocation line and the activation volume, V, namely:

U = U0 − σeffV. (2)
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In the strain hardening model, the external stress, σ, is constant, but due to the
hardening effect, the effective stress, σeff, decreases with the increase of creep value, εc,
namely:

σeff = σ − θεc, (3)

where: θ—hardening coefficient at room-temperature creep; εc—creep value.
The relationship between room-temperature creep and creep time can be obtained by

introducing Equations (2) and (3) into Equation (1), namely:

εc = α ln
(

tc

τ
+ 1
)

, (4)

where:
α =

KT
θV

, τ =
KT
θV

1
NABν

exp
U0 − σV

KT
, (5)

where: B—Burgers vector; θ—strain hardening coefficient.
Derived from Equation (4), the relationship between creep rate,

.
εc, and creep time, tc,

at room temperature can be obtained as follows:

.
εc =

α

tc + τ
. (6)

After the end of loading, creep just appears. At this time, tc = 0 and
.

εc = α/τ =
.

εc0,
which can be substituted into Equation (6) to obtain the following relationship:

.
εc =

(
tc

α
+

1
.
εc0

)−1
. (7)

It can be seen from Equation (7) that the main influencing factors of creep rate are α
and

.
εc0, which can be directly obtained by experiment. By fitting the experimental data

with Equation (7), the creep rate equation can be obtained.
According to Equation (6), the room-temperature creep rate,

.
εc, can be obtained

only after obtaining the influencing factors α and τ. However, these two factors are
a measure of micro performance, which are difficult to obtain and not suitable for the
situation of large individual differences. Therefore, Xiao [24] adopted a method to calculate
room-temperature creep only with macro parameters, and the relevant parameters can be
obtained through routine experiments, which is a more simple and convenient method in
engineering applications.

The initial creep rate,
.

εc = α/τ =
.

εc0, at the beginning of creep can be combined with
Equation (4) to obtain Equation (8):

εc = α ln
(

t
α

.
εc0 + 1

)
. (8)

Therefore, the parameter τ is transformed into the initial creep rate,
.

εc0. There is no
difference between creep loading at room temperature and tensile-test loading. Therefore,
the strain rate at the moment when the room-temperature creep loading is completed is
equal to the rate when the creep is just carried out, and the creep stress is equal to the stress
at the end of the loading.

The Ramberg–Osgood model [25] is usually used to describe the stress–strain curve of
steel. This model was put forward in 1943. The main idea is that the strain of a material is
composed of elastic deformation and plastic deformation. The nominal flow limit, σ0.2, of
a material is selected by the classical method, and the corresponding deformation ε0.2 =
0.002, then the equation for the Ramberg–Osgood model is:

ε =
σ

E
+ 0.002

(
σ

σ0.2

)n
, (9)
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where: σ0.2—nominal flow limit; n—strain hardening coefficient.
The strain hardening coefficient can be selected by the classical method. If σ= σ0.1 is

used [26], the strain hardening coefficient is:

n =
ln(ε0.2/ε0.1)

ln(σ0.2/σ0.1)
(10)

The above equation is accurate when the stress is less than the nominal flow limit, σ0.2,
but when the stress exceeds the nominal flow limit the calculated result of this model is
larger than the actual result.

On the basis of the Ramberg–Osgood model [25], Kim J. R. Rasmussen [27] put forward
the method of subsection fitting through experimental research. The boundary point is the
nominal flow limit, σ0.2. When the stress is less than the nominal flow limit, the Ramberg–
Osgood model is used. After σ0.2 is exceeded, the Ramberg–Osgood model is calculated in
the translation coordinate system. Through a large number of experimental calculations
and statistical analysis, an improved Ramberg–Osgood model is obtained:

ε =





σ
E + 0.002

(
σ

σ0.2

)n
, σ ≤ σ0.2

σ−σ0.2
E0.2

+ εu

(
σ−σ0.2
σu−σ0.2

)m
+ ε0.2, σ ≥ σ0.2

. (11)

(1) When σ ≤ σ0.2, n is the strain hardening coefficient, which can be calculated by
Equation (10).

(2) When σ ≥ σ0.2, E0.2 is the initial Young’s modulus at this stage, that is, the tangent
modulus at 0.2% yield strength. Its value can be calculated by Equation (12):

E0.2 =
E

1 + 0.002n/e
, (12)

where: e—parameter, e = σ0.2/E; εu—total strain at final fracture; σu—stress at final
fracture, i.e., tensile strength; m—index, m = 1 + 3.5σ0.2/σu; ε0.2—σ0.2 corresponding total
engineering strain, ε0.2 = σ0.2/E + 0.002.

The strain rate at the loading stage can be obtained by deriving the time t from both
sides of Equation (11) at the same time.

dε

dt
=

{
[ 1

E + 0.002n( σ
σ0.2

)n−1]dσ
dt , σ ≤ σ0.2

[ 1
E0.2

+ εum( σ−σ0.2
σu−σ0.2

)m−1 1
σ−σ0.2

]dσ
dt , σ ≥ σ0.2

. (13)

It is known that the state at the end of loading is the initial state at the beginning

of creep, that is,
.

εc0− =
.

εc0+ =
.

ε(T1), and
.

εc0 = α/τ. By substituting Equation (8),
Equation (14) can be obtained:

εc = α(σc) ln[1 +
t

α(σc)

.
ε1(σc)], (14)

where σc is the constant stress in the creep stage of the material and its value is equal

to the material stress at the completion of loading. Therefore,
.

ε(σc) =
.

ε(T1). By using
Equations (12) and (13), the creep value increases with the increase of creep time.

2.2. Spring Material and Size Parameters

The spring material is 65 Mn, and its specific performance parameters are shown in
Table 1.
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Table 1. Mechanical properties of 65 Mn Steel.

Elastic modulus/(MPa) 211,000
Poisson’s ratio 0.288

Density/(t/mm3) 7.83 × 10−9

Tensile strength σb/(MPa) 1420
Yield strength σs/(MPa) 1136
Fatigue limit σ−1/(MPa) 639

The spring calculation process has been mentioned in another article [8], and the
spring size parameters are shown in Table 2 below.

Table 2. Main parameters of a torsion spring bearing the torque of 300 N·mm.

Torsion spring wire diameter/(mm) 1.8
Mean diameter of coil/(mm) 11

Total number of coils 4
Free angle/(◦ ) 120

Torsion spring force arm/(mm) 15
Torsion spring pitch/(mm) 2.5

Torsion spring helix angle/(◦ ) 4.14

2.3. Calculation of Temperature Creep in Spring Chamber

According to article [28], the maximum stress of a cylindrical helical torsional spring
when it only withstands external torque T is:

σbb = −cos3 a
zmC

T[0.154 + (0.246 cos2 a − 0.096 sin2 a)
1
C
], (15)

σtt = −cos α

zm
T[1 + 0.871

cos2 α

C
+ (0.032 sin2 α + 0.642 cos2 α)

cos2 α

C
], (16)

and

τtb = τbt =
sin α

zt
T[1 + 0.635

cos2 α

C
+ 0.163

cos4 α

C2 ], (17)

where: a—torsion spring mounting Angle; zm—flexural section coefficient; C—spring
index; zt—torsion section coefficient; α—helical angle.

According to Mohr’s strength theory, the equivalent stress at the danger point of the
spring is:

σ∗ =
1 − m

2
(σtt + σbb) +

1 + m
2

√
(σtt − σbb)

2 + 4τ2
t (18)

and
m =

σst

σsc
≤ 1 (19)

where: σst—tensile yield point; σsc—compressive yield point.
When the spring is compressed by 30◦, the moment of a single spring is 300 N·mm.

By substituting the relevant values in Table 2 into Equations (15)–(17), σbb = 16.869 MPa,
σtt = 539.33 MPa, and τbt = 20.99 MPa can be obtained. By substituting these three values
into Equation (18) (where m = 0.9231), the equivalent stress, σ* = 525.38 MPa, of the spring
danger point can be obtained.

Since the equivalent stress σ∗ = 525.38 MPa is ≤ σ0.2 at the spring danger point, the
strain rate at the spring danger point under constant external load can be obtained by
substituting the parameter into Equation (13).

dε

dt
= [

1
E0

+
0.002n

σ0.2
(

σ

σ0.2
)n−1]

dσ

dt
(20)
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When the equivalent stress σ ≤ σ0.2, in the loading stage, the relationship between
stress and strain rate is given by Equation (20). Assuming that the loading rate is 1, the
relationship between them is shown in Figure 1.
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Upon substitution of the equivalent stress of the spring danger point into Equation (20),
and applying the result to Equation (14), the calculation formula for creep strain under
external load T = 300 N·mm is:

εc = α(σc) ln[1 +
t

α(σc)
(

1
E0

+
0.002n

σ0.2
(

σ

σ0.2
)n−1)

dσ

dt
]. (21)

In Equation (21), n and α(σc) can be obtained by fitting the data obtained from tensile
and creep tests, where n = 1.113 and α(σc) is:

α(σc) = 8.1427 × 10−9σc. (22)

According to the relevant experiment experience of loading rate, in the tensile test, the
value of loading rate is generally set at 5~40 MPa/min. According to relevant literature [29],
the magnitude of strain in the first stage of the material obtained from loading rates
within the range of 5~40 MPa/min remains basically unchanged, with slight differences in
subsequent stages, but the difference is not significant. Therefore, to simplify the calculation,
the loading rate is selected as 20 MPa/min, that is, dσ/dt = 0.333 MPa/s.

By integrating Equations (14), (20) and (22), and taking the loading rate as 0.333 MPa/s,
the expression formula of creep stress can be obtained as follows:

εc = α(σc) ln[1 +
t

α(σc)
(

1
3E

+
0.002n
3σ0.2

(
σc

σ0.2
)n−1)]. (23)

It can be seen from the above formula that creep strain is mainly related to time and
stress, and the relationship between the three is shown in Figure 2.

As can be seen in Figure 2, the room-temperature creep of a cylindrical helical torsion
spring shows a typical creep curve trend when the stress is determined. In the case of low
stress, the creep of the torsion spring enters the second stage of stable creep in a short time.
In the stable creep stage, the creep strain rate is small, and there is little increase in creep
strain with time. In the condition of high stress, the first stage of creep of a torsion spring
ends after a longer time, and the creep of the torsion spring enters the second stage of
stable creep after a longer time. It can be seen that, in the same case, the greater the stress
produced by a torsion spring, the longer the time it experiences in the first creep stage. In
the stable creep stage, compared with the lower stress condition, the creep strain rate is
larger, and the increase of creep strain is larger for a long time.

After derivation of time t on both sides of Equation (23), the relationship between
creep rate of a cylindrical helical torsional spring, stress, and time can be obtained, as
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shown in Figure 3. As can be seen from Figure 3, the creep rate decreases significantly with
the increase of time. Compared with a state of low stress, the time of torsional spring creep
in the first stage of creep increases obviously in a state of high stress, and the creep rate in
the second stage of creep also increases obviously.
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Since the stress values in each part of the spring are not equal and cannot be calculated
in detail, it is not practical to calculate the creep strain. In order to simplify the calculation
and improve the safety margin, the creep strain values at the spring danger points are
chosen to replace the creep strain values at each part of the spring. It can be seen from the
above that the equivalent stress of the spring danger point is σ∗ = 525.38 MPa, and the
relationship between creep strain value and time can be obtained by substituting it into
Equation (23), as shown in Figure 4.

It can be seen from Figure 4 that the creep strain curve after the torsional spring
loading is in line with the first and second stages of the theoretical creep curve. With the
increase of time, the creep strain continues to increase and the rate decreases to a fixed
value. The creep strain of the torsional spring will not enter the third stage because it is at
room temperature and the loading stress is not large.

In the elastic deformation stage, according to data [30], the stress–strain relationship
in pure bending can be written as:

εe =
(ρ + y)dθ − ρdθ

ρdθ
=

y
ρ

, (24)

where: y is the distance between the linear strain on the section and the neutral axis, and
assuming that each fiber is only subject to axial tension and compression, it can be obtained
according to Hooke’s law:

σ = Eε = E
y
ρ

(25)
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and
1
ρ
=

M
EIz

. (26)

Therefore, the stress–strain relationship at the lower boundary of the section in the
elastic stage of a torsion spring is:

εe =
yM
EIz

. (27)

According to the relationship between creep strain and elastic strain of a torsion spring,
the change of rotation angle during creep of a torsion spring can be obtained, as shown in
Figure 5.
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where: y is the distance between the linear strain on the section and the neutral axis, and 
assuming that each fiber is only subject to axial tension and compression, it can be ob-
tained according to Hooke’s law: 

σ ε
ρ

= = yE E
 

(25)

and 

1
ρ

=
z

M
EI . 

(26)

Therefore, the stress-strain relationship at the lower boundary of the section in the 
elastic stage of a torsion spring is: 

eε =
z

yM
EI . 

(27)

According to the relationship between creep strain and elastic strain of a torsion 
spring, the change of rotation angle during creep of a torsion spring can be obtained, as 
shown in Figure 5. 
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In this paper, the creep process of a torsion spring is calculated theoretically, and the
creep strain of a torsion spring at room temperature, and the relationship between creep
angle and time, are obtained. The following uses the finite-element method to simulate the
creep process of a torsion spring.

The simulation was carried out by using Abaqus. One end of the torsion spring was
fixed, and a torque of 300 N·mm was applied to the other end. In the first analysis step, a
torque of 300 N·mm was applied to make the spring undergo elastic deformation, and the
time was 1 s. The second analysis step was creep analysis, which lasted for 54,000 s. The
displacement results obtained are shown in Figure 6.

334



Materials 2023, 16, 3763

Materials 2023, 16, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 5. Relationship between creep angle and time of torsion spring. 

In this paper, the creep process of a torsion spring is calculated theoretically, and the 
creep strain of a torsion spring at room temperature, and the relationship between creep 
angle and time, are obtained. The following uses the finite-element method to simulate 
the creep process of a torsion spring. 

The simulation was carried out by using Abaqus. One end of the torsion spring was 
fixed, and a torque of 300 N·mm was applied to the other end. In the first analysis step, a 
torque of 300 N·mm was applied to make the spring undergo elastic deformation, and the 
time was 1 s. The second analysis step was creep analysis, which lasted for 54,000 s. The 
displacement results obtained are shown in Figure 6. 

  
(a) (b) 

Figure 6. Torsion spring deformation diagram: (a) elastic deformation diagram (b) creep defor-
mation diagram. 

The shadow in Figure 6 is the image before the torsion spring is deformed. It can be 
seen from the figure that the displacement at the elastic deformation stage is 8.761 mm 
from the farthest point of the central axis of the spring. After 54,000 s, its deformation 
increases to 8.847 mm. Compared with the elastic stage, the creep deformation is 0.98% of 
the elastic deformation and the creep strain is 2.45 × 10-5. In order to display the creep 
curve more clearly, the curve at the elastic deformation stage is ignored and only the curve 
within a period of time at the beginning of creep is truncated. The point is selected as the 
lower endpoint of the torsional spring applying force, and the creep curve is shown in 
Figure 7. 

Figure 6. Torsion spring deformation diagram: (a) elastic deformation diagram (b) creep deformation
diagram.

The shadow in Figure 6 is the image before the torsion spring is deformed. It can be
seen from the figure that the displacement at the elastic deformation stage is 8.761 mm from
the farthest point of the central axis of the spring. After 54,000 s, its deformation increases
to 8.847 mm. Compared with the elastic stage, the creep deformation is 0.98% of the elastic
deformation and the creep strain is 2.45 × 10−5. In order to display the creep curve more
clearly, the curve at the elastic deformation stage is ignored and only the curve within a
period of time at the beginning of creep is truncated. The point is selected as the lower
endpoint of the torsional spring applying force, and the creep curve is shown in Figure 7.
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It can be seen from Figure 7 that the creep simulation curve of a torsion spring is
similar to the theoretical calculation curve, and a comparison between the simulation curve
and the theoretical curve is shown in Figure 8.

It can be seen from Figure 8 that the theoretical calculation value of torsion spring creep
is slightly less than the simulation value in the early stage, and the theoretical calculation
value is slightly greater than the simulation result as time goes on. In the later period, the
theoretical calculation is smaller than the simulation result. At 54,000 s, the theoretical
calculation value of torsion spring creep is 0.2935◦, while the simulation result is 0.3105◦,
which is 5.79% larger than the theoretical calculation, proving that the theoretical calculation
formula is more accurate. Regarding the error between the theoretical calculation and
simulation results: on the one hand, it may be because the software adopts traditional age-
hardening creep theory in the finite-element simulation process, without considering the
influence of some material properties, such as interaction and microstructure. In addition,
when using this theory, parameters such as creep strain rate, creep activation energy, and
initial hardness of materials need to be determined. If the actual material parameters are
different from those used in the theoretical calculation, the calculation results will be biased.
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On the other hand, it may be because some small quantities are omitted in the derivation of
theoretical formulas, which leads to the change of calculation accuracy. However, on the
whole, the error between the theoretical calculation results and the finite-element simulation
results is within an acceptable error range, which shows that the theoretical calculation
results are more accurate and can accurately predict and estimate the performance and
life of a spring in use, which is of great significance for designing high-performance and
reliable spring components.
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2.4. Experimental Method of Spring Chamber Temperature Creep

The structure of the cylindrical helical torsional spring loading table is shown in
Figure 9, and is mainly composed of two identical unilateral loading mechanisms, a bottom
plate, and a steering gear fixed seat. The unilateral loading mechanisms are fixed onto
the bottom plate through support legs, and the rudder wing is locked by a bolt onto the
gripper. The steering gear is installed on the steering gear seat and is locked by bolts. The
deflection of the rudder wing is driven by the clamping claw to rotate the rotating shaft of
the two unilateral loading mechanisms, and the torque is provided by the torsion springs
in the unilateral loading mechanisms.
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Figure 9. Torsion spring load table overall structure (1—unilateral loading mechanism; 2—gripper;
3—steering gear; 4—steering gear fixed seat; 5—bottom plate).

The internal structure of a unilateral loading mechanism is shown in Figure 10. The
torsional spring loading platform mainly realizes the change of loading torque by replacing
the unilateral loading mechanism. Different torsional springs correspond to different
torque.
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Figure 10. Unilateral loading structure internal structure (1—Angle sensor; 2—sensor seat; 3—
fastening screws; 4—tail bearing seat; 5—stop cover; 6—torsional spring loading block; 7—torsional
spring; 8—front bearing seat).

Each unilateral loading mechanism contains two torsion springs that are arranged
in a coaxial reverse direction, and the rotating ends of the two torsion springs wind in
opposite directions. The installation diagram is shown in Figure 11. Both torsion springs
are pre-compressed by 30◦. When the axial rotation is on one side, the force of one torsion
spring increases and the compression Angle increases, while the compression Angle of the
other torsion spring decreases.
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Figure 11. Double torsion spring installation diagram.

The rotation of the steering gear is transmitted to the torsion springs through the
clamping claw, which provides the corresponding torque. The change of the output voltage
of the rotary potentiometer is measured by a multimeter, and the rotation angle can be
obtained by a certain conversion formula.

The specific experimental process is shown in Figure 12.
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After loading the weight, the output voltage value of the Angle sensor can be measured
by keeping the weight unchanged. After converting the voltage value into Angle, the
relationship of the spring shape variable with time and the spring creep curve can be
obtained.

3. Experimental Data and Analysis

After loading the weight, the angle change value can be obtained through the voltage
change value of the voltmeter, and the experimental data are show in Table 3:

Table 3. Creep strain data sheet of torsion spring.

Time (s) Angle (◦) Time (s) Angle (◦)

0 0 7500 0.174726
60 0.011457 8400 0.177591

210 0.054423 9600 0.180455
780 0.105982 12,420 0.211963
960 0.108846 12,600 0.214828

1080 0.11171 14,700 0.218987
1800 0.114575 18,700 0.226679
2100 0.126032 21,800 0.233096
2220 0.128897 24,900 0.245713
2280 0.131761 28,000 0.245677
3300 0.134625 32,100 0.2519
3600 0.13749 36,120 0.264493
3900 0.140354 40,120 0.265124
5200 0.15754 44,120 0.271456
5300 0.163269 49,000 0.277328
5340 0.166133 50,800 0.279596
5520 0.171862 54,000 0.281319

In order to facilitate direct observation, the data in the table were fitted and plotted, as
shown in Figure 13.
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It can be seen from Figure 13 that the creep test data and its fitting to a curve of
a torsion spring conform to a typical creep curve. In the early stage of creep, the data
fluctuate greatly, but in the later stage, the data tend to be stable. It is possible that, in the
process of spring creep, after the sliding dislocation moves to barriers such as the grain
boundary or second phase particles, the movement of dislocation stops gradually under
the obstruction, and the phenomenon of accumulation appears. At this time, the number
of moving dislocations decreases, which is reflected in the decrease of creep rate, or even
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stagnation. As more and more accretion occurs, the dislocation will climb and slide over
the barrier, which may be the reason for the step phenomenon in the creep experiment.

Figure 8, in the previous section, shows a comparison between a theoretical and
simulated curve of torsion spring creep Angle. A comparison between theory, simulation,
and experimental results is shown in Figure 14.
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As can be seen from Figure 14, the trend in creep strain for the theoretical calculation
and finite-element simulation is the same as that of the experiment, and they all enter the
stable creep stage at about 15,000 s. The theoretical calculation curve is highly consistent
with the experimental fitting curve. At the initial stage of creep, the theoretical calculation
curve basically coincides with the experimental data, and at the later stage of creep, the
theoretical calculation creep rate is not much different from the experimental fitting curve.
On the one hand, the source of error is the loss of precision caused by omitting some tiny
quantities in the derivation of the theoretical calculation formula, on the other hand, it may
be due to the slightly different properties of spring materials and materials in the data. At
54,000 s, the theoretical calculation is 4.3% larger than the experimental data creep value,
and the error is acceptable in practical engineering application, which shows the accuracy
of the theoretical calculation of torsion spring creep. As such it can be used to predict and
estimate the performance and life of a spring in use, so as to avoid creep failure under high
stress or long-term load conditions, thus ensuring the reliability and safety of mechanical
components.

4. Conclusions

In this paper, the creep effect of a cylindrical helical torsion spring under pre-compression
is studied. Firstly, through deconstruction and reorganization, using the original room-
temperature creep constitutive equation as a basis, a room-temperature creep constitutive
equation of a torsion spring can be obtained based on macroscopic tensile tests. Through
the stress–strain analysis of a spring, the relationship between creep strain and time and
stress of a cylindrical helical torsion spring is obtained, and the correctness of the theoretical
calculation is verified by finite-element simulation.

Finally, in order to determine the influence of spring creep effect, a creep strain
experiment of a torsion spring is carried out. Through experiments, it can be concluded
that the cylindrical helical torsion spring enters a stable creep stage after about 15,000 s, and
the creep strain angle is 0.28◦ after 54,000 s. By comparing the theoretical calculation results
with the experimental results, it can be concluded that the error between the theoretical
formula calculation results and the experimental results of a torsion spring is 4.3%, which
is less than the engineering error range of 5%, which meets the requirements of engineering
measurement and is of great significance for more accurately predicting and estimating
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the performance and life of a spring in use, and designing high-performance and reliable
spring elements.
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Abstract: The study focuses on testing a simplified way of estimating the resultant force due to
ballistic impacts resulting in a full fragmentation of the impactor with no penetration of the target.
The method is intended to be useful for the parsimonious structural assessment of military aircrafts
with integrated ballistic protection systems by means of large scale explicit finite element simulations.
The research investigates the effectiveness of the method in allowing the prediction of the fields
of plastic deformation collected by hard steel plates impacted by a wide range of semi-jacketed,
monolithic, and full metal jacket .308 Winchester rifle bullets. The outcomes show the effectiveness of
the method being strictly related to the full compliance of the considered cases with the bullet-splash
hypotheses. The study therefore suggests the application of the load history approach only after
careful experimental investigations on the specific impactor–target interactions.

Keywords: bullet splash; bullet-splash; ballistic impact; terminal ballistics; finite element method;
ballistic protection; explicit solver; impact simulation; Creusabro®; Durostat®

1. Introduction

For two decades, transient finite element simulation has represented a fundamental
tool for the crashworthiness assessment and structural optimization of vehicles [1–3]. In
the aerospace industry, airframe development passes through many steps of optimization
against potential threats for the survivability of the vehicle such as bird impacts, hail im-
pacts, emergency landing, ditching, and wire strike. All of these potential threats are faced
by means of dedicated simulations involving extended parts or even the entire airframe,
modelled in finite elements to verify the survivability of every layer of material and every
single rivet connecting the structures. In this technological scenario, the development of
a modern military aircraft follows the same methodological approach with the obvious
complications due to the main aim of a military vehicle: to maximize the probability of
surviving a real combat scenario. This implies that the critical components of the vehicle
must be protected against the typical threat of warfare: ballistic impacts [4,5]. To do this,
critical areas of the vehicle, such as the cockpit and the transmission, are surrounded by
ballistic protection panels, which are experimentally verified to be able to withstand specific
ballistic impacts without allowing any penetration of the bullets. In this field the aim of the
simulations is therefore not to verify the ability of the protective panels to withstand the
impact of the bullets but instead to verify the strength of the support structures to which
the panels are attached against the impulsive loads due to several impact positions along
the entire airframe, representing the random incidence of the shots during fire fights. In
this scenario it is therefore fundamental to be able to model the stress propagation through
the structure to verify the strength of every connection and part of the support system. This
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involves many different load cases involving significant parts of the airframe modelled in
full detail.

Protective panels typically consist of an external layer of hard ceramic tiles intended to
fragment the hitting bullets during the first phase of the impact, and an internal layer made
of composite fabric to withstand the local impact forces and absorb the residual energy
without allowing the bullet fragments to penetrate the protection panel [6]. Therefore, the
typical scenario of a perfectly working protection panel consists of a total fragmentation of
the bullet with no penetration of the target. This phenomenon is called bullet splash, due
to the fact that the fragmentation of the bullet makes its kinematics similar to the flow of a
mass of a fluid being deflected by the target surface [7,8]. In this scenario Andreotti et al.
(2021) first proposed a simplified approach to reduce the computational cost needed to
simulate the forces acting on the target due to bullet splash, by considering the phenomenon
as a fluid-structure interaction where a mass of fluid represents the behavior of the bullet
fragments. The approach proved to be effective in predicting the local and global effects of
bullet splashes due to 9 × 21 mm full metal jacket bullets hitting 4 mm AISI 304 plates [9].
Based on that experience, Andreotti et al. (2022) [10] proposed and validated a further
simplified method to make the finite elements simulations more efficient and equally
effective by avoiding the hydrodynamic part of the calculation, by introducing an estimated
load history approach that consists in decoupling the bullet fragmentation phenomenon
and the target reaction to avoid the costs of modelling the bullet, and introducing an
equivalent impact force as a load curve F(t) to be directly applied to the impact point on
the structure; the intensity vs. time curve is calculated based on the initial impact velocity
and the density distribution of the specific bullets. The approach proved to be effective
and extremely efficient for 9 × 21 mm full metal jacket bullets hitting 4 mm AISI 304 plates
as well as for monolithic copper .308 rifle bullets hitting high hardness steel plates. The
validation confirmed the equivalence between the fluid structure interaction and the load
history approach in terms of stress waves propagating from the epicenter of the target,
resultant forces at the constraint, and residual deformation fields of the plates [11,12].

In this paper we propose the application and experimental validation of the estimated
load history approach to cover a wide range of rifle bullet typologies, from monolithic to
partially jacketed and full metal jacket bullets. The validation has been performed by com-
paring the residual deformation field measured on steel plates impacted by the bullets and
the residual deformation field predicted by finite element simulations where the applied
load history was estimated based on experimental measurements of the impact velocity
and density distribution of the tested bullets. The work gives the reader a reference for the
effective applicability of the load history method for finite element simulations intended to
simulate the stress propagation from ballistic protection panels to the support structures
to assess, without the need to model the bullets, their fragmentation, and the interactions
with the targets, therefore allowing a more parsimonious approach to the problem. This
method is based on the hypothesis that the protective panel is able to withstand the ballistic
impacts of the considered bullets at a certain velocity, resulting in a complete fragmentation
of the bullet with no penetration or fragmentation of the target. Within these hypotheses
the method consists in estimating the force history due to the impacts based only on the
bullet sections and their impact velocity, and applying the estimated load history directly to
the elements of the structure to simulate the structural phenomenon. Section 2 provides the
reader with all the information to reproduce the conducted tests. In Section 3 we provide
all the main analytical, numerical, and experimental results involved in the validation
process. In Section 4 the results are discussed. In Section 5 we summarize the conclusions
and further developments of the research.

2. Materials and Methods

To validate the load-history approach on a wide range of bullet typologies, we took
into consideration four different .308 rifle bullets hitting dual-layered steel plates made of
two different steels. Both steels have high strength and significant ductility so that they
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can withstand the impacts without allowing the penetration of the bullets, and, at the same
time, are able to collect residual deformations so that the field of residual displacements
could be used as experimental evidence to compare with the numerical results for the
validation of the approach.

2.1. Ballistic Test Procedures

The bullets were shot using a Remington 700 cal. 0.308 Winchester. The initial bullet
velocity was measured using a Magnetospeed® V3 ballistic chronograph assembled at the
rifle muzzle. Four different caliber .308 Winchester types of bullet were used: Soft Point
(SP), Hollow Point (HP), Full Metal Jacket (FMJ) and Monolithic (MONO) bullets. Their
main characteristics are summarised in Table 1. The external geometry and longitudinal
section of the bullets was documented through a LEICA® M165 stereo microscope at
3.5×magnification. The bullets were sectioned using 120 grit abrasive paper, lubricated
using water (Figure 1).

Table 1. Main data of the bullets used for experimentation as provided by the manufacturers. The
nominal muzzle velocity is the expected velocity at the exit of the firearm. The nominal energy is the
expected kinetic energy of the bullets at the exit of the firearm.

Bullet Type Cal. Bullet
Mass [g]

Nominal Muzzle
Velocity [m/s]

Nominal
Energy [J]

Soft Point (SP) 308 Win 11.7 870 4428
Hollow Point (HP) 308 Win 10.9 800 3485

Full Metal Jacket (FMJ) 308 Win 9.5 865 3570
Monolithic (MONO) 308 Win 9.6 860 3550
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Point, (b) Hollow Point, (c) Full Metal Jacket and (d) Monolithic.

The targets were obtained by joining two 4 × 500 × 500 mm plates. Two different
high-strength structural steels were tested; their mechanical and metallurgical properties
are detailed in Section 2.2. Four tests were carried out on each metal plate using the bullets
detailed in Figure 1 and in Table 1. The nominal impact positions are detailed in Section 2.3.

The targets were positioned at 100 m from the rifle muzzle, oriented normally to
the bullet trajectory. The metal plates were bolted to a steel and wood support frame
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specially fabricated to carry out the tests. The support frame was designed to guarantee full
visibility of the metal plate side from the cameras used to film the impacts. A panel with a
chessboard pattern composed of black and white squares with a 20 mm side was installed
on the opposite side. This solution was adopted to guarantee a dimensional reference for
the high frequency camera shootings.

Upon completion of the tests, the bullet impact areas were accurately photographed
both on the front and rear sides of the metal plates; the pictures are provided in Section 3.1.
The dome-shaped bulges created by the bullets in the rear surface of the metal plates were
also measured using a Borletti dial gauge with a sensitivity of 10 µm. The measurement
procedure included tracing four reference lines slanted by 45◦ relative to each other. All the
lines cross the apex of the bulges which was adopted as zero point. 14 measures of metal
plate deformation were taken for each of the four lines, at a distance of ±5 mm, ±10 mm,
±15 mm, ±25 mm, ±35 mm, ±45 mm, and ±55 mm from the bulge apex. The values so
obtained were plotted in diagrams (Section 3.4), each showing the minimum and maximum
deformation of the metal plate measured at increasing distance from the bulge apex.

2.2. Mechanical and Metallurgical Characterisation of the Metal Plates

The targets were fabricated using high-yield stress structural steel plates. The two
steel grades selected for the experimentation go under the trade names of Creusabro®

8000 [13–15] and Durostat® 400 [16]. They are characterised by a combination of very
high tensile strength and optimum wear resistance. Their typical applications are ballistic
shields and barriers, buckets for heavy equipment, dump truck beds, conveyor components,
and rollers and rotors for grain mills and oil mills. The high level of hardness and tensile
strength is obtained through controlled cooling after hot rolling. Their limited carbon
content, together with a considerable manganese content (or manganese-nickel content in
the case of Creusabro® 8000), allows them to have acceptable toughness and weldability
characteristics, notwithstanding very high values of hardness and tensile strength. The
significant amount of chromium and molybdenum guarantees the hardenability necessary
to form a mixed martensite and bainite structure. Both steel grades are characterised by
micrometric carbides finely dispersed in the metal and further improving abrasive wear
resistance [14].

In comparison with Durostat® 400 steel, which is composed exclusively of marten-
site, bainite and carbides, Creusabro® 8000 steel also exhibits a small amount of residual
austenite that turns into martensite when it is subjected to cold deformation. This property,
known under the acronym TRIP (Transformation Induced by Plasticity), further improves
the wear resistance and impact strength of Creusabro® 8000 steel compared to Durostat®

400 steel. The TRIP effect enhances steel hardness and its ability to absorb energy as the
cold deformation increases [17,18].

The chemical composition of both steels was assessed by means of optical emission
spectroscopy (OES). Tables 2 and 3 provide an overview of the results. Both steels meet
the requirements of the applicable steel mill specifications. Comparing the two steels, it is
clearly apparent that Creusabro® 8000 is much richer in alloying elements than Durostat®

400. Durostat® 400 does not contain molybdenum, and its carbon, chromium, and silicon
content is less than half of the values measured in Creusabro® 8000. On the other hand,
Durostat® 400 contains twice the amount of manganese, but it does not contain nickel
which is present in a good quantity in Creusabro® 8000. The chemical composition clearly
shows that Creusabro® 8000 is by far more hardenable but less weldable than Durostat® 400,
compared to which it exhibits an equivalent carbon content that is higher by approximately
25% (CECreusabro®8000 = 0.63; CEDurostat®400 = 0.50). Having received the same heat
treatment, Creusabro® 8000 is also harder and mechanically stronger thanks to its carbon
content that is more than twice that of Durostat® 400.
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Table 2. Chemical analyses of Creusabro® 8000 steel (wt%).

C S P Si Mn Ni Cr Mo

Metal Plate 0.21 0.002 0.009 0.74 1.18 0.49 0.70 0.26

Steel Mill Specs 0.28
Max

0.005
Max

0.018
Max Unspecified 1.60

Max
1.00
Max

1.60
Max

0.40
Max

Table 3. Chemical analyses Durostat® 400 steel (wt%).

C S P Si Mn Al Cr Mo B Ti

Metal Plate 0.10 0.002 0.008 0.16 2.08 0.03 0.26 <0.01 0.001 0.021
Steel Mill

Specs
0.18
Max

0.010
Max

0.025
Max

0.60
Max

2.10
Max

0.02
Min

1.00
Max

0.50
Max

0.005
Max

0.050
Max

Both metal plates were subjected to metallographic analyses and Vickers HV1 hardness
tests. The samples were mirror polished using progressively finer abrasive paper (120 grit,
180 grit, 320 grit, 400 grit, 600 grit, and 1200 grit) and polishing cloths with diamond-based
synthetic abrasive (grain size 3 µm and 1 µm). Lubrication was guaranteed using water
with abrasive paper and the suspension containing the abrasive matter with the cloths.
Metallographic etching was obtained using the reagent “Nital 2”, a 2% nitric acid/ethanol
solution. The pictures were captured using a LEICA® DM4000M optical microscope at
500× magnification. The same samples were also used to evaluate core hardness in the
metal plates. The tests were conducted using a Vickers LEITZ®-WETZLAR® (Leica Camera
AG, Wetzlar, Germany) micro-durometer fitted with a digital camera and set at the HV1
hardness scale (1 kgf, 30 s).

The tests confirm what was previously suggested by the chemical composition, i.e.,
both steel grades form martensite and bainite with carbides finely dispersed in the metal
(Figure 2) [19]. This type of investigation could not reveal the small amount of resid-
ual austenite prescribed for Creusabro® 8000 steel that, in any case, exhibits an average
hardness higher than Durostat® 400 (540 HV1 compared to 420 HV1).
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Figure 2. Metallographic images of the metal plates used for experimentation, made of (a) Creusabro®

8000 steel and (b) Durostat® 400 steel. Both steel grades form martensite and bainite with carbides
finely dispersed in the metal (etching agent: Nital2—Magnification: 500×). This type of investigation
could not reveal the small amount of residual austenite prescribed for Creusabro® 8000 steel.

The characterisation of the two steels was completed by conducting tensile tests at
room temperature. Proportional specimens, obtained in compliance with the UNI EN ISO
6892-1:2020 standard, were used [20,21] (Figure 3). Results are summarised in Table 4,
while the engineering stress/strain curves are shown in Figure 4.
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400 steel (black lines) plates used for experimentation.

The tensile tests confirm what had been anticipated by the hardness tests. The ultimate
tensile strength and yield strength of Creusabro® 8000 exceed those of Durostat® 400 steel
(UTSCreusabro

®
8000 = 1735 Mpa; YSCreusabro

®
8000 = 1190 Mpa; UTSDurostat

®
400 = 1290 Mpa;

YSDurostat
®

400 = 1100 Mpa). The YS/UTS ratio and percentage elongation under maximum
load, Ag%, are, respectively, equal to 0.85 and 3% in Durostat® 400 and 0.68 and 5%
in Creusabro® 8000. Both steels exhibit analogous values of percentage elongation after
fracture (A%Creusabro

®
8000 = A%Durostat

®
400 = 11%). These values confirm another important

aspect revealed by chemical analyses: Creusabro® 8000 steel’s strain hardening ability is
higher than that of Durostat® 400 steel. Creusabro® 8000 is also superior to Durostat® 400
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in terms of plastic deformation ability before reaching the necking point. Therefore, the
Creusabro® 8000 steel exhibits superior performance compared to the Durostat® 400 steel
in terms of tensile strength, hardness, and energy absorption capability. On the other hand,
its weldability is poorer than in Durostat® 400.

2.3. Testing Setup and Impact Speed Computation

Two Phantom VEO 710 high speed cameras were used to capture the bullets’ speed
and trajectory. In particular, the first was positioned orthogonally with respect to the
trajectory at a distance variable between 2250 and 2550 mm from the trajectory plane; the
second one, instead, was positioned at the same orthogonal distance with an angle of 20◦

to obtain a perspective view of the shots. Data were acquired via two ethernet cables with
a synchronized digital trigger. Further details for each shot are shown in Tables 5 and 6,
while schemes of the data acquisition setup are shown in Figures 5 and 6.

Table 5. Data acquisition: camera 1.

Shot Resolution [px] Sampling Frequency [fps]

1 256 × 256 39,000
2 320 × 128 50,000
3 320 × 128 50,000
4 320 × 128 50,000
5 320 × 128 50,000
6 320 × 128 50,000
7 320 × 128 40,000
8 320 × 128 40,000

Table 6. Data acquisition: camera 2.

Shot Resolution [px] Sampling Frequency [fps]

1 320 × 256 33,000
2 320 × 152 48,000
3 320 × 152 48,000
4 320 × 152 48,000
5 320 × 152 48,000
6 320 × 152 48,000
7 320 × 152 48,000
8 320 × 152 48,000
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While the perspective view was meant to capture the three-dimensional fragmentation
dynamics of the projectile, the orthogonal videos were recorded to compute the projectile
impact and exit speeds, via the well-known time-of-flight principle: knowing a priori the
dimensions of a reference object, the video’s resolution, and time history, the projectile
trajectory is easily transformed into impact velocity. Such a method is one of the most used
in ballistics to effectively evaluate the trajectory of bullets [22], with multiple applications
in 2D and 3D analyses [23]. In the present work, even if the bullet itself could have been in
principle used as reference for calibration, its small dimensions would have introduced a
potentially high error; consequently, the reference object was a background reference plane,
a chessboard panel attached perpendicularly to the frame. As described in Section 2.1, the
chessboard was characterized by regular squares of 20 × 20 mm each, while the nominal
trajectories were driven by four equally spaced targets in correspondence of the vertical
midline of the plates. To minimize the error, the calibration procedure was performed on
the highest possible number of squares, resulting in 0.8 mm/px. Once the calibration is
performed, the bullet speed is computed by evaluating the distance travelled by the bullet
and dividing it by the correspondent time interval. However, the fact that the reference
plane used for calibration and the projectile trajectory plane were not coincident introduced
a distortion factor between the measured and real speeds. The issue is easily solved if the
position of the camera is fixed with respect to the reference plane: in that case the distortion
factor is linear as a function of the distance of the bullet from that plane (Figure 7) and
consequently the correction is straightforward.

Naming this distance d1 and the observer-reference plane distance d2, a correction
factor C can be defined as follows:

C = 1− d1

d2
(1)

Consequently:
v = Cvmeas (2)

Considering the relatively low resolution and number of available frames capturing
the bullet during the pre-impact phases, multiple measurements were carried out mapping
the position of three sections of the bullet (frustum, beginning of the ogive, and tip) for
multiple combinations of frames. This redundant procedure allowed us to average out the
human error introduced by manual recognition of the projectile shape. A minimum of six
measures per shot were collected and averaged to obtain the resulting impact velocities.
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2.4. Bullet-Splash Load History Estimation

The load history estimation is based on two main hypotheses that must be verified
experimentally:

• The bullet encounters complete fragmentation during the interaction with the target;
• The target can withstand the interaction without being penetrated, causing the deflec-

tion of the debris.

The load histories were calculated according to the progressive fragmentation theory
introduced by Andreotti et al. in 2022 [10–12] for 90 degree bullet splashes. The load
history formula allows us to reconstruct the F(t) depending on the density distribution
characterizing each section of the bullet and its impact speed. The interaction between
the impactor and the target is treated as the interaction of a fluid flow, representing the
flow of bullet debris, and a rigid, fixed plane normal to the axis of the bullet. The force at a
generic time t is calculated as the time derivative of the elementary portion of the bullet
ideally intersecting the target surface at that time. Considering the 90-degree deflection,
the elementary variation in momentum can be expressed as:

dq = dmv (3)

where v is the impact velocity of the bullet and m is its mass. Considering a homogeneous
bullet with density ρ, assuming that the velocity variation only happens to the material ide-
ally intersecting the impact surface, the elementary mass that is deflected in the elementary
time dt is:

dm = ρA(t)vdt (4)

where A(t) represents the intersection between the bullet volume and the impact sur-
face plane, and vdt = ds is the elementary translation of the bullet in dt. By substituting
Equation (4) into Equation (3), and dividing both terms by dt, we obtain the expression of
the impact force for a homogeneous bullet:

F(t) =
dq(t)

dt
= ρA(t)v2 (5)
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which integration in time correctly equals the initial momentum of the impactor:

q =
∫

F(t)dt = vρ
∫

A(t)vdt = vρ
∫

A(s)ds = vρV = vm (6)

where V is the volume of the homogeneous bullet.
For a generic impactor, composed by M materials, the load history due to the bullet

splash can therefore be expressed as the sum of M terms:

F(t) =
M

∑
i=1

Fi(t) (7)

Therefore, the generic expression of the estimated load history due to bullet splash is:

F(t) = v2
M

∑
i=1

ρi Ai(t) (8)

where ρi is the density of the i-th material, and Ai(t) is the section of that material ideally
intersecting the surface of the target at the interaction time t.

To estimate the load-history due to bullet-splash of the tested impactors the formula
(Equation (8)) was applied to the bullets section (Figure 1) by imposing an impact speed
equal to those experimentally measured for the tested impacts.

To acquire the Ai(t) of the bullets, the first step consisted in mapping its sections
normally to the axis of the bullet x. At N discrete axial coordinates xj (30 to 50 points
along the entire axis of the bullets, depending on their geometrical complexity) the radial
coordinates of every material boundary were measured, so that, in general, the area of the
i-th material at axial coordinate xj could be calculated as the area of a hollow circle:

Ai(xj) = π(Reij
2 − Riij2) (9)

where Reij and Riij are the external and internal radiuses of the i-th material at the j-th axial
coordinate xj.

Once the materials sections Ai(x) were mapped, the Ai(t) of the specific shot was
calculated by converting the spatial coordinate into time coordinates, by dividing the xj by
the initial impact velocity v:

Ai(tj) = Ai(
xj

v
) (10)

The resulting load history is therefore a discretized curve to be automatically interpo-
lated by the finite element solver at every time-integration step:

F(tj) = v2
m

∑
i=1

ρi Ai(tj) (11)

2.5. Finite Element Simulation Setup

To verify the representativeness of estimated impulses, the considered impacts were
simulated by applying the load histories to the plates by means of the explicit finite element
solver LS-DYNA [24]. The plates were uniformly discretized with 2.5 mm fully integrated
4-node shell elements with 16 integration points in the thickness. The load was applied
normally to the plates. Each shot was simulated by applying the corresponding load history
as uniformly distributed on arbitrary areas, centered at the epicenter of the impacts, and
with extensions comparable with the extension of the interaction marks visible on the
impacted plates. The actual space distribution of the pressure fields acting during the
impacts is in fact unknown. Therefore, to verify the sensitivity of the simulation results to
the local pressure distribution, the same load history was applied on different arbitrarily
defined distribution areas. The shots were simulated three times, by varying the extension
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of the loaded surface according to the experimental observations (Figures 12 and 13). The
different tested areas had 100 mm2, 200 mm2, and 400 mm2 extensions (see Figure 8),
representing, respectively, the minimum and maximum extension of the compression area,
and the extension of the sliding area as experimentally observed on the impacted plates
(Figures 12 and 13). The plates were constrained in the load direction x by zero translation
of the boundary nodes, and with double orthogonal symmetry planes intersecting at the
epicenter of the impacts. The constraint between the two plates was assured by setting a
penalty contact with a static and dynamic friction coefficient of 0.65, typical for clean dry
steel-on-steel interactions [25].
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Figure 8. Overview (left) and detail (right) of the finite element model of the plate highlighting
the choice and progressive increase in the loaded elements characterizing the three arbitrary load
distributions: 100 mm2 distribution (grey), 200 mm2 distribution (yellow), and 400 mm2 distribution
(light blue); the three circles represent the area-equivalent circular extensions corresponding to the
minimum and maximum limit of the compression area, and the external limit of the sliding area as
experimentally observed on the impacted plates, respectively (Figures 12 and 13). Only a quarter of
the plate was modeled, with orthogonal symmetry conditions.

2.5.1. Development of the Finite Element Model

The development of the finite element model here proposed was the result of three
main steps, aiming at finding the most efficient discretization strategy to eventually allow
engineers to correctly simulate the propagation of the stress waves caused by bullet splashes
on generic, extended, ballistic protection panels. The development started from a highly
detailed simulation of the local effects of the impacts, and progressively evolved towards
more parsimonious models guaranteeing the same effectiveness in terms of predicting the
residual deformation fields and the stress waves generated by the impacts.

The first step (Andreotti et al., 2021 [9]) consisted in simulating the bullet-splash
phenomenon as a fluid structure interaction (FSI) to reproduce the progressive deflection of
the bullet fragments interacting with the target. The model used for the FSI simulation was
a 3D solid mesh composed of 0.3 mm hexahedral elements. The experimental validation of
this model was based on the measurements of the micro-hardness and deformation fields
across the impact surface of 4 mm AISI 304L steel plates impacted by 9 × 21 mm FMJ
bullets. The validation demonstrated extreme accuracy in predicting the field of plastic
strain as well as the overall residual deformation field.

The second step introduced the load history estimation method discussed in this paper.
The method was first tested on the same experimental dataset analyzed by Andreotti et al.
(2021) [9]. The simulation applied the estimated load history as a uniformly distributed
load on arbitrary concentric circular areas, with the plate being discretized with the same
0.3 mm hexahedral elements mesh used for the validation of the FSI approach. The
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comparison between the overall residual deformation field, the stress waves, and the
resultant reaction forces validated the load history approach as an equally accurate way
to simulate bullet-splash for macroscopic structural assessment purposes, allowing a
reduction of the computational cost of 60% compared to FSI.

In the third step, to improve the efficiency of the method and its parsimony and suit-
ability to real-world engineering applications, a progressive simplification of the structural
model was introduced, leading to the full shell model here proposed. The validation of the
2.5 mm shell model was performed again on the 4 mm AISI 304L steel plates impacted by
9 × 21 mm FMJ bullets; the residual deformation field, the stress waves, and the resultant
reaction forces predicted by the simulation were confirmed to be accurate in comparison
with the experimental evidence and with the results of the most accurate simulation based
on the 0.3 mm size solid finite element model (Andreotti et al., 2022 [10]).

Compared to the FSI simulation model, the 2.5 mm shell discretization allowed a
reduction of the calculation cost of more than 99%, also guaranteeing accurate prediction
of the structural effects of the impacts, thanks to a maximum stable integration time step
of 0.46 µs, that guarantees an accurate reproduction of the considered impulses, whose
duration is less than 50 µs, and is compatible with reasonable computational costs for
real-world applications. The analyses discussed in the present paper were conducted with
an initial time integration step equal to 90% of the maximum, i.e., 0.414 µs. It is important
to notice that the 2.5 mm size was also identified as the maximum element size compatible
with reasonable load application detail to distinguish the load distributions considered
in the study. The optimization of the computational cost of the finite element model also
considered the symmetries and the extension of the discretized plate. Preliminary tests
were conducted on the entire model to verify the influence of the boundary effects on the
different shot positions, concluding that no boundary effects were significant on the results;
therefore, the overall dimensions of the finite element models of the plates were reduced to
125 × 125 mm, with two orthogonal symmetry planes, to represent a 250 × 250 mm plate
impacted at the center. In fact, the dimensions of the plates are such that the local effects
of the impacts cannot be influenced by the boundary constraints because the maximum
duration of the considered load history is less than 50 µs while the time for the stress waves
to travel back and forth from the epicenter to the constraints is around 100 µs (considering
the sound speed in steel is equal to 5000 m/s).

2.5.2. Constitutive Model Associated with the Plates

The constitutive model associated with the plates is a kinematic elastic-plastic model
with damage (*MAT_81\*MAT_PLASTICITY_WITH_DAMAGE in Ls-Dyna kewords [26]).
For Creusabro® 8000 the post-yield hardening is regulated by a constant modulus
ETAN = 11,891.7 MPa; the initial necking strain is EPPF = 0.05827. For Durostat® 400
the hardening modulus is ETAN = 5759.59 MPa; the initial necking strain is 0.04402. The
rate effect was implemented as a scale factor for the yield stress as a function of the
strain rate according to Cowper–Symonds model (Equation (12)) [26] which parameters
C = 396,500/s and p = 3.0745 were obtained from Boyce et al. (2007) [27]:

σ = σ0

[
1 +

( .
ε

C

)1/p]
(12)

where σ0 is the quasi-static value of the yield stress, and σ is its generic dynamic value at
strain rate

.
ε. Table 7 summerizes the parameters of the constitutive models.
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Table 7. Table of the constitutive parameters associated with the Creusabro® 8000 and Durostat®

400 models associated with the plates: RO = density; E = Young Modulus; PR = Poisson Ratio;
SIGY = Yield Stress; ETAN = linear hardening modulus; EPPF = initial necking strain; C, p = rate
effect parameters according to the Cowper–Symonds model; EPPFR = ultimate failure strain.

RO
[kg/m3]

E
[GPa] PR SIGY

[MPa]
ETAN
[MPa] EPPF C

[s−1] p EPPFR

Creusabro® 8000 7800 210 0.33 1190 11,891.7 0.058 396,500 3.0745 0.11
Durostat® 400 7800 210 0.33 1100 5759.6 0.044 396,500 3.0745 0.11

2.5.3. Validation of the Finite Element Discretization

To verify the consistency of the results in terms of stress waves and deformation fields,
sensitivity tests were conducted on models with different mesh sizes. In this subsection
we compare the results of a single Creusabro® 8000 steel plate impacted by a monolithic
.308 bullet at 735 m/s, simulated by applying the corresponding estimated load history
to the sharpest distribution (100 mm2, Figure 8). The results of the 2.5 mm shell model
were compared with the results of an analogous model with 1.25 mm mesh size, therefore
four times the nodal density. The comparisons show almost perfect adherence of the stress
fields (Figure 9), stress waves (Figure 10), and residual displacement fields (Figure 11),
validating the 2.5 mm shell discretization as an effective compromise between detailed load
description, consistency of the results, and maximization of the time integration step for
the containment of the computational cost in real-world industrial applications requiring
the modelling of large structural systems.
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Figure 9. Stress field convergence. Comparison between the maximum principal stress field at
0.05 ms as predicted by the 2.5 mm model (left) and the 1.25 mm model (right). The difference in
peak stress is less than 1%. No significant differences are visible. The stress wave is axially symmetric
despite the squared shape of the arbitrary loaded surface.
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3. Results 
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with the theoretical hypotheses of the bullet-splash. Section 3.2 summarizes the results of 
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Figure 10. Maximum principal stress waves comparison at 50 mm from the origin. The predictions
obtained by the higher nodal density model (red) and by the lower nodal density model (blue) are
almost impossible to distinguish, even after 0.4 ms, which corresponds to around ten times the load
application time. The maximum difference in peak stress is 10% after 0.23 ms, therefore 0.19 mm after
the end of the loading time. This demonstrates that the stress prediction is consistent.
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3. Results 
This section provides the experimental, analytical, and numerical results of the study. 

In Section 3.1 the pictures of the impacted plates and the frames capturing the evolution 
of the impacts are investigated to verify which of the considered impacts are compliant 
with the theoretical hypotheses of the bullet-splash. Section 3.2 summarizes the results of 
the measurements and estimations of the impact velocities. In Section 3.3 the load histories 
due to bullet-splash are plotted, having been calculated according to the theory from the 
measured impact velocities and the sections of the bullets. In Section 3.4, to verify the 
representativeness of the estimated load histories, the experimental fields of residual 
displacement are compared with the corresponding predictions obtained by means of 
explicit finite element simulations, where the discretized plates are loaded by direct 
application of the corresponding load curves. 

Figure 11. Residual deformation fields at 20 ms after the impacts [mm]. Comparison between the
2.5 mm shell model (left) and the 1.25 mm shell model (right). The predictions are equivalent; the
maximum difference is less than 0.5% at the peak: 0.03 mm over 7.3 mm of maximum deformation.

3. Results

This section provides the experimental, analytical, and numerical results of the study.
In Section 3.1 the pictures of the impacted plates and the frames capturing the evolution
of the impacts are investigated to verify which of the considered impacts are compliant
with the theoretical hypotheses of the bullet-splash. Section 3.2 summarizes the results
of the measurements and estimations of the impact velocities. In Section 3.3 the load
histories due to bullet-splash are plotted, having been calculated according to the theory
from the measured impact velocities and the sections of the bullets. In Section 3.4, to
verify the representativeness of the estimated load histories, the experimental fields of
residual displacement are compared with the corresponding predictions obtained by means
of explicit finite element simulations, where the discretized plates are loaded by direct
application of the corresponding load curves.
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3.1. Verification of the Bullet Splash Hypotheses

The verification of the hypotheses was performed by means of analyses of the ex-
perimental evidence. The inspection of the back plates allowed the verification of the
non-penetration hypothesis. The inspection of the front plates allowed the verification
of partial penetrations, here defined as the penetration of bullet material only through
the front plate. The inspection of the full fragmentation of the bullets was performed by
observation of the frames collected by means of the two high-frame-rate cameras in order to
verify the gradual fragmentation of the bullet during the impact, the overall axial symmetry
of the deflection kinematics, and the absence of major fragments rebounding from the plate
and/or showing dimensions comparable with the bullets. A fragment was considered
major if showing dimensions comparable with the calibre of the bullet. The presence of
major fragments adhering to the impact surface was also verified by inspecting the plates.

3.1.1. Non-Penetration

The targets were able to withstand the ballistic impacts without allowing any part of
the bullets to penetrate through the 8 mm thickness. Figures 12 and 13 show the effects of
the impacts on the front and rear surfaces of the plates: the front views show the impact
epicenter and the surrounding traces due to the radial debris deflection; the rear views
show the bulges due to the residual plastic strain of the plates with no marks of penetration.
It is worth noting that the Full Metal Jacket (FMJ) bullet caused the partial penetration of
the first Durostat® 400 plate (Figure 14).
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Figure 12. Front and rear surfaces of the Durostat® 400 plates impacted by the bullets. The impacted
areas show the marks of the interaction with the bullets, which can be distinguished in a central area
where the interaction appears to be more compressive, and a peripheral area where the radial marks
show the effects of the sliding of the bullet debris. The sliding marks are evident from a diameter of
approximately 11 to 16 mm (roughly 100 mm2 to 200 mm2), to a diameter of 20 to 25 mm around the
epicenter (around 400 mm2). The detailed front view of the FMJ effects shows the melted filler mixed
with parts of the jacket, still blocked inside the crater.
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Figure 14. Partial penetration of FMJ bullet material through the first plate of Durostat® 400. Back of 
the first plate showing the penetration of some melted filler material. 

3.1.2. Full Fragmentation 
The analysis of the captured frames allowed to assess that all the bullets encountered 

full fragmentation and deflection, except for the FMJs. In fact, the FMJ impacting on 

Figure 13. Front and rear surfaces of the Creusabro® 8000 plates impacted by the bullets. The
impacted areas show the marks of the interaction with the bullets, that can be distinguished in a
central area where the interaction appears to be more compressive, and a peripheral area where the
radial marks show the effects of the sliding of the bullet debris. The sliding marks are evident from a
diameter of approximately 11 to 16 mm (roughly 100 mm2 to 200 mm2), to a diameter of 20 to 25 mm
around the epicenter (around 400 mm2).
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Figure 14. Partial penetration of FMJ bullet material through the first plate of Durostat® 400. Back of
the first plate showing the penetration of some melted filler material.

3.1.2. Full Fragmentation

The analysis of the captured frames allowed to assess that all the bullets encoun-
tered full fragmentation and deflection, except for the FMJs. In fact, the FMJ impacting
on Durostat® 400 partially penetrated the first plate, while part of the FMJ impacting
on Creusabro® 8000 (Figure 15) was observed to slowly rebound after the impact, as a
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solid volume (Figure 16). These cases are therefore not compliant with the proposed
bullet-splash definition.
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Figure 15. The figure shows ten frames of the first 0.3 ms after the impact for the combination FMJ-
Creusabro® 8000, taken from the footage recorded by the perspective camera (Camera 2). The first 
frames (a–c) show the crushing of the bullet at its first contact with the target, allowing the 
appreciation of a spark caused by the high hardness of the plate. Fragments are then projected 
radially from the impact point starting from small particles (c–f), with slightly bigger fragments 

Figure 15. The figure shows ten frames of the first 0.3 ms after the impact for the combination
FMJ-Creusabro® 8000, taken from the footage recorded by the perspective camera (Camera 2). The
first frames (a–c) show the crushing of the bullet at its first contact with the target, allowing the
appreciation of a spark caused by the high hardness of the plate. Fragments are then projected
radially from the impact point starting from small particles (c–f), with slightly bigger fragments later
ricocheting in annular patterns (f–j). Frames shown here are processed to show the parts of interest,
filtering out the noise otherwise preventing the appreciation of the bullet fragmentation.
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Figure 16. The figure shows a large fragment of the Full Metal Jacket bouncing back from the
impact area of the Creusabro® 8000 plate. The shot is therefore non-compliant with the bullet-splash
definition. The fragment translates with perpendicular speed measured at 4.4 ± 2% m/s. Mild
spinning can be appreciated. The three frames shown here (a–c), extracted from the second camera
footage, were processed to isolate the fragment from the dust created after the impact: for each frame,
only the fragment and the dent on the plate are visible; an approximate dimensional reference for the
dent and the fragment is reported in frame (a). The fragment has a diameter of around 7.5 mm and
thickness of about 4 mm, with the shape similar to the bulge created on the plate.

3.2. Impact Velocity Estimation

The frame-by-frame analysis of the bullet kinematics before the impacts allowed
identification of the impact velocity with a maximum error of ±5.7% (Table 8), except for
shot 2 where the lack of light made the approach too uncertain. In this case the impact
velocity was therefore estimated based on the muzzle velocity and the average percentage
of speed loss calculated on four other Hollow Point bullets shot the same day in the same
conditions (Table 9). The maximum error for shot 2 was therefore calculated as the sum of
the maximum error due to muzzle velocity measurement (±2.8%) and the maximum error
due to frame-by-frame approach on hollow point bullets (±5.7%). The maximum error
associated with impact velocity of Shot 2 is therefore ±8.5%.

Table 8. Estimated impact velocities.

Shot Bullet Material Impact Speed
[m/s]

Maximum Error
[%]

1 Soft Point (SP) Durostat® 400 642 1.1
2 Hollow Point (HP) Durostat® 400 645 8.5 *
3 Full Metal Jacket (FMJ) Durostat® 400 769 1.2
4 Monolithic (MONO) Durostat® 400 738 3.5
5 Soft Point (SP) Creusabro® 8000 607 1.2
6 Hollow Point (HP) Creusabro® 8000 702 5.7
7 Full Metal Jacket (FMJ) Creusabro® 8000 736 2.9
8 Monolithic (MONO) Creusabro® 8000 749 2.8

* Estimated based on the average velocity loss of four Hollow Point bullets shot in the same conditions.

Table 9. Average velocities at muzzle and at 100 m and relative losses for each bullet type. Averages
are computed over a total of four shots per bullet type.

Bullet vmuzzle [m/s] v100m [m/s] Loss [%]

Soft Point (SP) 763 620 18.7
Hollow Point (HP) 814 727 10.7

Full Metal Jacket (FMJ) 843 731 13.3
Monolithic (MONO) 837 741 11.5

3.3. Estimated Load Histories

According to the proposed load history approach, eight load histories
(Figures 17 and 18) were calculated, based on the bullets’ section (Figure 1) and the mea-
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sured impact velocities (Table 8). The mass distribution was reconstructed based on the
scaled sections associated with the density values summarized in Table 10, so that the
volume integration of the mapped density fields exactly equals the nominal masses of the
bullets, and therefore the time integration of the load histories correctly corresponds to the
momentum of the impacting bullets.
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Figure 17. Load histories estimated according to Equation (8), applied to the impacts on Durostat® 
400. The SP, HP and MONO bullets have similar force peaks around 220–230 kN. The FMJ reaches 
instead 307 kN force. The duration of the impulses ranges from 36 to 47 µs. 

Figure 17. Load histories estimated according to Equation (8), applied to the impacts on Durostat®

400. The SP, HP and MONO bullets have similar force peaks around 220–230 kN. The FMJ reaches
instead 307 kN force. The duration of the impulses ranges from 36 to 47 µs.
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Figure 18. Load histories estimated according to Equation (8), applied to the impacts on Creusabro®

8000. The SP reaches 194 kN peak force, MONO reaches 243 kN, HP reaches 260 kN, and FMJ reaches
281 kN. The durations of the impulses range from 39 µs for FMJ to 49 µs for SP.
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Table 10. Density values associated with the bullet materials for the four bullet types so that the
volume integration of the density fields correspond to the nominal bullets’ masses.

Bullet ρjacket [kg/m3] ρfiller [kg/m3] Bullet Mass [g]

Soft Point (SP) 8730 12,640 11.66
Hollow Point (HP) 8730 12,280 10.89

Full Metal Jacket (FMJ) 8730 11,325 9.53
Monolithic (MONO) 9425 - 9.59

3.4. Field of Residual Displacements

In Figures 19–34 we provide the comparison between numerical and experimental
results in terms of residual displacements of the plates. The fields of residual displacements
have been represented as a function of the radial distance from the apex of the bulges
(Figures 19, 21, 23, 25, 27, 29, 31 and 33). The experimental measurements (represented with
their variability due to a ±0.5 mm error in positioning the instrument at the bulge apex) are
compared with the simulation results obtained with the three arbitrary load distributions,
where the same load history was distributed on 100, 200, and 400 mm2 as described in
Section 2.5.1. Based on the mapping of the residual displacements, three validation indexes
have been considered: the apex displacement, the overall volume of the residual bulge,
and the radial slope at 50 mm from the apex (the boundary of the measured range). The
validation was conducted by dividing the indexes calculated on the simulation results by
the indexes calculated on the experimental results. The validation results are presented as
percentages, so that a validation higher than 100% means that the simulation overestimated
the corresponding experimental index. To enhance the effects of the load distribution on
the validation indexes, the three indexes were plotted as a function of the loaded area
(Figures 20, 22, 24, 26, 28, 30, 32 and 34).

Materials 2023, 16, x FOR PEER REVIEW 21 of 33 
 

 

 
Figure 19. Residual displacements caused by the Soft Point bullet on Durostat® 400 plates. The 
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mm2 distribution (yellow line) is near the minimum experimental value, around 3 mm. The 
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Figure 20. Soft Point bullet on Durostat® 400 plates: validation of the calculated residual 
displacement fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 
mm (yellow). In abscissa the loaded area of the three arbitrary distributions. In terms of apex 
displacement, the 100 mm2 distribution gives the best estimation (109%), while the 200 mm2 and 400 
mm2 give 82% and 55%. The three distributions provide more consistent predictions in terms of 
bulge volume and slope, all between 51 and 68%. 

Figure 19. Residual displacements caused by the Soft Point bullet on Durostat® 400 plates. The
predicted apex displacement for the 100 mm2 distribution (grey line) is near the maximum experi-
mental value (blue dotted line), around 4 mm. The predicted apex displacement for the 200 mm2

distribution (yellow line) is near the minimum experimental value, around 3 mm. The predicted apex
displacement for the 400 mm2 distribution (light blue line) is around 1 mm lower than the minimum
experimental value. The radial extension of the bulge is underestimated. Over 35 mm radial distance
from the apex the three load distributions are impossible to distinguish.
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Figure 20. Soft Point bullet on Durostat® 400 plates: validation of the calculated residual displacement
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow).
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the
100 mm2 distribution gives the best estimation (109%), while the 200 mm2 and 400 mm2 give 82%
and 55%. The three distributions provide more consistent predictions in terms of bulge volume and
slope, all between 51 and 68%.
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Figure 22. Validation for HP on Durostat® 400: validation of the calculated residual displacement 
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow). 
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the 
200 mm2 distribution gives the best estimation (119%), while the 100 mm2 and 400 mm2 give 157% 
and 80%. The three distributions provide more consistent predictions in terms of bulge volume and 
slope, all between 45% and 67%. 

Figure 21. Residual displacements caused by the Hollow Point bullet on Durostat® 400 plates.
The predicted apex displacement for the 100 mm2 distribution (grey line) exceeds the maximum
experimental value (blue dotted line) of about 1 mm. The predicted apex displacement for the
200 mm2 distribution (yellow line) coincides with the maximum experimental value, around 3.4 mm.
The predicted apex displacement for the 400 mm2 distribution (light blue line) is almost coincident
with the minimum experimental value. The radial extension of the bulge is slightly underesti-
mated. Over 25 mm radial distance from the apex the three load distributions are almost impossible
to distinguish.
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Figure 22. Validation for HP on Durostat® 400: validation of the calculated residual displacement 
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow). 
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the 
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Figure 22. Validation for HP on Durostat® 400: validation of the calculated residual displacement
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow).
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the
200 mm2 distribution gives the best estimation (119%), while the 100 mm2 and 400 mm2 give 157%
and 80%. The three distributions provide more consistent predictions in terms of bulge volume and
slope, all between 45% and 67%.
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Figure 23. Residual displacements caused by the Full Metal Jacket bullet on Durostat® 400 plates. 
The predicted apex displacement for the 100 mm2 distribution (grey line) underestimates the 
experimental range (blue and red dotted lines) of about 2.5 mm. The overall bulge extension is 
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Figure 24. Validation for FMJ on Durostat® 400: validation of the calculated residual displacement 
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow). 
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the 
100 mm2 distribution gives the best estimation (63%), while the 200 mm2 and 400 mm2 give 48% and 
30%. The three distributions provide consistent predictions in terms of bulge volume around 30–
33%. In slope, the estimate increases as the distribution area, from 17.5% to 40%. 

Figure 23. Residual displacements caused by the Full Metal Jacket bullet on Durostat® 400 plates. The
predicted apex displacement for the 100 mm2 distribution (grey line) underestimates the experimental
range (blue and red dotted lines) of about 2.5 mm. The overall bulge extension is significantly
underestimated. For radial distance over 25 mm from the apex, the three load distributions are almost
impossible to distinguish.
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100 mm2 distribution gives the best estimation (63%), while the 200 mm2 and 400 mm2 give 48% and 
30%. The three distributions provide consistent predictions in terms of bulge volume around 30–
33%. In slope, the estimate increases as the distribution area, from 17.5% to 40%. 

Figure 24. Validation for FMJ on Durostat® 400: validation of the calculated residual displacement
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow).
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the
100 mm2 distribution gives the best estimation (63%), while the 200 mm2 and 400 mm2 give 48% and
30%. The three distributions provide consistent predictions in terms of bulge volume around 30–33%.
In slope, the estimate increases as the distribution area, from 17.5% to 40%.
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Figure 25. Residual displacements caused by the Monolithic bullet on Durostat® 400 plates. The
predicted apex displacement for the 100 mm2 distribution (grey line) is almost coincident with the
maximum experimental value (blue dotted line). The predicted apex displacement for the 200 mm2

distribution (yellow line) coincides with the minimum experimental value. The radial extension of
the bulge is slightly underestimated. For radial distances over 35 mm from the apex, the three load
distributions are impossible to distinguish.
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Figure 26. Validation for MONO on Durostat® 400: validation of the calculated residual displacement
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow).
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the
100 mm2 distribution gives the best estimation (113%), while the 200 mm2 and 400 mm2 give 83%
and 54%. The bulge volume predictions decrease from 76% to 63% as the area increases. The slope
predictions are more consistent, between 57% and 67%.
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In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the 
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and 66%. The bulge volume predictions decrease from 81% to 56% as the area increases. The slope 
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Figure 27. Residual displacements caused by the Soft Point bullet on Creusabro® 8000 plates. The
predicted apex displacement for the 100 mm2 distribution (grey line) slightly exceeds the maximum
experimental value (blue dotted line). The predicted apex displacement for the 200 mm2 distribution
(yellow line) is in the middle of the experimental range. The predicted apex displacement for the
400 mm2 distribution (light blue line) underestimates the minimum experimental value of about
0.5 mm. The radial extension of the bulge is slightly underestimated. Over 35 mm radial distance
from the apex the three load distributions are impossible to distinguish.
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Figure 28. Validation for SP on Creusabro® 8000. Validation of the calculated residual displacement
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow).
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the
200 mm2 distribution gives the best estimation (98%), while the 100 mm2 and 400 mm2 give 128%
and 66%. The bulge volume predictions decrease from 81% to 56% as the area increases. The slope
predictions are more consistent, between 80% and 88%.
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In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the 
200 mm2 distribution gives the best estimation (98%), while the 100 mm2 and 400 mm2 give 125% 
and 63%. The bulge volume predictions decrease from 75% to 63% as the area increases. The slope 
predictions increase from 60% (100 mm2) to 80% (200 and 400 mm2). 

Figure 29. Residual displacements caused by the Hollow Point bullet on Creusabro® 8000 plates.
The predicted apex displacement for the 100 mm2 distribution (grey line) exceeds the maximum
experimental value (blue dotted line) of about 0.2 mm. The predicted apex displacement for the
200 mm2 distribution (yellow line) is in the middle of the experimental range. The predicted
apex displacement for the 400 mm2 distribution (light blue line) is 0.5 lower than the minimum
experimental value. The radial extension of the bulge is slightly underestimated. For radial distances
over 25 mm from the apex, the three load distributions are impossible to distinguish.
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Figure 30. Validation for HP on Creusabro® 8000. Validation of the calculated residual displacement
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow).
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the
200 mm2 distribution gives the best estimation (98%), while the 100 mm2 and 400 mm2 give 125%
and 63%. The bulge volume predictions decrease from 75% to 63% as the area increases. The slope
predictions increase from 60% (100 mm2) to 80% (200 and 400 mm2).
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Figure 31. Residual displacements caused by the Full Metal Jacket bullet on Creusabro®

8000 plates. The predicted apex displacement for the 100 mm2 distribution (grey line) underes-
timates the experimental (blue and red dotted lines) range of about 2 mm. The overall bulge extension
is significantly underestimated. For radial distances over 15 mm from the apex, the three load
distributions are difficult to distinguish.
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Figure 32. Validation for FMJ on Creusabro® 8000. Validation of the calculated residual displacements
fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm (yellow).
In abscissa the loaded area of the three arbitrary distributions. In terms of apex displacement, the
100 mm2 distribution gives the best estimation (67%), while the 200 mm2 and 400 mm2 give 49%
and 32%. The bulge volume predictions are consistent between 22% and 25%. The slope predictions
increase from 9% (100 mm2) to 19% (400 mm2).
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displacements fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 
mm (yellow). In abscissa the loaded area of the three arbitrary distributions. In terms of apex 
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4. Discussion 
All the observed shots showed massive fragmentation of the bullets, with no full 

penetration of the 8 mm thick targets. However, evidence of non-complete fragmentation 
was reported on both FMJ bullets: a large solid part of the bullet, with dimensions 
comparable with the caliber, was found bouncing back after the shot on Creusabro® 8000 
(Figure 16), and a significant volume of filler material together with part of the jacket 
material was found having penetrated the first plate of Durostat® 400 (Figures 12 and 14). 
These two cases, therefore, do not satisfy the theoretical hypotheses supporting the 

Figure 33. Residual displacements caused by the Monolithic bullet on Creusabro® 8000 plates.
The predicted apex displacement for the 100 mm2 distribution (grey line) exceeds the maximum
experimental value (blue dotted line) by 0.3 mm. The predicted apex displacement for the 200 mm2

distribution (yellow line) almost coincides with the middle range of the experimental values (blue
and red dotted lines). The predicted apex displacement for the 400 mm2 distribution (light blue
line) coincides with the minimum experimental value. The radial extension of the bulge is well
estimated. For radial distances over 35 mm from the apex, the three load distributions are impossible
to distinguish.
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Figure 34. Validation for MONO on Creusabro® 8000. Validation of the calculated residual displace-
ments fields in terms of apex displacement (blue), total bulge volume (red), and slope at 50 mm
(yellow). In abscissa the loaded area of the three arbitrary distributions. In terms of apex displace-
ment, the 200 mm2 distribution gives the best estimation (107%), while the 100 mm2 and 400 mm2

give 141% and 70%. The bulge volume predictions decrease with the area, from 113% to 76%. The
slope predictions are more consistent, between 109% and 123%.

4. Discussion

All the observed shots showed massive fragmentation of the bullets, with no full
penetration of the 8 mm thick targets. However, evidence of non-complete fragmenta-
tion was reported on both FMJ bullets: a large solid part of the bullet, with dimensions
comparable with the caliber, was found bouncing back after the shot on Creusabro® 8000
(Figure 16), and a significant volume of filler material together with part of the jacket
material was found having penetrated the first plate of Durostat® 400 (Figures 12 and 14).
These two cases, therefore, do not satisfy the theoretical hypotheses supporting the formula
for the load history estimation demonstrated in Section 2.4, For this reason both FMJ shots
should be considered control cases to evaluate the effectiveness of the method when its
applicability conditions are not verified.

Considering the fields of residual displacement, the simulation and the experimental
results diverge significantly for both FMJ bullet cases. The predicted displacement fields
are being consistently and significantly underestimated, particularly so in terms of bulge
volume and slope, for which the best estimations for FMJ impacts are, respectively, 33% and
40% on Durostat® 400 and 25% and 19% for Creusabro® 8000 (Figures 23, 24, 31 and 32).
The relevant underestimation in the fields of residual displacement in these two cases is
due to the force peaks needed to decelerate the relevant solid parts of the bullets instead
of gradually deflecting their mass as happens during the ideal bullet splash. In the case
of the partial penetration of the Durostat® 400 plate, the local reduction in the stiffness
of the target due to the loss of integrity of the front plate and the direct impact of parts
of the bullet onto the back plate should also have an effect in increasing the real back
plate deformation.

The experimental verifications have instead confirmed that, on the contrary, the SP,
HP, and MONO cases are fully compliant with the bullet-splash theoretical hypotheses; the
comparisons between the predicted and experimental residual displacement fields for these
cases are therefore considered significant for the validation of the load histories estimated
with the proposed method.

The validation was performed on the results obtained by simulating the impacts on
the three different arbitrary load distributions considered representative of the extension
of the marks left on the plates after the impacts. The 100 mm2 and 200 mm2 distributions
were considered representative of the minimum and maximum observed areas where the
interaction between bullet and target is mainly compressive, causing the formation of the
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fragments and their 90-degree, almost instantaneous, deflection. The 400 mm2 distribution
area, instead, includes approximately the entire extension of the interaction areas observed
on the plates, including the peripheral area where the radial marks show that the interaction
between bullet and target only consisted in a sliding contact of the already formed and
deflected fragments. This last distribution was therefore expected to be less representative
of the local compressive phenomena, but still relevant as a sensitivity test case of the effects
of the pressure distributions on the deformation fields.

The comparisons between the simulated and experimental fields of residual displace-
ments (Figures 19, 21, 23, 25, 27, 29, 31 and 33) show that the effects of the load distributions
are significant only within 25 to 35 mm from the apex. The differences in terms of residual
displacement at the apex are due to the fact that the three distributions apply pressure
intensities that are inversely proportional to their loaded areas to guarantee that the integra-
tion of the pressure fields is equivalent to the load history for all the arbitrary distributions.
To apply the same force, the pressure applied on the 100 mm2 area must be, respectively,
two and four times higher than the intensity applied by the 200 mm2 and 400 mm2 uni-
form distributions; therefore, the loaded elements must withstand proportionally higher
stress and consequently encounter higher fields of plastic strain compared to the same
elements loaded with lower intensity distributions. This explains the local differences in
terms of maximum residual displacement at the apex between the three force-equivalent
distributions as well as the almost indistinguishable effects over 25 to 35 mm from the
apex, since the peripheral elements encounter approximately the same stress waves for
all the distributions. In fact, the differences in radial extension between the three loaded
areas are very limited compared to the distance covered by a mechanical signal during
the duration of the considered impulses, therefore the stress waves propagating from the
100 mm2 distribution have a duration that is less than 3% shorter than the 400 mm2 one,
which has neglectable engineering effects.

The validation graphs (Figures 20, 22, 24, 26, 28, 30, 32 and 34) demonstrate that the
estimated load histories applied on the 100 mm2 and 200 mm2 distributions allow correct
predictions of the residual displacements at the apex for all the verified bullet splashes (SP,
HP, and MONO), with the sharpest distribution giving percentage validations between
109% and 157% (average 126%) on Durostat® 400 and between 125% and 141% (average
131%) for Creusabro® 8000. Moreover, the 200 mm2 distribution gives representative
validations between 82% and 119% (average 95%) on Durostat® 400 and between 98% and
107% (average 101%) for Creusabro® 8000. It is crucial to notice that even though the two
sharpest distributions have a 100% difference in pressure intensity and loaded surfaces,
the average difference in the estimations of the maximum residual displacement between
the two is limited to 31% (129% vs. 98%). Even the 400 mm2 distribution gives an average
validation in apex displacement of 65%, despite a pressure field intensity equal to 25% of
the one imposed by the sharpest distribution.

In all of the cases, the validation in bulge volume is much more consistent between the
distributions, with just a modest reduction from the sharpest to the flattest. The sharpest
distribution gives average percentage validations of 65% on Durostat® 400 and 85% on
Creusabro® 8000, while the 200 mm2 distribution gives 63% on Durostat® 400 and 81% on
Creusabro® 8000; the flattest gives 52% on Durostat® 400 and 65% on Creusabro® 8000.
The slight reduction in bulge volume is due to the reduction in local stress that causes the
reduction in the maximum residual displacement at the apex, which has a minor effect on
the total bulge volume.

The validation in slope at 50 mm from the apex in most of the cases increases from the
sharpest to the intermediate distribution and then slightly decreases or remains constant
for the flattest: the 100 mm2 gives an average validation of 54% on Durostat® 400 and 85%
on Creusabro® 8000, while the 200 mm2 distribution gives 66% on Durostat® 400 and 97%
on Creusabro® 8000. The 400 mm2 gives 66% on Durostat® 400 and 90% on Creusabro®

8000. The increase and slight decrease with the extension of the loaded areas is explained
by the opposite effects of reducing the load intensity, which decreases the bulge volume,
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and reducing the average distance from the load application to the peripheral area where
the slope is calculated, which tends to increase the peripheral deformation.

In terms of general bulge shape, the simulations tend to underestimate the half-depth
diameter. The calculation of the bulge volumes shows that the simulations of the shots
on Durostat® 400 estimate bulge volumes around 35% lower than the reality (Table 11),
while on Creusabro® 8000 the estimation is better, with just 15% of underestimation on
average between the cases (Table 12). A difference in shape between the plate materials is
also observed in terms of slope of the bulge at 50 mm from the apex, with a 46% underesti-
mation on Durostat® 400 plates (Table 11) and a 15% underestimation on Creusabro® 8000
(Table 12), again on average between the cases. These differences are due to the simpli-
fication hypotheses introduced with the method, in particular with the hypothesis of a
90-degree deflection of the bullet debris, which is an ideal reference case that is closer to re-
ality when the impact surface keeps its perfect planarity. In reality, after the impact surface
gradually bulges, the debris are subjected to a slightly higher deflection angle, interacting
on a gradually wider surface on the target. This results in a radial component of the impact
force that increases the width of the bulge and a slight increase in the normal force due to
the higher angle of deflection of the debris. This is confirmed by the fact that the estimation
of the bulge volume and slope is significantly better on Creusabro® 8000 plates, which
encounter more contained residual displacements compared to the Durostat® 400 ones,
thanks to its higher hardness and tensile strength. This confirms that the proposed method
is well suited for targets much harder than the bullets, which represents the interactions
between bullets and a perfectly working ballistic protection.

Table 11. Validation comparisons for Durostat® 400. Validation percentages are calcu-
lated as numerical simulation results obtained for the 100 mm2 distribution divided by the
experimental results.

SP HP FMJ * MONO

Validation in Bulge Volume 64.22% 53.31% 31.69% 76.12%
Validation in Apex Displacement 108.90% 156.92% 63.47% 112.62%

Experimental Slope @ 50 mm −2.00% −2.00% −4.00% −2.00%
Numerical Slope @ 50 mm −1.20% −0.91% −0.70% −1.15%

Validation in Slope @ 50 mm 60.19% 45.26% 17.50% 57.43%
* Not compliant with bullet-splash hypotheses.

Table 12. Validation comparisons for Creusabro® 8000. Validation percentages are calcu-
lated as numerical simulation results obtained for the 100 mm2 distribution divided by the
experimental results.

SP HP FMJ * MONO

Validation in Bulge Volume 75.48% 74.98% 21.95% 105.05%
Validation in Apex Displacement 127.73% 125.00% 66.62% 141.36%

Experimental Slope @ 50 mm −1.50% −1.50% −4.50% −1.00%
Numerical Slope @ 50 mm −1.22% −0.90% −0.39% −1.13%

Validation in Slope @ 50 mm 81.11% 60.00% 8.69% 113.26%
* Not compliant with bullet-splash hypotheses.

5. Conclusions

The study verified the effectiveness of the proposed simplified formula to estimate
the load history due to bullet-splash in predicting the resultant interaction forces due to
semi-jacketed, full metal jacket and monolithic .308 Winchester bullets impacting on double
4 mm-thick plates of Durostat® 400 and Creusabro® 8000 hard steels.

The experimental analyses reported that the SP, HP and MONO impacts were compli-
ant with the bullet-splash theory, while both the FMJ cases failed to meet the theoretical
hypotheses due to partial penetration of the target and partial fragmentation. None of the
targets were fully penetrated.
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The validation of the method was performed by comparing the experimental results,
in terms of fields of residual displacement measured on the impacted plates, with the
results of finite element explicit simulations to predict the residual deformations of the
plates subjected to the load histories estimated according to the proposed theory. Sensitivity
tests were conducted to verify the influence of the extension of the load distribution on the
numerical results.

The validation in terms of residual displacements at the apex confirm the effectiveness
of the method for all the shots fully compliant with the bullet-splash hypotheses (SP, HP,
MONO). On the contrary, the simulations applying the load histories estimated for the FMJ
bullets significantly underestimated the residual deformation fields, confirming that the
effectiveness of method strictly depends on the validation of its theoretical hypotheses.

The validation in terms of bulge volume and slope at 50 mm from the apex of the
bulges shows an underestimation of the overall residual deformation fields which has been
related to the strength of the target: the more the target is deformed under the normal
impact forces, the more the debris must be deflected, therefore probably resulting in a wider
bulge than expected by considering only a 90-degree deflection as the method hypothesizes.
This suggests a possible improvement and generalization of the formula to take into account
deflection angles higher than 90 degrees, depending on the specific experimental evidence.

The sensitivity tests conducted to check the effects of the load distributions on the
deformation fields demonstrate that even varying the area (or intensity) by two or four times
only causes local effects, within 25 to 35 mm from the apex, while the bulge volume and the
slope at 50 mm are just slightly influenced. It is worth noting that the results confirm that
the two sharpest distributions (100 mm2 and 200 mm2) are the most representative, with
validations in terms of apex displacements between 82% and 157%. These two distributions
were identified as the range of areas subjected to mostly compressive interactions according
to the marks left on the plates; this suggests that an equivalent application area could be
effectively identified in this range for all the test cases. The consistency of the validation
percentages for different bullets with significantly different mechanical and geometrical
characteristics further confirms that the real space distribution of the pressure fields has
neglectable effects, and therefore the resultant load history approach is appropriate for the
purpose of the study.

All the evidence suggests that the method could be properly applied to the assessment
of structural systems subjected to ballistic impacts, provided that previous experimental
ballistic tests have been analyzed and demonstrated that the target surface is able to
completely fragment and deflect the impactor without allowing any penetration. In case of
significant deformation of the impact surface, the results suggest that the method should
be applied more carefully, with conservative safety margins to be assessed considering the
specific outcomes of the experimental tests.

Further developments of the research should therefore investigate the effects of high
deflection angles and the influence of the debris dimensions on the intensity of the impulses,
with the ultimate goal of identifying possible simplified procedures to generalize the load
history approach and to allow the parsimonious simulation of a wider range of ballistic
impacts causing partial penetrations and fragmentations or high deformation of the target.
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Abstract: The equivalent characteristics of the materials’ interfaces are known to impact the overall
mechanical properties of ceramic–metal composites significantly. One technological method that
has been suggested is raising the temperature of the liquid metal to improve the weak wettability
of ceramic particles with liquid metals. Therefore, as the first step, it is necessary to produce the
diffusion zone at the interface by heating the system and maintaining it at a preset temperature to
develop the cohesive zone model of the interface using mode I and mode II fracture tests. This study
uses the molecular dynamics method to study the interdiffusion at the interface of α-Al2O3/AlSi12.
The hexagonal crystal structure of aluminum oxide with the Al- and O-terminated interfaces with
AlSi12 are considered. A single diffusion couple is used for each system to determine the average
main and cross ternary interdiffusion coefficients. In addition, the effect of temperature and the
termination type on the interdiffusion coefficients is examined. The results demonstrate that the
thickness of the interdiffusion zone is proportional to the annealing temperature and time, and Al-
and O-terminated interfaces exhibit similar interdiffusion properties.

Keywords: self-diffusion; interdiffusion; diffusion coefficient; Al2O3/AlSi12 interface; molecular
dynamics

1. Introduction

Metal matrix composites (MMCs) are increasingly employed in the automotive,
aerospace, and biomedical industries owing to their exceptional specific strength, high
stiffness, and remarkable wear resistance [1]. These composites commonly employ alu-
minum, titanium, or magnesium as matrix materials, while alumina, silicon carbide, or
boron carbide are often utilized as reinforcing elements [2,3].

Aluminum oxide (Al2O3) is a versatile and widely used ceramic material with various
applications due to its excellent properties and attractive price [4]. Some common uses
of aluminum oxide include abrasive material used in grinding and polishing tools, high-
temperature environment applications such as furnace linings and refractory materials,
electrical insulators, dental and medical applications, and as a filter medium [3,5].

The eutectic aluminum–silicon (AlSi12) alloys, widely used in the transportation in-
dustry [6] and have high specific properties and good castability, can replace the pure Al
metal matrix. AlSi12 alloy is an aluminum alloy that contains 12 wt.% silicon. It is com-
monly used in casting applications due to its good fluidity and ability to produce castings
with fine details [6]. The high silicon content in the alloy also provides it with excellent
thermal properties, making it suitable for use in engine parts and other high-temperature
applications [2]. This alloy also has a low density and good corrosion resistance, which
makes it useful in the aerospace and automotive industries.

Metal–ceramic composites may exhibit improved wear resistance and strength prop-
erties compared to the individual materials and can be used in various high-temperature
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applications. For example, a composite of Al2O3 and AlSi12 alloy can be made by various
techniques such as powder metallurgy [6,7], hot pressing, squeeze casting [7], or infiltra-
tion [1,7–10]. Interpenetrating phase composites (IPCs) are novel materials with possibly
enhanced characteristics compared with traditional composites with discontinuous parti-
cles, whiskers, or short fibers [11–15]. The properties and performance of the composite
can be tailored by the processing conditions, relative proportions of the two materials,
microstructure, proportion of the components, and the interface’s properties.

This study investigates the use of α-Al2O3 reinforcement in the AlSi12 metal alloy
matrix. The Al2O3/AlSi12 composite has demonstrated very good wear and abrasion resis-
tance [16,17]. Therefore, this composite material has the potential to be used in brake disks
in the automotive industry [7]. The mechanical characteristics of the interface constituents
and the nature of the interface determine the general mechanical and failure behavior of
MMCs [18–20]. To this end, the interface attributes in MMCs must be thoroughly investi-
gated. Diffusion causes the interface between phases to exhibit a fuzzy region. Hence, the
primary step toward deriving the cohesive zone model of the interface is to investigate the
diffusion between the two phases.

Oishi and Kingery [21] first measured oxygen self-diffusion in single and polycrys-
talline Al2O3 in 1960. They studied diffusion in temperatures above 1650 ◦C and observed
enhanced diffusion for the polycrystalline specimens. Lagerlof et al. [22] also deduced
oxygen self-diffusion coefficients using observations of the shrinking of tiny prismatic dis-
location loops in sapphire crystals subjected to prior distortion at a temperature of 1400 ◦C.
The diffusion coefficient was determined, and it was assumed that oxygen lattice diffusion
was smaller than aluminum lattice diffusion. Paladino and Kingery [23] determined the
self-diffusion coefficient of aluminum in coarse-grain polycrystalline aluminum oxide using
aluminium-26 as a tracer in the temperature range of 1670–1905 ◦C. They found that the
diffusivity of aluminum ions is greater than oxygen ions.

Furthermore, Gall et al. [24] measured aluminum self-diffusion in single-crystal α-
Al2O3 using aluminum-26 as a radioactive tracer in the temperature range of 1540–1697 ◦C.
They obtained very different conclusions regarding the diffusion coefficients compared to
Paladino and Kingery [23]. A review of the major diffusion processes in α-Al2O3, includ-
ing aluminum and oxygen lattice diffusion, oxygen grain boundary diffusion, and pipe
diffusion, was presented by Heuer [25]. Knowledge regarding the diffusion of aluminum
and oxygen in aluminum oxide was found to be insufficient. Using the density functional
theory, Milas et al. [26] investigated the diffusion of Al, O, Pt, Hf, and Y atoms on the
α-Al2O3(0001) surface to study the diffusion mechanisms at the alumina grain boundaries
in thermal barrier coatings. They discovered that the Al diffusion is significantly lower
than the O diffusion barrier. The literature on the self-diffusion of single crystals and the
impurity diffusion of some significant elements in alumina was reviewed by Pelleg [27].
Moreover, they discussed grain boundary diffusion and poly-crystalline alumina diffusion.

Unfortunately, the wettability of ceramic particles with liquid aluminum alloys is
often weak. Many technological procedures have been suggested to improve the wetting
of ceramic by liquid metal. These include raising the temperature of the metal liquid,
pretreatment of ceramic particles or fibers, coating the ceramics, and incorporating some
surface-active elements into the matrix. To the authors’ knowledge, no previous investi-
gations have been conducted on the diffusion behavior of the α-Al2O3/AlSi12 diffusion
couple. Therefore, this study aims to explore the self-diffusion and interdiffusion phenom-
ena at the interface by employing the molecular dynamics (MD) method by increasing
the system’s temperature to the specified level. The Al- and O-terminated interfaces of
α-Al2O3 with AlSi12 are considered. The influence of annealing temperature, annealing
duration, and type of termination at the interface on the diffusion zone and interdiffusion
coefficients are studied.
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2. Modeling Method and Simulation Technique

Diffusion involves the migration of atoms or molecules from a region of higher concen-
tration to a region of lower concentration. Atoms can diffuse across the interface, resulting
in the movement of atoms between the two phases. The diffusion rate depends on several
factors, including the temperature, chemical composition of the two materials, and the
interface between the two phases. At high temperatures, the diffusion rate will be faster,
and the atoms will have more energy to move through the material. It is intended to
investigate the effect of raising the temperature on the diffusion region and interdiffusion
coefficients at the α-Al2O3/AlSi12 interface.

The molecular dynamics method can study basic processes such as diffusion by using
Newton’s second law to calculate the acceleration of atoms by describing atomic interactions
through interatomic potentials. In this study, MD simulations are performed utilizing the
open-source MD program LAMMPS version 23Jun2022 (large-scale atomic/molecular
massively parallel simulator) [28], and the OVITO version 3.8.4 (open visualization tool)
software [29] is utilized to visualize the atomic structure’s evolution. The interatomic
potential must be precisely quantified because an interatomic potential energy model
typically represents atomic interactions. Experimental data or ab initio calculations, such
as cohesive energy and elastic modulus, can be used to determine the model parameters.
The following section explores the interatomic potentials attributed to aluminum oxide,
aluminum, silicon, and the interface.

2.1. Potential Functions

In the Al2O3/AlSi12 system, several atomic interactions are possible and should be
taken into account during simulations. The atomic interactions between Al particles in
an fcc crystal structure differ significantly from those between aluminum oxide ceramic
particles. Metal atoms have electron clouds that determine the strength of their bonds,
whereas ionic bonding is the primary factor in ceramics. The interface between metal
and ceramic, where the atoms tend to create bonds between two dissimilar structures,
introduces additional complexity.

The third-generation charge-optimized many-body potential (COMB3) [30] is a type of
interatomic potential that can be used to describe interactions between atoms in aluminum–
oxygen systems. The COMB3 potential uses a combination of pair potentials and electron
density functions to describe the atomic interactions. The potential is fitted to experimental
data and ab initio calculations. It has been shown to reproduce a wide range of properties
of aluminum–oxygen systems, including the lattice constant, elastic constants, and the
deformation of Al and Al2O3 under tensile loading. The total energy per atom for the Al-O
system, with a charge of q at position r, in the COMB3 potential can be expressed as [30]:

Utot(r, q) = Ues(q, r) + Ushort(q, r) + UvdW (r) + Ucorr (r) (1)

where Ues denotes the energy required to create an atom’s charge, as well as the energies
involved in charge–charge interactions, charge–nuclear interactions, and polarizability.
Furthermore, Ushort is the energy of pairwise attractive and repulsive functions, UvdW is
long-range van der Waals interactions, and Ucorr is the correction terms employed to adjust
energies associated with specific angles outside the bond order terms.

The Tersoff potential [31], an empirical function composed of two-body terms, is
employed for silicon–oxygen interactions. The bonding between atoms i and j in the
many-body Tersoff potential can be expressed as:

Vij = fC(rij)
[

fR(rij) + bij fA(rij)
]

(2)

where fR(rij), fA(rij), and fC(rij) are repulsive, attractive, and cut-off potential functions,
rij is the atomic bond length between atom i and j, and bij is a function that adjusts the
attractive interaction, respectively.
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The ab initio data gathered by Zhao et al. [32] are consistent with the Morse potential,
which best represents aluminum–silicon interactions. The Morse potential function is
defined as:

V = D0

[
e−2α(r−r0) − 2e−α(r−r0)

]
(3)

where D0, α, r, and r0 represent the well depth of the potential, the width of the potential,
the distance between atoms, and the equilibrium bond length, respectively. The Morse
potential with parameters D0 = 0.4824 eV, α = 1.322 1/Å, and r0 = 2.92 Å [26] is employed
in this study for aluminum–silicon interactions.

The elastic constants of α-Al2O3 are determined with previously mentioned potential
functions and then compared with the experimental [33], MD simulations [34], and innova-
tive integration of metadynamics and kinetic Monte Carlo simulation techniques ref. [35] in
Table 1. The same results for AlSi12 are also presented in this table. The lattice parameters
of hexagonal α-Al2O3 are a = b = 4.759 Å, c = 12.991 Å, α = β = 90o, and γ = 120o, and the
lattice constant of fcc Al is 4.0495. AlSi12 single-crystal is formed by substituting 12 wt.% of
Al atoms with Si atoms. The linear elastic constants Cij are obtained at zero temperature by
analyzing the stress–strain relation Cij = ∂σij/∂εij, where σij and εij are, respectively, the
stress and strain components. General decent agreements between the present results and
those of other investigators are observed in Table 1. Consequently, the potential functions
utilized here demonstrate an accurate simulation of the interactions between atoms.

Table 1. The elastic constants determined through the current MD simulations and their comparison
with values reported by other researchers.

Material Method C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa)

α-Al2O3

Present 510 130 138 518 138 165
Experiment [33] 497 164 111 498 147 167
MD [34] 537 180 106 509 130 179
Monte Carlo simulation [35] 666 269 192 520 158 -

AlSi12 Present 268 134 154 214 108 105

2.2. Molecular Dynamics Model

According to high-resolution transmission electron microscopy, it has been observed
that the predominant orientation relationship at the Al2O3/Al interface is characterized by
the parallel alignment of the Al(111) plane and the Al2O3(0001) basal plane [36]. Pilania
et al. [37] also studied coherent and semi-coherent α-Al2O3(0001)/Al(111) interfaces with a
mixed metallic–ionic atomistic model using MD simulations. Therefore, in this study, the
lattice orientation alignment (0001)[2 1 1 0]α−Al2O3

∥∥ (111)[1 1 2]AlSi12 is taken into account
according to the research of other investigators.

The current model comprises a bilayer nanocomposite composed of α-Al2O3 and
AlSi12. The initial α-Al2O3/AlSi12 interface shown in Figure 1 is considered a single crystal
of AlSi12 at the bottom and a single crystal of α-Al2O3 at the top with an initial gap of
2.0 Å which closely approximates the equilibrium atomic distance at the interface. To
examine the impact of alumina terminations on diffusion, two configurations are modeled
at the interface: one with Al-termination and another with O-termination. These cases
allow a comprehensive exploration to occur of how different terminations affect diffusion
behavior. The MD model has a typical size of about 119 × 58 × 184 Å, containing a total of
109,986 atoms.
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Figure 1. Model of the Al-terminated α-Al2O3/AlSi12 interface designed for the MD analyses.

The geometric arrangement of atoms is optimized through the utilization of the
conjugate gradient (CG) energy minimization method. First, the NVT canonical ensemble
(constant number of particles N, volume V, and temperature T) at a constant temperature
of 1200 K is imposed on the sample for 10 ps. Second, the NPT ensemble (constant number
of particles N, pressure P, and temperature T) at zero pressure and a constant temperature
of 1200 K is used for 15 ps to regulate the volume and achieve relaxation in the assembled
interface system. Subsequently, the sample is subjected to heating at a heating rate of
10 K/ps until it reaches a preset temperature. Finally, the temperature is held constant
at the specified value for a duration of 2.0 ns to analyze interdiffusion while monitoring
and recording the atomic movements throughout this period. All processes are conducted
using the NPT ensemble at zero pressure, employing a time-step of 0.2 fs. The simulations
are performed at 1500, 1600, 1800, and 2000 K temperatures. Periodic boundary conditions
are implemented for the sample in all three directions.

3. Results and Discussion

To study the diffusion properties of the α-Al2O3/Al interface, the system is heated
to a predetermined temperature and maintained there for 2.0 ns. The development of the
interface diffusion for the Al-terminated Al2O3/AlSi12 interface after heating it to 2000 K
is illustrated in Figure 2. The initial configuration illustrates the sharp interface between
Al2O3 and AlSi12, considering an initial gap of 2 Å. Furthermore, after maintaining it for
2.0 ns at 2000 K, the system configuration represents the local movement of atoms and the
creation of a diffusion zone. The diffusion front is shown in this figure with a dashed line.

3.1. Self-Diffusion

The mean square displacements (MSDs) of Al, O, and Si atoms after maintaining the
system for a duration of 2.0 ns at different temperatures of 1500, 1600, 1800, and 2000 K
for the Al- and O-terminated α-Al2O3/AlSi12 diffusion couples are depicted in Table 2.
This table presents the MSD values for Al atoms in α-Al2O3, Al atoms in AlSi12, and all
Al atoms in the system. As expected, due to the difference in ceramic and metal atomic
bonding, the Al atoms in α-Al2O3 have a significantly lower MSD than the Al atoms in
AlSi12. It is also observed that the MSD of O atoms is smaller than the MSD of Al atoms in
α-Al2O3. It is observed that the MSD of Al atoms is larger than the MSD of Si atoms, and
the MSD of Si atoms is also larger than the MSD of O atoms.
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Figure 2. Cross-sections of the atomic configurations of the Al-terminated Al2O3/AlSi12 interface.
The figure shows the initial atomic structure before relaxation, as well as the configuration after the
system is held at 2000 K for 2.0 ns. The dashed line indicates the front of the diffusion region.

Table 2. Mean square displacement (nm2) of Al, O, and Si atoms at different temperatures for the Al-
and O-terminated α-Al2O3/AlSi12 diffusion couples.

Diffusion
Couple Temperature (K)

Atom

Al (Al2O3) Al
(AlSi12) Al O Si

Al-terminated
α-Al2O3/AlSi12

1500 0.65 24.95 13.46 0.35 2.22
1600 0.84 32.26 17.45 0.37 2.25
1800 1.26 47.45 25.51 0.41 2.31
2000 1.70 63.29 34.01 0.47 2.36

O-terminated
α-Al2O3/AlSi12

1500 0.50 25.11 13.57 0.34 2.34
1600 0.64 32.26 17.58 0.38 2.36
1800 1.04 46.98 25.42 0.45 2.40
2000 1.67 62.34 33.63 0.50 2.46

The coefficients of self-diffusion for each atom type are obtained by analyzing the
slope of the MSDs employing Einstein’s relation [38]:

DA = lim
t→∞

1
NA

NA

∑
i=1

〈∣∣rA
i (t)− rA

i (0)
∣∣2
〉

6t
(4)

where NA represents the total number of atoms of type A, rA
i denotes the position vector

of the ith atom belonging to type A, and 〈· · · 〉 signifies the average calculated across
all atoms of the same type. The activation energy Q and pre-exponential factor D0 of
atoms can be obtained by fitting the self-diffusion coefficients to the Arrhenius equation
D = D0 exp(−Q/RT). The Arrhenius plots of Al, O, and Si atoms for the Al- and O-
terminated interfaces are illustrated in Figure 3. Similar to the MSD, Al atoms in Al2O3
have a significantly smaller self-diffusion coefficient than the Al atoms in AlSi12 because
of the differences in atomic bonding between ceramic and metal. Additionally, the self-
diffusion coefficient of O atoms is less pronounced than Al atoms in Al2O3. As can be seen,
Al atoms have a higher self-diffusion coefficient than Si atoms, and Si atoms also have a
higher self-diffusion coefficient than O atoms. Table 3 also displays the outcomes of the
atoms’ activation energies and pre-exponential factors.
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Table 3. Arrhenius parameters, D0 and Q, for self-diffusion of Al, O, and Si atoms for Al- and
C-terminated α-Al2O3/AlSi12 diffusion couples.

Atom
Al-Terminated O-Terminated

Q (kJ/mol) D0 × 10−9 (m2/s) Q (kJ/mol) D0 × 10−9 (m2/s)

Al (Al2O3) 66.39 6.32 88.15 21.37
Al (AlSi12) 46.56 89.13 45.22 80.82

Al 46.84 48.15 45.54 44.03
O 16.64 0.0078 12.30 0.0058
Si 6.89 0.200 5.14 0.183

3.2. Interdiffusion

The interdiffusion flux of an n-component system is described by the following On-
sager’s formulation [39,40] of Fick’s law:

J̃i = −
n−1

∑
j=1

D̃n
ij

∂Cj

∂z
(5)

where J̃i, Ci, and ∂Ci/∂z are the interdiffusion flux, mole fraction, and concentration
gradient of component i, respectively. Furthermore, D̃n

ij is the interdiffusion coefficient.
According to Equation (5), the interdiffusion behavior in a ternary system can be described
by four independent interdiffusion coefficients: D̃3

11, D̃3
12, D̃3

21, and D̃3
22. The Boltzmann–

Matano [41,42] method can determine the interdiffusion coefficients.
In the present research, the average interdiffusion coefficients are determined using

the approach proposed by Dayananda and Sohn [41]. The average main interdiffusion

coefficients (i.e., D̃
3
11 and D̃

3
22) and cross interdiffusion coefficients (i.e., D̃

3
12 and D̃

3
21) are

evaluated by computing the atomic interdiffusion flux using only the single diffusion
couple under study. The concentration curve is fitted using the Gaussian error function for
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each component. The interested reader will find detailed explanations about the method in
Refs. [42,43].

The variations in Al, Si, and O atom concentrations with respect to the z-coordinate,
which is normal to the interface plane, are shown in Figure 4 for a quantitative analysis of the
diffusion process in the Al-terminated α-Al2O3/Al interface. To obtain the concentration
profiles, the diffusion couple is divided into thin slices with a thickness of 2.0 Å along
the interface plane. The count of atoms for each type is determined within each slice.
Figure 4 shows the initial concentration profiles before diffusion, and the profiles observed
after keeping the system at 2000 K for a duration of 2.0 ns. A grey region also depicts
the diffusion zone. The variations in atom concentrations for the O-terminated interface,
which are not shown here for conciseness, indicate that the diffusion zones in the Al- and
O-terminated systems are not significantly different.
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as the Al and O atoms, while the Si atom is assigned as the dependent variable. The profile 
variations in the two diffusion couples appear to be very similar. However, it is worth 
noting that the maximum interdiffusion flux of the Al-terminated interface is slightly 
higher than that of the O-terminated interface. 

Figure 4. The variations in Al, Si, and O atom concentrations along the z-axis during interdiffusion of
the Al-terminated α-Al2O3/AlSi12 interface. The initial system before relaxation and after a 2.0 ns
maintenance at 2000 K are illustrated. The diffusion zone is depicted by the gray region.

Figure 5 illustrates the variations in the interdiffusion flux J̃ and J̃(z− z0) for the Al-
and O-terminated α-Al2O3/AlSi12 diffusion couples after keeping the systems at 2000 K
for a duration of 2.0 ns. The position of the Matano plane, denoted by z0, is also shown in
Figure 5 by a vertical dashed line. It is observed that the Matano plane corresponds to the
point of highest interdiffusion flux. The independent variables are arbitrarily chosen as
the Al and O atoms, while the Si atom is assigned as the dependent variable. The profile
variations in the two diffusion couples appear to be very similar. However, it is worth
noting that the maximum interdiffusion flux of the Al-terminated interface is slightly higher
than that of the O-terminated interface.
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Table 4 presents the calculated average values of the main and cross ternary interdif-
fusion coefficients for the Al- and O-terminated α-Al2O3/AlSi12 diffusion couples. The
diffusion couples are kept at annealing temperatures of 1500, 1600, 1800, and 2000 K for a
duration of 2.0 ns. The coefficients are determined using the composition ranges on the
lower and upper sides of the Matano plane. It is observed from Table 4 that the main
interdiffusion coefficients increase as the annealing temperature increases, as expected.
Furthermore, all cross ternary interdiffusion coefficients are significantly smaller, with at
least four orders of magnitude lower than the main interdiffusion coefficients. Hence, the
cross ternary interdiffusion coefficients do not significantly influence the current ternary
systems. Moreover, based on the findings in this table, it is observed that the diffusivity
of Si and O atoms shows a slight increase in the Al-terminated system compared to the
O-terminated counterpart. However, generally speaking, there is no appreciable distinction
between the average interdiffusion coefficients of the Al- and O-terminated systems.

Table 4. The average interdiffusion coefficients for the ternary systems on either side of the Matano
plane. These values are determined after the system is maintained at the preset temperature for a
duration of 2 ns.

Diffusion Couple Temperature
(K)

For Composition Range of the Lower Side
of Matano Plane
D̃

3
ij ×10−11(m2/s)

For Composition Range of the Upper Side
of Matano Plane
D̃

3
ij ×10−11(m2/s)

D̃
Si
AlAl D̃

Si
AlO D̃

Si
OAl D̃

Si
OO D̃

Si
AlAl D̃

Si
AlO D̃

Si
OAl D̃

Si
OO

Al-terminated
α-Al2O3/AlSi12

1500 0.489 −4.2 × 10−7 1.8 × 10−5 0.584 0.489 2.2 × 10−7 −2.0 × 10−5 0.584
1600 0.518 −6.3 × 10−7 8.4 × 10−6 0.623 0.518 5.7 × 10−7 −9.3 × 10−6 0.623
1800 0.608 −7.9 × 10−7 6.1 × 10−7 0.845 0.608 −1.2 × 10−6 −1.9 × 10−6 0.845
2000 0.753 1.3 × 10−7 −6.4 × 10−6 1.307 0.753 −2.5 × 10−7 2.8 × 10−6 1.307

O-terminated
α-Al2O3/AlSi12

1500 0.429 2.1 × 10−7 6.3 × 10−6 0.489 0.429 2.8 × 10−7 4.1 × 10−6 0.489
1600 0.452 −5.4 × 10−7 −1.3 × 10−6 0.531 0.452 7.6 × 10−7 3.8 × 10−6 0.531
1800 0.527 −4.9 × 10−7 −6.9 × 10−6 0.562 0.527 1.4 × 10−6 1.7 × 10−6 0.685
2000 0.696 4.9 × 10−5 2.9 × 10−4 1.012 0.696 −1.3 × 10−4 9.9 × 10−5 1.012

4. Conclusions

A molecular dynamics method was employed to investigate atomistic evolutions
during the interdiffusion at the α-Al2O3/AlSi12 interface. The self-diffusion and interdiffu-
sion coefficients were assessed at 1500, 1600, 1800, and 2000 K annealing temperatures for
different diffusion couples. Based on the findings of this study, the following conclusions
can be made:

• The self-diffusion coefficient for Al atoms in Al2O3 is higher compared to O atoms.
• The average main and cross ternary interdiffusion coefficients were determined for

the first time for the Al- and O-terminated Al2O3/AlSi12 systems utilizing the concen-
tration profiles of atoms during diffusion.

• The diffusion zone and interdiffusion coefficients increased with the progressive
elevation of the annealing temperature and duration.

• No notable distinction of ternary interdiffusion coefficients was observed between the
Al- and O-terminated interfaces.

Future studies may utilize the samples after diffusion and cooling to determine the
effective mechanical properties of the Al2O3/AlSi12 interface through the cohesive zone
model and, therefore, the mechanical properties of the MMC.
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14. Maj, J.; Basista, M.; Węglewski, W.; Bochenek, K.; Strojny-Nędza, A.; Naplocha, K.; Panzner, T.; Tatarková, M.; Fiori, F. Effect of
microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by
squeeze casting. Mater. Sci. Eng. A 2018, 715, 154–162. [CrossRef]

15. Roy, S.; Stoll, O.; Weidenmann, K.A.; Nagel, A.; Wanner, A. Analysis of the elastic properties of an interpenetrating AlSi12–Al2O3
composite using ultrasound phase spectroscopy. Compos. Sci. Technol. 2011, 71, 962–968. [CrossRef]

16. Dolata, A.J. Tribological properties of AlSi12-Al2O3 interpenetrating composite layers in comparison with unreinforced matrix
alloy. Materials 2017, 10, 1045. [CrossRef] [PubMed]
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Abstract: Variable Angle Tow (VAT) laminates offer a promising alternative to classical straight-
fiber composites in terms of design and performance. However, analyzing these structures can
be more complex due to the introduction of new design variables. Carrera’s unified formulation
(CUF) has been successful in previous works for buckling, vibrational, and stress analysis of VAT
plates. Typically, one-dimensional (1D) and two-dimensional (2D) CUF models are used, with a linear
law describing the fiber orientation variation in the main plane of the structure. The objective of
this article is to expand the CUF 2D plate finite elements family to perform free vibration analysis
of composite laminated plate structures with curvilinear fibers. The primary contribution is the
application of Reissner’s mixed variational theorem (RMVT) to a CUF finite element model. The
principle of virtual displacements (PVD) and RMVT are both used as variational statements for
the study of monolayer and multilayer VAT plate dynamic behavior. The proposed approach is
compared to Abaqus three-dimensional (3D) reference solutions, classical theories and literature
results to investigate the effectiveness of the developed models. The results demonstrate that mixed
theories provide the best approximation of the reference solution in all cases.

Keywords: free vibration analysis; finite element method; variable angle tow plates; Carrera’s
unified formulation; Reissner’s mixed variational theorem

1. Introduction

Over the last decades, composite structures have gained significant attention across
diverse application fields, including aerospace, automotive and construction, due to their
unique properties. Due to their high stiffness-to-weight ratio, composites help to build
light structures with interesting mechanical properties. Despite this, a common thought is
that the potential of fiber-reinforced structures could be better exploited by improving the
directional properties through the variation of the fiber angle along the in-plane directions.
The choice to keep the fiber orientation constant in each layer is particularly restrictive
for geometries that present geometrical discontinuities such as cut-outs. VAT plates are
characterized by an in-plane variation of fiber angle, helping to expand the design space
of a specific structure. This is particularly useful for optimization problems, where a
wider design space can positively affect the search of an optimal solution. For example,
in the context of vibrational analyses, the maximization of fundamental frequencies can be
improved by using curvilinear fibers. VATs were originally obtained through automated
tape placement (ATP) and automated fiber placement (AFP). ATP helps the automated
placement of composite material tapes with a specific angle in order to reproduce a de-
sired path. AFP is similar to ATP, since the main difference is related to the width of
the material that is laid down: while ATP handles a tape with a width between 75 and

Materials 2023, 16, 4643. https://doi.org/10.3390/ma16134643 https://www.mdpi.com/journal/materials
389



Materials 2023, 16, 4643

300 mm, AFP involves the placement of the material with a typical width between 3.1
and 12.7 mm. By consequence, AFP allows for better control of fiber angles, achieving
a wider design flexibility; see Dirk et al. [1]. However, automated processes show some
limitations related to manufacturing defects, such as gaps and overlaps, or constraints
such as the minimum steering radius. These aspects can be partially overcome due to
new technologies such as additive manufacturing (AM), also known as 3D printing. AM
involves the layer-by-layer deposition of materials to create a three-dimensional object. In
the case of variable angle tow composites, AM techniques are used to deposit and cure
layers of composite materials with varying fiber orientations; see Zhuo et al. [2]. VAT
composites have diverse applications ranging from aerospace engineering and wind energy
to automotive and construction contexts, offering enhanced structural performance, weight
reduction, and tailored properties for improved efficiency and functionality in a wide range
of industries. For example, these materials can be employed in the optimization of aircraft
wings to enhance structural weight and fuel consumption, as presented in Brooks et al. [3].
In the space context, VATs can be used for the design of liquid oxygen in order to reduce the
mass and increase the payload of space launchers, as discussed by Gren et al. [4]. Despite
the significant advantages associated with curvilinear fiber composites, these materials
have limitations from both manufacturing and design perspectives. The production of
VAT composites can be more complex in comparison with traditional laminates, since the
material behavior is strongly affected by process-induced defects. Moreover, not all fiber
patterns can be realized, because of the technological limitations that characterize their
production. The complexity of analysis is one of the main disadvantages of VATs, because a
greater number of unknowns must be taken into account and unfeasible fiber patterns
could be obtained during the optimization process.

Several methods for the study of VAT mechanical responses are available in the
literature. In the following text, a brief review of these approaches is presented, with a
particular focus on free vibration analyses. To the best of the authors’ knowledge, the first
works that have been presented on the topic are based on the assumption of a constant
fiber angle within each element in a finite element method (FEM) solution. Therefore,
the continuous variation of fiber direction was approximated in a step-wise discrete way.
This approach can be used in commercial FEM software tools that, at the moment, cannot
handle continuous fiber variation. Hyer and Charette [5] and Hyer and Lee [6] used this
method to improve the VAT tensile strength and buckling response, respectively. One of the
main disadvantages of this step-wise approach is that, as the true variation is continuous,
the discrete representation of fiber angle variation imposes a further approximation. A
p-version FEM based on the third-order shear deformation theory (TSDT) was applied by
Akhavan and Ribeiro [7] to preform vibrational analyses. The results showed that fiber
variation helps to increase (or decrease) natural frequencies and that thin plates are more
affected by this phenomenon if compared with thick ones. Ribeiro and Akhavan [8] used
the p-version FEM approach with elements based on the first-order shear deformation
theory (FSDT) to perform non-linear vibration analyses. The advantage of the p-version
of the FEM is that the accuracy of the approximation is improved by increasing the order
of shape functions over the elements. Vibration analyses were performed on VAT plates
with a central circular cut-out considering parabolic fibers by Hachemi et al. [9]. Zhao and
Kapania [10] investigated the free vibration of prestressed VAT stiffened plates, where plates
and stiffeners were modeled separately through Mindlin plate theory and Timoshenko
beam theory, respectively. The compatibility conditions at the interface between the plate
and stiffeners were satisfied by using a transformation matrix. Honda and Narita [11] used
the classical plate theory within the Ritz method in order to evaluate the natural frequencies
and vibrational modes. An experimental approach was used in Rodrigues et al. [12] for
the free vibration analysis of a plate with free boundary conditions that was subjected to
random excitation via an electromagnetic shaker. Subsequently, the results were compared
to the ones obtained through FEM, where a four-node isoparametric element based on
the Reissner–Mindlin theory was used. Stodieck et al. [13] showed that curvilinear fibers
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can be useful for improving the aeroelastic response of composite wings. The Rayleigh–
Ritz method and classical lamination theory were used to develop a 1D beam model,
considering the assumption of null chamber deformation of the wing chord-wise section.
The aeroelastic response was computed by introducing quasi-static aerodynamic forces in
a model developed for the plate structural analysis. A parametric study showed that by
using VATs, it is possible to influence wing response both positively and negatively.

Curvilinear fibers can improve the modal response, as shown in several works. Ab-
dalla et al. [14] used the classical lamination theory in combination with a successive
approximation method in order to solve an optimization problem. The results showed that
curvilinear fibers increased the optimal fundamental frequency in comparison with straight
ones. A similar approach was presented in Blom et al. [15], where the maximization of
the first natural frequency considering manufacturing constraints was obtained for VAT
conical shells. In Carvalho et al. [16], a genetic algorithm and shell elements based on
FSDT were used for maximization of the fundamental frequency. The multi-scale two-level
(MS2L) approach helps to split the optimization problem in two parts. The composite is
modeled as an equivalent homogeneous anisotropic plate in the first step, which aims to
find the ideal distribution of the polar parameters that represent the mechanical design
variables. The main goal of a second step is to establish the best stacking sequence in
relation to the mechanical property distribution that has been obtained in the first step.
The MS2L method was applied by Montemurro and Catapano [17] to VAT plates in order
to optimize the buckling response. In order to evaluate the polar parameters, B-spline
surfaces were introduced, while manufacturing constraints were considered during the
second step. More details about the MS2L approach can be found in Catapano et al. [18],
Montemurro and Catapano [19] and Fiordilino et al. [20], where both stiffness and buckling
optimization problems were solved.

VAT structures have also been studied by using Carrera’s unified formulation. CUF is
a mathematical framework that helps the derivation of different theories, such as classical
lamination plate theory, higher-order shear deformation theories, or LW approaches, within
a unique formulation; see Carrera [21,22]. The a priori approximation over the thickness
(typical of plates’ structural modeling) can also be freely assumed as a generic combination
of functions whose number is a free parameter of the formulation. When polynomial
functions are used, as in this article, the expansion order along the thickness of the plate is
arbitrary in the formulation, and it can be set when performing a specific analysis. This
flexibility is beneficial because it helps to tailor the accuracy and computational efficiency
of the analysis to the specific requirements of the problem at hand. Carrera et al. [23] used
CUF in order to develop a Navier closed-form solution for the static analysis of isotropic
plates under several loading conditions. The same approach was used in Carrera and
Giunta [24] in order to perform failure analyses on isotropic plates. A further extension
of this method was shown in Giunta et al. [25], where a indentation failure analysis of
composite sandwich plates was performed. Giunta et al. [26] performed free vibration
analyses of composite beams. In Viglietti et al. [27] and Fallahi et al. [28], free vibration and
buckling analyses of VATs were performed through the use of a 1D CUF model. Within
this framework, shell models were developed as well for VAT cases in order to perform
stress analyses; see Sánchez-Majano et al. [29]. In Pagani and Sánchez-Majano [30,31]
and Sánchez-Majano et al. [32], manufacturing defects were taken into account by using
stochastic techniques. Vescovini and Dozio [33] used the Ritz method within CUF for
vibrational and buckling analyses. A generalization of CUF was developed in order to
allow for the use of different expansions for every component of the displacement vector.
Demasi et al. [34] applied this approach to the study of VAT plates with an ESL model. A
further advantage of CUF is that it can be used in combination with different variational
statements. An alternative to the classic PVD is represented by the RMVT, where both
displacements and transverse out-of-plane stresses are considered as primary variables.
RMVT has been widely used within CUF for the study of straight-fiber composite structures.
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For example, Carrera and Demasi [35,36] developed RMVT-based CUF models to perform
the static analysis of straight fiber plates.

The free vibration analysis is an important problem in engineering (see Babaei et al. [37]),
and within this context, CUF has been applied to the study of VATs considering PVD as
the main variational statement. For this reason, this work aims to extend this framework
with the RMVT formulation in order to develop a family of hierarchical plate finite elements.
This will help to better predict the natural frequencies of composite plates characterized by
curvilinear fibers. Section 2 shows the theoretical derivation for free vibration problems.
Section 3 presents the numerical results where three cases are investigated. Analyses are
performed that consider a varying side-to-thickness ratio in order to investigate thin and thick
plates, and the differences between models are discussed regarding PVD or RMVT statements.
The results are compared to reference solutions for validation. Concluding observations and
remarks are presented in Section 4.

2. Carrera’s Unified Formulation

A plate is a flat body whose material points lie in the Cartesian closed-point subset

P = Ω×H (1)

of the three-dimensional space R3 where:

Ω =
{
(x, y) :

x
a

,
y
b
∈ [0, 1]

}
⊂ R2,

H =

{
z :

2z
h
∈ [−1, 1]

}
,

(2)

where a and b are the dimensions along the two in-plane axes, and h measures its thickness
along the z-axis, where z� a and b. The global reference system and plate geometry are
presented in Figure 1.

Figure 1. Plate geometry and reference system.

The displacement field is expressed as:

u =





ux
uy
uz



. (3)

The strain tensor components can be written in vector form. Two vectors are obtained,
representing the in-plane and out-of-plane components:

εp =





εxx
εyy
εxy



, εn =





γxz
γyz
γzz



. (4)
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The hypothesis of small displacements helps to use a linear strain–displacement relation:

εp = Dpu ,
εn = (DnΩ + Dnz)u ,

(5)

where Dp, DnΩ and Dnz are the following differential operators:

Dp =




∂

∂x
0 0

0
∂

∂y
0

∂

∂y
∂

∂x
0




, DnΩ =




0 0
∂

∂x

0 0
∂

∂y
0 0 0




, Dnz =




∂

∂z
0 0

0
∂

∂z
0

0 0
∂

∂z




. (6)

The stress vector is expressed in a similar manner:

σp =





σxx
σyy
σxy



, σn =





σxz
σyz
σzz



. (7)

Hooke’s law reads:
σp = C̃ppεp + C̃pnεn ,
σn = C̃npεp + C̃nnεn ,

(8)

where the terms C̃pp, C̃pn, C̃np and C̃nn are subcomponents of a material stiffness matrix C̃
according to the stress and strain ordering in Equations (4) and (7), where the fibers lay
in Ω and where they are not, in general, aligned with the x-axis. C stands for the stiffness
matrix in the global reference system, and its components can be written in terms of the
Young’s moduli EL and ET , shear moduli GLT and GTT and Poisson’s ratios νLT and νTT ,
where subscripts L and T stand for the directions parallel and perpendicular to the fibers,
respectively. For further details, see Reddy [38].

2.1. Variable Stiffness Composite Plates

Laminated VAT structures are considered in this work. For this reason, the material
stiffness coefficients can change layer-wise along the thickness and pointwise along the
in-plane directions. The mapping of C into C̃ reads:

C̃ = TCTT . (9)

Superscript T stands for the transpose operator. The matrix T represents a rotation matrix
that depends on an in-plane rotation angle θ. For the sake of brevity, the components
of C̃ and T are not reported here; they can be found in Reddy [38]. In a laminated VAT,
the rotation angle θ is a bi-dimensional field in Ω. In this work, two different variation
laws are considered for θ, a linear variation law and a parabolic one. The linear law can be
expressed according to the following formula:

θ(α) = Φ + T0 +
T1 − T0

d
|α| . (10)

The angle Φ describes the original direction along which θ varies, and α is a generic spatial
variable defined as:

α = x′ cos(Φ) + y′ sin(Φ) . (11)

x′ and y′ denote a generic in-plane reference system used for describing a fiber path, where
θ is measured. The introduction of a new reference system is useful in order to represent
the local fiber orientation independently from the global reference system identified by
axes x and y. T0 and T1 are the angles between the α-axis and the tangent to a fiber for α
equal to zero and d, respectively; see Figure 2.
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Figure 2. Example of in-plane fiber orientation.

As shown in the Figure 2, the fiber angle is always measured with respect to the
x′-axis, and it can change along a generic direction α, defined as a combination of x′

and y′ depending on the angle Φ. Further details about the fiber linear variation law
can be found in Gürdal et al. [39]. The parabolic law can be expressed according to the
following equation:

θ(α) = Φ + T0 + tan−1
(

γ
α

d

)
. (12)

The parameter γ is used to control the shape of the parabola, and it is related to the final
fiber angle T1 as T1 = tan−1(±γ). More details about the parabolic fiber path can be found
in Hachemi et al. [9] and Honda et al. [40]. The following notation, based upon the above
introduced parameters, is used in order to describe the in-plane linear and parabolic fiber
behavior: Φ < T0, T1 >.

2.2. Variational Statements

PVD and RMVT variational statements are considered to derive the governing equa-
tions for the free vibration problem for a laminated VAT plate. The fundamental distinction
is that the RMVT considers the vector of the out-of-plane stresses σn as a primary unknown,
whereas the PVD considers only displacements as primary variables. For the PVD case,
the following variational statement applies:

∫

Ω

∫

H

(
δεT

pG σpH + δεT
nG σnH

)
dz dΩ + δLin = 0 , (13)

where the subscript G refers to the components obtained from the geometrical relations
in Equation (5), and subscript H refers to the components obtained from Hooke’s law
in Equation (8). Lin is the virtual work of the inertial forces, and δ stands for a virtual
variation. For the RMVT case, the variational statement is:

∫

Ω

∫

H

[
δεT

pG σpH + δεT
nG σnM + δσT

nM(εnG − εnH)
]

dz dΩ + δLin = 0 . (14)

The M subscript refers to the transverse stress components considered as primary un-
knowns in the mixed formulation. For the RMVT formulation, Hooke’s law is rewritten
as follows:

σpH = ĈppεpG + ĈpnσnM ,
εnH = ĈnpεpG + ĈnnσnM ,

(15)

where Ĉpp, Ĉpn, Ĉnp and Ĉnn are (see Carrera and Demasi [35]):

Ĉpp = C̃pp − C̃pnC̃−1
nn C̃np ,

Ĉpn = C̃pnC̃−1
nn ,

Ĉnp = −C̃−1
nn C̃np ,

Ĉnn = C̃−1
nn .

(16)
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The superscript “−1” indicates the inverse of a matrix. The inertial work can be expressed as:

δLin =
∫

Ω

∫

H
δuTρ ü dΩ dz , (17)

where ρ is the plate material density, and ü represents the acceleration vector.

2.3. Kinematic Assumptions

CUF uses an axiomatic approach along the through-the-thickness direction to represent
the primary unknowns; see Carrera [22]. The generic unknown component f = f (x, y, z) is
approximated as:

f (x, y, z) = Fτ(z)gτ(x, y) , τ = 0, 1, . . . , N , (18)

where f is a displacement component in a formulation derived from the PVD, but it can
also be an out-of-plane stress component when a RMVT formulation is considered. Fτ

is an approximation function in H, and gτ is an unknown two-dimensional function in
Ω. According to Einstein’s notation, a twice-repeated index implies a sum over the index
range. Finally, N is the approximation order. Both N and Fτ are a priori defined. This
feature of CUF helps to obtain multiple theories in the same formulation. Within CUF,
ESL or LW models can also be obtained depending on the support of Fτ . In an ESL model

Fτ : H 7→ R, whereas for a LW model Fτ : Hk 7→ R where Hk =

{
zk :

2zk

hk ∈ [−1, 1]

}

such that H =
Nl⋃

k=1
Hk and Hk ∩ Hk′ = ∅ for k 6= k′ with k, k′ = 1, 2, . . . , Nl , where

Nl is the total number of laminae, and hk is the thickness of a generic k lamina such that

k =
Nl
∑

k=1
hk. The number of unknowns in the ESL case is independent of the number of layers

in the lamination since the approximation is imposed globally overH. The total stiffness
contributions can be seen as a weighted average of each layer stiffness along the thickness.
Maclaurin’s series approximation is considered for the ESL models as a linear combination
of the power functions:

Fτ(z) = zτ , τ = 0, 1, . . . , N , (19)

where N is the expansion order. The computational cost of ESL models depends on N
only, and for a given N, it is lower than a LW model since this latter model depends on
the total number of layers in the lamination. ESL models are suitable for relatively thick
laminates. However, they are unable to accurately predict the behavior of thick plates
with a high degree of anisotropy. ESL models have C∞-continuity overH because of the
used approximation functions, whereas laminated composites present a C0-continuity since
the interface between the two consecutive layers of the different materials introduces a
change in the slope of the displacements (also known as zig-zag displacement through-the-
thickness variation). This behavior can be accommodated within an ESL theory by means
of Murakami’s function. This approach is not considered here; for more details, refer to
Carrera [41]. In an LW model, the kinematics of each layer are formulated independently:

f k(x, y, z) = Fb(z)gk
b(x, y) + Fr(z)gk

r (x, y) + Ft(z)gk
t (x, y) , r = 2, . . . , N , (20)

where subscripts b and t stand for the bottom and top layers, respectively. Congruence at
the interface is retrieved via a through-the-thickness assembly procedure similar to that
used in the finite element method. For this reason, Lagrange polynomials (which ensure
partition of unity), or the following linear combination of Legendre polynomials, which are
represented as:

Ft

(
z(ξk)

)
=

P0 + P1

2
, Fb

(
z(ξk)

)
=

P0 − P1

2
, Fr

(
z(ξk)

)
= Pr − Pr−2, r = 2, . . . , N (21)
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are typically used as approximation functions overHk. The use of Lagrange or Legendre
polynomials along the thickness changes according to the used model, and this is specified

at the end of the next subsection. In Equation (21), ξk =
2zk

hk ∈ [−1, 1] and Pi = Pi

(
ξk
)

are

an i-order Legendre polynomial. Equation (21) creates a base where Ft and Fb are the two
linear Lagrange polynomials, and Fr is a kind of p-version-enriching function since it does
not contribute to a base linear combination for ξk = ±1, being, by definition, Fr(±1) = 0.
Since LW base functions have local support, inter-layer C0-continuity for layers made of
different materials is ensured, but the computational costs are higher than for ESL models.

2.4. Acronym System

An acronym system is used in order to identify all the derived theories. Figure 3 shows
this system.

Figure 3. Acronym system.

The first letter addresses the approximation level that is applied: ‘E’ denotes the ESL
models, whereas ‘L’ denotes the LW models. The second letter denotes the variational
statement: PVD or RMVT are denoted by ‘D’ or ‘M’, respectively. The last number is the
order of expansion along the plate thickness. A number at the beginning of the acronym,
when present, indicates how many virtual layers have been used to approximate each
physical layer in an LW model to improve the results for a given approximation order. If this
number is not present, only one virtual layer has been used to represent each physical layer.

As an example, in EDN models, the displacement field can be expressed as:

ux = ux0 + ux1z + ux2z2 + · · ·+ uxNzN ,

uy = uy0 + uy1z + uy2z2 + · · ·+ uyNzN ,

uz = uz0 + uz1z + uz2z2 + · · ·+ uzNzN .

(22)

In vector form:

u = F0u0 + F1u1 + · · ·+ FNuN = Fτuτ , τ = 0, 1, . . . , N , (23)

where Fτ = zτ and uτ = uτ(x, y). Additionally, classical theories can be taken into account.
Classical lamination theory (CLT) and first-order shear deformation theory are obtained as
a particular case of a first-order ESL theory. FSDT is obtained through the penalization of
the uz1 term, while for CLT, transverse shear stresses are disregarded by using a fictitiously
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high value of the material shear moduli. The material stiffness matrix needs to be reduced
in a plane-stress sense to overcome thickness locking.

For LDN solutions, only displacements are considered as the primary variables:

uk = F0uk
0 + F1uk

1 + · · ·+ FNuk
N = Fτuk

τ , τ = 0, 1, . . . , N , k = 1, 2, . . . , Nl . (24)

For LMN solutions, transverse stresses are treated as primary variables. The transverse
stress field can be expressed as:

σk
n = F0σk

0 + F1σk
1 + · · ·+ FNσk

N = Fτσk
τ , τ = 0, 1, . . . , N , k = 1, 2, . . . , Nl . (25)

It can be observed that ESL theories can be considered as a particular case for LW theories.
While in the first case the integration along the thickness is performed in order to repre-
sent composite properties through a unitary layer, for the second case, the integration is
computed layer by layer. This helps to represent the kinematics of each layer separately for
LW models. LDN solutions are obtained with Lagrange polynomials with equally spaced
nodes, whereas LMN ones are obtained with Legendre polynomials.

2.5. FE Stiffness Matrices

As far as a FEM solution is concerned, the in-plane domain is discretized into Ne

subdomains such as Ω =
Ne⋃

e=1
Ωe and Ωe ∩Ωe′ = ∅ for e 6= e′ . Shape functions are then

introduced for the approximation of the variation over Ωe. In the case of a bi-dimensional
model, Equation (18) becomes:

f (x, y, z) = Fτ(z)Ni(x, y)gτi , τ = 0, 1, . . . , N , i = 1, . . . , Nn , (26)

where Ni stands for the shape functions, and Nn is the number of nodes in the used finite
element. Classical Lagrange shape functions are used. They are not presented here for the
sake of brevity, but they can be found in Bathe [42]. FE stiffness matrices are obtained by
the weak form of the variational principles. In the PVD case, considering Equation (26), the
displacement field can be written as:

u = Fτ Ni





qxτi
qyτi
qzτi



 = Fτ Niqτi . (27)

Through the substitution of Equations (5), (8) and (27) into Equation (13), the weak PVD
form can be obtained:

∫
Ωe

δqT
τi
[
DT

p (NiI)Z̃τs
ppDp

(
NjI
)
+ DT

p (NiI)Z̃τs
pnDnΩ

(
NjI
)
+ DT

p (NiI)Z̃
τs,z
pn
(

NjI
)

+DT
nΩ(NiI)Z̃τs

npDp
(

NjI
)
+ DT

nΩ(NiI)Z̃τs
nnDnΩ

(
NjI
)
+ DT

nΩ(NiI)Z̃
τs,z
nn
(

NjI
)

+(NiI)Z̃
τ,zs
np Dp

(
NjI
)
+ (NiI)Z̃

τ,zs
nn DnΩ

(
NjI
)
+ (NiI)Z̃

τ,zs,z
nn

(
NjI
)]

qsjdΩ = −
∫

Ωe
δqT

τi(NiI)ρEτs
(

NjI
)
q̈sjdΩ ,

(28)

where:
(

Z̃τs
wr, Z̃τ,zs

wr , Z̃τs,z
wr , Z̃τ,zs,z

wr

)
=
(

C̃wrEτs, C̃wrEτ,zs, C̃wrEτs,z , C̃wrEτ,zs,z

)
: w, r = p, n , (29)

(
Eτs, Eτ,zs, Eτs,z , Eτ,zs,z

)
=
∫

H

(
Fτ Fs, Fτ,z Fs, Fτ Fs,z , Fτ,z Fs,z

)
dz . (30)

An axis coordinate as comma-preceded subscript stands for a derivative in that coordinate
direction. In compact vector form, Equation (28) reads:

δqT
τiK

τsijqsj = −δqT
τiM

τsijq̈sj , (31)
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where Kτsij and Mτsij ∈ R3×3 are fundamental nuclei (FN) of the stiffness and mass
matrices, respectively. Through the cycles on the indices τ, s, i and j, it is possible to build
the stiffness and mass matrices of a finite element. The components of the stiffness FN for
the PVD case can be written as:

Kτsij
xx =

∫

Ωe

(
Z̃τs

pp11Nj,x Ni,x + Z̃τs
pp16Nj,y Ni,x + Z̃τs

pp16Nj,x Ni,y + Z̃τs
pp66Nj,y Ni,y + Z̃τ,zs,z

nn44 Nj Ni

)
dΩ ,

Kτsij
xy =

∫

Ωe

(
Z̃τs

pp12Nj,y Ni,x + Z̃τs
pp16Nj,x Ni,x + Z̃τs

pp26Nj,y Ni,y + Z̃τs
pp66Nj,x Ni,y + Z̃τ,zs,z

nn45 Nj Ni

)
dΩ ,

Kτsij
xz =

∫

Ωe

(
Z̃τs,z

pn13Nj Ni,x + Z̃τs,z
pn36Nj Ni,y + Z̃τ,zs

nn44Nj,x Ni + Z̃τ,zs
nn45Nj,y Ni

)
dΩ ,

Kτsij
yx =

∫

Ωe

(
Z̃τs

pp12Nj,x Ni,y + Z̃τs
pp26Nj,y Ni,y + Z̃τs

pp16Nj,x Ni,x + Z̃τs
pp66Nj,y Ni,x + Z̃τ,zs,z

nn45 Nj Ni

)
dΩ ,

Kτsij
yy =

∫

Ωe

(
Z̃τs

pp22Nj,y Ni,y + Z̃τs
pp26Nj,x Ni,y + Z̃τs

pp26Nj,y Ni,x + Z̃τs
pp66Nj,x Ni,x + Z̃τ,zs,z

nn55 Nj Ni

)
dΩ ,

Kτsij
yz =

∫

Ωe

(
Z̃τs,z

pn23Nj Ni,y + Z̃τs,z
pn36Nj Ni,x + Z̃τ,zs

nn45Nj,x Ni + Z̃τ,zs
nn55Nj,y Ni

)
dΩ ,

Kτsij
zx =

∫

Ωe

(
Z̃τs,z

nn44Nj Ni,x + Z̃τs,z
nn45Nj Ni,y + Z̃τ,zs

np13Nj,x Ni + Z̃τ,zs
np36Nj,y Ni

)
dΩ ,

Kτsij
zy =

∫

Ωe

(
Z̃τs,z

nn45Nj Ni,x + Z̃τs,z
nn55Nj Ni,y + Z̃τ,zs

np23Nj,y Ni + Z̃τ,zs
np36Nj,x Ni

)
dΩ ,

Kτsij
zz =

∫

Ωe

(
Z̃τs

nn44Nj,x Ni,x + Z̃τs
nn45Nj,y Ni,x + Z̃τs

nn45Nj,x Ni,y + Z̃τs
nn55Nj,y Ni,y + Z̃τ,zs,z

nn33 Nj Ni

)
dΩ .

(32)

The mass FN can be written as:

Mτsij =
∫

Ωe
(NiI)ρEτs

(
NjI
)
dΩ . (33)

It is possible to observe that Mτsij is a diagonal matrix and that since the plate density is
assumed to be constant, the term ρEτs can be placed outside the integral.

In the RMVT case, transverse stresses are a priori approximated:

σn = Fτ Ni





gxzτi
gyzτi
gzzτi



 = Fτ Nigτi . (34)

Through the substitution of Equations (5), (15), (27) and (34) into Equation (14), the RMVT
weak form can be obtained:
∫

Ωe

δqT
τi
[
DT

p (NiI)Ẑ
τs
ppDp

(
NjI
)]

qsj + δqT
τi
[
DT

p (NiI)Ẑ
τs
pn

(
NjI
)
+ DT

nΩ(NiI)(EτsI)
(

NjI
)

+(NiI)(Eτ,zsI)
(

NjI
)]

gsj + δgT
τi
[
(NiI)(EτsI)DnΩ

(
NjI
)
+ (NiI)(Eτs,z I)

(
NjI
)

−(NiI)Ẑ
τs
npDp

(
NjI
)]

qsj − δgT
τi(NiI)Ẑ

τs
nn

(
NjI
)

gsjdΩ = −
∫

Ωe

δqT
τi(NiI)ρEτs

(
NjI
)

q̈sjdΩ ,

(35)

where:
(

Ẑτs
wr, Ẑτ,zs

wr , Ẑτs,z
wr , Ẑτ,zs,z

wr

)
=
(

ĈwrEτs, ĈwrEτ,zs, ĈwrEτs,z , ĈwrEτ,zs,z

)
: w, r = p, n . (36)

In a compact form:

δqT
τiK

τsij
uu qsj + δqT

τiK
τsij
uσ gsj = −δqT

τiM
τsijq̈sj ,

δgT
τiK

τsij
σu qsj + δgT

τiK
τsij
σσ gsj = 0 .

(37)
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In this case, four fundamental nuclei are obtained. The components of the FN for the RMVT
case can be written as:

Kτsij
uuxx =

∫

Ωe

(
Ẑτs

pp11Nj,x Ni,x + Ẑτs
pp31Nj,x Ni,y + Ẑτs

pp13Nj,y Ni,x + Ẑτs
pp33Nj,y Ni,y

)
dΩ ,

Kτsij
uuxy =

∫

Ωe

(
Ẑτs

pp12Nj,y Ni,x + Ẑτs
pp32Nj,y Ni,y + Ẑτs

pp13Nj,x Ni,x + Ẑτs
pp33Nj,x Ni,y

)
dΩ ,

Kτsij
uuyx =

∫

Ωe

(
Ẑτs

pp21Nj,x Ni,y + Ẑτs
pp31Nj,x Ni,x + Ẑτs

pp23Nj,y Ni,y + Ẑτs
pp33Nj,y Ni,x

)
dΩ ,

Kτsij
uuyy =

∫

Ωe

(
Ẑτs

pp22Nj,y Ni,y + Ẑτs
pp32Nj,y Ni,x + Ẑτs

pp23Nj,x Ni,y + Ẑτs
pp33Nj,x Ni,x

)
dΩ ,

Kτsij
uuxz = 0 , Kτsij

uuyz = 0 , Kτsij
uuzx = 0 , Kτsij

uuzy = 0 , Kτsij
uuzz = 0 ,

Kτsij
uσxx =

∫

Ωe

(
Eτ,zs Nj Ni

)
dΩ , Kτsij

uσxz =
∫

Ωe

(
Ẑτs

pn13Nj Ni,x + Ẑτs
pn33Nj Ni,y

)
dΩ ,

Kτsij
uσyy =

∫

Ωe

(
Eτ,zs Nj Ni

)
dΩ , Kτsij

uσyz =
∫

Ωe

(
Ẑτs

pn23Nj Ni,y + Ẑτs
pn33Nj Ni,x

)
dΩ ,

Kτsij
uσzx =

∫

Ωe

(
Eτs Nj Ni,x

)
dΩ , Kτsij

uσzy =
∫

Ωe

(
Eτs Nj Ni,y

)
dΩ , Kτsij

uσzz =
∫

Ωe

(
Eτ,zs Nj Ni

)
dΩ ,

Kτsij
uσxy = 0 , Kτsij

uσyx = 0 ,

Kτsij
σuxx =

∫

Ωe

(
Eτs,z Nj Ni

)
dΩ , Kτsij

σuxz =
∫

Ωe

(
Eτs Nj,x Ni

)
dΩ , Kτsij

σuyy =
∫

Ωe

(
Eτs,z Nj Ni

)
dΩ ,

Kτsij
σuyz =

∫

Ωe

(
Eτs Nj,y Ni

)
dΩ , Kτsij

σuzx = −
∫

Ωe

(
Ẑτs

np31Nj,x Ni − Ẑτs
np33Nj,y Ni

)
dΩ ,

Kτsij
σuzy = −

∫

Ωe

(
Ẑτs

np32Nj,y Ni − Ẑτs
np33Nj,x Ni

)
dΩ , Kτsij

σuzz =
∫

Ωe

(
Eτs,z Nj Ni

)
dΩ ,

Kτsij
σuxy = 0 , Kτsij

σuyx = 0 ,

Kτsij
σσxx = −

∫

Ωe

(
Ẑτs

nn11Nj Ni

)
dΩ , Kτsij

σσxy = −
∫

Ωe

(
Ẑτs

nn12Nj Ni

)
dΩ ,

Kτsij
σσyx = −

∫

Ωe

(
Ẑτs

nn21Nj Ni

)
dΩ , Kτsij

σσxx = −
∫

Ωe

(
Ẑτs

nn22Nj Ni

)
dΩ ,

Kτsij
σσxz = 0 , Kτsij

σσyz = 0 , Kτsij
σσzx = 0 , Kτsij

σσzy = 0 , Kτsij
σσzz = 0 .

(38)

The mass FN is the same as the PVD case; see Equation (33). Since the in-plane integrals are
calculated via Gauss quadrature, it is crucial to consider an appropriate number of Gauss
points in accordance with the variational rule of the fiber angle.

3. Results and Discussion

Three cases are analyzed in this work: a cantilever monolayer plate, a clamped
multilayer plate and a clamped multilayer plate with a central circular cut-out. For each
case, a square geometry is considered (a = b = 1 m). Parametric studies are performed
considering different side-to-thickness ratios (a/h = 100, 10, 5). Material properties are
represented in Table 1 for all the considered analyzed cases.

Table 1. Material properties.

Case EL (GPa) ET (GPa) GLT = GTT (GPa) νLT = νTT

1 50.0 10.0 5.0 0.25
2 173.0 7.2 3.8 0.29
3 138.0 9.0 7.1 0.30

Reference solutions are represented by an Abaqus 3D model where quadratic elements
(C3D20R) were used. For CUF solutions, nine-node square elements were used. For each
case study, a preliminary convergence analysis was carried out to identify the appropriate
mesh for both CUF and Abaqus solutions.

399



Materials 2023, 16, 4643

3.1. Monolayer Plate

The first case corresponds to a cantilever monolayer plate with density ρ = 1540 kg/m3.
For this problem, axes x′ and y′ of the angle reference system are coincident with axes x
and y of the plate. This means that the origin of the angle reference system is the same as
the global one and that x′ and y′ are parallel to x and y, respectively. It is assumed that the
fiber angle is a linear function of y′; see Equation (10). The length parameter corresponds to
d = b, while the direction of fiber variation α corresponds to y′, which means that Φ = 90◦.
In this case, T0 = 0◦ and T1 = 90◦. The fiber orientation changes only along y′ from a value
of θ(0) = Φ + T0 = 90◦ to θ(b) = Φ + T1 = 180◦. The angle variational law in this case can
be expressed as 90 < 0, 90 >, and it is presented in Figure 4.

Figure 4. Stacking sequence; case 1.

This law has been taken from Viglietti et al. [27]. The reference solution contains
80 elements along each in-plane side and 12 elements along the thickness. The only
clamped side of the plate is the one that lies on the xz plane, corresponding to y′ = 0. For
the CUF results, a 10× 10 mesh is considered. Table 2 shows the degrees Of freedom (DOF)
for some considered solutions.

Table 2. Degrees of freedom; case 1.

Model DOF

Abaqus 3D 997,515
3LM4 34,398
2LM2 13,230
3LD4 17,199
2LD2 6615
ED4 6615
ED2 3969
FSDT 2646
CLT 2646

It is possible to observe that higher-order CUF models allow for a DOF reduction of
one order of magnitude in comparison with the Abaqus 3D reference solution. Table 3
shows the first five natural frequencies for a/h = 100.
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Table 3. Natural frequencies (Hz), a/h = 100; case 1.

Mode
1 2 3 4 5

Abaqus 3D 7.397 16.354 37.158 48.025 63.349
3LM4 7.399 16.334 37.164 47.988 63.310
2LM2 7.398 16.333 37.162 47.986 63.309
3LD4 7.400 16.362 37.179 48.053 63.378
2LD2 7.400 16.362 37.179 48.054 63.379
ED4 7.400 16.362 37.179 48.053 63.378
ED2 7.401 16.368 37.186 48.069 63.399
FSDT 7.398 16.363 37.171 48.054 63.388
CLT 7.403 16.414 37.213 48.175 63.537

For this case, classic and higher-order theories show very good approximations of
the reference solution, where the maximum difference from the reference solution is 0.4%
for the second natural frequency computed via CLT. Table 4 shows the first five natural
frequencies for a/h = 10.

Table 4. Natural frequencies (Hz), a/h = 10; case 1.

Mode
1 2 3 4 5

Abaqus 3D 72.229 151.762 338.517 389.336 431.011
3LM4 72.244 151.751 338.577 389.554 431.004
2LM2 72.233 151.705 338.432 389.546 430.824
3LD4 72.250 151.796 338.625 389.587 431.151
2LD2 72.269 151.906 338.939 389.589 431.577
ED4 72.253 151.810 338.669 389.588 431.207
ED2 72.466 153.069 342.179 389.592 435.990
FSDT 72.437 153.021 342.036 389.510 435.853
CLT 73.825 163.064 365.813 389.510 472.565

It is possible to observe that classical and lower-order ESL theories are now less
accurate, especially for the prediction of higher frequencies. For example, CLT, FSDT
and ED2 models, corresponding to the third natural frequency, present a percentage error
equal to 8.1%, 1.0% and 1.1%, respectively. This can be explained by considering that the
side-to-thickness ratio a/h = 10 corresponds to a thick plate. In this case, higher-order
theories are needed to obtain an accurate approximation. Since a moderately thick plate is
considered, transverse shear stresses affect the solution. This is the reason that CLT, which
neglects those stresses, is less close to the reference solution. The best approximations
of plate natural frequencies are given by 2LM2 and 3LM4 mixed theories, which show a
maximum percentage error of 0.1% each for the fourth natural frequency. In particular, it is
possible to observe that the 2LM2 solution is globally closer to Abaqus in comparison with
the 3LD4 solution, even if the last one is characterized by a higher number of degrees of
freedom. Table 5 shows the first five natural frequencies for a/h = 5.

Because of the low side-to-thickness ratio, a very thick plate is considered, and lower-
order theories do not provide a correct prediction of the natural frequencies. For CLT,
the sixth mode is the same as the fifth mode of the reference solution, that is, the order
of appearance is swapped. In this regard, mode tracking was performed by visually
comparing the modes of each proposed solution with those of the reference solution
obtained in Abaqus. The corresponding percentage error is as high as 27.1%. On the other
hand, a 3LM4 model matches the Abaqus reference results.
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Table 5. Natural frequencies (Hz), a/h = 5; case 1.

Mode
1 2 3 4 5

Abaqus 3D 136.723 264.080 389.391 556.394 704.284
3LM4 136.742 264.077 389.557 556.404 704.295
2LM2 136.667 263.747 389.550 555.332 703.121
3LD4 136.755 264.119 389.638 556.511 704.442
2LD2 136.875 264.684 389.643 558.145 706.381
ED4 136.774 264.224 389.640 556.855 704.832
ED2 138.015 269.553 389.651 570.563 721.354
FSDT 137.947 269.463 389.510 570.329 721.159
CLT 146.479 319.929 389.510 696.687 895.089

3.2. Multilayer Plate

The second case is taken from Viglietti et al. [27] and corresponds to a multilayer
clamped plate with density ρ = 1540 kg/m3. The plate is composed of three layers with the
same thicknesses. It is assumed that fiber angle is a function of y′ only, which means that α
is parallel to y′ (Φ = 90◦). In this case, a linear law is considered for the fiber path, according
to Equation (10). For this problem, axes x′ and y′ of the angle reference system are aligned
with axes x and y of the plate, but their origin is placed on the center of the plate (a/2, b/2).
In this case, d = b/2 is considered as the length parameter in Equation (10). T0 and T1 are
set for each layer as follows: Tlayer1

0 = Tlayer3
0 = 0◦, Tlayer2

0 = −45◦, Tlayer1
1 = Tlayer3

1 = 45◦,

Tlayer2
1 = −60◦. The lamination of the plate is 90 < 0, 45 > for layer 1, 90 < −45,−60 > for

layer 2 and 90 < 0, 45 > for layer 3. The stacking sequence is presented in Figure 5.

Figure 5. Stacking sequence; case 2.

As for the previous case, the Abaqus reference solution contains 80 elements along
each side and 12 elements along the thickness. For the CUF results, a 10× 10 mesh is
considered. Table 6 shows the first five natural frequencies for a/h = 100, together with
the results presented in Viglietti et al. [27].

In this case, the best approximation is given by the LM2 and LM4 theories. The LM2
and LM4 models both have a maximum percentage error as high as 0.4% corresponding to
the third frequency. In addition, classical and low-order theories provide good results since
a thin plate is considered. For this reason, transverse stresses do not play an important role.
For example, the maximum error given by CLT is 2.1% for the fifth frequency. The case for
a/h = 10 is presented in Table 7.
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Table 6. Natural frequencies (Hz), a/h = 100; case 2.

Mode
1 2 3 4 5

Abaqus 3D 92.18 130.68 194.96 237.56 274.60
Ref. [27] 92.90 132.28 198.97 240.46 278.75
LM4 92.35 131.01 195.77 238.25 275.60
LM2 92.34 130.99 195.74 238.23 275.58
LD4 92.36 131.03 195.81 238.30 275.67
LD2 92.36 131.04 195.84 238.31 275.69
ED4 92.37 131.06 195.88 238.32 275.72
ED2 92.49 131.23 196.16 238.97 276.48
FSDT 92.38 131.01 195.75 238.74 276.20
CLT 93.04 131.85 197.00 242.48 280.40

Table 7. Natural frequencies (Hz), a/h = 10; case 2.

Mode
1 2 3 4 5

Abaqus 3D 606.67 896.70 1208.24 1313.26 1458.25
Ref. [27] 609.79 903.63 1216.00 1328.41 1469.33
LM4 606.90 897.26 1208.80 1314.85 1459.23
LM2 606.33 896.52 1206.86 1313.56 1457.30
LD4 607.22 897.73 1209.64 1315.80 1460.16
LD2 608.65 901.20 1213.06 1322.93 1465.20
ED4 609.84 905.18 1214.60 1331.82 1469.17
ED2 633.68 941.96 1272.39 1396.16 1540.10
FSDT 632.82 940.46 1271.42 1393.96 1538.74
CLT 921.28 1287.71 2368.22 1885.61 2699.22

Here, the CLT model shows that the inversion of the third and fourth modes can be
observed by the corresponding values of the frequencies that are not in ascending order
as the mode number increases. In comparison with the monolayer plate, in this case, the
mode inversions of the CLT model can be seen for higher side-to-thickness ratios and lower
frequencies. For the third mode, CLT shows a percentage error of 96.0%, while the best
approximation is given by LM4, which has a percentage error of 0.17% for the same mode.
Table 8 shows the first five frequencies for a/h = 5.

Table 8. Natural frequencies (Hz), a/h = 5; case 2.

Mode
1 2 3 4 5

Abaqus 3D 794.730 1201.916 1439.956 1701.328 1810.250
LM4 794.760 1202.101 1440.092 1701.788 1811.113
LM2 792.734 1199.331 1433.897 1696.266 1805.942
LD4 795.213 1202.777 1441.080 1702.986 1812.317
LD2 799.063 1209.706 1448.714 1713.982 1820.716
ED4 802.019 1216.744 1450.930 1723.900 1825.405
ED2 845.154 1294.481 1523.246 1847.193 1930.364
FSDT 844.048 1292.846 1522.478 1845.945 1928.631
CLT 1790.121 2411.198 - - -

In this case, lower-order theories have an evident loss of accuracy. The CLT model
can predict only the first two modes. In addition, the FSDT and ED2 models show non-
negligible errors, which become bigger with the increase in frequency. On the other hand,
mixed models are able to correctly predict the dynamic behavior of the plate for both low
and high frequencies.
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3.3. Multilayer Plate with Central Hole

Case 3 is taken from Hachemi et al. [9] and corresponds to a multilayer clamped
plate that presents a circular cut-out. The center of the cut-out is placed at the plate center
(a/2, b/2), and its radius is r = 0.2 m. It is assumed that the fiber angle is a parabolic
function of x′, which means that α is parallel to x′ (Φ = 0◦). As in the previous case, the
x′ and y′ axes are parallel, respectively, to x and y, and their origin is placed at the center
of the plate. The angle variational law is defined in Equation (12), considering d = a/2.
The plate is composed of two layers that have the same thicknesses. The values of T0 and
T1 are set for each layer as follows: Tlayer1

0 = Tlayer2
0 = 0◦, Tlayer1

1 = 30◦, Tlayer2
1 = −30◦.

The stacking sequence is 0 < 0,±30 >; see Figure 6.

Figure 6. Stacking sequence; case 3.

In this case, the Abaqus reference solution is made of 73728 elements: 4608 elements
are defined on the plate plane, and 16 elements are defined along the thickness. For the CUF
results, 128 elements are used on the plate plane. The natural frequencies are expressed in
the following dimensionless form:

ω =
(

ωa2
)√

ρh/D0 , (39)

D0 = E2h3/12(1− νLTνTL) , (40)

where ω is the natural frequency, while D0 represents a reference bending stiffness. Table 9
presents the first five non-dimensional frequencies for a/h = 100.

Table 9. Non-dimensional frequencies ω, a/h = 100; case 3.

Mode
1 2 3 4 5

Abaqus 3D 87.079 106.407 147.559 184.034 197.096
LM4 87.281 106.622 147.070 184.554 197.522
LM2 87.259 106.593 147.045 184.500 197.489
LD4 87.327 106.704 147.911 184.789 197.969
LD2 87.336 106.719 147.952 184.821 198.022
ED4 87.331 106.708 147.921 184.798 197.984
ED2 87.364 106.768 148.169 184.931 198.228
FSDT 87.184 106.538 148.047 184.525 198.029
CLT 87.387 106.942 150.080 185.420 199.725

It is possible to observe that the theories show a good approximation of the reference
results. In addition, the percentage errors of FSDT and CLT are less than 2%. Mixed theories
match the Abaqus results. Table 10 shows the results for a/h = 10 in order to compare the
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Abaqus reference solution with the one presented in Hachemi et al. [9] and the solutions
obtained with CUF.

Table 10. Non-dimensional frequencies ω, a/h = 10; case 3.

Mode
1 2 3 4 5

Abaqus 3D 72.645 86.745 104.279 136.366 140.278
Ref. [9] 72.432 86.626 103.910 135.828 139.747
LM4 72.699 86.830 104.307 136.467 140.408
LM2 72.573 86.700 104.051 136.137 140.143
LD4 72.744 86.888 104.376 136.558 140.516
LD2 73.107 87.263 105.144 137.567 141.231
ED4 72.868 86.990 104.630 136.851 140.725
ED2 73.977 88.609 107.143 140.522 143.556
FSDT 74.075 88.782 107.645 141.221 143.885
CLT 84.751 104.166 143.133 190.321 174.656

As already observed in previous cases, classical theories and, in general, low-order
ones are not able to provide an accurate approximation of natural frequencies, because of
the low side-to-thickness ratio value. It is also possible that this generates the inversion of
modes four and five for the CLT case. On the other hand, the best approximation is given
by mixed theories, which are closer to the Abaqus solution for high frequencies. The shapes
of the modes are presented in Figures 7–11 for a/h = 10. The modal shapes obtained with
the LM4 model are compared with those of Abaqus 3D.

(a) LM4 (b) Abaqus 3D

Figure 7. Mode 1, a/h = 10; case 3.

(a) LM4 (b) Abaqus 3D

Figure 8. Mode 2, a/h = 10; case 3.
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(a) LM4 (b) Abaqus 3D

Figure 9. Mode 3, a/h = 10; case 3.

(a) LM4 (b) Abaqus 3D

Figure 10. Mode 4, a/h = 10; case 3.

(a) LM4 (b) Abaqus 3D

Figure 11. Mode 5, a/h = 10; case 3.

The first mode shows a simple bending of the plate on the xy plane with a single half-
wave along each in-plane direction. The second and the third modes show two half-waves
in the y and x directions, respectively. Mode number four shows three half-waves along the
plate diagonally between the x and y axes. The fifth mode shows three half-waves along
the y direction. Finally, Table 11 shows the frequencies for a/h = 5.
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Table 11. Non-dimensional frequencies ω, a/h = 5; case 3.

Mode
1 2 3 4 5

Abaqus 3D 54.333 64.456 70.572 90.875 98.086
LM4 54.326 64.456 70.541 90.866 98.098
LM2 54.038 64.201 70.036 90.292 97.612
LD4 54.388 64.514 70.619 90.956 98.191
LD2 54.875 64.963 71.421 91.868 98.955
ED4 54.554 64.623 70.913 91.224 98.408
ED2 56.062 66.756 73.181 94.442 101.535
FSDT 56.253 66.985 73.702 95.219 102.017
CLT 76.928 95.975 119.513 - -

Since a thick plate is considered, the effect of transverse stresses is not negligible,
which causes the classical and lower-order theories to be inaccurate. This can be observed
for CLT, which is not able to predict the fourth and fifth modes and has an error as high as
69.4% for the third mode. Considering the FSDT, ED4 and LD4 models, this error can be
reduced to 4.4%, 0.5% and 0.1%, respectively.

4. Conclusions

In this paper, a new framework for the dynamic analysis of VAT structures is presented.
RMVT is developed within CUF in order to obtain a new family of 2D models for the free-
vibration analysis of VAT plates. The results are obtained via either RMVT or PVD and
are compared in order to show the effective capabilities of the proposed method in the
prediction of VAT plates’ natural frequencies. The Abaqus 3D reference solutions and
results from Refs. [9,27] are also included to further validate the models proposed in this
article. Linear and parabolic laws are both considered in order to describe the in-plane
path of fiber variation. The possibility to use a polynomial order defined a priori through
CUF and the introduction of the transverse stress field as a primary variable of the problem
through RMVT both help to obtain a valid approach for the prediction of VAT dynamic
behavior. After the results analysis, the following remarks can be made:

• Classical theories (FSDT and CLT) provide the best trade-off between accuracy and
computational costs for thin plates (a/h = 100), whereas they are not able to correctly
predict the behavior of thicker plates (a/h = 10 and 5), specially at high frequencies.
The loss of accuracy is more evident for CLT results, since this theory does not consider
transverse shear stresses, which become important in thick plates. This error is
particularly evident in the second- and third-order theories, where the inversion of
modes can be observed.

• The PVD results show monotonic convergence to the reference solution: the lower
the DOF number, the higher the frequency value. For a given mode, frequency
values decrease when higher-order models are employed, and they move closer to the
reference solution.

• In all the cases, layer-wise mixed theories yield the best match of the reference 3D
solution, independently from the plate geometry or fiber variational law. This is
justified by the fact that RMVT considers both displacements and transverse stresses
as primary variables, assuring a better approximation of the transverse stresses field
into the problem domain, and improving the overall solution accuracy.

• For a given expansion order, models based on RMVT are more computationally expen-
sive than PVD models. For this reason, the use of LW mixed models is advantageous
in the cases where a more precise representation of the through-the-thickness behavior
is needed, as in the case of higher frequencies or for thick plates, whereas low-order
ESL and classical models are accurate for lower frequencies and thin plates.

In conclusion, the application of RMVT within CUF has demonstrated significant po-
tential for improving the accuracy and efficiency of modeling VAT plates for free-vibration
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analyses. The promising results suggest, as future perspectives, the extension to buckling
and failure analyses where an accurate and efficient modeling of VAT structures under
various loading and operational conditions is required.
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