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Preface

The dental biomaterials field is developing very quickly. The dental market needs biomaterials

which are biocompatible and bioactive. The bioactivity of dental material means that the material

could ensure a biological effect or simulate this reaction. These bioactive biomaterials are used in all

dental fields to enhance antibacterial activity and ameliorate the healing process.

Naji Kharouf, Davide Mancino, Salvatore Sauro, and Louis Hardan

Editors
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Abstract: The objective of the present in vitro work was to investigate the effectiveness and time
required for the removal of calcium silicate-based sealer using two rotary retreatment systems. Sixty
extracted, single-canal, lower premolars were used. After obturation using the single-cone technique
with calcium silicate-based sealer, samples were divided into four groups according to the technique
of desobturation: Group 1 (G1): D-Race; Group 2 (G2): D-Race followed by the use of XP–Endo
Finisher R; Group 3 (G3): Protaper Universal Retreatment; and Group 4 (G4): Protaper Universal
Retreatment followed by the use of XP–Endo Finisher R. Cone beam computed tomography (CBCT)
images were used to calculate the remaining filling materials at the middle and apical thirds. Times
required to perform each method were recorded. Scanning electron microscopy (SEM) and digital
microscopy were used to evaluate the remaining filling materials. Data were statistically analyzed
using the t-test and one way ANOVA on ranks tests. No statistically significant difference was found
between G1 and G3 after CBCT observations (p > 0.05). Xp-Endo Finisher R significantly increased the
ability to remove materials regardless of the initially used retreatment system (p < 0.05). Statistically
significant longer time was found in G3 and G4 compared to G1 and G2, respectively (p < 0.05),
to reach the full working length. No retreatment system was able to totally remove the calcium
silicate-based sealer from the root canal at the middle and apical thirds (p > 0.05). Digital microscopy
demonstrated that the residual materials were the remaining sealers on the canal walls. SEM showed
the mineral depositions of calcium silicate materials onto the canal walls and into the dentinal tubules.
However, that calcium silicate materials provide mineral deposition into the dentinal tubules might
indicate that the traditional irrigants could not be sufficient to remove calcium silicate-based materials
from the root canal, and other agents should be used to make retreatment considerably easier.

Keywords: root canal retreatment; calcium silicate-based cement; ProTaper Universal Retreatment;
D-Race

1. Introduction

Non-surgical endodontic retreatment is the first option after the failure of conventional
endodontic treatment [1]. It leads to elimination of the microorganisms that are responsible
for persistent infections [2,3]. Bacteria such as Enterococcus faecalis remain after primary
endodontic treatment in areas that were unreachable by instrumentation and irrigation [4,5].
It is impossible to totally remove the filling material from the root canal during retreatment
using conventional instruments and techniques due to their anatomical complexity, espe-
cially in oval canals [6,7]. The residual microorganisms and filling materials could affect
the final retreatment outcome [8]. In addition, the main purpose of endodontic retreatment
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is to retrieve healthy periapical tissue. It aims to regain access to the apical region through
total removal of filling materials [9].

Removal of gutta-percha can be accomplished using hand files, rotary and recipro-
cating systems, ultrasonic methods, lasers, and chemical solvents [10–14]. Mechanized
protocols were proposed to be supplementary steps after the initial removal of filling
materials, including the use of Self-Adjusting File (SAF) instruments (ReDent, Ra’anana,
Israel) [15], sonic and ultrasonic tips [7], the XP-endo Finisher (FKG Dentaire, La Chaux-
de-Fonds, Switzerland), and the XP-endo Finisher R (FKG Dentaire, La Chaux-de-Fonds,
Switzerland), with the main cause of removing the remaining materials from the root
canal system.

The use of nickel-titanium (NiTi) rotary retreatment systems is an efficient and safe
approach to remove filling materials during root canal retreatment [16]. In addition, several
dental companies have introduced NiTi rotary retreatment systems on the dental market.
The ProTaper Universal Retreatment system (Dentsply Maillefer, Ballaigues, Switzerland)
includes three files—D1, D2 and D3—to remove filling materials from the root canal. These
files have a convex triangular cross-section identical to the ProTaper shaping and finishing
instruments [17].

The D-RaCe retreatment system (FKG Dentaire, La-Chaux-de Fonds, Switzerland)
contains two instruments—DR1 (30/0.10) and DR2 (25/0.04)—for cleaning of the coronal
third and to reach the working length (WL), respectively. Both instruments possess an
active working tip to promote the initial penetration into the root canal filling material [18].

The XP-endo Finisher R (XPF-R) (FKG Dentaire, Switzerland) is a non-tapered file
fabricated with NiTi MaxWire alloy (Martensite-Austenite Electropolish Flex). At tempera-
tures less than 30 ◦C, this file is straight (martensitic phase “M-phase”), while the placement
of this file inside the root canal at body temperature can transform it into an austenitic
phase. In this phase, the file takes on a spoon shape in the last 10 mm, with a depth of
roughly 1.5 mm. During entry of this file into the root canal, its austenite phase conversion
and shape memory enhance its effectiveness in displacing and touching root-obturation
materials. Therefore, this profile allows the instrument to attain irregular zones without
modifying the original shape of the canal [1,8,19].

Various chemical compositions have been used in endodontic sealers to obturate
the root canal with a gutta-percha point. These materials include zinc oxide-eugenol,
gutta-percha flow, epoxy-resin, and calcium silicate cements [20]. Calcium silicate (CS)
materials, called bioceramics, are considered a breakthrough in endodontic treatment due
to their advantageous biocompatibility, antibacterial activity, appropriate filling ability, and
good physicochemical properties. Their setting reaction could generate hydroxyapatite
on their surfaces and cause tags in the dentinal tubules [21,22]. Different forms of calcium
silicate sealers were introduced as powder-liquid and premixed products [23]. Premixed
sealers demonstrated greater filling ability and easier application than conventional sealer.
Ceraseal (Metabiomed, Korea) is a premixed calcium silicate sealer that demonstrated
high obturation quality and appropriate biological, mechanical, and physicochemical
properties [23]. The main disadvantage of calcium silicate materials is difficulty with their
retreatment, especially at the apical third, and their removal requires both mechanical and
chemical procedures [21].

Various dental companies have developed NiTi removal systems such as Mtwo retreat-
ment (VDW, Munich, Germany), R-Endo, and Remover (Micro-Mega, Besançon, France).
Hassan et al. studied the retreatment efficiency of R-endo and Xp-endo shaper files in root
canals obturated using a bioceramic root canal sealer. The results showed that Xp-endo
shaper files were significantly more effective in removing obturation materials. However,
neither system totally removed the remaining materials from the coronal, middle, and
apical thirds [24]. Donnermeyer et al. studied the retreatability of three calcium silicate
sealers and one epoxy resin sealer with four different root canal instruments. They reported
that engine-driven NiTi instruments were better suited to remove root canal fillings than
stainless steel Hedström files [25].
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Until now, there has been no validated protocol for the desobturation of calcium
silicate material from the root canal in the literature; thus, research studies are still needed
to enhance the efficacy of instruments and solvents in bioceramic retreatment.

The objective of this study was to evaluate the effectiveness of two retreatment in-
struments with or without a supplementary activation step in the removal of calcium
silicate-based sealer. The null hypothesis was that there is no difference between the dif-
ferent instruments and the supplementary cleaning step regarding the quality of calcium
silicate retreatment.

2. Materials and Methods
2.1. Teeth Preparation

After approval by the ethics committee of Damascus University, Damascus, Syria
(protocol n. 3215-2020), 63 extracted single canal lower premolars without caries and
previous endodontic treatment were selected for the present study. The exclusion criteria
were teeth with resorption, incomplete apices, severe curvatures, and cracks. The canal
curvature was measured as described in a previous study [26]; thus, teeth with a maximum
canal curvature of 15◦ were selected. Root surfaces were cleaned, and all soft tissue and
calculus were removed mechanically with periodontal curettes. Afterwards, the teeth were
rinsed and then kept in 0.9% NaCl at 4 ◦C.

After preparation of the access cavity using diamond burs and ultrasonic tips, a size
10 stainless steel K-file (Mani, Takenzawa, Japan) was inserted to reach the apical foramen.
All endodontic steps were performed under 4.5× magnification using Q-Optics Loupes
(Q-Optics, Duncanville, TX, USA). To standardize the samples, all tooth crowns were
sectioned to reach a root length of 17 mm and a working length (WL) of 16 mm. The same
operator prepared all canals using ProTaper Next instruments (Dentsply Sirona, Konstanz,
Germany) up to an X2 file at the WL with an electric motor (VDW, Munich, Germany) at a
speed of 300 rpm and 3 Ncm of torque. After the use of each instrument, the canals were
irrigated with 1 mL of 2.5% NaOCl using a 30-gauge needle. After shaping procedures, the
smear layer was eliminated using 5 mL of 17% EDTA and 5 mL of 2.5% NaOCl for final
irrigation, and then paper points were used to dry the canal. The single-cone technique was
used to obturate the root canal with calcium silicate-based sealer (Ceraseal, Metabiomed,
Cheongju, Republic of Korea). The intracanal tip was inserted into the coronal third of the
canal, and the sealer was dispensed into the canal. The gutta-percha cone was then painted
with the calcium silicate material and slowly inserted into the canal to the appropriate
length. Finally, to remove the extra gutta-percha, a hot plugger was used to remove it.
The access cavities were filled with a temporary filling material (MD-Temp, Metabiomed,
Republic of Korea). The samples were then stored in phosphate-buffered saline (PBS10×,
Dominique Dutscher, Bernolsheim, France) for 28 days to insure an appropriate setting of
the filling material.

2.2. Non-surgical Root Canal Retreatment

After the storage period, coronal access was performed using size 3 and 2 files at
2000 rpm with Peeso drills (Mani, Takenzawa, Japan). The samples were randomly divided
into four equal groups (n = 15) as follows:

• Group 1 (G1): D-Race files (Figure 1) were used with a speed of 600 rpm and torque
of 1 Ncm. The coronal third of the obturation material was applied with a DR1 file
(30/0.10) (Figure 1). Then, the DR2 file (25/0.4) was used for the two other thirds
(middle and apical) to attain the working length.

• Group 2 (G2): the same procedure as in G1 was used with an additional step. The XP–
Endo Finisher R file (XPF-R) (Figure 1) was used as a supplementary file following the
initial retreatment procedures. The XPF-R file was used following the manufacturer’s
instructions at a torque of 1 Ncm and a speed of 800 rpm. A contra angle handpiece
was used with the instrument. The XPF-R file was placed into the canal with no
rotation. Subsequently, the instrument was activated for 1 min using slow and gentle
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7- to 8-mm lengthwise movements up to the WL in a brushing action against the root
canal walls.

• Group 3 (G3): ProTaper Universal Retreatment files (Figure 1) were used at a speed
of 300 rpm with 3 Ncm of torque. A ProTaper D1 file (30/0.09) was used to prepare
the coronal third of the canal. At the middle and apical thirds, D2 (25/0.08) and D3
(20/0.07) files were used to remove the filling materials.

• Group 4 (G4): the same procedure as in G3 was used with an additional step. The XP–
Endo Finisher R file (XPF-E) (Figure 1) was applied as a supplementary file according
the retreatment procedures.
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During instrumentation procedures, irrigation was performed with 2 mL of 2.5%
NaOCl. All procedures were performed in an incubator at 37 ◦C. All steps were completed
by the same operator. All errors during treatment, including instrument fracture, canal
ledges, and blockages, were recorded. In case of a fractured instrument, the tooth was
discarded and replaced with another one (three teeth were replaced due to procedural
errors). Final irrigation was performed using 5 mL of 17% EDTA and 5 mL of 2.5% NaOCl.
After the final irrigation step, the canals were dried with paper points. Two procedural
times were recorded to obtain the total working time; including the time needed to attain the
WL (T1) and the time needed to remove the gutta-percha (T2). The retreatment procedure
was considered complete once the instrument flutes or the irrigation solution had no more
residue from the calcium silicate-based sealer or gutta percha material [27].

2.3. Remaining Filling Materials Observations
2.3.1. Cone Beam Computed Tomography (CBCT) and Micro-computed Tomography (µCt)

CBCT scans were obtained using a PaX-i3D Green unit (Vatech, Hwaseong-si, Republic
of Korea). The samples were exposed to 90 kV and 10.2 mA with an FOV of 5 × 5 cm and
an isotropic resolution of 0.1 mm, with 12.57 s of exposure time. The artifacts created by the
radiopaque root fillings were eliminated using inbuilt software. The images were evaluated
in cross-sections plans, and the percentages of remaining materials at the apical and middle
thirds were calculated using the inbuilt software. Finally, the CBCT cross-sections were
analyzed, and scores were obtained for all CBCT images by two observers.

After the CBCT observations, the most meaningful sample from each group was
analyzed using µCT (IRIS, Inviscan, http://www.inviscan.fr/product_iris_pet_ct.html
accessed date: 15 December 2022) to show and evaluate the void percentages in them. The
acquisition settings were 2000 projection (60 × 60 × 60 µm 3 voxel size) and 80 kVp. The
images were visualized and manipulated using the Mimics Innovation Suite, version 24
(Materialise, Louvain, Belgium).

4



Bioengineering 2023, 10, 362

2.3.2. Digital Microscopy

After CBCT observations, the samples were prepared by creating two shallow lon-
gitudinal grooves in the buccolingual direction by a diamond bur. The grooves were
created following the canal morphology and curvature. These grooves did not enter into
the canal space. Each sample was split by a chisel and mallet to investigate the internal
walls [28]. The internal walls of the root canal for each sample were investigated using a
digital microscope (KEYENCE, Osaka, Japan) at 100× magnification to analyze the nature
of the residual filling materials (gutta-percha and/or sealer), which could not be observed
through CBCT analysis.

2.3.3. Scanning Electron Microscopy (SEM)

After digital macroscopy observations, the samples were dried in a graded series of
ethanol (50, 70, 95, and 100%) for 10 min each. Finally, these samples were mounted on SEM
stubs sputter-coated with gold–palladium (20/80) using a Hummer JR sputtering device
(Technics, San Jose, California, USA). The samples were observed at different magnifications
(100×−20.000×) with a working distance of 10 mm and a 10-kV acceleration voltage of the
electrons through a scanning electron microscope (SEM, Quanta 250 FEG scanning electron
microscope, FEI Company, Eindhoven, the Netherlands) [29].

2.4. Statistical Analysis

Statistical analysis was performed using SPSS software (version 17, SPSS, Chicago,
IL, USA). The normality was verified with the Shapiro–Wilk test. However, when the
normality test was not passed, an analysis of the variance on ranks, along with a multiple
comparison procedure (Tukey’s test), was performed to determine whether significant
differences existed in the remaining material values between the different retreatments.
The lapse to complete the retreatment of all groups was determined using the t-test, and
the chi-square test was used to determine whether significant differences existed in the
re-establishing of the working length. In all tests, a statistical significance level of α = 0.05
was adopted.

3. Results
3.1. Ability to Reach WL and Required Time

The WL was re-established in 93.34%, 86.67%, 80%, and 86.67% of teeth for G1, G2, G3,
and G4 respectively (p > 0.05) (Figure 2). Statistically longer time values were recorded for
the groups in which Protaper Universal Retreatment was used compared to the groups in
which D-Race was used regardless of the use of XP–Endo Finisher R (Table 1).

Bioengineering 2023, 10, x FOR PEER REVIEW  6  of  11 
 

 

Figure 2. μCt images of the samples after retreatment procedures. (a,b) G1: D‐Race files; (c,d) G2: 

D‐Race  and XP–Endo Finisher R;  (e,f) G3: ProTaper Universal Retreatment;  (g,h) G4: ProTaper 

Universal Retreatment and XP–Endo Finisher R file. 

Table  1.  Time  required  to  re‐establish  the  working  length  in  the  different  groups.  Different 

superscripted letters (a–d) indicate significant differences between the different groups (p < 0.05). 

Group 1 (G1): D‐Race; Group 2 (G2): D‐Race followed by the use of XP–Endo Finisher R; Group 3 

(G3): Protaper Universal Retreatment; and Group 4 (G4): Protaper Universal Retreatment followed 

by the use of XP–Endo Finisher R. 

  G1  G2  G3  G4 

Statistical 

Analysis (p < 

0.05) 

Time (s)  214 ± 13 a  269 ± 28 b  304 ± 34 c  362 ± 35 d  a < c and b < d 

3.2. CBCT and μCt Evaluations 

No  significant  differences  were  found  for  the  remaining  material  percentages 

between G1 and G3 (p > 0.05). The use of XP–Endo Finisher R (G2 and G4) demonstrated 

statistically greater efficacy in the removal of remaining materials than the other groups 

(G1 and G3) (p < 0.05) (Figure 2 and Table 2). 

Table  2. Residual material percentages  after  all  retreatment  techniques. Different  superscripted 

letters (a–d) indicate significant differences between the different groups (p < 0.05). Group 1 (G1): 

D‐Race; Group 2 (G2): D‐Race followed by the use of XP–Endo Finisher R; Group 3 (G3): Protaper 

Universal Retreatment; and Group 4 (G4) Protaper Universal Retreatment followed by the use of 

XP–Endo Finisher R. 

  G1  G2  G3  G4 

Statistical 

Analysis (p < 

0.05) 

Middle (%)  12 ± 6 a  8.4 ± 4.1 b  16.4 ± 11.1 a  8.8 ± 3.8 b  b < a 

Apical (%)  14 ± 7 a  4.5 ± 0.6 b  15.4 ± 10.6 a  6.5 ± 6.4 b  b < a 

3.3. Digital Microscope Observations 

The use of CBCT did not reveal the nature of the remaining materials; thus, digital 

microscopy was used  to  investigate  this  finding. However,  the most common  residual 

materials were the calcium silicate sealers with small amounts of gutta‐percha residue, as 

shown in Figure 3. 

Figure 2. µCt images of the samples after retreatment procedures. (a,b) G1: D-Race files; (c,d) G2:
D-Race and XP–Endo Finisher R; (e,f) G3: ProTaper Universal Retreatment; (g,h) G4: ProTaper
Universal Retreatment and XP–Endo Finisher R file.

5



Bioengineering 2023, 10, 362

Table 1. Time required to re-establish the working length in the different groups. Different super-
scripted letters (a–d) indicate significant differences between the different groups (p < 0.05). Group 1
(G1): D-Race; Group 2 (G2): D-Race followed by the use of XP–Endo Finisher R; Group 3 (G3):
Protaper Universal Retreatment; and Group 4 (G4): Protaper Universal Retreatment followed by the
use of XP–Endo Finisher R.

G1 G2 G3 G4 Statistical Analysis
(p < 0.05)

Time (s) 214 ± 13 a 269 ± 28 b 304 ± 34 c 362 ± 35 d a < c and b < d

3.2. CBCT and µCt Evaluations

No significant differences were found for the remaining material percentages between
G1 and G3 (p > 0.05). The use of XP–Endo Finisher R (G2 and G4) demonstrated statistically
greater efficacy in the removal of remaining materials than the other groups (G1 and G3)
(p < 0.05) (Figure 2 and Table 2).

Table 2. Residual material percentages after all retreatment techniques. Different superscripted letters
(a–d) indicate significant differences between the different groups (p < 0.05). Group 1 (G1): D-Race;
Group 2 (G2): D-Race followed by the use of XP–Endo Finisher R; Group 3 (G3): Protaper Universal
Retreatment; and Group 4 (G4) Protaper Universal Retreatment followed by the use of XP–Endo
Finisher R.

G1 G2 G3 G4 Statistical Analysis
(p < 0.05)

Middle (%) 12 ± 6 a 8.4 ± 4.1 b 16.4 ± 11.1 a 8.8 ± 3.8 b b < a
Apical (%) 14 ± 7 a 4.5 ± 0.6 b 15.4 ± 10.6 a 6.5 ± 6.4 b b < a

3.3. Digital Microscope Observations

The use of CBCT did not reveal the nature of the remaining materials; thus, digital
microscopy was used to investigate this finding. However, the most common residual
materials were the calcium silicate sealers with small amounts of gutta-percha residue, as
shown in Figure 3.
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Figure 3. Digital microscope images demonstrate the effectiveness of the retreatment technique and
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3.4. SEM Observations

SEM was used to investigate the quality of smear layer and filling material removal
after instrumentation and final irrigation using EDTA and NaOCl. Most dentinal tubules in
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all of the groups at the middle and apical thirds were not opened after the final irrigation
(Figure 4a,b), while only a few zones in G2 and G4 demonstrated partially opened dentinal
tubules (Figure 4c,d). Some zones were covered totally with sealer material, and this layer
was not eliminated using the different protocols (Figure 4e). This layer covers the entrance
of the dentinal tubules (Figure 4e) and prevented complete cleaning of the root canal system.
After the immersion period, calcium silicate-based materials ensure the mineral deposition
in the dentinal tubules, which could totally close them (Figure 4f). Therefore, the cleaning
and opening of the dentinal tubules in root canals could be very difficult after the use of
bioceramic material.
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4. Discussion

Root canal treatments usually fail due to persistent periapical disorders after treat-
ment [30]. Moreover, coronal leakage, periodical caries, necrotic tissue, tooth cracks and
fractures, and bacterial biofilms could lead to treatment failure [31]. In addition, these
etiological factors should be eliminated to establish adequate periapical recovery; thus,
establishing patency and working length in retreatment cases could significantly provide
for better periapical healing outcomes [32]. However, retreatment procedures are not
always possible due to several factors, including root canal anatomy and resistant filling
materials [21,27,33,34].

Currently, calcium silicate materials are used frequently in endodontic practice due to
their great biological, mechanical, and physicochemical properties [35,36]. Ceraseal sealer,
which was used in the present study, is one of these calcium silicate endodontic products
that has demonstrated an alkaline pH and release of Ca2+ ions [23]. Therefore, these
properties might enhance and provide for the mineralization process and the formation of
hydroxyapatite tags in the dentinal tubules [21,23,29,35].

In the present in vitro study, SEM observations, digital analysis, and CBCT investi-
gations demonstrated that there is no retreatment system that could totally eliminate the
remaining filling materials and completely open the dentinal tubules. The results demon-
strated that there are no statistically significant differences between the two rotary systems
(G1 and G3) regarding the efficacy of filling material removal from the root canal at the
middle and apical thirds (p > 0.05), while the supplementary cleaning step (XPF-R in G2
and G4) enhanced statistically the efficacy of retreatment (p < 0.05). These findings suggest
that supplementary steps are able to decrease the amount of remaining filling materials.
Moreover, the tested techniques in this study showed that they cannot provide for complete
removal of the filling materials from the root canal system. Therefore the null hypothesis
must be partially rejected.
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The findings of the present work demonstrated that retreatment with the D-Race
system required less time compared to ProTaper Universal Retreatment files, which might
be attributed to the greater efficacy of D-Race files in removing gutta-percha, as well as two
instruments being used in the D-Race system compared to three instruments being used in
the ProTaper Universal Retreatment. Regarding the amount of remaining filling materi-
als after retreatment, no statistically significant differences were found between the two
systems: D-RaCe and ProTaper rotary instruments (p > 0.05). In contrast, the addition of a
supplementary cleaning step using XPF-R (G2 and G4) demonstrated statistically higher
cleaning efficiency results in all root segments compared to the two initial retreatment sys-
tems without this supplementary step (p < 0.05). This finding could be attributed to XPF-R
metallurgy. The manufacture and improvement of these files depend on the shape-memory
of its alloy. The file is straight in its M-phase, which is composed in cooled conditions.
When the file is subjected to body temperature, its shape transforms into the A-phase. The
shape in this phase permits the file to clean the zones that are otherwise inaccessible with
regular instruments [37,38]. Therefore, novel instruments, systems, and supplementary
steps and techniques are required for remaining filling material removal, especially in oval-
shaped root canals, as well as in filled canals with bioceramic materials [28,39,40]. Removal
of root filling materials during endodontic retreatment was previously evaluated using
stereomicroscopy, scanning electron microscopy, digital microscopy, and x-ray radiography.
Some studies used CBCT for the assessment of remaining filling materials. CBCT provides
three-dimensional (3D) images on the axial, coronal, and axial planes, and it is capable
of visualizing the root canal system and analyzing the quality of cleaning in extracted
teeth [10,41].

Digital images demonstrated that most remaining materials in the root canals after
retreatment procedures are the residues of calcium silicate sealers, which are stuck on the
dentinal walls (Figure 3). Kaloustian et al. [28] used a digital microscope to investigate
the amount of the remaining materials after different retreatment methods. Previous
studies have reported that gutta-percha material could be eliminated mechanically using
instruments and chemically by the application of different solvents [10–14]. In contrast,
calcium silicate sealers and cements are very difficult in retreatment due to their high
compressive strength, appropriate interactions with dental tissues, and mineralization
reactions [20,21,23,29,35,36,42]. A previous study demonstrated that the use of special
acids, such as formic acid, is the best route to retreat teeth filled with calcium silicate-based
sealer [43].

Various studies have demonstrated that the use of EDTA and NaOCl as irrigants could
provide for smear layer removal in permanent and primary teeth [44,45]. In contrast, SEM
images in the present study rarely showed dentinal zones with opened dentinal tubules
and an eliminated smear layer. Most observations showed debris in the root canal, closed
dentinal tubules, remaining calcium silicate particles, and their mineralogical reactions in
the dentinal tubules, which are near the principal root canal. In accordance, a previous study
demonstrated that the use of calcium silicate-based material by orthograde obturation of
the root canals could provide favorable conditions for bacterial entombment by intratubular
mineralization [22]. Therefore, plugging the dentinal tubules with calcium silicate materials
and/or their mineralogical reactions could close totally the dentinal tubules; thus, special
solvent should be used to open them. In contrast, this plugging could enclose the remaining
bacteria in the dentinal tubules and kill these microorganisms over time [22].

Finally, the findings of the present study are in accordance with previous studies
reporting that retreatment with calcium silicate materials is considered a big challenge in
endodontic treatment [21,34,46,47]. These materials could be considered to result in real
blockage of the apical foramen, preventing patency of the root canal and the reestablishing
of the WL, which are considered to be important outcomes. Further research is needed
to evaluate the effects of different acids and solvents accompanying mechanical process
and activation in retreatment with calcium silicate materials in straight and curved root
canals. Moreover, the mineralization process of the different calcium silicate materials and
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the time needed to totally close the dentinal tubules will be further investigated. All the
samples were observed using CBCT, while fewer samples were analyzed with µCt, which
was used to obtain a higher resolution of data that were process using Mimics Innovation
Suite software, version 24 (Materialise, Louvain, Belgium). This fact could be considered a
limitation of the present work.

5. Conclusions

Within the limitations of the present in vitro study, none of the used systems was able
to completely remove the CS material from the root canal. No significant difference was
found between the two retreatment systems. Supplementary cleaning steps are effective
tools to enhance the cleanliness of the root canal after a retreatment procedure. The
traditional irrigants (EDTA and NaOCl) could not completely the open dentinal tubules
after an obturation procedure using CS materials.
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Abstract: This prospective study aimed to evaluate the success rate of partial pulpotomy using
mineral trioxide aggregate (MTA), in permanent molars with symptomatic irreversible pulpitis.
Moreover, this study aimed to investigate the effect of carious lesion depth and activity and bleeding
time on the outcome of partial pulpotomy. Forty permanent molars with deep and extremely deep
carious lesions clinically diagnosed with symptomatic irreversible pulpitis were included. The status
of the carious lesion was evaluated clinically and radiographically to determine its activity (rapidly
or slowly progressing) and depth (deep or extremely deep). A partial pulpotomy was performed and
MTA was used. Clinical and radiographic analysis were performed at 3, 6 and 12 months. Chi-square
analysis and Fisher’s exact test were used. Scanning electron microscope and energy dispersive
X-rays were used to investigate the crystalline structures and their chemical composition onto MTA
surfaces after immersion in several conditions. The partial pulpotomy was 88.9% successful, with
no significant difference in outcome between deep and extremely deep carious lesions (p = 0.22)
or between rapidly and slowly progressing lesions (p = 0.18). Nevertheless, all failed cases were
associated with rapidly progressing lesions and extremely deep lesions. All failures occurred when
the bleeding time was more than 3 min (p = 0.10). Different crystalline structures were detected
on MTA surfaces, with higher calcium percentages in PBS conditions. Within the limitations of the
present study, favorable results demonstrated that MTA might be recommended as a suitable agent
for partial pulpotomy in permanent molars with irreversible pulpitis. The depth and activity of the
carious lesion as well as the bleeding time are important factors in the success of partial pulpotomy
treatment. The prolonged bleeding time and the extremely deep rapidly progressing caries could be
related with the failure cases in partial pulpotomy treatment of irreversible pulpitis.

Keywords: carious lesion activity; irreversible pulpitis; partial pulpotomy; vital pulp therapy; mineral
trioxide aggregate

1. Introduction

Numerous chemical, thermal, microbiological and traumatic factors can cause inflam-
mation in the dental pulp [1]. Traditionally, in the reversible stage, the tooth could be
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healed by the elimination of the stimulus whilst, in the irreversible stage, the pulp tissue is
so damaged that it is impossible to be recovered, and thus, root canal treatment (RCT) is
recommended [2].

Several clinical signs could be considered as indicators of irreversible pulpits, such as
severe pre-operative pain that is spontaneous or long-lasting and is accompanied by a deep
carious lesion [2]. However, several histological studies demonstrated that inflammatory
changes in pulp tissues are limited to the coronal region adjacent to the carious lesion,
while the residual parts of the coronal pulp tissue remain normal and uninflamed [3,4].
These histological findings, along with recent improvements in the understanding of the
pulp reparative processes [5], as well as developments in the field of bioactive materials,
such as calcium silicate-based materials and their biological effects [6–8], have made it
possible to change the concept of root canal treatment and to adopt more conservative
treatment strategies such as vital pulp therapy (VPT) for the management of pulpitis in
mature permanent teeth [9,10].

VPT is a minimally invasive, biologically based treatment aimed at preserving the
vitality of the entire dental pulp or a portion of it by sealing the pulp wound with bioactive
material after removing the infected tissue [11,12]. VPT represents a group of therapeutic
strategies, including indirect pulp capping, direct pulp capping, partial pulpotomy, and full
pulpotomy [13]. Several clinical studies over the last two decades have demonstrated that
full and partial pulpotomy could be a promising biologically based treatment alternative
to RCT for the management of carious mature teeth, even with symptoms of irreversible
pulpitis [14–16]. Nevertheless, the medical literature is divided over whether or not a
partial pulpotomy could be an indication for irreversible pulpitis management in mature
permanent teeth, and more clinical studies are still required [17,18].

The success of the VPT is dependent upon an accurate assessment of the inflammatory
status of the dental pulp. Due to the limited link between clinical signs and symptoms
and the histological state of the pulp, this assessment is, unfortunately, more predictive
than accurate in clinical practice [4,19]. Therefore, to limit the predictive diagnosis in teeth
presenting with a carious lesion, it may be essential to pay attention to additional criteria
such as the depth of penetration and activity state of the carious lesion [20]. It has suggested
that the depth and activity of the carious lesion may be an important clinical measure for
the regenerative potential of the pulp tissue and the degree of pulp inflammation and
may influence the outcome of pulp exposure treatment [21]. Interestingly, data on carious
lesion penetration and activity concerning VPT, including partial or full pulpotomy, are
seldom described in the literature. In addition, the relation between depth and activity of
carious lesion, and bleeding time with the success of partial pulpotomy treatment should
be clarified. Furthermore, the appearance of the pulp tissues under the amputation level
after partial or full pulpotomy, as well as the time needed to control bleeding, can ensure
valuable information about the degree and extent of inflammation within the pulp tissues
and determine the most appropriate treatment type and prognosis [9].

Calcium silicate materials, called bioceramics, are used in dentistry, especially in en-
dodontic treatment due to their physicochemical, mechanical and biological effects [22–24].
PD-MTA White (Produits dentaires, Vevey, Switzerland) is one of the calcium silicate
cements which is used in dental practice due to its thin hydrophilic particles, biological
activities and short setting time (15 min) [25]. However, there is no previous study in the
literature which investigates the effectiveness of PD-MTA on the dental pulp in term of VPT.
Moreover, the crystallographic reactions of this material after contact with saliva, blood
and phosphate-buffered solution have never been analyzed.

The aim of the present prospective study was to investigate the influence of the carious
lesion depth and activity as well as the bleeding time on the partial pulpotomy using
PD-MTA in permanent molars with irreversible pulpitis after one year of follow-up. The
null hypothesis was that there is no impact of the carious lesion depth, activity and the
bleeding time on the partial pulpotomy success in permanent molars with irreversible
pulpitis after one year. Moreover, it aimed to evaluate the crystallographic reaction of MTA
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after exposure to artificial saliva, blood and phosphate-buffered solution (PBS) by using
scanning electron microscope and energy-dispersive X-rays.

2. Materials and Methods
2.1. Ethical Considerations

The study protocol was approved by the Scientific Research and Postgraduate Board
of Damascus University Ethics Committee, Syria (UDDS-1819-07052018/SRC-1450). The
patients signed assent and informed consent forms. Patients were offered a full pulpotomy
or root canal treatment in case of treatment failure.

2.2. Study Design and Sample Size Calculation

The study was a prospective longitudinal single-arm clinical investigation of the pre-
dictability of partial pulpotomy with MTA in permanent molars exhibiting symptoms
and signs of irreversible pulpitis. The sample size was determined using a sample-size
calculation program, based on the teeth numbers included in previous studies which in-
vestigated both the outcome of full and partial pulpotomy in teeth which have reversible
and irreversible pulpitis [15,26,27]. Sample size was calculated using G*Power 3.1.9.2 soft-
ware (Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany) based on a previous
study [15] in order to have 95% power, an alpha error probability of 0.05 and degree of
freedom at 1 which has been concluded from a total sample size of 51 teeth.

2.3. Participants

Sixty-four patients aged from 18 to 65 years old attending the Restorative and En-
dodontic Dentistry Department, Faculty of Dentistry, Damascus University were enrolled.
One permanent molar per patient was included.

2.4. Inclusion and Exclusion Criteria

Inclusion and exclusion criteria were summarized in Table 1.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

◦ The patient should be ≥18 years old.
◦ Mature first/second (upper/lower) molar tooth.
◦ Clinical examination shows:

• Tooth with a history of signs of irreversible pulpitis
such as spontaneous pain or pain exacerbated by
cold stimuli and lasting for a few seconds to several
hours (interpreted as lingering pain) compared to
control teeth, and which could be reproduced using
cold testing.

• Positive response to cold with no signs of pulpal
necrosis including swelling or sinus tract.

• The tooth is restorable with no need for crown or
post-retained restoration.

• Normal probing pocket depth and tooth mobility

◦ Radiographic examination shows:

• Mature molar with deep or extremely deep carious
lesion.

• A pulp chamber of relatively normal dimensions
without calcified forms (e.g., pulp stone, diffuse
calcification, disk-like chamber)

• No prominent radiolucency at the furcation or zones.
No evidence of internal or external resorption.

◦ Immature molar with open apex.
◦ Radiolucency at the periapical zones or furcation
◦ Existence of calcification and internal or external

resorption
◦ Existence of swelling of sinus tract and the negative

response to cold indicator
◦ Uncontrolled bleeding after partial pulpotomy (> 6 min)
◦ Bleeding is not sufficient after pulp exposure; the pulp is

judged partially necrotic.
◦ Non-restorable teeth.
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2.5. Patient Assessment and Operative Procedure

Before the operation, a medical/dental history and chief complaint were recorded
as part of the clinical assessment. Afterward, the periodontal tissues, tooth mobility, and
possibility for restoration were evaluated. In addition, the pulp response was assessed
using the Endo Ice cold sensibility test (Coltene, Altstätten, Switzerland), and the pre-apical
tissues were evaluated using the percussion and papulation tests. A preoperative periapical
radiograph was performed using a digital sensor (Vatech, Ezsensor HD, Saul, Republic
of Korea) with a film holder (Dentsply, Elgin, IL, USA) to evaluate the condition of the
periapical and furcation areas. In addition, a bitewing radiograph was taken to assess
the depth of penetration of the carious lesion (Figure 1a,b). The carious lesions were later
divided, according to the depth of penetration within the dentine as shown radiographically,
into deep (Figure 1a) (caries reaching the inner quarter of dentine but with a zone of hard or
firm dentine between caries and the pulp) or extremely deep (Figure 1b) (caries penetrating
the entire thickness of the dentine with certain pulp exposure) [13,28]. Later, radiographs
were evaluated independently by the endodontist and a second examinator, for the depth
of the lesion as a deep or extremely deep case. After that, a local anesthesia was applied
using 2% lidocaine with epinephrine 1/80,000 (Scandonest; Septodont, Saint-Maur-des-fosses
Cedex, France) and a rubber dam was applied. The cavity was prepared, under a dental
operating microscope (Labomed, Los Angeles, CA, USA), by using a diamond bur (EX-41, Dia
burs-Mani, Tochigi, Japan) with a water-cooled high-speed handpiece. Caries at the lateral
walls of the cavity and only the superficial part of the demineralized dentin was removed
with a sharp excavator, followed by rinsing of the cavity with saline. After drying the
cavity using a sterile cotton pellet, the carious lesion was carefully examined to determine
its activity. The operator assessed the level of caries activity based on the color and surface
texture (moisture and consistency) of the carious dentine. The operator determined the
demineralized dentine color by comparing the clinical situation with photographs of the
five typical dentine color classes, which are light yellow, yellow, light brown, dark brown,
or black [29]. The consistency of the dentine was categorized as soft dentine (when it can
be excavated with minimum resistance using hand instruments), firm dentine (when it was
resistant to excavation using manual instruments), and hard dentine (when it was resistant
to probe penetration) [13]. Surface humidity was determined by inserting a probe into the
carious tissue; if the tissue oozed moisture, it was categorized as wet, and if it did not, it was
classified as dry [30]. Accordingly, demineralized dentin with a light yellow/yellow color
and a soft/moist surface texture was classified as a rapidly progressing lesion (Figure 1c),
while demineralized dentin with a light brown/brown color and a firm/dry surface texture
was classified as a slowly progressing lesion (Figure 1d).

After that, the gross caries was removed in a non-selective manner with a round bur
and a slow handpiece (Figure 2d). After the pulp was exposed (Figure 2d), a carbide bur
on a high-speed handpiece was used to eliminate around 2 to 3 mm of coronal pulp tissues
under water-cooling (Figure 2e). Following the rinsing of the pulp with 2.5% NaOCl [31]
for one minute, the state of the pulp tissues below the amputation level was thoroughly
evaluated under magnification. If the pulp tissues’ appearance was normal with no sign of
infection or degradation, hemostasis was attained by applying a cotton pellet drenched
in 2.5% NaOCl to the wound pulp. Hemostasis was controlled every minute for up to
6 min [26]. The time to control bleeding was recorded and subsequently divided into two
categories as follows: bleeding time between 1 and 3 min, and bleeding time between 4 and
6 min. Finally, mineral trioxide aggregate (MTA) (PD-MTA, Produits Dentaires SA, Verey,
Switzerland) was prepared following the manufacturer’s instructions and added gradually
over the fresh pulp wound and surrounding dentine to a thickness of 2–3 mm using the
MapOne carrier (MapOne system, Produits Dentaires SA, Verey, Switzerland) (Figure 2f).
The MTA was coated with a sterile, moist cotton pellet immersed in saline for 15 min to
provide primary hydration. After that, a layer of resin-modified glass-ionomer cement
‘’RMGIC” (Fuji II LC; GC Corp, Tokyo, Japan) was placed on the MTA (Figure 2g) [32]. An
universal adhesive system (Tetric-N Bond, Ivoclar Vivadent) was applied and covered by
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direct composite restorative resin (Tetric-Ceram, Ivoclar Vivadent) (Figure 2h) [33]. All the
clinical steps are summarized in Figure 3.
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Figure 1. (a) Bitewing preoperative radiograph for first mandibular molar with deep carious lesion
shows that the lesion involves the inner quarter of dentine with a radio-dense zone (hard or firm
dentine) between caries and the pulp. (b) Bitewing preoperative radiograph for second mandibu-
lar molar with extremely deep carious lesion shows the lesion penetrating the entire thickness of
the dentine with a radio-dense zone located within the pulp chamber indicative of tertiary dentine.
(c) Intraoral image shows a rapidly progressing lesion and the yellow color of the demineralized dentine
with soft and wet appearance of the surface texture. (d) Intraoral image shows a slowly progressing
lesion and the brown color of the demineralized dentine with firm/dry appearance of the surface texture.
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Figure 2. Mandibular right first molar presented with symptomatic irreversible pulpitis treated with
partial pulpotomy using PD-MTA. (a) Clinical and radiographic examinations revealed deep cari-
ous lesion confined at a proximal surface with no evidence of dentine exposure, reflecting a close
lesion environment. (b) Rubber dam application. (c) After removal of the undermined enamel and
the exposition of the demineralized dentine. (d) Pulp exposure after non-selective caries removal.
(e) Partial pulpotomy by removing of 2–3 mm of pulp tissues under exposure and hemostasis achieved.
Note that the pulp tissues under level of amputation showed a normal appearance, texture, and color.
(f) PD-MTA application as capping material. (g) Base of resin-modified glass–ionomer cement placed
above MTA material. (h) Composite resin restoration. (i) Postoperative bitewing radiograph.
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2.6. Outcome Evaluation

Three follow-up appointments (3, 6, and 12 months) were determined. At each time
point, participants were clinically and radiographically examined by an endodontist who
was blinded about the depth and activity of caries and the bleeding time. Different clinical
parameters including the absence and presence of clinical signs, a vitality pulp test, a
periodontal examination, and a percussion test were recorded. Periapical and bitewing
radiographs were taken to evaluate any pathological changes at the periapical or furcal area
and to detect dentinal bridge formation. The radiographs were later evaluated indepen-
dently by two blinded examiners; the accuracy between the examiners was investigated by
repeating the evaluation of the images after one week [34]. After one year, the teeth were
classified as successful or failed treatments. To be classified as retaining overall success, the
tested tooth should have both clinical and radiographic success. Treatment was considered
successful when the tooth responded positively to a cold test within normal limits, there
were no signs of pulpitis, there was no abnormal mobility or fistula, and there was no
evidence of an apical radiolucency or internal and/or external root resorption.

2.7. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Analysis (EDX)

After the end of the follow-up (12 months), 9 samples of the same MTA material
were prepared using Teflon molds (height: 3.8 mm/diameter: 3 mm). The samples were
put at 37 ◦C for 48 h to achieve a good setting time [12]. Each of the three samples were
stored in 50 mL of human blood, phosphate-buffered saline (PBS10x, Dominique Dutscher,
Bernolsheim, France) or artificial saliva (Serlabo Technologies, Entraigues-sur-la-Sorgue,
France) at 37 ◦C for 7 days. After the immersion time, the samples were gently rinsed
with distilled water for 3 min and were sputter-coated with gold–palladium (20/80) using
a Hummer JR sputtering device (Technics, San Jose, CA, USA). After that, the surface of
each sample was investigated using SEM (Quanta 250 FEG scanning electron microscope
“FEI Company, Eindhoven, The Netherlands”; 10 kV acceleration voltage of the electrons)
and studied at a magnification of 1000× and 4000× for morphological evaluations and
mineralization changes through SEM. Moreover, EDX analyses were performed for 30 s at
10 mm of distance in order to investigate the chemical composition.
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2.8. Statistical Analyses

The SPSS 24.0 software (SPSS Science, Chicago, IL, USA) was used to perform the
statistical analyses. The level of significant difference was at α = 0.05. Fisher’s exact test and
the Chi-square test were used to assess the influence of the depth and activity of a carious
lesion and the bleeding time on the outcome of treatment. The preoperative caries depth
assessment inter-observer agreement and the postoperative intra-observer reproducibility
and inter-observer agreement in terms of any pathological changes in the periapical or
furcal area were assessed using Cohen’s Kappa coefficient.

3. Results

Sixty-four patients were assessed for eligibility, having presented with signs symp-
tomatic of irreversible pulpitis in molar teeth. Fourteen participants were excluded from
the study due to refusal to participate (five patients) or not meeting inclusion criteria (nine
patients). Fifty patients (50 teeth, one tooth per patient) were enrolled to be treated by
partial pulpotomy treatment. Ten patients were subsequently excluded intraoperatively,
three cases due to uncontrolled bleeding and seven cases due to extension of infected tissue
to the root canal orifices or beyond. These patients were treated either with full pulpotomy
or with RCT. Finally, forty teeth were included and treated in this study. Four participants
could not attend the follow-ups, resulting in an overall recall rate of 90% (36/40) (Figure 4).
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Figure 4. Study flow diagram.

The patients consisted of 13 males and 23 females, aged 18–65 years old (32.75 ± 10.7 years
old). The included cases consisted of twenty teeth (55.5%) and sixteen teeth (44.5%) with
deep and extremely deep caries, respectively. The carious lesion was actively progressing
in twenty-four cases (66.7%) compared to twelve slowly progressing lesions (33.3%).

The mean bleeding time was 3.80 ± 1.47 min; fifteen teeth (41.7%) needed time
between 1–3 min to achieve hemostasis, while twenty-one teeth (53.3%) needed time
between 4–6 min to control the bleeding.

The success rate for partial pulpotomy managing irreversible pulpitis was 88.9% after
one year of follow-up, and failure was observed in four cases. Early failure occurred within
three months in three cases, while late failure was observed after 12 months in one case. For
carious lesion activity, all failure cases were associated with actively progressing lesions,
while no failure occurred in slowly progressing lesions. However, no statistically significant
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difference was observed (p > 0.05). Regarding caries depth, only one failure case was related
to a deep lesion, whilst the other three failure cases were associated with extremely deep
carious lesions (p > 0.05).

As for bleeding time, it was noted that all failure cases were associated with a bleeding
time ranging between 4 and 6 min, whilst no failure was detected for cases with 1–3 min
bleeding time (p > 0.05) (Table 2).

Table 2. Fisher’s exact test results to compare the outcome according to the activity of carious lesion,
carious lesion depth, and bleeding time.

Variables
Overall Outcome

p-Value
n (%) Success (%) Failure (%)

Activity of carious
lesion

Rapid progression 24 (66.7) 20 (83.3) 4 (16.7)
0.18

Slow progression 12 (33.3) 12 (100) 0 (0)

Carious lesion
depth

Deep 20 (55.5) 19 (95) 1 (5)
0.221

Extremely deep 16 (44.5) 13 (81.3) 3 (18.7)

Bleeding time
1–3 min 15 (41.7) 15 (100) 0 (0)

0.102
4–6 min 21 (58.3) 17 (81) 4 (19)

The results were subdivided by both depth and activity of carious lesions into four
categories: rapidly progressing deep (n = 14), rapidly progressing extremely deep (n = 10),
slowly progressing deep (n = 6), and slowly progressing extremely deep (n = 6). Three cases
of rapidly progressing extremely deep lesions and one case of rapidly progressing deep
lesions failed, whereas neither slowly progressing deep lesions nor slowly progressing
extremely deep lesions failed (p > 0.05) (Table 3).

Table 3. Chi-Square test results to compare the outcome according to depth/activity of carious lesion.

Overall Outcome

State of Carious Lesion n (%) Success (%) Failure (%) p-Value

Rapidly progressing deep 14 (38.88) 13 (92.9) 1 (7.1)

0.149
Rapidly progressing, extremely deep 10 (27.8) 7 (70) 3 (30)

Slowly progressing, deep 6 (16.66) 6 (100) 0(0)

Slowly progressing, extremely deep 6 (16.66) 6 (100) 0(0)

The two examinations showed a good level of accordance in investigating caries depth
(κ = 0.8). When assessing the periapical and furcal areas, the Kappa value for the inter-
observer accordance was 0.89, and for the intra-observer reproducibility, the Kappa values
were 0.95 and 0.92 for the 1st and 2nd observers, respectively.

SEM micrographs showed the reaction of MTA surfaces after 7 days of immersion
in blood, PBS and artificial saliva at 37 ◦C. The crystalline textures of the MTA in the
three conditions are demonstrated in Figure 5. Different crystalline appearances were
detected. SEM images of MTA exposed to PBS demonstrated cubical crystalline, whilst
MTA surfaces exposed to blood demonstrated small globular crystalline. MTA surfaces
exposed to saliva did not show any crystalline structures. EDX analysis for MTA surfaces
after 7 days presented different % of Ca, Si and P among the three conditions. Higher Ca
mass percentages were detected on MTA surfaces in PBS condition compared to blood
and saliva.
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4. Discussion

Partial pulpotomy is described as the removal of 2–3 mm of pulp tissue at the exposure
site, followed by sealing of the pulp wound with bioactive material [13]. This procedure
differs from pulp capping in that it removes the superficial layer of infected or inflammatory
tissue and the accompanying biofilms [26]. In addition, it preserves a significant portion of
the coronal pulp compared to a full pulpotomy, which removes the entire coronal tissue up
to the canal orifices [12]. Therefore, partial pulpotomy could be the most conservative and
predictable treatment for carious pulp exposure.

The success rate in the present study was 88.9% after one year of follow-up. Several
clinical studies over the last 10 years have shown success for the partial pulpotomy proce-
dure in treating carious pulp exposure in adult and young permanent teeth, even when
there are symptoms and signs of irreversible pulpitis [15,16,26]. In accordance with the
results of the present study, Uesrichai et al. noted a 90% success rate for partial pulpo-
tomy in the management of irreversible pulpitis in mature and young teeth in children
aged 6 to 18 years [16]. Another study showed a success rate of 90% after 12 months
partial pulpotomy procedure on complete developed permanent teeth within a sample
of reversible and irreversible pulpitis [26]. A longer follow-up study (2 years) performed
on partial pulpotomy in complete developed adult teeth with symptomatic irreversible
pulpitis showed a slightly decrease in the success rate to 80% [15]. In accordance with the
previous study of Taha and Khazali [15], the current study relied on standardizing the
initial diagnosis of the dental pulp and limiting it to irreversible pulpitis in adult mature
permanent molars to analyze the partial pulpotomy procedure in such cases more precisely.
In addition, the originality of the current study was to associate the effect of carious lesion
activity and depth, as well as the use of PD-MTA on the success of a partial pulpotomy
procedure, which was never previously investigated.
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No statistically significant relation was found between the failure with deep or ex-
tremely deep lesions (p > 0.05). Therefore, the null hypothesis must be accepted. Only one
failure case was related to a deep lesion, whilst three failure cases were associated with
extremely deep carious lesions. This results could be explained by the fact that pulpitis will
be present at the early stage of the carious process, and the severe inflammatory response
and the significant levels of inflammatory cells are not identified in the pulp until caries
have progressed to within around 0.5 mm near the pulp [35]. It was found that bacteria
were mainly present in the primary dentine in deep carious lesions. Extremely deep lesions,
on the other hand, were linked to pulp-reaching microorganisms, as well as inflammatory
infiltration and subsequent partial necrosis [20]. Therefore, the majority of failure cases
in the current study were associated with extremely deep lesions rather than deep ones.
In accordance, Careddu and Duncan [26] noted that all failure cases in their study, which
were treated with a partial pulpotomy using Biodentine as capping material, were in the
extremely-deep caries group.

Ten patients were excluded intraoperatively due to either the extension of infected
tissue to the root canal orifices or beyond, as confirmed by careful examination under mag-
nification and illumination, or uncontrolled bleeding that may indicate advanced pulpal
inflammation [36]. In addition, these patients had extremely deep caries. In accordance, a
previous histological study [20] revealed that more than half of extremely deep caries were
associated with inflammatory infiltrates that affected the complete coronal pulp and the
most coronal part of the radicular pulp, which renders partial pulpotomy inappropriate in
such cases. As there was no significant difference between deep and extremely deep lesions,
extremely deep carious lesions can still be treated with partial pulpotomy if a magnified
examination of the underlying tissues is performed to determine the extent of inflamed
and infected tissues within the dental pulp.

No failure cases were detected after one year for slowly progressing lesions, whilst
all failure cases were associated with actively progressing lesions. In addition, all cases
presented with slowly progressing lesions were successful even if they had extremely
deep penetration, while 30% of extremely deep lesions and 7.1% of deep lesions failed
if they rapidly progressed. These findings could be due to rapidly progressing lesions
being associated with the presence of heavily cariogenic biofilm, while the cariogenic
biofilms are significantly diminished in slowly progressing lesions [20,30]. Moreover, a
slowly progressing lesion with limited cariogenic biofilms is less likely to transmit stimuli
into the pulp, which is associated with a low-intensity inflammatory response favorable
for healing and repair [37]. Therefore, we can conclude that the rapidly progressing and
extremely deep caries associated with clinically diagnosed irreversible pulpitis have less
chance of being treated with a partial pulpotomy, even though no statistically significant
difference was observed in treatment outcomes according to both depth and activity of the
carious lesion.

It is commonly agreed that avoiding pulpal exposure and selectively removing carious
tissue is the optimal strategy for the management of a deep carious lesion [38]. In the
current study, all teeth were clinically judged to have irreversible pulpitis, necessitating the
total or partial removal of coronal pulp tissue [14,15]. Therefore, regardless of the depth of
caries, they were chosen to have the carious tissues removed non-selectively rather than
selectively. Notably, the majority of included deep lesions were proximal caries, in which
the undermined enamel maintains a closed ecosystem and a rapid progression rate. These
carious lesion characteristics may be associated with no or less prominent tertiary dentine
formation, and bacterial invasion of the pulp may be evident even before caries reaches
the pulp radiographically [39]. Moreover, pulpitis may be induced by a highly acidogenic
environment in such lesions even before the pulp is exposed [28,40]. This may explain
the occurrence of irreversible pulpitis in a significant part of cases included in this study
despite their presenting with deep lesions without reaching the pulp radiographically, and
it highlights once again the importance of evaluating the activity of the carious lesion in
addition to its depth to determine the most appropriate treatment.
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All failed cases in the present study occurred when the bleeding time was more than
3 min. Consistently, the present results showed no significant difference in the success
rates of partial pulpotomy with the difference in the time needed for hemostasis (p > 0.05).
In accordance, several recent studies demonstrated that there was no marked association
between bleeding time and the outcome of pulpotomy treatments [18,26]. The control of
bleeding is essential for the success of VPT, as the profuse, difficult-to-stop pulp bleeding
could be an indicator of advanced pulp inflammation [36]. However, the mechanical and
chemical elimination of the infectious challenge at the pulp wound by partial pulpotomy
and NaOCl lavage may make the bleeding time a less significant factor in the treatment
outcome [31]. Moreover, the local anesthesia which was applied using 2% lidocaine with
epinephrine 1/80,000 in the present study could play an important role on the bleeding time.
Chu et al. demonstrated that the use of local anesthesia based on lidocaine and epinephrine
decreases the pulpal blood flow and may protect the dental pulp by attenuating the
increase in pulpal blood flow caused by tooth preparation [41]. Moreover, it is known that
the infiltration anesthesia is used successfully in the maxillary teeth but is less effective in
the mandibular molar regions due to the density of bone [42]; therefore, block anesthesia
was used in the present study for the mandibular molar regions.

In order to clarify the outcomes of the use of MTA in partial pulpotomy, when this
biomaterial is in direct contact with pulpal tissue, blood and dentinal fluids, SEM analyses
were performed on a MTA surface after immersion in PBS, blood and artificial saliva
at 37 ◦C for 7 days. PBS was utilized to simulate the in vivo dental tissue fluids [43]
to assess the mineral development that could take place on the material surfaces. SEM
images showed crystallite formation on the material surfaces in the cases of PBS and blood
conditions, whilst no mineralization process and no notable changes were demonstrated
for MTA surfaces after immersion for 7 days in artificial saliva. Therefore, MTA is a
bioactive material which could promote the remineralization process. In addition, calcium
silicate-based materials are capable of making calcium hydroxide and calcium silicate
hydrate when it is in a humid medium [22,24,44]. Lower calcium peaks were found for
the MTA surfaces immersed in blood and artificial saliva, whilst higher calcium peeks
were detected for MTA surfaces exposed to PBS. These findings could be related to the
different environmental conditions and the dissolution of calcium hydroxide because of
hydration [45]. These outcomes are similar to the results of a previous study which was
conducted on MTA ProRoot [45]. Moreover, in the present study, RMGIC was used on
MTA in order to have the optimal bond strength with the final restoration (composite)
as described previously [46,47]. In addition, several studies have also shown that the
MTA’s physical properties might be affected by the acidic environment that existed before
composite buildup [48,49]. Therefore, RMDIC was used to have an optimal coronal sealing
ability, which is related to the long success of VPT.

Some limitations were detected in the present study. For example, because the study
was designed to investigate the effect of the depth and activity of the carious lesion, there
was no control group to which the patients could be assigned randomly. Moreover, PD-
MTA as a powder–liquid bioceramic material should be carefully mixed following the
manufacturer’s instructions in order to avoid errors during manual mixing, which could
alter the physicochemical properties of this material [22]. Moreover, the irrigant which was
used, NaOCl, is known for its high cytoxicity, which could lead to severe tissue damage if
it is used in high concentrations [50,51]; in contrast, 2.5% NaOCl has a high efficacity as
a lavage solution due to the unique capability of NaOCl to selectively dissolve necrotic
soft tissue, thus reducing the necessity to mechanically remove infected tissues [31]. In
addition, radiographic monitoring was crucial to follow the treatment results; however,
the indication to take radiographs in clinical practice is limited to reasonable requests in
order to decrease patients’ exposure to ionizing radiation [52]. Further studies with higher
numbers of included cases and longer follow-up periods should be performed to investigate
the relation between the activity of a carious lesion and the success of partial pulpotomy
treatment. In addition, the carious lesion depth was estimated on a bitewing radiograph.
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Although there was a good inter-observer agreement (0.8), it was still challenging to identify
the exact depth of caries on a two-dimensional radiograph. Finally, future studies should
consider using cone-beam computed tomography (CBCT) as a more precise technique for
this purpose. The color, moisture, and surface texture of the carious tissues were also used
as indications of carious lesion activity. These indicators, however, are somewhat subjective,
and a more reliable method is required.

5. Conclusions

Within the limitations of the present study, favorable results demonstrated that MTA
might be recommended as suitable agent for partial pulpotomy in permanent molars with
irreversible pulpitis, with an 88.9% success rate after one year. It could be concluded that
the depth and activity of the carious lesion as well as the bleeding time are important
factors in the success of partial pulpotomy treatment. The prolonged bleeding time and the
rapidly progressing extremely deep lesions could be related to the failure cases in partial
pulpotomy treatment of irreversible pulpitis.
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Abstract: The purpose of the present study was to evaluate the physicochemical properties and
antibacterial activity of three calcium silicate cements. Mineral trioxide aggregate (MTA Biorep “BR”),
Biodentine (BD) and Well-Root PT (WR) materials were investigated using scanning electron mi-
croscopy (SEM) at 24, 72 and 168 h of immersion in phosphate buffered saline (PBS). The antibacterial
activity against Enterococcus faecalis (E. faecalis), the solubility, roughness, pH changes and water
contact angle were also analyzed. All results were statistically analyzed using a one-way analysis of
variance test. Statistically significant lower pH was detected for BD than WR and BR (p < 0.05). No
statistical difference was found among the three materials for the efficacy of kill against E. faecalis
(p > 0.05). Good antibacterial activity was observed (kill 50% of bacteria) after 24 h of contact. The
wettability and the roughness of BR were higher than for the other cements (p < 0.05). BD was
more soluble than WR and BR (p < 0.05). In conclusion, the use of bioceramic cements as retrograde
materials may play an important role in controlling bacterial growth and in the development of
calcium phosphate surface layer to support healing. Moreover, the premixed cement was easier to
use than powder–liquid cement.

Keywords: calcium silicate cement; retrograde materials; premixed cement; powder–liquid cement

1. Introduction

The success of surgical endodontic treatment requires root-end filling materials that
are easy to use, biocompatible, stable and economical [1–3]. The goal is to seal the apex
hermetically and prevent microorganisms from entering the root canal [4,5].

Retrograde root-end filling materials have included zinc oxide eugenol cements, amal-
gam, glass ionomer and resins which have failed to meet the ideal requirements of root-end
filling treatment [6,7].

Calcium silicate cement materials, colloquially denoted as “Bioceramic”, in both forms,
sealer [8] or thicker mixture [9], are considered as the ideal endodontic material for retro-
grade treatment due to their excellent physicochemical and biological properties [10–15],

26



Bioengineering 2022, 9, 624

including biocompatibility and stability. These inorganic and non-corrosive ceramic ce-
ments contain tricalciums silicate and various radiopaque powders [16].

Mineral Trioxide aggregate (MTA) was the original calcium silicate cement introduced
for endodontic treatment in 1993 and it is considered as the gold-standard material for
various endodontic applications [10]. Other tricalcium silicate-based products have been
developed, improvements on the original Portland cement invention [10]. MTA Biorep
(Itena Clinical, Paris, France) is a powder–liquid product containing calcium silicate cement
and calcium tungstate. Its water-based liquid, containing an organic plasticizer, improves
the handling and plasticity [10].

Biodentine™ (Septodont, Saint-Maur-des-fossés, France) is a calcium silicate cement
material and it has higher strength than other similar products [17]. This product consists
of a powder–liquid material, where the liquid contains calcium chloride with an admixture
of polycarboxylate [17]. MTA Biorep and Biodentine cements are indicated for several
endodontic treatments, including pulpotomy, pulp capping, resorption, apicoectomy and
open apex [9,10,18–21].

Some bioceramic cements require manual mixing and handling, powder–liquid sys-
tems, which require certain skills [16,22]. In addition, any change in the powder–liquid ratio
or the mixing could affect and alter the physicochemical properties of these cements [8,23].
Premixed cements have been introduced to avoid errors during manual mixing. These
premixed materials do not require any preparation before clinical application [8,16]. As
mentioned in previous studies [8,16], these premixed materials are advantageous for some
clinicians in the handling.

Well-Root™ PT is a novel premixed calcium aluminosilicate cement delivered in
capsules for direct clinical use [24]. No information was found in the literature on the
antibacterial activity and the physicochemical properties of this cement.

The purpose of the present research was to investigate the physicochemical properties
and the antibacterial activity of three calcium silicate cements. The hypothesis concerned
whether there would be antibacterial and physicochemical differences between the three
tested materials.

2. Materials and Methods
2.1. Materials

MTA Biorep “BR” (Itena Clinical, Paris, France), Biodentine™ “BD” (Septodont, Saint-
Maur-des-fossés, France) and Well-Root™ PT “WR” (Vericom, Gangwon-Do, Korea) were
used in the present study, following the manufacturer’s instructions (Table 1). All specimens
were conserved in the dark in a container at 37 ◦C and 95% relative humidity for 48 h until
completely set [25].

2.2. pH Measurements of the Aqueous Solution in Contact with the Cement

Five samples of each group were prepared using Teflon molds (3.8 mm in high and
3 mm in diameter). Each sample was put in contact with 10 mL distilled water at 37 ◦C. A
pH meter, “CyberScan pH 510” (Thermo Scientific, Waltham, Massachusetts, USA), was
used to measure the pH of water at 3, 24, 72 and 168 h. Before each pH test, the calibration
of pH meter was performed using standard solutions at pH 10, 4 and 7 (Hanna Instruments,
Lingolsheim, France). Distilled water was used to rinse and eliminate the previous solution
from the pH meter electrode.

2.3. Solubility

Five samples (2 mm in height and 20 mm in diameter) of each material were analyzed
following the method of a previous study [26]. The samples were weighed using a digital
system, then the disks were immersed for 24 h in 50 mL of water at 37 ◦C. The samples were
removed from distilled water and then dried at 37 ◦C for 24 h. Finally, the samples were
weighed again to obtain the final weight. The solubility was defined from the difference in
mass between the final and the initial weight.
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Table 1. Manufacturer and manipulation of the tested materials.

Materials Manufacturer Lot Mixing Composition

MTA Biorep Itena Clinical,
Paris, France 53505

Powder: 1
capsule

Liquid: 4 drops

Powder: Tricalcium silicate;
Dicalcium silicate;

Tricalcium aluminate;
Calcium oxide; Calcium

Tungstate
Liquid: Water

and Plasticizer.

Biodentine™
Septodont, Saint-
Maur-des-fossés,

France
B28033

Powder: 1
capsule

Liquid: 5 drops

Powder: Tricalcium silicate;
Dicalcium silicate; Calcium

carbonate; Zirconiom
dioxide; Iron oxide

Liquid: Calcium chloride;
Hydrosoluble polymer

Well-Root™
PT

Vericom,
Gangwon-Do,

Korea
WT010100 Premixed

Calcium aluminosilicate
compound; Zirconium

oxide; Thickening agent

2.4. Scanning Electron Microscope (SEM) of Crystallites Creation

Twelve samples for each material were created (3.8 mm in high and 3 mm in diameter.
After the setting time, as described in Section 2.1, three samples from each group were
stored in hermetic boxes and kept in dry condition. The remaining samples (9 samples)
from each group were put in 10 mL of phosphate-buffered saline (PBS10×, Dominique
Dutscher, Bernolsheim, France) at 37 ◦C. After 24, 72 and 168 h in PBS, 3 samples for each
period were washed with distilled water for 5 min, sputter-coated with gold–palladium
(20/80) [27], then, analyzed using an SEM (FEI Company, Eindhoven, The Netherlands,
10 kV) at a magnification of 5000×. Energy Dispersive X-ray (EDX) analysis was used
during an acquisition time of 1 min and a working length of 10 mm to attain the spectrum
of chemical elements present on the surface.

2.5. Roughness and Water Sorption Tests

Five samples from each product were created using Teflon molds (10 mm in diameter
and 2 mm in height). After the setting time, as described in Section 2.1, the samples were
kept in dry in the fume hood overnight. The roughness of each surface was measured using
a 3D digital profilometer (Keyence, Osaka, Japan) at 2500× magnification. The average
roughness (Sa) was calculated using software (Keyence 7000 VHX, Osaka, Japan).

After measuring the surface roughness, on the same samples, a contact angle device
(Biolin Scientific, Espoo, Finland) was used to observe the infiltration time of a 5 µL droplet
of water into the material surface. A movie was recorded to track the profile and the
absorption time of the water droplet.

2.6. Antimicrobial Activity

Brain Heart Infusion medium (BHI) (Darmstadt, Germany) was used to culture Entero-
coccus faecalis (E. faecalis, ATCC 29212). The turbidity was adjusted to OD600 (nm) = 0.3. A
direct contact test (DCT) was performed to investigate the antibacterial activity of the three
products against E. faecalis. Triplicate samples were placed in 24-well culture plates. One
milliliter of the bacterial medium was put to each well and incubated anaerobically for 24 h
at 37 ◦C (constant stirring at 450 rpm). The bacterial medium without the cement materials
was used as the control group. After 24 h, 10-fold serial dilutions up to 106 in BHI were
performed on each specimen. One hundred microliters of each diluted medium was added
onto a BHI agar plate, homogeneously spread and incubated at 37 ◦C for 24 h. Manual
CFU/mL (colony forming units/mL) counting was measured the E. faecalis concentration.
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2.7. Statistical Analysis

The results of pH, solubility, roughness and antibacterial activity were statistically
analyzed using the Kruskal–Wallis test along with the Tukey Test. SigmaPlot release 11.2
(Systat Software, Inc., San Jose, CA, USA) was used with a statistical significance was set at
α = 0.05.

3. Results
3.1. pH Measurements

The pH of the solution in contact with the three cements over 7 days is shown in
Figure 1. All three cements were alkaline for the solution for up to 72 h. BR and WR
demonstrated statistically higher pH than BD at all time points (3, 24, 72 and 168 h)
(p < 0.05). No significance difference was found between BR and WR (p > 0.05).

Bioengineering 2022, 9, x FOR PEER REVIEW 5 of 11 
 

 

Figure 1. pH changes for the three products after 3, 24, 72 and 168 h of contact with water. * p < 0.05. 

3.2. Solubility 

The mean and standard deviation of solubility (wt.%) values are presented in Figure 2. 

BD was more soluble than BR and WR at 24 h (p < 0.05). 

 

Figure 2. Solubility percentages of the different products after aging in water for 24 h at 37 °C. * p < 0.05. 

3.3. Scanning Electron Microscope (SEM) 

The crystalline structures of the three cements are shown in Figures 3 and 4. All three 

cements had crystalline deposits after immersion in PBS at 37 °C. At each immersion pe-

riod (24, 72 and 168 h), different crystalline appearances were observed. At 24 and 72 h, 

WR had elongated crystals, BD and BR had globular and cubic crystals (Figure 3). 

Figure 1. pH changes for the three products after 3, 24, 72 and 168 h of contact with water. * p < 0.05.

3.2. Solubility

The mean and standard deviation of solubility (wt.%) values are presented in Figure 2.
BD was more soluble than BR and WR at 24 h (p < 0.05).
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3.3. Scanning Electron Microscope (SEM)

The crystalline structures of the three cements are shown in Figures 3 and 4. All three
cements had crystalline deposits after immersion in PBS at 37 ◦C. At each immersion period
(24, 72 and 168 h), different crystalline appearances were observed. At 24 and 72 h, WR had
elongated crystals, BD and BR had globular and cubic crystals (Figure 3).
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After 168 h, BR and BD showed cubic crystals. The cubic crystals of BR were larger
(8–10 µm) than for BD (3–6 µm). WR had globular and elongated crystal features at 168 h.
EDX analysis for the three cements after 168 h in PBS showed different percentages of Ca,
P and Si among the three materials. Other chemical elements were detected on WR (Zr)
and BR (Al) surfaces.

3.4. Roughness and Water Sorption Tests

BR demonstrated the highest hydrophilicity for a 5 µL of a drop of distilled water
compared to BD and WR. Contact angles of 15◦ and 9◦ for BD and WR, respectively, were
investigated after 10 s (Table 2). Whereas, the water sorption in the BR surface was faster
(<10 s) than the other cement surfaces. The contact angle of the drop in contact with
BR surface after 10 s was 0◦ (Figure 5). All tested cement surfaces were analyzed using
KEYENCE 7000 VHX to measure the roughness of these surfaces. In addition, rougher
surfaces were obtained for BR and BD compared with WR surfaces (p < 0.05) (Table 2 and
Figure 5).

Table 2. Contact angles of 5 µL of distilled water on the different material surfaces after 10 s of
deposition. Mean and standard deviations of the roughness (Sa) of the tested materials. Superscript
letters a, b, c and x, y, z indicate statistical significance (p < 0.05).

Test\Materials Biodentine MTA Biorep Well-Root PT Statistical
Significance

Contact angle (◦) 15.2 ± 3.5 x 0 y 8.9 ± 0.4 z p < 0.05

Roughness (Sa) 0.7 ± 0.05 a 0.9 ± 0.2 b 0.3 ± 0.02 c p < 0.05
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Figure 5. Contact angles of 5 µL of water drop on the different cement surfaces after 10 s. Digital
micrographs of the different surfaces using KEYENCE 7000 VHX demonstrate the roughness of
each material.

3.5. Antimicrobial Activity

Bacterial growth was significantly inhibited with the three cements. No significant
difference was found among them for the efficiency against E.faecalis (p > 0.05). The three
cements killed about 50% of the bacteria after 24 h, versus the control (p < 0.05) (Figure 6).
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4. Discussion

Since their introduction in the dental market, calcium silicate cement materials have
attained popularity due to their excellent physicochemical, biological and mechanical
properties and their positive outcomes in clinical applications [9,28]. Calcium silicate
cement products are the ideal dentine repair materials for various endodontic applica-
tions [2,3,17,20,29]. A number of investigations have been conducted to determine the
differences among the products as retrograde bioactive material.

Our present in vitro study comparing BR, BD and WR showed significant antibacterial
activity and formation of crystals on their surfaces after immersion in PBS. Therefore, the
null hypothesis was partially rejected.

Alkaline pH was detected with the three materials (Figure 1), but BD had a lower pH
than WR and BR (p < 0.05). The alkalinity is key to the antibacterial activity and healing
process [8,30–32]. Kharouf et al. [10] measured a high alkaline pH with MTA Biorep.
Oliveira et al. [33] measured a lower pH for BD (pH = around 6–7) after 24 h than the one
attained our study (pH = around 9–10), whilst Hassan et al. [34] measured higher pH values
(pH = around 11–12) for BD after 24 h. The differences may be related to the methods of
exposing the materials. The premixed bioceramic cement (WR) created a similar pH to the
powder–liquid BR cement.

In the present study, the solubility of the three cements did not exceed the 3% mass
after 24 h in distilled water; however, the ISO 6876 was not used. The results of the present
study agree with those of the Al-Sherbiny study [35] for BD results and with the study
of Queiroz et al. [36] for MTA Repair HP. The premixed bioceramic (WR) had a solubility
similar to that of the other two cements (Figure 2). Solubility is important because if it is
high, voids and gaps may be formed, which would be a pathway for the microorganisms
to re-infect the root canal system [8,27]. BD demonstrated lower pH values than the
other products, but the solubility of BD was higher. Weckwerth et al. [37] noted that a
higher solubility does not always correlate with higher pH. The cement may release other
components, which do not have any effect on pH changes and the liberation of these
components increases the solubility of this material.

The direct contact test was used in this in vitro study to evaluate the antibacterial
activity of the different cements. The agar contact test was not used, because in our previous
study [8], we noted that these cements infiltrate the agar plates and hide the inhibition
zones. E. faecalis was used in our experiment because this Gram-positive facultative anaer-
obe microorganism is the most predominant bacterium found in root canal infections and
failure [8,38–41]. No significant differences were found among the capacity of killing bacte-
ria of the three cements (p > 0.05). All the materials demonstrated high potential of killing
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bacteria after 24 h (kill around 50%) compared to the control group (bacterial medium).
The antibacterial activity of these cements comes from the high alkaline pH [8,10,16,42,43].

All the three cements had different crystalline features (Figures 3 and 4) after immer-
sion in PBS. Cubic crystals were observed on BR and BD samples after 7 d of immersion in
PBS (Figure 4). The crystallites of BD were more numerous and smaller than BR crystallites.
Elongated crystals were observed on WR surfaces. Yoo et al. [44] showed the importance
of biomineralization to entomb the microorganisms in dentinal tubules, since the elimi-
nation of 100% of bacteria from the root canal system is impossible [45,46]. EDX analysis
showed different chemical compositions of formed crystals onto each cement. Ca, Si and P
were detected on the surfaces of the three materials, which reflects the reactions between
calcium silicate and PBS. Zr presented onto WR and Al onto BR surface due to the initial
composition which contain Zirconium oxide and Tricalcium aluminate, respectively. Al
was not detected on WR surface which is a calcium aluminosilicate compound. Therefore,
EDX could be considered as a qualitative method and the composition of these crystals
could not be identified without X-ray diffraction analysis, which could be considered as
limitation of this in vitro study.

A contact angle test was used to determine the capacity of absorption of 5 µL drops of
distilled water. This test is an indicator of the wetting behavior of a solid material (cement)
and a liquid (water). Contact angle measurement is affected by the surface roughness [47]
and the chemical surface composition [48]. The roughnesss of WR surface was less than
that of BR and BD (p < 0.05), which could be related to the particles size of each cement.
After 10 s, the 5 µL drop was totally absorbed by the surface of BR which had the higher
roughness values compared to BD and WR (p < 0.05). Whatever the considered wetting
model (Wenzel or Cassie–Baxter) [48], the higher roughness and hydrophilic surface would
increase the adhesion, protein adsorption and the cellular attachment, and provide a
superior biocompatibility [48–50]. In contrast, a decrease in cell proliferation and growth
could be related to a critical roughness ration, where the elastic energy of the cell hinders
the insertion of the cells into surface trenches, where cells install over the tips of the rough
surfaces leading to only point-contact, which minimizes cell–surface interaction [51].

Further studies are required to investigate the cytotoxicity, the setting time, the flowa-
bility, calcium ions releasing and the filling ability of the novel premixed cement.

5. Conclusions

Within the limitations of the present study, the three calcium silicate cement products,
MTA Biorep, Biodentine and Well-Root PT, had a high antibacterial activity, formation of
phosphate crystal in PBS alkaline and had comparable solubility. The premixed format was
more convenient as a retrograde agent.
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Aggregate, Biodentine and Glass Ionomer as Root-End Materials: A Question of Choice. Acta Med. Acad. 2020, 49, 232–239.
[CrossRef]

15. Jardine, A.P.; Rosa, K.F.V.; Matoso, F.B.; Quintana, R.M.; Grazziotin-Soares, R.; Kopper, P.M.P. Marginal gaps and internal voids
after root-end filling using three calcium silicate-based materials: A Micro-CT analysis. Braz. Dent. J. 2021, 32, 1–7. [CrossRef]

16. Debelian, G.; Trope, M. The use of premixed bioceramic materials in endodontics. G. Ital. Di Endod. 2016, 30, 70–80. [CrossRef]
17. Nowicka, A.; Lipski, M.; Parafiniuk, M.; Sporniak-Tutak, K.; Lichota, D.; Kosierkiewicz, A.; Kaczmarek, W.; Buczkowska-
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Abstract: Currently, it remains unclear which specific peptides could be appropriate for applications
in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific
papers related to the types, uses and applications of peptides in dentistry at the moment. Literature
database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of
Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related
applications were included. The studies involved experimental designs in animals, microorganisms,
or cells; clinical trials were also identified within this review. Most of the applications of peptides
included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy,
antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth
implants, and the modification of other restorative materials such as dental adhesives and denture
base resins. The in vitro and in vivo studies included in this review suggested that peptides may have
beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion
strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and
antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available
for the investigation of peptides in dentistry.

Keywords: antimicrobial; osseointegration; surface modification; tissue engineering

1. Introduction

Dental plaques contain over 750 different bacterial species, which are the major reason
for dental caries, with streptococci being the most predominantly present. These bacteria,
due to the production of acids, can demineralize and affect mineralized tooth tissues [1].
Different additives and biomaterials were used in dental treatments in order to eliminate
and decrease the number of bacteria in the oral cavity and teeth tissues. Some dental mate-
rials, such as calcium silicate-based products, have been introduced in the dental market
due to their antibacterial, antioxidant and remineralization properties [2]. Other solutions
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that have antibacterial effects are used to clean the root canal and kill resistant bacteria in
the root canal system [3]. Even though they sometimes display high cytotoxicity [4,5], these
materials are still currently used in dentistry.

It should be remembered that a peptide is expressed as a short polymer of amino acids
(AA) [6]. According to the description of diverse authors in the literature, sizes of peptides
may vary from <20, <50, to <100 [7–10]. The use of peptides has been paid attention
to over the last two decades [6,11]. These peptides were used in various dental fields
such as in endodontic treatment, coronal restoration, caries management, bone and dental
tissue remineralization and in the modification of dental materials in order to promote the
biological effects of these materials in the oral environment [6,12].

In the last periods, over 7000 native peptides (NP) have been considered by means of
significant human physiological functions [13]. These peptides have functions by way of
cell-penetrating, cell adhesion motifs, tumor-homing peptides, neuropeptides, structural
peptides, peptide hormones, antimicrobial peptides, peptide tags, matrix metalloprotease
substrates, growth factors, amyloid peptides, and erstwhile diverse NPs [10].

Nevertheless, one should state that NPs are frequently not truthfully appropriate
for therapeutic usage since they have intrinsic drawbacks, including their poor physical
and chemical stability, low oral bioavailability, short flowing plasma half-life, and quick
removal from the circulation through the kidneys and the liver [9,13,14]. It is well described
that peptides such as insulin and adrenocorticotrophic hormone were used for human
therapeutic purposes in the first half of the 20th century [15]. Later on, synthetic oxytocin
and vasopressin arrived in clinical use in the 1950s with the chemical elucidation of the
sequences of these peptides [16].

Lately, pharmaceutical manufacturing has amplified the consideration of novel thera-
peutic peptides, persistently touching clinical claims [9,17]. By 2018, more than 60 peptides
were approved by the Food and Drug Administration (FDA), and more than 600 were
undergoing preclinical and clinical examinations [9,18]. With the current elaborations of
solid-phase peptide synthesis, the production of therapeutic synthetic peptides (SP) has
become achievable [9]. Accordingly, innovative synthetic approaches permit the modu-
lation of pharmacokinetic assets and focus on specificity through AAs, the integration of
non-natural AAs, backbone adjustments, and the peptide conjugates refining solubility or
prolonging the half-life [8,13,14].

It is recognized that human dental masses, once fashioned, cannot be biologically
replaced or repaired, and their multifaceted conformations require diverse approaches
for regeneration [6]. However, it is unclear in the literature which specific peptides could
be effective for applications in different fields of dentistry. Thus, the aim of this scoping
review was to map the contemporary scientific papers related to the use and applications
of peptides in dentistry at present.

2. Materials and Methods

The present scoping review has been described according to the PRISMA extension
for scoping reviews guideline [19]. The review protocol was registered at Open Science
Framework, and it is available at https://osf.io/up6ty (accessed on 18 December 2022).
The systematic search was performed according to the following parameters: (i) population:
peer-reviewed articles; (ii) intervention: use of natural or synthetic peptides; (iii) compari-
son: other substances or treatments; (iv) outcome: dental applications, (v) study design:
in vitro or in vivo articles. The general question of the review was as follows: what scientific
applications of products based on peptides are being used for dental applications?

2.1. Information Sources and Search

The literature database search was performed by two independent reviewers (RB
and CECS) until September 2022. The search was carried out in the following databases:
PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. The search strategy was
first defined for the MEDLINE database using a controlled vocabulary and free keywords
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(Table 1). The MEDLINE search strategy was then adapted to other electronic databases.
The reviewers also hand-searched the reference lists of the included articles to identify
additional manuscripts.

Table 1. Search strategy used in the MEDLINE database.

(Peptide) OR (Polypeptides) OR (Polypeptide) AND (Materials, Dental) OR (Dental Material) OR
(Material, Dental)

2.2. Selection Process and Data Collection Process

After running the search strategy, a reference management program was used (End-
Note X9, Clarivate Analytics, Philadelphia, PA, USA) to store the files of all databases. Then,
duplicate articles were removed, followed by manual removal after the organization of
titles in alphabetical order. All studies were initially scanned for relevance by title followed
by abstract using an online software program (Rayyan, Qatar Computing Research Institute,
HBKU, Doha, Qatar). The titles and abstracts of the articles were screened according to the
following inclusion criterium: in vitro or in vivo studies that evaluated or reported the use
of peptides for dental applications. The search was carried out on documents published in
any language without restrictions on their date of publication. Reviews, case reports, case
series, pilot studies, and conference abstracts were excluded. If the review authors were
not sure about the eligibility of any study, it was kept for the next phase. All phases were
carried out by two independent reviewers (RB and CECS) to check whether they met the
inclusion criteria. The same two reviewers summarized and categorized the data using a
standardized form. The information collected included the type of study, the peptide used,
the application proposed and the main results.

3. Results

This scoping review is described according to the PRISMA extension for scoping re-
views guideline [19]. After database screening and duplicate removal, a total of 6450 articles
were recognized (Figure 1). After title and abstract screening, 156 articles remained for
full-text inspection. From the 156 articles assessed for eligibility, 23 articles were excluded
due to the following reasons: in 11 articles, the full text was not retrieved [20–30], 4 articles
were not related to the dentistry field [31–34], 4 studies were reviews [6,12,35,36], 3 studies
were not related to peptides [37–39], and 1 study was a pilot clinical trial [40]. Thus, a total
of 133 articles were included in the present review.

3.1. Characteristics of Studies

The main characteristics of the studies included in the present review are presented in
Table 2.

Table 2. Characteristics of the included studies.

Study and Year Type of Study Peptide Used Application Main Results

Bagno, 2007 [41] In vitro

Two adhesive peptides:
an RGD-containing
peptide and a peptide
recorded on human
vitronectin

Implant osseointegration

It was observed that there
was a capacity of the
peptides to promote
enhanced cell adhesion

Artzi, 2006 [42] Experimental study A synthetic peptide (P-15)

Guided tissue
regeneration and guided
bone regeneration
techniques

The use of a synthetic
peptide showed increased
osteoconductive and
biocompatible features

Bröseler, 2020 [43] Randomized clinical trial Self-assembling peptide
(SAP) P11-4

Early buccal carious
lesions

Self-assembling peptide
regenerated enamel
caries lesions
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Butz, 2011 [44] Prospective in vivo study

Synthetic Peptide in a
Sodium Hyaluronate
Carrier (PepGen
P-15 Putty)

Sinus grafting
The peptide evaluated was
successful for maxillary
sinus augmentation

Chung, 2013 [45] In vitro Asparagine–serine–serine
(NSS) peptide.

Remineralization of
eroded enamel.

Peptide increased the
nanohardness and elastic
modulus of eroded enamel

Altankhishig, 2021 [46] In vitro and in vivo Peptide Vital pulp therapy

The dentin
phosphophoryn-derived
arginine-glycine-aspartic
acid-containing peptide
showed adequate
properties as a bioactive
material for
dentin regeneration

Afami, 2021 [47] In vitro

Ultrashort peptide
hydrogel,
(naphthalene-2-ly)-acetyl-
diphenylalanine-dilysine-
OH
(NapFFεKεK-OH)

Antimicrobial activity and
angiogenic growth factor
release by dental pulp
stem/stromal cells

Peptide-containing
hydrogels have potential in
tissue engineering for
pulp regeneration

Babaji, 2019 [48] In vitro

SAP P11-4 and casein
phosphopeptides-
amorphous calcium
phosphate (CPP-ACP)

Enamel remineralization
The peptide was more
effective and efficient when
compared to CPP-ACP

Dettin, 2002 [49] In vitro Novel osteoblast-adhesive
peptides Osteoblast adhesion

The novel
peptide promotes
proteoglycan-mediated
osteoblast
adhesion efficiently

Cirera, 2019 [50] In vivo TGF-β1 inhibitor peptide:
P144

Osseointegration of
synthetic bone grafts

The healing period of
osseointegrated
biomaterials can be
shortened when peptide
biofunctionalization is used

Boda, 2020 [51] In vitro

Mineralized nanofiber
segments combined with
calcium-binding bone
morphogenetic protein 2
(BMP-2)-mimicking
peptides

Alveolar bone
regeneration

Mineralized nanofibers
functionalized with
peptides have the potential
to regenerate craniofacial
bone defects

Chen, 2017 [52] In vivo GL13K-peptide Osseointegration of
implants

This study showed that
titanium dental implants
with an antimicrobial
GL13K peptide coating
enables in vivo
implant osseointegration

Aref, 2022 [53] In vitro CPP-ACP White spot lesion

CPP-ACP could be a
promising approach to
manage WSLs efficiently,
with subsequent universal
adhesive resin infiltration

Aruna, 2015 [54] Clinical

Gingival crevicular fluid
(GCF) N-terminal
telopeptides of type I
collagen (NTx)

Periodontal therapy

Cross-linked NTx can be
successfully estimated in
the GCF of chronic
periodontitis subjects

Brunton, 2013 [55] A clinical trial Biomimetic SAP: P11-4 Early caries lesions

Treatment of early caries
lesions with P11-4 is safe,
and a single application of
this peptide is associated
with significant
enamel regeneration
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Fang, 2020 [56] In vitro Two hexapeptide coatings Dental implants

The novel hexapeptide
coating can inhibit the
attachment of
Porphyromonas gingivalis
and prevent the formation
of dental biofilm

Goldberg, 2009 [57] In vitro Polypeptide Occluding dentin tubules

Peptide catalysts that
mediate mineral formation
can retain functionality on
dentin, suggesting a wide
range of preventive and
treatment strategies

Amin, 2012 [58] In vitro Amelogenin Peptides Osteogenic differentiation

Amelogenin-derived
peptide could be a useful
tool for limiting
pathological bone
cell growth

Godoy-Gallardo, 2015
[59] In vitro hLf1-11 Peptide Antibacterial properties

on titanium surfaces

A greater amount of
peptide attached to the
surfaces functionalized via
atom transfer radical
polymerization than those
functionalized via silane

Dommisch, 2019 [60] In vivo and in vitro Antimicrobial peptides Gingival inflammation

The study delivers
evidence on the role of
antimicrobial peptides as
guardians of a
healthy periodontium

Dommisch, 2015 [61] Experimental study Antimicrobial peptides Gingivitis

Differential temporal
expression for
antimicrobial peptides
could guarantee continuous
antimicrobial activity
alongside changes in the
bacterial composition of the
growing dental biofilm

Fernandez-Garcia, 2015
[62] In vitro Peptide-functionalized

zirconia Implant

Surface bioactivation of
zirconia-containing
constituents for dental
implant applications will
allow their perfected
clinical implementation by
incorporating signaling
oligopeptides to accelerate
osseointegration, improve
mucosal sealing, and/or
incorporate antimicrobial
properties to avoid
peri-implant infections

Fiorellini, 2016 [63] In vitro
Osteopontin-derived
synthetic peptide:
OC-1016

Osseointegration of
implants

OC-1016 was capable of
meaningfully accelerating
the initial stage of
osseointegration and bone
healing around implants

Goeke, 2018 [64] Clinical Antimicrobial peptides Caries risk

The incidence of
low-susceptible strains to
antimicrobial peptides
appears to relate to
individual caries status
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Galler, 2012 [65] In vitro SAP hydrogel Dental pulp tissue
engineering

The use of this innovative
biomaterial was considered
a highly favorable
candidate for upcoming
treatment hypotheses in
regenerative endodontics

Kirkham, 2007 [66] In situ SAP scaffolds Enamel remineralization SAP might be useful for
dental tissue engineering

Kämmerer, 2011 [67] In vitro RGD peptides Dental implants

Modifications of titanium
surfaces with c-RGD
peptides are an
encouraging way to
endorse endothelial
cell growth

Golland, 2017 [68] In vitro SAP Remineralization of white
spot lesions

The application of SAP on
demineralized bovine
enamel indicated an
irregular crystal or a lack
of remineralization

Hsu, 2010 [69] In vitro Aspartate-serine-serine
(8DSS) pep- tides

Nucleation of calcium
phosphate carbonate from
free ions

8DSS peptides reduced the
surface roughness of
demineralized enamel and
promoted the uniform
deposition of
nano-crystalline calcium
phosphate carbonate over
demineralized
enamel surfaces

Kwak, 2017 [70] In vitro Leucine-rich amelogenin
peptide (LRAP) Enamel regeneration

LRAP has the power to
enhance the linear growth
of mature enamel crystals

Kong, 2015 [71] In vivo Histatin-5 (Hst-5) Oral Candidiasis Hst-5 was able to clear
existing lesions

Koch, 2019 [72] In vitro SAP:
P11-4 and P11-28/29 Periodontal therapy

SAP hydrogels were
effective for
periodontal therapy

Hashimoto, 2011 [73] In vitro Peptide motif Zirconia
A peptide motif was
successful in
binding zirconia

Kind, 2017 [74] In vitro SAP: P11-4 Remineralization of
carious lesions

The application of P11-4
might facilitate the
subsurface regeneration of
the enamel lesion

Gonçalves, 2020 [75] In vitro
Casein phosphopeptide-
amorphous calcium
phosphate (MI Paste Plus)

Enamel demineralization
and dental caries

MI Paste Plus might be
effective in improving
oral health

Kim, 2019 [76] In vitro and in vivo A laminin-derived
functional peptide Implant Peptide DN3 promotes

bone healing

Kohgo, 2011 [77] In vitro SAP Implant
SAP could be useful for
bone regeneration around
dental implants

Gungormus, 2012 [78] Ex vivo Amelogenin-derived
peptides Periodontal tissues

Amelogenin-derived
peptide 5 promoted the
regeneration of
periodontal tissues
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Kakegawa, 2010 [79] In vitro Enamel sheath protein
peptides

Construction of the
enamel sheath during
tooth development

A specific peptide sequence
encourages the
cytodifferentiation and
mineralization activity of
human periodontal
ligaments

Kramer, 2009 [80] In vitro Integrin blocking peptide Titanium surfaces

Antibody and peptide
treatment reduced the
number of fibroblast cells
involved on the
implant surfaces

Hua, 2010 [81] In vitro Antimicrobial peptide Oral cavity
The antimicrobial peptide
was demonstrated as an
anti-Candida agent

Hua, 2010 [81] In vitro Antimicrobial peptide Oral cavity

The antimicrobial peptide
exhibits potent activity
against both A.
actinomycetemcomitans and
P. gingivalis biofilms

Kohlgraf, 2010 [82] In vitro
Human neutrophil
peptide α-defensins
(HNPs)

Cytokine responses

The ability of HNPs to
attenuate proinflammatory
cytokines was dependent
upon both the defensin and
antigen of P. gingivalis

Holmberg, 2013 [83] In vitro Antimicrobial peptide:
GL13K

Dental and orthopedic
implants

The antimicrobial activity
and cytocompatibility of
GL13K-biofunctionalized
titanium make it a
promising candidate for
sustained inhibition of
bacterial biofilm growth

Koidou, 2019 [84] In vitro Bioinspired peptide
coatings Peri-implant mucosal Seal

Peptide coatings were
considered a promising
candidate for inducing a
peri-mucosal seal around
dental implants

Knaup, 2021 [85] In vitro SAP: P11-4 Metal brackets

The application of the
caries-protective SAP P11-4
before the bonding of
brackets did not influence
the shear bond strength

Kihara, 2018 [86] In vitro Novel synthetic peptide
(A10) Titanium surface

The novel peptide has a
useful presentation that
might enhance advanced
clinical outcomes by means
of titanium implants and
abutments by preventing
or reducing
peri-implant disease

Jablonski-Momeni, 2020
[87] In vitro SAP P11-4

Early enamel lesions
adjacent to orthodontic
brackets

The application of p11-4
with fluoride varnish was
demonstrated to be
superior for the
remineralization of enamel
adjacent to brackets when
compared to the use of
fluorides alone

Kamal, 2018 [88] In vitro SAP P11-4 Artificially induced
enamel lesions

SAP confers a higher
remineralizing efficacy

Mao, 2021 [89] In vitro CPP-ACP Dental caries
The use of 5% CPP-ACP
reduced 39% of
bacterial biofilm
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Study and Year Type of Study Peptide Used Application Main Results

Makihira, 2011 [90] In vivo
Antimicrobial peptide
derived from histatin:
JH8194

Dental implant

JH8194 might deliver a
viable biological
modification of titanium
surfaces to amplify
trabecular bone formation
around dental implants

Li, 2014 [91] In vitro

Synthetic and
self-assembled
oligopeptide amphiphile
(OPA)

Mineralization of enamel
OPA was successful in the
biomimetic mineralization
of demineralized enamel

Liu, 2016 [92] Experimental

Chimeric peptides
comprising antimicrobial
and titanium-binding
motifs

Biofilm formation

Chimeric peptides provide
a promising alternative to
inhibit the formation of
biofilms on titanium
surfaces with the power to
prevent peri-implantitis

Min, 2013 [93] In vitro Laminin-derived
functional peptide, Ln2-P3 Implant

An Ln2-P3-coated implant
surface enhances bone
cell adhesion

Moore, 2015 [94] Ex vivo Multidomain peptide
hydrogels Dental pulp

Multidomain peptide
hydrogels offered centrally
and peripherally within
whole dental pulp tissue
are demonstrated to be
biocompatible and preserve
the architecture of the
local tissue

Muruve, 2017 [95] In vitro PEGylated metal-binding
peptide (D-K122-4-PEG) Titanium surface D-K122-4-PEG promotes

resistance to corrosion

Nguyen, 2018 [96] In vitro Dentinogenic peptide Dental
pulp stem cells

The SAP promised
guided dentinogenesis

Mardas, 2007 [97] An experimental study
in rats PepGen Bone regeneration

The anorganic
bovine-derived
hydroxyapatite matrix
coupled with a synthetic
cell-binding peptide failed
to promote new
bone formation

Mateescu, 2015 [98] In vitro Antimicrobial peptide
Cateslytin Peri-implant diseases

The new peptide could be
ideal in the prevention of
peri-implant diseases

Liu, 2021 [99] In vitro RADA16-I: (SAP) Pulp regeneration
The novel SAP could be
ideal in endodontic
tissue engineering

Li, 2020 [100] In vitro GH12: antimicrobial
peptide Root canal irrigant GH12 suppressed E. faecali

in dentinal tubules

Mancino, 2022 [101] In vitro Catestatin-derived
peptides Oral candidiasis

The catestatin-derived
peptides were considered
for the treatment of
oral candidiasis

Mai, 2016 [102] In vitro Antimicrobial peptides Caries and pulpal
infections

Antimicrobial peptide
mimics offer opportunities
for new therapeutics in
regenerative endodontics
and root canal treatments

Lv, 2015 [103] In vitro Amelogenin based
peptide

Remineralization of initial
enamel caries

The amelogenin-based
peptide enhances enamel
caries remineralization

Lee, 2007 [104] In vitro and in vivo Collagen-binding peptide Osteogenesis
Collagen-binding peptide
induced biomineralization
of bone
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Study and Year Type of Study Peptide Used Application Main Results

Liang, 2018 [105] In vitro 8DSS peptide Dentinal tubule occlusion

8DSS peptide induced
strong dentinal tubule
occlusion and can be used
in dentin hypersensitivity

Lee, 2018 [106] In vitro and in vivo Bone formation peptide-1
(BFP1) Bone regeneration BFP1 was considered

promising for bone repair

Na, 2005 [107] Preformulation study Antimicrobial decapeptide
(KSL) Antiplaque agent

KSL served as a novel
antiplaque agent in the
oral cavity

Magalhães, 2022 [108] In vitro Self-assembly peptide:
P11-4 Bleached enamel

The use of P11-4 after
bleaching results in the
fastest recovery to baseline
enamel properties

Lallier, 2003 [109] In vitro Collagen-binding peptide
P-15 Periodontal treatment P-15 promoted fibroblast

attachment to root surfaces

Li, 2021 [110] In vitro Small-size peptide: RR9 Oral streptococci

RR9 might be considered a
possible antimicrobial
agent for
periodontal disease

Matsugishi, 2021 [111] In vitro Rice peptide Biofilm formation
Rice peptide hindered the
biofilm formation of F.
nucleatum and P. gingivalis

Li, 2022 [112] In vitro Amelogenin-based
peptide hydrogel Human dental pulp cells

The amelogenin peptide
hydrogel enhanced
mineralization and
encouraged odontogenic
differentiation

Mishra, 2019 [113] A randomized clinical trial
Anorganic bone
matrix/cell-binding
peptide (ABM/P-15)

Human infrabony
periodontal defects

The combination of
ABM/P-15 was established
to be a favorable material
for periodontal
regeneration

Padovano, 2015 [114] In vitro DMP1-derived peptides Remineralization of
human dentin

DMP1-derived peptides
could be useful in
modulating mineral
deposition

Park, 2020 [115] In vitro BMP-mimetic peptide Dental pulp stem cells
BMP-mimetic peptide
accelerated human dental
pulp stem cells

Pellissari, 2021 [116] In vitro Statherin-derived peptides Biofilm development

The natural peptides from
statherin are able to
decrease biofilm
proliferation and Candida
albicans colonization

Petzold, 2012 [117] In vivo Proline-rich synthetic
peptide Titanium implants

Proline-rich peptides have
a probable biocompatible
capacity for endorsing
osseointegration by
lessening bone resorption

Picker, 2014 [118] In vitro Binding peptides Calcium silicate hydrate

A new strong calcium
silicate hydrate-binding
additive influenced the
physical properties
of cement

Pihl, 2021 [119] In vivo Antimicrobial peptide:
RRP9W4N Titania implant

RRP9W4N was
demonstrated to be
successful in the control of
infection in
osseointegrating implants
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Ren, 2018 [120] In vitro

Chitosan hydrogel
containing
amelogenin-derived
peptide

Initial caries lesions

Chitosan hydrogel
containing
amelogenin-derived
peptide was demonstrated
to be effective in controlling
caries and promoting the
remineralization of the
initial enamel carious lesion

Santarpia, 1991 [121] In vivo Histidine-rich
polypeptides Denture stomatitis

Histidine-rich polypeptides
were effective in the
treatment of
denture stomatitis

Schmidlin, 2015 [122] In vitro SAP Mineralization of artificial
caries lesions

SAP improved the
hardness profile of
deep demineralized
artificial lesions

Schmitt, 2016 [123] In vivo Synthetic peptide (P-15) Osseointegration

There is no advantage in
the early phase of
osseointegration for dental
implants with
P-15-containing surfaces

Schuler, 2006 [124] In vitro RGDSP-peptide sequence Titanium dental implant

There is no communication
between RGD-peptide
surface density and surface
topography for osteoblasts

Schuster, 2020 [125] In vitro Hydroxyapatite/BMP-2
mimetic peptide Bone tissue engineering

Biofunctionalization of
collagen-hydroxyapatite
composites with BMP-2
simulated peptides was
considered cost-effective
and fast for prolonged and
improved jaw periosteal
cell proliferation

Secchi, 2007 [126] In vitro Arginine-glycine-aspartic
acid (RGDS) peptides Implant

The modification of the
titanium surface with
RGDS peptides promoted
osseointegration

Segvich, 2009 [127] In vitro Binding peptide sequences Bone regeneration

The binding peptide
sequences can be used in
dentin and bone
tissue engineering

Sfeir, 2014 [128] In vitro Multiphosphorylated
peptides

Mineralized collagen
fibrils of bone and dentin

Using phosphopeptides,
there is progress in
biomimetic nanostructured
materials for mineralized
tissue regeneration
and repair

Shi, 2015 [129] In vitro Antimicrobial
peptide-loaded coatings Dental implant

The antimicrobial
peptide-loaded coatings
were demonstrated to be a
potential approach for
preventing peri-implantitis

Shinkai, 2010 [130] In vitro
Synthetic peptides derived
from dentin matrix protein
1 (pA and pB)

Direct pulp capping and
bonding agent

The primer containing
synthetic peptides derived
from dentin matrix protein
1 negatively affected the
bond strength to dentin
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Shinkai, 2010 [131] In vitro Synthetic peptides (pA
and pB) Bonding agent

A significant difference was
seen in bond strength
among CaCl2
concentrations in Primer-I
(comprising 10 wt.% CaCl2)
and pA/pB concentrations
in Primer-II comprising
10 wt.% pA/pB, and there
is a noteworthy interaction
between these two factors

Shuturminska, 2017 [132] In vitro Statherin-derived peptide Enamel biomineralization

The use of
statherin-derived peptide
was considered effective in
enamel therapy

Su, 2017 [133] In vitro Peptide nisin Dental adhesive

The cured nisin included in
the dental adhesive showed
a noteworthy inhibitory
effect on the growth of
S. mutans

Suaid, 2010 [134] Histologic and
histomorphometric study

Anorganic bone
matrix–synthetic
cell-binding peptide 15

Periodontal class III
furcation defects

The use of anorganic bone
matrix–synthetic
cell-binding peptide 15 was
effective in bone formation

Sugawara, 2016 [135] In vitro Platelet-activating peptide Titanium surface

An epithelial basement
membrane was formed on
the titanium surface when
platelet activating peptide
was used

Sun, 2016 [136] Clinical Peptidome Early childhood caries

The magnetic
bead-founded
matrix-assisted laser
desorption/ionization
time-of-flight mass
spectrometry was
considered an effective
technique for screening
distinctive peptides from
the saliva of junior patients
with early childhood caries

Takahashi, 2002 [137] In vitro
Dipeptide:
aspartylaspartate and
glutamylglutamate

Periodontal pathogens

Dipeptides can be
employed as growth
substrates for P. intermedia,
P. gingivalis, F. nucleatum,
and P. nigrescens

Tanhaieian, 2020 [138] In vitro Recombinant peptide Dental diseases

The recombinant peptide
was demonstrated effective
as an antimicrobial agent
against E. faecalis and
oral streptococci

Üstuün, 2019 [139] In vitro SAP: P11-4 Artificial enamel lesions
P11-4 was demonstrated to
have the best
remineralization efficacy

Wag, 2020 [140] In vivo Neural peptide
Angiogenesis and
osteogenesis around oral
implants

Alpha-calcitonin
gene-related peptide
up-regulated the
expression of Hippo-YAP
and downstream genes in
order to encourage
osteogenesis and
angiogenesis around
the implants
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Wang, 2015 [141] In vitro Peptide DJK-5 Dentin canals

The peptide DJK-5 showed
an imperative antibacterial
property against mono-
and multispecies biofilms
in dentin canals

Warnke, 2013 [142] In vitro
Human beta-defensins
(HBDs), small cationic
antimicrobial peptides

Dental implants

HBD-2 is not only
biocompatible with but
further encourages the
proliferation of human
mesenchymal stem cells

Wener, 2009 [143] In vitro Laminin-derived peptide Dental implants

Laminin-derived peptide
improved and enhanced
the integration of soft tissue
on titanium implants used
in dentistry

Winfred, 2014 [144] In vitro Cationic peptides Endodontic procedures

Cationic peptides
prevented the spread of
endodontic infections

Wu, 2022 [145] In vitro TGF-β1 binding
peptide–modified bioglass Endodontic therapy

TGF-β1 binding
peptide–modified bioglass
was effective for
regeneration in
endodontic therapy

Xue Xie, 2019 [146] In vitro Antimicrobial peptide Dental adhesive system

Antimicrobial
peptide-hydrophilic
adhesive delivers an
advanced adhesive/dentin
interface

Xue Xie, 2020 [147] In vitro Antimicrobial peptide Dental adhesive system

Peptide-conjugated dentin
adhesives were effective in
secondary caries treatment
and improved the
durability of
dental composites

Yakufu, 2020 [147] In vitro Osteogenic growth
peptide (OGP) Osteogenesis activity

OGP was promising in
dental and orthopedic
applications

Yamamoto, 2012 [148] In vivo
Peptide including
Arg-Gly-Asp (RGD)
sequence

Periodontal ligament cells

Glial cell line-derived
neurotrophic factor, which
was hindered by
pre-treatment with the
peptide-embracing
Arg-Gly-Asp (RGD)
sequence, enhanced the
appearance of bone
sialoprotein and fibronectin
on human periodontal
ligament cells

Yamashita, 2010 [149] In vitro Anabolic peptide Periodontal regeneration
Anabolic peptide has a
positive influence on
bone cells

Yang, 2017 [150] In vitro Peptide-modified
tannic acid Hydroxyapatite surface

Peptide-modified tannic
acid inhibited the adhesion
of bacteria

Yang, 2018 [151] In vitro
Salivary acquired pellicle
(SAPe)-inspired peptide
DDDEEK

Biofilms

SAPe-inspired peptide
DDDEEK has a great
advantage in the field of
implant materials
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Study and Year Type of Study Peptide Used Application Main Results

Yang, 2017 [152] In vitro and in vivo
Bioinspired
peptide-decorated tannic
acid

Remineralization of
tooth enamel

Bioinspired
peptide-decorated tannic
acid has a good influence
on the remineralization of
tooth enamel

Yang, 2019 [153] In vitro
Dual-functional
polypeptide Implant materials

Dual-functional
polypeptide has a potential
application in the treatment
of hard tissue-related
diseases

Yang, 2019 (b) [154] In vitro and in vivo Immunomodulatory
peptide 1018 Plaque biofilms

Immunomodulatory
peptide 1018 was effective
as an anti-biofilm agent

Yang, 2017 (b) [155] In vitro DpSpSEEKC peptide Demineralized tooth
enamel

DpSpSEEKC restored
demineralized
tooth enamel

Yang, 2020 [156] In vitro
Cell-adhesion peptides via
polydopamine
crosslinking

Zirconia abutment
surfaces

Cell-adhesion peptides
improved soft tissue
integration around zirconia
abutments via
polydopamine crosslinking

Yazici, 2013 [157] In vitro Modular peptides Titanium implant

Modular peptides on
titanium surfaces improved
the bioactivity of fibroblast
and osteoblast cells on
implant-grade materials

Ye, 2017 [158] In vitro Peptide-based approach Adhesive-dentin interface

The peptide-based
remineralization approach
was effective in designing
integrated
tissue-biomaterial
interfaces

Ye, 2019 [159] In vitro
D-enantiomeric and
L-enantiomeric
antimicrobial peptides

Root canal wall biofilms

D-enantiomeric peptides
exhibited more
antimicrobial potent
activity than L-enantiomeric
peptides against E. faecalis
biofilms on the canal space

Yonehara, 1986 [160] In vivo Opioids and opioid
peptides Tooth pulp stimulation

There is an interaction
between substance P and
enkephalin systems in the
superficial layer of the
brain-stem trigeminal
sensory nuclear complex
for the regulation of dental
pain transmission. In
addition, the native
application of naloxone
(5 × 10−7 M) partly
antagonized the inhibitory
effects of locally applied
morphine and the
opioid peptide

Yoshinari, 2005 [161] In vitro Antimicrobial peptide
histatin 5

Poly (methyl
methacrylate) denture
base

C. albicans colonization on
histatin-adsorbed PMMA
was knowingly less than
the control
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Study and Year Type of Study Peptide Used Application Main Results

Yoshinari, 2010 [162] In vitro
Antimicrobial and
titanium-binding
peptides

Titanium
surfaces

Antimicrobial and
titanium-binding peptides
were encouraging for the
reduction of biofilm
formation on
titanium surfaces

Yuca, 2021 [163] In vitro Dual-peptide tethered
polymer system Dental adhesives

The adhesive system
formed of co-tethered
peptides revealed both
localized calcium
phosphate remineralization
and strong metabolic
inhibition of S. mutans

Zhang, 2022 [164] In-vitro Dual-sensitive
antibacterial peptide Dental caries

This peptide prevented
damage from bacteria and,
thus, from dental caries

Zhang, 2016 [165] In vitro D-Enantiomeric peptide Oral biofilms
D-enantiomeric peptide
was effective against
oral biofilms

Zhao, 2020 [166] In vitro Antimicrobial peptide
nisin Dental adhesive

3% (w/v)
nisin-incorporated Single
Bond Universal
substantially inhibited the
development of both
saliva-derived multispecies
biofilms and monospecific
S. mutans biofilms without
hindering the bonding
performance

Zhou, 2008 [167] In vitro Genetically engineered
peptides for inorganics Tooth repair

Genetically engineered
peptides for inorganics
were effective in
tooth repair

Zhou, 2015 [168] In vitro Antimicrobial peptide Titanium surfaces
Antimicrobial peptide
provided a promising
bifunctional surface

Gungormus, 2021 [169] In vitro Peptide-assisted
pre-bonding Remineralization of dentin

Pre-bonding
remineralization of dentin
using peptide during
10 min notably enhanced
the stiffness of dentin and
the resistance to hydrolysis.
In addition, it can reduce
shrinkage due to drying

Koidou, 2018 [84] In vitro
Laminin 332- and
ameloblastin-derived
peptides (Lam, Ambn)

Peri-implant mucosal seal

Laminin 332- and
ameloblastin-derived
peptides were
demonstrated to be
effective in producing a
peri-mucosal seal around
dental implants

Gug, 2022 [170] In vivo CPNE7-derived functional
peptide

Dentin regeneration of
dental caries

CPNE7-derived functional
peptide repaired caries by
dentin regeneration
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The studies included experiments in animals and/or using bacteria or cells; also,
several clinical trials were found. Most of the applications of the peptides included caries
management, implant osseointegration, guided tissue regeneration, vital pulp therapy,
antimicrobial activity, enamel remineralization, occlusion of dentin tubules, periodon-
tal therapy, the surface modification of dental implants, and the modification of dental
materials such as dental adhesives and denture base resins.

3.2. Synthesis of Results and Summary of Evidence

The in vitro and in vivo studies included in the present review stated that peptides
may have beneficial effects for treating early carious lesions. Additionally, the use of
peptides seems to be beneficial for promoting cell adhesion and enhancing the adhesion
strength of dental implants. In addition, peptides were useful for tissue engineering for
cell-based pulp regeneration. Peptides were also successfully used as healthy promotors of
the periodontium, acting as inflammatory mediators. Finally, most peptides were used as
effective antimicrobial agents.

4. Discussion

A scoping review was performed regarding the use and applications of peptides
in the dental field at present. Appropriately, most of the applications of the peptides
included caries management, implant osseointegration, guided tissue regeneration, vital
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pulp therapy, antimicrobial activity, enamel remineralization, occlusion of dentin tubules,
periodontal therapy, the surface modification of dental implants, and the modification of
dental materials such as dental adhesives and denture base resins.

One should keep in mind that dental caries is considered the most common disease
worldwide [171], and it can lead to the destruction of dental surfaces by means of acidogenic
bacteria changing sugars to acids [43]. Dissolution of the mineral tooth structure begins with
caries formation, therefore generating a demineralized subsurface lesion body, similar to
white spots [172], followed by the development of irreversible cavitation of the mineralized
surface layer [173,174]. Treatment of manifested caries involves an oral hygiene regulation
and a follow-up visit to identify whether the caries has been prevented or has advanced
into a cavity, which is subsequently treated by means of restoration [173]. The use of
fluoride varnish can prevent caries formation by reinforcing the inorganic surface layer,
consequently inhibiting the progression of caries [175–177]. Fluoride ions are preserved
within the inorganic surface layer covering the demineralized carious lesion due to the
high correspondence to hydroxyapatite [178]. Subsequently, the demineralized subsurface
zone is not penetrated by fluoride; yet this is where remineralization would be essential in
an attempt to regenerate decayed enamel tissue [43]. For this reason, novel methods for the
treatment of caries have been introduced to mimic the structure of the enamel matrix, such
as guided enamel regeneration (GER) [179].

It should be noted that self-assembling peptide (SAP) technology was designated
on the reasonable design of a short hydrophilic peptide in combination with GER that
builds into fibers, establishing a three-dimensional (3D) scaffold [180–182]. The surface
features of the fibers might fluctuate, concurring with the physiological desires of the
treated tissue [66,183]. This could be explained by the rational design criteria [183]. When
treating early caries lesions, SAP P11-4 fibers have been adjusted to suitably bind ionic
calcium and template hydroxyapatite formation, thus, accompanying remineralization in a
comparable approach of amelogenin that supports the construction of the enamel. From
this analysis, the SAP P11-4 fibers might be known as a biomimetic agent [66,74]. This
could be in agreement with the finding of this review that demonstrated the potential effect
of peptide P11-4 in caries management.

With regards to implant osseointegration, pure titanium is commercially used for
implants in the dental field due to its possible resistance to corrosion, biocompatibility, and
suitable mechanical properties [184–186]. Researchers have detected peri-implant bone
resorption produced by peri-implantitis, which is considered the key reason for the failure
of osseointegrated dental implants [187,188]. In this manner, surface modification of dental
implants has been a topic of interest for researchers since titanium is an inert material that
decreases the aptitude for remedial tissue therapy to succeed and resists bacterial settle-
ment [189–191]. To counteract peri-implantitis and advance osseointegration, different type
of coatings have been investigated [192]. Surfaces incorporating chlorhexidine, antimicro-
bial agents and antibiotics such as gentamicin, and surfaces incorporating chlorhexidine,
poly-lysine, sliver, and chitosan have all been established for coating the titanium surface
of implants [52]. However, some drawbacks could be noted with antibiotic-coated titanium,
such as the controversial opinion about their bacterial resistance and host cytotoxicity [193].
In 2015, Zhou et al. demonstrated that antimicrobial peptides provided a promising bifunc-
tional titanium surface and enhanced its bactericidal activity and cytocompatibility [168].
Likewise, a previous report suggested that after 6 weeks of implantation in rabbit fe-
murs, titanium dental implants with an antimicrobial peptide GL13K coating allowed
in vivo dental implant osseointegration at similar bone growth rates to gold-standard
non-coated dental implants [52]. This could be explained by the fact that GL13K is bacteri-
cidal in solution against Escherichia coli, Pseudomonas aeruginosa, Porphyromonas gingivalis
and Streptococcus gordonii [83,194,195]. Similarly, Yoshinari et al. proved that the antimicro-
bial and titanium-binding peptides were favorable for the diminution of biofilm formation
on titanium surfaces [162]. In addition, a laminin-derived peptide was demonstrated
to improve and enhance the integration of soft tissue on dental titanium implants [143].
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Furthermore, an epithelial basement membrane was formed on a titanium surface when
platelet-activating peptide was used [135]. All in all, this could clearly support the result of
this review that the use of peptides seems to be beneficial for promoting cell adhesion and
enhancing the adhesion strength of dental implants.

In addition, this analysis determined that peptides were useful for guided tissue
regeneration [42]. This could be achieved when a combination of a synthetic peptide
named P-15 (analog of collagen) and an anorganic bovine bone mineral (ABM) was used.
ABM enhanced cell attachment by differentiation and cell binding, thus enhancing osseous
formation and ensuing an accelerated periodontal ligament fibroblast attachment [109,196].
Adding to P-15, biocompatible and osteoconductive filler material was thus detected [42].

A major task in the use of tissue engineering for therapy in dentistry involves the initi-
ation of tooth and bone regeneration. The dentin phosphophoryn-derived arginine-glycine-
aspartic acid-containing peptide was demonstrated as a biodegradable, biocompatible, and
bioactive material for dentin regeneration. These results could be clarified by the short
AA sequences of the peptide used and by its 3D conformation essential for acquiring this
function [46]. Accordingly, the peptide can be used in vital pulp therapy when a specific
sequence is used.

Further, most peptides were used as effective antimicrobial agents. Peptide hydrogels
have shown that ultrashort peptides (<8 amino acids) might self-assemble into hydrogels.
These ultrashort peptides might be intended to integrate antimicrobial motifs, such as posi-
tively charged lysine residues; thus, the peptides have integral antimicrobial features [47].
The scheme and synthesis of biocompatible hydrogels with antimicrobial activity are of
numerous interests for tissue engineering drives comprising the replacement of tissue in
infected root canals [65,197,198]. Moreover, antimicrobial peptides were used in coated
titanium surfaces [168], dental adhesives [147], caries infection [102], and plaque biofilm
inhibition [36].

Peptides were also successful for enamel remineralization. It is imperative to note that
the acidic nature of dental cavities created by a massive amount of sugar intake leads to
bacterial colonization and a reduction in the pH. Accordingly, the demineralization of the
enamel surface begins [48]. In order to prevent this issue, numerous remineralizing agents
were presented [48]. A perfect agent should be free of toxicity and qualified to initiate
remineralization without any harm to the dental surface. Matrix-facilitated mineralization
equal to a natural process should be carried out, though this ability is absent in almost all
these agents [199]. The arrival of SAP P11-4 has overwhelmed this restriction. It has the
ability to regenerate enamel. In addition, these agents initiate remineralization by making
3D constructions mimic the extracellular matrix of the dental surface [200]. Therefore, when
talking about enamel remineralization, clinicians should focus on SAP due to its efficient
and effective outcomes obtained in this review.

The occlusion of dentin tubules is considered possible with the help of peptides. This
theory became conceivable when mineral particles were observed on dentinal tubules, thus
reducing dentinal permeability and enhancing the seal of the material-tooth interfaces [57].
Bonding agents and desensitizers have been demonstrated to be effective for occluding
tubules by mineral precipitation; however, these techniques are sensitive, and the long-
term performance of the resin is doubtful [201,202]. As a balancing method for the protein
mediation of hydroxyapatite mineralization, streamlined synthetic cationic macromolecules
comprising poly(L-lysine) (PLL) that cover primary and secondary amine groups are
organizationally comparable to the functional areas of the natural proteins and have further
been presented to encourage silicification [203]. This review implies that this peptide-
catalyst-mediated method of mineral formation for occluding tubules and/or reinforcing
dentin-bonding resins might retain function on the dentin surface, advising a wide range
of protective and treatment plans.

Peptides have also been successfully used as healthy promotors of the periodontium,
acting as inflammatory mediators. Periodontitis is a chronic inflammatory and tissue-
destructive illness. Meanwhile, the oral cavity with its polymicrobial effect makes it
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problematic to treat; thus, new healing approaches are mandatory. In a minimally invasive
way, SAP delivers the benefit of being functional at a defect site without creating a toxic
area [204]. Furthermore, their tunable mechanical characteristics and reasonably designed
physicochemical features permit a high variety of encapsulated drugs [205]. Some peptides
called P11-4 and P11-28/29 were considered SAP-applicable for periodontal therapy, due
to their biocompatibility, injectability, tunable mechanical and physicochemical properties,
and cargo-loading capacity [72].

Finally, peptides were used in the modification of dental materials such as dental
adhesives and denture base resins. Recurrent decay that grows at the composite-tooth
interface was demonstrated to be a disadvantage when using resin-based composite [163].
Primarily, the composite-tooth interface becomes coated by a low-viscosity adhesive sys-
tem; however, when a fragile seal to the dentin is obtained, damage from enzymes, acids,
and oral fluids will be achieved. This impairment is chief in crevices that are occupied
by cariogenic bacteria such as Streptococcus mutans [206–209]. Various bacterial-inhibition
strategies have been incorporated into adhesive systems, but none of these strategies ad-
dress the multifaceted interplay of the mechanical and physicochemical influences of the
durability of the adhesive seal at the composite-tooth interface. Antimicrobial peptides
have been coupled into the adhesive system using non-bonded interactions [146], and
subsequently, antimicrobial peptides were conjugated into the network of the adhesive
system in order to improve the antimicrobials’ effectiveness [147]. An antimicrobial peptide
AMP2-derivative (AMPM7) sequence using a functional spacer was used for integration
into a monomer site. This adhesive system formed of co-tethered peptides demonstrated
both localized calcium phosphate remineralization and strong metabolic inhibition of
S. mutans [163]. An adhesive system incorporated with an antimicrobial peptide inhibited
bacterial attack, and a hydroxyapatite-binding peptide promoted the remineralization of
damaged tooth structures [146,163]. In 2017, Su et al. demonstrated that a cured antimi-
crobial peptide with nisin-incorporated dental adhesive showed a significant inhibitory
effect on the growth of S. mutans [133], and recently, a paper showed that 3% (w/v) of
nisin-incorporated universal adhesive system substantially inhibited the growth of both
saliva-derived multispecies biofilms and S. mutans monospecific biofilms without hindering
the bonding performance [166].

Moreover, it was demonstrated that C. albicans colonization on the denture’s base was
significantly less than the control when histatin-adsorbed PMMA (poly methyl methacry-
late), an antimicrobial peptide, was used [161]. Another report suggested that histidine-rich
polypeptides were effective in the treatment of denture stomatitis [121], thus evidencing
the important use of peptides in removable prostheses.

Some limitations relative to the applications of peptides in the dental field can be cited.
One restriction is the absence of homogeneity of the type and obtention of the peptides
used in the different applications described in the present review. Another limitation that
can be highlighted is that due to the heterogeneity of the analytical techniques used for
distinguishing the peptides, analyzing data using any statistical analysis was avoided.

5. Conclusions

The use of peptides has been gaining increasing attention in contemporary dentistry.
Dental research evidence suggests that peptides have several applications, including os-
seointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel
remineralization, and the surface modification of dental implants. The lack of clinical trials
should be highlighted, leaving a wide space available for the investigation of peptides
in dentistry.
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Comprehending the Filling Ability of Root Canal Pastes in
Primary Teeth
Claire El Hachem 1 , Jean Claude Abou Chedid 1, Walid Nehme 2, Marc Krikor Kaloustian 3, Nabil Ghosn 4,
Morgane Rabineau 5,6, Naji Kharouf 6,7,* , Youssef Haikel 6,7,8 and Davide Mancino 6,7,8

1 Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon;
claire.elhachem@gmail.com (C.E.H.); jcabouchedid@gmail.com (J.C.A.C.)

2 Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 5th Street,
San Francisco, CA 94103, USA; wnehme@pacific.edu

3 Department of Endodontics, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon;
mkaloustian75@gmail.com

4 Craniofacial Research Laboratory, Faculty of Dental Medicine, Saint Joseph University,
Beirut 1107 2180, Lebanon; nabil.ghosn@usj.edu.lb

5 Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg and Fédération des
Matériaux et Nanoscience d’Alsace, Université de Strasbourg, 67000 Strasbourg, France;
morgane.rabineau@inserm.fr

6 Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Strasbourg University,
67000 Strasbourg, France; youssef.haikel@unistra.fr (Y.H.); mancino@unistra.fr (D.M.)

7 Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
8 Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg,

67000 Strasbourg, France
* Correspondence: dentistenajikharouf@gmail.com; Tel.: +33-667-522-841

Abstract: A void-free obturation during root canal treatment on primary teeth is currently very
difficult to attain. In this study, the pulpectomy filling abilities of Bio-C Pulpecto (Angelus, Basil,
Londrina, Paraná, Brazil) and of zinc oxide eugenol, or “ZOE” (DenPro, Prevest, New York, NY,
USA), were compared using several in vitro techniques. Therefore, 30 primary anterior teeth were
used in the present in vitro study. Analysis of variance (ANOVA), including a multiple comparison
procedure (Holm-Sidak method, Dunn’s Method, or Tukey test), was used. On micro-CT, Bio-C
Pulpecto exhibited higher void percentages than did ZOE (10.3 ± 3.8%, and 3.5 ± 1.3%), respectively
(p < 0.05). With digital microscopy, higher total void percentages were found in the BC (13.2 ± 26.7%)
group compared to the ZOE (2.7 ± 2.8%) group (p < 0.05). With the CLSM, mean tubular penetration
depths were higher for Bio-C Pulpecto than for ZOE in all canal thirds (p < 0.05). SEM images
demonstrated no tags into dentinal tubules in either group throughout the three thirds. Moreover,
higher statistically significant flowability was found for Bio-C (2.657 ± 0.06 mm) compared to ZOE
(1.8 ± 0.13 mm) (p < 0.05). The findings of this study indicate that neither ZOE nor Bio-C Pulpecto
appears to meet the criteria for an ideal root canal filling paste for primary teeth. This study laid the
groundwork for future research by determining how micro-CT, digital microscopy, SEM, and CLSM
contribute to our understanding of the filling process of primary teeth. More thorough research on
the mechanism of root canal obturation on primary teeth is required to achieve a long-term successful
root canal therapy in young children.

Keywords: calcium silicate material; confocal laser scanning microscope; deciduous tooth;
digital microscopy; flowability; micro-CT; pulpectomy primary teeth; root canal filling; SEM; zinc
oxide eugenol
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1. Introduction

With the introduction of mechanical shaping [1], new irrigation protocols [2], and
new filling materials and techniques [3], root canal therapy for primary teeth is rapidly
developing. Success is still not always assured, and in the present clinical pulpectomy
practice, attaining a void-free root canal obturation is difficult [4]. It is crucial to choose
the filling paste with the best biological, mechanical, and physicochemical properties to
obtain dense 3D obturation, avoid shrinking or irritating the periapical tissues, and ensure
that the filling paste resorbs concurrently with the roots without damaging the underlying
tooth successor [5].

Zinc oxide eugenol (ZOE powder and liquid), calcium hydroxide paste alone or mixed
with iodoform combined with rotary Lentulo spirals, premixed syringes, and endodon-
tic pluggers/reamers were suggested to enhance the quality of obturation on primary
teeth [6,7]. However, there is currently still no agreement on the best root canal filling
material for primary teeth, and each substance has disadvantages. ZOE sets into a thick
mass that resists resorption, may irritate periapical tissues, and can cause deviation of the
permanent tooth bud [8]. Calcium hydroxide-based materials may result in intracanal and
external resorption, resulting in long-term failure of the treatment [9].

New endodontic forms of cement, called bioceramics, have been gaining popularity
due to their physicochemical and biological characteristics, such as their alkaline pH, shrink-
free property, chemical stability in the biological environment, and biocompatibility [10,11].
In permanent teeth, these bioactive materials, which exhibit biological activity [12], have
many clinical indications such as pulpotomies, pulp capping, resorption, perforation
repair, and root canal fillings [13–16]. Pediatric dentists have recently endorsed them
as well. The first resorbable bioceramic root canal filling for primary teeth is called Bio-
C Pulpecto (Angelus, Basil, Londrina, Paraná, Brazil). It is made up of silicon dioxide,
calcium tungstate, titanium oxide, ester glycol salicylate, toluene sulphonamide, and
calcium silicate [5].

To assess the quality of a root canal filling, there are various in vitro methods, and each
method enables an understanding of a certain aspect of the obturation. The most precise
non-invasive imaging method that has received widespread support from studies and
enables a quantitative assessment of internal structural changes in root canal morphology
is micro-Computed Tomography (µCt) [17,18]. Microscopes, despite being destructive,
are essential for understanding the mechanism of endodontic materials’ penetration into
dentinal tubules; options include using a confocal laser scanning microscope (CLSM) [19]
and/or scanning electron microscope (SEM) [20]. CLSM reveals information about the
sealer penetration and distribution inside the dentinal tubules of root canal walls by
including a fluorescent dye marker with the pastes, while SEM allows evaluation of sealer
adaptation with root canal walls and marginal gaps. In primary dentition, there are very
few publications that integrate several in vitro evaluation techniques to assess the ability of
root canal filling pastes used [21,22].

In the pediatric endodontic literature, there is an agreement about the difficulty of
obtaining a void-free obturation with long-term success. In a meta-analysis totalizing
263 teeth, the authors stated that there is currently no scientific evidence of the superiority
of any one root canal filling material for endodontic treatment of necrotic primary teeth [23].
Studies confirmed that a good hermetic seal with minimum voids is directly related to the
material’s capacity to adhere to the walls of the root canal and the method used to deliver
this material into the root canal [6,24]. It was also reported that primary teeth filling pastes
lead to overfilled canals and resorption within the root [25].

This study’s main objective was to evaluate the pulpectomy filling abilities of zinc
oxide eugenol and Bio-C Pulpecto. For each material, the percentage of voids/total filling,
the flowability, the penetration depths, and the dentinal tags were assessed utilizing micro-
CT, CLSM, digital microscopy, and SEM. The goal was to evaluate the data from each
procedure and classify them so that clinicians could fully understand all facets of root canal
filling on primary teeth. The null hypothesis is that there is no difference in the filling
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ability of zinc oxide eugenol and Bio-C Pulpecto when assessed with micro-CT, CLSM,
digital microscopy, and SEM.

2. Materials and Methods
2.1. Teeth Selection

The ethics committee of the Saint Joseph University of Beirut, Lebanon (USJ-2019-237)
approved this study. One hundred primary anterior teeth with minimal root resorption,
belonging to children aged 3 to 6 and extracted for reasons unrelated to this study as
part of treatment plans at the University of X’s Department of Pediatric Dentistry, were
collected and kept in formocresol 0.1%. Teeth with previous pulpotomy or pulpectomy,
internal resorption, and advanced root resorption were excluded after inspection under
an operating microscope. Therefore, 30 primary anterior teeth were included in this study.
Using the IBM SPSS statistics software (version 27.0), the sample size was calculated. To
ensure more than 80% power and an alpha error probability of 0.05, two groups of 15 canals
each were formed.

2.2. Teeth Preparation

Patency was verified with a size 10 K-file (Dentsply Sirona, Ballaigues, Switzerland)
following access cavity preparation. A diamond disc (Kerr Dental, Bioggio, Switzerland)
was used to section the crowns to standardize the root length at 12 mm, and the working
length (WL) was determined, 1 mm short of the apical foramen, with a size 15 K-file
(Dentsply Sirona, Ballaigues, Switzerland). For the shaping, R-motion® 21 mm file (30/0.04)
(FKG Dentaire SA, La Chaux-de-Fonds, Switzerland) was used to prepare all the canals.
Using a 30G side-vented needle (NaviTip, Ultradent), 12 mL of 1% NaOCl was flushed
inside the canals. Mechanical activation of the irrigant with XP-endo Finisher (FKG)
operated at 1000 rpm, as suggested by the manufacturer, was carried out for 30 s in all
canals; the tip was placed 1 mm short of the WL without binding. After drying the canals
with sterile paper points, 1 mL of 17% EDTA was injected and left for 1 min inside the
canals. Following the same protocol, EDTA was activated. For the final irrigation, 3 mL of
saline was used. Canals were dried with paper points.

2.3. Root Canal Obturation

According to the filling materials, the teeth were divided into 2 groups. Furthermore,
to perform analysis under CLSM, each filling paste was manually labeled with rhodamine
B powder (Sigma-Aldrich, St. Louis, MO, USA) to an approximate concentration of 0.1% to
provide fluorescence and allow confocal laser microscopy assessment [26].

Group 1: Zinc oxide eugenol was used in the form of powder liquid and was mixed
in a ration 2:1 to obtain a creamy consistency. The labeled cement was inserted into the
canal 1 mm short of the WL, with a size 30 Lentulo spiral (Dentsply Maillefer, Ballaigues,
Switzerland) used for at least five seconds inside the canal in little pecking motions.

Group 2: Bio-C Pulpecto (BC), a premixed bioceramic material, was emptied on a
plexiglass, marked with the fluorescent dye, refilled into the syringe, and injected directly
into the canals.

To validate the quality of the filling in terms of length and density, a buccolingual and
a distomesial digital radiograph were taken. None of the teeth exhibited a poor quality of
obturation; therefore, none were discarded.

Afterward, the access cavity was sealed with Teflon tape and reinforced zinc oxide
eugenol (Intermediate Restorative Material, IRM; Dentsply Sirona, Charlotte, NC, USA).
The teeth were then incubated in the dark in a container (Memmert GmbH, Büchenbach,
Germany) at 37 ◦C for 14 days with full saturated humidity to ensure the final setting.

2.4. Micro CT Scanning

For tooth imaging, a micro-CT Platform (EA2496, Montrouge, France) was used to
investigate the 30 teeth. Each tooth was individually scanned with a micro-CT scanner
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(Quantum FX; PerkinElmer Health Sciences; Hopkinton) to measure the void volume (µm3)
in each third in order to assess the filling percentage and voids in the coronal, middle, and
apical thirds. The field of view was set at 10 mm to acquire 3D images with an isotropic
resolution of 20 µm. Acquisition settings were 160 kV, 90 mA, and 360◦ scanning rotation.

DICOM data were imported into 3D Slicer 5.1 software. The following semi-automated
threshold-based segmentations were realized:

• Complete root with filling
• Complete filling with voids
• Filling without voids

Boolean operations were performed to get the following 3D segmentation:

• C: Canal (filling + voids)
• F: Filling without voids
• V: Voids

The software’s Models module transformed the aforementioned 3D segmentations
into 3D models and automatically measured each model’s volume.

The following calculation was used to determine the percentage of voids in the obturation:

V/C × 100

To calculate the percentage of filling and voids in the coronal, middle, and apical
sections, the total length of the canal was measured, divided by 3, and then 2 custom plane
sections perpendicular to the long axis of the canal were realized to separate the coronal,
middle, and apical models at equidistant lengths. C, F, and V were calculated for each part
as follows [27]:

• Cc, Fc, and Vc for the coronal part
• Cm, Fm, and Vm for the middle part
• Ca, Fa, and Va for the apical part

The same formula was used to calculate the percentage of voids in canal thirds [27].
The percentage of filling and voids was evaluated using a threshold method and 3D

models in the coronal, middle, and apical sections (Figure 1).
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ZOE (c,d).

2.5. Sectioning

The root canals of the 30 teeth were cross-sectioned at 1 mm and 5 mm from the root
apex using a diamond disk (Buehler, Lake Bluff, IL, USA) and a slow speed (25,000 rpm)
handpiece. After mounting the specimens onto glass slides, the coronal surface was

66



Bioengineering 2023, 10, 818

polished with sandpapers of 600, 1200, 2400, and 4000-grit silicon carbide paper (Escil,
Chassieu, France) under running water. The sample examined by confocal laser microscopy
has a thickness of 2 mm [19].

2.6. Digital Microscopy Observations

Specimen polished surfaces (n = 90, three surfaces for each tooth) were first examined
under a digital microscope VHX-5000 (KEYENCE, Osaka, Japan), and one image was
captured for each specimen at 100× magnification. The micrographs were coded by an
expert examiner who was not involved in the experiment, displaying the canal wall surface
of both groups at the coronal, middle, and apical thirds, for blinded analysis using the VHX-
5000 software (KEYENCE, Osaka, Japan) to measure the total area of the filling materials
and of the internal and external voids in µm3 following a previous study [28] (Figure 2).
After that, the percentages of voids were calculated and statistically analyzed.
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Figure 2. Methodology for measuring the area of filling materials and voids with the
VHX-5000 program.

2.7. Confocal Laser Scanning Microscopy Analysis

Confocal laser scanning microscope (Zeiss, LSM 710, Göttingen, Germany) with an ob-
jective 10× Plan NeoFluor and a 514 nm excitation wavelength compatible with rhodamine
dye was used to examine all the canals (n = 90, three surfaces for each tooth). The entire
dentinal tubule penetration area was determined using ImageJ software (NIH). The deepest
penetration from the canal wall to the point of maximum sealer penetration was calculated
using ImageJ software. Each measurement was performed twice to assure accuracy and
reproducibility. The penetration depths at 8 circumferential sites were averaged to obtain
the mean sealer penetration depths in µm with the highest degree of accuracy at the coronal,
middle, and apical sections for Bio-C Pulpecto and ZOE.

2.8. Scanning Electron Microscope Observations

From each group, six samples, including the three thirds, were chosen to closely
inspect the areas where filling paste and dentin met. To observe the materials’ tags into
the dentinal tubules, the polished surfaces were etched with 37% phosphoric acid for 10 s
and immersed in 2.5% NaOCl for 3 min [29]. After that, the specimens were dehydrated
in a graded series of ethanol solutions (50, 70, 95, and 100%) for 10 min each before being
coated with a gold-palladium alloy (20/80 weight percent) using Hummer JR sputtering
equipment (Technics, Rocklin, CA, USA). The produced samples were examined using a
Quanta 250 FEG scanning electron microscope (FEI Company, Eindhoven, The Netherlands)
with an electron acceleration voltage of 10 kV and a magnification of 100–4000 [30]. These
samples were examined under SEM to verify the findings obtained using CLSM and
digital microscopy.
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2.9. Flow Test

Additionally, a flow test was conducted using the method outlined in ISO 6876/2012:
50 µL of each mixed sealer (in triplicate) was dispensed on a separate glass plate
(40 × 40 × 5 mm). A second glass plate was carefully placed on top of the sealer after
3 min of mixing. Then, a weight of 100 g was applied centrally on top of the second glass
plate. After 10 min, using a digital caliper (Dexter, Elkhart, IN, USA), the compressed
sealer’s maximum and lowest diameters were measured. The test was repeated to deter-
mine the mean diameter if there was a discrepancy of greater than 1 mm between the two
measurements [31].

2.10. Statistical Analysis

SigmaPlot (release 11.2, Systat Software, Inc., San Jose, CA, USA) was used for sta-
tistical analysis. The Shapiro–Wilk test was used to verify the normality of the data in
all groups. Analysis of variance (ANOVA), including a multiple comparison procedure
(Holm-Sidak method, Dunn’s Method, or Tukey test), was used to determine whether
significant differences existed in the void evaluations between the different techniques and
materials. A statistical significance level of p = 0.05 was adopted in all tests.

3. Results
3.1. Micro-CT

When comparing overall void percentages, Bio-C Pulpecto exhibited higher void
percentages compared to ZOE (10.3 ± 3.8%, and 3.5 ± 1.3%), respectively (p < 0.001).
Additionally, the apical third of the ZOE group had higher void percentages than the
coronal and middle thirds (p = 0.006), but there was no statistically significant difference
between the middle and coronal thirds (p > 0.05). There were no statistically significant
differences between the three thirds of the Bio-C Pulpecto group (p = 0.192) (Table 1).

Table 1. Mean and standard deviations of void percentages in ZOE and BC groups after micro-CT
analysis. Zinc oxide eugenol (ZOE), Bio-C Pulpecto (BC), coronal (C), middle (M), and apical (A).

Coronal (%) Middle (%) Apical (%) Statistical Analysis

ZOE 2.7 ± 1.3 2.3 ± 1.8 6.7 ± 4.9 A > C, A > M

BC 7.5 ± 4 8.9 ± 7.7 17.2 ± 14.8 No

Statistical
analysis p < 0.001 r = 0.002 p = 0.049

3.2. Digital Microscopy

The same tendency was found for the results of Keyence compared to micro-CT
outcomes. Higher total void percentages were found in the BC group compared to the
ZOE group in the coronal, middle, and apical thirds (Table 2). BC demonstrated higher
void percentages compared to ZOE at the apical (p < 0.001), middle (p = 0.002), and coronal
(p = 0.019) thirds (Table 2 and Figure 3).

Table 2. Mean and standard deviations of void percentages in ZOE and BC groups after digital
microscope analysis. Zinc oxide eugenol (ZOE), Bio-C Pulpecto (BC), coronal (C), middle (M), and
apical (A).

Coronal (%) Middle (%) Apical (%)

Close Open Close Open Close Open

ZOE 2.6 ± 2.1 0.2 ± 0.4 1.6 ± 1.8 0.3 ± 0.8 1.48 ± 1.77 1.7 ± 3.7

BC 4.4 ± 7.4 5 ± 7.7 2.2 ±1.6 4.8 ± 5 13.7 ± 32.7 9.4 ± 13.6

Statistical
analysis p = 0.019 p = 0.002 p < 0.001
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3.3. Confocal Laser Scanning Microscope

Mean tubular penetration depths were higher for Bio-C Pulpecto than for ZOE in the
coronal (277 ± 124 µm and 122 ± 62 µm), middle (247 ± 118 µm and 112 ± 55 µm), and
apical thirds (218 ± 114 µm and 102 ± 52 µm), respectively (Table 3).

Table 3. Mean and standard deviations of void percentages in ZOE and BC groups after confocal
microscope analysis. Zinc oxide eugenol (ZOE); Bio-C Pulpecto (BC), Coronal (C); Middle (M) and
Apical (A).

Coronal (%) Middle (%) Apical (%) Statistical Analysis

ZOE 122 ± 62 112 ± 55 102 ± 52 C > A

BC 277 ± 124 247 ± 118 218 ± 114 C > A

Statistical
analysis p < 0.001 p < 0.001 p < 0.001

In addition, in the ZOE and BC groups, statistically higher material infiltrations
values were observed in the coronal third compared to the apical third ((p = 0.012) and
(p < 0.001), respectively), while no statistically significant differences were found between
the apical/middle and coronal/middle (p > 0.05) (Figure 4).
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3.4. Scanning Electron Microscope (SEM vs. CLSM)

In contrast with the confocal results, SEM images demonstrated no tags into dentinal
tubules in either group throughout the three thirds (Figure 5).
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3.5. Flow Test

Higher statistically significant flowability was found for Bio-C (2.657 ± 0.06 mm)
compared to ZOE (1.8 ± 0.13 mm) (p < 0.001).

4. Discussion

Root canal treatment for primary teeth has seen significant development recently [32].
The best root canal filling material and procedure are still up for debate, though. Despite its
disadvantages and potential toxicity, zinc oxide eugenol is nonetheless utilized routinely
and with great success [8]. Nonetheless, the hunt for biocompatible and bioactive materials
has led to the recent development of bioceramics, such as the non-setting Bio-C Pulpecto
for primary teeth [5]. In this study, we used a variety of in vitro evaluation techniques to
examine the filling ability of zinc oxide eugenol (ZOE) and Bio-C Pulpecto. Since there was
a significant difference between ZOE and Bio-C Pulpecto according to all in vitro evaluation
techniques, the null hypothesis was partially rejected (p < 0.05).

The goal of this study was to assess and categorize the data obtained from micro-CT,
digital microscopy, CLSM, and SEM so that clinicians could comprehend every aspect of
root canal filling on primary teeth. The novelty of this study consists of its combination
of numerous in vitro methodologies to evaluate the filling capabilities of root canal pastes
used on primary teeth and its choice of the filling material, namely a bioceramic created
exclusively for primary teeth. Therefore, each technique would enable comprehension of a
certain component of the obturation and provide never-before-published data.

The first methodology adopted in this study to compare the filling ability of ZOE
and Bio-C Pulpecto was micro-CT imaging. Micro-CT is used to analyze tooth structure
objectively, allowing for quantitative and qualitative image analysis [33,34]. Additionally,
it enables the accurate reconstruction of 3D models and can distinguish between tooth
structures, voids, and obturation materials [35]. Both materials produced voids in all canal
thirds, with Bio-C Pulpecto revealing higher void percentages than ZOE (10.3 ± 3.8%, and
3.5 ± 1.3%). This was per the results of numerous studies, regardless of the filling material,
that agree on the difficulty of achieving a void-free obturation due to the complex root
canal anatomy of human teeth [36,37].

In addition, in primary dentition, the obturation relies exclusively on a resorbable
filling paste, without the support of a gutta-percha cone, which renders the 3D obturation
even more difficult, especially with the abundance of lateral canals, isthmus, and canal
curvatures [32,38]. In one of the few previous micro-CT studies on primary teeth filling, the
authors suggested that using a syringe to inject the paste produced fewer voids than using
a lentulo spiral [7]. This could explain why, in this study, there was an increase in apical
voids for the ZOE group (p < 0.05), whereas there was no discernible difference between
coronal, middle, and apical thirds for the Bio-C Pulpecto group (p > 0.05). In fact, in an
attempt to enhance the quality of root canal obturation on primary teeth and decrease the
void volume, some authors proposed ultrasonic activation of the filling paste for a better
infiltration in the intricate primary teeth anatomy [39]. More micro-CT studies should be
conducted to find the most efficient filling technique for primary teeth.

The samples were then sectioned and further analyzed with different microscopes.
Using the digital microscope, the filling volume and voids were quantified and mea-

sured in the coronal, middle, and apical sections for both groups. The results corroborate the
micro-CT findings showing higher total void percentages in Bio-C Pulpecto (13.2 ± 26.7%)
compared to ZOE (2.7 ± 2.8%) (p < 0.05). However, in contrast to micro-CT, no statistically
significant differences were found between the three thirds for both materials (p > 0.05),
while micro-CT demonstrated a significant difference between the three thirds of the ZOE
group. This could be related to the high resolution and precision provided by micro-CT,
which can detect more details, as well as to the ability of micro-CT to investigate the
void in volume (3D) while the digital microscope could be used to investigate only in the
slices (one section for each third), which is a limitation of the digital microscope in void
investigation [31]. The two methodologies allow for quantitative evaluation of total filling
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percentage, voids, and detection of flaws in the bulk filling of root canal pastes for primary
teeth. Therefore, both techniques showed the same tendency for both materials with higher
detection for the micro-CT method.

A fluorescent rhodamine marker mixed with pastes was used to visualize the penetra-
tion and distribution of the sealers within the dentinal tubules of root canal walls using
a CLSM [19]. Mean tubular penetration depths were higher for Bio-C Pulpecto than for
ZOE in all canal thirds. This could be attributed to the physicochemical properties of Bio-C
Pulpecto, its high contact angle, and its solubility, presumably allowing it to easily diffuse
into the dentinal tubules [5]. This finding was also verified by conducting a flowability
test that showed higher mean values for Bio-C Pulpecto than for ZOE. Studies agree that
the penetration depth inside dentinal tubules is directly related to the properties of the
materials such as setting time and flowability [40]. Moreover, under CLSM, for both ma-
terials, the depth of sealer penetration into dentinal tubules decreased from the coronal
to the apical part (p < 0.05). This could be attributed to the obturation technique since
both the lentulo spiral and the pressure syringe techniques lead to voids in the apical
part [39]. This may also be accounted for by the apical region’s lower density and diameter
of dentinal tubules [41]. Future studies should focus on developing filling pastes with
enhanced abilities to penetrate the dentinal tubule, encapsulate the bacteria inside, and
favor interaction between the material and the dentinal fluid.

To visualize the adaptation of filling pastes to canal walls and marginal gaps and to
detect the material tags in dentinal tubules, some samples were further observed under
SEM. The intermolecular surface energy and cleanliness of the dentin, as well as the
surface tension and wetting capacity of the sealer, all interact to determine the degree of
adhesion [30]. The retention of filling material by root canal walls is improved by sealer
plugs placed into the dentinal tubules because they mechanically interlock [42]. In the
current study, in contrast to CLSM infiltration images, SEM images demonstrated no tags
into dentinal tubules in either group throughout the three thirds. This could be due to the
irrigation protocol being insufficient in eliminating the debris and smear layer and also to
the consistency of the paste and the filling technique [30]. This could also be related to the
detachment of the fluorescent dye from the filling paste, which gives the fake impression
of an infiltrated dentinal tubule. Some authors even concluded that bioceramic sealers
should not be utilized in conjunction with Rhodamine for CLSM assessment after it was
reported that the kind of fluorophore changes the calcium silicate sealers’ performance
when using CLSM [43]. In addition, we can hypothesize that the several in vitro steps
that were performed to prepare the samples for SEM observations, including sectioning,
polishing, and chemical preparations to eliminate the smear layer and to dry the samples,
could alter this observation and could dissolve the material tags.

Overall, the findings of this study indicate that neither ZOE nor Bio-C Pulpecto
appears to meet the criteria for an ideal root canal filling paste for primary teeth. The
purpose of this study was to create the groundwork for future research by determining
how micro-CT, digital microscopy, SEM, and CLSM contribute to our understanding of the
filling process. In this study, ZOE was superior to Bio-C Pulpecto according to micro-CT
and digital microscopy, whereas CLSM and SEM produced contradictory findings, with
CLSM indicating tubular infiltration for both pastes and SEM disproving this claim by
demonstrating no dentinal tags for either group. It should be nonetheless noted that
microscopes are invasive and allow only partial evaluation of root fillings and that some
may create irreversible damage to the specimens [44,45]. These factors might lead to
inaccuracies because some filling material might be lost during sample preparation [46].

To create better materials for pediatric endodontics, additional evidence-based research
is urgently required to completely understand whether the issue is with the filling pastes,
the filling technique, or most likely both, and how to fix it. More thorough research
on the mechanism of root canal obturation on primary teeth is required. Numerous
studies indicate that for the time being, it is impossible to obturate primary teeth in a
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confined, dense 3D space, putting the effectiveness of root canal therapy on primary teeth
in jeopardy [47–49].

5. Conclusions

Current primary tooth filling pastes, including ZOE or Bio-C Pulpecto, do not meet the
criteria for the ideal root canal filling material. Micro-CT and digital microscopy revealed
that ZOE was superior to Bio-C Pulpecto; however, CLSM and SEM provided inconsistent
results, with CLSM showing tubular infiltration for both pastes and SEM refuting this
assertion by showing no dentinal tags for either group. The qualities and methods of filling
materials should be the focus of future research. Most significantly, the studies need to find
a way to improve the effectiveness of root canal filling pastes for primary teeth using all
current in vitro imaging or microscopic techniques.
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Abstract: Nowadays, the ceramic veneer approach can be considered more predictable than direct
composite veneer. To date, there is a lack of studies comparing the clinical performance of anterior
veneers cemented on vital teeth (VT) and non-vital teeth (NVT). This longitudinal clinical study
investigated the performance of ceramic veneers in VT or anterior NVT. A total of 55 patients were
evaluated in the study. Two groups were defined based on the vitality status of the teeth (93 teeth—
vital and 61 teeth—non-vital). The United States Public Health Service (USPHS) criteria were used to
assess the clinical status. The data were evaluated statistically with the Mann–Whitney U test. All
restorations were considered acceptable, and only one veneer in VT failed for the criteria of secondary
caries. There were no statistically significant differences in any of the criteria evaluated (p ≤ 0.671).
The ceramic veneers evaluated showed a satisfactory clinical performance both in VT and NVT.

Keywords: anterior restorations; ceramic; dental veneers; follow-up; non-vital teeth; porcelain
laminate veneers; vital teeth

1. Introduction

Facial and dental aesthetics are currently considered crucial for patients aiming to
boost their self-confidence [1,2]. Displeasure with tooth color and shape has amplified the
request for aesthetic dental approaches. There are two frequently applied and non-invasive
options available to resolve aesthetic problems in contemporary dentistry, namely, direct
composites and porcelain veneers [3].

On the one hand, direct composite veneers can be a perfect, minimally invasive, and
long-lasting treatment to enhance the color, shape, and incisal embrasures of the teeth [4,5].
The tooth preparation can often be avoided, and direct non-preparation composite veneers
can be performed. This solution is especially indicated for adolescent and young patients.
Moreover, composite veneers can be easily repaired and corrected if color or shape al-
terations are needed. Additionally, the hardness and wear resistance of composites are
more similar to enamel than porcelain, and accordingly, this material may be preferred to
restore mandibular anterior teeth. The anatomical stratification of resin composite along
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with the application of tints and/or opaquers helps to mimic tooth color, providing an
aesthetic appearance [4]. This could be possible in one visit, and the key conditions to
attain these cases are to understand dental morphology and to master the diverse layers
of resin composite [4]. It should be emphasized that there are some drawbacks associated
with the application of resin composite, namely, marginal leakage, low wear resistance,
inferior color stability, susceptibility to discoloration, or difficulty in the removal of excess
material [6–8]. However, composite veneers are an excellent choice in cases of small tooth
repairs, including small chips, minor misalignment, slight discoloration, tooth shape correc-
tion, and diastema closure [4,8]. As a relative contraindication, severe discoloration can be
considered when opaque materials are applied to mask the discolored tooth structure; thus,
the final aesthetic outcome can be compromised. Additionally, occlusal risk factors (oc-
clusal dysfunction, constricted chewing pattern, bruxism, parafunctions, etc.) and severely
structurally compromised teeth may also be regarded as contraindications [9]. Moreover,
the long-term success of direct composites may depend on patient selection, cavity location
and size, material choice, and operative technique [5,7,8].

On the other hand, ceramic veneers have become the primary choice for patients
when color alteration (i.e., tetracycline discoloration, non-vital tooth), space closure, shape
correction, and the reconstruction of worn, misaligned, malformed, or fractured teeth
are needed [3,10–12]. Nowadays, the ceramic veneer approach can be considered more
predictable than direct composite veneers in the case of discolored teeth due to laboratory
manufacturing and enhanced ceramic properties. Moreover, comprehensive treatment in-
cluding numerous teeth and complex smile correction (inclination of the axis of individual
teeth, relationship of the central incisors to the lateral incisors, etc.) can be meticulously
planned and executed in cooperation with the dental technician to achieve perfect final
restorations. These restorations can absolutely imitate the characteristics of the tooth struc-
ture [3,13], providing good mechanical properties, high aesthetics, biocompatibility, and
long-term clinical performance [14–19]. Additionally, minimally invasive preparation and
the easy removal of cement excesses along with the ceramic material exhibiting enhanced
properties turn this treatment option into a preferred solution. In contrast, it requires more
appointments and is more expensive and difficult to repair in the case of ceramic chipping
or breakage.

In turn, resin composite veneers can be used as an alternative choice for ceramic ve-
neers in the anterior area; however, limited longevity can affect the final aesthetic outcome
of the restoration [20,21]. On the contrary, ceramic veneers (especially felspathic porcelain
veneers) offer a durable aesthetic result due to the ability to reproduce the luster of natural
teeth and the life-like appearance of the patient [14,22]. The selection of indirect ceramic
restoration provides aesthetic reconstructions with higher abrasion resistance, biocompati-
bility, color stability, appropriate translucency, exceptional marginal integrity, and contour
stability. Further, one should state that the preparation is not subgingival in most of the
veneer cases, and considering this, porcelain veneers are associated with a low risk of
gingival irritation owing to a hindered plaque accumulation on the restoration surface and
at the interface [23].

To date, there is a lack of studies comparing the clinical performance of anterior
veneers cemented on vital teeth (VT) and non-vital teeth (NVT). Therefore, the aim of this
retrospective study was to investigate the clinical behavior of indirect porcelain ceramic
veneers cemented on vital and non-vital anterior teeth.

2. Materials and Methods
2.1. Study Characteristics, Participants, and Design

The study was designed as a retrospective evaluation of indirect porcelain veneers
cemented on VT and NVT. Informed consent was obtained from all individuals. The recall
took place between January 2019 and July 2022. The inclusion criteria were as follows:
veneers made from feldspathic porcelain by one dental technician and cemented by one
restorative dentist, stable occlusion, full dentition, anterior teeth without occlusal over-
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loading (no sensation of fremitus), VT with confirmed vitality status, NVT with acceptable
root canal filling, the absence of periapical lesion, and the presence or lack of fiber post.
The exclusion criteria included: subgingival class V restoration beyond cemento–enamel
junction, patient under the age of 25 years, and composite restorations exceeding 50%
of the adhesive surface. The study obtained the permission of the ethical commission of
Jagiellonian University (no. 122.6120.60.2016).

The study population consisted of 55 patients restored with anterior porcelain veneer
restorations. Two groups were defined based on the vitality status of the teeth. The VT
group consisted of 25 patients (18 females, 7 males) with a mean age of 51.03 years. In total,
93 VT (38 central incisors including only one mandibular incisor, 37 lateral incisors, and
18 canines) were evaluated after a mean observation period of 8.3 years. The NVT group
consisted of 30 patients (24 females, 6 males) with a mean age of 46.2 years. In this group, a
total of 61 teeth (43 central incisors, 16 lateral incisors, and 2 canines) were evaluated after
a mean observation period of 7 years. The distribution according to patient-related factors
is shown in Table 1.

Table 1. Distribution of porcelain veneer restorations.

Independent Variable n %

Sex
Male 13 23.6

Female 42 76.3
Total 55 100

Tooth type
Central incisor 81 52.6
Lateral incisor 53 34.4

Canine 20 13.0
Total 154 100

Follow-up time (years)
0.5–2 3 1.9
2–3.9 1 0.7
4–5.9 43 27.9
6–7.9 22 14.3

More than 8 85 55.2
Total 154 100

Tooth vitality
Vital 93 60.4

Non-vital 61 39.6
Total 154 100

2.2. Pre-Treatment Procedures

All restorations were changed to new ones according to indications. In all cases, the
color was evaluated by both the dental technician and clinician before starting the porcelain
veneer preparation. Additionally, photographs of the tooth before and after preparation
were obtained.

The shape of the new porcelain veneers was tested by the mock-up procedure. Trans-
ferring the shape of the tooth from the wax-up was performed by means of a silicone index
I (Zeta Plus L, Zhermack, Badia Polesine, Italy). The silicone excess was cut away with a
surgical scalpel or a straight handpiece carbide bur, and then a composite temporization
material (Protemp, 3M ESPE, St. Paul, MN, USA) was applied to the index and was intro-
duced on the teeth. After the composite resin had fully set (about 5 min), the silicone index
was gently removed and the excess material on the palatal side and the proximal surfaces
was discarded.

Additionally, the silicon index II (Zeta Labor, Zhermack, Italy) was performed based
on the diagnostic wax-up and cut with a scalpel no 10 (Swann Morton, Sheffield, England)
into two parts in order to control the tooth reduction.
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2.3. Tooth Preparation Procedure

The porcelain veneer preparation was made from the temporary mock-up and used
additional index II as a control. All of the preparation procedures were performed under
local anesthesia (Ubistesin™ Forte Local, 3M ESPE, St. Paul, MN, USA). Horizontal grooves
were created on the labial surface and vertical ones on the incisal edge of the mock-up
using burs no. 868B018 and 68016 (Komet Brasseler, Lemgo, Germany) on an electric
red ring 1:5 increasing contra-angle handpiece with copious water cooling. After the
removal of the mock-up under loupe magnification (Zeiss 4.3, Oberkochen, Germany),
the minimal invasive outline of the preparation (less than 0.2 mm) was performed using
a round ball diamond bur (bur no. 801012, Komet Brasseler, Lemgo, Germany). Then,
the incisal edge was reduced by 1.5 to 2 mm in relation to the planned final length of
the porcelain veneer (based on the index II and the vertical grooves). The leveling of
the labial surface was performed in three different planes: the cervical, the middle, and
the incisal. The preparation on the incisal edge was finished with a butt joint. In the
case of a sound proximal tooth structure, no interproximal preparation was conducted.
Otherwise, in the case of existing composite restorations on the interproximal area, a “wrap
around” veneer was performed. Next, the retractive cord #000 (Ultradent, Indaiatuba,
Brazil) (without hemostatic agent) was delicately placed using a dental explorer (DG 16 mg
6, HU FRIEDY, USA) into the gingival sulcus for a minimal gingival retraction. The margin
of the preparation was brought closer to the gingiva and the outline was clearly marked
(bur no. 6844014, Komet Brasseler, Lemgo, Germany). Finally, the surface was smoothed
with a silicon polisher no. 9608 (Brownie Point, Komet Dental, Lemgo, Germany) on a
contra-angle handpiece with copious water cooling (speed of 5000 rpm). After polishing, all
clearly visible imperfections such as sharp edges and unrounded angles were corrected with
a gentle motion of the red ring contra-angle handpiece (Synea, WK-99L; W&H, Austria)
and fine diamond bur (no. 8868 314 016, Komet Dental, Lemgo, Germany).

2.4. Impression Procedure and Occlusion Registration

Next, a second retraction cord was soaked with a hemostatic agent (cord #0, Ultradent,
Indaiatuba, Brazil) and gently placed in the gingival sulcus as described above, and left for
5 to 10 min. Just before the impression, the second retraction cord was removed from the
gingival sulcus and the medium body silicon material (Variotime Medium Flow, Heraeus
Kulzer, Hanau, Germany) was syringed directly from an Automix system along the gingival
margin and on all surfaces of the prepared teeth. The metal impression tray selected based
on the width of the dental arch was filled with Automix Heavy Tray a-silicon (Variotime
Tray, Heraeus Kulzer GmbH, Germany) and placed on the dental arch and stabilized.

Occlusion was registered with Aluwax bite wax in the maximum intercuspation
position (MIP). The impression of the opposing arch was made with alginate impression
material and immediately poured with stone.

2.5. Temporalization

The temporary veneers were obtained with the temporary resin (Protemp, 3MESPE,
USA) using previously fabricated silicon index I. Provisional veneers remained seated on
the teeth thanks to material retention in the interproximal areas; part of the material was
left in this area for adequate maintenance until the next visit. Any excess of the material
around the gingival papilla was meticulously removed using scalpel no.12 or an Excesso
instrument (LM Dental, Turku, Finland). The remaining excess was gently removed with a
bur no. 889540009 to avoid bleeding.

2.6. Laboratory Procedure

All porcelain veneers were fabricated in the dental laboratory (by a skilled dental
technician) by means of a traditional approach used for the feldspathic porcelain.
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2.7. Clinical Try-In and Luting Procedure

The temporary veneers were carefully removed with a solid curette. Next, the veneers
were positioned on the teeth and the fit was examined. The interproximal contacts and
color were evaluated.

The teeth were isolated with a rubber dam (Nic Tone Dental Dam, thick, mint, MDC
dental, Zapopan, Mexico) using the Hygienic B5, B6, or Brinker clamps (Hygienic, Coltene
Whaledent, Germany) and the porcelain veneers were again tried in to check for any
interferences with the clamps.

The porcelain veneers were cleaned with 70% alcohol and etched with 9% hydrofluoric
acid (Ultradent™ Porcelain Etch, USA) for 90 s. Next, the hydrofluoric acid was rinsed
from the inner surface of the porcelain veneer with a water spray for 30 s, placed for 5 min
in an ultrasound bath, air-dried and silanized with a minimum of three layers of silane
(Ultradent Products, South Jordan, UT, USA) for 60 s. Then, the adhesive system EnaBond
Seal (Micerium, Genova, Italy) was applied as one layer spread on the inner surface of the
porcelain veneer, very thoroughly blown with air-spray to the thin layer, and was protected
from strong sources of light to avoid the accidental activation of polymerization.

The prepared tooth was sandblasted with an abrasive unit (27 µm aluminum oxide
powder; 40 PSI) in order to remove contaminations such as blood, dental plaque, or
materials used for the provisional veneers. Then, orthophosphoric acid (Conditioner36,
Dentsply DeTrey, Gmbh, Konstanz, Germany) with the consistency of a gel was applied
over the entire preparation surface and actively spread for 20 s and meticulously rinsed
with water for 10–20 s and dried. The adhesive system (Ena Bond, Micerium, Genova, Italy)
was applied precisely to the entire preparation surface by rubbing in successive layers, and
then very thoroughly blown to the thin and homogenous layer before polymerization. The
adhesive system was polymerized for 20 s using an LED curing unit (Elipar, 3M ESPE St
Paul, MN, USA). Conventional resin composite Enamel Plus (Micerium, Genova, Italy)
material (UD3) was heated in a composite heating conditioner (ENA Heat, Micerium,
Genova, Italy) up to 55 ◦C. Next, a thin layer of the heated composite was applied on the
entire inner surface of the porcelain veneer. The porcelain veneers were placed on the
corresponding teeth and pressed with fingers to reach the desired position (the porcelain
veneer–tooth margin was meticulosity inspected). The excess of luting composite was
removed from the buccal and palatal surface using a dental probe wetted in unfilled resin
(ENA Seal Bond, Micerium, Genova, Italy). On the interproximal surfaces, the excess
material was removed with dental floss (Oral B Satin floss, Procter & Gamble, Cincinnati,
OH, USA). Next, the porcelain veneers were polymerized for 3 s on the labial surface and
the procedure of removing the excess material was repeated. All of the margins were
covered with glycerin gel and the final polymerization was carried out for 60 s on each
surface (labial side gingivally, the incisal edge, and palatal surface close to the incisal edge).
After the final polymerization, the excess composite resin was removed with scalpel no. 12
(Swann Morton, Sheffield, England).

2.8. Occlusal Adjustment and Polishing

Any premature contacts were removed from the porcelain veneer. The patient was
seated to assure the upper body position at the inclination of 45◦. Then, the fingertips
of the operator were placed on the teeth with the porcelain veneers and the patient was
asked to bite repeatedly in the MIP. If finger vibrations (fremitus) were detected, the dentist
corrected the premature contacts immediately with a diamond bur Komet # 368-016 Bud FG
coupled to a W&H contra-angle. A 200 µm horseshoe articulating paper was used to detect
premature contacts in order to provide a “base” for the thin and more accurate 16 µm red
articulation foil. The premature contact points marked on the front teeth with red and blue
articulating paper were eliminated. Then, the patient was seated in the upright position
(90◦), a 200 µm horseshoe articulating paper was positioned between the teeth, and the
patient was asked to simulate chewing a piece of gum. This test was supposed to mimic real
chewing while eating [24]. Any extensive blue surfaces (representing an overload between
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the maxillary and mandibular anterior teeth) that appeared on the front teeth, especially on
the palatal surfaces of the porcelain veneers were eliminated. Restoration margins were
polished with silicone polishers (Astropol FP, HP, Ivoclar Vivadent, Schaan, Liechtenstein)
and interproximal polishing strips (Soft-Lex Finishing Strips, 3M ESPE, Seefeld, Germany).

All patients received written hygiene recommendations in order to avoid using hard
toothbrushes or abrasive toothpastes.

2.9. Evaluation Procedures

An independent and blinded calibrated operator performed follow-up examinations.
The patients were examined clinically and with intraoral periapical X-ray. The clinical
evaluation included: secondary caries, marginal adaptation, marginal discoloration, color
match, restoration integrity, and surface roughness according to modified United States
Public Health Service (USPHS) criteria (Table 2).

Table 2. Modified United States Public Health Service criteria used for restoration assessment.

Category Criterion Definition

Secondary Caries
ALPHA No evidence of caries

CHARLIE Caries is evident, contiguous with the margin of
the restoration

Marginal Adaptation

ALPHA Restoration is contiguous with existing anatomical
form, explorer does not catch

BRAVO Explorer catches, no crevice is visible into which
explorer will penetrate

CHARLIE Obvious crevice at margin, dentine or base exposed

DELTA Restoration mobile, fractured partially or totally

Marginal Discoloration

ALPHA No discoloration evident

BRAVO Slight staining: can be polished away

CHARLIE Obvious staining: cannot be polished away

DELTA Gross staining

Color Match

ALPHA Very good color match

BRAVO Slight mismatch in color, shade, or translucency

CHARLIE Obvious mismatch, outside the normal range

DELTA Gross mismatch

Restoration Integrity

ALPHA No material defect, no crack

BRAVO Two or more cracks not compromising marginal
integrity or contacts

CHARLIE Restorative fractures compromising marginal integrity
or contacts

DELTA Partial or complete restorative loss

Surface Roughness

ALPHA Smooth surface

BRAVO Slightly rough or pitted

CHARLIE Rough, cannot be refinished

DELTA Surface deeply pitted, irregular grooves

Figures 1 and 2 show a case of the veneer preparation of two upper incisors.
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2.10. Statistical Analysis

The performance of the restorations was assessed using the Mann–Whitney non-
parametric statistical analysis. The level of significance was set at p < 0.05. The statistical
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analyses were conducted using the SigmaPlot software (SigmaPlot 12.0, SPSS Inc., Chicago,
IL, USA).

3. Results

The qualitative evaluation using USPHS criteria for the restorations evaluated is shown
in Table 3. All restorations were considered acceptable; however, one porcelain veneer
cemented on a VT failed due to secondary caries. Despite this, there were no statistically
significant differences in any of the criteria evaluated (p ≤ 0.671).

Table 3. Clinical evaluation of anterior porcelain veneers: comparison between vital and non-vital
teeth, according to the United States Public Health Service criteria.

Vital Teeth Non-Vital Teeth

Mann–Whitney pRestoration
Scores (A/B/C/D)

Restorations
Clinically

Acceptable

Restoration
Scores

(A/B/C/D)

Restorations
Clinically

Acceptable

Secondary Caries 92/1/-/- 98.9% 61/0/-/- 100% 0.188
Marginal Adaptation 66/27/0/0 100% 52/9/0/0 100% 0.635

Marginal
Discoloration 66/27/0/0 100% 46/15/0/0 100% 0.871

Color Match 93/0/0/0 100% 59/2/0/0 100% 0.648
Restoration Integrity 91/2/0/0 100% 60/1/0/0 100% 0.867
Surface Roughness 92/1/0/0 100% 60/1/0/0 100% 0.893

4. Discussion

A longitudinal study was conducted evaluating the clinical behavior of indirect porce-
lain veneers performed in VT and NVT. USPHS Evaluation System criteria were used, as
suggested in the literature [25–27]. The qualitative evaluation showed acceptable results
for all of the restorations evaluated, although one porcelain veneer cemented on a VT failed
due to secondary caries. All in all, the survival rate of these restorations and all of the
characteristics were satisfactory after 8-year clinical performance.

Previous longitudinal clinical reports have assessed the performance of dental ceramic
veneer restorations and have proven good clinical performance, outstanding aesthetics,
and patient fulfilment [16,18,19,21]. In the present study, the porcelain veneers exhibited a
higher survival rate of 97.9%–100% after 8 years of performance, which is supported by
others reporting survival rate of 91% to 100% [28,29]. A survival rate varying from 80.1
to 100% was found after a follow-up of less than 5 years [30] and of 47 to 100% after 5 to
7 years of clinical service [31–33]. In addition, studies with a follow-up of 10 to 12 years
presented a survival rate of 53 to 94.4% [22,29,34].

Indirect veneers can be used as an alternative to full-coverage restorations, since they
prevent the aggressive preparation and removal of the palatal tooth structure, therefore
preserving dental structure [35]. However, there are many possible well-known failures
that can occur to the ceramic veneers including debonding, chipping, fracture, margin
discoloration, or secondary caries. Secondary caries was also known as a lesion at the
margin level of an existing restoration [33]. In this study, this was only found in the case
of one restoration. This particular porcelain veneer was cemented onto the tooth with
both mesial and distal composite restorations (class IIIMD). This particular case belongs
to a female patient who went through a stressful period in her life and did not perform
her mouth care in a proper manner. Both factors—the stress, which can be a cause of
xerostomia, and the improper hygiene—could be the reasons for the secondary caries [36].

In addition, the presence of secondary caries at the veneer–tooth interface could be
explained by various other factors. Poor oral hygiene, caries susceptibility, and saliva
or blood contamination due to the lack of rubber dam isolation during the cementation
procedure were described as possible reasons [37]. In this retrospective study, the rubber
dam was placed in all cases and the patients were monitored by means of professional
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hygiene. It was shown that the restorations performed under rubber dam isolation de-
veloped a lower failure rate than restorations completed with saliva ejectors and cotton
rolls only [37]. In summary, patient- and operator-related factors influence the success
rate. Low-risk patients under controlled settings might be a reason for the lower level of
secondary caries lesions [38–40]. This supports the findings of this study, as secondary
caries lesions developed in only one case.

It is worth emphasizing that, in terms of the clinical success of ceramic restorations, a
marginal fit was considered an important factor [41–43]. The external marginal adaptation
of ceramic veneers, which is expressed as the vertical distance between the margins of
the fabricated veneers and the finish line of the prepared tooth, significantly influences
the success rate of the restoration [43]. Since this parameter was acceptable both for VT
and NVT, the restorations exhibited good marginal adaptation, therefore minimizing the
contact surface of the cement with the oral environment [41]. On the other hand, the
internal marginal adaptation is defined by a measurement of the cement film thickness
under the dental restoration and is notably prejudiced by the accuracy of the fabrication
procedure used [44]. In case of poor internal marginal adaptation, a negative correlation
can occur between the thickness of the luting cement and the stress distribution on the
inner and outer surfaces of the veneer, which could lead to crack propagation within the
restoration [45]. It seems that all of the porcelain veneer restorations were accurate in terms
of the fabrication process, which could support the finding of the present study.

For the restoration integrity, the combination of minimal preparation through mock-
up provided the maximal conservative approach [46]. A butt joint design was used in
this study, as suggested by Castelnuovo et al., who proved the best performance of this
preparation modality [47]. It provides the enhanced bonding between the tooth structure
and the ceramic material as a consequence of keeping the peripheral enamel layer around
the margins and preventing microleakage formation, especially at the interface on the
palatal surface, owing to an improved shear stress distribution [47]. Moreover, the literature
revealed that significantly better marginal adaptation is observed when etch-and-rinse
method along with primer and adhesive were applied [48].

The differences in the marginal discoloration between VT and NVT were not statisti-
cally significant in this study. A previous retrospective study with a follow-up of 10 years
yielded a survival rate of 93.5%, and 82.8% after 20 years [49]. Beier et al. [49] considered
the marginal discoloration as a minor complication since it occurred in 21.3% of cases,
predominantly in smokers. This observation is not supported by the present study, where
no discoloration with deep penetration of the restoration margins was perceived, and the
survival rate was higher. However, both studies cannot be compared due to the different
restoration geometry and diverse inclusion and exclusion criteria.

Additionally, all restorations exhibited satisfactory stable color behavior. The color of
the veneer restoration matched the color of the VT and endodontically treated teeth. It is
important to emphasize that due to the close cooperation between the laboratory and the
dentist, the color of the restoration was evaluated individually. The shade, thickness, and
type of ceramic materials affected the final color of the ceramic veneer restorations since
a target color of the veneer and tooth cannot often be chosen by the practitioner [50–52].
Diverse resin cement shades could be selected to modify the final color outcome of the
ceramic veneer restoration [50–52]. In all cases, the same shade was applied, thus no differ-
ence in color match was observed. In addition, the thickness of a ceramic veneer restoration
is restricted by the minimal amount of tooth preparation and target restorative space.

One should bear in mind that the color of endodontically treated teeth is frequently
compromised [53]. Diverse restorative approaches can be considered for discolored teeth
starting from NVT bleaching, direct composite restorations, direct composite veneers,
indirect veneers, and ending with ceramic crowns [54]. In the past, more invasive treatment
alternatives such as crowns were frequently applied; however, recently, more conservative
options are preferred in order to predictably restore the endodontically treated anterior
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tooth. However, there are still controversies among practitioners as to whether a porcelain
veneer on a NVT is a reliable option and whether it can be widely recommended [55].

The composition and the surface structure of a dental restorative material impacts
the initial bacterial adhesion. A rough material surface will promote more plaque for-
mation [56]. During the evaluations with the follow-up approaches of the restorations
presented in this study, no signs of porosity, defect, scratching, or disintegration on the sur-
face were observed. These outcomes might be the reason for the highly polished feldspathic
porcelain material used in this study both for treating VT or NVT [57,58]. Additionally, the
patients were educated by a dental hygienist to avoid brushing with hard toothbrushes or
abrasive toothpaste.

Some limitations could be found in the present study, including that only one adhesive
technique, using the same adhesive system and resin cement, was used. The other limita-
tions represent the relatively low number of restorations, the need for multi-center studies,
the presence of pre-existing composite restorations, adhesive surface, the inhomogeneous
status of the teeth within the study group, the difference between subjects regarding the oc-
clusal relationship, and relatively different occlusal conditions that are difficult to calibrate
ideally in the clinical studies. Moreover, different types of ceramics could be evaluated in
further research including computer-aided design–computer-aided manufacturing (CAD-
CAM)-based materials. Finally, a longer follow-up period is necessary to establish more
conclusive findings.

5. Conclusions

Within the limitations of the current study, it can be concluded that the ceramic veneers
showed a satisfactory clinical performance both on VT and NVT.
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Abstract: Dentin hypersensitivity (DH) pain is a persistent clinical problem, which is a common
condition known to affect patients’ quality of life (QoL), but no treatment has ever been agreed upon.
Calcium phosphates, available in different forms, have properties that allow sealing the dentinal
tubules, which may relieve dentin hypersensitivity. The aim of this systematic review is to evaluate
the ability of different formulations of calcium phosphate to reduce dentin hypersensitivity pain level
in clinical studies. The inclusion criterion was as follows: clinical randomized controlled studies using
calcium phosphates in treating dentin hypersensitivity. In December 2022, three electronic databases
(Pubmed, Cochrane and Embase) were searched. The search strategy was performed according to
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The bias
assessment risks results were carried out using the Cochrane Collaboration tool. A total of 20 articles
were included and analyzed in this systematic review. The results show that calcium phosphates
have properties that reduce DH-associated pain. Data compilation showed a statistically significant
difference in DH pain level between T0 and 4 weeks. This VAS level reduction is estimated at about
−2.5 compared to the initial level. The biomimetic and non-toxic characteristics of these materials
make them a major asset in treating dentin hypersensitivity.

Keywords: dentin hypersensitivity; desensitizing agents; calcium phosphate; hydroxyapatite;
nano-hydroxyapatite

1. Introduction

Dentin hypersensitivity (DH) is an oral complaint frequently reported in clinical dental
practice. It is characterized by a short, sharp pain arising from exposed dentin in response
to thermal, evaporative, tactile, osmotic, or chemical stimuli that cannot be ascribed to any
other form of dental defect or pathology [1,2]. A review outlined a prevalence of DH rang-
ing from 1 to 34% after clinical examination; the highest level has been reported to be on the
cervical surface of the canine as well as first premolar permanent teeth and also in patients
with periodontal alterations [3]. In their daily life, patients with dentin hypersensitivity
complain of discomfort and pain while consuming hot or cold foods and beverages (coffee
and ice cream) while toothbrushing or sometimes even while breathing. These symptoms
and problems may be highly relevant, leading to restrictions on everyday activities and be
a determinant of the individual’s oral-health-related quality of life (OHRQoL) [4].

Several theories have been proposed in order to explain the biological mechanism
of dentin hypersensitivity [3,5,6]. To date, the most widely accepted theory of DH is the
hydrodynamic theory of Brännström [7–9]. This theory is based on a rapid movement of the
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dentinal fluid after external stimuli, which indirectly activates the nociceptors contained in
the interface of the pulp and dentine, triggering painful sensations [9]. This would explain
why treatments that occlude dentinal tubules and reduce intratubular fluids movement
showed beneficial effects with high to moderate certainty [10].

Many active principles have been tested for the treatment of dentin hypersensitiv-
ity, including desensitizing toothpastes, gels, varnishes, and mouth rinses. Numerous
systematic reviews exist on this topic, and the results are sometimes conflicting. These
products typically contain one or more active ingredients that work by modifying the ner-
vous response, preventing or reducing the transmission of pain signals, and/or occluding
the permeable dentinal tubules [11]. Water-soluble potassium salts such as potassium
fluoride, potassium chloride, and, the most commonly used, potassium nitrate are active
ingredients that reduce dentin hypersensitivity pain by decreasing the nervous excitability
by depolarizing nervous cells in the dentin tubules [12], resulting in a decrease in the nerve
excitability. Another active principle tested for dentin hypersensitivity is fluoride under
different molecule forms: sodium fluoride, silver diamine fluoride, tin fluoride, and amine
fluoride. These fluorides work by creating a physical barrier by precipating in the dentin
surface and making it more resistant to acid erosion and other types of damage [13]. The
oxalates are esters of oxalic acid, which can lead to the formation of calcium oxalate crystals
by reacting to calcium ions from the oral cavity and occluding the dentinal tubules [14].
Arginine is an amino acid naturally found in saliva, able to blend with calcium carbonate
and precipitate in dentinal tubules, resulting in the creation of a barrier resistant to acid
dissolution [13]. Strontium also acts through the precipitation of particles on the exposed
dentin and forming a protective barrier [15]. Other active ingredients such as sodium
calcium phosphosilicate amorphous [16,17] promote the formation of apatite hydroxycar-
bonate on the dentin surface, occluding the dentinal tubules. Calcium phosphate, including
nano-hydroxyapatite, can help to rebuild and strengthen the tooth structure by providing
essential minerals that are lost during the demineralization process [18]. Physical agents
such as glass ionomer, resins, and sealants are used in order to seal dentinal tubules and
prevent the hydrodynamic dental pulp stimulation [19]. Glutaraldehyde is a molecule that
reacts with serum albumin contained in dentinal fluid and is able to reduce the diameter of
dentin tubules [19]. High-intensity lasers such as Nd:YAG, Er:YAG, Er, Cr:YSGG, and CO2
have been tested to reduce DH pain through the obliteration of dentinal tubules, whereas
low-intensity lasers such as GaAIA or He-Ne may reduce DH pain symptoms by interfering
with the Na+K+ ion pump in the cell membrane, in blocking the transmission of nerve
stimulation [20,21]. Overall, the active principle being tested in dentin hypersensitivity
depends on the specific product being used and the mechanism of action of the active
ingredient. However, the goal of all these active principles is to provide relief from the
discomfort associated with DH by reducing nerve sensitivity, remineralizing the tooth
surface, and providing a protective barrier over the exposed dentin. All these procedures
are considered as therapeutic treatments and can be delivered either in-home or in-office.
A systematic review comparing the effectiveness of DH treatment showed that dentinal
tubules occlusion as well as nerve desensitisation in the at-home or in-office conditions
of delivery had similar effects [22]. This multitude of treatments is able to decrease the
patient’s DH, but none of them constituted a gold-standard agent.

Since the 1950s, ceramic hydroxyapatite (HA) granules for bone defect repair have been
reported [23], and in late 1980s, the first self-hardening calcium phosphate cements (CPC)
were developed [24]. Indeed, as explained by Chow, 2009 [24], calcium phosphate cement
containing an adequate concentration of tetracalcium phosphate and dicalcium phosphate
anhydrous has a very high solubility, which enables precipitation in HA, a molecule whose
general formula is Ca10(PO4)6(OH)2, which is highly biocompatible and has low solubility.
HA is widely applied in medicine and dentistry as a bone substitute [24–26].
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Hydroxyapatite is already used as a DH desensitizer [27]. Other molecules similar to
HA, such as synthetic nano-Hydroxyapatite (n-HA) or soluble molecules able to self-set
to a hard mass under HA form, such as Tetracalcium phosphate (TTCP) and dicalcium
phosphate dihydrate (DCPD) [28], have already been tested in clinical conditions in the
treatment of DH. These studies show encouraging results. However, no systematic reviews
evaluated the effects of these molecules on the DH pain level.

This systemic review aims to evaluate the effect of various calcium phosphate molecules
such as hydroxyapatite, nano-hydroxyapatite, TTCP, DCPD, dicalcium phosphate anhy-
drous (DCPA), or/and amorphous calcium phosphate (ACP) on the reduction in DH
pain level.

2. Materials and Methods

The study protocol was registered in the International Prospective Register of System-
atic Reviews (PROSPERO) under ID = CRD42022336712. The present systematic review was
conducted per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA 2020) 2020 guidelines [29]. Population, Intervention, Comparison, Outcomes, and
Study design components of this systematic review are as follows: Participants (P) were
adult patients suffering from dentin hypersensitivity due to non-carious cervical lesions and
not associated with post-bleaching hypersensitivity and periodontal therapy. Interventions
(I) were in-office or in-home treatments of dentin hypersensitivity with products containing
calcium phosphate. For Comparison (C), the comparison with other molecules is not
applicable, but we looked at the variation in the level of pain felt by the patients before and
after treatment with calcium phosphates. Outcome (O) was the reduction in pain associated
with dentin hypersensitivity after treatment with calcium phosphate molecules. The study
design (S) selected was a randomized controlled trial (RCT). Case reports, in vitro studies,
in situ studies, systematic reviews, meta-analysis, letters to editors, and non-randomized
trials, as well as studies on tooth decay or studies with no good molecule tested, were
excluded. The research question was as follows: Are calcium phosphate able to reduce the
DH pain?

2.1. Search Strategy

Three databases (PubMed/Medline, Cochrane Library, and EMBASE) were searched
using relevant keywords to identify articles published until December 2022, with no
language restriction, as shown in Table 1. Additionally, bibliographies of all selected
articles, specialized journals, and other related publications, including reviews and meta-
analyses, were also searched to identify further relevant articles. The records obtained from
this extensive literature search were transferred to an EndNote® library, and duplicates
were removed.

Table 1. Database and search terms.

Pubmed (filters applied: Randomized
Control Trial, Human)

(“Dentin Sensitivity” [Mesh] OR Sensitivities, Dentin OR Sensitivity, Dentin OR Dentine
Hypersensitivity OR Dentine Hypersensitivities OR Hypersensitivities, Dentine OR

Hypersensitivity, Dentine OR Dentine Sensitivity OR Dentine Sensitivities OR
Sensitivities, Dentine OR Sensitivity, Dentine OR Tooth Sensitivity OR Sensitivities,
Tooth OR Sensitivity, Tooth OR Tooth Sensitivities OR Dentin Hypersensitivity OR

Dentin Hypersensitivities OR Hypersensitivities, Dentin OR Hypersensitivity, Dentin)
AND (“Dentin Desensitizing Agents” [Mesh] OR Agents, Dentin Desensitizing OR

Desensitizing Agents, Dentin OR “Tooth Remineralization” [Mesh]) AND (“Calcium
Phosphates” [Mesh] OR dicalcium phosphate OR calcium monohydrogen phosphate

dihydrate OR dicalcium phosphate dihydrate OR dibasic calcium phosphate dihydrate
OR calcium phosphate, dihydrate OR calcium phosphate, dibasic OR dicalcium
phosphate anhydrous OR brushite OR morphous calcium phosphate OR nHAC

composite OR “Hydroxyapatites” [MeSH Terms] OR Hydroxyapatite Derivatives)
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Table 1. Cont.

Cochrane library (All text)

Dentine Hypersensitivity OR Tooth Sensitivities OR Agents Dentin Desensitizing OR
Remineralization tooth AND dicalcium phosphate OR calcium monohydrogen

phosphate dihydrate OR dicalcium phosphate dihydrate OR dibasic calcium phosphate
dihydrate OR calcium phosphates OR dihydrate calcium phosphate OR brushite OR

Hydroxyapatite Derivatives OR Amorphous calcium phosphate OR nHAC composite

Embase (filters applied: Human,
controlled study)

(‘dentine hypersensitivity’/exp OR ‘dentine hypersensitivity’ OR ((‘dentine’/exp OR
dentine) AND (‘hypersensitivity’/exp OR hypersensitivity)) OR ‘tooth sensitivities’ OR
((‘tooth’/exp OR tooth) AND sensitivities) OR ‘agents dentin desensitizing’ OR (agents

AND (‘dentin’/exp OR dentin) AND desensitizing) OR ‘remineralization tooth and
dicalcium phosphate or calcium monohydrogen phosphate dihydrate‘ OR

((‘remineralization’/exp OR remineralization) AND tooth and dicalcium AND
phosphate or AND calcium AND monohydrogen AND (‘phosphate’/exp OR

phosphate) AND dihydrate) OR ‘dicalcium phosphate dihydrate‘ OR (dicalcium AND
(‘phosphate’/exp OR phosphate) AND dihydrate) OR ‘dibasic calcium phosphate

dihydrate‘ OR (dibasic AND (‘calcium’/exp OR calcium) AND (‘phosphate’/exp OR
phosphate) AND dihydrate) OR ‘calcium phosphates’/exp OR ‘calcium phosphates’ OR
((‘calcium’/exp OR calcium) AND (‘phosphates’/exp OR phosphates)) OR ‘dihydrate
calcium phosphate ‘ OR (dihydrate AND (‘calcium’/exp OR calcium) AND phosphate)

OR ‘brushite’/exp OR brushite OR ‘hydroxyapatite derivatives’ OR
((‘hydroxyapatite’/exp OR hydroxyapatite) AND derivatives) OR ‘amorphous calcium

phosphate‘ OR (amorphous AND (‘calcium’/exp OR calcium) AND phosphate) OR
‘nhac composite’ OR (nhac AND (‘composite’/exp OR composite))) AND ([controlled

clinical trial]/lim OR [randomized controlled trial]/lim)

2.2. Screening and Study Selection

The research and selection process articles were carried out independently by two
authors (M.M. and S.M.). First, the retrieved articles were imported into a bibliographic ref-
erence management software program (EndNote), where duplicates were removed. Then,
the records’ titles and abstracts obtained were screened, based on determined eligibility
criteria. Finally, the full texts of the remaining studies were assessed by the same authors.
Discrepancies were resolved, and consensus was built by engaging a third author (E.R.).
Only randomized controlled trials that assessed the dentinal desensitized effect of calcium
phosphate were included.

2.3. Data Extraction

When available, the data of included studies were extracted by both reviewers (M.M
and S.M) and verified and confirmed by two other authors (O.N.B. and E.R). An Excel
file was previously established to provide support for collecting demographic data (name
of first author, year and country of publication, number of participants, and mean age),
study methodology (study design, number and characteristics of the participating groups,
number of follow-up visits, method of measuring dentin hypersensitivity, composition,
concentration and use of calcium phosphate as a desensitizing agent for dentine hypersen-
sitivity), and main results. All these extracted data were listed in Table 2.
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2.4. Quality Assessment

The same two authors (M.M. and S.M.) assessed the risk of bias in the included
studies using Cochrane’s Collaboration tool for assessing the risk of bias in randomized
controlled trials [50]. Disagreements were resolved via discussion, and a third researcher
(E.R.) was approached when necessary. This evaluation concerned the generation of the
randomization sequence (selection bias), concealment of the allocation (reporting bias),
blinding of the investigator and the participant (confusion bias), blind evaluation of the
results (performance bias), management of missing data (attrition bias), selection of the
reporter, and other types of bias. From these criteria, the bias risk level was determined to
be low, unclear, or high.

2.5. Synthesis of Results

A qualitative and quantitative synthesis of the results of the included studies, struc-
tured around different outcomes, was performed. The data from these different studies
were extracted, and the results are summarized in Table 3. For studies in which the authors
reported results as medians and interquartile ranges, the values were converted to means
and SDs using the formula (q1 + median + q3)/3, where q1 indicates the 25th percentile
and q3 the 75th percentile. An approximation of the standard deviation was obtained by
applying this formula (q3 − q1)/1.35. Analysis groups between baseline and 4 weeks of
follow-up were formed according to the method of assessment of dental hypersensitivity
to determine whether calcium phosphates are effective in reducing pain associated with
dental hypersensitivity associated pain. Data from these different groups were pooled to
determine the mean pain reduction value. When studies used the same type of intervention
and comparison groups with the same outcome measure, the results were pooled with
mean differences for continuous outcomes.

3. Results
3.1. Study Selection

The initial search of all sources yielded 10,019 records. Of these, 2435 duplicated
studies were removed using the reference manager EndNote®. A total of 7515 articles
were excluded after reading titles and/or abstracts, 12 records were excluded since reports
were not retrieved, 57 records from database registers and 18 identified through other
methods were read and analyzed in their full-text, and 55 records were excluded for
reasons such as not good drugs tested (n = 34), in vitro studies (n = 11), or study on tooth
decay (n = 10), as shown in Figure 1. Twenty records met the inclusion criteria and were
included in the systematic review: Poliakova et al., 2022 [30], Alharith et al., 2021 [31],
Amaechi et al., 2021 [32], Eyuboglu et al., 2020 [33], Usai et al., 2019 [34], Amaechi et al.,
2018 [35], Ameen et al., 2018 [36], Anand et al., 2018 [37], Vano et al., 2017 [38], De Oliveira
et al., 2016 [39], Wang et al., 2016 [40], Gopinath et al., 2015 [41], Jena et al., 2015 [42], Mehta
et al., 2015 [43], Naoum et al., 2015 [44], Mehta et al., 2014 [45], Porciani et al., 2014 [46],
Vano et al., 2014 [47], Ghassemi et al., 2009 [48], and Geiger et al., 2003 [49]. The selection
process has been detailed in the attached PRISMA flowchart (Figure 1).
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3.2. Description of Included Studies

The characteristics of the 20 included articles are presented in Table 2. The number of
subjects included varied from 8 to 208. The age range of patients ranged from 18 to 80 years.
The follow-up range varied from immediately to 6 months. Most of the studies performed
a 4-week follow-up phase [30,32–42,47–49].

Different formulations of calcium phosphate were used by authors: hydroxyapatite,
nano-hydroxyapatite in different concentrations, amorphous calcium phosphate (ACP),
tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and dicalcium
phosphate dihydrate (DCPD), and tri-calcium phosphate (TCP). Molecules were tested
in the form of toothpaste, gel, or chewing gum and administered through an in-office
treatment in 10 studies [31,33–36,39,42,43,45,49]. In the other 10 studies, the treatment was
performed by the patients themselves, at home [30,32,37,38,40,41,44,46–48]. Most of the
included studies used another desensitizing agent as a control [30–42,44,45,48], and four
studies used only a placebo as a control [43,46,47,49].

Dentin hypersensitivity is generally assessed through different tests. In all included
studies, dentin hypersensitivity was evaluated with an air blast test, tactile test, or cool water
test, in accordance with the guidelines described by Holland et al., 1997 [2]. These guidelines,
recommending at least two tests, were respected by most of the studies, except for [30,40,48],
which only used an air blast test. The majority of studies realized an air blast assessment
(evaporative stimulus) associated with a tactile sensitivity test [31,33,34,36,38,41–47,49]. Three
studies [36,41,46] also used cold tests or cold-water tests. Two studies [32,39] associated the
air blast test with a cold test. Anand et al. [37] recorded the amperage value of an electric
test. The dentin hypersensitivity pain was recorded with a visual analogic scale of 100 mm
(VAS) [31–35,38–43,45,47–49] or a Schiff scale (SCASS) with a score from 0 to 3 [30,36,46], except
for [37], which used an amperage value, and [44], which used an NRS-11 pain rating scale.

All studies showed significant reductions in VAS or Schiff of dentin. In order to deter-
mine the efficacy of calcium phosphate in the reduction in DH pain level, we synthetized
data in Table 3 accordingly with the realized test. Data compilation showed a statistically
significant difference in DH pain level between T0 and 4 weeks. This reduction is estimated
at about −2.5 compared to the initial level of pain.

Nine studies showed a significant decrease in VAS or Schiff at 4 weeks for the air
blast stimulation [30,33,34,38–41,45,47]. The total calculated mean difference score of all
studies between the baseline T0 and 4 weeks was −2.71 ± 0.07 (−2.85 to −2.57) p < 0.05.
Desensitized agents used were n-HA [34,39,48], n-HA15% [36,38,47], n-HA20% [30,40],
n-HA 25% [36], and TTCP/DCPA [33,34,45]. All data are compiled in Table 3.

Six of seven studies showed a significant decrease in VAS or Schiff at 4 weeks for tactile
stimulation [33,34,36,38,45,47]. The decrease was not significant in one study [41]. The total
calculated mean difference score of the seven studies was −2.53 ± 0.07 (−2.66 to −2.39)
p < 0.05. All data are compiled in Table 3.

Three studies showed a significant decrease in VAS at 4 weeks for the cold water
test [36,39,41]. The total calculated mean difference score of all studies between the baseline
T0 and 4 weeks was −2.56 ± 0.16 (−2.88 to −2.23) p < 0.05. Desensitized agents were n-HA.
All data are compiled in Table 3.

3.3. Analysis of the Risks of Bias

The results of the risk of bias assessment are presented in Figure 2. This analysis
was carried out using the Cochrane Collaboration tool [50]. This assessment involved
randomized clinical trials and was carried out on all the studies included in this systematic
review. The assessment revealed that seven studies were considered to have a low risk
of bias [32,34–36,41,44,48]. Five studies were considered to be at high risk of bias for the
following reasons: in the study of Eyuboglu et al. [33], because the randomization was
performed after the initial pain assessment; in the study of Gopinath et al. [41], because the
randomization method and the description of the sample size were not clearly exposed;
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and in the study of Jena et al. [42], because the absence of description of the sample size
and of duration and location of the study also constituted a risk of bias.
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4. Discussion

Recent systematic reviews with meta-analyses have compared the effectiveness of sev-
eral desensitizing toothpaste formulations, including some containing nano-hydroxyapatite
or potassium combined with hydroxyapatite [10,18,19,51–53]. In our review, we focused
specifically on the effectiveness of hydroxyapatite and other calcium phosphate materials
able to self-set to a hard mass [24], such as tetracalcium phosphate (TTCP) and dicalcium
phosphate dihydrate (DCPD) powders, which are able to produce a supersaturated solu-
tion and faster hydroxyapatite precipitation due to their high solubility at neutral PH [28].
In this systematic review, we show the beneficial clinical effects of all different calcium
phosphate formulations on dentin hypersensitivity. Whatever the test used (air blast, tactile
or cold water), calcium phosphate induced a reduction in a mean of 2.5 pain level on the
VAS scale after 4 weeks. Additionally, significant beneficial effects appeared immediately
after treatment in eight studies [31,33,34,37,39,42,43,45].

These results may be explained by the ability of calcium phosphates to spontaneously
form hydroxyapatite at physiological pH and to adhere to the exposed dentine, forming a
layer of calcium phosphate components, which may allow them to seal exposed dentinal
tubules and consequently be a good candidate for the treatment of dentin hypersensitivity
with a VAS drop immediately after the application.

The beneficial effect, as described in our review, is in accordance with the results of a
large systematic review and meta-analysis conducted by Marto et al., regarding numerous
molecules in the treatment of DH [19]. In this review, hydroxyapatite and other calcium
phosphate molecules showed a significant reduction in DH pain at different points in time.

A previous systematic review and meta-analysis conducted by de Melo Alencar et al.
in 2019 [18] underlined the effectiveness of nano-hydroxyapatite in the relief of dentin
hypersensitivity compared to n-HA free treatment. Indeed, Alencar et al. [18] showed
a significant desensitizing effect against evaporative and tactile stimuli but not against
cold stimulation. They hypothesized that cold stimulus, the most disturbing test, could
involve not only the hydrodynamic theory but also other factors such as TRPM8 channels in
odontoblasts. Concerning the air blast test and the tactile test, their results are in accordance
with our systematic review, except for the cold water, for which we show a significant
reduction in DH pain level after phosphate calcium treatment. De Melo Alencar et al.
also compared n-HA to placebo or other desensitizing agents, particularly arginine. This
amino acid when combined with calcium carbonate mimics saliva’s ability to occlude and
seal open dentinal tubules, which renders that tooth surface resistant to acid and thermal
attacks. It has been shown by two previous meta-analyses and one systematic review as
promising bioactive agent [13,54,55] in DH. In their review, Alencar et al. [18] showed, in
the 4-week follow-up, a better result with nano-hydroxyapatite than those presented by
arginine in the treatment of dentin hypersensitivity. In our study, we did not compare
calcium phosphate with other products or placebo, since this was not our research question.

However, another systematic review and meta-analysis conducted by Hu et al. [56],
comparing numerous dentin desensitizing agents, showed a very low level of evidence of
nano-hydroxyapatite and amorphous calcium phosphate toothpaste compared with other
desensitizing agents. Indeed, this study included fifty-three clinical studies, but only four
with calcium phosphate, two with nano-hydroxyapatite and two with amorphous calcium
phosphate, which considerably reduces the effect of this evidence [56].

The review by Cunha-Cruz et al. [57] showed a significant effect of n-HA on DH pain
levels in two studies but no effects from amorphous calcium phosphate, but this author took
into account only results included in previous systematic reviews and meta-analyses [56].

It is worth noting that the hypersensitivity reduction efficacy of nano-hydroxyapatite
was increased du to the adjunction of sodium [58] or ionometric sealant [59] or when
combined with laser treatment [60].

Furthermore, the concentration of calcium phosphate used is probably an important
factor for effectiveness. Shetty et al. [61], in an in vitro study, reported an enhanced
desensitizing action with 100% nano-hydroxyapatite over 8 weeks of treatment compared
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to 25% nano-hydroxyapatite, and the authors concluded that increased concentrations of the
molecule increased its penetration into the tubules and probably improved its desensitizing
ability. Our study does not allow us to determine the suitable concentration to use to reach
the most efficient effect.

Other biomaterials containing calcium such as calcium sodium phosphosilicate seem
to have interest in the treatment of dentin hypersensitivity [30,46,47]. Finally, it is important
to note that the hypersensitivity was not completely resolved regardless of the treatment
applied. According to our results, a level of pain persists after 4 weeks of treatments
as shown in Table 3, which could be explained by the fact that the effectiveness of the
treatment tends to decrease or disappear over time [34,49].

Alharith et al. [31], De Oliveira et al. [39], Porciani et al. [46], and Geiger et al. [49]
showed positive results in the placebo groups, resulting in a significant effect of treatment
but no significant reduction compared to the placebo group. In [31,39,46,49], patients felt
significant reductions of up to 60% of dentin hypersensitivity following the application of
the placebo treatment. These positive effects of placebo treatments are important to con-
sider, since there may be other factors that could explain the effectiveness of desensitizing
therapeutics agents in the reduction in dentin hypersensitivity such as desensitizing agents
in control groups. Moreover, these lower levels of sensitivity in placebo groups can also
be attributed to the well-known Hawthorne effect, which describes the modification of
behavior when individuals are aware that they are being observed, which could influence
the patient’s responses and ca lead to bias in healthcare studies [62]. The placebo effect
may also be involved, since positive motivation and emotional stimuli could activate pain
inhibitors in the central nervous system [63].

Our systematic review presents limits that required results to be carefully interpreted.
Indeed, included studies are still heterogenous in terms of the age of patient from 18 to
80 years, where we do not know if age is an influencing factor of DH level pain. Additionally,
different desensitized agents in different concentrations and different application modalities
were used by different authors, and the evaluation of the DH realized with three different
tests could be different according to the team’s research; all these limits did not allow the
generalization of results.

5. Conclusions

This systematic review shows a reduction in pain perception after calcium phosphate
application immediately and 4 weeks after treatment, making this biomaterial a good
candidate for the relief of dentin hypersensitivity.
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Abstract: Furcation defects pose a significant challenge in the diagnosis and treatment planning of
periodontal diseases. The accurate detection of furcation involvements (FI) on periapical radiographs
(PAs) is crucial for the success of periodontal therapy. This research proposes a deep learning-based
approach to furcation defect detection using convolutional neural networks (CNN) with an accu-
racy rate of 95%. This research has undergone a rigorous review by the Institutional Review Board
(IRB) and has received accreditation under number 202002030B0C505. A dataset of 300 periapical
radiographs of teeth with and without FI were collected and preprocessed to enhance the quality
of the images. The efficient and innovative image masking technique used in this research better
enhances the contrast between FI symptoms and other areas. Moreover, this technology highlights
the region of interest (ROI) for the subsequent CNN models training with a combination of transfer
learning and fine-tuning techniques. The proposed segmentation algorithm demonstrates exceptional
performance with an overall accuracy up to 94.97%, surpassing other conventional methods. More-
over, in comparison with existing CNN technology for identifying dental problems, this research
proposes an improved adaptive threshold preprocessing technique that produces clearer distinctions
between teeth and interdental molars. The proposed model achieves impressive results in detecting
FI with identification rates ranging from 92.96% to a remarkable 94.97%. These findings suggest that
our deep learning approach holds significant potential for improving the accuracy and efficiency
of dental diagnosis. Such AI-assisted dental diagnosis has the potential to improve periodontal
diagnosis, treatment planning, and patient outcomes. This research demonstrates the feasibility
and effectiveness of using deep learning algorithms for furcation defect detection on periapical
radiographs and highlights the potential for AI-assisted dental diagnosis. With the improvement
of dental abnormality detection, earlier intervention could be enabled and could ultimately lead to
improved patient outcomes.

Keywords: deep learning; periapical radiograph; furcation involvement; image segmentation; Gaus-
sian high-pass filtering; image preprocessing; CNN
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1. Introduction

With the increasing emphasis on health awareness, people are paying more and more
attention to health matters. Seeing a doctor or undergoing health check-ups has become
part of daily life. However, this has also led to a shortage of medical resources due to
the high demand. This research focuses on one of the most high-demand reasons for
check-ups, periodontitis. Periodontitis is a type of periodontal disease [1]. The symptoms
of periodontitis can be further classified based on the furcation involvements occurring at
the bifurcation or trifurcation of the roots of molars. Traditionally, dentists rely on repeated
X-ray examinations, palpation, and mobility tests to confirm the presence of furcation
involvements (FI) and take appropriate measures [2,3]. Therefore, the purpose of this
research is to train a convolutional neural network (CNN) model to accurately identify FI
on PAs. This helps dentists to quickly distinguish and compare the severity of the disease,
thereby reducing the consumption of medical resources.

The motivation behind this project is to delegate the task of identifying dental symp-
toms to artificial intelligence (AI). With the rapid development of AI technology, there
have been numerous AI applications in recent years, such as vehicle counting [4], financial
field applications [5], medical education [6], chip design field [7], and foreign language
teaching [8]. In the current standard process of dental diagnosis and treatment, the use
of X-rays can reduce the probability of misjudgment by assisting in the identification of
symptoms that are difficult to detect with the naked eye. However, there is still a possibility
of misjudgment due to differences in lighting or shooting angles. Additionally, dentists
spend a significant amount of time interpreting dental lesions before treating each patient,
which accumulates into significant time and physical costs for the practitioner. Therefore, a
well-trained model from this project could significantly assist dentists in diagnosis. Dentists
can use AI-classified images for pre-screening and comparison and then perform further de-
tailed invasive examinations [9]. The goal of this research is to construct a CNN model [10]
that can identify the presence or absence of FI [11] through transfer learning. This disease
frequently occurs at the root bifurcation of multi-rooted teeth, particularly in upper and
lower molars. The key difference between multi-rooted teeth and single-rooted teeth is the
number of roots, with multi-rooted teeth resembling a forked root system where the gap
between roots is referred to as furcation. Under normal circumstances, the furcation is filled
with alveolar bone. However, when periodontal disease occurs, the alveolar bone is lost.
Bacteria can penetrate deeper into the gap, ultimately leading to a decrease in tooth stability
or even tooth loss. The prevalence of periodontal disease today is a common occurrence
that is also associated with an increased incidence of FI [12]. Since FI usually occurs in
narrow and complex-to-clean locations, missing the golden treatment period can quickly
escalate the disease to a point where even surgery cannot restore long-term stability [13].
The early detection and repair of bone augmentation can prevent tooth loss.

Radiographic diagnosis is the most widely used and important means of evaluating
teeth in dentistry. The use of new X-ray techniques like cone beam-computed tomography
(CBCT) and magnetic resonance imaging (MRI) has the potential to enhance the accuracy
of diagnosing root canal bifurcations [14]. This means that clinical dentists still mostly
rely on traditional X-ray images. Although these new imaging techniques are indeed
more precise than traditional 2D X-rays in many areas, they are still not widely used in
general clinical practice due to the time and cost required. Additionally, the resources for
these techniques are limited and difficult to distribute equitably to patients. Furthermore,
high-precision images like those provided by CBCT are only helpful in assisting dentists
with initial diagnoses [15,16]. Unless the condition is complex, dentists still rely more
on traditional X-rays such as PA, bitewing, and panoramic films. The main goal of this
research is to address the shortcomings of traditional X-ray images and improve image
quality by reducing noise or improving clarity. Additionally, this research aims to assist or
simplify the clinical workflow for dentists by training a CNN transfer learning model to
automatically detect and identify periapical lesions on PA images. This will save dentists
time and energy in reviewing PA images and reduce the risk of visual fatigue [2,17].
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Moreover, the model will better define FI lesions and eliminate the need for the discussion
or repeated confirmation of suspicious lesions [18–21]. This helps dentists to reduce patient
consultation time and respond more quickly to these elusive conditions. The Innovations
of this research are listed as follows:

1. A CNN-based automated recognition system for FI lesions has been developed in this
research, and the proposed final model can achieve an accuracy of 94%, which is a 5%
increase compared to [19].

2. An adaptive threshold and an adjusted segmentation line operation have been pro-
posed in this research to enhance fault tolerance, which has proven helpful for the
research process and final learning results.

3. The model for distinguishing between single-rooted and double-rooted teeth in this
research has achieved a high recognition accuracy of 97%, which enables the proper
classification of the sample data contained in a single image. Additionally, the pro-
posed model for classifying single and double-rooted teeth can help in the collection
and categorization of samples for medical and AI automation applications in the
future.

The structure of this research is as follows: Section 2 introduces the CNN model
architecture and the automated image data generation methods used for training. Section 3
presents and analyzes the results of various experiments, including comparisons between
different models and an examination of factors that may have impacted the outcomes.
Section 4 discusses the findings obtained from the experiments. Finally, Section 5 concludes
this research and suggests future directions for further explorations.

2. Materials and Methods

In this research, the most important areas are image preprocessing and image mask-
ing, which were the main factors affecting CNN training and validation. In the image
preprocessing step, the noise in the original PA image is removed. In the meantime, the
characteristics of the diseases classified in this research can be enhanced. This step is crucial
to the next PA image classification step as it obtains better recognition accuracy. The overall
flow chart of this research is shown in Figure 1.

Bioengineering 2023, 10, x FOR PEER REVIEW 3 of 18 
 

energy in reviewing PA images and reduce the risk of visual fatigue [2,17]. Moreover, the 

model will better define FI lesions and eliminate the need for the discussion or repeated 

confirmation of suspicious lesions [18–21]. This helps dentists to reduce patient consulta-

tion time and respond more quickly to these elusive conditions. The Innovations of this 

research are listed as follows:  

1. A CNN-based automated recognition system for FI lesions has been developed in 

this research, and the proposed final model can achieve an accuracy of 94%, which is 

a 5% increase compared to [19].  

2. An adaptive threshold and an adjusted segmentation line operation have been pro-

posed in this research to enhance fault tolerance, which has proven helpful for the 

research process and final learning results.  

3. The model for distinguishing between single-rooted and double-rooted teeth in this 

research has achieved a high recognition accuracy of 97%, which enables the proper 

classification of the sample data contained in a single image. Additionally, the pro-

posed model for classifying single and double-rooted teeth can help in the collection 

and categorization of samples for medical and AI automation applications in the fu-

ture. 

The structure of this research is as follows: Section 2 introduces the CNN model ar-

chitecture and the automated image data generation methods used for training. Section 3 

presents and analyzes the results of various experiments, including comparisons between 

different models and an examination of factors that may have impacted the outcomes. 

Section 4 discusses the findings obtained from the experiments. Finally, Section 5 con-

cludes this research and suggests future directions for further explorations. 

2. Materials and Methods 

In this research, the most important areas are image preprocessing and image mask-

ing, which were the main factors affecting CNN training and validation. In the image pre-

processing step, the noise in the original PA image is removed. In the meantime, the char-

acteristics of the diseases classified in this research can be enhanced. This step is crucial to 

the next PA image classification step as it obtains better recognition accuracy. The overall 

flow chart of this research is shown in Figure 1.  

 

Figure 1. The flowchart of this proposal. 

2.1. Image Preprocessing 

One of the focuses of this research is to locate FI in the posterior molars from PA 

images. However, due to issues such as the angle of the X-ray beam or lighting, distin-

guishing the three targets in PA images (teeth, gingiva, and background) is often chal-

lenging. Additionally, PA images frequently contain noise and distortion, which make it 

tedious and time-consuming for dentists to locate the targets and might cause the 

Figure 1. The flowchart of this proposal.

2.1. Image Preprocessing

One of the focuses of this research is to locate FI in the posterior molars from PA
images. However, due to issues such as the angle of the X-ray beam or lighting, distinguish-
ing the three targets in PA images (teeth, gingiva, and background) is often challenging.
Additionally, PA images frequently contain noise and distortion, which make it tedious
and time-consuming for dentists to locate the targets and might cause the possibility of
misdiagnosis. Therefore, the aim of this step is to standardize PA images by eliminating
interfering confounding variables and enabling the clear differentiation of the three targets.
The pre-processing step comprises three parts: gray-level adjustment, Gaussian high-pass
filtering, and adaptive thresholding, as shown in Figure 2.
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2.1.1. Image Grayscale

To improve the image adjustment and the efficiency of CNN training, the original
RGB images are converted to grayscale images. While RGB images have three dimensions,
grayscale images have only two dimensions and are more suitable for image adjustment.
Furthermore, since the colors captured by PA images are grayscale, there is no loss of
information in converting to grayscale [22]. This conversion simplifies the representation
of the image data and allows the pixel coordinates of the image to be more easily displayed.
Grayscaling makes it simpler to detect errors and make adjustments.

2.1.2. Gaussian High-Pass Filtering

The most challenging problems in this research are the image noise on the PA image
and the indistinct contours of the target disease. Cui and Zhang [23] used frequency domain
filtering to sharpen the image in which the edge features are highlighted. Gaussian filtering
is separated into high-pass and low-pass filtering. Low-pass filtering can filter out the noise.
It is concentrated in high frequencies and smooths the image edge, but it can also cause
the image to become too blurry and lose details. On the other hand, high-pass filtering can
suppress the low-frequency parts and focus on highlighting the edge features, effectively
extracting noise and interference. Thus, this research subtracts the filtered noise image from
the original image, as described in [24]. Equation (1) can decrease the noise and interference
on the original image. Figure 3 shows the results of achieving a more pronounced contrast,
displaying different gray levels in different areas and clearer tooth contours.

H(u, v) = 1 − e
−D2(u, v)

2D2
0 (1)
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2.1.3. Adaptive Threshold

After filtering out the noise and highlighting the contours of PA images, the adaptive
thresholding is performed. The main goal of this step was to find a suitable threshold for
the image to perform binarization, dividing the image into two parts: teeth and gums,
background and diseases, and alveolar bone. The accuracy of this step affected the determi-
nation of the target object in the later steps. This research tested the fixed threshold using
the Otsu algorithm, as mentioned in [25]; the iterative algorithm, as mentioned in [26];
and the adaptive threshold, as mentioned in [27]. However, for the molars’ PA, the pixel
brightness was a significant factor, which is different from the PA of a single tooth. The
variation in the molar area makes it even more challenging to find a pattern. Therefore, this
research developed a newly defined adaptive algorithm to find the optimal threshold.

To address the issue of possible extreme values in the images, Chen et al. adjusted
the grayscale image to avoid this problem [28]. Based on that, this research improved the
process by redistributing extremely bright areas (grayscale > 170) to lower grayscale. After
the adjustment, the subsequent algorithms were not affected by external lighting factors
during the image capture process. The result is shown in Figure 4.
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After solving the extreme value variations, adaptive threshold values could be calcu-
lated. First, the minimum value (Zmin) in the grayscale range of 60 to 120, the maximum
value (Lmax) in the grayscale range of 30 to 90, and the maximum value (Rmax) in the
grayscale range of 91 to 170 was identified from the preprocessed grayscale image. Second,
the midpoint gray value (Zmid) was calculated using Equation (2) and used as the initial
binary threshold value (T0). In the next step, the total number of pixels in the image
(Ztotal) and the total number of pixels from T0 to 170 (Zcheck) was calculated to obtain all
parameters. Finally, three verification methods, namely checking whether the X-distance
between two pairs of values (Zmin, Zmid) was less than 15, Equation (3), and Equation (4),
were utilized to validate the results. If any of these tests failed, the process entered into an
iterative calculation, either by changing the first step to find the second lowest value or by
adjusting the threshold value to meet the restrictions.

Zmid =
Lmax + Rmax

2
(2)

Zcheck ≤ Ztotal ×
5
6

(3)

Zcheck ≥ Ztotal ×
2
3

(4)

Two situations require the re-finding of the threshold. The first is when multiple T0
values meet the above constraints, and the other is when the suitable threshold within the
grayscale range of 80–95 cannot be found. These two situations may cause multiple unsat-
isfactory segmenting results in the image cropping stage. Therefore, the ideal threshold
value is continuously re-found through an iterative method. The ideal threshold value is
used for binary thresholding where the pixel value greater than the threshold value is set to
1 (white) and the other pixel values are set to 0 (black). The binary image result was tested
to ensure that the total mean of all pixels is greater than 0.6 and less than 0.85. The binary
result is shown in Figure 5.
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Figure 5. The result of the preprocessing. (a) Original image. (b) Directly binarized image. (c) Ad-
justed grayscale image.

2.2. Image Segmentation

The purpose of this step is to separate each tooth in PA image and create a database of
images for each tooth. This step can effectively improve the target object recognition and
reduce the interference from non-target objects before CNN training.

This research tested the segmentation method proposed in previous research [27]. The
result showed that it worked well for front teeth but had difficulty with back teeth due
to lighting or imaging conditions. Therefore, this research modified the method based
on the other research [29] to automatically locate the segmenting line for back teeth. The
masking technique for CNN training was also adjusted. The details of these modifications
are described in the following sections.
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2.2.1. Vertical Projection

Neighboring teeth segmenting lines inevitably lie on the interdental space, which is
black (pixel value 0) in the binary image of PA. In addition, a PA image can have up to
five teeth, so this research calculated the vertical pixel sum of each row. According to the
algorithm conditions, neighboring interdental spaces must be divided by at least one tooth
distance. The result is shown in Figure 6.
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2.2.2. Rote Tangent

Unlike the rotation algorithm in other research [29], instead of rotating the image,
this research moves the vertical coordinates to rotate the segmenting line and create the
marked positions. The positions of the five smallest pixel values are marked from left to
right. This operation can avoid encountering complex rotation functions and converting the
image coordinate system to or from the original coordinate system. It makes the automated
program simpler, more efficient, and more error-tolerant. The segmentation result is shown
in Figure 7. After locating the optimal rotation for the segmentation line, the coordinates
of the two endpoints of the segmentation line are obtained. Comparing the distances
between the two endpoints and the target tooth, the endpoint which is further away from
the target tooth is considered to be on the outer side of the tooth. Then, a vertical trimming
is performed on the X-coordinate to ensure that the target tooth is included without cutting
through the tooth root. Bad segmentation would cause the loss of features. Previous
research [27] has proposed using grayscale for segmentation. However, for posterior
periapical radiographs (PA), which are sensitive to lighting conditions, the high grayscale
values of gingiva can be similar to or even higher than those of the tooth roots. This can
lead to misjudgment during the subsequent rotation and segmentation steps, indirectly
confirming the importance of the pre-processing step mentioned.
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Figure 7. The result image of segmenting lines. (a) Original image. (b) After rotating segmentation
lines. Corrected tangents are shown as green lines.

2.3. Image Mask

After determining the optimal rotation angle and segmentation lines, automated
masking was applied to the areas outside the two segmentation lines. This isolates the
target object of interest (a single tooth) from external factors that may affect the accuracy of
CNN recognition and can improve the learning effectiveness of CNN in recognizing the
target object.

This research proposes a method expanding each cutting line outward by 1/30th
of the original image width to avoid damaging the target while the misplacement of the
segmentation lines occurs. This step provides some error tolerance to the process. In
addition, the extended area provides surrounding information of the target object that
would help with CNN training. The segmentation result is shown in Figure 8.
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Figure 8. The results of the masking image. (a) Original segmentation. (b) Retouched segmentation
and masking.

2.4. Image Identification

To validate the effectiveness and reliability of the proposed model, this study selected
128 lesion images and 140 normal teeth images from the database, as listed in Table 1.
The images are augmented through horizontal, vertical, and reverse flipping to increase
the number of images. Based on transfer learning theory, the database was divided into
training and validation sets in a ratio of approximately 7:3 and was classified into the
database, as shown in Table 2.
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Table 1. Data classification of original periapical image from clinical.

The Number of Original Images from Clinical

Tooth Lesion Normal total

Quantity 128 140 368

Table 2. Data classification of periapical image after preprocessing.

Training Set Validation Set Total

Lesion 271 (Expanded) 41 312

Normal 245 (Expanded) 106 351

2.4.1. CNN Model

The experimental environment used in this proposal includes hardware and software
specifications as shown in Table 3. Several famous transfer learning models in Matlab
namely GoogLeNet, AlexNet, Inception v3, and Vgg19 are used for comparison. Taking
GoogLeNet, which was performed best in this experiment as an example, the architecture
is shown in Table 4. GoogLeNet is composed of Inception modules [30], which allow
GoogLeNet to obtain the kernels of different scales during training and learn multiple
features. Additionally, the inclusion of 1 × 1 convolutional layers prevents an excessive
number of kernels and increases the non-linearity of the neural network with more compre-
hensive learning. Moreover, GoogLeNet eliminates connected layers. It reduces the number
of parameters by nearly nine times compared to AlexNet [31]. Despite achieving similar
or even higher accuracy than other models, the significant reduction in parameters makes
GoogLeNet much lighter compared to other models. The remaining two models used for
the experiment are Vgg19 [32] and Inception v3 [33]. These two models have shown better
performance than other image recognition models in detecting image patterns.

Table 3. The hardware and software detailed specifications.

Hardware Platform Version

CPU AMD R5-5600X

GPU GeForce GTX 1660 SUPER

DRAM DDR4 3200 32 GB

OS Windows 10

Software platform Version

MATLAB R2022b

Table 4. The input and output of GoogLeNet model.

Layer Type Activation

1 Data 224 × 224 × 3

2 Convolution 112 × 112 × 64

3 Max Pool 56 × 56 × 64

4 Convolution 56 × 56 × 192

5 Max Pool 28 × 28 × 192

6 Inception (3a) 28 × 28 × 256
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Table 4. Cont.

Layer Type Activation

7 Inception (3b) 28 × 28 × 480

8 Max Pool 14 × 14 × 480

9 Inception (4a) 14 × 14× 512

10 Inception (4b) 14 × 14 × 512

11 Inception (4c) 14 × 14 × 512

12 Inception (4d) 14 × 14 × 528

13 Inception (4e) 14 × 14 × 832

14 Max Pool 7 × 7 × 832

15 Inception (5a) 7 × 7 × 832

16 Inception (5b) 7 × 7 × 1024

17 Avg Pool 1 × 1 × 1024

18 Dropout (40%) 1 × 1 × 1024

19 Linear 1 × 1 × 1000

20 Softmax 1 × 1 × 1000

The randomly selected validation dataset is tested for the proposed model after the
transfer learning is accomplished. The validation accuracy is then calculated and evaluated.
The confusion matrix can be calculated to evaluate the quality of the trained model.

2.4.2. Adjust Hyper-Parameter

The adjustment of hyper-parameters is crucial for deep learning outcomes. The best
combination of parameter settings can be slowly found through the appropriate fine tuning
for each training process. The most frequently adjusted parameters in this experiment are
max epoch, initial learning rate, mini batch size, and learn drop period. The suggested
values of hyper-parameters are shown in Table 5.

Table 5. This study uses hyperparameters in the CNN model.

Hyperparameters Value

Max Epoch 50

Initial Learning Rate 0.0001

Mini Batch Size 32

Learn Drop Period 5

Validation Frequency 3

Learn Rate Drop Factor 0.2000

A. Optimizer

SGDM (stochastic gradient descent with momentum) and Adam (adaptive moment
estimation) are two popular optimization algorithms used in deep learning to train neural
networks. Although Adam is faster than SGDM in terms of training speed, SGDM exhibits
better convergence and more stable training performance. Considering the current number
of images in the training set, the advantage of using Adam’s fast convergence speed is not
significant and may encounter convergence issues.

B. Initial Learning Rate

The rate at which the gradient descends during model training is affected by the initial
learning rate. A small value can cause slow convergence and make the model prone to
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overfitting. Conversely, a large value can cause the model to learn too quickly and fail
to converge, leading to divergence. After several trials, a stable learning rate of 1e-4 was
determined for GoogLeNet.

C. Mini Batch Size

The mini batch size parameter determines how many data points are used to train the
neural network at once. It is essentially a subset of the training set. If the mini batch size
is too large, more data need to be considered for training. This leads to a more accurate
correction direction, but the training process will take longer. On the other hand, if the mini
batch size is too small, the correct direction will be biased because only a small amount
of data are used in each iteration. However, this allows for more frequent corrections.
For example, if the mini batch size is set to 20, this means that only 20 data points are
used for training at a time. The mini batch size and epoch are closely related. If there are
400 data points in total and mini batch size is set to 20, then 20 training instances comprise
one epoch.

3. Results

This section provides an overview of the model performance in this research. To moni-
tor the training progress, a validation set was utilized. Table 6 presents the training process
of GoogLeNet at intervals of five epochs. Additionally, Figures 9 and 10 offer a detailed
representation of the training progress of GoogLeNet, including the final convergence
status. The black line in both figures represents the validation results. Finally, the trained
model was tested using the test set, and the confusion matrix was calculated. The results of
the confusion matrix are presented in Table 7.

Based on the data presented in Table 8, it is evident that using PA images without
excessive noise adjustment as a training database leads to an accuracy of over 80%. How-
ever, this approach also results in significant loss on the validation set. These findings
suggest potential flaws in the database, such as blurred features or excessive noise. The
second column demonstrates the results of training with Gaussian high-pass filtered raw
images. Correcting image size and enhancing features significantly reduces the loss, result-
ing in an accuracy of 87.21%. However, these results fall short of the project’s standards.
Additionally, the loss rebounds after reaching 0.4 during training, indicating the need for
further image preprocessing. The third column of Table 8 showcases the results of this
project, which involve enhancing image features through masking techniques to exclude
non-target regions. This enhancement dramatically improves the model’s performance in
image classification, achieving a validation set accuracy of 94.97% and reducing the loss to
below the threshold of 0.18. Furthermore, Figure 11 illustrates the training process using
different image preprocessing techniques. The three curves represent test accuracy on the
training set. All curves show an increasing trend in accuracy as the number of iterations
increases. The gray curve represents post-training using raw images. The orange curve
represents applying high-precision automatic segmentation to raw images, followed by
a Gaussian high-pass filter. The blue curve incorporates the previous process with an
automatic masking step. The trend of the line graph indicates the significant impact of
image preprocessing on the accuracy, further demonstrating that adding image filters and
masking processing can significantly improve the model’s accuracy, with an improvement
rate as high as 10.8%.

Classifying images into molars and non-molar teeth was the first trial in this research,
as illustrated in Figure 12, where the molar tooth on the left was the target, and the
single-rooted non-molar tooth on the right was used as a comparison. A CNN model was
developed for this classification task. The results demonstrated excellent classification
accuracy with an average of over 97.5%, as shown in Table 9.
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Table 6. The training process of GoogLeNet with every five epochs as the unit period.

Epoch Iteration Time Elapsed Mini-Batch
Accuracy

Validation
Accuracy

Mini-Batch
Loss

Validation
Loss

1 1 00:00:02 34.38% 55.28% 1.6001 0.9257

5 60 00:00:37 90.62% 77.89% 0.3410 0.4747

10 130 00:01:15 75.00% 81.91% 0.5390 0.3947

15 200 00:01:53 78.12% 88.44% 0.3817 0.3297

20 280 00:02:40 87.50% 90.45% 0.2633 0.2445

25 350 00:03:17 93.75% 88.94% 0.1366 0.2721

30 420 00:03:55 96.88% 89.95% 0.0668 0.2637

35 480 00:04:28 90.62% 92.46% 0.1284 0.2018

40 550 00:05:07 93.75% 91.96% 0.1689 0.2093

45 620 00:05:44 93.75% 94.47% 0.1187 0.1702
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Table 7. The confusion matrix of the GoogLeNet training result.

Actual Values

Normal Lesion

Predicted
Value

Normal 46.8% 4.3%

Lesion 2.1% 46.8%

Table 8. Compare the impact of various training sets on training results.

Original Images Gaussian High-Pass Filter Gaussian High-Pass Filter
+ Mask

Validation Accuracy 84.16% 87.21% 94.97%

Validation Loss 0.7634 0.4578 0.1822

Model GoogLeNet GoogLeNet GoogLeNet

Image
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Table 9. The clinical data compare to the result.

Tooth Position in Figure 12 Recognition Accuracy

Clinical Analysis Molar Single Tooth

Vgg19 98.01% 97.53%

Inception v3 97.76% 98.01%

Google Net 98.51% 98.42%

AlexNet 98.51% 98.26%

To enhance the recognition accuracy of the model on PA images for FI, the training
samples were filtered to focus on the variables that could affect recognition accuracy. This
approach made CNN more sensitive to the disease, more focused on the target, and resulted
in a higher learning effect. In this study, image screening was performed on the training
samples to improve the recognition accuracy. The results in Table 10 indicate that the
CNN classification had an impact of 3–4% on the training outcomes. Moreover, in order to
assess the model’s performance, a set of evaluation metrics was employed, including recall,
precision, and F1 score. These metrics provide a comprehensive analysis of the model’s
ability to accurately classify various cases and identify relevant features. Furthermore,
alongside evaluating the model’s performance, it is crucial to analyze the computational
aspects of the proposed method. This analysis incorporates metrics such as computation
time and actual operating time. These metrics facilitate a comparison of the efficiency
and scalability of the proposed methods and aid in understanding the practical feasibility
and potential computational requirements of the approach. The findings are presented in
Table 11.

Table 10. Result of the FI identification accuracy of different models.

Training Process Directly Identify the Disease Identify the Disease
after Classification

Vgg19 89.21% 92.96%

Inception v3 91.58% 94.23%

Google Net 92.18% 95.48%

AlexNet 91.58% 94.97%
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Table 11. Model Efficacy Comparison For FI.

GoogLeNet Vgg19 AlexNet Inceptionv3

Accuracy 94.97% 92.96% 94.92% 94.21%

Recall 95.6% 73.9% 86.9% 86.9%

Precision 91.6% 68% 80.0% 83.3%

F1 93.5% 70.8% 83.3% 85.0%

Elapsed time 25 min 30 s 87 min 47 s 29 min 34 s 76 min 50 s

Runtime 2.5981 s 6.4115 s 2.7535 s 4.2417 s

Table 12 indicates that the automated FI detection results in this research exhibit a
significant contrast to the disease identification accuracy obtained using CT images at the
apical region in the literature [34]. The symptom judgment accuracy using Vgg19 was
nearly 93%, while the judgment accuracy of GoogLeNet and AlexNet was nearly 95% in
this research.

Table 12. Comparison results of CNN models in this study and past studies.

Method
in [34]

This Research

GoogLeNet AlexNet Vgg19 Inceptionv3

Accuracy 89% 94.97% 94.92% 92.96% 94.21%

4. Discussion

A preprocessing step for dental images was found to be crucial in the research pro-
cess. Proper preprocessing is essential for training a CNN, as raw PA images may not
provide accurate information without it. However, establishing a standard processing
method applicable to all images is challenging due to interference and external factors
unique to each image. A lack of preprocessing can make subsequent segmentation difficult
and result in lower accuracy due to potential noise in the PA images. In this study, the
accuracy of the trained model was significantly improved by segmenting multiple teeth
in PA images into individual tooth images before training. The adaptive threshold pre-
processing method designed in this study accurately defined the cutting points during
image segmentation, leading to improved segmentation accuracy. Preprocessing techniques
like Gaussian high-pass filtering also reduced the inclusion of non-target regions. These
improvements in segmentation accuracy enhanced symptom enhancement and overall
model accuracy, highlighting the importance of preprocessing in this study. Furthermore,
an automated process was developed to assist dentists in identifying bifurcations in PA
images without causing visual or mental fatigue. During the CNN training phase, several
mainstream image recognition models were tested, all achieving judgment accuracies above
90%. Following preprocessing and initial CNN recognition, the model effectively located
teeth with potential diseases, with accuracy comparable to visual judgment. Specifically,
GoogLeNet and AlexNet achieved judgment accuracies close to 95%. In comparison to the
method proposed in [34], this study improved judgment accuracy by nearly 5%. These
results demonstrate the efficacy of the proposed technique in detecting FI disease and show-
case the success of training a CNN using conventional PA images, surpassing recognition
capabilities based on CT images.

The results indicate that the proposed model exhibits mature and successful problem-
solving capabilities, producing results highly similar to human judgment. However, there
is room for improvement in the model’s ability to further classify FI disease locations
and enhance existing image enhancement techniques. In the future, this research aims to
improve the automated process flow by integrating it within a chip, augmenting databases
and developing a GUI interface. This will allow the automated process flow to be suc-
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cessfully integrated into clinical operations for dentists and result in a reduction in their
workload and a shortening of patients’ treatment time.

5. Conclusions

In general, this research study highlights the importance of preprocessing in improv-
ing the accuracy of a CNN model for detecting furcation involvements (FI) in dental
images. The findings demonstrate that without proper preprocessing, raw PA images
do not provide accurate information for training the model. The study proposes various
preprocessing techniques, such as adaptive thresholding and Gaussian high-pass filtering,
which significantly enhances the segmentation accuracy and the overall performance of the
model. Additionally, an automated process was developed to assist dentists in identifying
FI in PA images, offering a reliable and efficient alternative to visual judgment. The trained
CNN model, particularly utilizing GoogLeNet and AlexNet architectures, achieved high
accuracy in locating teeth with potential diseases, surpassing the performance of previous
methods. Overall, this study provides valuable insights into the significance of preprocess-
ing and the potential of CNN models in dental image analysis. The results contribute to
the development of a high-accuracy medical assistance system, reducing the workload for
dentists and improving the quality of dental care. Further research can build upon these
findings to refine the model and explore additional enhancements for accurate FI detection
and classification.
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Abstract: As the popularity of dental implants continues to grow at a rate of about 14% per year, so
do the risks associated with the procedure. Complications such as sinusitis and nerve damage are not
uncommon, and inadequate cleaning can lead to peri-implantitis around the implant, jeopardizing
its stability and potentially necessitating retreatment. To address this issue, this research proposes a
new system for evaluating the degree of periodontal damage around implants using Periapical film
(PA). The system utilizes two Convolutional Neural Networks (CNN) models to accurately detect
the location of the implant and assess the extent of damage caused by peri-implantitis. One of the
CNN models is designed to determine the location of the implant in the PA with an accuracy of up
to 89.31%, while the other model is responsible for assessing the degree of Peri-implantitis damage
around the implant, achieving an accuracy of 90.45%. The system combines image cropping based
on position information obtained from the first CNN with image enhancement techniques such as
Histogram Equalization and Adaptive Histogram Equalization (AHE) to improve the visibility of
the implant and gums. The result is a more accurate assessment of whether peri-implantitis has
eroded to the first thread, a critical indicator of implant stability. To ensure the ethical and regulatory
standards of our research, this proposal has been certified by the Institutional Review Board (IRB)
under number 202102023B0C503. With no existing technology to evaluate Peri-implantitis damage
around dental implants, this CNN-based system has the potential to revolutionize implant dentistry
and improve patient outcomes.

Keywords: peri-implantitis; periodontitis; periapical radiograph; deep learning; neural networks;
image enhancement

1. Introduction

In recent decades, dental implant technology has gained popularity, boasting a success
rate of over 90% for artificial dental implant surgery [1]. The human mouth contains
32 permanent teeth, each with an interlocking function. Missing teeth lead to a cascade
of oral health issues, causing more significant long-term damage than adjacent natural
teeth [2]. Failure to address a missing tooth can lead to tooth decay and peri-implantitis,
impairing the original function of the mouth. In more severe cases, adjacent teeth can
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shift, bone shrinkage can occur, and bite and temporomandibular joint disorder (TMD)
can develop [3,4]. Symptoms associated with TMD include Temporomandibular Joint
(TMJ) pain, chewing pain, pain around the ear, and facial asymmetry due to uneven force
application [5,6]. According to the American Dental Association, around 5 million dental
implants are annually implanted in the U.S., and the worldwide market for dental implants
is projected to reach USD 4.6 billion by 2022 [7]. Today, dental implants are a common
dental procedure, involving the surgical implantation of a titanium root into the alveolar
bone where a tooth is missing [8]. After sterile treatment and a secure bond between the
root and tissue, an artificial crown is placed to replace the missing tooth [9]. The structure
of the implant is similar to that of a natural tooth and will not cause any foreign body
sensations when biting [10].

The use of artificial intelligence (AI) has become prevalent across various fields due
to technological advancements. In recent years, the integration of AI and medicine has
emerged in areas such as Cardiology [11], Pulmonary Medicine [12], and Neurology [13].
Artificial intelligence can help doctors to consolidate data and provide diagnostic methods.
It also brings medical resources to rural areas to improve the quality of medical care around
the world, which shows that artificial intelligence is extremely helpful to society [14].
The combination of Convolutional Neural Networks (CNN) and dentistry has resulted
in a wealth of information. Research in AI has displayed promising results in utilizing
the three common X-ray film types used in routine dental exams, including Panoramic
radiographs, Periapical films, and Bite-Wing films. In the realm of dental radiology research,
two primary areas of focus are tooth localization and identification of disease symptoms.
Image enhancement techniques have been proposed to increase the accuracy of cutting
and positioning of individual teeth. For instance, some studies have utilized a polynomial
function to connect gap chains into a smooth curve, resulting in a 4% improvement and
93.28% accuracy rate [15]. Additionally, Gaussian filtering and edge detection technology
have been proposed to enhance the visibility of tooth gaps and facilitate the cutting and
positioning of individual teeth [16]. Filters have been helpful in reducing the impact of
point creation on cutting technology and recognition in PA [17]. Furthermore, adaptive
thresholds have been suggested to improve the application of cropping technology in
dental radiology research [18]. Regarding the identification of disease symptoms, the
backpropagation neural network has been used to diagnose dental caries with an accuracy
rate of 94.1% [19]. Tooth detection and classification have been carried out on panoramic
radiographs by training and classifying tooth types into four groups using a quadruple
cross-validation method with 93.2% accuracy. Dental status has also been classified into
three groups with an accuracy of 98.0% [20]. These findings demonstrate the enormous
potential of AI in the dental field, with the ability to provide accurate diagnosis and improve
patient care.

The dental implant surgery carries potential complications such as sinus perforation
or jaw paralysis due to its location in nerve-ridden gums [21], making focus and attention
crucial to avoid medical disputes. Currently, the objective of research in this area focuses on
two areas: inspection and pre-operative analysis, thus reducing clinic time for dentists and
enabling them to focus on treatment and technique. For example, CNN technology has been
used for whole oral cavity analysis and inspection of periapical radiographs during the
inspection stage [22,23]. Other studies have proposed an automatic synchronous detection
system for two-dimensional grayscale cone beam computed tomography (CBCT) images of
alveolar bone (AB) and the mandibular canal (MC) for preoperative treatment planning [24].
Additionally, pain and discomfort during the operation can affect its smoothness, and some
research has proposed evaluating and predicting pain [25]. However, there is a limited
amount of research conducted on postoperative analysis. Insufficient cleaning by the
patient may result in peri-implantitis [26,27], wherein bacteria can gradually erode the
tissues surrounding the implant, leading to bone and flesh loss. As a result, the implant
may lose support and become loose or dislodged. In view of this, the aim of this study is to
assess the extent of periodontal damage surrounding implants and provide accurate and
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objective evaluation results for postoperative follow-up examinations. The study aims to
decrease the workload of dentists, protect the rights and interests of patients, and prevent
potential medical disputes. This proposal provides three contributions and innovations:

1. The YOLOv2 model is trained using the manually created ROI database provided
by the dentist to detect the implant position and return data for individual implant
thread cropping;

2. Histogram equalization, overlapping techniques, and adaptive histogram equalization
are employed to enhance the boundary lines. Additionally, the gingival area is
colored orange, while the threaded area is green, thereby improving subsequent
CNN judgment;

3. The study trains preprocessed data in a CNN model to detect damages, utilizing
the AlexNet algorithm, achieving a final accuracy rate of 90.4%. Additionally, this
research presents the first medical assistance system for automated thread analysis
of implants.

The structure of this paper is as follows: Section 2 introduces the use of deep learning
models for implant location labeling, cropping, and anterior processing, and finally, the use
of CNN to build a model for arguing whether there is damage; Section 3 mainly integrates
the methods used and the research results; Section 4 discusses the experimental results;
and Section 5 describes the conclusion and future prospects.

2. Materials and Methods

The database used in this research is collected from relevant cases diagnosed by
professional dentists. It can be roughly divided into three parts: implant cropping, image
preprocessing, and implant classification. The damages of dental implants are determined
by the M(mesial) and the D(distal). Therefore, the step of implant cropping will be divided
into cutting out single implants from one to multiple implants in the PA. This part will
use a deep learning model to label the implant position and then separate it into M and
D by using the linear regression algorithm. Although both implant cropping and implant
classification require machine learning, the training methods are very different. Not only
are different models used but also different types of databases are introduced. The implant
cropping is trained using a manually selected ROI database, while the implant classification
is trained using preprocessed images. The major problem encountered in this research
is that the validation set cannot converge when the cropped implant images are directly
fed into the model for training, which leads to overfitting. To solve this problem the
research colors different parts of the implant image, adding reference lines and adjusting
the parameters of the CNN model. The flowchart of this research is shown in Figure 1.
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Figure 1. The flowchart of this research.

2.1. Image Cropping

To enable the CNN model to focus specifically on identifying destruction of dental
implants on the mesial and distal sides, the PA image needs to be cropped to a single
implant. Manual cropping is a time-consuming process. This study utilizes YOLOv2 to

126



Bioengineering 2023, 10, 640

detect the position of the implant. Using the position information returned by YOLOv2,
the implant can be cropped efficiently. Next, a linear regression algorithm is used to find
the central cutting line of the implant. The output image is then named and classified
by comparing it with the diagnosis results provided by the hospital, creating a database
for the CNN model. To prepare the data for further analysis, image preprocessing is
then performed.

2.1.1. Label Dental Implant

The key issue in this step is to determine the Region of Interest (ROI) for training the
object detection model. If the ROI encompasses the entire implant, the damage feature
of the screw thread may not be classified accurately. This is because the area above the
screw thread occupies most of the picture as depicted in Figure 2a, which can also make
subsequent cropping steps challenging. Labeling only the screw thread, on the other hand,
will not affect the determination process. Hence, the research sets the ROI to the thread
instead of the implant body as shown in Figure 2b, to preserve the damage features of
the screw thread as much as possible. Additionally, the damage detection also requires
the gingival features surrounding the screw thread. Therefore, in the subsequent step
of cropping the screw thread, the ROI returns the position that expands horizontally by
several pixels to preserve these features for the next step.
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2.1.2. YOLOv2 Model

The main purpose of training the object detection model in this study is to improve
operational efficiency and reduce the time required for manual image cropping. Therefore,
this study uses specific instruments to achieve the best training effect, including hardware
equipment, as listed in Table 1; software, i.e., YOLOv2 layer structure model, as listed in
Table 2; and training parameter settings, as listed in Table 3.

Table 1. Experimental environment specifications.

Hardware Platform Version

CPU Intel i5-12400
GPU GeForce RTX 3080

DRAM DDR4 3200 32 GB

Software Platform Version

MATLAB R2022b
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Table 2. The Layers of YOLOv2 model.

Type Activations

1 Image Input 416 × 416 × 3
2 2-D Convolution 416 × 416 × 16
3 Batch Normalization 416 × 416 × 16
4 Leaky ReLU 416 × 416 × 16
5 2-D Max Pooling 208 × 208 × 16
6 2-D Convolution 208 × 208 × 32
7 Batch Normalization 208 × 208 × 32
8 Leaky ReLU 208 × 208 × 32
9 2-D Max Pooling 104 × 104 × 32

10 2-D Convolution 104 × 104 × 64
11 Batch Normalization 104 × 104 × 64
12 Leaky ReLU 104 × 104 × 64
13 2-D Max Pooling 52 × 52 × 64
14 2-D Convolution 52 × 52 × 128
15 Batch Normalization 52 × 52 × 128
16 Leaky ReLU 52 × 52 × 128
17 2-D Max Pooling 26 × 26 × 128
18 2-D Convolution 26 × 26 × 256
19 Batch Normalization 26 × 26 × 256
20 Leaky ReLU 26 × 26 × 256
21 2-D Max Pooling 13 × 13 × 256
22 2-D Convolution 13 × 13 × 512
23 Batch Normalization 13 × 13 × 512
24 Leaky ReLU 13 × 13 × 512
25 2-D Max Pooling 13 × 13 × 512
26 2-D Convolution 13 × 13 × 1024
27 Batch Normalization 13 × 13 × 1024
28 Leaky ReLU 13 × 13 × 1024
29 2-D Convolution 13×13×512
30 Batch Normalization 13×13×512
31 Leaky ReLU 13 × 13 × 512
32 2-D Convolution 13 × 13 × 30
33 Transform Layer 13 × 13 × 30
34 Output 13 × 13 × 30

Table 3. Hyperparameters for YOLOv2 training.

Hyperparameters Value

Optimizer sgdm
Initial Learning Rate 0.001

Max Epoch 24
Mini Batch Size 16

To train the YOLOv2 model to label the position of an implant, this research manually
labels a total of 211 photos with 147 used for training and 64 for testing. The remaining
173 images are labeled directly by the YOLOv2 model as indicated in Table 4. Ultimately, the
position of an implant is exported to the next step while the confusion matrix is calculated
using the results of the following step. By employing this approach, the research can reduce
the time required for manual image cropping and achieve accurate labeling of implant
positions. This is accomplished by training the YOLOv2 model to identify the position of
the implant within the image. The ability of the YOLOv2 model to identify the location of
the implant quickly and accurately allows for efficient and accurate cropping of the image,
therefore reducing the amount of time required for this process. To ensure the accuracy of
the YOLOv2 model, manually labeling a significant portion of the images used for training
was conducted in this research. This manual labeling allowed for the evaluation of the
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performance of the model and made any necessary adjustments to improve its accuracy.
The remaining images were labeled by the YOLOv2 model to further improve its accuracy.

Table 4. The distribution of data in the original periapical image obtained from clinical sources.

The Number of Original Periapical Images

Training Test The Others Total

Quantity 147 46 263 456

In conclusion, the object detection of the model training is critical to reducing the time
required for manual image cropping in this research. The use of hardware and software
configurations was optimized for this purpose along with the manual labeling of images,
thus allowing the YOLOv2 model to accurately identify implant positions in the image. By
doing so, this proposed study can achieve efficient and accurate image cropping, therefore
reducing the amount of time required for this process.

Optimizer

Optimizers play a crucial role in machine learning by helping to minimize the loss
function. The choice of optimizer depends on the specific network and the problem at
hand. In MATLAB, there are several options for optimizers, including Sgdm, RMSProp,
and Adam.

The Sgdm optimizer is a variant of stochastic gradient descent with momentum, which
uses the gradients of the current mini-batch and the previous mini-batch to update the
model parameters. It has been shown to be effective in improving convergence speed and
reducing the likelihood of becoming stuck in local optima. RMSProp optimizer, on the
other hand, adjusts the learning rate adaptively for each parameter based on the average of
the squares of the gradients. It is known to be useful for training recurrent neural networks.
Adam optimizer is another popular algorithm that combines the ideas of momentum and
adaptive learning rates. It has been shown to be effective in training large-scale deep
learning models.

For this research, the Sgdm optimizer was chosen for the YOLOv2 network. The reason
for this choice may be related to its effectiveness in improving convergence speed, reducing
the likelihood of becoming stuck in local optima, and its ability to handle large datasets.
Ultimately, the choice of optimizer depends on the specific problem being addressed and
the characteristics of the data.

Initial Learning Rate

The initial learning rate is a critical hyperparameter that determines the step size
at each iteration during model training. It controls the speed of gradient descent and
affects the performance of the model. However, choosing an optimal learning rate can be
challenging. If the learning rate is set too high, the model may learn too quickly, resulting
in convergence problems. Conversely, a learning rate that is too low may lead to slow
learning, which is ineffective and can result in overfitting or becoming trapped in a local
minimum. Therefore, selecting an appropriate learning rate is essential for achieving global
minimum and successfully training the model.

Max Epoch, Mini Batch Size and Iteration

In neural network learning, an epoch refers to a complete iteration over the entire
dataset. In MATLAB, the Max Epoch parameter is used to set the total number of epochs
before the network training is stopped. However, when the size of each dataset is large,
it may not be possible to process all the data at once due to limited memory resources.
In such cases, the data are divided into smaller subsets called batches, with each batch
containing a certain number of samples. In addition, the number of samples in each batch
is referred to as the batch size. It is important to choose an appropriate batch size as it
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affects the performance of the neural network during training. Using a large batch size may
accelerate the training process, but it can also cause overfitting where the network becomes
excessively attuned to the training data, resulting in poor performance on new data. On
the other hand, a small batch size can lead to slower convergence, but it also makes the
training process more robust and generalizable to new data. Thus, choosing the right batch
size is crucial in achieving good performance in neural network training.

The concept of Iteration is closely related to batch size. For instance, if a dataset
contains 10 samples and the batch size is set to 2, then it would take 5 iterations to complete
one epoch of training. During each iteration, the neural network updates its parameters
based on the gradients calculated from the samples in the current batch. The relationship
between dataset size, batch size, and iterations can be expressed mathematically, as shown
in Equation (1):

Data set size = IterationBatch size(1 Epoch) (1)

2.1.3. Cropping Dental Implant by YOLOv2

The detector after training will return the position of the object, including the dot in
the upper left corner of the object and the length and width of the ROI. The key point of
this step is to use the returned value to crop the required image. In 2.1.1, it is necessary to
preserve the features between the implant and the gingiva to the greatest extent possible
during cropping. Therefore, the returned data will add several pixels to the horizontal field
as shown in Figure 3.
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Figure 3. The cropping example with and without extending: (a,c) the image cropped directly;
(b,d) the image cropped after extending.

The detection of damages in implant screw threads is not based on a single implant,
but rather on a single side. Thus, after cropping the region of interest (ROI) of the implant
thread using YOLOv2, further segmentation is necessary. To simplify the classification
of items in the CNN model database and enable the model to focus more on damage
identification, the cropped image is segmented into the mesial and distal sides. However,
cropping poses a challenge as the thread may not be parallel to the Y-axis of the image.
Therefore, linear regression analysis [28] is employed to determine the position of the
implant in the image for cropping purposes, as shown in Equation (2):

130



Bioengineering 2023, 10, 640

y = β0 + β1x (2)

where 0 represents the intercept, and 1 represents the slope. By analyzing the distribution
of points on the coordinate axis, a line that represents the overall trend can be obtained.
Based on the observation of dental implants in this project, the length of the implant is
greater than its width in the photo. Therefore, by placing the implant horizontally on
the coordinate axis, a linear equation that passes through the center of the implant can
be obtained.

The initial step involves the binarization of the image to extract the implant as illus-
trated in Figure 4a. The following step entails plotting the extracted implant on the XY
plane as depicted in Figure 4b. Due to the closely distributed pixels of the implant, the
last step involves utilizing linear regression analysis to determine the cutting line via the
centerline of the implant. Padding is applied to maintain the symmetry of the cropped
image, therefore resulting in two images each containing only half of the screw thread as
demonstrated in Figure 4.
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after cutting.

2.2. Preprocessing

It is crucial to establish a well-characterized database that can effectively aid the CNN
model in identifying the presence of peri-implantitis. In order to achieve this, this research
categorized the database into two groups: the control group, consisting of implants without
signs of peri-implantitis; and the test group, consisting of implants with signs of peri-
implantitis. To classify the database, this research consulted and referred to the assessment
of three physicians with at least five years of clinical experience on whether the model
has detected peri-implantitis. Although the cropped images can be used as a database
for the CNN model, the original images still contain significant amounts of noise. This
noise hinders the ability of the CNN model to differentiate between damage and health.
To enhance the learning ability of the CNN model, it is necessary to remove the noise and
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improve the features to make the differences between damaged and healthy more distinct.
For instance, in the test group’s data, implants with signs of peri-implantitis exhibit obvious
black subsidence marks around the alveolar bone on the image, which is not present in the
control group’s data. Hence, this research proposed the steps for image enhancement to
improve efficacy of the CNN model in detecting peri-implantitis.

The first step is to filter out any unnecessary noise. This involves converting the RGB
images to grayscale and using histogram equalization and adaptive histogram equalization
to accomplish this. The resulting images are overlaid onto the original images to enhance
their boundaries. The second step is to enhance the features by examining the differences
in color levels between the implant and gingiva. The research plots the values of each pixel
in a 3D space and colors them accordingly on the original image. These steps are then
combined to produce a pre-processed image. A CNN model training database is created
using these pre-processed images which possess the necessary features and sufficiently
high recognition accuracy to enable more effective CNN model training.

2.2.1. Histogram Equalization and Adjust Histogram Equalization

The original image in Figure 5a has a color scale that is too similar between the gingival
and screw threads; this makes it difficult to distinguish damaged features due to excessive
noise. The main objective of this step is to increase the color scale between the gingival and
implant while filtering out the unnecessary noise. Histogram equalization [29] (Figure 5b)
and adaptive histogram equalization [30] (Figure 5c) are used to achieve this goal. The
result in Figure 5d is obtained by subtracting one image from the other. Then, the norm of
the horizontal and vertical gradients of the image is calculated and the results are plotted
in 3D as shown in Figure 6, capturing the edge features. Finally, the results are combined
with the coloring from the next step to complete the preprocessing. In Equation (3), px(i)
is the probability value of the occurrence of grayscale values from 0 to 255, ni is the total
number of occurrences of grayscale value i in the picture, and n is the total number of pixels
in the image and L is 256. Equation (4) presents the cumulative distribution function which
calculates the cumulative probability of pixels from 0 to 255 and linearizes the probability
of the occurrence of all pixels. Finally, it multiplies 255 by the cumulative distribution
function as shown in Equation (5) to scale the cumulative probability of 0 to 1 to 0 to 255.

px(i) = ni/n , 0 ≤ i < L (3)

cd fx(i) =
i

∑
j=0

px(j) (4)

cd fx(i)× (255 − 0) (5)
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2.2.2. Image Enhanced with 3D Graphics Technology

In the previous step, we were able to identify edge features. However, to further em-
phasize the differences between damaged and healthy, it is necessary to use the distribution
of gingiva on the image to enhance the distinction between the two categories of features.
The main challenge in this step is distinguishing between the gum and dental implant
regions. To address this issue, the correlation between the 3D map output of the previous
step and the 3D map of the original image is utilized as shown in Figure 7a. The range
value is used to determine whether a pixel is located on the edge or on the flat surface.
When a pixel is on the flat surface, the Z-axis position in the 3D map is used as reference to
determine whether it belongs to the dental implant or gum. If the Z-axis position is higher
than the threshold between the dental implant and gum, the pixel is considered a dental
implant and is colored green. If it is lower, it is considered gum and colored orange. A gate
value is also used to separate the gum region from the rest of the original image. Pixels
below this gate are set to 0 which appears black. Finally, to enhance the discriminability,
a red reference line is added at the position of the damaged platform on each image as
shown in Figure 7b.
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2.3. Image Classification

To monitor the learning progress of the model during training, the project divides
the training data into an 80% training set and a 20% validation set as listed in Table 5.
The validation set is used to observe if the model is overly focused on the training data,
leading to incorrect predictions of new data, known as “Overfitting”. Insufficient data is a
factor contributing to model overfitting. This project augments the data by horizontally
and vertically flipping images, therefore increasing the data volume by a factor of four. To
ensure the accuracy of the training process, the number of damaged and healthy data in
the training and validation sets must be adjusted to approximately 1:1 to ensure that each
category has a consistent distribution of the probability of correct predictions.

Table 5. Image classification of the periapical image before and after preprocessing.

The Number of Periapical Images before and after Preprocess

Before Training Set Validation Set

Healthy 162 40
Damaged 164 40

Total 326 80

After Training Set Validation Set

Healthy 648 (Augmented) 40
Damaged 656 (Augmented) 40

Total 1304 80

2.3.1. CNN Model

The hardware setup used to train the CNN image classification model is the same
as described in Table 1 in Section 2.1.2. The CNN model is built using the Deep Network
Designer app of MATLAB with AlexNet as the base model. However, the input size is
different from the original 227 × 227 × 3 and is set to 450 × 450 × 3 to accommodate the
elongated shape of dental implants and avoid distortion caused by stretching rectangular
images into squares as shown in Figure 8a. This approach also prevents excessive padding
resulting from filling the square as shown in Figure 8b. The final architecture of AlexNet
is presented in Table 6. To ensure accuracy in the training process, it is necessary to
adjust the quantity of damaged and health data in the training and validation sets to
approximately 1:1.
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Table 6. The model architecture of AlexNet.

Type Activations

1 Image Input 450 × 250 × 3
2 2-D Convolution 110 × 60 × 96
3 ReLU 110 × 60 × 96
4 Cross Channel Normalization 110 × 60 × 96
5 2-D Max Pooling 54 × 29 × 96
6 2-D Grouped Convolution 54 × 29 × 256
7 ReLU 54 × 29 × 256
8 Cross Channel Normalization 54 × 29 × 256
9 2-D Max Pooling 26 × 14 × 256
10 2-D Convolution 26 × 14 × 384
11 ReLU 26 × 14 × 384
12 2-D Grouped Convolution 26 × 14 × 384
13 ReLU 26 × 14 × 384
14 2-D Grouped Convolution 26 × 14 × 256
15 ReLU 26 × 14 × 256
16 2-D Max Pooling 12 × 6 × 256
17 Fully Connected 1 × 1 × 1152
18 ReLU 1 × 1 × 1152
19 Dropout 1 × 1 × 1152
20 Fully Connected 1 × 1 × 144
21 ReLU 1 × 1 × 144
22 Dropout 1 × 1 × 144
23 Fully Connected 1 × 1 × 2
24 Softmax 1 × 1 × 2
25 Classification Output 1 × 1 × 2

2.3.2. Hyperparameter

To train a model effectively, it is crucial to tune the appropriate training parameters
according to the data characteristics. The parameters used in the YOLOv2 model trained
in Section 2.1.2 differ from those used in the AlexNet model in this step. In this section,
we will provide details about the Initial Learning Rate, Mini Batch Size, Max Epoch, and
Dropout Factor. Moreover, the parameters used to train AlexNet are presented in Table 7.

Table 7. Hyperparameters in AlexNet model.

Hyperparameters Value

Optimizer Sgdm
Initial Learning Rate 0.00006

Max Epoch 50
Mini Batch Size 16

LearnRateDropFactor 0.75
LearnRateDropPeriod 30

Learning Rate Dropout

Machine learning models must be generalized to all types of data within their respec-
tive domains to make accurate predictions. Overfitting happens when a model becomes
too closely fitted to the training dataset and fails to generalize. Preventing overfitting is
crucial for successful model training. Dropout is a regularization technique utilized to
address overfitting. It involves assigning a probability of dropping out hidden layer neu-
rons during each iteration or epoch of training. The dropped-out neurons do not transmit
any information.
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3. Results

This chapter is divided into two sections: the first focuses on the training process
and results of the YOLOv2 object detection model; while the second covers the CNN
image classification model. Both models will be compared with those proposed in other
papers, and the precision and accuracy achieved by this project will be assessed using the
confusion matrix.

3.1. YOLOv2 Object Detector

Table 8 presents a comprehensive overview of the YOLOv2 training process employed
in this study. In this study, an unvalidated model was utilized to detect dental implants
due to the fact that the YOLOv2 training function in MATLAB does not support validation.
The results of the detection process are detailed in the confusion matrix provided in
Table 9. Moreover, Figure 9 depicts the training process for the YOLOv2 loss function. To
evaluate the accuracy of the CNN model, the validation set was utilized as the input for
the network in this study. The accuracy of the AlexNet model was evaluated by comparing
its predictions with the correct answers obtained from the images.
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Table 8. Training process for YOLOv2.

Epoch Iteration Time Elapsed Mini-Batch
RMSE

Mini-Batch
Loss

1 1 00:03 7.75 60.0
6 50 00:27 1.13 1.3
12 100 00:51 0.77 0.6
17 150 01:14 0.56 0.3
23 200 01:37 0.44 0.2
24 216 01:43 0.53 0.3
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Table 9. The confusion matrix of YOLOv2 test.

Target Class

Category Implant Tooth Subtotal

Output Class
Implant 287 (68.2%) 15 (3.6%) 95%
Tooth 30 (7.1%) 89 (21.1%) 74.8%

Subtotal 90.5% 78% 89.3%

The appropriate selection of hyperparameters is crucial for the success of any machine
learning algorithm. In this study, the hyperparameters of YOLOv2 were carefully selected
based on the data characteristics. Zero (0) indicates that the YOLOv2 model correctly
predicted 287 implants across all test cases, achieving a recall of 90.5%. Additionally, it
correctly predicted 89 cases of normal teeth, resulting in a true negative rate of 78%. The
accuracy rate of the model in this study is 89.3%. In addition, the model is 95% accurate.
The YOLOv2 model displays lower propensity for erroneously detecting healthy teeth,
but another issue was encountered during testing. As depicted in Figure 10, the system
tends to repeatedly detect incomplete implants in the same tooth leading to high false
negative values. In contrast to literature [31,32] that employ positioning and identification
technology, the proposed technology in this study integrates automatic image cropping,
resulting in a difference in the accuracy of less than 2%. This proposal has attained high
precision and accuracy in dental implant detection and image classification. In general,
these outcomes suggest that our proposed models exhibit a potential for clinical applications
and could serve as a valuable tool for dental implant planning.
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Figure 10. The image of detecting an incomplete implant.

3.2. CNN AlexNet Image Classification

To monitor the training progress of the model, a validation set was employed in this
project. The training process is presented in Table 10, while Figures 11 and 12 display the
accuracy and loss of training AlexNet, respectively. The black line in both figures represents
the validation.
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Table 10. The detailed process of AlexNet training.

Epoch Iteration Mini-Batch
Accuracy

Validation
Accuracy

Mini-Batch
Loss

Validation
Loss

1 1 56.25 50.00 8.3222 3.1206

10 810 81.25 87.50 0.2822 0.2692

20 1620 100.00 95.00 0.0358 0.1354

30 2430 100.00 96.25 0.0376 0.1144

40 3240 100.00 96.25 0.0177 0.0951

50 4050 100.00 96.25 0.0126 0.0676

60 4860 100.00 97.50 0.0070 0.0989

70 5670 100.00 97.50 0.0109 0.0740

80 6480 100.00 97.50 0.0051 0.0672

90 7290 100.00 97.50 0.0035 0.0551

100 8100 100.00 97.50 0.0055 0.0766
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Based on the data presented in Table 11, it is evident that the use of distorted images,
which were not adjusted for relative size, as the training database led to a very high
loss of the validation set and an accuracy of less than 50%. These findings suggest that
the database may have some fatal flaws such as indistinct features resulting from image
stretching or excessive noise in the image. The second column of Table 11 presents the
results of training using histogram equalization, the overlaid original image, and adaptive
histogram equalization. As a result of correcting image size and enhancing features, the loss
decreased significantly, and the accuracy increased to 81.43%. Nonetheless, these results
were still below the standards set by this project. Furthermore, during the training process,
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the loss rebounded after reaching 0.5, indicating the need for further image pre-processing.
The third column of Table 11 shows the result of this project which significantly enhances
the features of an image by coloring different regions and adding damage reference lines.
This enhancement has helped the model to perform better in image classification, achieving
a validation set accuracy of 97.5%, and the loss has also dropped below the threshold of 0.5
to 0.08.

Table 11. Comparison of the datasets used in various stages and the validation results.

Original Images Adaptive Histogram
Equalization

Adaptive Histogram
Equalization + Damage

Reference Lines

Validation
Accuracy 48.64 81.43 97.5

Validation
Loss 2.21 0.54 0.08

Net AlexNet AlexNet AlexNet

Image
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The evaluation of prediction results in terms of accuracy and precision was per-
formed by comparing the predicted outcomes with the ground truth using a confusion The evaluation of prediction results in terms of accuracy and precision was performed

by comparing the predicted outcomes with the ground truth using a confusion matrix
based on the test set, as presented in Table 12. Initially, the AlexNet model employed
original images during the training process, and after continuous adjustments, the accuracy
increased from 60% to 80%. However, it reached a bottleneck. Further improvement was
achieved with the use of preprocessing. The final training outcomes are depicted in Table 12.
Nevertheless, some images in the test data have unclear boundaries such as those without
obvious screw threads or gums having similar grayscale values to screw threads which
may also lead to misjudgment by the human eye. Consequently, there were approximately
10% errors in the final testing. It is evident that the CNN model performed remarkably well
on the test set; it accurately predicted 107 out of all 117 samples, with damages accounting
for 91.4% of the total damaged test data; similarly, it accurately predicted 92 out of all
103 healthy samples, accounting for 89.3% of the total healthy test data. The accuracy rate
was 90.4% and the precision rate was 90.7%.

Table 12. The confusion matrix of AlexNet test.

Target Class

Category Damaged Healthy Subtotal

Output Class

Damaged 107 (48.6%) 11 (5%) 90.7%

Healthy 10 (4.5%) 92 (41.8%) 90.2%

Subtotal 91.4% 89.3% 90.4%
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The direct classification of dental implant damages has not yet been addressed in
the current state of the art. The paper that is closest in technique is [33] which focuses
solely on determining the fit between two sides of a dental implant rather than directly
detecting damages on one side of the implant using the method employed in this project.
Table 13 presents a comparison with this technology, revealing that the image enhancement
technology utilized in this study contributes to the final recognition result of the CNN,
with an accuracy rate increasing to 90.4%. This marks significant progress, as this research
currently represents the highest performance in detecting implant damages in teeth.

Table 13. The comparison table between the prior art and this study.

This Work Method in [33]

Method CNN Faster R-CNN
Accuracy 90.4% 81%

4. Discussion

The YOLOv2 model achieved an 89.3% accuracy rate in detecting the position of dental
implants, surpassing the performance of existing methods [34]. The multiple identification
process revealed that the system may repeatedly detect the same tooth when there are
incomplete implants, leading to high false negative values. In addition to the positioning
and recognition technology used in [31,32], this study introduced automatic image cropping,
resulting in less than a 2% accuracy difference. This is a promising direction. Another
study [35] used YOLOv3 to identify dental implants, with TP ratios and APs ranging from
0.50 to 0.82 and 0.51 to 0.85 for each implant system, respectively. The resulting mAP
and mIoU of the model were 0.71 and 0.72, respectively. This is with a small amount of
training data used, which may have compromised the accuracy of the model. For the
AlexNet data used in this study, grayscale images were initially used for training, resulting
in lower accuracy rates. When distorted images were used, the accuracy rate was even
lower. Therefore, this research strengthens the high-precision image preprocessing process,
improves the accuracy of the model to detect damages to 90.4%, and innovates and breaks
through the latest similar related research.

The most related investigation [33] utilized Faster R-CNN to identify marginal bone
loss surrounding implants (the κ value for the bone loss site was 0.547, while the κ value
for the bone loss implant was 0.568) and compared the judgments of the AI to those of MD
students and resident dentists on the same data. The results showed significant differences
in the judgments of human observers. Therefore, training a consistent and accurate model
can greatly facilitate healthcare by providing real-time treatment. However, the model is
limited in its ability to detect finer levels of bone loss or the number of threads affected.
Future research could address this limitation by exploring the use of additional imaging
techniques or developing more sophisticated algorithms to detect these features, reducing
misjudgment, and avoiding medical disputes.

5. Conclusions

The YOLOv2 model achieved an accuracy rate of 89.3% in capturing the implant
position, while the AlexNet damage detection model achieved an accuracy rate of 90.4%.
Moving forward, this research will continue to optimize the model and investigate better
methods to improve accuracy rates. In terms of capturing dental implants, this study
improves the cropping method by cutting through the interdental space to avoid capturing
teeth outside the target area. In addition, this study obtained different grayscale ranges
and blurred glue and line edges in the image. This automatic image preprocessing method
greatly improves on the current manual preprocessing process. This automated approach
not only improves efficiency and consistency but also reduces manual operation errors.
Moreover, it is advisable to investigate the potential of incorporating advanced imaging
techniques or developing more sophisticated algorithms that can accurately detect even
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subtle levels of bone loss or the number of affected threads. Moreover, creating a user
interface can improve user satisfaction and increase the ease of use and efficiency of the
system, leading to improved work efficiency and product quality.
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Abstract: The accumulation of caries-preventive compounds on sound enamel is crucial in order to
improve the inhibition of carious lesion initiation. The aim of this research was to investigate the
initial accumulation of cerium, oligopeptide p11-4, and fluoride from NaF or amine fluoride (AmF)
on sound enamel in vitro by means of energy dispersive X-ray spectroscopy (EDX). Polished bovine
enamel specimens (n = 120 from 60 teeth) were fabricated. Out of these, 12 specimens each were
treated with CeCl3 (cerium(III) chloride heptahydrate 25%), oligopeptide p11-4 (Curodont Repair,
Credentis), NaF (10,000 ppm F−), AmF (amine fluoride, Elmex Fluid, CP-GABA GmbH, 10,000 ppm
F−), or Aqua demin (control). After rinsing with water, the surface elemental composition (Ce, N,
F, Ca, P, O, Na, Mg) was measured (EDX; EDAX Octane Elect detector, APEX v2.0), expressed in
atomic percent (At%) and analyzed (non-parametric statistics, α = 0.05, error rates method). Another
12 specimens per treatment group were fabricated and used for analyzing accumulation in cross-
sections with EDX linescans and two-dimensional EDX-mappings. The surface median atomic
percent of cerium (At%Ce) was 0.8 for CeCl3, but no Ce was found for any other group. N, specifically
for oligopeptide p11-4, could not be detected. Fluorine could only be detected on fluoridated surfaces.
The median atomic percent of fluorine (At%F) was 15.2 for NaF and 17.0 for AmF. The Ca/P ratio
increased significantly compared to the control following the application of NaF and AmF (p < 0.001),
but decreased significantly for CeCl3 (p < 0.001). In cross-sectioned specimens of the CeCl3-group,
12.5% of the linescans revealed cerium at the enamel surface, whereas 83.3% of the NaF linescans
and 95.8% of the AmF linescans revealed fluorine at the enamel surface. Following the application
of oligopeptide p11-4, no traces of N were detectable. In the depth of the samples, no signal was
detected for any of the corresponding elements exceeding the background noise. Cerium and fluorine
(from both NaF and AmF), but not the oligopeptide p11-4, precipitated on sound enamel.

Keywords: chemical composition; EDX; caries prevention

1. Introduction

Untreated caries of permanent teeth is a prevalent condition with an estimated 2 billion
worldwide cases in 2019 [1]. Coronal carious lesions typically start with lesion initiation in
sound enamel [2]. Hence, the approach to combat caries is twofold: to prevent demineral-
ization of sound enamel and to promote the remineralization of previously demineralized
areas [3,4]. For all cariostatic compounds that act in addition to the local presence of ionic
calcium and phosphate, adherence or accumulation at the enamel surface is therefore a
preferred quality in order to positively influence the balance between demineralization and
remineralization during daily acidic challenges [5].

Fluorides, e.g., applied in form of dentifrices or varnishes, have been used for a long
time in the prevention and treatment of initial carious lesions [6,7]. These act primarily via
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local effects, for example through the initial formation of calcium fluoride (CaF2) on the
enamel surface at acidic pH [8–10] or through accumulation within the hydration layer of
enamel crystals and diffusion of 1–2 nm into these crystals [11]. In addition to fluoride, for
which cariostatic effects are well documented, a number of novel, potentially cariostatic
compounds have emerged.

Lanthanoid compounds such as cerium salts, although not yet used clinically, have
recently shown anti-erosive and cariostatic potential [12–14]. Although not fully under-
stood, the incorporation of cerium at the positions of calcium in the crystal lattice of
hydroxyapatite may increase acid resistance. The lower solubility of cerium phosphate
or cerium-substituted apatite, compared to corresponding naturally occurring calcium
phosphates, may explain a potential caries-preventing effect of cerium in enamel [15]. The
oligopeptide p11-4 (C72H98N20O22), designated as a self-assembling peptide, is described to
bind calcium ions [16,17]. Nevertheless, oligopeptide p11-4 also may inhibit initiation of
initial enamel caries by binding to sound enamel, due to its calcium-binding capacity [17].

In view of its potential properties to prevent enamel demineralization, it was the aim of
this study to investigate the initial surface accumulation of cerium and oligopeptide p11-4
on sound enamel in vitro and compare these with fluoride from NaF or amine fluoride,
both well-established compounds in caries prevention. The corresponding null-hypothesis
of the study was that topical application of cariostatic agents based on cerium(III)-chloride,
oligopeptide p11-4, amine fluoride, or sodium fluoride has no significant influence on the
elemental composition of sound enamel.

2. Materials and Methods

For all in vitro experiments, permanent inferior incisors of freshly slaughtered bovine
animals were extracted and stored at 4 ◦C for a maximum of 3 months in 0.5% chloramine
solution before use.

2.1. Enamel Preparation and Treatment

The crowns from 60 bovine inferior incisors were hand-sectioned into 120 equally-
sized labial enamel specimens with underlying dentin (10 × 10 × 3 mm; one incisal and
one cervical specimen per tooth) using a cutting disc (Superdiaflex H 365F 190 Horico
Dental, Berlin, Germany) under copious water cooling. Roots and pulpal tissue were
removed. The central enamel region of each specimen was ground flat and polished under
continuous water cooling with Si-Carbide paper (Metaserv Motopol 8, Buehler, Leinfelden-
Echterdingen, Germany; 150 rpm, FEPA P1200, CarbiMet, 40 s, FEPA P4000, MicroCut, 60 s;
both Buehler, Germany). After polishing, each specimen consisted of at least a layer of 1 mm
of enamel and 1 mm of underlying dentin. The dentin on the pulpal side of the specimen
and the unpolished marginal enamel areas were covered with nail varnish. The resulting
120 specimens (Figure 1) were randomly allocated to 5 treatment groups (n = 24): CeCl3
(25% cerium(III)chloride heptahydrate in aqueous buffer-solution, pH = 4; Merck KGaA,
Darmstadt, Germany), oligopeptide p11-4 (pH = 6.2; Curodont Repair, Credentis, Windisch,
Switzerland), NaF (sodium fluoride, 10,000 ppm F− in aqueous buffer-solution, pH = 4;
Merck KgaA, Darmstadt, Germany), AmF (amine fluoride, 10,000 ppm F−, pH = 4; Elmex
Fluid, CP GABA GmbH, Hamburg, Germany), and Aqua demin (control). The solutions
according to treatment groups were applied on the polished sound enamel. For CeCl3, NaF
and AmF, 0.1 mL of the solution was passively applied from a pipette, left for 60 s, and
subsequently rinsed off for 30 s using demineralized water. For oligopeptide p11-4, one unit
of approximately 60 µL of the solution was applied using the applicator from the Curodont
system, left for 300 s, and subsequently rinsed off for 30 s using demineralized water.
For Aqua demin (control), 30 s rinsing with demineralized water (1.82 × 107 µSv; TKA
GenPure, TKA xCAD, TKA Wasseraufbereitungssysteme GmbH, Niederelbert, Germany)
without further treatment was performed.
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Figure 1. Flowchart of the experimental steps. From 60 bovine lower incisors, 120 polished enamel
specimens were randomly allocated to 5 treatment groups: Aqua demin (control), cerium(III)-chloride
(CeCl3), oligopeptide p11-4, sodium fluoride (NaF), and amine fluoride (AmF). The surface elemental
composition (Ce, N, F, Ca, P, O, Na, Mg) was measured in three fields of the treated enamel surface
using energy dispersive X-ray spectroscopy (EDX). The accumulation on the surface was analyzed in
cross-sections by EDX linescans and two-dimensional EDX element mappings.

2.2. Surface Visualization (LV-SEM)

All 12 specimens from every group were dried in an exsiccator using activated silica
gel (Silica-Gel with indicator Orange-Gel, Merck, Germany) for 24 h. Within 4 h they were
mounted onto aluminum stubs (Baltic Präparation, e.K., Wetter, Germany) using double-
sided adhesive carbon discs and conductive adhesive paste (Leit-Tab and Leit-C-Plast,
Baltic Präparation e.K.). Exemplary superficial SEM micrographs (FEI Quanta 400 FEG,
Thermo Fisher Scientific, FEI Deutschland GmbH, Dreieich, Germany) were taken from
the enamel surface in low vacuum mode (secondary electron mode, 1.5 Torr, accelerating
voltage 10 kV, working distance 10 mm, horizontal field width 10.82 µm) without previous
sputtering, using a large field detector (LFD) and pressure limiting aperture (PLA).

2.3. Surface Elemental Composition (EDX)

Using the same specimens, the surface elemental composition was measured in three
fields (366 × 291 µm) at a distance of at least 500 µm from each other and at least 500 µm
within the margin of the treated enamel surface (Figure 1), using EDX (EDAX Octane Elect
detector, APEX v2.0, AMETEK EDAX GmbH, Weiterstadt, Germany) and calibration with
standard customized coefficients (SCC). The EDX measurements were performed in low
vacuum mode (PLA, 1.5 Torr, accelerating voltage 10 kV, working distance 10 mm, 50µm
aperture, 100 live seconds, amp time 3.84 µs, image resolution 1024 × 800 pixels). Atomic
percent (At%) of the elements Ce, N, F, Ca, P, O, Na and Mg were calculated from every
field. At%Ce, At%N, or At%F were the target parameters of the experiment being selective
indicators for precipitation of CeCl3, oligopeptide p11-4, or fluorides. C, Cl, and Si were
not included in the analysis, because they were not within the scope of the study, and their
concentration may be influenced by storage and polishing procedures.

2.4. Cross-sectional Elemental Analysis (EDX)

From the remaining 60 specimens (12 per group), cross sections through the specimen
perpendicular to the enamel surface were made following treatment to analyze surface
accumulation “from the side” and potential in-depth penetration (Figure 1). Before cutting,
the enamel surface was gently air-dried, covered with Clearfil SE Bond (Kuraray, Chiyoda,
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Japan) and low viscosity bulk-fill composite (SDR flow+, Dentsply Sirona, York, NY, USA),
and light cured according to the manufacturer instructions (VALO curing light, up 5919-I,
Ultradent Products, South Jordan, UT, USA) in order to mechanically stabilize the enamel
surface during the following cutting procedure. Subsequently, the specimens were cen-
trally cut perpendicular to the enamel surface using a saw microtome (Leitz 1600; Leica
Microsystems, Wetzlar, Germany), dried and mounted as described for surface elemental
composition specimens.

In order to verify the accumulation of the target elements Ce, N and F on the enamel
surface, cross-sectional EDX linescans were taken perpendicular from the cut enamel
surface, including the surface and deeper areas (FEI Quanta 400 FEG, EDAX Octane Elect
detector, APEX v2.0), using low vacuum mode (1.5 Torr, PLA, accelerating voltage 10 kV,
working distance 10 mm, aperture 50µm). Within each scan, the counts of either Ce, N,
or F were used as target elements. For each specimen, two parallel central EDX linescans
with a distance of 100 µm from each other and perpendicular to the original enamel surface
were recorded. Each line comprised a row of single measurements with 2 µm line width
along a length of 250 µm with 0.9 µm intervals in between two single measurements
(dwell time 20 ms; amplification time 7.68 µs; 50–80 frame iterations to collect necessary
counts). For each element, the EDX counts were plotted against the sample depth, and a
two-dimensional fit (TableCurve 2D, v5.01 S4STAT, Chicago, IL, USA) was applied. For
every linescan, the counts of the target element in >100 µm depth from the enamel surface
resembled a horizontal line and were therefore defined as background noise. From all fitted
EDX linescans, the functions obtained by TableCurve 2D that showed a peak of EDX counts
of Ce, N, or F at the enamel surface was counted and evaluated as an additional indicator
of a consistent accumulation of the target elements.

2.5. Determination of Nitrogen in the Oligopeptide p11-4 Delivery-System (Curodont Repair)

No information on the concentration of oligopeptide p11-4 within Curodont Repair
is provided by the manufacturer. Therefore, and because of the results of the above
described experiments, the nitrogen content of Curodont Repair was determined by EDX.
Hitherto the relative elemental composition of the manufacturer’s applicator brush alone,
the oligopeptide p11-4 fluid alone and oligopeptide p11-4 fluid applied according to
manufacturer’s instructions using the respective applicator brush were analyzed. The
fluids were applied on aluminum stubs that were covered with adhesive carbon discs (Leit-
Tab) and allowed to dry without rinsing off. The residue was analyzed for its elemental
composition with respect to C, N, O, Na, and S using EDX (all measurements: low vacuum
mode, 1.5 Torr, accelerating voltage 10 kV, horizontal field width 340 µm). Additionally, the
Leit-Tab without test materials was examined.

2.6. Data Analysis

For surface EDX data, non-parametric statistical procedures were used to analyze At%
of respective elements (SPSS version 25.0, IBM, Armonk, USA). The median of the three
measured fields per specimen was used as the representative value of every specimen.
Ca/P ratios were calculated. For all groups, medians and 25% and 75% percentiles were
calculated from the specimens’ representative values. The Mann–Whitney U Test was used
to test for statistically significant differences between groups. The level of significance was
set to ∝ = 0.05 and adjusted to ∝∗ (k) = 1− k

√
1− ∝ with k = number of pairwise tests to

be considered in case of multiple comparisons according to the error rate method [18].

3. Results

Relative atomic percent [At%] composition at the enamel surface and the Ca/P ratio
of the investigated groups are shown in Table 1 and Figures 2 and 3.
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Table 1. Results of atomic percent [At%] and Ca/P ratio at the enamel surface following treatment
according to group (n = 12). Since data are not symmetrically distributed, and some of the sums of
the medians may differ from 100%. Asterisks indicate significant difference between the respective
group and the control (Aqua demin). Data are also depicted in Figures 2 and 3.

Group

Aqua Demin
(Control) CeCl3 Oligopeptide p11-4 NaF AmF

Median 25–75% Median 25–75% Median 25–75% Median 25–75% Median 25–75%

At%Ce 0.00 0.00–0.00 0.75 * 0.60–1.43 0.00 0.00–0.00 0.00 0.00–0.00 0.00 0.00–0.00

At%N 0.00 0.00–0.00 0.00 0.00–0.00 0.00 0.00–0.00 0.00 0.00–0.00 0.00 0.00–0.00

At%F 0.00 0.00–0.00 0.00 0.00–0.00 0.00 0.00–0.10 15.20 * 12.88–16.85 17.04 * 8.85–21.23

At%Ca 21.85 20.35–22.63 20.90 19.85–22.08 20.80 20.25–22.08 22.35 21.53–23.15 24.55 * 23.58–25.48

At%P 13.40 12.63–13.77 13.20 12.85–13.60 13.00 12.58–13.51 11.00 * 10.43–11.18 11.22 * 10.38–12.90

At%O 63.60 62.62–65.78 64.10 62.50–64.98 65.00 63.19–66.18 50.70 * 48.93–52.18 47.55 * 40.41–52.38

At%Na 0.40 0.40–0.50 0.40 0.40–0.40 0.40 0.40–0.50 0.60 * 0.53–0.60 0.45 0.40–0.50

At%Mg 0.50 0.40–0.60 0.43 0.40–0.58 0.40 0.40–0.50 0.60 0.43–0.70 0.50 0.40–0.64

Ca/P ratio 1.63 1.62–1.65 1.60 * 1.55–1.62 1.62 1.60–1.63 2.03 * 1.96–2.12 2.17 * 1.92–2.40
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Figure 3. Ca/P ratio of the respective groups (median and 25–75% percentiles; n = 12) at the enamel
surface. Asterisks indicate significant differences compared to the control (Aqua demin). Dashed line
shows stoichiometric ratio (1.667) of hydroxyapatite.

Control enamel surfaces (Aqua demin, treatment with deionized water only) com-
prised Ca, P, O, and, to a lesser degree, Na and Mg. The Ca/P ratio in the control group was
near the ratio of stoichiometric hydroxyapatite of 10:6 = 1.667. None of the target elements
Ce, N, or F were found. Cerium was found on enamel surfaces after cerium(III)-chloride
application (group CeCl3) only. Nitrogen could neither be detected after application of
oligopeptide p11-4 that contains nitrogen, nor in any other group. Fluorine was always
found after application of NaF or AmF, but not in any other group. According to the error
rate method (k = 8), CeCl3, NaF, and AmF differed significantly from control (Aqua demin)
regarding their elemental compositions, but oligopeptide p11-4 did not.

In detail, NaF application also led to significantly more At%Na (p ≤ 0.001) compared
to Aqua demin, but less At%O and At%P (p ≤ 0.001). Treatment with amine fluoride
(AmF) also exhibited significantly more At%Ca (p ≤ 0.001) compared to Aqua demin, but
significantly less At%O (p ≤ 0.001), and At%P (P = 0.003). A significant increase of the
Ca/P ratio (Figure 3) compared to the control treatment (Aqua demin) was found for NaF
(p ≤ 0.001) and AmF (p ≤ 0.001), in contrast to CeCl3, which showed significant decreased
Ca/P ratio (p ≤ 0.001) compared to the control treatment (Aqua demin). Oligopeptide
p11-4 did not show a difference compared to control (Aqua demin) in the Ca/P ratio.
Furthermore, regarding the both fluorine-containing test materials, application of NaF
led to significantly more At%Na (p ≤ 0.001) and significantly less At%Ca (p ≤ 0.001) as
compared to application of AmF, but there were no significant differences in At%F.

Low vacuum micrographs (Figure 4) revealed superficial, net-like deposits after appli-
cation of CeCl3. Enamel surfaces of group Oligopeptide p11-4 did not show any deposits
and were not discernable from the control (Aqua demin). In group NaF and AmF, globular
precipitates on the enamel surface similar to CaF2 deposits can be seen.
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Figure 4. Low vacuum (secondary electron mode) SEM images. Globular precipitates comparable
with CaF2 deposits were visible for groups NaF and AmF. The surfaces of specimens from group
CeCl3 showed net-like superficial deposits. The images from the oligopeptide p11-4 group and Aqua
demin (control) are visually indistinguishable.

In the cross-sectioned specimens (Figure 5), distinct surface accumulations appeared
in the form of peak functions for CeCl3 based on the cerium counts in 3 out of 24 (12.5%)
linescans, for NaF based on the fluorine counts in 20 out of 24 (83.3%) linescans, for AmF
based on the fluorine counts in 23 out of 24 (95.8%) linescans, but not in oligopeptide p11-4
groups based on the nitrogen counts and not for Aqua demin (control) for any of the target
elements. Notably, the peaks for CeCl3 and NaF are only about twice the background noise,
while for AmF it is about 15 times higher.

y = a +
b

d + e

[
1− e−c(x− f ) − d

d + e− c

(
1 + ce−(d+e)(x− f ) − (d + e)e−c(x− f )

)]
(1)

y = a + b erfc

[(
x− c

d

)2
]

, with erfc(x) = 2
∫ ∞

x

1√
π

e−u2
du ; x ≥ 0. (2)

The fits showed a clear superficial accumulation of fluorine-containing deposits in
all specimens in which NaF (b) or AmF (c) were applied. In some CeCl3 (a) samples,
cerium-containing accumulations were detected at the surface, but with a much smaller
difference between peak and background compared to the fluoride accumulations. None
of the target elements Ce, N, or F were found following treatment with oligopeptide p11-4
or control (Aqua demin). A different scale (y-axis) was used for better visibility.
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Figure 5. Visualization of linescans from the surface to a depth of 250 µm from the surface. For every
linescan, the counts of the target element in >100 µm depth from the enamel surface resembled a
horizontal line and were therefore defined as background noise. Counts (y-axis) of respective elements
were plotted as a function of depth into enamel (x-axis). Two-dimensional fits were calculated (green
lines) with corresponding 95% confidence limits (purple lines). Best fits were an Equilibrium Peak
function(1) for CeCl3 (r2 = 0.62; (a)) and NaF (r2 = 0.86; (b)) and a Complementary Error Peak function (2)
for AmF (r2 = 0.97; (c)).

The elemental composition of the product containing oligopeptide p11-4 used in this
study (Curodont Repair) is depicted in Table 2. The caked solution of Curodont Repair
applied with the applicator brush provided by the manufacturer comprised 2.3 At%N,
the solution not in contact with the respective brush 1.5 At%N, and the specific brush
itself 5.6 At%N. The Curodont system contains nitrogen, indicating the presence of
oligopeptide p11-4.

Table 2. Relative elemental composition of the manufacturer’s applicator brush, the test material
Oligopeptide p11-4 applied according to manufacturer’s instructions on a Leit-Tab, the oligopeptide
p11-4 fluid on a Leit-Tab, and the Leit-Tab without test material application.

Element [Atom%] C N O Na S

Oligopeptide p11-4
manufacturer’s applicator brush 63.4 5.6 31 0 0

Oligopeptide p11-4 applied on Leit-Tab
according to manufacturer 54.3 2.3 43.3 0 0.1

Oligopeptide p11-4 fluid on Leit-Tab 66.1 1.5 30.9 0.7 0.8

Leit-Tab without test material application 87.5 0 12.1 0.1 0.3

4. Discussion

In the present study, test materials with cariostatic potential were applied to sound
bovine enamel. As the controls (treated with Aqua demin) always contained 0 At% of
the target elements cerium (At%Ce), nitrogen (At%N), and fluorine (At%F) by median,
the necessary condition to detect and analyze the cariostatic test materials used in this
experimental setup was established. Moreover, the target element N proved to be reliably
detectable with the EDX setup used.

For a locally applied cariostatic to actually achieve the intended preventive effects in
a clinical situation, e.g., positively influencing the balance between demineralization and
remineralization or inhibiting bacterial biofilm formation, it is a basic prerequisite that it
can adequately attach to the enamel [5]. Despite the widespread use of fluorides, with an
estimated 1.5 billion daily users of fluoridated toothpaste in 2015, dental caries is prevalent
worldwide [1,19,20]. Therefore, a deeper understanding of the mechanisms of action of
fluorides in the context of their cations and alternative cariostatic compounds is essential.

In a previous study, we established energy dispersive X-ray spectroscopy (EDX) as
a method to detect and analyze CaF2-like precipitations after fluoride gel application on
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sound human enamel under high vacuum conditions [10]. In contrast to this former study,
here we used SEM imaging and EDX, both under low vacuum conditions, to allow us to
study sample surfaces without any experimental modifications, especially without a surface
metal coating [21,22]. Generally, elements with larger atomic numbers (Z > 10) can be
analyzed with high accuracy using EDX [23]. However, we were able to reliably measure el-
ements with an atomic number≤ 10, in the case of the present study, mainly F, O, and N, by
system calibration with customized coefficient-standards (SCC) and using an EDX system
with a Si3N4 window, which has higher transmittance compared to generally used polymer
windows, especially for low keV X-rays emitted by elements of lower atomic numbers [24].
To date, there are no other studies directly aiming for detection of oligopeptides on dental
hard tissues by targeting the nitrogen atoms using energy dispersive X-ray spectroscopy.
However, measuring peptide nitrogen with EDX has already been applied in other fields
such as the detection of peptides on nanofibers for peripheral nerve regeneration [25,26] or
the detection of oligopeptide integrated into polymeric fibers [27].

Among the test materials applied in this study, two of the treatment solutions are
marketed, clinically applicable compounds (oligopeptide p11-4: Curodont Repair; AmF:
Elmex Fluid). NaF was used in the same fluoride concentration and pH-value as AmF.
CeCl3 was prepared as an experimental solution.

At%Ce > 0 were found for all areas treated with cerium(III)-chloride without significant
influence on the other elements. When applied to sound enamel, cerium might have
a cariostatic effect inhibiting the onset of a carious lesion by replacing single calcium
ions in the hydroxyapatite lattice, leading to a more stable substituted apatite [14,15].
Another in vitro study showed a positive effect of 10% cerium chloride application on
the reduction in quantitative light-induced fluorescence loss during demineralization and
remineralization cycles compared to a placebo solution [28]. Our study showed that cerium
can adhere to sound enamel areas with a median of 0.8 At%Ce. Since cerium could possibly
act as a substituent for calcium within the hydroxyapatite lattice, this could explain the
lower Ca/P ratio of specimens treated with CeCl3 compared to control specimens.

After the application of the two different fluoride-containing test materials, although
identical in fluoride content and pH, elemental composition differed between those two for
some elements. Despite different cations, both fluoride preparations in the present study
had a pH of 4, leading to precipitation of CaF2-like globular structures that can be seen on
SEM images (Figure 4) and were confirmed by the high surface At%F. This is in accordance
with other in vitro studies that showed fluoride precipitation after the application of acidic
fluoride compounds [8,10,29,30]. Surface fluoride accumulation was also observed in
most of the cross sectioned samples for NaF and AmF. Following application of CeCl3,
cerium was detectable in some cross-sectioned samples, but less frequently as compared to
fluorine at fluoridated samples. This can be explained by a presumably thicker layer of the
precipitates containing fluoride compared to the precipitates containing cerium, which is
also supported by the higher At% for the fluoride preparations compared to the At%Ce
for CeCl3 in surface elemental composition analysis. On the other hand, two randomly
located linescans were performed per sample, which is why especially thin accumulations
were not detectable in all linescans, although they were revealed to be present in all surface
elemental composition analyses. Oligopeptide p11-4 could neither be detected in cross
sectional specimens nor by direct elemental analysis of the treated surface.

In the present study, nitrogen from oligopeptide p11-4 was found in the liquid and the
applicator of the test material as depicted in Table 2, but not after application on enamel
and rinsing with demineralized water, as performed for all test materials. Within the
test material oligopeptide p11-4, the measurements indicate an uneven distribution of the
oligopeptide over the applicator and the liquid, whereas a stable adherence of the peptide
on sound enamel was not achievable. The Ca-binding capacity reported for oligopeptide
p11-4 seems not to be sufficiently strong to establish its bond to the sound enamel surface.

A limitation of the study might be that we investigated the direct interaction of the
applied test materials with sound polished enamel. Presence of a pellicle or pH-cycling
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might influence outcomes regarding superficial elemental composition. While this study
shed light on the potential of novel anti-cariogenic compounds in order to prevent the
onset of carious lesions starting with sound enamel, future research may focus on the
persistence and efficacy of surface precipitations and in-depth penetration of such anti-
cariogenic compounds to promote remineralization of previously demineralized areas
varying in mineral content and porosity, in order to fully comprehend their potential
during demineralization and remineralization.

5. Conclusions

Cerium and fluorine could be detected significantly on all bovine enamel surfaces after
application of CeCl3 and NaF or AmF, respectively, which were found to be significantly
different to the untreated control. In contrast, nitrogen was not detected after application
of oligopeptide p11-4 and did not lead to any significant difference in superficial elemental
composition compared to untreated control specimens.
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