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Salem (LMRS) at the University of Rouen, Normandy, France, since 2006. He received his Ph.D.

in Statistics from the University of Technology of Compiègne, France, in 2005. In 2017, he
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Abstract: Performance of evolutionary algorithms in real space is evaluated by local measures such
as success probability and expected progress. In high-dimensional landscapes, most algorithms rely
on the normal multi-variate, easy to assemble from independent, identically distributed components.
This paper analyzes a different distribution, also spherical, yet with dependent components and
compact support: uniform in the sphere. Under a simple setting of the parameters, two algorithms
are compared on a quadratic fitness function. The success probability and the expected progress of
the algorithm with uniform distribution are proved to dominate their normal mutation counterparts
by order n!!.

Keywords: probabilistic optimization; spherical distribution; multi-variate calculus; hypergeometric
functions; transition kernel

1. Introduction

Probabilistic algorithms are among the most popular optimization techniques due to
their easy implementation and high efficiency. Their roots can be traced back to the first
random walk problem proposed by Pearson in 1905: “A man starts from a point O, and walks
� yards in a straight line; he then turns through any angle whatever, and walks another � yards in
a second straight line. He repeats this process n times. I require the probability that after these n
stretches he is at a distance between r and r + dr from his starting point O.” [1–4].

Using the ability of computers to generate and store large samples from multi-variate
distributions, physicists and engineers have transformed the original random walk into a
powerful optimization tool. Probabilistic algorithms do not require additional information
on the fitness function, they simply generate potential candidate solutions, select the best,
and move on.

Sharing the same random generator, yet differing with respect to the selection phase,
two classes of probabilistic algorithms became more popular over the last decades: simulated
annealing (also known as Metropolis or Hastings algorithm) [5] and evolutionary algorithms
(EAs) [6,7]. Only the latter will be discussed in this paper.

EAs are assessed based on local quantities, such as success probability and progress
rate, respectively, on global measures, like expected convergence time. Performance
depends on both the fitness landscape, and on the particular probabilistic scheme (leading
to a probability distribution) involved in the generating-selection mechanism. A popular
test problem consists in minimizing the quadratic SPHERE function (To avoid confusion,
we use uppercase for the fitness function, and lowercase for the uniform distribution in/on
the sphere.), with optimum in the origin.

F : �n → � F (x1, . . . , xn) =
n

∑
i=1

x2
i . (1)

Mathematics 2021, 9, 3098. https://doi.org/10.3390/d14020121 https://www.mdpi.com/journal/mathematics
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An elitist (that is, keeping always the best solution found so far), one-individual, muta-
tion+selection EA is depicted below (Algorithm 1).

Algorithm 1 An elitist, one-individual, mutation+selection EA.

Set t = 0 and the initial point of the algorithm, x0

Repeat
t := t + 1
Mutation: generate a new point x ∈ �n according to a multi-variate distribution
Selection:if F (x) < F (xt−1) then xt := x

else xt := xt−1

Until t = tmax, for some fixed tmax

The region of success of Algorithm 1 is

RS
x = {y ∈ �n|F (y) < F (x)}. (2)

A rigorous description of the long-term behavior of EAs involves renewal processes,
drift analysis, order statistics, martingales, or other stochastic processes [7–13]. However,
the basic structure is that of a Markov chain, as the algorithm’s state at the next itera-
tion depends only on its current state. Difficulties occur when, even for simple fitness
functions, SPHERE included, the actual position of the algorithm affects significantly the
local behavior, such that the process lacks homogeneity; so begins the search for powerful
mathematical tools, able to describe the transition kernel, which encapsulates the local
probabilistic structure of the algorithm [6,7].

For any fitness function F and fixed point x ∈ �n, assumed as current state, the
transition kernel provides the probability of the algorithm to be in set A ⊂ �n at the
next step. Even if the mutation distribution has a probability density function (pdf),
discontinuity occurs due to the disruptive effect of elitist selection. To make that clear, let
us denote the mutation random variable by Y, its pdf by f , and cumulative distribution
function (cdf) by F. The singular (Dirac) distribution, that loads only one point, is denoted
δ. Index x designates conditioning by the current state. The finite time behavior of the
algorithm is inscribed in the random variable Zx and the next state of the algorithm,
provided the current state, is x.

Zx(ω) =

{
Yx(ω), Yx(ω) ∈ RS

x

x, Yx(ω) ∈ �n \ RS
x

. (3)

while the (Markov) transition kernel carries the local transition probabilities

Px(A) =
∫

A∩RS
x

f (y)dy +

[
1−

∫
A∩RS

x

f (y)dy
]
· δx(A). (4)

As the mutation distribution is entirely responsible for the evolution of the algorithm,
let us take a look at the possible candidates, the multi-variate distributions.

Let x = (x1, . . . , xn) denote some n-dimensional random variable, and the euclidean
norm in �n be ||x|| = (x′x)1/2 =

(
∑n

i=1 x2
i
)1/2. The n-dimensional sphere of radius 1, its

surface and volume are given by [14]

Sn = {x ∈ �n | ||x|| ≤ 1}, δSn = {x ∈ �n | ||x|| = 1}, Vn =
2π

n
2

nΓ n
2

. (5)

We use ‘bold-face’ for (single, or multi-variate) random variables, and ‘normal-face’
for real numbers (or vectors). When partitioning the n dimensions into two sets {1, . . . , m}

2
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and {m + 1, . . . , n} with 1 ≤ m < 1, we use the compact notation x = (x(1), x(2)) =
((x1, . . . , xm), (xm+1, . . . , xn)), for either vectors or random variables. Unless otherwise
stated, Betaa,b denotes the beta random variable with support (0, 1) and parameters a, b,
while β and Γ stand for the corresponding coefficients. The (one-dimensional) uniform

random variable with support (a, b) is denoted U(a,b). The sign d
= denotes two random

variables with identical cdf.
The class of spherical distributions can be defined in a number of equivalent ways,

two of which are depicted below ([15], pp. 30, 35) (See the excellent monograph of
Fang et al. [15] for an exhaustive introduction to spherical distributions.):

Definition 1.

• An n-dimensional random variable x is said to have spherically symmetric distribution (or
simply spherical distribution) if

x
d
= r · un (6)

for some one-dimensional random variable (radius) r, and the uniform distribution on the unit
sphere un. Moreover, r and un are independent, and also

r = ||x|| ≥ 0, un d
=

x

||x|| . (7)

• If the spherical distribution has pdf g, then g satisfies g(x) = g(||x||), and there is a special
connection between g and f , the pdf of r, namely,

f (r) =
2πn/2

Γ n
2

rn−1g(r2). (8)

Three spherical distributions are of particular interest in our analysis:

• the uniform distribution on the unit sphere, with support δSn, denoted un;
• the uniform distribution in (inside) the unit sphere, with support Sn, denoted simply

UNIFORM in this paper; and
• the standard normal distribution, denoted N(0, In) or simply NORMAL.

A comparison of the previous distributions can be performed from many angles.
NORMAL was the first discovered, applied, and thoroughly analyzed in statistics, as
being one of the only spherical distributions with independent and identically distributed
marginals. By contrast, the components of uniform distributions on/in the sphere are
not independent, neither uniform (However, the conditional marginals are uniform, see
Theorem 5). Recently, the scientific interest shifted to uniform multi-variate distributions,
following the increasing application of directional statistics to earth sciences and quantum
mechanics [16,17], and also the application of Dirichlet distribution (which lies at the
basis of spherical analysis) to Bayesian inference, involved in medicine, genetics, and
text-mining [18].

From the computer science point of view, uniform and normal distributions share
an entangled history, in at least two areas: random number generators and probabilistic
optimization algorithms. With respect to the first area, early approaches to sampling from
the uniform distribution on sphere were actually using multi-normal random generators to
produce a sample x, which was further divided by ||x||, following Equation (7). Nowadays,
the situation changed, with the appearance of a new class of algorithms which circumvent
the usage of the normal generator by using properties of marginal uniform distributions
on/in spheres [17,19]. The comparison of mean computation times demonstrates that
the uniform sampling method outperforms the normal generator for dimensions up to
n = 7 [20].

Concerning global optimization, the probabilistic algorithms based on the two distribu-
tion types evolved at the same time, although with few overlaps. In the theory and practice

3
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of real space (continuous) EA-evolution strategy being their most popular, the representative-
normal distribution has played, from the beginning, the central role. Therefore, there is a
great amount of literature stressing out the advantages of this distribution [6,21,22].

Occasionally, the supremacy of the normal operator has been challenged by theoretical
studies that proposed different mutation distributions, such as uniform in the cube (which
is non-spherical) [10], uniform on the sphere [7,23], uniform in the sphere [9], or even the
Cauchy distribution [24]. An attempt to solve the problem globally, by considering the
whole class of spherical (isotropic) distributions, was made in [25,26]. These approaches
yielded only limited results (valid either for small space dimension n, or for n → ∞), or
not so tight lower/upper bounds for the expected progress of the algorithm.

The study of EAs with uniform distribution in the sphere recently culminated with
two systematic studies, one for RIDGE [27], the other for SPHERE [28], comparable to
classical theory of evolution strategies [6,29]. Under a carefully constructed normalization
of mutation parameters (equalizing the expectations of normal and uniform multi-variates
as n → ∞), those studies demonstrate the same behavior for the respective EA variants.
Intuitively, the explanation is that for large dimensions, both normal and uniform dis-
tributions concentrate on the surface of the sphere. The present paper differs from the
previous analyses in the way that it does not apply any normalization of parameters. As a
consequence, the results are different from those in [28] and an actual comparison between
the two algorithms can be achieved.

Section 2 discusses the general framework of spherical multi-variate distributions,
with special focus on uniform and normal. Then, two algorithms, one with uniform
mutation and the other with normal mutation, are compared on the SPHERE fitness
function with respect to their local performance in Section 3.

2. Materials and Methods. Spherical Distributions

In light of Definition 1, the spherical distributions are very much alike. They all
exhibit stochastic representation (6), that is, each can be generated as a product of two
independent distributions, the n-dimensional uniform on the sphere un and some scalar,
positive random variable r. As the distribution of r makes the whole difference, we point
out the form of this random variable in the three cases of interest.

• un-r is obviously the Dirac distribution in 1:

δ1(x) = 1, x = 1. (9)

• NORMAL-r is the χ distribution with n degrees of freedom, with pdf ([7], p. 20):

f (x) =
1

2
n
2−1Γ n

2

e−
x2
2 xn−1, x ∈ (0, ∞). (10)

• UNIFORM-r is distributed Betan,1, with pdf ([15], p. 75):

f (x) = nxn−1, x ∈ (0, 1). (11)

Using as primary source the monograph [15], we next discuss in more detail the
stochastic properties of the UNIFORM and NORMAL multi-variates, the two candidates
for the mutation operator of the algorithm.

2.1. Uniform in the Sphere

The local analysis of the EA is based on two particular marginal distributions: the
first component x1, and the joint marginal of the remaining n− 1 components, x(2). As
already pointed out, the marginals of UNIFORM are not independent random variables,
and we shall see that neither are they uniform. A general formula for the marginal density
is provided in [15] (p. 75):

4
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Theorem 1. If x = (x(1), x(2)) is uniformly distributed in the unit sphere, with x(1) of dimension
k, 1 ≤ k < n, then the marginal density of x(1) is

f (x(1)) =
π− k

2 Γ n+2
2

Γ n−k+2
2

(
1− ||x(1)||

) n−k
2 , ||x(1)||2 < 1. (12)

Corollary 1. The pdf of the first component of UNIFORM is

f (x) =
1

β n+1
2 , 1

2

(1− x2)
n−1

2 , x ∈ (−1, 1). (13)

Using the symmetry with respect to the origin and substituting x2 = t in function (13),
we obtain an interesting result, previously unreported in spherical distributions literature.

Corollary 2. The square of the first component of UNIFORM is Beta n+1
2 , 1

2
, with pdf

f (x) =
1

β n+1
2 , 1

2

(1− x)
n−1

2 x−
1
2 , x ∈ (0, 1). (14)

The density of the last n− 1 components can be derived also from Theorem 1.

Corollary 3. The joint pdf of the last n− 1 components of UNIFORM is

f (x(2)) = nπ− n
2 Γ n

2

(
1− ||x(2)||2

) 1
2 , ||x(2)||2 < 1. (15)

As function of several variables, formula (15) might not look very appealing; however,
a basic result from spherical distribution theory transforms the corresponding multiple
integral into a scalar one ([15], p. 23).

Theorem 2 (Dimension reduction).

∫
f

(
m

∑
i=1

x2
i

)
dx1, . . . , dxm =

π
m
2

Γ m
2

∫ ∞

0
y

m
2 −1 f (y)dy. (16)

One can see now that, if x is uniformly distributed in the unit sphere, the sum of
squares of the last n− 1 components is Beta distributed.

Corollary 4. Let x = (x1, x(2)) be UNIFORM. Then, the one-dimensional random variable
||x(2)||2 is Beta n−1

2 , 3
2
, with pdf

f (x) =
1

β n−1
2 , 3

2

(1− x)
n−3

2 x
1
2 , x ∈ (0, 1). (17)

Proof. Apply transformation (16) to (15), m = n− 1 and f (y) = (1− y)(n−1)/2.

As the components of the uniform distribution on/in the sphere are not independent,
a better understanding of the nature of such distributions is provided by conditioning one
component with respect to the others. In case of uniform distribution on the sphere, the work
in [15] (p. 74) states that all the conditional marginals are also uniform on the sphere.

We shall see that a similar characterization holds true for the uniform in the sphere.
This result is not presented in [15] and, to the best of our knowledge, in no other reference
on spherical distributions. Therefore, an additional theorem is needed ([30], p. 375).

5
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Theorem 3. Let x
d
= r · un be a spherical distribution and x = (x(1), x(2)), where x(1) is m-

dimensional, 1 ≤ m < n. Then the conditional distribution of x(1) given x(2) = h with ||h|| = a
is given by (

x(1) | x(2) = h
)

d
= ra2 · um. (18)

For each a ≥ 0, ra2 and um are independent, and the cdf of ra2 is given by

prob(ra2 ≤ t) =

∫ √t2+a2

a (r2 − a2)m/2−1 r−(n−2)dF(r)∫ ∞
a (r2 − a2)m/2−1 r−(n−2)dF(r)

, (19)

for t ≥ 0, a > 0 and F(a) < 1, F being the cdf of r.

We prove now the result on conditional marginals of the uniform distribution in the
unit sphere. As conditioning the first component with respect to all others is the most
relevant for EA analysis, this particular case is stressed out.

First, an old result from probability theory is needed, similar to the convolution
operation, but for the product of two independent random variables [31].

Theorem 4 (Mellin’s formula). Let y and z be two independent, non-negative random variables,
with densities g and h. Then, x = y · z has pdf

f (x) =
∫ ∞

0

1
z

g
( x

z

)
h(z)dz, x ∈ (0, ∞). (20)

Note that Mellin’s formula still holds, if only one of the random variables is continuous,
the other being discrete, see, e.g., in [15] (p. 41).

Theorem 5.

• Let x = (x(1), x(2)) be UNIFORM, where x(1) is m-dimensional, 1 ≤ m < n. The conditional
distribution of x(1) given x(2) = a is UNIFORM in the m dimensional sphere with radius(
1− ||a||2)1/2.

• If m = 1 and x(2) = h is a point in Sn−1 with ||h|| = a, the conditional distribution of x1

given x(2) = h is (
x1 | x(2) = h

)
d
= U

(−√1−a2,
√

1−a2)
. (21)

Proof. We begin with the last part, case m = 1.
Equation (18) gives the conditional first component as a product of two independent

random variables, the second being the one-dimensional UNIFORM-the discrete random
variable that loads −1 and 1 with equal probability, 1/2.

The cdf of the first random variable is given by (19), as a fraction of two integrals,
both with respect to F, the cdf of r. In case of UNIFORM, r is Betan,1 given by (11), thus
dF(r) = f (r)dr = nrn−1dr.

If t ≥ √
1− a2, the upper and lower integrals in (19) are equal, so the probability is 1.

If 0 ≤ t <
√

1− a2, the upper integral is

n
∫ √

t2+a2

a
r(r2 − a2)−1/2dr = nt,

while the lower one is

n
∫ 1

a
r(r2 − a2)−1/2dr = n

√
1− a2.

6
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Thus, for any fixed a < 1, the cdf of the conditional radius is

prob(ra2 ≤ t) =
t√

1− a2
, t ∈ (0,

√
1− a2),

while the corresponding pdf is

ra2
d
= U(0,

√
1−a2).

Back to the application of Theorem 3, Equation (18). The conditional first component
of UNIFORM is a product of two independent random variables: one continuous, the
other discrete. This is the easy version of Mellin’s formula, and the result is the continuous
uniform random variable with support (−√1− a2,

√
1− a2) from Equation (21).

As for a larger dimension, m > 1, the cdf in (19) becomes

prob(ra2 ≤ t) =
tm

(1− a2)
m
2

, t ∈
(

0, (1− a2)
m
2

)
,

with corresponding pdf

f (t) =
mtm−1

(1− a2)
m
2

, t ∈
(

0, (1− a2)
m
2

)
,

which is Betam,1, yet with reduced support.
Summing up, Equation (18) provides the conditional marginal as a product of the

uniform in the unit sphere and a reduced Betam,1. According to representation (11), the
result is UNIFORM, in m dimensions, with the center being the origin and reduced radius
r = (1− a2)m/2.

2.2. Normal

As we did with UNIFORM, we denote the first component of the standard normal
multi-variate distribution by x, and the remaining n − 1 components by x(2). Due to
independence of the marginals, one can write a compact equivalent of Propositions 1 and 3,
see, e.g., in [6] (p. 54).

Proposition 1. Let x = (x1, x(2)) be NORMAL.

• The pdf of the first component, x1, is

f (x) =
1√
2π

e−
x2
2 , x ∈ �. (22)

• The joint pdf of the last n− 1 components, x(2), is

f (x(2)) =
1(√

2π
)n−1 e−

||x(2) ||2
2 , x(2) ∈ �n−1. (23)

Due to sphericity of the joint n− 1 components, one obtains again a compact form for
the sum of squares.

Corollary 5. The one-dimensional random variable ||x(2)||2 is χ2 with n− 1 degrees of freedom,
with pdf

f (x) =
2− n−1

2

Γ n−1
2

x
n−3

2 e−
x
2 , x ∈ (0, ∞). (24)

7
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3. Results

We restrict the study to the case P (current algorithm position) nearby O (optimum
of SPHERE) and analyze the local performance of two EAs, one with uniform, the other
with normal mutation, in terms of success probability and expected progress. Namely,
we assume R = |OP| ≤ 1/2, such that success region RS

P is the sphere with center O and
radius R, Figure 1.

Figure 1. Success region of Algorithm 1 with uniform mutation on SPHERE.

Re-set P as the origin of the coordinate system, and measure the algorithm’s progress
in the positive direction of the first axis-write x for x1, h for x(2) and u for ||h||2. The
success probability and the expected progress are provided by the first term of transition
kernel (4), respectively, by the upper part of random variable (3). They obey to the uniform
continuous mutation distribution with pdf f (x) = 1/Vn and compact support, the sphere
with center P and radius 1.

The calculus of success probability and expected progress resides in integrating the
random variable (3) over RS

P. For UNIFORM mutation this calculus is analytically tractable.
For NORMAL mutation, the analytic integration is impossible, see in [6] (p. 56) and
Theorem 8, but the theory of incomplete Gamma functions makes the comparison tractable.

Note that, if the success probability bears only one possible definition (the volume
of success region), the situation is different with respect to the expected progress. As the
random variable Zx from (3) characterizes the local behavior of the algorithm, one would
normally associate the expected progress to the expected value of this random variable.
However, Zx is n-dimensional, and such is E(Zx), so there is a need to mediate somehow
among the n components.

One could consider only the first component of the expected value, the one pointing
towards the optimum, which has been applied on a different fitness landscape, the inclined
plane [21]. (Yet in another landscape, the RIDGE, it is customary to consider the progress
along the perpendicular component h, see in [6,27] for an inventory of fitness functions used
in EA testing, the reader is referred to the work in [32].) For UNIFORM mutation, a simpli-
fied version of the expected progress may be defined as the centroid of the corresponding
success region [9,10]. However, a more traditional view is followed here ([6], p. 54):

progress = R−
√
(R− x)2 + u. (25)

This corresponds to the difference in distance |OP| − |OC|, provided C is a random
point generated by mutation, Figure 1.

3.1. Uniform Mutation

If the UNIFORM mutation in the unit sphere with center P is applied, one cannot use
for integration the ensemble of Propositions 1 and 3, as the marginals of UNIFORM are
not independent. Instead, one should use the conditional first component from Theorem 5,

8
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together with the joint n− 1 dimensional distribution from Proposition 3. The integration
region is {

u = ||h||2 ∈ (0, R2)
x ∈

(
R−√R2 − u, R +

√
R2 − u

) .

Theorem 6. Let an EA with UNIFORM mutation minimizing the SPHERE be situated at current
distance R from the origin, R ∈ (0, 1/2). The success probability is

probU = Rn. (26)

Proof. The use of Equations (4), (15), (16) and (21) yields

probU =
∫

SO
n

1SP
n

dx

= nπ− n
2 Γ n

2

∫
h∈SO

n−1

(
1− ||h||2

) 1
2 × 1

2
√

1− ||h||2
∫ R+

√
R2−||h||2

R−
√

R2−||h||2
1dx dh

=
nπ

n−1
2 − n

2 Γ n
2

Γ n−1
2

∫ R2

0
y

n−1
2 −1

√
R2 − y dy =

nΓ n
2√

πΓ n−1
2

∫ R2

0
y

n−3
2

√
R2 − y dy = Rn. (27)

Theorem 7. Let an EA with UNIFORM mutation minimizing the SPHERE be situated at current
distance R from the origin, R ∈ (0, 1/2). The expected progress is

φU =
Rn+1

n + 1
(28)

Proof. Following the proof of Theorem 6 and inserting factor (25), one gets

φU =
1
2

nΓ n
2√

πΓ n−1
2

×
∫ R2

u=0
u

n−3
2

∫ R+
√

R2−u

R−√R2−u

(
R−

√
(R− x)2 + u

)
dx du

= C
∫ R2

u=0
u

n−3
2

∫ R+
√

R2−u

R−√R2−u
R dx du− C

∫ R2

u=0
u

n−3
2

∫ R+
√

R2−u

R−√R2−u

√
(R− x)2 + u dx du

= C I1 − C I2.

We treat separately I1 and I2. I1 is simply (27), multiplied by the constant R, thus

C I1 = Rn+1. (29)

For I2 one can apply formula ([33], p. 13)∫
(x2 + a)

1
2 dx =

x
2
(x2 + a)

1
2 +

a
2

ln
(

x + (x2 + a)
1
2

)
.

in order to get

I2 =
∫ R2

u=0
u

n−3
2 R
√

R2 − u du +
∫ R2

u=0
u

n−3
2

u
2

ln
R +

√
R2 − u

R−√R2 − u
du = I3 + I4. (30)

Again, I3 is the integral (27), multiplied by R/2, thus

C I3 =
Rn+1

2
. (31)

9
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The substitution y = u/R2 on I4 provides

I4 =
Rn+1

2

∫ 1

0
y

n−1
2 ln

1 +
√

1− y
1−√1− y

dy

while partial integration gives

I4 =
Rn+1

n + 1

∫ 1

0
y

n+1
2 · 1

y
√

1− y
dy =

Rn+1

n + 1
β n+1

2 , 1
2
.

Bringing in the constant C, one gets

C I4 =
1
2

nΓ n
2√

πΓ n−1
2

· Rn+1

n + 1
β n+1

2 , 1
2
=

1
2

n− 1
n + 1

Rn+1. (32)

Summing up (29)–(32) one gets the desired result.

The results from Theorems 6 and 7 are also presented in [28], yet with different
proofs. Equations (26) and (28) point out a remarkable property of the EA with UNIFORM
mutation on the SPHERE.

Corollary 6. In the conditions of Theorems 6 and 7, the success probability is the derivative of the
expected progress.

3.2. Normal Mutation

Setting σ = 1 and avoiding the transformation σ∗ = σn/R, one obtains the success
probability and the expected progress for the EA with standard normal mutation following
closely the proof in ([6], pp. 54–56). The incomplete Gamma function is ([33], p. 260):

P(a, x) =
1
Γa

∫ x

0
e−tta−1dt. (33)

The following expressions are not restricted to the case of algorithm nearby optimum,
due to the unbounded support of the normal distribution. Unfortunately, integration
is impossible.

Theorem 8. Let an EA with NORMAL mutation minimizing the SPHERE be situated at current
distance R from the origin.

• The success probability is

probN =
1√
2π

∫ 2R

x=0
e−

x2
2 P
(

n− 1
2

, Rx− x2

2

)
dx. (34)

• The expected progress is

φN =
2− n−1

2√
2πΓ n−1

2

∫ 2R

x=0

∫ 2Rx−x2

u=0
e−

x2
2 u

n−1
2 −1e−

u
2 progress dudx. (35)

10
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Proof.

probN =
2− n−1

2√
2πΓ n−1

2

∫ 2R

x=0

∫ 2Rx−x2

u=0
e−

x2
2 u

n−1
2 −1e−

u
2 dudx

=
2− n−1

2√
2πΓ n−1

2

∫ 2R

x=0
e−

x2
2

(∫ 2Rx−x2

u=0
u

n−1
2 −1e−

u
2 du

)
dx

=
1√
2π

∫ 2R

x=0
e−

x2
2

(
1

Γ n−1
2

∫ Rx− x2
2

t=0
t

n−1
2 −1e−tdt

)
dx

=
1√
2π

∫ 2R

x=0
e−

x2
2 P
(

n− 1
2

, Rx− x2

2

)
dx. (36)

The same calculus applies for the expected progress, with the addition of the factor corre-
sponding to the one dimensional progress along the x axis, Equation (25).

3.3. Comparison

Due to the analytic intractability of integral representations (34) and (35), a theoretical
comparison between two variants of Algorithm 1-one with UNIFORM, the other with
NORMAL mutation-must resort to inequalities. Therefore, a deeper insight into the prolific
theory of Euler and hypergeometric functions is required. We start with an upper bound
for the incomplete Gamma function (33) ([34], p. 1213).

Proposition 2. The following inequality holds

P(a, x) ≤ xa

a(a + 1) Γa

(
1 + ae−x). (37)

More results are gathered from in [35], [36] (p. 240), [37] (pp. 890, 894), [38] (pp. 53, 57).

Proposition 3 (Hypergeometric functions).

• For any real set of parameters a, b, ai, bi and any real number x, define

F1 1 (a, b | x) =
∞

∑
k=0

(a)k
(b)k

xk

k!
(38)

F2 2 (a1, a2; b1, b2 | x) =
∞

∑
k=0

(a1)k(a2)k
(b1)k(b2)k

xk

k!
(39)

where (a)k = a(a + 1) . . . (a + k− 1) = Γa+k/Γa is the Pochhammer symbol, with

(a)2k =
( a

2

)
k

(
a + 1

2

)
k
22k. (40)

• If A = (a1, . . . , aq) and B = (b1, . . . , bq), we write B ≺W A, if

0 < a1 ≤ . . . ≤ aq, 0 < b1 ≤ . . . ≤ bq

k

∑
i=1

ai ≤
k

∑
i=1

bi, k = 1, . . . , q.

11



Mathematics 2021, 9, 3098

• If B ≺W A, the following inequality holds:

Fp p (A, B | x) ≤ 1− θ + θex, (41)

θ =

{
a
b , p = 1, (A, B) = (a, b)
a1 a2
b1 b2

, p = 2, (A, B) = (a1, a2; b1, b2)
.

We can prove now the main result stating that, for an EA acting on the SPHERE with
current position at maximal range 1/2 from the origin, the UNIFORM mutation provides a
larger success probability than the NORMAL mutation, for the arbitrary dimension n. We
denote by n!! the double factorial (semi-factorial), that is, the product of all integers from 1
to n of same parity with n.

Theorem 9. Let an EA minimizing the SPHERE be situated at current distance R from the origin,
such that R ≤ 1/2. For any n ≥ 3, the following holds:

probN

probU <
1

n!!
. (42)

Proof. Apply inequality (37) to Equation (34)

probN ≤ 1√
2πΓ n−1

2

∫ 2R

x=0
e−

x2
2

4
(

Rx− x2

2

) n−1
2

n2 − 1

(
1 +

n− 1
2

e
x2
2 −Rx

)
dx

=
4√

2π(n2 − 1)Γ n−1
2

∫ 2R

x=0
e−

x2
2

(
Rx− x2

2

) n−1
2

dx

+
2√

2π(n + 1)

∫ 2R

x=0
e−Rx

(
Rx− x2

2

) n−1
2

dx

=
Rn2

n+5
2√

2π(n2 − 1)Γ n−1
2

∫ 1

x=0
e−2R2t2

t
n−1

2 (1− t)
n−1

2 dt (43)

+
Rn2

n+3
2√

2π(n + 1)Γ n−1
2

∫ 1

x=0
e−2R2tt

n−1
2 (1− t)

n−1
2 dt.

Using the series expansion of the exponential, the second integral in (43) becomes
a hypergeometric function of type (38). The interchange of the integral and the sum is
justified by the absolute convergence of the series.

∫ 1

x=0
e−2R2tt

n−1
2 (1− t)

n−1
2 dt =

∫ 1

x=0
t

n−1
2 (1− t)

n−1
2

∞

∑
k=0

(−2R2t
)k

k!
dt

=
∞

∑
k=0

(−2R2)k

k!

∫ 1

x=0
t

n−1
2 +k(1− t)

n−1
2 dt =

∞

∑
k=0

(−2R2)k

k!

Γ n+1
2 +kΓ n+1

2

Γn+1+k

= β n+1
2 , n+1

2

∞

∑
k=0

(−2R2)k

k!

(
n+1

2

)
k

(n + 1)k
= 2−nβ n+1

2 , 1
2

F1 1

(
n + 1

2
, n + 1 | − 2R2

)
. (44)

12
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Identity (40) reduces the first integral in (43) to a hypergeometric function (39).

∫ 1

x=0
e−2R2t2

t
n−1

2 (1− t)
n−1

2 dt =
∫ 1

x=0
t

n−1
2 (1− t)

n−1
2

∞

∑
k=0

(−2R2t2)k

k!
dt

=
∞

∑
k=0

(−2R2)k

k!

∫ 1

x=0
t

n−1
2 +2k(1− t)

n−1
2 dt =

∞

∑
k=0

(−2R2)k

k!

Γ n+1
2 +kΓ n+1

2

Γn+1+k

= β n+1
2 , n+1

2

∞

∑
k=0

(−2R2)k

k!

(
n+1

2

)
2k

(n + 1)2k
= β n+1

2 , n+1
2

∞

∑
k=0

(−2R2)k

k!

(
n+1

4

)
k

( n+3
4
)

k22k(
n+1

2

)
k

( n+2
2
)

k22k

= 2−nβ n+1
2 , 1

2
F2 2

(
n + 1

4
,

n + 3
4

;
n + 1

2
,

n + 2
2

| − 2R2
)

. (45)

Summing up Equations (43)–(45), and using inequality (41) for p = 1, 2, one gets

probN ≤ Rn

2
n+2

2 (n + 1)Γ n+2
2

[
(n− 1)

(
1 + e−2R2

)
+ 4− n + 3

n + 2

(
1− e−2R2

)]

<
Rn

2
n+2

2 (n + 1)Γ n+2
2

[2(n− 1) + 4] = Rn 1

2
n
2 Γ n+2

2

= Rn 1

2
n
2 n

2
n−2

2 . . .
= probU 1

n!!
.

In the last equality we have used Equation (26) and the definition of the double
factorial, for n even. Obviously, for n odd the constant

√
2/
√

π will appear at the tail of
the product, yet this is a minor difference that may be neglected.

The result for the expected progress follows now easily.

Theorem 10. Let an EA minimizing the SPHERE be situated at current distance R from the
origin, such that R ∈ (0, 1/2). For any n > 3, the following holds:

φN

φU <
n + 1

n!!
≈ 1

(n− 2)!!
. (46)

Proof. The expected progress of NORMAL mutation (35) differs from success
probability (34) only by the integration factor (25). As progress < R, inequality (46)
is a simple consequence of Theorems 7 and 9.

4. Discussion

Within evolutionary algorithms acting on real space, the use of normal distribution
makes the implementation easier: in order to generate an n dimensional point, one simply
generates n times from the normal uni-variate. Unfortunately, simplicity of the practical
algorithm does not transfer to the theoretical analysis, making EA experts go long distances
in order to estimate performance quantities like the success probability and the expected
progress. In the end, the normal mutation only provides asymptotic formulas, valid for
large n.

This paper analyzes a different mutation operator, based on the uniform multi-variate
in the sphere, with dependent components. Using deeper insights into the spherical
distributions theory, the local performance of the algorithm with uniform mutation was
measured on the SPHERE fitness function. Close expressions for the success probability
and the expected progress of the EA with uniform mutation have been derived, valid
for arbitrary n. Compared to the performance of the normal operator-which, due to the
intractability of integral formulas in Theorem 8, required inequalities with hypergeometric
functions-, the success probability and the expected progress of the algorithm with uniform
mutation are both larger, by a factor of order n!!.

13
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5. Conclusions

From a broader perspective, this paper can be seen, together with the works in [27,28],
as an attempt of revisiting the classical theory of continuous evolutionary algorithms.
Even if practitioners in the field will continue to use the normal multi-variate as mutation
distribution, we claim that the theory can benefit from the uniform distribution inside
the sphere. First, as demonstrated in this paper, a particular setting of parameters (the
natural choice ρ = σ = 1) provides better performance for the uniform mutation operator
on the SPHERE landscape, if current position of the algorithm is nearby the optimum.
However, in light of the “no free-lunch theorem for optimization” paradigm [39], one
cannot expect general dominance of an algorithm over all others, irrespective of the
fitness function. Rather, specific algorithms with particular operators should be analyzed
separately, on different optimization landscapes. This is where the second advantage of the
new uniform distribution occurs, in terms of more tractable mathematical analysis, yielding
close formulas, previously not attained by normal mutation theory—see the studies of
the RIDGE landscape in [28] and of the elitist evolutionary algorithm with mutation and
crossover on SPHERE in [27].

A theory of continuous evolutionary algorithms could not be complete without the
analysis of global behavior and adaptive mutation parameter. These cases have already
been treated in [27,28]—under a normalization of mutation sphere radius which makes
algorithm behave similarly to the one with normal mutation, in terms of difference and
differential equations, following the works in [6,29]. This opens the way for the challenging
task, previously unattempted in probabilistic optimization literature, of linking the theory
of continuous evolutionary algorithms to that of differential optimization techniques such
as particle swarm optimization [40] and differential evolution [41].
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Abstract: For large space dimensions, the log-linear convergence of the elitist evolution strategy
with a 1/5 success rule on the sphere fitness function has been observed, experimentally, from the
very beginning. Finding a mathematical proof took considerably more time. This paper presents a
review and comparison of the most consistent theories developed so far, in the critical interpretation
of the author, concerning both global convergence and the estimation of convergence rates. I discuss
the local theory of the one-step expected progress and success probability for the (1+1) ES with a
normal/uniform distribution inside the sphere mutation, thereby minimizing the SPHERE function,
but also the adjacent global convergence and convergence rate theory, essentially based on the 1/5
rule. Small digressions into complementary theories (martingale, irreducible Markov chain, drift
analysis) and different types of algorithms (population based, recombination, covariance matrix
adaptation and self-adaptive ES) complete the review.
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1. Introduction

It is within the human nature to favor short, simple and intuitive constructs in abstract
sciences. This is the case with the 1/5 success rule, proposed in 1965 by Rechenberg for the
adaptation of the normal mutation parameter in evolution strategies (ES) [1]. According
to Auger and Hansen [2], the idea of step-size adaptation for probabilistic algorithms was
also independently proposed by other authors around that time, e.g., [3]. Without any
theoretical explanation, the adaptation rule performed surprisingly well in experiments,
providing global convergence for various algorithmic designs and fitness landscapes. The
magical aura around the rule began to unravel in 2000, with the apparition of convergence
proofs for the ES on SPHERE [4–6]. We use uppercase when referring to the fitness function
and lowercase for the uniform distribution inside the sphere. Obviously, the optimum
(minimum) of SPHERE is located at the origin of �n.

F : �n → � F (x1, . . . , xn) =
n

∑
i=1

x2
i . (1)

Apart from the adaptation mechanism provided by the 1/5 rule, the ES design is very
simple: a random walk for generating new individuals (mutation), plus elitist selection,
the natural principle of discarding worse offspring. Together, the three procedures build
up an efficient algorithm, simple in form but complicated in theory. The local behavior is
difficult to estimate because of the discontinuous and inhomogeneous Markov transition
kernel induced by mutation and selection, though global convergence is hard to prove due
to the empirical application of the 1/5 rule. The Markov character of the ES is lost upon
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the application of the 1/5 rule, which observes not one, but several previous iterations of
the algorithm.

In order to gain a better grip on these difficulties, we introduce first the spherical
distributions, a class of multi-variate random variables (r.v.s) which includes the normal
distribution and also the uniform on/inside the sphere [7].

Definition 1.

• An n-dimensional r.v. x is said to have a spherical distribution if

x
d
= r · un (2)

for some one-dimensional r.v. (radius) r, and a uniform distribution on the unit sphere un.
Moreover, r and un are independent, and also

r = ||x|| ≥ 0, un d
=

x

||x|| . (3)

• If the spherical distribution has pdf g, then g(x) = g(||x||), and there is a special connection
between g and f , the pdf of r:

f (||x||) = 2πn/2

Γ n
2

xn−1g(x). (4)

The basic algorithm discussed in this paper is the following.
The mutation operator yields new, potentially better solutions from the fitness land-

scape. Classical ES theory, developed mainly by Rechenberg, Schwefel and Beyer, uses
the normal mutation distribution with normalized standard deviation σ = ρ/

√
n [1,4,8].

Rudolph applied the uniform on sphere [9], and a recent study proved that, under proper
scaling of the mutation parameter, the uniform distribution inside the sphere of radius
ρ and the averaged sum of uniforms perform, both locally and globally, similarly to the
normal operator [10].

Under a constant mutation rate, a real ES stagnates in the vicinity of the optimum.
This is where the 1/5 rule applies, by modifying (decreasing) the mutation parameter ρ.
Algorithm 1 depicts Rechenberg’s original (symmetric) version of the 1/5 rule, commonly
applied in both practical and theoretical studies [1,4,6,11,12]. A simplified, asymmetric rule
that only decreases but never increases ρ works as well [10].

There are different ways to describe the sequence of r.v.s {Zt}t∈N generated by the
ES evolution over successive iterations. Contrary to random walk, the Markov kernel
induced by mutation and selection is inhomogeneous, since the current state changes
the one-step transition (success) probabilities. For arbitrary space dimension n, an exact
calculus involving the local transition kernel is intractable, opening the way for various
approximations and making the ES convergence one of the most studied problems in
literature. The stochastic models proposed so far include renewal processes, drift analysis
and martingales [6,9,13–15]. Markov chain models have also been tested, first for constant
mutation ES, without (or prior to) the step-size adaptation procedure provided by the
1/5 rule [16,17]. Decomposing the algorithm into a sequence of constant mutation cycles
(mathematically, a sequence of Markov chains) has also been considered [2,10,18,19], which
is similar to theoretical studies of closely related probabilistic algorithms such as simulated
annealing and random heuristic search [20,21]. It is also worth mentioning the large number
of theoretical studies that do not presume any stochastic structure at all [4,12,22–24].
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Algorithm 1 Elitist ES with 1/5 success rule.

1. Set t = 0, tmax, initial point x0 and initial mutation parameter ρ
2. repeat

• t := t + 1
• Mutation: generate a new point x in �n using some spherical mutation distribu-

tion with radius mean ρ
• Selection: if F (x) < F (xt−1) then xt := x

else xt := xt−1

• 1/5 success rule: if t = 0 modulo n, compute the success frequency over the last n
iterations

SF = #S/n

Change ρ according to

(i) ρ = ρ/2, if SF < 1/5
(ii) ρ = 2 ρ, if SF > 1/5

3. until t = tmax

Let us take a closer look at the success region, a key concept in the algorithm’s local
behavior. This is the integration region for both success probability and expected progress.
Let x ∈ �n be the current ES position, A ⊂ �n an open set and the mutation be defined by
a probability density function (pdf) f . The cumulative effect of elitist selection yields the
success region RS

x and transition kernel Px(A). The transition kernel is discontinuous due
to δx(A), the Dirac measure in x—defined as 1 if x ∈ A and 0 otherwise.

RS
x = {y ∈ �n|F (y) < F (x)} (5)

Px(A) =
∫

A∩RS
x

f (y)dy +

[
1−

∫
A∩RS

x

f (y)dy
]

δx(A). (6)

If A = RS
x , Equation (6) reduces to the first term, understood as success probability and

denoted PS.
Under uniform mutation inside the sphere, the modification of the success region—

and also the inhomogeneous Markov kernel—can be observed as the ES approaches the
optimum in Figure 1, from right to left. In case (a), RS

x is the intersection of two spheres
(corresponding to mutation and fitness). As the algorithm approaches the optimum,
assuming ρ has not changed, RS

x becomes a full (fitness) sphere, case (b). The ES stagnates
at this point, the 1/5 rule is activated and ρ is halved, such that RS

x becomes again the
intersection of two spheres, case (c).

Figure 1. Elitist ES on SPHERE: success region (blue) of uniform mutation. The solid line circle
(centered in optimum O) represents the fitness sphere; the dotted circle (centered in current position
P) stands for the mutation sphere. As the ES approaches O from sub-figure (a–c), mutation radius ρ is
halved under the 1/5 success rule.
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Among the many studies devoted to the convergence of elitist ES with the 1/5 success
rule on SPHERE and similar quadratic fitness functions, we review in this paper only
what we consider to be complete theories, which follow the general pattern presented in
Algorithm 1 and also achieve proofs of global convergence. Consequently, we distinguish
between classic ES theory, in Section 2, and general theories, in Section 3. In classic ES
theory, the accent falls on local behavior, with global convergence being a consequence of
the best-case local scenario. General theories, on the other hand, provide a unitary solution
to the convergence paradigm. To classic ES theory we assimilate the works of Rechenberg,
Schwefel, Beyer, Rudolph and Jägersküpper; and to general theories the analyses of Auger
and Hansen of Akimoto, Auger and Glasmachers. Note that the papers of Jägersküpper
fall somehow in between, since they build on local behavior, but also provide a global
convergence proof outside the best-case local scenario. The adaptation mechanisms used
in population-based ES—with multiple offspring, multiple parents and recombination,
self-adaptation or covariance matrix adaptation—are briefly discussed as generalizations
of the 1/5 success rule in Section 4.

We underline the fact that this review paper is not an exhaustive survey of the ES
state-of-art—we defer to [25] for that purpose—but a personal reading of the convergence
theories built in this field at the intersection of probability theory, computational complexity
and statistics.

2. Classic ES Theory

As in Figure 1b, assume the algorithm and the center of the coordinate system are
both in P; the distance to global optimum O is R = |OP|; denote x1 by x and the remaining
n− 1 components x(2) by h. The classic ES theory focuses on the local, one-step behavior of
the algorithm, where the mutation rate ρ can be assumed constant.

If C is a random point generated by mutation, the progress becomes a one-dimensional
r.v. corresponding to the difference in distance to optimum between the current ES position
and the next. Due to the elitist selection, progress is non-negative. For a successful mutation,
C is inside region RS

x , the blue area in Figure 1. Apply Pythagoras to OC and u = ||h||2;
then, progress becomes [10] and ([4], p. 54).

progress = |OP| − |OC| = R−
√
(R− x1)2 +

n

∑
i=2

x2
i = R−

√
(R− x)2 + u. (7)

Insert progress into the integral and set A = RS
x ; then Equations (6) and (7) build the

so-called ES’ expected progress:

φ =
∫

RS

(
R−

√
(R− x)2 + u

)
f (x, u)dxdu. (8)

In order to approximate the above integral, two distinct cases occur: (i) ES close to optimum,
or large step size (Figure 1b); (ii) ES far from the optimum, or small step size (Figure 1a,c).

With the same uniform mutation distribution, ref. [24] refined the results of both [13,26],
and came closer to the analysis reviewed below by considering, in the estimation of local
expected progress, the same two cases. However, without a deeper insight into spherical
distributions, the study yielded only upper bounds for the expected progress and thus
lower bounds for the global convergence time. Additionally, [23] analyzed an EA with
λ > 1 individuals in the population, acting on the SPHERE, with uniform mutation inside
the sphere. However, the analysis is confined to the case where optimum is within the
mutation sphere—that means, large step size, for which only asymptotic (λ → ∞) results
are derived; again, a comparison to (32) is intractable. Noteworthy, yet again incomparable
to the results reviewed below, are theoretical analyses of mutation distributions that are
uniform but non-spherical [22,27].
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2.1. Large Step Size

This case is defined by the inequality ρ ≥ 2R, such that success region RS
x is completely

included in the mutation sphere, Figure 1b. We assume uniform mutation inside the sphere,
but an ES with normal mutation performs similarly, for large n and a proper parameter
scaling [10,28].

Mathematically, this is the unique situation when Formula (8) is tractable, allowing
for a closed-form derivation of the expected progress. However, the case did not receive
much attention in the literature, since it corresponds to the worst case scenario (stagnation),
calling for an emergency application of the mutation adaptation rule.

A first rigorous result concerning this case was provided by Rudolph, with the anal-
ysis of pure random search, an algorithm that generates offspring independently, us-
ing the uniform distribution inside the sphere with a fixed center and constant radius
ρ ([9], pp. 168–169). The minimal distance to optimum out of the first t trials, Rt, is com-
puted, for large t, by order statistics [29]. The second approximation is with respect to large
space dimension n.

Rt ≈ ρ t−1/nΓ1+ 1
n
≈ ρ t−1/n. (9)

The following definitions are used in computational complexity analysis [5,10].

Definition 2.

• A statement Z(n) holds for large enough n if there is N ∈ N such that for all n ≥ N,
Z(n) holds.

• For g(n) > 0, we say g(n) = O(n) if there exists c > 0 such that g(n) ≤ c n, for a large
enough n. Similarly, g(n) = Ω(n) if g(n) ≥ c n, for a large enough n. If g(n) is both O(n)
and Ω(n), we say that g(n) = Θ(n).

• We say g(n) = o(n) if g(n)/n → 0 as n → ∞.
• A sequence pn ≥ 0 is exponentially small in n if pn ≤ e−O(n).
• An event An happens with overwhelming probability (w.o.p.) in n if 1− P(An) is exponen-

tially small in n.

Rudolph argues that the convergence rate of elitist, constant mutation ES decreases to
the asymptotics (9), estimated, after re-noting Rt = ε, as

t = Θ
[(

1
ε

)n]
(10)

and classified as poor, compared to the performance of adaptive mutation ES.
One can note in Figure 1b that progress is minimal (zero) if the randomly generated

point C is P and maximal (R) if the generated point is O. The success probability in the large
step size case is simply the ratio of two n-sphere volumes, (R/ρ)n. A complete description
of the progress r.v. (7) is provided in the following.

Proposition 1. Assume the elitist ES with one individual and uniform mutation inside the sphere of
radius ρ, minimizing the SPHERE, is at distance R from the origin, ρ ≥ 2R. Then, the progress is

• cdf

F(x) = P(R− |OC| ≤ x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x < 0

1−
(

R
ρ

)n
, x = 0

1−
(

R−x
ρ

)n
, x ∈ (0, R)

1, x ≥ R

(11)

• and partial pdf

f (x) =

{
n
ρn (R− x)n−1, x ∈ (0, R)

0, other
. (12)
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Proof. It is easy to see that progress is non-negative, discontinuous and P(progress = 0) =
1− (R/ρ)n. For x ∈ (0, R), the point C can be seen as generated by the uniform distribution
inside the sphere of radius ρ, but with center O. Then, |OC| corresponds to r, the radius of
the uniform distribution inside the ρ-sphere, truncated to SO(R), the n-sphere with center
O and radius R. Note the difference between the radius r.v. r from Definition 1, and the
positive real number ρ, the radius of the mutation sphere.

However, r is Beta(n, 1) in the case of the uniform inside the sphere of radius ρ, with
pdf [10]:

g(r) =
1
ρn nrn−1, r ∈ (0, ρ). (13)

Restricted to (0, R), the pdf (13) provides the (partial) cdf:

G(r) =
(

r
ρ

)n
, r ∈ (0, R), (14)

such that

F(x) =P(R− r ≤ x) = 1− P(r ≤ R− x) = 1− G(R− x) = (15)

=1−
(

R− x
ρ

)n
, x ∈ (0, R). (16)

A simple derivation with respect to x provides the pdf (12).

The progress r.v. is depicted in Figure 2, for ρ = 1, R = 1/2 and different space
dimensions n. To each n corresponds a bar at zero—the Dirac measure δ0, that is, the
discrete part of the progress—and a thin line with the same color representing the partial
pdf of the continuous part of the progress.

Figure 2. Progress of elitist ES on SPHERE: Dirac (bar) and pdf of continuous part (line)—large
step size.

The following result is a slight generalization of a similar result (on the particular
case ρ = 1) from [30]. However, the proof presented below is easier than the one in [30],
building on the exact formulas provided by Proposition 1.

Theorem 1. In the conditions of Proposition 1,

• the success probability is

PS =

(
R
ρ

)n
, (17)
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• the expected progress is

φ =
Rn+1

ρn(n + 1)
. (18)

Proof. The success probability has already been derived geometrically. However, in a
unitary setting, both success probability and expected progress are obtained by integration
of partial pdf (12) over the success region (0, R).

PS =
∫ R

0

n
ρn (R− x)n−1dx =

(
R
ρ

)n
.

φ = E(progress) =
∫ R

0

nx
ρn (R− x)n−1dx =

Rn+1

ρn(n + 1)
,

where the second calculus yields from partial integration.

Theorem 1 points out an outstanding analytical property of the uniform mutation
operator, in case of the algorithm with a large step size: The success probability is the derivative,
with respect to distance to optimum, of the expected progress.

This result relies on the non-centrality property of the uniform distribution inside the
sphere. Namely, we can regard the random point C as being generated from a uniform
centered in O, not in P, then apply the radius r.v. for the random distance |OC|. This
procedure can be applied only for Figure 1b, not for Figure 1a or 1c, and neither for
other spherical mutation like the normal distribution. The uniform distribution on the
sphere provides zero progress if ρ ≥ 2R, so that case is also tractable but not interesting,
corresponding to pure stagnation.

Finally, we confirm and generalize Rudolph’s result (10) on the convergence time of
the elitist ES on the SPHERE, under constant, large-step-size mutation.

Theorem 2. In the conditions of Proposition 1, the time required by the algorithm to reach distance
ε from optimum is

t = Θ
[(ρ

ε

)n]
. (19)

Proof. Start from Equation (18) and the definition of progress (7).

φ =|OP| − |OC| = Rt − Rt+1 =
Rn+1

t
ρn(n + 1)

(20)

⇒ Rt+1 − Rt = − Rn+1
t

ρn(n + 1)
. (21)

We transform the above difference equation into a differential equation, with separable
variables, which we solve.

y′ =− yn+1

ρn(n + 1)
(22)

⇒
∫ y′

yn dy = −
∫

ρn

n
dx (23)

⇒ yn−1 =
n

n− 1
x−1 (24)

⇒ y =

(
n

n− 1

)n−1( x
ρn

)− 1
n−1 ≈ x−

1
n ρ. (25)

At the last step, we remove the factors/exponents that converge to one as n → ∞.
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If we denote y = Rt = ε and x = t, we get

ε ≈ t−
1
n ρ ⇒ t ≈

(ρ

ε

)n
. (26)

One should note that the relevance of the above analysis is purely theoretical. Inspec-
tion of Equations (17) and (18) shows that both success probability and expected progress
attain their maximum for ρ = 2R, where the two quantities are of order 1/2n, a rather low
value, leading to stagnation. The situation is avoided in Algorithm 1 by halving ρ, such
that the ES enters (again) the small step size situation of Figure 1c.

2.2. Small Step Size

This case is defined by the inequality ρ < 2R, such that success region RS
x is the

intersection of the mutation and fitness spheres; see Figure 1a,c.
If the ES uses uniform mutation inside the ρ-sphere, the following equation transforms

the original radius into a new parameter, equivalent (asymptotically) to the standard
deviation (σ) of the normal mutation [10,28].

a =
ρ√
n

. (27)

Under the assumption a ≈ σ, the local behavior of Algorithm 1 does not depend on the
mutation distribution used: normal with standard deviation σ or uniform inside the sphere
of radius ρ—one can treat these two ES versions as one. Apply next a second normalization
of both new mutation parameter a and expected progress φ ([4], p. 32):

a∗ = a
n
R

, φ∗ = φ
n
R

. (28)

The random local behavior of the algorithm can be expressed by the following compact
formulas ([4], pp. 67–68), [10]. The cumulative distribution function (cdf) of the standard

normal (Gaussian) distribution N(0, 1) is Φ(x) = 1√
2π

∫ x
−∞ e− t2

2 dt.

Theorem 3. Let a elitist ES minimize the SPHERE, with either uniform mutation inside the sphere
of radius ρ or normal mutation with standard deviation a = ρ/

√
n. Then, for large n, the following

approximations hold:

• Success probability:

Prob ≈ 1−Φ
(

a∗

2

)
. (29)

• Normalized expected progress:

φ∗ ≈ a∗√
2π

e−
a∗2

8 − a∗2

2

[
1−Φ

(
a∗

2

)]
. (30)

The asymptotics of success probability and expected progress are depicted in Figure 3.
The particular form of φ∗ as function of a∗ is essential for proving the global convergence
of the adaptive ES. Note that the function (30) is uni-modal, with a maximum at a∗ = 1.224,
φ∗max = φ∗(1.22) = 0.202.
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Figure 3. Success probability (29), expected progress (30) and evolution window (blue) of elitist ES
on SPHERE.

The blue area corresponding to the a∗-interval [0.84, 1.68] is the ’evolution window’ of
Algorithm 1. In classic ES theory, the term is used in the broader sense of the region with
expected progress being significantly greater than zero, e.g., a∗ ∈ [0.1, 5] in Figure 3 [1],
([4], p. 69), [31]. However, we use here the more restrictive definition from [10], which
ensures also global convergence of the ES under the 1/5 rule. Using the success probability
formula, Formula (29), we identify first the critical value a∗ = 1.68, corresponding to
Prob(1.68) = 1/5 = 0.2. Then, we apply the expected progress formula, Formula (30),
get φ∗(1.68) = 0.188 and use again (30) to get φ∗(0.84) = 0.188. One could say that the
evolution window in this case is defined by the condition φ∗ ≥ 0.188.

Observing the possible benefits of different mutation distributions, the authors of [3,9]
developed an analysis based on uniform mutation on the sphere. Using the random angle
θ = ∠CPO between the mutated point and the optimum direction, and the same parameter
normalization, Rudolph solved the low-dimensional case, n = 3. The general case proved
intractable, so he resorted to the same approximation of a random variable through its
expected value, yielding an asymptotic progress which is the double of Formula (30) ([9],
pp. 170–172). Note that a different progress definition applies, usually referred to as
quality gain:

progress′ = R2 − |OC|2 (31)

φ′ = 2 φ∗. (32)

By applying another spherical mutation operator to the same problem, the Cauchy distri-
bution, Rudolph obtained a different expression of progress, valid for the case n = 3 [32].
Like the normal multivariate, the Cauchy distribution is with un-bounded support, can be
constructed from independent identical components and exhibits the rare property of being
closed to addition. Under quadratic definition (31), the expected progress φC depends on
the mutation parameter δ:

φC = 1− 1
δπ

[
3
δ

arctan(2δ) +
2δ2 − 1

2δ2 log(4δ2 + 1)− 4
]

. (33)

Unfortunately, the generalization to larger dimensions failed, due to the intractability of
radius r from Equation (2), in the case of the Cauchy distribution.

Considering yet another spherical distribution, the (averaged) sum of two independent
uniforms inside the sphere, x = (x1 + x2)/2 [10], also showed that φS, the expected progress
of this new mutation operator, is

φS(a∗) = φ∗
(

a∗√
2

)
. (34)
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Note that if x1,2 are uniformly distributed inside the sphere with radius ρ, the expected value
of the radius r.v. r from Equation (1) is also ρ—asymptotically for large space dimension n.
On the other hand, the expected value of the radius of x is ρ/

√
2, so the scaling factor of the

argument in Equation (34) is actually the ratio between the different expected radiuses [10].

2.3. Global Convergence

For decades, the algorithm’s global convergence was only a marginal subject in classic
ES theory, regarded as a consequence of the ability—un-explained theoretically, though
supported by empirical evidence—of the 1/5 success rule to keep the expected progress
around its maximal value during the whole evolution. We illustrate this with Beyer’s
reasoning and apply Formula (30) to express the ES’s expected progress between time t
and t + 1 ([4], pp. 48–50).

Rt − Rt+1 = φ(at) ⇒ Rt+1 − Rt = −Rt
φ∗(a∗t )

n
. (35)

One obtains a separable differential equation from the difference equation.

R′t = −Rt
φ∗(a∗t )

n
. (36)

If the 1/5 rule manages to keep a∗t approximately constant at its maximum, φ∗(a∗t ) ≈
φ∗max = 0.202; the differential equation solves to the following (note that R0 is the initial
distance to optimum):

Rt = R0 e−
0.202 t

n . (37)

Apply next the logarithm to get

ln
(

Rt

R0

)
=
−0.202 t

n
, (38)

and then reverse Equation (38); denote Rt = ε > 0 and 1/0.202 = C, such that

t = C n log
R0

ε
. (39)

According to Definition 2, Equation (39) reads as linear convergence time, with respect
to both space dimension n and the logarithm of initial distance to optimum R0. The only
problem is that the above analysis is based on the optimistic assumption that the 1/5 rule
keeps expected progress around the value of 0.202. Rigorously, this is only a best-case
scenario, so one should actually read the above equalities as inequalities and (39) as a lower
bound on convergence time [10]. The ES convergence time is Ω[n · log(R0/ε)].

t ≥ C n log
R0

ε
. (40)

However, the practical efficiency of Equation (37), expressed by its ability in predicting
the behavior of the real algorithm, is undeniable. Following [10], we present here another
derivation of Formula (37) with a slightly different exponential parameter (0.178 instead of
0.202) but obtained as an average, not extreme case value.

Rudolph considered first the stochastic nature of the ES, using a martingale model to
derive sufficient conditions for global convergence. The following definitions and results
are from ([9], pp. 25–26, 52, 166) and ([33], pp. 94, 109, 127–128, 131).

Definition 3.

• The conditional expectation E(Rt+1|Rt) is a r.v., with values E(Rt+1|Rt = R) and probabili-
ties of Rt, such that E[E(Rt+1|Rt)] = E(Rt+1).

• A sequence of r.v.s {Rt}t∈N is called

26



Mathematics 2023, 11, 201

– Non-negative supermartingale if, for all t,

E(|Rt|) < ∞ and E(Rt+1 | Rt) ≤ Rt (41)

– Uniformly integrable (UI) if, for any ε > 0, there is K ≥ 0 such that, for all t

E
(
|Rt| · 1{|Rt |>K}

)
< ε. (42)

Proposition 2. Let {Rt}t∈N be a sequence of r.v.s.

• A sufficient condition for UI is: there is K > 0 such that |Rt| < K for all t.
• If {Rt}t∈N is a non-negative supermartingale, it converges a.s. to a finite r.v. If {Rt}t∈N is

also UI, convergence is also in the mean.

Let Xt be the r.v. elitist ES at iteration t, f a function with minimum zero and
Rt = f (Xt). Then, {Rt}t∈N is a non-negative supermartingale due to the elitist selection,
and UI since Rt ≤ R0. Due to Proposition 2, Rt converges a.s. and in mean to a finite r.v.
What remains to be proved is:

• Global convergence—the limit is exactly zero;
• Convergence rates.

Sufficient convergence conditions are provided in ([9], pp. 165–167). Note that part
(a) of Theorem 4 is also presented in [34], and part (b), in terms of dynamical systems and
Lyapunov functions, is also in ([15], p. 154).

Theorem 4. Let {X}t∈N be generated by some ES optimizing a fitness function f with global
minimum at zero, and Rt = f (Xt) > 0.

(a) If the ES employs an elitist selection rule and there exist sequences εt, δt ∈ (0, 1) such that for
all t

δt ≤ Prob{Rt+1 ≤ (1− εt)Rt|Rt} (43)

and
∞

∑
t=0

εt · δt = ∞ (44)

then the ES converges to zero a.s and in mean, and the approach is exponentially fast with rate
c = 1− δ · ε ∈ (0, 1).

ERt+1 ≤ ERt c =⇒ ERt ≤ ER0 ct. (45)

(b) Regardless of the selection rule, if there is a constant c ∈ (0, 1) such that for all t

E(Rt+1 | Rt) ≤ c · Rt a.s. (46)

then the ES converges to zero a.s. and in mean, and the approach is exponentially fast with
rate c.

The key r.v.s and parameters used in this study are summarized in Table 1.
Rudolph used Theorem 4 (b) to justify global convergence on SPHERE, for the elitist ES

with uniform mutation on sphere ([9], pp. 170–172). However, the reasoning is unrealistic:
it assumes a mutation radius proportional, at each moment, to distance to the optimum of
ρt = γRt, with the parameter set to optimal value γ∗ = 1.224.

The problem is that a real ES, modeled as a sequence of (decreasing) constant-mutation
phases, delimited by the application of the 1/5 rule, does not fulfill Equations (43)–(46)
per se. Assuming a ’good’ starting point (see Theorem 7), there is a constant c > 0 such
that (46) holds as long as the ES is within some narrow evolution window, such as the one
depicted in Figure 3. However, as the algorithm reaches the upper limit of the evolution
window, at some random time T, there is an exponentially small probability for the ES to
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continue the descent such that (46) is precluded. Since mutation adaptation is necessary
for global convergence, we are interested in the (large probability) event ’the 1/5 rule
applies at iteration T’. The situation resembles Theorem 4 (a), with the difference being
that E(RT+1|RT) = RT for the 1/5 rule applies only in unsuccessful iterations, such that
εT = 0 and (43) is precluded as well.

Table 1. Mathematical concepts used in ES analysis.

Xt n-dim r.v. ’ES position at time t’

Rt 1-dim r.v. ’ES distance to optimum at time t’

R positive real number

(Rt+1|Rt = R)
1-dim r.v. ’ES distance to optimum
at t + 1, conditioned by dist. R at t’

E(Rt+1|Rt = R) positive real number, mean of the above

E(Rt+1|Rt)
1-dim r.v. ’ES distance to optimum

at t + 1, conditioned by distance at t’

φt(R, n, ρ) = R− non-negative real number, mean
−E(Rt+1|Rt = R) progress between time t and t + 1

φ∗t (a∗) = φtn/R
non-negative real number,
normalized mean progress

Td 1-dim r.v. ’first hitting time of distance d’

Summing up, Theorem 4 is not strong enough to derive upper bounds on the global
convergence time of the elitist ES with the 1/5 success rule. As one can see in the following,
the mathematical difficulty resides not in the multi-variate calculus, but in the computa-
tional complexity analysis of the 1/5 rule. The linear upper bounds were proved for the
first time by Jägersküpper, who regarded the elitist ES as a sequence of n-length phases with
a constant mutation rate in each phase, during which the success frequency of mutation
was observed before the application of the 1/5 rule [5,26,35,36].

Removing line (ii) from the 1/5 rule in Algorithm 1—that is, parameter ρ decreases if
success frequency is less than 1/5, but never increases—and using A uniform mutation
inside the sphere instead of normal mutation, [10] proved that all of Jägersküpper’s results
still hold. Moreover, under the simplified 1/5 rule, the constant-mutation phase extends
to a number of phases, called a cycle. The r.v. ’length of a cycle’ will play a key role in
connecting the two (otherwise distinct) parts of the convergence analysis, local and global,
leading to an exponential formula able to predict the behavior of the real ES, similar to
Equation (37).

We resume next the results from [5,10,26,35,36] in a unitary setting, covering both
types of 1/5 rule and both mutation distributions, normal and uniform inside the sphere.
The results hold also for the sum of two uniforms; see [10] for details. For the local behavior,
Jägersküpper avoided the calculus from Section 2.2 and used instead the decomposition (2)
of the normal mutation distribution with standard deviation σ, N(0, σIn), into r.v.s uniform
on sphere un and radius �. Recall that ρ is the radius parameter of the uniform mutation
inside the sphere, R the current distance to optimum, Prob the success probability and r

the radius r.v. from Equation (1). We also apply the normalization a = ρ/
√

n in order to
equalize the asymptotic mean radiuses of the two distributions, normal and uniform, such
that a can be identified to σ and r to �.

Lemma 1. Let Algorithm 1 with any spherical mutation minimizing the SPHERE be in current
point P; |OP| = R. The mutant C is accepted with Prob ∈ [ε, 1/2− ε], ε > 0, if and only if
|PC| = Θ

(
R/
√

n
)
.
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Lemma 2. If X is uniform inside the sphere of radius ρ or normal with standard deviation
σ = ρ/

√
n, and r is the corresponding r.v. radius, then

P(|r− ρ| ≤ δρ) ≥ 1−O
(

1
nδ2

)
. (47)

If X1, . . . , Xn are independent copies of X, then for any λ ∈ (0, 1), there exist aλ, bλ > 0 such that
the r.v. cardinal number of {i | aλρ ≤ ri ≤ bλρ} is ≥ λn w.o.p.

The first part of Lemma 2 is actually Chebyshev inequality. Note that the inequality
|r− ρ| ≤ δρ is equivalent to |r− ρ|/ρ ≤ δ, so the result holds for the original (that is, before
normalization ρ = a

√
n) uniform distribution inside the sphere, for the normalized uniform

and also for the normal distribution.

Lemma 3. Let Algorithm 1 with mutation X, as in Lemma 2, minimize the SPHERE. The following
are equivalent:

(i) σ = Θ(R/n)
(ii) ρ = Θ

(
R/
√

n
)

(iii) There exists ε > 0 such that Prob ∈
[
ε, 1

2 − ε
]

for a large enough n—that is, Prob is Ω(1)
and 1/2−Ω(1).

Lemma 4. If r = Θ
(

R/
√

n
)
, then progress is Θ(R/n), with probability Ω(1), and within

expectation.

The radius r in Lemma 4 corresponds to the normalized (ρ = a
√

n) uniform inside the
sphere, and hence also to the normal distribution.

Let i, i + 1 denote the states of the algorithm at the beginning/end of this phase,
respectively.

Lemma 5. Let Algorithm 1 with mutation X as in Lemma 2 minimize the SPHERE. Consider two
variants of the 1/5 rule: (i and ii).

(i) If ρi = Θ
(

Ri/
√

n
)
, then Ri − Ri+1 = Θ(Ri) w.o.p.; that is, w.o.p. the approximation error

is reduced by a constant fraction in the i-th phase.
(ii) If ρi is doubled (or respectively not modified) after the i-th phase, then ρi = O(Ri/

√
n
)
.

(iii) If ρi is halved after the i-th phase, then ρi+1 = Ω
(

Ri+1/
√

n
)
.

Lemma 6. Let Algorithm 1 be as in Lemma 5. If the 1/5 rule causes a (k + 1)-sequence of phases,
1 ≤ k = nO(n), such that in the first phase ρ is halved and in all the following it is doubled
(respectively left unchanged), or the other way around, then w.o.p. the distance from optimum is k
times reduced by a constant fraction in these phases.

We can state now the main global convergence result, valid for the ES with either
uniform or normal mutation, with either complete (i–ii) or simplified (i) 1/5 success
rule [5,10,35].

Theorem 5. Let Algorithm 1, defined as in Lemma 5, start at distance R0 from optimum, with
mutation parameter ρ0 = Θ

(
R0/

√
n
)
. If t satisfies 1 ≤ t = nO(1), then the number of iterations

to reach distance Rt with Rt ≤ R0/2t is Θ(t · n), w.o.p. and within expectation.

For t = 1, Theorem 5 states the existence of two constants a, b > 0, such that for a large
enough n, the random time T required to halve the initial distance to optimum R0 satisfies

a n ≤ E(T) ≤ b n. (48)
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Even if the result does not state convergence to zero of r.v. Rt, as t → ∞, neither in
expectation, nor a.s. nor w.o.p., it accounts for a form of linear convergence, with respect to
both t and n.

Remark 1. For an arbitrary initial point, outside the prescribed range ρ0 = Θ
(

R0/
√

n
)
, Jäger-

sküpper conjectured in [35] that: ’For other starting conditions, the number of steps until the
theorem’s assumption is met must be estimated before the theorem can be applied—by estimating the
number of steps until the scaling factor is halved at least once. This is a rather simple task when
utilizing the strong results presented in Lemma 5’. Empirical evidence for this fact can be found
in [10].

This is the point where Jägersküpper’s convergence time analysis stops, without
providing a formula similar to (37), to be tested against the behavior of the real ES. To
fill in the gap, reference [10] applied the uniform mutation inside the sphere and the
simplified 1/5 rule—obtained by removing line (ii) from Algorithm 1—and made use
of the r.v. T = ’length of a constant-mutation ES cycle’, defined as a stopping time ([33],
pp. 97–98).

Definition 4. A r.v. T with state space {0, 1, . . . , ∞} is said to be a stopping time for the sequence
of r.v.s {Xt}t∈N if one can decide whether the event {T = t} has occurred only by observing
X1, . . . , Xt. Note that, since the ES is a Markov chain, we do not assume independence of X1, X2, . . .,
as in Wald’s equation and renewal theory [37].

Stopping time will be considered the first hitting time of distance d > 0 from the initial
point X0.

Td = min{t |X1 + . . . + Xt ≥ d}. (49)

A key role in the analysis is played by the following generalization of Wald’s equation
([37], p. 38), as introduced in [10]. Note that we define, for some r.v. X and P(A) > 0, the
conditional expectation E(X|A) = E(X · 1A)/P(A).

Proposition 3 (Wald’s inequality [10]). Let c, d, δ�, δu > 0 and {Xt}t∈N be non-negative r.v.s
such that X0 = c and δ� ≤ E(Xt|Td ≥ t) ≤ δu for t ≥ 1. Then

d
δu
≤ E(Td) ≤ d + δu

δ�
. (50)

We set in our ES analysis X0 = c = R0 > d and Xt+1 = Rt − Rt+1; hence, X1 + . . . + Xt =
R0 − Rt for all t ≥ 0.

Another form of Wald’s inequality can be obtained from the additive drift theorem,
derived by Lehre and Witt in [38]—which, as the authors mention, adapts for the continuous
case the discrete space drift theorem of He and Yao [14]. We apply a formalization similar
to Proposition 3.

Theorem 6 (Additive Drift). Let {Xt}t∈N be a stochastic process, adapted to a filtration
{Ft}t∈N, over some state space S ⊆ �; let d, δ�, δu > 0 and T0 = min{t |Xt > 0}. Then, if
0 ≤ Xt ≤ d = X0 and δ� ≤ E(Xt − Xt+1 ; Xt > 0 | Ft) ≤ δu for all t

d
δu
≤ E(T0|F0) ≤ d

δ�
. (51)

To be comparable with Wald’s inequality, one should set Xt+1 = d− (R0 − Rt+1) in the
Adaptive Drift theorem. However, we consider the assumption Xt ≥ 0 for all t, implying
XTd = 0, to be unrealistic for d < R0. On the other hand, if one sets d = R0 as above,
the lower bound δ� > 0 does not exist (independent of t) in the continuous case, e.g., the
SPHERE. The existence of a strictly positive lower bound on either success probability or
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expected progress can be seen as a sufficient convergence condition for continuous space
algorithms—see also Theorem 4—yet it is only satisfied in discrete space.

Back to the application of Wald’s inequality in deriving convergence rates for the ES
model. Let n be arbitrarily fixed; d < R0; and consider the two a∗-values corresponding
to the lower and upper limits of the evolution window depicted in Figure 3, a∗1 = 0.84
and a∗2 = 1.68. The normalized distance d∗ between these points corresponds to the
un-normalized distance

d = R0.84 − R1.68 = ρ
√

n
(

1
0.84

− 1
1.68

)
, (52)

which further leads, using Wald’s inequality (see [10] for details), to

Theorem 7. Let Algorithm 1 be as in Theorem 5, starting in point a∗ = 0.84, and let
d∗ = 1.68− 0.84. Then, for large n

2.5n ≤ E(Td) � 5.3n. (53)

The resemblance between Equations (48) and (53) is obvious. According to Theorem 7,
if the elitist ES is currently (initially) in point a∗0 = 0.84 = ρ

√
n/R0, the expected time

to reach 2a∗0 = 1.68 = ρ
√

n/(R0/2) is within [2.5n, 5.3n]. One could use these limits as
lower and upper bounds on E(T), or search for some value in between, to be used as an
estimate for E(T). In [10] the simple arithmetical mean 3.9 has been used, yet we choose
here the estimate 3.5, as suggested by the new empirical evidence presented in Figure 4.
The experiments were conducted with Algorithm 1 and uniform mutation inside the sphere,
on the SPHERE fitness function, with different space dimensions and initial points, all
corresponding to a∗ = 0.84. The results were averaged over 100 independent runs. In each
run, the maximal number of iterations was set to tmax = 50, 000, and the last, incomplete
cycle was discarded.

Figure 4. Expected number of iterations per cycle, as a function of space dimension n. Trend-line
equation with R2 value, displayed by Excel.

Using the value 3.5 for the expected value estimate of the r.v. T = ’No. of iterations per
constant-mutation ES cycle’, we obtained

R3.5 n ≈ R0

2
. (54)

By iterating Equation (54) s times and substituting in 3.9ns = t, we get

R3.5 ns =
R0

2s =⇒ Rt = R0 2−
t

3.5 n , (55)
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which further implies, with log 2/3.5 = 0.192,

Rt = R0 e−
0.192 t

n . (56)

Using Rt = ε and a derivation similar to the one inferred from Equation (37), the linear
convergence of the elitist ES on SPHERE is finally obtained.

elitist ES convergence time = Θ
(

n · log
R0

ε

)
.

As demonstrated in [10], Formula (56) can be used, with very good experimental results, as
a theoretical predictor of the algorithm’s global behavior. Note that the slightly different
exponential coefficient, 0.192 instead of 0.178 in [10], is not disruptive.

On the other hand, the above model, indicating identical behavior of the elitist ES
within each constant mutation cycle, offers an intuitive insight into the algorithm’s dy-
namics, seen as a sequence of cycles, that are independent and with identical expected
length.

3. General 1/5-Rule Theories

Different convergence theories for the elitist ES with 1/5 success rule exist, building
up mathematical rigor and complexity, yet, by imposing supplementary conditions, they
usually lack compact results such as Theorem 3 and Formula (56). Some relevant examples
are reviewed in the following.

Rudolph’s stochastic analysis based on martingales, presented already in Section 2.3,
provides only sufficient global convergence conditions for the algorithm. A different
stochastic process—a random system with complete connections—was used with a similar
outcome in [16]. With a deeper insight into the theory of the irreducible Markov chain,
which identifies the discrete states to the so-called small sets and extrapolates the basic
features of a discrete homogeneous Markov chain onto the continuous space [39,40], Dorea
proved, under elitist selection, the global convergence of ES and of a continuous version
of simulated annealing to an ε-vicinity of the optimum [17]. However, since the mutation
distribution is decoupled from the current position, the result is of little practical use.
Bienvenüe and Francois applied a different Markov model to an adaptive ES, but under
a different, problem-related adaptation rule that multiplies at each iteration the mutation
parameter ρ with the current distance to optimum Rt, then searches for ’optimal universal
step lengths on the basis of the convergence of the dynamics’ [41]. The same adaptation rule
was used by Rudolph in his convergence analysis of the elitist ES on SPHERE ([9], p. 70).
Connecting the mutation rate to the current position works for the SPHERE centered on
the origin, but failed for a slightly modified problem, e.g., for a SPHERE with a different
center—where Algorithm 1, adapting the mutation rate according to the 1/5 rule, works
very well.

Unaware of Dorea’s work, Auger and Hansen re-iterated the irreducible Markov
chain modeling, but on the more practical premises used by Jägersküpper [2,18]. Similarly
to Bienvenüe and Francois, but without their over-simplifying assumption, Auger and
Hansen achieved, at the mathematical peak of ES literature, linear convergence of the elitist
ES with the 1/5 rule on scaling-invariant functions (SPHERE included) by studying the
stability of the normalized Markov chain Zt = Rt/σ [19]. A compact formula similar to
(56) was proved.

Rt = R0 e−CR t, (57)

where CR > 0 depends on the asymptotic success probability PS and on the 1/5 rule
parameters γ, q. ⎧⎪⎪⎨⎪⎪⎩

CR = − ln γ
(

q+1
q PS− 1

q

)
increasing 1/5 rule factor γ

decreasing 1/5 rule factor γ−1/q.

(58)
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A supplementary condition is imposed on the parameters, which reads for the SPHERE

1
2

(
1
γ
+ γ

1
q

)
< 1. (59)

Bringing some clarity and a new stochastic formalization to the previous approach, Aki-
moto, Auger and co-workers employed drift analysis to prove the linear convergence
time [6,11,42]. However, since their theory is still avoiding the expected progress calculus,
a verification against the behavior of real algorithms can be performed only in terms of
upper and lower bounds—see also the critique of adaptive drift theorem from Section 2.3.

4. Extensions of the 1/5-Rule—Population-Based ES

As noticed from the very beginning, the ES performance depends strongly on the value
of the mutation parameter σ (or ρ). The 1/5 success rule discussed so far is the simplest,
yet not the only way of adapting the parameter during the algorithm’s evolution. Two of
the most efficient techniques are the σ-self-adaptation [1,4,8] and the covariance matrix
adaptation (CMA), which allows for different σ-values on the independent components
(of normal mutation), aiming at accelerating the evolution in certain directions of the
n-dimensional space [12,25,43,44].

As Beyer pointed out, each of these popular adaptation techniques borrows something
from the original 1/5 success rule. The CMA techniques ’have an operating mechanism
similar to the 1/5 rule: they analyze the statistical features of the selected mutations in
order to change the strategy parameters towards the optimal value’ ([4], p. 258). Namely,
the pdf of multivariate normal mutation in CMA-ES is

f (x) =
1

(
√

2π)n
√

det(C)
e−

xT C−1x
2 (60)

with symmetric covariance matrix C depending on n(n + 1)/2 mutation parameters. If one
considers all these parameters as independent r.v.s and switches from a single to a multiple
offspring algorithm—one parent, λ offspring and no elitist selection being the simplest case,
known as (1, λ) ES—Rudolph argues that a very large number of individuals is required
in order to obtain a good approximation of the optimal matrix C. Pointing out that, in
case of quadratic-convex fitness functions, the optimal C is the inverse of the function’s
Hessian matrix, he suggests that the CMA update rules should follow the deterministic
iterative methods of approximating the Hessian matrix, based on the information gathered
from previous samples ([9], p. 198); see also [43]. According to the recent survey of the
state-of-art in ES for continuous optimization [25], ‘we still lack a rigorous analysis of the
one-step approximation of the covariance matrix’.

As a general remark in case of population-based algorithms—with multiple offspring,
as for the (1, λ) ES discussed above or the (μ/μ, λ) ES with multiple parents, offspring
and recombination/crossover [45,46], the explicit reduction of the mutation parameter
induced by the 1/5 success rule is not necessary anymore, its exploitation effect being
accomplished by the (minimum) order statistics of the λ offspring sample and/or by the
μ/μ recombination of the parent population. Intuitively, the explanation is provided by the
following fact: The average of two multivariate uniform distributions inside the sphere of
radius ρ is also spherical, but with a smaller (expected value) radius, ρ/

√
2 instead of ρ;

see [28] for details.
On the other hand, in self-adaptation, the dynamics of the mutation parameter is not

based on some success-related statistics, but included in the evolution itself, subject to the
basic algorithmic operators. Since mutation parameter σ becomes in this case part of the
individual, ’the question reduces to the manner in which σ should be mutated. The answer
is: multiplicatively, in contrast to the additive mutations of object parameters’ ([4], p. 259).
Obviously, the multiplicative character of the adaptation is inspired by the 1/5 rule.
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5. Conclusions

Using the elitist, single-individual algorithm with mutation and the 1/5 success rule as
the adaptation procedure and the SPHERE fitness function, the paper provides a bird eye’s
view over the theory of evolution strategies, an important class of probabilistic optimization
algorithms for multi-dimensional real space.

Despite their easy implementation and huge success in applications, the mathematical
models are complicated, and global convergence results are rather scarce. Taking into
account some recent studies applying the uniform distribution inside the sphere as a
mutation operator, the review centered on the classic evolution strategy theory, built on
the one-step behavior of the algorithm and on local quantities such as success probability
and expected progress. For the first time in the literature, the three main building blocks of
classic theory were presented together in a coherent formalization:

• the asymptotic (w.r.t. large space dimension) local expected progress formula,
• the computational complexity analysis proving lower and upper linear bounds for

global convergence,
• a probabilistic analysis—using an adaptation of Wald’s equation—of the cyclic be-

havior of the algorithm with constant mutation rate, connecting the local and global
behavior into a prediction formula for the (expected) convergence time of the real
algorithm.

Different theories, based on martingales, irreducible Markov chain and drift analysis,
were also reviewed, and their results were compared with those of classic theory.

As for population based algorithms—(1, λ), (μ/μ, λ), CMA and self-adaptive ES—
the role of the 1/5 rule is transferred to the selection and crossover operators, yielding a
reduction in the mutation parameter for local improvement.

Since the 1/5 rule is devoted to exploitation, not to the exploration phase of the
algorithm, the case of multi-modal fitness functions was not tackled in this paper.
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Abstract: Although differential evolution (DE) algorithms perform well on a large variety of compli-
cated optimization problems, only a few theoretical studies are focused on the working principle of
DE algorithms. To make the first attempt to reveal the function of binomial crossover, this paper aims
to answer whether it can reduce the approximation error of evolutionary algorithms. By investigating
the expected approximation error and the probability of not finding the optimum, we conduct a case
study comparing two evolutionary algorithms with and without binomial crossover on two classical
benchmark problems: OneMax and Deceptive. It is proven that using binomial crossover leads to the
dominance of transition matrices. As a result, the algorithm with binomial crossover asymptotically
outperforms that without crossover on both OneMax and Deceptive, and outperforms on OneMax,
however, not on Deceptive. Furthermore, an adaptive parameter strategy is proposed which can
strengthen the superiority of binomial crossover on Deceptive.

Keywords: binomial crossover; differential evolution; fixed-budget analysis; evolutionary computa-
tion; approximation error

MSC: 90C15

1. Introduction

Evolutionary algorithms (EAs) are a family of randomized search heuristics inspired
from biological evolution, and many empirical studies demonstrate that crossovers that
combine genes of two parents to generate new offspring could be helpful to the convergence
of EAs [1–3]. Meanwhile, theoretical results on runtime analysis validate the promising
function of crossover in EAs [4–15], whereas there are also some cases that crossover cannot
be helpful [16,17].

By exchanging components of target vectors with donor vectors, differential evolution
(DE) algorithms implement crossover operations in a different way. Numerical results show
that continuous DE algorithms can achieve competitive performance on a large variety
of complicated problems [18–21], and its competitiveness is to great extent attributed
to the employed crossover operations [22]. However, the binary differential evolution
(BDE) algorithm [23], which simulates the working mechanism of continuous DE, is not as
competitive as its continuous counterpart. Analysis of the working principle indicates that
the mutation and update strategies result in poor convergence of BDE [24], but there were
no theoretical results reported on how crossover influences the performance of discrete-
coded DE algorithms.

This paper is dedicated to investigating the influence of binomial crossover by intro-
ducing it to the (1 + 1)EA, excluding the impacts of population and mutation strategies of
DE. Although the expected hitting time/runtime is popularly investigated in the theoretical
study of randomized search heuristics (RSHs), there is a gap between runtime analysis
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and practice because their optimization time to reach an optimum is uncertain and could
be even infinite in continuous optimization [25]. Due to this reason, optimization time is
seldom used in computer simulation for evaluating the performance of EAs, and their per-
formance is evaluated after running finite generations by solution quality such as the mean
and median of the fitness value or approximation error [26]. In theory, solution quality
can be measured for a given iteration budget by the expected fitness value [27] or approx-
imation error [28,29], which contributes to the analysis framework named fixed-budget
analysis (FBA). An FBA on immune-inspired hypermutations led to theoretical results
that are very different from those of runtime analysis but consistent with the empirical
results, which demonstrates that the perspective of fixed-budget computations provides
valuable information and additional insights for the performance of randomized search
heuristics [30].

Accordingly, we evaluate the solution quality of an EA after running finite generations
by the expected approximation error and the error tail probability. The former measures the
fitness gap between a solution and optimum, and the latter is the probability distribution of
the error over error levels, which measures the probability of finding the optimum. An EA
is said to outperform another if, for the former EA, its error and tail probability are smaller.
Furthermore, an EA is said to asymptotically outperform another if, for the former EA, its
error and tail probability are smaller after a sufficiently large number of generations.

The research question of this paper is whether the binomial crossover operator can
help reduce the approximation error of EA. As a pioneering work on this topic, we in-
vestigate a (1 + 1)EAC that performs the binomial crossover on an individual and an
offspring generated by mutation, and compare a (1 + 1)EA without crossover and its
variant (1 + 1)EAC on two classical problems, OneMax and Deceptive. By splitting the
objective space into error levels, the analysis is performed based on the Markov chain
models [31,32]. Given the two EAs, the comparison of their performance is drawn from the
comparison of their transition probabilities, which are estimated by investigating the bits
preferred by evolutionary operations. Under some conditions, (1 + 1)EAC with binomial
crossover outperforms (1+ 1)EA on OneMax, but not on Deceptive; however, by adding an
adaptive parameter mechanism arising from theoretical results, (1 + 1)EAC with binomial
crossover outperforms (1 + 1)EA on Deceptive too.

This work presents the first study on how binomial crossover influences the expected
runtime and tail probability of randomized search heuristics. Meanwhile, we also propose
a feasible routine to get adaptive parameter settings of EAs from theoretical results. The rest
of this paper is organized as follows. Section 2 reviews related theoretical work. Preliminary
contents for our theoretical analysis are presented in Section 3. Then, the influence of the
binomial crossover on transition probabilities is investigated in Section 4. Section 5 conducts
an analysis of the asymptotic performance of EAs. To reveal how binomial crossover
works on the performance of EAs for consecutive iterations, the OneMax problem and
the Deceptive problem are investigated in Sections 6 and 7, respectively. Finally, Section 8
presents the conclusions and discussions.

2. Related Work

2.1. Theoretical Analysis of Crossover in Evolutionary Algorithms

To understand how crossover influences the performance of EAs, Jansen et al. [4]
proved that an EA using crossover can reduce the expected optimization time from super-
polynomial to a polynomial of small degree on the function Jump. Kötzing et al. [5]
investigated crossover-based EAs on the functions OneMax and Jump and showed the
potential speedup by crossover when combined with a fitness-invariant bit shuffling
operator in terms of optimization time. For a simple GA without shuffling, they found
that the crossover probability has a drastic impact on the performance on Jump. Corus
and Oliveto [6] obtained an upper bound on the runtime of standard steady-state GAs to
hillclimb the OneMax function and proved that the steady-state EAs are 25% faster than
their mutation-only counterparts. Their analysis also suggests that larger populations may
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be faster than populations of size 2. Dang et al. [7] revealed that the interplay between
crossover and mutation may result in a sudden burst of diversity on the Jump test function
and reduce the expected optimization time compared to mutation-only algorithms such as
(1 + 1) EA. For royal road functions and OneMax, Sudholt [8] analyzed uniform crossover
and k-point crossover and proved that crossover makes every (μ + λ) EA at least twice as
fast as the fastest EA using only standard bit mutation. Pinto and Doerr [9] provided a
simple proof of a crossover-based genetic algorithm (GA) outperforming any mutation-
based black-box heuristic on the classic benchmark OneMax. Oliveto et al. [10] obtained
a tight lower bound on the expected runtime of the (2 + 1) GA on OneMax. Lengler and
Meier [11] studied the positive effect of using larger population sizes and crossover on
Dynamic BinVal.

For non-artificial problems, Lehre and Yao [12] proved that the use of crossover in
the (μ + 1) steady-state genetic algorithm may reduce the runtime from exponential to
polynomial for some instance classes of the problem of computing unique input–output
(UIO) sequences. Doerr et al. [13,14] analyzed EAs on the all-pairs shortest path problem.
Their results confirmed that the EA with a crossover operator is significantly faster in terms
of the expected optimization time. Sutton [15] investigated the closest string problem and
proved that a multi-start (μ + 1) GA required less randomized fixed-parameter tractable
(FPT) time than that with disabled crossover.

However, there is some evidence that crossover is not always helpful. Richter et al. [16]
constructed Ignoble Trail functions and proved that mutation-based EAs optimize them
more efficiently than GAs with crossover. The later need exponential optimization time.
Antipov and Naumov [17] compared crossover-based algorithms on RealJump functions
with a slightly shifted optimum, which increases the runtime of all considered algorithms
on RealJump. The hybrid GA fails to find the shifted optimum with high probability.

2.2. Theoretical Analysis of Differential Evolution Algorithms

Most existing theoretical studies on DE are focused on continuous variants [33]. By es-
timating the probability density function of generated individuals, Zhou et al. [34] demon-
strated that the selection mechanism of DE, which chooses mutually different parents for
the generation of donor vectors, sometimes does not work positively on the performance of
DE. Zaharie and Micota [35–37] investigated the influence of the crossover rate on both the
distribution of the number of mutated components and the probability for a component
to be taken from the mutant vector, as well as the influence of mutation and crossover on
the diversity of the intermediate population. Wang and Huang [38] attributed the DE to
a one-dimensional stochastic model, and investigated how the probability distribution
of population is connected to the mutation, selection, and crossover operations of DE.
Opara and Arabas [39] compared several variants of the differential mutation using char-
acteristics of their expected mutants’ distribution, which demonstrated that the classic
mutation operators yield similar search directions and differ primarily by the mutation
range. Furthermore, they formalized the contour fitting notion and derived an analytical
model that links the differential mutation operator with the adaptation of the range and
direction of search [40].

By investigating the expected runtime of BDE, Doerr and Zhang [24] performed a
first fundamental analysis on the working principles of discrete-coded DE. It was shown
that BDE optimizes the important decision variables, but is hard to find the optima for
decision variables with a small influence on the objective function. Since BDE generates
trial vectors by implementing a binary variant of binomial crossover accompanied by
the mutation operation, it has characteristics significantly different from classic EAs or
estimation-of-distribution algorithms.

2.3. Fixed-Budget Analysis and Approximation Error

To bridge the wide gap between theory and application, Jasen and Zarges [27] pro-
posed an FBA framework of RSHs, by which the fitness of random local search and (1 + 1)
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EA were investigated for given iteration budgets. Under the framework of FBA, Jasen and
Zarges [41] analyzed the any-time performance of EAs and artificial immune systems on a
proposed dynamic benchmark problem. Nallaperuma et al. [42] considered the well-known
traveling salesperson problem (TSP) and derived the lower bounds of the expected fitness
gain for a specified number of generations. Based on the Markov chain model of RSHs,
Wang et al. [29] constructed a general framework of FBA, by which they found the analytic
expression of approximation error instead of asymptotic results of expected fitness values.
Doerr et al. [43] built a bridge between runtime analysis and FBA, by which a huge body of
work and a large collection of tools for the analysis of the expected optimization time could
meet the new challenges introduced by the new fixed-budget perspective.

Noting that hypermutations tend to be inferior to typical example functions in terms
of runtime, Jansen and Zarges [30] conducted an FBA to explain why artificial immune
systems are popular in spite of these proven drawbacks. It was shown that the inversely
fitness-proportional mutation (IFPM) and the somatic contiguous hypermutation (CHM)
could perform better than the single point mutation on OneMax while FBA is performed
by considering different starting points and varied iteration budgets. It indicates that the
traditional perspective of expected optimization time may be unable to explain the observed
good performance, which is due to the limited length of runs. Therefore, the perspective of
fixed-budget computations provides valuable information and additional insights.

3. Preliminaries

3.1. Problems

Considering a maximization problem

max f (x), x = (x1, . . . , xn) ∈ {0, 1}n,

denote its optimal solution by x∗ and optimal objective value by f ∗. The quality of a
solution x is evaluated by its approximation error e(x) :=| f (x)− f ∗ |. The error e(x) takes
finite values, called error levels:

e(x) ∈ {e0, e1, . . . , eL}, 0 = e0 ≤ e1 ≤ · · · ≤ eL,

where L is a non-negative integer. x is called at the level i if e(x) = ei, i ∈ {0, 1, . . . , L}.
The collection of solutions at level i is denoted by Xi.

We investigate the optimization problem in the form

max f (| x |), (1)

where | x |:= ∑n
i=1 xi. Error levels of (1) take only n + 1 values. Two instances, the uni-

modal OneMax problem and the multi-modal Deceptive problem, are considered in this
paper.

Problem 1 (OneMax).

max f (x) =
n

∑
i=1

xi, x = (x1, . . . , xn) ∈ {0, 1}n.

Problem 2 (Deceptive).

max f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

∑
i=1

xi, if
n

∑
i=1

xi > n− 1,

n− 1−
n

∑
i=1

xi, otherwise,
x = (x1, . . . , xn) ∈ {0, 1}n.
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For the OneMax problem, both exploration and exploitation are helpful to the con-
vergence of EAs to the optimum, because exploration accelerates the convergence process
and exploitation refines the precision of approximation solutions. However, for the De-
ceptive problem, local exploitation leads to convergence to the local optimum, but it in
turn increases the difficulty to jump to the global optimum. That is, exploitation hinders
convergence to the global optimum of the Deceptive problem, thus, the performance of
EAs is dominantly influenced by their exploration ability.

3.2. Evolutionary Algorithms

For the sake of analysis on binomial crossover excluding the influence of population
and mutation, the (1 + 1)EA presented in Algorithm 1 is taken as the baseline algorithm in
our study. Its candidate solutions are generated by the bitwise mutation with probability pm.
The binomial crossover is appended to (1+ 1)EA, getting (1+ 1)EAC which is illustrated in
Algorithm 2. The (1 + 1)EAC first performs bitwise mutation with probability qm, and then
applies binomial crossover with rate CR to generate a candidate solution for selection.

The EAs investigated in this paper can be modeled as homogeneous Markov chains [31,32].
Given the error vector

ẽ = (e0, e1, . . . , eL)
′, (2)

and the initial distribution
q̃[0] = (q[0]0 , q[0]1 , . . . , q[0]L )′ (3)

the transition matrix of (1 + 1)EA and (1 + 1)EAC for the optimization problem (1) can be
written in the form

R̃ = (ri,j)(L+1)×(L+1), (4)

where
ri,j = Pr{xt+1 ∈ Xi | xt ∈ Xj}, i, j = 0, . . . , L.

Algorithm 1 (1 + 1)EA

1: counter t = 0;
2: randomly generate a solution x0 = (x1, . . . , xn);
3: while the stopping criterion is not satisfied do
4: generate the mutant yt = (y1, . . . , yn) by bitwise mutation:

for i = 1, . . . , n, yi =

{
1− xi, if rndi < pm,
xi, otherwise,

rndi ∼ U[0, 1]; (5)

5: if f (y) ≥ f (xt) then
6: xt+1 = yt;
7: else
8: xt+1 = xt;
9: end if

10: t = t + 1;
11: end while
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Algorithm 2 (1 + 1)EAC

1: counter t = 0;
2: randomly generate a solution x0 = (x1, . . . , xn);
3: while the stopping criterion is not satisfied do
4: Generate the mutant v = (v1, . . . , vn) by bitwise mutation:

for i = 1, . . . , n, vi =

{
1− xi, if rnd1i < qm,
xi, otherwise,

rnd1i ∼ U[0, 1]; (6)

5: set rndi ∼ U{1, 2, . . . , n};
6: generate the offspring y = (y1, . . . , yn) by performing binomial crossover on v:

for i = 1, . . . , n, yi =

{
vi, if i = rndi or rnd2i < CR,
xi, otherwise,

rnd2i ∼ U[0, 1]; (7)

7: if f (y) ≥ f (xt) then
8: xt+1 = yt;
9: else

10: xt+1 = xt;
11: end if
12: t = t + 1;
13: end while

Recalling that the solutions are updated by the elitist selection, we know R̃ is an upper
triangular matrix that can be partitioned as

R̃ =

(
1 r0
0 R

)
,

where r0 represents the probabilities to transfer from non-optimal statuses to the op-
timal status, and R is the transition submatrix depicting the transitions between non-
optimal statuses.

3.3. Transition Probabilities

Transition probabilities can be confirmed by considering generation of a candidate
y with f (y) ≥ f (x), which is achieved if “l preferred bits” of x are changed. If there
are multiple solutions that are better than x, there could be multiple choices for both the
number l and the location of “l preferred bits”.

Example 1. For the OneMax problem, e(x) equals to the amount of ‘0’-bits in x. Denoting
e(x) = j and e(y) = i, we know y replaces x if and only if j ≥ i. Then, to generate a candidate y

replacing x, “l preferred bits” can be confirmed as follows.

• If i = j, “l preferred bits” consist of l/2 ‘1’-bits and l/2 ‘0’-bits, where l is an even number
that is not greater than min{2j, 2(n− j)}.

• While i < j, “l preferred bits” could be combinations of j − i + k ‘0’-bits and k ‘1’-bits
(l = j− i + 2k), where 0 ≤ k ≤ min{i, n− j}. Here, k is not greater than i, because j− i + k
could not be greater than j, the number of ‘0’-bits in x. Meanwhile, k does not exceed n− j,
the number of ‘1’-bits in x.

If an EA flips each bit with an identical probability, the probability of flipping l bits
are related to l and independent of their locations. Denoting the probability of flipping l
bits by P(l), we can confirm the connection between the transition probability ri,j and P(l).
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As presented in Example 1, transition from level j to level i (i < j) results from flips of
j− i + k ‘0’-bits and k ‘1’-bits. Then, transition probabilities for OneMax are confirmed as

ri,j =
M

∑
k=0

Ck
n−jC

k+(j−i)
j P(2k + j− i), (8)

where M = min{n− j, i}, 0 ≤ i < j ≤ n.
According to definition of the Deceptive problem, we get the following map from | x |

to e(x).
| x |: 0 1 · · · n− 1 n
e(x) : 1 2 · · · n 0

(9)

Transition from level j to level i (0 ≤ i < j ≤ n) is attributed to one of the follow-
ing cases.

• If i ≥ 1, the amount of ‘1’-bits decreases from j− 1 to i− 1. This transition results from
a change of j− i + k ‘1’-bits and k ‘0’-bits, where 0 ≤ k ≤ min{n− j + 1, i− 1};

• if i = 0, all of n− j + 1 ‘0’-bits are flipped, and all of its ‘1’-bits keep unchanged.

Accordingly, transition probabilities for Deceptive are confirmed as

ri,j =

⎧⎪⎨⎪⎩
M

∑
k=0

Ck
n−j+1Ck+(j−i)

j−1 P(2k + j− i), i ≥ 1,

P(n− j + 1), i = 0,

(10)

where M = min{n− j + 1, i− 1}.

3.4. Performance Metrics

To evaluate the performance of EAs, we propose two metrics for a given iteration
budget, the expected approximation error (EAE) and the tail probability (TP) of EAs for t
consecutive iterations.

Definition 1. Let {xt, t = 1, 2 . . . } be the individual sequence of an individual-based EA.

(1) The expected approximation error (EAE) after t consecutive iterations is

e[t] = E[e(xt)] =
L

∑
i=0

ei Pr{e(xt) = ei}. (11)

(2) Given i > 0, the tail probability (TP) of the approximation error that e(xt) is greater than or
equal to ei is defined as

p[t](ei) = Pr{e(xt) ≥ ei}. (12)

EAE is the fitness gap between a solution and the optimum. It measures solution
quality after running t generations. TP is the probability distribution of a found solution
over non-optimal levels where i > 0. The sum of TP is the probability of not finding
the optimum.

Given two EAs A and B, if both EAE and TP of Algorithm A are smaller than those
of Algorithm B for any iteration budget, we say Algorithm A outperforms Algorithm B on
problem (1).

Definition 2. Let A and B be two EAs applied to problem (1).

1. Algorithm A outperforms B, denoted by A � B, if it holds that

• e[t]A − e[t]B ≤ 0, ∀ t > 0;

• p[t]A (ei)− p[t]B (ei) ≤ 0, ∀ t > 0, 0 < i < L.
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2. AlgorithmA asymptotically outperforms B on problem (1), denoted byA �a B, if it holds that

• limt→∞ e[t]A − e[t]B ≤ 0;

• limt→+∞ p[t]A (ei)− p[t]B (ei) ≤ 0.

The asymptotic outperformance is weaker than the outperformance.

4. Comparison of Transition Probabilities of Two EAs

In this section, we compare transition probabilities of (1 + 1)EA and (1 + 1)EAC.
According to the connection between ri,j and P(l), a comparison of transition probabilities
can be conducted by considering the probabilities of flipping “l preferred bits”.

4.1. Probabilities of Flipping Preferred Bits

Denote probabilities of (1+ 1)EA and (1+ 1)EAC to flip “l preferred bits” by P1(l, pm)
and P2(l, CR, qm), respectively. By (5), we know

P1(l, pm) = (pm)
l(1− pm)

n−l . (13)

Since the mutation and the binomial crossover in Algorithm 2 are mutually inde-
pendent, we can get the probability by considering the crossover first. When flipping “l
preferred bits” by (1 + 1)EAC, there are l + k (0 ≤ k ≤ n − l) bits of y set as vi by (7),
the probability of which is

PC(l + k, CR) =
l + k

n
(CR)

l+k−1(1− CR)
n−l−k.

If only “l preferred bits” are flipped, we know,

P2(l, CR, qm) =
n−l

∑
k=0

Ck
n−l PC(l + k, CR)(qm)

l(1− qm)
k

=
1
n
[l + (n− l)CR − nqmCR](CR)

l−1(qm)
l(1− qmCR)

n−l−1. (14)

Note that (1 + 1)EAC degrades to (1 + 1)EA when CR = 1, and (1 + 1)EA becomes
the random search while pm = 1. Thus, we assume that pm, CR, and qm are located in (0, 1).
A fair comparison of transition probabilities is investigated by considering the identical
parameter setting

pm = CRqm = p, 0 < p < 1. (15)

Then, we know qm = p/CR, and Equation (14) implies

P2(l, CR, p/CR) =
1
n

[
(n− l) +

l − np
CR

]
pl(1− p)n−l−1. (16)

Subtracting (13) from (16), we have

P2(l, CR, p/CR)− P1(l, p) =
{

1
n

[
(n− l) +

l − np
CR

]
− (1− p)

}
pl(1− p)n−l−1

=

(
1

CR
− 1
)(

l
n
− p
)

pl(1− p)n−l−1. (17)

From the fact that 0 < CR < 1, we conclude that P2(l, CR, p/CR) is greater than P1(l, p)
if and only if l > np. That is, the introduction of the binomial crossover in (1 + 1)EA leads
to the enhancement of the exploration ability of (1 + 1)EAC. We get the following theorem
for the case that p ≤ 1

n .

Theorem 1. While 0 < p ≤ 1
n , it holds for all 1 ≤ l ≤ n that P1(l, p) ≤ P2(l, CR, p/CR).
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Proof. The result can be obtained directly from Equation (17) by setting p ≤ 1
n .

For the popular setting where the mutation probability of (1+1)EA is set as 1/n, the
introduction of binomial crossover does increase the ability to generate new candidate
solutions. Then, we investigate how this improvement contributes to change of transi-
tion probabilities.

4.2. Comparison of Transition Probabilities

To validate that algorithm A is more efficient than algorithm B, it is assumed that the
probability of A to transfer to promising statuses could be not smaller than that of B.

Definition 3. Let A and B be two EAs with an identical initialization mechanism. Ã = (ai,j)

and B̃ = (bi,j) are the transition matrices of A and B, respectively. It is said that Ã dominates B̃,
denoted by Ã � B̃, if it holds that

1. ai,j ≥ bi,j, ∀ 0 ≤ i < j ≤ L;
2. ai,j > bi,j, ∃ 0 ≤ i < j ≤ L.

Denote the transition probabilities of (1 + 1)EA and (1 + 1)EAC by pi,j and si,j, respec-
tively. For the OneMax problem and Deceptive problem, we get the relation of transition
dominance on the premise that pm = CRqm = p ≤ 1

n .

Theorem 2. For (1 + 1)EA and (1 + 1)EAC, denote their transition matrices by P̃ and S̃, respec-
tively. On the condition that pm = CRqm = p ≤ 1

n , it holds for problem (1) that S̃ � P̃.

Proof. Denote the collection of all solutions at level k by S(k), k = 0, 1, . . . , n. We prove the
result by considering the transition probability

ri,j = Pr{y ∈ S(i) | x ∈ S(j)}, (i < j).

Since the function values of solutions are merely related to the number of ‘1’-bits,
the probability to generate a solution y ∈ S(i) by performing mutation on x ∈ S(j)
depends on the Hamming distance l = H(x, y). Given x ∈ Sj, S(i) is partitioned as
S(i) = ⋃L

l=1 Sl(i), where Sl(i) = {y ∈ S(i) | H(x, y) = l}, and L is a positive integer that
is smaller than or equal to n.

Accordingly, the probability to transfer from level j to i is confirmed as

ri,j =
L

∑
l=1

Pr{y ∈ Sl(i) | x ∈ S(j)} =
L

∑
l=1

| Sl(i) | P(l),

where | Sl(i) | is the size of Sl(i), P(l) the probability to flip “l preferred bits”. Then,

pi,j =
L

∑
l=1

Pr{y ∈ Sl(j) | x} =
L

∑
l=1

| Sl(j) | P1(l, p), (18)

si,j =
L

∑
l=1

Pr{y ∈ Sl(j) | x} =
L

∑
l=1

| Sl(j) | P2(l, CR, p/CR). (19)

Since p ≤ 1/n, Theorem 1 implies that

P1(l, p) ≤ P2(l, CR, p/CR), ∀ 1 ≤ l ≤ n.

Combining it with (18) and (19) we know

pi,j ≤ si,j, ∀ 0 ≤ i < j ≤ n. (20)

Then, we get the result by Definition 2.
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Example 2 (Comparison of transition probabilities for the OneMax problem). Let pm =
CRqm = p ≤ 1

n . By (8), we have

pi,j =
M

∑
k=0

Ck
n−jC

k+(j−i)
j P1(2k + j− i, p), (21)

si,j =
M

∑
k=0

Ck
n−jC

k+(j−i)
j P2(2k + j− i, CR, p/CR). (22)

where M = min{n− j, i}. Since p ≤ 1/n, Theorem 1 implies that

P1(2k + j− i, p) ≤ P2(2k + j− i, CR, p/CR),

and by (21) and (22) we have pi,j ≤ si,j, ∀ 0 ≤ i < j ≤ n.

Example 3 (Comparison of transition probabilities for the Deceptive problem). Let pm =
CRqm = p ≤ 1

n . Equation (10) implies that

pi,j =

⎧⎪⎨⎪⎩
M

∑
k=0

Ck
n−j+1Ck+(j−i)

j−1 P1(2k + j− i, p), i > 0,

P1(n− j + 1, p), i = 0,

(23)

si,j =

⎧⎪⎨⎪⎩
M

∑
k=0

Ck
n−j+1Ck+(j−i)

j−1 P2(2k + j− i, CR,
p

CR
), i > 0,

P2(n− j + 1, CR, p/CR), i = 0,

(24)

where M = min{n− j + 1, i− 1}. Similar to the analysis of Example 2, we get the conclusion
that pi,j ≤ si,j, ∀ 0 ≤ i < j ≤ n.

The results demonstrate that when p ≤ 1/n, the introduction of binomial crossover
leads to transition dominance of (1 + 1)EAC over (1 + 1)EA. In the following section, we
would like to answer if transition dominance leads to outperformance of (1 + 1)EAC over
(1 + 1)EA.

5. Analysis of Asymptotic Performance

In this section, we will prove that (1 + 1)EAC asymptotically outperforms (1 + 1)EA
using the average convergence rate [25,32].

Definition 4. The average convergence rate (ACR) of an EA for t generation is

REA(t) = 1−
(

e[t]/e[0]
)1/t

. (25)

Lemma 1 ([32], Theorem 1). Let R be the transition submatrix associated with a convergent EA.
Under random initialization (i.e., the EA may start at any initial state with a positive probability),
it holds

lim
t→+∞

REA(t) = 1− ρ(R), (26)

where ρ(R) is the spectral radius of R.

Lemma 1 presents the asymptotic characteristics of the ACR, by which we get the
result on the asymptotic performance of EAs.

Proposition 1. If Ã � B̃, there exists T > 0 such that

1. e[t]A ≤ e[t]B , ∀ t > T;
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2. p[t]A (ei) ≤ p[t]B (ei), ∀ t > T, 1 ≤ i ≤ L.

Proof. By Lemma 1, we know ∀ ε > 0, there exists T > 0 such that

e[0](ρ(R)− ε)t < e[t] < e[0](ρ(R) + ε)t, t > T. (27)

From the fact that the transition submatrix R of an RSH is upper triangular, we
conclude

ρ(R) = max{r1,1, . . . , rL,L}. (28)

Denote

Ã = (ai,j) =

(
1 a0
0 A

)
, B̃ = (bi,j) =

(
1 b0
0 B

)
.

While Ã � B̃, it holds

aj,j = 1−
j−1

∑
i=0

ai,j < 1−
j−1

∑
i=0

bi,j = bj,j, 1 ≤ j ≤ L.

Then, Equation (28) implies that

ρ(A) < ρ(B).

Applying it to (27) for ε < 1
2 (ρ(B)− ρ(A)), we have

e[t]A < e[0](ρ(A) + ε)t < e[0](ρ(B)− ε)t < e[t]B , (29)

which proves the first conclusion.
Noting that the tail probability p[t](ei) can be taken as the expected approximation

error of an optimization problem with an error vector

e = (0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1)′,

by (29) we have
p[t]A (ei) ≤ p[t]B (ei), ∀ t > T, 1 ≤ i ≤ L.

The second conclusion is proven.

By Definition 2 and Proposition 1, we get the following theorem for comparing the
asymptotic performance of (1 + 1)EA and (1 + 1)EAC.

Theorem 3. If CR = CRqm = p ≤ 1
n , the (1 + 1)EAC asymptotically outperforms (1 + 1)EA

on problem (1).

Proof. The proof can be completed by applying Theorem 2 and Proposition 1.

On condition that CR = CRqm = p ≤ 1
n , Theorem 3 indicates that after sufficiently

many number of iterations, (1 + 1)EAC can performs better on problem (1) than (1 + 1)EA.
A further question is whether (1 + 1)EAC outperforms (1 + 1)EA for t < +∞. We answer
the question in next sections.

6. Comparison of the Two EAs on OneMax

In this section, we show that the outperformance introduced by binomial crossover
can be obtained for the uni-modal OneMax problem based on the following lemma [29].
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Lemma 2 ([29], Theorem 3). Let

ẽ = (e0, e1, . . . , eL)
′, ṽ = (v0, v1, . . . , vL)

′,

where 0 ≤ ei−1 ≤ ei, i = 1, . . . , L, vi > 0, i = 0, 1, . . . , L. If transition matrices R̃ and S̃ satisfy

sj,j ≥ rj,j, ∀ 1 ≤ j ≤ L, (30)
i−1

∑
l=0

(rl,j − sl,j) ≥ 0, ∀ 0 ≤ i < j ≤ L, (31)

i

∑
l=0

(sl,j−1 − sl,j) ≥ 0, ∀ 0 ≤ i < j− 1 < L, (32)

it holds
ẽ′R̃tṽ ≤ ẽ′S̃tṽ.

For the EAs investigated in this study, conditions (30)–(32) are satisfied thanks to the
monotonicity of transition probabilities.

Lemma 3. When p ≤ 1/n (n ≥ 3), P1(l, p) and P2(l, CR, p/CR) are monotonously decreasing
in l.

Proof. When p ≤ 1/n, Equations (13) and (14) imply that

P1(l + 1, p)
P1(l, p)

=
p

1− p
≤ 1

n− 1
, (33)

P2(l+1,CR ,p/CR)
P2(l,CR ,p/CR)

= (l+1)(1−CR)+nCR(1−p/CR)
l(1−CR)+nCR(1−p/CR)

p
1−p ≤ l+1

l
p

1−p ≤ l+1
l

1
n−1 , (34)

all of which are not greater than 1 when n ≥ 3. Thus, P1(l, p) and P2(l, CR, p/CR) are
monotonously decreasing in l.

Lemma 4. For the OneMax problem, pi,j and si,j are decreasing in j.

Proof. We validate the monotonicity of pi,j for (1 + 1)EA, and that of si,j can be confirmed
in a similar way.

Let 0 ≤ i < j < n. By (21) we know

pi,j+1 =
M

∑
k=0

Ck
n−j−1Ci−k

j+1P1(2k + j + 1− i, p), (35)

pi,j =
M

∑
k=0

Ck
n−jC

i−k
j P1(2k + j− i, p), (36)

where M = min{n− j− 1, i}. Moreover, (33) implies that

Ci−k
j+1P1(2k + j + 1− i, p)

Ci−k
j P1(2k + j− i, p)

=
j + 1

(j + 1)− (i− k)
p

1− p
≤ j + 1

2
1

n− 1
< 1,

and we know
Ci−k

j+1P1(2k + j + 1− i, p) < Ci−k
j P1(2k + j− i, p). (37)

Note that

min{n− j− 1, i} ≥ min{n− j, i}, Ck
n−j−1 < Ck

n−j. (38)
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From (35)–(38) we conclude that

pi,j+1 < pi,j, 0 ≤ i < j < n.

Similarly, we can validate that

si,j+1 < si,j, 0 ≤ i < j < n.

In conclusion, pi,j and si,j are monotonously decreasing in j.

Theorem 4. On condition that pm = CRqm = p ≤ 1
n , it holds for the OneMax problem that

(1 + 1)EAC � (1 + 1)EA.

Proof. Given the initial distribution q̃[0] and transition matrix R̃, the level distribution at
iteration t is confirmed by

q̃[t] = R̃tq̃[0]. (39)

Denote

ẽ = (e0, e1, . . . , eL)
′, õi = (0, . . . , 0︸ ︷︷ ︸

i

, 1, . . . , 1)′.

By premultiplying (39) with ẽ and õi, respectively, we get

e[t] = ẽ′R̃tq̃[0], (40)

p[t](ei) = Pr{e(xt)} ≥ ei} = õ′iR̃
tq̃[0]. (41)

Meanwhile, by Theorem 2 we have

qj,j ≤ sj,j ≤ pj,j, (42)
i−1

∑
l=0

(ql,j − sl,j) ≥ 0,
i−1

∑
l=0

(sl,j − pl,j) ≥ 0, ∀ i < j, (43)

and Lemma 4 implies

i

∑
l=0

(sl,j−1 − sl,j) ≥ 0,
i

∑
l=0

(pl,j−1 − pl,j) ≥ 0 ∀ i < j− 1. (44)

Then, (42)–(44) validate satisfaction of conditions (30)–(32), and by Lemma 2 we know

ẽ′S̃tq̃[0] ≤ ẽ′P̃tq̃[0], ∀t > 0;

õ′iS̃
tq̃[0] ≤ õ′iP̃

tq̃[0], ∀t > 0, 1 ≤ i < n.

Then, we get the conclusion by Definition 2.

The above theorem demonstrates that the dominance of transition matrices introduced
by the binomial crossover operator leads to the outperformance of (1 + 1)EAC on the
uni-modal problem OneMax.

7. Comparison of the Two EAs on Deceptive

In this section, we show that the outperformance of (1 + 1)EAC over (1 + 1)EA may
not always hold on Deceptive. Then, we propose an adaptive strategy of parameter setting
arising from the theoretical analysis, with which (1 + 1)EAC performs better in terms of
tail probability.
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7.1. Numerical Demonstration for Inconsistency between the Transition Dominance and the
Algorithm Outperformance

For the Deceptive problem, we first present a counterexample to show even if the
transition matrix of an EA dominates another EA, we cannot conclude that the former EA
outperforms the latter.

Example 4. We construct two artificial Markov chains as the models of two EAs. Let EAR and
EAS be two EAs starting with an identical initial distribution

p[0] =

(
1
n

,
1
n

, . . . ,
1
n

)t
,

and the respective transition matrices are

R̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1
n3

2
n3 . . . n

n3

1− 1
n3

1
n2

1− 1
n2 − 2

n3

. . .

. . . n−1
n2

1− 1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

S̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2
n3

4
n3 . . . 2n

n3

1− 2
n3

1
n2 +

1
2n

1− n2+2n+8
2n3

. . .

. . . n−1
n2 + n−1

2n
1− n2+n+2

2n2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Obviously, it holds S̃ � R̃. Through computer simulation, we get the curve of EAE difference
of the two EAs in Figure 1a and the curve of TPs difference between the two EAs in Figure 1b.
From Figure 1b, it is clear that EAR does not always outperform EAS because the difference of TPs
is negative at the early stage of the iteration process but later positive.
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Figure 1. Simulation results on the difference of EAEs and TPs for the counterexample. (a) Difference
of expected approximation errors (EAEs). (b) Difference of tail probabilities (TPs).

Now we turn to discuss (1 + 1)EA and (1 + 1)EAC on Deceptive. We demonstrate
(1 + 1)EAC may not outperform (1 + 1)EA over all generations although the transition
matrix of (1 + 1)EAC dominates that of (1 + 1)EA.
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Example 5. In (1 + 1)EA and (1 + 1)EAC, set pm = CRqm = 1/n. For (1 + 1)EAC, let
qm = 1

2 , CR = 2
n . The numerical simulation results of EAEs and TPs for 5000 independent runs

are depicted in Figure 2. It is shown that when n ≥ 9, both EAEs and TPs of (1 + 1)EA could be
smaller than those of (1 + 1)EAC. This indicates that the dominance of the transition matrix does
not always guarantee the outperformance of the corresponding algorithm.
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Figure 2. Numerical comparison for (1 + 1)EA and (1 + 1)EAC applied to the Deceptive problem,
where n refers to the problem dimension. (a) Numerical comparison of expected approximation
errors (EAEs). (b) Numerical comparison of tail probabilities (TPs).

With pm = CRqm = p ≤ 1/n, although the binomial crossover leads to transition dom-
inance of (1 + 1)EAC over (1 + 1)EA, the enhancement of exploitation plays a governing
role in the iteration process. Thus, the imbalance of exploration and exploitation leads
to poor performance of (1 + 1)EAC at some stage of the iteration process. As shown in
the previous two examples, the outperformance of (1 + 1)EAC cannot be drawn from the
dominance of transition matrices.

The fitness landscape of Deceptive confirms that global convergence of EAs on De-
ceptive is principally attributed to the direct transition from level j to level 0, quantified
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by the transition probability r0,j. By investigating the impact of binomial crossover on the
transition probability r0,j, we arrive at an adaptive strategy for the regulation of the muta-
tion rate and the crossover rate, by which performance of both (1 + 1)EA and (1 + 1)EAC
are enhanced.

7.2. Comparisons on the Probabilities to Transfer from Non-Optimal Statuses to the Optimal Status

A comparison between p0,j and s0,j is performed by investigating their monotonicity.
Substituting (13) and (14) into (23) and (24), respectively, we have

p0,j = P1(n− j + 1, pm) = (pm)
n−j+1(1− pm)

j−1, (45)

s0,j = P3(n− j + 1, CR, qm)

=
1
n
[(j− 1)(1− CR) + nCR(1− qm)]C

n−j
R (qm)

n−j+1(1− qmCR)
j−2. (46)

We first investigate the maximum values of p0,j to get the ideal performance of
(1 + 1)EA on the Deceptive problem.

Theorem 5. While

p�m =
n− j + 1

n
, (47)

p0,j gets its maximum values pmax
0,j =

(
n−j+1

n

)n−j+1( j−1
n

)j−1
.

Proof. By (45), we know

∂

∂pm
p0,j = (n− j + 1− npm)pn−j

m (1− pm)
j−2.

While pm = n−j+1
n , p0,j gets its maximum value

pmax
0,j = P1(n− j + 1,

n− j + 1
n

) =

(
n− j + 1

n

)n−j+1( j− 1
n

)j−1
.

Influence of the binomial crossover on s0,j is investigated on condition that pm = qm.
By regulating CR, we compare p0,j with the maximum value smax

0,j of s0,j.

Theorem 6. On condition that pm = qm, the following results hold.

1. p0,1 = smax
0,1 .

2. If qm > n−1
n , p0,2 < smax

0,2 ; otherwise, p0,2 = smax
0,2 .

3. ∀ j ∈ {3, . . . , n− 1}, p0,j ≤ smax
0,j if qm > n−j

n−1 ; otherwise, smax
0,j = p0,j.

4. if qm > 1
n , p0,n < smax

0,n ; otherwise, smax
0,n = p0,n.

Proof. Note that (1 + 1)EAC degrades to (1 + 1)EA when CR = 1. Then, if the maximum
value smax

0,j of s0,j is obtained by setting CR = 1, we have smax
0,j = p0,j; otherwise, it holds

smax
0,j > p0,j.

1. For the case that j = 1, Equation (46) implies

s0,1 = qn
m(CR)

n−1.

Obviously, s0,1 is monotonously increasing in CR. It gets the maximum value while
C�

R = 1. Then, by (45) we get smax
0,1 = p0,1.
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2. While j = 2, by (46) we have

∂s0,2

∂CR
=

n− 1
n

qn−1
m (CR)

n−3(n− 2+(1− nqm)CR).

• If 0 < qm ≤ n−1
n , s0,2 is monotonously increasing in CR, and gets its maximum

value while C�
R = 1. For this case, we know smax

0,2 = p0,2.
• While n−1

n < qm < 1, s0,2 gets its maximum value smax
0,2 by setting

C�
R =

n− 2
nqm − 1

. (48)

Then, we have smax
0,2 > p0,2.

3. For the case that 3 ≤ j ≤ n − 1, we denote

s0,j =
n− j + 1

n
qn−j+1

m I1 +
(j− 1)(1− qm)

n
qn−j+1

m I2,

where

I1 = (CR)
n−j(1− qmCR)

j−1,

I2 = (CR)
n−j+1(1− qmCR)

j−2.

Then,

∂I1

∂CR
= (CR)

n−j−1(1− qmCR)
j−2(n− j− (n− 1)qmCR),

∂I2

∂CR
= (CR)

n−j
(

1− CR
n

)j−3

(n− j + 1− (n− 1)qmCR).

• While 0 < qm ≤ n−j
n−1 , both I1 and I2 are increasing in CR. For this case, s0,j gets

its maximum value when C�
R = 1, and we have smax

0,j = p0,j.

• If n−j+1
n−1 ≤ qm ≤ 1, I1 gets its maximum value when CR = n−j

(n−1)qm
, and I2 gets

its maximum value when CR = n−j+1
(n−1)qm

. Then, s0,j get its maximum value smax
0,j

at some

C�
R ∈

(
n− j

(n− 1)qm
,

n− j + 1
(n− 1)qm

)
. (49)

Accordingly, we know smax
0,j > p0,j.

• If n−j
n−1 < qm < n−j+1

n−1 , I1 gets its maximum value when CR = n−j
(n−1)qm

, and I2 is
monotonously increasing in CR. Then, s0,j get its maximum value smax

0,j at some

C�
R ∈

(
n− j

(n− 1)qm
, 1
]

, (50)

and we know smax
0,j > p0,j.

4. While j = n, Equation (46) implies that

∂s0,n

∂CR
= (n− 1)(1− qmCR)

n−3(1− 2qm − (n− 1− nqm)qmCR).

Denoting
g(qm, CR) = 1− 2qm − (n− 1− nqm)qmCR,
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we can confirm the sign of ∂s0,n/∂CR by considering

∂

∂CR
g(qm, CR) = −(n− 1− nqm)qm.

• While 0 < qm ≤ n−1
n , g(qm, CR) is monotonously decreasing in CR, and its

minimum value is
g(qm, 1) = (nqm − 1)(qm − 1).

The maximum value of g(qm, CR) is

g(qm, 0) = 1− 2qm.

(a) If 0 < qm ≤ 1
n , we have

g(qm, CR) ≥ g(qm, 1) > 0.

Thus, ∂s0,n
∂CR

≥ 0, and s0,n is increasing in CR. For this case, s0,n get its
maximum value when C�

R = 1, and we have smax
0,n = p0,n.

(b) If 1
n < qm ≤ 1

2 , s0,n gets the maximum value smax
0,n when

C�
R =

1− 2qm

qm(n− 1− nqm)
.

Thus, smax
0,n > p0,n.

(c) If 1
2 < qm ≤ n−1

n , g(qm, 0) < 0, and then, s0,n is decreasing in CR. Then, its
maximum value is obtained by setting C�

R = 0, and we know smax
0,n > p0,n.

• While n−1
n < qm ≤ 1, g(qm, CR) is increasing in CR, and its maximum value is

g(qm, 1) = (nqm − 1)(qm − 1) < 0.

Then, s0,n is monotonously decreasing in CR, and its maximum value is obtained
by setting C�

R = 0. Accordingly, we know smax
0,n > p0,n.

In summary, smax
0,n > p0,n while qm > 1

n ; otherwise, smax
0,n = p0,n.

Theorems 5 and 6 present the “best” settings to maximize the transition probabilities
from non-optimal statuses to the optimal level, by which we get a parameter adaptive
strategy that greatly enhances the exploration of compared EAs.

7.3. Parameter Adaptive Strategy to Enhance Exploration of EAs

Since the level index j is equal to the Hamming distance between x and x∗, improve-
ment of level index j is bounded by reduction of the Hamming distance obtained by
replacing x with y. Then, while the local exploitation leads to a transition from level j
to a non-optimal level i, the practically adaptive strategy of parameters can be obtained
according to the Hamming distance between x and y.

When (1 + 1)EA is located at the solution x at status j, Equation (47) implies that the
“best” setting of mutation rate is p�m(j) = n−j+1

n . Once it transfers to solution y at status
i(i < j), the “best” setting changes to p�m(i) =

n−i+1
n . Then, the difference of “best” settings

is j−i
n , bounded from above by H(x,y)

n . Accordingly, the mutation rate of (1 + 1)EA can be
updated to

p′m = pm +
H(x, y)

n
. (51)
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For (1 + 1)EAC, the parameter qm is adapted using the strategy consistent to that of
pm to focus on influence of CR. That is,

q′m = qm +
H(x, y)

n
. (52)

Since s0,j demonstrates different monotonicity for varied levels, one cannot get an
identical strategy for the adaptive setting of CR. As a compromise, we would like to
consider the case that 3 ≤ j ≤ n − 1, which is obtained by random initialization with
overwhelming probability.

According to the proof of Theorem 6, we know CR should be set as great as possible
for the case qm ∈ (0, n−j

n−1 ]; while qm ∈ ( n−j
n−1 , 1], C�

R is located in intervals whose boundary

values are n−j
(n−1)qm

and n−j+1
(n−1)qm

, given by (49) and (50), respectively. Then, while qm is
updated by (52), the update strategy of CR can be confirmed to satisfy that

C′Rq′m = CRqm +
H(x, y)

n− 1
.

Accordingly, the adaptive setting of CR could be

C′R =

(
CRqm +

H(x, y)

n− 1

)
/q′m, (53)

where q′m is updated by (52).
By incorporating the adaptive strategy (51) to (1+ 1)EA, we compare the performance

of its adaptive variant with the adaptive (1 + 1)EAC that regulates its mutation rate and
crossover rate by (52) and (53), respectively. For 13–20 dimensional Deceptive problems,
numerical simulation of the tail probability is implemented by 10,000 independent runs.
The initial value of pm is set as 1

n . To investigate the sensitivity of the adaptive strategy
on initial values of qm, the mutation rate qm in (1 + 1)EAC is initialized with values 1√

n ,
3

2
√

n and 2√
n , and the corresponding variants are denoted by (1 + 1)EA1

C, (1 + 1)EA2
C and

(1 + 1)EA3
C, respectively.

The converging curves of averaged TPs are illustrated in Figure 3. Compared to the
EAs with fixed parameters during the evolution process, the performance of the adaptive
EAs on Deceptive has been significantly improved. Furthermore, we also note that the
converging curves of adaptive (1 + 1)EAC are not sensitive to the initial mutation rate.
Although transition dominance does not necessarily lead to outperformance of (1 + 1)EAC
over (1 + 1)EA, the proposed adaptive strategy can greatly enhance global exploration of
(1 + 1)EAC to a large extent, and consequently, we get the improved adaptive (1 + 1)EAC
that is not sensitive to initial mutation rates.
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Figure 3. Numerical comparison on tail probabilities (TPs) of adaptive (1 + 1)EA and (1 + 1)EAC

applied to the Deceptive problem, where n is the problem dimension. (1 + 1)EA1
C, (1 + 1)EA2

C, and
(1 + 1)EA3

C are three variants of (1 + 1)EAC with qm initialized as 1√
n , 3

2
√

n , and 2√
n , respectively.

8. Conclusions and Discussions

Under the framework of fixed-budget analysis, we conduct a pioneering analysis of
the influence of binomial crossover on the approximation error of EAs. The performance
of EAs after running finite generations is measured by two metrics: the expected value of
the approximation error and the error tail probability, by which we make a case study by
comparing the performance of (1 + 1)EA and (1 + 1)EAC with binomial crossover.

Starting from the comparison of the probability of flipping “l preferred bits”, it is proven
that under proper conditions, incorporation of binomial crossover leads to the dominance
of transition probabilities, that is, the probability of transferring to any promising status is
improved. Accordingly, the asymptotic performance of (1 + 1)EAC is superior to that of
(1 + 1)EA.
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It is found that the dominance of transition probability guarantees that (1 + 1)EAC
outperforms (1 + 1)EA on OneMax in terms of both expected approximation error and tail
probability. However, this dominance does lead to the outperformance on Deceptive. This
means that using binomial crossover may improve the performance on some problems but
not on other problems.

For Deceptive, an adaptive strategy of parameter setting is proposed based on the
monotonicity analysis of transition probabilities. Numerical simulations demonstrate
that it can significantly improve the exploration ability of both (1+ 1)EAC and (1+ 1)EA,
and superiority of binomial crossover is further strengthened by the adaptive strategy.
Thus, a problem-specific adaptive strategy is helpful for improving the performance
of EAs.

Our future work will focus on a further study for the adaptive setting of crossover
rate in population-based EAs on more complex problems, as well as the development of
adaptive EAs improved by the introduction of binomial crossover.
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Abstract: In this paper, we focus on two generalizations of the Lindley distribution and investigate,
for each one separately, some special properties related to the geometric mean (GM) and the cumula-
tive residual entropy (CRE), both of them being of great importance from the theoretical as well as
from the practical point of view.

Keywords: random variable; mean; geometric mean; entropy; cumulative residual entropy; Lindley
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1. Introduction

One of the most widely used numerical characteristics of a random variable is its mean.
If X is a continuous random variable whose values are strictly positive and the probability
density function of X is f (x), then the geometric mean [1,2] is

GM(X) = e
∫ ∞

0 (ln x) f (x)dx, (1)

where x > 0.
The concept of geometric mean has various uses [1,3–7] in many fields of science.

A detailed approach can be found in [1]. The formulas for the geometric mean of some
probability distributions are also provided in [1]. In the present work, one of the topics of
discussion is the geometric mean of two continuous random variables that will be specified
in the next section.

Another look at a random variable is given by information theory. In this framework,
a central role is played by the concept of entropy, which is a measure of uncertainty. If X is
a discrete random variable with possible values xi, i = 1, ..., n, n ∈ N∗ and

pi = P(X = xi), i ∈ {1, ..., n},

Shannon entropy of X [8] is

H(X) = −
n

∑
i=1

pi loga pi. (2)

The basis of the logarithm can be 2 but, more generally, it can be chosen depending on
the application. If this base is equal to the number e, then it is obtained

H(X) = −
n

∑
i=1

pi ln pi. (3)
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If X is a continuous random variable with the probability density function f (x) and D
is the set where f (x) is strictly positive, then the differential entropy of X [9] is

h(x) = −
∫

D
f (x) ln f (x)dx. (4)

The differential entropy of a continuous random variable has some interesting proper-
ties [9] but compared to Shannon entropy for the discrete case it has certain limitations [10]
that must be taken into account. For example, the Shannon entropy is positive but the
differential entropy does not always have this property. To overcome such inconveniences,
another measure of uncertainty is proposed [10], namely the cumulative residual entropy.
If X is a non-negative random variable with cumulative distribution function F(x), then
the cumulative residual entropy of X is

E(X) = −
∫ ∞

0
F(x) ln F(x)dx, (5)

where
F(x) = 1− F(x). (6)

In [10] some properties of the cumulative residual entropy are given and the relation-
ship between it and the differential entropy is established. Also in [10], the usefulness of
CRE in reliability engineering and computer vision is shown. In various works, the concept
of CRE is a good starting point for obtaining new and interesting results. For instance,
in [11], the Bayesian estimator of the dynamic cumulative residual Rényi entropy is dis-
cussed. In [12], there are studied some properties of dynamic cumulative residual entropy
and in [13] is investigated the CRE for coherent and mixed systems where the component
lifetimes are identically distributed. In [14] is generated the CRE for the case of fractional
order and its properties are given, and in [15] is proposed a consistent estimator for CRE,
which has the property that its asymptotic distribution is normal.

The Lindley distribution [16,17] is one of the random variables that is important not
only for its direct applications but also for the many theoretical developments that have
followed it. For instance, in [17], some of its characteristics such as moments, entropies
and so on, are extensively studied. In addition, the Lindley distribution is proposed for
modeling the waiting time in a bank [17]. The probability density function of the Lindley
distribution is

f (x; θ) : (0, ∞)→ R, f (x; θ) =
θ2

θ + 1
(1 + x)e−θx, (7)

with θ > 0.
The cumulative distribution function of the Lindley distribution [17] is

F(x; θ) = 1− 1 + θ + θx
1 + θ

e−θx, x > 0.

Regarding the developments based on the Lindley distribution, it is worth noting the
introduction of new random variables [18–27]. In [18], two new families of distributions
with applications in repairable data are considered. A new model, namely the generalized
Lindley of integer order is given in [19] and its application in studying some medical
data is also emphasized. In [20], a new distribution that can be used in insurance is
proposed. The model of distribution discussed in [21] is suitable in reliability and fatigue
life probems. In [22], a three-parameter Lindley distribution is introduced. A five-parameter
generalized Lindley distribution is given in [23]. It was used in the study of four data sets,
among them a set of medical data and a set of data regarding the strength of glass in a
certain environment [23]. A discrete Lindley distribution is given in [24]. It is compared
with geometric and Poisson distributions and its usefulness in analyzing some data sets,
including medical data, is studied. A Lindley distribution of discrete type is given in [25]
and it is employed in the study of automobile claim data, a situation in which it is compared
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with the Poisson model. In [26], a distribution called exponential-modified discrete Lindley
distribution is proposed and used in modelling exceedances of flood peaks for a river or
the period between earthquakes having a certain magnitude. The three-parameter Lindley
distribution given in [22] is considered in [27] where some medical data are modeled. In the
present paper, two continuous distributions [22,23] that generalize the Lindley distribution
are discussed. Following the results already obtained [22,23], some new relationships
regarding these two distributions are given.

2. Preliminaries Materials and Methods

This work focuses on two random variables that are related to the Lindley distribution.
It is about a continuous random variable with three parameters [22] and one with five
parameters [23]. For each one, the geometric mean and the cumulative residual entropy
will be determined. There is a relationship between cumulative residual entropy and
differential entropy [10] but in this paper the formulas for the cumulative residual entropy
will be deduced using only its definition. For both random variables that will be analyzed
we will consider that all parameters are strictly positive, except for β that is nonnegative.
The three-parameter Lindley distribution X [22] has the probability density function

fX(x; θ, α, μ) : (0, ∞)→ R, fX(x; θ, α, μ) =
θ2

θα + μ
(α + μx)e−θx. (8)

The corresponding cumulative distribution function is [22]

FX(x; θ, α, μ) : R→ R, FX(x; θ, α, μ) =

⎧⎨⎩ 1−
(

1 +
θμx

θα + μ

)
e−θx, x > 0

0, x ≤ 0
.

The five-parameter Lindley distribution Y [23] has the probability density function

fY(y; δ, α, η, θ, β) : (β, ∞)→ R, fY(y; δ, α, η, θ, β) =
θ

δα + η
[δα + ηθ(y− β)]e−θ(y−β). (9)

In this case, the cumulative distribution function is [23]

FY(y; δ, α, η, θ, β) : R→ R, FY(y; δ, α, η, θ, β) =

⎧⎨⎩ 1−
[

1 +
θη(y− β)

δα + η

]
e−θ(y−β), y > β

0, y ≤ β
.

The three-parameter distribution [22] can be viewed as a sub-model of the five-
parameter distribution [23] because the five-parameter distribution reduces to the three-
parameter distribution for β = 0, δ = θ and η = μ [23]. Some details about the relations
between the parameters of these two random variables are given in [23].

In the next section of the paper, some notions and results related to mathematical
analysis will be used. These are briefly presented below.

The Euler–Mascheroni constant is

γ = lim
n→∞

(
n

∑
k=1

1
k
− ln n

)
≈ 0.57721

and one of the ways this constant can be written [28] is

γ = −
∫ ∞

0
e−x ln xdx. (10)

If p > 0, gamma function [29] is defined as
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Γ(p) =
∫ ∞

0
xp−1e−xdx. (11)

Among the many properties of the gamma function [29], there are the following
relationships:

Γ(1) =
∫ ∞

0
e−xdx = 1 (12)

and
Γ(n) = (n− 1)!, for n ∈ N, n ≥ 2. (13)

The integral

E1(x) =
∫ ∞

x

e−t

t
dt (14)

is related to the exponential integral [30].

3. Results

Theorem 1. If X is a random variable having the probability density function

fX(x; θ, α, μ) : (0, ∞)→ R, fX(x; θ, α, μ) =
θ2

θα + μ
(α + μx)e−θx,

with θ > 0, α > 0, μ > 0, then

GM(X) =
1
θ

e
μ

θα+μ−γ, (15)

where γ is the Euler–Mascheroni constant.

Proof. We have
GM(X) = eI1 ,

where
I1 =

∫ ∞

0
(ln x) fX(x; θ, α, μ)dx.

Consider the integrals

J1 =
∫ ∞

0
(ln x)e−θxdx, J2 =

∫ ∞

0
x(ln x)e−θxdx.

We have

J1 =
∫ ∞

0
(ln x)e−θxdx =

∫ ∞

0

(
ln

t
θ

)
e−t 1

θ
dt =

=
1
θ

[∫ ∞

0
(ln t)e−tdt− ln θ

∫ ∞

0
e−tdt

]
=
−γ− ln θ

θ
.

Consider

J21 =
∫ w

0
x(ln x)e−θxdx, J22 =

∫ ∞

w
x(ln x)e−θxdx,

where w ∈ (0, ∞).
We have

J21 = lim
u→0
u>0

∫ w

u
x(ln x)e−θxdx = lim

u→0
u>0

∫ w

u
x(ln x)

(
e−θx

−θ

)′
dx =

= lim
u→0
u>0

{
−1

θ

[
w(ln w)e−θw − u(ln u)e−θu

]
+

1
θ

∫ w

u
(1 + ln x)e−θxdx

}
=
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= −1
θ

w(ln w)e−θw +
1
θ

lim
u→0
u>0

∫ θw

θu

(
1 + ln

t
θ

)
e−t 1

θ
dt =

= −1
θ

w(ln w)e−θw +
1
θ2 lim

u→0
u>0

[∫ θw

θu
(ln t)e−tdt + (1− ln θ)

∫ θw

θu
e−tdt

]

and

J22 = lim
v→∞

∫ v

w
x(ln x)e−θxdx = lim

v→∞

∫ v

w
x(ln x)

(
e−θx

−θ

)′
dx =

= lim
v→∞

{
−1

θ

[
v(ln v)e−θv − w(ln w)e−θw

]
+

1
θ

∫ v

w
(1 + ln x)e−θxdx

}
=

=
1
θ

w(ln w)e−θw +
1
θ

lim
v→∞

∫ θv

θw

(
1 + ln

t
θ

)
e−t 1

θ
dt =

=
1
θ

w(ln w)e−θw +
1
θ2 lim

v→∞

[∫ θv

θw
(ln t)e−tdt + (1− ln θ)

∫ θv

θw
e−tdt

]
.

We obtain

J2 = J21 + J22 =
1
θ2

[∫ ∞

0
(ln t)e−tdt + (1− ln θ)

∫ ∞

0
e−tdt

]
=

1
θ2 (−γ + 1− ln θ).

Finally,

I1 =
∫ ∞

0
(ln x) f (x; θ, α, μ)dx =

θ2

θα + μ

∫ ∞

0
(ln x)(α + μx)e−θxdx =

=
θ2

θα + μ
(αJ1 + μJ2) =

θ2

θα + μ

(
α
−γ− ln θ

θ
+ μ

−γ + 1− ln θ

θ2

)
=

= − ln θ +
μ

θα + μ
− γ

and

GM(X) = eI1 =
1
θ

e
μ

θα+μ−γ.

Theorem 2. If Y is a random variable having the probability density function

fY(y; δ, α, η, θ, β) : (β, ∞)→ R, fY(y; δ, α, η, θ, β) =
θ

δα + η
[δα + ηθ(y− β)]e−θ(y−β),

with δ,α, η, θ ∈ (0, ∞), β ∈ [0, ∞), then

GM(Y) =

⎧⎨⎩ eI2 , β > 0
1
θ

e
η

δα+η−γ, β = 0
, (16)

where

I2 = ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβE1(θβ). (17)

Proof. If β > 0, we have

I2 =
∫ ∞

β
(ln y) fY(y; δ, α, η, θ, β)dy =

1
δα + η

lim
v→∞

∫ v

β
(ln y)[δα + ηθ(y− β)]θe−θ(y−β)dy =
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=
1

δα + η
lim

v→∞

∫ θ(v−β)

0

(
ln

θβ + z
θ

)
(δα + ηz)e−zdz =

=
1

δα + η
lim

v→∞

∫ θ(v−β)

0

(
ln

θβ + z
θ

)
(δα + ηz)(−e−z)′dz =

=
1

δα + η
lim

v→∞

{[(
ln

θβ + z
θ

)
(δα + ηz)(−e−z)

]∣∣∣∣θ(v−β)

0
+

+
∫ θ(v−β)

0

(
δα + ηz
θβ + z

+ η ln
θβ + z

θ

)
e−zdz

}
=

=
δα ln β

δα + η
+

1
δα + η

lim
v→∞

∫ θ(v−β)

0

(
η +

δα− ηθβ

θβ + z
+ η ln

θβ + z
θ

)
e−zdz =

=
δα ln β

δα + η
+

1
δα + η

lim
v→∞

[
η
∫ θ(v−β)

0
e−zdz +

∫ θ(v−β)

0

δα− ηθβ

θβ + z
e−zdz+

+η
∫ θ(v−β)

0

(
ln

θβ + z
θ

)
e−zdz

]
=

=
ηΓ(1) + δα ln β

δα + η
+

1
δα + η

lim
v→∞

[∫ θ(v−β)

0

δα− ηθβ

θβ + z
e−zdz+

+η
∫ θ(v−β)

0

(
ln

θβ + z
θ

)
(−e−z)′dz

]
=

=
η + δα ln β

δα + η
+

1
δα + η

lim
v→∞

{∫ θ(v−β)

0

δα− ηθβ

θβ + z
e−zdz−

−η

[(
ln

θβ + z
θ

)
e−z
]∣∣∣∣θ(v−β)

0
+ η

∫ θ(v−β)

0

e−z

θβ + z
dz

}
=

=
η + (δα + η) ln β

δα + η
+

1
δα + η

lim
v→∞

[
(δα− ηθβ)

∫ θ(v−β)

0

e−z

θβ + z
dz + η

∫ θ(v−β)

0

e−z

θβ + z
dz
]
=

= ln β +
η

δα + η
+

δα− ηθβ + η

δα + η
lim

v→∞

∫ θ(v−β)

0

e−z

θβ + z
dz =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

∫ θ(v−β)

0

e−θβ−z

θβ + z
dz =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

∫ θv

θβ

e−t

t
dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ
∫ ∞

θβ

e−t

t
dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβE1(θβ).

If β = 0, we have
GM(Y) = eI3 ,

where

I3 =
∫ ∞

0
(ln y)

θ

δα + η
(δα + ηθy)e−θydy =

θ

δα + η
(δαJ1 + ηθ J2) =

=
θ

δα + η

(
δα
−γ− ln θ

θ
+ ηθ

−γ + 1− ln θ

θ2

)
= − ln θ +

η

δα + η
− γ.

Theorem 3. If Y is a random variable having the cumulative distribution function
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FY(y; δ, α, η, θ, β) : R→ R, FY(y; δ, α, η, θ, β) =

⎧⎨⎩ 1−
[

1 +
θη(y− β)

δα + η

]
e−θ(y−β), y > β

0, y ≤ β
,

with δ,α, η, θ ∈ (0, ∞), β ∈ [0, ∞), then

E(Y) = 1
θ(δα + η)

[
δα + 2η − ηe

δα+η
η E1

(
δα + η

η

)]
. (18)

Proof. We have

FY(y; δ, α, η, θ, β) =

[
1 +

θη(y− β)

δα + η

]
e−θ(y−β), for y > β,

and

E(Y) = −
∫ ∞

β
FY(y; δ, α, η, θ, β) ln FY(y; δ, α, η, θ, β)dy =

= − lim
v→∞

∫ v

β

[
1 +

θη(y− β)

δα + η

]
e−θ(y−β) ln

{[
1 +

θη(y− β)

δα + η

]
e−θ(y−β)

}
dy =

= −1
θ

lim
v→∞

∫ θ(v−β)

0

(
1 +

ηz
δα + η

)
e−z ln

[(
1 +

ηz
δα + η

)
e−z
]

dz =

= −1
θ

lim
v→∞

∫ θ(v−β)

0

(
1 +

ηz
δα + η

)
e−z
[
−z + ln

(
1 +

ηz
δα + η

)]
dz =

=
1
θ

lim
v→∞

∫ θ(v−β)

0

{
ze−z +

η

δα + η
z2e−z −

(
1 +

ηz
δα + η

)[
ln
(

1 +
ηz

δα + η

)]
e−z
}

dz =

=
1
θ

{
Γ(2) +

η

δα + η
Γ(3)− lim

v→∞

∫ θ(v−β)

0

(
1 +

ηz
δα + η

)[
ln
(

1 +
ηz

δα + η

)]
e−zdz

}
=

=
1
θ

[
Γ(2) +

η

δα + η
Γ(3)− lim

v→∞

∫ θ(v−β)

0

δα + η + ηz
δα + η

(
ln

δα + η + ηz
δα + η

)
e−zdz

]
=

=
1
θ

(
1 +

2η

δα + η

)
− 1

θ
lim

v→∞

∫ θ(v−β)

0

δα + η + ηz
δα + η

(
ln

δα + η + ηz
δα + η

)
(−e−z)′dz =

=
δα + 3η

θ(δα + η)
− 1

θ
lim

v→∞

{[
δα + η + ηz

δα + η

(
ln

δα + η + ηz
δα + η

)(−e−z)]∣∣∣∣θ(v−β)

0
+

+
η

δα + η

∫ θ(v−β)

0

(
1 + ln

δα + η + ηz
δα + η

)
e−zdz

}
=

=
δα + 3η

θ(δα + η)
− η

θ(δα + η)
lim

v→∞

∫ θ(v−β)

0

[
e−z +

(
ln

δα + η + ηz
δα + η

)
e−z
]

dz =

=
δα + 3η

θ(δα + η)
− η

θ(δα + η)

[
Γ(1) + lim

v→∞

∫ θ(v−β)

0

(
ln

δα + η + ηz
δα + η

)
(−e−z)′dz

]
=

=
δα + 3η

θ(δα + η)
− η

θ(δα + η)
− η

θ(δα + η)
lim

v→∞

[(
−e−z ln

δα + η + ηz
δα + η

)∣∣∣∣θ(v−β)

0
+

+
∫ θ(v−β)

0

η

δα + η + ηz
e−zdz

]
=

=
δα + 2η

θ(δα + η)
− η

θ(δα + η)
lim

v→∞

∫ θ(v−β)

0

η

δα + η + ηz
e−zdz =

=
δα + 2η

θ(δα + η)
− η

θ(δα + η)
e

δα+η
η lim

v→∞

∫ θ(v−β)

0

η

δα + η + ηz
e−z− δα+η

η dz =

=
δα + 2η

θ(δα + η)
− η

θ(δα + η)
e

δα+η
η lim

v→∞

∫ θ(v−β)+
δα+η

η

δα+η
η

1
t

e−tdt =
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=
δα + 2η

θ(δα + η)
− η

θ(δα + η)
e

δα+η
η

∫ ∞

δα+η
η

1
t

e−tdt =

=
1

θ(δα + η)

[
δα + 2η − ηe

δα+η
η E1

(
δα + η

η

)]
.

Theorem 4. If X is a random variable having the cumulative distribution function

FX(x; θ, α, μ) : R→ R, FX(x; θ, α, μ) =

⎧⎨⎩ 1−
(

1 +
θμx

θα + μ

)
e−θx, x > 0

0, x ≤ 0
,

with θ > 0, α > 0, μ > 0, then

E(X) =
1

θ(θα + μ)

[
θα + 2μ− μe

θα+μ
μ E1

(
θα + μ

μ

)]
. (19)

Proof. The proof comes directly from Theorem 3, by choosing β = 0, δ = θ and η = μ.

4. Discussion

Regarding the characteristics of the random variables, one can notice that in some pa-
pers the geometric mean is considered [1–7]. In the field of the study of uncertainty related
to a random variable, the cumulative residual entropy [10] overcomes some drawbacks of
differential entropy.

In this paper, two generalizations of the Lindley distribution [22,23] were discussed.
The three-parameter distribution [22] is a submodel of the five-parameter [23] one. The
work focused on the geometric mean and cumulative residual entropy of these two distri-
butions. The cumulative residual entropy of the one with three parameters can be deduced
directly from the one with five parameters, as shown in Theorems 3 and 4.

In connection with the geometric mean, remark that the integral I2 from Theorem 2
can be transformed as follows:

I2 = ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβE1(θβ) =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ
∫ ∞

θβ

e−t

t
dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

∫ v

θβ

e−t

t
dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

∫ v

θβ
e−t(ln t)′dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

[(
e−t ln t

)∣∣v
θβ

+
∫ v

θβ
e−t ln tdt

]
=

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)(
− ln θ − ln β + eθβ

∫ ∞

θβ
e−t ln tdt

)
=

=
η

δα + η
+

ηθβ ln β

δα + η
+

(
1− ηθβ

δα + η

)(
− ln θ + eθβ

∫ ∞

θβ
e−t ln tdt

)
.

We have

lim
β→0
β>0

[
η

δα + η
+

ηθβ ln β

δα + η
+

(
1− ηθβ

δα + η

)(
− ln θ + eθβ

∫ ∞

θβ
e−t ln tdt

)]
=

=
η

δα + η
− ln θ +

∫ ∞

0
e−t ln tdt = − ln θ +

η

δα + η
− γ.
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Therefore the geometric mean of the five-parameter distribution is right continuous
at zero with respect to the parameter β. By taking, in Theorem 2, β = 0 and then making
the substitutions δ = θ, η = μ, the geometric mean of the three-parameter distribution
with three parameters can be deduced from the geometric mean of the five-parameter
distribution. Due to the special position of the parameter β in the calculation of inte-
grals, the geometric mean was independently calculated for each distribution, as seen in
Theorems 1 and 2.

5. Conclusions

From the rather large set of Lindley-type distributions, two related distributions were
selected for study. For each of them, the formulas for geometric mean and cumulative
residual entropy were obtained. These results are in addition to those already known
from previous works, thus increasing the area of knowledge concerning the theme of
Lindley-type distributions.
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Abstract: In this work, a new family of distributions based on the Laplace distribution is introduced.
We define this new family by its stochastic representation as the sum of two independent random
variables, one with a Laplace distribution and the other with an exponential distribution. Using a
Monte Carlo simulation study, the statistical performance of the estimators obtained by the moments
and maximum likelihood methods were empirically evaluated. We studied the coverage probabilities
and mean length of the confidence intervals of the corresponding parameters based on the asymptotic
normality of these estimators. This simulation study reported a good statistical performance of these
estimators. Fits were made to three real data sets with the new distribution, two related to chemical
concentrations and one to the environment, comparing it with three similar distributions given in
the literature. We have used information criteria for the selection of models. These results showed
that the exponentially modified Laplace model can be an alternative distribution to model skewed
data with high kurtosis. The new approach is a contribution to the tools of statisticians and various
professionals interested in modeling data with high kurtosis.

Keywords: exponentially modified Laplace distribution; moments; skewness and kurtosis coefficients

MSC: 62P12

1. Introduction

There are several investigations that use the Laplace distribution to model data from
certain fields based on an empirical fit using goodness-of-fit techniques. For example, in
environmental problems, the Laplace distribution is used to analyze (or model) random
variables that determine maximum pollution values and describe times of high pollution. In
mining, the Laplace distribution is used to analyze the mineral content in soil samples [1,2].

However, not all data related to these types of problems have a symmetric behav-
ior. For this reason, other distributions have been proposed that are capable of better
modeling this type of data. In this sense, Agu and Onwukwe [3] presented the modified
Laplace distribution (ML), Grushka [4] presented the exponentially modified Gaussian
distribution (EMG) and Reyes et al. [5] presented the exponentially modified logistic distri-
bution (EMLOG). One of the advantages of these new probability distributions obtained
through mixtures is that the obtained distributions generally have longer tails than the base
distribution, thus giving rise to better fits for empirical frequency distributions, [4,5].

Our research is based on the theory of probability distributions and based on the pro-
cess of mixtures of probability distributions, it proposes a new parametric probability distri-
bution using the Laplace distribution. The new distribution depends on three parameters
and is obtained by adding two independent random variables: one with a Laplace distribu-
tion and the other with an exponential distribution. This distribution can be used as an
alternative to some existing distributions. The density function of the new distribution
is obtained using the stochastic representation Y = σ(X + V) + μ where X and V are

Mathematics 2022, 10, 3515. https://doi.org/10.3390/math10193515 https://www.mdpi.com/journal/mathematics71
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independent random variables, such that X is standard Laplace distribution and V is
exponentially distributed with parameter λ, where μ is the location parameter, σ is the
scale parameter, and λ is the skewness parameter. This document is organized as follows:
Section 2, in order to make this work self-contained, presents the probability distribu-
tions of the Laplace, exponential, modified Laplace, exponentially modified Gaussian, and
exponentially modified logistic distributions with some characteristics of these that will
be useful later. In Section 3, the exponentially modified Laplace probability distribution
is constructed, obtaining the density and the main characteristics of the distribution. In
Section 4, the methods of moments and maximum likelihood are presented to estimate
the parameters of the distribution. A simulation study for the theoretical validation of
the model is also presented. Section 5 shows a comparative analysis and a discussion
of the results obtained by fitting the different data sets with the modified Laplace (ML),
exponentially modified Gaussian (EMG), and exponentially modified logistic distributions
(EMLOG) and the proposed exponentially modified Laplace distribution (EML). Finally,
in Section 6, conclusions are drawn from the work.

2. Preliminaries

The classical Laplace distribution (also known as Laplace’s first law) is a probability
distribution, given by the density function

f (x; θ, s) =
1
2s

e−
|x−θ|

s , x ∈ R

where −∞ < θ < ∞ and s > 0 are the location and scale parameters, respectively
(Johnson et al. [6]), and we will denote it as X ∼ L(θ, s). When the location param-
eter is equal to zero and the scale parameter is equal to one, then the standard Laplace
distribution function is obtained, denoted by L(0, 1). The nth moment for a random variable
X ∼ L(0, 1), is given by:

E(Xn) =
1
2

n!{1 + (−1)n} n = 1, 2, . . . (1)

The continuous random variable, say X, is said to have an exponential distribution if
it has the following probability density function:

f (x; λ) =

{
λ e−λx si x > 0

0 si x ≤ 0

where λ is called the rate of the distribution and will be represented as X ∼ exp(λ). The
nth moment for a random variable X ∼ exp(λ) is given by the following expression:

E(Xn) =
n!
λn , n = 1, 2, . . . (2)

Agu and Onwukwe [3] presented the modified Laplace distribution whose density function
is given by

fX(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ
2σ

(
1
2 e

x−μ
σ

)λ−1
e

x−μ
σ , x ≤ μ

λ
2σ

(
1− 1

2 e−
x−μ

σ

)λ−1
e−

x−μ
σ , x > μ

x ∈ R, which is denoted by X ∼ ML(μ, σ, λ).
The pd f of a random variable with an exponentially modified Gaussian distribution

EMG (Grushka [4]) is given by:

fY(y; μ, σ, λ) =
λ

2
e−

λ
2 (2y−2μ−λσ2)er f c

(
2μ + λσ2 − y√

2σ2

)
, x ∈ R
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and is denoted as Y ∼ EMG(μ, σ, λ), where er f c(z) = 2√
π

∫ ∞
z e−t2

dt.
A random variable X has a logistic distribution with location parameter α ∈ R and

scale parameter β > 0 if its density function is:

fX(x; α, β) =
e−(x−α)/β

β
(
1 + e−(x−α)/β

)2 , x ∈ R

which is denoted as X ∼ LOG(α, β). When the location parameter is 0 and the scale
parameter is 1, then the standard logistic distribution function is obtained.

Reyes et al. [5], using the methodology given by [4], introduces the exponentially
modified logistic distribution by the following stochastic representation:

Y = Z + T,

where Z ∼ LOG(α, β) and T ∼ exp(1/β) are random independent variables and are
denoted by Y ∼ EMLOG(α, β), transforming this into a more flexible distribution in terms
of working with data that have high kurtosis. Its function is given by:

fY(y|α, β ) =
1
β2 e

y−α
β

∫ ∞

0
e−

2w
β

[
1 + e

y−w−α
β

]−2
dw, −∞ < y < ∞

and we denote as Y ∼ EMLOG(α, β).

3. Exponentially Modified Laplace Distribution

In this section, the exponentially modified Laplace distribution (EML) is presented
using the Grushka methodology [4], considering the location and scale parameters. This
distribution is obtained by substituting the normal distribution for the standard Laplace
distribution in the stochastic representation. The flexibility of this new distribution allows
better capture of outliers. We will start by deriving its density function.

3.1. Density Function

The exponentially modified Laplace distribution admits the following stochastic rep-
resentation as

Y = σ(X + V) + μ, (3)

where X and V are independent random variables such that X ∼ L(0, 1) and V ∼ exp(λ),
where μ is the location parameter, σ is the scale parameter, and λ is the skewness parameter,
so we say that Y follows an exponentially modified Laplace distribution and is denoted by
Y ∼ EML(μ, σ, λ).

Proposition 1. Let Y be a random variable such that Y ∼ EML(μ, σ, λ). Then, its probability
density function (pdf) is given by

fY(y; μ, σ, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
2σ(λ−1)

[
e−

y−μ
σ −

(
2

λ+1

)
e−λ( y−μ

σ )
]

, y > μ, λ �= 1

[
2( y−μ

σ )+1
4σ

]
e−

y−μ
σ , y > μ, λ = 1

λ
2σ(λ+1) e

y−μ
σ , y < μ

(4)
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Proof. Using the stochastic representation in (3), we have

X ∼ L(0, 1) ⇒ fX(x) =
1
2

e−|x| , −∞ < x < ∞,

V ∼ exp(λ) ⇒ fV(v) = λe−λv , v > 0

and the Jacobian transformation approach, it follows that:

Y = σ(X + V) + μ
W = V

}
⇒ X = Y−μ

σ −W
V = W

⇒ J =

∣∣∣∣∣
∂x
∂y

∂x
∂w

∂v
∂y

∂v
∂w

∣∣∣∣∣ =
∣∣∣∣ 1

σ −1
0 1

∣∣∣∣ = 1
σ

.

Then,

fY,W(y, w) = |J| fX,V

(
y− μ

σ
− w, w

)
fY,W(y, w) =

1
σ

fX

(
y− μ

σ
− w

)
fV(w)

fY(y) =
∫ ∞

0

1
σ

fX

(
y− μ

σ
− w

)
fV(w) dw

fY(y) =
λ

2σ

∫ ∞

0
e−λwe−| y−μ

σ −w| dw,−∞ < y < ∞,

solving the integral, for λ �= 1 and λ = 1, the result (4) is obtained.

Proposition 2. If Y ∼ EML(μ, σ, λ) and λ → ∞, then Y ∼ L(μ, σ).

Proof. If λ → ∞ in the density function given in (4), the result is obtained.

Figure 1 graphically illustrates the behavior of the density function of the exponentially
modified Laplace distribution and the standard Laplace for different values of λ (upper), it
is observed that as the parameter λ decreases, the tails become heavier. On the other hand,
on the lower portion of the figure, the densities of the standard Laplace, modified Laplace,
and exponentially modified Laplace distributions are plotted, in which greater flexibility is
observed in the EML model.

Proposition 3. Let Y be a random variable such that Y ∼ EML(μ, σ, λ), then its cdf is given by

FY(t; μ, σ, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
2(λ+1) +

λ
2(λ−1)

[
1− e−

t−μ
σ − 2

λ(λ+1)

(
1− e−λ

(
t−μ

σ

))]
, t > μ, λ �= 1

1
4

[
4− 3e−

t−μ
σ − 2(t−μ)

σ e−
t−μ

σ

]
, t > μ, λ = 1

λ
2(λ+1) e

t−μ
σ , t < μ.

(5)
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Figure 1. Graphical comparison of EML distributions with L for different values of λ (upper) and
with ML and L (lower).

Proof. Using the definition of cdf, we have

FY(t; μ, σ, λ) =
∫ t

−∞

λ

2σ

∫ ∞

0
e−λwe−| y−μ

σ −w| dwdy, −∞ < t < ∞,

solving the integral for, λ �= 1 and λ = 1, the result (5) is obtained.

Corollary 1. Let Y be a random variable such that Y ∼ EML(μ, σ, λ). Then, the reliability
function defined as R(y) = P(Y > y) = 1− FY(y), y > 0 is given by

R(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− λ
2(λ+1) − λ

2(λ−1)

[
1− e−

t−μ
σ − 2

λ(λ+1)

(
1− e−λ

(
t−μ

σ

))]
, t > μ, λ �= 1

1− 1
4

[
4− 3e−

t−μ
σ − 2(t−μ)

σ e−
t−μ

σ

]
, t > μ, λ = 1

1− λ
2(λ+1) e

t−μ
σ , t < μ.

(6)

Proof. Using the reliability function definition R(y) and (5), the result is directly obtained.
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Through Figure 2, we graphically illustrate the behavior of the cumulative distribu-
tion function (cdf) for the exponentially modified Laplace distribution. Compared to the
standard Laplace distribution, it reflects a slower growth, implying a greater capture of
outlier data.

Figure 2. Comparison of the cdf of the EML distribution (solid line) for λ = 2 (upper) and λ = 1
(lower) with the cdf of the distribution L (dashed line).

3.2. Reliability Function Comparison of ML, EMLOG, EMG, and EML Distributions

The reliability function of a random variable Y indicates the probability that a variable
exceeds the value of y. In this section, using Table 1, for a fixed value of λ = 0.7, we make
a brief comparison where it is observed that the tails of the EML distribution are heavier
than those of the ML, EMLOG, and EMG distributions.
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Table 1. Reliability function comparison for distributions ML, EMLOG, EMG, and EML.

Distribution P(Y > 2) P(Y > 2.5) P(Y > 3) P(Y > 3.5) P(Y > 4) P(Y > 4.5) P(Y > 5)

ML 0.2444 0.1543 0.0958 0.0530 0.0361 0.0220 0.0134
EMLOG 0.2878 0.2116 0.1517 0.1065 0.0735 0.0501 0.0377

EMG 0.3073 0.2202 0.1561 0.1102 0.0775 0.0547 0.0385
EML 0.3256 0.2449 0.1820 0.1339 0.0978 0.0711 0.0515

Likewise, observing the graphical illustration represented in Figure 3, it can be seen
that the tails of the EML distribution are heavier than those of the ML, EMLOG, and
EMG distributions.

Figure 3. Comparison of the reliability function of the EML distribution (solid line) for λ = 0.7
with the reliability function of the ML, EMLOG, and EMG distributions (dashed line, dotted line,
dash-dotted line).

3.3. Moments

The following proposition presents us with a formula that, with the use of numerical
techniques, allows us to calculate the rth moment of an exponentially modified Laplace
distribution.

Proposition 4. If Y ∼ EML(μ, σ, λ), the rth moment of Y is given by:

μr = E[Yr] =
r

∑
j=0

(
r
j

)
σjμr−j

[
j

∑
k=0

(
j
k

)
k!{1 + (−1)k)}(j− k)!

2λj−k

]

Proof. Using the stochastic representation given in (3), applying the binomial theorem and
the moments of the standard Laplace and exponential distributions given in (1) and (2),
respectively, the result is obtained.
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Corollary 2. Let Y ∼ EML(μ, σ, λ), then

μ1 =
σ

λ
+ μ

μ2 = 2σ2
(

1 +
1

λ2

)
+

2σμ

λ
+ μ2

μ3 =
6σ3

λ

(
1 +

1
λ2

)
+ 6σ2μ

(
1 +

1
λ2

)
+

3σμ2

λ
+ μ3

μ4 = 24σ4
(

1 +
1

λ2 +
1

λ4

)
+

24σ3μ

λ

(
1 +

1
λ2

)
+

12σ2μ2

λ

(
1 +

1
λ2

)
+

4σμ3

λ
+ μ4

Proof. Using Proposition 4 with r = 1, 2, 3, 4 we obtain the results.

Corollary 3. Let Y ∼ EML(μ, σ, λ). Then, the mean and variance are given, respectively, by

E(Y) = μ +
σ

λ

Var(Y) = σ2
(

2 +
1

λ2

)
Proof. Using μ1 and μ2 obtained in Corollary 2, and substituting in V(Y) = μ2 − (μ1)

2,
we obtain the results.

Corollary 4. Let Y ∼ EML(μ, σ, λ), then the asymmetry and kurtosis coefficient of Y is given by

√
β1 =

2

(2λ2 + 1)
3
2

β2 =
24λ4 + 12λ2 + 9

(2λ2 + 1)2

Proof. Using the standardized skewness and kurtosis coefficients of Y, the result is reached.

Figure 4 shows that the kurtosis coefficient for the distribution (EML) takes values in
the interval [5, 9], decreasing for values of λ between [0, 1] and increasing for values greater
than one.
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Figure 4. Graphical comparison of the kurtosis coefficient between the exponentially modified
Laplace distribution (solid line), the exponentially modified Gaussian distribution (dashed line), and
the exponentially modified logistic distribution (dotted line).

4. Estimation

4.1. Moment Estimators

The following proposition shows analytic expressions for the moment estimators of μ,
σ, and λ for the exponentially modified Laplace distribution (EML).

Proposition 5. Let y1, y2, . . . , yn be a random sample from the distribution of random variable
Y ∼ EML(μ, σ, λ), so that the moment estimators for θ = (μ, σ, λ) are obtained by solving the
following numerical equation for μ:

μ3 − 8yμ2 + 15y2μ− 6y3 − 3ys2 + y3 = 0,

later, the moment estimator for σ is obtained by substituting the moment estimator for μ (μ̂M), in
the following equation:

σ̂M =

√
y2 − 2y(y− μ̂M)− μ̂2

M
2

and finally, the estimator of moments for λ is obtained:

λ̂M =
σ̂M

y− μ̂M

where y, y2, y3, and s2 are the sample moments, and sample variance, respectively.

Proof. Equating the first three population moments to the sample moments, we obtain:

y =
σ

λ
+ μ

y2 = 2s2 − 2σ2 +
(σ

λ
+ y
)

μ

y3 = 6s2
(σ

λ
+ μ
)
+
(σ

λ
+ y
)

μ2,

solving the system, we arrive at the result.
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4.2. Likelihood Function

Consider a random sample of size n, y1, . . . , yn, from the distribution EML(μ, σ, λ).
So, the log-likelihood function for θ = (μ, σ, λ)T can be expressed as

�(θ) = n log λ− n log 2− n log σ +
n

∑
i=1

log G(yi, θ), (7)

where G(yi, θ) =
∫ ∞

0 e−λwe−
∣∣∣ yi−μ

σ −w
∣∣∣dw.

Maximum likelihood estimators (MLEs) were acquired maximizing the likelihood
function given in (7). Since there is no analytical solution, we used the iterative numerical
method “BFGS”, created by Byrd et al. [7]. The “BFGS” method is a limited-memory
quasi-Newton method for approximating the Hessian matrix of the target distribution.
This method allows us to numerically obtain the maximum likelihood estimates of the
parameters of a distribution and their respective standard errors derived from the Hessian
matrix.

4.3. Simulation Study

We used the Monte Carlo method to generate random numbers from the distribution
EML(μ, σ, λ). The results obtained are a sequence of n random numbers that are stored
inside an array that we call n−vector. For this, we used 1000 samples of size 50, 100, 200
and 500, obtaining the estimates of the parameters by means of the moment and maximum
likelihood methods. In addition, we analyze the standard deviation, average length of the
confidence intervals, and the empirical coverage, for the parameters of the distribution,
based on a 95% confidence level.

To develop the algorithm (Algorithm 1) we will use the following notation:

1. n: The length of the n−vector.
2. Y: A random variable with the distribution EML.
3. fY(y): The PDF of EML.
4. L1: Number of samples of size n.
5. μ, σ, λ: Parameters.

Algorithm 1: Monte Carlo algorithm to generate random numbers from the
EML(μ, σ, λ) distribution

1. Start
Input: fY(y), L1, n, μ, σ, λ.
Output: n−vector.

2. Generate a random variable X ∼ L(0, 1).
3. Generate a random variable V ∼ exp(λ).
4. Compute Y = X + V.
5. Since Y ∼ EML(μ, σ, λ), append y to n-vector.
6. Repeat steps 2–5 for each sample of size n obtained.
7. For each estimate, the 95% confidence interval is obtained and the length

calculated. Additionally, the number of intervals containing the value of each
parameter is counted. By obtaining the average of these 1000 values, the value
ali and the empirical coverage c are obtained.

8. end.

Table 2 contains the values of the estimates of the parameters, standard deviation,
average interval length, and empirical coverage, based on a 95% confidence interval from
simulations obtained by the method of moments for 1000 generated samples of size n = 50,
100, 200, and 500 from the population with distribution EML(μ, σ, λ). These estimates were
obtained by solving the system of equations given in Proposition 5. Similarly, Table 3 shows
the results of the simulation studies, illustrating the behavior of the MLEs. For each sample
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generated, MLEs are calculated numerically using the Newton–Raphson [8] procedure. In
both tables, it can be seen that the simulations carried out by these methods show that
the average estimates of the parameters are close to the proposed values. Additionally,
the standard deviation and the average length of the interval decrease as the sample size
increases. This is an expected result, since the ME and MLE are asymptotically consistent.
On the other hand, the empirical coverage is adequate since it is close to 95%.

Table 2. ME simulation of 1000 iterations of the model EML(μ, σ, λ).

n μ σ λ μ̃ sd(μ̃) ali(μ̃) c(μ̃) σ̃ sd(σ̃) ali(σ̃) c(σ̃) λ̃ sd(λ̃) ali(λ̃) c(λ̃)

50 0 1 0.3 0.0341 0.1189 0.4661 93.9 1.0341 0.1189 0.4661 93.9 0.3341 0.1189 0.4661 93.9
100 0 1 0.3 0.0123 0.0650 0.2548 95.2 1.0123 0.0650 0.2548 95.2 0.3123 0.0650 0.2548 95.2
200 0 1 0.3 0.0066 0.0411 0.1612 94.7 1.0066 0.0411 0.1612 94.7 0.3066 0.0411 0.1612 94.7
500 0 1 0.3 0.0036 0.0245 0.0959 94.6 1.0036 0.0245 0.0959 94.6 0.3036 0.0245 0.0959 94.6

50 0 1 0.7 −0.1249 0.2589 1.0150 97.4 0.8751 0.2589 1.0150 97.4 0.5751 0.2589 1.0150 97.4
100 0 1 0.7 −0.1162 0.2293 0.8989 96.1 0.8838 0.2293 0.8989 96.1 0.5838 0.2293 0.8989 96.1
200 0 1 0.7 −0.0785 0.1901 0.7451 91.0 0.9215 0.1901 0.7451 91.0 0.6215 0.1901 0.7451 91.0
500 0 1 0.7 −0.0434 0.1540 0.6038 93.8 0.9566 0.1540 0.6038 93.8 0.6566 0.1540 0.6038 93.8

50 0 1 1 −0.1006 0.3208 1.2576 92.7 0.8994 0.3208 1.2576 92.7 0.8994 0.3208 1.2576 92.7
100 0 1 1 −0.0399 0.2174 0.8522 96.7 0.9601 0.2174 0.8522 96.7 0.9601 0.2174 0.8522 96.7
200 0 1 1 −0.0149 0.1373 0.5381 97.3 0.9851 0.1373 0.5381 97.3 0.9851 0.1373 0.5381 97.3
500 0 1 1 −0.0038 0.0760 0.2978 93.7 0.9962 0.0760 0.2978 93.7 0.9962 0.0760 0.2978 93.7

50 0 1 1.2 −0.0525 0.2984 1.1698 96.6 0.9475 0.2984 1.1698 96.6 1.1475 0.2984 1.1698 96.6
100 0 1 1.2 −0.0114 0.1827 0.7161 98.1 0.9886 0.1827 0.7161 98.1 1.1886 0.1827 0.7161 98.1
200 0 1 1.2 0.0004 0.1118 0.4383 96.0 1.0004 0.1118 0.4383 96.0 1.2004 0.1118 0.4383 96.0
500 0 1 1.2 −0.0024 0.0637 0.2499 94.3 0.9976 0.0637 0.2499 94.3 1.1976 0.0637 0.2499 94.3

50 −1 2 0.3 −0.9902 0.0641 0.2512 94.7 2.0098 0.0641 0.2512 94.7 0.3098 0.0641 0.2512 94.7
100 −1 2 0.3 −0.9923 0.0462 0.1810 94.9 2.0077 0.0462 0.1810 94.9 0.3077 0.0462 0.1810 94.9
200 −1 2 0.3 −0.9958 0.0301 0.1181 94.7 2.0042 0.0301 0.1181 94.7 0.3042 0.0301 0.1181 94.7
500 −1 2 0.3 −0.9987 0.0185 0.0723 94.8 2.0013 0.0185 0.0723 94.8 0.3013 0.0185 0.0723 94.8

sd corresponds to the standard deviation, ali (average length of interval) is the average length of the confidence
interval, and c the empirical coverage of the respective ME of the parameters, based on a 95% confidence interval.

Table 3. MLE simulation of 1000 iterations of the model EML(μ, σ, λ).

n μ σ λ μ̂ sd(μ̂) ali(μ̂) c(μ̂) σ̂ sd(σ̂) ali(σ̂) c(σ̂) λ̂ sd(λ̂) ali(λ̂) c(λ̂)

50 0 1 0.3 0.0470 0.5226 2.0486 93.6 0.9327 0.3885 1.5229 94.2 0.3175 0.2096 0.8216 96.2
100 0 1 0.3 0.0326 0.3439 1.3480 94.2 0.9822 0.2534 0.9933 94.8 0.3081 0.1139 0.4463 94.9
200 0 1 0.3 0.0093 0.2300 0.9015 94.5 0.9937 0.1746 0.6843 95.4 0.3035 0.0706 0.2769 95.1
500 0 1 0.3 −0.0061 0.1408 0.5521 95.0 0.9956 0.1087 0.4260 95.3 0.2999 0.0444 0.1740 94.6

50 0 1 0.7 −0.0023 0.3834 1.5031 94.5 0.9491 0.2611 1.0237 95.6 0.7974 0.5617 2.2017 94.8
100 0 1 0.7 0.0255 0.2872 1.1257 94.1 0.9692 0.1913 0.7498 94.6 0.7607 0.3987 1.5630 95.7
200 0 1 0.7 0.0261 0.2011 0.7882 94.9 1.0004 0.1396 0.5471 95.9 0.7527 0.2750 1.0779 96.1
500 0 1 0.7 0.0084 0.1211 0.4747 95.2 0.9968 0.0829 0.3249 94.9 0.7130 0.1229 0.4816 94.8

50 0 1 1.0 −0.0149 0.3755 1.4718 95.4 0.9182 0.2369 0.9286 93.7 1.2052 1.0383 4.0701 93.8
100 0 1 1.0 0.0176 0.2805 1.0997 94.7 0.9654 0.1697 0.6653 95.0 1.1874 0.8215 3.2204 93.7
200 0 1 1.0 0.0248 0.2150 0.8428 94.6 0.9898 0.1266 0.4962 94.3 1.1528 0.6274 2.4595 94.8
500 0 1 1.0 0.0106 0.1361 0.5337 94.7 0.9924 0.0842 0.3300 94.7 1.0473 0.3208 1.2574 96.5

50 0 1 1.2 −0.0644 0.3430 1.3444 94.8 0.8979 0.2139 0.8385 92.1 1.2577 0.9488 3.7195 95.5
100 0 1 1.2 −0.0013 0.2758 1.0812 94.6 0.9568 0.1629 0.6384 93.5 1.3821 0.9002 3.5287 93.1
200 0 1 1.2 0.0090 0.2123 0.8322 94.9 0.9849 0.1200 0.4704 95.1 1.3675 0.7209 2.8259 94.2
500 0 1 1.2 0.0123 0.1373 0.5383 94.5 0.9969 0.0792 0.3104 94.6 1.2831 0.4290 1.6819 95.5

50 −1 2 0.3 −0.8821 0.9899 3.8805 95.0 1.8777 0.7352 2.8819 93.8 0.3135 0.2027 0.7946 97.3
100 −1 2 0.3 −0.9601 0.6781 2.6582 96.1 1.9483 0.5054 1.9813 94.6 0.3071 0.1150 0.4507 95.5
200 −1 2 0.3 −0.9681 0.4653 1.8239 95.0 1.9917 0.3324 1.3030 94.9 0.3061 0.0702 0.2754 94.5
500 −1 2 0.3 −0.9883 0.2807 1.1004 94.6 1.9960 0.2197 0.8612 94.7 0.3021 0.0448 0.1755 94.9

sd corresponds to the standard deviation, ali (average length of interval) is the average length of the confidence
interval, and c the empirical coverage of the respective EMV of the parameters, based on a 95% confidence interval.
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5. Three Illustrative Examples with a Real Data Set

In this section, three applications are presented in which the parameter estimators
are obtained based on the maximum likelihood method (MLE) for (μ, σ and λ) through
of the fitted models ML, EMLOG, EMG, and EML to a set of real data. The numerical
illustrations below are intended to show that the EML model is an alternative to unimodal
data modeling in different areas.

5.1. Illustrative Example 1

In our first illustration, the data set corresponds to the nickel content in soil samples
analyzed at the Department of Mining (Department of Mines) of the University of Atacama,
Chile, (see Appendix A, Table A1). Table 4 presents summary statistics for the data set
of nickel content in soil samples, where γ1 and γ2 are the skewness and kurtosis coeffi-
cients of the sample, respectively. The moment estimators for these data are given by:
θ̂M = (μ̂M, σ̂M, λ̂M) = (6.7497 , 5.0626 , 0.3412).

Table 4. Summary Statistics for the Nickel Concentration Data Set.

n y sy γ1 γ2

85 21.3372 16.6391 2.3559 11.1917

Table 5 shows the maximum likelihood estimates and the standard deviations for the
ML, EMLOG, EMG, and EML models. In addition, we report the values of the Akaike [9]
(AIC), Bayesian information criteria [10] (BIC), Akaike information criterion consistent [11]
(CAIC), and Hannan—Quinn information criterion [12] (HQIC). On the other hand, Figure 5
shows the histogram with estimated pdf. This indicates that the EML model fits the data
better than the ML, EMLOG, and EMG models. This result is supported by Figure 6 based
on theoretical versus empirical (QQ) quantile plots.

Table 5. Maximum likelihood estimators for ML, EMLOG, EMG, and EML models for the soil nickel
concentration data set, with their corresponding standard deviations in parentheses and comparison
criteria AIC, BIC, CAIC, and HQIC.

Parameter Estimates ML EMLOG EMG EML

μ̂ 11.0020 (0.0657) 18.9149 (1.4048) 10.0433 (0.0771) 7.020 (0.0462)
σ̂ 11.6843 (1.21645) 7.6833 (0.7231) 9.0165 (0.0766) 5.1452 (0.0258)
λ̂ 2.2279 (0.2418) 0.7810 (0.0610) 0.3733 (0.0443)

AIC 687.022 699.207 685.0531 682.053
BIC 694.385 704.092 692.381 689.381

CAIC 695.548 705.092 693.381 690.381
HQIC 690.168 701.172 688.001 685.001

Figure 5 presents the histogram of the data with adjustment of the modified Laplace,
exponentially modified Laplace, exponentially modified Gaussian, and exponentially mod-
ified logistic (upper) distributions, fitted with the values of the maximum likelihood estima-
tors of their parameters. Notice that the fitted exponentially modified Laplace distribution
has heavier tails and a magnification of the upper tails of the soil nickel concentration data
(lower).
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Figure 5. Histogram (upper) and tail (lower) for nickel concentration data set. Overlaid on top is
the density EML with parameters estimated via MLE (solid line), exponentially modified Gaussian
density with parameters estimated via MLE (dotted line), exponentially modified logistic (dashed
line), and modified Laplace (dash-dotted line).

On the other hand, Figure 6 shows the QQ plot of the fitted models. From these results,
it can be seen that the exponentially modified Laplace distribution provided a better fit
than the other distributions in consideration.
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Figure 6. QQ plot for nickel concentration data set. The modified Laplace density (a), exponentially
modified logistic density (b), exponentially modified Gaussian density (c), and exponentially modified
Laplace density (d).

5.2. Illustrative Example 2

The second illustration is related to the neodymium content in soil samples analyzed
at the Department of Mining (Department of Mines) of the University of Atacama, Chile
(see Appendix A, Table A2). Table 6 presents summary statistics for the data set of the
neodymium content in soil samples, where γ1 and γ2 are the skewness and kurtosis
coefficients of the sample, respectively. The moment estimators for these data are given by:
θ̂M = (μ̂M, σ̂M, λ̂M) = (4.2094, 10.3030, 0.5868).

Table 6. Summary statistics for neodymium concentration data.

n y sy γ1 γ2

86 35.1032 34.3307 3.8847 17.3951

The modified Laplace, exponentially modified logistic, exponentially modified Gaus-
sian, and exponentially modified Laplace distributions were fitted to the data set. Table 7
shows the maximum likelihood estimates of the parameters, with the corresponding stan-
dard deviations (sd) in parentheses, for the three mentioned distributions. The adjustment
criteria (AIC, BIC, CAIC, and HQIC) indicate that the data fit better to the exponentially
modified Laplace model, because they present a smaller or lower value.

Figure 7 shows the histogram plots and a magnification of the upper tails of the soil
neodymium concentration data with the modified Laplace, exponentially modified logistic,
exponentially modified Gaussian, exponentially modified Laplace, and distributions fitted
with the maximum likelihood estimators of its parameters where the fit of outliers is best
observed. In addition, Figure 8 shows the QQ plot of the fitted models, observing that the
proposed model achieves a better capture of extreme values.
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Table 7. Maximum likelihood estimators for models ML, EMLOG, EMG, and EML for the
neodymium concentration data set in the soil, with their corresponding standard deviations in
parentheses and comparison criteria AIC, BIC, CAIC, and HQIC.

Parameter Estimates ML EMLOG EMG EML

μ̂ 13.0001 (0.2804) 29.0578 (2.1736) 15.3836 (2.8609) 10.44577 (0.0388)
σ̂ 18.9313 (1.8033) 12.4762 (1.1937) 17.9653 (1.0407) 6.8136 (0.0091)
λ̂ 2.9883 (0.3412) 0.9147 (0.1363) 0.2831 (0.0339)

AIC 768.088 802.523 792.496 763.294
BIC 775.451 807.432 799.859 770.567

CAIC 776.451 808.432 800.859 771.657
HQIC 771.051 804.499 795.459 766.257

Figure 7. Histogram (upper) and tail (lower) for the neodymium concentration data set. The first
graph shows the densities of the exponentially modified Laplace (solid line), Gaussian modified
exponentially (dashed line), exponentially modified logistic (dotted line), and modified Laplace
(dash-dotted line) distributions, with their parameters estimated by MLE.
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Figure 8. QQ plot for the neodymium concentration data set. The modified Laplace density (a), expo-
nentially modified logistic density (b), exponentially modified Gaussian density (c), and exponentially
modified Laplace density (d).

5.3. Illustrative Example 3

In this application, we used daily nitrogen concentration data obtained by chromatog-
raphy [13]. Data are given in the Appendix A (Tabla A3). Table 8 presents summary
statistics for the nitrogen concentration data set, where γ1 and γ2 are the sample skewness
and kurtosis coefficients, respectively. Moment estimators for these data are given by:
θ̂M = (μ̂M, σ̂M, λ̂M) = (0.0965, 1.0965, 2.0965). Table 9 shows the maximum likelihood esti-
mates for the parameters with their corresponding standard deviations (sd) in parentheses
for the modified Laplace, exponentially modified logistic, exponentially modified Gaussian
and exponentially modified Laplace distributions. The fit criteria used, AIC, BIC, CAIC
and HQIC, indicate that the exponentially modified Laplace model fits the data better.

Table 8. Summary statistics for nitrogen concentration data.

n y sy γ1 γ2

367 0.6189 0.0078 −1.3205 12.4692

Figure 9 shows the histogram plots and a magnification of the lower tails of the
nitrogen concentration data with the modified Laplace, exponentially modified logistic,
exponentially modified Gaussian, and exponentially modified Laplace distributions fitted
with the maximum likelihood estimators of its parameters where the fit of outliers is best
observed. In addition, Figure 10 shows the QQ plot of the fitted models, observing that the
proposed model achieves a better capture of extreme values.
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Table 9. Comparison of the maximum likelihood estimators for nitrogen concentration data between
the ML, EMLOG, EMG, and EML distributions with their corresponding standard deviations in
parentheses and comparison criteria AIC, BIC, CAIC and HQIC.

Parameter Estimates ML EMLOG EMG EML

μ̂ 0.6165 (0.0007) 0.6192 (0.0003) 0.6132 (0.0005) 0.6147 (0.0005)
σ̂ 0.0065 (0.0003) 0.0041 (0.0001) 0.0064 (0.0002) 0.0045 (0.0002)
λ̂ 1.5045 (0.1761) 1.0049 (0.0969) 0.9616 (0.1368)

AIC −2549.257 −2062.155 −2465.067 −2560.045
BIC −2530.541 −2054.345 −2453.351 −2548.329

CAIC −2536.541 −2053.344 −2452.351 −2547.329
HQIC −2544.602 −2059.052 −2460.412 −2555.390

Figure 9. Histogram (upper) and tail (lower) for nitrogen concentration data set. The first graph
shows the densities of exponentially modified Laplace (solid line), Gaussian modified exponentially
(dashed line), exponentially modified logistic (dotted line) and modified Laplace (dash-dotted line)
distributions, with their parameters estimated by MLE.
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Figure 10. QQ plot for Nitrogen concentration data set. The density ML (a), EMLOG (b), EMG
density (c), and EML (d).

6. Conclusions

In this paper, a new and more flexible distribution, called the exponentially modified
Laplace distribution, has been proposed. We estimate the parameters of the model by the
moment and maximum likelihood methods. Likewise, we apply information criteria to
select the models and evaluate the goodness of fit of the new distribution compared to other
similar distributions in the current literature. We performed a Monte Carlo simulation
study to empirically assess the statistical performance of the estimates obtained. In addition,
we study the standard deviations, the mean length of the confidence intervals, and the
empirical coverage based on 95% confidence intervals. This simulation study reported a
good statistical performance of these estimates. Three illustrations were made using data
related to the chemical and environmental concentrations, comparing them with three
similar distributions presented in the literature. The analyses reported a good performance
of the new distribution compared to similar distributions, providing evidence that the
proposed model is a good alternative for modeling skewed and high-kurtosis data. These
results reported that the exponentially modified Laplace model can be an alternative to
analyze this type of data. The new approach is a contribution to the tools of statisticians
and various professionals interested in data modeling. From these applications, we have
obtained useful information that can be used by professionals and users of statistics. A
limitation of the proposed distribution is the loss of goodness of fit for data sets whose
sample kurtosis is less than five. Some topics for future research based on this new
distribution are related to the study of multivariate procedures, quantile regression, spatial
methods, temporal methods, partial least squares, principal components, etc.
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Appendix A

Table A1. Nickel Data.

2 3 3 3 4 4 6 6 7 7 7 8 8 10 10 11 11 11
12 12 13 13 14 14 14 14 14 14 14 15 15 15 15 15 16 16
16 16 16 16 17 17 17 17 17 19 19 19 19 19 20 20 20 20
20 20 21 21 21 21 22 23 23 25 25 28 29 29 30 31 32 32
33 40 42 42 43 45 46 46 52 54 55 75 109

Table A2. Neodymium Data.

47 26 29 22 33 16 7 13 4 31 27 13 36 8 42 15 5 29
25 29 36 18 16 50 18 28 16 29 10 31 7 15 32 33 35 31
72 89 37 43 29 35 14 25 21 8 26 49 47 19 14 33 35 21
25 30 15 27 27 9 26 33 13 204 33 38 25 22 35 31 39 24
50 103 28 219 134 68 25 37 21 26 36 32 79 19

Table A3. Nitrogen Data.

0.607 0.605 0.606 0.606 0.609 0.631 0.617 0.626
0.610 0.611 0.610 0.606 0.610 0.612 0.614 0.613
0.614 0.614 0.615 0.616 0.616 0.616 0.616 0.615
0.616 0.616 0.616 0.618 0.617 0.617 0.617 0.617
0.617 0.617 0.617 0.619 0.619 0.618 0.618 0.622
0.619 0.620 0.620 0.619 0.617 0.616 0.614 0.617
0.611 0.611 0.612 0.611 0.612 0.612 0.612 0.613
0.610 0.612 0.613 0.614 0.613 0.612 0.610 0.609
0.613 0.612 0.616 0.612 0.611 0.611 0.613 0.609
0.612 0.612 0.612 0.605 0.604 0.615 0.620 0.622
0.617 0.619 0.621 0.622 0.630 0.626 0.616 0.617
0.621 0.623 0.625 0.626 0.624 0.618 0.618 0.618
0.621 0.623 0.625 0.626 0.624 0.618 0.618 0.618
0.622 0.623 0.623 0.608 0.624 0.620 0.619 0.615
0.611 0.615 0.612 0.620 0.623 0.627 0.628 0.625
0.627 0.628 0.626 0.627 0.626 0.625 0.625 0.625
0.624 0.626 0.627 0.626 0.628 0.626 0.619 0.618
0.627 0.626 0.626 0.627 0.626 0.626 0.628 0.629
0.627 0.627 0.627 0.627 0.625 0.625 0.629 0.623
0.619 0.573 0.565 0.585 0.595 0.608 0.614 0.614
0.612 0.615 0.616 0.617 0.615 0.615 0.615 0.614
0.610 0.610 0.611 0.611 0.611 0.612 0.610 0.609
0.611 0.614 0.617 0.617 0.620 0.622 0.619 0.618
0.619 0.622 0.618 0.619 0.620 0.619 0.620 0.621
0.617 0.620 0.621 0.623 0.626 0.627 0.626 0.626
0.627 0.626 0.628 0.626 0.624 0.624 0.621 0.620
0.621 0.619 0.621 0.626 0.627 0.624 0.622 0.622
0.622 0.622 0.622 0.625 0.622 0.621 0.618 0.616
0.621 0.619 0.623 0.626 0.625 0.624 0.619 0.620
0.630 0.629 0.630 0.631 0.632 0.624 0.625 0.628
0.623 0.628 0.626 0.629 0.628 0.630 0.618 0.607
0.631 0.630 0.629 0.630 0.629 0.631 0.632 0.633
0.625 0.619 0.619 0.653 0.624 0.622 0.645 0.619
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Table A3. Cont.

0.619 0.622 0.622 0.618 0.620 0.620 0.619 0.619
0.620 0.619 0.618 0.620 0.620 0.621 0.618 0.614
0.617 0.616 0.616 0.616 0.615 0.616 0.617 0.616
0.615 0.617 0.616 0.614 0.616 0.617 0.616 0.617
0.618 0.618 0.619 0.622 0.622 0.623 0.622
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1. Introduction

1.1. History

Entropy is a a very versatile measure of order (or of chaos). In the last few several
decades, the growing needs of modeling for stochastic phenomena contributed to the
apparition of many new different families of entropy functionals, with increasing levels of
generality, reliability and applicability [1–19]. One of the recent interesting new directions
of study uses the relative group entropies, based on group logarithms (see [20,21] and
references therein).

The geometrization method, a powerful tool in modelization, was applied in the
investigation of some statistical relevant parameters sets, beginning with the work of
the pioneers: Fisher, Rao, Efron and Amari [12,22,23]. This bridge allows the use of
the differential geometric machinery to understand the local and the global behavior of
statistical objects.

In particular, the Fisher (semi-Riemannian) metrics correspond to the Fisher Informa-
tion matrices. Their invariants, especially those tensor fields expressing different kinds of
curvature properties, are used in the parameters estimation theory as control tools. For
example, the scalar curvature function measures the average statistical uncertainty of a
density matrix [12,20,24].

Consider a statistical model, governed by a given entropy, and two or more fixed pa-
rameterized probability density functions (PDFs) within it. Various divergences (“distance-
like functionals”) can be defined in this framework, able to detect how these PDFs relate
to each other. A kind of infinitesimal variation of such divergences, w.r.t. the parameters,
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may provide interpretations for some Fisher-like metrics. Several types of divergences are
used, including the Kullback–Leibler and the Bregman ones. For recent viewpoints upon
divergences, see [14,25,26].

In 2002, Naudts introduced ([27]) the “φ-deformed entropy”, via a positive strictly
increasing function φ, which plays the role of a “generalized logarithm”. (We shall call it
“φ-deformed (Naudts) entropy” and not simply “φ-deformed entropy”, in order to avoid
confusion and to distinguish it from other “deformed” entropies, all originating—sooner
or later—from the Boltzman–Gibbs–Shannon (BGS) germ). This new entropy extends (with
some technical precautions) the Tsallis and the Kaniadakis entropies, among other ones.
Using it, new Fisher metrics were defined [27–29], ranging from simple ones to some more
“baroque” constructions. Their applicability covers a wide area, from Physics (the starting
point) to Information geometry [29–32].

Using a φ-deformed (Naudts) exponential family of PDFs, Matsuzoe et al. [33] investi-
gated the geometry of statistical manifolds derived from a sequence of escort expectations.

Korbel et al. [30] studied properties of the Fisher metrics associated with the φ-
deformed (Naudts) entropies, in the case of exponential-type PDFs. Particular choices
of the function φ provided examples based on (c, d)-entropies. Dealing with the MaxEnt
problem, they use the Fisher information of the φ-deformed (Naudts) exponential entropies,
in order to reveal a duality between the cases with linear constraints and those based on
escort constraints.

Inspired by these previous works, we believe that a systematic study of semi-Riemannian
metrics, canonically associated with the φ-deformed (Naudts) entropy, is necessary and
might provide useful statistical tools in the future. Our paper suggests a method of research,
which combines the beaten path with some new speculative ideas.

1.2. The Content of the Paper

In Section 2, we recall (in a creative manner) the notations and fix the conventions
concerning (the different variants of) entropy and divergence; we closely follow [34]. We
make some comments about the place of the Naudts’ φ-deformed entropy in the “Universe”
of generalized entropies. We recall here some other examples of remarkable entropies
(Tsallis, Kaniadakis, Sharma–Taneja–Mittal). Our main new idea is the distinction we
made between the “quotient” divergence and the “difference” divergence, in the context of
generalized logarithms; in the particular case of the Neperian logarithm, these two notions
coincide, but in other cases (such that of the φ-deformed (Naudts) entropy) they are distinct.

In Section 3, we fix the needed notions concerning the generalized Fisher-like met-
rics associated with the entropies and to the relative (group) entropies, following (espe-
cially) [20]. Following the previous distinction we made in Section 2, between the two
kinds of divergences, we introduce two generalized Fisher-like metrics (GFM1 and GFM2),
which coincide in the classical setting with the Fisher metric. Three other Fisher-like met-
rics are defined, in a formal way, as auxiliary (but eventually useful) by-products of the
former ones.

In Section 4, we determine the semi-Riemannian geometries of the generalized Fisher-
like metrics, associated with group relative entropies based on φ-deformed (Naudts) en-
tropies and divergences. Their coefficients are expressed in terms of both PDFs and of the
φ-deformed logarithm and may depend on a group logarithm too.

In the next section, we give seven families of examples of such metrics, for the case
when the involved PDFs are exponential. The scalar curvatures functions are computed,
and their variation is studied.

In Section 6, we define and solve the MaxEnt problem based on the φ-deformed
(Naudts) entropy, for univariate PDFs, and we generalize some thermodynamic relations.

1.3. Conventions

Implicitly, the integrals are supposed to be correctly defined and to commute with their
derivatives. “Differentiable” means “smooth”, even if, sometimes, a weaker assumption
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would be enough. When a symmetric matrix is called “a (semi-Riemannian) metric”, we
assume, implicitly that it is non-degenerate; the positive definiteness is not assumed, in
general, unless otherwise stated.

2. Entropies and Divergences—A Breviary

We consider a real valued random variable x on a domain X ⊂ Rm. We denote by
ρ = ρ(x) a fixed probability density function (PDF); then, ρ(x) ≥ 0 and

∫
X ρ(x)dx = 1.

We fix a real valued differentiable function ϕ, as a “controlling tool”. In this setting, the
generalized (normalized) entropy is

H[ρ] = −
∫

X
ρ(x)ϕ(ρ(x))dx. (1)

We shall use a similar notation for other entropy-like functionals too. In the literature,
the avatars of the “generalized logarithm” ϕ are subject to additional restrictions, imposed
through applications inspired axioms.

Let F : [0, ∞)× [0, ∞)→ R a smooth function and σ an additional fixed PDF. We define

D(ρ, σ) :=
∫

X
F(ρ(x), σ(x))dx. (2)

We suppose that D(ρ, σ) ≥ 0 and D(ρ, σ) = 0 if and only if ρ = σ. The number
D(ρ, σ) is called the (generalized) divergence between ρ and σ and measures to what
extent σ influences ρ. Sometimes, additional properties of the divergence function are
added, axiomatically.

Example 1. With the previous notations, we recall some well-known examples of entropies ([35–37]).
(i) In the particular case when ϕ(y) := log(y), from Formula (1), we obtain the Boltzmann–

Gibbs–Shannon (BGS) entropy.
(ii) Consider a fixed parameter q ∈ R\{1}. The Tsallis q-logarithm

ϕT
{q}(y) :=

y1−q − 1
1− q

(3)

provides a Tsallis entropy. Usually, for ϕT
{q}, we use the notation logT

{q}. When q → 1, the BGS
entropy is recovered.

(iii) Let us fix k ∈ [−1, 1]\{0}. The Kaniadakis k-logarithm

ϕK
{k}(y) :=

yk − y−k

2k
(4)

defines a Kaniadakis entropy (named also k-deformed entropy). Usually, ϕK
{k} is denoted logK

{k}.
When k → 0, we recover again the BGS entropy.

(iv) Fix two real parameters k and r. The Sharma–Taneja–Mittal (k, r)-logarithm

ϕSTM
{(k,r)}(y) := yr · yk − y−k

2k

provides a Sharma–Taneja–Mittal (STM) entropy (also named (k, r)-deformed entropy). Instead
of ϕSTM

{(k,r)}, we shall denote logSTM
{(k,r)}. The Kaniadakis k- logarithm and the Tsallis q-logarithm are

recovered as particular cases, for r = 0 and for r = ± | k |, respectively. When (k, r) → (0, 0),
we recover the BGS entropy. Sometimes, additional restrictions are imposed on the domain of the
parameters, required by convergence conditions imposed on some integrals (see [38–40] for details).

93



Mathematics 2022, 10, 4311

(v) ([27]) Let φ : (0, ∞) → R a positive, differentiable, strictly-increasing function. (Some-
times, in the literature, “non-decreasing” is required, instead of the “strictly-increasing” condition).
Define the φ-deformed (Naudts) logarithm

logN
φ (y) :=

∫ y

1

1
φ(z)

dz. (5)

The function ϕN
φ := logN

φ defines the φ-deformed (Naudts) entropy. The previous formula
may also be read “backwards”:

φ(y) = (
∂

∂x
ϕN

φ (y))−1. (6)

Moreover, given an arbitrary “generalized logarithm” ϕ as in (1), Formula (6) always provides
a differentiable function φ; if it is positive and strictly-increasing, we expressed ϕ like a φ-deformed
(Naudts) logarithm. Sometimes, this procedure works for some restrictions of the involved parameters
only. For example, the preceding four entropies are recovered as particular cases of φ-deformed
(Naudts) entropies, as follows: BGS for φ := id; Tsallis for φ(y) := yq with the restrictions q > 0
and y ∈ (0, ∞); Kaniadakis φ(y) := 2(yk−1 + y−k−1)−1 with the additional restriction

y2k <
k + 1
k− 1

,

for y ∈ (0, ∞); STM for

φ(y) := 2k[(k + r)yk+r−1 + (k− r)yr−k−1]−1,

with the additional restriction

y2k <
(r− k)(r− k− 1)
(r + k)(r + k− 1)

,

for y ∈ (0, ∞). These additional restrictions are imposed in order φ to be strictly-increasing.
(vi) Let G = G(t) be a formal group logarithm, which is a differentiable real valued function

with some special algebraic properties, inspired from the formal series linking Lie groups to Lie
algebras. More precisely,

G(t) :=
∞

∑
i=0

ci
ti+1

i + 1
,

where c0 = 1 and ci ∈ Q. Its inverse is

F(s) :=
∞

∑
i=0

γi
si+1

i + 1
,

where γi ∈ Q, γ0 = 1, γ1 = −c1, γ2 = 3
2 c2

1 − c2 and so on. (We refer to [20,21,41] for details
about these functions). The simplest example is G(t) = t.

We define the generalized group entropy functional (GGEF) associated with (1) by

SG(ρ) :=
∫

X
ρ(x)G(ϕ ◦ ρ(x))dx. (7)

In particular, for ϕ := −log, we recover the well-known group entropy functional ([20,41])
associated with (1)

SG(ρ) :=
∫

X
ρ(x)G(logρ(x)−1)dx. (8)

Similar GGEFs can be provided by replacing the Neperian logarithm by other “generalized”
logarithms (e.g., Tsallis, Kaniadakis, STM, etc). In Section 3, we shall introduce the geometries
associated with the GGEF, based on φ-deformed (Naudts) entropies. Accordingly, we shall use the
generalized logarithm logN

φ from (5).
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Example 2. With the previous notations, we recall some well-known examples of divergences.
(i) An important particular case is the generalized (quotient) relative entropy (a.k.a. generalized

divergence) between ρ and σ (see [34,42])

D̃(ρ ‖ σ) :=
∫

X
ρ(x)ϕ(

ρ(x)
σ(x)

)dx. (9)

The function F(z, y) := zϕ( z
y ). We accept (formally) that 0 · ϕ( 0

σ ) = 0, ρ · ϕ( ρ
0 ) = 0 and

ϕ(1) = 0. In particular, when ϕ := log, we recover the Kullback–Leibler divergence ([20]).
Another particular case considers f : [0, ∞) → (−∞, ∞] to be a convex function, with

f (1) = 0 and f (0) = lim
t→0+

f (t). For ϕ(y) := 1
y f (y), we recover the f -divergence ([43] and

references therein). The slightly more general notion of ( f , Γ)-divergence (see [44]) may be recovered
in a similar way.

(ii) In a similar way, we define the generalized (difference) relative entropy between ρ and σ, as

D(ρ ‖ σ) :=
∫

X
ρ(x)[ϕ(ρ(x))− ϕ(σ(x))]dx. (10)

The function F(z, y) := z[ϕ(z)− ϕ(y)]. In particular, when ϕ := log, D̃ coincides with D
and we recover the Kullback–Leibler divergence, as in (i). When ϕ := logN

φ , the divergence D was
considered in [27]; we mention that, in this case, D̃ does not coincide with D.

In general, a necessary and sufficient condition on ϕ, ρ and σ, in order that D = D̃, is the
vanishing of the mean function ϕ( ρ

σ )− ϕ(ρ) + ϕ(σ). A sufficient (but quite strong) condition is
provided by the functional equation ϕ( ρ

σ ) = ϕ(ρ)− ϕ(σ).
(iii) In the hypothesis of Example 1 (vi), we can define generalized divergences as relative group

entropies, which combine the formal group logarithm G, the ϕ-likelihood function and the previous
quotient or difference operation upon two PDFs. For example, the analogue of (10) is

DG(ρ ‖ σ) :=
∫

X
ρ(x) · G

(
ϕ(ρ(x))− ϕ(σ(x))

)
dx.

(iv) Consider two fixed PDFs ρ1 and ρ2. Denote ψ : R→ R as a fixed convex differentiable
function. In this setting, the Bregman divergence is

Dψ(ρ1 ‖ ρ2) :=
∫

X
{ψ(ρ1(x))− ψ(ρ2(x))− (ρ1(x)− ρ2(x))ψ′(ρ2(x))}dx. (11)

We mention that the function F(z, y) := ψ(z)− ψ(y)− (z− y) · ψ′(y) is convex too.

Let ρ = ρ(x, t) be a time-dependent PDF, where x, t ∈ R. Then, the entropy in (1) will
also depend on the parameter t, so H[ρ] = H[ρ](t). We consider a potential energy function
V = V(x) and its associated energy average function

U[ρ](t) :=
∫
R

V(x)ρ(x, t)dx. (12)

(If needed, restriction of these functions to open subsets is possible). This particular
framework will be used in Section 6 only.

3. Fisher-like Metrics Associated with Generalized Entropies and
Generalized Divergences

In this section, we recall the notion of Fisher metric associated with a family of
(generalized) entropies or divergences, defined on the space of parameters of an arbitrary
PDF, using mainly [20,34]. For a more general setting, see [34].

Consider the case when the PDF ρ in Section 2 depends, moreover, on n real parameters
θ1, . . . , θn, with θ := (θ1, . . . , θn) ∈ Θ, where Θ is an open set of Rn. Thus, ρ : X ×Θ → R,
ρ = ρ(x, θ). Let ϕ : R → R be a differentiable controlling function, ϕ = ϕ(y). The
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dependence on θ leads to a generalized entropy function H : Θ → R, canonically derived
from Formula (1):

H(θ) = −
∫

X
ρ(x, θ) · ϕ(ρ(x, θ))dx. (13)

In a similar natural way, we can define generalized divergence functions, by θ-
parameterizing (2) and its avatars.

Define

gij(θ) := −
∫

X
ρ(x, θ)

∂2 ϕ(ρ(x, θ))

∂θi∂θ j dx , i, j = 1, n (14)

and

g̃ij(θ) :=
∫

X
ρ(x, θ)

∂ϕ(ρ(x, θ))

∂θi · ∂ϕ(ρ(x, θ))

∂θ j dx , i, j = 1, n. (15)

We suppose that the matrices (gij)i,j=1,n and (g̃ij)i,j=1,n are non-degenerated, and g has
constant index on Θ. We call g and g̃ generalized Fisher metrics of type 1 and type 2, respectively,
and denote GFM1 and GFM2. Both metrics are “means”, w.r.t. ρ, of some ϕ-mediated
“information matrices”: the Hessian of ϕ ◦ ρ and the matrix of the gradient of ϕ ◦ ρ with
its transpose, respectively. The diagonal coefficients g̃ii(θ), i = 1, n, generalize the Fisher
Information Numbers from [45], which can be recovered when ϕ is the Tsallis logarithm.

In general, the semi-Riemannian metric g and the Riemannian metric g̃ differ from
each other and differ from the Hessian (semi-Riemannian metric if non-degenerated)

hij(θ) :=
∂2H(θ)

∂θi∂θ j . (16)

We define, in a formal way, two auxiliary symmetric tensors of (0,2)-type α and β,
given by

αij(θ) :=
∫

X

∂2ρ(x, θ)

∂θi∂θ j · ϕ(ρ(x, θ))dx (17)

and

βij(θ) :=
∫

X

{∂ρ(x, θ)

∂θi · ∂ϕ(ρ(x, θ))

∂θ j +
∂ρ(x, θ)

∂θ j · ∂ϕ(ρ(x, θ))

∂θi

}
dx. (18)

We remark that, if non-degenerated, α and β provide semi-Riemannian metrics. In
this case, these metrics are also of Fisher type, as they express “means” w.r.t. the PDF ρ
of two “derived information matrices”, of coefficients ρ−1 · ρij · ϕ(ρ) and ρ−1 · (ρi · ϕj(ρ) +
ρj · ϕi(ρ)), respectively.

Example 3. Consider the particular case of the BGS-entropy, with ϕ := log.
(i) In this case, both previous GFM1 and GFM2 coincide with the classical (Riemannian)

Fisher metric g0 associated with H (or ϕ) [20].
In the general case, it would be interesting to find all the controlling functions ϕ, for which

g coincides with g̃. Does this property necessarily imply that ϕ is proportional with log, modulo
a non-null constant? A further step would be to look for appropriate functions ϕ, in order that g
and g̃: be homothetic or conformal; have the same geodesics; have the same curvature, etc. To this
differential geometric viewpoint, a statistical counterpart may eventually correspond.

(ii) Let X ⊂ Rm be an open set and let C = C(x), F1 = F1(x), . . . , Fn = Fn(x), ν = ν(θ) be
smooth functions on X. Consider ρ : X ×Rn → R the PDF of exponential type, given by

ρ(x, θ) := exp{C(x)− ν(θ) +
n

∑
i=1

Fi(x)θi}.

The associated Fischer metric is g = Hessν, which is a Hessian metric.
(iii) For this choice of the function ϕ, we obtain αij = ρ−1 · ρij · log(ρ) and βij = 2ρ−2 · ρi · ρj,

for i, j = 1, n. The “perturbed” Hessian matrix associated with α is similar to the one studied in
some recent statistical applications (see, for example, [46]).
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Remark 1. (i) We give an interpretation and a motivation for the definition of the GFM1, in a
slightly more general case than [20]. Consider ϕ a fixed controlling function. Let ρ = ρ(x, θ) and
σ := ρ(x, θ0) be two families of parameterized PDFs over X ⊂ Rm, with θ, θ0 ∈ Rn, and let

D(ρ ‖ σ)(θ, θ0) :=
∫

X
ρ(x, θ) · [ϕ(ρ(x, θ))− ϕ(σ(x, θ0))]dx

be the generalized (difference) relative entropy between them, as in (10). Denote Δθ := θ − θ0 and
suppose its norm to be infinitesimally small. We know that D(ρ ‖ σ) has a unique minimum for
ρ = σ, i.e., for θ0 = θ. The Taylor decomposition around θ = θ0 gives

D(ρ ‖ σ)(θ0, θ0) = −1
2

∫
X

ρ(x, θ0) · Δθi · Δθ j ·
(

Hessϕ◦ρ

)
ij
(θ0) dx +O((Δθ)3) =

=
1
2
· Δθi · Δθ j · gij(θ0) +O((Δθ)3).

The second order approximation of this expression is precisely half of the GFM1 g, calculated
in θ0.

When ϕ := log, we recover the interpretation given in [20].
(ii) We do not know a similar interpretation for the GFM2 g̃.
(iii) The generalized group relative divergences from Example 2 (iii) provide analogous formulas.

We shall study them in the next section, in the particular case of the φ-deformed (Naudts) entropy.
(iv) The definition of Fisher metrics described previously is closely related to the need for under-

standing a variation of a PDF w.r.t. another (reference) one; the output of this “variational calculus
factory” are functions. We signal here the forthcoming book [47], containing new revolutionary ideas
in Variational calculus, including invariants of tensorial type, motivated by differential geometric
problems; this source provides new insights for the definition and the study of divergence-like tensor
fields, as a path toward a new bundle spaces approach in Statistics.

(v) All the previous tensor fields g, g̃, h, α, and β have constant index, one each connected
component of their definition domains.

An open problem is to find the more general hypothesis such that these tensor fields be non-
degenerated (in order to define semi-Riemannian metrics). Locally, the answer is simple: let θ0 be a
point in the parameters space, such that the determinant of the corresponding matrix, calculated
in θ0, is not null. Then, the tensor field is non-degenerated in an open neighborhood of θ0. For
many families of examples (and in Section 5 we add several more ones), this property holds true.
A common practice in the literature is to stop here, without investigating global conditions which
are fulfilled in general cases. To our knowledge, global existence results for Fisher metrics, in the
general setting, are not proven yet. Moreover, the eventual singular points have an interest in their
own, as they may signal—in a suitable statistical model—a phase transition ([48]).

We consider it useful to point out here the paper [49], where a different but correlated problem
is studied: namely, to what extent the Fisher metric is (globally) unique, modulo the action of a
diffeomorphism group.

4. The Fisher Geometries Associated with GGEFs Based on φ-Deformed (Naudts)
Entropies and Divergences

We particularize now the results from Section 3, for the case of the Naudts entropies.
Let us fix the context more precisely.

Consider φ a positive, differentiable and strictly-increasing function as in Example 1 (v)
and the φ-deformed (Naudts) logarithm logN

φ defined in Formula (5). Let ρ : X ×Θ → R,
ρ = ρ(x, θ) be a family of parameterized PDFs, as in Section 3. The associated GFM1 g and
the GFM2 g̃ are obtained as particular cases from (14) and (15):

gij(θ) := −
∫

X
ρ(x, θ)

∂2logN
φ (ρ(x, θ))

∂θi∂θ j dx , i, j = 1, n (19)
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and

g̃ij(θ) :=
∫

X
ρ(x, θ)

∂logN
φ (ρ(x, θ))

∂θi · ∂logN
φ (ρ(x, θ))

∂θ j dx , i, j = 1, n. (20)

We suppose, as usual, that g and g̃ are non-degenerated and that g̃ has a constant
index on X.

We also consider, via (16), the associated Hessian metric h = h(θ)

hij(θ) = − ∂2

∂θi∂θ j

{ ∫
X

ρ(x, θ) · logN
φ (ρ(x, θ))dx

}
, i, j = 1, n. (21)

Proposition 1. With the previous notations, for every i, j = 1, n, we have

gij(θ) =
∫

X
ρ(x, θ)

{∂ρ(x, θ)

∂θi · ∂ρ(x, θ)

∂θ j · φ−2(ρ(x, θ)) · φ′(ρ(x, θ))− (22)

−∂2ρ(x, θ)

∂θi∂θ j · φ−1(ρ(x, θ))
}

dx,

g̃ij(θ) :=
∫

X
ρ(x, θ) · ∂ρ(x, θ)

∂θi · ∂ρ(x, θ)

∂θ j · φ−2(ρ(x, θ))dx, (23)

and

hij(θ) =
∫

X

{
ρ(x, θ)

∂ρ(x, θ)

∂θi · ∂ρ(x, θ)

∂θ j · φ−2(ρ(x, θ)) · φ′(ρ(x, θ))− (24)

−∂2ρ(x, θ)

∂θi∂θ j · logN
φ (ρ(x, θ))− 2

∂ρ(x, θ)

∂θi · ∂ρ(x, θ)

∂θ j · φ−1(ρ(x, θ))−

−ρ(x, θ) · ∂2ρ(x, θ)

∂θi∂θ j · φ−1(ρ(x, θ))
}

dx.

In this case, α and β are given by

αij(θ) :=
∫

X

∂2ρ(x, θ)

∂θi∂θ j · logN
φ (ρ(x, θ))dx

and

βij(θ) :=
∫

X

{∂ρ(x, θ)

∂θi · ∂logN
φ (ρ(x, θ))

∂θ j +
∂ρ(x, θ)

∂θ j · ∂logN
φ (ρ(x, θ))

∂θi

}
dx.

Corollary 1. In a condensed form, we have the following relation

h = g− α− β.

We consider now, in addition, a fixed formal group logarithm G, as in Example 1 (vi).
Let σ := ρ(x, θ0) be the associated parameterized PDFs and DG,φ = DG,φ(ρ ‖ σ)(θ, θ0)
be the generalized (difference) group relative entropy (a.k.a. the generalized (difference)
group divergence), as particularization from (10) and Remark 1 (i), (iii), written as

DG,φ(ρ ‖ σ)(θ, θ0) =
∫

X
ρ(x, θ) · G

(
logN

φ (ρ(x, θ))− logN
φ (ρ(x, θ0))

)
dx.

Denote the generalized group Fisher metric associated with DG,φ by

ĝjk(θ0) :=
∂2DG,φ(ρ ‖ σ)(θ, θ0)

∂θ j∂θk |θ=θ0 . (25)

This Hessian-type metric will be calculated in the next result.
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Proposition 2. With the previous notations, we have the relation

ĝjk(θ0) = G′(0) ·
{ ∫

X

∂2ρ(x, θ0)

∂θ j∂θk · ρ(x, θ0)

φ(ρ(x, θ0))
dx+ (26)

+2
∫

X
φ(ρ(x, θ0)) · ∂

∂θ j logN
φ (ρ(x, θ0)) · ∂

∂θk logN
φ (ρ(x, θ0))dx−

−
∫

X
ρ(x, θ0) · φ′(ρ(x, θ0)) · ∂

∂θ j logN
φ (ρ(x, θ0)) · ∂

∂θk logN
φ (ρ(x, θ0))dx

}
+

+G′′(0) ·
∫

X
ρ(x, θ0) · ∂

∂θ j logN
φ (ρ(x, θ0)) · ∂

∂θk logN
φ (ρ(x, θ0))dx,

which may be re-written as depending only on φ and ρ, in

ĝjk(θ0) = G′(0) ·
{ ∫

X

∂2ρ(x, θ0)

∂θ j∂θk · ρ(x, θ0)

φ(ρ(x, θ0))
dx+ (27)

+2
∫

X
φ−1(ρ(x, θ0)) · ∂

∂θ j ρ(x, θ0) · ∂

∂θk ρ(x, θ0)dx−

−
∫

X
ρ(x, θ0) · φ′(ρ(x, θ0)) · φ−2(ρ(x, θ0)) · ∂

∂θ j ρ(x, θ0) · ∂

∂θk ρ(x, θ0)dx
}
+

+G′′(0) ·
∫

X
ρ(x, θ0) · φ−2(ρ(x, θ0)) · ∂

∂θ j ρ(x, θ0) · ∂

∂θk ρ(x, θ0)dx.

Proof. We follow the line of reasoning from [20]. As

logN
φ (ρ(x, θ)) =

∫ ρ(x,θ)

1

1
φ(y)

dy,

we calculate
∂

∂θk logN
φ (ρ(x, θ)) =

∂ρ(x, θ)

∂θk · 1
φ(ρ(x, θ))

.

Suppose, for the moment, that θ0 is constant. Denote

A(θ) := DG,φ(ρ(x, θ) ‖ ρ(x, θ0)).

We calculate successively

∂A
∂θk (θ) =

∫
X

{∂ρ(x, θ)

∂θk · G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+ρ(x, θ) · G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
· ∂

∂θk logN
φ (ρ(x, θ))

}
dx =

=
∫

X

{∂ρ(x, θ)

∂θk · G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+ρ(x, θ) · G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
· 1

φ(ρ(x, θ))

∂ρ(x, θ)

∂θk

}
dx =

=
∫

X

∂ρ(x, θ)

∂θk ·
{

G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+
ρ(x, θ)

φ(ρ(x, θ))
· G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)}

dx

and
∂2 A

∂θ j∂θk (θ) =
∫

X

∂2ρ(x, θ)

∂θ j∂θk ·
{

G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

99



Mathematics 2022, 10, 4311

+
ρ(x, θ)

φ(ρ(x, θ))
· G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)}

+

+
∂ρ(x, θ)

∂θk ·
{ ∂

∂θ j logN
φ (ρ(x, θ)) · G′

(
logN

φ (ρ(x, θ))− logN
φ (ρ(x, θ0))

)
+

+G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
·

∂ρ(x,θ)
∂θ j · [φ(ρ(x, θ))− ρ(x, θ) · φ′(ρ(x, θ)]

φ2(ρ(x, θ))
+

+
ρ(x, θ)

φ(ρ(x, θ))
· G′′

(
logN

φ (ρ(x, θ))− logN
φ (ρ(x, θ0))

)
· ∂

∂θ j logN
φ (ρ(x, θ))

}
dx =

=
∫

X

∂2ρ(x, θ)

∂θ j∂θk ·
{

G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+
ρ(x, θ)

φ(ρ(x, θ))
· G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)}

+

+
∂ρ(x, θ)

∂θ j · ∂ρ(x, θ)

∂θk · 1
φ(ρ(x, θ))

·
{

G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
· φ(ρ(x, θ))− ρ(x, θ) · φ′(ρ(x, θ)

φ(ρ(x, θ))
+

+
ρ(x, θ)

φ(ρ(x, θ))
· G′′

(
logN

φ (ρ(x, θ))− logN
φ (ρ(x, θ0))

)}
dx.

We replace θ := θ0, and we use the property G(0) = 0. It follows that

ĝjk(θ0) :=
∂2 A

∂θ j∂θk |θ=θ0=
∫

X

∂2ρ(x, θ0)

∂θ j∂θk ·
{

G(0) +
ρ(x, θ0)

φ(ρ(x, θ0))
· G′(0)

}
+

+
∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk · 1
φ(ρ(x, θ0))

·
{

G′(0) + ρ(x, θ0)

φ(ρ(x, θ0))
· G′′(0)+

+G′(0) · φ(ρ(x, θ0))− ρ(x, θ0) · φ′(ρ(x, θ0)

φ(ρ(x, θ0))

}
dx =

= G′(0) ·
∫

X

∂2ρ(x, θ0)

∂θ j∂θk · ρ(x, θ0)

φ(ρ(x, θ0))
dx+

+
∫

X
φ(ρ(x, θ0)) · ∂

∂θ j logN
φ (ρ(x, θ0)) · ∂

∂θk logN
φ (ρ(x, θ0))·

·G′(0) ·
{

2− ρ(x, θ0) · φ′(ρ(x, θ0))

φ(ρ(x, θ0))

}
dx+

+G′′(0) ·
∫

X
ρ(x, θ0) · ∂

∂θ j logN
φ (ρ(x, θ0)) · ∂

∂θk logN
φ (ρ(x, θ0))dx.

From the last suite of formulas, we obtain both (26) and (27).

Suppose, moreover, that G(t) = t. Then, we have

ĝjk(θ0) =
∫

X

{∂2ρ(x, θ0)

∂θ j∂θk
ρ(x, θ0)

φ(ρ(x, θ0))
+ 2

∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk · 1
φ(ρ(x, θ0))

− (28)

−∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk · ρ(x, θ0) · φ′(ρ(x, θ0))

φ2(ρ(x, θ0))

}
dx.

We re-write this formula in a condensed form, and we obtain the following result,
which completes Corollary 1.
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Corollary 2. With the previous notations, for G(t) = t, we obtain

ĝ = −h− α.

By analogy, starting with a generalized (quotient) group relative entropy (a.k.a. the
generalized (quotient) group divergence) D̃G,φ = D̃G,φ(ρ ‖ σ)(θ, θ0), as particularization
from (9), we shall obtain, in the sequel, other Fisher-like metrics, similar to the ones in
Proposition 2 and Corollary 2.

Denote the generalized group Fisher metric associated with D̃G,φ by

gjk(θ0) :=
∂2D̃G,φ(ρ ‖ σ)(θ, θ0)

∂θ j∂θk |θ=θ0 . (29)

Proposition 3. With the previous notations, we have the relation

g =
{

G′(0) ·
[ 2

φ(1)
− φ′(1)

φ2(1)

]
+ G”(0) · 1

φ2(1)

}
· g0, (30)

where g0 denotes the classical Fisher metric.

Proof. We adapt the proof of Proposition 2, from the divergence DG,φ to the divergence
D̃G,φ. Suppose that θ0 is constant. Denote

Ã(θ) := D̃G,φ(ρ(x, θ) ‖ ρ(x, θ0)).

It follows that

∂Ã
∂θk (θ) =

∫
X

{∂ρ(x, θ)

∂θk · G
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+ρ(x, θ) · G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
· ∂

∂θk logN
φ

[ ρ(x, θ)

ρ(x, θ0)

]}
dx =

=
∫

X

{∂ρ(x, θ)

∂θk · G
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+ρ(x, θ) · G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
· φ−1(

ρ(x, θ)

ρ(x, θ0)
) · ρ−1(x, θ0) · ∂ρ(x, θ)

∂θk

}
dx =

=
∫

X

∂ρ(x, θ)

∂θk ·
{

G
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+ρ(x, θ) · G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
· φ−1(

ρ(x, θ)

ρ(x, θ0)
) · ρ−1(x, θ0)

}
dx

and
∂2 A

∂θ j∂θk (θ) =
∫

X

∂2ρ(x, θ)

∂θ j∂θk ·
{

G
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+ρ(x, θ) · φ−1(
ρ(x, θ)

ρ(x, θ0)
) · ρ−1(x, θ0) · G′

(
logN

φ

[ ρ(x, θ)

ρ(x, θ0)

])}
+

+
∂ρ(x, θ)

∂θk ·
{

φ−1(
ρ(x, θ)

ρ(x, θ0)
) · ρ−1(x, θ0) · ∂ρ(x, θ)

∂θ j · G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
· φ−2(

ρ(x, θ)

ρ(x, θ0)
) · ∂ρ(x, θ)

∂θ j ·
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·
[
ρ−1(x, θ0) · φ(

ρ(x, θ)

ρ(x, θ0)
)− ρ(x, θ) · ρ−2(x, θ0) · φ′( ρ(x, θ)

ρ(x, θ0)

]
+

+ρ(x, θ) · φ−2(
ρ(x, θ)

ρ(x, θ0)
) · ρ−2(x, θ0) · G”

(
logN

φ

[ ρ(x, θ)

ρ(x, θ0)

])
· ∂ρ(x, θ)

∂θ j

}
dx .

We assign θ := θ0, and we use the property G(0) = 0. We obtain

gjk(θ0) :=
∂2 A

∂θ j∂θk |θ=θ0=
∫

X

∂2ρ(x, θ0)

∂θ j∂θk ·
{

G(0) +
1

φ(1)
· G′(0)

}
+

+
∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk · 1
ρ(x, θ0)

·
{ 1

φ(1)
· G′(0) + 1

φ2(1)
· G”(0)+

+G′(0) · φ(1))− φ′(1)
φ2(1)

}
dx =

[
G′(0 ·

( 2
φ(1)

− φ′(1)
φ2(1)

)
+ G”(0) · 1

φ2(1)

]
·

·
∫

X
ρ−1(x, θ0)) · ∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk + G′(0) · 1
φ(1)

·
∫

X

∂2ρ(x, θ0)

∂θ j∂θk dx.

The first integral equals g0
jk(θ0). The second integral is null because

∫
X ρ(x, θ)dx = 1.

We obtained Formula (30).

Remark 2. (i) In Proposition 1, we establish the basic formulas for the future development of
associated Riemannian geometries determined by g, g̃, h, α, β, in terms of the function φ-deformed
(Naudts) entropy (curvature, geodesics, Riemannian distance in the positive definite case). Examples
of scalar curvature functions derived from these formulas will be shown in the next section. The
coefficients of GFM1 g extend known ones from [29], derived for PDFs of exponential type and for
particular functions φ. The other Fisher metrics are new.

An interesting consequence of Proposition 1 is the fact that g and g̃ do not coincide, as in the case
of the Neperian logarithm. This can be seen directly, by comparing their φ-dependent coefficients.

(ii) In Proposition 2, we derive the Fisher-like metric ĝ associated with the divergence DG,φ, as
a generalization of a construction in [30] for the case of a Kullback–Leibler divergence, of a trivial
group logarithm G = id and for PDFs of exponential type.

(iii) In Proposition 3, the Fisher-like metric ĝ associated with the divergence D̃G,φ is—to our
knowledge—completely new.

The metrics in Formula (30) are homothetic, via a constant kG,φ supposed—implicitly—to be
not null. It is interesting that kG,φ depends only on the behavior of the deformation function φ, for
or around 1 and on G, around 0. Its independence on the PDFs gives kG,φ an “universality” feature,
which corresponds—probably—to some special uncovered property of the statistical model.

Suppose, moreover, that G(t) = t. We replace in (30) the values G′(0) = 1 and G′′(0) = 0,
and we obtain

g =
[ 2

φ(1)
− φ′(1)

φ2(1)

]
· g0. (31)

5. Examples

We particularize now the results from Section 4, for the case when ρ is an exponential
PDF and m = 1, n = 2. The deforming function φ will be chosen conveniently, in order to
be able to compute the integrals.

Let X := R and ρ : R×R× (0, ∞)→ R be the exponential (normal) PDF given by

ρ(x; θ1, θ2) =
1√

2πθ2
· e
− (x−θ1)2

2(θ2)2 . (32)
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We denote the partial derivatives of ρ, with respect to the variables θ1 and θ2, by ρ1,
ρ2, ρ11, ρ12, ρ22. A short calculation ([34]) leads to the formulas

ρ1 =
x− θ1

(θ2)2 · ρ , ρ2 = { (x− θ1)2

(θ2)3 − 1
θ2 } · ρ,

ρ11 = { (x− θ1)2

(θ2)4 − 1
(θ2)2 } · ρ , ρ12 = { (x− θ1)3

(θ2)5 − 3(x− θ1)

(θ2)3 } · ρ,

ρ22 = { (x− θ1)4

(θ2)6 − 5(x− θ1)2

(θ2)4 +
2

(θ2)2 } · ρ.

The classical Fisher metric g0 has the coefficients g0
11 = (θ2)−2, g0

12 = g0
21 = 0 and

g0
22 = 2(θ2)−2 (see, for example, [2,34]).

For future calculations, we shall use the following simple result.

Lemma 1. Let c, k1, k2 be fixed real constants, with k1 �= 0, k2 �= 0. Then, the semi-Riemannian
metric

y−c ·
[

k1 0
0 k2

]
on the set y �= 0 in R2 has the scalar curvature

− c
2k2

· yc−2.

In the sequel, we give examples of the semi-Riemannian metrics from Propositions 1–3,
under various particular assumptions.

I—The case of g. Suppose φ(t) := tc, with c ∈ (0, 2) an arbitrary fixed parameter.
From Formula (22), we calculate the coefficients

g11 = K1(c) · (θ2)c−3 , g12 = g21 = 0 , g22 = K2(c) · (θ2)c−3,

where

K1(c) = (2− c)−
3
2 · (

√
2π)c−1 , K2(c) = (c3 − 4c2 + 6c− 1) · (2− c)−

5
2 · (

√
2π)c−1.

There exists a unique c0 ∈ (0.18, 0.19) such that K2(c0) = 0. For this value, g is
degenerated. The metric g is Lorentzian, when c ∈ (0, c0) and is Riemannian, when
c ∈ (c0, 2).

The scalar curvature S{c} = S{c}(θ) of g is

S{c}(θ) = 1
2K2(c)

· (c− 3) · (θ2)1−c.

The scalar curvature S{c} does not vanish anywhere, and its sign is the opposite sign
of K2(c). Moreover, S{c} is constant if and only if c = 1, i.e., only in the case when g is the
classical Fisher metric g0. If we decide to use the scalar curvature as a control, this may
lead to a quick criterion to distinguish the BGS entropy case from the φ-deformed (Naudts)
entropy case. (The statistical interpretation of the scalar curvature of the Fisher metrics
may be found in [20]).

We depicted in Figure 1 (and magnified in Figure 2 around c = 1 and in Figure 3
around c = 0.19) how S{c} varies w.r.t. c and θ2 (denoted t).
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Figure 1. The variation of S{c} w.r.t. c ∈ (0, c0)
⋃
(c0, 2) and θ2 := t.

Figure 2. The variation of S{c} w.r.t. c ∈ (0.8, 1.2) and θ2 := t.
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Figure 3. The variation of S{c} w.r.t. c ∈ (0.18, 0.20) and θ2 := t.

II—The case of g̃. Suppose φ(t) := tc, with c ∈ (0, 3
2 ) an arbitrary fixed parameter.

From Formula (23), we calculate the coefficients

g̃11 = K̃1(c) · (θ2)2c−4 , g̃12 = g̃21 = 0 , g̃22 = K̃2(c) · (θ2)2c−4,

where

K̃1(c) = (3− 2c)−
3
2 · (

√
2π)2c−2 , K̃2(c) = (4c2 − 8c + 6) · (3− 2c)−

5
2 · (

√
2π)2c−2.

The scalar curvature S̃{c} = S̃{c}(θ) of the Riemannian metric g̃ is

S̃{c}(θ) = 1
K̃2(c)

· (c− 2) · (θ2)2−2c.

We mention that: the scalar curvature is negative; it decreases indefinitely as the
variable θ2 grows and the parameter c goes to 0; it tends to 0 as c goes to 3

2 . We depicted in
Figure 4 how S̃{c} varies w.r.t. c and θ2 (denoted t).
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Figure 4. The variation of S̃{c} w.r.t. c and θ2 := t.

III—The case of h. Suppose φ(t) := tc, with c ∈ (0, 2) an arbitrary fixed parameter.
From Formula (24), we calculate the coefficients

h11 = h12 = h21 = 0 , h22 = K4(c) · (θ2)c−3,

where
K4(c) = −(2− c)

1
2 · (

√
2π)c−1.

As the (0,2)-type tensor field h is degenerated, it does not define a semi-Riemannian
metric. In this case, there is no scalar curvature to compute.

IV—The case of α. Suppose φ(t) := tc, with c ∈ (0, 2) an arbitrary fixed parameter.
From Formula (17) or from Proposition 1, we calculate the coefficients

α11 = K5(c) · (θ2)c−3 , α12 = α21 = 0 , α22 = K6(c) · (θ2)c−3,

where

K5(c) = −(
√

2π)c−1 · (2− c)−
3
2 , K6(c) = (1− 2c) · (2− c)−

5
2 · (

√
2π)c−1.

The (0,2)-type tensor field α is degenerated for c = 1
2 . If c ∈ (0, 1

2 ), then α is a
Lorentzian metric. If c ∈ ( 1

2 , 2), then (−α) is a Riemannian metric.
The scalar curvature U{c} = U{c}(θ) of (−α) is

U{c}(θ) = 1
2K6(c)

· (3− c) · (θ2)1−c.

and has the sign of K6. We depicted in Figure 5 how U{c} varies w.r.t. c and θ2 (denoted t).
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Figure 5. The variation of U{c} w.r.t. c and θ2 := t.

V—The case of β. Suppose φ(t) := tc, with c ∈ (0, 2) an arbitrary fixed parameter.
From Formula (18) or from Proposition 1, we calculate the coefficients

β11 = K7(c) · (θ2)c−3 , β12 = β21 = 0 , β22 = K8(c) · (θ2)c−3,

where

K7(c) = 2(
√

2π)c−1(2− c)−
3
2 , K8(c) = 2(c2 − 2c + 3) · (2− c)−

5
2 · (

√
2π)c−1.

The scalar curvature V{c} = V{c}(θ) of β is

V{c}(θ) = 1
2K8(c)

· (c− 3) · (θ2)1−c.

and takes negative values. We depicted in Figure 6 how V{c} varies w.r.t. c and θ2 (denoted t).
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Figure 6. The variation of V{c} w.r.t. c and θ2 := t.

VI—The case of ĝ. Suppose φ(t) := tc, with c ∈ (0, 3
2 ) an arbitrary fixed parameter.

From Formula (27), we calculate the coefficients

ĝ11 = K9(c) · (θ2)c−3 + K10(c) · (θ2)2c−3,

ĝ12 = ĝ21 = 0,

ĝ22 = K11(c) · (θ2)c−3 + K12(c) · (θ2)2c−3,

where
K9(c) = G′(0) · (

√
2π)c−1 · (2− c)−

3
2 ,

K10(c) = G”(0) · (
√

2π)2c−2 · (3− 2c)−
3
2 ,

K11(c) = −G′(0) · (
√

2π)c−1 · (2− c)−
5
2 · (c3 − 6c2 + 10c− 7),

K12(c) = G′′(0) · (
√

2π)2c−2 · (3− 2c)−
5
2 · (4c2 − 8c + 6).

We suppose that the group logarithm G is chosen such that ĝ be non-degenerated. The
scalar curvature Ŝ{c} = Ŝ{c}(θ) of ĝ is calculated using MAPLE:

Ŝ{c}(θ) = 1
4
· (θ2)−2 · (K12(θ

2)c + K11)
−2(K10(θ

2)c + K9)
−3 ·

{
(θ2)3 ·

[
K3

9K12c2−

−K3
9K12c− 18K2

9K10K11 − 3K2
9K10K11c2 + 11K9K10K11c− 6K3

9K12

]
+

+(θ2)3+c ·
[
− 18K2

9K10K12 − 18K9K2
10K11 + 2K2

9K10K12c− 5K9K2
10K11c2+

+16K9K2
10K11c + K2

9K10K12c2
]
+ (θ2)3+2c ·

[
− 18K9K2

10K12 − 2K3
10K11c2+

+7K3
10K11c + 7K9K2

10K12c− 6K3
10K11

]
+ (θ2)3−c ·

[
2K3

9K11c− 6K3
9K11

]
+

+(θ2)3+3c ·
[
4K3

10K12c− 6K3
10K12

]}
.

108



Mathematics 2022, 10, 4311

Interestingly, the scalar curvature Ŝ{c} is a rational function of θ2 and (θ2)c.
We particularize now the setting for the BGS group logarithm G(t) := t and replace

G′(0) = 1 and G′′(0) = 0 in the previous formulas. Then,

ĝ11 = K9(c) · (θ2)c−3 , ĝ12 = ĝ21 = 0 , ĝ22 = K11(c) · (θ2)c−3,

where
K9(c) = (

√
2π)c−1 · (2− c)−

3
2 ,

K11(c) = −(
√

2π)c−1 · (2− c)−
5
2 · (c3 − 6c2 + 10c− 7).

In this particular case, the scalar curvature Ŝ{c} = Ŝ{c}(θ) of the Riemannian metric ĝ
has the form:

Ŝ{c}(θ) = 1
2K11(c)

· (c− 3) · (θ2)1−c.

(The same formula may be recovered, directly, by using Lemma 1.) We mention that
Ŝ{c} takes negative values, for every c ∈ (0, 2). In Figure 7, we depicted how this particular
Ŝ{c} varies w.r.t. c and θ2 (denoted t).

Figure 7. The variation of Ŝ{c} w.r.t. c and θ2 := t.

VII—The case of g. From (30), we have the coefficients of g :

g11 = kG,φ · (θ2)−2 , g12 = g21 = 0 , g0
22 = 2kG,φ · (θ2)−2,

where

kG,φ = G′(0) ·
[ 2

φ(1)
− φ′(1)

φ2(1)

]
+ G′′(0) · 1

φ2(1)
.

For the moment, we suppose that G and φ are suitable chosen, such that kG,φ > 0. It
follows that g is a Riemannian metric. As the scalar curvature of g0 is a negative constant
S0 = − 1

2 , we deduce the scalar curvature of g is a negative constant S = − 1
2 · kG,φ w.r.t. θ

too. In what follows, we study the variance of S in two particular cases.

109



Mathematics 2022, 10, 4311

VII1. Let G(t) := t be the BGS grup logarithm function and consider φ(t) := ta2
+ etb3

,
where the real parameters a and b satisfy a2 + eb3 < 2(1 + e). Denote the respective metrics

by g{a,b} and their scalar curvatures by S{a,b}. Then,

S{a,b}
= −1

2
·
{ 2

1 + e
− a2 + eb3

(1 + e)2

}
.

We mention that kG,φ > 0 (and hence S{a,b}
< 0). The dependency of S{a,b} w.r.t. a

and b may be seen in Figure 8.

Figure 8. The variation of S{a,b} w.r.t. a and b.

The family of Fisher-like Riemannian metrics g{a,b} may be considered as evolving
from the classical Fisher metric g0. Their evolution may be controlled through their scalar
curvature.

VII2. Let G(t) := e(1−q)t−1
1−q be the Tsallis grup logarithm function, where q �= 1. Let us

define φ(t) := ta2
+ etb3

, with real parameters a and b satisfying a2 + e · b3 + q− 1 < 2(1+ e).

We denote the associated metric by g{a,b;q} and its scalar curvature by S{a,b;q}. Then,

S{a,b;q}
= −1

2
·
{ 2

1 + e
− a2 + eb3 + q− 1

(1 + e)2

}
.

We mention that kG,φ > 0 (and hence S{a,b;q}
< 0). The dependency of S{a,b;q} w.r.t. a

and b may be seen in Figure 9, for q taking successively the values 1,11,21,31 (from bottom
to top). The value q = 1 is no longer a forbidden (singular) one!
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Figure 9. The variation of S{a,b;q} w.r.t. a and b, when q ∈ {1, 11, 21, 31}.

The family of Fisher-like Riemannian metrics g{a,b;q} may be considered as evolving
from the classical Fisher metric g0, and also as “expanding” from the BGS group loga-
rithm to the q-dependent Tsallis group logarithm. The evolution of these metrics may be
controlled through their scalar curvature, which, in addition to the previous case VII1,
“foliates” following the values of q.

Remark 3. (i) The parameters’ domains are subsets of R× (0, ∞), which is two-dimensional.
Therefore, for all the metrics in this section, the scalar curvature coincides with the Gaussian
curvature. The coefficients of the metrics depend on the variable θ2 only, which has the signification
of standard deviation. It follows that the scalar curvature functions are also independent on the
mean of the PDF modeled by θ1. This dependence of the geometric invariants only on the standard
deviation suggests applications where a similar property appears: see, for example, [50–54].

(ii) Using general differential geometric arguments, we knew a priori that the metrics must be
(locally) conformal with the Euclidean (or Minkowskian) metric of the plane. However, we obtained
more: the conformal factors are explicitly derived, they are global and, as expected, they are also
independent of the mean θ1. Moreover, the metric g in example VII is even homothetic with the
Euclidean metric.

If we consider a curve in the parameters space, its length (w.r.t any of the respective metrics)
depends only on the standard deviation; instead, the angle of two such curves does not depend on
either the mean or the standard deviation.

(iii) The statistical significance of the sectional curvature of Fisher-like metrics g, g̃, h, β, ĝ, g
can be obtained by analogy with Ruppeiner’s geometric modelization of the Gaussian thermodynamic
fluctuations [55]. His “thermodynamic curvature” (R) corresponds to the sectional curvature and
measures the inter-particles interaction: when R = 0, there is no interaction, and the cases R > 0
or R < 0 correspond to repulsive or attractive interactions, respectively ([55], apud [48,56]). This
approach was developed and generalized by the Geometrothermodynamics theory [57].

Another viewpoint interprets the scalar curvature as a measure of the stability of the statistical
model, in a direct proportionality relation ([58], apud [59]).
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(iv) It may be worth noting the following special property, apparently collateral to the main
path of the discourse. Let us fix a value of the Tsallis parameter q0 and a value of the scalar curvature

S{a,b;q0} in example VII2, denoted by s0. Then, the solution of the equation

s0 = −1
2
·
{ 2

1 + e
− a2 + eb3 + q0 − 1

(1 + e)2

}
is an elliptic curve in the plane of coordinates (a, b), written in Weierstrass form. In Figure 10, we
drew these elliptic curves, corresponding to s0 = −1 and to q0 ∈ {1,−51,−101,−1001} (from
left to right).

Figure 10. The elliptic curves associated with s0 = −1 and q0 ∈ {1,−51,−101,−1001}.

6. The MaxEnt Problem for the φ-Deformed (Naudts) Entropy

Let V = V(x) be a fixed potential energy function, φ be a fixed positive strictly-
increasing function and U0 > 0 be a fixed real number. Consider ρ = ρ(x) a univariate
PDF, satisfying ∫

R
V(x)ρ(x)dx = U0

and let HN
φ [ρ] be its associated φ-deformed (Naudts) entropy, based on (5).

Theorem 1. The optimization problem

max HN
φ [ρ]

has the solution
ρME

φ (x) = expN
{φ}
[
γ + βV(x)

]
, (33)

where expN
{φ} is the inverse function of logN

{φ}; β and γ are the Lagrange multipliers determined by
the constraints, and satisfy the inequality γ + βV(x) > 0.

Proof. The proof is a standard one; see, for example, [60], §12.1.
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Remark 4. Under the previous hypothesis, we denote: the (maximal) φ-deformed (Naudts) entropy
H := HN

φ [ρME
φ ]; the mean force with respect to ρME

φ

U :=
∫
R

V(x) · ρME
φ (x)dx;

the φ-deformed generalized free energy

F := −γ

β
.

We obtain φ-deformed generalizations of the thermodynamic relations:

F = U +
1
β

H ,
d

dβ
(βF) = U.

In the previous relations, all the notions depend on φ; we skipped it, in order to keep the
formalism simpler. For some physical interpretations, we recommend [29,61,62]. In the particular
cases when the φ-deformed (Naudts) entropy is of Tsallis or of Kaniadakis type, we recover the
formulas from [38,39].

7. Conclusions

(i) In this paper, we refined the search of relevant semi-Riemannian metrics associated
in a canonical manner to manifolds of parameterized PDfs, via remarkable entropies and
divergences. We stress the main general ideas:

- We made the distinction between quotient divergence and difference divergence,
leading to different metrics g and g̃ (see Example 2 (i), (ii) and Formulas (14) and (15));

- We defined the (0,2)-type tensor fields α and β, as possible candidates for Fisher-like
metrics (see (17) and (18));

- We gave an interpretation of the GFM1, whose coefficients may be derived from a
variation of a generalized (difference) divergence (Remark 1 (i)).

(ii) In particular, based on the φ-deformed (Naudts) entropy, we focused on the
following topics:

- We calculated the coefficients of the metrics g, g̃, h, α, β, ĝ, g in terms of logN and of
the PDF ρ (Propositions 1–3);

- When the PDFs are normal, univariate and depending on two parameters, we pro-
vided seven families of examples of the previous metrics; we determined formulas for
their scalar curvature and we discussed its variation w.r.t. parameters;

- We proved a MaxEnt result (Theorem 1) for univariate PDFs and some extensions of
the thermodynamic relations (Remark 4).

(iii) Future work will be directed toward:

- The search of the statistical relevance of α and β and a statistical interpretation for
quotient divergences, similar to that for difference divergences (in the Remark 1 (i));

- The characterization of the case when the quotient divergence coincides with the
difference divergence; this kind of result might bring into light unexpected—and
eventually important—families of entropies;

- Refining the known families of deformation functions φ and finding new ones, rele-
vant for applications. The interplay between the choice of φ and of the group logarithm
G offers many modeling opportunities.

(iv) There exist two different but connected approaches to entropy: in Thermodynam-
ics and in Statistical mechanics. Its geometrization by means of Fisher metrics follows two
apparently different paths. The procedures to construct Fisher-like metrics from entropy
are analogous, as they originate from the same general differential geometric methods.
Instead, the basic manifold these metrics act upon (i.e., the space of the parameters) is
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essentially different. Moreover, entropy in Thermodynamics is “more deterministic” and
one does not use a log-likelihood function which “produces” it.

The first formalism is dominated by the ideas of Weinhold, Ruppeiner and
Quevedo [55,57,63], and is extensively used in models for the entropy of black holes
(see [64] and references therein).

Our paper engaged in the second path and is dependent of log-likelihood functions,
especially of the φ-deformed (Naudts) one. However, we are aware that more connections
between the two theories are needed, with refined comparisons of the Riemannian models
they both rely on.
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Abstract: In this study, we consider general Markov chains (MC) defined by a transition probabil-
ity (kernel) that is finitely additive. These Markov chains were constructed by S. Ramakrishnan
within the concepts and symbolism of game theory. Here, we study these MCs by using the operator
approach. In our work, the state space (phase space) of the MC has any cardinality and the sigma-
algebra is discrete. The construction of a phase space allows us to decompose the Markov kernel
(and the Markov operators that it generates) into the sum of two components: countably additive
and purely finitely additive kernels. We show that the countably additive kernel is atomic. Some
properties of Markov operators with a purely finitely additive kernel and their invariant measures
are also studied. A class of combined finitely additive MC and two of its subclasses are introduced,
and the properties of their invariant measures are proven. Some asymptotic regularities of such MCs
were revealed.

Keywords: Markov chains; Markov operators; finitely additive Markov chains; finitely additive
measures; invariant measures; decompositions of Markov chains

MSC: 60J05; 60J10; 28A33; 46E27

1. Introduction

In this study, classical Markov chains (MC) are interpreted as random Markov pro-
cesses with discrete time (in the usual sense) in the phase space (X, Σ), where X is some set
(space) and Σ is some sigma-algebra of subsets in X. We also consider time-homogeneous
MCs. If X is an arbitrary infinite set that does not highlight any structure other than
sigma-algebra Σ, then these MCs are called general.

In 1937, Kryloff and Bogoliouboff [1,2] proposed an operator-theoretical treatment of
the general MC study that was then explicitly developed then by Yosida and Kakutani [3].
The essence of the treatment is that the MC is given by a transition function (probability)
P(x, E), x ∈ X, E ∈ Σ, which as a kernel defines two dual integral Markov operators T and
A in spaces of measurable functions and in spaces of measures, respectively.

A Markov chain is identified with an iterative sequence of probability measures {μn}.
Such sequence is generated by the second Markov operator μn = Aμn−1 = Anμ1 with
an arbitrary initial probability measure μ1. We use this treatment in this work.

In the classical theory of MC, the transition function (probability) P(x, ·) is assumed
by the second argument to be a countably additive measure. At the same time, in eco-
nomic game theory, developed in the 1960s by Dubbins and Savage [4], and their numerous
students and followers, to also involve finitely additive probability measures in the construc-
tion of specific random processes became necessary. In particular, in [5], some constructions
and investigations of finitely additive measures similar to Markov chains were presented.
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Based on the work of [5], in 1981, Ramakrishnan [6] developed a new object construc-
tion in the language of strategies, thus named finitely additive Markov chains. These chains
are generated by a transition function (strategy) that is finitely additive by the second
argument. The phase space (X, Σ) in [6] is a discrete set with the sigma-algebra of all its
subsets. In the framework of this construction, the study in [6] contains proof of a number
of non-trivial theorems, including ergodic ones, based on these specific chains properties
within game theory terms. Some additional questions on this topic were also discussed
in further publications by Ramakrishnan (see, e.g., [7]).

Other authors also continued to study some problems of the finitely additive Markov
chains theory based on Ramakrishnan findings (see, e.g., [8]). The authors of such works actively
used the special apparatus of random variables defined by finitely additive probabilities.

Zhdanok also used finitely additive measures in the study of general classical Markov
chains in the works [9,10].

In this paper, we study general Markov chains generated by a transition function
that is finitely additive by its second argument, as mentioned above. We consider Markov
chains defined on a discrete space. However, it does not use any specific features of game
theory, and a different range of problems is solved. We also do not use the apparatus of
random variables.

In Section 2, we provide an operator approach for studying general Markov chains
with a countably additive transition function on an arbitrary measurable space. We use
and develop this construction for finitely additive transition functions.

In Section 3, a discrete topology and a discrete sigma-algebra containing all subsets
of the set X are introduced into the phase space (of any cardinality) of finitely additive
MCs. We study the properties of countably additive and purely finitely additive transition
functions and the Markov operators generated by them in such spaces. We then prove that
countably additive transition functions are atomic measures with a finitely or countable
support and prove that the Markov operators of MCs with a purely finitely additive
transition functions transform all finitely additive measures (including countably additive
ones) into purely finitely additive measures.

The transition function of an arbitrary finitely additive MC and the Markov operators
generated by it are decomposed into a countably additive component and a purely finitely
additive component. Their general properties are studied.

In Section 4, we prove that, for any purely finitely additive MC, all its invariant finitely
additive measures are purely finitely additive. The class of combined finitely additive MCs
is also introduced here. We then prove that such MCs do not have invariant countably
additive measures.

In Section 5, we consider the decomposition of a Markov sequence of measures of com-
bined MCs into a countably additive component and a purely finitely additive component.
Combined MCs have two subclasses. The first subclass is when the countably additive
component of the Markov operator transforms all purely finitely additive measures into
countably additive ones (condition (H1)). The second subclass is when the same compo-
nent transforms all purely finitely additive measures into the same ones (condition (H2)).
Under condition (H1), the norms of countably additive and purely finitely additive compo-
nents of a Markov sequence of measures were proven to be time-stationary. Additionally,
under condition (H2), the norms of countably additive components of a Markov sequence
of measures were proven to converge exponentially to zero. The simple conditions (G1)
and (G2) on the transition function of the MC are given, under which the “qualitative”
conditions (H1) and (H2) are also satisfied. The corresponding theorems are then proven.

Examples of finitely additive MCs on a segment are considered in detail in Sections 4 and 5
and their phase portraits are shown.

118



Mathematics 2022, 10, 2083

2. Definitions, Notation and Some Information

Let X be an arbitrary infinite set and Σ be a sigma-algebra of its subsets containing all
one-point subsets from X. Let B(X, Σ) denote the Banach space of bounded Σ-measurable
functions f : X → R with sup-norm.

We also consider Banach spaces of bounded measures μ : Σ → R, with the norm equal to
the total variation of the measure μ (but one can also use the topologically equivalent sup-norm):

ba(X, Σ) is the space of finitely additive measures, and
ca(X, Σ) is the space of countably additive measures.

If μ ≥ 0, then norm ||μ|| = μ(X).

Definition 1 ([11]). A finitely additive measure μ, μ ≥ 0, is called purely finitely additive (pure
charge, pure mean) if any countably additive measure λ satisfying the condition 0 ≤ λ ≤ μ is
identically zero. An alternating measure μ is called purely finitely additive if both components of its
Jordan decomposition μ = μ+ − μ− are purely finitely additive.

Lemma 1. If the measure μ is purely finitely additive, then it is equal to zero on every one-point
set: μ({x}) = 0, ∀x ∈ X.

Proof of Lemma 1. Take a purely finitely additive measure μ ≥ 0. Suppose that there is
a point x0 ∈ X such that μ({x0}) = α > 0. We take the Dirac measure δx0 at the point x0.
Then, δx0(X \ x0) = 0 and α · δx0(E) ≤ μ(E) for all E ∈ Σ, i.e., α · δx0 ≤ μ. All Dirac measures
are countably additive, and this measure α · δx0 is also countably additive. Therefore,
the statement in Lemma 1 is true for μ ≥ 0. This statement is also true for any sign-
alternating purely finitely additive measure.

Obviously, a purely finitely additive measure is equal to zero on any finite set as
well. The converse, generally speaking, is not true, for example, for the Lebesgue measure
on the segment [0, 1].

Remark 1. If the measure μ is identically zero, then it can formally be considered both countably
additive and purely finitely additive.

Theorem 1 (Yosida-Hewitt decomposition, see [11]). Any finitely additive measure μ can be
uniquely decomposed into the sum μ = μca + μp f a, where μca is countably additive and μp f a is
a purely finitely additive measure.

Bounded purely finitely additive measures also form a Banach space p f a(X, Σ) with
the same norm and ba(X, Σ) = ca(X, Σ)⊕ p f a(X, Σ).

We denote the sets of non-negative measures:

Vba = {μ ∈ ba(X, Σ) : μ(X) ≤ 1},
Vca = {μ ∈ ca(X, Σ) : μ(X) ≤ 1},
Vp f a = {μ ∈ p f a(X, Σ) : μ(X) ≤ 1}.

Measures from these sets are called probabilistic if μ(X) = 1.
We also denote by Sba, Sca, and Sp f a the sets of all probability measures in Vba, Vca,

and Vp f a, respectively.

Definition 2. The classical Markov chains (MCs) on a measurable space (X, Σ) are given by their
transition function (probability kernel) P(x, E), x ∈ X, E ∈ Σ, under the usual conditions:

1. 0 ≤ P(x, E) ≤ 1, ∀x ∈ X, ∀E ∈ Σ;
2. P(·, E) ∈ B(X, Σ), ∀E ∈ Σ;
3. P(x, ·) ∈ ca(X, Σ), ∀x ∈ X;
4. P(x, X) = 1, ∀x ∈ X.
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The numerical value of the function P(x, E) is the probability that the system moves
from the point x ∈ X to the set E ∈ Σ in one step (per unit of time).

We emphasize that the transition function of the classical Markov chain is a countably
additive measure in the second argument.

We also call such transition functions countably additive kernels.
The transition function generates two Markov linear bounded positive integral operators:

T : B(X, Σ)→ B(X, Σ), (T f )(x) = T f (x) =
∫
X

f (y)P(x, dy),

∀ f ∈ B(X, Σ), ∀x ∈ X;
A : ca(X, Σ)→ ca(X, Σ), (Aμ)(E) = Aμ(E) =

∫
X

P(x, E)μ(dx),

∀μ ∈ ca(X, Σ), ∀E ∈ Σ.

The operator A is isometric in the cone of non-negative measures, in particular, ASca ⊂ Sca.
Let the initial measure be μ1 ∈ Sca. Then, the iterative sequence of countably additive

probability measures μn+1 = Aμn ∈ Sca, n ∈ N is usually identified with the Markov chain.
We call {μn} a Markov sequence of measures.

Topologically conjugated to the space B(X, Σ) is (isomorphically) the space of finitely
additive measures: B∗(X, Σ) = ba(X, Σ) (see, for example, [12]). In this case, the operator
T∗ : ba(X, Σ) → ba(X, Σ) serves as a topological conjugate to the operator T, which is
uniquely determined by the well-known rule of integral “scalar products”:

〈T∗μ, f 〉 = 〈μ, T f 〉, ∀ f ∈ B(X, Σ), ∀μ ∈ ba(X, Σ).

The operator T∗ is the only bounded continuation of the operator A to the space
ba(X, Σ), preserving its analytic form

T∗μ(E) =
∫

X
P(x, E)μ(dx), ∀μ ∈ ba(X, Σ), ∀E ∈ Σ.

The operator T∗ has its own invariant subspace ca(X, Σ), i.e., T∗[ca(X, Σ)] ⊂ ca(X, Σ),
on which it coincides with the original operator A. The operator T∗ is also isometric,
and T∗Sba ⊂ Sba. The construction of the Markov operators T and T∗ is now functionally
closed. We continue to denote the operator T∗ as A.

In such a setting, considering the Markov sequences of probabilistic finitely additive measures

μ1 ∈ Sba, μn+1 = Aμn ∈ Sba, n ∈ N,

and retaining the countable additivity of the transition function P(x, ·) by the second
argument are natural.

Despite this circumstance, image Aμ of a purely finitely additive measure μ can remain
purely finitely additive, i.e., generally speaking,

A[ba(X, Σ)] �⊂ ca(X, Σ).

The integral over a finitely additive measure, usually called the Radon integral, is
constructed according to the same scheme as the Lebesgue integral over the Lebesgue measure.
Its construction was developed in [12] and, in a more modern form, in [13]. Note that, if the
original space X is countable and the measure μ is not countably additive, then the integral
on X cannot be replaced by a sum (series). Such integrals have other features as well.

Definition 3. If Aμ = μ holds for some positive finitely additive measure μ, then we call such
a measure invariant for the operator A (and for the Markov chain).

An invariant probability countably additive measure is often called the stationary distribution
of a Markov chain.
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The question of the existence of invariant measures and their properties is one of
the main questions in the theory of Markov chains.

We denote the sets of all non-zero invariant measures for the operator A as follows:

Δba = {μ ∈ Vba : μ = Aμ},

Δca = {μ ∈ Vca : μ = Aμ},

and
Δp f a = {μ ∈ Vp f a : μ = Aμ}.

The classical Markov chain with a countably additive transition probability may or
may not have invariant countably additive probability measures, i.e., possibly Δca = ∅ (for
example, for a symmetric walk on Z).

In ([14], Theorem 2.2), Šidak proved that any countably additive MC on an arbi-
trary measurable space (X, Σ) with an operator extended to the space of finitely additive
measures has at least one invariant finitely additive measure, i.e., always Δba �= ∅.

In ([14], Theorem 2.5), for such MC (in the general case), Šidak established that, if a
finitely additive measure μ is invariant, Aμ = μ, and μ = μca + μp f a is its decomposition
into countably additive and purely finitely additive components, then each of them is also
invariant: Aμca = μca and Aμp f a = μp f a.

We now give our key definition of finitely additive MCs.

Definition 4. A transition function of a finitely additive MC on an arbitrary (phase) measurable
space (X, Σ) is a function P(x, E), x ∈ X, E ∈ Σ, for which the conditions (1), (2), and (4) from
Definition 2 and, instead of condition (3), condition (3′) are satisfied: P(x, ·) ∈ ba(X, Σ), ∀x ∈ X.
We will also call such transition functions finitely additive.

We consider specific finitely additive MCs that are not countably additive
in Examples 2–5 below.

The finitely additive transition function P(x, E) also generates two integral operators: T :
B(X, Σ)→ B(X, Σ) and A : ba(X, Σ)→ ba(X, Σ) in the same analytical form, with T∗ = A.

The Markov operators T and T∗ = A are linear, bounded, and positive. In addi-
tion, the operator A is isometric in the cone of non-negative finitely additive measures,
and ASba ⊂ Sba. However, in this case, generally speaking, the operator A does not
transform countably additive measures into the same ones, that is, Aca(X, Σ) �⊂ ca(X, Σ).
Finitely additive MCs are also associated with their Markov sequences of finitely additive
measures {μn}.

Remark 2. As already noted in the Introduction, in [6], Ramakrishnan introduced the concept of
finitely additive Markov chains. This definition uses a number of concepts and constructions used
only in game theory. The transition function of such MCs (in our terms) in [6] was interpreted
as some conditional strategy, which, as a function of sets, is finitely additive. In Definition 4 and
in the following comments about Markov operators, the usual language of functional analysis
(measure theory and linear operator theory) is used. Strictly comparing these completely different
approaches to constructing the theory of finitely additive Markov chains is very difficult (most likely
impossible). However, some analogies for individual results are easy to see.

It is natural to consider the decomposition of such transition functions (kernels) into
two components: countably additive and purely finitely additive.

To define such kernels, we take as a basis Definition 2 and some information from
Revuse’s book ([15], Chapter 1, §1) and transfer them to the finitely additive case.

Definition 5. A numerical function P(x, E) of two variables x ∈ X and E ∈ Σ is called a sub-
Markov countably additive kernel if conditions (1), (2), and (3) from Definition 2 are satisfied.
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Similarly, we introduce the terms sub-Markov and Markov kernels for the cases when
the kernel P(x, ·) is finitely additive or purely finitely additive in the second argument for
each x ∈ X.

We can say that, in this case, we replace condition (3) in Definitions 2 and 4 with
the following conditions:

(3′) P(x, ·) ∈ ba(X, Σ), ∀x ∈ X, and
(3′′) P(x, ·) ∈ p f a(X, Σ), ∀x ∈ X, respectively.

The integral operators T and A in spaces of functions and measures generated by
a sub-Markov (Markov) kernel are also called sub-Markov (Markov).

The already cited Yosida–Hewitt Theorem 1 [11] on the decomposition of a finitely
additive measure implies the following statement.

Proposition 1. Let X be an infinite set and an arbitrary sigma-algebra of its subsets Σ contains
all one-point sets. Any Markov finitely additive kernel P(x, E) on (X, Σ) is uniquely presented as
the sum of its countably additive and purely finitely additive components: P(x, E) = Pca(x, E) +
Pp f a(x, E), where Pca(x, ·) ∈ ca(X, Σ), Pp f a(x, ·) ∈ p f a(X, Σ), for all x ∈ X, E ∈ Σ.

Proof of Proposition 1. The transition function of a finitely additive MC is a probability
finitely additive measure P(x, ·) on the second argument P(x, E), E ∈ Σ for each fixed
x ∈ X, i.e., P(x, ·) ∈ ba(X, Σ), by Definition 1. Therefore, for each x ∈ X, the transition
function P(x, ·) has a unique decomposition P(x, ·) = Pca(x, ·)+ Pp f a(x, ·) into its countably
additive and finitely additive, according to Theorem 1.

We cannot yet call the components Pca(x, ·) and Pp f a(x, ·) sub-Markov kernels, because
the Σ -measurability of the functions Pca(·, E) and Pp f a(·, E) for different E ∈ Σ and for
an arbitrary sigma-algebra Σ is not guaranteed. Moreover, the original Markov kernel
P(·, E) is Σ -measurable for any E ∈ Σ by definition.

If the components Pca(·, E) or Pp f a(·, E) are immeasurable, then no sub-Markov opera-
tors T and A are integrally expressed in terms of them.

The question of measurability with respect to the first argument of two components
in the decompositions of the Markov kernel in Proposition 1 was pointed out by one of the au-
thors of this article in their paper [9]. It was hypothesized that immeasurable decompositions
exist. This problem was solved by Gutman and Sotnikov in their work [16].

They proved a number of theorems on the singularities of the decompositions of
transition functions (kernels) into the sum of their countably additive and purely finitely
additive components in different cases and proved that non-measurable decompositions
exist, in particular, on the segment [0, 1] with Lebesgue sigma-algebra.

Later, Sotnikov [17] constructed a class of strongly additive transition functions
in which both of their decomposition components are measurable.

In this paper, we use another possibility of ensuring the measurability of the com-
ponents in the decompositions of the finitely additive Markov kernel, which serves as
an introduction to the next subsection in which discrete topologies in an arbitrary MC
phase space are discussed.

3. Finitely Additive Markov Kernels in Discrete Space

In the theory of Markov chains, the term “discrete” is used in different senses, and is
applied to both the time parameter and the state space of the MC. We use the classical
definition from functional analysis (see, for example, [18]), which is also used in some
papers on the theory of MCs.

Definition 6. A topological space (X, τ) is called discrete if all its subsets are simultaneously open
and closed (clopen), that is, the topology τ = 2X is the set of all subsets of the set X.
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Such a topology in X is generated by the discrete metric d(x, y) equal to 1 for x �= y
and equal to 0 for x = y. In discrete space, all points are metrically isolated. Discrete
metric (and topology) can be introduced in any set X. In particular, the discrete topology
can be introduced in all “principal” number sets: N, Z, Q, [0, 1], and R = R1, as well as
in Rm(m ∈ N), transforming them into discrete spaces.

If a topological space is discrete, then, obviously, its Borel sigma-algebra B = τ = 2X .
This sigma-algebra contains all subsets of the set X. Such a sigma-algebra in X is also called
discrete. We will denote it by Σd.

Ramakrishnan [6] uses a similar definition of the discrete phase space of an MC.
If the space X is discrete, then, obviously, any bounded numerical function f : X →

R is measurable with respect to the discrete sigma-algebra Σd, that is, f ∈ B(X, Σd).
In particular, Σd is measurable in the first argument and the components Pca(·, E) and
Pp f a(·, E) of the CM transition function in Proposition 1 for all E ∈ Σ.

Note that all numeric functions f : X → R on any discrete space (X, Σd) are continuous
in the discrete topology τ = 2X .

Let us introduce the concept of a measure atom, known in different versions (we just
need to use a simplified version of its definition).

Definition 7. Let (X, Σ) be an arbitrary measurable space and μ : Σ → R be some countably
additive measure. An element x ∈ X is called an atom of the measure μ if μ({x}) �= 0. If a bounded
measure μ, μ ≥ 0, has a support (set of full measure) D ∈ Σ, consisting of a finite or countable
family of its atoms, then such a measure is called atomic (discrete). Moreover, D = {x1, x2, . . . }
and μ(D) = ∑n μ({xn}) = μ(X).

The atomic measure μ ≥ 0 can be represented as follows

μ(E) = ∑
n

αnδxn(E),

where E ∈ Σ, δxn are Dirac measures concentrated at the points xn, and ∑n αn = μ(D) = μ(X).
Note that a countably additive measure on a nondiscrete measurable space (X, Σ)

may not have atoms, for example, the Lebesgue measure on ([0, 1],B). Additionally, from
Definition 7 and Lemma 1, any purely finitely additive measure on any measurable space
has no atoms.

If the set X is countable and Σ = Σd, then, obviously, any bounded countably additive
measure μ on (X, Σd) is atomic.

Now, we want to find out how countably additive measures are arranged on an arbi-
trary discrete space (X, Σd). In a wider formulation, this question is considered, for example,
in Bourbaki ([19], Chapter III, paragraphs 1 and 2). A locally compact topological space is
taken as the initial space X. Countably additive measures are defined as linear continuous
functionals on the space of continuous functions. Definitions of a discrete space, a dis-
crete (atomic) measure, and its support are given, which differ from those given above.
After proving a number of propositions (theorems), in ([19], Chapter III, paragraph 2,
item 5), the following statement is formulated: “on a discrete space, any measure is discrete”
(here, countably additive measures).

To apply this statement in this work, we need to give precise definitions of the above
and other concepts and translate them into our language. Therefore, in Theorem 2 below,
we give our proof of the above statement from [19] in our definitions and refine it.

However, for this, we need one well-known and nontrivial theorem of Ulam, stated,
for example, in ([20], Chapter 5, Theorems 5.6 and 5.7) and, in more detail, in ([21], Volume
1, Theorem 1.12.40, and Corollary 1.12.41). We present this theorem under the condition
that the continuum hypothesis is accepted, i.e., we assume that ℵ1 = c (continuum).

Theorem 2. A finite countably additive measure μ defined on all subsets of the set X of cardinality
ℵ1 (c, continuum) is identically zero if it is zero for each one-point subset.
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Obviously, Ulam’s theorem holds trivially for sets X with countable cardinality ℵ0.
We continue to assume that the continuum hypothesis is true.

Remark 3. In the books [20,21], the (extended) Ulam Theorem 2 is noted to be true and, for higher,
so-called “immeasurable” cardinalities of the set X are found. Immeasurable cardinality includes all
cardinalities from an ordered cardinality scale: ℵ0, ℵ1 = c, ℵ2, etc. There is still no example of a set
with “measurable” power.

Definition 8. A measurable space (X, Σd) is called an arbitrary discrete space if Σd = 2X, and the
set X has an arbitrary immeasurable cardinality (including from the ordered cardinality scale).
In other words, we consider only discrete spaces for which the (extended) Ulam theorem is valid.

Now, let us prove the following promised theorem.

Theorem 3. Any non-zero non-negative bounded countably additive measure μ : Σd → R,
on an arbitrary discrete space (X, Σd) is atomic (discrete) and has a finite or countable support
D = {x1, x2, . . . } ⊂ X, for which μ({xn}) = αn > 0, n ∈ N, ∑n αn = μ(D) = μ(X),
μ(X \ D) = 0.

Proof. For a countable set X, the assertions of the theorem are trivially fulfilled.
Now, let the set X have uncountable cardinality. Consider an arbitrary bounded non-

negative countably additive measure μ : Σd → R for which 0 < μ(X) = γ < ∞. Because
the measure μ is not identically zero, then by Theorem 2, the measure μ has at least one
one-point atom x0 ∈ X such that μ({x0}) = α0 > 0. We denote by D the set of all atoms of
measure μ. As we have shown above, x0 ∈ D and D �= ∅. Let us prove that the set D is
finite or countable.

We split the interval (0, γ] of possible non-zero values of the measure μ into a countable
family of disjoint intervals

(0, γ] = ∪∞
n=1(

γ

n + 1
,

γ

n
].

We denote the inverse images of these intervals as

Dn = {x ∈ X : μ({x}) ∈ (
γ

n + 1
,

γ

n
]}, Dn ∈ Σd, n = 1, 2, . . . .

Then, the sets Dn are also pairwise disjoint and D = ∪∞
n=1Dn. Therefore, since

the measure μ is countably additive, then μ(D) = ∑∞
n=1 μ(Dn).

By construction, for any point x ∈ Dn performed, γ
n+1 < μ({x}) ≤ γ

n , n = 1, 2, . . . .
In addition, μ(Dn) ≤ γ < ∞ for all n = 1, 2, . . . .

If any of the sets Dn was infinite, then, by virtue of the inequalities for μ({x}) for x ∈ Dn,
it would be μ(Dn) = ∞. This contradiction implies that each set Dn is finite or empty.

Therefore, the set D, as a union of a countable (or finite) family of finite sets, is
countable (or finite).

By construction, D ⊂ X and μ(D) ≤ μ(X). Let us prove that μ(D) = μ(X). Because
X has uncountable cardinality and the set D is finite or countable, the set X \ D �= ∅ and is
also uncountable.

Suppose that μ(D) < μ(X), i.e., μ(X \ D) > 0. By the hypothesis of the theorem,
the set X is discrete. Consequently, the set X \ D is also discrete.

The restriction μD of the measure μ from the set X to the set X \ D also satisfies
all of the requirements for the measure μ under the conditions of the theorem. Because
μ(X \ D) > 0, then, again applying Ulam’s Theorem 2, we obtain that a point y0 ∈ X \ D
exists such that μD({y0}) > 0. However, then, μ({y0}) > 0. Therefore, y0 ∈ D and y0 �= x
for any x ∈ D. However, the set D was defined as the set of all points x ∈ X for which
μ({x}) > 0 is satisfied. Thus, we obtain a contradiction. Therefore, μ(D) = μ(X) and
μ(X \ D) = 0.
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Because D is finite or countable, we re-number all its points and obtain the last
statement of the theorem.

Surprisingly, all countably additive measures on the discrete segment [0, 1] are only
atomic. Additionally, the Lebesgue measure does not exist on the discrete segment [0, 1].
In 1923, Stefan Banach proved that the Lebesgue measure defined on the Borel (generated by
the Euclidean topology) sigma-algebra of the segment [0, 1] cannot be countably additively
extended to the sigma-algebra of all subsets of the segment [0, 1]. However, it can be
extended to a finitely additive measure on a discrete sigma-algebra, and infinitely many
such extensions exist. This issue is discussed in many sources; see, for example, ([21],
Volume 1, items 1.12.29 and 2.12.91).

Theorem 4. A finitely additive nonnegative measure μ defined on an arbitrary discrete space
(X, Σd) is purely finitely additive if and only if the condition μ({x}) = 0 for all x ∈ X is fulfilled.

Proof. The necessity of the condition is obvious. Let us show its sufficiency. Let the condi-
tion be satisfied but the measure μ be not purely finitely additive. Then, in its decomposition
μ = μca + μp f a the countably additive component μca �= 0. In this case, by Theorem 3,
a point x1 ∈ X exists such that μca({x1}) > 0. From this contradiction, we can see that μ is
purely finitely additive.

Let us now return to Markov chains. Theorem 3 automatically implies the follow-
ing statement.

Theorem 5. Let a countably additive sub-Markov kernel P(x, E) be given on an arbitrary discrete
space (X, Σd), and P(x, X) > 0 for all x ∈ X . Then, for any x ∈ X, the measure P(x, ·) is atomic
and has a finite or countable support D(x) = {x1(x), x2(x), . . . }, for which

P(x, {xn(x)}) = αn(x) > 0, n ∈ N,
and ∑n αn(x) = P(x, D(x)) = P(x, X), P(x, X \ D(x)) = 0.

Corollary 1. (From Theorem 4). Let a finitely additive sub-Markov kernel P(x, E) be given on
an arbitrary discrete space (X, Σd). For any fixed x0 ∈ X the measure P(x0, ·) is purely finitely
additive if and only if P(x0, {y}) = 0 for all y ∈ X (including the case y = x0).

Example 1. Let X = [0, 1] with Euclidean topology, Σ = B, be the Borel sigma-algebra and
a countably additive MC given by the kernel P(x, E) = λ(E) for all x ∈ X and E ∈ B, where λ is
the Lebesgue measure. Such a MC corresponds to a sequence of independent uniformly distributed
random variables on the segment [0, 1]. Obviously, P(x, {y}) = 0 holds for all x, y ∈ X. However,
the phase space X = [0, 1], Σ = B is not discrete, and Theorem 4 is not applicable.

Example 2. Let us now take the same X = [0, 1] with the discrete sigma-algebra Σd. Consider
a finitely additive MC defined by the kernel P(x, E) = η(E) for all x ∈ X and E ∈ Σd, where η is
some purely finitely additive measure satisfying the following conditions: η ≥ 0, η(X) = 1 and
η((0, ε)) = 1 for all ε > 0. Then, obviously, the condition P(x, {y}) = 0 is also satisfied for all
x, y ∈ X, and Theorem 4 is applicable.

The measure η in this example can be informally characterized as follows. It specifies
a certain “random variable” that takes a value with probability 1 as close to point 0 as
desired but not at point 0.

We then denote by Pn(x, E) the integral convolution of the kernel P1(x, E) = P(x, E),
n = 1, 2, 3, . . ..

The following statement is easily proven by induction.
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Corollary 2. Let a sub-Markov purely finitely additive kernel P(x, E) be given on an arbitrary
discrete space (X, Σd). Then, for all x, y ∈ X and n = 1, 2, 3, . . . , Pn(x, {y}) = 0 (including
the case x = y).

In general, the converse is not true. Here is a counter-example.

Example 3. Let some purely finitely additive probability measure η be given on the discrete space
(X, Σd), where X = [0, 1]. Consider on ([0, 1], Σd) a finitely additive MC with the following rules
for passing in one step: P(0, {1}) = 1, P(x, E) = η(E) for all x ∈ (0, 1] and E ∈ Σd. In particular,
P(x, {y}) = η({y} = 0 for all x ∈ (0, 1] and y ∈ [0, 1].

Performing the integral convolution of two kernels P(x, E), we obtain that P2(x, {y}) = 0
for all x ∈ [0, 1] and y ∈ [0, 1]. Moreover, P(0, {1}) = 1 > 0.

As noted above in Section 2, the operator A generated by the countably additive
sub-Markov kernel transforms countably additive measures into the same ones, that is,
A[ca(X, Σ)] ⊂ ca(X, Σ). This property is preserved for the particular discrete case Σ = 2X .
However, if the measure μ ∈ Vp f a is purely finitely additive, then both cases are possible:
Aμ ∈ Vca and Aμ ∈ Vp f a. However, the situation is different with a purely finitely
additive kernel.

Theorem 6. Let a purely finitely additive sub-Markov kernel P(x, E) be given on an arbitrary
discrete space (X, Σd). Then, the sub-Markov operator A generated by this kernel transforms
all finitely additive measures into purely finitely additive measures, that is, A[ba(X, Σd)] ⊂
p f a(X, Σd), in particular, A[ca(X, Σd)] ⊂ p f a(X, Σd) and A[p f a(X, Σd)] ⊂ p f a(X, Σd).

Proof. Let the finitely additive measure μ ∈ Vba and μ(X) > 0. We denote the measure by
η = Aμ. Clearly, that the measure η is also finitely additive.

If η(X) = 0, that is, η ≡ 0 (which is possible), then it can be considered purely finitely
additive (see Remark 1) and the theorem is true.

Let η(X) > 0. Take its decomposition η = ηca + ηp f a into a countably additive
component ηca and a purely finitely additive component ηp f a.

If ηca(X) = 0, then the measure is η = ηp f a ∈ Vp f a and the theorem is proved.
Suppose that the countably additive measure ηca(X) > 0. Then, by Theorem 3,

the measure ηca has at least one atom a ∈ X, ηca({a}) = γ > 0. Because the measure ηp f a
is purely finitely additive, then ηp f a({a}) = 0.

By the hypothesis of the theorem, all kernels P(x, ·) are purely finitely additive for all x ∈ X.
Such measures vanish on any one-point set. Therefore, P(x, {a}) = 0 for all x ∈ X. Hence,

γ = ηca({a}) = ηca({a}) + 0 = ηca({a}) + ηp f a({a}) = η({a}) = Aμ({a})

=
∫

X
P(x, {a})μ(dx) =

∫
X

0 · μ(dx) = 0.

Thus, we obtain a contradiction. Therefore, ηca(X) = 0, and the measure η = ηp f a =
Aμ is purely finitely additive.

Now, by using the discrete topology in X, we can complete Proposition 1.

Proposition 2. Let an arbitrary discrete space (X, Σd) be given. Any Markov finitely additive
kernel P(x, E) on (X, Σd) is uniquely presented as the sum of a sub-Markov countably additive
kernel Pca(x, E) and a sub-Markov purely finitely additive kernel Pp f a(x, E):

P(x, E) = Pca(x, E) + Pp f a(x, E),

where Pca(x, ·) ∈ ca(X, Σd), Pp f a(x, ·) ∈ p f a(X, Σd), and Pca(·, E) ∈ B(X, Σd), Pp f a(·, E) ∈
B(X, Σd) for all x ∈ X and E ∈ Σd.
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The last inclusions, Pca(·, E) ∈ B(X, Σd) and Pp f a(·, E) ∈ B(X, Σd), mean that the ker-
nels Pca(·, E) and Pp f a(·, E) are Σd-measurable in the first argument for all E ∈ Σd.

Proposition 2 makes it possible to introduce integral sub-Markov operators Aca
and Ap f a generated by the corresponding measurable subkernels. These operators act
in the space of measures Aca and Ap f a : ba(X, Σd) → ba(X, Σd). They have the same
analytical form as the operator A. For any μ ∈ ba(X, Σd) and E ∈ Σ,

Acaμ(E) =
∫

X
Pca(x, E)μ(dx)

and
Ap f aμ(E) =

∫
X

Pp f a(x, E)μ(dx).

In this case, A = Aca + Ap f a.
Because integral kernels of operators are non-negative, the operators Aca and Ap f a

transform non-negative measures into the same ones, i.e., operators Aca and Ap f a are
positive. Because 0 ≤ Pca(x, E) ≤ P(x, E) and 0 ≤ Pp f a(x, E) ≤ P(x, E) for all x ∈ X
and E ∈ Σ, the norms ‖Aca‖ ≤ ‖A‖ = 1 and ‖Ap f a‖ ≤ ‖A‖ = 1, i.e., operators are
bounded. Thus, both sub-Markov operators Aca and Ap f a are linear, bounded (continuous),
and positive, and ‖Aca‖ ≤ 1 and ‖Ap f a‖ ≤ 1.

As we have already found out,

Aca[ca(X, Σd)] ⊂ ca(X, Σd), Ap f a[ba(X, Σd)] ⊂ p f a(X, Σd).

Corollary 3. The following inclusions are true for superpositions of operators Aca and Ap f a:

1. Aca · Aca[ca(X, Σd)] ⊂ ca(X, Σd);
2. Ap f a · Ap f a[ba(X, Σd)] ⊂ p f a(X, Σd);
3. Ap f a · Aca[ba(X, Σd)] ⊂ p f a(X, Σd).

Remark 4. The operators Aca and Ap f a, generally speaking, are non-commutative, i.e., Aca · Ap f a
�= Ap f a · Aca.

4. Invariant Measures of Markov Operators

In the paper by Zhdanok ([9], Chapter I, §5, Theorem 5.3), the following statement
was proven.

Theorem 7. For any Markov chain with a Markov finitely additive kernel P(x, E) on an arbitrary
measurable space (X, Σ), an invariant probability finitely additive measure μ = Aμ ∈ Sba exists,
that is, Δba �= ∅.

Earlier, a similar theorem (in the language of strategies) was proven by Ramakrish-
nan ([6], p. 8, Theorem 2) but in the special case of a discrete phase space. In our Theorem 7
given above, no restrictions on the phase space are assumed.

Now let on an arbitrary discrete space (X, Σd), Σd = 2X , a Markov chain with a Markov
finitely additive kernel P(x, E) be given. We previously identified two special “extreme”
cases. The first is when the kernel P(x, ·) is a countably additive measure for every x ∈ X.
The second is when the kernel P(x, ·) is a purely finitely additive measure for all x ∈ X.

The first case has already been considered in the previous paragraphs of this article
and studied in a number of studies by various authors.

Consider now the second special case.

Theorem 8. Let a Markov chain with a purely finitely additive kernel P(x, E) be given on an ar-
bitrary discrete space (X, Σd). Then, for the Markov operator A generated by it, an invariant
probabilistic finitely additive measure μ = Aμ ∈ Vba exists and all its invariant measures are
purely finitely additive, that is, Δba = Δp f a �= ∅ and Δca = ∅.
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Proof. Theorem 7 is proven for any sigma-algebra Σ subsets of X and for any Markov
finitely additive kernel. Hence, it is also true for the discrete sigma-algebra Σd = 2X and
for a purely finitely additive kernel.

Therefore, under the conditions of the present theorem, for the operator A, an invariant
probabilistic finitely additive measure μ = Aμ exists, defined on the discrete space (X, Σd).

From Theorem 6, the measure μ and all other invariant measures of the operator A are
purely finitely additive.

Definition 9. We call a finitely additive MC on an arbitrary discrete space (X, Σd) combined if its
transition function in the decomposition

P(x, E) = Pca(x, E) + Pp f a(x, E),

satisfies the conditions:

Pca(x, X) = q1, Pp f a(x, X) = q2 for all x ∈ X,

where 0 ≤ q1, q2 ≤ 1, q1 + q2 = 1.

Let the finitely additive MC be combined. Then, as shown in the comments to
Proposition 2, its Markov operator A can also be represented as the sum A = Aca + Ap f a of
its two components generated by the sub-Markov kernels Pca(x, E) and Pp f a(x, E), wherein
‖Aca‖ = q1, ‖Ap f a‖ = q2.

Definition 10. A combined MC is called non-degenerate if its decomposition from Definition 9
holds for 0 < q1, q2 < 1 and degenerate if q1 = 0 or q2 = 0.

Above, in Section 2 and in Theorem 8, we describe the existence of invariant measures
and their types for countably additive and purely finitely additive MCs. By Definition 10,
they are degenerate cases of combined MCs.

Let the MC be non-degenerate. Let us take functions

P̃ca(x, E) =
1
q1

Pca(x, E), P̃p f a(x, E) =
1
q2

Pp f a(x, E).

Then, the functions P̃ca(x, E) and P̃p f a(x, E) satisfy Definition 1 and are transition
functions (Markov kernels) of the corresponding Markov operators

Ãca =
1
q1

Aca, Ãp f a =
1
q2

Ap f a.

Therefore, the Markov operator A of the combined MC is a linear combination

A = q1 Ãca + q2 Ãp f a

for two Markov operators Ãca and Ãp f a (hence, the name of such MCs and operators
in Definition 9 is taken).

Recall that, by Theorem 7, any, including combined, finitely additive MC has an in-
variant finitely additive measure.

Theorem 9. The combined non-degenerate finitely additive MC on an arbitrary discrete space
(X, Σd) has no non-zero invariant countably additive measures, that is, Δca = ∅.

Proof. We carry out the proof by contradiction. Suppose that μ = Aμ ∈ Sca, i.e., the
invariant measure μ is countably additive. Then,

μ = Aμ = (Aca + Ap f a)μ = Acaμ + Ap f aμ,
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where Aca is countably additive, and Ap f a are purely finitely additive components of
the operator A. Then, Acaμ is also a countably additive measure, and Acaμ(X) = q1 > 0,
that is, the measure Acaμ is non-zero. By Theorem 6, the measureAp f aμ is purely finitely
additive and non-zero: Ap f aμ(X) = q2 > 0.

Consequently, the measure μ has a non-zero purely finitely additive component Ap f aμ
and is not countably additive. The resulting contradiction proves the theorem.

From Theorem 9, we obtain the following assertion.

Theorem 10. Let a combined non-degenerate finitely additive MC with invariant probability
finitely additive measure μ = Aμ ∈ Sba on an arbitrary discrete space (X, Σd) be given. Let
μ = μca + μp f a be its decomposition into countably additive μca and purely finitely additive μp f a
components, μca �= 0, and μp f a �= 0.

Then, the measures μca and μp f a are not invariant for the operator A, that is, μca �= Aμca and
μp f a �= Aμp f a.

Recall that by Šidak ([14], Theorem 2.5), for a MC with a countably additive kernel
in a similar decomposition of the invariant measure μ = μca + μp f a, μca = Aμca and
μp f a = Aμp f a. The difference between such MCs and combined ones turned out to be
very significant.

Let us give an example to illustrate the last two theorems.

Example 4. Consider on the segment X = [0, 1] with discrete sigma-algebra Σd a combined finitely
additive MC with kernel

P(x, E) = Pca(x, E) + Pp f a(x, E).

These components are set according to the following rules:

Pca(x, E) = 1
2 δ0(E) for all x ∈ X and E ⊂ X, where δ0 is the Dirac at point 0;

Pp f a(x, E) = 1
2 η(E) for all x ∈ X and E ⊂ X, where η is some fixed purely finitely

additive measure from Sp f a. For clarity, we take the measure η from the family of
purely finitely additive measures satisfying the condition η((0, ε)) = 1 for any ε > 0.

Moreover, Pca(x, X) = 1
2 = q1 and Pp f a(x, X) = 1

2 = q2 for all x ∈ X.
Essentially, all this means that a Markov chain in one step can move from any point

x ∈ X to point 0 with probability 1
2 and to any set E ⊂ X \ {0} with probability 1

2 η(E).
In particular, from any point x ∈ X, the system can move with probability 1

2 to the open
interval (0, ε) for every ε ∈ (0, 1). The phase portrait of such a MC with an arbitrary
ε ∈ (0, 1) is shown in the Figure 1.

Figure 1. Phase portrait of the MC from Example 4.
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Take an arbitrary (initial) finitely additive probability measure μ ∈ Sba. Then, for any
E ⊂ X, the following holds:

Aμ(E) =
∫

X
P(x, E)dμ(x) =

∫
X

Pca(x, E)dμ(x) +
∫

X
Pp f a(x, E)dμ(x)

=
1
2

∫
X

δ0(E)dμ(x) +
1
2

∫
X

η(E)dμ(x)

=
1
2

δ0(E) · μ(X) +
1
2

η(E) · μ(X) =
1
2

δ0(E) +
1
2

η(E).

Hence, Aμ = 1
2 δ0 +

1
2 η for any initial measure μ.

If μ = 1
2 δ0 +

1
2 η, then Aμ = μ.

Obviously, this is the only invariant probabilistic finitely additive measure for a given MC.
The measures μca = 1

2 δ0 and μp f a = 1
2 η are non-zero components of the measure μ,

countably additive and purely finitely additive, respectively, and μ = μca + μp f a. Thus,
Theorem 9 is confirmed. Then, also obvious is that Aμca = μ �= μca and Aμp f a = μ �= μp f a.
Therefore, this example also confirms Theorem 10.

In the combined non-degenerate decomposition A = Aca + Ap f a of the finitely ad-
ditive operator A, its countably additive component Aca and the purely finitely additive
component Ap f a are equal. One might suppose that Theorem 9 would also be valid for
a purely finitely additive invariant measure. However, it is not. Let us give a correspond-
ing counterexample.

Example 5. We consider a finitely additive combined MC on a discrete segment X = [0, 1] under
the same conditions as in Example 4, but with a different countably additive component of its kernel:

Pca(x, E) = 1
2 δx(E) for all x ∈ X and E ⊂ X, where δ0 is the Dirac measure at point x.

Meaningfully, this means that, in one step, the Markov system can go from any x ∈ X
to the point x, i.e., go into itself with probability 1

2 and into any set E ⊂ X \ {x} with
probability 1

2 η(E). In particular, the probability Pp f a(x, (0, ε)) = 1
2 for any ε ∈ (0, 1). The

phase portrait of such a MC with an arbitrary ε ∈ (0, 1) is shown in Figure 2.

Figure 2. Phase portrait of the MC from Example 5.

Obviously, this MC is a combined non-degenerate chain.
Let us perform integral transformations for an arbitrary initial probability measure

μ ∈ Sba, similar to the transformations in Example 4. As a result (omitting the calculations),
we have Aμ = 1

2 μ + 1
2 η. Then, we solve the equation μ = Aμ. From the last two equalities,

we obtain the only solution μ = η.
We have shown that this combined non-degenerate MC has a unique invariant finitely

additive measure η, which is purely finitely additive, i.e., has no non-zero countably
additive component.
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5. Norms of Components in the Decomposition of a Markov Sequence of Measures
and Their Asymptotic Behavior

Consider a combined non-degenerate finitely additive MC on an arbitrary discrete
space (X, Σd).

Let an arbitrary initial probability measure μ1 ∈ Sba, μ1 = μ1
ca + μ1

p f a, be given,

and μn+1 = Aμn, n ∈ N is the Markov sequence of measures generated by this initial
measure. Its decomposition is

μn+1 = μn+1
ca + μn+1

p f a .

Remark 5. The notation μn+1
ca can be interpreted in two ways: it can be a countably additive

component of the measure μn+1, i.e., (μn+1)ca, or it can be (n + 1)-th iteration of measure (μ1
ca),

i.e., (μ1
ca)

(n+1). Generally speaking, these two interpretations do not coincide. Hereafter, we mean
that μn+1

ca = (μn+1)ca and μn+1
p f a = (μn+1)p f a, for any n ∈ N.

Because the operator A is isometric in the cone of positive measures, the norms of
‖μn+1‖ = μn+1(X) = ‖μ1(X)‖ = μ1(X) = 1 for each n ∈ N.

In this section, we consider the norms of the components ‖μn+1
ca ‖ and ‖μn+1

p f a ‖
for n → ∞.

Take the second iteration in the Markov sequence of measures μ2 = Aμ1. Let us make
the appropriate transformations:

μ2 = μ2
ca + μ2

p f a = Aμ1 = (Aca + Ap f a) (μ1
ca + μ1

p f a)

= Acaμ1
ca + Acaμ1

p f a + Ap f aμ1
ca + Ap f aμ1

p f a.
(1)

In the last four terms of the decomposition (1), the first is a countably additive measure
and the third and fourth are purely finitely additive measures (see Theorem 6).

The second term Acaμ1
p f a can be a measure of any type. Consider two corresponding

main cases: disjoint conditions (H1) and (H2).

(H1) Aca(Vp f a) ⊂ Vca,

that is, the operator Aca transforms all purely finitely additive measures from Vp f a into
countably additive measures. Markov chains satisfying this condition (H1) exist. Let us
show that the Markov chain in Example 4 has this property. In Example 4, the Markov
chain kernel has a countably additive component Pca =

1
2 δ0.

Let μ be an arbitrary purely finitely additive measure: μ ∈ Vp f a. Then, for any E ⊂ X,
the following holds:

Acaμ(E) =
∫

X
Pca(x, E)μ(dx) =

1
2

∫
X

δ0(E)μ(dx) =
1
2

δ0(E)μ(X),

i.e., Acaμ = 1
2 δ0 · μ(X), where the Dirac measure δ0 is countably additive. Therefore,

condition (H1) is satisfied in Example 4.

Theorem 11. Let condition (H1) be satisfied for a combined non-degenerate finitely additive
Markov chain on an arbitrary discrete space (X, Σd). Then, for any initial measure μ1 ∈ Sba and
for any n ∈ N,

‖μn+1
ca ‖ = μn+1

ca (X) = q1

and
‖μn+1

p f a ‖ = μn+1
p f a (X) = q2.
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Proof. Here, we carry out the proof by induction. Let n = 1. Then, by condition (H1),
the second term Acaμ1

p f a in decomposition (1) is a countably additive measure. Therefore,
due to the uniqueness of the decomposition of the Yosida–Hewitt measures, we have

μ2
ca = Acaμ1

ca + Acaμ1
p f a = Aca(μ

1
ca + μ1

p f a) = Acaμ1.

From here,
‖μ2

ca‖ = μ2
ca(X) = Acaμ1(X) = q1 · μ1(X) = q1.

Because
1 = ‖μ2‖ = μ2

ca(X) + μ2
p f a(X) = ‖μ2

ca‖+ ‖μ2
p f a‖,

then
‖μ2

p f a‖ = 1− ‖μ2
ca‖ = 1− q1 = q2.

Thus, the statement of the theorem for n = 1 is proven.
Suppose that the statement of the theorem is also true for some n ∈ N.
Let us make the decomposition similar to the decomposition (1) for μn+1 and ob-

tain the following equalities:

μn+1 = μn+1
ca + Aμn+1

p f a = Aμn = (Aca + Ap f a)(μ
n
ca + μn

p f a)

= Acaμn
ca + Acaμn

p f a + Ap f aμn
ca + Ap f aμn

p f a.
(2)

As in the decomposition (1), here, the first term is a countably additive measure,
and the third and fourth terms are purely finitely additive measures.

By condition (H1) the second term Acaμn
p f a in (2) is a countably additive measure.

Therefore, just as for the measure μ2
ca, we obtain that μn+1

ca = Acaμn. In the same way,
we have that

‖μn+1
ca ‖ = μn+1

ca (X) = Acaμn(X) = q1 · μn(X) = q1

and
‖μn+1

p f a ‖ = μn+1
p f a (X) = Ap f aμn(X) = q2 · μn(X) = q2.

Therefore, the statement of the theorem is true for any n ∈ N.

Remark 6. Norms ‖μn+1
ca ‖ and ‖μn+1

p f a ‖ in Theorem 11 are independent of the norms of the compo-

nents of the initial measure ‖μ1
ca‖ and ‖μ1

p f a‖. Additionally, this is a very interesting fact.

Corollary 4. Let the conditions of Theorem 11 be satisfied. Then, for such a Markov chain there
exist invariant finitely additive measures μ∗ = Aμ∗, μ∗ = μ∗ca + μ∗p f a, and for all such measures
for their components, the equalities are true:

‖μ∗ca‖ = μ∗ca(X) = q1, ‖μ∗p f a‖ = μ∗p f a(X) = q2.

Because Markov chains satisfying the condition (H1) are not degenerate, that is,
0 < q1, q2 < 1, they do not have invariant countably additive and invariant purely finite
additive measures.

Corollary 4 clarifies our Theorem 9 under the additional condition (H1).

Remark 7. Obviously, in Example 4, which satisfies condition (H1), the assertion of Theorem 11 is
satisfied. Added to this fact is that, for any initial measure μ1 ∈ Sba the following Markov measure
μ2 = Aμ1 coincides with the unique invariant measure μ2 = μ∗ = 1

2 δ0 +
1
2 η for the given MC. It is

not strictly possible to say that the MC from Example 4 “strongly converges” uniformly in the initial
measures μ1 to the only invariant measure μ∗, i.e., this MC has the best ergodic properties.
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We now give the second condition (H2) related to the decomposition in (1).

(H2) Aca(Vp f a) ⊂ Vp f a,

that is, the operator Aca transforms all purely finitely additive measures from Vp f a into
purely finitely additive measures. Such Markov chains exist. Let us show that the Markov
chain in Example 5 has this property.

In Example 5, Pca(x, E) = 1
2 δx(E) for all x ∈ X and E ⊂ X. We take an arbitrary

measure μ ∈ Vp f a. Then, for all E ⊂ X, the following holds:

Acaμ(E) =
∫

X
Pca(x, E)μ(dx) =

1
2

∫
X

δx(E)μ(dx) =
1
2

μ(E).

Thus, Acaμ = 1
2 · μ, where μ is a purely finitely additive measure. Thus, condition

(H2) is satisfied.

Theorem 12. Let condition (H2) be satisfied for a combined non-degenerate finitely additive
Markov chain on an arbitrary discrete space (X, Σd). Then, for any initial finitely additive measure
μ1 ∈ Sba, for any n ∈ N

‖μn+1
ca ‖ = μn+1

ca (X) = qn
1 · μ1

ca(X) = qn
1 · ‖μ1

ca‖

and
‖μn+1

p f a ‖ = μn+1
p f a (X) = 1− qn

1 · ‖μ1
ca‖.

Proof. Let us return to the decomposition (1). From condition (H2), the second term
Acaμ1

p f a in expansion (1) is a purely finitely additive measure. Therefore, due to the unique-
ness of the Yosida–Hewitt decomposition,

μ2
ca = Acaμ1

ca,
μ2

p f a = Acaμ1
p f a + Ap f aμ1

ca + Ap f aμ1
p f a = Acaμ1

p f a + Ap f aμ1. (3)

Find the norm of the measure μ2
ca in equalities (3)

‖μ2
ca‖ = μ2

ca(X) = Acaμ1
ca(X) =

∫
X

Pca(x, X)μ1
ca(dx) = q1 · μ1

ca(X) = q1 · ‖μ1
ca‖.

Because 1 = ‖μ2‖ = ‖μ2
ca‖+ ‖μ2

p f a‖, then ‖μ2
p f a‖ = 1− q1 · ‖μ1

ca‖.
From the equalities obtained for n = 1 (n + 1 = 2), making an assumption about

the general form of the norms of the components of Markov measures is still difficult.
Therefore, we now consider another case n = 2 (n + 1 = 3).

Let us make transformations for the measure μ3, similar to transformations (1) for
the measure μ2, relying on the condition (H2). As a result, we obtain equality for the measure

μ3
ca = Acaμ2

ca

and the equality for the norm of this measure

‖μ3
ca‖ = q1 · μ2

ca(X) = q2
1 · μ1

ca(X) = q2
1 · ‖μ1

ca‖.

From here,
‖μ3

p f a‖ = 1− q2
1 · ‖μ1

ca‖.

Suppose now that, for arbitrary n ∈ N, n ≥ 2 holds for measures μn
ca = Acaμn−1

ca ,
and for the norms of these measures, we have ‖μn

ca‖ = qn−1
1 · ‖μ1

ca‖.
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Then, (omitting transformations) we have

μn+1
ca = Acaμn

ca,

‖μn+1
ca ‖ = qn

1 · ‖μ1
ca‖,

‖μn+1
p f a ‖ = 1− qn

1 · ‖μ1
ca‖.

Remark 8. Unlike Theorem 11, in Theorem 12, the norms of the components ‖μn+1
ca ‖ and ‖μn+1

p f a ‖
of the measure μn+1 depend (linearly) on the norms of the components of the initial measure μ1.

Corollary 5. Let the conditions of Theorem 12 be satisfied. Then for any finitely additive initial
measure μ1 ∈ Sba for the components of the Markov sequence of measures generated by it μn+1 =
Aμn as n → ∞,

‖μn
ca‖ → 0 and ‖μn

p f a‖ → 1.

Moreover, the convergence is uniform with respect to the initial measures μ1 ∈ Sba and
exponentially fast.

Corollary 6. Let the conditions of Theorem 12 be satisfied. Then, for such a Markov chain, all of its
invariant finitely additive measures (and such ones always exist, see Theorem 7) are purely finitely
additive, i.e., Δba = Δp f a �= ∅, Δca = ∅.

This statement follows from Theorem 12 or from its Corollary 5, if we take as the initial
measure μ1 its invariant measure μ∗ = Aμ∗.

Remark 9. Let us return to the MC from Example 5. The following assertions are obtained from
the properties of the MC obtained above.

Then, verifying by induction that, for any initial measure μ1 ∈ Sba and for all E ⊂ X, n ∈ N,

|μn+1(E)− η(E)| = 1
2n |μ1(E)− η(E)|

is easy. Therefore, for each E ⊂ X, n ∈ N, for the norm of a measure equal to the total variation of
the measure, the following estimate is true:

‖μn+1 − η‖ = 1
2n ‖μ1 − η‖ ≤ 2

2n =
1

2n−1 .

This implies that the Markov sequence of measures {μn+1} of a given MC converges strongly
(in the metric topology) to a unique invariant purely finitely additive measure η. This convergence
is uniform in all initial finitely additive (including countably additive) measures μ1 ∈ Sba. In this
case, the convergence is exponentially quickly. Thus, the MC in Example 5 is ergodic.

Remark 10. In the previous Remark 9, we talked about the limiting behavior of Markov sequences
of measures, not their Cesaro means. Such an increase in the type of convergence of measures is due
to the fact that the MC from Example 5 does not have cycles of measures.

The article by Zhdanok [22] was devoted to cycles of finitely additive measures. MCs with
countably additive transition probability were considered with the Markov operator A extended to
the space of finitely additive measures.

The conditions (H1) and (H2) are of an understandable qualitative character, but they
are difficult to verify for specific MCs. Thus, finding simple analogues of these conditions
in terms of the properties of the transition functions considered by the MC is desirable.
We offer two such conditions. Here, we present the first of them: the (G1) condition.
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(G1)

{
There is a finite set D ⊂ X such that for all x ∈ X :
Pca(x, D) = Pca(x, X) = q1, which is equivalent to Pca(x, X \ D) = 0.

We still consider an arbitrary discrete phase space and finitely additive combined
non-degenerate MCs defined on it.

Theorem 13. Let condition (G1) be satisfied for some MC. Then,

1. the condition (H1) is satisfied, and
2. the assertion of Theorem 11 is true.

Proof. Let μ ∈ Vp f a, μ �= 0, i.e., the measure μ be purely finitely additive, and the measure
η = Acaμ. Let condition (G1) be satisfied. Then,

η(D) = Acaμ(D) =
∫

X
Pca(x, D)μ(dx) =

∫
X

q1μ(dx) = q1μ(X) > 0.

Similarly, we obtain η(X \ D) = 0 and η(X) = η(D).
The finitely additive measure η = Acaμ is concentrated on a finite set D. Therefore, it is

formally countably additive on D and on the whole space X. This means that η = Acaμ ∈ Vca.
Condition (H1) is satisfied, i.e., (G1)⇒ (H1), and the assertion of Theorem 11 is true.

Consider one more condition (G2) on the transition function of the MC. For an arbitrary
y ∈ X, we denote the set Qy = {x ∈ X : P(x, {y}) > 0}.

(G2) For any y ∈ X the set Qy is empty or finite.

Theorem 14. Let condition (G2) be satisfied for some MC. Then,

1. the condition (H2) is satisfied, and
2. the assertion of Theorem 12 is true.

Proof. Let μ ∈ Vp f a, μ �= 0, i.e., the measure μ be purely finitely additive, and η = Acaμ.
Then, for any y ∈ X, the following holds

η({y}) = Acaμ({y}) = ∫X Pca(x, {y}) μ(dx) =∫
Qy

Pca(x, {y})μ(dx) +
∫

X\Qy
Pca(x, {y})μ(dx).

Because a purely finitely additive measure is equal to zero on any finite set, then
μ(Qy) = 0, and the first integral in the expansion above is equal to zero.

By condition (G2) the function Pca(x, {y}) is equal to zero for all x ∈ X \Qy. Conse-
quently, the second integral in this expansion is equal to zero. This implies that η({y}) = 0.
Then, the measure η is purely finitely additive by our Theorem 4, Condition (H2) is satisfied,
and the assertion of Theorem 12 is true.

Remark 11. Let us show that the MC in Example 4 satisfies the condition (G1). Recall that
the countably additive component Pca(x, E) of the MC transition function in Example 4 has
the following form:

Pca(x, E) = 1
2 δ0(E) for all x ∈ X and E ⊂ X, where δ0 is the Dirac measure at point 0.

Take a finite set D = {0}. Then,

Pca(x, D) =
1
2

δ0(D) =
1
2
= q1, Pca(x, X \ D) = 0 for all x ∈ X.

Thus, condition (G1) is fulfilled.
We showed above that the MC in Example 4 also satisfies condition (H1).
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Let us now return to Example 5, in which the countably additive component of the transition
function is given by the following rule: Pca(x, E) = 1

2 δx(E) for all x ∈ X and E ⊂ X, where δ0 is
the Dirac measure at point x.

Obviously, any point y ∈ X = [0, 1] can be reached in one step only from itself with probability
1
2 . Hence, Qy = {x ∈ X : P(x, {y}) > 0} = {y}. This set is finite for any y ∈ X. Thus, condition
(G2) is satisfied.

Above, we directly showed (without using Theorem 14) that, in Example 5, condition (H2)
also holds.

6. Conclusions

Work on the theory of finitely additive Markov chains quite naturally appeared
in the general theory of random processes and in the economic game theory. Ramakr-
ishnan’s pioneering work laid the foundations for such a theory. The main condition
in this work is that the transition probability of Markov chains can only be finitely additive.
However, the structures he created or used (strategies) are quite complex. They require
readers to have a broad outlook in several areas of mathematics.

The authors of this article have been working on problems with using finitely additive
measures to study the properties of general Markov chains for a long time. However,
attention was primarily paid to classical Markov chains with countably additive transition
probability. In this case, finitely additive measures appeared as a result of the extension of
Markov operators from the space of countably additive measures to the space of finitely
additive measures. All of these studies were carried out within the framework of the opera-
tor treatment.

We have seen that combining the problems of the theory of finitely additive Markov
chains and the methods we are developing for studying general Markov chains is possible.
The result is the present work. Its feature is the absence of concepts and methods of game
theory and the apparatus of random variables generated by finitely additive measures.
We used the language and methods of classical functional analyses available to a wider
readership, and some of our results have a simple proof. However, they provide a basic
platform for possible future research conducted by other authors in this direction. In
particular, the ergodic properties of finitely additive Markov chains can be considered.
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Abstract: We develop a technique for obtaining the fourth moment bound on the normal approxima-
tion of F, where F is an Rd-valued random vector whose components are functionals of Gaussian
fields. This study transcends the case of vectors of multiple stochastic integrals, which has been
the subject of research so far. We perform this task by investigating the relationship between the
expectations of two operators Γ and Γ∗. Here, the operator Γ was introduced in Noreddine and
Nourdin (2011) [On the Gaussian approximation of vector-valued multiple integrals. J. Multi. Anal.],
and Γ∗ is a muilti-dimensional version of the operator used in Kim and Park (2018) [An Edgeworth
expansion for functionals of Gaussian fields and its applications, stoch. proc. their Appl.]. In the specific
case where F is a random variable belonging to the vector-valued multiple integrals, the conditions
in the general case of F for the fourth moment bound are naturally satisfied and our method yields
a better estimate than that obtained by the previous methods. In the case of d = 1, the method
developed here shows that, even in the case of general functionals of Gaussian fields, the fourth
moment theorem holds without conditions for the multi-dimensional case.

Keywords: Malliavin calculus; fourth moment theorem; multiple stochastic integrals; multivariate
normal approximation; Gaussian fields

MSC: 60H07; 60F25

1. Introduction

For a given real separable Hilbert space H, we write X = {X(h), h ∈ H} to indicate an
isonormal Gaussian process defined on a probability space (Ω,F,P). Let {Fn, n ≥ 1} be
a sequence of random variables of functionals of Gaussian fields associated with X. The
authors in [1] discovered a central limit theorem (CLT), known as the fourth moment theorem,
for a sequence of random variables belonging to a fixed Wiener chaos.

Theorem 1. [Fourth moment theorem] Let {Fn, n ≥ 1} be a sequence of random variables

belonging to the q(≥ 2)th Wiener chaos with E[F2
n ] = 1 for all n ≥ 1. Then, Fn

L−→ Z if and

only if E[F4
n ] → 3, where Z is a standard normal random variable and the notation L−→ means a

convergence in distribution.

Such a result provides a remarkable simplification of the method of moments or
cumulants. In [2], the fourth moment theorem is expressed in terms of the Malliavin derivative.
However, the results given in [1,2] do not provide any estimates, whereas the authors in [3]
find an upper bound for various distances by combining Malliavin calculus (see, e.g., [4–6])
and Stein’s method for normal approximation (see, e.g., [7–9]). Moreover, the authors
in [10,11] obtain optimal Berry–Esseen bounds as a further refinement of the main results
proven in [3] (see, e.g., [12] for a short survey).
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For the fourth moment theorem, the key step for the proof of this theorem is to show the
following inequality:

Var(〈DF,−DL−1F〉H) ≤ c(E[F4]− 3(E[F2])2), (1)

where DF is the Malliavin derivative of F and L−1 is the pseudo-inverse of the Ornstein–
Uhlenbeck generator (see Section 2). In the particular case where F = Iq( f ), f ∈ H⊗q, with
E[F2] = 1, the bound in (1) is given by

dKol(F, Z) ≤ Var(〈DF,−DL−1F〉H) ≤
√

q− 1
3q

√
E[F4]− 3. (2)

where dKol stands for the Kolmogorov distance.
Another research of this line can be found: [13] for multiple Winger integrals in a

fixed order of free Winger chaos, and [14–16] for multi-dimensional vectors of multiple
stochastic integrals, such that each integral belongs to a fixed order of Wiener chaos. In
particular, the new techniques for the proof of the fourth moment theorem are also found
in [17–19]. In [19], the authors prove this theorem by using the asymptotic independence
between blocks of multiple stochastic integrals. At this point, it is important to mention
that all of these approaches deal with only the random variables in a fixed chaos, and thus
do not cover the cases that are not part of some chaoses. For this reason, we are interested
in the conditions that the property of (2) holds for the generalized random variables that
are not in a fixed Wiener chaos.

In this paper, we will develop a method for finding a bound on the multivariate normal
approximation of a random vector F for which the fourth moment theorem holds even when
F is a d-dimensional random vector whose components are general functionals of Gaussian
fields. By applying this method to a random vector whose components belong to some
Wiener chaos, we derive the fourth moment theorem with an upper bound more sharply than
the previous one given in Theorem 4.3 of [19].

Differently from the fourth moment theorem for functionals of Gaussian fields studied so
far, the findings of our research represent a further extension and refinement of the fourth
moment theorem, in the sense that (i) they do not require the involved random vector whose
components belong to some Wiener chaos, and (ii) the constant part except for the fourth
cumulant may be significantly improved. The main aim in this paper is to discover under
what conditions the fourth moment bound holds for vector-valued general functionals of
Gaussian fields, where each of which needs not to belong to some Wiener chaos. In the case
of vector-valued multiple integrals, the conditions on the fourth moment theorem are quite
naturally satisfied.

On the other hand, in the case of d = 1, the application of the method developed
here shows that, even in case of general functionals of Gaussian fields, the fourth moment
theorem holds without any conditions needed for the case of d ≥ 2. The only necessary
condition is that the fourth cumulant is non-zero. The result in the one-dimensional case is
different from the result obtained by substituting d = 1 into the multi-dimensional case.
For these reasons, we will see how the random vector case can be reformulated in the
one-dimensional case.

Our paper is organized in the following way. Section 2 contains some basic notion
on Malliavin calculus. Section 3 is devoted to developing a method for obtaining the
fourth moment bound for a Rd-valued random vector whose components are functionals
of Gaussian fields. In Section 4, we will show the fourth moment theorem by applying
the new method developed in Section 3 to vector-valued multiple stochastic integrals.
In Section 5, we will describe how the random vector case can be reconstructed in the
one-dimensional case.
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2. Preliminaries

In this section, we describe some basic facts on Malliavin calculus for Gaussian pro-
cesses. For a more detailed explanation on this subject, see [4,5]. Fix a real separable
Hilbert space H with an inner product denoted by 〈·, ·〉H. Let B = {B(h), h ∈ H} be an
isonormal Gaussian process that is a centered Gaussian family of random variables, such
that E[B(h)B(g)] = 〈h, g〉H. If Hq is the qth Hermite polynomial, then the closed linear
subspace, denoted by Hq of L2(Ω) generated by {Hq(B(h)) : h ∈ H, ‖h‖H = 1} is called
the qth Wiener chaos of B.

We define a linear isometric mapping Iq : H�q → Hq by Iq(h⊗n) = q!Hq(B(h)), where
H�q is the symmetric qth tensor product. It is well known that any square integrable
random variable F ∈ L2(Ω,G,P), where G denotes the σ-field generated by B, admits a
series expansion of multiple stochastic integrals:

F =
∞

∑
q=0

Iq( fq),

where the series converges in L2(Ω) and the functions fq ∈ H�q and q ≥ 0 are uniquely
determined with f0 = E[F].

Let {ei, i = 1, 2, . . .} be a complete orthonormal system of the Hilbert space H. For
f ∈ H�p and g ∈ H�q, the contraction f ⊗r g of f and g, r ∈ {0, 1, . . . , p ∧ q}, is the element
of H⊗(p+q−2r) defined by

f ⊗r g =
∞

∑
i1,··· ,ir=1

〈 f , ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r . (3)

The product formula for the multiple stochastic integrals is given below.

Proposition 1. If f ∈ H�p and g ∈ H�q, then

Ip( f )Iq(g) =
p∧q

∑
r=0

r!
(

p
r

)(
q
r

)
Ip+q−2r( f ⊗r g). (4)

We denoted by S the class of smooth and cylindrical random variables F of the form

F = f (B(ϕ1), · · · , B(ϕn)), n ≥ 1, (5)

where f ∈ C∞
b (Rn) and ϕi ∈ H, i = 1, · · · , n. For these random variables, the Malliavin

derivative of F with respect to B is the element of L2(Ω,H) defined as

DF =
n

∑
i=1

∂ f
∂xi

(B(ϕ1), · · · , B(ϕn))ϕi. (6)

Let Dq,p be the closure of its associated smooth random variable class with respect to
the norm

‖F‖p
q,p = E[|F|p] +

q

∑
k=1

E[‖DkF‖p
H⊗k ].

Let δ be the adjoint of the Malliavin derivative D. The domain of δ, denoted by Dom(δ), is
composed of those elements u ∈ L2(Ω;H) such that there exists a constant C satisfying

|E[〈DkF, u〉H⊗l ]| ≤ C(E[|F|2])1/2 for all F ∈ Dk,2.

If u ∈ Dom(δ), then δ(u) is an element of L2(Ω) defined as the following duality formula,
called an integration by parts,

E[Fδ(u)] = E[〈DF, u〉H] for all F ∈ D1,2.
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Recall that any square integrable random variable F can be expanded as F = E[F] +
∑∞

q=1 Jq(F), where Jq, q = 0, 1, 2 . . ., is the projection of F onto Hq. We say that this random
variable belongs to Dom(L) if ∑∞

q=1 q2E[Jq(F)2] < ∞. For such a random variable F,
we define an operator L = ∑∞

q=0 −qJq, which coincides with the infinitesimal generator
of the Ornstein–Uhlhenbeck semigroup. Then, F ∈ Dom(L) if and only if F ∈ D1,2 and
DF ∈ Dom(δ), and, in this case, δDF = −LF. We also define the operator L−1, called the
pseudo-inverse of L, as L−1F = ∑∞

q=1
1
q Jq(F). Then, L−1 is an operator with values in D2,2,

and LL−1F = F−E[F] for all F ∈ L2(Ω).

3. Main Results

In this section, we will find a sufficient condition on the fourth moment bound for a
vector-valued random variable whose components are functionals of Gaussian fields. It
is important to note that these functionals of Gaussian fields do not necessarily belong to
some Wiener chaos. The next lemma will play a fundamental role in this paper.

Lemma 1. Suppse that F ∈ D1,2 and G ∈ L2(Ω). Then, we have that L−1G ∈ D2,2 and

E[FG] = E[F]E[G] +E[〈−DL−1G, DF〉H].

A multi-index is a vector of a non-negative integer of the form α = (α1, . . . , αd). Then,
we write

|α| =
d

∑
j=1

αj, ∂j =
∂

∂xj

, ∂α = ∂
α1
1 . . . ∂

αd
d , xα =

d

∏
i=1

xαi
i ,

where x = (x1, . . . , xd). By convention, we set 00 = 1.
For the rest of this section, we fix a random vector F = (F1, . . . , Fd), d ≥ 2.

Definition 1. Assume that E[|F|α] < ∞ for some α ∈ Nd \ {0}. The joint cumulant of order |α|
of F is defined by

κα(F) = (−i)|α|∂α
∣∣∣
t=0

log φF(t) for t ∈ Rd,

where φF(t) = E
[
ei〈t,F〉

Rd
]

is the characteristic function of F.

Suppose that Fi ∈ D1,2 for each i = 1, . . . , d. Let l1, l2, . . . be a sequence taking values
in {e1, . . . , ed}, where ei is the multi-index of length d given by

ei = (0, . . . , 0, 1, 0, . . . , 0).

If l1 = ei, then Γ∗l1(F) = Fi. Suppose that Γ∗l1,...,lk
(F) is a well-defined random variable of

L2(Ω). We define
Γ∗l1,...,lk+1

(F) = 〈−DL−1Flk+1 , DΓ∗l1,...,lk
(F)〉H.

For the multivariate Gamma operator Γl1,...,lk (F), see Definition 4.2 in [14]. For simplicity,
we will frequently write Γ∗i1,...,ik

(F) and Γi1,...,ik (F) instead of Γ∗ei1
,...,eik

(F) and Γei1
,...,eik

(F),
respectively.

Using the Gamma operators Γl1,...,lk of F, we can state a formula for the cumulants of
any random vector F (see, e.g., [14,20]).

Lemma 2 (Noreddine and Nourdin). Let α = (α1, . . . , αd) ∈ Nd \ {0} be a d-dimensional
multi-index with the unique decomposition {l1, . . . , l|α|}. If Fi ∈ D|α|,2|α| for 1 ≤ i ≤ d, then

κα(F) = ∑
σ

E
[
Γl1,lσ(2) ,...,lσ(|α|) (F)

]
, (7)

where the sum ∑σ is taken over all permutations σ of the set {2, 3, . . . , |α|}.
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Remark 1. Obviously, the above lemma can be expressed in the one-dimensional case as follows:
Let m ≥ 1 be an integer, and suppose that F ∈ Dm,2m

. Then

κm+1(F) = m!E[Γm(F)]. (8)

Remark 2. Successive applications of Lemma 1 yield that

E[Γi,i,j,j(F)] =
1
2
E[〈DF2

j ,−DL−1Γi,i(F)〉H]

=
1
2

{
E[F2

j Γi,i(F)]−E[F2
j ]E[Γi,i(F)]

}
=

1
2

{
E[F2

i F2
j ]− 2E[FiFjΓi,j(F)]−E[F2

i ]E[F
2
j ]
}

=
1
2

{
E[F2

i F2
j ]− 2(E[FiFj])

2 −E[F2
i ]E[F

2
j ]
}

−
(
E[Γi,j,i,j(F)] +E[Γi,j,j,i(F)]

)
. (9)

Equation (9) gives that

E[Γi,i,j,j(F)] +E[Γi,j,i,j(F)] +E[Γi,j,j,i(F)]

=
1
2

{
E[F2

i F2
j ]− 2(E[FiFj])

2 −E[F2
i ]E[F

2
j ]
}

. (10)

For the forthcoming theorem, first we define a set:

E(d)(F) =

{
e ∈ R :

d

∑
i,j=1

∑
l1+l2+l3=ei+2ej

E[Γ∗i,l1,l2,l3(F)]

≥ e
d

∑
i,j=1

∑
l1+l2+l3=ei+2ej

E[Γi,l1,l2,l3(F)]

}
.

Theorem 2. Let F = (F1, . . . , Fd), d ≥ 2, with Fi ∈ D3,23
and E[Fi] = 0 for i = 1, . . . , d, and

Z be a centered normal random vector with the covariance Σ = (σij)1≤i,j≤d, where σij = E[FiFj].
Suppose that, for 1 ≤ i, j ≤ d,

(α) E[Γ∗i,i(F)Γ∗j,j(F)] ≥ E[Γ∗i,i(F)]E[Γ∗j,j(F)],

(β) E[Γ∗i,j(F)Γ∗j,i(F)] ≥ (E[Γ∗i,j(F)])2,

(γ) e ∈ E(d)(F).

Assume that Σ is invertible. We have that, for any Lipschitz function h : Rd → R,

|E[h(F)]−E[h(Z)]|

≤
√

d‖Σ‖1/2
op ‖Σ−1‖op‖h‖Lip

√√√√(2− e

2

) d

∑
i,j=1

κei ,ej ,ei ,ej(F), (11)

or, as another expression,

|E[h(F)]−E[h(Z)]|

≤
√

d‖Σ‖1/2
op ‖Σ−1‖op‖h‖Lip

√(
2− e

2

)(
E[‖F‖4

Rd ]−E[‖Z‖4
Rd ]
)
. (12)
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where ‖ · ‖op and ‖ · ‖Rd denote the operator norm of a matrix and the euclidean norm in Rd,
respectively, and

‖h‖Lip = sup
x,y∈Rd

|h(x)− h(y)|
‖x− y‖Rd

.

Proof. Recall that, for a Lipschitz function h : Rd → R, Theorem 6.1.1 in [4] shows that

|E[h(F)]−E[h(N)]|

≤
√

d‖Σ‖1/2
op ‖Σ−1‖op‖h‖Lip

√√√√ d

∑
i,j=1

E
[(

σij − Γi,j(F)
)2
]
. (13)

Since Γ∗i,j = Γj,i for 1 ≤ i, j ≤ d, the right-hand side of (13) can be expressed as

|E[h(F)]−E[h(N)]|

≤
√

d‖Σ‖1/2
op ‖Σ−1‖op‖h‖Lip

√√√√ d

∑
i,j=1

E
[(

σij − Γ∗i,j(F)
)2
]
.

By the definition of the operator Γ∗, we have that, for 1 ≤ i, j ≤ d,

E[Γ∗i,j(F)2] = E[Γ∗i,j(F)〈−DL−1Fj, DFi〉H]
= E[〈−DL−1Fj, D(FiΓ∗i,j(F))〉H]

−E[Fi〈−DL−1Fj, DΓ∗i,j(F)〉H]
= E[FiFjΓ∗i,j(F)]−E[Γ∗i,j,j,i(F)]. (14)

For a + b + c = 1, we write, using Lemma 1 and the definition of Γ∗, the first term in (14)
as follows:

E[FiFjΓ∗i,j(F)] = aE[FiFj〈−DL−1Fj, DFi〉H]
+bE[〈−DL−1Fi, D(FjΓ∗i,j(F))〉H]
+cE[〈−DL−1Fj, D(FiΓ∗i,j(F))〉H]

:= A1 + A2 + A3.

It is obvious that

A1 = aE[〈−DL−1Fj, D(FiFj × Fi)〉H]
−aE[Fi〈−DL−1Fj, D(FiFj)〉H

= aE[F2
i F2

j ]− aE[F2
i Γ∗j,j(F)]− aE[FiFjΓ∗i,j(F)]

= aE[F2
i F2

j ]− aE[Γ∗i,i(F)Γ∗j,j(F)]− aE[Γ∗j,j,i,i(F)]

−A1. (15)

The above Equation (15) gives

A1 =
a
2

{
E[F2

i F2
j ]−E[Γ∗i,i(F)Γ∗j,j(F)]−E[Γ∗j,j,i,i(F)]

}
. (16)

Also using Lemma 1 and the definition of Γ∗, the terms A2 and A3 can be expressed as

A2 = bE[Γ∗i,j,i,j(F)] + bE[Γ∗i,j(F)Γ∗j,i(F)], (17)

A3 = cE[Γ∗i,j,j,i(F)] + cE[Γ∗i,j(F)2]. (18)
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Combining (16)–(18), we obtain, together with (14), that

E[Γ∗i,j(F)2]

=
a

2(1− c)

{
E[F2

i F2
j ]−E[Γ∗i,i(F)Γ∗j,j(F)]−E[Γ∗j,j,i,i(F)]

}
+

b
1− c

{
E[Γ∗i,j,i,j(F)] +E[Γ∗i,j(F)Γ∗j,i(F)]

}
+

c− 1
1− c

E[Γ∗i,j,j,i(F)]. (19)

Now, we choose a, b, and c such that a + b + c = 1 and

− a
2(1− c)

=
b

1− c
=

c− 1
1− c

.

Obviously, we may take a = 1, b = −1/2, and c = 1/2. The assumptions (α) and (β) yield
that the left-hand side of (19) can be bounded by

E[Γ∗i,j(F)2] ≤ E[F2
i F2

j ]−E[Γ∗j,j,i,i(F)]

−E[Γ∗i,j,i,j(F)]−E[Γ∗i,j,j,i(F)]

−E[Γ∗i,i(F)]E[Γ∗j,j(F)]− (E[Γ∗i,j(F)])2. (20)

Therefore the Inequality (20) and the assumption (γ) prove that, if e ∈ E(d)(F),

d

∑
i,j=1

E[(σij − Γ∗i,j(F))2]

≤
d

∑
i,j=1

{
E[F2

i F2
j ]− ∑

l1+l2+l3=ei+2ej

E[Γ∗i,l1,l2,l3(F)]

− 2(E[FiFj])
2 −E[F2

i ]E[F
2
j ]

}
≤

d

∑
i,j=1

{
E[F2

i F2
j ]− e ∑

l1+l2+l3=ei+2ej

E[Γi,l1,l2,l3(F)]

− 2(E[FiFj])
2 −E[F2

i ]E[F
2
j ]

}
. (21)

Applying (10) in Remark 2 (or Lemma 2) to the right-hand side of (21), we have, together
with the assumptions (α) and (β), that

d

∑
i,j=1

E[(σij − Γ∗i,j(F))2]

≤
d

∑
i,j=1

{
E[F2

i F2
j ]−

e

2
E[F2

i F2
j ] + (e− 2)(E[FiFj])

2

+
e− 2

2
E[F2

i ]E[F
2
j ]

}
=

(
2− e

2

) d

∑
i,j=1

(
E[F2

i F2
j ]− 2(E[FiFj])

2 −E[F2
i ]E[F

2
j ]
)

=
(2− e

2

) d

∑
i,j=1

κei ,ej ,ei ,ej(F). (22)
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The Inequality (22) proves the desired conclusion (11). Since E[Z2
i Z2

j ] = 2(E[ZiZj])
2 +

E[Z2
i ]E[Z

2
j ], the identity E[‖Z‖4

Rd ] = ∑d
i,j=1(2σ2

ij + σiiσjj) holds, which gives another expres-
sion (12). Hence, the proof of this theorem is completed.

Remark 3. Our techniques do not require the components of a random vector F = (F1, . . . , Fd) to
belong to a fixed Wiener chaos. Since the assumptions (α), (β), and (γ) are satisfied in the case
of a random vector whose entries are element of some Wiener chaos, our result is an extension of
Theorem 4.3 in [19]. This fact makes it possible to estimate how restrictive the assumptions given
in Theorem 2 are in practice. In addition, for this random vector, the constant of the estimate in
Theorem 4.3 in [19] corresponds to e = 0 in (12).

4. Vector-Valued Multiple Stochastic Integrals

In this section, we consider a special case of the previous result such that F is a vector-
valued multiple stochastic integral. First, for an explicit expression of Γ∗, we introduce the
combinatorial constants

β∗qi1
,...,qia

(r1, . . . , ra)

recursively defined by the relation

β∗qi1
,qi2

(r2) = qi2(r2 − 1)!
(

qi1 − 1
r2 − 1

)(
qi2 − 1
r2 − 1

)
,

and for any a ≥ 3,

β∗qi1
,...,qia

(r2, . . . , ra)

= β∗qi1
,...,qia−1

(r2, . . . , ra−1)(qi1 + · · ·+ qia−1 − 2r2 − . . .− 2ra−1)(ra − 1)!

×
(

qi1 + · · ·+ qia−1 − 2r2 − . . .− 2ra−1 − 1
ra − 1

)(
qia − 1
ra − 1

)
.

For an explicit expression of Γ, we use the notations

βqi1
,qi2

(r2) = qi2(r2 − 1)!
(

qi1 − 1
r2 − 1

)(
qi2 − 1
r2 − 1

)
,

and

βqi1
,...,qia

(r2, . . . , ra)

= βqi1
,...,qia−1

(r2, . . . , ra−1)qia(ra − 1)!

×
(

qi1 + · · ·+ qia−1 − 2r2 − . . .− 2ra−1 − 1
ra − 1

)(
qia − 1
ra − 1

)
for a ≥ 3.

Theorem 3. Fix d ≥ 2. Let qi ≥ 2, i = 1, . . . , d, be positive integers, and let F be a random vector

F = (F1, . . . , Fd) = (Iq1( fq1), . . . , Iqd( fqd)),

where fqi ∈ H�qi for i = 1, . . . , d. Let Z be a centered multivariate normal random variable with
the covariance Σ = (σij)1≤i,j≤d, where σij = E[FiFj]. For any Lipschitz function h : Rd → R, it
holds that

|E[h(F)]−E[h(Z)]|

≤
√

2− e

2

√
d‖Σ‖1/2

op ‖Σ−1‖op‖h‖Lip

√√√√ d

∑
i,j=1

κei ,ej ,ei ,ej(F), (23)
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or

|E[h(F)]−E[h(Z)]|

≤
√

2− e

2

√
d‖Σ‖1/2

op ‖Σ−1‖op‖h‖Lip

√
E[‖F‖4

Rd ]−E[‖Z‖4
Rd ], (24)

where a constant e is given by

e =
1

max1≤i≤d qi
.

Moreover, if q1 = · · · = qd = q, then e is given by

e =
2
q

. (25)

Proof. It is sufficient to prove that F satisfies the assumptions (α), (β), and (γ) in Theorem 2.
For the condition (α): By the definition of Γ∗, we have that

Γ∗ii(F)Γ∗jj(F)

= qiqj

qi

∑
r1=1

qj

∑
r2=1

(r1 − 1)!(r2 − 1)!
(

qi − 1
r1 − 1

)2(qj − 1
r2 − 1

)2

× I2qi−2r1( fqi ⊗̃r1 fqi )I2qj−2r2( fqj⊗̃r2 fqj),

which yields

E[Γ∗ii(F)Γ∗jj(F)]

= qiqj

qi

∑
r=1

(r1 − 1)!(qj − qi + r− 1)!
(

qi − 1
r− 1

)2( qj − 1
qj − qi + r− 1

)2

× (2qi − 2r)!〈 fqi ⊗̃r fqi , fqj⊗̃qj−qi+r fqj〉H⊗(2qi−2r)

= qi!qj!( fqi ⊗̃qi fqi )( fqj⊗̃qj fqj)

+qiqj

qi−1

∑
r=1

(r− 1)!(qj − qi + r− 1)!
(

qi − 1
r− 1

)2( qj − 1
qj − qi + r− 1

)2

× (2qi − 2r)!〈 fqi ⊗̃r fqi , fqj⊗̃qj−qi+r fqj〉H⊗(2qi−2r) . (26)

On the other hand,

E[Γ∗ii(F)]E[Γ∗jj(F)] = qi!( fqi ⊗̃qi fqi )× qj!( fqj⊗̃qj fqj). (27)

Denote by �(a) the length of a vector a. To prove (α), we need to show that, for every
1 ≤ i, j ≤ d, the inner products in (26)

〈 fqi ⊗̃r fqi , fqj⊗̃qj−qi+r fqj〉H⊗(2qi−2r) ≥ 0.

For this, it is sufficient, from the symmetry of fqi , i = 1, . . . , d, and symmetrization of
contractions, to show that, for every 1 ≤ i, j ≤ d,∫

Z2(qi+qj)
fqi (u1, w) fqi (u2, w) fqj(u1, v)

× fqj(u2, v)μ⊗
2(qi+qj)

(du1, du2, dv, dw) ≥ 0, (28)
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where �(w) = r and �(u1) + �(u2) = 2qi − 2r. Since �(u1) = �(u2) = qi − r, the integral
in (28) can be expressed as∫

Zqj−qi+2r ( fqi ⊗�(u1)
fqj)(w, v)( fqi ⊗�(u2)

fqj)(w, v)μ⊗
qj+r1+r2

(dw, dv)

=
∫
Zqj−qi+2r ( fqi ⊗�(u1)

fqj)
2(w, v)μ⊗

qj+r1+r2
(dw, dv) ≥ 0. (29)

Using (26) and (27) together with (29) yields that, for 1 ≤ i, j ≤ d,

E[Γ∗ii(F)Γ∗jj(F)] ≥ E[Γ∗ii(F)]E[Γ∗jj(F)].

For the condition (β): Obviously,

Γ∗ij(F)Γ∗ji(F) (30)

= qiqj

qi∧qj

∑
r1=1

qi∧qj

∑
r2=1

(r1 − 1)!(r2 − 1)!
(

qi − 1
r1 − 1

)2(qj − 1
r2 − 1

)2

× Iqi+qj−2r1( fqi ⊗̃r1 fqj)Iqi+qj−2r2( fqi ⊗̃r2 fqj).

The expectation of (30) gives

E[Γ∗ij(F)Γ∗ji(F)] (31)

= qiqj

qi∧qj

∑
r=1

[(r− 1)!]2
(

qi − 1
r− 1

)2(qj − 1
r− 1

)2

× (qi + qj − 2r)!‖ fqi ⊗̃r fqj‖2
H
⊗(qi+qj−2r) .

For qi < qj, the expectation (31) can be written as

E[Γ∗ij(F)Γ∗ji(F)] = qiqj[(qi − 1)!]2‖ fqi ⊗̃qi fqj‖2
H
⊗(qi+qj−2r)

+
qi−1

∑
r=1

[(r− 1)!]2
(

qi − 1
r− 1

)2(qj − 1
r− 1

)2

× (qi + qj − 2r)!‖ fqi ⊗̃r fqj‖2
H
⊗(qi+qj−2r) . (32)

Since E[Γ∗ij(F)] = 0 for qi < qj, we deduce, from (32), that

E[Γ∗ij(F)Γ∗ji(F)] ≥ (E[Γ∗ij(F)])2 for qi < qj.

On the other hand, if qi = qj, then

E[Γ∗ij(F)Γ∗ji(F)] = (qi!)2‖ fqi‖4
H⊗qi (33)

+
qi−1

∑
r=1

[(r− 1)!]2
(

qi − 1
r− 1

)2(qj − 1
r− 1

)2

× (2qi − 2r)!‖ fqi ⊗̃r fqi‖2
H⊗(2qi−2r)

≥ (E[Γ∗ij(F)])2.

For the condition (γ): First, write

∑
l1+l2+l3=ei+2ej

E[Γ∗i,l1,l2,l3(F)]

= E[Γ∗i,i,j,j(F)] +E[Γ∗i,j,i,j(F)] +E[Γ∗i,j,j,i(F)]. (34)
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Next, we compute the three expectations in (34). By the definition of the operator Γ∗,
we obtain

Γ∗i1,i2,i3,i4(F) (35)

=

qi1
∧qi2

∑
r2=1

(qi1
+qi2−2r1)∧qi3

∑
r3=1

(qi1
+qi2+qi3−2r1−2r2)∧qi4

∑
r4=1

× β∗qi1
,...,qi4

(r2, r3, r4)1{2r2<qi1
+qi2}1{2r2+2r3<qi1

+qi2+qi3}
× Iqi1

+···+qi4
−2r2−2r3−2r4((( fqi1

⊗̃r2 fqi2
)⊗̃r3 fqi3

)⊗̃r4 fqi4
),

and

Γi1,i2,i3,i4(F) (36)

=

qi1
∧qi2

∑
r2=1

(qi1
+qi2−2r1)∧qi3

∑
r3=1

(qi1
+qi2+qi3−2r1−2r2)∧qi4

∑
r4=1

× βqi1
,...,qi4

(r2, r3, r4)1{2r2<qi1
+qi2}1{2r2+2r3<qi1

+qi2+qi3}
× Iqi1

+···+qi4
−2r2−2r3−2r4((( fqi1

⊗̃r2 fqi2
)⊗̃r3 fqi3

)⊗̃r4 fqi4
).

When qi1 + · · ·+ qi4 = 2r2 + 2r3 + 2r4 and r3 ≤ qi1 + qi2 + qi3 − 2r2 − 2r3, we have that
qi4 ≥ r4. Hence, r4 = qi4 . Taking an expectation on (35) and (36) yields that

E[Γ∗i1,i2,i3,i4(F)] =

qi1
∧qi2

∑
r2=1

(qi1
+qi2−2r2)∧qi3

∑
r3=1

β∗qi1
,...,qi4

(r2, r3, qi4) (37)

× J1(i1, . . . , i4; r2, r3)1{2r2<qi1
+qi2}

× 1{2r2+2r3=qi1
+qi2+qi3−qi4

},

and

E[Γi1,i2,i3,i4(F)] =

qi1
∧qi2

∑
r2=1

(qi1
+qi2−2r2)∧qi3

∑
r3=1

βqi1
,...,qi4

(r2, r3, qi4) (38)

× J1(i1, . . . , i4; r2, r3)1{2r2<qi1
+qi2}

× 1{2r2+2r3=qi1
+qi2+qi3−qi4

},

where

J1(i1, . . . , i4; r2, r3) = 〈( fqi1
⊗̃r2 fqi2

)⊗̃r3 fqi3
, fqi4

〉
H
⊗qi4

.

Using the definition of coefficients β∗ and β, we compute

β∗qi1
,...,qi4

(r2, r3, qi4)− eβqi1
,...,qi4

(r2, r3, qi4) (39)

= (qi4)!
{

β∗qi1
,qi2 ,qi3

(r2, r3)− eβqi1
,qi2 ,qi3

(r2, r3)
}

= (qi1 + qi2 − 2r2 − eqi3)J2(i1, . . . , i4; r2, r3),

where

J2(i1, . . . , i4; r2, r3) = (qi4)!βqi1
,qi2

(r2)(r3 − 1)!

×
(

qi1 + qi2 − 2r2 − 1
r3 − 1

)(
qi3 − 1
r3 − 1

)
.
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If (i1, . . . , i4) = (i, i, j, j), (i, j, i, j) or (i, j, j, i), then we have, from a similar estimate as
for (29), that, for 1 ≤ r2 ≤ qi1 ∧ qi2 and 1 ≤ r3 ≤ (qi1 + qi2 − 2r2) ∧ qi3 ,

J1(i1, . . . , i4; r2, r3) ≥ 0.

Indeed, for (i1, . . . , i4) = (i, i, j, j), it is sufficient to show that∫
Z2(qi+qj)

fqi (u1, v1, w) fqi (u2, v2, w) fqj(u1, u2, v3)

× fqj(v1, v2, v3)μ
⊗2(qi+qj)

(du1, du2, w, dv1, dv2, dv3)

=
∫
Z2(qi+qj)

( fqi ⊗�(u1)
fqj)(v1, u2, w, v3)

× ( fqi ⊗�(v2)
fqj)(v1, u2, w, v3)(dv1, du2, w, dv3) ≥ 0, (40)

where �(u1) = �(v2). Similarly, we can show that, for (i1, . . . , i4) = (i, j, i, j) or (i, j, j, i),

J1(i1, . . . , i4; r2, r3) ≥ 0.

These facts lead us to E[Γi1,i2,i3,i4(F)] ≥ 0 and E[Γ∗i1,i2,i3,i4
(F)] ≥ 0 for (i1, . . . , i4) = (i, i, j, j),

(i, j, i, j) or (i, j, j, i), which implies that E(d)(F) �= ∅. Now, we find a constant e > 0 such
that e ∈ E(d)(F). Let us set J(· · · ) = J1(· · · ) × J2(· · · ). From (37) and (38), we have,
together with (39), that

d

∑
i,j=1

{
∑

l1+l2+l3=ei+2ej

(
E[Γ∗i,l1,l2,l3(F)]− eE[Γi,l1,l2,l3(F)]

)}

=
d

∑
i,j=1

{
E[Γ∗i,i,j,j(F)]− eE[Γi,i,j,j(F)] +E[Γ∗i,j,i,j(F)]

− eE[Γi,j,i,j(F)] +E[Γ∗i,j,j,i(F)]− eE[Γi,j,j,i(F)]
}

= V1,d + V2,d + V3,d, (41)

where

V1,d =
d

∑
i,j=1

qi

∑
r2=1

(2qi − 2r2 − eqj)J(i, i, j, j; r2, r3)

× 1{r2<qi}1{r2+r3=qi},

V2,d =
d

∑
i,j=1

qi∧qj

∑
r2=1

(qi + qj − 2r2 − eqj)J(i, j, i, j; r2, r3)

× 1{2r2<qi+qj}1{r2+r3=qi},

and

V3,d =
d

∑
i,j=1

qi∧qj

∑
r2=1

(qi + qj − 2r2 − eqj)J(i, j, j, i; r2, r3)

× 1{2r2<qi+qj}1{r2+r3=qj}.

For every i, j ∈ {1, . . . , d} and r2 ∈ {1, . . . , qi − 1}, we have

(2qi − 2r2 − eqj) ≥ (2− e max
1≤i≤d

qi).
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This leads us to
V1,d ≥ (2− e max

1≤i≤d
qi)Ṽ1,d, (42)

where

Ṽ1,d =
d

∑
i,j=1

qi

∑
r2=1

J(i, i, j, j; r2, r3)1{r2<qi}1{r2+r3=qi}.

For the second sum V2,d in (41), we change the range of r2 from the inequality 2r2 < qi + qj
to

r2 ≤
qi + qj

2
− αi,j for αi,j ∈ (0, 1],

where [(qi + qj)/2]− αi,j is a positive integer. For fixed i, j ∈ {1, . . . , d},

(qi + qj − 2r2 − eqj)

≥
(

qi + qj − 2
[( qi + qj

2
− αi,j

)
∧ qi

]
− eqj

)
. (43)

If qi = qj for 1 ≤ i, j ≤ d, then, from (43), we have

(qi + qj − 2r2 − eqj) ≥ (2qi − 2(qi − 1)− eqi)

≥ (2− e max
1≤i≤d

qi) (44)

for every i, j ∈ {1, . . . , d} and r2 ∈ {1, . . . , qi − 1}. For qj − qi ≥ 2, we deduce, from (43), for
fixed i, j ∈ {1, . . . , d}, that

(qi + qj − 2r2 − eqj) ≥ (qi + qj − 2qi − eqj)

≥ (2− e max
1≤i≤d

qi). (45)

For qj = qi + 1 and 0 < αi,j ≤ 0.5, the Inequality (43) yields

(qi + qj − 2r2 − eqj) ≥ (2qi + 1− 2qi − eqj)

≥ (1− e max
1≤i≤d

qi). (46)

On the other hand, if qj = qi + 1 and 0.5 < αi,j ≤ 1, then we obtain, from (43), that

(qi + qj − 2r2 − eqj) ≥
[

2qi + 1− 2
(

qi +
1
2
− αi,j

)
− eqj

]
≥ (2αi,j − eqj)

≥ (1− e max
1≤i≤d

qi). (47)

Combining the above results (44)–(47), we obtain

V2,d ≥ (1− e max
1≤i≤d

qi)Ṽ2,d, (48)

where

Ṽ2,d =
d

∑
i,j=1

qi∧qj

∑
r2=1

J(i, j, i, j; r2, r3)1{2r2<qi+qj}1{r2+r3=qi}.

Similarly,
V3,d ≥ (1− e max

1≤i≤d
qi)Ṽ3,d, (49)
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where

Ṽ3,d =
d

∑
i,j=1

qi∧qj

∑
r2=1

J(i, j, j, i; r2, r3)1{2r2<qi+qj}1{r2+r3=qj}.

The Inequalities (42), (48), and (49) yield

d

∑
i,j=1

{
∑

l1+l2+l3=ei+2ej

(
E[Γ∗i,l1,l2,l3(F)]− eE[Γi,l1,l2,l3(F)]

)}
≥ (1− e max

1≤i≤d
qi)(Ṽ1,d + Ṽ2,d + Ṽ3,d)

≥ 0 for e ∈
[

0,
1

max1≤i≤d qi

]
,

so that the condition (γ) is satisfied. Hence, applying Theorem 2 gives the desired conclu-
sion. If q1 = · · · = qd = q, the estimate in (42) yields a constant e given in (25).

Remark 4. 1. Theorem 3 proves that the three assumptions in Theorem 2 are satisfied under the
same conditions as in Theorem 4.3 of [19]. To achieve this, we just need to explicitly compute the
expected values of Gamma operators and compare them.
2. The estimate in Theorem 4.3 of [19] corresponds to the estimate (24) with e = 0. Hence,
our approach improves the rate of constants appearing in the previous estimate given in [19]. If
q1 = · · · = qd = 1, then e = 2, which implies that F has the same distribution with Z.

5. Results in Dimension One (d = 1)

In this section, we specialize the results given in the previous Sections 3 and 4 to the
one-dimensional case. We begin with a one-dimensional version of Gamma operators
Γ and Γ∗ (for these operators, see [21,22]). We set Γ1(F) = F and Γ∗1(F) = F. If F is a
well-defined element in L2(Ω), we set Γk+1(F) = 〈DF,−DL−1Γk(F)〉H and Γ∗k+1(F) =

〈−DL−1F, DΓ∗k (F)〉H for k = 1, 2, . . ..

Theorem 4. If d = 1, the conditions (α), (β), and (γ) are satisfied under the assumption
E[Γ4(F)] �= 0.

Proof. The assumptions (α) and (β) obviously hold. Indeed, the Cauchy–Schwartz in-
equality proves that

E[Γ∗2(F)2] ≥ (E[Γ∗2(F)])2,

where Γ∗2(F) = Γ2(F) = 〈−DL−1F, DF〉H. A repeated application of Lemma 1 proves that

E[Γ2(F)2] = E[F2Γ2(F)]−E[Γ∗4(F)]

= 2E[Γ4(F)] + (E[F2])2 −E[Γ∗4(F)].

This shows that Var(Γ2(F)) = 2E[Γ4(F)] − E[Γ∗4(F)]. Let φ(x) = E[Γ4(F)]x − E[Γ∗4(F)].
Then, φ(2) ≥ 0. Since E[Γ4(F)] �= 0, there exists a constant e ∈ R such that φ(e) ≤ 0. This
implies that the condition (γ) is satisfied.

Remark 5. If E[F] = 0, it follows from (8) that

E[Γ4(F)] =
1
6
(
E[F4]− 3(E[F2])2). (50)

Studies so far have shown that Inequality (1) holds true only when F belongs to a fixed Wiener chaos.
However, the technique developed here can be applied to prove that the fourth moment theorem (1)
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holds even if F is not an element of a fixed Wiener chaos. The proof in Theorem 4 yields, together
with (50), that

Var(Γ2(F)) ≤ 2− e

6
(
E[F4]− 3(E[F2])2), (51)

where a constant e satisfies φ(e) ≤ 0. Note that the constant given in (12) is three times that in (51).

Proposition 2. Let φ be a linear function in the proof of Theorem 4. Let F = Iq( f ) with f ∈ H�q

(q ≥ 2). Then, there exists a constant e ∈ [2/q, 2) such that φ(e) ≤ 0, and (−∞, 2/q] ⊆ E(1)(F).

Proof. A direct computation yields that

E[Γ∗4(F)] = q!
q−1

∑
r=1

β∗q,q(r)(2q− 2r)(q− r− 1)!
(

2q− 2r− 1
q− r− 1

)
×
(

q− 1
q− r− 1

)
‖ f ⊗̃r f ‖2

H⊗(2q−2r) > 0. (52)

On the other hand, Theorem 5.1 in [22] shows that

E[Γ4(F)] = q!
q−1

∑
r=1

βq,q(r)q(q− r− 1)!
(

2q− 2r− 1
q− r− 1

)
×
(

q− 1
q− r− 1

)
‖ f ⊗̃r f ‖2

H⊗(2q−2r) > 0. (53)

Combining (52) and (53) (or V1,d for d = 1 in (41) in the proof of Theorem 3) together with
β∗q,q = βq,q, we obtain that

−φ(e) = E[Γ∗4(F)]− eE[Γ4(F)]

= q!
q−1

∑
r=1

βq,q(r)(2q− 2r− eq)(q− r− 1)!
(

2q− 2r− 1
q− r− 1

)
×
(

q− 1
q− r− 1

)
‖ f ⊗̃r f ‖2

H⊗(2q−2r)

≥ (2− eq)q!
q−1

∑
r=1

βq,q(r)(q− r− 1)!
(

2q− 2r− 1
q− r− 1

)
×
(

q− 1
q− r− 1

)
‖ f ⊗̃r f ‖2

H⊗(2q−2r) . (54)

This Inequality (54) shows that φ(2/q) ≤ 0. Since E[Γ∗4(F)] > 0 and E[Γ4(F)] > 0, it may
be possible for e to belong to [2/q, 2).

Remark 6. Substituting 2/q for e in (51), we can derive the fourth moment theorem in (2). By
using the new method developed in this paper, we show that the constant term given in (51) is less
than or equal to the one in (2). This means that

2− e

6
≤ q− 1

3
. (55)

Let’s take an example that satisfies (55).
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Example 1. We consider the case of q = 3. Let F = I3(h⊗3) with h ∈ H. A similar computation
as for (54) proves that

E[Γ∗4(F)]− eE[Γ4(F)]

= 3!× 3
2

∑
r=1

(r− 1)!
(

2
r− 1

)2
(6− 2r− eq)(3− r− 1)!

×
(

6− 2r− 1
3− r− 1

)(
2

3− r− 1

)
‖h⊗3⊗̃rh⊗3‖2

H⊗(6−2r)

= (3!× 18)(4− 3e)‖h⊗3⊗̃1h⊗3‖2
H⊗4

+(3!× 12)(2− 3e)‖h⊗3⊗̃2h⊗3‖2
H⊗2

= 72
(

8− 15
2
e
)
‖h‖6

H. (56)

From (56), it follows that (−∞, 16/15] = C(1)(F) and

e =
E[Γ∗4(F)]
E[Γ4(F)]

= 16/15.

As a consequence of (51), the upper bound is given by

Var(Γ2(F)) ≤
√

7
45

√
E[F4]− 3(E[F2])2. (57)

On the other hand, the estimate (2) (q = 3) gives

Var(Γ2(F)) ≤
√

30
45

√
E[F4]− 3(E[F2])2. (58)

Compare the constant in (57) with that in (58).

6. Conclusions and Future Works

This paper finds a method to obtain the fourth moment bound on the normal approx-
imation of F, where F is a d-dimensional random vector whose components are general
functionals of Gaussian fields. In order to prove the fourth moment theorem, all we need to do
is to show that the conditions (α), (β), and (γ) in Theorem 2 are satisfied. The significant
feature of our works is that these conditions are naturally satisfied in the specific case where
F is a random variable belonging to the vector-valued multiple integrals. In addition, our
technique yields a much better estimate than the conventional method. Comparing with
the studies in literatures [3,14–16,19,20], our study is not only an extension of these studies,
but it is also possible to naturally derive the results of existing studies.

As future research directions, we will apply our approach for the fourth moment
theorem, developed here, to more general processes, including Markov diffusion processes
and Poisson processes. Our developed approach is expected to integrate the fourth moment
theorem for many processes.
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Abstract: We propose a new goodness-of-fit test for the Rayleigh distribution which is based on
a distributional fixed-point property of the Stein characterization. The limiting null distribution
of the test is derived and the consistency against fixed alternatives is also shown. The results of a
finite-sample comparison is presented, where we compare the power performance of the new test to
a variety of other tests. In addition to existing tests for the Rayleigh distribution we also exploit the
link between the exponential and Rayleigh distributions. This allows us to include some powerful
tests developed specifically for the exponential distribution in the comparison. It is found that the
new test outperforms competing tests for many of the alternative distributions. Interestingly, the
highest estimated power, against all alternative distributions considered, is obtained by one of the
tests specifically developed for the Rayleigh distribution and not by any of the exponentiality tests
based on the transformed data. The use of the new test is illustrated on a real-world COVID-19
data set.

Keywords: asymptotics; goodness-of-fit; Monte Carlo simulation; Rayleigh distribution; Stein char-
acterization

MSC: 62F03; 62F05

1. Introduction

In 1880 an acoustics problem gave rise to a distribution that nowadays plays a promi-
nent role in research fields such as reliability theory, life testing and survival analysis (see,
e.g., [1]). The Rayleigh distribution was introduced by [2], while undertaking a study
regarding the resultant of a great number of sound waves with differing phases. Refs. [3,4]
demonstrated the importance of the Rayleigh distribution in communication engineering
and electro-vacuum devices, respectively. Ref. [5] found that the Rayleigh distribution
has clinical applications, specifically estimating the noise variance of Magnetic Resonance
Images (MRI). Ref. [6] discusses this phenomenon and proposed that this estimation can be
done by fitting the density function of the Rayleigh distribution to the partial histogram of
the MRI. Ref. [7] improved this estimation with the use of background segmentation, by fit-
ting the density function of the Rayleigh distribution to the histogram of the segmented
background in order to estimate the noise variance. The estimation of the noise forms a
crucial part in efficiently denoising the MRI as well as in the quality assessment of these
images. The Rayleigh distribution has also become a popular model in survival analysis
and reliability theory, see, e.g., [8,9].

For any of the above-mentioned applications to be relevant, it is crucial to test the
hypothesis that the observed data are indeed realisations from a Rayleigh distribution.
Since the square of a Rayleigh distributed variable is exponentially distributed, goodness-
of-fit tests designed for the exponential distribution can be used to test for the Rayleigh
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distribution—a fact that we investigate further in Section 4. However, even though the
applications of the Rayleigh distribution increased significantly over the past few decades,
literature on tests specifically developed for the Rayleigh distribution is relatively scarce.
Some of these include a test proposed by [10] based on the empirical Laplace transform,
a test based on entropy suggested by [11] as well as [12] and an empirical likelihood based
test by [13]. It has become a common approach to use distributional characterizations to
propose goodness-of-fit testing procedures, see, e.g., Ref. [14] and the references therein. In
this paper, we propose a new test for the Rayleigh distribution based on a modification of
Stein’s characterization discussed by [15].

The standard Stein characterization (see [16]) of the normal distribution states that Z
is standard normal if, and only if,

E[g′(Z)− Zg(Z)] = 0 (1)

is true for all absolute continuous functions g for which the expectation exists. Some
applications, such as goodness-of-fit tests based on (1), are rather complicated, since the
results depend on the choice of g. Instead of using this relationship, Ref. [17] characterised
the standard normal distribution based on the zero bias distribution. A real valued random
variable X∗ is said to have a X zero-bias distribution if

E[g′(X∗)] = E[Xg(X)]

holds for all absolutely continuous functions g for which the expectation exists. If EX = 0
and Var(X) = 1, the X zero-bias distribution exists, is unique and has distribution function

F(t) = E[X(X − t)�{X ≤ t}], t ∈ R.

Using this distribution function, ref. [17] showed that Z is standard normal if, and only
if, the distribution function of Z is given by F(t). Ref. [15] generalised this method to
a wide range of continuous distributions by generalising Stein’s characterization. They
showed that if X has support [0, ∞), then it has distribution F if, and only if, the distribution
function of X is given by

F(t) = E

[
− f ′(X)

f (X)
min{X, t}

]
, t ∈ (0, ∞), (2)

where f is the density of X. The result in (2) is true under some regularity conditions on f ,
which will be discussed in Section 2. The characterization in (2) will be used to develop a
new goodness-of-fit test specifically for the Rayleigh distribution.

Before proceeding some notation is introduced. Let X1, . . . , Xn be independent and
identically distributed (i.i.d.) continuous realisations of a positive random variable X with
unknown distribution function F and density f . If X follows a Rayleigh distribution with
density function

f (x) =
x
θ2 e−

x2

2θ2 , x ≥ 0, θ > 0,

it will be denoted by X ∼ Ral(θ). The composite goodness-of-fit hypothesis to be tested is

H0 : the distribution of X is Ral(θ), (3)

for some θ > 0, against general alternatives.
The remainder of the article is organised as follows: In Section 2, the new test statistic

is introduced. Section 3 contains the basic theoretical results pertaining to the asymptotic
behaviour of the test. The results of a Monte Carlo study, where the power performance of
the newly proposed test is compared to some existing tests, is given in Section 4. The com-
peting tests also include five powerful tests for exponentiality based on transformed data.
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The paper concludes in Section 5 with an application of the test to a real-world COVID-19
data set and some concluding remarks.

2. Test Statistic

For the characterization in (2) to be true the following regularity conditions, see [15],
should hold:

(I) f is continuously differentiable on [0, ∞);
(II) f (x) > 0 for every x ∈ [0, ∞);

(III) for κ f (x) =
∣∣∣ f ′(x)min{F(x),1−F(x)}

f 2(x)

∣∣∣ we have supx∈[0,∞] κ f (x) < ∞;

(IV)
∫ ∞

0 (1 + |x|)| f ′(x)|dx < ∞;

(V) limx→0
F(x)
f (x) = 0;

(VI) limx→∞
1−F(x)

f (x) = 0.

It can easily be seen that conditions (I), (II), (V) and (VI) hold for the Rayleigh distribu-
tion. For X ∼ Ral(θ), κ f in condition (III) becomes

κ f (x) =
θ2ex2/2θ2

x2 min{F(x), 1− F(x)}
∣∣∣∣1− x2

θ2

∣∣∣∣
and for x2 > θ2;

∣∣∣1− x2

θ2

∣∣∣ = x2

θ2 − 1. For x large enough we have that 1− F(x) < F(x); thus,

lim
x→∞

κ f (x) = θ2 lim
x→∞

(
exp(x2/2θ2)

x2

)
(1− F(x))

(
x2

θ2 − 1
)
= 1

Because x is sufficiently small, we have that F(x) < 1− F(x); thus, we have

lim
x→0

κ f (x) = θ2 lim
x→0

exp(−x2/2θ2)

(
1− x2

θ2

)(1− ex2/2θ2
)

x2 =
1

2θ2 θ2 =
1
2

.

Since κ f (x) is continuous with limits 1 and 1
2 as x tends to infinity and zero, respec-

tively, it implies that supx∈[0,∞) κ f (x) < ∞.
The integral in condition (IV) can be written as follows in terms of expectations:

∫ ∞

0
(1 + |x|)

(
1− x2

θ2

)(
1
θ2

)
e−x2/2θ2

dx = E

(
{1 + X}

{
1− X2

θ2

})
,

where X is Rayleigh distributed. The finite moments of the Rayleigh distribution exist,
i.e., E(Xk) < ∞, k ∈ N. Therefore,∫ ∞

0
(1 + |x|)| f ′(x)|dx < ∞.

In Proposition 1 below, the characterization in (2) is re-stated specifically for the
Rayleigh distribution.

Proposition 1. Let X : Ω → (0, ∞) be a random variable with distribution function F and density
function f that satisfies conditions (I)–(VI) and E[X] < ∞. Then X ∼ Ral(θ) if, and only if,

E

[(
X
θ2 −

1
X

)
min{X, t}

]
− F(t) = 0, t > 0.
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Note that X ∼ Ral(θ) if, and only if, Y = X
θ ∼ Ral(1). This follows from the invariance

property of the Rayleigh distribution with respect to scale transformations. This implies
that Y ∼ Ral(1) if, and only if, for all t > 0

ψ(t) = TY(t)− FY(t) = 0, (4)

where TY(t) = E[(Y − 1/Y)min(Y, t)] and FY is the distribution function of Y. Our newly
proposed test is motivated by (4). Since ψ(t) will be unknown, we estimate it by its
empirical counterpart,

ψ̂n(t) = TY
n (t)− FY

n (t),

where TY
n (t) = 1

n ∑n
j=1
(
Yj − 1/Yj

)
min(Yj, t), FY

n (t) = 1
n ∑n

j=1 I(Yj ≤ t) and Yj = Xj/θ̂n,

with θ̂n =
√
(2n)−1 ∑n

j=1 X2
j the maximum likelihood estimator for θ.

We propose the following weighted L2−distance between ψ̂(t) and 0 to test the
hypothesis in (3):

Rn,a = n
∫ ∞

0
ψ̂2

n(t)wa(t)dt, (5)

where wa(t) is a positive, continuous weight function depending on a positive tuning
parameter a. The test rejects for large values of Rn,a. Throughout the paper we use
wa(t) = e−at as the weight function, which results in the following easily calculable form
of the test statistic:

Rn,a =
1
n

n

∑
j=1

⎛⎝−1
a

e−aY(j)

⎡⎣{Y(j) −
1

Y(j)

}2{
2
a

Y(j) +
2
a2

}
+ 2Y2

(j) − 3

⎤⎦+
2
a3

[
Y2
(j) − 2 +

1
Y2
(j)

]⎞⎠
+

2
n ∑

1≤j<k≤n

({
Y(j) −

1
Y(j)

}{
Y(k) −

1
Y(k)

}(
−1

a
e−aY(j)

{
1
a

Y(j) +
2
a2

}
+

2
a3 −

Y(j)

a2 e−aY(k)

)

+

{
Y(j) −

1
Y(j)

}{
−Y(j)

a
e−aY(k)

}

+

{
Y(k) −

1
Y(k)

}{
1
a2 e−aY(k) − 1

a
e−aY(j)

(
Y(j) +

1
a

)}
+

1
a

e−aY(k)

)
,

where Y(1) < Y(2) < · · · < Y(n) denotes the order statistics of Y1, . . . , Yn.

Remark 1. The most commonly used choices for the weight function wa(·) are wa(t) = e−a|t| and
wa(t) = e−at2

(see, e.g., [18,19]). Due to the positive support of the Rayleigh distribution, we use
wa(t) = e−a|t| = e−at, t ≥ 0. This choice does not only provide a close form expression for the test
statistic, but also competitive powers which are reported in the Monte Carlo simulation study (see
Section 4).

3. Asymptotics

In this section, we will first show that, under the null hypothesis, Rn,a converges in
distribution to a norm of a Gaussian element of the Hilbert space H = L2((0, ∞),B) of
measurable, square integrable functions. The norm || · ||H that will be used is defined in
terms of a random element Gn of H, n ∈ N, by

||Gn||H =

(∫ ∞

0
{Gn(t)}2e−atdt

) 1
2
.

We will also show that the newly proposed test is consistent.
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First note that by substituting t with s
θ̂n

and Yj with
Xj

θ̂n
in (5) the test statistic Rn,a can

be rewritten as
Rn,a =

1
θ̂n

∫ ∞

0

(√
n
{

T̂X
n (s)− FX

n (s)
})2

e−as/θ̂n ds, (6)

where

T̂X
n (s) =

1
nθ̂2

n

n

∑
j=1

(
Xj − θ̂2

n
Xj

)
min

{
Xj, s

}
(7)

is a continuous function.
To obtain our two main results, we use the following Lemma, in which the notation

Gn ≈ Hn is used when ||Gn − Hn||2H = oP(1), where oP(1) denotes a sequence of random
variables that converge to zero in probability. We also assume, w.l.o.g., that θ = 1.

Lemma 1. Suppose X, X1, X2, . . . are i.i.d. random variables with distribution function FX and
E
[
X4] < ∞. Let T̂X

n (s) be defined as in (7), then

T̂X
n (s) =

1
θ̂2

n

{
TX

n (s) +
(

1− θ̂2
n

)
rX

n (s)
}

,

where

rX
n (s) =

1
n

n

∑
j=1

1
Xj

min
{

Xj, s
}

,

and

TX
n (s) =

1
n

n

∑
j=1

(
Xj − 1

Xj

)
min(Xj, s).

We also have that

√
nT̂X

n (s) ≈
√

n
θ̂2

n

{
TX

n (s) +
(

1− θ̂2
n

)
rX(s)

}
,

where

rX(s) = E

[
1
X

min{X, s}
]

.

Proof. The first result follows immediately by rewriting T̂X
n (s) in (7) as

T̂X
n (s) =

1
nθ̂2

n

n

∑
j=1

[(
Xj − 1

Xj

)
min

{
Xj, s

}
+

(
1

Xj
− θ̂2

n
Xj

)
min

{
Xj, s

}]
.

To show the second result we notice that

√
n
{

T̂X
n (s)− 1

θ̂2
n

[
TX

n (s) +
(

1− θ̂2
n

)
rX(s)

]}
=

√
n
(
1− θ̂2

n
)

θ̂2
n

{
rX

n (s)− rX(s)
}

.

Applying a weak form of the law of large numbers in separable Hilbert spaces, we have
that rX

n (s) = rX(s) + oP(1) and by the continuous mapping theorem ||rX − rX
n ||2H = oP(1).

Since θ̂2
n is the maximum likelihood estimator of θ2, we have that

√
n
(
1− θ̂2

n
)
= OP(1),

where OP(1) denotes a sequence of random variables that is bounded in probability.
The result then follows from Slutsky’s theorem.

Theorem 1. Let X, X1, X2, . . . be i.i.d. standard Rayleigh random variables. There exists a centred

Gaussian element W of H such that Rn,a
D−→ ||W||2H, where the covariance kernel of W is given by
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K(s, t) = Cov
[
Wj(s), Wj(t)

]
= FX(s ∧ t) + (s ∧ t)[I3(s ∧ t, s ∨ t)− 2I1(s ∧ t, s ∨ t) + I−1(s ∧ t, s ∨ t)]

+ st
[
2FX(s ∨ t)− 2 + I2(s ∨ t, ∞) + I−2(s ∨ t, ∞)

]
+ I4(0, s ∧ t)− 2I2(0, s ∧ t)

+ rX(s)rX(t) + 2FX(s)FX(t)

+

{
−1

2
I4(0, s) +

3
2

I2(0, s) + s
[
−1

2
I3(s, ∞) +

3
2

I1(s, ∞) + I−1(s, ∞)

]}
rX(t)

+

{
−1

2
I4(0, t) +

3
2

I2(0, t) + t
[
−1

2
I3(t, ∞) +

3
2

I1(t, ∞) + I−1(t, ∞)

]}
rX(s)

− 1
2
{I4(0, s)− I2(0, s) + s[I3(s, ∞) + I1(s, ∞)]}FX(t)

− 1
2
{I4(0, t)− I2(0, t) + t[I3(t, ∞) + I1(t, ∞)]}FX(s),

where
Ik(a, b) = E

[
Xk

j �
(
a ≤ Xj ≤ b

)]
and

Ik(a, ∞) = lim
b→∞

Ik(a, b).

Proof. First note that

√
n
{

T̂X
n (s)− FX

n (s)
}
≈
√

n
θ̂2

n

{
TX

n (s) +
(

1− θ̂2
n

)
rX(s)− θ̂2

nFX(s)
}

,

since ||FX − FX
n ||2H = oP(1). We can therefore write

√
n
{

T̂X
n (s)− FX

n (s)
}
≈ 1√

nθ̂2
n

n

∑
j=1

Wj(s),

where

Wj(s) =

(
Xj − 1

Xj

)
min

{
Xj, s

}
+

(
1− 1

2
X2

j

)
rX(s)− 1

2
X2

j FX(s).

We note that W1, . . . , Wn are i.i.d. random variables with E(W1) = 0 and E||W1||2H < ∞.
Therefore, by the central limit theorem for separable Hilbert spaces (see [20]) there exists a
centred Gaussian element W ∈ H with

1√
n

n

∑
j=1

Wj(·) D−→ W(·).

From this we have that
√

n
{

T̂X
n (s)− FX

n (s)
}
= OP(1). Therefore, since θ̂n = 1 + oP(1)

and by Holder’s inequality we have that∣∣∣∣∫ ∞

0

(√
n
{

T̂X
n (s)− FX

n (s)
})2

e−as/θ̂n ds−
∫ ∞

0

(√
n
{

T̂X
n (s)− FX

n (s)
})2

e−asds
∣∣∣∣

≤ sup
s>0

∣∣∣∣e−as
(

1
θ̂n
−1
)
− 1
∣∣∣∣||√n

{
T̂X

n − FX
n

}
||2H = oP(1).

Therefore,
Rn,a = ||√n

{
T̂X

n − FX
n

}
||2H + oP(1). (8)

The final result then follows from Slutsky’s theorem.
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Remark 2. A closed form expression for the covariance kernel for the limiting centred Gaussian
distribution does not exist. However, for non-negative even numbers of k closed form formulas for
functions Ik(a, b) exist by using the following recursive formulas

I0(a, b) = FX(b)− FX(a)

Ik(a, b) = ake−1/2a2 − bke−1/2b2
+ kIk−2(a, b).

Now that we have shown that, under the null hypothesis, Rn,a converges in distri-
bution to a norm of a Gaussian element of the Hilbert space H, we can continue to show
that the newly proposed test is consistent. Therefore, we will show that Rn,a

n = Δ + oP(1),
where Δ = ||TX − FX ||2H with the properties that Δ = 0 under the null hypothesis and
Δ > 0 under fixed alternatives. This is as a result of the characterization of the Rayleigh
distribution in Proposition 1.

Theorem 2. Suppose X, X1, X2, . . . are i.i.d. random variables with distribution function FX and
E
[
X2] < ∞. As n → ∞, we have

Rn,a

n
= ||TX − FX ||2H + oP(1).

Proof. From (8) we have that

Rn,a

n
= ||T̂X

n − FX
n ||2H + oP(1).

To prove the theorem we need to show that

||T̂X
n − FX

n ||2H = ||TX − FX ||2H + oP(1).

By a weak form of the law of large numbers for separable Hilbert spaces we have that
TX

n (s) = TX(s) + oP(1) and FX
n (s) = FX(s) + oP(1). Moreover, from Lemma 1 we have

that T̂X
n (s) = TX

n (s) + oP(1) and hence T̂X
n (s) = TX(s) + oP(1). We also have that

T̂X
n (s)− FX

n (s) =
(

T̂X
n (s)− TX(s)

)
+
(

TX(s)− FX(s)
)
+
(

FX(s)− FX
n (s)

)
,

and by the continuous mapping theorem the result follows.

4. Simulation Study

In this section, Monte Carlo simulations are used to compare the finite sample per-
formance of the newly proposed test to the following existing goodness-of-fit tests for the
Rayleigh distribution:

• The traditional Kolmogorov–Smirnov (KSn), Cramér-von Mises (CMn) and Anderson–
Darling (ADn) tests;

• A test based on the empirical Laplace transform proposed by [10], ELn,a;
• A test based on the cumulative residual entropy proposed by [11], CRn, and
• A test based on an estimator of the Kullback–Leibler divergence proposed by [12],

KLn,a.

The estimated powers of Rn,a, ELn,a and KLn,a are functions of a tuning parameter,
a. For Rn,a we report the results for a = 1 and a = 5, for ELn,a a is 1 and 5 and for KLn,a
results are reported for a = 3 and a = 4. The motivation for these choices of a will be
discussed in Section 4.2.

In addition to the existing tests, we also compare the performance of the new test to
the following five powerful tests for exponentiality (see, e.g., the overview papers by [21]
as well as [22] for a discussion on a variety of tests for exponentiality);
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• The modified Kolmogorov–Smirnov (K̃Sn) and Cramér-von Mises (C̃Mn) tests based
on the mean residual life proposed by [23];

• Two tests based on the empirical Laplace transform; one proposed by [24], BHn,a,
and the other one by [25], HMn,a, and

• A test based on the empirical characteristic function proposed by [26], EPn.

Here, we test for the Rayleigh distribution by testing for exponentiality of the trans-
formed data (using the well known property that the square of a Rayleigh distributed
random variable follows an exponential distribution). The estimated powers of BHn,a and
HMn,a are functions of a tuning parameter, a. For both BHn,a and HMn,a we report the
results for a = 0.75, 1 and 1.25.

4.1. Simulation Setting

A significance level of 5% is used throughout. Critical values of all the tests are ob-
tained using 50,000 independent Monte Carlo replications drawn from a standard Rayleigh
distribution (all the test statistics are invariant with respect to scale transformations). Power
estimates are calculated and reported for sample sizes n = 20 and n = 30 using 10,000
independent Monte Carlo replications obtained from various alternative distributions.
These include some ‘local’ alternatives as well as those given in Table 1. These alternative
distributions were chosen since they are frequently used alternatives for the Rayleigh distri-
bution, which has an increasing hazard rate. The hazard rates of the considered alternative
distributions include constant hazard rates (CHR), increasing hazard rates (IHR), decreas-
ing hazard rates (DHR) and non-monotone hazard rates (NMHR). These alternatives all
have support in R+ and are used in many other empirical studies for goodness-of-fit tests
of lifetime distributions (see, e.g., [10,21,27]). In Table 1, all scale parameters are set to one
due to the scale transformation Yj = Xj/θ̂n, j = 1, . . . , n. All simulations and calculations
are done in Ref. [28]. The tables are produced using the Stargazer package, see [29].

Table 1. Probability density functions of the alternative distributions considered in the Monte
Carlo study.

Alternative f(x) Notation

Gamma 1
Γ(θ) xθ−1 exp(−x) Γ(θ)

Weibull θxθ−1 exp(−xθ) W(θ)

Power 1
θ x(1−θ)/θ , 0 < x < 1 PW(θ)

Linear Failure Rate (1 + θx) exp
(
−x− θx2

2

)
LFR(θ)

Lognormal exp
{
− 1

2

(
log(x)

θ

)2
}{

θx
√

2π
}−1 LN(θ)

Inverse Gaussian
(

θ
2πx3

)1/2
exp
{−θ(x−1)2

2x

}
IG(θ)

Gompertz exp(−θx) exp
{
−
(

1
θ

)
(exp(θx)− 1)

}
GO(θ)

Exponential θ exp(−θx) Exp(θ)
Extreme value 1

θ exp
(

x +
1−exp(x)

θ

)
EV(θ)

Exponential geometric (1− θ) exp(−x)(1− θ exp(−x))−2 EG(θ)

We first consider some local power estimates. Here, we consider a mixture distribution,
which is obtained by sampling with probability p from a standard exponential distribu-
tion (Exp(1)) and with probability (1− p) from a Ral(1) distribution. The value p = 0
corresponds to the standard Rayleigh distribution, whereas increasing values of p implies
a larger deviation from the null distribution. These estimated powers are given in Table 2
and the estimated powers for the exponentiality tests based on the transformed data are
given in Table 3. The estimated powers for sample sizes 20 and 30 against every alternative
distribution in Table 1 are given in Tables 4 and 5, respectively. The estimated powers,
obtained using the tests for exponentiality based on the transformed data, for sample sizes
20 and 30 are given in Tables 6 and 7, respectively. The entries in these tables are the
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percentages of 10,000 independent Monte Carlo samples that resulted in the rejection of the
null hypothesis (rounded to the nearest integer). For the reader’s convenience, the highest
estimated power for each alternative distribution among the existing tests, as well as the
tests for exponentiality based on the square of the data, are displayed separately in bold
in each of their respective tables. The last column of Tables 2, 4 and 5 contain the highest
estimated powers from the corresponding exponentiality tests based on the transformed
data (i.e., the highest powers obtained from Tables 3, 6 and 7 are also reported in the last
column of Tables 2, 4 and 5); this will make comparison easier.

Table 2. Estimated local powers for the mixture of the Rayleigh and exponential distributions for
various choices of the mixture parameter, p.

p n KSn CMn ADn ELn,1 ELn,5 CRn KLn,3 KLn,4 Rn,1 Rn,5 Exp

0
20 5 5 5 5 5 5 5 5 5 5 5
30 5 4 5 4 5 4 5 5 6 5 5

0.05
20 6 6 7 8 7 7 6 5 7 9 7
30 6 7 8 9 8 9 6 6 8 9 8

0.1
20 8 8 12 15 10 10 6 6 10 13 10
30 8 9 14 16 13 13 8 7 13 16 12

0.15
20 9 11 17 20 15 14 8 8 14 20 14
30 12 14 21 25 19 16 12 11 18 23 17

0.2
20 12 14 22 27 19 17 11 11 19 27 18
30 15 17 27 34 25 21 14 15 25 34 23

0.25
20 15 18 29 34 25 21 14 14 24 34 25
30 21 24 36 44 34 27 19 20 32 44 18

0.3
20 19 22 35 42 30 24 16 15 30 42 30
30 26 30 44 54 41 32 25 27 41 53 42

0.35
20 22 27 42 50 37 30 21 22 37 50 36
30 32 37 54 62 49 38 31 32 50 61 49

0.4
20 28 32 48 56 43 35 26 27 42 56 43
30 41 45 62 70 58 44 39 38 57 70 57

0.45
20 34 39 56 64 52 41 32 32 49 62 51
30 46 51 69 77 65 52 46 46 64 76 66

0.5
20 39 43 61 69 57 45 36 36 55 69 57
30 51 59 76 82 72 57 52 53 71 83 72

Table 3. Estimated local powers for the mixture of the Rayleigh and exponential distributions, using
transformed data, for various choices of the mixture parameter, p.

p n K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

0
20 5 5 5 5 5 5 5 5 5
30 5 5 5 5 5 5 5 5 5

0.05
20 6 6 7 7 7 7 7 6 7
30 6 7 7 8 7 8 7 7 7

0.1
20 7 9 10 10 10 10 10 9 9
30 8 10 11 11 12 10 12 12 11

0.15
20 8 12 12 14 13 13 14 13 13
30 10 15 15 17 16 17 17 16 16

0.2
20 10 15 16 18 17 17 18 18 17
30 14 19 20 23 22 22 23 22 22
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Table 3. Cont.

p n K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

0.25
20 14 18 20 23 22 22 25 23 22
30 18 25 27 31 30 29 34 31 31

0.3
20 15 23 24 28 28 26 30 28 27
30 23 31 34 40 37 36 42 39 38

0.35
20 19 29 30 35 33 33 36 34 34
30 27 38 40 46 44 44 49 46 45

0.4
20 23 35 36 41 39 38 43 41 40
30 36 46 49 55 54 52 57 55 55

0.45
20 29 41 43 49 46 46 51 48 48
30 42 53 55 63 61 59 66 63 62

0.5
20 32 46 47 53 52 51 57 54 53
30 47 60 62 70 67 67 72 70 69

Table 4. Estimated powers for general alternatives for the Rayleigh distribution for sample size
n = 20.

F KSn CMn ADn ELn,1 ELn,5 CRn KLn,3 KLn,4 Rn,1 Rn,5 Exp

CHR

Exp(1) 86 90 96 97 94 89 84 85 94 97 95

IHR

Γ(1.5) 57 63 73 75 73 64 44 44 72 77 72
Γ(2) 32 38 44 43 46 41 19 18 44 44 44

W(1.2) 64 69 80 84 79 68 54 55 79 85 79
W(1.4) 37 42 53 58 53 43 26 25 52 60 52
PW(1) 16 20 40 42 13 21 45 46 18 41 21
LFR(2) 38 45 63 70 56 42 36 36 56 69 59
LFR(4) 26 29 47 56 41 29 25 25 40 55 42
EV(0.5) 56 61 79 84 74 58 54 55 73 84 76
EV(1.5) 22 24 46 56 33 20 26 28 35 56 38
GO(0.5) 56 62 79 84 74 57 54 54 75 84 76
GO(1.5) 22 25 44 54 33 20 27 29 33 55 38

DHR

Γ(0.4) 100 100 100 100 100 100 100 100 100 100 100
Γ(0.7) 97 98 100 100 99 97 98 98 99 100 99
W(0.8) 97 98 100 100 100 98 98 98 100 100 100
EG(0.2) 94 96 99 100 99 95 95 95 98 96 98
EG(0.5) 97 98 99 88 100 97 98 98 92 71 99
EG(0.8) 86 90 95 55 100 99 100 99 75 60 94

NMHR

PW(2) 87 89 98 99 93 83 96 96 95 99 95
PW(3) 99 99 100 100 100 99 100 100 99 100 100

LN(0.8) 67 71 72 66 75 74 51 50 75 68 75
LN(1) 90 92 94 93 95 92 82 82 94 94 94

LN(1.5) 100 100 100 100 100 100 99 99 100 100 100
IG(0.5) 97 98 98 98 98 97 94 93 99 98 98
IG(1.5) 56 61 60 48 62 64 42 42 64 52 63
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Table 5. Estimated powers for general alternatives for the Rayleigh distribution for sample size
n = 30.

F KSn CMn ADn ELn,1 ELn,5 CRn KLn,3 KLn,4 Rn,1 Rn,5 Exp

CHR

Exp(1) 96 98 99 100 99 97 96 96 99 100 99

IHR

Γ(1.5) 76 81 87 89 88 79 63 65 88 90 87
Γ(2) 47 53 57 56 59 54 28 28 60 57 59

W(1.2) 81 86 92 94 92 83 74 76 91 95 92
W(1.4) 53 58 69 72 69 56 37 39 68 74 68
PW(1) 22 28 55 51 14 37 66 68 24 50 27
LFR(2) 53 59 76 83 71 53 51 53 72 84 74
LFR(4) 36 43 61 69 55 37 37 37 54 68 56
EV(0.5) 74 80 90 94 88 72 71 73 88 94 89
EV(1.5) 32 35 58 68 42 23 39 41 46 69 51
GO(0.5) 74 78 91 94 88 72 73 74 88 94 89
GO(1.5) 33 37 58 68 44 25 41 42 47 68 51

DHR

Γ(0.4) 100 100 100 100 100 100 100 100 100 100 100
Γ(0.7) 100 100 100 100 100 100 100 100 100 100 100
W(0.8) 100 100 100 100 100 100 100 100 100 100 100
EG(0.2) 99 99 100 100 100 99 100 99 99 96 100
EG(0.5) 100 100 100 87 100 100 100 100 93 68 100
EG(0.8) 96 98 99 52 100 100 99 99 75 59 99

NMHR

PW(2) 97 98 100 100 98 94 100 100 99 100 99
PW(3) 100 100 100 100 100 100 100 100 99 100 100

LN(0.8) 83 86 87 81 88 87 70 71 89 82 88
LN(1) 97 98 99 99 99 98 94 95 99 99 99

LN(1.5) 100 100 100 100 100 100 100 100 100 100 100
IG(0.5) 100 100 100 100 100 100 99 99 100 100 100
IG(1.5) 73 77 77 62 78 79 62 62 80 67 80

Table 6. Estimated powers for general alternatives for the exponential distribution for sample size
n = 20.

F K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

CHR

Exp(1) 82 90 90 94 93 93 95 94 93

IHR

Γ(1.5) 52 66 68 72 71 70 72 71 71
Γ(2) 29 40 43 43 43 43 43 43 44

W(1.2) 57 70 72 77 77 76 79 78 76
W(1.4) 31 44 46 52 50 50 52 52 51
PW(1) 12 11 7 17 14 11 21 17 14
LFR(2) 30 43 46 55 53 52 59 57 54
LFR(4) 20 30 31 40 36 36 42 39 39
EV(0.5) 48 61 62 72 71 68 76 72 71
EV(1.5) 15 21 22 34 30 27 38 35 33
GO(0.5) 47 62 63 72 71 68 76 72 71
GO(1.5) 14 22 23 33 29 28 38 34 31
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Table 6. Cont.

F K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

DHR

Γ(0.4) 100 100 100 100 100 100 100 100 100
Γ(0.7) 95 98 98 99 99 99 99 99 99
W(0.8) 96 98 98 99 99 99 100 100 99
EG(0.2) 91 95 95 98 98 97 98 98 98
EG(0.5) 95 98 98 99 99 99 99 99 99
EG(0.8) 82 90 90 93 93 93 94 94 93

NMHR

PW(2) 75 84 79 93 91 89 95 93 92
PW(3) 97 99 98 100 100 99 100 100 100

LN(0.8) 64 73 74 74 75 75 72 73 73
LN(1) 88 93 93 94 94 94 94 94 94

LN(1.5) 99 100 100 100 100 100 100 100 100
IG(0.5) 96 98 98 98 98 98 98 98 98
IG(1.5) 53 64 64 62 63 63 58 59 61

Table 7. Estimated powers for general alternatives for the exponential distribution for sample size
n = 30.

F K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

CHR

Exp(1) 95 98 98 99 99 99 99 99 99

IHR

Γ(1.5) 73 82 84 87 86 85 87 86 87
Γ(2) 43 57 58 57 59 59 58 57 58

W(1.2) 78 87 87 91 90 90 92 91 91
W(1.4) 47 60 62 67 66 65 68 68 66
PW(1) 17 15 6 21 18 14 27 22 18
LFR(2) 44 58 60 68 67 66 74 70 68
LFR(4) 31 43 44 53 51 48 56 54 51
EV(0.5) 67 79 80 87 86 84 89 87 87
EV(1.5) 22 30 29 45 41 37 51 46 42
GO(0.5) 67 78 79 87 85 84 89 88 86
GO(1.5) 22 31 29 46 42 39 51 47 44

DHR

Γ(0.4) 100 100 100 100 100 100 100 100 100
Γ(0.7) 100 100 100 100 100 100 100 100 100
W(0.8) 100 100 100 100 100 100 100 100 100
EG(0.2) 99 99 99 100 100 100 100 100 100
EG(0.5) 100 100 100 100 100 100 100 100 100
EG(0.8) 95 98 98 99 99 99 99 99 99

NMHR

PW(2) 93 96 91 99 98 97 99 99 98
PW(3) 100 100 100 100 100 100 100 100 100

LN(0.8) 82 88 89 88 88 88 86 87 88
LN(1) 97 98 99 99 99 99 99 99 99

LN(1.5) 100 100 100 100 100 100 100 100 100
IG(0.5) 99 100 100 100 100 100 100 100 100
IG(1.5) 72 80 80 78 78 80 73 75 76

168



Mathematics 2022, 10, 1316

4.2. Simulation Results

We will now present some general conclusions regarding the tabulated estimated
powers of the different tests considered. Since the performance of the tests are affected
by the type of hazard rate of the alternative distribution, we will discuss the overall
performance as well as the performance when the results are grouped according to the type
of hazard rate.

First, we will consider the estimated local powers, presented in Tables 2 and 3. We
find that KSn and CMn exhibit poor power performance, displaying the lowest powers
among the tests for the majority of the choices of the mixture probability, p. We note that
ELn,1 and Rn,5 are tied for the best test for the majority of mixture proportions. Figure 1
displays the local powers of AD, ELn,1, CR and Rn,5 over the complete range of mixture
probabilities. The superior performance of ELn,1 and Rn,5, for this mixture distribution, is
clear from this figure.

Figure 1. Local powers for some of the tests over the entire range of mixture probabilities of the
Rayleigh exponential mixture distribution for n = 20.

For the transformed data, K̃Sn exhibits the lowest powers overall and HMn,0.75 has
the highest overall powers for the majority of the alternatives considered.

We will now consider the performance of the tests, developed specifically for the
Rayleigh distribution, in general against all of the general alternative distributions listed
in Table 1. From both Tables 4 and 5 we see that, in general, the powers of KSn and CRn
are lower for the majority of the alternatives considered and perform unfavourably in
comparison to the other tests, for both sample sizes. On the other hand, ELn,1 and Rn,5
perform quite well as we find that they outperform the other tests, having the highest
estimated power for the majority of the alternatives considered. All tests considered
perform quite well against the standard exponential distribution (which has a constant
hazard rate) for both sample sizes.

Shifting our attention now to results associated with alternatives with increasing
hazard rates, one finds, once again, that KSn and CRn have lower powers for both sample
sizes considered. For most of the alternatives in this category ELn,1 and Rn,5 have the
highest power, only being outperformed, or equaled, for a handful of these alternatives by
other tests.

Moving our attention to alternatives with a decreasing hazard, we see that all the tests
considered perform very well and, since there are such minor differences in the power
performance between all the tests, it is difficult to identify a single ‘best’ test for this set of
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alternatives. However, for the smaller sample size, KSn still attains powers that are slightly
lower than the rest of the tests.

We now observe the results associated with alternatives with non-monotone hazard
rates. The tests that generally perform well are ADn, ELn,1 and Rn,1. However, the test that
exhibits the highest power for the majority of the alternatives, for both sample sizes, is Rn,5.

Finally, we consider the performance of the tests for exponentiality based on the
transformed data. The tests with the lowest powers are K̃Sn and C̃Mn. BHn,1 and HMn,1.25
perform very well, exhibiting high powers for most of the alternatives considered, espe-
cially for alternatives with decreasing or non-monotone hazard rates. HMn,0.75 displays the
highest overall powers for the majority of the alternatives considered. However, the highest
estimated power, against all alternative distributions considered, is obtained by one of the
tests specifically developed for the Rayleigh distribution and not by any of the exponential-
ity tests based on the transformed data. Therefore, we recommend that the tests proposed
specifically for the Rayleigh distribution is used when goodness-of-fit testing is performed
for the Rayleigh distribution.

To conclude, we provide a brief demonstration of how the choice of the tuning param-
eter, a, influences the powers of the newly proposed test. In order to visualise the behaviour
of the powers for different values of a, Figure 2 present the powers for Rn,a over a grid of a
values and six different alternative distributions. This figure is also used to motivate the
choice of a values included in the study.

Figure 2. Estimated powers for R100,a for some alternatives appearing in Table 1.

The choice of a = 1 was made since it is the point where the powers for most of the
alternative distributions start to stabilize and reach a plateau. The choice for a = 5 is due to
the fact that it is the point where the powers for most of the alternative distributions reach
their maximum value.

5. Practical Application

As noted in Section 1, the Rayleigh distribution found various applications in the fields
of survival analysis and reliability theory. In this section we demonstrate the use of the
tests specifically developed for the Rayleigh distribution by applying them to a real-world
survival data set: the COVID-19 data set of Italy given in Table 8—for a discussion on the
data set, see [30]. The data set displays the COVID-19 mortality rates recorded for 59 days
in Italy from 27 February 2020 to 27 April 2020. Ref. [30] discussed and analysed the use
of an extended three parameter Rayleigh distribution to model the data. They concluded
that the newly extended Rayleigh distribution is a good fit to the data. We, however, will
investigate the goodness-of-fit of the traditional one parameter Rayleigh distribution as
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well as that of the exponential distribution. Figure 3 represents the probability plots of both
the Rayleigh (grey dots) and exponential (black dots) distribution fitted to the data, where
θ̂ = 6.583 and λ̂ = 0.123 in the case of the exponential distribution.

Figure 3. Probability plot of a fitted Rayleigh (grey dots) and exponential (black dots) distribution.

The probability plot suggests that the underlying distribution of the data might be the
Rayleigh distribution instead of the exponential distribution.

Table 8. COVID-19 data set of Italy.

1.518 2.450 2.508 2.686 2.780 2.814 2.881 3.134 3.148 3.341
3.564 3.606 3.827 4.011 4.040 4.253 4.408 4.416 4.571 4.639
4.640 4.859 5.073 5.452 6.194 6.503 7.201 7.214 7.407 7.445
8.479 8.646 8.697 8.905 8.906 8.961 9.037 10.138 10.282 10.644

10.908 10.919 11.010 11.273 11.410 11.775 11.822 11.950 12.396 13.226
13.333 14.242 14.330 15.137 15.787 16.046 16.561 17.337 18.474

Table 9 contains the estimated p-value (calculated based on 50,000 samples of size
59 simulated from the standard Rayleigh distribution) of each test for testing formally
whether the data originated from a Rayleigh distribution.

Table 9. p-values for the COVID-19 data of Italy.

TestStatistic KSn CMn ADn ELn,1 ELn,5 CRn KLn,3 KLn,4 Rn,1 Rn,5

p-value 0.05974 0.12038 0.12906 0.62786 0.5679 0.4104 0.09604 0.07 0.8903 0.91866

From these p-values it is clear that all the tests do not reject the null hypothesis in (3)
at a 5% significance level and we can therefore conclude that the Rayleigh distribution is
also a feasible option to model the data.

Having found that the Rayleigh distribution is a good fit to the observed data, one can
now go about calculating quantiles, moments and other useful distributional properties
by using the theoretical Rayleigh distribution with estimated parameter θ̂ = 6.583. For ex-
ample, by fitting this Rayleigh distribution we find that the mean mortality rate over the
59 days is 8.2506.
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6. Conclusions and Future Research

In this article, a new goodness-of-fit test statistic specifically designed for the Rayleigh
distribution was considered. The finite-sample performance of this newly suggested test
was studied via the use of a Monte Carlo simulation. From the results, it is clear that this
new test is not only feasible when testing goodness-of-fit for the Rayleigh distribution, it
also outperforms or equals competitor tests for the majority of the alternative distributions
considered. For practical implementation we suggest using the choice a = 5 for Rn,a.
Alternatively, one can use a data-dependent choice of this tuning parameter suggested, e.g.,
in [31].

In analysing mortality or survival data (like the COVID-19 data set) one will, more
often than not, deal with observations that are censored. For our newly proposed test to be
applicable in these kinds of situations, it needs to be modified to accommodate censoring.
Naturally, this modification will complicate some of the asymptotic derivations and might
be an avenue for future research. Some work in this regard has been started by [32] as well
as [33].
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Abstract: Accelerated life tests are used to explore the lifetime of extremely reliable items by subjecting
them to elevated stress levels from stressors to cause early failures, such as temperature, voltage,
pressure, and so on. The alpha power inverse Weibull (APIW) distribution is of great significance and
practical applications due to its appealing characteristics, such as its flexibilities in the probability
density function and the hazard rate function. We analyze the step stress partially accelerated
life testing model with samples from the APIW distribution under adaptive type II progressively
hybrid censoring. We first obtain the maximum likelihood estimates and two types of approximate
confidence intervals of the distributional parameters and then derive Bayes estimates of the unknown
parameters under different loss functions. Furthermore, we analyze three probable optimum test
techniques for identifying the best censoring under different optimality criteria methods. We conduct
simulation studies to assess the finite sample performance of the proposed methodology. Finally, we
provide a real data example to further demonstrate the proposed technique.

Keywords: the alpha power inverse Weibull distribution; step stress partially accelerated life testing;
adaptive progressive hybrid censored data; loss functions

MSC: 65C20; 60E05; 62P30; 62L15

1. Introduction

The reliability of products has recently grown greatly in the present era of technical
achievements due to an ongoing effort for improving manufacturing processes in various
companies. Under the presence of high competition to launch their products within a
short time period, direct use of traditional life testing methodologies will be an expensive
and time-consuming operation for evaluating the lifetime of a product to predict product
failures. As a result, accelerated life tests (ALTs) are usually employed to explore the
lifetime of extremely reliable products, as they can be used with elevated stress levels of
stressors to trigger early failures, such as temperature, voltage (electric field), pressure, and
so on. Thereafter, the constant-stress and step-stress models in the ALTs have been studied
in life testing and reliability analyses; see, for example, [1–4].

It is known that each product sample in the ALTs is typically analyzed under a
constant-stress scenario, subjected to some continuous amounts of constant stress until
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all units fail or the test is cancelled for any reason, such as censoring plan. However, the
test conditions associated with step-stress models do not remain constant throughout the
tests, since the stress on a sample of test units could increase step by step at a prescribed
period or concurrently when a fixed number of failures occurs. In addition, the ALTs often
use a suitable physical model to extrapolate the collected breakdown information under
accelerated settings, whereas it is difficult to select a proper physical model to describe the
life stress relationships in practical situations [5]. To overcome these drawbacks of ALTs,
researchers may employ partially accelerated life testing (PALT), which is classified into
two types: constant-stress loading and step-stress loading. In the constant-stress PALT
(CSPALT), each sample of tested items is subjected to normal and accelerated levels of
constant stress until all units fail or the test is terminated; see, for example, [6,7]. In the
step-stress PALT (SSPALT), certain objects or materials are initially tested under normal or
usage settings for a predetermined amount of time before being subjected to accelerated
test conditions until the termination time; see, for example, [8–10].

In life-testing and reliability trials, data are commonly censored due to time and
cost constraints. The hybrid censoring scheme [11], which includes Type-I and Type-II
censorings as special cases, is commonly utilized in reliability analysis. We, here, refer the
interested reader to [12] for a nice overview of the hybrid censoring. However, the hybrid
censoring scheme lacks an option to delete units during the testing period due to time and
cost constraints. To address this issue, a progressive censoring scheme was developed by
allowing for the deletion of experimental units at various periods of time throughout the
test; see, for example, [13,14] in detail. It is worth pointing out that in the progressively
Type-II hybrid censoring, the number of required failures and the number of items that
must be deleted are determined in advance, whereas there is no time constraint on the
experiment, leading to a very long period.

To address this issue, [15] proposed the Type-I Progressive Hybrid Censoring Scheme
(TIPHCS), with an additional time and failure constraint that the experiment will run
until a predetermined time point or a predetermined number of failures, whichever comes
first. However, since the sample size in TIPHCS is random, only a few or even no failure
would occur before a pre-specified time limit, resulting in poor efficiency of the parameter
estimation. The authors of [16] proposed an adaptive type-II PHCS (AT-II PHCS), in which
n units are placed on a life test with a predetermined number of failures m and a pre-fixed
progressive censoring scheme ε1, ε2, . . . , εm, but the experimenter is allowed to change
some of the εiws during the experiment depending on situations. At the initial failure time,
z1:m:n, ε1 units are randomly selected from the remaining n− 1 alive items and are then
removed from the experiment. At the second failure time, z2:m:n, ε2 units of the remaining
n− 1− ε1 units are eliminated at random, and so on. If the m-th failure time zm:m:n, occurs

before the predetermined time δ, all the remaining εm = n−m− m
∑

i=1
εi units are removed

and the experiment terminates at time zm:m:n. The AT-II PHCS allows the experiment to run
over the test termination time restriction. As a result, if zm:m:n > δ, the experiment will soon
be stopped by setting εc+1, εc+2, . . . , εm−1 = 0. This means that if zc:m:n < δ < zc+1:m::n,
with c + 1 < m and yc:m:n is the c− th failure time that occurred before δ, no surviving item
will be removed from the experiment until the effective sample of m failures is attained,

resulting in the remaining units εm = n− c− c
∑

i=1
εi.

Due to the importance of the AT-II PHCS, numerous authors have investigated the
problem of parameter estimation in different statistical models based on this censoring
scheme; see, for example, Refs. [17–19] for the Weibull distribution, Ref. [20] for the log-
normal distribution, Ref. [21] for the exponentiated Weibull distribution, Refs. [22,23] for the
extended Weibull distribution, Ref. [24] for the Burr Type-XII distribution, Ref. [25] for the
exponentiated Pareto distribution, Ref. [26] for the inverted NH distribution, Ref. [27] for
the Weibull generalized exponential distribution, Ref. [28] for the exponentiated exponential
distribution, Ref. [29] for the exponentiated power Lindley distribution, and references
cited therein. To the best of our knowledge, little research attention has been devoted to the
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alpha power inverse Weibull (APIW) distribution [30]. This observation motivates us to
investigate statistical inference of the APIW distribution under AT-II PHCS.

Due to flexibilities in its probability density function (PDF) and hazard rate function
(HRF), the APIW distribution has become a useful model in the study of life testing and
reliability analyses. The cumulative distribution function (CDF), PDF, survival function
(SF), and HRF for an APIW random variable T are given by

F(t; α, β, θ) =
αe−βt−θ − 1

α− 1
, α, β, θ, t > 0, (1)

f (t; α, β, θ) =
log(α) θβe−βt−θ

t−θ−1αe−βt−θ

α− 1
, α, β, θ, t > 0, (2)

S(t; α, β, θ) =
α

α− 1

(
1− αe−βt−θ−1

)
, α, β, θ, t > 0, (3)

and

h(t; α, β, θ) =
log(α) θβe−βt−θ

t−θ−1αe−βt−θ−1(
1− αe−βt−θ−1

) , α, β, θ, t > 0, (4)

respectively, where α > 0 and θ > 0 are the shape parameters and β > 0 is a scale parameter.
This distribution includes many well-known distributions as special cases, such as the
alpha power Fréchet, alpha power inverse Rayleigh, alpha power inverse exponential,
inverse Weibull, Fréchet, inverse Rayleigh, and the inverse exponential distributions. In
addition, it has closed-form expressions of the SF and HRF, which make the distribution a
good alternative to commonly used distributions in life-testing analysis.

In this paper, we analyze the step stress partially accelerated life testing model with
samples from the APIW distribution under the AT-II PHCS. We first consider the MLEs
and derive asymptotic confidence interval and bootstrap confidence intervals of the model
parameters. We then propose Bayes estimates of the unknown parameters with non-
informative and informative priors under the symmetric and asymmetric loss functions. In
addition, we identify the best progressive censoring scheme to the most information about
the unknown parameters among all conceivable progressive censoring schemes. Numerical
results from simulation studies and a real-data application show that the performance of
the proposed technique is quite satisfactory for analyzing censored data under different
sampling schemes.

The rest of this paper is organized as follows. Section 2 describes the lifetime model and
the test assumptions. Section 3 derives the MLEs of the APIW parameters under the AT-II
PHCS. Section 4 constructs the confidence intervals of the unknown parameters. Bayesian
analysis of the unknown parameters is provided in Section 5. We carry out simulations in
Section 6 to investigate the finite sample performance of the proposed model. In Section 7,
a real-data example is provided for illustrative purposes. Finally, concluding remarks are
provided in Section 8 with Fisher information of the model deferred to the Appendix A.

2. Assumptions and Procedure for Testing

Suppose that in a simple SSPALT, the test employs only two stress levels, Su (normal
operating circumstances) and Sa (accelerated condition), such that Su < Sa, where Su and
Sa are twins. Under each stress level, at least one failure should occur. We assume that at
both stress levels, the failures of the test items follow the APIW distribution in (2). Then,
the lifetime Z of a test item follows a TRV model given by

Z =

{
T, i f T < τ

τ + T−τ
λ , T > τ
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where T indicates the lifetime of an item under the stress ST and represents the time point
at which stress ST is switched from u to a, and λ > 1 is an accelerated factor (AF). Then,
under the TRV model, we obtain the PDF, CDF, and SF of Z given by

fu(z; α, β, θ) =
log(α) θβe−βz−θ

z−θ−1αe−βz−θ

α− 1
, (5)

Fu(z; α, β, θ) =
αe−βz−θ − 1

α− 1
, (6)

Su(z; α, β, θ) =
α

α− 1

(
1− αe−αz−θ−1

)
(7)

Now, at stress ST = a, the PDF, CDF, and SF of Z are produced as follows:

fa(z; α, β, θ, λ) =
log(α) θβe−β[τ+λ(z−τ)]−θ

[τ + λ(z− τ)]−θ−1αe−β[τ+λ(z−τ)]−θ

α− 1
, (8)

Fa(z; α, β, θ, λ) =
αe−β[τ+λ(z−τ)]−θ − 1

α− 1
, α, β, θ, z > 0, λ > 1, (9)

Sa(z; α, β, θ, λ) =
α

α− 1

(
1− αe−α[τ+λ(z−τ)]−θ−1

)
, (10)

where α, β, θ, z > 0, λ > 1. We assume that a sample of n items is assigned to the stress level
Su to test according to the SSPALT and a known progressive censoring scheme ε1, ε2, . . . , εm.
The test will proceed and the items from n that do not fail up to time Su are placed through
Sa to test, and the test will continue until the censorship time is reached. If the m − th
failure does not occur within the censoring point δ, no item will be removed from the test.
The testing will continue until the m − th failure is registered, at which point it will be
terminated when all remaining items are eliminated. As a result, the implemented scheme
is ε1, ε2, . . . , εc, 0, 0, . . . , 0, εm. Thus, we obtain the observed samples given by

z1:m:n < z2:m:n < . . . < zmu :m:n < τ < zmu+1:m:n < . . . < zc:m:n < δ < zc+1:m:n < . . . < zm:m:n,

illustrated in Figure 1.

Figure 1. Illustration of the AT-II PHCS scheme.

We observe from this figure that the AT-II PHCS is a special instance of the AT-II PHCS
as δ → 0 and that the AT-II PHCS reduces to the classical Type-II PHCS as δ → ∞.
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3. The Parameter Estimation

The resulting likelihood function of the data under the AT-II PHCS is given by

L(z; α, β, θ, λ) ∝
mu

∏
i=1

{
fu(zi)[Ru(zi)]

εi
} m

∏
i=mu+1

{
fa(zi)[Ra(zi)]

εi [Ra(zm)]
εm
}

, (11)

where zi = zi:m:n, εm = n−m− c
∑

i=1
εi. Then it follows

L(z; α, β, θ, λ) ∝
mu

∏
i=1

⎧⎨⎩ log(α) θβe−βz−θ
i z−θ−1

i αe−βz−θ
i

α− 1

[
α

α− 1

(
1− αe−βz−θ

i −1
)]εi

⎫⎬⎭
× m

∏
i=mu+1

{ log(α) θβe−β[τ+λ(zi−τ)]−θ
[τ+λ(zi−τ)]−θ−1αe−β[τ+λ(zi−τ)]−θ

α−1 [ α
α−1 (1

−αe−β[τ+λ(zi−τ)]−θ−1)]εi [ α
α−1 (1− αe−β[τ+λ(zm−τ)]−θ−1)]εm}

(12)

The MLE is commonly used to estimate the unknown parameters, as it effectively and
efficiently yields estimates with good statistical properties. By taking the natural logarithm on
both sides of Equation (12), we obtain the log-likelihood equation L(z; α, β, θ, λ) = � as follows

� = mulog(log(α))−mulog(α− 1) + mulog(θ) + mulog(β)− β
mu
∑

i=1
z−θ

i − (θ + 1)
mu
∑

i=1
log(zi)

+log(α)
mu
∑

i=1
e−βz−θ

i +
mu
∑

i=1
εi log(α)−

mu
∑

i=1
εi log(α− 1) +

mu
∑

i=1
εi

(
1− αe−βz−θ

i −1
)

+mlog(log(α))−mlog(α− 1) + mlog(θ) + mlog(β)− β
m
∑

i=mu+1
[τ + λ(zi − τ)]−θ

−(θ + 1)
m
∑

i=mu+1
log[τ + λ(zi − τ)] + log(α)

m
∑

i=mu+1
e−β[τ+λ(zi−τ)]−θ

+
m
∑

i=mu+1
(εi)log(α)

− m
∑

i=mu+1
(εi)log(α− 1) +

m
∑

i=mu+1
εi log

(
1− αe−β[τ+λ(zi−τ)]−θ−1

)
+ εmlog(α)− εmlog(α− 1)

+εmlog
(

1− αe−β[τ+λ(zm−τ)]−θ−1
)

(13)

The MLEs of the parameters α, β, θ and λ can be obtained by solving the following
nonlinear system equations

∂�
∂α = mu+m

αlogα − (mu+m)
(α−1) + 1

α

mu
∑

i=1
e−βz−θ

i − 1
α

mu
∑

i=1
εi − 1

α−1

mu
∑

i=1
εi − log(α)

mu
∑

i=1
εiα

e−βz−θ
i −1

+ 1
α

m
∑

i=mu+1
εie−β[τ+λ(zi−τ)]−θ

+ 1
α

m
∑

i=mu+1
(εi) +

1
(α−1)

m
∑

i=mu+1
(εi)

+log(α)
m
∑

i=mu+1
εi

αe−β[τ+λ(zi−τ)]−θ−1(
1−αe−β[τ+λ(zi−τ)]−θ−1

) + εm
α − εm

(α−1) +
εmlog(α)αe−β[τ+λ(zm−τ)]−θ−1

1−αe−β[τ+λ(zm−τ)]−θ−1
,

(14)
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∂�
∂θ

= mu+m
θ + β

mu
∑

i=1
z−θ

i log(zi)−
mu
∑

i=1
log(zi)

+log(α)
mu
∑

i=1
βz−θ

i log(zi)e−βz−θ
i +

mu
∑

i=1
e−βz−θ

i βz−θ
i log(zi)

(
e−βz−θ

i − 1
)

εiα
e−βz−θ

i −2

+β
m
∑

i=mu+1
[τ + λ(zi − τ)]−θ log[τ + λ(zi − τ)]

− m
∑

i=mu+1
log[τ + λ(zi − τ)] + log(α)

m
∑

i=mu+1
e−β[τ+λ(zi−τ)]−θ

β[τ + λ(zi − τ)]−θ log[τ + λ(zi − τ)]

+
m
∑

i=mu+1

εi e−β[τ+λ(zi−τ)]−θ
β[τ+λ(zi−τ)]−θ log[τ+λ(zi−τ)]

(
e−β[τ+λ(zi−τ)]−θ−1

)(
αe−β[τ+λ(zi−τ)]−θ−2

)
(

1−αe−β[τ+λ(zi−τ)]−θ−1
)

+
εme−β[τ+λ(zm−τ)]−θ

β[τ+λ(zm−τ)]−θ log[τ+λ(zm−τ)]
(

e−β[τ+λ(zm−τ)]−θ−1
)(

αe−β[τ+λ(zm−τ)]−θ−2
)

αe−β[τ+λ(zm−τ)]−θ−1
,

(15)

∂�
∂β = mu

β −
mu
∑

i=1
z−θ

i − log(α)
mu
∑

i=1
z−θ

i e−βz−θ
i −

mu
∑

i=1
εiz−θ

i e−βz−θ
i

(
αe−βz−θ

i −1
)
+ m

β +
m
∑

i=mu+1
[τ + λ(zi − τ)]−θ

+log(α)
m
∑

i=mu+1
[τ + λ(zi − τ)]−θe−β[τ+λ(zi−τ)]−θ

+
m
∑

i=mu+1
εi

αe−β[τ+λ(zi−τ)]−θ−1
(

e−β[τ+λ(zi−τ)]−θ−1
)

1−αe−β[τ+λ(zi−τ)]−θ−1

+
εm

(
e−β[τ+λ(zm−τ)]−θ−1

)
[τ+λ(zm−τ)]−θ

(
αe−β[τ+λ(zm−τ)]−θ−1

)
1−αe−β[τ+λ(zm−τ)]−θ−1

,

(16)

∂�
∂λ

= −β
m
∑

i=mu+1
(zi − τ)[τ + λ(zi − τ)]−θ−1 − m

∑
i=mu+1

(θ+1)(zi−τ)
[τ+λ(zi−τ)]

+βlog(α)
m
∑

i=mu+1
e−β[τ+λ(zi−τ)]−θ

(zi − τ)[τ + λ(zi − τ)]−θ−1

+
∑m

i=mu+1 εi e−β[τ+λ(zi−τ)]−θ
β(zi−τ)[τ+λ(zi−τ)]−θ−1

(
e−β[τ+λ(zi−τ)]−θ−1

)
αe−β[τ+λ(zi−τ)]−θ−2(

1−αe−β[τ+λ(zi−τ)]−θ−1
)

+
εme−β[τ+λ(zm−τ)]−θ

β(zm−τ)[τ+λ(zm−τ)]−θ−1
(

e−β[τ+λ(zm−τ)]−θ−1
)

αe−β[τ+λ(zm−τ)]−θ−2

1−αe−β[τ+λ(zm−τ)]−θ−1
.

(17)

We observe that it is difficult to get closed-form solutions of the parameters from
the above nonlinear equations. As a result, we employ an iterative approach, such as
Newton–Raphson, to find numerical solutions to the nonlinear systems.

4. Confidence Intervals

A confidence interval (CI) is a collection of numbers that serves as reasonable approxi-
mations to an unknown population characteristic (e.g., [31]). We consider two types of CIs
for the unknown parameters as follows.

4.1. Approximate Confidence Intervals

According to large sample theory, the MLEs are consistent and regularly distributed un-
der certain regularity conditions. To be more specific,

[
(α̂− α),

(
θ̂− θ

)
,
(
β̂− β

)
,
(
λ̂− λ

)] ∼
N(0, σ) is known to yield the asymptotic distribution of MLEs of α, θ, β and λ, where
σ = σij, i, j = 1, 2, 3, 4 is the unknown parameters’ in the variance–covariance matrix. The
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inverse of the Fisher information matrix is an estimate of the variance–covariance matrix. The
estimated 100(1−π)% two-sided CIs for the unknown parameter are provided by

(π̂iL, π̂iU) : π̂i ∓ z1− π
2

√
σ̂ij, i = 1, 2, 3, 4,

where z1−π/2 is the π−th percentile of the standard normal distribution. However, the
above asymptotic CIs may not perform well due to an asymmetric property of the APIW
distribution. To deal with this issue, we consider the parametric bootstrap percentile
intervals as an alternative [32].

4.2. Bootstrap Confidence Intervals

We consider the parametric bootstrap sampling with percentile intervals, which can
be implemented using Algorithm 1.

Algorithm 1. Bootstrap

1. Step 0, basic setup:
2. Set b = 1
3. Determine the MLE values of ω = (α, θ, β, λ), as showing by ω̂ =

(
α̂, θ̂, β̂, λ̂

)
.

4. Step 1: Sample
5. Get the bth bootstrap resample t∗p from F( .|ω̂), where is the MLE from Step 0.
6. Step 2: Estimates from the bootstrap:
7. Calculate the bth bootstrap estimations.

8. ω̂∗b =
(

α̂∗b, θ̂∗b, β̂∗b, λ̂∗b
)

,
9. Utilize the t∗p resample obtained in Step 1.
10. Step three, repeat:
11. Set b←b+1,
12. Steps 1–3 are then repeated until b = G.
13. Step 4: In ascending sequence, begin:
14. Sort the estimates in increasing order so that
15.

{
α̂∗[1], α̂∗[2], . . . , α̂∗[G]

}
,
{

θ̂∗[1], θ̂∗[2], . . . , θ̂∗[G]
}

,
{

β̂∗[1], β̂∗[2], . . . , β̂∗[G]
}

,
{

λ̂∗[1], λ̂∗[2], . . . , λ̂∗[G]
}

The 100(1−ω)% percentile bootstrap CIs for the unknown parameter are computed
as follows

(ω̂iL, ω̂iU) =
(

ω̂i
∗[ π

2 ]G, ω̂i
∗[(1− π

2 )G]
)

, i = 1, 2, 3, 4,

where ω̂1
∗ = α∗, ω̂2

∗ = θ∗, ω̂3
∗ = β∗, and ω̂4

∗ = λ∗.

5. Bayesian Estimation

In this section, we focus on Bayes estimation for the unknown parameters. Bayesian
analysis begins with prior specifications for the unknown parameters. In this paper,
we assume that the parameters α, θ, β, and λ are statistically independent and follow
independent gamma distributions, denoted by gamma

(
aj, bj

)
; j = 1, . . . , 4, respectively. The

joint priors for the APIW parameters can be written as

ϕ(α, θ, β, λ) ∝ αa1−1e−b1α θa2−1e−b2θ βa3−1e−b3β λa4 e−b4λ, (18)

where aj ≥ 0 and bj ≥ 0; j = 1, . . . , 4 are pre-determined hyperparameters that reflect prior
knowledge of the unknown parameters. The resulting joint posterior distribution of the
unknown parameters is given by

L(α, θ, β, λ|t) ∝ ϕ(α, θ, β, λ)∏4
i=1 ∏ni

j=1 f
(
tij
)(

1− F
(
tij
))di , (19)

which is usually unidentifiable. Thus, we employ Markov chain Monte Carlo (MCMC)
methods to generate posterior samples of the unknown parameters for making posterior
inference. In particular, the acquired samples will also be used to approximate Bayes
estimates and obtain the corresponding highest posterior density (HPD) credible ranges for
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the unknown parameters [33]. In this paper, we obtain the Bayes estimates of the unknown
parameters under the symmetric (SLF) and asymmetric (ELF) loss functions, which are
denoted as

�(α, α̃) = (α̃− α)2, �
(
θ, θ̃
)
=
(
θ̃− θ

)2
, �
(

β, β̃
)
=
(
β̃− β

)2
, �
(
λ, λ̃
)
=
(
λ̃− λ

)2
, (20)

where α̃, θ̃, β̃ and λ̃ denote the estimated posterior means of α, θ, β and λ, respectively.
The generalized entropy (GE), an asymmetric loss function, is a simple generalization

of the entropy loss with the shape parameter q being 1 and is given by

�(ω, ω̃) ∝
(

ω̃

ω

)q
− qln

(
ω̃

ω

)
− 1, q �= 1, (21)

where ω̃ is an approximated estimation of ω given by

ω̃GE =
[
Eω

(
ω−q)]−1

q , (22)

assuming that ω−q exists and is finite and Eω represents the anticipated value [34]. It
should be emphasized that other loss functions may easily be substituted in the same way.

6. Optimization Criterion

There has been a lot of interest in identifying the best censoring scheme in recent
years; see [35–39]. For values of n and m determined by the samples under a test, possible
censoring schemes are all combinations of R1, . . . , Rm. We are interested in selecting the best
sample technique, as it entails identifying the progressive censoring scheme that provides
the most information about the unknown parameters among all conceivable progressive
censoring schemes. The first challenge is to determine a way to generate the unknown
parameter information based on specific progressive censoring data, and the second is to
compare two distinct information measures based on two different progressive censoring
techniques. We, here, provide some of the optimality criteria as follows. We choose the
censoring method that provides the most information about the unknown parameters.
Table 1 provides a variety of commonly used measures in selecting the proper progressive
censoring strategy, Ci.

Table 1. Some practical censoring plan optimum criteria.

Criterion Method

C1 Maximize trace [I4×4(.)]
C2 Minimize trace [I4×4(.)]

−1

C3 Minimize det [I4×4(.)]
−1

We are interested in maximizing the observed Fisher information I4×4(.) for C1. Fur-
thermore, for criteria C2 and C3, we reduce the determinant and trace of [I4×4(.)]

−1. Com-
paring multiple criteria is simple when dealing with a distribution with a single parameter;
however, comparing the two Fisher information matrices becomes difficult for multiparam-
eter distributions, because C2 and C3 are not scale invariant. As a result, the logarithm of
the APIW distribution for t̂p is provided by

log
(
t̂p
)
= log

{−1
β

log
[

1− log(1 + p(α− 1))
logα

]} 1
θ

, 0 < p < 1, (23)

We apply the delta approach to (23) to obtain the approximated variance for log
(
t̂p
)

of the APIW distribution as

Var
(
log
(
t̂p
))

=
[∇log

(
t̂p
)]T I−1

4×4
(
α̂, θ̂, β̂, λ̂

)[∇log
(
t̂p
)]

,

182



Mathematics 2022, 10, 4652

where[∇log
(
t̂p
)]T

=

[
∂

∂α
log
(
t̂p
)
,

∂

∂θ
log
(
t̂p
)
,

∂

∂β
log
(
t̂p
)
,

∂

∂λ
log
(
t̂p
)]

(α=α̂,θ=θ̂,β=β̂,λ=λ̂)

The optimal progressive censoring corresponds to a maximum value of C1 and a
minimum value of Ci, i,= 1, 2, 3.

7. Simulation

In this section, simulation experiments are carried out to evaluate the MLEs and
Bayesian estimators’ performances under the SLF and ELF in terms of their bias, mean
square error (MSE), length of asymptotic CIs (LACI), and length of credible CIs (LCCI).
The 95% CIs are generated using the asymptotic distribution of the MLEs. Two MLE
bootstrap confidence intervals are additionally attained. The HPD is used to calculate the
95% credible intervals. Two schemes of progressive censoring are taken into consideration:

Scheme I: R1 = . . . = Rm−1 = 0, and Rm = n−m.
Scheme II: R2 = . . . = Rm = 0 and R1 = n−m.
For more information, see [40]. To choose the best strategy for the determinant and

trace of the variance–covariance matrices, maximization of the principal diagonal elements
of the Fisher information matrices, minimization of the determinant and trace of the
variance–covariance matrix, and minimization of the variance in the logarithmic MLE of
the p-th quantile, we used various optimization criteria. The following algorithm is used to
carry out the estimation procedure:

1. Give the numbers n, m, and τ. The total sample size in complete case is n = 100 and
200; the censored sample size is m = 75 and 90 m when n = 100 and m = 150 and 185
when n = 200.

2. Give the parameters, α = 2, β = 2, λ = 1.6, θ = 0.7, and α = 0.6, β = 0.7, λ = 0.8,
θ = 1.4.

3. Make a sample of size n of the randomness from the random variable t in Equation (1),
then sort it. It is easy to create a random variable with the APIW distribution. If the
uniform random variable U is drawn from the interval [0, 1], then

z =

⎧⎪⎨⎪⎩
{
−1
β ln

[
ln(1+(α−1)U)

ln(α)

]}−1
θ t < τ

τ − τ∗ +
{
−1
λ ln

[
ln(1+(α−1)u)

ln(α)

]}−1
θ t > τ

.

4. To generate the adaptive progressive hybrid censored data for given n, m, and δ, we
use the model in (7). The data can be thought of as:

z1:m:n < z2:m:n < . . . < zu:m:n < τ < zu+1:m:n < . . . zc:m:n < δ < zc+1:m:n < zm:m:n

5. To obtain the MLEs of the parameters, the nonlinear system is solved by using the
Newton–Raphson method.

6. To obtain the Bayes estimation of the parameters, we obtain posterior samples from
the MCMC algorithm.

7. Repeat Steps 3 through 6 for 1000 iterations.
8. Calculate the MLEs and Bayes parameter-related average values of bias, MSE, and LCI.
9. Calculate various parameter estimations and their confidence intervals.
10. Calculate the various optimization criteria.

Numerical simulation studies are provided in Tables 2–7 and Figures 2 and 3. Several
conclusions can be drawn as follows.

• By increasing the censored sample sizes m, the bias, MSE, and LCI of the estimates for
the two alternative censored methods decrease for fixed values of n and δ.
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• By increasing the censored sample sizes δ, the bias, MSE, and LCI of the estimates for
the two alternative censored methods decrease for fixed values of n and m.

• By increasing the censored sample sizes n, the bias, MSE, and LCI of the estimates for the
two alternative censored methods decrease for fixed values of the sample sizes δ and m.

• Bayes estimations of the parameters under the two loss functions outperform the MLE
in terms of bias and MSE for the scenarios under consideration.

• The bias and MSE of Bayes estimations of the parameters increase under the considered
scenarios when we used negative weight for ELF.

• The HPDs of the unknown parameters outperform the CIs based on the MLEs with
respect to ACIs and LCIs. In addition, we observe that the lengths of the bootstrap CIs
are the shortest.

Table 2. Bias, MSE, LACI, LBCI, and LCCI with scheme 1 in case 1.

α = 2, β = 2, λ = 1.6, θ = 0.7 MLE SELF ELF c = −1.25 ELF c = 1.25

n τ, δ m Bias MSE LACI LBPCI LBTCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

100

2, 10

75

α 0.3263 0.3997 2.1248 0.0965 0.0947 −0.2602 0.3062 1.8368 −0.2458 0.2894 1.7968 −0.4100 0.5367 2.2491

β −1.3825 1.9408 0.6726 0.0302 0.0301 −0.5628 0.3439 0.6222 −0.5578 0.3379 0.6157 −0.6050 0.3980 0.6726

λ −0.3294 0.1665 0.9447 0.0406 0.0406 0.2863 0.1435 0.7539 0.6361 0.4416 0.7597 0.5878 0.3778 0.6959

θ 0.8792 0.8010 0.6577 0.0301 0.0300 0.0546 0.0395 0.3513 0.0563 0.0097 0.3143 0.0389 0.0079 0.3100

90

α 0.1289 0.3267 2.1851 0.1033 0.1031 −0.0321 0.0331 0.7063 −0.0309 0.0329 0.7056 −0.0423 0.0351 0.7149

β −1.3616 1.8885 0.7287 0.0325 0.0327 −0.2817 0.1017 0.5869 −0.2789 0.0997 0.5807 −0.3071 0.1212 0.6382

λ −0.2883 0.1568 1.0653 0.0484 0.0484 0.1990 0.0575 0.5284 0.2005 0.0583 0.5303 0.1850 0.0506 0.4982

θ 0.8403 0.7273 0.5710 0.0257 0.0253 0.0464 0.0241 0.3401 0.1281 0.0246 0.3411 0.1123 0.0198 0.3214

3.5, 18

75

α 1.2072 2.6719 4.3243 0.1911 0.1921 −0.1065 0.2610 1.8586 −0.0961 0.2537 1.8425 −0.2112 0.3636 2.1097

β −1.1084 1.2923 0.9910 0.0427 0.0432 −0.6102 0.4100 0.7449 −0.6050 0.4028 0.7387 −0.6526 0.4709 0.7836

λ 0.4902 0.4963 1.9853 0.0901 0.0900 0.2893 0.2940 0.6019 0.9399 0.9551 1.0307 0.8542 0.7929 0.9038

θ 0.6934 0.5379 0.9372 0.0414 0.0410 0.1369 0.0546 0.4633 0.1387 0.0560 0.4645 0.1201 0.0390 0.4486

90

α 1.3165 2.5775 3.6059 0.1659 0.1640 −0.0176 0.0289 0.6324 −0.0166 0.0288 0.6321 −0.0262 0.0298 0.6365

β −0.7230 0.9408 0.6724 0.0317 0.0317 −0.2981 0.1098 0.5521 −0.2953 0.1077 0.5458 −0.3236 0.1297 0.6095

λ 0.3408 0.2248 1.2936 0.0615 0.0615 0.2828 0.0994 0.5239 0.2850 0.1009 0.5256 0.2630 0.0863 0.4918

θ 0.5154 0.5080 0.4873 0.0216 0.0217 0.1171 0.0185 0.2572 0.1185 0.0188 0.2583 0.1050 0.0154 0.2438

200

2, 10

150

α 0.4348 0.3536 1.5917 0.0687 0.0686 −0.3758 0.3113 1.5792 −0.3615 0.2930 1.5336 −0.5182 0.5351 1.9342

β −1.4213 2.0289 0.3648 0.0164 0.0164 −0.5234 0.2866 0.4452 −0.5207 0.2836 0.4421 −0.5462 0.3127 0.4733

λ −0.3996 0.1784 0.5367 0.0252 0.0251 0.3067 0.1470 0.4559 0.6752 0.4750 0.5652 0.6380 0.4234 0.5026

θ 0.8859 0.7991 0.4679 0.0216 0.0216 0.1493 0.0536 0.2133 0.0502 0.0055 0.2140 0.0411 0.0046 0.2089

185

α 0.3155 0.2366 1.4526 0.0660 0.0657 −0.0758 0.0305 0.6101 −0.0749 0.0303 0.6091 −0.0847 0.0331 0.6135

β −1.4129 2.0049 0.3619 0.0153 0.0150 −0.3626 0.1448 0.4347 −0.3595 0.1423 0.4300 −0.3899 0.1677 0.4811

λ −0.3822 0.1643 0.5300 0.0236 0.0241 0.2720 0.0855 0.4317 0.2737 0.0866 0.4337 0.2565 0.0760 0.4061

θ 0.8609 0.7536 0.4379 0.0193 0.0194 0.1081 0.0367 0.2046 0.1822 0.0372 0.2442 0.1678 0.0318 0.2363

3.5, 18

150

α 0.4026 0.2824 1.4873 0.0552 0.0567 −0.1721 0.2094 1.5946 −0.1630 0.2006 1.5636 −0.2593 0.3096 1.8659

β −0.9198 1.4616 0.3652 0.0129 0.0128 −0.5550 0.3255 0.5263 −0.5521 0.3219 0.5242 −0.5792 0.3553 0.5561

λ 0.2994 0.1698 0.5294 0.0258 0.0255 0.1025 0.1085 0.4657 1.0326 1.1012 0.6591 0.9497 0.9289 0.5761

θ 0.7250 0.5558 0.6811 0.0314 0.0309 0.1129 0.0419 0.2710 0.1138 0.0197 0.2710 0.1047 0.0168 0.2699

185

α 0.4004 0.2704 1.0908 0.0425 0.0416 −0.0208 0.0234 0.5713 −0.0200 0.0233 0.5702 −0.0283 0.0244 0.5746

β −0.2134 0.8482 0.3493 0.0109 0.0119 −0.3858 0.1599 0.3899 −0.3823 0.1570 0.3850 −0.4166 0.1867 0.4370

λ 0.2444 0.0915 0.5070 0.0219 0.0214 0.2369 0.0877 0.4251 0.3718 0.1509 0.4277 0.3447 0.1295 0.3881

θ 0.6121 0.4589 0.3919 0.0174 0.0174 0.1670 0.0305 0.1924 0.1681 0.0309 0.1941 0.1565 0.0268 0.1823

184
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Table 3. Bias, MSE, LACI, LBCI, and LCCI with scheme 2 in case 1.

α = 2, β = 2, λ = 1.6, θ = 0.7 MLE SELF ELF c = −1.25 ELF c = 1.25

n τ, δ m Bias MSE LACI LBPCI LBTCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

100

2, 10

75

α 0.4624 0.5714 2.3474 0.1201 0.1205 −0.2218 0.2633 1.8289 −0.2105 0.2495 1.7748 −0.3394 0.4512 2.2924

β −1.3916 1.9624 0.6328 0.0319 0.0321 −0.5221 0.2971 0.6066 −0.5175 0.2918 0.5994 −0.5610 0.3430 0.6561

λ −0.3496 0.1814 0.9551 0.0496 0.0499 0.3042 0.1802 0.7407 0.4214 0.2150 0.7430 0.3813 0.1781 0.7106

θ 1.0136 1.0650 0.7624 0.0425 0.0421 0.5739 0.3628 0.7099 0.5790 0.3695 0.7194 0.5214 0.2973 0.6187

90

α 0.5295 0.5660 2.4170 0.0765 0.0770 −0.2670 0.2579 1.7531 −0.2544 0.2632 1.6937 −0.4003 0.5122 2.3486

β −1.4030 1.9596 0.6540 0.0210 0.0206 −0.5261 0.2965 0.5475 −0.5217 0.2915 0.5396 −0.5636 0.3405 0.5825

λ −0.3740 0.1798 1.3282 0.0431 0.0425 0.4374 0.1800 0.7370 0.4412 0.2313 0.7418 0.4023 0.1940 0.6995

θ 0.9861 1.0122 0.7831 0.0251 0.0249 0.5751 0.3640 0.6653 0.5798 0.3701 0.6715 0.5259 0.3017 0.6024

3.5, 18

75

α 0.4601 0.5524 2.2904 0.1124 0.1125 −0.1171 0.2100 1.6852 −0.1090 0.2033 1.6784 −0.1962 0.2943 1.8787

β −1.1979 1.4732 0.7660 0.0243 0.0246 −0.5480 0.2832 0.5410 −0.5432 0.3140 0.5365 −0.5884 0.3679 0.5782

λ 0.2992 0.1722 0.9408 0.0444 0.0438 0.6883 0.1526 0.9032 0.6950 0.5369 0.9078 0.6229 0.4307 0.8363

θ 0.8304 0.7148 0.6230 0.0188 0.0188 0.4609 0.2310 0.5173 0.4644 0.2346 0.5208 0.4256 0.1959 0.4685

90

α 0.5074 0.5339 2.2637 0.0712 0.0716 −0.0227 0.0252 0.5770 −0.0219 0.0251 0.5750 −0.0300 0.0263 0.5855

β −1.1968 1.4705 0.7666 0.0240 0.0241 −0.2323 0.0708 0.5093 −0.2303 0.0697 0.5044 −0.2500 0.0822 0.5517

λ 0.2893 0.1719 0.9128 0.0292 0.0298 0.2058 0.0585 0.4962 0.2073 0.0593 0.4986 0.1917 0.0513 0.4786

θ 0.8319 0.7175 0.6251 0.0204 0.0205 0.2410 0.0649 0.3098 0.2432 0.0661 0.3141 0.2204 0.0542 0.2832

200

2, 10

150

α 0.4968 0.4611 1.8157 0.0594 0.0594 −0.4156 0.3868 1.7927 −0.3966 0.3570 1.7173 −0.6259 0.8221 2.3011

β −1.4238 2.0385 0.4153 0.0131 0.0131 −0.5478 0.3116 0.4096 −0.5445 0.3078 0.4078 −0.5748 0.3434 0.4355

λ −0.4137 0.1950 0.6052 0.0186 0.0184 0.4819 0.1826 0.5607 0.4852 0.2608 0.6138 0.4507 0.2244 0.5572

θ 0.9426 0.9101 0.5755 0.0177 0.0173 0.5626 0.3389 0.5679 0.5658 0.3428 0.5713 0.5291 0.2985 0.5178

185

α 0.5008 0.4615 1.8002 0.0559 0.0563 −0.0585 0.0268 0.5996 −0.0576 0.0265 0.5964 −0.0668 0.0293 0.6242

β −1.4305 2.0554 0.3718 0.0120 0.0118 −0.3356 0.1240 0.4175 −0.3328 0.1220 0.4126 −0.3604 0.1433 0.4485

λ −0.4246 0.1920 0.5577 0.0183 0.0180 0.2406 0.0689 0.4180 0.2421 0.0698 0.4216 0.2260 0.0609 0.3888

θ 0.9422 0.9061 0.5310 0.0167 0.0167 0.3808 0.1519 0.3178 0.3844 0.1548 0.3210 0.3454 0.1245 0.2811

3.5, 18

150

α 0.4717 0.3649 1.7284 0.0574 0.0570 −0.2171 0.2180 1.5888 −0.2071 0.2071 1.5436 −0.3190 0.3637 2.0831

β −1.2425 1.5586 0.4772 0.0152 0.0148 −0.5556 0.3018 0.3705 −0.5524 0.3143 0.3680 −0.5818 0.3487 0.3847

λ 0.1907 0.0833 0.8496 0.0252 0.0254 0.8361 0.0733 0.7085 0.8428 0.7451 0.7166 0.7687 0.6179 0.6418

θ 0.7916 0.6403 0.4600 0.0147 0.0148 0.4665 0.2287 0.4089 0.4688 0.2310 0.4112 0.4432 0.2060 0.3780

185

α 1.5699 0.3267 3.5125 0.1158 0.1166 −0.0406 0.0260 0.6052 −0.0398 0.0259 0.6024 −0.0483 0.0275 0.6174

β −1.2296 1.5242 0.4327 0.0146 0.0144 −0.3682 0.1148 0.4297 −0.3648 0.1450 0.4256 −0.3978 0.1727 0.4703

λ 0.2119 0.0832 0.7672 0.0246 0.0253 0.3420 0.0513 0.4309 0.3447 0.1319 0.4339 0.3172 0.1117 0.4069

θ 0.7923 0.6399 0.4322 0.0138 0.0138 0.3183 0.1058 0.2583 0.3207 0.1074 0.2611 0.2952 0.0908 0.2329

Table 4. Bias, MSE, LACI, LBCI, and LCCI with scheme 1 in case 2.

α = 0.6, β = 0.7, λ = 0.8, θ = 1.4 MLE SELF ELF c = −1.25 ELF c = 1.25

n τ, δ m Bias MSE LACI LBPCI LBTCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

100 0.6, 1.3

75

α −0.5240 0.2747 0.1405 0.0022 0.0022 −0.1110 0.0206 0.3572 −0.1057 0.0196 0.3578 −0.1615 0.0343 0.3626

β −0.2999 0.0922 0.2150 0.0086 0.0083 −0.2663 0.0740 0.2063 −0.2641 0.0728 0.2066 −0.2856 0.0848 0.2194

λ 0.0052 0.0093 0.4453 0.0177 0.0177 0.0200 0.0083 0.3513 0.0222 0.0084 0.3514 0.0008 0.0081 0.3521

θ 0.2704 0.0885 0.4687 0.0205 0.0209 0.0732 0.0181 0.4339 0.0750 0.0184 0.4339 0.0574 0.0156 0.4351

90

α −0.4477 0.2017 0.0482 0.0061 0.0061 −0.0486 0.0051 0.2093 −0.0475 0.0050 0.2086 −0.0591 0.0064 0.2144

β −0.2570 0.0691 0.1885 0.0098 0.0100 −0.2212 0.0516 0.2015 −0.2192 0.0507 0.1992 −0.2383 0.0599 0.2146

λ 0.0945 0.0082 0.3785 0.0203 0.0203 0.0211 0.0056 0.2751 0.0220 0.0056 0.2750 0.0129 0.0055 0.2783

θ 0.1132 0.0271 0.4865 0.0212 0.0202 0.0282 0.0104 0.3800 0.0289 0.0105 0.3799 0.0218 0.0099 0.3766

185
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Table 4. Cont.

α = 0.6, β = 0.7, λ = 0.8, θ = 1.4 MLE SELF ELF c = −1.25 ELF c = 1.25

n τ, δ m Bias MSE LACI LBPCI LBTCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

0.8, 1.5

75

α −0.5342 0.2856 0.1804 0.0019 0.0019 −0.0505 0.0780 0.5301 −0.0449 0.0815 0.5360 −0.0990 0.0461 0.5708

β −0.1805 0.0375 0.3960 0.0082 0.0082 −0.2799 0.0528 0.2684 −0.2775 0.0820 0.2668 −0.3001 0.0953 0.2745

λ 0.3202 0.1212 0.8482 0.0163 0.0161 0.1205 0.0312 0.4830 0.1232 0.0318 0.4820 0.0957 0.0263 0.4838

θ 0.2652 0.0891 0.5336 0.0169 0.0173 0.2184 0.0708 0.5753 0.2206 0.0720 0.5783 0.1984 0.0606 0.5573

90

α −0.5122 0.2644 0.0611 0.0056 0.0057 −0.0334 0.0081 0.2086 −0.0323 0.0037 0.2086 −0.0431 0.0047 0.2083

β −0.0762 0.0160 0.2736 0.0124 0.0127 −0.2306 0.0506 0.1998 −0.2285 0.0548 0.1982 −0.2477 0.0644 0.2139

λ 0.2548 0.1135 0.5362 0.0258 0.0258 0.1086 0.0193 0.3247 0.1096 0.0195 0.3253 0.0994 0.0171 0.3165

θ 0.0780 0.0246 0.5238 0.0167 0.0165 0.0940 0.0189 0.3921 0.0949 0.0191 0.3931 0.0858 0.0169 0.3768

200

0.6, 1.3

150

α −0.5503 0.3029 0.1706 0.0008 0.0008 −0.1207 0.0200 0.2611 −0.1166 0.0189 0.2599 −0.1571 0.0303 0.2621

β −0.2948 0.0882 0.1971 0.0044 0.0044 −0.2850 0.0833 0.1726 −0.2835 0.0824 0.1715 −0.2982 0.0911 0.1726

λ 0.0074 0.0524 0.4162 0.0089 0.0090 0.0116 0.0057 0.2784 0.0131 0.0057 0.2773 −0.0023 0.0057 0.2796

θ 0.3037 0.1005 0.3554 0.0109 0.0109 0.0952 0.0189 0.3662 0.0964 0.0192 0.3668 0.0848 0.0166 0.3599

185

α −0.4551 0.2090 0.0259 0.0055 0.0055 −0.0324 0.0051 0.0733 −0.0320 0.0014 0.0732 −0.0362 0.0017 0.0757

β −0.1976 0.0416 0.1409 0.0063 0.0062 −0.2553 0.0663 0.1278 −0.2536 0.0654 0.1269 −0.2687 0.0734 0.1345

λ 0.2050 0.0053 0.2817 0.0136 0.0137 −0.0202 0.0031 0.1965 −0.0193 0.0031 0.1962 −0.0277 0.0036 0.2046

θ 0.0212 0.0074 0.3277 0.0110 0.0110 0.0694 0.0068 0.2919 0.0701 0.0108 0.2922 0.0638 0.0097 0.2890

0.8, 1.5

150

α −0.5588 0.3131 0.1154 0.0054 0.0054 −0.0395 0.2423 0.8773 −0.0266 0.4469 0.8702 −0.1289 0.1863 0.8322

β 0.0655 0.0179 0.4586 0.0212 0.0213 −0.0833 0.0109 0.3543 −0.2813 0.0898 0.4482 −0.3004 0.1008 0.4510

λ 0.8364 0.7483 0.8673 0.0399 0.0395 0.1402 0.0585 0.8695 0.1427 0.0593 0.8679 0.1171 0.0513 0.8502

θ −0.0539 0.0232 0.5586 0.0267 0.0267 0.2571 0.0194 0.5065 0.2587 0.0953 0.6570 0.2422 0.0843 0.6294

185

α −0.5559 0.3091 0.0279 0.0010 0.0010 −0.0218 0.0594 0.0401 −0.0214 0.0006 0.0400 −0.0256 0.0008 0.0424

β −0.0517 0.0133 0.1916 0.0058 0.0059 −0.3182 0.0102 0.1041 −0.3169 0.1011 0.1039 −0.3293 0.1092 0.1060

λ 0.3258 0.1151 0.3711 0.0120 0.0120 0.0068 0.0027 0.1917 0.0082 0.0027 0.1917 −0.0056 0.0027 0.1963

θ 0.0429 0.0193 0.3909 0.0122 0.0122 0.0290 0.0190 0.3326 0.2915 0.0924 0.3330 0.2772 0.0838 0.3223

Table 5. Bias, MSE, LACI, LBCI, and LCCI with scheme 2 in case 2.

α = 0.6, β = 0.7,
λ = 0.8, θ = 1.4

MLE SELF ELF c = −1.25 ELF c = 1.25

n τ, δ m Bias MSE LACI LBPCI LBTCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

100

0.6,
1.3

75

α −0.6947 0.4827 0.6661 0.0015 0.0015 −0.0664 0.0453 0.6946 −0.0642 0.0425 0.6770 −0.0647 0.0439 0.6710

β −0.2988 0.0909 0.1620 0.0357 0.0364 −0.3179 0.0906 0.3675 −0.3146 0.0902 0.3623 −0.2934 0.0901 0.3400

λ −0.0135 0.0093 0.3837 0.0865 0.0825 −0.1626 0.0090 0.4409 −0.1595 0.0383 0.4353 −0.1589 0.0085 0.4282

θ 0.6069 0.3911 0.6072 0.1366 0.1323 0.3054 0.1329 0.8110 0.3081 0.1351 0.8130 0.2801 0.1132 0.7882

90

α −0.6950 0.4830 0.6182 0.0030 0.0026 −0.0019 0.0411 0.0079 −0.0018 0.0009 0.0073 −0.0013 0.0250 0.0013

β −0.2316 0.0718 0.1572 0.0346 0.0345 −0.2133 0.0712 0.2092 −0.2033 0.0691 0.2085 −0.2104 0.0714 0.2008

λ −0.0455 0.0074 0.3045 0.1013 0.1010 −0.1628 0.0068 0.2907 −0.1591 0.0063 0.2908 −0.1595 0.0062 0.2801

θ 0.5775 0.3441 0.4313 0.1406 0.1400 0.2543 0.1010 0.6715 0.2581 0.1036 0.6755 0.2197 0.0787 0.6262

0.8,
1.5

75

α −0.5943 0.3532 0.4910 0.0016 0.0016 0.0584 0.0421 0.5866 0.0626 0.2306 0.5715 0.0198 0.0370 0.5360

β −0.1657 0.0340 0.3209 0.0554 0.0552 −0.3376 0.0291 0.3288 −0.3337 0.1182 0.3236 −0.3267 0.0214 0.3036

λ 0.3389 0.0090 0.6334 0.1018 0.1016 −0.0575 0.0079 0.6268 −0.0537 0.0270 0.6184 −0.0491 0.0063 0.6080

θ 0.4365 0.2228 0.7154 0.1166 0.1156 0.3705 0.1272 0.6530 0.3735 0.1275 0.6568 0.3411 0.1146 0.6132

90

α −0.5941 0.3529 0.4108 0.0021 0.0020 0.0677 0.0412 0.4675 0.2800 1.1994 3.1964 0.0612 0.0326 0.4268

β −0.1699 0.0315 0.3000 0.0550 0.0556 −0.3659 0.0139 0.2499 −0.3616 0.1357 0.2466 −0.3399 0.0167 0.2317

λ 0.3172 0.0012 0.5363 0.1035 0.1007 −0.1149 0.0012 0.4647 −0.1103 0.0273 0.4588 −0.1056 0.0015 0.4510

θ 0.4460 0.2231 0.6214 0.1171 0.1176 0.4044 0.1010 0.6072 0.4082 0.2037 0.4728 0.3688 0.0917 0.5640

186
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Table 5. Cont.

α = 0.6, β = 0.7,
λ = 0.8, θ = 1.4

MLE SELF ELF c = −1.25 ELF c = 1.25

n τ, δ m Bias MSE LACI LBPCI LBTCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

200

0.6,
1.3

150

α −0.5964 0.3557 0.0039 0.0007 0.0006 −0.0005 0.0011 0.0031 −0.0005 0.0001 0.0031 −0.0006 0.0001 0.0031

β −0.2865 0.0831 0.1284 0.0229 0.0226 −0.2953 0.0793 0.1128 −0.2927 0.0914 0.2801 −0.2315 0.0658 0.1030

λ 0.0095 0.0029 0.2102 0.0385 0.0364 −0.0012 0.0023 0.2034 −0.1163 0.0221 0.3416 −0.0014 0.0229 0.2036

θ 0.5218 0.2802 0.3539 0.0606 0.0602 0.2415 0.0756 0.3044 0.2434 0.0767 0.4460 0.2244 0.0656 0.3042

185

α −0.4695 0.3248 0.0037 0.0006 0.0005 −0.0043 0.0005 0.0025 −0.0034 0.0001 0.0242 −0.0041 0.0001 0.0025

β −0.2321 0.0810 0.1210 0.0242 0.0237 −0.2402 0.0692 0.1028 −0.2840 0.0817 0.2766 −0.2143 0.0519 0.1030

λ −0.0157 0.0027 0.2039 0.0426 0.0427 −0.2624 0.0022 0.1931 −0.2583 0.0804 0.4188 −0.2594 0.0022 0.1845

θ 0.4604 0.2372 0.3384 0.0614 0.0612 0.4370 0.0622 0.2613 0.4406 0.2277 0.6197 0.4028 0.0619 0.2546

0.8,
1.5

150

α −0.4693 0.3248 0.0038 0.0015 0.0015 0.1955 0.0013 0.0025 0.2065 1.2956 0.6617 0.0749 0.0123 0.0022

β −0.1932 0.0418 0.2645 0.0396 0.0393 −0.3756 0.0415 0.2195 −0.3719 0.1504 0.2897 −0.3403 0.0402 0.2132

λ 0.0029 0.0020 0.2051 0.0806 0.0806 −0.1400 0.0020 0.1499 −0.1361 0.0399 0.4920 −0.1373 0.0016 0.1542

θ 0.4195 0.2318 0.2620 0.0925 0.0930 0.5393 0.0720 0.2279 0.5434 0.3563 0.7944 0.4997 0.0630 0.2175

185

α −0.3692 0.3048 0.0010 0.0011 0.0011 −0.0521 0.0004 0.0023 −0.0475 0.0905 0.6529 −0.0471 0.0047 0.1700

β −0.1882 0.0415 0.2329 0.0269 0.0268 −0.3041 0.0315 0.1925 −0.2409 0.1746 0.2626 −0.2944 0.0302 0.1832

λ 0.0025 0.0018 0.1943 0.0503 0.0487 −0.1873 0.0014 0.1476 −0.1829 0.0494 0.4703 −0.1822 0.0014 0.1490

θ 0.3560 0.2033 0.2150 0.0605 0.0613 0.4586 0.0519 0.1597 0.5908 0.4063 0.9854 0.4154 0.0434 0.1486

Table 6. Optimization criterion with different schemes and cases.

Scheme 1 2

Case n τ, δ m C1 C2 C3 C1 C2 C3

1

100

2, 10
75 8.9523 3.860×10−5 758.8371 7.9682 4.248×10−5 679.5787

90 7.1809 6.359×10−6 766.3755 7.4242 3.969×10−5 769.7234

3.5, 18
75 4.7788 3.619×10−5 765.5838 7.6918 1.605×10−5 690.4161

90 3.4849 3.370×10−6 778.3303 7.4603 1.503×10−5 777.0073

200

2, 10
150 3.4486 7.767×10−7 1616.8601 4.0384 1.900×10−6 1306.3727

185 3.1947 5.709×10−7 1645.6376 3.3101 8.940×10−7 1619.5660

3.5, 18
150 3.1965 6.971×10−7 1731.1179 4.0136 1.163×10−6 1561.8482

185 2.9820 2.556×10−7 1735.4056 3.0424 2.965×10−7 1607.0823

2

100

2, 10
75 7.9682 4.248×10−4 679.5787 0.3979 3.289×10−10 6985.3086

90 7.4242 6.873×10−4 769.7234 0.3933 2.030×10−10 72883.3960

3.5, 18
75 6.9178 1.605×10−4 690.4161 0.3869 9.505×10−10 104,014.7057

90 6.6033 1.503×10−4 779.0073 0.3773 1.246×10−10 117,561.7575

200

2, 10
150 4.0384 1.900×10−6 1306.3727 0.3284 3.465×10−11 410,484.9941

185 3.3101 8.940×10−6 1619.5660 0.3244 1.216×10−12 214,081.1995

3.5, 18
150 3.3625 1.163×10−6 1761.8482 0.2731 1.068×10−11 140,775.1960

185 3.0424 2.965×10−6 1807.0823 0.2412 1.554×10−12 178,754.3036

Table 7. MLE, SE, and different measures of goodness of fit.

Estimates SE AIC CAIC BIC HQIC CVM AD KS PVKS

α 26.9222 74.2080
121.2031 121.6099 127.6326 123.7319 0.0997 0.5233 0.0976 0.5859β 235.4901 222.2091

λ 6.4564 0.6125
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Figure 2. Heatmap for MSE with scheme 1 in case 1.

Figure 3. Heatmap for MSE with scheme 1 in case 2.
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8. A Real-Data Application

We use examination data from [41] to illustrate the practical application of the pro-
posed model. The following information represents the strength measured in GPA for
single carbon fibers with gauge lengths of 10 mm and sample size of 63: 1.901, 2.132, 2.203,
2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575,
2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977,
2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346,
3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024,
4.027, 4.225, 4.395, and 5.020. Here, we use the modified Kolmogorov–Smirnov as a method
for the goodness-of-fit test as follows:

The computational formula for the modified Kolmogorov–Smirnov statistic is then
given by

Dm:n = max
(

D+
m:n, D−

m:n
)
,

where

D+
m:n =

max
i
(
ωi:m:n − F

(
zi:m:n; α̂, β̂, θ̂, λ̂

))
D−

m:n =
max

i
(
F
(
zi:m:n; α̂, β̂, θ̂, λ̂

)−ωi−1:m:n
)
,

ωi:m:n = 1−∏m
j=m−i+1

j + Rm−j+1 + . . . + Rm

j + 1 + Rm−j+1 + . . . + Rm
.

Ref. [42] proposed a general-purpose goodness-of-fit test by first estimating the unknown
parameters of the hypothesized distribution, then transforming the data to normality, and
then testing the goodness of fit of the transformed data to normality. Then, along the lines
of [42], the proposed test procedure is as follows:

1. Find the maximum likelihood estimate of the unknown parameter α, β, θ, λ, denoted
by α̂, β̂, θ̂, λ̂, under the hypothesized model and calculate vi:m:n = F

(
zi:m:n; α̂, β̂, θ̂, λ̂

)
for i = 1, . . . , m.

2. Generate yi:m:n as F−1(vi:m:n) for i = 1, . . . , m.
3. Considering y1:m:n, . . . , ym:m:n as a progressively Type-II censored data from an APIW

distribution with α, β, θ, λ and calculate the maximum likelihood estimates α̂, β̂, θ̂, λ̂.
4. Calculate ui:m:n = Φ(yi:m:n) for i = 1, . . . , m.
5. Calculate Dm:n
6. Reject the null hypothesis at significance level δ if the test statistic exceeds the upper

tail significance points.

For more information about the p-value for KS test for SSPALT samples, see [42–46].
In Table 7, we provide the MLEs with their standard errors (SEs) for the APIW

parameters and different measures of goodness of fit as Akaike information criterion
(AIC), Bayesian information criterion (BIC), corrected Akaike information criterion (CAIC),
Hannan–Quinn information criterion (HQIC), Kolmogorov–Smirnov (KS) test and its p-
value (PVKS), Anderson–Darling (AD), and Cramèr–von Mises (CVM).

The empirical CDF and its CDF fitted (left panel), and the histogram of the data and
its fitted density function to the single carbon fiber data (right panel) are displayed in the
top of Figure 4. Further, a graph of the PP plot (left panel) and QQ plot (right panel) of the
APIW distribution is shown in bottom Figure 4.
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Figure 4. Fitting plot of APIW distribution of single carbon fibers.

Figure 5 shows the profile log-likelihood function plots for the parameters of the APIW
distribution. Figure 6 displays contour plots of the log-likelihood function for the APIW
parameters, indicating that the MLEs can be uniquely estimated.

Figure 5. Graphs of profile log-likelihood function for the parameters for the APIW model.

Figure 6. Contour plots of the log-likelihood function for the parameters for the APIW model.

Numerical results for the single carbon fiber study are provided in Table 8. Table 9
contains the estimations based on the censored data. For a given fixed scheme, we observe
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that Bayes estimates of the unknown parameters are close to the MLEs. Table 10 discusses
the estimation of τ, which is given by equating F1(τ) = F2(τ

∗). Table 11 discusses different
optimality measures for the MLE based on different schemes, illustrating that the proposed
technique is quite satisfactory.

Table 8. The single carbon fiber study data based on SSPALT when τ = 3 and δ = 3.8.

Scheme Before τ After τ

I

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396
2.397 2.445 2.454 2.474 2.518 2.522 2.525 2.532
2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738
2.740 2.856 2.917 2.928 2.937 2.937 2.977 2.996

3.030 3.125 3.139 3.145 3.220 3.223
3.235 3.243 3.264 3.272 3.294 3.332
3.346 3.377 3.408 3.435 3.493 3.501

II

1.901 2.132 2.203 2.257 2.350 2.361 2.396 2.397
2.445 2.454 2.474 2.518 2.522 2.575 2.614 2.616
2.618 2.624 2.659 2.675 2.738 2.740 2.917 2.928

2.937 2.937 2.977

3.030 3.125 3.139 3.145 3.220 3.235
3.243 3.264 3.272 3.346 3.377 3.408
3.435 3.493 3.501 3.628 3.871 3.886

3.971 4.024 4.225 4.395 5.020

Table 9. The MLE and its SE and Bayesian and its SD with confidence intervals.

MLE Bayesian

m Estimates SE Lower Upper Estimates SD Lower Upper

Complete 63

α 71.8806 22.7927 27.2070 116.5542 75.6191 18.5540 38.7075 111.2613

β 162.0261 66.5356 31.6163 292.4359 190.3651 30.1964 135.8759 251.3891

λ 229.3353 91.8064 49.3948 409.2759 269.1464 40.5281 189.3768 340.9331

θ 7.4069 0.4585 6.5082 8.3056 7.5259 0.2519 7.0329 7.9940

I 50

α 156.2681 73.6006 12.0110 300.5253 167.0087 52.8410 71.6085 266.4320

β 200.3566 99.6606 5.0219 395.6913 214.5642 42.8232 134.4151 288.3952

λ 287.9273 113.3318 65.7969 510.0577 302.9877 57.5639 207.9282 407.4394

θ 7.8263 0.6827 6.4882 9.1643 7.8582 0.3078 7.2443 8.4240

II 50

α 218.2157 108.2157 6.1130 430.3184 226.5631 77.5768 95.4818 369.4948

β 270.8559 93.4996 87.5967 454.1151 279.5810 48.5672 176.8138 367.8409

λ 377.6384 117.2506 147.8272 607.4497 389.1168 65.6272 248.3191 499.9688

θ 8.1569 0.6178 6.9461 9.3678 8.1828 0.3113 7.6173 8.8183

Table 10. Estimated τ.

Scheme MLE Bayes

complete 3.14407 3.14130

I 3.14227 3.13465

II 3.12476 3.12368

Table 11. Optimality measures.

Complete I II

C1 15,642.68 74,500.21 124,729.4

C2 26,415,630 1.24 × 109 9.09 × 109

C3 36.46753 35.4808 29.99117

9. Conclusions

It is known that in life-testing and reliability trials, many data may exhibit different
shapes and are censored due to time and cost constraints. Thus, accelerated life tests are
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commonly used to explore the lifetime of reliable items by subjecting them to elevated
stress levels of stressors that could cause early failures. This observation motivated us to
investigate the step stress partially accelerated life testing model with samples from the
APIW distribution under the adaptive type II progressively hybrid censoring. We consid-
ered statistical inferences of the unknown model parameters of the APIW distribution from
both likelihood and Bayesian perspectives. We first considered the maximum likelihood es-
timates for the unknown model parameters and used these estimates to construct two types
of approximate confidence intervals of the distributional parameters. We then conducted
Bayesian inference for the unknown parameters with non-informative and informative
priors under the symmetric and asymmetric loss functions. Moreover, we analyzed three
different probable optimum test techniques for the proposed model under different optimal
criteria. Numerical results from both simulations and a real-data application illustrated
that the performance of the proposed method is quite satisfactory for estimating the APIW
parameters under different sampling schemes. We may, thus, conclude that the proposed
model has great potential for analyzing censored data under the AT-II PHCS in the study
of life testing and reliability analyses.
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Appendix A. Fisher Information Matrix

The Fisher information matrix is a fundamental statistical construct that describes
how much information data offer on a variable that is unknown. It can be used to calculate
the variance in an estimator as well as the asymptotic behavior of maximum-likelihood
estimations. The inverse of the Fisher information matrix is an estimator of the asymptotic
covariance matrix. The Fisher information matrix is computed by taking the expected
values of the negative second-partial and mixed-partial derivatives of the log-likelihood
function with respect to α, θ, β and λ. It is further explained below.

I4×4 = −E

⎡⎢⎢⎣
a11 a12

a21 a22

a13

a23

a14

a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤⎥⎥⎦, (A1)

where a11 = E
(

∂2�
∂α2

)
, a12 = a21 = E

(
∂2�

∂α∂θ

)
, a13 = a31 = E

(
∂2�

∂α∂β

)
, a14 = a41 = E

(
∂2�

∂α∂ λ

)
a22 = E

(
∂2�
∂θ2

)
, a33 = E

(
∂2�
∂β2

)
, a32 = a23 = E

(
∂2�

∂θ∂ β

)
, a44 = E

(
∂2�
∂λ2

)
, a42 = a24 = E

(
∂2�

∂θ∂ λ

)
,

and a34 = a34 = E
(

∂2�
∂β∂ λ

)
.

The relevant matrices’ elements are computed. As a result, the variance–covariance
matrix for MLEs can be constructed as follows:
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,
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∂2�
∂β2 = − (mu+m)

β2 − log(α)
mu
∑

i=1
z−2θ

i e−βz−θ
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mu
∑

i=1
εiz−2θ

i e−βz−θ
i

(
αe−βz−θ

i −1
)

+log(α)
m
∑

i=mu+1
[τ + λ(zi − τ)]−2θe−β[τ+λ(zi−τ)]−θ

+
m
∑

i=mu+1
εiα

e−β[τ+λ(zi−τ)]−θ−1[τ + λ(zi − τ)]−θ

((
e−β[τ+λ(zi−τ)]−θ−1

)2
+e−β[τ+λ(zi−τ)]−θ

)
(

1−αe−β[τ+λ(zi−τ)]−θ−1
)2

+
εm

(
e−β[τ+λ(zm−τ)]−θ−1

)
[τ+λ(zm−τ)]−θ

((
α−β[τ+λ(zm−τ)]−θ−1

)2
+e−β[τ+λ(zm−τ)]−θ
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(

1−αe−β[τ+λ(zm−τ)]−θ−1
)2 ,

(A9)
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∂2�

∂β∂λ
= −θ
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(zi − τ)[τ + λ(zi − τ)]−θ−1
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(
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(
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(
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)
(
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α
(zm − τ)

(
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(
αe−β[τ+λ(zm−τ)]−θ−2 + 1

)
(

1− αe−β[τ+λ(zm−τ)]−θ−1
)2 ,
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Abstract: An optimal control for a dynamical system optimizes a certain objective function. Here,
we consider the construction of an optimal control for a stochastic dynamical system with a random
structure, Poisson perturbations and random jumps, which makes the system stable in probability.
Sufficient conditions of the stability in probability are obtained, using the second Lyapunov method,
in which the construction of the corresponding functions plays an important role. Here, we provide a
solution to the problem of optimal stabilization in a general case. For a linear system with a quadratic
quality function, we give a method of synthesis of optimal control based on the solution of Riccati
equations. Finally, in an autonomous case, a system of differential equations was constructed to
obtain unknown matrices that are used for the construction of an optimal control. The method using
a small parameter is justified for the algorithmic search of an optimal control. This approach brings
a novel solution to the problem of optimal stabilization for a stochastic dynamical system with a
random structure, Markov switches and Poisson perturbations.

Keywords: optimal control; Lyapunov function; system of stochastic differential equations; Markov
switches; Poisson perturbations

MSC: 60J25; 93C73; 93E03; 93E15

1. Introduction

The main problem considered in this paper is the synthesis of an optimal control for a
controlled dynamical system, described by a stochastic differential equation (SDE) with
Poisson perturbations and external random jumps [1,2]. The importance of this problem
is linked to the fact that the dynamics of many real processes cannot be described by
continuous models such as ordinary differential equations or Ito’s stochastic differential
equations [3]. More complex systems include the presence of jumps, and these jumps can
occur at random τk, k ≥ 1, or deterministic time moments, tm, m ≥ 1. In the first case,
the jump-like change can be described by point processes [4,5], or in a more specific case
by generalized Poisson processes, the dynamics of which are characterized only by the
intensity of the jumps. The jumps of the system at deterministic moments of time, tm, can
be described by the relation:

Δx(tm) = x(tm)− x(tm−) = g(. . .), (1)

where x(t), t ≥ 0, is a random process describing the dynamics of the system, the function
g is a finite-valued function that reflects the magnitude of a jump which depends on time
t and process x in the time tm−. According to the works of Katz I. Ya. [1], Yasinsky
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V.K., Yurchenko I.V. and Lukashiv T.O. [6], the description of jumps at deterministic time
moments, tm, are quite accurately described using the Equation (1). It allows a relatively
simple transfer of the basic properties of stochastic systems of differential equations without
jumps (g ≡ 0) to systems with jumps. Such properties, as will be noted below, include
the Markovian property, x(t), t ≥ 0, concerning natural filtering, and the martingale
properties, ‖x(t)‖2, t ≥ 0 [7,8]. It should be noted that the description of real dynamical
systems is not limited to the Wiener process and point processes (Poisson process). A more
general approach is based on the use of semimartingales [9]. The disadvantage of this
approach is that it is impossible to link it with the methods used for systems described
by ordinary differential equations or stochastic Ito’s differential equations. The second
approach to describe jump processes, x(t), is based on the use of semi-Markov processes,
considered in the works of Korolyuk V.S. [10] and Malyk I.V. [2,11]. In particular, the works
of Malyk I.V. are devoted to the convergence of semi-Markov evolutions in the averaging
scheme and diffusion approximation. The results derived in these works together with
the results of the works on large deviations (e.g., [12]) can also be used to investigate the
considered problems.

Since we consider generalized classical differential equations, the approaches used will
also be classical. The basic research method is based on the Lyapunov methods described
in the papers by Katz I. Ya. [1] and Lukashiv T.O. and Malyk I.V. [13]. It should be noted
that the application of this method makes it possible to find the optimal control for linear
systems with a quadratic quality functional, which also corresponds to classical dynamical
systems [14].

It should be noted that a large number of works are devoted to the issues of stability of
systems with jumping Markov processes. For example, the works [15,16] consider sufficient
conditions for the stability of Ito stochastic differential equations with Markov switching
and the presence of variable delay. In the work [15], this theory has gained logical use for
modeling neural networks with a decentralized event-triggered mechanism and finding
sufficient conditions for stabilizing the process that describe dynamic of the neural net-
work. Note that the authors of this work also considered systems of stochastic differential
equations in which the deterministic term near dt is quasi-linear; that is, the linear compo-
nent plays the main role in this research. This assumption of quasi-linearity allows, with
additional conditions on the value of the nonlinear part, the discovery of sufficient stability
conditions of the x(t), t ≥ 0, by constructing suboptimal control u(t), t ≥ 0. Similar results
were obtained also in the work [16], where authors described an algorithm of stabilization
by construction of the non-fragile event-triggered controller for Ito stochastic differential
equations with varying delay. The authors chose a specific class of admissible controls,
which makes it possible to solve the optimization problem for finding a suboptimal control.

The structure of the paper is as follows. In Section 2, we consider the mathemat-
ical model of a dynamical system with jumps. It is described by a system of stochas-
tic differential equations with Poisson’s integral and external jumps. Sufficient condi-
tions for the existence and uniqueness of the solution of this system are given there. In
Section 3, we investigate the stability in probability of the solution x(t), t ≥ 0. In this
section, we consider the notion of the Lyapunov function and prove the sufficient condi-
tions for stability in probability (Theorem 1). The algorithm for computing the quality
functional, Ju(y, h, x0), from the known control, u(t), is given in Section 4. Moreover, we
further present sufficient conditions for the existence of an optimal control (Theorem 2),
which are based on the existence of a Lyapunov function for the given system. Section 5
considers constructing an optimal control for linear non-autonomous systems via the coef-
ficients of the system. The optimal control is found by solving auxiliary Ricatti equations
(Theorem 3). For the analysis of linear autonomous systems, we consider the construction
of a quadratic functional. Finally, we formulate sufficient conditions of existence of an
optimal control (Theorem 4), and present the explicit form of such a control in the case of a
quadratic quality functional.
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2. Task Definition

On the probability basis (Ω,F, F, P) [7], consider a stochastic dynamical system of a ran-
dom structure given by Ito’s stochastic differential Equation (SDE) with
Poisson perturbations:

dx(t) = a(t−, ξ(t−), x(t−), u(t−))dt+

+b(t−, ξ(t−), x(t−), u(t−))dw(t)+

+
∫
Rm

(c(t−, ξ(t−), x(t−), u(t−), z))ν̃(dz, dt), t ∈ R+\K, (2)

with Markov switches

Δx(t)
∣∣∣
t=tk

= g(tk−, ξ(tk−), ηk, x(tk−)), tk ∈ K = {tn ⇑} (3)

for lim
n→+∞

tn = +∞ and initial conditions

x(0) = x0 ∈ Rm, ξ(0) = y ∈ Y, η0 = h ∈ H. (4)

Here, ξ(t), t ≥ 0, is a homogeneous continuous Markov process with a finite number of
states Y := {y1, . . . , yN} and a generator Q; {ηk, k ≥ 0} is a Markov chain with values in
the space H and the transition probability matrix PH ; x : [0,+∞)×Ω → Rm; w(t) is an
m-dimensional standard Wiener process; ν̃(dz, dt) = ν(dz, dt)− Eν(dz, dt) is a centered
Poisson measure; and the processes w, ν, ξ and η are independent [3,7]. We denote by

Ftk = σ(ξ(s), w(s), ν(s, ∗), ηe, s ≤ tk, te ≤ tk)

a minimal σ-algebra, with respect to which ξ(t) is measurable for all t ∈ [0, tk] and ηn for
n ≤ k.

The process x(t), t ≥ 0 is càdlàg and the control u(t) := u(t, x(t)) : [0, T]×Rm → Rm

is an m-measure function from the class of admissible controls U [14].
The following mappings are measurable by a set of variables a : R+×Y×Rm ×Rm →

Rm, b : R+ × Y×Rm ×Rm → Rm ×Rm, c : R+ × Y×Rm ×Rm ×Rm → Rm and function
g : R+ × Y×H×Rm → Rm satisfies the Lipschitz condition

|a(t, y, x1, u)− a(t, y, x2, u)|+ |b(t, y, x1, u)− b(t, y, x2, u)|+
+
∫
Rm

|c(t, y, x1, u, z)− c(t, y, x2, u, z)|Π(dz)+

+|g(t, y, h, x1)− g(t, y, h, x2)| ≤ L|x1 − x2|, (5)

where Π(dz) is defined by Eν(dz, dt) = Π(dz)dt, L > 0, x1, x2 ∈ Rm for ∀t ≥ 0, y ∈ Y,
h ∈ H, and the condition

|a(t, y, 0, u)|+ |b(t, y, 0, u)|+
∫
Rm

|c(t, y, 0, u, z)|Π(dz)+

+|g(t, y, h, 0)| ≤ C < ∞, (6)

The conditions defined above, with respect to the mappings a, b, c and g, guarantee the
existence of a strong solution to Equations (2)–(4) with the exact stochastic equivalence [13].

Let us denote
Pk((y, h, x), Γ× G× C) :=

:= P(ξ(tk+1), ηk+1, x(tk+1) ∈ Γ× G× C|(ξ(tk), ηk, x(tk)) = (y, h, x))
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the transition probability of a Markov chain (ξ(tk), ηk, x(tk)), determining the solution to
the Equations (2)–(4) x(t), at the k-th step.

3. Stability in Probability

Here we used the definitions from classical works in this area [14,17].

Definition 1. The discrete Lyapunov operator (lvk)(y, h, x) on a sequence of measurable scalar
functions vk(y, h, x): Y×H×Rm → R1, k ∈ N∪ {0} for SDE (2) with Markov switches (3) is
defined by the equation:

(lvk)(y, h, x) :=
∫

Y×H×Rm

Pk((y, h, x), du× dz× dl)vk+1(u, z, l)− vk(y, h, x), k ≥ 0. (7)

When applying the second Lyapunov method to the SDE (2) with Markov switches (3),
special sequences of the above mentioned functions vk(y, h, x), k ∈ N are required.

Definition 2. The Lyapunov function for the system of the random structure (2)–(4) is a sequence
of non-negative functions {vk(y, h, x), k ≥ 0}, for which

1. for all k ≥ 0, y ∈ Y, h ∈ H, x ∈ Rm the discrete Lyapunov operator is defined (lvk)(y, h, x) (7);
2. for r → ∞

v̄(r) ≡ inf vk
k ∈ N, y ∈ Y,
h ∈ H, |x| ≥ r

(y, h, x)→ +∞

3. for r → 0
v(r) ≡ sup vk

k ∈ N, y ∈ Y,
h ∈ H, |x| ≤ r

(y, h, x)→ 0,

Moreover, v̄(r) and v(r) are continuous and strictly monotonous.

Definition 3. Let us call a system of random structure (2)–(4) stable in probability on the whole,
and if for ∀ε1 > 0, ε2 > 0 one can specify, as δ > 0, that from the inequality |x| < δ follows
the inequality

P

{
sup
t≥0

|x(t)| > ε1

}
< ε2 (8)

for all x0 ∈ Rm, y ∈ Y, h ∈ H.

To solve the Equations (2)–(4) in the intervals [tk, tk+1), the following estimate takes place.

Lemma 1. Let the coefficients of Equation (2), a, b, c and function g, satisfy the Lipschitz condition (5)
and the uniform boundedness condition (6).

Then, for all k ≥ 0, the inequality for the strong solution of the Cauchy problem (2)–(4) holds

E

{
sup

tk≤t<tk+1

|x(t)|2
}
≤ 7
[
E|x(tk)|2 + 3C2(tk+1 − tk)

]
×

× exp
{

7L2((tk+1 − tk) + 8)
}

, t ∈ (tk, tk+1). (9)

Proof of Lemma 1. Using the integral form of the strong solution of Equation (2) [8], for
all t ∈ [tk, tk+1), tk ≥ 0, the following inequality is true:

|x(t)| ≤ |x(tk)|+
∫ t

tk

|a(τ, ξ(τ), x(τ), u(τ))− a(τ, ξ(τ), 0, u(τ))|dτ+
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+

t∫
tk

|a(τ, ξ(τ), 0, u(τ))|dτ+

+

t∫
tk

|b(τ, ξ(τ), x(τ), u(τ))− b(τ, ξ(τ), 0, u(τ))|dw(τ)+

+
∫ t

tk

|b(τ, ξ(τ), 0, u(τ))|dw(τ)+

+

t∫
tk

∫
Rm

|c(τ, ξ(τ), x(τ), u(τ), z)− c(τ, ξ(τ), 0, u(τ), z)|ν̃(dz, dτ)+

+

t∫
tk

∫
Rm

|c(τ, ξ(τ), 0, u(τ), z)|ν̃(dz, dτ)

Given (5) and (6) and the inequality (∑n
i=1 xi)

2 ≤ n ∑n
i=1 x2

i we get:

sup
tk≤t<tk+1

|x(t)|2 ≤ 7 sup
tk≤t<tk+1

[
|x(tk)|2+

+

∣∣∣∣∫ t

tk

|a(τ, ξ(τ), x(τ), u(τ))− a(τ, ξ(τ), 0, u(τ))|dτ

∣∣∣∣2+
+

∣∣∣∣∣∣
t∫

tk

|a(τ, ξ(τ), 0, u(τ))|dτ

∣∣∣∣∣∣
2

+

+

∣∣∣∣∣∣
t∫

tk

|b(τ, ξ(τ), x(τ), u(τ))− b(τ, ξ(τ), 0, u(τ))|dw(τ)

∣∣∣∣∣∣
2

+

+

∣∣∣∣∫ t

tk

|b(τ, ξ(τ), 0, u(τ))|dw(τ)

∣∣∣∣2+
+

∣∣∣∣∣∣
t∫

tk

∫
Rm

|c(τ, ξ(τ), x(τ), u(τ), z)− c(τ, ξ(τ), 0, u(τ), z)|ν̃(dz, dτ)

∣∣∣∣∣∣
2

+

+

∣∣∣∣∣∣
t∫

tk

∫
Rm

|c(τ, ξ(τ), 0, u(τ), z)|ν̃(dz, dτ)

∣∣∣∣∣∣
2
⎤⎥⎦ ≤

≤ 7

⎡⎢⎣ sup
tk≤t<tk+1

|x(t)|2 + sup
tk≤t<tk+1

L2

∣∣∣∣∣∣
t∫

tk

|x(τ)|dτ

∣∣∣∣∣∣
2

+

+C2(tk+1 − tk) + sup
tk≤t<tk+1

L2

∣∣∣∣∣∣
t∫

tk

|x(τ)|dw(τ)

∣∣∣∣∣∣
2

+ C2(tk+1 − tk)+

+ sup
tk≤t<tk+1

∣∣∣∣∣∣
t∫

tk

∫
Rm

|c(τ, ξ(τ), x(τ), u(τ), z)− c(τ, ξ(τ), 0, u(τ), z)|ν̃(dz, dτ)

∣∣∣∣∣∣
2

+

+ sup
tk≤t<tk+1

∣∣∣∣∣∣
t∫

tk

∫
Rm

|c(τ, ξ(τ), 0, u(τ), z)|ν̃(dz, dτ)

∣∣∣∣∣∣
2
⎤⎥⎦.

Consider the designation:

y(t) = E

{
sup

tk≤s<t
|x(s)|2/Ftk

}
.

203



Mathematics 2023, 11, 582

Then, according to the last inequality, y(t) satisfies the ratio:

y(t) ≤ 7

⎡⎣E{|x(t)|2/Ftk

}
+ 3C2(tk+1 − tk) + L2((tk+1 − tk) + 8) ·

t∫
tk

y(τ)dτ

⎤⎦.

Using the Gronwall inequality, we obtain an estimate of:

E

{
sup

tk≤t<tk+1

|x(t)|2/Ftk

}
≤

≤ 7
[
E|x(tk)|2 + 3C2(tk+1 − tk)

]
e7L2((tk+1−tk)+8),

as required as proof.

Remark 1. We will consider the stability of the trivial solution x ≡ 0 of the system (2)–(4); that is,
the fulfillment of (6) when C = 0 [17–19].

Theorem 1. Let:
(1) Interval lengths [tk, tk+1) do not exceed Δ > 0, i.e., |tk+1 − tk| ≤ Δ, k ≥ 0;
(2) The Lipschitz condition is satisfied (5);
(3) There exists Lyapunov functions vk(y, h, x), k ≥ 0 such that the following inequality

holds true
(lvk)(y, h, x) ≤ 0, k ≥ 0. (10)

Then, the system of random structure (2)–(4) is stable in probability on the whole.

Remark 2. It should be noted that if condition 1 is not satisfied, the number of jumps (3) is finite
and the system (2)–(4) turns into a system without jumps after max tk. In this case, we can use the
results presented in [1].

Proof of Theorem 1. The conditional expectation of the Lyapunov function is:

E
{

vk+1(ξ(tk+1), ηk+1, x(tk+1))
/
Ftk

}
=
∫

Y×H×Rm
Pk((ξ(tk), ηk, x(tk))(du× dz× dl)vk+1(u, z, l)). (11)

Then, by the definition of the discrete Lyapunov operator (lvk)(y, h, x) (see (7)) and
from Equation (11), taking into account (10), we obtain the following inequality:

E
{

vk+1(ξ(tk+1), ηk+1, x(tk+1))
/
Ftk

}
= vk(ξ(tk), ηk, x(tk)) + (lvk)(ξ(tk), ηk, x(tk)) ≤ v̄(|x(tk)|). (12)

From Lemma 1 and the properties of the function v̄, it follows that the conditional
expectation of the left part of inequality (12) exists.

Using (11) and (12), let us write the discrete Lyapunov operator (lvk)(y, h, x), defined
by the solutions of (2)–(4):

(lvk)(ξ(tk), ηk, x(tk)) = E
{

vk+1(ξ(tk+1), ηk+1, x(tk+1))
/
Ftk

}− vk(ξ(tk), ηk, x(tk)) ≤ 0. (13)

Then, when k ≥ 0, the following inequality is satisfied:

E
{

vk+1(ξ(tk+1), ηk+1, x(tk+1))
/
Ftk

} ≤ vk(ξ(tk), ηk, x(tk)).

This means that the sequence of random variables vk(ξ(tk), ηk, x(tk)) is a supermartin-
gale with respect to Ftk [5].

Thus, the following inequality holds:

E{vN+1(ξ(tN+1), ηN+1, x(tN+1))} − E{vn(ξ(tn), ηn, x(tn))} =
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=
N

∑
k=n

E{(lvk)(ξ(tk), ηk, x(tk))} ≤ 0.

Since the random variable sup
tk≤t<tk+1

|x(t)|2 is independent of events of σ- algebra Ftk [4],

then

E

{
sup

tk≤t<tk+1

|x(t)|2
/

Ftk

}
= E

{
sup

tk≤t<tk+1

|x(t)|2
}

,

i.e., the inequality (9) also holds for the usual expectation

E

{
sup

tk≤t<tk+1

|x(t)|2
}
≤ 7
[
E|x|2

]
e7L2(Δ+8)

at C = 0, assuming that the stability of the trivial solution is investigated.
Then,

P

{
sup
t≥0

|x(t)| > ε1

}
=

= P

{
sup
n∈N

sup
tn−1≤t<tn

|x(t)| > ε1

}
≤

≤ P

{
sup
n∈N

7e7L2(Δ+8)|x(tn−1)| > ε1

}
≤

≤ P

{
sup
n∈N

|x(tn−1)| > ε1

7
e−7L2(Δ+8)

}
≤

≤ P

{
sup
n∈N

vn−1(ξ(tn−1), ηn−1, x(tn−1)) ≥ v̄(
ε1

7
e−7L2(Δ+8))

}
(14)

If sup|x(tk)| ≥ r, then based on the definition of the Lyapunov function, the inequality
is fulfilled

sup
k≥0

vk(ξ(tk), ηk, x(tk)) ≥ inf
k≥0,y∈Y,h∈H,|x|≥r

vk(y, h, x) = v̄(r). (15)

Using the inequality for non-negative supermartingales [5,7], we obtain an estimate of
the right-hand side of (14):

P

{
sup
n∈N

vn−1(ξ(tn−1), ηn−1, x(tn−1)) ≥ v̄(
ε1

7
e−7L2(Δ+8))

}
≤

≤ 1
v̄( ε1

7 e−7L2(Δ+8))
v0(y, h, x) ≤ v̄(|x|)

v̄( ε1
7 e−7L2(Δ+8))

. (16)

Given the inequality (14), the inequality (16) guarantees that the inequality (8) of
stability in probability holds for the whole system (2)–(4).

4. Stabilization

The optimal stabilization problem is such that for an SDE (2) with switches (3), one
should construct a control u(t, x(t)) such that the unperturbed motion x(t) ≡ 0 of the
system (2)–(4) is stable in probability on the whole.

It is assumed that the control, u, will be determined by the full feedback principle. In
addition, the condition of continuity of u(t) on t is in the range

t ≥ 0, x ∈ Rm, y ∈ Y, h ∈ H. (17)
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for every fixed ξ(t) = y ∈ Y and ηk = h ∈ H.
It is also assumed that the structure of the system at time t ≥ 0, which is independent

of the Markov chain ηk (k ≥ 0 corresponds to time tk ∈ K), is known.
Obviously, there is an infinite set of controls. The only control should be chosen from

the requirement of the best quality of the process, which is expressed in the form of the
minimization condition of the functional:

Iu(y, h, x0) :=
∞

∑
k=0

∫ ∞

tk

E{W(t, x(t), u(t))/ξ(0) = y, η0 = h, x(0) = x0}dt, (18)

where W(t, x, u) ≥ 0 is a non-negative function defined in the region t ≥ 0, x ∈ Rm, u ∈ Rr.
The algorithm for calculating the functional (18) for a given control, u(t, x), is as follows:

(A) Find the trajectory x(t) with an SDE (2) at u ≡ u(t, y, h, x), for example, by the
Euler–Maruyama method [20];

(B) Substitute x(t), ξ(t) and u(t) = u(t, x(t)) into the functional (18);
(C) Calculate the value of the function (18) by statistical modeling (Monte Carlo);
(D) The problem of choosing the functional W(t, x, u), which determines the estimate Iu

and the quality of the process x(t) as a strong solution of the SDE (2), is related to the
specific features of the problem and the following three conditions can be identified:

1. The minimization conditions of the functional (18) must ensure that the strong solu-
tion, x(t), of the SDE (2) fades fast enough on average with high probability;

2. The value of the integral should satisfactorily estimate the computation time spent on
generating the control, u(t);

3. The value of the quality functional should satisfactorily estimate the computation
time spent on forming the control, u(t);

4. The functional W(t, x, u) must be such that the solution of the stabilization problem
can be constructed.

Remark 3. For a linear SDE (2), in many cases the quadratic form with respect to the variables x
and u is satisfactory

W(t, x, u) = xT M(t)x + uT D(t)u, (19)

where M(t) is a symmetric non-negative matrix of size m×m and D(t) is a positively determined
matrix of the size r× r for all t ≥ 0.

Remark 4. Note that according to the feedback principle, M(t) and D(t) depend indirectly on the
values of ξ(t) and ηk. Therefore, in the examples below, we will calculate the values of M(t) and
D(t) for fixed ξ(t) and ηk.

The value Iu in the case of the quadratic form of the variables x and u evaluates the
quality of the transition process quite well on average. The presence of the term uT Du and
the minimum condition simultaneously limit the amount of the control action u ∈ Rr.

Remark 5. If the jump condition of the phase trajectory is linear, then the solution of the stabi-
lization problem belongs to the class of linear on the phase vector x ∈ Rm controls u(t, x). Such
problems are called linear-quadratic stabilization problems.

Definition 4. The control u0(t), which satisfies the condition:

Iu0(y, h, x0) = min Iu(y, h, x0),

where the minimum should be searched for all controls continuous variables t and x at each
ξ(0) = y ∈ Y and η0 = h ∈ H, let us call it optimal in the sense of optimal stabilization of the
strong solution x ∈ Rm of the system (2)–(4).
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Theorem 2. Let the system (2)–(4) have a scalar function v0(tk, y, h, x) and an r-vector function
u0(t, y, h, x) ∈ Rr in the region (17) and fulfill the conditions:

1. The sequence of the functions v0
k(y, h, x) ≡ v0(tk, y, h, x) is the Lyapunov functional;

2. The sequence of r-measured functions-control

u0
k(y, h, x) ≡ u0(tk, y, h, x) ∈ Rr; (20)

is measurable in all arguments where 0 ≤ tk < tk+1, k ≥ 0;
3. The sequence of functions from the criterion (18) by x ∈ Rm is positive definite, i.e., for

∀t ∈ [tk, tk+1), k ≥ 0,
W(t, x, u0

k(y, h, x)) > 0; (21)

4. The sequence of infinitesimal operators (lv0
k) |u0

k
, calculated for u0

k ≡ u0(y, h, x), satisfies the
condition for ∀t ∈ [tk, tk+1)

(lv0
k) |u0

k
= −W(t, x, u0

k); (22)

5. The value of (lv0
k) + W(t, x, u) reaches a minimum at u = u0, k ≥ 0, i.e.,

(lv0
k) |u0

k
+ W(t, x, u0

k) = min
u∈Rr

{(lv0
k) |u + W(t, x, u)} = 0; (23)

6. The series
∞

∑
k=0

∫ ∞

tk

E{W(t, x(t), u(t))/x(tk−1)}dt < ∞ (24)

converges.

Then, the control u0
k ≡ u0(tk, y, h, x), k ≥ 0 stabilizes the solution of Equations (2)–/(4). In

this case, the equality
v0(y, h, x0) ≡

≡
∞

∑
k=0

∫ ∞

tk

E{W(t, x(t), u(t))/x(tk−1)}dt =

= min
u∈Rr

∞

∑
k=0

∫ ∞

tk

E
{

W(t, x(t), u(t))/x(tk)
}

dt ≡ Iu0(y, h, x0) (25)

is held.

Proof of Theorem 2. I. Stability in probability in the whole of a dynamical system of a
random structure (2)–(4) for u ≡ u0(tk, x), k ≥ 0 immediately follows from Theorem 1, since
the functionals v0(y, h, x) for any t ∈ [tk, tk+1), k ≥ 0 satisfy the conditions of this theorem.

II. The equality (25) is obviously also a consequence of Theorem 1.
III. Proof by contradiction that the stabilization of a strong solution of a dynamical

system of random structure (2)–(4) is controlled by u0(tk, x), tk ≤ t < tk+1, k ≥ 0.
Let the control u∗(tk, x) �= u0(tk, x) exist, which, when substituted into the SDE (2),

realizes a solution x∗(t) with initial conditions (3) and (4), such that the equality

Iu∗(y, h, x0) ≤ Iu0(y, h, x0). (26)

is held.
The fulfilment of conditions (1)–(6) of Theorem 2 will lead to an inequality

(see (27)) in contrast to (26).
From the condition (5) (see (23)) follows the inequality:

(lv0
k) |u∗ ≥ −W(t, x, u∗(t, y, h, x)). (27)
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Averaging (27) over random variables {x∗(t), ξ(t), ηk} over intervals [tk, tk+1), k ≥ 0
and integrating over t from 0 to T, we obtain n inequalities:

E{v0(t1, ξ(t1), ηk1 , x∗(t1))
/

y1, ηk1 , x∗(t1)}−v0(y, h, x0) ≥

≥ −
∫ t1

0
E{W(t, x∗(t), u∗(t))/x0}dt, (28)

E{v0(t2, ξ(t2), ηk2 , x∗(t2))
/

y1, ηk1 , x∗(t1)}−
−{v0(t1, ξ(t1), ηk1 , x∗(t1))

/
y, h, x0} ≥

≥ −
∫ t2

t1

E{W(t, x∗(t), u∗(t))/x∗(t1)}dt, (29)

. . .

E{v0(tn, ξ(tn), ηkn , x∗(tn))
/

yn−1, ηkn−1 , x∗(tn−1)}−

−{v0(tn−1, ξ(tn−1), ηkn−1 , x∗(tn−1))
/

yn−2, ηkn−2 , x∗(tn−2)} ≥

≥ −
∫ tn

tn−1

E{W(t, x∗(t), u∗(t))/x∗(tn−1)} (30)

Taking into account the martingale property of the Lyapunov functions v0(t, ξ(t), h, x∗(t))
(see condition (1) of the theorem) due to the system (2)–(4), i.e., by the definition of a mar-
tingale, we have n equalities with the probability of one being:

E{v0(tk, ξ(tk), ηk, x∗(tk))/yk−1, ηk−1, x∗(tk−1)} =

= v0(tk−1, ξ(tk−1), ηk−1, x∗(tk−1)), k = 1, n. (31)

Substituting (31) into the inequalities (28)–(30), we obtain the inequality:

E{v0(tn, ξ(tn), ηkn , x∗(tn))/tn−1, ξ(tn−1), ηkn−1 , x∗(tn−1)}−v0(y, h, x0) ≥

≥ −
n

∑
k=0

∫ tk+1

tk

E{W(t, x∗(t), u∗(t))/x∗(tk−1)}dt ≥

≥ −
∞

∑
k=0

∫ ∞

tk

E{W(t, x∗(t), u∗(t))/x∗(tk−1)}dt. (32)

According to the assumption (26), it follows that for tn → ∞, the integrals on the
right-hand side of (32) converge and, taking into account the convergence of the series (24)
(condition (6)), we obtain the inequality:

v0(y, h, x0) = Iu0(y, h, x0) ≤

≤
∞

∑
k=0

∫ ∞

tk

E{W(t, x∗(t), u∗(t))/x∗(tk−1)}dt =

= Iu∗(y, h, x0). (33)

Indeed, from the convergence of the series (32) (under condition (6)), it follows that
the integrands in (33) tend to zero as t → ∞. In this way, lim

n→∞
E{v0(tn, yn, ηkn , x∗(tn)} = 0.
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Note that it makes sense to consider natural cases when from the condition

E{W} →
t→∞

0

it follows that E{v0} →
t→∞

0.

Thus, the inequality (33) contradicts the inequality (26). This contradiction proves the
statement regarding the optimality of the control u0(tk, x), k ≥ 0.

In cases when the Markov process with a finite number of states ξ(tk) admits a
conditional expansion of the conditional transition probability

P{ω : ξ(t + Δt) = yj/ξ(t) = yi, yi �= yj} =

= qij(t)Δt + o(Δt), i, j = 1, N, (34)

we obtain an equation that must be satisfied by the optimal Lyapunov functions, v0
k(y, h, x),

and the optimal control, u0
k(t, x), ∀t ∈ [tk, tk+1).

Note that according to [6,21], the weak infinitesimal operator (7) has the form:

(lvk)(y, h, x) =
∂vk(y, h, x)

∂t
+ (∇vk(y, h, x), a(t, y, x, u))+

+
1
2

Sp(bT(t, y, x, u) · ∇2vk(y, h, x) · b(t, y, x, u))+

+
∫
Rm

[vk(y, h, x + c(t, y, x, u, z))− vk(y, h, x)− (∇vk(y, h, x))T · c(t, y, x, u, z)]Π(dz)+

+
N

∑
j �=i

[
∫
Rm

vj(t, x)pij(t, z/x)dz− vi(t, x)]qij, (35)

where (·, ·) is a scalar product, ∇vk =
(

∂vk
∂x1

, . . . , ∂vk
∂xm

)T
, ∇2vk =

[
∂2vk

∂xi∂xj

]m

i,j=1
, k ≥ 0, ”T”

stands for a transposition, Sp is a trace of matrix and pij(t, z/x) is a conditional probabil-
ity density:

Px(τ) ∈ [z, z + dz]/x(τ − 0) = x = pij(τ, z/x)dz + o(dz)

assuming that ξ(τ − 0) = yi, ξ(τ) = yj.
Taking into account Formula (35), the first equation for v0 can be obtained by replacing

the left side of (23) with the expression for the averaged infinitesimal operator, (lv0
k)
∣∣
u∗ [1].

Then, the desired equation at the points (tk, yj, ηk, x) has the form:

∂v0
k

∂t
+

⎛⎝(∂v0
k

∂x

)T

· a(t, y, x, u)

⎞⎠+
1
2

Sp

((
bT(t, yi, x) · ∂2v0

k
∂x2 · b(t, yi, x)

))
+

+
∫
Rm

[v0
k(·, ·, x + c(t, y, x, u, z))− v0

k − (
∂v0

k
∂x

)T · c(t, y, x, u, z)]Π(dz)+

+
l

∑
j �=i

[∫ +∞

−∞
v0

j (yj, h, xj)pij(t, z/x)dz− v0
i (yi, h, x)

]
qij(t)dt+

+W(t, x, u) = 0. (36)
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The second equation for optimal control, u0
k(t, y, h, x), can be obtained from (36) by

differentiation with respect to the variable u, since u = u0 delivers the minimum of the left
side of (36): [(

∂v0

∂x

)T

·
(

∂a
∂u

)
+

(
∂W
∂u

)T
]∣∣∣∣∣

u=u0
k

= 0, (37)

where ∂a
∂u – m× r-matrix of Jacobi, stacked with elements

{
∂an
∂us

, n = 1, m, s = 1, r
}

;
(

∂W
∂u

)
≡(

∂W
∂u1

, . . . , ∂W
∂ur

)
, k ≥ 0.

Thus, the problem of optimal stabilization, according to the Theorem 2, consists of
solving the complex nonlinear system of Equation (23) with partial derivatives to, determine
the unknown Lyapunov functions, v0

ik ≡ v0
k(y, h, x), i = 1, l, k ≥ 0.

Note that this system is obtained by eliminating the control u0
k = u0(t, y, h, x) from

Equations (36) and (37).
It is quite difficult to solve such a system; therefore, we will further consider linear

stochastic systems for which convenient solution schemes can be constructed.

5. Stabilization of Linear Systems

Consider a controlled stochastic system defined by a linear Ito’s SDE with Markov
parameters and Poisson perturbations:

dx(t) = [A(t−, ξ(t−))x(t−) + B(t−, ξ(t−))u(t−)]dt + σ(t−, ξ(t−))x(t−)dw(t)+

+
∫
Rm

c(t−, ξ(t−), u(t−), z)x(t−)ν̃(dz, dt), t ∈ R+\K, (38)

with Markov switching

Δx(t)
∣∣∣
t=tk

= g(tk−, ξ(tk−), ηk, x(tk−)), tk ∈ K = {tn ⇑} (39)

for lim
n→+∞

tn = +∞ and initial conditions

x(0) = x0 ∈ Rm, ξ(0) = y ∈ Y, η0 = h ∈ H. (40)

Here, A, B, σ and C are piecewise continuous integrable matrix functions of appropri-
ate dimensions.

Let us assume that the conditions for the jump of the phase vector x ∈ Rm at the
moment when t = t∗ of the change in the structure of the system due to the transition
ξ(t∗−) = yi in ξ(t∗) = yj �= yi are linear and given in the form:

x(t∗) = Kijx(t∗−) +
N

∑
s=1

ξsQsx(t∗−), (41)

where ξs := ξs(ω) are independent random variables for which Eξs = 0, Eξ2
s = 1 and Kij

and Qs are given as (m×m)-matrices.
Note that the equality (41) can replace the general jump conditions [6]:
- The case of non-random jumps will be at Qs = 0, i.e.,

x(t∗) = Kijx(t∗−);

- The continuous change in the phase vector means that Qs = 0 and Kij = Aij = I
(identity (m×m)-matrix).
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The quality of the transition process will be estimated by the quadratic functional

Iu(y, h, x0) :=
∞

∑
k=0

∫ ∞

tk

E
{

xT(t)M(t)x(t) + uT(t)D(t)u(t)/ y, h, x0}dt, (42)

where M(t) ≥ 0, D(t) > 0 are symmetric matrices of dimensions (m × m) and (r × r),
respectively.

According to the Theorem 2, we need to find optimal Lyapunov functions, v0
k(y, h, x),

and a control, u0
k(t, x), for ∀t ∈ [tk, tk+1), tk ∈ K, k = 0, 1, 2, . . .

The optimal Lyapunov functions are sought in the form:

v0
k(y, h, x) = xTG(t, y, h)x, (43)

where G(t, y, h) is a positive-definite symmetric matrix of the size (m×m).
Hereafter, when ξ(t) describes a Markov chain with a finite number of states Y =

{y1, y2, . . . , yl}, and ηk, k ≥ 0 describes a Markov chain with values hk in metric space H and
with transition probability at the k-th step Pk(h, G), we introduce the following notation:

Ai(t) := A(t, yi), Bi(t) := B(t, yi), σi(t) := σ(t, yi), Ci(t, z) := C(t, yi, z),

Gik(t) := G(t, yi, hk), vik := v(yi, hk, x).

Let us substitute the functional (43) into Equations (36) and (38) to find an optimal
Lyapunov function, v0

k(y, h, x), and an optimal control, u0
k(t, x), for ∀t ∈ [tk, tk+1). Given

the form of a weak infinitesimal operator (35), we obtain:

xT(t)
dGik(t)

dt
x(t) + 2[Ai(t)x(t) + Bi(t)u(t)]Gik(t)x(t)+

+Sp(xT(t)σT
i (t)Gik(t)σi(t)x(t)) +

∫
Rm

xT(t)CT
i (t, z)Gik(t)Ci(t, z)x(t)Π(dz)+

+xT(t)
N

∑
j �=i

[
KT

ij Gik(t)Kij +
l

∑
s=0

QT
s Gik(t)Qs − Gik(t)

]
qijx(t)+

+xT(t)Mik(t)x(t) + uT(t)Dik(t)u(t) = 0, (44)

2xT(t)Gik(t)Bi(t) + 2uT(t)Dik(t) = 0. (45)

Note that the partial derivative with respect to u of the operator (lv) is equal to zero,
which confirms the conjecture about constructing an optimal control that does not depend
on switching (39) for the system (40).

From (45), we find an optimal control for ξ(t) = yi, when switching (39) ηk = hk, k ≥ 0,

u0
ik(t, x) = −D−1

ik (t)BT
i (t)Gik(t)x(t). (46)

Given the matrix equality

2xT(t)Gik(t)Ai(t)x = xT(t)(Gik(t)Ai(t) + AT
i (t)Gik(t))x(t)

and excluding u0
ik from (44) and equating the resulting matrix with a quadratic form to

zero, we can obtain a system of matrix differential equations of Riccati type for finding the
matrices Gik(t), where i = 1, 2, . . . , l, k ≥ 0, corresponding to the interval [tk, tk+1):

dGik(t)
dt

+ Gik(t)Ai(t)− Bi(t)D−1
ik (t)BT

i (t)Gik(t))+
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+Sp(σT
i (t)Gik(t)σi(t)) +

∫
Rm

CT
i (t, z)Gik(t)Ci(t, z)Π(dz)+

+
N

∑
j �=i

[
KT

ij Gik(t)Kij +
l

∑
s=0

QT
s Gik(t)Qs − Gik(t)

]
qij + Mik(t) = 0, (47)

lim
t→∞

Gik(t) = 0, i = 1, N, k ≥ 0. (48)

Thus, we obtain the following statement, which is actually a corollary to Theorem 2.

Theorem 3. Let the system of matrix Equations (47) and (48) have positive-definite solutions of
the order (m×m)

G1k(t) > 0, G2k(t) > 0, . . . , Glk(t) > 0.

Then, the control (46) gives a solution to the problem of optimal stabilization of the system
(38)–(40) with jump condition (41) and the criterion of optimality (42).

6. Stabilization of Autonomous Systems

Consider the case of an autonomous system that is given by the SDE

dx = [A(ξ(t))x + B(ξ(t))u]dt + σ(ξ(t))xdw(t) + C(ξ(t))xdN(t), t ∈ R+\K, (49)

with Markov switching (39) and initial conditions (40). Here, x ∈ Rm, u ∈ Rr, A(y), B(y),
σ(y) and C(y) are known matrix functions defined in the set Y = {y1, y2, . . . , yk} of possible
values of the Markov chain ξ. N(t), t ≥ 0 is a Poisson process with intensity λ [4].

In the case of phase vector jumps (41) and the quadratic quality functional (42), the
systems (47) and (48) for finding unknown matrices Gik, i = 1, N, k ≥ 0, will take the form:

Gik Ai + AT
i Gik − BiD−1

ik BT
i Gik + σT

i Gikσi+

+λCT
i GikCi+

+
N

∑
j �=i

[
KT

ij GikKij +
l

∑
s=0

QT
s GikQs − Gik

]
qij + Mik = 0, i = 1, N, k ≥ 0. (50)

Remark 6. Note that any differential system written in the normal form (such as the system (38),
where the dependence of x on t is explicitly indicated) can be reduced to an autonomous system by
increasing the number of unknown functions (coordinates) by one.

Small Parameter Method for Solving the Problem of the Optimal Stabilization

The algorithmic solution to the problem of optimal stabilization of a linear autonomous
system of random structure ((43), (39) and (40)) is achieved by introducing a small parame-
ter [1]. There are two ways to introduce the small parameter:

Case I. Transition probabilities yi → yj of Markov chains ξ are small, i.e., the transition
intensities, qij, due to the small parameter (ε > 0) can be represented as:

qij = εrij. (51)

Case II. Small jumps of the phase vector x(t) ∈ Rm, i.e., matrices Kij and Qs from (41),
should be presented in the form:

Kij = I + εKij; Qs = εQs. (52)
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In these cases, we will search for the optimal Lyapunov function v0
k(y, x, h), k ≥ 0, in

the form of a convergent power series with a base ε > 0

v0
k(y, h, x) = xT

∞

∑
r=0

εrG(r)(y, h)x. (53)

According to (46), the optimal control, u0, should be sought in the form of a
convergent series:

u0
k(y, h, x) = −[D−1(y)BT(y)

∞

∑
r=0

εrG(r)(y, h)]x. (54)

Case I. Let us substitute the series (53) and (54), taking into account (51), into (44):

Gik Ai + (Ai)
TGik − BiD−1

ik BT
i Gik + σT

i Gikσi+

+λCT
i GikCi+

+
l

∑
j �=i

KT
ij GikKij +

N

∑
s=1

QT
s (GikQs − Gik)εrij + Cik = 0; i = 1, l, k ≥ 0.

Equating the coefficients at the same powers of ε > 0, we get:

AT
i G(0)

i + G(0)
ik Ai − BiD−1

ik BT
ikG(0)

ik +

+σT
ikG(0)

ik σik + λCT
i G(0)

ik Ci + Mik = 0, i = 1, l, k ≥ 0, (55)

ÃT
ikG(r)

ik + G(r)
ik Ãik + σT

i G(r)
ik σi + λCT

i G(0)
ik Ci =

= −∑l
j �=i(K

T
ikG(r−1)

ik Kij + ∑N
s=1 QT

s G(r−1)
ik Qs − G(r−1)

ik )rij+

+
r−1

∑
q=1

BiD−1
ik BT

i G(r−q)
ik , (56)

r > 1; Ãik ≡ Ai − BiD−1
ik BT

i G(0)
ik , i = 1, l, k ≥ 0.

Note that the system (55) consists of independent matrix equations which, for a fixed
i = 1, 2, . . . , l, gives a solution to the problem of optimal stabilization of the system

dx(t) = (Aix(t) + Biu(t))dt + σix(t)dw(t) + Cix(t)dN(t), (57)

with the quality criterion

Iu(y, h, x0) =
∞

∑
k=0

∫ ∞

tk

E{xT(t)Mikx(t) + uT(t)Diku(t)/x0}dt,

i = 1, l, k ≥ 0, Mik > 0, Dik > 0. (58)

A necessary and sufficient condition for the solvability of the system (55) is the exis-
tence of linear admissible control in the system (57), which provides exponential stability
in the mean square of the unperturbed motion of this system [17].

Let us assume that the system of matrix quadratic Equation (55) has a unique positive
definite solution, G(0)

ik > 0, i = 1, l, k ≥ 0.

Equation (56) to find G(r)
ik > 0, r ≥ 1, k ≥ 0 is linear, so it has a unique solution for a

fixed i = 1, l, k ≥ 0, r ≥ 1 and any matrices that are on the right side of (56).
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Indeed, the system

dx(t) = Ãikx(t)dt + σix(t)dw(t) + Cix(t)dN(t) (59)

is obtained by closing the system (57) with the optimal control

u0
k = −D−1

ik BT
ikG(0)

ik x(t),

which provides exponential stability in the mean square. Then, there is a unique solution
to the system (56). Note that in the linear case for autonomous systems, the asymptotic
stability is equivalent to the exponential stability [2]. Consider a theorem which originates
from the results of this work.

Theorem 4. If a strong solution, x(t), of the system (57) is exponentially stable in the mean square,
then there exists Lyapunov functions vk(y, h, x), k ≥ 0, which satisfy the conditions:

c1‖x‖2 ≤ vk(y, h, x) ≤ c1‖x‖;

dE[vk]

dt
≤ −c3‖x‖2.

Thus, the system of matrix Equations (55) and (56) allows us to consistently find the
coefficients G(r)

ik > 0 of the corresponding series (53) and (54), starting with a positive

solution G(0)
ik > 0, i = 1, l, k ≥ 0 of the system (55).

The next step is to prove the convergence of the series (53) and (54). Without the loss
of generality, we simplify notations by fixing k ≥ 0. Let Lr := max

i = 1, l,
k ≥ 0

∥∥∥G(r)
i

∥∥∥. Then, from

(56), it follows that there is a constant c > 0, such that for any r > 0 the following estimate
is correct:

Lr ≤ c

[
r−1

∑
q=1

LqLr−q + Lr−1

]
. (60)

Next, we use the method of majorant series.
Consider the quadratic equation

ρ2 + (a + ε)ρ + b = 0, (61)

where the coefficients a and b are chosen such that the power series expansion of one of the
roots of this equation is a majorant series for (53).

We obtain

ρ1,2 = − a + ε

2
±
√

(a + ε)2

4
− b =

∞

∑
r=0

εrρr. (62)

Let us substitute (62) into (61), and equate coefficients at equal powers of ε. Then, we
get an expression for ρr through ρ0, . . . , ρr−1:

ρr = − 1
2ρ0 + a

[
r−1

∑
q=1

ρqρr−q + ρr−1

]
, (63)

where ρ0 should be found from the Equation

ρ2
0 + aρ0 + b = 0. (64)
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Comparing (60) and (63), we find that the series (62) will be major for (53), if we consider

c = − 1
2ρ0 + a

> 0; ρ0 = L0 > 0.

Thus, the values of the coefficients a and b in Equation (61) are

a = −
[

1
c + 2L0

]
< 0;

b = L0
c + L2

0 > 0.

Using the known a and b from (61), we find that the majorant series for (53) will
be the expansion one of the roots of (61). This root is such that its values are determined by

ρ0 = L0 = − a
2
−
√

a2

4
− b.

Convergence of the series (53) for v0
k(y, h, x) follows from the obvious inequality∥∥∥∥∥ ∞

∑
r=0

εrG(r)(y, h)

∥∥∥∥∥ ≤ ∞

∑
r=0

Lrεr.

Thus, we have proved the assertion which is formalized below as Theorem 5:

Theorem 5. 1. For ∀i = 1, l, k ≥ 0, the system (57) has a linear admissible control;
2. Transition intensities, qij, of a homogeneous Markov chain ξ satisfy the condition (51).

Then,

1. There is a unique solution to the problem of optimal stabilization of the system (43), (39) and
(40) with the jump condition (41) of the phase vector x ∈ Rm;

2. The optimal Lyapunov function v0
k(y, h, x) and optimal control u0

k(y, h, x) are determined
by the convergent series (53) and (54), whose coefficients are found from the corresponding
systems (55) and (56).

Case II. Let us substitute the series Gik = ∑∞
r=0 εrG(r)

ik into (44) and equate the coef-
ficients at the same powers ε. Then, taking into account (52), we obtain the following
equations:

G(0)
ik Ai + AT

i G(0)
ik + σT

i G(0)
ik σi − BiD−1

ik BT
i G(0)

ik +

+λCT
i GikCi +

l

∑
j �=i

(G(0)
jk − G(0)

ik )qij + Mik = 0, k ≥ 0, (65)

G(r)
ik Ãik + ÃT

ikG(r)
ik + σT

i G(r)
ik σi + λCT

i GikCi +
l

∑
j �=i

(G(r)
jk − G(r)

ik )qij = Φ(r)
ik , (66)

where i = 1, lk ≥ 0, Ãik = Ai − BiD−1
ik BT

i G(0)
ik ,

Φ(r)
ik =

r−1

∑
q=1

BiD−1
ik BT

i G(r−q)
ik −

−
l

∑
j �=i

(KT
ij G

(r−1)
jk + G(r−1)

jk Kij + KT
ij G

(r−2)
jk Kij +

N

∑
s=1

QT
s G(r−2)

jk Qs)qij.

Based on the equations above, the following theorem is correct:
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Theorem 6. 1. The system of matrix Equation (65) has a unique positive definite solution

G(0)
ik > 0, i = 1, l; k ≥ 0;

2. Jumps of the phase vector x ∈ Rm satisfy the condition (52).
Then, the linear-quadratic optimal stabilization problem (43), (39) and (40) of minimizing the

functional (42) has a unique solution, which is given in the form of convergent series (53) and (54),
and the matrices G(r)

ik , i = 1, l; r ≥ 1, k ≥ 0 is the only solution to the linear matrix Equation (66).

7. Model Example

To illustrate the above theoretical results, consider an example with the following
parameters:

• The continuous Markov chain ξ(t), t ≥ 0 is defined by generator

Q =

( −7 7
3 −3

)
;

• tk = k, k ≥ 1;
• The values of the function g in the times tk depend only on the value of x:

g(t, ξ, η, x) = Kijx = αx, Qs = 0;

where α ∈ [−1, 1]. For example, below we use α = 0.2;
• The intensity of the Poisson process is λ = 0.2;
• The values of the matrices A(ξ) for ξ(t) ∈ {1, 2} are

A1 =

⎛⎝ −2 1 1
3 −3 0
0 6 −2

⎞⎠, A2 =

⎛⎝ −4 8 0
0 1 2
3 −2 −1

⎞⎠;

• The values of the matrices B(ξ) for ξ(t) ∈ {1, 2} are

B1 =

⎛⎝ 4 2
0 −2
1 1

⎞⎠, B2 =

⎛⎝ 0 1
4 −3
−1 1

⎞⎠;

• The values of the matrices σ(ξ) for ξ(t) ∈ {1, 2} are

σ1 =

⎛⎝ 1 0 0
−1 1 1
−1 −1 1

⎞⎠, σ2 =

⎛⎝ 1 −1 −1
0 1 −1
0 0 1

⎞⎠.

• The values of the matrices C(ξ) for ξ(t) ∈ {1, 2} are

C1 =

⎛⎝ 0.3 0.2 0.1
−0.2 0.4 0.8
0.1 0.1 0.2

⎞⎠, C2 =

⎛⎝ −0.5 0.1 −0.2
0.4 0.5 −1.1
−0.7 −0.6 0.3

⎞⎠;

• The control parameters are

Mik =

⎛⎝ 1 0 0
0 2 0
0 0 3

⎞⎠, Dik =

(
10 0
0 40

)
.

For simplicity, we will assume that the random variables ηk are constants and the
solution, x(t), and optimal control, u(t), depend only on the random process, ξ(t).
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The main problem of optimal control is the solution of the Riccati Equation (50). There
are several basic approaches to finding an approximate solution to this equation. However,
in our example, we used the particle swarm optimization method, which allows us to
relatively quickly find the solution to Equation (50). The results of finding this equation
will be the matrices

G1 =

⎛⎝ 0.2044 0.0943 0.0043
0.1258 0.3605 0.165
0.0139 0.1575 0.3146

⎞⎠, G2 =

⎛⎝ 0.1268 0.5538 −0.0962
0.2533 2.8729 0.2214
0.1096 0.2075 2.0079

⎞⎠.

Both solutions are positively defined, so by Theorem 3 there exists an optimal control,
which stabilizes system (57) and is defined by

u(t)ξ(t)=i = −D−1BTGix(t)

for i ∈ {1, 2}. Two realization of the solution, x(t), and corresponding control, u(t), are
shown in Figures 1 and 2.
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Figure 1. Realizations of the solution and optimal control with initial conditions (10, 20, 30).

As we can see from the above examples, the resulting optimal control, u(t), stabilizes
the system, and therefore minimizes the functional Iu(y, h, x0). In addition, considering the
form of the matrix D from (42), we can see that u2(t) is close to 0, because

uT(t)Du(t) = 100u2
1(t) + 1600u2

2(t).

In this way, the optimal control found will agree with the given quality functional Iu(y, h, x0).
An analysis of the solution showed that there is an optimal control for an arbitrary

α ∈ [−1, 1]. The |α| < 1 case corresponds to the compressive case, since in this case the
solution is compressed by the α coefficient at each step in the point, tk. The |α| = 1 case is
not compressible, but the existence of an optimal control can be found based on Theorem 3.
The case of |α| > 1 is not included in the theory of this work, since in this case, the solution
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of Equation (50) either does not exist or is not positively defined. This case needs further
investigation.

0 1 2 3 4 5 6 7 8 9 10

Time, t

0

50

100

150

S
ol

ut
io

n,
 x

(t
)

x1(t)

x2(t)

x3(t)

0 1 2 3 4 5 6 7 8 9 10

Time, t

-150

-100

-50

0

O
pt

im
al

 c
on

tr
ol

, u
(t

) u1(t)

u2(t)

Figure 2. Realizations of solution and optimal control with initial conditions (100, 100, 100).

8. Discussion

In this work, we have obtained sufficient conditions for the existence of an optimal
solution for a stochastic dynamical system with jumps, which transform the system to a
stable one in probability. The second Lyapunov method was used to investigate the existence
of an optimal solution. This method is efficient both for ordinary differential equations
(ODE) and for stochastic differential equations (SDE). As it can be seen from the proof of
the Theorem 2, the existence of finite bounds for jumps at non-random time moments, tm
(limm→∞ tm = T∗ < ∞), does not impact the stability of the solution. On the other hand,
|tm+ − tm| > δ, m ≥ 1 was used for proving the existence of the optimal control (Theorem 3).
This restriction is also present in the works of other authors. Thus, a goal of future work could
be to construct an optimal control without the assumption |tm+ − tm| > δ, m ≥ 1, which will
considerably expand the scope of the second Lyapunov method.

The limitation of the proposed method is linked to the need for a solution to Riccati´s
equations that can be computationally heavy. For small dimensions of m, Riccati‘s equations
can be solved either by iteration or by genetic algorithms, but for large dimensions of m,
only genetic algorithms work.

9. Conclusions

In this work, we obtained sufficient conditions for the existence of a solution to an
optimal stabilization problem for dynamical systems with jumps. We considered the case
of a linear system with a quadratic quality functional. We showed that by designing
an optimal control that stabilizes the system to a stable one in probability reduces the
problem of solving the Riccati equations. Additionally, for a linear autonomous system,
the method using a small parameter is substantiated for solving the problem of optimal
stabilization. The obtained solutions can be used to describe a stock market in economics,
biological systems, including models of response to treatment of cancer, and other complex
dynamical systems.
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In addition, this work serves as a basis for the study of systems of type (3)–(4) under
the conditions of the presence of condensation point, i.e.,

lim
k→∞

tk = t∗ < ∞.

Systems with this condition are a mathematical model of real phenomena, in which
exceptional events accumulate very quickly over a finite period of time, which can lead
to a collapse of the system. For example, paper [22] examines the mathematical model
of the collapse of the bridge in Tacoma. At the same time, the authors of this work took
into account only deterministic influences, and did not include random events affecting
the dynamics of the bridge. Considering both deterministic and random influences can
provide a more precise picture for the understanding of such dramatic effects.
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Abstract: In this paper, the dynamic response of piecewise linear systems with asymmetric damping
and stiffness for random excitation is studied. In order to approximate the statistical characteristics
for each significant output of piecewise linear system, a method based on transmissibility factors
is applied. A stochastic linear system with the same transmissibility factor is attached, and the
statistical parameters of the studied output corresponding to random excitation having rational
spectral densities are determined by solving the associated Lyapunov equation. Using the attached
linear systems for root mean square and for standard deviation of displacement, the shift of the
sprung mass average position in a dynamic regime, due to damping or stiffness asymmetry, can be
predicted with a good accuracy for stationary random input. The obtained results are compared with
those determined by the Gaussian equivalent linearization method and by the numerical integration
of asymmetric piecewise linear system equations. It is shown that the piecewise linear systems with
asymmetrical damping and stiffness characteristics can provide a better vibration isolation (lower
force transmissibility) than the linear system.

Keywords: asymmetric piecewise linear systems; transmissibility factors; Lyapunov equation

MSC: 60H35

1. Introduction

The limitations of vibration isolation systems with linear passive damping and stiffness
characteristics are well known. A high damping ratio is effective in the resonance frequency
range but increases the dynamic response of isolation system for higher frequencies. On the
other hand, lower damping ratios could be effective above the resonance range with the cost
of an unacceptable increase in the dynamic response within the resonance range. Piecewise
linear (PWL) systems with asymmetric damping and stiffness characteristics can provide a
lower transmissibility factor over the entire frequency range than linear systems.

Many approximate methods have been proposed for studying the vibration of systems
with PWL stiffness and damping characteristics [1–6]. The dynamic behavior of PWL
systems was studied in [7–9]. A piecewise linear aeroelastic system with and without
a tuned vibration absorber was investigated [10]. The experimental results show that
the introduction of the piecewise linear stiffness and damping significantly decreases the
response amplitude at the primary resonance [11]. The beneficial effect for ride comfort
of road vehicles, mainly due to the suspension damping asymmetry, which introduces
a downward shift in the mean position of the sprung mass in addition to the vibratory
response, has been studied [12–18]. The classical dynamics of the systems with both
the statistically uncertain piecewise constant drift and diffusion were extended in [19].
Asymmetric damping forces induce the equilibrium position of the isolated body to shift
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downward [20]. A nonlinear interval optimization of asymmetric damper parameters for a
racing car is proposed to improve road holding [21].

Various linearization methods have been developed for the analysis of nonlinear
systems [22–24]. A very useful property of piecewise linear systems is the independence
of their transmissibility factors with respect to the excitation amplitude [25,26]. These
factors could be defined as the ratios of root mean square (rms) or standard deviation (std)
of output for the same parameters of the harmonic input within the frequency range of
practical interest. Therefore, a first order linear differential system can be attached to the
considered piecewise linear system so that the first vector component of the attached system
has the same transmissibility factor as the chosen output of the nonlinear system. This
approach was employed to obtain approximate solutions of PWL systems with piecewise-
linear damping with variable friction for application to semi-active control of vibration [23]
and for the comparison of the on–off control strategies of vehicle suspensions [24].

In the present work, the Lyapunov equation for attached linear systems is used to
approximate the first and second order statistical moments of any significant output of
PWL systems with passive asymmetric damping and stiffness. In classical linearization
methods, the nonlinear system is replaced by a single equivalent linear system. In the
framework of the method used in the present paper, a set of attached linear systems is
employed to approximate the statistical characteristics of the PWL system output. Using
the attached linear systems for rms and std displacement, the shift of sprung mass average
position in dynamic regime, due to damping or stiffness asymmetry, can be predicted with
a good accuracy for stationary random input, as confirmed by the numerical results.

In Section 2, the asymmetrical piecewise characteristics are described. In Section 3, the
mathematical model of single degree of freedom (SDOF) vibration isolation system with
PWL characteristics is presented. In Section 4, the effect of asymmetry of damping and
restoring characteristics on the dynamic behavior of piecewise linear systems under sta-
tionary random excitation is illustrated. In Section 5, the Gaussian equivalent linearization
method for PWL systems is applied. In Section 6, the results obtained by the proposed
approach are compared with those given by the Gaussian equivalent linearization method.
In order to estimate the statistical characteristics for the output of asymmetric PWL systems,
the corresponding attached linear systems are determined in Section 7. In the last section,
the statistical characteristics of the simulated output with those calculated by solving Lya-
punov equation for corresponding attached linear system are compared. The relative errors
show the efficiency and applicability of this method for PWL systems.

2. Modeling the Asymmetrical Piecewise Characteristics

Figure 1 shows the plots of asymmetrical PWL stiffness in Figure 1a and damping
characteristics in Figure 1b, given by

Fs(x) =
{

k1x, x ≤ 0
k2x, x > 0

, Fd
( .
x
)
=

{
c1

.
x,

.
x ≤ 0

c2
.
x,

.
x > 0

(1)

where k1, k2 ≥ 0 are the stiffness coefficients and c1, c2 ≥ 0 are the damping coefficients
and x is the travel of vibration isolation system.

Total hysteretic force developed by vibration isolation system for imposed harmonic
motion x(t) = X sin ωt, where ω = 2π f , f is the frequency and X is the amplitude, is
Fh
(
x,

.
x
)
= Fs(x) + Fd

( .
x
)
. The time histories of hysteretic force Fh

(
x,

.
x
)
, stiffness force

Fs(x) and damping force Fd
( .

x
)

are illustrated in Figure 2, for parameters values shown in
Table 1.
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Figure 1. Asymmetrical PWL: (a) stiffness characteristics; (b) damping characteristics.

Figure 2. Time histories of forces developed by a vibration isolation system with asymmetric PWL.

Table 1. Values of parameters for hysteretic force.

k1 [KN/m] k2 [KN/m] c1 [KNs/m] c2 [KNs/m] X [m] f [Hz]

1500 500 50 150 0.05 1

The loops portraying the variation of damping force Fd and total hysteretic force Fh
versus the imposed displacement x are shown in Figure 3.

Figure 3. The stiffness characteristic and hysteresis loops portraying the variation of damping force.
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The enclosed area by these loops represents Ed, the energy dissipated per cycle:

Ed =

2π
ω∫

0

Fd(
.
x)

.
xdt = 0.5πωX2(c1 + c2) (2)

Figure 4 depicts the schematic model of a device with asymmetrical damping and
stiffness characteristics.

Figure 4. Design principle of a device with PWL asymmetric damping and stiffness characteristics.

The metallic bellows, filled with hydraulic fluid, are welded at both ends, and, there-
fore, the fluid damper is leak proof. The asymmetry of damping force is controlled by the
openings of extension and compression valves. The dimensions of valve openings and
fluid viscosity must be assessed such that to have laminar flow within the range of damper
operating conditions. Since the bellows geometry is identical, there is no need for any
volume compensation system. The suspension springs with different stiffness are in the
unloaded condition (free length) when the isolation system is in the equilibrium position.
Each of them has only one end fixed on the device structure. Therefore, they work only as
compression springs for both extension and compression strokes. The bellows longitudinal
stiffness, being much smaller than the stiffness of springs, is neglected.

3. Mathematical Model of SDOF Vibration Isolation System with PWL Characteristics

Vibration isolation systems are widely used to reduce the dynamic forces transmitted
from the base input to sprung mass (Figure 5) or from the sprung mass to the system base
(Figure 6).

Figure 5. PWL system for mitigation the dynamic forces transmitted from the base input to the
sprung mass.
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Figure 6. PWL system for mitigation the dynamic forces transmitted from the sprung mass to the
system base.

The equation of motion for both vibration isolation systems, shown in Figures 5 and 6,
can be written as:

m
..
x + Fd

( .
x
)
+ Fs(x) = P0(t) (3)

where x = x1 − x0 is the relative displacement of sprung mass, P0(t) = −m
..
x0 is the input of

system shown in Figure 5, x1 is the absolute displacement and x0 is the base displacement.
For the system depicted in Figure 6, x is the absolute displacement of sprung mass, relative
to its static equilibrium position, and P0(t) = F0(t) is the force applied to the sprung
mass. In both cases, x is the stroke (travel) of sprung mass suspension and will be called
displacement (disp). The main output of interest for vibration isolation systems are the
absolute accelerations of sprung mass

..
x1, for system shown in Figure 5, and

..
x, for system

shown in Figure 6. The absolute acceleration is a measure for mitigation of dynamic forces
transmitted through the sprung mass suspension. In the rest of the paper it will be called
acceleration and abbreviated as acc. The analytic expressions of asymmetric damping and
elastic characteristics Fd

( .
x
)

and Fs(x) can be written as

Fd
( .
x
)
= 0.5

[
c1
(
1− sgn

.
x
)
+ c2

(
1 + sgn

.
x
)] .

x,
Fs(x) = 0.5 [k1(1− sgnx) + k2(1 + sgnx)]x.

(4)

Introducing the notations

ω1 = 2π f1 =
√

k1
m , ω2 = 2π f2 =

√
k2
m , ζ1 = c1

2ω1m , ζ2 = c2
2ω2m

β = c2
c1

= ζ2 f2
ζ1 f1

, γ =
√

k2
k1

= f2
f1

fd
( .

x
)
=

Fd(
.
x)

m , fs(x) = Fs(x)
m and p0(t) = P0(t)

m ,

(5)

the equation of motion (3) becomes

..
x + fd

( .
x
)
+ fs(x) = p0(t) (6)

where
fd
( .

x
)
= ζ1ω1

[
(β+ 1)

.
x + (β− 1)

∣∣ .
x
∣∣ ],

fs(x) = 0.5ω2
1
[(

γ2 + 1
)
x +

(
γ2 − 1

)|x| ]. (7)

From (2) and (5), one can see that asymmetry parameter β is the ratio of dissipated
energy per rebound

(
Ed2 = 0.5πωX2c2

)
and bound

(
Ed1 = 0.5πωX2c1

)
strokes for an

imposed harmonic motion.

4. The Effect of Asymmetry of Damping and Restoring Characteristics on the Dynamic
Behavior of Piecewise Linear Systems under Stationary Random Excitation

In general, the asymmetry of damping or stiffness characteristics leads to a drift of
sprung mass average position in dynamic regime, different from its static equilibrium
position. Nevertheless, by a suitable combination of the asymmetry parameters β and γ,
one can obtain outputs of PWL systems with almost no drift.
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Suppose that p0(t) is a stationary Gaussian random process with zero mean and standard
deviation σ0. If x(t) is the steady state stationary solution of Equation (6), with constant mean
value mx= E[x] then E

[ .
x
]

= E
[ ..
x
]

= 0. Therefore, by applying the average operator
corresponding to joint distribution of the output of Equation (6), mx is obtained as follows:

mx = − m|x|
γ2 + 1

[(
γ2 − 1

)
+ 2(β− 1)ζ1

m| .
x|

ω1m|x|

]
(8)

where
m|x| = E[|x|] and m| .

x|= E
[∣∣ .

x
∣∣] (9)

The relation (8) shows that mx = 0 if γ = 1, β = 1; mx < 0 if γ > 1, β > 1 and mx > 0
if γ < 1, β < 1. It is worth noting that by assuming m| .

x|/ω1m|x| ≈ 1, for all case studies
considered in this work (including γ > 1, β < 1 or γ < 1, β > 1), the sign of mx could be
predicted by determining the sign of expression S(γ,β, ζ1) = −[(γ2 − 1

)
+ 2(β− 1)ζ1

]
,

without being necessary the numerical simulation values from (9).

5. Gaussian Equivalent Linearization Method of PWL Systems

The Gaussian equivalent linear system (LinEq) of system (6), where p0(t) is a stationary
Gaussian process, E[p0(t)] = 0 and E

[
p2

0(t)
]
= σ2

0 is written as

..
x + 2ζeωe

.
x +ω2

ex = p0(t) (10)

The joint probability density function of the Gaussian stationary solution of equivalent
linear system is

g
(
x,

.
x
)
= g1(x)g2

( .
x
)

g1(x) = 1√
2πσx

exp
[
− x2

2σ2
x

]
, g2
( .
x
)
= 1√

2πσ .
x

exp
[
−

.
x2

2σ2.
x

]
,

(11)

where σx = σx(ωe, ζe) and σ .
x = σ .

x(ωe, ζe) are the standard deviations for the solution
of Equation (10).

The variance of the acceleration
..
x1 = 2ζeωe

.
x +ω2

ex of the equivalent linear system is

σ2..
x1

= E
[ ..

x2
1

]
= 4ζ2

eω
2
eE
[ .

x2
]
+ω4

eE
[

x2
]
= ω2

e

[
4ζ2

eσ
2.
x +ω2

eσ
2
x

]
(12)

Applying the linearization criteria,

εe(ωe) = E
[(

fs(x)−ω2
ex
)2
]
= min, ∂εe(ωe)

∂ωe
= 0

εd(ζe,ωe) = E
[(

fd
( .

x
)− 2ζeωe

.
x
)2
]
= min , ∂εd(ζe,ωe)

∂ζe
= 0

(13)

the linear equivalent stiffness and damping coefficients are obtained using (6), (11) and (13):

ω2
e = E[x fs(x)]

E[x2]
=

ω2
1+ω2

2
2 =

ω2
1(1+γ2)

2 ,

ζe =
E[

.
x fd(

.
x)]

2ωeE
[ .

x2
] = ζ1ω1+ζ2ω2

2ωe
= ζ1ω1(1+β)

2ωe
.

(14)

Using (14) one can write

fe = f1

√
1 + γ2

2
, ζe =

ζ1(1 + β)√
2(1 + γ2)

, fe = ωe/2π, f1 = ω1/2π (15)

In order to highlight the advantage of using the vibration isolation systems with
asymmetric PWL characteristics, the obtained results are compared with those of optimal
linear equivalent system.
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For given values of linear equivalent system ζe, fe and chosen values of asymmetry
parameters γ, β, relations (15) yield:

f1 = fe

√
2

1 + γ2 , f2 = γ f1, ζ1 =
ζe
√

2(1 + γ2)

1 + β
and ζ2 =

β

γ
ζ1 (16)

From (16) one can obtain the balance equation between the energy dissipated by
PWL asymmetric system and its linear equivalent system per cycle for same imposed
harmonic motion:

ζ1 f1 + ζ2 f2 = 2 feζe (17)

As one can see from previous relations, there are an infinite number of PWL asymmet-
ric systems having same linear equivalent system.

Following [27], the standard deviation of the stationary steady state acceleration of
sprung mass for stochastic linear system (10) with Gaussian white noise excitation p0(t)
and constant spectral density S0 is

σ ..
x1e =

√√√√√2S0

∞∫
0

A2..
x1e

(ω) dω =

√
πωeS0(1 + 4ζ2

e)

2ζe
, (18)

where A ..
x1e(ω) is the acceleration transmissibility factor of linear equivalent system:

A ..
x1e(ω) =

√
4ζ2

eω
2
eω

2 +ω4
e

ω4 + 2(2ζ2
e − 1)ω2

eω
2 +ω4

e
(19)

The optimum value of damping ratio ζe, which minimizes the std value of sprung
mass acceleration is ζe = 0.5, and its minimum value is σ ..

x1min =
√

2πωeS0. Taking
S0 = 1 m2s−3 andωe = 2π rad/s, the optimum std value of acceleration is σ ..

x1min
∼= 6.28 ms−2.

For numerical integration, the input is a limited bandwidth white noise, and std value of
acceleration is calculated as

σ ..
x1e

∼=

√√√√√2
ωmax∫
ωmin

A2..
x1e

(ω ; ζe, ωe)dω ∼= 6.21 ms−2, (20)

where 0.2 ≤ ω ≤ 128 and ω is measured in rad/s, which is a good approximation of
optimum value σ ..

x1min, calculated over the whole range of angular frequency [0, ∞). The
results obtained by the proposed approach will be compared with those obtained by the
Gaussian equivalent linearization method.

6. The Response of PWL Systems to Stationary Gaussian Random Input with Rational
Spectral Density (Shape Filtered White Noise)

According to [28], the covariance function and spectral density of stationary Gaussian
random input p0(t) are

C0(τ) = σ2
0e−a|τ| cos bτ, a > 0, b ≥ 0,

S0(ω) =
σ2

0
π

a(ω2+a2+b2)
ω4+2(a2−b2)ω2+(a2+b2)

2 ,
(21)

where σ2
0 =

∞∫
−∞

S0(ω)dω = 2
∞∫
0

S0(ω)dω . The above expression of S0(ω) can be viewed

as the spectral density of the Gaussian stationary random process p0(t), obtained as the
output of a second order shape filter to a stationary Gaussian white noise process z(t) with
E[z(t)]= 0, E[z(t)z(t + τ)] = 2πS0δ(τ), where δ(τ) is the Dirac delta function. In order to
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determine the equations of the second order shape filter, the spectral density (21) is written
under the form

S0(ω) =
|P(iω)|2
|Q(iω)|2 =

|b0(iω) + b1|2∣∣∣a0(iω)2 + a1(iω) + a2

∣∣∣2 , (22)

where b0 = σ0
√ a

π , b1 = σ0

√
a(a2+b2)

π , a0 = 1, a1 = 2a, a2 = a2 + b2.
The output u1(t) of the following first order differential system with the white noise

excitation z(t) is a Gaussian stationary random process with spectral density S0(ω):

.
u = Au + gz, (23)

where

A =

[
0 1
−a2 −a1

]
, u =

[
u1
u2

]
, g =

[
g1
g2

]
g1 = σ0

√ a
π , g2 = σ0

√ a
π

(√
a2 + b2 − 2a

)
and p0(t) = u1(t).

(24)

In order to study the behavior of asymmetric PWL systems excited by stationary ran-
dom input with rational spectral density, a linear system of first order stochastic equations
is assessed such as the first component of its solution vector has the same transmissibility
factor as the chosen output of the considered piecewise linear system [23]. The statistical
parameters of obtained stochastic differential equations are determined by solving the
associated Lyapunov equation.

Since the mean value of PWL acceleration response system has zero mean, the trans-
missibility factors corresponding to standard deviation and root mean square values
are identical.

The discrete values of transmissibility factor corresponding to standard deviation of
acceleration

..
x1(t) is defined as:

Ã ..
x1
(ωi) =

σ ..
x1
(ωi)

σp0i

=

√
2σ ..

x1
(ωi)

P0
, i = 1, N (25)

These values are obtained by numerical integration of Equation (6), using Matlab
Simulink, for harmonic inputs with constant amplitude and different frequencies in the
twelfth octave band:

p0i(t) = P0 sinωit, ωi = 2π fi, f1 = 0.3 Hz, fN = 20.05 Hz, fi = 2
i−1
12 f1, i = 1, N (26)

where P0 = 1 m/s2, N =
[

log( fN / f1)
log( f2/ f1)

]
+ 2 = 114.

It should be mentioned that the transmissibility factors of PWL systems, with asym-
metry type (affine) [29], considered in this paper, do not depend on the amplitude P0 of
the applied harmonic input with variable frequency, as long as they are computed for the
stationary regime. The numerical values Ã ..

x1
(ωi), i = 1, N, can be fitted using the Least

Squares Method, by analytical expressions having the form

A ..
x1
(ω) =

√
P1ω2 + P2

ω4 + Q1ω2 + Q2
. (27)

The transmissibility factor A ..
x1
(ω) is written as:

A ..
x1
(ω) =

∣∣∣∣∣ b0(iω) + b1

(iω)2 + a1(iω) + a2

∣∣∣∣∣ =
√

b2
0ω

2 + b2
1

ω4 +
(
a2

1 − 2a2
)
ω2 + a2

2
(28)
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From relations (27) and (28), the following nonlinear algebraic systems of equations
for unknown coefficients b0, b1, a1, a2, are obtained{

b2
0 = P1

b2
1 = P2

,
{

a2
1 − 2a2 = Q1

a2
2 = Q2

(29)

The attached linear system corresponding to transmissibility factor (28) can be written as

.
u = Au + cp0 , (30)

where

A =

[
0 1
−a2 −a1

]
, u =

[
u1
u2

]
, c =

[
c1
c2

]
,
{

c1 = b0
c2 = b1 − a1c1

(31)

The transmissibility factor A ..
x1
(ω) ∼= Aσu1

(ω) =
√

2σu1 /P0, where u1 is the first
component of the solution vector u. The system (30) is asymptotically stable if a1, a2 > 0.
Therefore, from the sets of real solutions of (29), one must select only the solutions that
fulfill these conditions.

In what follows, the study is carried out for several asymmetric PWL systems for
which the stochastic equivalent linear system is the optimal one. The parameters of PWL
systems, given in Table 2, were obtained by using relations (16).

Table 2. The parameters of PWL systems.

Case ζ 1 f1 [Hz] γ β ζ 2 f2 [Hz]

1 0.05 0.25 5.57 79 0.71 1.39
2 0.1 0.5 2.65 19 0.72 1.33
3 0.1 0.7 1.76 13.31 0.76 1.23
4 0.2 0.4 3.39 11.5 0.68 1.36
5 0.3 0.6 2.13 4.55 0.64 1.28
6 0.7 1.1 0.81 0.3 0.26 0.89

In Figure 7, the transmissibility factor Ã ..
x1
(ωi) obtained by numerical integration for

the asymmetric PWL systems from Table 2 is compared with transmissibility factor of their
stochastic equivalent linear system (ζ 1 = ζ2 = 0.5, γ = β = 1, f1 = f2 = 1 Hz).

Figure 7. The transmissibility factors for linear and asymmetric PWL systems.
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Table 3 presents the standard deviation values of the acceleration obtained by using a
similar relation to (20), for the transmissibility factors of asymmetric PWL systems shown
in Figure 7.

Table 3. The transmissibility factors of asymmetric PWL systems.

Case ζ1 f1 [Hz] ζ2 f2 [Hz] σ ..
x1

[m/s2]

1 0.05 0.25 0.71 1.39 4.52
2 0.1 0.5 0.72 1.33 4.98
3 0.1 0.7 0.76 1.23 5.35
4 0.2 0.4 0.68 1.36 4.71
5 0.3 0.6 0.64 1.28 5.12
6 0.7 1.1 0.26 0.89 5.97

The above results show that the piecewise linear systems with asymmetrical damping
and stiffness characteristics can provide a better vibration isolation (lower force transmissi-
bility) than the optimum equivalent linear system (σ ..

x1
= 6.21 [m/s2]).

7. Attached Linear System for Different Outputs of PWL Systems Excited by a Second
Order Shape Filtered White Noise

In order to estimate the statistical characteristics for the output of asymmetric PWL
systems, the corresponding attached linear systems will be determined in the next sections.
The stochastic equations of attached linear system for the piecewise linear system (6), with
shape filtered white noise excitation, is obtained by combining Equations (23) and (30):

.
u = Au + gz, (32)

where

A =

⎡⎢⎢⎣
0 1 c1 0
−a2 −a1 c2 0

0 0 0 1
0 0 −a4 −a3

⎤⎥⎥⎦ , u =

⎡⎢⎢⎣
u1
u2
u3
u4

⎤⎥⎥⎦ , g =

⎡⎢⎢⎣
0
0
g1
g2

⎤⎥⎥⎦
u1(t) =

..
x1(t), u3(t) = p0(t)

a3 = 2a, a4 = a2 + b2,g1 = σ0
√ a

π , g2 = σ0
√ a

π

(√
a2 + b2 − 2a

)
(33)

The covariance matrix C =
(
cij
)
, cij = cji = lim

t→∞
E
[
ui(t)uj(t)

]
, i, j = 1, 4 of the steady

state stationary solution of stochastic linear system (32) satisfies [30] the Lyapunov Equation:

AC + CAT + 2πS0ggT = 0 (34)

The standard deviation of the acceleration is estimated by σ ..
x1
∼= σu 1 where σu 1 =

√
c11.

The values of σ ..
x1

obtained by using Lyapunov equation will be compared with those
determined for linear equivalent system (10) where ζe = 0.5 and ωe = 2π rad/s.

The values of transmissibility factors Ãxrms(ωi) = Ψx(ωi)
σp0i

=
√

2 Ψx(ωi)
P0

, i = 1, N ,

and Ãxstd(ωi) = σx(ωi)
σp0i

=
√

2σx(ωi)
P0

, i = 1, N corresponding to rms Ψx and std σx of

relative displacement x(t) are obtained by numerical integrations. These values can be
approximated by rational expressions having the form

Ax(ω) =

√
P1ω4 + P2ω2 + P3

ω6 + Q1ω4 + Q2ω2 + Q3
(35)

The transmissibility factor is written as

230



Mathematics 2022, 10, 4275

Ax(ω) =

∣∣∣∣∣ b0(iω)2 + b1(iω) + b2

(iω)3 + a1(iω)2 + a2(iω) + a3

∣∣∣∣∣ =
√

b2
0ω

4 +
(
b2

1 − 2b0b2
)
ω2 + b2

2
ω6 +

(
a2

1 − 2a2
)
ω4 + (a2 − 2a1a3)ω2 + a2

3
(36)

From relations (35) and (36) one can obtain the following algebraic systems of equations
for unknown coefficients b0, b1, b2, a1, a2, a3:⎧⎨⎩

b2
0 = P1

b2
1 − 2b0b2 = P2

b2
2 = P3

,

⎧⎨⎩
a2

1 − 2a2 = Q1
a2

2 − 2a1a3 = Q2
a2

3 = Q3

(37)

The equations of the attached linear system having the same transmissibility factor
(35) can be written as

.
u = Au + cp0 (38)

where

u1(t) = x(t),

A =

⎡⎣ 0 1 0
0 0 1
−a3 −a2 −a1

⎤⎦ , u =

⎡⎣u1
u2
u3

⎤⎦ , c =

⎡⎣c1
c2
c3

⎤⎦,

⎧⎨⎩
c1 = b0
c2 = b1 − a1c1
c3 = b2 − a2c1 − a1c2

(39)

The system (38) is asymptotically stable if ai > 0, for i = 1, 2, 3. The covariance
function and spectral density of system input p0(t) are given by (21). The attached system
of stochastic differential equations with white noise excitation is given by

.
u = Au + gz (40)

where

u1(t) = x, u2(t) =
.
x(t), u4 = p0(t), A =

⎡⎢⎢⎢⎢⎣
0 1 0 c1 0
0 0 1 c2 0
−a3 −a2 −a1 c3 0

0 0 0 0 1
0 0 0 −a5 −a4

⎤⎥⎥⎥⎥⎦ , u =

⎡⎢⎢⎢⎢⎣
u1
u2
u3
u4
u5

⎤⎥⎥⎥⎥⎦ , g =

⎡⎢⎢⎢⎢⎣
0
0
0
g1
g2

⎤⎥⎥⎥⎥⎦
a4 = 2a, a5 = a2 + b2 , g1 = σ0

√ a
π , g2 = σ0

√ a
π

(√
a2 + b2 − 2a

)
(41)

The rms and std values of relative displacements of PWL system, Ψx and σx, can
be approximated as Ψx ∼= √

c11 rms and σx ∼= √
c11 std. The values of c11 rms and c11 std

are the first elements of covariance matrices Crms
(
cijrms

)
, Cstd

(
cijstd

)
, i, j = 1, 4, obtained

by solving the Lyapunov Equation (34), corresponding to attached linear systems for the
transmissibility factors Axrms(ω) and Axstd(ω), respectively. The mean displacement of
asymmetric PWL system is approximated by

mxLyap ∼=
√

c11 rms − c11 stdsgn(S(γ,β, ζ1)) (42)

8. Numerical Results

In this section, the statistical characteristics of simulated output are compared with those
calculated by solving the Lyapunov Equation (34) for corresponding attached linear systems.
The length and sampling interval of simulated filtered white noise input p0(t) were T = 100 s
and Δt = 0.001 s. The results obtained for the study cases, given in Table 2 for PWL
asymmetric systems and for their linear equivalent system (ζe = 0.5, ωe = 2π rad/s), are
presented in Tables 4–6.
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Table 4. The std values and relative errors for absolute accelerations.

Case
σ ..

x1sim

[m/s2]

σ ..
x1Lyap

[m/s2]

Relative
Error (%)

σ ..
x1LinEq

[m/s2]

Relative
Error (%)

1 0.537 0.516 3.9 0.742 38
2 0.597 0.559 6.4 0.742 24
3 0.665 0.618 7.1 0.742 11
4 0.564 0.536 5 0.742 31
5 0.634 0.587 7.4 0.742 17
6 0.720 0.709 1.5 0.742 3

Table 5. The rms values and relative errors for relative displacements.

Case
rmsxsim

[m]
rmsxLyap

[m]
Relative
Error (%)

rmsLinEq

[m]
Relative
Error (%)

1 0.181 0.185 0.022 0.013 0.928
2 0.0488 0.048 0.016 0.013 0.737
3 0.0277 0.026 0.061 0.013 0.535
4 0.0658 0.067 0.018 0.013 0.804
5 0.0285 0.028 0.018 0.013 0.546
6 0.0174 0.017 0.023 0.013 0.257

Table 6. The mean values and relative errors for relative displacements.

Case
mxsim

[m]
c11rms

[m2]
c11std

[m2]
mxLyap

[m]
Relative
Error (%)

mx

[m]

1 −0.167 0.0343 0.0019 −0.18 7.8 −0.168
2 −0.039 0.0023 0.0005 −0.042 7.7 −0.04
3 −0.02 0.0007 0.0002 −0.022 10 −0.02
4 −0.055 0.0045 0.0007 −0.062 12.7 −0.056
5 −0.02 0.0008 0.0003 −0.022 10 −0.021
6 0.009 0.0003 0.0002 0.01 11.1 0.009

The last column of Table 6 shows the mean values of displacement, evaluated by
using in (8) the values m|x|, m| .

x| obtained by numerical integration of PWL equation of
motion (6). It worth noting that the optimum value of damping ratio for a linear system
with undamped eigenfrequency ω1 = 2π rad/s and considered random input p0(t), is
ζopt = 0.55. The value of standard deviation of simulated acceleration output obtained in
this case is σ ..

x1 opt = 0.741 m/s2.
Table 4 shows that the simulated values σ ..

x1sim are better approximated by using
the proposed method than the Gaussian equivalent linearization method. Therefore, in
all case studies the asymmetric PWL systems provide better vibration isolation than the
optimum linear system, for both considered random inputs (band limited and shape filtered
white noise).

The results presented in Tables 4 and 6 show that the relative errors of approximation
between the results obtained by numerical integration of asymmetric PWL systems and
those calculated by using the Lyapunov equation for linear attached systems are less
than 7.5% for standard deviation of acceleration and less than 13% for mean value of
displacement. As one can see, from Tables 2 and 6, as nonlinearity increases, the mean
value displacement is better approximated. It should be mentioned that the Gaussian
equivalent linearization method cannot provide any information about the drift of sprung
mass average position in dynamic regime, as it is shown in Table 5.

In order to illustrate the application of presented method, the case 1 from Table 2,
which display the strongest nonlinearity, has been chosen. In Figures 8 and 9 are plotted
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the transmissibility factors, simulated and fitted for this case, as well as the values of
parameters from fitting the curves given by the expressions (27) and (35).

Figure 8. Simulated and fitted transmissibility factors for acceleration.

Figure 9. Simulated and fitted transmissibility factors for std and rms displacement.

In Tables 7 and 8 are given the coefficients of attached linear systems corresponding to
acceleration and displacement, obtained by solving the algebraic Equations (29), (31), (37)
and (39) for parameters shown in Figures 8 and 9.

Table 7. Coefficients of attached linear system for std acceleration.

a1
[s−1]

a2
[s−2]

c1
c2

[s−1]

c11
[m2s−4]

13.07 37.35 6.96 −130.4 0.265

Table 8. Coefficients of attached linear system for std and rms displacement.

a1
[s−1]

a2
[s−2]

a3
[s−3]

c1
c2

[s−1]

c2
[s−2]

c11
[m2]

|mx|Lyap

[m]

Coefficients for std disp 6.45 5.05 2.82 0.0158 −1.036 7.236 0.0019
0.18Coefficients for rms disp 6.8 6.19 3.41 2.13 −17.5 106.8 0.0343

In the last column of these tables are given the values of elements c11 from
covariance matrices obtained by solving the Lyapunov Equation (34), for the corresp-
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onding attached linear systems. Using these coefficients, are obtained the values of
std acceleration σ ..

x1Lyap =
√

c11 = 0.515 ms−2 and the mean value of displacement
mxLyap ∼= −√c11 rms − c11 std= −0.18 m, according to (8). Figure 10 shows the first 30 s
from the simulated time histories of input, acceleration and displacements outputs for
PWL, attached linear (rms for displacement) and linear equivalent systems, obtained for
case study 1.

Figure 10. Acceleration output of PWL, equivalent linear and attached linear systems for case 1.

In Figure 11 are plotted the spectral densities of acceleration output, determined by
1/3 octave band-pass filtering for PWL, linear equivalent and the attached linear systems.

Figure 11. Spectral densities of acceleration for PWL, linear equivalent and attached linear systems.

The relative errors between the areas under spectral densities that represent the
variances of acceleration, given in Table 9, advocate the efficiency of the proposed method.
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Table 9. Variances of acceleration for PWL, LinEq and LinAtt systems.

System Area Gacc [m2/s4] Relative Error %

PWL 0.254 -
LinEq 0.503 98
LinAtt 0.23 9.4

9. Conclusions

The dynamic response of piecewise linear systems with asymmetric damping and
stiffness for random inputs is approximated by a method based on transmissibility factors.
The application of this method does not require the numerical simulation of input and
output time histories, except for obtaining the transmissibility factors by using harmonic
inputs. Using these frequency characteristics, a stochastic linear system is attached for
each variable of interest. The statistical parameters of the studied output corresponding
to random excitations having rational spectral densities are determined by solving the
associated Lyapunov equation.

The obtained results are compared with those determined by the numerical integration
of asymmetric PWL response. The relative errors show the efficiency and applicability of
this method for PWL systems. In addition, this approach allows the realization of vibration
isolation systems with better performance than those with linear characteristics. Using the
attached linear systems for rms and std displacement, the shift of sprung mass average
position in dynamic regime, due to damping or stiffness asymmetry, can be predicted with
a good accuracy for stationary random input.
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disp displacement
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LinEq Linear equivalent
Lyap Lyapunov
PWL piecewise linear
rms root mean square
SDOF single degree of freedom
sim simulated
std standard deviation
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Abstract: In this paper, we solve the problem of estimating the parameters of a system of ordinary
differential equations from observations on a short interval of argument values. By analogy with
linear regression analysis, a sufficiently large number of observations are selected on this segment
and the values of the functions on the right side of the system and the values of the derivatives are
estimated. According to the obtained estimates, unknown parameters are determined, using the
differential equations system. The consistency of the estimates obtained in this way is proved with an
increase in the number of observations over a short period of argument values. Here, an algorithm
for estimating parameters acts as a system. The error of the obtained estimate is an indicator of its
quality. A sequence of inaccurate measurements is a random process. The method of linear regression
analysis applied to an almost linear regression function is used as an optimization procedure.

Keywords: system of ordinary differential equations; linear regression analysis; theorem of existence
and uniqueness; implicit function theorem; method of moments

MSC: 60J28

1. Introduction

The problem of estimating the parameters of a system of nonlinear ordinary differential
equations, based on inaccurate deterministic observations, using known optimization
algorithms, is solved in the papers [1–3]. An alternative approach for estimating the
parameters of a deterministic recurrent sequence, observed with random additive and
multiplicative errors, based on the relationships between the trajectory averages and their
approximation from inaccurate observations, is proposed in [4,5].

The advantage of the first approach is the possibility of using known optimization
algorithms, and the disadvantage of it is the lack of analytical estimates of the conver-
gence rate to the estimated parameters. The advantage of the second approach is the
availability of theoretical estimates of the convergence rate to the estimated parameters,
and the disadvantage of it is the need to establish limit cycles or limit distributions for
recurrent sequences.

Despite all the differences in these approaches, the common fact is that by increasing in
the length of the observation segment, the accuracy of estimates increases and, under certain
conditions, may tend to zero. At the same time, the problem of estimating parameters over
a small observation interval is interesting, which is closely related to discrete optimization
methods of experiment planning (see, for example, [6,7]).

In this paper, this problem is solved for a system of non-linear ordinary differential
equations. At the same time, the estimation of the parameters of this system, based on
inaccurate observations, is solved under the assumption that a large number of observations
may be carried out over a relatively short segment. To estimate the parameters, the method
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of linear regression analysis is used in relation to a regression function that slightly deviates
from the original function in a small neighbourhood of some time moment [8–13].

This method is based on minimizing the standard deviation of a sequence of ob-
servations from a linear regression function. In this case, such a relationship is selected
between the number of observations and the interval between neighbouring observations
so that the resulting error in determining the parameters tends to zero when the number of
observations tends to infinity.

The final stage of the parameter estimation algorithm is the substitution of estimates
of the values of functions and the values of their derivatives into the original system of
equations at the selected point. Further, by analogy with the method of moments, unknown
parameters of the system of equations are estimated and the consistency of the estimates
obtained is proved. This paper also uses the implicit function theorem, which allows us to
establish that the obtained parameter estimates are consistent depending on the number of
observations. Based on the results obtained, computational experiments were carried out.

Thus, elements of system analysis have been introduced into the solution of the task.
Here, an algorithm for estimating parameters acts as a system. The error of the obtained
estimate is an indicator of its quality. A sequence of inaccurate measurements is a random
process. Furthermore, the process and the method of linear regression analysis applied to
an almost linear regression function is used as an optimization procedure. It is evaluated
using the theorem on the existence and uniqueness of the solution of a system of ordinary
differential equations and with the help of the implicit function theorem. Additionally,
known error estimates in the linear regression analysis method are used.

2. Estimating the Coefficients of a System of Ordinary Differential Equations by
Inaccurate Observations

2.1. Preliminaries

Consider a system of ordinary differential equations with fixed values of parameters
βi = β0

i , i = 1, . . . , m,

dxi
dt

= Fi(x1, . . . , xm, β0
1, . . . , β0

m), i = 1, . . . , m, (1)

where x1 = x1(t), . . . , xm = xm(t) are unknown functions. In well-known monographs
on the theory of ordinary differential equations (see, for example, [14,15]), the theorem of
the existence and uniqueness of the solution of this system in a small neighbourhood of a
certain point is formulated and proved in Theorem 1.

Theorem 1. Assume that functions Fi = Fi(x1, . . . , xm, β0
1, . . . , β0

m) are continuous in a rectan-
gular parallelepiped Q = {(x1, ..., xm) ∈ Rm : x0

i − ai ≤ xi ≤ x0
i + ai, i = 1, .., m} together

with their partial derivatives
∂Fi
∂xi

, i = 1, ..., m. Then there is a segment t0 − r ≤ t ≤ t0 + r, on

which the system of Equation (1) has a unique solution satisfying the initial conditions xi(t0) = x0
i ,

i = 1, . . . , m.

Remark 1. From the Weierstrass theorem for continuous functions on a compact, it follows
that the functions xi(t), i = 1, ..., m, on the segment [t0 − r, t0 + r] (continuity follows from

differentiability) and function
∣∣∣∣Fi · ∂Fi

∂xi

∣∣∣∣, i = 1, ..., m, on a set Q (due to the continuity of the

multipliers) reach their highest final values Ci.

Denote

M0 = (x0
1, . . . , x0

m, β0
1, . . . , β0

m), Fi(M0) = F0
i , i = 1, . . . , m,

M′
0 = (x0

1, . . . , x0
m, F0

1 , . . . , F0
m, β0

1, . . . , β0
m),
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Gi(x1, . . . , xm, f1, . . . , fm, β1, . . . , βm) = Fi(x1, . . . , xm, β1, . . . , βm)− fi,

where Fi are described in Theorem 1, and consider the system of equations

Gi(x1, . . . , xm, f1, . . . , fm, β1, . . . , βm) = 0, i = 1, . . . , m. (2)

In monographs on mathematical analysis (see, for example, [16,17]), conditions are
formulated, under which the system (2) may be resolved with respect to variables β1, . . . , βm
(see for example Theorem 2).

Theorem 2. If the functions Gi, i = 1, . . . , m are continuously differentiable in the neighbourhood
of the point M′

0 and the Jacobian

∂(G1, . . . , Gm)

∂(β1, . . . , βm)

∣∣∣
M′

0

�= 0, (3)

then there are neighbourhoods U, V, W of points (x0
1, . . . , x0

m), (F0
1 , . . . , F0

m), (β0
1, . . . , β0

m), respec-
tively, such that the system of Equation (2) is uniquely solvable in the neighbourhood of U×V ×W
of the point M′

0 relative to the variables β1, . . . , βm. Moreover, if βi = gi(x1, . . . , xm, f1, . . . ,
fm), i = 1, . . . , m, is the specified solution, then all functions gi are continuously differentiable in
the neighbourhood U ×V and β0

i = gi(x0
1, . . . , x0

m, F0
1 , . . . , F0

m).

Remark 2. When the conditions of Theorem 2 are met, the functions gi, i = 1, ..., m, are continuous
at the point (x0

1, . . . , x0
m, F0

1 , . . . , F0
m).

2.2. Ordinary Differential Equation

Consider the differential equation for a fixed value of the parameter β = β0

dx
dt

= F(x, β0) (4)

with the initial condition x(0) = x0, assuming that the function F(x, β) is continuously

differentiable in the neighbourhood of a point M0 = (x0, β0) and
∂F
∂β

∣∣∣
M0

�= 0. Let the

inaccurate observations y(t) = x(t) + ε(t) are known for the state of x(t) at the moments
t = kh, k = 0,±1, . . . ,±n, hn ≤ r. Denote

εk = ε(kh), xk = x(kh), yk = y(kh) = xk + εk, F0 = F(x0, β0)

and suppose that εk, k = 0,±1, . . . ,±n, is a set of independent and identically distributed
random variables with zero mean and variance σ2. The problem of estimating the parameter
β0 of the differential Equation (4) from these observations is posed.

The solution of this problem is carried out in two stages. First, they are constructed
using a modification of the least squares estimation method x̂0, F̂0 and their convergence
to the estimated parameters x0, F0 is investigated. Then, by analogy with the method of
moments, an estimate of β̂0 is constructed and its convergence to the estimated parameter
β0 is investigated.

Evaluation of values x0, F0. Let us introduce the notations, outlining the method for
defining x̂0, F̂0

x̂0 =
∑n

k=−n yk

2n + 1
, F̂0 =

∑n
k=−n ykkh

∑n
k=−n(kh)2 . (5)

Theorem 3. If σ2 < ∞ and h = n−α, then, for α > 1, the estimate of x̂0 is an asymptotically
unbiased and consistent estimate of the parameter x0. The estimate F̂0 is an asymptotically unbiased
estimate of the parameter F0. At 1 < α < 3/2; the estimate F̂0 is a consistent estimate of F0.
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Proof of Theorem 3. Denote ỹk = x0 + F0kh + εk and put

x̃0 =
∑n

k=−n ỹk

2n + 1
, F̃0 =

∑n
k=−n ỹkkh

∑n
k=−n(kh)2 .

Estimates of x̃0, F̃0 are obtained by the least squares method for coefficients x0, F0 of
linear regression [9] and satisfy the following relations

Ex̃0 = x0, EF̃0 = F0, Varx̃0 =
σ2

2n + 1
, VarF̃0 =

σ2

∑n
k=−n(kh)2 . (6)

Here, Ex is mathematical expectation of arbitrary random variable x and Varx =
E(x− Ex)2 is its variance. In turn, the following equalities are almost certainly fulfilled

x̂0 − x̃0 =
∑n

k=−n(ŷk − ỹk)

2n + 1
, F̂0 − F̃0 =

∑n
k=−n(ŷk − ỹk)kh

∑n
k=−n(kh)2 . (7)

Moreover, the differences ŷk− ỹk = xk− x0− F0kh, k = 0,±1, . . . ,±n are deterministic
quantities.

The Remark 1 implies the existence of a number C satisfying the inequality

sup
|t|≤nh

|x′′(t)| = sup
|t|≤nh

∣∣∣∣∂F(x(t), β0)

∂x
F(x(t), β0)

∣∣∣∣ = 2C < ∞.

Then, from the Taylor formula with a residual term in the Lagrange form,

x(kh) = x(0) + F0kh +
(kh)2

2
x′′(khτk), |τk| ≤ 1, k = 0,±1, . . . ,±n,

inequalities follow

|xk − x0 − F0kh| ≤ C(kh)2, k = 0,±1, . . . ,±n. (8)

From the Formulas (7) and (8) for n → ∞, the relations follow

|x̂0 − x̃0| ≤ ∑n
k=−n |xk − x0 − F0kh|

2n + 1
≤ 2Ch2 ∑n

k=1 k2

2n + 1
∼ Ch2n2

3
, (9)

|F̂0 − F̃0| ≤ ∑n
k=−n |(xk − x0 − F0kh)kh|

∑n
k=−n(kh)2 ≤ Ch3 ∑n

k=1 k3

∑n
k=1 h2k2 ∼ Chn

4
. (10)

The Formulas (6), (9) and (10) lead to the relations

|Ex̂0 − x0| = |Ex̂0 − Ex̃0| % Ch2n2

2
, Varx̂0 = Varx̃0, (11)

|EF̂0 − F0| = |EF̂0 − EF̃0| % 3Chn
4

, VarF̂0 = VarF̃0. (12)

Here an % bn means that lim sup
n→∞

an/bn ≤ 1. Then from the condition h = n−α, α > 1,

and the Relations (11) and (12) we have

|Ex̂0 − x0| → 0, |EF̂0 − F0| → 0, n → ∞, (13)

that x̂0, F̂0 are asymptotic unbiased estimates of x0, F0.
From the Bieneme–Chebyshev inequality, the Relations (9) and (11) and the conditions

h = n−α, α > 1, we get for any δ > 0
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P(|x̂0 − x0| > δ) ≤ P(|x̂0 − x̃0|+ |x̃0 − x0|) > δ) = P(|x̃0 − x0| ≥ δ− |x̂0 − x̃0|) ≤

≤ σ2

(2n + 1)(δ− |x̂0 − x̃0|)2 → 0, n → ∞. (14)

Thus, for h = n−α, α > 1, estimate x̂0 is a consistent estimate of x0.
At the same time, from the Relations (10), (12) and (13) for h = n−α, 1 < α < 3/2, we

get for any δ > 0

P(|F̂0 − F0| > δ) ≤ P(|F̂0 − F̃0|+ |F̃0 − F0|) > δ)) =

P(|F̃0 − F0| > δ− |F̂0 − F̃0|) ≤ 3σ2

h2n3(δ− |F̂0 − F̃0|)2
→ 0, n → ∞. (15)

Therefore, if the condition h = n−α, 1 < α < 3/2, is true, the estimate F̂0 is a consistent
estimate of F0.

Remark 3. It is worth noting that Theorem 3 is true for any distribution of random variables εk with

finite variance σ2. Indeed it is necessary to prove limit relation Hn =
∑n

k=−n εkk
h ∑n

k=−n k2 → 0, n → ∞.

However, the most reasonable way to solve this question is to consider such distributions of ran-
dom variables εk as normal for σ2 < ∞/ or stable for σ2 = ∞, because Hn has normal/stable
distribution also.

Evaluation of parameter β0. Consider the equation

F(x̂0, β) = F̂0. (16)

Theorem 4. In conditions of Theorem 3, Equation (16) has a unique solution β̂0, which is a
consistent estimate of the parameter β0.

Proof of Theorem 4. Since the function F(x, β) is continuously differentiable in the neigh-

bourhood of the point M0 = (x0, β0) and
∂F
∂β

∣∣∣
M0

�= 0,, then the conditions of the theorem for

the function G(x, f , β) = F(x, β)− f are fulfilled. So, in some neighbourhood of the point
M′

0 = (x0, F0, β0), the equation is solvable with respect to β = g(x, f ), while β0 = g(x0, F0).
Then, from the Remark 2, we get that for any ε > 0 there exists δ(ε) > 0 such that in
the neighbourhood {(x, f ) : |x − x0| ≤ δ(ε), | f − F0| ≤ δ(ε)} of the point (x0, F0) the
inequality |β− β0| ≤ ε is executed.

It follows that with the specified choice of δ(ε), the relation is fulfilled

|x̂0 − x0| ≤ δ(ε), |F̂0 − F0| ≤ δ(ε) ⇒ |β̂0 − β0| ≤ ε. (17)

In turn, from the Relations (14) and (15) it follows that for any ε and δ(ε) there is such
a n0(ε, δ(ε)), that for any n > n0(ε, δ(ε)) inequalities are fair

P(|x̂0 − x0| ≤ δ(ε)) ≥ 1− ε

2
, P(|F̂0 − F0| ≤ δ(ε)) ≥ 1− ε

2
. (18)

Therefore, from the Relations (17) and (18) we have P(|β̂0 − β0| ≤ ε) ≥ 1− ε. Thus,
for any ε > 0, there exists n0(ε) such that for n > n0(ε), the inequality holds P(|β̂0 − β0| >
ε) < ε, which means consistency (convergence in probability at n → ∞) of the constructed
estimate.
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2.3. System of Differential Equations

Consider a system (1) with initial conditions xi(0) = x0
i , i = 1, . . . , m. We assume

that the functions Fi(x1, . . . , xm, β1, . . . , βm), i = 1, . . . , m, are continuously differentiable

in the neighbourhood of the point M0 and the Jacobian
∂(F1, . . . , Fm)

∂(β1, . . . , βm)

∣∣∣
M0

�= 0. Inaccurate

observations are known yi(t) = xi(t) + εi(t) for the state xi(t), i = 1, . . . , m, at moments
t = kh, k = 0,±1, . . . ,±n, hn ≤ r. Let εi(kh), k = 0,±1, . . . ,±nh, i = 1, . . . , m, is a set of
independent and identically distributed random variables with zero mean and variance
σ2. The task is to estimate the vector of parameters (β0

1, . . . , β0
m) of a system of differential

Equation (1) based on these observations.
Denote

x̂0
i =

∑n
k=−n yi(kh)

2n + 1
, F̂0

i =
∑n

k=−n yi(kh)
∑n

k=−n(kh)2 , i = 1, . . . , m. (19)

Theorem 5. If σ2 < ∞ and h = n−α, then, for α > 1, the estimate x̂0
i is an asymptotically

unbiased and consistent estimate of the parameter x0
i . The estimate F̂0

i is an asymptotically unbiased
estimate of the parameter F0

i . For 1 < α < 3/2, the estimate F̂0
i is a consistent estimate of the value

F0
i , i = 1, . . . , m.

Consider a system of equations

Fi(x̂1, . . . , x̂m, β1, . . . , βm) = F0
i , i = 1, . . . , m. (20)

Theorem 6. In conditions of Theorem 5 the system of Equation (20) has a unique solution
(β̂0

1, . . . β̂0
m), which is a consistent estimate of the vector of parameters (β0

1, . . . , β0
m).

The proofs of the Theorems 5 and 6 almost verbatim repeat the proofs of the Theorems 3
and 4.

Remark 4. Theorems 3–6 are devoted to ordinary differential equations of the first order and their
systems. However, it is possible to spread them to ordinary differential equations and their systems
of arbitrary order. For this purpose it is possible to use for examples results of [12,13].

2.4. Computational Experiment

Example 1. The computational experiment was conducted first for the Cauchy problem

dx
dt

= F(x, β0) = β0x, x(0) = 1, β0 = 0.5.

The solution of this equation has the form x = eb0t. We assumed that by observing the process
described by this equation, ±kh, k = 0, 1, ..., n, h = n−5/4, n = 10, 000, inaccurate observations
were obtained at time points y±k = e±b0hk + ε±k, k = 0, 1, ..., n.

Here, independent random variables ε±k, k = 0, 1, ..., n, are distributed uniformly
on the segment [−1/2, 1/2] left and on the segment [−1/4, 1/4] right. According to the
Formula (5), the parameters x0, F0 = F(x0, β0) in our notation x̂0, F̂0, were evaluated first,
then the formula for evaluating the parameter β0 was found from the equation F̂0 = x̂0 β̂0.
Table 1 shows the results of a computational experiment conducted 1000 times, namely, the
interval distribution (5 intervals) of relative frequencies β̂0.
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Table 1. Interval distribution of estimate β̂0 when ε±k has variance σ2 = 1/12 left and variance
σ2 = 1/48 right.

Distribution Relative Distribution Relative
Intervals Frequencies Intervals Frequencies

0.387413–0.432612 0.027 0.437796–0.460889 0.011
0.432612–0.477811 0.238 0.460889–0.483983 0.171
0.477811–0.52301 0.477 0.483983–0.507076 0.494
0.52301–0.568209 0.229 0.507076–0.53017 0.29

0.568209–0.613408 0.029 0.53017–0.553263 0.034

Consequently, a decrease in variance σ2 improves the quality of the obtained estimates
sufficiently clearly.

Now, consider the case in which independent random variables ε±k, k = 0, 1, ..., n,
are distributed normally with mean 0 and variance σ2. Table 2 shows the results of a
computational experiment conducted 1000 times, namely, the interval distribution (five
intervals) of relative frequencies β̂0.

Table 2. Interval distribution of estimate β̂0 when ε±k has variance σ2 = 1/12 left and variance
σ2 = 1/48 right.

Distribution Relative Distribution Relative
Intervals Frequencies Intervals Frequencies

0.393462–0.442011 0.062 0.435015–0.458419 0.014
0.442011–0.49056 0.328 0.458419–0.481824 0.144
0.49056–0.53911 0.458 0.481824–0.505228 0.47
0.53911–0.587659 0.143 0.505228–0.528632 0.322

0.587659–0.636208 0.009 0.528632–0.552036 0.05

Consequently, the quality of obtained results for disturbances distributed normally
behaves like in a case of uniform distribution.

Example 2. A computational experiment was also carried out for the system of Lorentz
equations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx
dt

= F1(x, y, z, σ0, r0, b0) = σ0(y− x),
dy
dt

= F2(x, y, z, σ0, r0, b0) = x(r0 − z)− y,
dz
dt

= F3(x, y, z, σ0, r0, b0) = xy− b0z,

(21)

with the given initial conditions x(0) = 1, y(0) = 2, z(0) = 1, in the case of σ0 = 1,
r0 = 2, b0 = 3. The solution of this system is not written out explicitly, but it is solved
by the finite difference method. We write out the corresponding equations for the grid
{±kh, k = 0, 1, ..., n} in increments of h = n−5/4, n = 10,000:⎧⎨⎩

x±(k+1) = x±k ± σ0h(y±k − x±k),
y±(k+1) = y±k ± h(x±k(r0 − z±k)− y±k),
z±(k+1) = z±k ± h(x±ky±k − b0z±k),

(22)

x0 = 1, y0 = 2, z0 = 1. We assumed that by observing the process described by these
equations, inaccurate observations were obtained

X±k = x±k + ε1(±hk), Y±k = y±k + ε2(±hk), Z±k = z±k + ε3(±hk), k = 0, 1, ..., n,

where εi(±hk), i = 1, 2, 3, k = 0, 1, . . . , n, are independent random variables, distributed
uniformly over a segment [−1/2, 1/2]. According to the Formula (19), the parameters
were evaluated first x0, y0, z0, F0

i = Fi(x0, y0, z0, σ0, r0, b0), i = 1, 2, 3, in our notation
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x̂0, ŷ0, ẑ0, F̂0
i , i = 1, 2, 3. Further, the estimates of the parameters σ0, r0, b0 were found

from the relations ⎧⎨⎩
F̂0

1 = σ(ŷ0 − x̂0),
F̂0

2 = x̂0(r− ẑ0)− ŷ0,
F̂0

3 = x̂0ŷ0 − bẑ0.
(23)

Table 3 shows the results of a computational experiment conducted 1000 times, namely,
the interval distribution of relative frequencies σ̂0, r̂0, β̂0.

Table 3. Interval distribution of estimates σ̂0, r̂0, b̂0.

distribution intervals σ̂0 relative frequencies σ̂0

0.883607–0.931473 0.035
0.931473–0.979339 0.275

0.979339–1.0272 0.486
1.0272–1.07507 0.192
1.07507–1.12294 0.015

distribution intervals r̂0 relative frequencies r̂0

1.89817–1.94253 0.038
1.94253–1.98689 0.242

1.98689–2.031262 0.471
2.03126–2.07562 0.224
2.07562–2.11998 0.025

distribution intervals b̂0 relative frequencies b̂0

2.87579–2.92301 0.021
2.92301–2.97022 0.267
2.97022–3.01744 0.457
3.01744–3.06466 0.231
3.06466–3.11188 0.024

3. Conclusions

Remarks 3 and 4 indicate the following possible generalizations of the results obtained
in Theorems 3–6. First, we should consider the case when the variance of random perturba-
tions σ2 decreases and so quality of obtained estimates improves. However, if the variance
σ2 = ∞ like in a case of heavy tails of disturbances distributions, then it is necessary to
consider stable distribution of random variables εk. Secondly, we should consider the case
of ordinary differential Equations (and systems) of higher than the unit order.

Furthermore, at last, along with systems of ordinary differential equations, the pro-
posed method for estimating parameters may be applied to equations or systems of partial
differential equations. As a basis for the development of this method of parameter estima-
tion, the theorem of the existence of a solution of partial differential equations system in
the vicinity of a certain point may be taken (see, for example, [18]).

4. Discussion

The solution of the considered problem involves the choice of an experimental plan,
the use of the theorem of existence and uniqueness for a system of ordinary differential
equations, the implicit function theorem and the method of linear regression analysis.
Linear regression analysis is based on minimizing of the root-mean-square deviation of the
sequence of observations from the linear regression function.

Practically, all the considered generalizations of the results obtained in the paper
arise at the junction of several scientific directions. These include probability theory and
mathematical statistics, ordinary differential and partial differential equations and their
systems, and mathematical analysis. Such tasks arising at the junction of several research
directions are usually considered in the system analysis, management and information
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processing. This circumstance determines the choice of this research topic and the ways to
solve the task and an application of optimization procedures.
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Abstract: This paper presents the results of an exploration of the most resilient influences determining
the attitude regarding prioritizing co-nationals over immigrants for access to employment. The source
data were from the World Values Survey. After many selection and testing steps, a set of the seven
most significant determinants was produced (a fair-to-good model as prediction accuracy). These
seven determinants (a hepta-core model) correspond to some features, beliefs, and attitudes regarding
emancipative values, gender discrimination, immigrant policy, trust in people of another nationality,
inverse devoutness or making parents proud as a life goal, attitude towards work, the post-materialist
index, and job preferences as more inclined towards self rather than community benefits. Additional
controls revealed the significant influence of some socio-demographic variables. They correspond to
gender, the number of children, the highest education level attained, employment status, income scale
positioning, settlement size, and the interview year. All selection and testing steps considered many
principles, methods, and techniques (e.g., triangulation via adaptive boosting (in the Rattle library
of R), and pairwise correlation-based data mining—PCDM, LASSO, OLS, binary and ordered logistic
regressions (LOGIT, OLOGIT), prediction nomograms, together with tools for reporting default and
custom model evaluation metrics, such as ESTOUT and MEM in Stata). Cross-validations relied on
random subsamples (CVLASSO) and well-established ones (mixed-effects). In addition, overfitting
removal (RLASSO), reverse causality, and collinearity checks succeeded under full conditions for
replicating the results. The prediction nomogram corresponding to the most resistant predictors
identified in this paper is also a powerful tool for identifying risks. Therefore, it can provide strong
support for decision makers in matters related to immigration and access to employment. The
paper’s novelty also results from the many robust supporting techniques that allow randomly, and
non-randomly cross-validated and fully reproducible results based on a large amount and variety of
source data. The findings also represent a step forward in migration and access-to-job research.

Keywords: immigration; access to employment; regression and classification models; collinearity and
reverse causality checks; performance comparisons and reporting; triangulation; cross-validations;
full support for replication of results

MSC: 60-02

1. Introduction

A well-known saying by Andrew Smith states: “People fear what they don’t under-
stand and hate what they can’t conquer”. Migration is a generalized phenomenon as old as
humanity [1]. Moreover, it seems to belong to all historical periods and all continents. Con-
sequently, it became an issue of growing public concern [2]. In today’s highly globalized
and knowledge-based economies [3], migration is responsible for affecting individuals and
societies multi-dimensionally [4]. According to Kanbur and Rapoport (2005) [5], its effects
apply to both countries of origin and destination, and some of them relate to brain drain
and widening income gaps [6].
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In terms of migration motivations, the search for jobs [7,8] is one of them and the
basis for the hope of a stable [9], if not better, life [10]. The latter seems natural to human
beings [11]. Sensitivity to immigration, a process that affects both the immigrants and the
native population [12], depends significantly on the country under consideration [13]. A
well-known example of negative public perception is related to the concern that immigrants
take the jobs of native-born workers [14–16]. Additionally, this will be translated into
negative feelings of native residents towards immigrants and even less supportive attitudes
towards pro-immigration policies [17], more as an expression of fear. These labor-market-
related concerns [18] considered together with some other economic worries, such as the
competition for economic and political power, social status, and the concern for crimes
affecting individual security and material welfare form a large category known as realistic
threats [19], the latter perhaps is even an expression of hatred.

In the same category of realistic threats (many of macroeconomic nature), we can find
another explanation for negative perceptions of immigrants. This explanation seems to be
related to the competition for limited resources [20–22] as a primary source of the conflict of
interests between groups [23], mainly focused on cost–benefit reasons coupled with some
other considerations such as geographical disproportions [24].

Other studies are more focused on socio-demographic and individual features. They
show that women and those with higher education and income were more positive to-
ward immigration, whereas older people and people with more seniority at work were
considerably more negative [25]. The latter is confirmed in studies focused on comparing
young people with adults in such specific terms [26]. Still, recent studies indicate that
younger generations may, in fact, harbor more negative attitudes towards immigrants [27].
In addition, people who subscribe to conservative political ideologies are more likely to
show negative attitudes toward immigrants [28]. Moreover, some personality traits, such
as social domination orientation and right-wing authoritarianism, which reflect attitudes
toward social hierarchy, equality, respect for authority, and traditional values, can condition
individual perceptions of immigrants as inferior or even a threat [29,30].

Regarding another category of threats, namely the symbolic ones, Mangum and
Block (2018) [31] consider that social identity affects public opinion on immigration and
immigrants. In these terms, cultural differences coupled with the size of the minority
group can act as threats to the values and identity of the majority [32]. Closely related
to individual traits, other scholars [33] have shown that more educated people place a
much higher value on the cultural diversity of society, believing that immigration generates
benefits for society. The latter suggests that education is a transformative force capable
of changing individual and collective values, and also encouraging people to be more
confident, tolerant, and open [34].

Therefore, in addition to apparent reasons such as fear or hatred, attitudes towards
immigrants and their access to jobs depend to a large extent on a whole range of more
complex reasons related to individual and group characteristics, including personality
traits, age, level of education, values and attitudes transmitted and developed, cultural
diversity, and policies related to these phenomena. And this, of course, without claiming
that this list is exhaustive.

The article further reviews the literature on the perceptions related to both migration
and migrants as potential occupants of jobs. Then, it describes the data and methodology
used, before presenting and discussing the main findings in a dedicated section. The
latter captures the focus of the current study, namely the discovery of the determinants of
the public perception’s preference for citizens over immigrants regarding access to jobs.
Additionally, this is achieved by insisting on emphasizing causal relations and eliminating
redundancies after performing many robustness checks in advance.

2. Related Work

According to Ambrosini (2013) [35], at a certain point, many local governments
developed a policy of excluding immigrants, motivated by reasons of security, the priority
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of national citizens’ access to various social benefits, and the defense of the cultural
identity of the territory. Additionally, the opposite could work here, which means that
such policies inevitably generate some perceptions [36] and indirectly change the public
perception of immigrants. In some cases, they can destabilize the moral panics nurtured
by it [37]. However, the relationship between the two exists and was a source of some
debates and discussions in the literature [2,38,39]. Ivarsflaten (2005) [40] even compared
the impact that some elites exert, which has the potential to impact change in the public
perception that diversity poses a threat. This author concluded that the former would
undoubtedly be less significant.

Regarding the Big Five personality traits and their potential impact on immigration
acceptance, Rueda (2018) [41] stated that altruism is an important omitted variable in
many political economy studies, which focuses on self-interest rather than on aversion
to inequality. Stafford (2020) [42] examined the relationship between attitudes towards
immigration and the Big Five personality traits. She found that personality traits, especially
those related to altruism, are not just simple influences but essential determinants of
attitudes toward immigrants, even with controls for political predispositions and socio-
demographic characteristics.

Kunst et al. (2015) [43] discuss the common identity notion, which seems to be crucial
for securing the altruistic efforts of the majority to integrate immigrants and, thus, for
achieving functional multiculturalism. Still, some research on multicultural beliefs [44] has
shown that multiculturalism can cause negative reactions against immigrants and minority
groups. This is because the members of the majority sometimes perceive it as threatening
their position and identity [45]. Moreover, other studies [46,47] suggest a strong relation
between immigration acceptance and emancipative and democratic values. The latter is
not necessarily incompatible with the idea of multiculturalism [48]. On the other hand, the
perceived high discrimination and lack of acceptance hinder the positive impact of any
integration guidelines [49].

In terms of interpersonal trust, according to Pellegrini et al. (2021) [50], this is a
mediator between the experienced social exclusion and anti-immigrant attitudes. The
experience of being socially excluded reduces feelings of generalized interpersonal trust
that, in turn, promote hostile attitudes towards immigrants. Rustenbach (2010) [51] found
this type of trust to be a strong predictor of anti-immigrant attitudes.

According to Ensign and Robinson (2011) [52], conventional thinking suggests that
immigrants have no choice but to work as entrepreneurs or be self-employed, which is
somehow to the detriment of the idea that entrepreneurial attitudes make them migrate.
Moreover, it is worth mentioning that employers assign particular meanings to the migrant
identity [53], which allows them to enjoy the benefits of cheap, exploitable, and hard-
working employees. In some cases, migrants use this identity to obtain jobs, enduring
exploitation, including the peculiar form of working below their skill level. Still, accepting
hard work at lower wages [54] is explained by the dreams of future self-employment of the
immigrant workers.

Therefore, considering the arguments presented here and in the Introduction section,
the main hypotheses of this paper are:

H1. The opinion on immigration policy is closely related to or even a determinant of the level of
public acceptance of immigrants as potential job occupants [35,55].

H2. Those who subscribe to altruism [56], including working in the benefit of large communities,
emancipative values [57], and against any discrimination no matter the type [58], ideologies
including multiculturalism [59], and trust in people no matter their origins, are more inclined to
accept immigrants when it comes to access to jobs.

H3. The ones being more attached to their cultural values and traditions [60] as part of their national
identity [61–63] are more likely to be against immigrants as potential job occupants.
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H4. The attitude towards work and entrepreneurship (as an expression of independence) could be a
determinant for this specific type of immigrant acceptance [64–66].

H5. The respondent’s socio-demographic features are also significant predictors for this kind of
acceptance [67,68].

3. Materials and Methods

This article started from one of the most comprehensive datasets of the World Values
Survey (WVS). The latter (version 1.6, WVS_TimeSeries_stata_v1_6.dta) includes 1045
variables and 426,452 observations. Its .csv export followed the simple binary derivation
(C002bin) of the original variable to analyze (C002, Jobs scarce: Employers should prioritize
nation people than immigrants). Additionally, this was achieved by considering the two
extremes of its original three-point scale (Agree, Disagree, Neither—Tables A1 and A2,
Appendix A). The option to generate numerical values for labeled variables was enabled
when exporting.

The next step was to load this .csv export into the Rattle data mining interface (version
5.4.0) of R, then set C002bin as the target, ignore its source (C002) from the list of inputs and
apply the adaptive boosting technique for the decision tree classifiers [69]. This step was
performed [70,71] using default settings (Figure 1) to discover the most important related
variables. The latter was the 1st data mining and selection round.

 

Figure 1. The results of the first selection round using adaptive (Ada) boosting in Rattle.

A consolidation of the set of variables used followed. It involved the ones remain-
ing after the previous step. In some cases, such as with aggregate indexes, it included
their sources.

The 2nd selection round stood on a set of filters applied. First, they met a minimum
threshold of 0.1 [72] for the absolute values of pairwise correlation coefficients [73] between
each recoded variable from the previous step and the one that was to be analyzed. In
addition, there was a minimum value of the corresponding significance (min p = 0.001) and
a minimum support afferent to a minimum number of valid observations (at least a third
of the total number) for each pair.

A processing/recoding phase followed. It involved all remaining variables (after the
2nd selection phase). Additionally, some socio-demographic ones for control and cross-
validations purposes benefited this treatment. It mostly meant removing the missing and
DK/NA (do not know/no answer) values [74] and reversing the scales in the case of larger
values which do not reflect higher intensities, but vice versa.
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Next, the 3rd selection phase occurred using mixed-effects modeling [75–77] in Stata
17 MP (64-bit version). The latter included both fixed-effects (the remaining variables after
the 2nd selection phase and recoded at the previous step—top of Table A1, Appendix A)
and random effects (clusters on gender, age, marital status, number of children, education
level, income level, professional situation, region, settlement size, and survey year—bottom
of Tables A1 and A2, Appendix A). Only those variables not losing significance no matter
the clustering criteria and the mixed-effects regression type (both the melogit for the binary
form of the response variable and the meologit for the one having values on a scale) resulted
in this selection point.

Next, the 4th selection round took place also in Stata. It consisted of successive
invocations (stages) of two powerful commands in the LASSO [78] package (CVLASSO to
perform random cross-validations and RLASSO for controlling overfitting) until there was
no loss in selections.

At the next step (5th round), reverse causality checks served the selection. The latter
meant using pairs of individual models built by taking only each of the remaining influences
and the variable to analyze (wished roles) and by reversing their roles (the response becomes
an input and vice versa or reversed roles). Only some resulted after using ordered logit
regressions. It is about the ones generating more explanatory power [79]/larger R-squared
(or pseudo R-squared in the form of McFadden’s R-squared as reported by Stata for non-OLS
regressions such as logit, ologit, meologit, etc.—explanations by Professor Richard Williams of
the University of Notre Dame, https://www3.nd.edu/~rwilliam/stats3/L05.pdf (accessed on
25 January 2023) and more information gain/smaller values for both AIC and BIC [80] for the
wished roles vs. the reversed ones. They acted as determinants (predictors).

The 6th selection phase focused on testing the existing collinearity between the re-
maining influences (those emerging after the 3rd phase) and the selected predictors (those
resulting after the 4th). Ordinary least squares (OLS) regressions served, and the computed
VIF (variance inflation factor) stood against (Equation (1)) the maximum accepted VIF
threshold of the model [81,82]. In addition, the maximum absolute values from the matrices
with correlation coefficients (maxAbsVPMCC) [83] corresponding to both influences and
predictors were objects of evaluation [72,84].

Model’s maximum accepted VIF = 1/(1 − model’s R-squared) (1)

Additionally, a prediction nomogram [85] resulted when using the nomolog command
(after its previous installation using the following command: net install st0391_1, replace
from (http://www.stata-journal.com/software/sj15-3), and considering the most stalwart re-
maining predictors).

Finally, each socio-demographic variable previously used for cross-validations served
controlling purposes (new models). The latter meant adding them one by one on top of the
existing most robust model. They included the most resilient predictors emerging after the
previous selection round.

All data processing and tests took place on a Windows Server Datacenter virtual ma-
chine (Intel Xeon Gold 6240 CascadeLake CPU and ~32 Gigabytes of memory) in a private
cloud. The reporting of the results mainly benefited from the estout prerequisite package
(ssc install estout, replace) with support for both the eststo and esttab commands [86,87],
allowing the direct generation of tables (in the console and as external files, respectively)
with default performance metrics, as well as some additional ones [83] of well-known
statistical models.

As the reviewers of this manuscript have suggested (and I thank them very much
for this observation), there are significant differences between data mining and statistics.
Among others, they concern the approaches and techniques used, the propositions and
hypothesis statement (loosely vs. well-defined), and the considered type and volume of
data (all available vs. sample; several million to a few billion data points vs. hundreds
to thousands). In addition, there are also consistent differences between exploratory
approaches and those specific to empirical science. This paper benefits from the advantages
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of all these categories. The letter is coupled with those emerging when comparing the
results obtained this way with the ones from the existing scientific theory.

4. Results

After performing the first selection step using adaptive boosting (in the Rattle library
—https://rattle.togaware.com of R, accessed on 22 October 2022), a set of 38 variables
resulted (Figure 1).

As seen in Figure 1, one way to look at the importance of the resulting variables is by
considering their corresponding frequencies of use in the tree construction.

The next concern before going to the second selection step, dedicated to filters on
absolute values of pairwise correlation coefficients, was to find and keep (consolidation)
only the sources of the following variables:

(a) Y011 as DEFIANCE—Welzel defiance sub-index with three components (AUTHOR-
ITY or inverse respect for it, NATIONALISM or inverse national pride, and DEVOUT
or Inverse Devoutness) derived from E018 (Future changes: Greater respect for the
authority), G006 (How proud of nationality), and D054 (One of the main goals in life
has been to make my parents proud);

(b) Y020 as RESEMAVAL—Welzel emancipative values index (https://www.worldvaluessurvey.
org/WVSContents.jsp?CMSID=welzelidx&CMSID=welzelidx, accessed on 22 October 2022)
with four classes of components dedicated to AUTONOMY (A029 as Important child qualities:
independence, A034 as Important child qualities: imagination, and A042 as Important child
qualities: obedience), EQUALITY (C001_01 as Jobs scarce: Men should have more right to a job
than women, D059 as Men make better political leaders than women do, and D060 as University
is more important for a boy than for a girl), CHOICE (F118 as Justifiable: Homosexuality, F120 as
Justifiable: Abortion, and F121 as Justifiable: Divorce), and VOICE (E001 as Aims of the country:
first choice, E002 as Aims of the country: second choice, E003 as Aims of respondent: first choice,
and E004 as Aims of respondent: second choice);

(c) Y022 as EQUALITY—Welzel equality sub-index as C001, D059, and D060;
(d) SurvSAgg that served to build the cultural map (https://www.worldvaluessurvey.

org/WVSContents.jsp?CMSID=tradrat&CMSID=tradrat, accessed on 22 October 2022)
starting from a set of source variables:

- A008 (Feeling of happiness).
- A165 (Can most people be trusted?).
- E018 (Future changes such as greater respect for authority).
- E025 (Political action such as signing a petition).
- F063 (How important is God in your life?).
- F118 (Is homosexuality justifiable?).
- F120 (Is abortion justifiable?).
- G006 (How proud of nationality?).
- Y002 (Post-materialist index 4-item).
- Y003 (Autonomy index).

After this consolidation point, 51 unique variables resulted: A008 (Section 4 (d) above),
A029, A034, and A042 (Section 4 (b) above), A124_06 (Neighbors: Immigrants/foreign
workers), A124_07 (Neighbors: People who have AIDS), A124_09 (Neighbors: Homo-
sexuals), A165 (Section 4 (d) above), A191 (It is important to this person living in secure
surroundings), C001_01 (Section 4 (b) above), C004 (Jobs scarce: older people should be
forced to retire) C009 (First choice, if looking for a job), C038 (People who don’t work turn
lazy), D054 (Section 4 (a) above), D059, and D060 (Section 4 (b) above), D063_B (Job best
way for women to be independent), D066_B (Problem if women have more income than
husband), E001, E002, E003, and E004 (Section 4 (b) above), E018 (Section 4 (a) and above),
E025 (Section 4 (d) above), E143 (Immigrant policy), E226 (Democracy: People choose their
leaders in free elections), E247 (Priority: Global poverty versus National problems), F063,
F118, and F120 (Section 4 (d) above), F121 (Section 4 (b) above), G006 (Section 4 (d) above),
G007_36_B (Trust: People of another nationality), G015 and G015B (citizenship), G016
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(Language at home), G017 (birth country), G027A (Respondent immigrant), G059 (Effects of
immigrants on the development of own country), G061 (Measures taken by the government
when people from other countries are coming here to work), S003 (ISO 3166-1 numeric
country code), S006 (Original respondent number), S007 (Unified respondent number),
S010 (Total length of interview), S016 (Language in which interview was conducted), S018
(weight), S020 (Year of survey), S021 (Country-wave-study-set-year), X048ISO (Counties
and Country Macroregions ISO 3166-2), Y002, and Y003 (Section 4 (d) above).

After performing the second phase meant for filters starting from pairwise correlation
coefficients as absolute values (≥0.1), together with their significance (p < 0.001) and
support (at least a third of the data or N > 142,150), 19 variables resulted as indicated in
Table 1. The same results were more easily achieved using the PCDM command (Stata
script at https://tinyurl.com/25pd6mx6, accessed on 30 January 2023) in Stata [73] and
three parameters (minacc (0.1) minn (142,150) maxp (0.001)) corresponding to those three
filters above.

Table 1. Tabular view of the results of the second selection round based on magnitude of correlation
coefficients, support, and significance.

Outcome(y) Input(x) Correl.Coef.(CC) Abs.Val.CC(ACC) No.Obs.(Nobs) Signif.(p)

C002bin A124_06 0.107909689 0.107909689 319909 0
C002bin A124_07 0.142095439 0.142095439 317298 0
C002bin A124_09 0.149715072 0.149715072 311613 0
C002bin A165 0.100856547 0.100856547 318679 0
C002bin C001_01 −0.127478411 0.127478411 327400 0
C002bin C009 −0.134529402 0.134529402 154481 0
C002bin C038 −0.160784424 0.160784424 150894 0
C002bin D054 −0.138970602 0.138970602 297639 0
C002bin D059 −0.207249289 0.207249289 292549 0
C002bin D060 −0.136010212 0.136010212 298000 0
C002bin E025 0.142892051 0.142892051 298829 0
C002bin E143 0.162277299 0.162277299 162113 0
C002bin F063 0.138614001 0.138614001 314495 0
C002bin F118 −0.215562546 0.215562546 298557 0
C002bin F120 −0.158791514 0.158791514 309204 0
C002bin F121 −0.132066862 0.132066862 316046 0
C002bin G007_36_B 0.15077934 0.15077934 181140 0
C002bin Y002 −0.133265316 0.133265316 316151 0
C002bin Y003 −0.104665323 0.104665323 326701 0

The next concern before going to the third selection step (dedicated to cross-validations
on specified criteria) was to recode (“nt” call sign meaning null treatment) the remaining
variables (all 19 in Table 1). In addition to these, the ones to be used as clustering criteria in
cross-validations or for further controls were recorded as well. The main concern here was
to remove missing and DK/NA answers and adapt the scales to the original meaning of
the source questions (Listing A1 and Tables A1 and A2, Appendix A).

The results after the third selection phase relied on mixed-effects modeling. They
consisted of discovering and emphasizing the resisting influences (ten from 19, Table A3)
no matter the chosen clustering criteria from the set of socio-demographic variables (bottom
of Listing A1, lines 49–70, Appendix A section), including the year of the survey (S020,
which did not require processing). Just ten influences from the previous list of 19 proved to
be robust in this third selection round (Table A3), namely: A124_06nt, C001_01nt, C009nt,
C038nt, D054nt, D059nt, E143nt, F118nt, G007_36_Bnt, and Y002nt. The remaining eight
influences failed at least in one scenario (A124_07nt-models 6, 9, 11–22; A124_09nt-models
6, 7, 10, 11, and 22; A165nt-model 11; D060nt-models 2–11, 21, and 22; E025nt-models 1–8,
10–19, 21, and 22; F063nt-models 9, and 20; F120nt-models 9, 20, and 22; F121nt–models 9,
11, 20, and 22; Y003nt-models 1–11, 12–15, and 17–22).

253



Mathematics 2023, 11, 786

The fourth selection round (Stata script at https://tinyurl.com/4x3ez5y9, accessed
on 30 January 2023) used CVLASSO and RLASSO and the remaining ten variables. It
encountered no loss in selection.

The fifth selection round dedicated itself to reversing causality checks. In addition, it
removed one influence from the remaining ten (ordered logit—Table A4) when focusing
on the predictors/determinants (the sense of the influences was counted). It gave up
A124_06Cnt (Neighbors: Immigrants/foreign workers).

The sixth selection round, responsible for discovering evidence of collinearity (OLS
max.Comput.VIF overpassing OLS max.Accept.VIF), further eliminated two variables
(D059nt and F118nt—Table A5). Consequently, four matrices with correlation coefficients
(only for the predictors in Models 1 and 2, 5 and 6, 9 and 10, and 15—Figure 2) additionally
resulted. D054nt was temporarily removed (Models 9 and 10) because of being collinear
with F118nt. The latter brought a higher accuracy and an R-squared value (Model 7 vs.
Model 8 in Table A5). However, later, after removing F118nt (collinear with C001_01nt,
Models 11 and 12), D054nt was added back (Logit Model 15 had the highest accuracy—
AUCROC = 0.7852) and generated no collinearity (Table A5—Model 16).

 

Figure 2. Assessing collinearity using consecutive matrices with correlation coefficients only for
predictors (Stata script at https://tinyurl.com/ueefxfmd, accessed on 30 January 2023).

When cross-validating again (second stage: Stata script at https://tinyurl.com/mwb6
nher, accessed on 30 January 2023) starting from these seven remaining determinants
and the same clustering criteria for cross-validations (including counties and country
macroregions—X048WVSnt), no loss in selection occurred.

In terms of support (Stata script at https://tinyurl.com/f868yab4, accessed on 30 Jan-
uary 2023), more than 45,000 observations corresponding to a single wave served in most
cases. Additionally, this is because all seven predictors and the response variable were
considered simultaneously only in Wave 5 (2005–2009).
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A prediction nomogram (Figure 3, nomolog command in Stata) starting from binary
logistic regressions (Table A5—Model 15) served visual interpretations for all seven remain-
ing determinants. This model, which has seven predictors, generated an R2 of 0.1799 and a
fair-to-good accuracy (AUCROC of 0.7852). The maximum theoretical probability for the
most advantageous combination of variable values (Figure 3) is more than 0.99. The latter
corresponds to a total score of 39.55 (second X-axis—bottom of Figure 3) as the top-down
sum of 3.5, 6.75, 7.6, 4.6, 4.4, 2.7, and 10, values determined relatively easily after drawing
perpendiculars to the first X-axis (Score). For other combinations of values (e.g., right edge
of Figure 3), these seven predictors were identified as the most important ones; lower total
scores emerged (e.g., 21.95). They indicated less critical cases and a lower corresponding
probability (e.g., >0.8) of prioritizing the nation’s people to the detriment of immigrants
regarding access to jobs. This nomogram also suggests the magnitude of the marginal
effects (visually as segments corresponding to the unit difference on any scale—Figure 3
and Model 1, Table A7, Appendix A) for those seven robust determinants. In addition, it
serves to understand the cumulated effect size by considering the amplitude of any scale
visible in this representation.

 

Figure 3. Risk prediction nomogram corresponding to the most resilient predictors (generated using
the nomolog command in Stata).

Further controls (Table A6, Appendix A) are based on all seven most resilient predictors
(Figure 3) and each of those eleven socio-demographic variables already used in cross-
validations. All confirmed the robustness of the already identified hepta-core base model
(Figure 3 and Models 1 and 13, Table A6, Appendix A), but only seven of them (Models 2,
6–9, 11, 12, 14, 18–21, 23, and 24, Table A6, Appendix A) proved to be significant. The best
models here are those additionally emphasizing the role of the settlement size (X049nt,
Model 11, based on a logit regression, and Model 23, based on an ologit one, Table A6,
Appendix A). They have the highest McFadden’s pseudo R-squared (0.1937 for logit and
0.1108 for ologit), AUC-ROC (0.7946), and the lowest AIC (29162.5254 and 58024.8556) and
BIC (29238.7119 and 58110.7761) if compared to the base ones (containing only those seven
predictors—Models 1 and 13, Table A6, Appendix A).

Moreover, only for these seven additional confirmed influences were the correspond-
ing models also reported using coefficients computed as average marginal effects (Table A7,
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Appendix A) and containing direct references to the hypothesis codes. The performance
metrics (e.g., pseudo R-squared, AUC-ROC, AIC, and BIC) are the same as in the case of
Models 1, 2, 6–9, 11, and 12, Table A6, Appendix A). The interpretation of the coefficients in
Table A7 (Appendix A, immediately above the errors reported between round parentheses)
follows a simple rule. Each such value indicates the effect of an increase (for positive
coefficients)/decrease (for negative ones) by one unit in the value of the corresponding
variable (for a given model) on the target variable. This effect translates into the probabil-
ity of finding it acceptable for employers to prioritize their employees over immigrants
increasing by the same value (as the one of the coefficient) but in percentage points.

5. Discussion

The most important of these seven predictors is magnitude (the descending order of
scale amplitudes as a visual representation can be found in Figure 3), which corresponds to
the attitude towards gender inequality in terms of jobs. It indicates that people agreeing
that men should have more rights to a job than women. It is a fact that they are also more
likely to accept the idea that employers should prioritize co-nationals than immigrants in
case of job scarcity (positive influence or the maximum value of 2 on the right—Figure 3).
The latter means that the attitude to the first type of inequality regarding access to jobs
(the gender-related one) is the best predictor of the one towards the second type (the
immigration-related one). This finding is in line with the already documented relations
between gender and migration when it comes to various kinds of discrimination, as
mentioned in the scientific literature [88–90].

The second most important determinant when considering the same magnitude crite-
rion seems to correspond to the permissiveness level of the immigration policy. As expected,
the latter shows that the ones manifesting a lower level of this type of permissiveness are
also more likely (negative influence or the minimum value of 0 on the right—Figure 3)
to accept the idea of prioritizing citizens over immigrants in the event of job shortages
(validation of H1). Although this finding seems almost obvious, the relationship between
migration policy and job discrimination is a complex and well-studied one [91–93].

The third most potent predictor found (Figure 3 and Model 15 in Table A5) is related to
the level of trust in people of another nationality. It means that the people with a lower level
for this type of trust are also more likely (negative influence or the minimum value of 0 on
the right—Figure 3) to accept that employers should prioritize citizens over immigrants
in case of lack of jobs. The latter is in line with the findings of other scholars [94–96] and
contributes to the validation of H2.

The fourth mightiest determinant corresponds to extrinsic motivations (one of the
principal life goals of the respondents is to make their parents proud, also known as
devoutness and partially related with traditions due to the interpretation of familism as
one of their foundations [97]). That has a positive influence on the response variable. Its
maximum value of 3 on the right is observable in Figure 3. It means that people more
motivated this way (or devoted to parents in these terms) are also more likely to prioritize
their co-nationals in case of job shortages. This finding also stands when considering the
existing scientific literature [98,99]. Additionally, it applies if starting from the connection
of both items with the notion of power distance. More specifically, the question specifying
whether agreeing with making one’s own parents proud is assumed to extend to the family.
Moreover, it captures the obedience and hierarchy in the family concepts. The one as to
whether nationals are privileged over immigrants when jobs are scarce is directly related to
the definition of power distance. The particular way the devoutness works contributes to
validating H3.

The next most important predictor (fifth) relates to the acceptance level regarding the
idea that people who do not work turn lazy (also with a positive influence—the maximum
value of 4 on the right, as seen in Figure 3). The latter shows that people more inclined to
accept this attitude towards work are also more protective of the nation’s people’s access
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to jobs. This finding complements other findings in the scientific literature, revealing the
limitations of migrant working identity [53,100].

The sixth most potent determinant concerns the post-materialist index (the version
with four items), which has a negative influence (the minimum of 1 on the right—Figure 3).
The latter refers to people with a lower appetite for postmaterialist values or less need
for independence and fulfillment of personal objectives in life [101]. They are also more
likely to prioritize their co-nationals at the expense of immigrants as access to employment.
This finding is in line with the ones of [102], through the concept of subjective well-being
associated with endorsement of democracy, greater emphasis on postmaterialist values,
and less intolerance (more tolerance) of immigrants and members of different racial and
ethnic groups.

The specific way these two predictors function means a complete validation of H4.
The last most important predictor in terms of magnitude corresponds to the variable

measuring the preference regarding a job with benefits for the community rather than
individual ones (negative influence—the minimum value of 1 on the right—Figure 3). It
indicates that people are less likely to prefer community-oriented jobs; on the contrary, they
are more oriented towards individual benefits when it comes to a job or are simply more
selfish [103]. They are more inclined to protect the nation’s people in case of job shortages.
The latter contributes to the full validation of H2.

Next, all seven resilient predictors previously found (Figure 3) stood as a strong base
for further controls (Table A6, Appendix A). Those used all socio-demographic criteria
involved in cross-validations. Only seven of those criteria indicated significance.

First, the gender influence (Models 2 and 14, Table A6, Appendix A) indicates that
female respondents are more protective of citizens than immigrants regarding access to
jobs. It means that women are more likely to consider it more justifiable for employers to
prioritize the people of their nation than men. The latter is in line with some findings in the
literature [104,105] and contradicts others [106].

An additional socio-demographic variable was found significant (income scale,
Models 9 and 21, Table A6, Appendix A). By its sign (negative), the latter indicates that
those who earn more are less inclined to consider it justifiable for employers to prioritize
nationals than immigrants. This idea stands in the light of the findings of Chandler
and Tsai (2001) [107], Tucci (2005) [108], Tavakoli and Chatterjee (2021) [109], and Ruhs
(2018) [110]. For the last author, this is especially true for high-skilled migrants. The same
applies to those with a higher education level (Models 7 and 19, Table A6, Appendix A).
Additionally, this is also in line with the findings of Tavakoli and Chatterjee (2021) [109].
They concluded that an additional level of education on the earnings of an individual
and his family income will bring better financial welfare and security. In turn, the latter
will reduce the perception of the economic threat of immigrants. The same is true for
those with an employment status more near a full-time job (Models 8 and 20, Table A6,
Appendix A) and the opposite (positive coefficient sign) for the ones having more children
(Models 6 and 18, Table A6, Appendix A). These last two findings are consistent with
those on the income dependence of the response variable. The latter state that people in
higher-income groups are more tolerant towards immigrants [111], more positive in their
attitudes to them [112], and show significantly lower levels of welfare chauvinism [113].

Another significant control variable corresponds to the settlement size (Models 11 and 23,
Table A6, Appendix A). The latter contributes to the best models (largest McFadden pseudo
R-squared, AUC-ROC, and lowest AIC and BIC) with eight predictors (hepta-core plus each
additional control), as already emphasized at the end of the Results section above. Due to
its sign (negative), it shows that people from larger communities (bigger cities) are also less
inclined to consider it acceptable for employers to prioritize nationals to the detriment of
immigrants. In the case of Europe, this finding stands, and such respondents are more likely
to have more tolerant attitudes towards immigrants [111]. Similarly, with direct reference
to the case of Canada, other scholars [114] highlighted a particularity of large urban areas
when compared with the small ones, namely, the existence of immigrant service providers and
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language-training venues. By contrast, in Russia, for example, people living in the countryside
are the least xenophobic, while the population of big cities is the most xenophobic [115]. All
these mean the partial validation of H5, when considering that some socio-demographic
variables were not found to be significant (e.g., age, marital status).

Due to its positive coefficient sign, the last significant control variable (the survey
year, Models 12 and 24, Table A6, Appendix A) indicates a relevant finding. Despite
the undeniable globalization and the rise of multiculturalism, over time, people have
increasingly come to believe that it is more acceptable for employers to prioritize citizens
over immigrants. The latter contradicts studies focused on general attitudes towards
immigration [116] or integration of immigrants [117] based on considering specific regions
and expanding for a shorter time.

As expected, due to its nature (nominal numerical codes originally unrelated to a spe-
cific intensity scale), the variable corresponding to the counties and country macroregions
(X048WVS—in the given form) in which the interview took place did not prove to be statistically
significant as a control variable. Still, it has proven to be extremely important [118,119] for
cross-validations. The same argument (numerical codes originally unrelated to an intensity
scale but useful for cross-validation) applies to the values of the variable corresponding to the
country code (S003—ISO 3166-1 numeric country code). Still, the latter was identified in the
first selection round (adaptive boosting—right side of Figure 1). Therefore, differences among
countries are expected beyond these seven common predictors, referred to as a hepta-core
model. However, the specific features of countries and particular regions (e.g., a dummy vari-
able referring to whether a country is ex-communist or not [120], some country-dependent
measures of economic activity such as GDP or the ratio between stock market capitalization and
GDP defined in The World Bank Data Catalog or even the Worldwide Governance Indicators
defined by Kaufmann et al. in 2010 [121] and used in many other studies, including recent
ones [122,123]) will be the object of future research on the same topic but with more focus on
certain local peculiarities.

6. Conclusions

An accurate model with seven strong influences emerged in this paper. These act more
as determinants because of passing reverse causality checks. They indicate a specific type
of world values survey respondents. It is about the ones less likely to consider it acceptable
for employers to prioritize their people over immigrants. These are as follows: those who
believe in emancipative values, namely, the ones of gender equality for jobs, those choosing
a profession more relevant for the community than for themselves, those disagreeing that
people who do not work will turn lazy, the ones with higher values if inverse devoutness
(less inclined to make their own parents proud), the ones agreeing with a less prohibitive
immigrant policy, those who trust more in people of another nationality, and the ones with
a profile corresponding to a higher value for the post-materialist index. In addition, some
controls generally emphasized the positive roles of three socio-demographic variables.
There are the female gender, the number of children, and the survey year. It is also worth
mentioning the negative ones, which are education level, employment status in terms of
involvement in a full-time job, income scale, and settlement size (the most important control
variable in terms of performance added to the basic hepta-core model), when considering
whether it is justifiable for employers to prioritize the people of their nation rather than
immigrants. By allowing visual interpretations corresponding to the seven most resilient
determinants, the prediction nomogram presented in this paper serves both as a powerful
probability identification instrument and as a decision support tool that serves management
systems under conditions of uncertainty and risk. All conclusions related to the identified
determinants stand on models with fair-to-good classification accuracy. They resulted after
performing many selection rounds and robustness checks.
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Appendix A

Listing A1. Recoding the remaining variables using a Stata script with numbered lines—numbers
displayed separately, as when opened with the Stata editor (Stata script at: https://tinyurl.com/
5n6bdfss, accessed on 30 January 2023).

1 . use ‘ ‘ F :\ WVS_TimeSeries_stata_v1_6 . dta ’ ’ //19x : A124_06
A124_07 A124_09 A165 C001_01 C009 C038 D054 D059 D060 E025
E143 F063 F118 F120 F121 G007_36_B Y002 Y003

2 . generate C002nt =.
3 . r e p l a c e C002nt=2 i f C002==1
4 . r e p l a c e C002nt=0 i f C002==2
5 . r e p l a c e C002nt=1 i f C002==3 // or Jobs s c a r c e : Employers

should give p r i o r i t y to ( nat ion ) people than immigrants
6 . gen C002bin =.
7 . r e p l a c e C002bin=1 i f C002==1
8 . r e p l a c e C002bin=0 i f C002==2 // or Jobs s c a r c e : Employers

should give p r i o r i t y to ( nat ion ) people than immigrants
9 . gen A124_06nt =.
1 0 . r e p l a c e A124_06nt=A124_06 i f A124_06 ! = . & A124_06>=0 //or

Neighbors : Immigrants/f o r e i g n workers
1 1 . gen A124_07nt =.
1 2 . r e p l a c e A124_07nt=A124_07 i f A124_07 ! = . & A124_07>=0 //or

Neighbors : People who have AIDS
1 3 . gen A124_09nt =.
1 4 . r e p l a c e A124_09nt=A124_09 i f A124_09 ! = . & A124_09>=0 //or

Neighbors : Homosexuals
1 5 . generate A165nt =.
1 6 . r e p l a c e A165nt=2−A165 i f A165 ! = . & A165>0 //or Most people

can be t r u s t e d
1 7 . generate C001_01nt =.
1 8 . r e p l a c e C001_01nt=2 i f C001_01==1
1 9 . r e p l a c e C001_01nt=0 i f C001_01==2
2 0 . r e p l a c e C001_01nt=1 i f C001_01==3 //or Jobs s c a r c e : Men

should have more r i g h t to a job than women ( source f o r
Y022A=WOMJOB− Welzel equal i ty −1: Gender e q u a l i t y : job )
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2 1 . generate C009nt =.
2 2 . r e p l a c e C009nt=C009 i f C009 ! = . & C009>0 //or F i r s t choice ,

i f looking f o r a job : 1 . good income , 2 . s a f e job , 3 . wrk &people
u l i k e , 4 . Do an import . job , 5 . Do someth . f o r community

2 3 . generate C038nt = .
2 4 . r e p l a c e C038nt=5−C038 i f C038 ! = . & C038>0 //or People who

don ’ t work turn lazy
2 5 . generate D054nt = .
2 6 . r e p l a c e D054nt=4−D054 i f D054 ! = . & D054>0 //or One of main

goals in l i f e has been to make my parents proud ( source f o r
Y011C=DEVOUT− Welzel def iance −3: Inverse devoutness )

2 7 . generate D059nt =.
2 8 . r e p l a c e D059nt=4−D059 i f D059 ! = . & D059>0 //or Men make

b e t t e r p o l i t i c a l l e a d e r s than women do ( source f o r Y022B=
WOMPOL− Welzel equal i ty −2: Gender e q u a l i t y : p o l i t i c s )

2 9 . generate D060nt =.
3 0 . r e p l a c e D060nt=4−D060 i f D060 ! = . & D060>0 //or Univers i ty i s

more important f o r a boy than f o r a g i r l ( source f o r Y022C=
WOMEDU− Welzel equal i ty −3: Gender e q u a l i t y : education )

3 1 . generate E025nt =.
3 2 . r e p l a c e E025nt=3−E025 i f E025 ! = . & E025 >0 //or P o l i t i c a l

a c t i o n : Signing a p e t i t i o n
3 3 . generate E143nt = .
3 4 . r e p l a c e E143nt=4−E143 i f E143 ! = . & E143 >0 //or Immigrant

po l i cy : 1 Let anyone come . 4 P r o h i b i t people from coming
3 5 . generate F063nt =.
3 6 . r e p l a c e F063nt=F063 i f F063 ! = . & F063 >0 //or How important i s

God in your l i f e
3 7 . generate F118nt =.
3 8 . r e p l a c e F118nt=F118 i f F118 ! = . & F118 >0 //or J u s t i f i a b l e :

Homosexuality
3 9 . generate F120nt =.
4 0 . r e p l a c e F120nt=F120 i f F120 ! = . & F120 >0 //or J u s t i f i a b l e :

Abortion
4 1 . generate F121nt =.
4 2 . r e p l a c e F121nt=F121 i f F121 ! = . & F121 >0 //or J u s t i f i a b l e :

Divorce
4 3 . generate G007_36_Bnt =.
4 4 . r e p l a c e G007_36_Bnt=4−G007_36_B i f G007_36_B ! = . & G007_36_B >0

//Trust : People of another n a t i o n a l i t y ( B )
4 5 . generate Y002nt =.
4 6 . r e p l a c e Y002nt=Y002 i f Y002 ! = . & Y002>0 //or Post − M a t e r i a l i s t

index 4−item : 1 M a t e r i a l i s t , 2 Mixed , 3 P o s t m a t e r i a l i s t
4 7 . generate Y003nt =.
4 8 . r e p l a c e Y003nt=2+Y003 i f Y003 ! = . & Y003>−5 //or Autonomy

Index : −2 Obedience/Rel ig ious Fa i th . . 2 Determination ,
perseverance/Independence

4 9 . *FOR BUILDING CLUSTERS WHEN PERFORMING CROSS−VALIDATIONS :
5 0 . generate X001nt = .
5 1 . r e p l a c e X001nt=X001 i f X001 ! = . & X001>0 //Gender
5 2 . generate X003nt = .
5 3 . r e p l a c e X003nt=X003 i f X003 ! = . & X003>0 //Age
5 4 . generate X007nt = .
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5 5 . r e p l a c e X007nt=8−X007 i f X007 ! = . & X007>0 //Mari ta l s t a t u s
5 6 . generate X007bin =.
5 7 . r e p l a c e X007bin=1 i f X007==1 | X007==2
5 8 . r e p l a c e X007bin=0 i f X007 ! = . & X007>2 //Mari ta l s t a t u s as

with someone or not
5 9 . generate X011nt =.
6 0 . r e p l a c e X011nt=X011 i f X011 ! = . & X011>=0 //How many c hi ldre n

do you have
6 1 . generate X025nt =.
6 2 . r e p l a c e X025nt=X025 i f X025 ! = . & X025>0 //Highest educat ional

l e v e l a t t a i n e d
6 3 . generate X028nt =.
6 4 . r e p l a c e X028nt=8−X028 i f X028 ! = . & X028>0 & X028<9 //

Employment s t a t u s
6 5 . generate X047nt =.
6 6 . r e p l a c e X047nt=X047 i f X047 ! = . & X047>0 //S c a l e of incomes
6 7 . generate X048WVSnt=.
6 8 . r e p l a c e X048WVSnt=X048WVS i f X048WVS ! = . & X048WVS>0 //Regions
6 9 . generate X049nt =.
7 0 . r e p l a c e X049nt=X049 i f X049 ! = . & X049>0 //Set t lement s i z e

Table A1. The most relevant items of this study.

Variable Short Description Coding Details

C002 Jobs scarce: Employers should give priority to
(nation) people than immigrants (original format)

<0 for Do not know/No Answer/Not
applicable/Not Asked/Missing (DK/NA/M);

1-Agree; 2-Disagree; 3-Neither

C002nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 2-Agree; 1-Neither;
0-Disagree

C002bin The same as above in its binary form and with null
and DK/NA/M treatment

Null (.)-DK/NA/M or Neither; 1-Agree;
0-Disagree

A124_06 Neighbors: Immigrants/foreign workers (original
format)

<0 for DK/NA/M; 1-Mentioned; 0-Not
mentioned

A124_06nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Mentioned; 0-Not
mentioned

A124_07 Neighbors: People who have AIDS (original
format)

<0 for DK/NA/M; 1-Mentioned; 0-Not
mentioned

A124_07nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Mentioned; 0-Not
mentioned

A124_09 Neighbors: Homosexuals (original format) <0 for DK/NA/M; 1-Mentioned; 0-Not
mentioned

A124_09nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Mentioned; 0-Not
mentioned

A165 Most people can be trusted (original format) <0 for DK/NA/M; 1-You can trust most people;
2-Need to be very careful

A165nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 1-You can trust most people;
0-Need to be very careful

C001_01 Jobs scarce: Men should have more rights to a job
than women (original format)

<0 for DK/NA/M; 1-Agree; 2-Disagree;
3-Neither

C001_01nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 2-Agree; 1-Neither;
0-Disagree
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Table A1. Cont.

Variable Short Description Coding Details

C009 The first choice, if looking for a job (original
format)

<0 for DK/NA/M; 1-A good income; 2-A safe job
with no risk; 3-Working with people you like;

4-Doing important work; 5-Do something for the
community

C009nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-A good income ... 5-Do
something for the community

C038 People who do not work turn lazy (original
format)

<0 for DK/NA/M; 1-Strongly agree; 2- Agree;
3-Neither agree nor disagree; 4-Disagree;

5-Strongly disagree

C038nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0-Strongly disagree ...
4-Strongly agree

D054 One of my main goals in life has been to make my
parents proud (original format)

<0 for DK/NA/M; 1-Strongly agree; 2- Agree;
3-Disagree; 4-Strongly disagree

D054nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0-Strongly disagree ...
3-Strongly agree

D059 Men make better political leaders than women do
(original format)

<0 for DK/NA/M; 1-Strongly agree; 2- Agree;
3-Disagree; 4-Strongly disagree

D059nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0-Strongly disagree ..
3-Strongly agree

D060 University is more important for a boy than for a
girl (original format)

<0 for DK/NA/M; 1-Strongly agree; 2- Agree;
3-Disagree; 4-Strongly disagree

D060nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0-Strongly disagree ...
3-Strongly agree

E025 Political action: Signing a petition (original format) <0 for DK/NA/M; 1-Have done; 2- Might do;
3-Would never do

E025nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0-Would never do; 1- Might
do; 2-Have done

E143 Immigrant policy (original format)
<0 for DK/NA/M; 1-Let anyone come; 2- As

long as jobs available; 3-Strict limits; 4-Prohibit
people from coming

E143nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0-Prohibit people from
coming ... 3-Let anyone come

F063 How important is God in your life (original
format)

<0 for DK/NA/M; 1-Not at all important ...
10-Very important

F063nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Not at all important ...
10-Very important

F118 Justifiable: Homosexuality (original format) <0 for DK/NA/M; 1-Never justifiable ...
10-Always justifiable

F118nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Never justifiable ...
10-Always justifiable

F120 Justifiable: Abortion (original format) <0 for DK/NA/M; 1-Never justifiable ...
10-Always justifiable

F120nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Never justifiable ...
10-Always justifiable

F121 Justifiable: Divorce (original format) <0 for DK/NA/M; 1-Never justifiable ...
10-Always justifiable

F121nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Never justifiable ...
10-Always justifiable
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Table A1. Cont.

Variable Short Description Coding Details

G007_36_B Trust: People of another nationality (original
format)

<0 for DK/NA/M; 1-Trust completely; 2- Trust
somewhat; 3-Not very much; 4-Not at all

G007_36_Bnt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0-Not at all .. 3-Trust
completely

Y002 Post-Materialist index 4-item (original format) <0 for DK/NA/M; 1-Materialist; 2- Mixed;
3-Postmaterialist

Y002nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Materialist; 2- Mixed;
3-Postmaterialist

Y003 Autonomy index (original format) <0 for DK/NA/M; -2-Obedience/Religious Faith
... 2-Determination, perseverance/Independence

Y003nt The same as above but with a positive (raised)
scale and with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0-Obedience/Religious
Faith ... 4-Determination,

perseverance/Independence

X001 Gender (original format) <0 for DK/NA/M; 1-Male; 2-Female

X001nt The same as above with null and DK/NA/M
treatment Null (.)-DK/NA/M; 1-Male; 2-Female

X003 Age (original format) <0-DK/NA/M

X003nt The same as above with null and DK/NA/M
treatment Null (.)-DK/NA/M

X007 Marital status (original format)

<0-DK/NA/M; 1-Married; 2-Living together as
married; 3-Divorced; 4-Separated; 5-Widowed;
6-Single/Never married; 7 and 8-other values

considered the most distant from the status of a
married person

X007nt The same as above but with a reversed scale and
with null and DK/NA/M treatment

Null (.)-DK/NA/M; 0 and 1-other values
considered the most distant from the status of a

married person; 2-Single/Never married ..
7-Married

X007bin The same as above in its binary form and with null
and DK/NA/M treatment

Null (.)-DK/NA/M; 1-Married/ Living together
as married; 0-Otherwise

X011 How many children do you have (original format) <0-DK/NA/M; 0-No child; 1-1 child; 2-2 children
.. 5-5 children or more

X011nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 0-No child .. 5-5 children or
more

X025 The highest educational level attained (original
format)

<0-DK/NA/M; 1-Inadequately completed
elementary education; 2-Completed
(compulsory) elementary education;

3-Incomplete secondary school:
technical/vocational type; 4-Complete secondary
school: technical/vocational type; 5-Incomplete

secondary: university-preparatory type;
6-Complete secondary: university-preparatory

type; 7-Some university without degree/Higher
education-lower-level; 8-University with

degree/Higher education-upper-level tertiary

X025nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Inadequately completed
elementary education .. 8-University with

degree/Higher education-upper-level tertiary

X028 Employment status (original format)
<0-DK/NA/M; 1-Full time; 2-Part time; 3-Self
employed; 4-Retired; 5-Housewife; 6-Students;

7-Unemployed; 8-Other
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Table A1. Cont.

Variable Short Description Coding Details

X028nt The same as above but with a reversed scale and
with null and DK/NA/M treatment Null (.)-DK/NA/M; 0-Other .. 7-Full time

X047 The scale of incomes (original format) <0-DK/NA/M; 1-Lowest step; 2-Second step ..
10-Tenth step; 11-Highest step

X047nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Lowest step .. 11-Highest
step

X048WVS
Counties and Country Macroregions (numeric

code) where the interview was conducted (original
format)

<0-DK/NA/M; 8001 Albania: Tirana .. 7360013
SD: River Nile

X048WVSnt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 8001 Albania: Tirana ..
7360013 SD: River Nile

X049 Settlement size (original format)

<0-DK/NA/M; 1—Under 2000; 2—2000—5000;
3—5000—10,000; 4—10,000—20,000;

5—20,000—50,000; 6—50,000—100,000;
7—100,000—500,000; 8—500,000 and more

X049nt The same as above with null and DK/NA/M
treatment

Null (.)-DK/NA/M; 1-Under 2000 .. 8-500,000
and more

S020 Year of survey (original format)
Years between 1981 and 2020 (limited to

2017-2020-non-NULL observations for the
response variable)

Source: WVS data.

Table A2. Descriptive statistics for the most relevant WVS items used in this study.

Variable n Mean Std.Dev. Min 0.25 Median 0.75 Max

C002nt 377,345 1.55 0.75 0 1 2 2 2
C002bin 330,509 0.82 0.39 0 1 1 1 1

A124_06nt 396,205 0.21 0.41 0 0 0 0 1
A124_07nt 384,956 0.44 0.5 0 0 0 1 1
A124_09nt 376,865 0.5 0.5 0 0 1 1 1

A165nt 409,115 0.26 0.44 0 0 0 1 1
C001_01nt 395,652 0.97 0.91 0 0 1 2 2

C009nt 183,875 2.15 1.12 1 1 2 3 5
C038nt 175,111 2.86 1.09 0 2 3 4 4
D054nt 360,660 2.27 0.78 0 2 2 3 3
D059nt 357,860 1.53 0.98 0 1 1 2 3
D060nt 364,765 1.04 0.92 0 0 1 1 3
E025nt 379,840 0.83 0.81 0 0 1 2 2
E143nt 186,246 1.54 0.84 0 1 2 2 3
F063nt 402,066 7.7 3.02 1 6 10 10 10
F118nt 380,939 3.21 3.04 1 1 1 5 10
F120nt 398,878 3.37 2.85 1 1 2 5 10
F121nt 403,700 4.65 3.1 1 1 5 7 10

G007_36_Bnt 220,047 1.19 0.86 0 1 1 2 3
Y002nt 396,977 1.77 0.62 1 1 2 2 3
Y003nt 414,123 2.05 1.16 0 1 2 3 4

X001nt 421,634 1.52 0.5 1 1 2 2 2
X003nt 421,892 41.14 16.23 13 28 39 53 103
X007nt 421,264 5.34 2.18 0 3 7 7 7

X007bin 421,264 0.64 0.48 0 0 1 1 1
X011nt 410,849 1.89 1.81 0 0 2 3 24
X025nt 300,306 4.71 2.23 1 3 5 6 8
X028nt 413,665 4.69 2.16 0 3 5 7 7
X047nt 389,150 4.65 2.3 1 3 5 6 10

X048WVSnt 380,027 450,000 260,000 8,001 230,000 420,000 700,000 890,000
X049nt 303,252 4.95 2.51 1 3 5 7 8

S020 426,452 2005.05 9.57 1981 1998 2006 2012 2020

Source: own calculation in Stata (Stata script at https://tinyurl.com/yt872hcs, accessed on 31 January 2023).
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Table A7. The average marginal effects identified after controlling using the most relevant seven
predictors (hepta-core) and each of the other seven most significant socio-demographic control
variables in logit models.

Model (1) (2) (3) (4) (5) (6) (7) (8)

C001_01nt
(H2) 0.1132 *** 0.1145 *** 0.1113 *** 0.1131 *** 0.1124 *** 0.1122 *** 0.1264 *** 0.1112 ***

(0.0024) (0.0024) (0.0024) (0.0026) (0.0024) (0.0024) (0.0029) (0.0024)
C009nt (H2) −0.0204 *** −0.0206 *** −0.0199 *** −0.0208 *** −0.0200 *** −0.0188 *** −0.0185 *** −0.0195 ***

(0.0015) (0.0015) (0.0015) (0.0016) (0.0015) (0.0015) (0.0017) (0.0015)
C038nt (H4) 0.0252 *** 0.0254 *** 0.0250 *** 0.0266 *** 0.0257 *** 0.0244 *** 0.0237 *** 0.0248 ***

(0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0017) (0.0015)
D054nt (H3) 0.0344 *** 0.0343 *** 0.0347 *** 0.0351 *** 0.0328 *** 0.0343 *** 0.0379 *** 0.0328 ***

(0.0021) (0.0021) (0.0021) (0.0022) (0.0021) (0.0021) (0.0024) (0.0021)
E143nt (H1) −0.0570 *** −0.0567 *** −0.0553 *** −0.0605 *** −0.0577 *** −0.0554 *** −0.0589 *** −0.0569 ***

(0.0021) (0.0021) (0.0021) (0.0023) (0.0022) (0.0022) (0.0025) (0.0021)
G007_36_Bnt

(H2) −0.0511 *** −0.0508 *** −0.0515 *** −0.0541 *** −0.0518 *** −0.0497 *** −0.0569 *** −0.0516 ***

(0.0021) (0.0021) (0.0021) (0.0023) (0.0021) (0.0022) (0.0024) (0.0021)
Y002nt (H2,

H4) −0.0396 *** −0.0389 *** −0.0393 *** −0.0389 *** −0.0399 *** −0.0382 *** −0.0397 *** −0.0386 ***

(0.0027) (0.0027) (0.0027) (0.0029) (0.0028) (0.0028) (0.0032) (0.0027)
X001nt (H5) 0.0175 ***

(0.0034)
X011nt (H5) 0.0049 ***

(0.0010)
X025nt (H5) −0.0029 ***

(0.0008)
X028nt (H5) −0.0068 ***

(0.0008)
X047nt (H5) −0.0073 ***

(0.0008)
X049nt (H5) −0.0053 ***

(0.0008)
S020 (H5) 0.0133 ***

(0.0018)

N 46,794 46,765 45,604 42,847 45,155 43,697 35,072 46,794

Source: own calculation in Stata (Stata script at https://tinyurl.com/yvc3py3u, accessed on 30 January 2023)
Notes: robust standard errors are between round parentheses. Coefficients computed as average marginal effects
and emphasized using *** are significant at 1‰. The H codes on the left indicate the hypotheses to which the
variables next to them belong.
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Abstract: This research is the first attempt to create machine learning (ML) algorithmic systems that
would be able to automatically trade precious metals. The algorithm uses three forecast method-
ologies: linear regression (LR), Darvas boxes (DB), and Bollinger bands (BB). Our data consists of
20 years of daily price data concerning five precious metals futures: gold, silver, copper, platinum, and
palladium. We found that all of the examined precious metals’ current daily returns are negatively
autocorrelated to their former day’s returns and identified lagged interdependencies among the
examined metals. Silver futures prices were found to be best forecasted by our systems, and platinum
the worst. Moreover, our system better forecasts price-up trends than downtrends for all examined
techniques and commodities. Linear regression was found to be the best technique to forecast silver
and gold prices trends, while the Bollinger band technique best fits palladium forecasting.

Keywords: precious metals; gold; silver; algorithmic trading; futures

MSC: 37M22

1. Introduction

The use of artificial intelligence (AI) in financial assets price forecasting and trading
has become more and more frequent as the amount and speed of the flow of new financial
data increased dramatically. Algorithms are used to analyze simultaneous multi-sourced
data. Those systems are developed by market experts and are usually applied to stocks
and currencies markets. The following research develops and tests such an AI system and
applies it to the precious metals’ futures market. Precious metals have always been per-
ceived by investors as a hedging tool against inflation (see, for example, [1]) or stock market
crashes. In the following research, we designed, optimized, and tested three algorithmic
trading systems suitable for precious metal futures trading. Our long period of time data
enables us to test the performance of our system over changing economic conditions. The
technical analysis approach used here, commonly used by practitioners to trade stocks and
foreign exchanges, relies on historical data for the sake of forecasting future prices. We
used the particle swarm optimization (PSO) algorithm as our primary optimization tool
because of its ability to handle multi-objective optimization simultaneously.

Many researchers have tried to prove the ability of such algorithmic trading systems
to achieve abnormal returns for stocks, currencies, and indices. However, many researchers
focus on stocks and foreign exchange and partly neglected commodity futures and espe-
cially precious metal futures. The following research aims to fill that gap with an insight
into three algorithmic trading strategies that were programmed in accordance with the
uniqueness of the precious metal financial markets. We use 20 years of daily futures data
corresponding to five major precious metals, including gold, silver, copper, platinum, and
palladium, to test three algorithmic trading strategies: linear regression (LR), Darvas boxes
(DB), and Bollinger bands (BB). We followed [2], that concluded that LR and DB could help
traders predict Bitcoin short-term price trends. Our 20 years of data were split into 10 years
of training and optimization and 10 years of testing the trading results. We found that it is
possible to forecast short-term price trends of precious metals. Silver futures prices were
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found to be best forecasted by our systems, and platinum was the worst. Our system better
forecasts price-up trends than downtrends for all examined techniques and commodities.
Linear regression was found to be the best technique to forecast silver and gold prices,
while the Bollinger band technique best fits palladium forecasting.

2. Literature Review

Our system is based on pattern recognition which is a developing AI field that helps
us to understand different chaotic phenomena. Ref. [3] argued that the applicability of
Bayesian methods was greatly enhanced through the development of a range of approx-
imate inference algorithms such as variational Bayes and expectation propagation. An
important foundation for learning input–output mapping from a set of examples was
presented by [4]. They developed a theoretical framework for the approximation method
based on regularization networks that are closely related to pattern recognition. Their
methodologies included task-dependent clustering and dimensionality reduction. Other
researchers provided an understanding of the mathematical concepts behind forecasting
methods that are based on probabilistic derivations. Ref. [5] provided a joint introduction
to Gaussian processes (GP) and relevance vector machines (RVM-developed by [6]). They
found that RVMs allow the choice of more general basis functions, whereas the behavior
of predictive variance is generally counterintuitive. Ref. [7] examined the GP and RVM
models and concluded that probabilistic models could produce predictive distributions
instead of point predictions.

Most researchers that tried to explain precious metals prices have done so by linking
the stock market to the precious metal market. Ref. [8] explained that precious metal futures
have higher returns when investor sentiment is pessimistic rather than optimistic. Ref. [9]
argued that the price of precious metals and their volatility are driven by shocks originating
in the economic uncertainty and risk appetite of investors that prevail in the equity market.
Other researchers focused on the interrelations between the prices of the leading precious
metals. Ref. [10] showed that precious metals were strongly correlated with each other
in the last decade. Ref. [11] documented that weekly changes in traders’ positions have
a destabilizing impact on subsequent conditional volatility in gold, silver, and palladium
futures markets.

Other researchers linked precious metals prices to each other and other commodities.
Ref. [12] examined spillover effects among six commodity futures markets and found that
both gold and silver are information transmitters to other commodity futures markets.
Ref. [13] have examined the impact of oil price changes on precious metals prices. They
identified the safe-haven nature of precious metals against an oil price drop.

Past researchers also attempted to construct AI systems to predict precious metals
prices. Ref. [14] proposed a model that combines the adaptive neuro-fuzzy inference system
and genetic algorithm. Ref. [15] discovered hidden patterns governing systems’ evolution.
Unlike these attempts to predict precious metals prices, we designed algorithmic trading
systems and tested their ability to predict precious metals prices.

3. Data and Methodologies

Our data consists of 20 years of daily data of open–closed, high–low prices of five
precious metals futures. We used a lagged multi-dimension stepwise regression model
to examine lagged correlations between the daily return of the examined precious metals,
including autocorrelations, as described in Equation (1).

(G, S, C, P, Pa)i = β1Gi=−1...−3 + β2Si=−1...−3 + β3Ci=−1...−3 + β4Pi=−1...−3 + β5Pai=−1...−3 (1)

where: (G, S, C, P, Pa)i = the daily return of gold, silver copper, platinum, and palladium,
(G, S, C, P, Pa)i=−1...−3 is 1 . . . 3 days ago daily returns of gold, silver, copper, platinum,
and palladium.
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The results of this model enabled us to better understand short term autocorrelations
of returns and lagged dependencies between the precious metals price movements and
helped us design our trading systems.

3.1. Algorithmic Trading System

We designed our algorithmic trading system to report the actual trading results: net
profit (NP), percent of profitable trades of all trades (PP), and the profit factor (PF). NP is
the dollar value of the total net profit generated by the trading system, PP is the percentage
number of winning trades out of the entire set of trades generated by the system, and PF is
defined as gross profits divided by gross losses. We programmed three algorithmic systems
based on three sophisticated trading technical tools and altered their configuration until we
achieved maximum profitability in terms of NP and PF. The designed systems are based
on three methodologies: linear regression, Darvas boxes, and Bollinger bands which are
well-known technical formations that are commonly used to analyze investment opportunities
for stock and currencies traders. We then optimized NP and PF by altering the setups behind
our systems and splitting the system’s performance into long and short positions.

The complexity of our systems requires multi-objective optimization formulas. We
selected particle swarm optimization (PSO), developed by Kennedy and Eberhart ([16,17])
as our primary optimization method. This methodology enabled us to train the system in
the initial period and test it in the latter period. The 20 years of our examined period were
split into two separate periods, 10 years of training and optimizing and 10 years of testing
and reporting results. We started the process with a random trading setup that included the
trading time frames and the various tools ingredients. Next, for each setup, we evaluated
the desired fitness of the trading results to our predefined goals: Maximum NP, PF, and PP.
We then compared each result to its former maximum and set a new maximum if needed.
The process is described in Equation (2).

V (1) i + 1,d = Vid + C1Rand × Pid − Xid + C2R and Pgd − Xid (2)

X (2) i + 1,d = Xid + Vid (3)

where Vid = the value of each setup, Rand = random number, Pid = the setups initial
identification, and Pgd = the setups’ maximum identification.

Last, we looped the process using Equation (3) until the highest multiple objectives
were achieved.

3.2. Linear Regression Strategy

Figure 1 demonstrate how we used the linear regressions technique for algorithmic
trading platforms.

 
Figure 1. Linear regression algorithmic trading strategy. Notes: Every candlestick in Figure 1 represent
the high/low open/close of the commodity futures’ daily prices. The middle line in Figure 1 represent
the linear regression line, while the other two lines represent one standard deviation from it.
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A linear regression strategy demands the length of time for the line formation and
the span from that line that determines the entry and exit from the trading positions. The
regression line in Figure 1, for example, is based on 50 trading days when one standard
deviation from that line determines the entry and exit points to the trading position. We
started our PSO procedure with a random variable for both the daily time length and for
the span that determined the actual entry and exits of trades. The system altered those
variables in order to maximize our trading targets.

3.3. Darvas Boxes Strategy

Figure 2 show an example of an automated trading platform using Darvas boxes.

 

Figure 2. Darvas boxes algorithmic trading strategy. Notes: Every candlestick in Figure 2 represent
the high/low open/close Bitcoin daily prices. A green daily candle means that the close price is
above the opening price and a red candle means that the close price is lower than the opening price.
The green and red lines indicate the upper and lower boundaries of Darvas’s boxes.

Figure 2 show how Darvas boxes are designed and how they generate a long and short
signal. This algorithmic trading system assumes that the trader is always exposed to price
shifts between long and short positions. Darvas boxes use the notation that deviation from
overtime horizontal support and resistance lines can be used to construct a winning trading
strategy. The idea is that the asset’s price should move within a specific box formation
when no external news is provided and break formation when important news concerning
the commodity is introduced to the financial markets. Boxes can be formed using any
predetermined time frame according to the financial asset’s volatility. A high volatility
financial asset demands a shorter time frame for box formation than a low volatility asset.
The PSO process starts with a random number of days to construct the boxes and alter them
to achieve better trading performances. Once the size and shape of the boxes are formed in
the training period, it is used for the tested period for which performances are remeasured.

3.4. Bollinger Bands Strategy

Bollinger bands (BB) (developed by John Bollinger) use two standard deviations away
from a simple moving average. The trading strategy demonstrated in Figure 3 uses 14 days
for the moving average calculation with the original two standard deviations. When the
price of the commodity crosses the lower band, the system opens, a buy long order is
placed, and when it crosses the upper band, a sell short order is generated.
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Figure 3. Bollinger Bands algorithmic trading strategy. Notes: A green daily candle means that the
close price is above the opening price and a red candle means that the close price is lower than the
opening price.The middle brown line is a simple moving average and the blue lines are the upper
and lower boundaries of the BB.

The PSO procedures start with random setups for both the moving average and the
standard deviations and optimize both particles of our trading system.

The three methodologies that were tested in this research are based on the pattern
recognition of price movements of the precious metals. The LR tries to adjust a linear model
(horizontal or diagonal) to the data and determine price direction through a deviation from
that linear formation. The DB methodology works on a shorter-term formation of boxes that
represent the horizontal support and resistance lines. A deviation from that formation can
be used to identify price trends shifts and support trading decision making. The concept
that lies behind the BB structure does not demand the identification of a predetermined
formation but rather determines a zone in which the financial assets are expected to move
within a specific time frame. A break-out of the price from the expected zone can indicate
irregularities of movements and can be used to make profits.

4. Results

We start the results section by presenting 10 years of (until the end of April 2021)
monthly and daily correlations matrix between the returns of the examined precious
metals.

From Table 1, we learn that all examine precious metal monthly returns are positively
correlated. However, on a daily level, the correlations between the precious metals prices
do not have the same sign. While gold and silver and copper and silver are negatively cor-
related, platinum and palladium and silver and platinum are positively correlated. We now
apply to the daily data our designated multi-dimension regression model (Equation (1)),
and report the results for the standard stepwise regression model is presented in Table 2.
This model enables us to better understand the one to three day lag dependencies of each
metal to its previous price changes and to the other precious metals.

Table 2 show an interesting phenomenon, all precious metals’ current daily returns
are negatively autocorrelated to their former days’ returns: gold and silver to their former
three consecutive days returns, platinum to its two consecutive days returns, and copper
and palladium to their single former day returns. In terms of interdependencies, Table 2
exhibit that gold current daily returns are negatively affected by silver’s former days’
returns. However, silver’s current daily returns are positively correlated to gold’s returns
two and three days ago. Platinum’s current daily returns were found to be positively
affected by gold, silver, and palladium’s past returns. Palladium’s current daily return was
found to be positively correlated to yesterday’s returns of silver and platinum and two
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days ago of gold’s returns. The observations described above about the precious metals’
daily autocorrelations helped us better understand the fluency of daily prices to construct
our trading strategy. All the designed trading systems are based on daily trading data.
However, because of the different nature of these strategies, the number of days used for
each of them which is determined solely by the optimization process, is different. For
example, the linear regression system needs more days than the other methodologies to
construct its formations; therefore, the algorithm needs a higher number of days to analyze
the price trends and produce profitable trading signals than the systems that are based on
Darvas boxes and Bollinger bands which are more dynamic in nature and demand fewer
days to achieve their best performances.

Table 1. Correlations matrix of monthly and daily returns.

Period Gold Silver Copper Platinum Palladium

Gold M 1 0.75 0.25 0.51 0.28
Silver M 0.75 1 0.45 0.61 0.44

Copper M 0.25 0.45 1 0.56 0.51
Platinum M 0.51 0.61 0.56 1 0.55
Palladium M 0.28 0.44 0.51 0.55 1

Gold D 1 −0.032 0.015 −0.015 −0.032
Silver D −0.032 1 −0.029 0.017 0.031

Copper D 0.015 −0.029 1 0.015 −0.029
Platinum D −0.015 0.017 0.015 1 0.030
Palladium D −0.032 0.031 −0.029 0.030 1

Table 2. Results of the regression model.

Gold

G−1 G−2 G−3 S−2 S−3 C−2 C−3 P−1 P−2
Coeff −0.20 * −0.17 * −0.04 * −0.02 * −0.02 * 0.02 0.04 0.03 0.04 R2 = 0.14
T stat −11.00 −9.48 −2.14 −2.82 −2.04 0.97 1.86 1.57 1.73 F = 21.6

Silver

G−1 G−2 G−3 S−1 S−2 S−3 C−1 C−2
Coeff −0.04 0.09 * 0.06 * −0.48 * −0.26 * −0.14 * 0.26 * 0.06 R2 = 0.19
T stat −1.18 2.44 1.82 −25.3 −12.36 −7.33 5.93 1.62 F = 83.9

Copper

G−1 G−2 G−3 S−1 S−2 S−3 C−1 P−1
Coeff 0.01 0.01 −0.01 0.01 0.01 −0.02 −0.05 * 0.02 R2 = 0.07
T stat 0.75 0.72 0.73 1.26 0.15 −1.41 −2.42 1.14 F = 2.7

Platinum

G−1 S−1 S−2 S−3 C−3 P−1 P−2 Pa−1 Pa−2
Coeff 0.03 * 0.11 * 0.09 * 0.04 * −0.02 −0.07 * −0.03 * 0.09 * 0.08 * R2 = 0.21
T stat 1.95 14.65 10.65 5.60 1.27 −3.93 −2.05 6.73 5.85 F = 39.4

Palladium

G−2 G−3 S−1 S−2 S−3 C−2 C−3 P−1 Pa−1
Coeff 0.04 * −0.02 0.04 * 0.01 0.02 0.02 −0.05 0.06 * 0.08 * R2 = 0.15
T stat 2.17 −1.04 3.78 1.39 1.75 0.76 −1.85 2.26 4.33 F = 16.64

Notes: (G, S, C, P, Pa)i = daily returns of gold, silver, copper, platinum, and palladium, (G, S, C, P, Pa)i=−1...−3 is
1 . . . 3 days ago daily returns of gold, silver, copper, platinum, and palladium. * = significant at 95% confidence
level. R2 = the proportion of the variation in the dependent variable that is predictable from the independent
variable(s). F = Statistic test results that measure the fitness of the model to the data. T stat = the ratio of the
departure of the estimated value of a parameter from its hypothesized value to its standard error.

4.1. Linear Regression Trading Strategy

The linear regression strategy requires determining the number of days on which the
linear regression line is formed. We start with a random number of days for each metal
and optimize the trading results through our PSO system. The best trading results are
summarized in Table 3 and Figure 4.
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Table 3. Linear regression strategy trading results.

Days Gold Silver Copper Platinum Palladium

20
NP 53,390 315,150 72,612 −9705 235,950 **
PP 45.48% 44.54% 43.88% 42.92% 40.67%
PF 1.06 1.25 1.14 0.98 1.30

25
NP 90,680 415,175 122,662 ** 46,715 174,050
PP 42.96% 44.18% 44.71% 43.5% 39.14%
PF 1.13 1.40 1.22 1.10 1.23

30
NP 159,810 600,750 121,450 51,955 −4300
PP 45.55% 46.26% 43.87% 42.7% 39.7%
PF 1.26 1.67 1.24 1.13 0.99

35
NP 171,040 589,150 112,862 73,445 ** −133,650
PP 43.89% 44.4% 44.41% 43.92% 8.8%
PF 1.31 1.71 1.26 1.18 0.83

36
NP 165,180 558,975 119,837 59,225 −132,400
PP 42.6% 43.91% 44.48% 43.25% 37.78%
PF 1.30 1.64 1.28 1.15 0.83

37
NP 172,600 539,700 122,187 59,005 −159,950
PP 42.63% 45.1% 44.65% 42.53% 37.76%
PF 1.30 1.65 1.29 1.15 0.80

38
NP 177,190 ** 561,425 ** 96,737 40,110 −177,300
PP 42.48% 44.15% 42.46% 41.72% 38.04%
PF 1.32 1.69 1.22 1.09 0.78

39
NP 174,600 523,050 96,787 22,160 −219,000
PP 43.78% 43.46% 41.62% 39.93% 37.09%
PF 1.32 1.63 1.22 1.05 0.73

40
NP 167,460 480,000 79,400 27,700 −224,150
PP 43% 41.64% 42.5% 40.14% 36.55%
PF 1.31 1.58 1.18 1.069 0.73

Notes: NP = Net profit, PP = Percent of profitable trades of all trades, PF = Profit factor, Days= The number of
days on which the linear regression is constructed. ** = The highest NP.

 

Figure 4. Net profits trading results of linear regression strategy.

Table 3 and Figure 4 demonstrate that the linear regression methodology best fits to the
trade of silver, palladium, and gold and fits less to the trade of copper and platinum. The
best setup for gold and silver trading systems is 38 days, for which the system generated
USD 177,198 and USD 561,425 NP, respectively. For palladium, the best setup is 20 days
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achieving an NP of USD 235,950 with a PF of 1.30. In Table 4, we split our trades into long
and short trades to examine whether a difference in profitability will occur.

Table 4. Linear regression trading results of long/short strategies.

Days Gold Silver Copper Platinum Palladium

Long
NP 163,650 341,900 79,500 54,460 213,600
PP 44.4% 45.6% 49.3% 46.5% 44.3%
PF 1.6 1.82 1.39 1.3 1.67

Short
NP 13,540 219,525 42,687 18,985 22,350
PP 41% 42.5% 39.8% 41.3% 37.3%
PF 1.05 1.55 1.2 1.09 1.05

Notes: NP = Net profit, PP = Percent of profitable trades of all trades, PF = Profit factor. The results for gold
and silver are calculated according to their optimum setups of 38 days, copper 37 days, platinum 35 days, and
palladium 20 days.

Table 4 indicate that the linear regression technique fits both long and short trades.
However, it is a better strategy for long trades than for short trades for all the examined
commodities. The difference in long and short trades is significant for all metals in terms of
NP and PF. Silver, again, leads the other metals in both long and short trades, resulting in a
PF of 1.8 for long trades and 1.55 for short trades.

4.2. Darvas Box Strategy

Darvas box strategy requires determining the number of days on which the system
will build the boxes formations and deliver buy or sell signals. Again, we start with a
random number of days and let our PSO system optimize our goal functions. The best
trading results are summarized in Table 5 and Figure 5.

 
Figure 5. Net profits trading results of Darvas boxes strategy.

The trading results according to the Darvas boxes methodology described in Table 5
and Figure 5 show that this methodology, like the linear regression technique, best forecasts
silver price trends than copper and gold, and it is less effective in forecasting future prices
of platinum and palladium. Our system generated an NP of USD 319,200 for silver, with a
PF of 1.55, using a 7-day setup. This setup was found to be useful also for gold and copper
trading. Table 6 divide all the trades into long and short trades using the optimized setups
for each metal.
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Table 5. Darvas boxes strategy trading results.

Days Gold Silver Copper Platinum Palladium

5
NP 26,080 188,475 39,487 −12,725 −98,550
PP 37.30% 36% 35.45% 37.8% 34.12%
PF 1.05 1.22 1.09 0.97 0.86

6
NP 36,990 271,625 93,087 −42,775 −97,950
PP 36.67% 36.24% 36% 37.9% 33%
PF 1.08 1.36 1.26 0.88 0.85

7
NP 65,290 ** 319,200 ** 102,175 ** −17,735 29,550
PP 39.54% 37.75% 35.19% 36.36% 33.06%
PF 1.17 1.55 1.31 0.95 1.06

8
NP 61,830 295,650 94,425 −29,445 36,750
PP 38.49% 37.54% 37.81% 37.13% 33.18%
PF 1.17 1.55 1.31 0.91 1.07

9
NP −5290 164,800 94,925 13,035 ** 21,150
PP 36.33% 35.07% 40.11% 37% 33.51%
PF 0.98 1.28 1.35 1.05 1.04

10
NP 13,610 111,125 55,662 −21,020 38,650 **
PP 33.62% 33.59% 38.79% 32.32% 33.14%
PF 1.04 1.19 1.20 0.93 1.09

11
NP 2500 191,875 35,412 −22,795 −26,250
PP 35.61% 34.05% 39.1% 29.94% 32.7%
PF 1.00 1.38 1.13 0.92 0.94

12
NP −10,760 222,425 53,537 −40,555 −82,450
PP 35.68% 36.89% 39.86% 29.7% 31.37%
PF 0.97 1.52 1.21 0.85 0.83

13
NP −63,780 178,125 56,737 −17,490 −38,350
PP 30.415 34 % 39% 30.61% 34%
PF 0.83 1.39 1.24 0.93 0.91

14
NP −43,000 200,275 41,762 6990 −14,950
PP 32.15 35.71% 37.3% 32.33% 36.22%
PF 0.87 1.47 1.18 1.03 0.96

15
NP −122,000 148,125 29,212 10,590 −108,550
PP 34% 32.56% 35.45% 31.93% 33.88%
PF 0.96 1.32 1.13 1.05 0.75

Notes: NP = Net profit, PP = Percent of profitable trades of all trades, PF = Profit factor, Days = The number of
days on which the Darvas box is constructed. ** = The highest NP.

Table 6. Darvas boxes trading results of long/short strategies.

Days Gold Silver Copper Platinum Palladium

Long
NP 111,170 222,425 95,863 28,335 152,550
PP 41.815 39.55% 39.32% 42.155 39.77%
PF 1.77 1.93 1.79 1.28 2.02

Short
NP −45,880 96,775 6312 −15,300 −113,900
PP 37.25% 35.96% 31.03% 31.7% 26.44%
PF 0.81 1.28 1.03 0.91 0.58

Notes: NP = Net profit, PP = Percent of profitable trades of all trades, PF = Profit factor. The results for gold, silver,
and copper are calculated according to their optimum setups of 7 days, platinum 9 days, and palladium 10 days.

The table shows that for all five precious metals, the system again performed better
for long trades than for short trades. Moreover, short trades have produced losses for gold,
platinum, and palladium. The only precious metals for which the Darvas boxes technique
fits both long and short trade are silver and copper. These results indicate that the system
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based on the Darvas boxes methodology can better predict positive future price trends than
negative trends.

4.3. Bollinger Band Strategy

Table 7 summarize the results of the examined metals prices using the Bollinger band
(BB) technique. This methodology calculates a moving average of a predetermined number
of the trading day and contrasts the upper and lower bands using two standard deviations
from that moving average. Using our PSO system, we optimized the trading results for each
commodity in terms of NP, PP, and PF. The results are presented in Table 7 and Figure 6.

Table 7. Bollinger bands strategy trading results.

Days Gold Silver Copper Platinum Palladium

7
NP −60 381,325 ** 12,462 −8450 279,350
PP 60.2% 62.5% 64.7% 61.1% 56.1%
PF 1.0 1.67 1.03 0.97 1.80

8
NP 37,470 248,425 −84,162 −80,850 311,950 **
PP 59.8% 61% 63.6% 63.3% 61%
PF 1.08 1.34 0.82 0.77 1.70

9
NP 39,690 203,425 −89,450 −88,335 223,700
PP 59.2% 63% 62.5% 65% 58.4%
PF 1.08 1.27 0.81 0.75 1.43

10
NP 8730 179,175 −90,262 −72,165 162,600
PP 58.2% 65.5% 63.1% 65% 60%
PF 1.02 1.26 0.80 0.80 1.30

11
NP 56,330 233,175 −64,937 −28,080 −118,800
PP 60.6% 65.9% 62.4% 65.5% 57.9%
PF 1.13 1.35 0.85 0.92 0.80

12
NP 69,310 61,925 −84,000 −31,120 −87,400
PP 63.8% 65.9% 65.1% 66.5% 59.2%
PF 1.16 1.09 0.81 0.90 0.85

13
NP 103,760 ** 7100 −63,812 5690 −116,000
PP 63.7% 63.5% 65.6% 64.5% 58.7%
PF 1.25 1.01 0.85 1.02 0.79

14
NP 88,190 −21,100 −68,412 −6050 −22,100
PP 63.6% 62.8% 64.3% 63.1% 59.6%
PF 1.22 0.97 0.83 0.98 0.96

15
NP 83,580 14,950 −67,437 4660 114,150
PP 62.6% 64.3% 64.5% 65.6% 61.3%
PF 1.21 1.02 0.83 1.02 1.25

16
NP 83,890 700 −4562 6300 104,650
PP 63% 65.5% 66.7% 66.3% 60.8%
PF 1.21 1.0 0.98 1.02 1.24

17
NP 77,980 67,225 −46,887 24,120 37,750
PP 62.5% 66.1% 61.9% 66% 60.3%
PF 1.2 1.1 0.87 1.09 1.08

18
NP 54,520 187,975 −13,837 28,780 33,950
PP 62.3% 67.4% 63.8% 67.8% 62.3%
PF 1.14 1.33 0.96 1.11 1.07

19
NP 48,340 280,495 59,812 ** 19,250 50,950
PP 63.6% 67.5% 65.7% 68.8% 63%
PF 1.13 1.54 1.18 1.07 1.10

20
NP 33,920 203,975 5262 52,500 ** 10,550
PP 61.2% 66.8% 65.8% 69.8% 62.9%
PF 1.09 1.41 1.02 1.19 1.02

Notes: NP = Net profit, PP = Percent of profitable trades of all trades, PF = Profit factor, Days = The number of
days on which the Bollinger band is constructed. ** = The highest.
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Figure 6. Net profits trading results of Bollinger bands strategy.

Table 7 and Figure 6 indicate that BB best forecasts silver and palladium futures prices,
and it is less effective for copper and platinum. Seven days was found to be the best setup
for silver and palladium, while 13 days best fit the gold price forecast. It is worth noting that
silver and palladium prices are more volatile than the other metals, as was demonstrated
in Table 1, resulting in relatively fewer preferred days setups for the BB methodology. The
BB technique provided better percent of profitable (PP) results for all metals than the linear
regression or the Darvas boxes techniques making it the lowest risk algorithmic trading
system. Table 8 split the trades for long and short trades.

Table 8. Bollinger bands trading results of long/short strategies.

Days Gold Silver Copper Platinum Palladium

Long
NP 134,490 252,425 57,137 48,370 262,800
PP 65.7% 63.5% 64.7% 73.2% 64.7%
PF 1.85 2.12 1.37 1.35 2.65

Short
NP −30,730 128,900 2675 4130 49,150
PP 61.7% 61.5% 66.7% 66.4% 57.5%
PF 0.88 1.37 1.02 1.03 1.17

Notes: NP = Net profit, PP = Percent of profitable trades of all trades, PF = Profit factor. The results for gold, silver,
and copper are calculated according to their optimum setups of 7 days, platinum 9 days, and palladium 10 days.

Table 8 indicate that, again, the BB methodology also fits long than short trades better.
This technique fails to predict the negative price trends of gold.

5. Summary and Implications

In this research, we examined the short-term behavior of five major precious metals
and tried to determine whether prices can be predicted and traded accordingly to algo-
rithmic trading systems. By using a multidimensional regression model, we found that
all precious metals’ current daily returns are negatively autocorrelated to their former
days’ returns. Gold and silver are negatively correlated to the former three consecutive
days’ returns, platinum to two former days returns, and copper and palladium to a single
former days’ returns. The model also identified lagged interdependencies among the
examined metals. These findings helped us to better understand the daily price fluctuation
of each metal and to improve the trading systems. The trading systems used three forecasts’
methodologies: linear regression (LR), Darvas boxes (DB), and Bollinger bands (BB). Our
data consisted of 20 years of daily price data concerning five precious metals futures:
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gold, silver, copper, platinum, and palladium. During that long time, the precious metals
experienced high and low price volatility under different economic conditions. We used
PSO as our primary optimization tool because of the complexity of our target function.
For that optimization process, we split our data into two equal time periods, 10 years of
training and optimization of our system and 10 years of testing and reporting results.

We found that it is possible to forecast the short-term price trends of all the examined
precious metals. Moreover, we documented that our system better forecasts price-up trends
than downtrends for all examined techniques and commodities. Our systems best predict
silver future prices and forecasts platinum prices the worst. Linear regression was found to
be the best forecasting technique for silver and gold price trends, while the Bollinger band
technique best fits palladium. This research has proven that precious metals prices can be
predicted using an algorithmic trading system and, therefore, can be used by researchers,
traders, and hedgers.
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